WO2016089131A1 - 용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법 - Google Patents

용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법 Download PDF

Info

Publication number
WO2016089131A1
WO2016089131A1 PCT/KR2015/013148 KR2015013148W WO2016089131A1 WO 2016089131 A1 WO2016089131 A1 WO 2016089131A1 KR 2015013148 W KR2015013148 W KR 2015013148W WO 2016089131 A1 WO2016089131 A1 WO 2016089131A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
oxide
forming
type layer
Prior art date
Application number
PCT/KR2015/013148
Other languages
English (en)
French (fr)
Inventor
장진
김효민
김정기
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to CN201580065908.3A priority Critical patent/CN107112424B/zh
Priority to US15/533,116 priority patent/US10510978B2/en
Publication of WO2016089131A1 publication Critical patent/WO2016089131A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/04Luminescent, e.g. electroluminescent, chemiluminescent materials containing natural or artificial radioactive elements or unspecified radioactive elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to a light emitting device using a charge generating layer formed through a solution process and a manufacturing method thereof.
  • a low molecular layer such as TPBi, Bphen, TmPyPb, and an oxide layer are used in the case of an organic light emitting diode, but electron injection and movement are limited.
  • ultra-high vacuum equipment When using such a vacuum deposition process based charge generation layer combination as a layer-by-layer, ultra-high vacuum equipment is essential.
  • the vacuum deposition process has the disadvantage that the substrate can be bent in a large area process, the charge generation layer of this method actually takes 1 hour, such as preheating, deposition, cooling process. Therefore, it is possible to secure the characteristics of the charge generating layer, and another method capable of a large area process and a low temperature process is needed.
  • the present invention in order to solve the problems of the above-described technology, it is possible to shorten the process time, to propose a light emitting device using a charge generating layer formed through a solution process that is not limited to the semiconductor characteristics of the substrate and a manufacturing method thereof do.
  • a light emitting device comprising an anode, a cathode, a light emitting layer and a charge generating layer, the charge generating layer is a solution process
  • the light emitting device is characterized in that the p-type layer made of an organic semiconductor and the n-type layer made of an oxide semiconductor are formed in a layer-by-layer structure.
  • the organic semiconductor may be at least one of PEDOT: PSS and an additive mixed with the PEDOT: PSS.
  • the additive may include at least one of tungsten oxide, graphene oxide (GO), CNT, molybdenum oxide (MoOx), vanadium oxide (V 2 O 5 ) and nickel oxide (NiOx).
  • the additive may be mixed in the PEDOT: PSS at 5-50 volume percent.
  • the oxide semiconductor may be at least one of zinc oxide (ZnO) or a material doped with Al, Li, Cs, Ca, and Mg.
  • the content of the material doped in the zinc oxide may be 0.1 to 30 atomic percent compared to the zinc oxide.
  • the thickness ratio of the n-type layer may be 1: 0.5 to 1: 2.
  • the emission layer may be a low molecular organic material.
  • the emission layer may be an inorganic material having a quantum dot.
  • anode on a substrate; Forming a charge generating layer on the anode, wherein the n-type layer and the p-type layer are sequentially formed in a layer-by-layer structure by a solution process; Forming a light emitting layer made of a low molecular organic material on the charge generating layer; Forming an electron transport layer on the light emitting layer; And forming a cathode on the electron transport layer, wherein the n-type layer is formed of an oxide semiconductor, and the p-type layer is formed of an organic semiconductor.
  • forming a cathode on a substrate Forming a charge generating layer having a p-type layer and an n-type layer sequentially formed of a layer-by-layer structure on the cathode by a solution process; Forming a light emitting layer made of an inorganic material having a quantum dot on the charge generating layer; Forming a hole transport layer on the light emitting layer; And forming an anode on the hole transport layer, wherein the p-type layer is formed of an organic semiconductor, and the n-type layer is formed of an oxide semiconductor.
  • the manufacturing process time can be shortened. There is an advantage that is not affected by the difference in work-function.
  • LZO and PEDOT PSS that can be a solution process is formed in a layer-by-layer form, it is possible to manufacture a high-performance organic and quantum dot light emitting diode through the generation and injection of a stable charge and smooth movement There is this.
  • FIG. 1 is a cross-sectional structural view of an organic light emitting diode according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional structural view of a quantum dot light emitting diode according to an embodiment of the present invention.
  • FIG 3 is a view showing the characteristics of the OLED using a HAT-CN (1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile) / NPD junction as a charge generation layer through a vacuum deposition process.
  • FIG. 4 is a view showing the characteristics of the OLED using a solution process-based PEDOT: PSS as a hole injection and transport layer.
  • FIG. 5 is a view illustrating characteristics of an OLED using 20 atomic% LZO and PEDOT: PSS based on a solution process according to an embodiment of the present invention.
  • 6 to 7 are diagrams illustrating characteristics of OLEDs according to thicknesses of LZO and PEDOT: PSS according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining that the work function of the substrate is not limited when the charge generating layer according to the exemplary embodiment of the present invention is applied.
  • 9 is a view showing the characteristics of the QLED using a solution-based 2 atomic% LZO as the electron transport layer.
  • FIG. 10 is a view showing the characteristics of the QLED using the solution process-based PEDOT: PSS / 2 atomic% LZO as a charge generation layer according to the present embodiment.
  • FIG 11 is a view showing the characteristics of the QLED according to the thickness of the p-type layer according to the present embodiment.
  • FIG. 12 is a view showing characteristics according to the concentration of oxides mixed in the p-type layer according to the present embodiment.
  • 13 to 14 are diagrams for explaining that the work function of the substrate is not limited when the charge generation layer is applied to a QLED according to an embodiment of the present invention.
  • the solution process includes all existing processes for forming films using liquid solvents such as spin coating, spray coating, dip coating, ink jet printing, roll-to-roll printing, screen printing and the like.
  • the vacuum deposition process refers to a process in which deposition is performed under a negative pressure, and all the existing processes such as sputtering, which is a kind of physical vapor deposition (PVD) method, including the chemical vapor deposition (CVD) method, are performed. Include.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the present invention is to form a charge generating layer that transfers charges (electrons and holes) to the light emitting device including the light emitting layer by a solution process, and to form a p-type organic semiconductor and an n-type oxide semiconductor layer-by-layer It features.
  • the light emitting device may include an organic light emitting diode in which the light emitting layer is an organic material and a quantum dot light emitting diode made of an inorganic material.
  • FIG. 1 is a cross-sectional structural view of an organic light emitting diode according to an embodiment of the present invention.
  • an organic light emitting diode includes an anode 1, a cathode 2, a charge generation layer 3, a hole injection and transport layer 4, and an emission layer 5. And the electron injection and transport layer 6.
  • the anode 1 and the cathode 2 may be formed using a conventionally known chemical vapor deposition (CVD) process, or a paste metal in which metal flakes or particles are mixed with a binder or the like.
  • CVD chemical vapor deposition
  • the printing method of the ink may be used, and the method of forming the positive electrode or the negative electrode is not particularly limited.
  • the anode 1 is an electrode for providing holes to the device, and may be formed through a solution process such as screen printing of a metal paste or a metal ink material in a colloidal state in a predetermined liquid.
  • the metal paste may be any one of alloys such as silver paste, aluminum paste, aluminum paste, copper paste, or the like.
  • the metal ink material may be at least one of silver (Ag) ink, aluminum (Al) ink, gold (Au) ink, calcium (Ca) ink, magnesium (Mg) ink, lithium (Li) ink, and cesium (Cs) ink. It can be either.
  • the metal material contained in the metal ink material is in an ionized state inside the solution.
  • the negative electrode 2 may be deposited in a high vacuum state by a vacuum deposition process, or may form a negative electrode by a solution or paste process of a metal material used for forming a conventional negative electrode.
  • the negative electrode forming material is not particularly limited, and conventional negative electrode forming materials can be used without limitation, and examples of the conventional negative electrode forming material include aluminum (Al), calcium (Ca), and barium, which are well-oxidized metal materials. (Ba), magnesium (Mg), lithium (Li), cesium (Cs), and the like.
  • non-limiting examples of the transparent metal oxide capable of forming a cathode include indium tin oxide (ITO), fluorine-doped tin oxide (FTO), antimony tin oxide (ATO), and aluminum doped zinc oxide (AZO).
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • ATO antimony tin oxide
  • AZO aluminum doped zinc oxide
  • a transparent metal oxide electrode a process such as sol-gel, spray pyrolysis, sputtering, atomic layer deposition (ALD), and electron beam evaporation is applied. Can be formed.
  • the anode 1 or cathode 2 can be formed on a substrate.
  • the substrate may be any one of plastics including a glass substrate, polyethylene terephthalate (PET), polyethylenenaphthelate (PEN), polypropylene (PP), polyamide (PI), tri acetyl cellulose (TAC), polyethersulfone (PES), and the like.
  • PET polyethylene terephthalate
  • PEN polyethylenenaphthelate
  • PP polypropylene
  • PI polyamide
  • TAC tri acetyl cellulose
  • PES polyethersulfone
  • a flexible substrate including any one of a plastic substrate, an aluminum foil, a stainless steel foil, and the like may be used.
  • the hole injection / transport layer 4 is a layer for moving holes to the light emitting layer 5 and may be formed by a vacuum deposition process or a solution process using an organic material or an inorganic material.
  • the layer for hole transport can be formed of PEDOT: PSS, tungsten oxide, graphene oxide (GO), CNT, molybdenum oxide (MoO x ), vanadium oxide in PEDOT: PSS. (V 2 O 5 ), may be formed by mixing additives such as nickel oxide (NiO x ).
  • the present invention is not limited thereto, and may be formed of various organic or inorganic materials.
  • the hole injection and transport layer 4 is described as one layer, but this is for convenience of description, and the hole injection layer and the hole transport layer may be included as separate layers in the scope of the present invention.
  • a light emitting device having no hole injection / transport layer can be provided.
  • only the hole transport layer may be included in the device without the hole injection layer.
  • the light emitting layer 5 contains an organic material, preferably a low molecular organic compound, and generates light by the photoelectron emission effect of the organic material.
  • the light emitting layer 5 may use a low molecular material CBP (N'-dicarbazole-biphenyl) as a host and a low molecular material Ir (ppy) 3 as a dopant, but is not limited thereto.
  • CBP N'-dicarbazole-biphenyl
  • Ir (ppy) 3 a low molecular material
  • the electron injection and transport layer 6 is a layer added to the light emitting layer 5 to move electrons generated from the cathode 2 to the high efficiency of the device, and is formed between the cathode 2 and the light emitting layer 5.
  • the electron injection and transport layer 6 may be made of an organic material.
  • the electron injection and transport layer 6 is described as one layer, but this is for convenience of description, and the electron injection layer and the electron transport layer may be provided as separate layers, or only one of them may be provided. It may be included in the category of.
  • the above The charge generation layer 3 formed by the solution process is added between the anode 1 and the hole injection / transport layer 4.
  • the solution process means a process of forming a film using a liquid solvent such as spin coating, spray coating, dip coating, ink jet printing, roll-to-roll printing, screen printing, or the like.
  • the charge generating layer 3 has a np junction structure of a p-type layer composed of an organic semiconductor and an n-type layer composed of an oxide semiconductor, and has a layer-by-layer structure by a solution process. Is formed.
  • the organic semiconductor for the p-type layer is tungsten oxide, graphene oxide (GO), CNT, molybdenum oxide (MoO x ), vanadium oxide (V 2 O 5 ), nickel oxide in PEDOT: PSS or PEDOT: PSS. (NiO x ) may be a mixture.
  • the oxide semiconductor for the n-type layer may be zinc oxide (ZnO), which is an inorganic semiconductor, or a material doped with Al, Li, Cs, Ca, and Mg in zinc oxide.
  • ZnO zinc oxide
  • the metal may be zinc oxide (AZO or LZO) doped with a metal such as aluminum or lithium.
  • AZO zinc oxide
  • LZO zinc oxide
  • any inorganic semiconductor emitting electrons may be included in the scope of the present invention without limitation. .
  • the doping concentration of the metal may range from 0.1 to 30 atomic percent relative to zinc oxide, and in the case of an organic light emitting diode, the preferred doping concentration may be 10 to 20 atmoic percent.
  • PEDOT at least one of tungsten oxide (WOx), graphene oxide (GO), CNT, molybdenum oxide (MoOx), vanadium oxide (V 2 O 5 ) and nickel oxide (NiOx) in PEDOT: PSS It may be mixed with, preferably 10 to 15% by volume.
  • the charge is generated through the charge generation layer 3 to obtain a high field effect mobility, thereby realizing a high-performance light emitting device.
  • the thickness of the p-type layer and the n-type layer may be 0.1 to 50nm, respectively, preferably the ratio of the thickness of the p-type layer and n-type layer is 1: 0.5 to 1 2: 2, most preferably 1: 1.5.
  • the n-type layer is made of an oxide semiconductor, the p-type layer is characterized in that the organic semiconductor.
  • FIG. 2 is a cross-sectional structure diagram of a quantum dot light emitting diode according to an exemplary embodiment of the present invention.
  • a quantum dot light emitting diode includes an anode 1 ′, a cathode 2 ′, a charge generating layer 3 ′, an electron injection / transport layer 4 ′, The light emitting layer 5 'and the hole injection and transport layer 6' may be included.
  • a charge generating layer 3 ′ is formed between the cathode 2 ′ and the electron injection / transport layer 4 ′.
  • the functions and materials of the anode 1 ', the cathode 2', the hole injection / transport layer 4 ', and the electron injection / transport layer 6' are the same as those described for the organic light emitting diode. Description is omitted.
  • the light emitting layer 5 ' may be formed as a quantum dot surrounded by cadmium selenide (CdSe) as a nucleus and surrounded by shells of cadmium selphide (CdS) and shelled zinc (ZnS). .
  • the light emitting layer 5 ′ may be formed by a solution process.
  • the charge generation layer 3 has a pn junction structure of a p-type layer composed of an organic semiconductor and an n-type layer composed of an oxide semiconductor, and is a layer-by-layer structure by a solution process. Is formed.
  • the p-type layer is tungsten oxide, graphene oxide (GO), CNT, molybdenum oxide (MoO x ), vanadium oxide (V 2 O 5 ), nickel oxide (NiO x ) in PEDOT: PSS or PEDOT: PSS.
  • the n-type layer may be a zinc oxide (ZnO) which is an inorganic semiconductor or a material doped with zinc, Al, Li, Cs, Ca and Mg, preferably, a metal such as aluminum or lithium Doped zinc oxide (AZO or LZO).
  • ZnO zinc oxide
  • any inorganic semiconductor emitting electrons may be included in the scope of the present invention without limitation. .
  • the doping concentration of the metal may range from 0.1 to 30 atomic percent relative to zinc oxide, and in the case of a quantum dot light emitting diode, the preferred doping concentration may be 0.1 to 5 atmoic percent.
  • PEDOT at least one of tungsten oxide (WOx), graphene oxide (GO), CNT, molybdenum oxide (MoOx), vanadium oxide (V 2 O 5 ) and nickel oxide (NiOx) in PEDOT: PSS It may be mixed with, preferably 10 to 15% by volume.
  • the thickness of the p-type layer and n-type layer in the quantum dot light emitting diode may be 0.1 to 50nm, respectively, preferably the ratio of the thickness of the p- type layer and n-type layer is 1 : 0.5 to 1: 2, most preferably 1: 1.5.
  • the electron injection / transport layer 4 'and the hole injection / transport layer 6' are described as one layer, but this is for convenience of description, and it is also provided that the injection layer and the transport layer are provided as separate layers. It may be included in the category.
  • the charge generating layer is added on the cathode, a quantum dot light emitting diode without an electron injection / transport layer can be provided.
  • only the hole transport layer may be included in the device without the hole injection layer.
  • the p-type layer is made of an organic semiconductor, and the n-type layer is characterized in that the oxide semiconductor.
  • the prepared solution was printed on the anode in a solution process under a nitrogen or air atmosphere.
  • FIG. 3 is a view showing the characteristics of the OLED using a HAT-CN (1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile) / NPD junction as a charge generation layer through a vacuum deposition process
  • Figure 4 is a solution process based
  • FIG. 5 is a view showing characteristics of an OLED using PEDOT: PSS as a hole injection and transport layer
  • FIG. 5 is a characteristic of OLED using 20 atomic% LZO and PEDOT: PSS based on a solution process according to an embodiment of the present invention. It is a diagram showing.
  • Table 1 below shows the detailed characteristics of each OLED of FIGS.
  • the OLED using the vacuum deposition-based HAT-CN / NPD as the charge generation layer flows a current density of 4.65 mA / cm 2 at about 5 V, the brightness of 17,000 cd / m 2 at about 8 V It can be seen that it has.
  • the current efficiency is 59.1 cd / A and power efficiency is 44.9 lm / W at 1,000 cd / m2 brightness.
  • Figure 4 shows the characteristics of the OLED using a solution process-based PEDOT: PSS as the hole injection layer, it shows the characteristics when the charge generation layer is not formed.
  • a current density of 12.44 mA / cm 2 flows at about 5 V and has a brightness of 54,000 cd / m 2 at about 8 V.
  • the current efficiency is 58.2 cd / A and power efficiency is 44.8 lm / W at 1,000 cd / m2 brightness.
  • 6 to 7 show the characteristics of the OLED according to the thickness of the LZO and PEDOT: PSS according to an embodiment of the present invention.
  • the p-type layer of the charge generation layer according to the present embodiment was formed by a solution process by mixing graphene oxide (GO) to PEDOT: PSS.
  • FIG. 6 shows the device characteristics according to the thickness of PEDOT: PSS in a state in which the thickness of LZO is fixed and the thickness of PEDOT: PSS is changed.
  • PEDOT PSS is 20 nm in a state where LZO is fixed.
  • FIG. 7 is a view showing device characteristics according to the thickness of the LZO in a state in which the thickness of PEDOT: PSS is fixed at 20 nm.
  • the LZO characteristics are 10 to 30 nm, and the characteristics are most preferable when the LZO is 30 nm.
  • FIG. 8 is a view for explaining that the work function of the substrate is not limited when the charge generating layer according to the exemplary embodiment of the present invention is applied.
  • the charge generation layer including LZO / PEDOT: PSS is applied to an OLED according to the present embodiment
  • a substrate (w / UV treatment, work function 4.7 eV) and ozone treatment subjected to ITO UV ozone treatment are applied.
  • the substrate (w / o UV treatment, work function 4.2eV) is used, it can be seen that there is little difference in the characteristics of the OLED.
  • the charge generation layer according to the present embodiment can be applied to an OLED including various substrates without being limited by the work function.
  • the prepared solution was printed on the cathode under a nitrogen or air atmosphere in a solution process.
  • a quantum dot material of CdSe / CdS / ZnS (core / shell / shell type) structure is used as a light emitting layer, and 4,4,4-tris (N-carbazolyl) triphenylamine (TCTA), 4, 4′-bis [N- (naphthyl) -N-phenylamino] biphenyl (NPB) was used, with 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT-CN) as the hole injection layer, Aluminum was used.
  • Figure 10 is a solution process based PEDOT: PSS / 2 atomic% LZO according to the present embodiment as a charge generating layer It shows the characteristics of the QLED.
  • Table 2 below shows the detailed characteristics of each QLED of FIGS. 9 to 10.
  • the QLED using the solution process-based 2 atomic% LZO as the electron transport layer that is, the QLED without the charge generation layer according to this embodiment has a current density of 0.37 mA / cm2 at about 5V It can be seen that has a brightness of 1,600 cd / m 2 at about 8V.
  • the current efficiency is 12.5 cd / A and power efficiency is 5.3 lm / W at 1,000 cd / m2 brightness.
  • the QLED using the solution process-based PEDOT: PSS / 2 atomic% LZO as the charge generation layer flows a current density of 0.15 mA / cm2 at about 5 V and 729 cd / at about 8 V. It can be seen that it has a brightness of m2. In addition, it can be seen that the current efficiency is 16.4 cd / A and the power efficiency is 6.3 lm / W at the brightness of 1,000 cd / m2.
  • FIG 11 is a view showing the characteristics of the QLED according to the thickness of the p-type layer according to the present embodiment.
  • the p-type layer of the charge generation layer according to the present embodiment is formed by mixing PEDOT: PSS and tungsten oxide, and when the thickness is 20 nm, the most improved in all aspects such as leakage current and efficiency at low luminance. It can be seen that the characteristic is represented.
  • FIG. 12 is a view showing characteristics according to the concentration of oxides mixed in the p-type layer according to the present embodiment.
  • FIG. 12 is a diagram showing the characteristic when the p-type layer of the charge generation layer is mixed with PEDOT: PSS and tungsten oxide at a volume percentage of 16: 1, 8: 1, and 4: 1.
  • PEDOT: PSS exhibits the most improved characteristics when tungsten oxide is mixed at 8: 1.
  • 13 to 14 are diagrams for explaining that the work function of the substrate is not limited when the charge generation layer is applied to a QLED according to an embodiment of the present invention.

Abstract

본 발명은 용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법을 개시한다. 본 발명에 따르면, 양극, 음극, 발광층 및 전하 생성층을 포함하는 발광 소자로서, 상기 전하 생성층은 용액공정에 의해 유기 반도체로 이루어진 p형 층 및 산화물 반도체로 이루어진 n형 층이 레이어-바이-레이어(layer-by-layer) 구조로 형성되는 것을 특징으로 하는 발광 소자가 제공된다.

Description

용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법
본 발명은 용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법에 관한 것이다.
근래에 고성능의 유기 및 양자점 발광다이오드를 제작하기 위한 개발이 이루어지고 있다. 그 중에서 전자의 생성과 수송은 매우 중요한 부분이다.
대표적인 전자 수송층으로는 유기 발광 다이오드의 경우 TPBi, Bphen, TmPyPb 등과 같은 저분자 층, 양자점 발광 다이오드의 경우 산화물 층을 사용하나, 전자의 주입과 이동이 제한적이었다.
일반적으로 유기 발광 다이오드의 경우, 전하 생성층 조합으로 진공증착공정만이 가능한 NPD 또는 TCTA와 HAT-CN을 layer-by-layer로 사용함으로써 다음 수송층과의 에너지 장벽을 감소시키고 재배열시키는 기술을 많이 사용하게 된다. 이러한 전하 생성층 삽입을 통한 결과는 오로지 진공증착을 통해서 구현할 수 있다.
이러한 진공증착 공정기반의 전하 생성층 조합을 layer-by-layer로 사용하는 경우, 초고진공 장비가 반드시 필요하다.
진공증착공정은 대면적 공정 시 기판이 휘어질 수 있는 단점을 가지고 있으며, 이 방식의 전하 생성층은 실제로 예열, 증착, 식히는 과정 등 1시간의 소요시간이 걸리게 된다. 따라서 전하 생성층의 특성을 확보할 수 있으며, 대면적 공정, 저온 공정이 가능한 다른 방법이 필요하다.
본 발명은, 상술한 기술의 문제점을 해결하기 위해, 공정 시간을 단축할 수 있으며, 기판의 반도체 특성에 제한을 받지 않는 용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법을 제안하고자 한다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 일 실시예에 따르면, 양극, 음극, 발광층 및 전하 생성층을 포함하는 발광 소자로서, 상기 전하 생성층은 용액공정에 의해 유기 반도체로 이루어진 p형 층 및 산화물 반도체로 이루어진 n형 층이 레이어-바이-레이어(layer-by-layer) 구조로 형성되는 것을 특징으로 하는 발광 소자가 제공된다.
상기 유기 반도체는 PEDOT:PSS, 상기 PEDOT:PSS에 첨가물을 혼합한 것 중 적어도 하나일 수 있다.
상기 첨가물은 텅스텐 옥사이드, 그라핀 옥사이드(GO), CNT, 몰리브덴 옥사이드(MoOx), 바냐듐 옥사이드(V2O5) 및 니켈 옥사이드(NiOx) 중 적어도 하나를 포함할 수 있다.
상기 첨가물은 상기 PEDOT:PSS에 5 내지 50 부피 퍼센트로 혼합될 수 있다.
상기 산화물 반도체는 산화아연(ZnO) 또는 상기 산화아연에 Al, Li, Cs, Ca 및 Mg가 도핑된 물질 중 적어도 하나일 수 있다.
상기 산화아연에 도핑되는 물질의 함량은 상기 산화아연 대비 0.1 내지 30 atomic 퍼센트일 수 있다.
상기 p형 층 상기 n형 층의 두께 비는 1:0.5 내지 1:2일 수 있다.
상기 발광층은 저분자 유기 물질일 수 있다.
상기 발광층은 양자점을 갖는 무기 물질일 수 있다.
본 발명의 다른 측면에 따르면, 기판 상에 양극을 형성하는 단계; 상기 양극 상에, 용액공정에 의해 n형 층과 p형 층이 순차적으로 레이어-바이-레이어 구조로 이루어진 전하 생성층을 형성하는 단계; 상기 전하 생성층 상에 저분자 유기 물질로 이루어진 발광층을 형성하는 단계; 상기 발광층 상에 전자 수송층을 형성하는 단계; 및 상기 전자 수송층 상에 음극을 형성하는 단계를 포함하되, 상기 n형 층은 산화물반도체로 이루어지며, 상기 p형 층은 유기반도체로 이루어지는 것을 특징으로 하는 유기 발광 다이오드 제조 방법이 제공된다.
본 발명의 또 다른 측면에 따르면, 기판 상에 음극을 형성하는 단계; 상기 음극 상에, 용액공정에 의해 p형 층과 n형 층이 순차적으로 레이어-바이-레이어 구조로 이루어진 전하 생성층을 형성하는 단계; 상기 전하 생성층 상에 양자점을 갖는 무기 물질로 이루어진 발광층을 형성하는 단계; 상기 발광층 상에 정공 수송층을 형성하는 단계; 및 상기 정공 수송층 상에 양극을 형성하는 단계를 포함하되, 상기 p형 층은 유기반도체로 이루어지며, 상기 n형 층은 산화물반도체로 이루어지는 것을 특징으로 하는 양자점 발광 다이오드 제조 방법이 제공된다.
본 발명에 따르면, 전하 생성층의 p형 층을 유기 반도체로, n형 층을 산화물 반도체로 하여 용액공정에 의해 제조하기 때문에 제조 공정 시간을 단축할 수 있고, 이렇게 제조된 유기 발광 소자가 기판의 Work-function의 차이에 영향을 받지 않는 장점이 있다.
또한 본 발명에 따르면, 용액공정이 가능한 LZO와 PEDOT:PSS를 layer-by-layer 형태로 형성하여, 안정된 전하의 생성 및 주입과 원활한 이동을 통해 고성능의 유기 및 양자점 발광 다이오드를 제조할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 유기 발광 다이오드의 단면 구조도이다.
도 2는 본 발명의 일 실시예에 따른 양자점 발광 다이오드의 단면 구조도이다.
도 3은 진공증착 공정을 통해 HAT-CN(1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile) / NPD 접합을 전하 생성층으로 사용한 OLED의 특성을 나타낸 도면이다.
도 4는 용액공정 기반의 PEDOT:PSS를 정공 주입· 수송층으로 사용한 OLED의 특성을 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 용액공정 기반의 20 atomic% LZO와 PEDOT:PSS를 전하 생성층으로 사용한 OLED의 특성을 나타낸 도면이다.
도 6 내지 도 7은 본 발명의 일 실시예에 따른 LZO와 PEDOT:PSS의 두께에 따른 OLED의 특성을 나타낸 도면이다.
도 8은 본 발명의 일 실시예에 따른 전하 생성층을 적용하는 경우, 기판의 일함수에 제한을 받지 않는 점을 설명하기 위한 도면이다.
도 9는 용액공정 기반의 2 atomic% LZO를 전자 수송층으로 사용한 QLED의 특성을 나타낸 도면이다.
도 10은 본 실시예에 따른 용액공정 기반의 PEDOT:PSS / 2 atomic% LZO를 전하 생성층으로 사용한 QLED의 특성을 나타낸 도면이다.
도 11은 본 실시예에 따른 p형 층의 두께에 따른 QLED의 특성을 나타낸 도면이다.
도 12는 본 실시예에 따른 p형 층에서 혼합되는 산화물의 농도에 따른 특성을 나타낸 도면이다.
도 13 내지 도 14는 본 발명의 일 실시예에 따른 QLED에 전하 생성층을 적용하는 경우, 기판의 일함수에 제한을 받지 않는 점을 설명하기 위한 도면이다.
우선, 본 발명 명세서 상의 용어에 대해 정의한다.
용액 공정(solution process)은, 스핀 코팅, 스프레이 코팅, 딥 코팅, 잉크 젯 인쇄, 롤투롤 인쇄, 스크린 인쇄 등의 액상 용매를 사용하여 성막하는 기존의 모든 공정을 포함한다.
진공증착공정은, 음압이 걸리 상태에서 증착이 이루어지는 공정을 말하는 것으로서, CVD(Chemical Vapor Deposition)법을 비록한, PVD(Physical Vapor Deposition)법의 일종인 스퍼터링(sputtering) 등의 기존의 모든 공정을 포함한다.
본 발명은 발광층을 포함하는 발광 소자에 전하(전자 및 정공)를 전달하는 전하 생성층을 용액공정에 의해 형성하는 것으로서, p형 유기반도체와 n형 산화물반도체를 layer-by-layer로 형성하는 것을 특징으로 한다.
본 실시예에 따른 발광 소자는 발광층이 유기물인 유기 발광 다이오드와 무기물로 이루어지는 양자점 발광 다이오드를 포함할 수 있다.
이하, 도면을 참조하여 본 발명에 대해 상세히 설명한다. 다만, 도면의 내용은 본 발명을 보다 쉽게 설명하기 위하여 도시된 것일 뿐이며, 본 발명의 범위가 도면의 범위로 한정되는 것은 아님을 분명히 밝혀둔다.
도 1은 본 발명의 일 실시예에 따른 유기 발광 다이오드의 단면 구조도이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 유기 발광 다이오드는, 양극(1), 음극(2), 전하 생성층(3), 정공 주입·수송층(4), 발광층(5), 전자 주입·수송층(6)을 포함할 수 있다.
양극(1) 및 음극(2)은, 종래에 잘 알려진 진공증착공정(CVD; Chemical Vapor Deposition)을 이용하거나, 메탈 플레이크(flake) 내지 파티클(particle)이 바인더(binder) 등과 혼합되어 있는 페이스트 메탈 잉크를 프린팅하는 방식을 사용할 수 있고, 상기 양극 또는 음극의 형성 방법은 특별히 제한되지 아니한다.
양극(1)은, 소자에 정공을 제공하는 전극으로서, 금속 페이스트, 또는 소정의 액체 속에서 콜로이드 상태인 금속 잉크 물질을 스크린 인쇄 등의 용액공정을 통하여 형성될 수 있다. 여기서 금속 페이스트는, 은 페이스트(Ag paste), 알루미늄 페이스트(Al paste), 금 페이스트(Au paste), 구리 페이스트(Cu paste) 등의 물질 중 어느 하나이거나 합금된 형태일 수 있다. 또한, 금속 잉크물질은, 은(Ag) 잉크, 알루미늄(Al) 잉크, 금(Au) 잉크, 칼슘(Ca) 잉크, 마그네슘(Mg) 잉크, 리튬(Li) 잉크, 세슘(Cs) 잉크 중 적어도 어느 하나일 수 있다. 금속 잉크 물질에 포함된 금속 물질은 용액 내부에서 이온화된 상태이다.
음극(2)은, 진공증착공정에 의하여 고진공 상태에서 증착되하거나, 종래의 음극으로 형성에 사용되는 금속물질을 용액 또는 페이스트 공정으로 음극을 형성할 수도 있다. 음극 형성물질은, 특별히 제한되지 않고, 종래의 음극 형성물질을 비제한적으로 사용할 수 있고, 종래의 음극 형성물질의 예시로, 산화가 잘되는 금속물질인, 알루미늄(Al), 칼슘(Ca), 바륨(Ba), 마그네슘(Mg), 리튬(Li), 세슘(Cs) 등을 들 수 있다.
또한 음극을 형성할 수 있는 투명 금속 산화물의 비제한적 예시로, ITO(Indium Tin Oxide), FTO(Fluorine-doped Tin Oxide), ATO(Antimony Tin Oxide), AZO(Aluminum doped Zinc Oxide) 등을 들 수 있다. 또한, 투명 금속산화물 전극의 경우 졸 겔(sol-gel), 분무열분해(spray pyrolysis), 스퍼터링(sputtering), ALD(Atomic Layer Deposition), 전자 빔 증착(e-beam evaporation) 등의 공정을 적용하여 형성할 수 있다.
양극(1) 또는 음극(2)은 기판 상에 형성될 수 있다.
기판은, 유리(glass) 기판, PET(polyethylene terephthalate), PEN(polyethylenenaphthelate), PP(polypropylene), PI(polyamide), TAC(tri acetyl cellulose), PES(polyethersulfone) 등을 포함하는 플라스틱 중 어느 하나를 포함하는 플라스틱 기판, 알루미늄 포일(aluminum foil), 스테인리스 스틸 포일(stainlesssteel foil) 중 어느 하나를 포함하는 플렉서블(flexible) 기판 등이 이용될 수 있다.
정공 주입·수송층(4)은 정공을 발광층(5)으로 이동시키는 레이어로서, 유기 물질 또는 무기 물질을 이용하여 진공증착공정 또는 용액공정에 의해 형성될 수 있다.
정공 주입·수송층(4)에서, 정공 수송을 위한 층은 PEDOT:PSS로 형성될 수 있으며, PEDOT:PSS에 텅스텐 옥사이드, 그라핀 옥사이드(GO), CNT, 몰리브덴 옥사이드(MoOx), 바냐듐 옥사이드(V2O5), 니켈 옥사이드(NiOx)와 같은 첨가물을 혼합하여 형성될 수도 있다. 그러나 이에 한정됨이 없이 다양한 유기 물질 또는 무기 물질로 형성될 수 있다.
상기에서는 정공 주입·수송층(4)을 하나의 층으로서 설명하고 있으나 이는 설명의 편의를 위한 것이며, 정공 주입층과 정공 수송층이 별개의 층으로 제공되는 것도 본 발명의 범주에 포함될 수 있을 것이다.
나아가, 전하 생성층의 추가로 인해, 정공 주입·수송층이 없는 발광 소자가 제공될 수 있다.
또한, 본 발명의 바람직한 일 실시예에 따르면, 정공 주입층 없이 정공 수송층만이 소자에 포함될 수도 있다.
발광층(5)은 유기 물질, 바람직하게는 저분자 유기화합물을 포함하고, 유기물질의 광전자 방출 효과에 의해 빛을 발생시킨다.
본 실시예에 따른 발광층(5)은 호스트로써 저분자 물질 CBP( N'-디카바졸-비페닐)와 도펀트로써 저분자 물질 Ir(ppy)3를 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
전자 주입·수송층(6)은, 음극(2)에서 발생된 전자를 발광층(5)으로 이동시켜 소자의 높은 효율을 위해 추가되는 층으로서, 음극(2)과 발광층(5) 사이에 형성된다.
바람직하게, 전자 주입·수송층(6)은 유기 물질로 이루어질 수 있다.
상기에서는 전자 주입·수송층(6)을 하나의 층으로서 설명하고 있으나 이는 설명의 편의를 위한 것이며, 전자 주입층과 전자 수송층이 별개의 층으로 제공되거나, 이 중 하나의 층만이 제공되는 것도 본 발명의 범주에 포함될 수 있을 것이다.
본 발명의 바람직한 일 실시예에 따르면, 상기한 양극(1)과 정공 주입·수송층(4) 사이에 용액공정에 의해 형성된 전하 생성층(3)이 추가된다.
상기한 바와 같이, 용액공정은 스핀 코팅, 스프레이 코팅, 딥 코팅, 잉크 젯 인쇄, 롤투롤 인쇄, 스크린 인쇄 등의 액상 용매를 사용하여 성막하는 공정을 의미한다.
본 실시예에 따른 전하 생성층(3)은 유기 반도체로 구성되는 p형 층 및 산화물 반도체로 구성되는 n형 층의 n-p 접합(junctino) 구조를 가지며, 용액공정에 의해 layer-by-layer 구조로 형성된다.
바람직하게, p형 층을 위한 유기 반도체는 PEDOT:PSS 또는 PEDOT:PSS에 텅스텐 옥사이드, 그라핀 옥사이드(GO), CNT, 몰리브덴 옥사이드(MoOx), 바냐듐 옥사이드(V2O5), 니켈 옥사이드(NiOx)를 혼합한 것일 수 있다.
n형 층을 위한 산화물 반도체는 무기반도체인 산화아연(ZnO) 또는 산화아연에 Al, Li, Cs, Ca 및 Mg가 도핑된 물질일 수 있다.
바람직하게는, 알루미늄 또는 리튬과 같은 금속이 도핑된 산화아연(AZO 또는 LZO)일 수 있다. 그러나 이에 한정됨이 없이 전자를 방출하는 무기반도체라면 제한 없이 본 발명의 범주에 포함될 수 있다. .
여기서, 금속의 도핑 농도는 산화아연 대비 0.1 내지 30 atomic 퍼센트 범위일 수 있으며, 유기 발광 다이오드의 경우 바람직한 도핑 농도는 10 내지 20 atmoic 퍼센트일 수 있다.
PEDOT:PSS 내의 텅스텐 옥사이드(WOx), 그라핀 옥사이드(GO), CNT, 몰리브덴 옥사이드(MoOx), 바냐듐 옥사이드(V2O5) 및 니켈 옥사이드(NiOx) 중 적어도 하나가 5 퍼센트 내지 50 부피 퍼센트로 혼합될 수 있으며, 10 내지 15 부피 퍼센트로 혼합되는 것이 바람직하다.
이와 같은 전하 생성층(3)을 통해 전하를 생성하여 높은 전계효과이동도를 얻을 수 있어 고성능의 발광 소자를 구현할 수 있다.
또한, 본 발명의 바람직한 일 실시예에 따르면, p형 층과 n형 층의 두께는 각각 0.1 내지 50nm일 수 있으며, 바람직하게는 p형 층과 n형 층의 두께의 비는 1:0.5 내지 1:2 일 수 있으며, 가장 바람직하게는 1:1.5일 수 있다.
본 실시예에 따른 유기 발광 다이오드 제조 방법은,
기판 상에 양극을 형성하는 단계;
상기 양극 상에, 용액공정에 의해 n형 층과 p형 층이 순차적으로 레이어-바이-레이어 구조로 이루어진 전하 생성층을 형성하는 단계;
상기 전하 생성층 상에 저분자 유기 물질로 이루어진 발광층을 형성하는 단계;
상기 발광층 상에 전자 주입·수송층을 형성하는 단계; 및
상기 전자 주입·수송층 상에 음극을 형성하는 단계를 포함하되,
상기 n형 층은 산화물반도체로 이루어지며, 상기 p형 층은 유기반도체로 이루어지는 것을 특징으로 한다.
한편, 도 2는 본 발명의 일 실시예에 따른 양자점 발광 다이오드의 단면 구조도이다.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 양자점 발광 다이오드는, 양극(1'), 음극(2'), 전하 생성층(3'), 전자 주입·수송층(4'), 발광층(5'), 정공 주입·수송층(6')을 포함할 수 있다.
도 2에 도시된 양자점 발광 다이오드는 유기 발광 다이오드와는 달리, 전하 생성층(3')이 음극(2')과 전자 주입·수송층(4') 사이에 형성된다.
양자점 발광 다이오드에서, 양극(1'), 음극(2'), 정공 주입·수송층(4'), 전자 주입·수송층(6')의 기능 및 물질은 유기 발광 다이오드에서 설명한 것과 동일하므로 이에 대한 상세한 설명은 생략한다.
양자점 발광 다이오드에서, 발광층(5')은 카드뮴셀레나이드(CdSe)를 핵으로 하고, 그 겉에 카드뮴셀파이드(CdS), 셀파이드아연(ZnS)의 껍질로 둘러 싸여있는 양자점으로 형성될 수 있다. 여기서 발광층(5')은 용액공정에 의해 형성될 수 있다.
양자점 발광 다이오드에서도, 전하 생성층(3')은 유기 반도체로 구성되는 p형 층 및 산화물 반도체로 구성되는 n형 층의 p-n 접합(junctino) 구조를 가지며, 용액공정에 의해 layer-by-layer 구조로 형성된다.
바람직하게, p형 층은 PEDOT:PSS 또는 PEDOT:PSS에 텅스텐 옥사이드, 그라핀 옥사이드(GO), CNT, 몰리브덴 옥사이드(MoOx), 바냐듐 옥사이드(V2O5), 니켈 옥사이드(NiOx)를 혼합일 수 있으며, n형 층은 무기반도체인 산화아연(ZnO) 또는 산화아연에 Al, Li, Cs, Ca 및 Mg가 도핑된 물질일 수 있으며, 바람직하게는, 알루미늄 또는 리튬과 같은 금속이 도핑된 산화아연(AZO 또는 LZO)일 수 있다. 그러나 이에 한정됨이 없이 전자를 방출하는 무기반도체라면 제한 없이 본 발명의 범주에 포함될 수 있다. .
여기서, 금속의 도핑 농도는 산화아연 대비 0.1 내지 30 atomic 퍼센트 범위일 수 있으며, 양자점 발광 다이오드의 경우 바람직한 도핑 농도는 0.1 내지 5 atmoic 퍼센트일 수 있다.
PEDOT:PSS 내의 텅스텐 옥사이드(WOx), 그라핀 옥사이드(GO), CNT, 몰리브덴 옥사이드(MoOx), 바냐듐 옥사이드(V2O5) 및 니켈 옥사이드(NiOx) 중 적어도 하나가 5 퍼센트 내지 50 부피 퍼센트로 혼합될 수 있으며, 10 내지 15 부피 퍼센트로 혼합되는 것이 바람직하다.
또한, 본 발명의 바람직한 일 실시예에 따르면, 양자점 발광 다이오드에서 p형 층과 n형 층의 두께는 각각 0.1 내지 50nm일 수 있으며, 바람직하게는 p 형 층과 n형 층의 두께의 비는 1:0.5 내지 1:2 일 수 있으며, 가장 바람직하게는 1:1.5일 수 있다.
상기에서는 전자 주입·수송층(4') 및 정공 주입·수송층(6')을 하나의 층으로서 설명하고 있으나 이는 설명의 편의를 위한 것이며, 주입층과 수송층이 별개의 층으로 제공되는 것도 본 발명의 범주에 포함될 수 있을 것이다.
나아가, 음극 상에 전하 생성층이 추가됨으로 인해, 전자 주입·수송층이 없는 양자점 발광 다이오드가 제공될 수 있다.
또한, 본 발명의 바람직한 일 실시예에 따르면, 정공 주입층 없이 정공 수송층만이 소자에 포함될 수도 있다.
본 실시예에 따른 유기 발광 다이오드의 제조 방법은,
기판 상에 음극을 형성하는 단계;
상기 음극 상에, 용액공정에 의해 p형 층과 n형 층이 순차적으로 레이어-바이-레이어 구조로 이루어진 전하 생성층을 형성하는 단계;
상기 전하 생성층 상에 양자점을 갖는 무기 물질로 이루어진 발광층을 형성하는 단계;
상기 발광층 상에 정공 수송층을 형성하는 단계; 및
상기 정공 수송층 상에 양극을 형성하는 단계를 포함하되,
상기 p형 층은 유기반도체로 이루어지며, 상기 n형 층은 산화물반도체로 이루어지는 것을 특징으로 한다.
이하, 본 발명에 대하여 실시예를 들어 보다 더 상세히 설명한다. 이하의 실시예는 발명의 상세한 설명을 위한 것일 뿐이므로, 이에 의해 권리범위를 제한하려는 의도가 아님을 분명히 한다.
제1 실시예
유기 발광 다이오드의 전하 생성층은 20 atomic% LZO와 PEDOT:PSS가 layer-by-layer 타입으로 형성되었다.
20 atomic%의 Li을 산화아연에 도핑한 LZO은 에탄올을 용매로 사용하고, PEDOT:PSS는 물을 용매로 사용하였다.
준비된 용액은 양극 상에 질소 또는 공기 분위기 하에서 용액공정으로 프린팅되었다.
이후, 정공 수송층, 발광층, 전자 주입·수송층 및 음극 순으로 형성하였다.
유기발광다이오드의 경우, 정공수송층으로는 4,4′-bis[N-(naphthyl)-N-phenylamino]biphenyl (NPB), 발광층으로는 4,4′-bis(carbazol-9-yl)-biphenyl (CBP)와 tris(2-phenylpyridine) iridium (Ir(ppy)3), 전자수송층으로는 1,3,5-Tris (N-phenylbenzimidazol-2-yl) benzene (TPBi), 전자수입층으로는 Lithium fluoride (LiF), 음극으로는 Aluminum을 사용하였다.
이하에서는 상기한 과정을 통해 제조된 유기 발광 다이오드의 특성을 도면과 함께 설명한다.
도 3은 진공증착 공정을 통해 HAT-CN(1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile) / NPD 접합을 전하 생성층으로 사용한 OLED의 특성을 나타낸 도면이고, 도 4는 용액공정 기반의 PEDOT:PSS를 정공 주입· 수송층으로 사용한 OLED의 특성을 나타낸 도면이며, 도 5는 본 발명의 일 실시예에 따른 용액공정 기반의 20 atomic% LZO와 PEDOT:PSS를 전하 생성층으로 사용한 OLED의 특성을 나타낸 도면이다.
도 3 내지 도 5에서, (a)는 전류밀도-전압 특성 (J-V characteristics), (b)는 휘도-전압 특성 (L-V characteristics), (c)는 전류효율-휘도 특성(C/E-L characteristics), (d)는 전력효율-휘도 특성 (P/E-L characteristics)을 도시한 것이다.
그리고, 아래의 표 1은 도 3 내지 도 5의 각 OLED의 세부 특성을 나타낸 것이다.
표 1
HILs VT(V) VD(V) Maximum At 1,000 cd/m2 At 10,000 cd/m2
C/E(cd/A) P/E(lm/W) C/E(cd/A) P/E(lm/W) C/E(cd/A) P/E(lm/W)
HAT-CN 2.67 4.13 57.33 57.50 59.07 44.93 44.16 19.87
PEDOT:PSS 2.66 4.25 56.59 56.50 55.87 41.30 38.72 17.78
20% LZO/PEDOT:PSS 2.67 4.02 58.08 59.64 58.23 44.78 44.62 24.44
도 3 및 표 1을 참조하면, 진공증착 기반의 HAT-CN / NPD를 전하 생성층으로 사용한 OLED는 약 5 V에서 4.65 mA/cm2의 전류밀도가 흐르며, 약 8 V에서 17,000 cd/m2의 밝기를 가짐을 알 수 있다. 또한 1,000 cd/m2의 밝기에서 전류효율은 59.1 cd/A, 전력효율은 44.9 lm/W을 가짐을 알 수 있다.
도 4는 용액공정 기반의 PEDOT:PSS를 정공 주입층으로 사용한 OLED의 특성을 나타낸 것으로서, 전하 생성층을 형성하지 않은 경우의 특성을 나타낸다.
도 4 및 표 1을 참조하면, 약 5 V에서 4.88 mA/cm2의 전류밀도가 흐르며, 약 8 V에서 20,000 cd/m2의 밝기를 가짐을 알 수 있다. 또한 1,000 cd/m2의 밝기에서 전류효율은 55.9 cd/A, 전력효율은 41.3 lm/W을 가짐을 알 수 있다.
한편, 도 5 및 표 1을 참조하면, 20 atomic&로 Li이 도핑된 산화아연을 n형 층으로 하고, 유기 반도체인 PEDOT:PSS를 p형 층으로 하여 전하 생성층을 형성한 유기 발광 다이오드는, 약 5 V에서 12.44 mA/cm2의 전류밀도가 흐르며, 약 8 V에서 54,000 cd/m2의 밝기를 가짐을 알 수 있다. 또한 1,000 cd/m2의 밝기에서 전류효율은 58.2 cd/A, 전력효율은 44.8 lm/W을 가짐을 알 수 있다.
도 6 내지 도 7은 본 발명의 일 실시예에 따른 LZO와 PEDOT:PSS의 두께에 따른 OLED의 특성을 나타낸다.
도 6 내지 도 7에서, 본 실시예에 따른 전하 생성층의 p형 층은 PEDOT:PSS에 그라핀 옥사이드(GO)를 혼합하여 용액공정에 의해 형성하였다.
도 6은 LZO의 두께를 고정시키고 PEDOT:PSS 두께를 변화시킨 것으로서, LZO의 두께를 35nm로 고정한 상태에서 PEDOT:PSS의 두께에 따른 소자 특성을 나타낸 것이다.
도 6을 참조하면, LZO가 고정된 상태에서 PEDOT:PSS가 20nm일 때 특성이 가장 좋게 나타나는 점을 확인할 수 있다.
또한, 도 7은 PEDOT:PSS의 두께를 20nm로 고정한 상태에서 LZO의 두께에 따른 소자 특성을 도시한 도면이다.
도 7을 참조하면, PEDOT:PSS가 20nm일 때 LZO가 10 내지 30nm일 때 특성이 좋게 나타나며, 가장 바람직하게는 30nm인 경우 특성이 가장 좋게 나타나는 점을 확인할 수 있다.
도 8은 본 발명의 일 실시예에 따른 전하 생성층을 적용하는 경우, 기판의 일함수에 제한을 받지 않는 점을 설명하기 위한 도면이다.
도 8을 참조하면, 본 실시예에 따른 OLED에 LZO/PEDOT:PSS를 포함하는 전하 생성층을 적용하는 경우, ITO UV ozone 처리를 한 기판(w/UV treatment, work function 4.7eV)과 ozone 처리를 하지 않은 기판(w/o UV treatment, work function 4.2eV)을 사용하였을 때 OLED의 특성이 거의 차이가 없다는 점을 확인할 수 있다.
이는 본 실시예에 따른 전하 생성층을 이용하는 경우 일함수에 제한을 받지 않고 다양한 기판을 포함하는 OLED에 적용할 수 있다는 점을 확인할 수 있다.
제2 실시예
양자점 발광 다이오드의 전하 생성층은 2 atomic% LZO와 PEDOT:PSS가 layer-by-layer 구조로 형성되었다.
2 atomic%의 Li을 산화아연에 도핑한 LZO은 에탄올을 용매로 사용하고, PEDOT:PSS는 물을 용매로 사용하였다.
준비된 용액은 음극 상에 질소 또는 공기 분위기 하에서 용액공정으로 프린팅되었다.
이후, 전자 주입·수송층, 발광층, 정공 주입·수송층 및 양극 순으로 형성하였다.
양자점 발광다이오드의 경우, 발광층으로는 CdSe/CdS/ZnS (core/shell/shell type) 구조의 양자점 물질, 정공 수송층으로는 4,4,4-tris(N-carbazolyl)triphenylamine (TCTA), 4,4′-bis[N-(naphthyl)-N-phenylamino]biphenyl (NPB)가 사용되었으며, 정공 주입층으로는 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT-CN), 양극으로는 Aluminum이 사용되었다.
도 9는 용액공정 기반의 2 atomic% LZO를 전자 수송층으로 사용한 QLED의 특성을 나타낸 도면이고, 도 10은 본 실시예에 따른 용액공정 기반의 PEDOT:PSS / 2 atomic% LZO를 전하 생성층으로 사용한 QLED의 특성을 나타낸다.
도 9 및 도 10에서, (a)는 전류밀도-전압 특성 (J-V characteristics)을 나타내고, (b)는 휘도-전압 특성 (L-V characteristics)을 나타낸다. 또한 (c)는 전류효율-휘도 특성(C/E-L characteristics)을 나타내며, (d)는 전력효율-휘도 특성 (P/E-L characteristics)을 나타낸다.
그리고, 아래의 표 2는 도 9 내지 도 10의 각 QLED의 세부 특성을 나타낸 것이다.
표 2
HILs VT(V) VD(V) Maximum At 1,000 cd/m2 At 10,000 cd/m2
C/E(cd/A) P/E(lm/W) C/E(cd/A) P/E(lm/W) C/E(cd/A) P/E(lm/W)
2% LZO 2.4 5.2 19.7 18.4 12.5 5.3 6.1 1.8
PEDOT:PSS/2% LZO 2.7 5.5 28.9 54.5 16.4 6.3 8.1 2.0
도 9 및 표 2를 참조하면, 용액공정 기반의 2 atomic% LZO를 전자 수송층으로 사용한 QLED, 즉 본 실시예에 따른 전하 생성층이 적용되지 않은 QLED는 약 5 V에서 0.37 mA/cm2의 전류밀도가 흐르며, 약 8 V에서 1,600 cd/m2의 밝기를 가짐을 알 수 있다. 또한 1,000 cd/m2의 밝기에서 전류효율은 12.5 cd/A, 전력효율은 5.3 lm/W을 가짐을 알 수 있다.
도 10 및 표 2를 참조하면, 용액공정 기반의 PEDOT:PSS / 2 atomic% LZO를 전하 생성층으로 사용한 QLED는 약 5 V에서 0.15 mA/cm2의 전류밀도가 흐르며, 약 8 V에서 729 cd/m2의 밝기를 가짐을 알 수 있다. 또한 1,000 cd/m2의 밝기에서 전류효율은 16.4 cd/A, 전력효율은 6.3 lm/W을 가짐을 알 수 있다.
도 11은 본 실시예에 따른 p형 층의 두께에 따른 QLED의 특성을 나타낸 도면이다.
도 11에서, 본 실시예에 따른 전하 생성층의 p형 층은 PEDOT:PSS와 텅스텐 옥사이드를 혼합하여 형성되며, 여러 두께 중 20nm일 때, 누설전류, 저휘도에서의 효율 등 모든 면에서 가장 개선된 특성을 나타내는 점을 확인할 수 있다.
도 12는 본 실시예에 따른 p형 층에서 혼합되는 산화물의 농도에 따른 특성을 나타낸 도면이다.
도 12에서는, 전하 생성층의 p형 층을 PEDOT:PSS와 텅스텐 옥사이드를 16:1, 8:1, 4:1의 부피 퍼센트로 혼합한 경우의 특성을 나타낸 도면이다.
도 12를 참조하면, PEDOT:PSS에 텅스텐 옥사이드가 8:1로 혼합되는 경우에 가장 개선된 특성을 나타내는 점을 확인할 수 있다.
도 13 내지 도 14는 본 발명의 일 실시예에 따른 QLED에 전하 생성층을 적용하는 경우, 기판의 일함수에 제한을 받지 않는 점을 설명하기 위한 도면이다.
도 13에 도시된 바와 같이, 전하 생성층을 포함하지 않는 QLED의 경우 ITO 기판의 일함수에 따라 소자 특성에 많은 차이가 발생하게 된다.
그러나, 도 14에 도시된 바와 같이, QLED에 용액공정에 의해 전하 생성층을 형성하는 경우,
ITO UV ozone 처리를 한 기판(w/UV treatment, work function 4.7eV)과 ozone 처리를 하지 않은 기판(w/o UV treatment, work function 4.2eV)을 사용하였을 때 OLED의 특성이 거의 차이가 없다는 점을 확인할 수 있다.
이는 본 실시예에 따른 전하 생성층을 적용하는 경우 일함수에 제한을 받지 않고 다양한 기판을 포함하는 QLED에 적용할 수 있다는 점을 확인할 수 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 부가 및 변경이 가능하다는 것이 당업자에게 있어 명백할 것이다.

Claims (16)

  1. 양극, 음극, 발광층 및 전하 생성층을 포함하는 발광 소자로서,
    상기 전하 생성층은 용액공정에 의해 유기 반도체로 이루어진 p형 층 및 산화물 반도체로 이루어진 n형 층이 레이어-바이-레이어(layer-by-layer) 구조로 형성되는 것을 특징으로 하는 발광 소자.
  2. 제1항에 있어서,
    상기 유기 반도체는 PEDOT:PSS, 상기 PEDOT:PSS에 첨가물을 혼합한 것 중 적어도 하나인 것을 특징으로 하는 발광 소자.
  3. 제2항에 있어서,
    상기 첨가물은 텅스텐 옥사이드, 그라핀 옥사이드(GO), CNT, 몰리브덴 옥사이드(MoOx), 바냐듐 옥사이드(V2O5) 및 니켈 옥사이드(NiOx) 중 적어도 하나를 포함하는 것을 특징으로 하는 발광 소자.
  4. 제2항에 있어서,
    상기 첨가물은 상기 PEDOT:PSS에 5 내지 50 부피 퍼센트로 혼합되는 것을 특징으로 하는 발광 소자.
  5. 제1항에 있어서,
    상기 산화물 반도체는 산화아연(ZnO) 또는 상기 산화아연에 Al, Li, Cs, Ca 및 Mg가 도핑된 물질 중 적어도 하나인 것을 특징으로 하는 발광 소자.
  6. 제5항에 있어서,
    상기 산화아연에 도핑되는 물질의 함량은 상기 산화아연 대비 0.1 내지 30 atomic 퍼센트인 것을 특징으로 하는 발광 소자.
  7. 제1항에 있어서,
    상기 p형 층 상기 n형 층의 두께 비는 1:0.5 내지 1:2인 것을 특징으로 하는 발광 소자.
  8. 제1항에 있어서,
    상기 발광층은 저분자 유기 물질인 것을 특징으로 하는 발광 소자.
  9. 제1항에 있어서,
    상기 발광층은 양자점을 갖는 무기 물질인 것을 특징으로 하는 발광 소자.
  10. 기판 상에 양극을 형성하는 단계;
    상기 양극 상에, 용액공정에 의해 n형 층과 p형 층이 순차적으로 레이어-바이-레이어 구조로 이루어진 전하 생성층을 형성하는 단계;
    상기 전하 생성층 상에 저분자 유기 물질로 이루어진 발광층을 형성하는 단계;
    상기 발광층 상에 전자 수송층을 형성하는 단계; 및
    상기 전자 수송층 상에 음극을 형성하는 단계를 포함하되,
    상기 n형 층은 산화물반도체로 이루어지며, 상기 p형 층은 유기반도체로 이루어지는 것을 특징으로 하는 유기 발광 다이오드 제조 방법.
  11. 제10항에 있어서,
    상기 유기 반도체는 PEDOT:PSS 및 상기 PEDOT:PSS에 첨가물을 혼합한 것 중 적어도 하나인 것을 특징으로 하는 유기 발광 다이오드 제조 방법.
  12. 제11항에 있어서,
    상기 첨가물은 텅스텐 옥사이드, 그라핀 옥사이드(GO), CNT, 몰리브덴 옥사이드(MoOx), 바냐듐 옥사이드(V2O5) 및 니켈 옥사이드(NiOx) 중 적어도 하나를 포함하는 것을 특징으로 하는 유기 발광 다이오드 제조 방법.
  13. 제10항에 있어서,
    상기 산화물 반도체는 산화아연(ZnO) 또는 상기 산화아연에 Al, Li, Cs, Ca 및 Mg가 도핑된 물질 중 적어도 하나인 것을 특징으로 하는 유기 발광 다이오드 제조 방법.
  14. 제13항에 있어서,
    상기 산화아연에 도핑되는 물질의 함량은 상기 산화아연 대비 10 내지 20 atmoic 퍼센트인 것을 특징으로 하는 유기 발광 다이오드 제조 방법.
  15. 기판 상에 음극을 형성하는 단계;
    상기 음극 상에, 용액공정에 의해 p형 층과 n형 층이 순차적으로 레이어-바이-레이어 구조로 이루어진 전하 생성층을 형성하는 단계;
    상기 전하 생성층 상에 양자점을 갖는 무기 물질로 이루어진 발광층을 형성하는 단계;
    상기 발광층 상에 정공 수송층을 형성하는 단계; 및
    상기 정공 수송층 상에 양극을 형성하는 단계를 포함하되,
    상기 p형 층은 유기반도체로 이루어지며, 상기 n형 층은 산화물반도체로 이루어지는 것을 특징으로 하는 양자점 발광 다이오드 제조 방법.
  16. 제15항에 있어서,
    상기 산화물 반도체는 산화아연(ZnO) 또는 상기 산화아연에 Al, Li, Cs, Ca 및 Mg가 도핑된 물질 중 적어도 하나이며, 상기 산화아연에 도핑되는 물질의 함량은 상기 산화아연 대비 0.1 내지 5 atmoic 퍼센트인 것을 특징으로 하는 유기 발광 다이오드 제조 방법.
PCT/KR2015/013148 2014-12-03 2015-12-03 용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법 WO2016089131A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580065908.3A CN107112424B (zh) 2014-12-03 2015-12-03 使用通过溶液工序形成的电荷生成层的发光元件及其制造方法
US15/533,116 US10510978B2 (en) 2014-12-03 2015-12-03 Light emitting element using charge generating layer formed through solution process and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140171827A KR101772437B1 (ko) 2014-12-03 2014-12-03 용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법
KR10-2014-0171827 2014-12-03

Publications (1)

Publication Number Publication Date
WO2016089131A1 true WO2016089131A1 (ko) 2016-06-09

Family

ID=56092005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013148 WO2016089131A1 (ko) 2014-12-03 2015-12-03 용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법

Country Status (4)

Country Link
US (1) US10510978B2 (ko)
KR (1) KR101772437B1 (ko)
CN (1) CN107112424B (ko)
WO (1) WO2016089131A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068884A (zh) * 2017-04-05 2017-08-18 桂林电子科技大学 一种高效率紫外有机电致发光器件及其制备方法
CN108346748A (zh) * 2017-08-04 2018-07-31 广东聚华印刷显示技术有限公司 电荷产生层、电致发光器件及其制备方法
CN109119542A (zh) * 2018-07-26 2019-01-01 苏州星烁纳米科技有限公司 量子点电致发光器件
CN110752302A (zh) * 2018-07-24 2020-02-04 Tcl集团股份有限公司 复合材料及其制备方法和量子点发光二极管
US11189810B2 (en) * 2016-09-26 2021-11-30 University-Industry Cooperation Group Of Kyung Hee University Quantum-dot light emitting device comprising solution processed charge generation junction and manufacturing method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101939462B1 (ko) * 2017-05-19 2019-01-16 경희대학교 산학협력단 스트레처블 전자 소자 및 그의 제조 방법
KR101985102B1 (ko) 2017-10-27 2019-05-31 경희대학교 산학협력단 전하 생성 접합층을 포함하는 박막형 발광소자 및 그 제조 방법
KR102649296B1 (ko) 2018-07-24 2024-03-18 삼성전자주식회사 양자점 소자와 표시 장치
CN113196880A (zh) * 2018-12-10 2021-07-30 夏普株式会社 发光元件、发光设备
CN111384260B (zh) * 2018-12-28 2022-04-01 Tcl科技集团股份有限公司 一种量子点发光二极管及其制备方法
CN109825285B (zh) * 2019-02-01 2021-12-31 苏州星烁纳米科技有限公司 氧化锌基纳米颗粒及其制备方法、电致发光器件
KR20230019506A (ko) * 2019-03-25 2023-02-08 시노비아 테크놀로지스 비평형 열경화 공정
KR20210008766A (ko) 2019-07-15 2021-01-25 경희대학교 산학협력단 전하 생성 접합층을 포함하는 발광소자, 멀티 스택 발광소자 및 이의 제조방법
CN112397617B (zh) * 2019-08-19 2022-02-18 Tcl科技集团股份有限公司 掺杂氧化钨纳米材料及其制备方法和无机空穴传输材料
CN111312908A (zh) * 2019-11-11 2020-06-19 深圳市华星光电半导体显示技术有限公司 一种oled器件及其制备方法
US11881546B2 (en) * 2019-12-05 2024-01-23 Mikro Mesa Technology Co., Ltd. Device with light-emitting diode
CN112201759B (zh) * 2020-10-23 2022-07-01 西南大学 基于掺杂连接层的溶液加工串联量子点发光二极管及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587941A (zh) * 2009-06-25 2009-11-25 彩虹集团公司 一种有机电致发光显示器件
WO2012075639A1 (zh) * 2010-12-09 2012-06-14 海洋王照明科技股份有限公司 一种双面发光的有机电致发光器件及其制备方法
KR20130079230A (ko) * 2011-12-26 2013-07-10 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치 및 이의 제조 방법
KR101437271B1 (ko) * 2013-02-26 2014-09-02 경희대학교 산학협력단 세슘카보네이트가 블랜딩된 산화아연 전자주입·수송층이 구비된 양자점 발광 다이오드 및 그의 제조방법
KR20150042950A (ko) * 2013-10-14 2015-04-22 경희대학교 산학협력단 유기 전자소자, 태양전지 및 그의 제조방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1730795A2 (en) * 2004-03-31 2006-12-13 Matsushita Electric Industrial Co., Ltd. Organic photoelectric conversion element utilizing an inorganic buffer layer placed between an electrode and the active material
US7759856B2 (en) * 2004-12-17 2010-07-20 Honeywell International Inc. Organic light emitting diode (OLED) having improved stability, luminance, and efficiency
KR20060081190A (ko) * 2005-01-07 2006-07-12 삼성에스디아이 주식회사 전계 발광 소자 및 이의 제조 방법
US8529795B2 (en) 2007-08-22 2013-09-10 Gwangju Institute Of Science And Technology Wet-processible metal oxide solution, method of using the same, and organic photovoltaic cell of using the same
JP5149389B2 (ja) 2007-09-18 2013-02-20 クワンジュ インスティチュート オブ サイエンス アンド テクノロジー 酸化還元反応を用いる有機−無機ハイブリッド型接合素子およびこれを用いる有機太陽電池
US9525148B2 (en) * 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
JP5560281B2 (ja) 2008-11-17 2014-07-23 アイメック 有機デバイスの電気コンタクトを形成するための溶液処理方法
KR101091034B1 (ko) 2009-11-10 2011-12-09 단국대학교 산학협력단 유기메모리발광소자 및 디스플레이 장치
US8957442B2 (en) * 2011-02-11 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
CN102568840B (zh) * 2011-12-23 2014-02-12 彩虹集团公司 一种染料敏化电池对电极的制备方法
US8791487B2 (en) * 2012-09-24 2014-07-29 International Business Machines Corporation Zinc oxide-containing transparent conductive electrode
KR101419877B1 (ko) 2012-12-24 2014-08-13 주식회사 포스코 적층형 유기 발광 소자
JP6282832B2 (ja) * 2013-10-01 2018-02-21 株式会社ジャパンディスプレイ 有機el表示装置
CN103904178B (zh) * 2014-04-11 2016-08-17 浙江大学 量子点发光器件
KR102377466B1 (ko) * 2015-10-29 2022-03-21 엘지디스플레이 주식회사 유기 발광 표시 장치
KR101812896B1 (ko) * 2016-09-26 2017-12-27 경희대학교 산학협력단 용액 공정형 전하 생성 접합을 포함하는 양자점 발광소자 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587941A (zh) * 2009-06-25 2009-11-25 彩虹集团公司 一种有机电致发光显示器件
WO2012075639A1 (zh) * 2010-12-09 2012-06-14 海洋王照明科技股份有限公司 一种双面发光的有机电致发光器件及其制备方法
KR20130079230A (ko) * 2011-12-26 2013-07-10 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치 및 이의 제조 방법
KR101437271B1 (ko) * 2013-02-26 2014-09-02 경희대학교 산학협력단 세슘카보네이트가 블랜딩된 산화아연 전자주입·수송층이 구비된 양자점 발광 다이오드 및 그의 제조방법
KR20150042950A (ko) * 2013-10-14 2015-04-22 경희대학교 산학협력단 유기 전자소자, 태양전지 및 그의 제조방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189810B2 (en) * 2016-09-26 2021-11-30 University-Industry Cooperation Group Of Kyung Hee University Quantum-dot light emitting device comprising solution processed charge generation junction and manufacturing method thereof
US11818907B2 (en) 2016-09-26 2023-11-14 University-Industry Cooperation Group Of Kyung Hee University Quantum-dot light emitting device comprising solution processed charge generation junction and manufacturing method thereof
CN107068884A (zh) * 2017-04-05 2017-08-18 桂林电子科技大学 一种高效率紫外有机电致发光器件及其制备方法
CN107068884B (zh) * 2017-04-05 2019-07-05 桂林电子科技大学 一种高效率紫外有机电致发光器件及其制备方法
CN108346748A (zh) * 2017-08-04 2018-07-31 广东聚华印刷显示技术有限公司 电荷产生层、电致发光器件及其制备方法
CN110752302A (zh) * 2018-07-24 2020-02-04 Tcl集团股份有限公司 复合材料及其制备方法和量子点发光二极管
CN110752302B (zh) * 2018-07-24 2020-12-18 Tcl科技集团股份有限公司 复合材料及其制备方法和量子点发光二极管
CN109119542A (zh) * 2018-07-26 2019-01-01 苏州星烁纳米科技有限公司 量子点电致发光器件

Also Published As

Publication number Publication date
CN107112424B (zh) 2019-02-05
US20180261796A1 (en) 2018-09-13
US10510978B2 (en) 2019-12-17
KR101772437B1 (ko) 2017-08-30
CN107112424A (zh) 2017-08-29
KR20160066721A (ko) 2016-06-13

Similar Documents

Publication Publication Date Title
WO2016089131A1 (ko) 용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법
WO2010039009A2 (ko) 유기발광소자 및 이의 제조방법
WO2013154342A1 (ko) 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자, 이를 포함하는 조명 기구와 디스플레이 장치
WO2009139607A2 (ko) 적층형 유기발광소자
WO2010056070A2 (ko) 저전압 구동 유기발광소자 및 이의 제조 방법
WO2015026185A1 (ko) 유기 발광 소자 및 이의 제조방법
WO2015174673A1 (ko) 유기발광소자 및 이의 제조방법
US20140014937A1 (en) Organic electroluminescent element
WO2010107249A2 (ko) 유기발광소자 및 이의 제조방법
KR20150046900A (ko) 유기전계발광소자
WO2015137771A1 (ko) 유기발광소자
KR20140053147A (ko) 유기 발광 소자
CN1828968B (zh) 有机发光装置及其制造方法
WO2009093873A2 (ko) 유기 발광 소자 및 이의 제작 방법
WO2013000163A1 (zh) 顶发射柔性有机电致发光器件及其制备方法
US20150090977A1 (en) Organic electroluminescence unit, method of manufacturing organic electroluminescence unit, and electronic apparatus
WO2015041461A1 (ko) 유기 발광 소자
WO2013000164A1 (zh) 顶发射有机电致发光二极管及其制备方法
WO2016039585A1 (ko) 갈륨을 포함하는 p형 산화물 반도체를 이용한 유기 발광 다이오드 및 이의 제조 방법
US20180219174A1 (en) Organic electroluminescence panel
US20190044091A1 (en) Organic electroluminescence panel and method for manufacturing the same
KR20120042434A (ko) 유기전계 발광소자 및 그의 제조방법
KR101103488B1 (ko) 전기발광소자 및 그 제조방법
WO2013143146A1 (zh) 有机电致发光器件及其制备方法
US20150137086A1 (en) Organic electroluminescence unit, method of manufacturing the same, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866356

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15533116

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866356

Country of ref document: EP

Kind code of ref document: A1