WO2012039554A2 - 봉지박막 및 유기전계발광표시장치의 제조방법 - Google Patents

봉지박막 및 유기전계발광표시장치의 제조방법 Download PDF

Info

Publication number
WO2012039554A2
WO2012039554A2 PCT/KR2011/006388 KR2011006388W WO2012039554A2 WO 2012039554 A2 WO2012039554 A2 WO 2012039554A2 KR 2011006388 W KR2011006388 W KR 2011006388W WO 2012039554 A2 WO2012039554 A2 WO 2012039554A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heating
film
joule
substrate
Prior art date
Application number
PCT/KR2011/006388
Other languages
English (en)
French (fr)
Other versions
WO2012039554A3 (ko
Inventor
노재상
홍원의
Original Assignee
주식회사 엔씰텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔씰텍 filed Critical 주식회사 엔씰텍
Publication of WO2012039554A2 publication Critical patent/WO2012039554A2/ko
Publication of WO2012039554A3 publication Critical patent/WO2012039554A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present invention relates to a method for manufacturing an encapsulated thin film and an organic light emitting display device, and more particularly, to a film forming method for depositing an encapsulated thin film of an organic light emitting display device by applying an electric field to a conductive layer and heating Joule. .
  • the organic light emitting display device has a high response time with a response speed of 1 ms or less, low power consumption, and self-luminous light, so there is no problem in viewing angle, and thus it is advantageous as a moving image display medium regardless of the size of the device. .
  • low-temperature manufacturing is possible, and the manufacturing process is simple based on the existing semiconductor process technology has attracted attention as a next-generation flat panel display device in the future.
  • a sealing means is provided on the substrate on which the organic EL device is formed to prevent damage to the organic EL device by moisture and oxygen.
  • Such encapsulation means may be provided as an encapsulation substrate or an encapsulation thin film.
  • the encapsulation substrate may be formed of glass or metal, and adhered to the substrate by applying an adhesive member to the outer region of the encapsulation substrate. Thereafter, UV is irradiated onto the sealing substrate to which the adhesive member is applied to cure the adhesive member.
  • an encapsulation substrate formed of glass or metal is not suitable for use in an organic light emitting display device using a flexible substrate or a slimmer substrate.
  • the encapsulation thin film is formed by alternately stacking a plurality of inorganic films and organic films on a substrate on which an organic light emitting device is formed, and has a thickness of 1 to 10 ⁇ m, thereby forming a thin organic light emitting display device.
  • the encapsulation thin film is formed of a plurality of layers by alternately stacking at least one inorganic film and at least one organic film in order to prevent moisture and oxygen from penetrating into the organic light emitting device.
  • the organic film in the encapsulation thin film may be formed by a deposition process.
  • a separate metal mask is used.
  • the metal mask As the metal mask becomes larger in size, the metal mask must be made larger in size. In this case, the metal mask has a problem that sagging occurs as the size of the metal mask increases, which makes it difficult to manufacture a large device.
  • FIG. 1 is a schematic cross-sectional view of a deposition apparatus having a deposition mask.
  • the frame 4 coupled with the mask on the side corresponding to the thin film deposition vessel 3 installed in the vacuum chamber 2 is described.
  • the object (5) on which the thin film or the like will be formed.
  • the magnet unit 6 for driving the mask 1 supported on the frame 4 to the object 5 on which the thin film is to be formed is driven on the upper portion of the mask 1 to form the thin film or the like.
  • the operation of the thin film deposition container 3 causes the material attached thereto to be deposited on the object 5.
  • the deposition mask should be enlarged as the flat panel display device becomes larger.
  • the mask may be formed due to the deflection of the mask. It is difficult to manufacture a large device because the alignment between the target and the object is difficult.
  • an object of the present invention is to solve the above-mentioned disadvantages and problems of the prior art, and an object of the present invention is to provide a method for forming an organic film in an encapsulation thin film, which is advantageous for manufacturing a large device.
  • the present invention provides a first substrate;
  • the forming of the organic film provides a second substrate corresponding to the first substrate, A joule heating exothermic conductive layer is formed on the second substrate, a deposition material layer is formed on the entire surface of the second substrate including the joule heating exothermic conductive layer, and an electric field is applied to the exothermic conductive layer for joule heating. It provides a method for producing an encapsulation thin film, characterized in that formed by Joule heating the material layer for deposition.
  • the present invention also provides a first substrate; Forming a first electrode layer on the first substrate; Forming a pixel definition layer on the first electrode layer; An opening for exposing a portion of the first electrode layer on the pixel definition layer; Forming an organic layer on the first electrode layer and including an emission layer; Forming a second electrode layer on the organic layer;
  • the method of manufacturing an organic light emitting display device comprising forming an encapsulation thin film by stacking at least one organic film and at least one inorganic film on the second electrode layer, wherein forming the organic film of the encapsulation thin film is performed by forming the encapsulation thin film.
  • the present invention provides a method for manufacturing an encapsulation thin film and an organic light emitting display device, wherein the joule heating of the deposition material layer is a deposition material layer in a region corresponding to the heating conductive layer for heating the joule. .
  • the present invention also provides a method of manufacturing an encapsulation thin film and an organic light emitting display device, characterized in that the deposition material of the deposition material layer in a region corresponding to the heating conductor layer for heating the joule is evaporated.
  • the present invention is a temperature applied to the material layer for deposition in the region corresponding to the heating element for heating the joule heating is more than 10 °C than the melting point of the material for deposition, the melting point of the heating conductive layer for heating the joules.
  • the present invention provides a method of manufacturing an encapsulation thin film and an organic light emitting display device.
  • the shape of the heating conductive layer for heating the joule is patterned corresponding to the shape of the organic film, and the encapsulation material layer is formed of the organic film. It provides a method of manufacturing.
  • the present invention also provides a first substrate;
  • the forming of the organic film provides a second substrate corresponding to the first substrate, A joule heating exothermic conductive layer is formed on the second substrate, and a first insulation film having grooves or holes is formed on the joule heating exothermic conductive layer, and an upper portion of the first insulation film including the grooves or holes is formed.
  • Forming a material layer for deposition, and applying the electric field to the heating conductive layer for heating the joule provides a method for manufacturing a sealing thin film, characterized in that for heating the deposition material layer.
  • the present invention also provides a first substrate; Forming a first electrode layer on the first substrate; Forming a pixel definition layer on the first electrode layer; An opening for exposing a portion of the first electrode layer on the pixel definition layer; Forming an organic layer on the first electrode layer and including an emission layer; Forming a second electrode layer on the organic layer;
  • the method of manufacturing an organic light emitting display device including forming an encapsulation thin film by stacking at least one organic film and at least one inorganic film on an upper portion of the second electrode layer, wherein forming the organic film of the encapsulation thin film is performed by forming the encapsulation thin film.
  • An organic light emitting display device comprising: forming a deposition material layer on an upper portion of a first insulating layer having a groove or a hole, and heating the deposition material layer by applying an electric field to the heating conductive layer for heating the joule. It provides a method of manufacturing.
  • the present invention provides a method for manufacturing an encapsulation thin film and an organic light emitting display device, characterized in that the joule heating of the material layer for deposition is a material layer for deposition in a region corresponding to the groove or hole.
  • the present invention also provides a method of manufacturing an encapsulation thin film and an organic light emitting display device, characterized in that the deposition material of the deposition material layer corresponding to the groove or hole is evaporated.
  • the present invention also provides a method of manufacturing an encapsulation thin film and an organic light emitting display device, further comprising forming a third insulating film including recesses on the first insulating film including the hole.
  • the present invention also provides a method of manufacturing an encapsulation thin film and an organic light emitting display device, wherein the recess is formed corresponding to the shape of the organic film.
  • the shape of the hole or the groove provided in the first insulating film is formed corresponding to the shape of the organic film, and the encapsulation material layer is formed using the material of the organic film.
  • a method of manufacturing a light emitting display device is provided.
  • the present invention has the effect of providing a method for forming an organic film in an encapsulation thin film, which is advantageous for the production of large sized devices.
  • the present invention has an effect that can provide a method for patterning during film formation, without a lithography process or a separate shadow mask when manufacturing the encapsulation film.
  • the present invention has the effect of forming an organic film in a relatively short time as compared with the conventional organic film forming method.
  • FIG. 1 is a schematic cross-sectional view of a deposition apparatus having a deposition mask.
  • FIG. 2 is a cross-sectional view illustrating an organic light emitting display device according to a first embodiment of the present invention.
  • FIG 3 is a cross-sectional view illustrating an organic light emitting display device according to a second embodiment of the present invention.
  • FIGS. 4A to 4C are cross-sectional views showing a schematic configuration of a vapor deposition substrate of a vapor deposition method according to a first embodiment of the present invention.
  • 5A and 5B are schematic cross-sectional views showing a film formation method using a deposition substrate according to a first embodiment of the present invention.
  • 6A to 6C are cross-sectional views illustrating a schematic configuration of a deposition substrate for a deposition method according to a second embodiment of the present invention.
  • FIG. 7A to 7C are cross-sectional views showing a schematic configuration of a deposition substrate for a deposition method according to a third embodiment of the present invention.
  • 7D is a cross-sectional view illustrating a schematic configuration of a deposition substrate of a deposition apparatus according to a fourth embodiment of the present invention.
  • FIGS. 8A and 8B are schematic cross-sectional views showing a film forming method using a deposition substrate according to a second embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating an organic light emitting display device according to a first embodiment of the present invention.
  • a buffer layer 210 having a predetermined thickness is formed on a front surface of the transparent insulating substrate 200 by plasma-enhanced chemical vapor deposition (PECVD).
  • PECVD plasma-enhanced chemical vapor deposition
  • the buffer layer 210 prevents the diffusion of impurities in the transparent insulating substrate 200 during the crystallization process of the amorphous silicon layer formed in a subsequent process.
  • An amorphous silicon layer (not shown), which is a semiconductor layer, is deposited on the buffer layer 210 at a predetermined thickness. Subsequently, the amorphous silicon layer is crystallized by using Excimer Laser Annealing (ELA), Sequential Lateral Solidification (SLS), Metal Induced Crystallization (MIC) or Metal Induced Lateral Crystallization (MIC), and patterned by photolithography. The semiconductor layer pattern in a pixel is formed.
  • ELA Excimer Laser Annealing
  • SLS Sequential Lateral Solidification
  • MIC Metal Induced Crystallization
  • MIC Metal Induced Lateral Crystallization
  • a gate insulating layer 230 is formed on the entire surface of the substrate including the semiconductor layer pattern.
  • the gate insulating film 230 may be formed of a silicon oxide film (SiO 2 ), a silicon nitride film (SiN x ), or a double layer thereof.
  • the gate electrode 231 is formed in a predetermined region corresponding to the channel region 221 of the semiconductor layer pattern on the gate insulating layer 230.
  • the gate electrode 231 may be formed of one selected from the group consisting of aluminum (Al), aluminum alloy (Al-alloy), molybdenum (Mo), and molybdenum alloy (Mo-alloy).
  • an impurity is implanted into the semiconductor layer pattern 220 using the gate electrode 231 as an ion implantation mask to form a source / drain region 220a 220b.
  • the ion implantation process is performed using n + or p + impurities as a dopant.
  • the interlayer insulating film 240 may be formed of a silicon oxide film (SiO 2 ), a silicon nitride film (SiN x ), or a double layer thereof.
  • the interlayer insulating layer 240 and the gate insulating layer 230 are etched by a photolithography process to form contact holes exposing the source / drain regions 220a and 220b.
  • source / drain electrodes 250a and 250b connected to the source / drain regions 220a and 220b are formed.
  • the source / drain electrode material may be selected from the group consisting of Mo, W, MoW, AlNd, Ti, Al, Al alloys, Ag, and Ag alloys.
  • a two-layer structure of Mo, Al, or Ag, or a multi-layer structure of low resistance material that is, Mo / Al / Mo, MoW / Al-Nd / MoW, Ti / Al / Ti, Mo / Ag / Mo and Mo / Ag-alloy / Mo and the like formed in one laminated structure selected from the group consisting of.
  • An insulating layer may be positioned on the source / drain electrodes 250a and 250b, and the insulating layer may be an inorganic layer 260, an organic layer 270, or a double layer thereof.
  • a first electrode layer 280 connected through a via hole in the insulating layer is disposed on the insulating layer.
  • the first electrode layer 280 may be provided as a transparent electrode in the case of the bottom emission type and a reflective electrode in the case of the top emission type.
  • the first electrode layer may be provided as one selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (TO) and zinc oxide (ZnO), and a reflective electrode.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • TO Tin Oxide
  • ZnO Zinc Oxide
  • the first electrode layer 280 may be formed in a stacked structure of the lower electrode layer 280a, the reflective electrode layer 280b, and the upper electrode layer 280c in the case of a top emission type.
  • the lower electrode layer 280a may be formed of one selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (TO), and zinc oxide (ZnO). At this time, the lower electrode layer 280a is formed to have a thickness of 50 to 100 ⁇ . If the thickness of the lower electrode layer 280a is less than or equal to 50 GPa, it is difficult to secure uniformity. If the thickness of the lower electrode is less than 100 GPa, the adhesive strength is weakened due to the stress of the lower electrode layer.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • TO tin oxide
  • ZnO zinc oxide
  • the reflective electrode layer 280b may be formed using one material selected from the group consisting of Al, Al alloys, Ag, and Ag alloys, and at this time, the thickness of the reflective electrode layer 280b may be 900 to 2000 ⁇ s. Can be. If the thickness is 900 ⁇ or less, a part of the light is transmitted, and about 1000 ⁇ is the minimum thickness that light does not transmit. In addition, when it is 2000 kPa or more, it is not preferable in terms of cost or process time.
  • the reflective electrode layer 280b may act as a light reflection to increase luminance and light efficiency.
  • the upper electrode layer 280c may be formed of one selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (TO), and zinc oxide (ZnO). At this time, the thickness of the upper electrode layer 280c is formed to 50 ⁇ 100 ⁇ . If the thickness of the upper electrode layer 280c is less than or equal to 50 ⁇ s, the uniformity of the thin film cannot be guaranteed. If the thickness of the upper electrode layer 280c is less than or equal to 100 ⁇ s, the reflectance is particularly lower in the blue region by 10% to 15% due to the interference effect.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • TO tin oxide
  • ZnO zinc oxide
  • the insulating layer may be a pixel defined layer 281.
  • the pixel definition layer 281 may be made of polyacrylates, epoxy resins, phenolic resins, polyamides resins, polyimides resins, and unsaturated polys. Unsaturated polyesters resin, poly (phenylenethers) resin, polyphenylenesulfide resin (poly (phenylenesulfides) resin) and benzocyclobutene (benzocyclobutene (BCB)) It can be formed of a material.
  • the pixel defining layer 281 includes an opening 281a exposing a part of the first electrode layer.
  • an organic layer 282 is formed on the first electrode layer exposed by the opening 281 a and includes a light emitting layer. Then, a second electrode layer 283 is formed on the organic layer 282. do.
  • the organic layer 282 may include a light emitting layer, and may further include any one or more layers of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer. And no limitations with regard to matter.
  • the film thickness of the hole transport layer can be formed in the range of 10 to 50nm. If it is out of the thickness range of the hole transport layer, the hole injection characteristics are deteriorated, which is not preferable.
  • a dopant capable of emitting light with respect to electron-hole bonds may be added to the hole transport layer, and such a dopant may be 4- (dicyanomethylene) -2-tert-butyl-6- (1,1, 7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (4- (dicyanomethylene) -2-t-butyl-6- (1,1,7,7-tetramethyljulolidyl-9-enyl) -4H -pyran: DCJTB), Coumarin 6, Rubrene, DCM, DCJTB, phenylene (Perylene), quinacridone and the like, the content of the total weight of the material for forming the hole transport layer 0.1 to 5% by weight is used.
  • the emission color may be adjusted according to the type and content of the dopant, and the thermal stability of the hole transport layer may be improved to improve the life of
  • the hole injection layer may be formed using a starbust amine compound, and the thickness of the hole injection layer may be formed to 30 to 100 nm.
  • the thickness of the hole injection layer is out of the range, the hole injection property is poor, which is not preferable.
  • the contact resistance between the counter electrode and the hole transport layer may be reduced, and the hole transporting ability of the anode electrode may be improved, thereby improving overall device characteristics.
  • the material for forming the light emitting layer of the present invention is not particularly limited, and specific examples thereof include CBP (4,4'-bis (carbazol-9-yl) -biphenyl).
  • the light emitting layer of the present invention may further contain a dopant capable of emitting light with respect to electron-hole coupling like the above-described hole transport layer, wherein the dopant type and content are about the same level as that of the hole transport layer, and the film of the light emitting layer
  • the thickness is preferably in the range of 10 to 40 nm.
  • the electron transporting material for forming the electron transporting layer tris (8-quinolinolate) -aluminum (tris (8-quinolinolate) -aluminum: Alq 3) and Almq 3 are used. It may further contain a dopant capable of emitting light with respect to hole bonding. At this time, the type and content of the dopant is almost the same level as the case of the hole transport layer, the film thickness of the electron transport layer may be in the range of 30 to 100nm. If the electron transport layer is out of the thickness range, the efficiency is lowered and the driving voltage is increased, which is not preferable.
  • a hole barrier layer HBL may be further formed between the emission layer and the electron transport layer.
  • the hole barrier layer serves to prevent the excitons formed from the phosphorescent material from moving to the electron transport layer or to prevent the holes from moving to the electron transport layer, and BAlq may be used as the hole barrier layer forming material.
  • the electron injection layer may be formed of a material consisting of LiF, the thickness thereof may be formed in the range of 0.1 to 10nm. If it is out of the thickness range of the electron injection layer, the driving voltage increases, which is not preferable.
  • the second electrode layer 283 formed on the organic layer is formed of a reflective type in the case of the bottom emission type, and is formed of Li, Ca, LiF / Ca, LiF / Al, Al, Mg, and alloys thereof. It can be formed of any one material selected from the group consisting of.
  • the second electrode layer 283 formed on the organic layer is a top emission type
  • the second electrode layer 283 has a structure in which a transflective cathode is laminated or a transmissive cathode is formed after the transflective cathode is formed, and the transflective cathode is Li, Ca
  • a transflective cathode is laminated or a transmissive cathode is formed after the transflective cathode is formed, and the transflective cathode is Li, Ca
  • any one material selected from the group consisting of LiF / Ca, LiF / Al, Al, Mg and Mg alloy can be formed by forming a thin to a thickness of 5 to 30nm
  • the transmissive cathode after forming the transflective cathode The method of forming the mold is performed by forming a semi-transmissive cathode using any one material selected from the group consisting of metals having a small work function, that is, Li, Ca, Li
  • a film using ITO, IZO (Indium Zinc Oxide), etc. having low resistance is additionally formed.
  • the thickness of the transflective cathode is less than 5 nm, electron injection is not possible at low voltage, and when the thickness of the transflective cathode is 30 nm or more, the transmittance is remarkably low, which is not preferable.
  • the total thickness of the transflective cathode and the transmissive cathode is preferably 10 to 400 nm in thickness.
  • the organic light emitting display device forms an encapsulation thin film 292 on the second electrode layer 283.
  • the encapsulation thin film 292 comprises at least one inorganic film 290a, 290b, and 290c and at least one organic film 291a, 291b, and 291c to prevent moisture and oxygen from penetrating into the organic light emitting device. do.
  • the material of the inorganic film is not limited, and for example, may be at least one material selected from the group consisting of AlOxNy, Al, Al 2 O 3 , SiO 2 and SiOxNy Al 2 O 3 .
  • the thickness of the inorganic layer is preferably 30 to 100nm, if less than 30nm there is a problem that can allow the penetration of moisture and oxygen, if the thickness exceeds 100nm there is a problem that the thickness of the organic light emitting display device.
  • an inorganic film 290a is stacked on the second electrode layer 283, and an organic film 291a is stacked on the inorganic film 290a.
  • an inorganic film is first laminated on the second electrode layer, which is substantially an inorganic film to prevent the penetration of moisture and oxygen in the encapsulation film. By sealing, penetration of moisture and oxygen can be prevented more effectively.
  • the inorganic layers 290a, 290b, and 290c may be PECVD, ion beam assisted sputtering, electron beam deposition, RF sputtering, and atomic layer deposition, depending on the material. ) And the like can be used.
  • the organic films 291a, 291b, and 291c are formed by a deposition method in which an electric field is applied to a deposition substrate including a heating conductive layer for Joule heating. This will be described later.
  • the encapsulation thin film according to the present invention may be formed by sequentially laminating an inorganic film and an organic film according to the method of forming each layer.
  • a protective layer may be further included between the second electrode layer 283 and the inorganic layer 290a.
  • FIG 3 is a cross-sectional view illustrating an organic light emitting display device according to a second embodiment of the present invention.
  • the organic light emitting display device according to the second embodiment of the present invention may be the same as the first embodiment except for the following description.
  • an encapsulation thin film 292 ′ is formed on the second electrode layer 283.
  • the encapsulation thin film 292 ' may include at least one inorganic layer 290a', 290b ', 290c' and at least one organic layer 291a ', 291b', in order to prevent moisture and oxygen from penetrating into the organic light emitting device. 291c ').
  • an organic layer 291a ' is stacked on the second electrode layer 283, and an inorganic layer 290a' is formed on the organic layer 291a '.
  • This is a laminated structure.
  • three layers of the inorganic film and the organic film are respectively stacked, but the number of the inorganic film and the organic film is not limited in the present invention.
  • the organic film is first laminated on the second electrode layer, which is to planarize and soften the organic film in the encapsulation film, thereby encapsulating the organic light emitting element having the step formed with the organic film first to give flatness.
  • membrane formed later can be improved.
  • a protective layer may be further included between the second electrode layer 283 and the organic layer 291a ′.
  • FIGS. 4A to 4C are cross-sectional views showing a schematic configuration of a vapor deposition substrate of a vapor deposition method according to a first embodiment of the present invention.
  • the deposition substrate may be located in the vacuum chamber.
  • a heating conductive layer material 110 for Joule heating is formed on a substrate 100 such as glass, ceramic, or plastic, and patterned to form the heating conductive layer 110a for Joule heating. To form.
  • the joule heating exothermic conductive layer 110a generates joule heat by applying an electric field to the electrode, and evaporates the deposition material through the generated joule heat, which will be described later.
  • Forming the heating conductive layer material 110 for joule heating on the substrate 100 is a well-known film forming method of low pressure chemical vapor deposition, atmospheric pressure chemical vapor deposition, PECVD (plasma enhanced chemical vapor deposition), sputtering, vacuum deposition ( It can be formed by a method such as vacuum evaporation, it is not limited to the method of forming the heating conductive layer material 110 for Joule heating in the present invention.
  • the material of the heating conductive layer material 110 for joule heating may use a metal or a metal alloy.
  • the metal or metal alloy may be, for example, molybdenum (Mo), titanium (Ti), chromium (Cr), or molybdenum tungsten (MoW), but in the present invention, the heating conductive layer material 110 for joule heating. ) Is not limited to the material.
  • forming the joule heating exothermic conductive layer 110a by patterning the joule heating exothermic conductive layer material 110 may be performed by a known photolithography process.
  • forming the heating conductive layer 110a for joule heating is patterned corresponding to the shape of the organic film of the encapsulation thin film according to the present invention.
  • the deposition material layer 120 is formed on the entire surface of the substrate 100 including the joule heating exothermic conductive layer 110a.
  • the deposition material layer 120 may be formed by a method such as low pressure chemical vapor deposition, atmospheric pressure chemical vapor deposition, plasma enhanced chemical vapor deposition (PECVD), sputtering, vacuum evaporation, or the like. In the present invention, the method of forming the deposition material layer 120 is not limited.
  • the deposition material layer 120 corresponds to the material of the organic film of the encapsulation thin film according to the present invention, and may include polyacrylates, epoxy resins, phenolic resins, and polyamides.
  • Polyamides resin, polyimides resin, unsaturated polyesters resin, poly (phenylenethers) resin, polyphenylenesulfides (poly (phenylenesulfides)) resin) and benzocyclobutene (BCB) and may be formed of one material selected from the group consisting of, but the present invention is not limited to the material of the organic film.
  • 5A and 5B are schematic cross-sectional views showing a film formation method using a deposition substrate according to a first embodiment of the present invention.
  • the film forming process may be performed in a vacuum chamber.
  • the deposition substrate according to the present invention is aligned so as to correspond to the device substrate 130.
  • the organic light emitting diode as described above that is, the first electrode layer 280, the organic layer 282, the second electrode layer 283, and the like, are formed on the device substrate 130.
  • the Joule heating exothermic conductive layer 110a is formed on the substrate 100, and the organic layer of the encapsulation thin film is formed on the entire surface of the substrate 100 including the Joule heating exothermic conductive layer.
  • a deposition material layer for forming a film material is formed.
  • an electric field is applied to the heating conductive layer 110a for joule heating of the deposition substrate.
  • the joule heating of the deposition material layer 120 is performed by applying an electric field to the heating conductive layer 110a for joule heating.
  • the deposition material layer 120 which is Joule heated by the applied electric field corresponds to the region 120a corresponding to the Joule heating exothermic conductive layer 110a, and thus, the joule heating exothermic conductive layer 110a.
  • the evaporated deposition material may be deposited on the device substrate 130 to form the organic layer 140 of the encapsulation thin film.
  • the joule heating exothermic conductive layer 110a is represented as two for convenience of description, but the present invention is not limited to the number thereof, and the organic substrate is formed on the mother substrate or the mother substrate.
  • a heat generating conductive layer for Joule heating may be formed corresponding to the number of electroluminescent display devices.
  • the organic light emitting display device may be scribed to complete individual organic light emitting display devices.
  • the organic light emitting display device can be completed by scribing along the scribing line.
  • the heating conductive layer for Joule heating is used as the size of the mother substrate.
  • the heat generating conductive layer for Joule heating can be formed corresponding to the shape of the organic film of the encapsulating thin film of the organic light emitting display device.
  • a heat generating conductive layer for Joule heating may be formed corresponding to the number of organic light emitting display devices formed.
  • the number and size of the heating conductive layer for joule heating are not limited.
  • the joule heating means heating by using heat generated by resistance when current flows through the conductor.
  • the amount of energy per unit time applied to the conductive layer by Joule heating due to the application of the electric field may be represented by the following equation.
  • W is the amount of energy per unit time of Joule heating
  • V is the voltage across the conductive layer
  • I is the current, respectively.
  • Application of the electric field to the heating conductive layer 110a for joule heating may generate high heat by Joule heating sufficient to induce the evaporation of the region 120a corresponding to the heating conductor layer 110a for heating the joule. This is done by applying energy of power density. Since the application of the electric field is determined by various factors such as resistance, length and thickness of the heating conductive layer 110a for joule heating, it is difficult to specify the electric field.
  • the temperature applied to the region 120a corresponding to the joule heating exothermic conductive layer 110a is preferably 10 ° C. or more higher than the melting point of the deposition material. It is preferable that the melting point is less than 110a). For this purpose, it is preferable to apply an electric field of about 1 kw / cm 2 to 1,000 kw / cm 2.
  • the temperature is less than the melting point of the deposition material it may be difficult to evaporate the deposition material, and if the temperature exceeds the melting point of the heating conductive layer 110a for Joule heating, it is difficult to deposit an accurate pattern. do.
  • the vapor deposition material to be evaporated should be a vapor deposition material in a region corresponding to the joule heating exothermic conductive layer, but the joule heating when the temperature exceeds the melting point of the exothermic conductive layer for joule heating Since the heat generating conductive layer evaporates, the composition, thickness, and shape of the pattern to be formed become uneven, and in a severe case, the conductive layer cannot tolerate and is destroyed.
  • the applied current may be a direct current or an alternating current
  • an application time of the electric field may be 1 / 1000,000 to 100 seconds, preferably 1 / 1,000,000 to 10 seconds, more preferably 1 / 1,000,000 to 1 second.
  • the application of this electric field can be repeated several times in regular or irregular units.
  • the total heat treatment time may be larger than the above electric field application time, but this is at least a very short time compared with the conventional deposition methods.
  • the thin film is formed by a deposition apparatus having a deposition mask, and as the size of the flat panel display becomes larger, the deposition mask should also be enlarged. Difficult to arrange a large device due to difficult alignment between objects, but when the deposition process using the deposition substrate according to the present invention is performed, the substrate sag even if the flat panel display is enlarged because the thickness of the deposition substrate is thick. Etc. do not occur, and therefore a large sized device can be manufactured.
  • FIGS. 6A to 6C are cross-sectional views illustrating a schematic configuration of a deposition substrate for a deposition method according to a second embodiment of the present invention.
  • the deposition substrate according to the second embodiment of the present invention may be the same as the deposition substrate according to the first embodiment, except as described below.
  • a heating conductive layer 310 for joule heating is formed on a substrate 300 such as glass, ceramic, or plastic.
  • the joule heating exothermic conductive layer 310 generates joule heat by applying an electric field to the electrode, and evaporates the deposition material through the generated joule heat.
  • an insulating film 320 is formed on the joule heating exothermic conductive layer 310 by a known film forming method, and a predetermined region of the insulating film 320 is removed to form the insulating film 320. ) To form a groove 320a.
  • the insulating layer 320 may be formed of an organic layer or an inorganic layer, and the organic layer may include a polyacrylates resin, an epoxy resin, a phenolic resin, a polyamides resin, Polyimide resin, polyunsaturated polyester resin, poly (phenylenethers) resin, polyphenylenesulfide resin and benzocyclobutene benzocyclobutene, BCB) may be used a material selected from the group consisting of, the inorganic film may be formed using a silicon oxide film, a silicon nitride film or a silicon oxynitride film, and the present invention is not limited to the material of the insulating film.
  • a polyacrylates resin an epoxy resin, a phenolic resin, a polyamides resin, Polyimide resin, polyunsaturated polyester resin, poly (phenylenethers) resin, polyphenylenesulfide resin and benzocyclobutene benzocyclobutene, BCB
  • the inorganic film may
  • forming the grooves 320a in the insulating film 320 by removing a predetermined region of the insulating film 320 may be performed by a known photolithography process, and the method of forming the grooves may be limited in the present invention. It is not.
  • the insulating layer 320 has a thickness of t1, and the insulating layer 320 is formed to have a thickness of t2 in the region in which the groove 120a is formed. This will be described later.
  • forming the groove 320a in the insulating film 320 corresponds to the shape of the organic film of the encapsulation thin film according to the present invention.
  • a deposition material layer 340 is formed on the insulating layer 320 provided with the groove 320a.
  • the deposition material layer 300 corresponds to the material of the organic film of the encapsulation thin film according to the present invention.
  • FIG. 7A to 7C are cross-sectional views showing a schematic configuration of a deposition substrate for a deposition method according to a third embodiment of the present invention.
  • the deposition substrate according to the third embodiment of the present invention may be the same as the deposition substrate according to the second embodiment, except as described below.
  • a joule heating exothermic conductive layer 310 is formed on a substrate 300 such as glass, stainless steel, or plastic, and the joule heating is performed by a known film forming method as described above.
  • the first insulating layer 320 ′ is formed on the heating conductive layer 310.
  • a predetermined region of the first insulating layer 320 ' is removed to form a hole 320b in the first insulating layer 320'.
  • the first insulating layer 320 ′ may be formed of an organic layer or an inorganic layer, and the organic layer may be a polyacrylate resin, an epoxy resin, a phenolic resin, or a polyamide resin. resins, polyimides resins, unsaturated polyesters resins, poly (phenylenethers) resins, polyphenylenesulfides resins and benzo
  • One material selected from the group consisting of cyclobutene (benzocyclobutene, BCB) may be used, and the inorganic film may be formed using a silicon oxide film, a silicon nitride film, or a silicon oxynitride film, and the material of the first insulating film may be It is not limited.
  • forming the hole 320b in the first insulating layer 320 'by removing a predetermined region of the first insulating layer 320' may be performed by a known photolithography process. It does not limit the method of forming.
  • the second insulating film 330 is formed on the first insulating film 320 ′ provided with the hole 320 b by the known film forming method as described above.
  • the second insulating layer 330 may be made of the same material as the first insulating layer 320 ', but the second insulating layer 330 reflects the profile of the hole 320b formed in the first insulating layer 320'.
  • the second insulating layer 330 may be formed of an inorganic layer so that the second insulating layer 330 may be formed while being formed.
  • the second insulating layer 330 is formed while reflecting the profile of the hole 320b, the second insulating layer 330 is formed in the recess portion formed in the hole 320b. 330b).
  • the recess 330b formed in the second insulating film 330 is formed corresponding to the shape of the organic film of the encapsulation thin film according to the present invention.
  • the second insulating layer 330 has a thickness of t4, and is formed to have a thickness of t3 in a region where the first insulating layer and the second insulating layer are formed. This will be described later.
  • a deposition material layer 340 ′ is formed on the second insulating layer 330 provided with the concave portion 330b.
  • the deposition material layer 340 ′ corresponds to the material of the organic film of the encapsulation thin film according to the present invention.
  • a second insulating film 330 is formed on the first insulating film 320 ′ with the holes 320 b, and the second insulating film with the yaw portion 330 b is formed.
  • the deposition material layer 340 ′ is formed on the 330, alternatively, the deposition material layer may be formed on the first insulating layer provided with the hole.
  • FIG. 7D is a cross-sectional view illustrating a schematic configuration of a deposition substrate of a deposition apparatus according to a fourth embodiment of the present invention.
  • an image of the first insulating layer 320 ′ having a hole 320 b is provided.
  • An evaporation material layer 340 ′′ is formed on the first insulating layer 320 ′, and the first insulating layer 320 ′ has a thickness of t5. This will be described later.
  • FIGS. 8A and 8B are schematic cross-sectional views showing a film forming method using a deposition substrate according to a second embodiment of the present invention.
  • the film deposition method according to the second embodiment of the present invention may be the same as the film deposition method according to the first embodiment described above except for the following description. In this case, for convenience of description, only the configuration of the deposition substrate and the element substrate are shown, and the film forming process may be performed in a vacuum chamber.
  • the deposition substrate according to the present invention is aligned so as to correspond to the device substrate 350.
  • the organic light emitting diode as described above that is, the first electrode layer 280, the organic layer 282, the second electrode layer 283, and the like, are formed on the device substrate 350.
  • the Joule heating exothermic conductive layer 310 is formed on the substrate 300, and the groove 320a is provided on the Joule heating exothermic conductive layer 310.
  • An insulating layer 320 is formed, and a deposition material layer 340 is formed on the insulating layer 320 having the groove.
  • an electric field is applied to the exothermic conductive layer 310 for joule heating of the deposition substrate.
  • the joule heating of the deposition material layer 340 is applied by applying an electric field to the heating conductive layer 310 for joule heating.
  • the insulating film 320 has a thickness of t1, and the insulating film in the region where the groove 320a is formed is formed to have a thickness of t2.
  • the deposition material layer 340 that is Joule heated by the applied electric field is It corresponds to the region 340a corresponding to the groove, and eventually, the deposition material of the region 340a corresponding to the groove evaporates.
  • the evaporated deposition material may be deposited on the device substrate 350 to form the organic layer 360 of the encapsulation thin film.
  • the second insulating layer 330 is formed while reflecting the profile of the hole 320b, the second insulating layer 330 is formed in the recess portion formed in the hole 320b. 330b), and the second insulating layer 330 has a thickness of t4, and is formed to have a thickness of t3 in a region where the first insulating layer and the second insulating layer are formed.
  • the thickness of the second insulating film in the region where the concave portion 330b is formed is thinner than the thickness of the first insulating film and the second insulating film in the region where the concave portion 330b is not formed. Accordingly, the deposition material layer 340 that is Joule heated by the applied electric field corresponds to the region 340 ′ a corresponding to the yaw portion 330b, and eventually, the yaw portion ( The deposition material in the region 340 ′ a corresponding to 330 b is evaporated.
  • the heat conduction from the heat generating conductive layer for Joule heating to the material layer for deposition is controlled through the recessed portion of the second insulating film.
  • the recessed portion is formed. Since the thickness of the second insulating film is thin in the region, heat conduction to the deposition material layer occurs. In the region where no recess is formed, the thickness of the first insulating film and the second insulating film is thick. Does not occur, and thus, only a deposition material in the region 340'a corresponding to the recessed portion can be evaporated to form a constant film.
  • the first insulating layer 320 ′ has a thickness of t5, and no insulating layer is formed in the region where the hole 320b is formed.
  • the insulating film is not formed in the region where the hole 320b is formed, and the first insulating film is formed in the region where the hole 320b is not formed.
  • 340 ′′ corresponds to the region 340 ′′ a corresponding to the hole 320 b.
  • the deposition material of the region 340 ′′ a corresponding to the hole 320 b evaporates.
  • the heat conduction from the Joule heating exothermic conductive layer to the deposition material layer is controlled through the hole 320b of the first insulating film.
  • the present invention is characterized in that it is formed by a vapor deposition method in which an electric field is applied to a vapor deposition substrate including a heating conductive layer for Joule heating.
  • the present invention has the effect of providing a method of patterning during film formation without a lithography process or a separate shadow mask when manufacturing the encapsulation thin film, and thus, even when the flat panel display device is enlarged, sagging of the substrate does not occur. Therefore, the large sized device can be manufactured.
  • the present invention has the effect of forming an organic film in a relatively short time as compared with the conventional organic film forming method.
  • the present invention can be usefully used in the industry related to the manufacturing method of the sealing thin film and the organic light emitting display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 제 1 기판을 제공하고, 상기 제 1 기판 상에 적어도 하나 이상의 유기막 및 적어도 하나 이상의 무기막을 적층하여 형성하는 봉지박막의 제조방법에 있어서, 상기 유기막을 형성하는 것은 상기 제 1 기판과 대응되는 제 2 기판을 제공하고, 상기 제 2 기판 상에 주울 가열용 발열 도전층을 형성하고, 상기 주울 가열용 발열 도전층을 포함한 상기 제 2 기판의 전면에 증착용 물질층을 형성하고, 상기 주울 가열용 발열 도전층에 전계를 인가하여 상기 증착용 물질층을 주울 가열하여 형성하는 것을 특징으로 하는 봉지박막 및 유기전계발광표시장치의 제조방법을 제공한다. 따라서, 본 발명은 봉지박막의 제작시 대형 소자의 제작에 유리한 유기막의 성막 방법을 제공할 수 있는 효과가 있다.

Description

봉지박막 및 유기전계발광표시장치의 제조방법
본 발명은 봉지박막 및 유기전계발광표시장치의 제조방법에 관한 것으로, 보다 구체적으로는 도전층에 전계를 인가하여 주울 가열에 의해 유기전계발광표시장치의 봉지박막을 증착하기 위한 성막방법에 관한 것이다.
평판 표시 장치 중 유기전계발광표시장치는 응답속도가 1ms 이하로서 고속의 응답속도를 가지며, 소비 전력이 낮고, 자체 발광이므로 시야각에 문제가 없어서, 장치의 크기에 상관없이 동화상 표시 매체로서 장점이 있다. 또한, 저온 제작이 가능하고, 기존의 반도체 공정 기술을 바탕으로 제조 공정이 간단하므로 향후 차세대 평판 표시 장치로 주목받고 있다.
그러나, 유기 전계 발광소자의 발광층은 수분 및 산소로 노출되면 손상되는 문제점을 갖는다. 이에 따라, 유기전계 발광소자의 수분 및 산소에 의한 손상을 막기위해 유기 전계 발광소자가 형성된 기판 상에 봉지수단을 구비한다. 이러한 봉지수단은 봉지기판 또는 봉지박막으로 구비될 수 있다.
봉지기판은 유리 또는 금속으로 형성될 수 있으며, 봉지기판의 외곽영역에 접착부재를 도포하여, 기판과 합착시킨다. 이후, 접착부재가 도포된 봉지기판 상에 UV를 조사하여 접착부재를 경화시킨다.
그러나 유리 또는 금속으로 형성된 봉지기판은 플렉서블 기판을 사용하거나, 슬림화 된 기판을 사용하는 유기발광 표시장치에 사용하기에는 부적절하다.
반면, 봉지박막은 유기 전계 발광소자가 형성된 기판 상에 다수의 무기막 및 유기막이 교대로 적층되어 형성되는 것으로, 그 두께가 1 내지 10㎛로 형성되어, 유기 전계 발광표시장치를 얇게 형성할 수 있는 장점이 있다.
즉, 봉지박막은 수분 및 산소가 유기 발광소자로 침투하는 것을 방지하기 위해 적어도 한층의 무기막 및 적어도 한층의 유기막을 교대로 적층하여 복수층으로 형성된다.
이때, 상기 봉지박막에서의 상기 유기막은 증착공정에 의해 형성할 수 있는데, 증착 공정에 의해 유기막을 형성하는 경우, 별도의 금속마스크를 사용하게 된다.
하지만, 이러한 금속 마스크는 평판 표시 장치가 대형화가 될수록 금속 마스크도 대형화가 되어야 하며, 이때, 상기 금속 마스크는 대형화가 될수록 처짐 현상이 발생하는 문제점이 있어, 대형 소자의 제작에 어려움이 있다.
도 1은 증착용 마스크를 구비한 증착 장치를 개략적으로 도시한 단면도이다.
도 1을 참조하면, 마스크(1)를 이용하여 봉지박막에서의 유기막을 증착하기 위해서는, 진공챔버(2)에 설치된 박막 증착 용기(crucible ; 3)와 대응되는 측에 마스크와 결합된 프레임(4)을 설치하고 이의 상부에 박막 등이 형성될 대상물(5)을 장착한다. 그리고 그 상부에는 프레임(4)에 지지된 마스크(1)를 박막 등이 형성될 대상물(5)에 밀착시키기 위한 마그네트 유니트(6)를 구동시켜 상기 마스크(1)가 상기 박막 등이 형성될 대상물(5)에 밀착되도록 한다. 이 상태에서 상기 박막 증착 용기(3)의 작동으로 이에 장착된 물질이 상기 대상물(5)에 증착되게 된다.
하지만, 상술한 바와 같이, 이러한 증착용 마스크를 구비한 증착장치에 의한 유기막의 형성은 평판 표시 장치가 대형화가 될수록 상기 증착용 마스크도 대형화가 되어야 하며, 이 경우, 마스크의 처짐 현상 등으로 인하여 마스크와 대상물 간의 어라인이 어려워 대형 소자의 제작에 어려움이 있다.
따라서 본 발명은 상기와 같은 종래 기술의 제반 단점과 문제점을 해결하기 위한 것으로, 대형 소자의 제작에 유리한 봉지박막에서의 유기막의 성막 방법을 제공하는데 목적이 있다.
전술한 바와 같은 목적을 달성하기 위하여, 본 발명은 제 1 기판을 제공하고; 상기 제 1 기판 상부에 적어도 하나 이상의 유기막 및 적어도 하나 이상의 무기막을 적층하여 형성하는 봉지박막의 제조방법에 있어서, 상기 유기막을 형성하는 것은 상기 제 1 기판과 대응되는 제 2 기판을 제공하고, 상기 제 2 기판 상에 주울 가열용 발열 도전층을 형성하고, 상기 주울 가열용 발열 도전층을 포함한 상기 제 2 기판의 전면에 증착용 물질층을 형성하고, 상기 주울 가열용 발열 도전층에 전계를 인가하여 상기 증착용 물질층을 주울 가열하여 형성하는 것을 특징으로 하는 봉지박막의 제조방법을 제공한다.
또한, 본 발명은 제 1 기판을 제공하고; 상기 제 1 기판의 상부에 제1전극층을 형성하고; 상기 제1전극층의 상부에 화소정의막을 형성하고; 상기 화소정의막 상에 제1전극층의 일부를 노출시키는 개구부를 형성하고; 상기 제1전극층의 상부에 위치하며, 발광층을 포함하는 유기막층을 형성하고; 상기 유기막층의 상부에 제2전극층을 형성하고; 상기 제2전극층 상부에 적어도 하나 이상의 유기막 및 적어도 하나 이상의 무기막을 적층하여 봉지박막을 형성하는 것을 포함하는 유기전계발광 표시장치의 제조방법에 있어서, 상기 봉지박막의 유기막을 형성하는 것은 상기 제 1 기판과 대응되는 제 2 기판을 제공하고, 상기 제 2 기판 상에 주울 가열용 발열 도전층을 형성하고, 상기 주울 가열용 발열 도전층을 포함한 상기 제 2 기판의 전면에 증착용 물질층을 형성하고, 상기 주울 가열용 발열 도전층에 전계를 인가하여 상기 증착용 물질층을 주울 가열하여 형성하는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법을 제공한다.
또한, 본 발명은 상기 증착용 물질층을 주울 가열하는 것은 상기 주울 가열용 발열 도전층과 대응되는 영역의 증착용 물질층인 것을 특징으로 하는 봉지박막 및 유기전계발광표시장치의 제조방법을 제공한다.
또한, 본 발명은 상기 주울 가열용 발열 도전층과 대응되는 영역의 증착용 물질층의 증착용 물질이 증발하는 것을 특징으로 하는 봉지박막 및 유기전계발광표시장치의 제조방법을 제공한다.
또한, 본 발명은 상기 주울 가열용 발열 도전층과 대응되는 영역의 증착용 물질층에 가해지는 온도는 상기 증착용 물질의 녹는점 보다 10℃ 이상이고, 상기 주울 가열용 발열 도전층의 녹는점 이하인 것을 특징으로 하는 봉지박막 및 유기전계발광표시장치의 제조방법을 제공한다.
또한, 본 발명은 상기 주울 가열용 발열 도전층의 형상은 상기 유기막의 형상에 대응하여 패터닝되고, 상기 증착용 물질층은 상기 유기막의 재질을 사용하는 것을 특징으로 하는 봉지박막 및 유기전계발광표시장치의 제조방법을 제공한다.
또한, 본 발명은 제 1 기판을 제공하고; 상기 제 1 기판 상부에 적어도 하나 이상의 유기막 및 적어도 하나 이상의 무기막을 적층하여 형성하는 봉지박막의 제조방법에 있어서, 상기 유기막을 형성하는 것은 상기 제1기판과 대응되는 제 2 기판을 제공하고, 상기 제2기판 상에 주울 가열용 발열 도전층을 형성하고, 상기 주울 가열용 발열 도전층 상에 홈 또는 홀을 구비하는 제1절연막을 형성하고, 상기 홈 또는 홀을 구비하는 제1절연막의 상부에 증착용 물질층을 형성하고, 상기 주울 가열용 발열 도전층에 전계를 인가하여 상기 증착용 물질층을 주울 가열하는 것을 특징으로 하는 봉지박막의 제조방법을 제공한다.
또한, 본 발명은 제 1 기판을 제공하고; 상기 제 1 기판의 상부에 제1전극층을 형성하고; 상기 제1전극층의 상부에 화소정의막을 형성하고; 상기 화소정의막 상에 제1전극층의 일부를 노출시키는 개구부를 형성하고; 상기 제1전극층의 상부에 위치하며, 발광층을 포함하는 유기막층을 형성하고; 상기 유기막층의 상부에 제2전극층을 형성하고; 상기 제2전극층 상부에 적어도 하나 이상의 유기막 및 적어도 하나 이상의 무기막을 적층하여 봉지박막을 형성하는 것을 포함하는 유기전계발광 표시장치의 제조방법에 있어서, 상기 봉지박막의 유기막을 형성하는 것은 상기 제1기판과 대응되는 제2기판을 제공하고, 상기 제2기판 상에 주울 가열용 발열 도전층을 형성하고, 상기 주울 가열용 발열 도전층 상에 홈 또는 홀을 구비하는 제1절연막을 형성하고, 상기 홈 또는 홀을 구비하는 제1절연막의 상부에 증착용 물질층을 형성하고, 상기 주울 가열용 발열 도전층에 전계를 인가하여 상기 증착용 물질층을 주울 가열하는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법을 제공한다.
또한, 본 발명은 상기 증착용 물질층을 주울 가열하는 것은 상기 홈 또는 홀과 대응되는 영역의 증착용 물질층인 것을 특징으로 하는 봉지박막 및 유기전계발광표시장치의 제조방법을 제공한다.
또한, 본 발명은 상기 홈 또는 홀과 대응되는 영역의 증착용 물질층의 증착용 물질이 증발하는 것을 특징으로 하는 봉지박막 및 유기전계발광표시장치의 제조방법을 제공한다.
또한, 본 발명은 상기 홀을 구비하는 제1절연막 상에 요(凹)부를 포함하는 제3절연막을 더 형성하는 것을 특징으로 하는 봉지박막 및 유기전계발광표시장치의 제조방법을 제공한다.
또한, 본 발명은 상기 요(凹)부는 상기 유기막의 형상에 대응하여 형성되는 것을 특징으로 하는 봉지박막 및 유기전계발광표시장치의 제조방법을 제공한다.
또한, 본 발명은 상기 제1절연막에 구비된 홀 또는 홈의 형상은 상기 유기막의 형상에 대응하여 형성되고, 상기 증착용 물질층은 상기 유기막의 재질을 사용하는 것을 특징으로 하는 봉지박막 및 유기전계발광표시장치의 제조방법을 제공한다.
따라서, 본 발명은 대형 소자의 제작에 유리한 봉지박막에서의 유기막의 성막 방법을 제공할 수 있는 효과가 있다.
또한, 본 발명은 봉지박막의 제작시 리소그라피 공정이나 별도의 쉐도우 마스크 없이, 성막시 패터닝되는 방법을 제공할 수 있는 효과가 있다.
또한, 본 발명은 종래의 유기막 성막 방법에 비하여, 비교적 짧은 시간 내에 유기막을 성막할 수 있는 효과가 있다.
도 1은 증착용 마스크를 구비한 증착 장치를 개략적으로 도시한 단면도이다.
도 2는 본 발명의 제1실시예에 따른 유기전계발광표시장치를 나타내는 단면도이다.
도 3은 본 발명의 제2실시예에 따른 유기전계발광표시장치를 나타내는 단면도이다.
도 4a 내지 도 4c는 본 발명의 제1실시예에 따른 증착법의 증착용 기판의 개략적인 구성을 나타내는 단면도이다.
도 5a 및 5b는 본 발명의 제1실시예에 따른 증착용 기판을 사용한 성막 방법을 나타내는 개략적인 단면도이다.
도 6a 내지 도 6c는 본 발명의 제2실시예에 따른 증착법의 증착용 기판의 개략적인 구성을 나타내는 단면도이다.
도 7a 내지 도 7c는 본 발명의 제3실시예에 따른 증착법의 증착용 기판의 개략적인 구성을 나타내는 단면도이다.
도 7d는 본 발명의 제4실시예에 따른 증착장치의 증착용 기판의 개략적인 구성을 나타내는 단면도이다.
도 8a 및 8b는 본 발명의 제2실시예에 따른 증착용 기판을 사용한 성막 방법을 나타내는 개략적인 단면도이다.
본 발명의 상기 목적과 기술적 구성 및 그에 따른 작용효과에 관한 자세한 사항은 본 발명의 바람직한 실시 예를 도시하고 있는 도면을 참조한 이하 상세한 설명에 의해 보다 명확하게 이해될 것이다. 또한 도면들에 있어서, 층 및 영역의 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 2는 본 발명의 제1실시예에 따른 유기전계발광표시장치를 나타내는 단면도이다.
도 2를 참조하면, 투명절연기판(200)의 전면에 실리콘산화물을 플라즈마-강화 화학기상증착(plasma-enhanced chemical vapor deposition, PECVD)방법으로 소정 두께의 버퍼층(210)을 형성한다. 이때, 상기 버퍼층(210)은 후속 공정으로 형성되는 비정질실리콘층의 결정화 공정 시 상기 투명절연기판(200) 내의 불순물이 확산되는 것을 방지한다.
상기 버퍼층(210) 상부에 반도체층인 비정질실리콘층(도시안됨)을 소정두께 증착한다. 이어서, 상기 비정질실리콘층을 ELA(Excimer Laser Annealing), SLS(Sequential Lateral Solidification), MIC(Metal Induced Crystallization) 또는 MILC(Metal Induced Lateral Crystallization)법 등을 사용하여 결정화하고, 사진식각공정으로 패터닝하여 단위 화소 내의 반도체층 패턴을 형성한다.
상기 반도체층패턴을 포함하는 기판 전면에 게이트 절연막(230)을 형성한다. 이때, 상기 게이트절연막(230)은 실리콘산화막(SiO2), 실리콘질화막(SiNx) 또는 이들의 이중층으로 형성할 수 있다.
상기 게이트 절연막(230) 상의 상기 반도체층 패턴의 채널영역(221)과 대응되는 일정영역에 게이트 전극(231)을 형성한다. 상기 게이트 전극(231)은 알루미늄(Al), 알루미늄 합금(Al-alloy), 몰리브덴(Mo) 및 몰리브덴 합금(Mo-alloy)으로 이루어진 군에서 선택되는 하나로 형성할 수 있다.
그 다음, 상기 게이트전극(231)을 이온주입마스크로 사용하여 상기 반도체층패턴(220)에 불순물을 이온주입하여 소오스/드레인영역(220a 220b)을 형성한다. 이때, 상기 이온주입공정은 n+ 또는 p+ 불순물을 도펀트로 이용하여 실시된다.
다음으로, 전체표면 상부에 소정 두께의 층간절연막(240)을 형성한다. 이때, 상기 층간절연막(240)은 실리콘산화막(SiO2), 실리콘질화막(SiNx) 또는 이들의 이중층으로 형성할 수 있다.
그 다음, 사진식각공정으로 상기 층간절연막(240) 및 게이트절연막(230)을 식각하여 상기 소오스/드레인영역(220a, 220b)을 노출시키는 콘택홀을 형성한다.
다음, 상기 소오스/드레인영역(220a, 220b)에 접속되는 소오스/드레인전극(250a, 250b)을 형성한다. 이때, 상기 소오스/드레인 전극(250a, 250b)을 형성함에 있어, 상기 소오스/드레인 전극 물질로는 Mo, W, MoW, AlNd, Ti, Al, Al 합금, Ag 및 Ag 합금 등으로 이루어진 군에서 선택되는 하나의 물질로 단일층으로 형성하거나, 배선 저항을 줄이기 위해 저저항물질인 Mo, Al 또는 Ag의 2층 구조 또는 그 이상의 다중막 구조, 즉, Mo/Al/Mo, MoW/Al-Nd/MoW, Ti/Al/Ti, Mo/Ag/Mo 및 Mo/Ag-합금/Mo 등으로 이루어진 군에서 선택되는 하나의 적층구조로 형성한다.
상기 소오스/드레인 전극(250a, 250b) 상부에는 절연막이 위치하고, 상기 절연막은 무기막(260), 유기막(270) 또는 그들의 이중층일 수 있다. 또한, 상기 절연막 내의 비아홀을 통하여 연결되는 제1전극층(280)이 상기 절연막 상에 위치한다.
상기 제1전극층(280)은 배면발광형의 경우에는 투명전극으로, 전면발광형의 경우에는 반사형전극으로 구비될 수 있다. 상기 제1전극층이 투명전극으로 사용될 때에는 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), TO(Tin Oxide) 및 ZnO(Zinc Oxide)로 이루어지는 군에서 선택되는 하나로 구비될 수 있고, 반사형전극으로 사용될 때에는 Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr 및 이들의 화합물로 이루어지는 군에서 선택되는 어느 하나로 반사막을 형성한 후, 그 위에 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), TO(Tin Oxide) 및 ZnO(Zinc Oxide)로 이루어지는 군에서 선택되는 하나의 물질로 투명전극을 적층하여 형성할 수 있다.
또한, 상기 제 1 전극층(280)은 전면발광형의 경우에 하부전극층(280a), 반사전극층(280b) 및 상부전극층(280c)의 적층구조로 하여 형성할 수 있다.
상기 하부전극층(280a)은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), TO(Tin Oxide) 및 ZnO(Zinc Oxide)로 이루어지는 군에서 선택되는 하나로 형성할 수 있다. 이때, 상기 하부전극층(280a)은 50 내지 100Å의 두께를 지니도록 형성한다. 상기 하부전극층(280a)의 두께가 50Å이하일 경우 균일도 확보가 어렵고, 100Å 이상일 경우 하부전극층 자체 스트레스 때문에 접착력이 약화된다.
상기 반사전극층(280b)은 Al, Al 합금, Ag 및 Ag 합금 등으로 이루어진 군에서 선택되는 하나의 물질을 이용하여 형성할 수 있으며, 이때, 반사전극층(280b)의 두께는 900∼2000Å으로 형성할 수 있다. 두께가 900Å 이하인 경우 빛의 일부가 투과하게 되며, 1000Å 정도가 빛이 투과하지 않는 최소의 두께이다. 또한, 2000Å 이상일 경우 원가 측면이나 공정 시간 등에서 바람직하지 않다.
이때, 상기 반사전극층(280b)은 광 반사 역할을 하여 휘도와 광 효율을 증가시킬 수 있다.
상기 상부전극층(280c)은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), TO(Tin Oxide) 및 ZnO(Zinc Oxide)로 이루어지는 군에서 선택되는 하나로 형성할 수 있다. 이때, 상기 상부전극층(280c)의 두께는 50∼100Å으로 형성한다. 상기 상부전극층(280c) 두께가 50Å이하일 경우 박막의 균일도를 보장할 수 없으며, 100Å이상일 경우 간섭효과로 인하여 블루 영역에서 특히 반사율이 10%∼15% 이상 낮아지게 된다.
이어서, 상기 제1전극층(280) 상에 절연막을 형성한다. 이때, 상기 절연막은 화소정의막(pixel defined layer; 281)일 수 있다.
상기 화소정의막(281)은 폴리아크릴계 수지(polyacrylates resin), 에폭시 수지(epoxy resin), 페놀 수지(phenolic resin), 폴리아미드계 수지(polyamides resin), 폴리이미드계 수지(polyimides rein), 불포화 폴리에스테르계 수지(unsaturated polyesters resin), 폴리페닐렌계 수지(poly(phenylenethers) resin) , 폴리페닐렌설파이드계 수지(poly(phenylenesulfides) resin) 및 벤조사이클로부텐(benzocyclobutene, BCB)으로 이루어진 군에서 선택된 하나의 물질로 형성할 수 있다.
이때, 상기 화소정의막(281)은 상기 제1전극층의 일부를 노출시키는 개구부(281a)를 포함하고 있다.
이어서, 상기 개구부(281a)에 의해 노출된 제1전극층 상에 위치하며, 발광층을 포함하는 유기막층(282)을 형성하고, 이어서, 상기 유기막층(282) 상에 제2전극층(283)을 형성한다.
구체적으로는 상기 유기막층(282)은 발광층을 포함하며 그 외에 홀주입층, 홀수송층, 전자수송층 및 전자주입층 중 어느 하나 이상의 층을 추가로 포함할 수 있으며, 본 발명에서는 상기 유기막층의 구성 및 물질에 관하여 한정하는 것은 아니다.
상기 홀 수송층을 형성하는 홀 수송성 물질로는 N,N'-디(나프탈렌-1-일)-N,N'-디페닐-벤지딘{N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine:α-NPB}, N,N'-비스(3-메틸페닐)-N,N'-디페닐-[1,1'-비페닐]-4,4'-디아민(TPD) 등을 사용할 수 있다. 그리고 홀수송층의 막두께는 10 내지 50nm 범위로 형성할 수 있다. 상기 홀수송층의 두께 범위를 벗어나는 경우에는 홀 주입 특성이 저하되므로 바람직하지 못하다.
이러한 홀수송층에는 홀수송성 물질이외에 전자-홀 결합에 대하여 발광할 수 있는 도펀트를 부가할 수 있으며, 이러한 도펀트로는 4-(디시아노메틸렌)-2-터트-부틸-6-(1,1,7,7-테트라메틸줄로리딜-9-에닐)-4H-피란(4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran: DCJTB), 쿠마린6(Coumarin 6), 루브레네(Rubrene), DCM, DCJTB, 페닐렌(Perylene), 퀴나크리돈(Quinacridone) 등을 이용하며, 그 함량은 홀수송층 형성용 물질 총중량에 대하여 0.1 내지 5중량%를 사용한다. 이와 같이 홀수송층 형성시 도펀트를 부가하면, 발광색을 도펀트 종류 및 함량에 따라 조절가능하며, 홀수송층의 열적 안정성을 개선하여 소자의 수명을 향상시키는 잇점이 있다.
또한, 상기 홀주입층은 스타버스트(starbust) 아민계 화합물을 이용하여 형성할 수 있으며, 홀 주입층의 두께는 30 내지 100nm로 형성할 수 있다. 상기 홀주입층의 두께 범위를 벗어나는 경우에는 홀 주입 특성이 불량하므로 바람직하지 못하다. 상기 홀주입층을 통하여 대향전극과 홀수송층간의 접촉저항을 감소시키고, 애노드전극의 홀 수송능력이 향상시켜 소자의 특성이 전반적으로 개선되는 효과를 얻을 수 있다.
본 발명의 발광층의 형성재료는 특별히 제한되지는 않으며, 구체적인 예로서 CBP(4,4'-bis(carbazol-9-yl)-biphenyl)을 들 수 있다.
본 발명의 발광층은 상술한 홀수송층과 마찬가지로 전자-홀 결합에 대하여 발광할 수 있는 도펀트를 더 함유할 수 있으며, 이때, 도펀트 종류 및 함량은 홀수송층의 경우와 거의 동일한 수준이며, 상기 발광층의 막두께는 10 내지 40 nm 범위인 것이 바람직하다.
상기 전자수송층을 형성하는 전자수송성 물질로는 트리스(8-퀴놀리놀라토)-알루미늄(tris(8-quinolinolate)-aluminium: Alq 3 ), Almq 3 을 이용하며, 상술한 홀수송층과 마찬가지로 전자-홀 결합에 대하여 발광할 수 있는 도펀트를 더 함유하기도 한다. 이때, 도펀트 종류 및 함량은 홀수송층의 경우와 거의 동일한 수준이며, 상기 전자수송층의 막두께는 30 내지 100nm 범위로 할 수 있다. 상기 전자수송층의 두께 범위를 벗어나는 경우에는 효율 저하 및 구동전압이 상승하여 바람직하지 못하다.
상기 발광층과 전자수송층 사이에는 홀 장벽층(HBL)이 더 형성될 수 있다. 여기에서 홀 장벽층은 인광발광물질에서 형성되는 엑시톤이 전자수송층으로 이동되는것을 막아주거나 홀이 전자수송층으로 이동되는 것을 막아주는 역할을 하는 것으로, 상기 홀 장벽층 형성 재료로서 BAlq를 사용할 수 있다.
상기 전자주입층은 LiF로 이루어진 물질로 형성할 수 있으며, 이의 두께는 0.1 내지 10nm 범위로 형성할 수 있다. 상기 전자주입층층의 두께범위를 벗어나는 경우에는 구동전압이 상승하여 바람직하지 못하다.
상기 유기막층 상부에 형성된 제2전극층(283)은 배면발광형인 경우, 반사형으로 구성되며, 반사형으로 구성되는 경우 Li, Ca, LiF/Ca, LiF/Al, Al, Mg 및 이들의 합금으로 이루어지는 군에서 선택되는 어느 하나의 물질로 형성할 수 있다.
또한, 상기 유기막층 상부에 형성된 제2전극층(283)은 전면발광형인 경우, 반투과 캐소드형 또는 반투과 캐소드 형성 후 투과형 캐소드형를 적층한 구조로 구성되며, 상기 반투과 캐소드형은 Li, Ca, LiF/Ca, LiF/Al, Al, Mg 및 Mg 합금으로 이루어지는 군에서 선택되는 어느 하나의 물질을 이용하여 이를 5 내지 30nm의 두께로 얇게 형성하여 구성할 수 있으며, 상기 반투과 캐소드 형성후 투과형 캐소드형을 구성하는 방법은 일 함수가 작은 금속 즉, Li, Ca, LiF/Ca, LiF/Al, Al, Mg 및 Mg 합금으로 이루어지는 군에서 선택되는 어느 하나의 물질을 이용하여 반투과형 캐소드를 형성한 후 저저항 특성을 갖는 ITO, IZO(Indium Zinc Oxide)등을 이용한 막을 추가적으로 형성하여 만든다. 이때, 반투과 캐소드의 두께가 5nm미만인 경우에는 저전압에서 전자주입을 못하고 만약 반투과 캐소드의 두께가 30nm 이상인 경우에는 경우에는 투과율이 현저하게 떨어져 바람직하지 못하다. 또한 반투과 캐소드와 투과형 캐소드를 합친 총두께는 10 내지 400nm의 두께가 적당하다.
계속해서, 도 2를 참조하면, 본 발명의 제1실시예에 따른 유기전계발광표시장치는 상기 제2전극층(283) 상에 봉지박막(292)을 형성한다.
상기 봉지박막(292)은 수분 및 산소가 유기발광소자로 침투하는 것을 방지하기 위해 적어도 하나 이상의 무기막(290a, 290b, 290c) 및 적어도 하나 이상의 유기막(291a, 291b, 291c)을 포함하여 구성된다. 이때, 무기막의 재료에는 제한이 없으며, 예컨데, AlOxNy, Al, Al2O3, SiO2 및 SiOxNy Al2O3 로 이루어지는 군에서 선택되는 적어도 어느 하나의 물질일 수 있다. 또한, 무기막의 두께는 30 내지 100nm 인 것이 바람직한데, 30nm 미만인 경우 수분 및 산소침투를 허용할 수 있는 문제점이 있고, 100nm를 초과하는 경우 유기전계발광표시장치의 두께가 두꺼워지는 문제점이 있다.
이때, 본 발명의 제1실시예에 따른 유기전계발광표시장치는 제2전극층(283) 상에 무기막(290a)이 적층되고, 상기 무기막(290a) 상에 유기막(291a)이 적층되는 구조이다. 다만, 도 2에서는 무기막 및 유기막이 각각 3층이 적층되는 것으로 도시되어 있으나, 본 발명에서 상기 무기막 및 유기막의 적층 수를 한정하는 것은 아니다.
즉, 본 발명의 제1실시예에서는 제2전극층 상에 무기막을 먼저 적층하는데, 이는 봉지박막에서 수분 및 산소의 침투를 방지하는 것은 실질적으로 무기막에 해당하므로, 무기막으로 먼저 유기발광소자를 봉지함으로써, 수분 및 산소의 침투를 보다 효과적으로 방지할 수 있다.
이때, 상기 무기막(290a, 290b, 290c)은 재질에 따라 PECVD, 이온빔스퍼터링(Ion beam assisted sputtering), 전자빔 증착(E-beam deposition), RF 스퍼터링(RF Sputtering) 및 원자층 증착법(Atomic layer deposition) 등을 사용하여 형성할 수 있다.
또한, 본 발명에서는 상기 유기막(291a, 291b, 291c)은 주울 가열용 발열 도전층을 포함하는 증착용 기판에 전계를 인가하는 방식의 증착법에 의해 형성하는 것을 특징으로 한다. 이에 관해서는 후술하기로 한다.
즉, 본 발명에 따른 봉지박막은 각층의 형성방법에 따라, 무기막 및 유기막을 순차적으로 적층하여 형성할 수 있다.
한편, 도면에는 도시되지 않았으나, 상기 제2전극층(283)과 상기 무기막(290a)의 사이에 보호층을 더 포함할 수 있다.
도 3은 본 발명의 제2실시예에 따른 유기전계발광표시장치를 나타내는 단면도이다. 본 발명의 제2실시예에 따른 유기전계발광표시장치는 후술하는 것을 제외하고는 제1실시예와 동일할 수 있다.
도 3을 참조하면, 본 발명의 제2실시예에 따른 유기전계발광표시장치는 제2전극층(283) 상에 봉지박막(292')을 형성한다.
상기 봉지박막(292')은 수분 및 산소가 유기발광소자로 침투하는 것을 방지하기 위해 적어도 하나 이상의 무기막(290a', 290b', 290c') 및 적어도 하나 이상의 유기막(291a', 291b', 291c')을 포함하여 구성된다.
이때, 본 발명의 제2실시예에 따른 유기전계발광표시장치는 제2전극층(283) 상에 유기막(291a')이 적층되고, 상기 유기막(291a') 상에 무기막(290a')이 적층되는 구조이다. 다만, 도 3에서는 무기막 및 유기막이 각각 3층이 적층되는 것으로 도시되어 있으나, 본 발명에서 상기 무기막 및 유기막의 적층 수를 한정하는 것은 아니다.
즉, 본 발명의 제2실시예에서는 제2전극층 상에 유기막을 먼저 적층하는데, 이는 봉지박막에서 유기막은 평탄화와 유연화를 위한 것이므로, 유기막으로 단차가 형성된 유기발광소자를 먼저 봉지하여 평탄성을 부여함으로써, 이후 형성되는 막의 증착특성을 향상시킬 수 있다.
한편, 도면에는 도시되지 않았으나, 상기 제2전극층(283)과 상기 유기막(291a')의 사이에 보호층을 더 포함할 수 있다.
이하에서는, 주울 가열용 발열 도전층을 포함하는 증착용 기판에 전계를 인가하는 방식의 증착법에 의하여, 본 발명에 따른 봉지박막의 유기막을 성막하는 방법에 관해 설명하기로 한다.
도 4a 내지 도 4c는 본 발명의 제1실시예에 따른 증착법의 증착용 기판의 개략적인 구성을 나타내는 단면도이다. 이때, 도면에는 설명의 편의를 위하여 증착용 기판의 구성만을 도시하였을 뿐, 상기 증착용 기판은 진공챔버 내에 위치할 수 있다.
먼저, 도 4a 및 도 4b를 참조하면, 유리, 세라믹 또는 플라스틱과 같은 기판(100) 상에 주울 가열용 발열 도전층 물질(110)을 형성하고, 이를 패터닝 하여 주울 가열용 발열 도전층(110a)를 형성한다.
상기 주울 가열용 발열 도전층(110a)은 전극에 전계를 인가하여 줄열을 발생시켜, 상기 발생된 줄열을 통하여 증착물질을 증발시키기 위한 것으로, 구체적인 설명은 후술할 바와 같다.
상기 기판(100) 상에 주울 가열용 발열 도전층 물질(110)을 형성하는 것은 공지된 성막방법인 저압화학 증착법, 상압화학 증착법, PECVD(plasma enhanced chemical vapor deposition)법, 스퍼터링법, 진공증착법(vacuum evaporation) 등의 방법에 의하여 형성할 수 있으며, 본 발명에서 상기 주울 가열용 발열 도전층 물질(110)의 형성방법을 한정하는 것은 아니다.
또한, 주울 가열용 발열 도전층 물질(110)의 재질은 금속 또는 금속합금을 사용할 수 있다. 상기 금속 또는 금속합금은 예를 들어, 몰리브덴(Mo), 티탄늄(Ti), 크롬(Cr) 또는 몰리텅스텐(MoW) 등일 수 있으며, 다만, 본 발명에서 상기 주울 가열용 발열 도전층 물질(110)의 재질을 한정하는 것은 아니다.
또한, 상기 주울 가열용 발열 도전층 물질(110)을 패터닝 하여 주울 가열용 발열 도전층(110a)를 형성하는 것은 공지된 사진 식각공정에 의하여 진행할 수 있다.
이때, 본 발명에서 상기 주울 가열용 발열 도전층(110a)을 형성하는 것은 본 발명에 따른 봉지박막의 유기막의 형상에 대응하여 패터닝한다.
계속해서, 도 4c를 참조하면, 상기 주울 가열용 발열 도전층(110a)을 포함한 기판(100) 전면에 증착용 물질층(120)을 형성한다.
상기 증착용 물질층(120)은 공지된 성막방법인 저압화학 증착법, 상압화학 증착법, PECVD(plasma enhanced chemical vapor deposition)법, 스퍼터링법, 진공증착법(vacuum evaporation) 등의 방법에 의하여 형성할 수 있으며, 본 발명에서 상기 증착용 물질층(120)의 형성방법을 한정하는 것은 아니다.
한편, 상기 증착용 물질층(120)은 본 발명에 따른 봉지박막의 유기막의 재질에 해당하는 것으로, 폴리아크릴계 수지(polyacrylates resin), 에폭시 수지(epoxy resin), 페놀 수지(phenolic resin), 폴리아미드계 수지(polyamides resin), 폴리이미드계 수지(polyimides rein), 불포화 폴리에스테르계 수지(unsaturated polyesters resin), 폴리페닐렌계 수지(poly(phenylenethers) resin) , 폴리페닐렌설파이드계 수지(poly(phenylenesulfides) resin) 및 벤조사이클로부텐(benzocyclobutene, BCB)으로 이루어진 군에서 선택된 하나의 물질로 형성할 수 있으며, 다만, 본 발명에서는 상기 유기막의 재질을 한정하는 것은 아니다.
도 5a 및 5b는 본 발명의 제1실시예에 따른 증착용 기판을 사용한 성막 방법을 나타내는 개략적인 단면도이다. 이때, 도면에는 설명의 편의를 위하여 증착용 기판 및 소자 기판의 구성만을 도시하였을 뿐, 상기 성막 공정은 진공챔버 내에서 이루어질 수 있다.
먼저, 도 5a를 참조하면, 소자기판(130)에 대응되도록 본 발명에 따른 증착용 기판을 어라인시킨다. 다만, 도면에는 도시되지 않았으나, 상기 소자기판(130) 상에는 상술한 바와 같은 유기발광소자, 즉, 제1전극층(280), 유기막층(282) 및 제2전극층(283) 등이 형성된다.
이때, 상기 증착용 기판은 상술한 바와 같이, 기판(100) 상에 주울 가열용 발열 도전층(110a)이 형성되고, 상기 주울 가열용 발열 도전층을 포함한 기판(100) 전면에 봉지박막의 유기막 물질을 형성하기 위한 증착용 물질층이 형성되어 있다.
이후, 증착용 기판의 주울 가열용 발열 도전층(110a)에 전계를 인가한다. 상기 주울 가열용 발열 도전층(110a)에 전계를 인가하여 증착용 물질층(120)을 주울 가열하게 된다.
이때, 인가된 전계에 의하여 주울 가열되는 증착용 물질층(120)은 상기 주울 가열용 발열 도전층(110a)과 대응되는 영역(120a)에 해당하고, 따라서, 상기 주울 가열용 발열 도전층(110a)과 대응되는 영역(120a)의 증착용 물질이 증발하게 된다.
계속해서 도 5b를 참조하면, 상기 증발된 증착용 물질이 소자 기판(130)에 증착되어, 봉지박막의 유기막(140)을 형성할 수 있다.
한편, 도 5a 및 도 5b에서는 설명의 편의를 위하여 주울 가열용 발열 도전층(110a)을 2개인 것으로 표현하였으나, 이들의 개수에 한정되는 것은 아니며, 원장기판의 크기 또는 원장기판 상에 형성되는 유기전계발광표시장치의 개수에 대응되어 주울 가열용 발열 도전층을 형성할 수 있다.
구체적으로, 유기전계발광표시장치를 완성하는 것은 원장기판 상에 복수의 유기전계발광표시장치를 형성한 후, 이를 스크라이빙하여 개개의 유기전계발광표시장치를 완성할 수 있다.
이때, 원장기판 상에 전체적으로 봉지박막을 형성한 후, 스크라이빙라인을 따라 스크라이빙하여 개개의 유기전계발광표시장치를 완성할 수 있고, 이와는 달리, 원장기판 상에 복수개로 형성된 유기전계발광표시장치 상에 각각 봉지박막을 형성한 후, 스크라이빙라인을 따라 스크라이빙하여 개개의 유기전계발광표시장치를 완성할 수 있는데, 전자의 경우에는 주울 가열용 발열 도전층을 원장기판의 크기에 대응하여 형성할 수 있고, 후자의 경우에는 주울 가열용 발열 도전층을 개개의 유기전계발광표시장치의 봉지박막의 유기막의 형상에 대응하여 형성할 수 있으므로, 원장기판의 크기 또는 원장기판 상에 형성되는 유기전계발광표시장치의 개수에 대응되어 주울 가열용 발열 도전층을 형성할 수 있다.
다만, 본 발명에서 상기 주울 가열용 발열 도전층의 개수 및 크기를 한정하는 것은 아니다.
상기 주울 가열이란, 도체를 통하여 전류가 흐를 때 저항으로 인하여 발생되는 열을 이용하여 가열하는 것을 의미한다. 전계의 인가로 인한 주울 가열에 의해 도전층에 가해지는 단위 시간당 에너지량은 하기 식으로 표시될 수 있다.
W = V × I
상기 식에서, W 는 주울 가열의 단위 시간당 에너지량, V 는 도전층의 양단에 걸리는 전압, I 는 전류를 각각 의미한다.
상기 식으로부터 전압(V)이 증가할수록, 및/또는 전류(I)가 클수록, 주울 가열에 의해 도전층에 가해지는 단위 시간당 에너지량이 증가함을 알 수 있다. 주울 가열에 의해 도전층의 온도가 올라가면 도전층, 즉, 주울 가열용 발열 도전층의 상부에 위치하는 증착용 물질층으로 열전도가 일어나게 되며, 전달된 열로 인하여 상기 주울 가열용 발열 도전층(110a)과 대응되는 영역(120a)의 증착용 물질을 증발시킬 수 있다.
상기 주울 가열용 발열 도전층(110a)에 대한 전계 인가는 상기 주울 가열용 발열 도전층(110a)과 대응되는 영역(120a)의 증발을 유도하기에 충분한 고열을 주울 가열에 의해 발생시킬 수 있는 파워 밀도(power density)의 에너지를 인가함으로써 행해진다. 상기 전계의 인가는 상기 주울 가열용 발열 도전층(110a)의 저항, 길이, 두께 등 다양한 요소들에 의해 결정되므로 특정되기는 어렵다.
다만, 원활한 증발을 위해서는 상기 주울 가열용 발열 도전층(110a)과 대응되는 영역(120a)에 가해지는 온도가 상기 증착용 물질의 녹는점 보다 10℃ 이상 높은 것이 바람직하며 주울 가열용 발열 도전층(110a)의 녹는점 이하인 것이 바람직 하다, 이를 위하여 약 1 kw/㎠ 내지 1,000 kw/㎠ 의 전계를 인가하는 것이 바람직하다.
상기 온도가 증착용 물질의 녹는점 미만인 경우는 증착용 물질의 증발이 어려울 수 있으며, 또한, 상기 온도가 주울 가열용 발열 도전층(110a)의 녹는점을 초과하는 경우는 정확한 패턴의 증착이 어렵게 된다.
즉, 본 발명에서 증발되어야 할 증착용 물질은 상기 주울 가열용 발열 도전층과 대응되는 영역의 증착용 물질이어야 하나, 상기 온도가 주울 가열용 발열 도전층의 녹는점을 초과하는 경우는 상기 주울 가열용 발열 도전층도 증발이 일어나게 되므로, 성막하고자 하는 패턴의 조성, 두께 및 형상 등이 불균일 해지며, 심한 경우 도전층이 견디지 못하고 파괴되는 현상이 일어나게 된다.
이때, 인가되는 전류는 직류이거나 교류일 수 있으며, 전계의 1회 인가 시간은1/1,000,000 ~ 100 초일 수 있으며, 바람직하게는 1/1,000,000 ~ 10 초, 더욱 바람직하게는 1/1,000,000 ~ 1초이다.
이러한 전계의 인가는 규칙적 또는 불규칙적 단위로 수회 반복될 수 있다. 따라서 총 열처리 시간은 상기의 전계 인가 시간보다 클 수 있지만, 이는 적어도 종래의 성막 방법들과 비교하여 매우 짧은 시간이다.
또한, 종래의 성막방법 중 증착용 마스크를 구비한 증착장치에 의한 박막의 형성은 평판 표시 장치가 대형화가 될수록 상기 증착용 마스크도 대형화가 되어야 하며, 이 경우, 마스크의 처짐 현상 등으로 인하여 마스크와 대상물간의 어라인이 어려워 대형 소자의 제작에 어려움이 있었으나, 본 발명에 따른 증착용 기판을 사용하여 성막 공정을 실시하는 경우, 증착용 기판의 두께가 두껍기 때문에 평판 표시 장치가 대형화되더라도 기판의 처짐 현상 등은 발생하지 않게 되고, 따라서, 대형 소자의 제작이 가능하게 된다.
도 6a 내지 도 6c는 본 발명의 제2실시예에 따른 증착법의 증착용 기판의 개략적인 구성을 나타내는 단면도이다. 본 발명의 제2실시예에 따른 증착용 기판은 후술하는 것을 제외하고는 상술한 제1실시예에 따른 증착용 기판과 동일할 수 있다.
먼저, 도 6a를 참조하면, 유리, 세라믹 또는 플라스틱과 같은 기판(300) 상에 주울 가열용 발열 도전층(310)을 형성한다.
상기 주울 가열용 발열 도전층(310)은 전극에 전계를 인가하여 줄열을 발생시켜, 상기 발생된 줄열을 통하여 증착물질을 증발시키기 위한 것이다.
이어서, 도 6b를 참조하면, 공지된 성막방법에 의하여, 상기 주울 가열용 발열 도전층(310) 상에 절연막(320)을 형성하고, 상기 절연막(320)의 일정영역을 제거하여 상기 절연막(320) 내에 홈(320a)을 형성한다.
상기 절연막(320)은 유기막 또는 무기막으로 이루어질 수 있으며, 상기 유기막은 폴리아크릴계 수지(polyacrylates resin), 에폭시 수지(epoxy resin), 페놀 수지(phenolic resin), 폴리아미드계 수지(polyamides resin), 폴리이미드계 수지(polyimides rein), 불포화 폴리에스테르계 수지(unsaturated polyesters resin), 폴리페닐렌계 수지(poly(phenylenethers) resin) , 폴리페닐렌설파이드계 수지(poly(phenylenesulfides) resin) 및 벤조사이클로부텐(benzocyclobutene, BCB)으로 이루어진 군에서 선택된 하나의 물질을 사용할 수 있고, 상기 무기막은 실리콘 산화막, 실리콘 질화막 또는 실리콘 산질화막을 사용하여 형성할 수 있으며, 본 발명에서 상기 절연막의 재질을 한정하는 것은 아니다.
또한, 상기 절연막(320)의 일정영역을 제거하여 상기 절연막(320) 내에 홈(320a)을 형성하는 것은 공지된 사진 식각공정에 의하여 진행할 수 있으며, 본 발명에서 상기 홈을 형성하는 방법을 한정하는 것은 아니다.
상기 절연막(320)은 도 6b에 도시된 바와 같이 t1의 두께를 가지며, 상기 홈(120a)이 형성된 영역에서의 절연막은 t2의 두께를 갖도록 형성된다. 이에 관하여는 후술하기로 한다.
이때, 본 발명에서 상기 절연막(320) 내에 홈(320a)을 형성하는 것은 본 발명에 따른 봉지박막의 유기막의 형상에 대응하여 형성한다.
계속해서, 도 6c를 참조하면, 상기 홈(320a)이 구비된 절연막(320) 상에 증착용 물질층(340)을 형성한다. 이때, 상기 증착용 물질층(300)은 본 발명에 따른 봉지박막의 유기막의 재질에 해당하는 것이다.
도 7a 내지 도 7c는 본 발명의 제3실시예에 따른 증착법의 증착용 기판의 개략적인 구성을 나타내는 단면도이다. 본 발명의 제3실시예에 따른 증착용 기판은 후술하는 것을 제외하고는 상술한 제2실시예에 따른 증착용 기판과 동일할 수 있다.
먼저, 도 7a를 참조하면, 유리, 스테인레스 스틸 또는 플라스틱과 같은 기판(300) 상에 주울 가열용 발열 도전층(310)을 형성하고, 상술한 바와 같은 공지된 성막방법에 의하여, 상기 주울 가열용 발열 도전층(310) 상에 제1절연막(320')을 형성한다.
이때, 상기 제1절연막(320')의 일정영역을 제거하여 상기 제1절연막(320') 내에 홀(320b)을 형성한다.
상기 제1절연막(320')은 유기막 또는 무기막으로 이루어질 수 있으며, 상기 유기막은 폴리아크릴계 수지(polyacrylates resin), 에폭시 수지(epoxy resin), 페놀 수지(phenolic resin), 폴리아미드계 수지(polyamides resin), 폴리이미드계 수지(polyimides rein), 불포화 폴리에스테르계 수지(unsaturated polyesters resin), 폴리페닐렌계 수지(poly(phenylenethers) resin) , 폴리페닐렌설파이드계 수지(poly(phenylenesulfides) resin) 및 벤조사이클로부텐(benzocyclobutene, BCB)으로 이루어진 군에서 선택된 하나의 물질을 사용할 수 있고, 상기 무기막은 실리콘 산화막, 실리콘 질화막 또는 실리콘 산질화막을 사용하여 형성할 수 있으며, 본 발명에서 상기 제1절연막의 재질을 한정하는 것은 아니다.
또한, 상기 제1절연막(320')의 일정영역을 제거하여 상기 제1절연막(320') 내에 홀(320b)을 형성하는 것은 공지된 사진 식각공정에 의하여 진행할 수 있으며, 본 발명에서 상기 홀을 형성하는 방법을 한정하는 것은 아니다.
계속해서, 도 7b를 참조하면, 상술한 바와 같은 공지된 성막방법에 의하여, 상기 홀(320b)이 구비된 제1절연막(320') 상에 제2절연막(330)을 형성한다.
상기 제2절연막(330)은 상기 제1절연막(320')와 동일한 재질을 사용할 수 있으나, 상기 제2절연막(330)이 상기 제1절연막(320')에 형성된 홀(320b)의 프로파일을 반영하면서 형성될 수 있도록, 상기 제2절연막(330)은 무기막으로 이루어지는 것이 바람직하다.
즉, 도 7b에 도시된 바와 같이, 제2절연막(330)은 홀(320b)의 프로파일을 반영하면서 형성되므로, 상기 제2절연막(330)은 상기 홀(320b) 내에 형성된 요(凹)부(330b)를 포함하게 된다.
이때, 본 발명에서 상기 제2절연막(330)에 형성된 요(凹)부(330b)는 본 발명에 따른 봉지박막의 유기막의 형상에 대응하여 형성한다.
상기 제2절연막(330)은 도 7b에 도시된 바와 같이 t4의 두께를 가지며, 상기 제1절연막과 제2절연막이 형성된 영역에서는 t3의 두께를 갖도록 형성된다. 이에 관하여는 후술하기로 한다.
계속해서, 도 7c를 참조하면, 상기 요(凹)부(330b)가 구비된 제2절연막(330) 상에 증착용 물질층(340')을 형성한다. 이때, 상기 증착용 물질층(340')은 본 발명에 따른 봉지박막의 유기막의 재질에 해당하는 것이다.
한편, 도 7b 및 도 7c에서는 상기 홀(320b)이 구비된 제1절연막(320') 상에 제2절연막(330)을 형성하고, 상기 요(凹)부(330b)가 구비된 제2절연막(330) 상에 증착용 물질층(340')을 형성하는 것을 도시하고 있으나, 이와는 달리, 상기 홀이 구비된 제1절연막 상에 증착용 물질층을 형성하는 것도 가능하다.
즉, 도 7d는 본 발명의 제4실시예에 따른 증착장치의 증착용 기판의 개략적인 구성을 나타내는 단면도로써, 도 7d를 참조하면, 홀(320b)이 구비된 제1절연막(320') 상에 증착용 물질층(340'')이 형성되어 있으며, 상기 제1절연막(320')은 t5의 두께를 가지며, 상기 홀(320b)이 형성된 영역에서는 절연막이 형성되어 있지 않다. 이에 관하여는 후술하기로 한다.
이때, 본 발명에서 상기 절연막(320') 내에 홀(320b)을 형성하는 것은 본 발명에 따른 봉지박막의 유기막의 형상에 대응하여 형성한다.
도 8a 및 8b는 본 발명의 제2실시예에 따른 증착용 기판을 사용한 성막 방법을 나타내는 개략적인 단면도이다. 본 발명의 제2실시예에 따른 성막방법은 후술하는 것을 제외하고는 상술한 제1실시예에 따른 성막방법과 동일할 수 있다. 이때, 도면에는 설명의 편의를 위하여 증착용 기판 및 소자 기판의 구성만을 도시하였을 뿐, 상기 성막 공정은 진공챔버 내에서 이루어질 수 있다.
먼저, 도 8a를 참조하면, 소자기판(350)에 대응되도록 본 발명에 따른 증착용 기판을 어라인시킨다. 다만, 도면에는 도시되지 않았으나, 상기 소자기판(350) 상에는 상술한 바와 같은 유기발광소자, 즉, 제1전극층(280), 유기막층(282) 및 제2전극층(283) 등이 형성된다.
이때, 상기 증착용 기판은 상술한 바와 같이, 기판(300) 상에 주울 가열용 발열 도전층(310)이 형성되고, 상기 주울 가열용 발열 도전층(310) 상에 홈(320a)을 구비하는 절연막(320)이 형성되고, 상기 홈이 구비된 절연막(320) 상에 증착용 물질층(340)이 형성되어 있다.
이후, 증착용 기판의 주울 가열용 발열 도전층(310)에 전계를 인가한다. 상기 주울 가열용 발열 도전층(310)에 전계를 인가하여 증착용 물질층(340)을 주울 가열하게 된다.
이때, 상술한 바와 같이, 상기 절연막(320)은 t1의 두께를 가지며, 상기 홈(320a)이 형성된 영역에서의 절연막은 t2의 두께를 갖도록 형성되어 있다.
즉, 홈(320a)이 형성된 영역에서의 절연막의 두께가 홈이 형성되지 않은 영역에서의 절연막의 두께보다 얇게 형성되어 있으며, 따라서, 인가된 전계에 의하여 주울 가열되는 증착용 물질층(340)은 상기 홈과 대응되는 영역(340a)에 해당하고, 결국, 상기 홈과 대응되는 영역(340a)의 증착용 물질이 증발하게 된다.
계속해서 도 8b를 참조하면, 상기 증발된 증착용 물질이 소자 기판(350)에 증착되어, 봉지박막의 유기막(360)을 형성할 수 있다.
한편, 도 8a 및 도 8b에서는 제2실시예에 따른 증착용 기판을 사용한 성막 방법만을 도시하였으나, 이와 동일한 원리에 의하여 제3실시예에 따른 증착용 기판을 사용하여 성막하는 것이 가능하다.
즉, 도 7b에 도시된 바와 같이, 제2절연막(330)은 홀(320b)의 프로파일을 반영하면서 형성되므로, 상기 제2절연막(330)은 상기 홀(320b) 내에 형성된 요(凹)부(330b)를 포함하게 되며, 상기 제2절연막(330)은 t4의 두께를 가지며, 상기 제1절연막과 제2절연막이 형성된 영역에서는 t3의 두께를 갖도록 형성된다.
이때, 요(凹)부(330b)가 형성된 영역에서의 제2절연막의 두께가 요(凹)부(330b)가 형성되지 않은 영역에서의 제1절연막 및 제2절연막의 두께보다 얇게 형성되어 있으며, 따라서, 인가된 전계에 의하여 주울 가열되는 증착용 물질층(340)은 상기 요(凹)부(330b)와 대응되는 영역(340'a)에 해당하고, 결국, 상기 요(凹)부(330b)와 대응되는 영역(340'a)의 증착용 물질이 증발하게 된다.
즉, 본 발명의 제3실시예에서는 제2절연막의 요(凹)부를 통하여 주울 가열용 발열 도전층으로부터 증착용 물질층까지의 열전도를 제어하게 되며, 상술한 바와 같이, 요(凹)부가 형성된 영역에서는 제2절연막의 두께가 얇기 때문에 증착용 물질층까지의 열전도가 일어나게 되나, 요(凹)부가 형성되지 않은 영역에서는 제1절연막 및 제2절연막의 두께가 두껍기 때문에 증착용 물질층까지의 열전도가 일어나지 않게 되고, 따라서, 요(凹)부와 대응되는 영역(340'a)의 증착용 물질만을 증발시켜 일정한 막을 형성할 수 있다.
한편, 상술한 바와 동일한 원리에 의하여 제4실시예에 따른 증착용 기판을 사용하여 성막하는 것이 가능하다.
즉, 도 7d에 도시된 바와 같이, 제1절연막(320')은 t5의 두께를 가지며, 상기 홀(320b)이 형성된 영역에서는 절연막이 형성되어 있지 않다.
이때, 홀(320b)이 형성된 영역에서는 절연막이 형성되어 있지 않고, 홀(320b)이 형성되지 않은 영역에서는 제1절연막이 형성되어 있으며, 따라서, 인가된 전계에 의하여 주울 가열되는 증착용 물질층(340'')은 상기 홀(320b)과 대응되는 영역(340''a)에 해당하고, 결국, 상기 홀(320b)과 대응되는 영역(340''a)의 증착용 물질이 증발하게 된다.
즉, 본 발명의 제4실시예에서는 제1절연막의 홀(320b)을 통하여 주울 가열용 발열 도전층으로부터 증착용 물질층까지의 열전도를 제어하게 된다.
이상과 같이, 본 발명에서는 봉지박막의 유기막을 형성함에 있어서, 주울 가열용 발열 도전층을 포함하는 증착용 기판에 전계를 인가하는 방식의 증착법에 의해 형성하는 것을 특징으로 한다.
이로써, 본 발명은 봉지박막의 제작시 리소그라피 공정이나 별도의 쉐도우 마스크 없이 성막시 패터닝되는 방법을 제공할 수 있는 효과가 있으며, 따라서, 평판 표시 장치가 대형화되더라도 기판의 처짐 현상 등은 발생하지 않게 되고, 따라서, 대형 소자의 제작이 가능하게 된다.
또한, 본 발명은 종래의 유기막 성막 방법에 비하여, 비교적 짧은 시간 내에 유기막을 성막할 수 있는 효과가 있다.
본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 봉지박막 및 유기전계발광표시장치의 제조방법에 관련된 산업에 유용하게 이용될 수 있다.

Claims (30)

  1. 제 1 기판을 제공하고; 상기 제 1 기판 상부에 적어도 하나 이상의 유기막 및 적어도 하나 이상의 무기막을 적층하여 형성하는 봉지박막의 제조방법에 있어서,
    상기 유기막을 형성하는 것은
    상기 제 1 기판과 대응되는 제 2 기판을 제공하고,
    상기 제 2 기판 상에 주울 가열용 발열 도전층을 형성하고,
    상기 주울 가열용 발열 도전층을 포함한 상기 제 2 기판의 전면에 증착용 물질층을 형성하고,
    상기 주울 가열용 발열 도전층에 전계를 인가하여 상기 증착용 물질층을 주울 가열하여 형성하는 것을 특징으로 하는 봉지박막의 제조방법.
  2. 제 1 항에 있어서,
    상기 증착용 물질층을 주울 가열하는 것은 상기 주울 가열용 발열 도전층과 대응되는 영역의 증착용 물질층인 것을 특징으로 하는 봉지박막의 제조방법.
  3. 제 1 항에 있어서,
    상기 주울 가열용 발열 도전층과 대응되는 영역의 증착용 물질층의 증착용 물질이 증발하는 것을 특징으로 하는 봉지박막의 제조방법.
  4. 제 1 항에 있어서,
    상기 주울 가열용 발열 도전층과 대응되는 영역의 증착용 물질층에 가해지는 온도는 상기 증착용 물질의 녹는점 보다 10℃ 이상이고, 상기 주울 가열용 발열 도전층의 녹는점 이하인 것을 특징으로 하는 봉지박막의 제조방법.
  5. 제 1 항에 있어서,
    상기 주울 가열용 발열 도전층에 1kw/㎠ 내지 1000kw/㎠의 전계를 인가하는 것을 특징으로 하는 봉지박막의 제조방법.
  6. 제 1 항에 있어서,
    상기 전계의 인가 시간은 1/1,000,000 내지 100초인 것을 특징으로 하는 봉지박막의 제조방법.
  7. 제 1 항에 있어서,
    상기 주울 가열용 발열 도전층의 형상은 상기 유기막의 형상에 대응하여 패터닝되고, 상기 증착용 물질층은 상기 유기막의 재질을 사용하는 것을 특징으로 하는 봉지박막의 제조방법.
  8. 제 1 기판을 제공하고; 상기 제 1 기판 상부에 적어도 하나 이상의 유기막 및 적어도 하나 이상의 무기막을 적층하여 형성하는 봉지박막의 제조방법에 있어서,
    상기 유기막을 형성하는 것은
    상기 제 1 기판과 대응되는 제 2 기판을 제공하고,
    상기 제 2 기판 상에 주울 가열용 발열 도전층을 형성하고,
    상기 주울 가열용 발열 도전층 상에 홈 또는 홀을 구비하는 제1절연막을 형성하고,
    상기 홈 또는 홀을 구비하는 제1절연막의 상부에 증착용 물질층을 형성하고,
    상기 주울 가열용 발열 도전층에 전계를 인가하여 상기 증착용 물질층을 주울 가열하는 것을 특징으로 하는 봉지박막의 제조방법.
  9. 제 8 항에 있어서,
    상기 증착용 물질층을 주울 가열하는 것은 상기 홈 또는 홀과 대응되는 영역의 증착용 물질층인 것을 특징으로 하는 봉지박막의 제조방법.
  10. 제 8 항에 있어서,
    상기 홈 또는 홀과 대응되는 영역의 증착용 물질층의 증착용 물질이 증발하는 것을 특징으로 하는 봉지박막의 제조방법.
  11. 제 8 항에 있어서,
    상기 홈 또는 홀과 대응되는 영역의 증착용 물질층에 가해지는 온도는 상기 증착용 물질의 녹는점 보다 10℃ 이상이고, 상기 주울 가열용 발열 도전층의 녹는점 이하인 것을 특징으로 하는 봉지박막의 제조방법.
  12. 제 8 항에 있어서,
    상기 주울 가열용 발열 도전층에 1kw/㎠ 내지 1000kw/㎠의 전계를 인가하는 것을 특징으로 하는 봉지박막의 제조방법.
  13. 제 8 항에 있어서,
    상기 홀을 구비하는 제1절연막 상에 요(凹)부를 포함하는 제3절연막을 더 형성하는 것을 특징으로 하는 봉지박막의 제조방법.
  14. 제 13 항에 있어서,
    상기 요(凹)부는 상기 유기막의 형상에 대응하여 형성되는 것을 특징으로 하는 봉지박막의 제조방법.
  15. 제 8 항에 있어서,
    상기 제1절연막에 구비된 홀 또는 홈의 형상은 상기 유기막의 형상에 대응하여 형성되고, 상기 증착용 물질층은 상기 유기막의 재질을 사용하는 것을 특징으로 하는 봉지박막의 제조방법.
  16. 제 1 기판을 제공하고; 상기 제 1 기판의 상부에 제1전극층을 형성하고; 상기 제1전극층의 상부에 화소정의막을 형성하고; 상기 화소정의막 상에 제1전극층의 일부를 노출시키는 개구부를 형성하고; 상기 제1전극층의 상부에 위치하며, 발광층을 포함하는 유기막층을 형성하고; 상기 유기막층의 상부에 제2전극층을 형성하고; 상기 제2전극층 상부에 적어도 하나 이상의 유기막 및 적어도 하나 이상의 무기막을 적층하여 봉지박막을 형성하는 것을 포함하는 유기전계발광 표시장치의 제조방법에 있어서,
    상기 봉지박막의 유기막을 형성하는 것은
    상기 제 1 기판과 대응되는 제 2 기판을 제공하고,
    상기 제 2 기판 상에 주울 가열용 발열 도전층을 형성하고,
    상기 주울 가열용 발열 도전층을 포함한 상기 제 2 기판의 전면에 증착용 물질층을 형성하고,
    상기 주울 가열용 발열 도전층에 전계를 인가하여 상기 증착용 물질층을 주울 가열하여 형성하는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  17. 제 16 항에 있어서,
    상기 증착용 물질층을 주울 가열하는 것은 상기 주울 가열용 발열 도전층과 대응되는 영역의 증착용 물질층인 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  18. 제 16 항에 있어서,
    상기 주울 가열용 발열 도전층과 대응되는 영역의 증착용 물질층의 증착용 물질이 증발하는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  19. 제 16 항에 있어서,
    상기 주울 가열용 발열 도전층과 대응되는 영역의 증착용 물질층에 가해지는 온도는 상기 증착용 물질의 녹는점 보다 10℃ 이상이고, 상기 주울 가열용 발열 도전층의 녹는점 이하인 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  20. 제 16 항에 있어서,
    상기 주울 가열용 발열 도전층에 1kw/㎠ 내지 1000kw/㎠의 전계를 인가하는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  21. 제 16 항에 있어서,
    상기 전계의 인가 시간은 1/1,000,000 내지 100초인 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  22. 제 16 항에 있어서,
    상기 주울 가열용 발열 도전층의 형상은 상기 유기막의 형상에 대응하여 패터닝되고, 상기 증착용 물질층은 상기 유기막의 재질을 사용하는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  23. 제 1 기판을 제공하고; 상기 제 1 기판의 상부에 제1전극층을 형성하고; 상기 제1전극층의 상부에 화소정의막을 형성하고; 상기 화소정의막 상에 제1전극층의 일부를 노출시키는 개구부를 형성하고; 상기 제1전극층의 상부에 위치하며, 발광층을 포함하는 유기막층을 형성하고; 상기 유기막층의 상부에 제2전극층을 형성하고; 상기 제2전극층 상부에 적어도 하나 이상의 유기막 및 적어도 하나 이상의 무기막을 적층하여 봉지박막을 형성하는 것을 포함하는 유기전계발광 표시장치의 제조방법에 있어서,
    상기 봉지박막의 유기막을 형성하는 것은
    상기 제 1 기판과 대응되는 제2기판을 제공하고,
    상기 제 2 기판 상에 주울 가열용 발열 도전층을 형성하고,
    상기 주울 가열용 발열 도전층 상에 홈 또는 홀을 구비하는 제1절연막을 형성하고,
    상기 홈 또는 홀을 구비하는 제1절연막의 상부에 증착용 물질층을 형성하고,
    상기 주울 가열용 발열 도전층에 전계를 인가하여 상기 증착용 물질층을 주울 가열하는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  24. 제 23 항에 있어서,
    상기 증착용 물질층을 주울 가열하는 것은 상기 홈 또는 홀과 대응되는 영역의 증착용 물질층인 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  25. 제 23 항에 있어서,
    상기 홈 또는 홀과 대응되는 영역의 증착용 물질층의 증착용 물질이 증발하는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  26. 제 23 항에 있어서,
    상기 홈 또는 홀과 대응되는 영역의 증착용 물질층에 가해지는 온도는 상기 증착용 물질의 녹는점 보다 10℃ 이상이고, 상기 주울 가열용 발열 도전층의 녹는점 이하인 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  27. 제 23 항에 있어서,
    상기 주울 가열용 발열 도전층에 1kw/㎠ 내지 1000kw/㎠의 전계를 인가하는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  28. 제 23 항에 있어서,
    상기 홀을 구비하는 제1절연막 상에 요(凹)부를 포함하는 제3절연막을 더 형성하는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  29. 제 28 항에 있어서,
    상기 요(凹)부는 상기 유기막의 형상에 대응하여 형성되는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
  30. 제 23 항에 있어서,
    상기 제1절연막에 구비된 홀 또는 홈의 형상은 상기 유기막의 형상에 대응하여 형성되고, 상기 증착용 물질층은 상기 유기막의 재질을 사용하는 것을 특징으로 하는 유기전계발광 표시장치의 제조방법.
PCT/KR2011/006388 2010-09-24 2011-08-30 봉지박막 및 유기전계발광표시장치의 제조방법 WO2012039554A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0092885 2010-09-24
KR1020100092885A KR20120031382A (ko) 2010-09-24 2010-09-24 봉지박막 및 유기전계발광표시장치의 제조방법

Publications (2)

Publication Number Publication Date
WO2012039554A2 true WO2012039554A2 (ko) 2012-03-29
WO2012039554A3 WO2012039554A3 (ko) 2012-05-31

Family

ID=45874234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006388 WO2012039554A2 (ko) 2010-09-24 2011-08-30 봉지박막 및 유기전계발광표시장치의 제조방법

Country Status (2)

Country Link
KR (1) KR20120031382A (ko)
WO (1) WO2012039554A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8659224B1 (en) 2012-09-06 2014-02-25 Samsung Display Co., Ltd. Organic light emitting display apparatus and method for manufacturing the same
US9271371B2 (en) 2012-09-18 2016-02-23 Samsung Display Co., Ltd. Flat panel display device having thin film encapsulation and, manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102080008B1 (ko) 2013-07-12 2020-02-24 삼성디스플레이 주식회사 유기발광표시장치 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295027A (ja) * 2000-04-18 2001-10-26 Victor Co Of Japan Ltd 蒸着源、パターン形成方法、及び電子デバイスの製造方法
JP2002302759A (ja) * 2001-04-05 2002-10-18 Sony Corp 薄膜パターンの形成方法および有機電界発光表示装置の製造方法
KR20060028212A (ko) * 2004-09-24 2006-03-29 전자부품연구원 유기전계발광소자 및 그 제조방법
JP2006202510A (ja) * 2005-01-18 2006-08-03 Seiko Epson Corp 有機el装置の製造方法
JP2007154253A (ja) * 2005-12-05 2007-06-21 Denso Corp 蒸着パターン形成装置及び蒸着パターン形成方法
JP2008174783A (ja) * 2007-01-17 2008-07-31 Fuji Electric Holdings Co Ltd パターン状の蒸着膜の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295027A (ja) * 2000-04-18 2001-10-26 Victor Co Of Japan Ltd 蒸着源、パターン形成方法、及び電子デバイスの製造方法
JP2002302759A (ja) * 2001-04-05 2002-10-18 Sony Corp 薄膜パターンの形成方法および有機電界発光表示装置の製造方法
KR20060028212A (ko) * 2004-09-24 2006-03-29 전자부품연구원 유기전계발광소자 및 그 제조방법
JP2006202510A (ja) * 2005-01-18 2006-08-03 Seiko Epson Corp 有機el装置の製造方法
JP2007154253A (ja) * 2005-12-05 2007-06-21 Denso Corp 蒸着パターン形成装置及び蒸着パターン形成方法
JP2008174783A (ja) * 2007-01-17 2008-07-31 Fuji Electric Holdings Co Ltd パターン状の蒸着膜の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8659224B1 (en) 2012-09-06 2014-02-25 Samsung Display Co., Ltd. Organic light emitting display apparatus and method for manufacturing the same
US9271371B2 (en) 2012-09-18 2016-02-23 Samsung Display Co., Ltd. Flat panel display device having thin film encapsulation and, manufacturing method thereof

Also Published As

Publication number Publication date
WO2012039554A3 (ko) 2012-05-31
KR20120031382A (ko) 2012-04-03

Similar Documents

Publication Publication Date Title
WO2011005021A2 (ko) 증착장치의 증착용 기판, 상기 증착용 기판을 사용한 성막 방법 및 유기전계발광표시장치의 제조방법
KR100796618B1 (ko) 유기전계발광표시장치 및 그의 제조방법
CN101556991B (zh) 有机发光二极管显示装置及其制造方法
EP2110003B1 (en) Method of manufacturing a flexible device and method of manufacturing a flexible display
KR100611756B1 (ko) 유기 전계 발광 소자 및 그의 제조 방법
KR100838090B1 (ko) 유기 발광 표시장치 및 이의 제조방법
KR101065318B1 (ko) 플렉서블 디스플레이 장치의 제조 방법
US8035298B2 (en) Organic light emitting display having electrostatic discharge protection
KR100824880B1 (ko) 유기 전계 발광 표시 장치 및 그 제조 방법
WO2013141676A1 (ko) 유기전자소자용 기판
KR100833768B1 (ko) 유기 전계 발광 화소 장치 및 그 제조 방법
KR100807560B1 (ko) 유기전계발광표시장치 및 그의 제조방법
WO2015174673A1 (ko) 유기발광소자 및 이의 제조방법
KR20140115955A (ko) 표시 장치의 제조 방법 및 표시 장치
KR20110057985A (ko) 플렉서블 디스플레이 장치 및 그의 제조방법
WO2011005008A2 (ko) 증착장치의 증착용 기판, 상기 증착용 기판을 사용한 성막 방법 및 유기전계발광표시장치의 제조방법
WO2012039554A2 (ko) 봉지박막 및 유기전계발광표시장치의 제조방법
KR101073562B1 (ko) 패드부, 이를 포함하는 유기전계발광표시장치 및 유기전계발광표시장치의 제조방법
KR101879796B1 (ko) 유기전계발광 표시장치 및 그 제조방법
WO2013143146A1 (zh) 有机电致发光器件及其制备方法
KR20120129507A (ko) 주울 가열을 이용한 유기전계발광 표지장치의 제조방법
WO2021006567A1 (ko) 투명 전극 구조체 및 이를 포함하는 전기 소자
WO2022265208A1 (ko) 표시 장치 및 그 제조 방법
WO2023113406A1 (ko) 표시 장치 및 표시 장치의 제조방법
JP2003186422A (ja) El表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826982

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826982

Country of ref document: EP

Kind code of ref document: A2