WO2013078593A1 - 掺杂有机电致发光器件及其制备方法 - Google Patents

掺杂有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2013078593A1
WO2013078593A1 PCT/CN2011/083048 CN2011083048W WO2013078593A1 WO 2013078593 A1 WO2013078593 A1 WO 2013078593A1 CN 2011083048 W CN2011083048 W CN 2011083048W WO 2013078593 A1 WO2013078593 A1 WO 2013078593A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic electroluminescent
electroluminescent device
electron
doped organic
Prior art date
Application number
PCT/CN2011/083048
Other languages
English (en)
French (fr)
Inventor
周明杰
王平
黄辉
冯小明
Original Assignee
海洋王照明科技股份有限公司
深圳市海洋王照明工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司, 深圳市海洋王照明工程有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to CN201180074540.9A priority Critical patent/CN104025332A/zh
Priority to PCT/CN2011/083048 priority patent/WO2013078593A1/zh
Priority to EP11876540.3A priority patent/EP2787553A4/en
Priority to JP2014542673A priority patent/JP2015503229A/ja
Priority to US14/360,922 priority patent/US20150028311A1/en
Publication of WO2013078593A1 publication Critical patent/WO2013078593A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the invention relates to the field of organic electroluminescence, in particular to a doped organic electroluminescent device and a preparation method thereof.
  • OLED organic electroluminescent device
  • the principle of OLED illumination is based on the lowest unoccupied molecular orbital of electrons injected from the cathode into the organic matter under the action of an applied electric field (LUMO). ), and the highest occupied orbit of holes injected from the anode to the organic matter (HOMO ). Electrons and holes meet and recombine in the luminescent layer to form excitons. The excitons migrate under the action of an electric field, transfer energy to the luminescent material, and excite the electrons from the ground state to the excited state. The excited state energy is deactivated by radiation to generate photons. , release light energy.
  • LUMO applied electric field
  • HOMO organic matter
  • LUMO In a conventional doped organic electroluminescent device, if LUMO is between the light-emitting layer and the hole transport layer The lower energy level barrier causes electrons to pass through the light-emitting layer to the hole transport layer, causing electrons and holes to not be effectively combined, and the luminous efficiency is low.
  • a method generally used to block electrons is to deposit a layer of LUMO between the light-emitting layer and the hole transport layer.
  • An organic material with an energy level of approximately -3.2 eV is used to block electrons and confine electrons to the light-emitting layer.
  • the LUMO barrier between the general electron blocking layer and the luminescent layer is about 0.5 ev. The left and right can effectively block, and the LUMO level of the conventional doped organic electroluminescent device has a LUMO level of about -3.5eV, and therefore, the electron blocking effect is poor.
  • a doped organic electroluminescent device comprising: a conductive anode substrate, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode;
  • the material of the electron blocking layer is a hole transporting material doped with a cerium salt;
  • the cerium salt accounts for 2% to 15% by mass of the electron blocking layer.
  • the onium salt is azide, cesium carbonate, cesium fluoride or cesium oxide.
  • the hole transporting material is 1,1-di[4-[N,N'-bis(p-tolyl)amino] Phenyl] cyclohexane, N, N'-bis(3-methylphenyl)-N, N'-diphenyl-4,4'-biphenyldiamine, 4,4',4''- Tris (carbazole -9-yl)triphenylamine or N,N '-(1-naphthyl)-N , N ' -diphenyl -4,4'-biphenyldiamine.
  • the electron blocking layer has a thickness of 1 nm to 10 nm.
  • the material of the hole injection layer is molybdenum trioxide, tungsten trioxide or vanadium pentoxide.
  • the material of the hole transport layer is 1,1-bis[4-[N,N'-bis(p-tolyl)amino] Phenyl] cyclohexane, N, N'-bis(3-methylphenyl)-N, N'-diphenyl-4,4'-biphenyldiamine, 4,4',4''- Tris (carbazole -9-yl)triphenylamine or N,N '-(1-naphthyl)-N , N ' -diphenyl -4,4'-biphenyldiamine.
  • the material of the luminescent layer is 4-(dinitrileyl)-2-isopropyl-6-(1,7,7-tetramethyl sulpirin-9-vinyl) -4H-pyran, 8-hydroxyquinoline aluminum, bis(4,6-difluorophenylpyridine-N,C 2 )pyridine hydrazide, bis(2-methyl-diphenyl[f,h At least one of quinoxaline (acetylacetone) ruthenium and tris(2-phenylpyridine) ruthenium;
  • the luminescent layer is made of 4-(dinitrileyl)-2-isopropyl-6-(1,7,7-tetramethyl sulphonium-9-vinyl)- 4H-pyran, 8-hydroxyquinoline aluminum, bis(4,6-difluorophenylpyridine-N,C 2 )pyridinecarboxylic acid hydrazide, bis(2-methyl-diphenyl[f,h] Quinoxaline (acetylacetonato) or tris(2-phenylpyridine) ruthenium as a guest material, with 1,1-bis[4-[N,N'-bis(p-tolyl)amino]benzene Cyclohexane, N, N'-bis(3-methylphenyl)-N, N'-diphenyl-4,4'-biphenyldiamine, 4,4',4''- (carbazol-9-yl)triphenylamine or N,N '-(1-na
  • the material of the electron transport layer is 2-(4-biphenyl)-5-(4-tert-butyl)phenyl-1,3,4- Oxadiazole, 8-hydroxyquinoline aluminum, 4,7-diphenyl-1,10-phenanthroline, 1,2,4-triazole derivative or N-arylbenzimidazole.
  • the material of the electron injecting layer is lithium carbonate, lithium chloride or lithium fluoride.
  • a method for preparing a doped organic electroluminescent device comprising the following steps:
  • vapor deposition is sequentially performed to form a light-emitting layer, an electron transport layer, and an electron injection layer, and finally a cathode is vapor-deposited to obtain the doped organic electroluminescence device.
  • the material of the electron blocking layer of the doped organic electroluminescent device is a hole transporting material doped with cerium salt, and the work function of the cerium salt is low, about -2.0 eV. It can effectively block electrons by doping the low work function yttrium salt into the hole transporting material as an electron blocking layer, thereby making the hole transporting material LUMO
  • the energy level is greatly improved, and the barrier between the electron blocking layer and the light-emitting layer is increased, and the electrons are difficult to jump to the side of the hole transport layer, and the electron blocking effect is good. Thereby, the electrons are confined as much as possible in the light-emitting layer to recombine with the holes.
  • FIG. 1 is a schematic structural view of a doped organic electroluminescent device according to an embodiment
  • FIG. 2 is a flow chart showing a method of preparing a doped organic electroluminescent device according to an embodiment
  • Example 3 is a doped organic electroluminescent device prepared in Example 1 and a conventional doped organic electroluminescent device. Schematic diagram of the relationship between energy efficiency and current density.
  • the doped organic electroluminescent device 100 of one embodiment as shown in FIG. 1 includes the following structures laminated in sequence: a conductive anode substrate 10
  • the conductive anode substrate 10 may be made of indium tin oxide glass (ITO), fluorine-doped tin oxide glass (FTO), or aluminum-doped zinc oxide (AZO) or indium-doped zinc oxide (IZO).
  • ITO indium tin oxide glass
  • FTO fluorine-doped tin oxide glass
  • AZO aluminum-doped zinc oxide
  • IZO indium-doped zinc oxide
  • the material of the hole injection layer 20 may be molybdenum trioxide (MoO 3 ), tungsten trioxide (WO 3 ) or vanadium pentoxide (V 2 O 5 ), and has a thickness of 20 nm to 80 nm.
  • MoO 3 molybdenum trioxide
  • WO 3 tungsten trioxide
  • V 2 O 5 vanadium pentoxide
  • the hole injection layer 20 is made of MoO 3 and has a thickness of 40 nm.
  • the hole transport layer 30 may be made of 1,1-bis[4-[N,N'-bis(p-tolyl)amino] Phenyl]cyclohexane (TAPC), N, N'-bis(3-methylphenyl)-N, N'-diphenyl-4,4'-biphenyldiamine (TPD), 4,4',4''-tris(carbazol-9-yl)triphenylamine (TCTA) or N,N'-(1-naphthyl)-N,N'-diphenyl-4,4'- Biphenyldiamine (NPB) has a thickness of 20 nm to 60 nm.
  • TAPC 1,1-bis[4-[N,N'-bis(p-tolyl)amino] Phenyl]cyclohexane
  • TPD N'-bis(3-methylphenyl)-N, N'-diphenyl-4,4'-biphenyld
  • the hole transport layer 30 is made of NPB and has a thickness of 40 nm.
  • the material of the electron blocking layer 40 is a hole transporting material doped with a cerium salt.
  • the barium salt accounts for 2% to 15% of the mass percentage of the electron blocking layer 40.
  • the onium salt may be azide, cesium carbonate, cesium fluoride or cesium oxide.
  • the hole transporting material may be 1,1-bis[4-[N,N'-bis(p-tolyl)amino]phenyl] Cyclohexane (TAPC), N, N'-bis(3-methylphenyl)-N, N'-diphenyl-4,4'-biphenyldiamine (TPD), 4,4',4''-tris(carbazol-9-yl)triphenylamine (TCTA) or N,N'-(1-naphthyl)-N,N'-diphenyl-4,4'- Biphenyldiamine (NPB).
  • TAPC 1,1-bis[4-[N,N'-bis(p-tolyl)amino]phenyl] Cyclohexane
  • TPD N, N'-bis(3-methylphenyl)-N, N'-diphenyl-4,4'-biphenyldiamine
  • TCTA 4,4',4''-tris
  • the electron blocking layer 40 has a thickness of 1 nm to 10 nm.
  • the material of the light-emitting layer 50 may be 4-(dinitylmethyl)-2-butyl-6-(1,7,7-tetramethyljuroxidine-9-vinyl)-4H-pyran (DCJTB), 8-hydroxyquinoline aluminum (Alq 3 ), bis( 4,6-difluorophenylpyridine-N,C 2 )pyridine hydrazide (FIrpic), bis(2-methyl-diphenyl) At least one of aryl [f,h]quinoxaline)(acetylacetonate) ruthenium (Ir(MDQ) 2 (acac)) and tris(2-phenylpyridine) ruthenium (Ir(ppy) 3 ).
  • the material of the light-emitting layer 50 may be 4-(dinityrylmethyl)-2-butyl-6-(1,1,7,7-tetramethyljuroxidine-9-vinyl)-4H - pyran (DCJTB), 8-hydroxyquinoline aluminum (Alq 3 ), bis( 4,6-difluorophenylpyridine-N,C 2 )pyridine hydrazide ( FIrpic ), bis(2-methyl - Diphenyl[f,h]quinoxaline)(acetylacetonate) ruthenium (Ir(MDQ) 2 (acac)) or tris(2-phenylpyridine) ruthenium (Ir(ppy) 3 ) as guest material
  • the doping mixed material composed of one or two of a hole transporting material or an electron transporting material is used as a host material, and the doping mass percentage of the guest material is 1% to 20%.
  • the hole transporting material may be 1,1-bis[4-[N,N'-bis(p-tolyl)amino]phenyl]cyclohexane (TAPC), N, N'-di(3- Methylphenyl)-N,N'-diphenyl-4,4'-biphenyldiamine (TPD), 4,4',4''-tris(carbazol-9-yl)triphenylamine (TCTA Or N, N ' - ( 1-naphthyl) - N , N ' - diphenyl-4,4'-biphenyldiamine (NPB), the electron transport material may be 2-(4-biphenyl) -5-(4-tert-butyl)phenyl-1,3,4-oxadiazole (PBD), 8-hydroxyquinoline aluminum (Alq 3 ), 4,7-diphenyl-1,10-phenanthrene Bromine (Bphen), 1,2,4-tribro
  • the thickness of the light-emitting layer 50 is 2 nm to 50 nm.
  • the light-emitting layer 50 is made of Alq3 and has a thickness of 30 nm.
  • the material of the electron transport layer 60 may be 2-(4-biphenyl)-5-(4-tert-butyl)phenyl-1,3,4-oxadiazole (PBD) or 8-hydroxyquinoline aluminum ( Alq 3 ), 4,7-diphenyl-1,10-phenanthroline (Bphen), 1,2,4-triazole derivative (such as TAZ) or N-arylbenzimidazole (TPBi), thickness It is 40 ⁇ 80nm.
  • PBD 2-(4-biphenyl)-5-(4-tert-butyl)phenyl-1,3,4-oxadiazole
  • Alq 3 8-hydroxyquinoline aluminum
  • Bphen 4,7-diphenyl-1,10-phenanthroline
  • TAZ 1,2,4-triazole derivative
  • TABi N-arylbenzimidazole
  • the electron transport layer 60 is made of TPBi and has a thickness of 60 nm.
  • the material of the electron injecting layer 70 is lithium carbonate (Li 2 CO 3 ), lithium chloride (LiCl ) or lithium fluoride (LiF ), and has a thickness of 0.5 nm to 5 nm.
  • the electron injecting layer 70 is made of LiF and has a thickness of 0.7 nm.
  • the cathode 80 is made of silver (Ag), aluminum (Al), platinum (Pt) or gold (Au) and has a thickness of 80nm ⁇ 250nm.
  • the cathode 80 is made of Ag and has a thickness of 100 nm.
  • the electron blocking layer 40 of the doped organic electroluminescent device 100 The material is a hole transporting material doped with cerium salt.
  • the cerium salt has a low work function of about -2.0 eV, which can effectively block electrons by doping a low work function cerium salt into the hole transporting material.
  • Electronic barrier layer 40 Therefore, the LUMO level of the hole transporting material is greatly increased, the barrier between the electron blocking layer 40 and the light emitting layer 50 is increased, and electrons are difficult to jump to the hole transport layer 30 side, and the electron blocking The effect is better, so that the electrons are confined as much as possible in the light-emitting layer 50 to recombine with the holes.
  • the electron blocking layer 40 The hole transporting material in the hole can further increase the transport rate of holes, and finally improve the recombination probability of the excitons, thereby improving the luminous efficiency.
  • the doped material electronic barrier layer 40 is simple to prepare and can greatly improve the doped organic electroluminescent device 100. Preparation efficiency.
  • the method for preparing the doped organic electroluminescent device 100 shown in FIG. 2 includes the following steps:
  • Step S10 pretreating the conductive anode substrate 10.
  • the conductive anode substrate 10 may be made of indium tin oxide glass (ITO) or fluorine-doped tin oxide glass (FTO). ) aluminum-doped zinc oxide (AZO) or indium-doped zinc oxide (IZO).
  • ITO indium tin oxide glass
  • FTO fluorine-doped tin oxide glass
  • AZO aluminum-doped zinc oxide
  • IZO indium-doped zinc oxide
  • the pretreatment step is: cleaning the conductive anode substrate 10, and then performing oxygen plasma treatment on the conductive anode substrate 10.
  • the conductive anode substrate 10 is first ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes.
  • the organic pollutants on the surface of the conductive anode substrate 10 are removed, and after being cleaned, they are subjected to oxygen plasma treatment.
  • the oxygen plasma treatment time is 2min ⁇ 15min, and the power is 10W ⁇ 50W.
  • the preferred time is 5 min and the power is 35W.
  • step S20 a hole injecting layer 20 and a hole transporting layer 30 are formed by vapor deposition on the conductive anode substrate 10 in this order.
  • the vacuum anode layer 10 is formed by vacuum thermal evaporation on the conductive anode substrate 10, and the hole injection layer 20 and the hole transport layer 30 are sequentially formed.
  • the material of the hole injection layer 20 may be molybdenum trioxide (MoO 3 ), tungsten trioxide (WO 3 ) or vanadium pentoxide (V 2 O 5 ), and has a thickness of 20 nm to 80 nm.
  • MoO 3 molybdenum trioxide
  • WO 3 tungsten trioxide
  • V 2 O 5 vanadium pentoxide
  • the hole injection layer 20 is made of MoO 3 and has a thickness of 40 nm.
  • the hole transport layer 30 may be made of 1,1-bis[4-[N,N'-bis(p-tolyl)amino] Phenyl]cyclohexane (TAPC), N, N'-bis(3-methylphenyl)-N, N'-diphenyl-4,4'-biphenyldiamine (TPD), 4,4',4''-tris(carbazol-9-yl)triphenylamine (TCTA) or N,N'-(1-naphthyl)-N,N'-diphenyl-4,4'- Biphenyldiamine (NPB) has a thickness of 20 nm to 60 nm.
  • TAPC 1,1-bis[4-[N,N'-bis(p-tolyl)amino] Phenyl]cyclohexane
  • TPD N'-bis(3-methylphenyl)-N, N'-diphenyl-4,4'-biphenyld
  • the hole transport layer 30 is made of NPB and has a thickness of 40 nm.
  • Step S30 depositing a hole transporting material doped with a cerium salt on the hole transporting layer 30 to form an electron blocking layer 40.
  • the material of the electron blocking layer 40 is a hole transporting material doped with a cerium salt.
  • the barium salt accounts for 2% to 15% of the mass percentage of the electron blocking layer 40.
  • the onium salt may be azide, cesium carbonate, cesium fluoride or cesium oxide.
  • the hole transporting material may be 1,1-bis[4-[N,N'-bis(p-tolyl)amino]phenyl] Cyclohexane (TAPC), N, N'-bis(3-methylphenyl)-N, N'-diphenyl-4,4'-biphenyldiamine (TPD), 4,4',4''-tris(carbazol-9-yl)triphenylamine (TCTA) or N,N'-(1-naphthyl)-N,N'-diphenyl-4,4'- Biphenyldiamine (NPB).
  • TAPC 1,1-bis[4-[N,N'-bis(p-tolyl)amino]phenyl] Cyclohexane
  • TPD N, N'-bis(3-methylphenyl)-N, N'-diphenyl-4,4'-biphenyldiamine
  • TCTA 4,4',4''-tris
  • the electron blocking layer 40 has a thickness of 1 nm to 10 nm.
  • Step S40 sequentially depositing vapor deposition on the electron blocking layer 40 to form the light emitting layer 50, the electron transport layer 60, and the electron injecting layer. 70. Finally, the cathode 80 is evaporated to obtain a doped organic electroluminescent device 100.
  • the material of the light-emitting layer 50 may be 4-(dinitylmethyl)-2-butyl-6-(1,7,7-tetramethyljuroxidine-9-vinyl)-4H-pyran (DCJTB), 8-hydroxyquinoline aluminum (Alq 3 ), bis( 4,6-difluorophenylpyridine-N,C 2 )pyridine hydrazide (FIrpic), bis(2-methyl-diphenyl) At least one of aryl [f,h]quinoxaline)(acetylacetonate) ruthenium (Ir(MDQ) 2 (acac)) and tris(2-phenylpyridine) ruthenium (Ir(ppy) 3 ).
  • the material of the light-emitting layer 50 may be 4-(dinityrylmethyl)-2-butyl-6-(1,1,7,7-tetramethyljuroxidine-9-vinyl)-4H - pyran (DCJTB), 8-hydroxyquinoline aluminum (Alq 3 ), bis( 4,6-difluorophenylpyridine-N,C 2 )pyridine hydrazide ( FIrpic ), bis(2-methyl - Diphenyl[f,h]quinoxaline)(acetylacetonate) ruthenium (Ir(MDQ) 2 (acac)) or tris(2-phenylpyridine) ruthenium (Ir(ppy) 3 ) as guest material
  • the doping mixed material composed of one or two of a hole transporting material or an electron transporting material is used as a host material, and the doping mass percentage of the guest material is 1% to 20%.
  • the hole transporting material may be 1,1-bis[4-[N,N'-bis(p-tolyl)amino]phenyl]cyclohexane (TAPC), N, N'-di(3- Methylphenyl)-N,N'-diphenyl-4,4'-biphenyldiamine (TPD), 4,4',4''-tris(carbazol-9-yl)triphenylamine (TCTA Or N, N ' - ( 1-naphthyl) - N , N ' - diphenyl-4,4'-biphenyldiamine (NPB), the electron transport material may be 2-(4-biphenyl) -5-(4-tert-butyl)phenyl-1,3,4-oxadiazole (PBD), 8-hydroxyquinoline aluminum (Alq 3 ), 4,7-diphenyl-1,10-phenanthrene Bromine (Bphen), 1,2,4-tribro
  • the thickness of the light-emitting layer 50 is 2 nm to 50 nm.
  • the light-emitting layer 50 is made of Alq 3 and has a thickness of 30 nm.
  • the material of the electron transport layer 60 may be 2-(4-biphenyl)-5-(4-tert-butyl)phenyl-1,3,4-oxadiazole (PBD) or 8-hydroxyquinoline aluminum ( Alq 3 ), 4,7-diphenyl-1,10-phenanthroline (Bphen), 1,2,4-triazole derivative (such as TAZ) or N-arylbenzimidazole (TPBi), thickness It is 40 ⁇ 80nm.
  • PBD 2-(4-biphenyl)-5-(4-tert-butyl)phenyl-1,3,4-oxadiazole
  • Alq 3 8-hydroxyquinoline aluminum
  • Bphen 4,7-diphenyl-1,10-phenanthroline
  • TAZ 1,2,4-triazole derivative
  • TABi N-arylbenzimidazole
  • the electron transport layer 60 is made of TPBi and has a thickness of 60 nm.
  • the material of the electron injecting layer 70 is lithium carbonate (Li 2 CO 3 ), lithium chloride (LiCl ) or lithium fluoride (LiF ), and has a thickness of 0.5 nm to 5 nm.
  • the electron injecting layer 70 is made of LiF and has a thickness of 0.7 nm.
  • the cathode 80 is made of silver (Ag), aluminum (Al), platinum (Pt) or gold (Au) and has a thickness of 80nm ⁇ 250nm.
  • the cathode 80 is made of Ag and has a thickness of 100 nm.
  • the preparation and testing instruments used were: high vacuum coating equipment (Shenyang Scientific Instrument Development Center Co., Ltd., pressure ⁇ 1 ⁇ 10 -3 Pa), current-voltage tester (Keithly, USA, model: 2602), electroluminescence spectroscopy tester (photo research company, model: PR650) and screen brightness meter (Beijing Normal University, model: ST-86LA).
  • the structure of the doped organic electroluminescent device prepared in this embodiment is: ITO/MoO 3 /NPB/( TCTA:CsN 3 ) /Alq 3 /TPBi/LiF/Ag .
  • the ITO was firstly ultrasonicated with detergent, deionized water, acetone, ethanol and isopropanol for 15 min to remove organic contaminants on the glass surface, and then cleaned and then subjected to oxygen plasma treatment.
  • the hole injection layer and the hole transport layer were sequentially deposited on the ITO.
  • the material of the hole injection layer was MoO 3 and the thickness was 40 nm; the material of the hole transport layer was NPB and the thickness was 40 nm.
  • an electron blocking layer was deposited, which was made of CsN 3 doped TCTA with a doping mass percentage of 5% and a thickness of 5 nm.
  • the light-emitting layer, the electron transport layer, and the electron injection layer are evaporated.
  • the material of the light-emitting layer is Alq 3 and the thickness is 30 nm; the material of the electron transport layer is TPBi, and the thickness is 60 nm; the material of the electron injection layer is LiF, and the thickness is 0.7 nm. Finally, the cathode was vapor-deposited, the material was Ag, and the thickness was 100 nm, and the desired doped organic electroluminescent device was obtained.
  • Example 3 is a diagram of the prepared doped organic electroluminescent device of Example 1 and a conventional doped organic electroluminescent device (structure: ITO/MoO 3 /NPB/TCTA/Alq 3 /TPBi/LiF/Ag ) Schematic diagram of the relationship between energy efficiency and current density.
  • Example 1 The energy efficiency of the prepared doped organic electroluminescent device is higher than that of the conventional doped organic electroluminescent device.
  • the doped organic electroluminescent device prepared in Example 1 has an energy efficiency of up to 15.8 lm/W.
  • the conventional doped organic electroluminescent device has an energy efficiency of up to 12.6 lm/W.
  • the structure of the doped organic electroluminescent device prepared in this example is: IZO/V 2 O 5 /TCTA/( TAPC:Cs 2 O ) / ( TPBi:Ir(ppy) 3 ) /TPBi/LiF/Al .
  • IZO was first sonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 min to remove organic contaminants on the glass surface, and then cleaned and then subjected to oxygen plasma treatment.
  • a hole injecting layer and a hole transporting layer were sequentially deposited on IZO.
  • the hole injection layer was made of V 2 O 5 and had a thickness of 20 nm; the hole transport layer was made of TCTA and had a thickness of 60 nm.
  • an electron blocking layer was deposited, which was made of TASC doped with Cs 2 O , with a doping mass percentage of 15% and a thickness of 10 nm.
  • the light-emitting layer, the electron transport layer, and the electron injection layer are evaporated.
  • the material of the light-emitting layer is TPBi doped with Ir(ppy) 3 , the mass percentage of doping is 15% and the thickness is 15 nm; the material of the electron transport layer is TPBi, the thickness is 80 nm; the material of the electron injection layer is LiF, the thickness It is 0.5nm. Finally, the cathode was vapor-deposited, the material was Al, and the thickness was 80 nm, and the desired doped organic electroluminescent device was obtained.
  • the structure of the doped organic electroluminescent device prepared in this embodiment is: AZO/WO 3 /TPD/( TPD:Cs 2 CO 3 ) / ( NPB:Ir(MDQ) 2 (acac) ) /Bphen/ Li 2 CO 3 /Au.
  • AZO was sequentially ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes to remove organic pollutants on the surface of the glass, and then cleaned and then subjected to oxygen plasma treatment.
  • a hole injecting layer and a hole transporting layer were sequentially deposited on AZO.
  • the material of the hole injection layer was WO 3 and the thickness was 80 nm; the material of the hole transport layer was TPD and the thickness was 20 nm.
  • an electron blocking layer was deposited, which was made of TPD doped with Cs 2 CO 3 , and had a doping mass percentage of 2% and a thickness of 1 nm.
  • the light-emitting layer, the electron transport layer, and the electron injection layer are evaporated.
  • the material of the light-emitting layer is NPB doped with Ir(MDQ) 2 (acac), the mass percentage of doping is 1%, the thickness is 2 nm, the material of the electron transport layer is Bphen, the thickness is 20 nm, and the material of the electron injection layer is Li 2 CO 3 , thickness 5 nm.
  • the cathode was vapor-deposited, the material was Au, and the thickness was 250 nm, and the desired doped organic electroluminescent device was obtained.
  • the structure of the doped organic electroluminescent device prepared in this embodiment is: ITO/MoO 3 /TAPC/( TPD:CsF ) / ( TAZ:Firpic ) / TAZ /LiCl/Pt .
  • the ITO was firstly ultrasonicated with detergent, deionized water, acetone, ethanol and isopropanol for 15 min to remove organic contaminants on the glass surface, and then cleaned and then subjected to oxygen plasma treatment.
  • the hole injection layer and the hole transport layer were sequentially deposited on the ITO.
  • the hole injection layer was made of MoO 3 and had a thickness of 50 nm; the hole transport layer was made of TAPC and had a thickness of 30 nm.
  • an electron blocking layer was deposited, and the material was TPD doped with CsF, and the doping mass percentage was 7% and the thickness was 8 nm.
  • the light-emitting layer, the electron transport layer, and the electron injection layer are evaporated.
  • the material of the light-emitting layer is TAZ doped with Firpic, the mass percentage of doping is 20%, the thickness is 20 nm, the material of the electron transport layer is TAZ, the thickness is 75 nm, the material of the electron injection layer is LiCl, and the thickness is 0.5 nm. Finally, the cathode was vapor-deposited, the material was Pt, and the thickness was 150 nm, and the desired doped organic electroluminescent device was obtained.
  • the structure of the doped organic electroluminescent device prepared in this embodiment is: FTO/V 2 O 5 /NPB/( NPB:Cs 2 O ) / DCJTB / PBD /LiF/Al .
  • the FTO was sequentially ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes to remove organic contaminants on the glass surface, and then cleaned and then subjected to oxygen plasma treatment.
  • the hole injection layer and the hole transport layer were sequentially deposited on the FTO.
  • the hole injection layer was made of V 2 O 5 and had a thickness of 55 nm; the hole transport layer was made of NPB and had a thickness of 60 nm.
  • an electron blocking layer was deposited, which was made of Cs 2 O doped NPB with a doping mass percentage of 5% and a thickness of 2 nm.
  • the light-emitting layer, the electron transport layer, and the electron injection layer are evaporated.
  • the material of the light-emitting layer is DCJTB and the thickness is 50 nm; the material of the electron transport layer is PBD, and the thickness is 30 nm; the material of the electron injection layer is LiF, and the thickness is 1 nm. Finally, the cathode was vapor-deposited, the material was Al, and the thickness was 200 nm, and the desired doped organic electroluminescent device was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种掺杂有机电致发光器件,包括依次层叠的如下结构:导电阳极基底、空穴注入层、空穴传输层、电子阻挡层、发光层、电子传输层、电子注入层和阴极;所述电子阻挡层的材质为掺杂了铯盐的空穴传输材料。这种掺杂有机电致发光器件的电子阻挡层的材质为掺杂了铯盐的空穴传输材料,铯盐的功函数较低,约为-2.0eV,可以有效的阻挡电子,通过将低功函数的铯盐掺杂到空穴传输材料中作为电子阻挡层,从而使得空穴传输材料的LUMO能级大大提升,使电子阻挡层与发光层之间的势垒增大,电子难以跃迁到空穴传输层这一边,电子阻挡效果较好。本发明还提供一种上述掺杂有机电致发光器件的制备方法。

Description

掺杂有机电致发光器件及其制备方法
【技术领域】
本发明涉及有机电致发光领域,尤其涉及一种掺杂有机电致发光器件及其制备方法。
【背景技术】
1987 年,美国 Eastman Kodak 公司的 C.W.Tang 和 VanSlyke 报道了有机电致发光研究中的突破性进展。利用超薄薄膜技术制备出了高亮度,高效率的双层掺杂有机电致发光器件( OLED )。在该双层结构的器件中, 10V 下亮度达到 1000 cd/m2 ,其发光效率为 1.51 lm/W 、寿命大于 100 小时。
OLED 的发光原理是基于在外加电场的作用下,电子从阴极注入到有机物的最低未占有分子轨道( LUMO ),而空穴从阳极注入到有机物的最高占有轨道( HOMO )。电子和空穴在发光层相遇、复合、形成激子,激子在电场作用下迁移,将能量传递给发光材料,并激发电子从基态跃迁到激发态,激发态能量通过辐射失活,产生光子,释放光能。
传统的掺杂有机电致发光器件中,如果发光层与空穴传输层之间的 LUMO 能级势垒较低,会使电子从发光层中穿越到空穴传输层,造成电子与空穴不能有效复合,发光效率低下。一般用来阻挡电子的方法是在发光层与空穴传输层之间蒸镀一层 LUMO 能级约为 -3.2eV 的有机材料,用来阻挡电子,将电子限制在发光层。但是,一般电子阻挡层与发光层之间的 LUMO 势垒约在 0.5ev 左右才能有效阻挡,而传统的掺杂有机电致发光器件的发光层的 LUMO 能级为 -3.5eV 左右,因此,电子阻挡效果较差。
【发明内容】
基于此, 有必要提供一种 电子阻挡 效果较好的掺杂有机电致发光器件。
一种掺杂有机电致发光器件,包括依次层叠的如下结构:导电阳极基底、空穴注入层、空穴传输层、电子阻挡层、发光层、电子传输层、电子注入层和阴极;所述电子阻挡层的材质为掺杂了铯盐的空穴传输材料;
所述铯盐占所述电子阻挡层的质量百分比的 2%~15% 。
优选的,所述铯盐为叠氮铯、碳酸铯、氟化铯或氧化铯。
优选的,所述空穴传输材料为 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ] 环己烷、 N , N ' - 二( 3- 甲基苯基) - N , N ' - 二苯基 -4,4'- 联苯二胺、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺。
优选的,所述电子阻挡层的厚度为 1nm~10nm 。
优选的,所述空穴注入层的材质为三氧化钼、三氧化钨或五氧化二钒。
优选的,所述空穴传输层的材质为 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ] 环己烷、 N , N ' - 二( 3- 甲基苯基) - N , N ' - 二苯基 -4,4'- 联苯二胺、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺。
优选的,所述发光层的材质为 4- (二腈甲烯基) -2- 异丙基 -6- ( 1,1,7,7- 四甲基久洛呢啶 -9- 乙烯基) -4H- 吡喃、 8- 羟基喹啉铝、双( 4,6- 二氟苯基吡啶 -N,C2 )吡啶甲酰合铱、二( 2- 甲基 - 二苯基 [f,h] 喹喔啉)(乙酰丙酮)合铱和三( 2- 苯基吡啶)合铱中的至少一种;
或者,所述发光层的材质以为 4- (二腈甲烯基) -2- 异丙基 -6- ( 1,1,7,7- 四甲基久洛呢啶 -9- 乙烯基) -4H- 吡喃、 8- 羟基喹啉铝、双( 4,6- 二氟苯基吡啶 -N,C2 )吡啶甲酰合铱、二( 2- 甲基 - 二苯基 [f,h] 喹喔啉)(乙酰丙酮)合铱或三( 2- 苯基吡啶)合铱为客体材料,以 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ] 环己烷、 N , N ' - 二( 3- 甲基苯基) -N , N ' - 二苯基 -4,4'- 联苯二胺、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺、 2- ( 4- 联苯基) -5- ( 4- 叔丁基)苯基 -1,3,4- 恶二唑、 8- 羟基喹啉铝、 4,7- 二苯基 -1,10- 菲罗啉、 1,2,4- 三唑衍生物和 N- 芳基苯并咪唑中的一种或两种为主体材料,组成的掺杂混合材料,其中,客体材料的掺杂的质量百分比为 1%~20% 。
优选的,所述电子传输层的材质为 2- ( 4- 联苯基) -5- ( 4- 叔丁基)苯基 -1,3,4- 恶二唑、 8- 羟基喹啉铝、 4,7- 二苯基 -1,10- 菲罗啉、 1,2,4- 三唑衍生物或 N- 芳基苯并咪唑。
优选的,所述电子注入层的材质为碳酸锂、氯化锂或者氟化锂。
一种掺杂有机电致发光器件的制备方法,包括如下步骤:
对导电阳极基底进行预处理;
在所述导电阳极基底上依次蒸镀形成空穴注入层和空穴传输层;
在所述空穴传输层上蒸镀掺杂了铯盐的空穴传输材料,形成电子阻挡层;及
在所述电子阻挡层上依次层叠蒸镀形成发光层、电子传输层和电子注入层,最后蒸镀阴极,得到所述掺杂有机电致发光器件。
这种掺杂有机电致发光器件的电子阻挡层的材质为掺杂了铯盐的空穴传输材料,铯盐的功函数较低,约为 -2.0eV ,可以有效的阻挡电子,通过将低功函数的铯盐掺杂到空穴传输材料中作为电子阻挡层,从而使得空穴传输材料的 LUMO 能级大大提升,使电子阻挡层与发光层之间的势垒增大,电子难以跃迁到空穴传输层这一边,电子阻挡 效果较好, 从而将电子尽可能的限制在发光层中与空穴进行复合。
【附图说明】
图 1 为一实施方式的掺杂有机电致发光器件的结构示意图;
图 2 为一实施方式的掺杂有机电致发光器件的制备方法的流程图;
图 3 为实施例 1 制备的掺杂有机电致发光器件与传统的掺杂有机电致发光器件的 能量效率与电流密度的关系示意图。
【具体实施方式】
如图 1 所示的一实施方式的掺杂有机电致发光器件 100 ,包括依次层叠的如下结构:导电阳极基底 10 、空穴注入层 20 、空穴传输层 30 、电子阻挡层 40 、发光层 50 、电子传输层 60 、电子注入层 70 和阴极 80 。
导电阳极基底 10 的材质可以为铟锡氧化物玻璃( ITO )、掺氟氧化锡玻璃( FTO )、掺铝的氧化锌( AZO )或掺铟的氧化锌( IZO )。
空穴注入层 20 的材质可以为三氧化钼( MoO3 )、三氧化钨( WO3 )或五氧化二钒( V2O5 ),厚度为 20nm~80nm 。
优选的,空穴注入层 20 的材质为 MoO3 ,厚度为 40nm 。
空穴传输层 30 的材质可以为 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ] 环己烷( TAPC )、 N , N ' - 二( 3- 甲基苯基) - N , N ' - 二苯基 -4,4'- 联苯二胺( TPD )、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺( TCTA )或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺( NPB ),厚度为 20nm~60nm 。
优选的,空穴传输层 30 的材质为 NPB ,厚度为 40nm 。
电子阻挡层 40 的材质为掺杂了铯盐的空穴传输材料。
铯盐占电子阻挡层 40 的质量百分比的 2%~15% 。
铯盐可以为叠氮铯、碳酸铯、氟化铯或氧化铯。
空穴传输材料可以为 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ] 环己烷( TAPC )、 N , N ' - 二( 3- 甲基苯基) - N , N ' - 二苯基 -4,4'- 联苯二胺( TPD )、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺( TCTA )或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺( NPB )。
电子阻挡层 40 的厚度为 1nm~10nm 。
发光层 50 的材质可以为 4- (二腈甲基) -2- 丁基 -6- ( 1,1,7,7- 四甲基久洛呢啶 -9- 乙烯基) -4H- 吡喃( DCJTB )、 8- 羟基喹啉铝( Alq3 ),双( 4,6- 二氟苯基吡啶 -N,C2 )吡啶甲酰合铱( FIrpic )、二( 2- 甲基 - 二苯基 [f,h] 喹喔啉)(乙酰丙酮)合铱( Ir(MDQ)2(acac) )和三( 2- 苯基吡啶)合铱 (Ir(ppy)3) 中的至少一种。
或者,发光层 50 的材质可以为以 4- (二腈甲基) -2- 丁基 -6- ( 1,1,7,7- 四甲基久洛呢啶 -9- 乙烯基) -4H- 吡喃( DCJTB )、 8- 羟基喹啉铝( Alq3 ),双( 4,6- 二氟苯基吡啶 -N,C2 )吡啶甲酰合铱( FIrpic )、二( 2- 甲基 - 二苯基 [f,h] 喹喔啉)(乙酰丙酮)合铱( Ir(MDQ)2(acac) )或三( 2- 苯基吡啶)合铱 (Ir(ppy)3) 为客体材料,以空穴传输材料或电子传输材料中的一种或两种为主体材料,组成的掺杂混合材料,客体材料的掺杂的质量百分比为 1%~20% 。其中,空穴传输材料可以为 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ] 环己烷( TAPC )、 N , N ' - 二( 3- 甲基苯基) - N , N ' - 二苯基 -4,4'- 联苯二胺( TPD )、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺( TCTA )或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺( NPB ),电子传输材料可以为 2- ( 4- 联苯基) -5- ( 4- 叔丁基)苯基 -1,3,4- 恶二唑( PBD )、 8- 羟基喹啉铝( Alq3 )、 4,7- 二苯基 -1,10- 菲罗啉( Bphen )、 1,2,4- 三唑衍生物(如 TAZ )或 N- 芳基苯并咪唑( TPBI )。
发光层 50 的厚度为 2nm~50nm 。
优选的,发光层 50 的材质为 Alq3 ,厚度为 30nm 。
电子传输层 60 的材质可以为 2- ( 4- 联苯基) -5- ( 4- 叔丁基)苯基 -1,3,4- 恶二唑( PBD )、 8- 羟基喹啉铝( Alq3 )、 4,7- 二苯基 -1,10- 菲罗啉( Bphen )、 1,2,4- 三唑衍生物(如 TAZ )或 N- 芳基苯并咪唑( TPBi ),厚度为 40~80nm 。
优选的,电子传输层 60 的材质为 TPBi ,厚度为 60nm 。
电子注入层 70 的材质为碳酸锂( Li2CO3 )、氯化锂( LiCl )或氟化锂( LiF ),厚度为 0.5nm~5nm 。
优选的,电子注入层 70 的材质为 LiF ,厚度为 0.7nm 。
阴极 80 的材质为银( Ag )、铝( Al )、铂( Pt )或金( Au ),厚度为 80nm~250nm 。
优选的,阴极 80 的材质为 Ag ,厚度为 100nm 。
这种掺杂有机电致发光器件 100 的电子阻挡层 40 的材质为掺杂了铯盐的空穴传输材料,铯盐的功函数较低,约为 -2.0eV ,可以有效阻挡电子,通过将低功函数的铯盐掺杂到空穴传输材料中作为电子阻挡层 40 ,从而使得空穴传输材料的 LUMO 能级大大提升,使电子阻挡层 40 与发光层 50 之间的势垒增大,电子难以跃迁到空穴传输层 30 这一边,电子阻挡 效果较好, 从而将电子尽可能的限制在发光层 50 中与空穴进行复合。
同时,电子阻挡层 40 中的空穴传输材料可以进一步提高空穴的传输速率,最终提高了激子的复合几率,进而提高发光效率。
此外,这种掺杂材质的电子阻挡层 40 制备简单,可大大提高掺杂有机电致发光器件 100 的制备效率。
如图 2 所示的上述掺杂有机电致发光器件 100 的制备方法,包括如下步骤:
步骤 S10 、对导电阳极基底 10 进行预处理。
导电阳极基底 10 的材质可以为铟锡氧化物玻璃( ITO )、掺氟氧化锡玻璃( FTO )、掺铝的氧化锌( AZO )或掺铟的氧化锌( IZO )。
预处理步骤为:清洗导电阳极基底 10 ,然后对导电阳极基底 10 进行氧等离子处理。
具体的,先将导电阳极基底 10 依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除导电阳极基底 10 表面的有机污染物,清洗干净后对其进行氧等离子处理。
氧等离子处理时间为 2min~15min ,功率为 10W~50W 。优选时间为 5min ,功率为 35W 。
步骤 S20 、在导电阳极基底 10 上依次蒸镀形成空穴注入层 20 和空穴传输层 30 。
在导电阳极基底 10 上真空热蒸镀形成,依次形成空穴注入层 20 和空穴传输层 30 。
空穴注入层 20 的材质可以为三氧化钼( MoO3 )、三氧化钨( WO3 )或五氧化二钒( V2O5 ),厚度为 20nm~80nm 。
优选的,空穴注入层 20 的材质为 MoO3 ,厚度为 40nm 。
空穴传输层 30 的材质可以为 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ] 环己烷( TAPC )、 N , N ' - 二( 3- 甲基苯基) - N , N ' - 二苯基 -4,4'- 联苯二胺( TPD )、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺( TCTA )或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺( NPB ),厚度为 20nm~60nm 。
优选的,空穴传输层 30 的材质为 NPB ,厚度为 40nm 。
步骤 S30 、在空穴传输层 30 上蒸镀掺杂了铯盐的空穴传输材料,形成电子阻挡层 40 。
电子阻挡层 40 的材质为掺杂了铯盐的空穴传输材料。
铯盐占电子阻挡层 40 的质量百分比的 2%~15% 。
铯盐可以为叠氮铯、碳酸铯、氟化铯或氧化铯。
空穴传输材料可以为 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ] 环己烷( TAPC )、 N , N ' - 二( 3- 甲基苯基) - N , N ' - 二苯基 -4,4'- 联苯二胺( TPD )、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺( TCTA )或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺( NPB )。
电子阻挡层 40 的厚度为 1nm~10nm 。
步骤 S40 、在电子阻挡层 40 上依次层叠蒸镀形成发光层 50 、电子传输层 60 和电子注入层 70 ,最后蒸镀阴极 80 ,得到掺杂有机电致发光器件 100 。
发光层 50 的材质可以为 4- (二腈甲基) -2- 丁基 -6- ( 1,1,7,7- 四甲基久洛呢啶 -9- 乙烯基) -4H- 吡喃( DCJTB )、 8- 羟基喹啉铝( Alq3 ),双( 4,6- 二氟苯基吡啶 -N,C2 )吡啶甲酰合铱( FIrpic )、二( 2- 甲基 - 二苯基 [f,h] 喹喔啉)(乙酰丙酮)合铱( Ir(MDQ)2(acac) )和三( 2- 苯基吡啶)合铱 (Ir(ppy)3) 中的至少一种。
或者,发光层 50 的材质可以为以 4- (二腈甲基) -2- 丁基 -6- ( 1,1,7,7- 四甲基久洛呢啶 -9- 乙烯基) -4H- 吡喃( DCJTB )、 8- 羟基喹啉铝( Alq3 ),双( 4,6- 二氟苯基吡啶 -N,C2 )吡啶甲酰合铱( FIrpic )、二( 2- 甲基 - 二苯基 [f,h] 喹喔啉)(乙酰丙酮)合铱( Ir(MDQ)2(acac) )或三( 2- 苯基吡啶)合铱 (Ir(ppy)3) 为客体材料,以空穴传输材料或电子传输材料中的一种或两种为主体材料,组成的掺杂混合材料,客体材料的掺杂的质量百分比为 1%~20% 。其中,空穴传输材料可以为 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ] 环己烷( TAPC )、 N , N ' - 二( 3- 甲基苯基) - N , N ' - 二苯基 -4,4'- 联苯二胺( TPD )、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺( TCTA )或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺( NPB ),电子传输材料可以为 2- ( 4- 联苯基) -5- ( 4- 叔丁基)苯基 -1,3,4- 恶二唑( PBD )、 8- 羟基喹啉铝( Alq3 )、 4,7- 二苯基 -1,10- 菲罗啉( Bphen )、 1,2,4- 三唑衍生物(如 TAZ )或 N- 芳基苯并咪唑( TPBI )。
发光层 50 的厚度为 2nm~50nm 。
优选的,发光层 50 的材质为 Alq3 ,厚度为 30nm 。
电子传输层 60 的材质可以为 2- ( 4- 联苯基) -5- ( 4- 叔丁基)苯基 -1,3,4- 恶二唑( PBD )、 8- 羟基喹啉铝( Alq3 )、 4,7- 二苯基 -1,10- 菲罗啉( Bphen )、 1,2,4- 三唑衍生物(如 TAZ )或 N- 芳基苯并咪唑( TPBi ),厚度为 40~80nm 。
优选的,电子传输层 60 的材质为 TPBi ,厚度为 60nm 。
电子注入层 70 的材质为碳酸锂( Li2CO3 )、氯化锂( LiCl )或氟化锂( LiF ),厚度为 0.5nm~5nm 。
优选的,电子注入层 70 的材质为 LiF ,厚度为 0.7nm 。
阴极 80 的材质为银( Ag )、铝( Al )、铂( Pt )或金( Au ),厚度为 80nm~250nm 。
优选的,阴极 80 的材质为 Ag ,厚度为 100nm 。
下面结合附图及具体实施例对掺杂有机电致发光器件及其制备方法作进一步说明。
下述实施例中,用到的制备与测试仪器为:高真空镀膜设备(沈阳科学仪器研制中心有限公司,压强 <1 × 10-3Pa )、电流 - 电压测试仪(美国 Keithly 公司,型号: 2602 )、电致发光光谱测试仪(美国 photo research 公司,型号: PR650 )以及屏幕亮度计(北京师范大学,型号: ST-86LA )。
实施例 1
本实施例制备得到的掺杂有机电致发光器件的结构为: ITO/MoO3/NPB/ ( TCTA:CsN3 ) /Alq3/TPBi/LiF/Ag 。
上述掺杂有机电致发光器件的制备工艺如下:
先将 ITO 依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理。在 ITO 上依次蒸镀空穴注入层和空穴传输层。空穴注入层的材质为 MoO3 ,厚度为 40nm ;空穴传输层的材质为 NPB ,厚度为 40nm 。然后蒸镀电子阻挡层,材质为掺杂了 CsN3 的 TCTA ,掺杂质量百分比为 5% ,厚度为 5nm 。接着蒸镀发光层、电子传输层和电子注入层。发光层的材质为 Alq3 ,厚度为 30nm ;电子传输层的材质为 TPBi ,厚度为 60nm ;电子注入层的材质为 LiF , 厚度为 0.7nm 。最后蒸镀阴极,材质为 Ag ,厚度为 100nm ,得到所需要的掺杂有机电致发光器件。
图 3 是实施例 1 的制得的掺杂有机电致发光器件与传统的掺杂有机电致发光器件(结构为: ITO/MoO3/NPB/TCTA/Alq3/TPBi/LiF/Ag )的能量效率与电流密度的关系示意图。
从图 3 中可以看出,在不同电流密度下,实施例 1 的制得的掺杂有机电致发光器件的能量效率都比传统的掺杂有机电致发光器件的能量效率高。实施例 1 的制得的掺杂有机电致发光器件的能量效率最高为 15.8lm/W ,而传统的掺杂有机电致发光器件的能量效率最高为 12.6lm/W 。从而说明,使用掺杂的电子阻挡层时,可以使得空穴传输材料的 LUMO 能级大大提升,并且可以进一步提高空穴的传输速率,最终提高了激子的复合几率。
实施例 2
本实施例制备得到的掺杂有机电致发光器件的结构为: IZO/V2O5/TCTA/ ( TAPC:Cs2O ) / ( TPBi:Ir(ppy)3 ) /TPBi/LiF/Al 。
上述掺杂有机电致发光器件的制备工艺如下:
先将 IZO 依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理。在 IZO 上依次蒸镀空穴注入层和空穴传输层。空穴注入层的材质为 V2O5 ,厚度为 20nm ;空穴传输层的材质为 TCTA ,厚度为 60nm 。然后蒸镀电子阻挡层,材质为掺杂了 Cs2O 的 TAPC ,掺杂质量百分比为 15% ,厚度为 10nm 。接着蒸镀发光层、电子传输层和电子注入层。发光层的材质为掺杂了 Ir(ppy)3 的 TPBi ,掺杂的质量百分比为 15% ,厚度为 15nm ;电子传输层的材质为 TPBi ,厚度为 80nm ;电子注入层的材质为 LiF , 厚度为 0.5nm 。最后蒸镀阴极,材质为 Al ,厚度为 80nm ,得到所需要的掺杂有机电致发光器件。
实施例 3
本实施例制备得到的掺杂有机电致发光器件的结构为: AZO/WO3/TPD/ ( TPD:Cs2CO3 ) / ( NPB:Ir(MDQ)2(acac) ) /Bphen/ Li2CO3 /Au 。
上述掺杂有机电致发光器件的制备工艺如下:
先将 AZO 依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理。在 AZO 上依次蒸镀空穴注入层和空穴传输层。空穴注入层的材质为 WO3 ,厚度为 80nm ;空穴传输层的材质为 TPD ,厚度为 20nm 。然后蒸镀电子阻挡层,材质为掺杂了 Cs2CO3 的 TPD ,掺杂质量百分比为 2% ,厚度为 1nm 。接着蒸镀发光层、电子传输层和电子注入层。发光层的材质为 掺杂了 Ir(MDQ)2(acac) 的 NPB ,掺杂的质量百分比为 1% ,厚度为 2nm ;电子传输层的材质为 Bphen ,厚度为 20nm ;电子注入层的材质为 Li2CO3 , 厚度为 5nm 。最后蒸镀阴极,材质为 Au ,厚度为 250nm ,得到所需要的掺杂有机电致发光器件。
实施例 4
本实施例制备得到的掺杂有机电致发光器件的结构为: ITO/MoO3/TAPC/ ( TPD:CsF ) / ( TAZ:Firpic ) / TAZ /LiCl/Pt 。
上述掺杂有机电致发光器件的制备工艺如下:
先将 ITO 依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理。在 ITO 上依次蒸镀空穴注入层和空穴传输层。空穴注入层的材质为 MoO3 ,厚度为 50nm ;空穴传输层的材质为 TAPC ,厚度为 30nm 。然后蒸镀电子阻挡层,材质为掺杂了 CsF 的 TPD ,掺杂质量百分比为 7% ,厚度为 8nm 。接着蒸镀发光层、电子传输层和电子注入层。发光层的材质为 掺杂了 Firpic 的 TAZ ,掺杂的质量百分比为 20% ,厚度为 20nm ;电子传输层的材质为 TAZ ,厚度为 75nm ;电子注入层的材质为 LiCl , 厚度为 0.5nm 。最后蒸镀阴极,材质为 Pt ,厚度为 150nm ,得到所需要的掺杂有机电致发光器件。
实施例 5
本实施例制备得到的掺杂有机电致发光器件的结构为: FTO/V2O5/NPB/ ( NPB:Cs2O ) / DCJTB / PBD /LiF/Al 。
上述掺杂有机电致发光器件的制备工艺如下:
先将 FTO 依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理。在 FTO 上依次蒸镀空穴注入层和空穴传输层。空穴注入层的材质为 V2O5 ,厚度为 55nm ;空穴传输层的材质为 NPB ,厚度为 60nm 。然后蒸镀电子阻挡层,材质为掺杂了 Cs2O 的 NPB ,掺杂质量百分比为 5% ,厚度为 2nm 。接着蒸镀发光层、电子传输层和电子注入层。发光层的材质为 DCJTB ,厚度为 50nm ;电子传输层的材质为 PBD ,厚度为 30nm ;电子注入层的材质为 LiF , 厚度为 1nm 。最后蒸镀阴极,材质为 Al ,厚度为 200nm ,得到所需要的掺杂有机电致发光器件。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种掺杂有机电致发光器件,包括依次层叠的如下结构:导电阳极基底、空穴注入层、空穴传输层、电子阻挡层、发光层、电子传输层、电子注入层和阴极;其特征在于,所述电子阻挡层的材质为掺杂了铯盐的空穴传输材料,所述铯盐占所述电子阻挡层的质量百分比的 2%~15% 。
  2. 如权利要求 1 所述的掺杂有机电致发光器件,其特征在于,所述铯盐为叠氮铯、碳酸铯、氟化铯或氧化铯。
  3. 如权利要求 1 所述的掺杂有机电致发光器件,其特征在于,所述空穴传输材料为 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ] 环己烷、 N , N ' - 二(
    3- 甲基苯基) - N , N ' - 二苯基 -4,4'- 联苯二胺、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺。
  4. 如权利要求 1 所述的掺杂有机电致发光器件,其特征在于,所述电子阻挡层的厚度为 1nm~10nm 。
  5. 如权利要求 1 所述的掺杂有机电致发光器件,其特征在于,所述空穴注入层的材质为三氧化钼、三氧化钨或五氧化二钒。
  6. 如权利要求 1 所述的掺杂有机电致发光器件,其特征在于,所述空穴传输层的材质为 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ] 环己烷、 N , N ' -
    二( 3- 甲基苯基) - N , N ' - 二苯基 -4,4'- 联苯二胺、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺。
  7. 如权利要求 1 所述的掺杂有机电致发光器件,其特征在于,所述发光层的材质为 4- (二腈甲烯基) -2- 异丙基 -6- ( 1,1,7,7- 四甲基久洛呢啶 -9- 乙烯基) -4H- 吡喃、 8- 羟基喹啉铝、双( 4,6- 二氟苯基吡啶 -N,C2 )吡啶甲酰合铱、二( 2- 甲基 - 二苯基 [f,h] 喹喔啉)(乙酰丙酮)合铱和三( 2- 苯基吡啶)合铱中的至少一种;
    或者,所述发光层的材质以为 4- (二腈甲烯基) -2- 异丙基 -6- ( 1,1,7,7- 四甲基久洛呢啶 -9- 乙烯基) -4H- 吡喃、 8- 羟基喹啉铝、双( 4,6- 二氟苯基吡啶 -N,C2
    )吡啶甲酰合铱、二( 2- 甲基 - 二苯基 [f,h] 喹喔啉)(乙酰丙酮)合铱或三( 2- 苯基吡啶)合铱为客体材料,以 1 , 1- 二 [4-[N , N′- 二 (p- 甲苯基 ) 氨基 ] 苯基 ]
    环己烷、 N , N ' - 二( 3- 甲基苯基) -N , N ' - 二苯基 -4,4'- 联苯二胺、 4,4',4''- 三 ( 咔唑 -9- 基 ) 三苯胺或 N , N ' - ( 1- 萘基) - N , N ' - 二苯基 -4,4'- 联苯二胺、 2- ( 4- 联苯基) -5- ( 4- 叔丁基)苯基 -1,3,4- 恶二唑 、 8- 羟基喹啉铝、 4,7- 二苯基 -1,10- 菲罗啉、 1,2,4- 三唑衍生物和 N- 芳基苯并咪唑中的一种或两种为主体材料,组成的掺杂混合材料,其中,客体材料的掺杂的质量百分比为 1%~20% 。
  8. 如权利要求 1 所述的掺杂有机电致发光器件,其特征在于,所述电子传输层的材质为 2- ( 4- 联苯基) -5- ( 4- 叔丁基)苯基 -1,3,4- 恶二唑 、 8- 羟基喹啉铝、 4,7- 二苯基 -1,10- 菲罗啉、 1,2,4- 三唑衍生物或 N- 芳基苯并咪唑。
  9. 如权利要求 1 所述的掺杂有机电致发光器件,其特征在于,所述电子注入层的材质为碳酸锂、氯化锂或者氟化锂。
  10. 一种掺杂有机电致发光器件的制备方法,其特征在于,包括如下步骤:
    对导电阳极基底进行预处理;
    在所述导电阳极基底上依次蒸镀形成空穴注入层和空穴传输层;
    在所述空穴传输层上蒸镀掺杂了铯盐的空穴传输材料,形成电子阻挡层;及
    在所述电子阻挡层上依次层叠蒸镀形成发光层、电子传输层和电子注入层,最后蒸镀阴极,得到所述掺杂有机电致发光器件。
PCT/CN2011/083048 2011-11-28 2011-11-28 掺杂有机电致发光器件及其制备方法 WO2013078593A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180074540.9A CN104025332A (zh) 2011-11-28 2011-11-28 掺杂有机电致发光器件及其制备方法
PCT/CN2011/083048 WO2013078593A1 (zh) 2011-11-28 2011-11-28 掺杂有机电致发光器件及其制备方法
EP11876540.3A EP2787553A4 (en) 2011-11-28 2011-11-28 DOPED ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD FOR THE PRODUCTION THEREOF
JP2014542673A JP2015503229A (ja) 2011-11-28 2011-11-28 ドープ型有機電界発光素子及びその製造方法
US14/360,922 US20150028311A1 (en) 2011-11-28 2011-11-28 Doped organic electroluminescent device and method for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/083048 WO2013078593A1 (zh) 2011-11-28 2011-11-28 掺杂有机电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2013078593A1 true WO2013078593A1 (zh) 2013-06-06

Family

ID=48534584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083048 WO2013078593A1 (zh) 2011-11-28 2011-11-28 掺杂有机电致发光器件及其制备方法

Country Status (5)

Country Link
US (1) US20150028311A1 (zh)
EP (1) EP2787553A4 (zh)
JP (1) JP2015503229A (zh)
CN (1) CN104025332A (zh)
WO (1) WO2013078593A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035888A (ja) * 2014-08-01 2016-03-17 エバーディスプレイ オプトロニクス(シャンハイ) リミテッド 逆構造トップエミッション型デバイス及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140244A (ja) * 2018-02-09 2019-08-22 株式会社ジャパンディスプレイ 表示装置
CN111900257B (zh) * 2020-08-12 2024-07-23 京东方科技集团股份有限公司 一种发光器件及其制作方法、显示装置
CN112382730B (zh) * 2020-11-11 2024-06-04 京东方科技集团股份有限公司 有机发光二极管和制备方法,显示面板和显示装置
CN113224215B (zh) * 2021-05-06 2022-08-02 厦门乾照光电股份有限公司 一种led外延结构及其制备方法
CN114883505A (zh) * 2022-04-29 2022-08-09 武汉华星光电半导体显示技术有限公司 显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111274A (en) * 1999-05-27 2000-08-29 Tdk Corporation Inorganic light emitting diode
CN1697580A (zh) * 2004-12-01 2005-11-16 友达光电股份有限公司 电极结构、有机发光装置及改善其效率的方法
US20060216543A1 (en) * 2005-03-25 2006-09-28 Au Optronics Corp. Organic electro-luminescence device
US20060269782A1 (en) * 2005-05-25 2006-11-30 Eastman Kodak Company OLED electron-transporting layer
US20070048545A1 (en) * 2005-08-31 2007-03-01 Eastman Kodak Company Electron-transporting layer for white OLED device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0224121D0 (en) * 2002-10-16 2002-11-27 Microemissive Displays Ltd Method of patterning a functional material on to a substrate
JPWO2004091262A1 (ja) * 2003-04-02 2006-07-06 富士写真フイルム株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスディスプレイ
US7629061B2 (en) * 2004-01-16 2009-12-08 Osram Opto Semiconductors Gmbh Heterostructure devices using cross-linkable polymers
JP4393249B2 (ja) * 2004-03-31 2010-01-06 株式会社 日立ディスプレイズ 有機発光素子,画像表示装置、及びその製造方法
US20060094859A1 (en) * 2004-11-03 2006-05-04 Marrocco Matthew L Iii Class of bridged biphenylene polymers
JP4235619B2 (ja) * 2005-02-14 2009-03-11 キヤノン株式会社 有機発光素子の製造方法
JP2006245021A (ja) * 2005-02-28 2006-09-14 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子用正孔輸送材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2007265680A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 有機エレクトロルミネッセンス素子及びその製造方法
KR100774200B1 (ko) * 2006-04-13 2007-11-08 엘지전자 주식회사 유기 el 소자 및 그 제조방법
JP4629715B2 (ja) * 2006-12-06 2011-02-09 韓國電子通信研究院 Oled素子
WO2009063859A1 (ja) * 2007-11-13 2009-05-22 Japan Advanced Institute Of Science And Technology 有機el素子
US8183764B2 (en) * 2008-03-26 2012-05-22 Toppan Printing Co., Ltd. Organic electroluminescence element, manufacturing method for an organic electroluminescence element and display unit
US8414304B2 (en) * 2008-08-19 2013-04-09 Plextronics, Inc. Organic light emitting diode lighting devices
DE102008063589A1 (de) * 2008-10-07 2010-04-08 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung
JP2010097883A (ja) * 2008-10-17 2010-04-30 Suiko Yoshihara 有機エレクトロルミネッセンス素子及びその製造方法
JP2010123716A (ja) * 2008-11-19 2010-06-03 Fujifilm Corp 有機電界発光素子
DE102009018647A1 (de) * 2009-04-23 2010-10-28 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung
JP5564371B2 (ja) * 2009-09-17 2014-07-30 株式会社半導体エネルギー研究所 照明装置
KR101411122B1 (ko) * 2009-11-13 2014-06-25 베이징 비젼녹스 테크놀로지 컴퍼니 리미티드 유기 재료 및 그 재료를 이용한 유기 el 디바이스
JP2011108531A (ja) * 2009-11-18 2011-06-02 Seiko Epson Corp 表示装置および電子機器
JP5219098B2 (ja) * 2010-02-26 2013-06-26 ブラザー工業株式会社 表示装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111274A (en) * 1999-05-27 2000-08-29 Tdk Corporation Inorganic light emitting diode
CN1697580A (zh) * 2004-12-01 2005-11-16 友达光电股份有限公司 电极结构、有机发光装置及改善其效率的方法
US20060216543A1 (en) * 2005-03-25 2006-09-28 Au Optronics Corp. Organic electro-luminescence device
US20060269782A1 (en) * 2005-05-25 2006-11-30 Eastman Kodak Company OLED electron-transporting layer
US20070048545A1 (en) * 2005-08-31 2007-03-01 Eastman Kodak Company Electron-transporting layer for white OLED device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787553A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035888A (ja) * 2014-08-01 2016-03-17 エバーディスプレイ オプトロニクス(シャンハイ) リミテッド 逆構造トップエミッション型デバイス及びその製造方法

Also Published As

Publication number Publication date
CN104025332A (zh) 2014-09-03
EP2787553A4 (en) 2015-11-11
US20150028311A1 (en) 2015-01-29
JP2015503229A (ja) 2015-01-29
EP2787553A1 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2013078593A1 (zh) 掺杂有机电致发光器件及其制备方法
WO2010056070A2 (ko) 저전압 구동 유기발광소자 및 이의 제조 방법
WO2013000162A1 (zh) 顶发射有机电致发光器件及其制备方法
WO2012129791A1 (zh) 一种柔性有机电致发光器件及其制备方法
JP2009016332A (ja) 有機発光素子
Yuan et al. Auger effect assisted perovskite electroluminescence modulated by interfacial minority carriers
WO2013000163A1 (zh) 顶发射柔性有机电致发光器件及其制备方法
KR20140144997A (ko) 유기 발광 소자
WO2013078585A1 (zh) 聚合物电致发光器件及其制备方法
KR101097300B1 (ko) 전자 샤워 처리된 정공 주입층을 포함하는 유기 전계 발광소자 및 그 제조방법
KR102418480B1 (ko) 유기 발광소자
WO2013078595A1 (zh) 一种具有三元掺杂空穴传输层的有机电致发光器件及其制备方法
KR100759548B1 (ko) 유기 전계 발광 소자
WO2013078590A1 (zh) 一种聚合物电致发光器件及其制备方法
WO2013143146A1 (zh) 有机电致发光器件及其制备方法
WO2012068744A1 (zh) 一种有机电致发光器件及其制备方法
WO2012126175A1 (zh) 有机电致发光器件及其导电基底
WO2014082308A1 (zh) 一种有机电致发光器件及其制备方法
KR100787460B1 (ko) 유기 발광 소자의 제조방법 및 이에 의하여 제조된 유기발광 소자
JP2002343570A (ja) 導電性液晶素子及び有機エレクトロルミネッセンス素子
CN104518108A (zh) 有机电致发光器件及其制备方法
WO2014082307A1 (zh) 一种有机电致发光器件及其制备方法
CN104518109A (zh) 有机电致发光器件及其制备方法
CN104934549A (zh) 一种有机电致发光器件及其制备方法
CN104518106A (zh) 有机电致发光器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876540

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011876540

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011876540

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014542673

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14360922

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE