WO2012126175A1 - 有机电致发光器件及其导电基底 - Google Patents

有机电致发光器件及其导电基底 Download PDF

Info

Publication number
WO2012126175A1
WO2012126175A1 PCT/CN2011/072024 CN2011072024W WO2012126175A1 WO 2012126175 A1 WO2012126175 A1 WO 2012126175A1 CN 2011072024 W CN2011072024 W CN 2011072024W WO 2012126175 A1 WO2012126175 A1 WO 2012126175A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide layer
layer
organic electroluminescent
electroluminescent device
metal oxide
Prior art date
Application number
PCT/CN2011/072024
Other languages
English (en)
French (fr)
Inventor
周明杰
王平
黄辉
陈吉星
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to PCT/CN2011/072024 priority Critical patent/WO2012126175A1/zh
Priority to CN2011800687193A priority patent/CN103403910A/zh
Priority to EP11861768.7A priority patent/EP2690682A4/en
Priority to JP2013554776A priority patent/JP2014509442A/ja
Priority to US13/981,416 priority patent/US20130306951A1/en
Publication of WO2012126175A1 publication Critical patent/WO2012126175A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to an organic electroluminescent device and a conductive substrate therefor.
  • OLED organic electroluminescent device
  • the principle of OLED illumination is based on the lowest unoccupied molecular orbital of electrons injected from the cathode into the organic matter under the action of an applied electric field (LUMO). ), and the highest occupied orbit of holes injected from the anode to the organic matter (HOMO ). Electrons and holes meet and recombine in the luminescent layer to form excitons. The excitons migrate under the action of an electric field, transfer energy to the luminescent material, and excite the electrons from the ground state to the excited state. The excited state energy is deactivated by radiation to generate photons. , release light energy.
  • LUMO applied electric field
  • HOMO organic matter
  • the last light emitted only occupies the total illuminating 25% Along the left and right, a considerable part of the light is lost in various ways, such as loss of light guide, loss of emission, and the like. Therefore, how to reduce the light loss during the illuminating process and enhance the light extraction ability is one of the important research directions in the field of electroluminescence.
  • a conductive substrate for an organic electroluminescent device comprising a glass substrate, an indium tin oxide layer, and a metal oxide layer between the glass substrate and the indium tin oxide layer.
  • the metal oxide layer has a refractive index between the refractive indices of the glass substrate and the indium tin oxide layer.
  • the metal oxide layer is MgO, ZrO or Al 2 O 3 .
  • the metal oxide layer has a thickness of 50 to 150 nm.
  • the indium tin oxide layer has a thickness of 100 to 200 nm.
  • An organic electroluminescence device comprising a conductive substrate and a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and a metal cathode which are sequentially laminated on the conductive substrate.
  • the conductive substrate includes a glass substrate, an indium tin oxide layer, and a metal oxide layer between the glass substrate and the indium tin oxide layer, the metal oxide layer having a refractive index of Between the refractive index of the glass substrate and the indium tin oxide layer.
  • the hole injection layer is made of molybdenum trioxide, tungsten trioxide or VO x .
  • the hole transport layer is N,N'-bis(3-methylphenyl)-N,N'-diphenyl -4,4'-biphenyldiamine, N,N'-(1-naphthyl)-N,N'-diphenyl-4,4'-biphenyldiamine, 1,3,5-triphenyl Base benzene or copper phthalocyanine.
  • the luminescent layer is tetra-tert-butyl perylene, 4-(diconitrile methyl)-2-butyl-6- (1,1,7,7-tetramethylgurostatin-9-vinyl) -4H-pyran, 9,10-di- ⁇ -naphthylene fluorene, bis(2-methyl-8- Hydroxyquinoline) - (4-biphenol) aluminum, 4-(dinitrileyl)-2-isopropyl-6-(1,1,7,7-tetramethyljuroxidine-9-vinyl)-4H-pyran, dimethylquine Acridone or 8-hydroxyquinoline aluminum.
  • the electron transport layer is 2-(4-biphenyl)-5-(4-tert-butyl)phenyl--1,3,4- Oxadiazole, 8-hydroxyquinoline aluminum, 2,5-bis(1-naphthyl)-1,3,4-oxadiazole, 1,2,4-triazole derivative, N-arylbenzimidazole Or a quinoxaline derivative.
  • the electron injecting layer is made of LiF, LiO 2 , Cs 2 O , Al 2 O 3 , NaF , CsF , CaF 2 , MgF 2 , NaCl, KCl , RbCl , LiBO 2 or K 2 SiO 3 . .
  • a metal oxide layer having a refractive index between the glass substrate and the indium tin oxide layer is inserted in the ITO/metal oxide, metal oxide/
  • the light exiting between the glasses increases the critical angle at which full emission occurs relative to the critical angle at which no metal oxide is inserted. Most of the light is refracted and exits the interface, and only a small portion of the light is totally reflected, making the light The removal rate is enhanced.
  • Figure 1 is a cross-sectional view of a conductive substrate of an embodiment
  • Figure 2 is a cross-sectional view showing an organic electroluminescent device of an embodiment
  • Figure 3 is a graph showing the relationship between brightness and voltage of an organic electroluminescent device and a standard organic electroluminescent device of an embodiment.
  • the conductive substrate 10 of an embodiment includes a glass substrate 11, an Indium-Tin Oxide (ITO) layer 15, and a metal oxide between the glass substrate 11 and the indium tin oxide layer 15.
  • Object layer 13 When the refractive index of the ITO layer 15 is n 1 and the refractive index of the glass substrate 11 is n 2 , the refractive index n of the metal oxide layer 13 satisfies: n 1 >n>n 2 , that is, the refraction of the metal oxide layer 13 The rate is between the refractive indices of the glass substrate 11 and the indium tin oxide layer 15.
  • the refractive index n 1 of the ITO layer 15 is about 1.9, and the refractive index n 2 of the glass substrate 11 is about 1.5. If light is directly emitted from the ITO to the glass substrate, total reflection occurs due to the law of refraction, and when the light is completely emitted, it means that all of the light is refracted back without exiting. In the present embodiment, the light extraction rate is increased by inserting a metal oxide between the two without changing the glass substrate and the conductive film.
  • the refractive index n of such a metal oxide has the following relationship with the two materials: n 1 >n>n 2 .
  • the angle at which total reflection occurs becomes large (due to n>n 2 ), and the total reflection of light is reduced, and most of the light can be refracted onto the glass substrate. There is also full emission between the metal oxide and the glass substrate, and light is incident from the metal oxide. Since n ⁇ n 1 , the difference in refractive index from the glass is reduced, and the angle at which full emission occurs becomes large, most of which Light can refract the interface, so after two refractions, the light extraction rate is enhanced, ultimately improving the luminous efficiency.
  • the metal oxide layer 13 is preferably MgO, ZrO or Al 2 O 3 . If the thickness of the metal oxide layer 13 is too thin, it is easily penetrated by light to cause total reflection; if the thickness of the metal oxide layer 13 is large, it is difficult to pass light. Therefore, the thickness of the metal oxide layer 13 is preferably 50 to 150 nm.
  • the thickness of the ITO layer 15 is preferably 100 to 200 nm. ITO in this thickness range The film formation property of the layer is relatively good, the adhesion to the metal oxide layer 13 is strong, and the light transmission ability can be enhanced.
  • an organic electroluminescent device 100 of an embodiment includes a conductive substrate 10 and is sequentially laminated on the conductive substrate.
  • the hole injection layer 20, the hole transport layer 30, the light-emitting layer 40, the electron transport layer 50, the electron injection layer 60, and the metal cathode 70 are formed.
  • the conductive substrate 10 is the conductive substrate described in FIG.
  • the hole injection layer 20 is made of molybdenum trioxide, tungsten trioxide or VO x .
  • the hole transport layer 30 is N,N'-bis(3-methylphenyl)-N,N'-diphenyl-4,4'-biphenyldiamine, N,N'-(1-Naphthyl)-N,N'-diphenyl-4,4'-biphenyldiamine, 1,3,5-triphenylbenzene or copper phthalocyanine.
  • the luminescent layer 40 is made of tetra-tert-butyl perylene (TBP), 4-(dinitylmethyl)-2-butyl-6-(1,1,7,7-tetramethyl sulphonium- 9-vinyl)-4H-pyran (DCJTB), 9,10-di- ⁇ -naphthylene ruthenium (AND), bis(2-methyl-8-hydroxyquinoline)-(4-biphenol) Aluminum (BALQ), 4-(dinitrileyl)-2-isopropyl-6-(1,1,7,7-tetramethyljuroxidine-9-vinyl)-4H-pyran (DCJTI), dimethyl quinacridone (DMQA) or 8-hydroxyquinoline aluminum (Alq 3 ).
  • TBP tetra-tert-butyl perylene
  • DCJTB 4-(dinitylmethyl)-2-butyl-6-(1,1,7,7-tetramethyl sulphonium- 9-vinyl)-4H-
  • the electron transport layer 50 is composed of 2-(4-biphenyl)-5-(4-tert-butyl)phenyl-1,3,4-oxadiazole (PBD), 8-hydroxyquinoline aluminum (Alq 3 ) , 2,5-bis(1-naphthyl)-1,3,4-oxadiazole (BND), 1,2,4-triazole derivatives (eg TAZ), N-arylbenzimidazole (TPBI) Or quinoxaline derivatives (TPQ).
  • PBD 2-(4-biphenyl)-5-(4-tert-butyl)phenyl-1,3,4-oxadiazole
  • Alq 3 8-hydroxyquinoline aluminum
  • BND 2,5-bis(1-naphthyl)-1,3,4-oxadiazole
  • TAZ 1,2,4-triazole derivatives
  • TPBI N-arylbenzimidazole
  • TPQ quinoxaline derivatives
  • the electron injecting layer 60 is made of LiF, LiO 2 , Cs 2 O , Al 2 O 3 , NaF , CsF , CaF 2 , MgF 2 , NaCl, KCl , RbCl , LiBO 2 or K 2 SiO 3 .
  • the metal cathode 70 is made of Al, Au, Mg/Ag, Al/Mg alloy, Al/Ca alloy or Al/Li alloy.
  • the organic electroluminescent device 100 employs the above-mentioned conductive substrate / hole injection layer / hole transport layer / light-emitting layer.
  • Electron transport layer / Electron injection layer / Metal cathode multilayer structure any suitable structure can also be used, for example: conductive substrate / luminescent layer / metal cathode structure, conductive substrate / hole transport layer / Light-emitting layer / electron transport layer / metal cathode structure, conductive substrate / hole injection layer / hole transport layer / light-emitting layer / electron injection layer / metal cathode structure.
  • the manufacturing method of the organic electroluminescent device 100 includes the following steps:
  • Step 1 The commercially available glass substrate 11 was ultrasonically cleaned with detergent, acetone, ethanol and isopropyl alcohol in that order.
  • Step 2 attaching the metal oxide to the glass substrate 11 by sputtering, evaporation, ion plating or the like to form a thickness of 50 to 150 nm.
  • Metal oxide layer 13
  • Step 3 preparing indium tin oxide on the metal oxide layer 13 by sputtering to form a thickness of 100 to 200 nm. Indium tin oxide layer 15 .
  • Step 4 sequentially depositing a hole injection layer 20, a hole transport layer 30, and a light-emitting layer on the indium tin oxide layer 15 in a vacuum coating chamber. 40, electron transport layer 50, electron injection layer 60 and metal cathode 70.
  • Example 1 The commercially available glass is first ultrasonically cleaned with detergent, acetone, ethanol and isopropyl alcohol; then the metal oxide is attached to the glass substrate by sputtering, evaporation, ion plating or the like to a thickness of 70 nm. Indium tin oxide was prepared by sputtering on the above substrate to a thickness of 120 nm. Then this ITO The glass is photolithographically processed, cut into the required light-emitting area, and then ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes. Remove the organic pollutants on the glass surface, clean it and then perform oxygen plasma treatment. The oxygen plasma treatment time is 5-15min, and the power is 10-50W. Finally, it is placed in a vacuum coating chamber to evaporate various organic layers, and finally the desired organic electroluminescent device is obtained.
  • Example 2 The commercially available glass is first ultrasonically cleaned with detergent, acetone, ethanol and isopropanol; then the metal oxide is attached to the glass substrate by sputtering, evaporation, ion plating, etc., with a thickness of 50 nm. Indium tin oxide was prepared by sputtering on the above substrate to a thickness of 100 nm. Then this ITO The glass is photolithographically processed, cut into the required light-emitting area, and then ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes. Remove the organic pollutants on the glass surface, clean it and then perform oxygen plasma treatment. The oxygen plasma treatment time is 5-15min, and the power is 10-50W. Finally, it is placed in a vacuum coating chamber to evaporate various organic layers, and finally the desired organic electroluminescent device is obtained.
  • Example 3 The commercially available glass is first ultrasonically cleaned with detergent, acetone, ethanol and isopropyl alcohol; then the metal oxide is attached to the glass substrate by sputtering, evaporation, ion plating or the like to a thickness of 70 nm. Indium tin oxide was prepared by sputtering on the above substrate to a thickness of 150 nm. Then this ITO The glass is photolithographically processed, cut into the required light-emitting area, and then ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes. Remove the organic pollutants on the glass surface, clean it and then perform oxygen plasma treatment. The oxygen plasma treatment time is 5-15min, and the power is 10-50W. Finally, it is placed in a vacuum coating chamber to evaporate various organic layers, and finally the desired organic electroluminescent device is obtained.
  • Example 4 The commercially available glass is first ultrasonically cleaned with detergent, acetone, ethanol and isopropyl alcohol; then the metal oxide is attached to the glass substrate by sputtering, evaporation, ion plating or the like to a thickness of 100 nm. Indium tin oxide was prepared by sputtering on the above substrate to a thickness of 200 nm. Then this ITO The glass is photolithographically processed, cut into the required light-emitting area, and then ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes. Remove the organic pollutants on the glass surface, clean it and then perform oxygen plasma treatment. The oxygen plasma treatment time is 5-15min, and the power is 10-50W. Finally, it is placed in a vacuum coating chamber to evaporate various organic layers, and finally the desired organic electroluminescent device is obtained.
  • Example 5 The commercially available glass is first ultrasonically cleaned with detergent, acetone, ethanol and isopropanol; then the metal oxide is attached to the glass substrate by sputtering, evaporation, ion plating, etc., with a thickness of 150 nm. Indium tin oxide was prepared by sputtering on the above substrate to a thickness of 150 nm. Then this ITO The glass is photolithographically processed, cut into the required light-emitting area, and then ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes. Remove the organic pollutants on the glass surface, clean it and then perform oxygen plasma treatment. The oxygen plasma treatment time is 5-15min, and the power is 10-50W. Finally, it is placed in a vacuum coating chamber to evaporate various organic layers, and finally the desired organic electroluminescent device is obtained.
  • Example 6 The commercially available glass is first ultrasonically cleaned with detergent, acetone, ethanol and isopropanol; then the metal oxide is attached to the glass substrate by sputtering, evaporation, ion plating, etc., with a thickness of 120 nm. Indium tin oxide was prepared by sputtering on the above substrate to a thickness of 160 nm. Then this ITO The glass is photolithographically processed, cut into the required light-emitting area, and then ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes. Remove the organic pollutants on the glass surface, clean it and then perform oxygen plasma treatment. The oxygen plasma treatment time is 5-15min, and the power is 10-50W. Finally, it is placed in a vacuum coating chamber to evaporate various organic layers, and finally the desired organic electroluminescent device is obtained.
  • Example 7 The commercially available glass is first ultrasonically cleaned with detergent, acetone, ethanol and isopropanol; then the metal oxide is attached to the glass substrate by sputtering, evaporation, ion plating or the like to a thickness of 60 nm. Indium tin oxide was prepared by sputtering on the above substrate to a thickness of 180 nm. Then this ITO The glass is photolithographically processed, cut into the required light-emitting area, and then ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes. Remove the organic pollutants on the glass surface, clean it and then perform oxygen plasma treatment. The oxygen plasma treatment time is 5-15min, and the power is 10-50W. Finally, it is placed in a vacuum coating chamber to evaporate various organic layers, and finally the desired organic electroluminescent device is obtained.
  • Example 8 The commercially available glass is first ultrasonically cleaned with detergent, acetone, ethanol and isopropanol; then the metal oxide is attached to the glass substrate by sputtering, evaporation, ion plating, etc., with a thickness of 120 nm. Indium tin oxide was prepared by sputtering on the above substrate to a thickness of 140 nm. Then this ITO The glass is photolithographically processed, cut into the required light-emitting area, and then ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes. Remove the organic pollutants on the glass surface, clean it and then perform oxygen plasma treatment. The oxygen plasma treatment time is 5-15min, and the power is 10-50W. Finally, it is placed in a vacuum coating chamber to evaporate various organic layers, and finally the desired organic electroluminescent device is obtained.
  • Example 9 The commercially available glass is first ultrasonically cleaned with detergent, acetone, ethanol and isopropyl alcohol; then the metal oxide is attached to the glass substrate by sputtering, evaporation, ion plating, etc., with a thickness of 80 nm. Indium tin oxide was prepared by sputtering on the above substrate to a thickness of 150 nm. Then this ITO The glass is photolithographically processed, cut into the required light-emitting area, and then ultrasonicated with detergent, deionized water, acetone, ethanol, and isopropanol for 15 minutes. Remove the organic pollutants on the glass surface, clean it and then perform oxygen plasma treatment. The oxygen plasma treatment time is 5-15min, and the power is 10-50W. Finally, it is placed in a vacuum coating chamber to evaporate various organic layers, and finally the desired organic electroluminescent device is obtained.
  • Figure 3 is the structure of Example 1: glass substrate /MgO/ITO/MoO3/NPB/Alq3/ The relationship between brightness and voltage of organic electroluminescent devices of PBD/LiF/Al and standard organic electroluminescent devices.
  • the brightness of the device with the conductive substrate of MgO is 3328 cd/cm 2
  • the brightness of the standard device is only 2489 cd/cm 2 , which means that when the MgO is inserted, the light extraction of the substrate is strengthened and the light is totally reflected. The loss is reduced and more light is emitted through the refraction, so the brightness of the device is enhanced.

Description

有机电致发光器件及其导电基底
【技术领域】
本发明涉及一种有机电致发光器件及其导电基底。
【背景技术】
1987 年,美国 Eastman Kodak 公司的 C.W.Tang 和 Van Slyke 报道了有机电致发光研究中的突破性进展。利用超薄薄膜技术制备出了高亮度,高效率的双层小分子有机电致发光器件( OLED )。在该双层结构的器件中, 10V 下亮度达到 1000 cd/m2 ,其发光效率为 1.51 lm/W 、寿命大于 100 小时。
OLED 的发光原理是基于在外加电场的作用下,电子从阴极注入到有机物的最低未占有分子轨道( LUMO ),而空穴从阳极注入到有机物的最高占有轨道( HOMO )。电子和空穴在发光层相遇、复合、形成激子,激子在电场作用下迁移,将能量传递给发光材料,并激发电子从基态跃迁到激发态,激发态能量通过辐射失活,产生光子,释放光能。但是,在发光层出射的光之中,最后出射的光只占总发光的 25% 左右,有相当一部分光以各种方式损失掉,如:光导损失、发射损失等。因此,如何减少发光过程中的光损失,增强光的提取能力,是目前电致发光领域研究的重要方向之一。
目前常用的一些方法是通过制备顶发射器件来提高光取出率,同时在出光面加入各种折射率较高的材料作为增透膜来提高光取出率,但是,由于顶发射器件的整体性能依然偏低,远远达不到应用的阶段。
【发明内容】
基于此,有必要提供一种具有较高光取出率的有机电致发光器件及其导电基底。
一种有机电致发光器件的导电基底,包括玻璃衬底、铟锡氧化物层和位于所述玻璃衬底和所述铟锡氧化物层之间的金属氧化物层。所述金属氧化物层的折射率介于所述玻璃衬底和所述铟锡氧化物层的折射率之间。
在优选的实施例中,所述金属氧化物层为 MgO 、 ZrO 或 Al2O3
在优选的实施例中,所述金属氧化物层的厚度为 50~150nm 。
在优选的实施例中,所述铟锡氧化物层的厚度为 100~200nm 。
一种有机电致发光器件,包括导电基底及依次层叠于所述导电基底上的空穴注入层、空穴传输层、发光层、电子传输层、电子注入层及金属阴极。所述导电基底包括玻璃衬底、铟锡氧化物层和位于所述玻璃衬底和所述铟锡氧化物层之间的金属氧化物层,所述金属氧化物层的折射率介于所述玻璃衬底和所述铟锡氧化物层的折射率之间。
在优选的实施例中,所述空穴注入层采用三氧化钼、三氧化钨或VOx
在优选的实施例中,所述空穴传输层采用 N,N'- 二 (3- 甲基苯基 )-N,N'- 二苯基 -4,4'- 联苯二胺、 N,N'-(1- 萘基 )-N,N'- 二苯基 -4,4'- 联苯二胺、 1,3,5- 三苯基苯或酞菁铜。
在优选的实施例中,所述发光层采用四 - 叔丁基二萘嵌苯、 4-( 二腈甲基 )-2- 丁基 -6- (1,1,7,7- 四甲基久洛呢啶 -9-乙烯基) -4H- 吡喃、 9,10- 二-β-亚萘基蒽、二( 2-甲基 -8-羟基喹啉) - (4-联苯酚)铝、 4-(二腈甲烯基 )-2-异丙基 -6-(1,1,7,7- 四甲基久洛呢啶 -9- 乙烯基 )-4H- 吡喃、二甲基喹吖啶酮或 8- 羟基喹啉铝。
在优选的实施例中,所述电子传输层采用 2-(4- 联苯基 )-5-(4- 叔丁基 ) 苯基 -1,3,4- 恶二唑、 8- 羟基喹啉铝、 2,5- 二 (1- 萘基 )-1,3,4- 二唑、 1,2,4- 三唑衍生物、 N- 芳基苯并咪唑或喹喔啉衍生物。
在优选的实施例中,所述电子注入层采用 LiF 、 LiO2 、 Cs2O 、 Al2O3 、 NaF 、 CsF 、 CaF2 、 MgF2 、 NaCl 、 KCl 、 RbCl 、 LiBO2 或 K2SiO3
上述导电基底中由于插入了折射率介于玻璃衬底和铟锡氧化物层之间的金属氧化物层,在ITO/金属氧化物、金属氧化物/ 玻璃之间的光出射,使发生全发射的临界角相对于没有插入金属氧化物的临界角增大,大部分的光经过折射后射出界面,只有小部分的光发生了全反射,使光的取出率增强。
【附图说明】
图 1 为一实施例的导电基底的剖视图;
图 2 为一实施例的有机电致发光器件的剖视图;
图 3 为一实施例的有机电致发光器件和标准的有机电致发光器件的亮度与电压关系图。
【具体实施方式】
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
其次,本发明利用示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是实例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
请参阅图 1 ,一实施例的导电基底 10 包括玻璃衬底 11 、铟锡氧化物 (Indium-Tin Oxide, ITO) 层15和位于玻璃衬底 11 和铟锡氧化物层15之间的金属氧化物层13。设 ITO 层15的折射率为n1 ,玻璃衬底11的折射率为n2 ,则金属氧化物层13的折射率 n 满足: n1>n>n2 ,即金属氧化物层13的折射率介于玻璃衬底11和铟锡氧化物层15的折射率之间 。
ITO层15的折射率n1约为1.9,玻璃衬底11的折射率n2约为1.5。如果光从ITO直接射出到玻璃衬底,由于折射定律,会发生全反射,而光发生全发射时,则意味着这部分的光全部都被折射回去了,没有出射。本实施例中,在不改变玻璃基底和导电薄膜的前提下,通过在这两者之间插入一种金属氧化物来提高光取出率。这种金属氧化物的折射率n与这两种材料有以下关系:n1>n>n2。这样,光从ITO层入射到金属氧化物时,其发生全反射的角度变大(由于n>n2),光全反射的部分减少,大部分的光可以折射到玻璃衬底上,而在金属氧化物与玻璃衬底之间,也存在全发射,光从金属氧化物入射,由于n<n1,因此,与玻璃的折射率差值缩小,发生全发射的角度变大,大部分的光可以折射出界面,因此,经过两次折射,光的取出率得到加强,最终提高了发光效率。
金属氧化物层 13 优选为 MgO 、 ZrO 或 Al2O3 。如果金属氧化物层 13 的厚度太薄,则很容易被光线穿透而发生全反射;如果金属氧化物层 13 的厚度较大,则光线难以穿过。因此,金属氧化物层 13 的厚度优选为 50~150nm 。
ITO 层 15 的厚度优选为 100~200nm 。在该厚度范围的 ITO 层的成膜性比较好,对金属氧化物层 13 的附着性较强,光透过能力也能加强。
请参阅图 2 ,一实施例的有机电致发光器件 100 ,包括导电基底 10 及依次层叠于导电基底 10 上的空穴注入层 20 、空穴传输层 30 、发光层 40 、电子传输层 50 、电子注入层 60 及金属阴极 70 。
导电基底 10 为图 1 所述的导电基底。
空穴注入层 20 采用三氧化钼、三氧化钨或 VOx
空穴传输层 30 采用 N,N'-二 (3-甲基苯基 )-N,N'- 二苯基 -4,4'- 联苯二胺、 N,N'-(1- 萘基 )-N,N'-二苯基 -4,4'-联苯二胺、 1,3,5-三苯基苯或酞菁铜。
发光层40采用四-叔丁基二萘嵌苯(TBP) 、 4-(二腈甲基 )-2-丁基-6-(1,1,7,7- 四甲基久洛呢啶-9-乙烯基)-4H-吡喃 (DCJTB) 、 9,10-二-β-亚萘基蒽(AND) 、二(2-甲基-8-羟基喹啉)-(4-联苯酚)铝 (BALQ) 、 4-( 二腈甲烯基 )-2- 异丙基 -6-(1,1,7,7- 四甲基久洛呢啶 -9-乙烯基 )-4H-吡喃 (DCJTI) 、二甲基喹吖啶酮 (DMQA)或 8-羟基喹啉铝(Alq3) 。
电子传输层 50 采用 2-(4-联苯基 )-5-(4-叔丁基 ) 苯基 -1,3,4- 恶二唑(PBD) 、 8- 羟基喹啉铝 (Alq3) 、 2,5-二 (1- 萘基 )-1,3,4-二唑(BND) 、 1,2,4-三唑衍生物(如TAZ ) 、 N-芳基苯并咪唑 (TPBI)或喹喔啉衍生物(TPQ) 。
电子注入层 60 采用 LiF 、 LiO2 、 Cs2O 、 Al2O3 、 NaF 、 CsF 、 CaF2 、 MgF2 、 NaCl 、 KCl 、 RbCl 、 LiBO2 或 K2SiO3
金属阴极 70 采用 Al 、 Au 、 Mg/Ag 、 Al/Mg 合金、 Al/Ca 合金或 Al/Li 合金。
可以理解的是,有机电致发光器件 100 除了采用上述的导电基底 / 空穴注入层 / 空穴传输层 / 发光层 / 电子传输层 / 电子注入层 / 金属阴极多层结构之外,还可采用任何合适的结构,例如:导电基底 / 发光层 / 金属阴极的结构、导电基底 / 空穴传输层 / 发光层 / 电子传输层 / 金属阴极的结构、导电基底 / 空穴注入层 / 空穴传输层 / 发光层 / 电子注入层 / 金属阴极的结构。
有机电致发光器件 100 的制作方法包括如下步骤:
步骤一、将市售的玻璃衬底 11 依次用洗洁精、丙酮、乙醇和异丙醇进行超声清洗。
步骤二、将金属氧化物通过溅射、蒸镀、离子镀等方法附着在玻璃衬底 11 上,形成厚度为 50~150nm 的金属氧化物层 13 ;
步骤三、将铟锡氧化物通过溅射的方式制备在金属氧化物层 13 上,形成厚度为 100~200nm 的铟锡氧化物层 15 。
步骤四、于真空镀膜室内,在铟锡氧化物层 15 上依次蒸镀空穴注入层 20 、空穴传输层 30 、发光层 40 、电子传输层 50 、电子注入层 60 及金属阴极 70 。
以下为具体实施例部分。
实施例 1 :先将市售的玻璃依次用洗洁精、丙酮、乙醇和异丙醇进行超声清洗;然后将金属氧化物通过溅射、蒸镀、离子镀等方法附着在玻璃基底上,厚度为 70nm ;将铟锡氧化物通过溅射的方式制备在上述基底上,厚度为 120nm 。然后将此 ITO 玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理,氧等离子处理时间为 5-15min ,功率为 10-50W ,最后放进真空镀膜室里面蒸镀各种有机层,最后得到所需的有机电致发光器件。
实施例 2 :先将市售的玻璃依次用洗洁精、丙酮、乙醇和异丙醇进行超声清洗;然后将金属氧化物通过溅射、蒸镀、离子镀等方法附着在玻璃基底上,厚度为 50nm ;将铟锡氧化物通过溅射的方式制备在上述基底上,厚度为 100nm 。然后将此 ITO 玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理,氧等离子处理时间为 5-15min ,功率为 10-50W ,最后放进真空镀膜室里面蒸镀各种有机层,最后得到所需的有机电致发光器件。
实施例 3 :先将市售的玻璃依次用洗洁精、丙酮、乙醇和异丙醇进行超声清洗;然后将金属氧化物通过溅射、蒸镀、离子镀等方法附着在玻璃基底上,厚度为 70nm ;将铟锡氧化物通过溅射的方式制备在上述基底上,厚度为 150nm 。然后将此 ITO 玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理,氧等离子处理时间为 5-15min ,功率为 10-50W ,最后放进真空镀膜室里面蒸镀各种有机层,最后得到所需的有机电致发光器件。
实施例 4 :先将市售的玻璃依次用洗洁精、丙酮、乙醇和异丙醇进行超声清洗;然后将金属氧化物通过溅射、蒸镀、离子镀等方法附着在玻璃基底上,厚度为 100nm ;将铟锡氧化物通过溅射的方式制备在上述基底上,厚度为 200nm 。然后将此 ITO 玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理,氧等离子处理时间为 5-15min ,功率为 10-50W ,最后放进真空镀膜室里面蒸镀各种有机层,最后得到所需的有机电致发光器件。
实施例 5 :先将市售的玻璃依次用洗洁精、丙酮、乙醇和异丙醇进行超声清洗;然后将金属氧化物通过溅射、蒸镀、离子镀等方法附着在玻璃基底上,厚度为 150nm ;将铟锡氧化物通过溅射的方式制备在上述基底上,厚度为 150nm 。然后将此 ITO 玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理,氧等离子处理时间为 5-15min ,功率为 10-50W ,最后放进真空镀膜室里面蒸镀各种有机层,最后得到所需的有机电致发光器件。
实施例 6 :先将市售的玻璃依次用洗洁精、丙酮、乙醇和异丙醇进行超声清洗;然后将金属氧化物通过溅射、蒸镀、离子镀等方法附着在玻璃基底上,厚度为 120nm ;将铟锡氧化物通过溅射的方式制备在上述基底上,厚度为 160nm 。然后将此 ITO 玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理,氧等离子处理时间为 5-15min ,功率为 10-50W ,最后放进真空镀膜室里面蒸镀各种有机层,最后得到所需的有机电致发光器件。
实施例 7 :先将市售的玻璃依次用洗洁精、丙酮、乙醇和异丙醇进行超声清洗;然后将金属氧化物通过溅射、蒸镀、离子镀等方法附着在玻璃基底上,厚度为 60nm ;将铟锡氧化物通过溅射的方式制备在上述基底上,厚度为 180nm 。然后将此 ITO 玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理,氧等离子处理时间为 5-15min ,功率为 10-50W ,最后放进真空镀膜室里面蒸镀各种有机层,最后得到所需的有机电致发光器件。
实施例 8 :先将市售的玻璃依次用洗洁精、丙酮、乙醇和异丙醇进行超声清洗;然后将金属氧化物通过溅射、蒸镀、离子镀等方法附着在玻璃基底上,厚度为 120nm ;将铟锡氧化物通过溅射的方式制备在上述基底上,厚度为 140nm 。然后将此 ITO 玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理,氧等离子处理时间为 5-15min ,功率为 10-50W ,最后放进真空镀膜室里面蒸镀各种有机层,最后得到所需的有机电致发光器件。
实施例 9 :先将市售的玻璃依次用洗洁精、丙酮、乙醇和异丙醇进行超声清洗;然后将金属氧化物通过溅射、蒸镀、离子镀等方法附着在玻璃基底上,厚度为 80nm ;将铟锡氧化物通过溅射的方式制备在上述基底上,厚度为 150nm 。然后将此 ITO 玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精,去离子水,丙酮,乙醇,异丙醇各超声 15min ,去除玻璃表面的有机污染物,清洗干净后对其进行氧等离子处理,氧等离子处理时间为 5-15min ,功率为 10-50W ,最后放进真空镀膜室里面蒸镀各种有机层,最后得到所需的有机电致发光器件。
附图 3 是实施例 1 的结构为:玻璃基底 /MgO/ITO/MoO3/NPB/Alq3/ PBD/LiF/Al 的有机电致发光器件与标准的有机电致发光器件的亮度与电压关系。
在 6V 时,插入了 MgO 的导电基底的器件亮度为 3328 cd/cm2 ,而标准器件亮度仅为 2489cd/cm2 ,这说明,当插入 MgO 后,基底的光取出得到加强,光线发生全反射的损失减少,有更多的光通过折射而出射出去,因此,器件的亮度得到了增强。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种有机电致发光器件的导电基底,其特征在于:包括玻璃衬底、铟锡氧化物层和位于所述玻璃衬底和所述铟锡氧化物层之间的金属氧化物层,所述金属氧化物层的折射率介于所述玻璃衬底和所述铟锡氧化物层的折射率之间。
  2. 根据权利要求1所述的有机电致发光器件的导电基底,其特征在于:所述金属氧化物层为MgO、ZrO或Al2O3
  3. 根据权利要求1所述的有机电致发光器件的导电基底,其特征在于:所述金属氧化物层的厚度为50~150nm。
  4. 根据权利要求1所述的有机电致发光器件的导电基底,其特征在于:所述铟锡氧化物层的厚度为100~200nm。
  5. 一种有机电致发光器件,包括导电基底及依次层叠于所述导电基底上的空穴注入层、空穴传输层、发光层、电子传输层、电子注入层及金属阴极,其特征在于,所述导电基底包括玻璃衬底、铟锡氧化物层和位于所述玻璃衬底和所述铟锡氧化物层之间的金属氧化物层,所述金属氧化物层的折射率介于所述玻璃衬底和所述铟锡氧化物层的折射率之间。
  6. 根据权利要求5所述的有机电致发光器件,其特征在于:所述空穴注入层采用三氧化钼、三氧化钨或VOx
  7. 根据权利要求5所述的有机电致发光器件,其特征在于:所述空穴传输层采用N,N'-二(3-甲基苯基)-N,N'-二苯基-4,4'-联苯二胺、N,N'-(1-萘基)-N,N'-二苯基-4,4'-联苯二胺、1,3,5-三苯基苯或酞菁铜。
  8. 根据权利要求5所述的有机电致发光器件,其特征在于:所述发光层采用四-叔丁基二萘嵌苯、4-(二腈甲基)-2-丁基-6-(1,1,7,7-四甲基久洛呢啶-9-乙烯基)-4H-吡喃、9,10-二-β-亚萘基蒽、二(2-甲基-8-羟基喹啉)-(4-联苯酚)铝、4-(二腈甲烯基)-2-异丙基-6-(1,1,7,7-四甲基久洛呢啶-9-乙烯基)-4H-吡喃、二甲基喹吖啶酮或8-羟基喹啉铝。
  9. 根据权利要求5所述的有机电致发光器件,其特征在于:所述电子传输层采用2-(4-联苯基)-5-(4-叔丁基)苯基-1,3,4-恶二唑、8-羟基喹啉铝、2,5-二(1-萘基)-1,3,4-二唑、1,2,4-三唑衍生物、N-芳基苯并咪唑或喹喔啉衍生物。
  10. 根据权利要求5所述的有机电致发光器件,其特征在于:所述电子注入层采用LiF、LiO2、Cs2O、Al2O3、NaF、 CsF、CaF2、MgF2、NaCl、KCl、RbCl、LiBO2或K2SiO3
PCT/CN2011/072024 2011-03-22 2011-03-22 有机电致发光器件及其导电基底 WO2012126175A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2011/072024 WO2012126175A1 (zh) 2011-03-22 2011-03-22 有机电致发光器件及其导电基底
CN2011800687193A CN103403910A (zh) 2011-03-22 2011-03-22 有机电致发光器件及其导电基底
EP11861768.7A EP2690682A4 (en) 2011-03-22 2011-03-22 ORGANIC ELECTROLUMINESCENT DEVICE AND CORRESPONDING CONDUCTIVE BASE
JP2013554776A JP2014509442A (ja) 2011-03-22 2011-03-22 有機エレクトロルミネセンスデバイス、及び、その導電性基板
US13/981,416 US20130306951A1 (en) 2011-03-22 2011-03-22 Organic electroluminescent device and conductive substrate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072024 WO2012126175A1 (zh) 2011-03-22 2011-03-22 有机电致发光器件及其导电基底

Publications (1)

Publication Number Publication Date
WO2012126175A1 true WO2012126175A1 (zh) 2012-09-27

Family

ID=46878608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072024 WO2012126175A1 (zh) 2011-03-22 2011-03-22 有机电致发光器件及其导电基底

Country Status (5)

Country Link
US (1) US20130306951A1 (zh)
EP (1) EP2690682A4 (zh)
JP (1) JP2014509442A (zh)
CN (1) CN103403910A (zh)
WO (1) WO2012126175A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136397A1 (ja) * 2015-02-27 2016-09-01 コニカミノルタ株式会社 透明電極及び電子デバイス
CN108203810B (zh) * 2017-12-20 2020-05-26 中国科学院兰州化学物理研究所 类富勒烯碳/类石墨烯氮化硼多层超滑薄膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003221A (en) * 1987-08-29 1991-03-26 Hoya Corporation Electroluminescence element
US20020094422A1 (en) * 2001-01-18 2002-07-18 Rung-Ywan Tsai Organic light-emitting device
US20060097630A1 (en) * 2004-11-10 2006-05-11 Pentax Corporation Organic electroluminescent device and process for producing this same
CN1773745A (zh) * 2005-04-13 2006-05-17 清华大学 一种有机电致发光器件
US20080129191A1 (en) * 2006-12-04 2008-06-05 Sung-Hun Lee High efficiency organic light emitting device

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928036B2 (ja) * 1974-09-13 1984-07-10 シャープ株式会社 薄膜el素子
JPH01194292A (ja) * 1987-08-29 1989-08-04 Hoya Corp エレクトロルミネセンス素子及びその製造方法
JP2846571B2 (ja) * 1994-02-25 1999-01-13 出光興産株式会社 有機エレクトロルミネッセンス素子
US6097147A (en) * 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
JP2003077680A (ja) * 2001-09-06 2003-03-14 Konica Corp 有機エレクトロルミネッセンス素子及び表示装置
WO2003026356A1 (fr) * 2001-09-12 2003-03-27 Nissan Chemical Industries, Ltd. Substrat transparent utilisant un element electroluminescent organique et element
JP2003160362A (ja) * 2001-11-22 2003-06-03 Nippon Sheet Glass Co Ltd 透明導電膜基板及び該基板を有する液晶デバイス
DE10228937A1 (de) * 2002-06-28 2004-01-15 Philips Intellectual Property & Standards Gmbh Elektrolumineszierende Vorrichtung mit verbesserter Lichtauskopplung
JP2004247077A (ja) * 2003-02-12 2004-09-02 Semiconductor Energy Lab Co Ltd 発光装置及びその作製方法
US7157156B2 (en) * 2004-03-19 2007-01-02 Eastman Kodak Company Organic light emitting device having improved stability
KR100846586B1 (ko) * 2006-05-29 2008-07-16 삼성에스디아이 주식회사 유기 발광 소자 및 이를 구비한 평판 표시 장치
JP4027914B2 (ja) * 2004-05-21 2007-12-26 株式会社半導体エネルギー研究所 照明装置及びそれを用いた機器
TWI245587B (en) * 2005-02-17 2005-12-11 Au Optronics Corp Organic electro luminescence devices, flat panel displays, and portable electronics using the same
TWI603307B (zh) * 2006-04-05 2017-10-21 半導體能源研究所股份有限公司 半導體裝置,顯示裝置,和電子裝置
US20070285001A1 (en) * 2006-06-08 2007-12-13 Toppoly Optoelectronics Corp. System for displaying images
US7902742B2 (en) * 2006-07-04 2011-03-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
TWI442368B (zh) * 2006-10-26 2014-06-21 Semiconductor Energy Lab 電子裝置,顯示裝置,和半導體裝置,以及其驅動方法
KR100846597B1 (ko) * 2007-01-24 2008-07-16 삼성에스디아이 주식회사 함불소 화합물 및 탄소계 화합물을 포함하는 유기 발광소자
JP5056420B2 (ja) * 2008-01-10 2012-10-24 セイコーエプソン株式会社 有機elパネルおよびその製造方法
JP2009259404A (ja) * 2008-04-11 2009-11-05 Sharp Corp 有機el表示装置及びその製造方法
US8124992B2 (en) * 2008-08-27 2012-02-28 Showa Denko K.K. Light-emitting device, manufacturing method thereof, and lamp
KR101178219B1 (ko) * 2008-11-21 2012-08-29 롬엔드하스전자재료코리아유한회사 전기발광화합물을 발광재료로서 채용하고 있는 전기발광소자
TWI486097B (zh) * 2008-12-01 2015-05-21 Semiconductor Energy Lab 發光元件、發光裝置、照明裝置、及電子裝置
JP5155136B2 (ja) * 2008-12-18 2013-02-27 住友化学株式会社 有機エレクトロルミネッセンス素子及びその製造方法
KR101747976B1 (ko) * 2009-03-18 2017-06-15 호도가야 가가쿠 고교 가부시키가이샤 벤조트리아졸환 구조를 갖는 화합물 및 유기 전계발광 소자
JP5111427B2 (ja) * 2009-04-16 2013-01-09 株式会社半導体エネルギー研究所 成膜用基板および成膜方法
JP5760334B2 (ja) * 2009-06-19 2015-08-05 大日本印刷株式会社 有機電子デバイス及びその製造方法
JP5600895B2 (ja) * 2009-06-26 2014-10-08 富士ゼロックス株式会社 有機電界発光素子、露光装置、プロセスカートリッジ、画像形成装置、表示装置、有機電界発光素子の駆動方法
JP2011029172A (ja) * 2009-06-30 2011-02-10 Fujifilm Corp 有機el装置及びその設計方法
JP2011060611A (ja) * 2009-09-10 2011-03-24 Fujifilm Corp 有機電界発光装置及びその製造方法
US8771840B2 (en) * 2009-11-13 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Heterocyclic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003221A (en) * 1987-08-29 1991-03-26 Hoya Corporation Electroluminescence element
US20020094422A1 (en) * 2001-01-18 2002-07-18 Rung-Ywan Tsai Organic light-emitting device
US20060097630A1 (en) * 2004-11-10 2006-05-11 Pentax Corporation Organic electroluminescent device and process for producing this same
CN1773745A (zh) * 2005-04-13 2006-05-17 清华大学 一种有机电致发光器件
US20080129191A1 (en) * 2006-12-04 2008-06-05 Sung-Hun Lee High efficiency organic light emitting device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. W. TANG; VAN SLYKE, EASTMAN KODAK OF THE UNITED STATES, 1987
See also references of EP2690682A4

Also Published As

Publication number Publication date
JP2014509442A (ja) 2014-04-17
US20130306951A1 (en) 2013-11-21
CN103403910A (zh) 2013-11-20
EP2690682A4 (en) 2014-10-01
EP2690682A1 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP2004063209A (ja) 白色有機エレクトロルミネッセンス素子
JP2004063210A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2013078593A1 (zh) 掺杂有机电致发光器件及其制备方法
WO2012126175A1 (zh) 有机电致发光器件及其导电基底
WO2013078590A1 (zh) 一种聚合物电致发光器件及其制备方法
CN111668379B (zh) 一种含芘或氮杂芘的有机电致发光器件
CN104183738A (zh) 有机电致发光器件及其制备方法
CN103972420A (zh) 有机电致发光器件及其制备方法
JP2007273487A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
CN103972421A (zh) 有机电致发光器件及其制备方法
CN104518108A (zh) 有机电致发光器件及其制备方法
CN103972408A (zh) 有机电致发光器件及其制备方法
JP2004228002A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
CN104518109A (zh) 有机电致发光器件及其制备方法
CN103972417A (zh) 有机电致发光器件及其制备方法
CN103972411A (zh) 有机电致发光器件及其制备方法
CN104518140A (zh) 有机电致发光器件及其制备方法
CN104518138A (zh) 有机电致发光器件及其制备方法
CN104659252A (zh) 有机电致发光器件及其制备方法
CN104659218A (zh) 有机电致发光器件及其制备方法
CN104638149A (zh) 有机电致发光器件及其制备方法
CN104659278A (zh) 有机电致发光器件及其制备方法
CN104659243A (zh) 有机电致发光器件及其制备方法
CN104183741A (zh) 有机电致发光器件及其制备方法
CN104659247A (zh) 有机电致发光器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13981416

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013554776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011861768

Country of ref document: EP