WO2013000163A1 - 顶发射柔性有机电致发光器件及其制备方法 - Google Patents

顶发射柔性有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2013000163A1
WO2013000163A1 PCT/CN2011/076708 CN2011076708W WO2013000163A1 WO 2013000163 A1 WO2013000163 A1 WO 2013000163A1 CN 2011076708 W CN2011076708 W CN 2011076708W WO 2013000163 A1 WO2013000163 A1 WO 2013000163A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic electroluminescent
electroluminescent device
flexible organic
silver
Prior art date
Application number
PCT/CN2011/076708
Other languages
English (en)
French (fr)
Inventor
周明杰
王平
冯小明
黄辉
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to EP11868636.9A priority Critical patent/EP2728636A4/en
Priority to US14/122,233 priority patent/US20140124768A1/en
Priority to PCT/CN2011/076708 priority patent/WO2013000163A1/zh
Priority to CN201180070982.6A priority patent/CN103548169A/zh
Priority to JP2014513029A priority patent/JP2014519161A/ja
Publication of WO2013000163A1 publication Critical patent/WO2013000163A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3

Definitions

  • the present invention relates to the field of optoelectronic devices, and more particularly to a top-emitting flexible organic electroluminescent device.
  • the invention further relates to a method of preparing the top-emitting flexible organic electroluminescent device.
  • OLED Organic Light Emission Diode
  • the device has high brightness, wide material selection range, low driving voltage, full-curing active illumination, high-definition, wide viewing angle, and high-speed response for smooth display animation, and OLED
  • the device can be made into a flexible structure and can be folded and bent. It is a promising flat panel display technology and a planar light source. It conforms to the development trend of mobile communication and information display in the information age, and the requirements of green lighting technology. It is the last ten years. A very popular area of research.
  • the organic electroluminescent device has a sandwich-like structure, which is a cathode and an anode, respectively, and a single layer or a plurality of organic material functional layers of different material types and different structures are sandwiched between the two electrodes, followed by hole injection. Layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer.
  • the organic electroluminescent device is a carrier injection type light-emitting device. After the working voltage is applied to the anode and the cathode, holes are injected from the anode, and electrons are injected from the cathode into the organic material layer of the working device. The two carriers are organic. Forming holes in the luminescent material - The electrons illuminate and then the light is emitted from the side of the electrode.
  • organic electroluminescent devices have been developed until now, and their structures are mostly bottom-emitting, their light transmittance is low, and the cathode layer material is generally made of metal Ag.
  • the cathode layer material is generally made of metal Ag.
  • Ag has a good transmittance when the thickness is thin.
  • the work function of Ag is 4.6 eV, and there is a large barrier between the LUMO level of the commonly used electron transport material; in addition, when Ag When the thickness is slightly thick, the light transmittance of the Ag layer is low.
  • a top-emitting flexible organic electroluminescent device comprising, in order, a stacked substrate, an anode layer, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer and a cathode layer; wherein the cathode
  • the material of the layer is bismuth silver alloy or bismuth silver alloy.
  • the top emission flexible organic electroluminescent device uses a substrate material as a polymer film, such as polyethylene terephthalate. (PET), polyethersulfone (PES), polyethylene naphthalate (PEN), transparent polyimide (PI) or polycarbonate (PC).
  • a substrate material such as polyethylene terephthalate. (PET), polyethersulfone (PES), polyethylene naphthalate (PEN), transparent polyimide (PI) or polycarbonate (PC).
  • the mass ratio of yttrium to silver is 1:10 ⁇ 1:1; or when bismuth silver alloy is used, the mass ratio of bismuth to silver is 1:10 ⁇ 1:1.
  • the surface of the cathode layer is further covered with an anti-reflection film, and the material of the anti-reflection film includes (8-hydroxyquinoline)-aluminum (Alq 3 ), zinc selenide (ZnSe), Zinc sulfide (ZnS), 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (BCP) or 4,4',4'-tris(N-3-methyl Phenyl-N-phenyl-amino)-triphenylamine (m-MTDATA).
  • 8-hydroxyquinoline)-aluminum Alq 3
  • zinc selenide ZnSe
  • Zinc sulfide Zinc sulfide
  • BCP 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline
  • BCP 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline
  • m-MTDATA 4,4',4'-tris
  • the materials for the hole injection layer, the hole transport layer, the light-emitting layer, the electron transport layer, and the electron injection layer of the top emission flexible organic electroluminescence device are materials commonly used in the art, such as:
  • the material of the hole injection layer is 4,4',4'-tris(N-3-methylphenyl-N-phenyl-amino)-triphenylamine. (m-MTDATA) or copper phthalocyanine (CuPc);
  • the material of the hole transport layer is N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl. -4,4'-diamine (NPB), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'- Amine (TPD) or 4,4',4''-tris ( carbazol-9-yl ) - triphenylamine ( TCTA ) ;
  • the material of the luminescent layer is selected from Alq 3 : C545T (wherein C545T ( 1H, 5H, 11H-[1] phenylpropanone [6,7,8-ij] quinolizin-11-one) as a guest material, Alq 3 ((8-hydroxyquinoline)aluminum) as the host material, the guest material is doped with a mass percentage of 2%), FIrpic:CBP (wherein, FIrpic (bis(4,6-difluorophenylpyridine-N, C2) ) as a guest material, CBP (4,4'-N, N-dicarbazolyl-biphenyl) as the host material, the doping content of the guest material is 8%), TPBi:Ir ( Ppy) 3 (wherein Ir(ppy) 3 (tris(2-phenylpyridine) ruthenium), TPBi (1,3,5-tris(1-phenyl-1H-benzimidazol-2-y
  • the material of the electron transport layer is selected from (8-hydroxyquinoline)-aluminum (Alq 3 ), 4,7-diphenyl-phenanthroline (Bphen) or 1,3,5-tris(1-phenyl-1H).
  • - benzimidazol-2-yl)benzene ( TPBi ) is selected from (8-hydroxyquinoline)-aluminum (Alq 3 ), 4,7-diphenyl-phenanthroline (Bphen) or 1,3,5-tris(1-phenyl-1H).
  • the material of the electron injecting layer is selected from LiF, CsF or Li 2 O.
  • the material of the anode is a metal such as Ag, Al or Au.
  • the present invention also provides a method for fabricating the above-described top emission flexible organic electroluminescent device, which comprises the following steps:
  • S3 a method of vacuum coating, sequentially depositing a vapor deposition hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer on the surface of the anode layer;
  • the cathode layer is evaporated on the surface of the electron injecting layer; wherein the cathode layer is made of neodymium silver alloy or neodymium silver alloy;
  • the top-emitting flexible organic electroluminescent device provided by the invention has a light-emitting rate on the surface of the cathode layer due to the use of a neodymium silver alloy or a silver-silver alloy for the cathode layer. Between 65-75%; accordingly, the device's luminous efficiency increased from 8.6 lm/W to 12.2-15.5 lm/W.
  • FIG. 1 is a schematic structural view of a top emission flexible organic electroluminescent device of the present invention
  • FIG. 2 is a flow chart of a process for preparing a top-emitting flexible organic electroluminescent device according to the present invention
  • FIG. 3 is a graph showing transmittance comparison of a Sm-Ag alloy cathode, a Yb-Ag alloy cathode, and an Ag cathode according to the present invention
  • Example 4 is a top emission flexible organic electroluminescent device fabricated in Example 1 and Comparative Example 1 Current density-voltage characteristic curve;
  • Figure 5 is a graph showing the current density-voltage characteristics of the top-emission flexible organic electroluminescent device fabricated in Example 4 and Comparative Example 2.
  • Cathode materials commonly used in top-emitting organic electroluminescent devices generally using metal Ag or Al, metal Ag It has excellent electrical conductivity and good transmittance when the thickness is thin.
  • the work function of Ag is 4.6 eV, and there is a large barrier between the LUMO level of the commonly used electron transport material; in addition, when Ag When the thickness is slightly thick, the Ag layer has a low transmittance.
  • Sm is a rare earth metal material with a melting point of 1072 ° C and an atomic radius of 2.59 ⁇ .
  • Metal yttrium (Yb) The melting point is 824.0 ° C, the atomic radius is 2.4 ⁇ . These two metal materials are easier to form by vacuum evaporation.
  • the work functions of Sm and Yb are 2.7 eV and 2.6eV, when used as a cathode for OLEDs, has a much lower injection barrier than metal Al or Ag.
  • the metal Sm also has a higher visible light transmittance than the metal Ag, when the metal When Ag is alloyed with these two materials to form a cathode, the work function of the metal cathode can be lowered while maintaining a high visible light transmittance, so that it is suitable for producing a translucent cathode structure.
  • a top-emission flexible organic electroluminescent device provided by the present invention sequentially includes a stacked substrate 101 and an anode layer 102.
  • the hole injection layer 103, the hole transport layer 104, the light emitting layer 105, the electron transport layer 106, the electron injection layer 107, and the cathode layer 108 that is, the substrate 101/anode layer 102/ hole injection layer 103/ hole transport layer 104/ light-emitting layer 105/electron transport layer 106/electron injection layer 107/cathode layer 108
  • the material of the cathode layer is bismuth (Sm) silver (Ag) alloy or ytterbium (Ye) silver (Ag) alloy, that is, Sm-Ag alloy or Ye-Ag alloy.
  • an anti-reflection film 109 As shown in FIG. 1, the anti-reflection film 109 is covered on the surface of the cathode layer 108;
  • Materials include (8-hydroxyquinoline)-aluminum (Alq 3 ), zinc selenide (ZnSe), zinc sulfide (ZnS), 2,9-dimethyl-4,7-biphenyl-1,10-ortho Aza-phenanthrene (BCP) or 4,4',4'-tris(N-3-methylphenyl-N-phenyl-amino)-triphenylamine (m-MTDATA).
  • the mass ratio of germanium to silver is 1:10 ⁇ 1:1. Or when a silver-silver alloy is selected, the mass ratio of germanium to silver is 1:10 to 1:1; since the top-emitting flexible organic electroluminescent device is a top-emitting OLED device, the thickness of the cathode is 15- 30nm And the cathode layer is a translucent cathode layer, and the visible light transmittance thereof can reach 65-75%.
  • the top emission flexible organic electroluminescent device uses a substrate material as a polymer film, such as polyethylene terephthalate (PET) , polyethersulfone (PES), polyethylene naphthalate (PEN), transparent polyimide (PI) or polycarbonate (PC); in view of the top-emitting flexible organic electroluminescent device is a top-emitting OLED Therefore, the surface of the polymer film of the substrate material must be flat and hardened, and the surface hardness is as high as 2H-3H (pencil hardness).
  • PET polyethylene terephthalate
  • PES polyethersulfone
  • PEN polyethylene naphthalate
  • PI transparent polyimide
  • PC polycarbonate
  • the hole injection layer 103, the hole transport layer 104, the light-emitting layer 105, and the electron transport layer of the top emission flexible organic electroluminescence device 106, electron injection layer 107 materials used in the field are commonly used in the field, such as (:
  • the material of the hole injection layer is 4,4',4'-tris(N-3-methylphenyl-N-phenyl-amino)-triphenylamine. (m-MTDATA) or copper phthalocyanine (CuPc);
  • the material of the hole transport layer is N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl. -4,4'-diamine (NPB), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'- Amine (TPD) or 4,4',4''-Tris(carbazol-9-yl)-triphenylamine (TCTA).
  • the material of the luminescent layer is selected from Alq 3 : C545T (wherein C545T ( 1H, 5H, 11H-[1] phenylpropanone [6,7,8-ij] quinolizin-11-one) as a guest material, Alq 3 ((8-hydroxyquinoline)aluminum) as the host material, the guest material is doped with a mass percentage of 2%), FIrpic:CBP (wherein, FIrpic (bis(4,6-difluorophenylpyridine-N, C2) ) as a guest material, CBP (4,4'-N, N-dicarbazolyl-biphenyl) as the host material, the doping content of the guest material is 8%), TPBi:Ir ( Ppy) 3 (wherein Ir(ppy) 3 (tris(2-phenylpyridine) ruthenium), TPBi (1,3,5-tris(1-phenyl-1H-benzimidazol-2-y
  • the material of the electron transport layer is selected from (8-hydroxyquinoline)-aluminum (Alq 3 ), 4,7-diphenyl-phenanthroline (Bphen) or 1,3,5-tris(1-phenyl-1H).
  • - benzimidazol-2-yl)benzene ( TPBi ) is selected from (8-hydroxyquinoline)-aluminum (Alq 3 ), 4,7-diphenyl-phenanthroline (Bphen) or 1,3,5-tris(1-phenyl-1H).
  • the material of the electron injecting layer is selected from LiF, CsF or Li 2 O.
  • the anode is made of metal Ag, Al or Au, and the anode layer has a thickness of 18-100 nm.
  • the method for fabricating the above-mentioned top emission flexible organic electroluminescent device comprises the following steps:
  • the substrate eg, polymer film
  • the substrate is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, sequentially treated with isopropyl alcohol, acetone in ultrasonic waves, and then dried with nitrogen.
  • Spare wherein the polymer film comprises polyethylene terephthalate (PET), polyethersulfone (PES), polyethylene naphthalate (PEN), transparent polyimide (PI) or polycarbonate (PC);
  • a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer are sequentially deposited on the surface of the anode layer by vacuum plating; the hole injection layer, the hole transport layer, the light-emitting layer, The thicknesses of the electron transport layer and the electron injection layer are respectively 30-40, 20 ⁇ 50nm, 15 ⁇ 20nm, 30 ⁇ 40nm and 1nm;
  • the surface of the electron injecting layer is evaporated to a thickness of 18 to 30 nm a cathode layer; wherein the cathode layer is made of neodymium silver alloy or neodymium silver alloy;
  • the top-emitting flexible organic electroluminescent device provided by the invention has the advantages that the light-emitting rate on the surface of the cathode layer is increased to that of the cathode layer by using a yttrium-silver alloy or a yttrium-silver alloy. 65-75%; accordingly, the device's luminous efficiency increased from 8.6 lm/W to 12.2-15.5 lm/W Between. At the same time, the preparation process of the device is simple, and it can be fabricated into an organic electroluminescent device with single-sided top emission or double-sided illumination.
  • the structure of the top emission flexible organic electroluminescent device of the first embodiment is: PET/Ag/m-MTDATA/NPB/C545T: Alq 3 / Alq 3 /LiF/Sm-Ag/Alq 3 .
  • the preparation process of the top emission flexible organic electroluminescent device is as follows:
  • the PET film substrate is ultrasonically cleaned in deionized water containing detergent, cleaned and then treated with isopropyl alcohol and acetone in ultrasonic form. 20 minutes, then blow dry with nitrogen.
  • the hole injection layer m-MTDATA having a thickness of 30 nm, the hole transport layer NPB having a thickness of 50 nm, and the light-emitting layer Alq 3 : C545T having a thickness of 20 nm are sequentially deposited on the anode (wherein C545T is The guest material, Alq 3 is the host material; the doping content of the guest material is 2%), the electron transport layer Alq 3 with a thickness of 40 nm, the electron injection layer LiF with a thickness of 1 nm, and then the Sm-Ag with a thickness of 18 nm Alloy cathode, the mass ratio of Sm to Ag is 1:1.
  • an antireflection film Alq 3 having a thickness of 80 nm was covered.
  • the structure of the top emission flexible organic electroluminescent device of the second embodiment is: PES /Al/CuPc/NPB/ DPVBi/ Bphen/CsF/Sm-Ag/ZnS.
  • the preparation process of the top emission flexible organic electroluminescent device is as follows:
  • PES film substrate is ultrasonically cleaned in deionized water containing detergent, cleaned and then treated with isopropyl alcohol and acetone in ultrasonic 20 minutes, then blow dry with nitrogen.
  • Al is deposited as an anode on the surface of the PES film with a thickness of 80 nm, and then the anode is treated with oxygen plasma. 5 minutes.
  • the hole injection layer CuPc having a thickness of 30 nm is continuously deposited on the anode in a thickness of 40 nm.
  • Hole transport layer NPB, light-emitting layer DPVBi with a thickness of 20 nm, electron transport layer Bphen with a thickness of 40 nm, electron injection layer with a thickness of 1 nm CsF the Sm-Ag alloy cathode with a thickness of 25 nm has a mass ratio of Sm to Ag of 1:5.
  • an antireflection film ZnS having a thickness of 50 nm is covered.
  • the structure of the top emission flexible organic electroluminescent device of the third embodiment is: PI/Al/m-MTDATA/TCTA/FIrpic: CBP/Bphen/Li 2 O/Sm-Ag/BCP.
  • the preparation process of the top emission flexible organic electroluminescent device is as follows:
  • the PI film substrate is ultrasonically cleaned in deionized water containing detergent, and then cleaned and then treated with isopropyl alcohol and acetone in ultrasonic wave. Minutes, then blow dry with nitrogen.
  • a thickness of 100 nm is deposited on the surface of the PEN film.
  • the anode was then treated with oxygen plasma for 15 minutes.
  • the hole injection layer m-MTDATA having a thickness of 30 nm, the hole transport layer TCTA having a thickness of 40 nm, and the luminescent layer FIrpic:CBP having a thickness of 20 nm are continuously deposited on the anode (wherein, FIrpic (two) (4,6-difluorophenylpyridine-N,C2) pyridinecarboxamide) as a guest material, CBP (4,4'-N, N-dicarbazolyl-biphenyl) as the host material, guest material
  • the surface of the cathode is covered with an AR coating BCP with a thickness of 80 nm.
  • the structure of the top emission flexible organic electroluminescent device of the fourth embodiment is: PEN/Ag/m-MTDATA/NPB/TPBi: Ir(ppy) 3 /TPBi/LiF/Yb-Ag/m-MTDATA.
  • the preparation process of the top emission flexible organic electroluminescent device is as follows:
  • PEN film substrate is ultrasonically cleaned in deionized water containing detergent, cleaned and then treated with isopropyl alcohol and acetone in ultrasonic 20 minutes, then blow dry with nitrogen.
  • Ag is deposited as a cathode on the surface of a PEN film with a thickness of 80 nm, and then the anode is treated with oxygen plasma. 2 minutes.
  • the hole injection layer m-MTDATA having a thickness of 30 nm
  • the hole transport layer NPB having a thickness of 50 nm
  • the light-emitting layer TPBi: Ir(ppy) 3 having a thickness of 20 nm are sequentially deposited on the anode.
  • TPBi (1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene) as a host material
  • the guest material is doped with a mass percentage of 4%); the electron transport layer TPBi is 20 nm thick, the electron injection layer LiF is 1 nm thick, then the Yb-Ag alloy cathode with a thickness of 30 nm, and the mass ratio of Yb to Ag It is 1:10.
  • an antireflection film m-MTDATA with a thickness of 80 nm is covered.
  • the structure of the top emission flexible organic electroluminescent device of the fifth embodiment is: PC /Au/m-MTDATA/NPB/(DPVBi/Rubrene)/Alq 3 /LiF/Yb-Ag/ZnSe.
  • the preparation process of the top emission flexible organic electroluminescent device is as follows:
  • the PC film substrate is ultrasonically cleaned in deionized water containing detergent, cleaned and then treated with isopropyl alcohol and acetone in ultrasonic wave. Minutes, then blow dry with nitrogen.
  • Au with a thickness of 30 nm is deposited on the surface of the PC film as an anode, and then the anode is treated with oxygen plasma. 2 minutes.
  • the hole injection layer m-MTDATA having a thickness of 30 nm, the hole transport layer NPB having a thickness of 50 nm, the light-emitting layer DPVBi having a thickness of 20 nm, and the light-emitting layer having a thickness of 0.2 nm were sequentially deposited on the anode.
  • Rubrene the structure of the total luminescent layer is DPVBi/Rubrene; followed by the electron transport layer Alq 3 with a thickness of 20 nm, the electron injection layer LiF with a thickness of 1 nm, then the Yb-Ag alloy cathode with a thickness of 25 nm, Yb and Ag The mass ratio is 1:1.
  • an antireflection coating ZnSe with a thickness of 50 nm is covered.
  • the device can be fabricated as an organic electroluminescent device that emits light on both sides.
  • the structure of the organic electroluminescent device of Comparative Example 1 was: PET/Ag/m-MTDATA/NPB/C545T: Alq 3 / Alq 3 /LiF/ZnS .
  • the preparation process of the organic electroluminescent device is as follows:
  • the PET film substrate is ultrasonically cleaned in deionized water containing detergent, cleaned and then treated with isopropyl alcohol and acetone in ultrasonic form. 20 minutes, then blow dry with nitrogen.
  • a metal Ag having a thickness of 18 nm is deposited on the surface of the PET film.
  • the anode was then treated with oxygen plasma for 2 minutes.
  • the hole injection layer m-MTDATA having a thickness of 30 nm, the hole transport layer NPB having a thickness of 50 nm, the light-emitting layer C545T: Alq 3 having a thickness of 20 nm, and a thickness of 40 nm were sequentially deposited on the anode.
  • the structure of the organic electroluminescent device of the comparative example 2 was: PEN/Ag/m-MTDATA/NPB/TPBi: Ir(PPy) 3 /TPBi/LiF/Ag/m-MTDATA .
  • the preparation process of the organic electroluminescent device is as follows:
  • PEN film substrate is ultrasonically cleaned in deionized water containing detergent, cleaned and then treated with isopropyl alcohol and acetone in ultrasonic 20 minutes, then blow dry with nitrogen.
  • a metal Ag with a thickness of 80 nm is deposited on the surface of the PEN film.
  • the anode was then treated with oxygen plasma for 2 minutes.
  • the hole injection layer m-MTDATA having a thickness of 30 nm
  • the hole transport layer NPB having a thickness of 50 nm
  • the light-emitting layer TPBi: Ir(ppy) 3 having a thickness of 20 nm are sequentially deposited on the anode.
  • TPBi 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene
  • the material is doped with a mass percentage of 4%
  • the electron transport layer TPBi is 20 nm thick
  • the electron injection layer LiF is 1 nm thick
  • the Ag cathode is 20 nm thick.
  • Figure 3 is a Sm-Ag with a thickness of 30 nm made by the present invention (the mass ratio of Sm to Ag is 1:1). Alloy electrode (Example 3) and Yb-Ag (mass ratio of ⁇ to silver 1:10) alloy electrode (Example 4) and 30 nm thickness of 30 nm Ag The transmittance of the electrodes is compared.
  • the Sm-Ag and Yb-Ag alloy cathodes provided by the present invention have a specific ratio of Ag
  • the electrode has a higher transmittance, so that in the top emission device, the light extraction rate of the cathode surface can be improved.
  • Example 4 is a top emission flexible organic electroluminescent device fabricated in Example 1 and a current density of Comparative Example 1 - Voltage characteristic curve.
  • Figure 5 is a top emission flexible organic electroluminescent device fabricated in Example 4 and the current density of Comparative Example 2 - Voltage characteristic curve.
  • the Sm-Ag and Yb-Ag alloy cathodes provided by the present invention have a specific ratio Ag Lower work function; therefore, it has better electron injection effect, resulting in higher current density of the device under the same driving voltage.

Abstract

提供一种顶发射柔性有机电致发光器件及其制备方法。该器件包括依次层叠的衬底、阳极层、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层及阴极层,其中,阴极层的材质为钐银合金或镱银合金。该器件的制备方法包括如下步骤:清洗、干燥衬底;在衬底的表面蒸镀一层阳极层;在阳极层表面依次层叠蒸镀空穴注入层、空穴传输层、发光层、电子传输层、电子注入层;在电子注入层的表面蒸镀阴极层,制得该器件。

Description

顶发射柔性有机电致发光器件及其制备方法
技术领域
本发明涉及光电子器件领域,尤其涉及一种顶发射柔性有机电致发光器件。本发明还涉及该顶发射柔性有机电致发光器件的制备方法。
背景技术
有机电致发光 (Organic Light Emission Diode ,简称 OLED) 器件,具有亮度高、材料选择范围宽、驱动电压低、全固化主动发光等特性,同时拥有高清晰、广视角, 以及可顺畅显示动画的高速响应等优势,并且 OLED 器件可制作成柔性结构,可进行折叠弯曲,是一种极具潜力的平板显示技术和平面光源,符合信息时代移动通信和信息显示的发展趋势,以及绿色照明技术的要求,是最近十几年相当热门的研究领域。
有机电致发光器件具有一种类似三明治的结构,其上下分别是阴极和阳极,二个电极之间夹着单层或多层不同材料种类和不同结构的有机材料功能层,依次为空穴注入层,空穴传输层,发光层,电子传输层,电子注入层。有机电致发光器件是载流子注入型发光器件,在阳极和阴极加上工作电压后,空穴从阳极,电子从阴极分别注入到工作器件的有机材料层中,两种载流子在有机发光材料中形成空穴 - 电子对发光,然后光从电极一侧发出。
然而,有机电致发光器件发展到现在,其结构大多是底部发光式的,其光透过率较低,且阴极层材料一般采用金属 Ag ,而 Ag 在厚度较薄时,具有较好的透过率。但是 Ag 的功函为 4.6 eV ,与常用的电子传输材料的 LUMO 能级之间存在较大势垒;此外,当 Ag 的厚度稍厚时, Ag 层的光透过率较低。
发明内容
本发明的目的在于提供一种可见光透过率较高的顶发射柔性有机电致发光器件。
一种顶发射柔性有机电致发光器件,依次包括层叠的衬底、阳极层、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层及阴极层;其中,所述阴极层的材质为钐银合金或镱银合金。
本发明提供的 顶发射柔性有机电致发光器件 ,其采用的衬底 材料为聚合物薄膜,如, 聚对苯二甲酸乙二醇酯 (PET) 、 聚醚砜 (PES) 、 聚萘二甲酸乙二醇酯 (PEN) 、 透明聚酰亚胺 (PI) 或 聚碳酸酯 (PC) 。
该顶发射柔性有机电致发光器件的阴极层所采用的材料中,当选用 钐银合金 时 ,钐与银的质量比为 1:10~1:1 ;或者 当选用 镱银合金 时 ,镱与银的质量比为 1:10~1:1 。
为了提高在阴极 层 方向的出光率,在阴极 层 表面还覆盖有增透膜,所述增透膜的材质包括 ( 8- 羟基喹啉 )- 铝 ( Alq3 ) 、硒化锌 (ZnSe) 、硫化锌 (ZnS) 、 2,9- 二甲基 -4,7- 联苯 -1,10- 邻二氮杂菲 (BCP) 或 4,4',4'- 三 (N-3- 甲基苯基 -N- 苯基 - 氨基 )- 三苯基胺 (m-MTDATA) 。
该顶发射柔性有机电致发光器件的空穴注入层、空穴传输层、发光层、电子传输层、电子注入层所用材料为本领域所常用的材质,比如:
空穴注入层的材料选用 4,4',4'- 三 (N-3- 甲基苯基 -N- 苯基 - 氨基 )- 三苯基胺 (m-MTDATA) 或酞菁铜( CuPc );
空穴传输层的材料选用 N,N'- 二苯基 -N,N'- 二 (1- 萘基 )-1,1'- 联苯 -4,4'- 二胺 (NPB ) 、 N,N'- 二苯基 -N,N'- 二 (3- 甲基苯基 )-1,1'- 联苯 -4,4'- 二胺 (TPD) 或 4,4',4''- 三 ( 咔唑 -9- 基 )- 三苯胺 (TCTA) ;
发光层的材料选用 Alq3:C545T (其中, C545T ( 1H,5H,11H-[1] 苯丙吡喃酮基 [6,7,8-ij] 喹嗪 -11- 酮)作为客体材料, Alq3( ( 8- 羟基喹啉)铝)作为主体材料,客体材料掺杂质量百分比含量为 2% )、 FIrpic:CBP (其中, FIrpic (二( 4,6- 二氟苯基吡啶 -N,C2 )吡啶甲酰合铱)作为客体材料, CBP ( 4,4'-N, N- 二咔唑基 - 联苯)作为主体材料,客体材料掺杂质量百分比含量为 8% )、 TPBi:Ir(ppy)3 (其中 Ir(ppy)3( 三 (2- 苯基吡啶 ) 合铱 ) , TPBi ( 1,3,5- 三 (1- 苯基 -1H- 苯并咪唑 -2- 基 ) 苯) 为主体材料,客体材料掺杂质量百分比含量为 4% 、 DPVBi ( 4,4'- 双 (2,2- 二苯乙烯基 ) 联苯)或者 DPVBi 与 Rubrene (红荧烯)构成的复合层(即 DPVBi/Rubrene );
电子传输层的材料选用 ( 8- 羟基喹啉 )- 铝 ( Alq3 ) 、 4,7- 二苯基 - 邻菲咯啉( Bphen )或者 1,3,5- 三 (1- 苯基 -1H- 苯并咪唑 -2- 基 ) 苯 ( TPBi ) ;
电子注入层的材料选用 LiF 、 CsF 或 Li2O 。
所述阳极的材质为 Ag 、 Al 或者 Au 等金属。
本发明还提供一种上述顶发射柔性有机电致发光器件的制作方法,其包括以下步骤:
S1 、清洗、干燥衬底;
S2 、利用真空镀膜的方法,在所述衬底表面蒸镀一层阳极层;
S3 、利用真空镀膜的方法,在阳极层表面依次层叠蒸镀空穴注入层、空穴传输层、发光层、电子传输层、电子注入层;
S4 、在所述电子注入层的表面蒸镀阴极层;其中,所述阴极层的材质为钐银合金或镱银合金;
上述制备工艺完成后,得到顶发射柔性有机电致发光器件。
本发明提供的顶发射柔性有机电致发光器件,由于阴极层采用钐银合金或镱银合金, - 在阴极层表面的出光率提高到 65-75% 之间;相应地,该器件的发光效率从 8.6 lm/W 提高到 12.2-15.5 lm/W 之间。
附图说明
图 1 为本发明顶发射柔性有机电致发光器件的结构示意图;其中,
101 衬底、 102 阳极层、 103 空穴注入层、 104 空穴传输层、 105 发光层、 106 电子传输层、 107 电子注入层、 108 阴极、 109 增透膜 ;
图 2 为本发明顶发射柔性有机电致发光器件的制备工艺流程图;
图 3 为本发明 Sm-Ag 合金阴极、 Yb-Ag 合金阴极与 Ag 阴极的透过率对比曲线图;
图 4 为 实施例 1 制作的 顶发射柔性有机电致发光器件 和对比例 1 的 电流密度-电压特性曲线图;
图 5 为 实施例 4 制作的顶发射柔性有机电致发光器件和对比例 2 的电流密度-电压特性曲线图。
具体实施方式
常用于顶发射有机电致发光器件的阴极材料,一般采用金属 Ag 或者 Al ,金属 Ag 具有优良的导电性,在厚度较薄时具有较好的透过率。但是 Ag 的功函为 4.6 eV ,与常用的电子传输材料的 LUMO 能级之间存在较大势垒;此外,当 Ag 的厚度稍厚时, Ag 层的透过率较低。
钐 (Sm) 是一种稀土金属材料,熔点 1072℃ ,原子半径 2.59 Å , 金属镱 (Yb) 的熔点为 824.0℃ , 原子半径 2.4 Å 。这两种金属材料比较 容易使用真空蒸镀的方法成膜。此外, Sm 和 Yb 的功函分别为 2.7eV 和 2.6eV ,作为 OLED 的阴极使用时,相比金属 Al 或 Ag ,其注入势垒要低很多。此外,金属 Sm 还具有比金属 Ag 更高的可见光透过率,当金属 Ag 与这两种材料形成合金制作成阴极时,能够降低金属阴极的功函,同时还能保持较高的可见光透过率,因此适合制作半透明的阴极结构。
本发明提供的一种顶发射柔性有机电致发光器件,如图 1 所示,依次包括层叠的衬底 101 、阳极层 102 、空穴注入层 103 、空穴传输层 104 、发光层 105 、电子传输层 106 、电子注入层 107 及阴极层 108 ,即:衬底 101/ 阳极层 102/ 空穴注入层 103/ 空穴传输层 104/ 发光层 105/ 电子传输层 106/ 电子注入层 107/ 阴极层 108 ;其中,所述阴极层的材质为钐( Sm )银( Ag )合金或镱( Ye )银( Ag )合金,即 Sm-Ag 合金或 Ye-Ag 合金。
对于上述顶发射柔性有机电致发光器件,最好是还包括增透膜 109 ,如图 1 所示,该增透膜 109 被覆盖在所述阴极层 108 的表面;所述增透膜 109 的材质包括 ( 8- 羟基喹啉 )- 铝 ( Alq3 ) 、硒化锌 (ZnSe) 、硫化锌 (ZnS) 、 2,9- 二甲基 -4,7- 联苯 -1,10- 邻二氮杂菲 (BCP) 或 4,4',4'- 三 (N-3- 甲基苯基 -N- 苯基 - 氨基 )- 三苯基胺 (m-MTDATA) 。
该顶发射柔性有机电致发光器件的阴极层所采用的材料中,当选用钐银合金时,钐与银的质量比为 1:10~1:1 ;或者当选用钐银合金时,镱与银的质量比为 1:10~1:1 ;由于该顶发射柔性有机电致发光器件为顶发射 OLED 器件,因此,所述阴极的厚度为 15-30nm ,且阴极层为半透明阴极层,其可见光透过率可达到 65-75% 之间。
该顶发射柔性有机电致发光器件,其采用的衬底材料为聚合物薄膜,如,聚对苯二甲酸乙二醇酯 (PET) 、聚醚砜 (PES) 、聚萘二甲酸乙二醇酯 (PEN) ,透明聚酰亚胺 (PI) 或聚碳酸酯 (PC) ;鉴于该顶发射柔性有机电致发光器件为顶发射 OLED 器件,故其衬底材料的聚合物薄膜表面必须经过平整加硬处理,表面硬度高达 2H-3H( 铅笔硬度 ) 。
该顶发射柔性有机电致发光器件的空穴注入层 103 、空穴传输层 104 、发光层 105 、电子传输层 106 、电子注入层 107 所用材料为本领域所常用的材质,比如(:
空穴注入层的材料选用 4,4',4'- 三 (N-3- 甲基苯基 -N- 苯基 - 氨基 )- 三苯基胺 (m-MTDATA) 或酞菁铜( CuPc );
空穴传输层的材料选用 N,N'- 二苯基 -N,N'- 二 (1- 萘基 )-1,1'- 联苯 -4,4'- 二胺 (NPB ) 、 N,N'- 二苯基 -N,N'- 二 (3- 甲基苯基 )-1,1'- 联苯 -4,4'- 二胺 (TPD) 或 4,4',4''- 三 ( 咔唑 -9- 基 )- 三苯胺 (TCTA) 。
发光层的材料选用 Alq3:C545T (其中, C545T ( 1H,5H,11H-[1] 苯丙吡喃酮基 [6,7,8-ij] 喹嗪 -11- 酮)作为客体材料, Alq3( ( 8- 羟基喹啉)铝)作为主体材料,客体材料掺杂质量百分比含量为 2% )、 FIrpic:CBP (其中, FIrpic (二( 4,6- 二氟苯基吡啶 -N,C2 )吡啶甲酰合铱)作为客体材料, CBP ( 4,4'-N, N- 二咔唑基 - 联苯)作为主体材料,客体材料掺杂质量百分比含量为 8% )、 TPBi:Ir(ppy)3 (其中 Ir(ppy)3( 三 (2- 苯基吡啶 ) 合铱 ) , TPBi ( 1,3,5- 三 (1- 苯基 -1H- 苯并咪唑 -2- 基 ) 苯) 为主体材料,客体材料掺杂质量百分比含量为 4% 、 DPVBi ( 4,4'- 双 (2,2- 二苯乙烯基 ) 联苯)或者 DPVBi 与 Rubrene (红荧烯)构成的复合层(即 DPVBi/Rubrene );
电子传输层的材料选用 ( 8- 羟基喹啉 )- 铝 ( Alq3 ) 、 4,7- 二苯基 - 邻菲咯啉( Bphen )或者 1,3,5- 三 (1- 苯基 -1H- 苯并咪唑 -2- 基 ) 苯 ( TPBi ) ;
电子注入层的材料选用 LiF 、 CsF 或 Li2O 。
所述阳极的材质为金属 Ag 、 Al 或者 Au ,所述阳极层厚度为 18-100nm 。
上述顶发射柔性有机电致发光器件的制作方法,如图 2 所示,其包括以下步骤:
S1 、将衬底(如,聚合物薄膜)放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干,备用;其中,聚合物薄膜包括聚对苯二甲酸乙二醇酯 (PET) 、聚醚砜 (PES) 、聚萘二甲酸乙二醇酯 (PEN) 、透明聚酰亚胺 (PI) 或聚碳酸酯 (PC) ;
S2 、利用真空镀膜的方法,在洗净、干燥的衬底表面蒸镀一层阳极层,该阳极层的厚度为 18-100nm ;
S3 、用真空镀膜的方法,在阳极层表面依次蒸镀空穴注入层、空穴传输层、发光层、电子传输层、电子注入层;所述空穴注入层、空穴传输层、发光层、电子传输层、电子注入层的厚度分别为 30-40 、 20~50nm 、 15~20nm 、 30~40nm 和 1nm ;
S4 、在所述电子注入层的表面蒸镀厚度为 18~30nm 的阴极层;其中,所述阴极层的材质为钐银合金或镱银合金;
上述制备工艺完成后,得到顶发射柔性有机电致发光器件。
本发明提供的顶发射柔性有机电致发光器件,由于阴极层采用钐银合金或镱银合金,在阴极层表面的出光率提高到 65-75% 之间;相应地,该器件的发光效率从 8.6 lm/W 提高到 12.2-15.5lm/W 之间。同时,该器件的制备工艺简单,可制作成单面顶发射或者双面发光的有机电致发光器件。
下面结合附图,对本发明的较佳实施例作进一步详细说明。
实施例 1
本实施例 1 的顶发射柔性有机电致发光器件结构为: PET/Ag/m-MTDATA/NPB/ C545T:Alq3/ Alq3/LiF/Sm-Ag/ Alq3
该顶发射柔性有机电致发光器件的制备工艺如下:
将 PET 薄膜衬底放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理 20 分钟,然后再用氮气吹干。
在真空蒸镀系统中,在 PET 薄膜表面沉积厚度为 18nm 的 Ag 作为阳极,然后将阳极用氧等离子处理 2 分钟。
处理完毕后,继续在阳极上依次蒸镀厚度为 30 nm 的空穴注入层 m-MTDATA ,厚度为 50 nm 的空穴传输层 NPB ,厚度为 20nm 的发光层 Alq3: C545T (其中, C545T 为客体材料, Alq3 为主体材料;客体材料掺杂质量百分比含量为 2% ),厚度为 40nm 的电子传输层 Alq3 ,厚度为 1nm 的电子注入层 LiF ,然后是厚度为 18 nm 的 Sm-Ag 合金阴极, Sm 与 Ag 的质量比 1:1 。在阴极表面,覆盖有厚度为 80 nm 的增透膜 Alq3
实施例 2
本实施例 2 的顶发射柔性有机电致发光器件结构为: PES /Al/CuPc/NPB/ DPVBi/ Bphen/CsF/Sm-Ag/ZnS 。
该顶发射柔性有机电致发光器件的制备工艺如下:
将 PES 薄膜衬底放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理 20 分钟,然后再用氮气吹干。
在真空蒸镀系统中,在 PES 薄膜表面沉积厚度为 80nm 的 Al 作为阳极,然后将阳极用氧等离子处理 5 分钟。
处理完毕后,继续在阳极上依次蒸镀厚度为 30 nm 的空穴注入层 CuPc ,厚度为 40 nm 的空穴传输层 NPB ,厚度为 20nm 的发光层 DPVBi ,厚度为 40nm 的电子传输层 Bphen , 厚度为 1nm 的电子注入层 CsF ,然后是厚度为 25 nm 的 Sm-Ag 合金阴极, Sm 与 Ag 的质量比 1:5 。在阴极表面,覆盖有厚度为 50nm 的增透膜 ZnS 。
实施例 3
本实施例 3 的顶发射柔性有机电致发光器件结构为: PI/Al/m-MTDATA/TCTA/ FIrpic:CBP/ Bphen/Li2O/Sm-Ag/BCP 。
该顶发射柔性有机电致发光器件的制备工艺如下:
将 PI 薄膜衬底放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理 20 分钟,然后再用氮气吹干。
在真空蒸镀系统中,在 PEN 薄膜表面沉积厚度为 100 nm 的 Al 作为阳极,然后将阳极用氧等离子处理 15 分钟。
处理完毕后,继续在阳极上依次蒸镀厚度为 30 nm 的空穴注入层 m-MTDATA ,厚度为 40 nm 的空穴传输层 TCTA ,厚度为 20nm 的发光层 FIrpic:CBP (其中, FIrpic (二( 4,6- 二氟苯基吡啶 -N,C2 )吡啶甲酰合铱)作为客体材料, CBP ( 4,4'-N, N- 二咔唑基 - 联苯)作为主体材料,客体材料掺杂质量百分比含量为 8% ),厚度为 40nm 的电子传输层 Bphen , 厚度为 1 nm 的电子注入层 Li2O ,然后是厚度为 30 nm 的 Sm-Ag 合金阴极, Sm 与 Ag 的质量比为 1:1 。在阴极表面,覆盖有厚度为 80 nm 的增透膜 BCP 。
实施例 4
本实施例 4 的顶发射柔性有机电致发光器件结构为: PEN/Ag/m-MTDATA/NPB/ TPBi:Ir(ppy)3/TPBi/LiF/Yb-Ag/m-MTDATA 。
该顶发射柔性有机电致发光器件的制备工艺如下:
将 PEN 薄膜衬底放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理 20 分钟,然后再用氮气吹干。
在真空蒸镀系统中,在 PEN 薄膜表面沉积厚度为 80 nm 的 Ag 作为阳极,然后将阳极用氧等离子处理 2 分钟。
处理完毕后,继续在阳极上依次蒸镀厚度为 30 nm 的空穴注入层 m-MTDATA ,厚度为 50 nm 的空穴传输层 NPB ,厚度为 20nm 的发光层 TPBi:Ir(ppy)3 (其中, Ir(ppy)3( 三 (2- 苯基吡啶 ) 合铱 ) , TPBi ( 1,3,5- 三 (1- 苯基 -1H- 苯并咪唑 -2- 基 ) 苯) 为主体材料,客体材料掺杂质量百分比含量为 4% );厚度为 20nm 的电子传输层 TPBi ,厚度为 1 nm 的电子注入层 LiF ,然后是厚度为 30 nm 的 Yb-Ag 合金阴极, Yb 与 Ag 的质量比为 1:10 。在阴极表面,覆盖有厚度为 80 nm 的增透膜 m-MTDATA 。
实施例 5
本实施例 5 的顶发射柔性有机电致发光器件结构为: PC /Au/m-MTDATA/NPB/ (DPVBi/Rubrene)/ Alq3/LiF/Yb-Ag/ZnSe 。
该顶发射柔性有机电致发光器件的制备工艺如下:
将 PC 薄膜衬底放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理 20 分钟,然后再用氮气吹干。
在真空蒸镀系统中,在 PC 薄膜表面沉积厚度为 30 nm 的 Au 作为阳极,然后将阳极该用氧等离子处理 2 分钟。
处理完毕后,继续在阳极上依次蒸镀厚度为 30 nm 的空穴注入层 m-MTDATA ,厚度为 50 nm 的空穴传输层 NPB ,厚度为 20nm 的发光层 DPVBi 和厚度为 0.2nm 的发光层 Rubrene ,即总发光层的结构为 DPVBi/Rubrene ;之后是厚度为 20nm 的电子传输层 Alq3 ,厚度为 1nm 的电子注入层 LiF ,然后是厚度为 25nm 的 Yb-Ag 合金阴极, Yb 与 Ag 的质量比 1:1 。在阴极表面,覆盖有厚度为 50 nm 的增透膜 ZnSe 。该器件可制作成双面发光的有机电致发光装置。
对比例 1
本对比例 1 的有机电致发光器件结构为: PET/Ag/m-MTDATA/NPB/ C545T:Alq3/ Alq3/LiF/ZnS 。
该有机电致发光器件的制备工艺如下:
将 PET 薄膜衬底放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理 20 分钟,然后再用氮气吹干。
在真空蒸镀系统中,在 PET 薄膜表面沉积厚度为 18nm 的金属 Ag 作为阳极,然后将阳极用氧等离子处理 2 分钟。
处理完毕后,继续在阳极上依次蒸镀厚度为 30 nm 的空穴注入层 m-MTDATA ,厚度为 50 nm 的空穴传输层 NPB ,厚度为 20nm 的发光层 C545T:Alq3 ,厚度为 40nm 的电子传输层 Alq3 ,厚度为 1nm 的电子注入层 LiF ,然后是厚度为 45 nm 的 ZnS 阴极。
对比例 2
本对比例 2 的有机电致发光器件结构为: PEN/Ag/m-MTDATA/NPB/TPBi:Ir(PPy)3 /TPBi/LiF/Ag/m-MTDATA 。
该有机电致发光器件的制备工艺如下:
将 PEN 薄膜衬底放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理 20 分钟,然后再用氮气吹干。
在真空蒸镀系统中,在 PEN 薄膜表面沉积厚度为 80 nm 的金属 Ag 作为阳极,然后将阳极用氧等离子处理 2 分钟。
处理完毕后,继续在阳极上依次蒸镀厚度为 30 nm 的空穴注入层 m-MTDATA ,厚度为 50 nm 的空穴传输层 NPB ,厚度为 20nm 的发光层 TPBi:Ir(ppy)3 (其中 Ir(ppy)3( 三 (2- 苯基吡啶 ) 合铱 ) , TPBi ( 1,3,5- 三 (1- 苯基 -1H- 苯并咪唑 -2- 基 ) 苯) 为主体材料,客体材料掺杂质量百分比含量为 4% ),厚度为 20nm 的电子传输层 TPBi ,厚度为 1 nm 的电子注入层 LiF ,然后是厚度为 20 nm 的 Ag 阴极。
图 3 是本发明制作的厚度为 30 nm 的 Sm-Ag ( Sm 与 Ag 质量比为 1:1 )合金电极(实施例 3 )和厚度为 30nm 的 Yb-Ag( 镱与银质量比为 1:10) 合金电极(实施例 4 )与 30nm 为厚度的 30nm 的 Ag 电极进行的透过率比较。
从图 3 中可以看出,本发明提供的 Sm-Ag 和 Yb-Ag 合金阴极具有比 Ag 电极更高的透过率,因此在顶发射器件中,能够提高阴极表面的出光率。
图 4 是实施例 1 制作的顶发射柔性有机电致发光器件 和对比例 1 的 电流密度 - 电压特性曲线图。
图 5 为 实施例 4 制作的 顶发射柔性有机电致发光器件 和对比例 2 的 电流密度 - 电压特性曲线图。
从图 4 和图 5 的曲线上可以看出,本发明提供的 Sm-Ag 和 Yb-Ag 合金阴极具有比 Ag 较低的功函;因此具有更好的电子注入效果,导致在相同驱动电压下,器件能够得到较高的电流密度。
应当理解的是,上述针对本发明较佳实施例的表述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本发明的专利保护范围应以所附权利要求为准。

Claims (10)

  1. 一种顶发射柔性有机电致发光器件,依次包括层叠的衬底、阳极层、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层及阴极层;其特征在于,所述阴极层的材质为钐银合金或镱银合金。
  2. 根据权利要求1所述的顶发射柔性有机电致发光器件,其特征在于,所述钐银合金中,钐与银的质量比为1:10~1:1;或者所述镱银合金中,镱与银的质量比为1:10~1:1。
  3. 根据权利要求1或2所述的顶发射柔性有机电致发光器件,其特征在于,在所述阴极层的表面还设置一层增透膜。
  4. 根据权利要求3所述的顶发射柔性有机电致发光器件,其特征在于,所述增透膜的材质为(8-羟基喹啉)-铝、硒化锌、硫化锌、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲或4,4',4'-三(N-3-甲基苯基-N-苯基-氨基)-三苯基胺。
  5. 根据权利要求1所述的顶发射柔性有机电致发光器件,其特征在于,所述衬底的材质为聚对苯二甲酸乙二醇酯、聚醚砜、聚萘二甲酸乙二醇酯、透明聚酰亚胺或者聚碳酸酯;所述阳极层的材质为银、铝或者金。
  6. 一种顶发射柔性有机电致发光器件的制备方法,包括如下步骤:
    S1 ,清洗、干燥衬底;
    S2 ,在所述衬底的表面蒸镀一层阳极层;
    S3 ,在所述阳极层表面依次层叠蒸镀空穴注入层、空穴传输层、发光层、电子传输层、电子注入层;
    S4 ,在所述电子注入层的表面蒸镀材质为钐银合金或镱银合金的阴极层;
    上述制备工艺完后,制得所述顶发射柔性有机电致发光器件。
  7. 根据权利要求6所述的顶发射柔性有机电致发光器件的制备方法,其特征在于,所述钐银合金中,钐与银的质量比为1:10~1:1;或者所述钐银合金中,镱与银的质量比为1:10~1:1。
  8. 根据权利要求 6 或 7 所述的顶发射柔性有机电致发光器件的制备方法,其特征在于,所述阴极层制备完后,还包括如下步骤:
    在所述阴极层表面制备一层增透膜。
  9. 根据权利要求8所述的顶发射柔性有机电致发光器件的制备方法,其特征在于,所述增透膜的材质为(8-羟基喹啉)-铝、硒化锌、硫化锌、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲或4,4',4'-三(N-3-甲基苯基-N-苯基-氨基)-三苯基胺。
  10. 根据权利要求6所述的顶发射柔性有机电致发光器件的制备方法,其特征在于,所述衬底的材质为聚对苯二甲酸乙二醇酯、聚醚砜、聚萘二甲酸乙二醇酯、透明聚酰亚胺(PI)或者聚碳酸酯;所述阳极层的材质为银、铝或者金。
PCT/CN2011/076708 2011-06-30 2011-06-30 顶发射柔性有机电致发光器件及其制备方法 WO2013000163A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11868636.9A EP2728636A4 (en) 2011-06-30 2011-06-30 FLEXIBLE ORGANIC ELECTROLUMINESCENT DIODE DEVICE EMITTING UP THEREOF AND PREPARATION METHOD THEREOF
US14/122,233 US20140124768A1 (en) 2011-06-30 2011-06-30 Top-emitting flexible organic light emission diode device and preparation method thereof
PCT/CN2011/076708 WO2013000163A1 (zh) 2011-06-30 2011-06-30 顶发射柔性有机电致发光器件及其制备方法
CN201180070982.6A CN103548169A (zh) 2011-06-30 2011-06-30 顶发射柔性有机电致发光器件及其制备方法
JP2014513029A JP2014519161A (ja) 2011-06-30 2011-06-30 トップエミッション型のフレキシブル有機エレクトロルミネッセンスデバイス及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076708 WO2013000163A1 (zh) 2011-06-30 2011-06-30 顶发射柔性有机电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2013000163A1 true WO2013000163A1 (zh) 2013-01-03

Family

ID=47423402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076708 WO2013000163A1 (zh) 2011-06-30 2011-06-30 顶发射柔性有机电致发光器件及其制备方法

Country Status (5)

Country Link
US (1) US20140124768A1 (zh)
EP (1) EP2728636A4 (zh)
JP (1) JP2014519161A (zh)
CN (1) CN103548169A (zh)
WO (1) WO2013000163A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601929A (zh) * 2016-12-14 2017-04-26 上海天马有机发光显示技术有限公司 一种有机发光显示面板及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013000164A1 (zh) * 2011-06-30 2013-01-03 海洋王照明科技股份有限公司 顶发射有机电致发光二极管及其制备方法
WO2017197257A1 (en) * 2016-05-13 2017-11-16 Massachusetts Institute Of Technology Nano-film transfer and visibly transparent organic and perovskite solar cells and leds with a nano-film layer
JP6939795B2 (ja) * 2016-08-25 2021-09-22 コニカミノルタ株式会社 透明電極及び電子デバイス
CN112185917A (zh) * 2020-10-10 2021-01-05 安徽熙泰智能科技有限公司 一种高效散热的oled器件及其制作方法
CN113410404A (zh) * 2021-06-01 2021-09-17 深圳大学 有机发光二极管器件及其制造方法和显示面板
CN114302527B (zh) * 2021-12-23 2023-09-01 固安翌光科技有限公司 一种oled发光器件及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060113907A1 (en) * 2004-11-26 2006-06-01 Ja-Hyun Im Organic light emitting display and method for fabricating the same
CN101123299A (zh) * 2007-08-31 2008-02-13 吉林大学 一种蓝光顶发射有机电致发光器件
CN101359721A (zh) * 2008-09-23 2009-02-04 吉林大学 光谱可调的顶发射有机电致发光器件

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867539B1 (en) * 2000-07-12 2005-03-15 3M Innovative Properties Company Encapsulated organic electronic devices and method for making same
US7002293B2 (en) * 2004-01-27 2006-02-21 Eastman Kodak Company Organic light emitting diode with improved light emission through the cathode
JP4148182B2 (ja) * 2004-05-17 2008-09-10 ソニー株式会社 表示装置
US7309956B2 (en) * 2005-01-14 2007-12-18 Eastman Kodak Company Top-emitting OLED device with improved-off axis viewing performance
US20120038022A1 (en) * 2009-03-25 2012-02-16 Sharp Kabushiki Kaisha Insulating substrate for semiconductor device, and semiconductor device
KR101156429B1 (ko) * 2009-06-01 2012-06-18 삼성모바일디스플레이주식회사 유기 발광 소자
EP2437939B1 (en) * 2009-06-02 2016-09-28 Agency For Science, Technology And Research Multilayer barrier film
KR101127767B1 (ko) * 2009-12-09 2012-03-16 삼성모바일디스플레이주식회사 유기 발광 장치
US8227801B2 (en) * 2010-04-26 2012-07-24 Universal Display Corporation Bicarbzole containing compounds for OLEDs
EP2693507A4 (en) * 2011-03-30 2014-10-08 Oceans King Lighting Science FLEXIBLE ORGANIC ELECTROLUMINESCENZING DEVICE AND METHOD OF MANUFACTURING THEREOF
SG194905A1 (en) * 2011-06-06 2013-12-30 Univ Florida Transparent infrared-to-visible up-conversion device
WO2013000164A1 (zh) * 2011-06-30 2013-01-03 海洋王照明科技股份有限公司 顶发射有机电致发光二极管及其制备方法
EP2728635A4 (en) * 2011-06-30 2015-04-08 Oceans King Lighting Science ORGANIC LIGHT-EMITTING ELECTROLUMINESCENT DEVICE AND PREPARATION METHOD THEREOF
KR101846410B1 (ko) * 2011-07-29 2018-04-09 삼성디스플레이 주식회사 유기 발광 표시 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060113907A1 (en) * 2004-11-26 2006-06-01 Ja-Hyun Im Organic light emitting display and method for fabricating the same
CN101123299A (zh) * 2007-08-31 2008-02-13 吉林大学 一种蓝光顶发射有机电致发光器件
CN101359721A (zh) * 2008-09-23 2009-02-04 吉林大学 光谱可调的顶发射有机电致发光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728636A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601929A (zh) * 2016-12-14 2017-04-26 上海天马有机发光显示技术有限公司 一种有机发光显示面板及装置

Also Published As

Publication number Publication date
CN103548169A (zh) 2014-01-29
EP2728636A1 (en) 2014-05-07
US20140124768A1 (en) 2014-05-08
JP2014519161A (ja) 2014-08-07
EP2728636A4 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP5231188B2 (ja) 有機エレクトロルミネッセンス装置
US7821001B2 (en) Organic electronic device
WO2013000163A1 (zh) 顶发射柔性有机电致发光器件及其制备方法
JP4903234B2 (ja) 有機発光素子
WO2013000162A1 (zh) 顶发射有机电致发光器件及其制备方法
KR100721656B1 (ko) 유기 전기 소자
JP4584506B2 (ja) 有機電界発光素子
WO2010056070A2 (ko) 저전압 구동 유기발광소자 및 이의 제조 방법
CN103730589A (zh) 顶发射有机电致发光器件及其制备方法
WO2013000164A1 (zh) 顶发射有机电致发光二极管及其制备方法
WO2016188042A1 (zh) 电致发光器件及其制备方法、显示基板、显示装置
CN106531897B (zh) 一种基于激基复合物的有机电致发光器件及其制备方法
KR100759548B1 (ko) 유기 전계 발광 소자
WO2013143146A1 (zh) 有机电致发光器件及其制备方法
KR101097336B1 (ko) 전면발광형 유기 발광 소자
WO2013078590A1 (zh) 一种聚合物电致发光器件及其制备方法
US8491820B2 (en) Process for growing an electron injection layer to improve the efficiency of organic light emitting diodes
US20080116793A1 (en) Organic electroluminescent device
US20240107787A1 (en) Display panel and manufacturing method thereof
KR100972290B1 (ko) 유기전계발광소자
CN112467046A (zh) 一种有机电致发光器件及其制备方法和显示装置
CN103928619A (zh) 一种有机电致发光装置及其制备方法
CN103928618A (zh) 一种有机电致发光装置及其制备方法
Chen et al. The role of LiF buffer layer in tris‐(8‐hydroxyquinoline) aluminum‐based organic light‐emitting devices with Mg: Ag cathode
KR20120003547A (ko) 메탈로센 화합물을 포함하는 유기발광소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011868636

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14122233

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014513029

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 92692012

Country of ref document: AT

Kind code of ref document: A