JP2011529681A - 電気機械のための回転子 - Google Patents

電気機械のための回転子 Download PDF

Info

Publication number
JP2011529681A
JP2011529681A JP2011521258A JP2011521258A JP2011529681A JP 2011529681 A JP2011529681 A JP 2011529681A JP 2011521258 A JP2011521258 A JP 2011521258A JP 2011521258 A JP2011521258 A JP 2011521258A JP 2011529681 A JP2011529681 A JP 2011529681A
Authority
JP
Japan
Prior art keywords
rotor
segment
permanent magnet
segments
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011521258A
Other languages
English (en)
Inventor
セーバン,ダニエル,エム.
Original Assignee
ダイレクト、ドライヴ、システィムズ、インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイレクト、ドライヴ、システィムズ、インク filed Critical ダイレクト、ドライヴ、システィムズ、インク
Publication of JP2011529681A publication Critical patent/JP2011529681A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • H02K5/1285Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs of the submersible type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Abstract

電気機械のための回転子が、回転子ハブと、回転子ハブの周囲部の周りに取り付けられる複数の永久磁石セグメントとを備える。いくつかの例においては、これらのセグメントは、円形の外方表面を有し、回転子ハブに設置された場合に回転子の円筒状外方表面を形成する。永久磁石は、ある特定の磁場を有する回転子を構成するように選択される。いくつかの例においては、これらのセグメントは、これらの永久磁石セグメントの中の第1の複数のセグメントと、少なくとも1つのマルチピース永久磁石セグメントとを備え、この少なくとも1つのマルチピース永久磁石セグメントは、少なくとも2つの片を含み、各片は、第1の複数のセグメント中のセグメントよりも短い弧長を有し、各マルチピース・セグメント中の1つの片の磁化方向ベクトルが、少なくとも1つの他の片の磁化方向ベクトルとは異なる。いくつかの例においては、これらの複数のセグメントは、一次磁石セグメントと、補極磁石セグメントとを備えることにより、2つ以上の磁極を規定し、これらのセグメントは、均一に配向された方向ベクトル成分を有する。いくつかの例においては、2極回転子構成中のセグメントが、互いに実質的に平行であり、実質的に同一方向に配向された、方向ベクトル成分を有する。

Description

(関連出願の相互参照)
本出願は、2008年7月28日に出願された米国仮出願第61/084,238号、2008年9月11日に出願された米国仮出願第61/096,290号、2009年7月1日に出願された米国特許出願第12/496,552号、2009年7月1日に出願された米国特許出願第12/496,619号、および2009年7月1日に出願された米国特許出願第12/496,621号の利益を主張するものである。これらの出願の全開示は、参照により本明細書に組み込まれる。
いくつかの電気機械は、機械的動作(例えば運動エネルギー)を電力に変換する、電力を機械的動作に変換する、またはそれらの両方を行うように、作動する。例えば、機械的動作を電力に変換する(すなわち発電する)ように作動する電気機械システムは、原動機である随伴デバイスに結合された電気機械を含むことが可能である。この原動機は、電気機械に機械的動作を与え、電気機械が、その機械的動作を電力に変換する。電力を機械的動作に変換するように構成された電気機械システム(すなわちモータ)は、随伴デバイスに結合された電気機械を含むことが可能であり、この随伴デバイスは、この電気機械から出力される機械的動作によって駆動される。いくつかの例において、電力および機械的動作の両方を生成するように構成された電気機械システムは、随伴デバイス(例えば原動機)に結合された電気機械を含むことが可能であり、この随伴デバイスは、電気機械によって駆動され得る、および電気機械を駆動することができる。
本開示の一態様は、電気機械のための回転子を包含する。この回転子は、回転子ハブと、回転子ハブの周囲部の周りに取り付けられる複数の永久磁石セグメントとを備える。実質的に均一な弧長の、これらの永久磁石セグメントの中の第1の複数のセグメントが、単一の一体成形材料片から形成される。マルチピース永久磁石セグメントが、2つの片を含み、これらの各片が、第1の複数の永久磁石セグメントよりも短い弧長を有する。これらの片の中の1つの磁化方向ベクトルが、そのマルチピース・セグメント中の少なくとも1つの他の片の磁化方向ベクトルとは異なる。
本開示の一態様は、回転子の円筒状外方表面の1セクションを形成するように回転子に設置されるように構成され得る、電気機械の回転子と共に使用するための永久磁石セグメントを包含する。この永久磁石セグメントは、第1の磁化方向ベクトルを有する第1の永久磁石セクションと、第1の磁化方向ベクトルとは異なる磁化方向ベクトルを有する少なくとも1つの他の永久磁石セクションとを備えることが可能である。
本開示の一態様は、回転子ハブの周囲部に均一弧長の第1の複数の永久磁石セグメントを取り付けるステップを含む、電気機械のための回転子を形成する方法を包含する。第1の複数のセグメント中の各セグメントが、単一の一体成形材料片から形成される。マルチピース永久磁石セグメントが、回転子ハブの周囲部に取り付けられる。このマルチピース・セグメントは、2つの片を含み、これらの各片が、第1の複数の永久磁石セグメントよりも短い弧長を有する。第1の片の磁化方向ベクトルが、そのマルチピース・セグメント中の第2の片の磁化方向ベクトルとは異なる。いくつかの例においては、マルチピース・セグメントの片が、第1の複数のセグメントと等しい弧長の、かつ第1の複数のセグメントと同一の材料から形成される、単一の永久磁石セグメントをセグメント化することによって形成される。いくつかの例においては、第1の片の磁化方向ベクトルが、第1の複数のセグメントの磁化方向とは異なる。
これらの態様の中の1つまたは複数が、以下の特徴の中の1つまたは複数を備えてよく、または以下の特徴を備えなくてもよい。マルチピース・セグメントの弧長と第1の複数の永久磁石セグメント中のセグメントの弧長とが、均一であることが可能である。回転子は、第2の複数の永久磁石セグメントをさらに備えることが可能であり、これらの第2の複数のセグメント中のセグメントの弧長は、第1の複数のセグメント中のセグメントの弧長とは異なる。複数のマルチピース磁石セグメントは、補極セグメントであることが可能である。マルチピース・セグメント中の1つの片の弧長が、同じマルチピース・セグメント中の第2の片の弧長よりも長い。マルチピース・セグメント中の1つの片が、同じマルチピース・セグメント中の第2の片の材料とは異なる材料から形成され得る。マルチピース・セグメントの材料は、同じマルチピース・セグメント中の第2の片の材料よりも高い密度を有することが可能である。マルチピース・セグメントの材料が、同じマルチピース・セグメント中の第2の片の材料とは異なる磁気的特徴を有することが可能である。マルチピース・セグメント中の少なくとも1つの片が、第1の複数のセグメント中のセグメントの弧長と等しい弧長を有し、かつ第1の複数のセグメント中のセグメントと同一の材料から形成される、単一の永久磁石セグメントから構成され得る。マルチピース・セグメント中の1つの片が、同じマルチピース・セグメント中の第2の片の磁気方向ベクトルに対して垂直な磁気方向ベクトルを有することが可能である。回転子ハブは、実質的に円筒状の長尺の回転子であることが可能である。回転子は、深海中作動用に適合化することが可能である。第1の永久磁石セクションおよび少なくとも1つの他の永久磁石セクションは、共に接合することが可能である。少なくとも1つの他の永久磁石セクションのサイズが、第1の永久磁石セクションよりも大きいことが可能である。磁化ベクトルは、方向成分および大きさ成分を含むことが可能である。第1の永久磁石および少なくとも1つの他の永久磁石の磁化ベクトルは、それぞれ異なる方向成分を有することが可能である。第1の永久磁石および少なくとも1つの他の永久磁石の磁化ベクトルは、それぞれ異なる大きさ成分を有することが可能である。
本開示の一態様は、電気機械のための多極回転子を包含する。この多極回転子は、回転子ハブと、回転子ハブの周囲部の周りの複数の一次永久磁石セグメントとを備える。各一次磁石セグメントの外方面は、実質的に弧状であり、回転子ハブに設置された場合にこの回転子の実質的に円筒状の表面の1セクションを画成する。各一次永久磁石セグメントは、ラジアル方向に磁化されて、その外方面に対して垂直な磁気方向ベクトルを有する磁場を有する。この多極回転子は、回転子ハブの周囲部の周りに複数の補極永久磁石セグメントを備える。各補極磁石セグメントの外方面は、実質的に弧状であり、回転子ハブに設置された場合にこの回転子の実質的に円筒状の表面の1セクションを画成する。各補極永久磁石セグメントが、その外方面に対して垂直ではない磁気方向ベクトルを有する磁場を有する。
本開示の一態様は、複数の永久磁石セグメントが、実質的に円筒状の表面を形成するように構成される、方法を包含する。この方法においては、複数の磁極が、円筒状表面に対してラジアル方向に向かう磁気方向ベクトルをそれぞれが有する、第1の複数のラジアル方向に磁化される磁石セグメントによって規定される。複数の補極が、円筒状表面に無関係な磁気方向ベクトルをそれぞれが有する、第2の複数のラジアル方向に磁化される磁石セグメントによって規定される。これらの複数の永久磁石セグメントは、電気機械の固定子内において回転される。
これらの態様の中の1つまたは複数が、以下の特徴の中のいくつかまたは全てを備えることが可能であり、または以下の特徴を備えないことが可能である。一次永久磁石セグメントの弧長と補極永久磁石セグメントの弧長とが、均一であることが可能である。回転子は、回転子中の磁極の数と少なくとも同一数の補極永久磁石セグメントを備えることが可能である。補極永久磁石セグメントの総数が、2つであることが可能であり、一次永久磁石セグメントおよび補極永久磁石セグメントが、2極を規定する。補極永久磁石セグメントの総数が、4つであることが可能であり、一次永久磁石セグメントおよび補極永久磁石セグメントが、4極を規定する。一次永久磁石セグメントおよび補極永久磁石セグメントは、多極を規定することが可能である。
本開示の一態様は、電気機械のための2極回転子を包含する。この2極回転子は、回転子ハブと、回転子ハブの周囲部の周りに位置し、この回転子の実質的に円筒状の表面を画成する、少なくとも4つの永久磁石セグメントとを備える。永久磁石セグメントの中の少なくとも4つがそれぞれ、磁気セグメントを二等分する円筒状表面の半径に対して異なる方向を有する磁気方向ベクトルを有する。
本開示の一態様は、複数の永久磁石セグメントが回転子の実質的に円筒状の表面を画成するように構成される、この回転子の2極を規定する方法を包含する。この方法においては、磁場が、磁気セグメントの中の第1のセグメントを二等分する半径に対して第1の方向にかけられる。磁場が、磁気セグメントの中の第2のセグメントを二等分する半径に対して第2の方向にかけられる。磁場が、磁気セグメントの中の第3のセグメントを二等分する半径に対して第3の方向にかけられる。磁場が、磁気セグメントの中の第4のセグメントを二等分する半径に対して第4の方向にかけられる。
これらの態様の中の1つまたは複数が、以下の特徴の中のいくつかまたは全てを備えることが可能であり、または以下の特徴を備えないことが可能である。少なくとも2つの磁石セグメントが、回転子ハブの表面に対して実質的に垂直な磁気方向ベクトルを有することが可能である。回転子ハブの表面が、回転子の半径に対して垂直であることが可能である。少なくとも2つの磁気方向ベクトルが、回転子の半径に対して実質的に垂直であることが可能である。永久磁石セグメントのそれぞれの弧長が、同一であることが可能である。永久磁石の中の少なくとも2つが、補極磁石であることが可能である。
本開示の一態様は、回転子ハブと、回転子ハブの周囲部の周りに端部同士を接した状態で位置する複数の永久磁石セグメントとを備える、電気機械のための回転子を包含する。各永久磁石セグメントの外方面は、弧状であり、これらの永久磁石セグメントは、一体としてこの回転子の円筒状表面を画成する。各永久磁石が、円筒状表面の中心からラジアル方向に向かう、その磁石セグメントを二等分する中心線を備える。これらの複数の磁石セグメントは、磁極を規定し、この磁極は、複数の磁石セグメントのそれぞれの中心線から方位角において位置をずらされる、円筒状表面の中心からラジアル方向に向かい磁極を二等分する磁気方向ベクトルを有する。
本開示の一態様は、複数の永久磁石セグメントが端部同士を接した状態で配置されて回転子の実質的に円筒状の表面を画成する、方法を包含する。この方法においては、磁場が、複数の永久磁石セグメントにより複数の方向にかけられる。磁極が、各磁気セグメントの中心線から方位角において位置をずらされた、円筒状表面の中心からラジアル方向に向かい磁極を二等分する磁気方向ベクトルを有するように規定され、この中心線は、円筒状表面の中心からラジアル方向に向かい、磁気セグメントを二等分し、磁気セグメントのそれぞれの端部から方位角において位置をずらされる。
これらの態様の中の1つまたは複数が、以下の特徴の中のいくつかまたは全てを備え、または以下の特徴を備えない。磁気方向ベクトルは、複数の磁石セグメントのそれぞれの端部から方位角において位置をずらされ得る。回転子は、2極回転子であることが可能である。回転子は、3つ以上の磁極を有することが可能である。複数のセグメントの中の少なくとも2つのセグメントが、補極セグメントであることが可能である。
本開示の一態様は、中心軸を有する回転子ハブと、回転子ハブの周囲部の周りに位置し、回転子の実質的に円筒状の表面を形成する、複数の永久磁石セグメントとを備える、電気機械のための回転子を包含する。これらの永久磁石のそれぞれが、円筒状表面に対する接線に対して実質的に平行であるか、または円筒状表面の中心から実質的にラジアル方向に向かう、磁気方向ベクトルを有する。
本開示の一態様は、複数の永久磁石セグメントが、回転子ハブの周囲部の周りに位置し、回転子の実質的に円筒状の表面を形成する、方法を包含する。この方法においては、複数の磁場が加えられ、それらの磁場はそれぞれ、円筒状表面に対する接線に対して実質的に平行であるか、または円筒状表面の中心から実質的にラジアル方向に向かう磁気方向ベクトルを有する。
これらの態様の中の1つまたは複数が、以下の特徴の中のいくつかまたは全てを備えることが可能であり、または以下の特徴を備えないことが可能である。円筒状表面に対する接線に対して平行な磁気方向ベクトルを有するセグメントが、同一の弧長を有することが可能であり、円筒状表面の中心からラジアル方向に向かう磁気方向ベクトルを有するセグメントが、同一の弧長を有することが可能である。円筒状表面の中心からラジアル方向に向かう磁気方向ベクトルを有するセグメントの弧長が、円筒状表面に対する接線に対して平行な磁気方向ベクトルを有するセグメントの弧長とは異なることが可能である。
本開示の一態様は、電気機械のための2極回転子を包含する。この2極回転子は、回転子ハブと、回転子ハブの周囲部に取り付けられる複数の永久磁石セグメントとを備える。これらの磁石セグメントは、回転子の実質的に円筒状の外方表面を画成する。これらの磁石セグメントはそれぞれ、方向ベクトル成分を有する磁場を有し、回転子ハブの周囲部に取り付けられたこれらの磁石セグメントの方向ベクトル成分は、互いに実質的に平行であり、実質的に同一方向に配向される。
本開示の一態様は、第1および第2の磁極が、互いに実質的に平行な方向ベクトル成分を有する複数の磁場によって規定される、方法を包含する。これらの磁場は、実質的に円筒状の表面を画成するように構成される複数の永久磁石によって生じる。これらの磁場は、電気機械の固定子内において中心軸を中心として回転される。
本開示の一態様は、電気機械のための4極回転子を包含する。この回転子は、回転子ハブと、回転子ハブに取り付けられる第1の複数の永久磁石セグメントとを備える。この第1の複数の磁石セグメントは、回転子の円筒状の外方表面の第1の弧を画成し、回転子の第1の磁極を規定する。各磁石セグメントが、方向ベクトル成分を有する磁場を有する。回転子ハブに取り付けられたこれらの磁石セグメントのベクトル方向成分は、互いに実質的に平行であり、実質的に同一の第1の方向に配向される。第2の複数の永久磁石セグメントが、回転子ハブに取り付けられ、回転子の円筒状の外方表面の第2の弧を画成し、回転子の第2の磁極を規定する。各第2の磁石セグメントは、方向ベクトル成分を有する磁場を有する。回転子ハブに取り付けられたこれらの第2の磁石セグメントのベクトル方向成分は、互いに実質的に平行であり、実質的に同一の第2の方向に配向される。第3の複数の永久磁石セグメントが、回転子ハブに取り付けられ、この回転子の円筒状の外方表面の第3の弧を画成し、回転子の第3の磁極を規定する。各第3の磁石セグメントは、方向ベクトル成分を有する磁場を有する。回転子ハブに取り付けられたこれらの第3の磁石セグメントのベクトル方向成分は、互いに実質的に平行であり、実質的に同一の第3の方向に配向される。第4の複数の永久磁石セグメントが、回転子ハブに取り付けられ、回転子の円筒状の外方表面の第4の弧を画成し、回転子の第4の磁極を規定する。各第4の磁石セグメントは、方向ベクトル成分を有する磁場を有する。回転子ハブに取り付けられたこれらの第4の磁石セグメントのベクトル方向成分は、互いに実質的に平行であり、実質的に同一の第4の方向に配向される。
本開示の一態様は、互いに実質的に平行な方向ベクトル成分を有する第1の複数の磁場を有する第1の磁極を規定するステップを含む方法を包含する。第1の複数の磁場は、実質的に円筒状の表面の第1の四分円弧を画成するように構成された第1の複数の永久磁石によって生じる。第2の複数の磁場が、互いに実質的に平行な方向ベクトル成分を有する第2の複数の磁場により規定される。これらの第2の複数の磁場は、実質的に円筒状の表面の第2の四分円弧を画成するように構成された第2の複数の永久磁石によって生じる。第3の磁極が、互いに実質的に平行な方向ベクトル成分を有する第3の複数の磁場によって規定される。これらの第3の複数の磁場は、実質的に円筒状の表面の第3の四分円弧を画成するように構成された第3の複数の永久磁石によって生じる。第4の磁極が、互いに実質的に平行な方向ベクトル成分を有する第4の複数の磁場によって規定される。これらの第4の複数の磁場は、実質的に円筒状の表面の第4の四分円弧を画成するように構成された第4の複数の永久磁石によって生じる。これらの磁極は、電気機械の固定子内で中心軸を中心として回転される。
これらの態様は、以下の特徴の中の1つまたは複数を備えることが可能であり、または以下の特徴を備えないことが可能である。これらの永久磁石セグメントは、実質的に同一の弧長を有することが可能である。各磁石セグメントの方向ベクトル成分の配向が、セグメントの弧長全体にわたって均一であることが可能である。4つの永久磁石セグメントを回転子ハブの周囲部に取り付けることが可能である。16個の永久磁石セグメントを回転子ハブの周囲部に取り付けることが可能である。磁石セグメントは、曲線状の外向表面を有することが可能である。第1の磁石セグメントの方向ベクトル成分を、その外向表面に対して第1の方向に配向することが可能であり、第2の磁石セグメントの方向ベクトル成分を、第2の磁石セグメントの外向表面に対して第2の別の方向に配向することが可能である。複数の磁場は、実質的に同一強度のものであることが可能である。
以下、添付の図面および説明において、1つまたは複数の実装形態の詳細を示す。他の特徴、目的、および利点が、これらの説明および図面から、ならびに特許請求の範囲から明らかになろう。
例示的な電気機械システムの概略図である。 海中ポンプを含む例示的な電気機械システムの断面図である。 海中圧縮機を含む例示的な電気機械システムの断面図である。 例示的な回転子の断面図である。 図2Aの例示的な回転子の端部の詳細な断面図である。 金属テープにより形成された複合材料スリーブが回転子の外側ジャケットの周囲に覆い付けられた状態の、例示的な回転子を示す図である。 金属合金テープから形成された回転子スリーブを有する例示的な回転子の端部の詳細な断面図である。 例示的な回転子スリーブの詳細な破断図である。 別の例示的な回転子の詳細な断面図である。 図2Eの例示的な回転子の詳細な斜視図である。 セグメント化された磁石を有する1つの例示的な回転子の概略断面図である。各磁石セグメントに付随する矢印は、各磁石セグメントの北磁極配向を示す。 セグメント化された磁石を有する1つの例示的な回転子の概略断面図である。各磁石セグメントに付随する矢印は、各磁石セグメントの北磁極配向を示す。 セグメント化された磁石を有する1つの例示的な回転子の概略断面図である。各磁石セグメントに付随する矢印は、各磁石セグメントの北磁極配向を示す。 セグメント化された磁石を有する1つの例示的な回転子の概略断面図である。各磁石セグメントに付随する矢印は、各磁石セグメントの北磁極配向を示す。 セグメント化された磁石を有する1つの例示的な回転子の概略断面図である。各磁石セグメントに付随する矢印は、各磁石セグメントの北磁極配向を示す。 セグメント化された磁石を有する1つの例示的な回転子の概略断面図である。各磁石セグメントに付随する矢印は、各磁石セグメントの北磁極配向を示す。 セグメント化された磁石を有する1つの例示的な回転子の概略断面図である。各磁石セグメントに付随する矢印は、各磁石セグメントの北磁極配向を示す。 セグメント化された磁石を有する1つの例示的な回転子の概略断面図である。各磁石セグメントに付随する矢印は、各磁石セグメントの北磁極配向を示す。 セグメント化された磁石を有する1つの例示的な回転子の概略断面図である。各磁石セグメントに付随する矢印は、各磁石セグメントの北磁極配向を示す。 回転子磁石のセグメントによって形成された複数の流路チャネルを示す、例示的な回転子の側面図である。 充填材料の案内を容易にするために回転子中に形成された溝を有する、別の例示的な回転子の側面図である。 回転子の端部リング中に形成された入口と共に、回転子中に形成された環状チャネル264を有する、別の例示的な回転子の側面図である。 均一なラジアル方向の磁性を帯びている磁石セグメントまたは磁石セグメント列の断面図である。 真にラジアル方向の磁性を帯びている磁石セグメントまたは磁石セグメント列の断面図である。 例示的な電気機械の断面図である。 電気機械において使用するための例示的な固定子鉄心の斜視図である。 各継鉄部分が複数の個別の部分から形成されている、2つの隣接し合う形成された継鉄部分を示す図である。 図3Cの継鉄部分の一部を形成するために使用される例示的な一部分を示す図である。 固定子の位置合わせを行い、固定子に対して剛性を与えるために使用される、図3Bの例示的な固定子の例示的な固定子バーを示す図である。 図3Bの例示的な固定子の例示的な端部プレートを示す図である。 図3Bの例示的な固定子の端部の部分詳細図である。 図3Bの例示的な固定子において使用するための例示的な固定子歯積層体を示す図である。 固定子歯積層体を位置合わせするおよび/または装着するための突出部および受容部のそれぞれを有する、2つの隣接し合う固定子歯積層体の側面図である。 隣接し合う固定子歯積層体を位置合わせするおよび/または装着するための、代替的な構成を示す図である。 隣接し合う継鉄中に形成されたチャネル内に配設される歯セグメントの概略図である。 固定子の周囲に保護バリアを有する例示的な電気機械の断面図である。 保護バリアの例示的な構成を示す部分断面図である。 保護バリアの例示的な構成を示す部分断面図である。 保護バリアの例示的な構成を示す部分断面図である。 保護バリアの例示的な構成を示す部分断面図である。 保護バリアの例示的な構成を示す部分断面図である。 電気機械のための固定子の例示的な鉄心の部分概略端面図である。 電気機械のための固定子の例示的な鉄心の部分概略端面図である。 電気機械のための固定子の例示的な鉄心の部分概略端面図である。 電気機械のための固定子の例示的な鉄心の部分概略端面図である。 電気機械のための固定子の例示的な鉄心の部分概略端面図である。 電気機械のための固定子の例示的な端部ターンの概略端面図である。 電気機械のための固定子の例示的な端部ターンの概略端面図である。 電気機械のための固定子の例示的な端部ターンの概略側面図である。 電気機械のための固定子の例示的な端部ターンの概略側面図である。 電気機械のための例示的な固定子の概略断面図である。 電気機械のための固定子の例示的な端部ターンの概略断面図である。 2つの例示的な端部ターンの概略図である。 例示的な端部ターンの概略図である。 例示的な端部ターンの概略図である。 例示的な端部ターンの概略図である。 電気機械のための固定子の例示的な端部ターンの概略側面図である。 電気機械のための固定子の例示的な端部ターンの概略斜視図である。 電気機械のための固定子の例示的な鉄心の部分概略断面図である。 電気機械のための固定子の例示的な鉄心の部分概略断面図である。 電気機械のための固定子の例示的な鉄心の部分概略断面図である。 電気機械のための固定子の例示的な鉄心の部分概略断面図である。 1つまたは複数の固定子鉄心スロット内に挿入するための例示的なウェッジの斜視図である。 三相電気機械の中の1つの相のための接続を示す配線図である。 三相電気機械の中の1つの相のための接続を示す配線図である。 三相電気機械の中の1つの相のための接続を示す配線図である。 電気機械のための固定子の例示的な鉄心の部分概略端面図である。 電気機械のための固定子の例示的な鉄心の部分概略端面図である。 電気機械のための固定子の例示的な鉄心の部分概略端面図である。 電気機械のための固定子の例示的な鉄心の部分概略端面図である。 電気機械のための固定子の例示的な鉄心の部分概略端面図である。 電気機械のための固定子の例示的な端部ターンの概略端面図である。 電気機械のための固定子の例示的な端部ターンの概略端面図である。 電気機械のための固定子の例示的な端部ターンの概略端面図である。 電気機械のための固定子の例示的な端部ターンの概略側面図である。 電気機械のための例示的な固定子の概略断面図である。 電気機械のための例示的な固定子鉄心の概略断面図である。 電気機械のための例示的な固定子鉄心の概略断面図である。 1つまたは複数の固定子鉄心スロット内に挿入するための例示的なウェッジの斜視図である。 1つまたは複数の固定子鉄心スロット内に挿入するための例示的なウェッジの斜視図である。 電気機械のための例示的な固定子鉄心の概略端面図である。 1つまたは複数の固定子鉄心スロット内に挿入するための例示的なウェッジの斜視図である。 電気機械のための例示的な固定子鉄心の概略端面図である。 電気機械の固定子スロットのための例示的なスロット・ライナを示す図である。 スロット内に位置し、ライナ・クランプにより保持された図4QQのスロット・ライナを示す、電気機械のための例示的な固定子鉄心の端面図である。 スロット内に位置し、代替のライナ・クランプにより保持された図4QQのスロット・ライナを示す、電気機械のための例示的な固定子鉄心の端面図である。 電気機械のための例示的な固定子の部分斜視図である。 電気機械のための例示的な固定子の端面図である。 電気機械のための例示的な固定子の部分斜視図である。 電気機械のための例示的な固定子の部分側面図である。 電気機械のための例示的な固定子の部分斜視図である。
図1Aを参照すると、電気機械システム100が、随伴デバイス104に結合された電気機械102を含む。電気機械102は、機械的動作から電力を生成する発電機として作動することが可能であり、電気から機械的動作を生じさせるモータとして作動することが可能であり、または、発電とモータリングとの間で切り替わることが可能である。発電においては、原動機が、機械的動作を電気機械102に与え、電気機械102が、機械的動作を電力に変換する。いくつかの例においては、随伴デバイス104は、原動機であってよい。モータリングにおいては、電気機械102から出力される機械的動作により、別のデバイスを駆動させることが可能となる。いくつかの例においては、電気機械102は、随伴デバイス104を駆動させることが可能である。いくつかの例においては、電気機械102は、ある指定された条件下にある間は原動機をモータリングおよび駆動するように作動することが可能であり、ある指定された条件下にある間は発電に切り替わり原動機によって駆動され得る。電気機械102は、主に発電のために、主にモータリングのために、または、発電およびモータリングの両方にて程よく効率的なものとなるように、構成することが可能である。
一般的に、電気機械102は、固定部材および可動部材を備え、この可動部材は、磁場の相互作用により、固定部材に対して動く場合には発電し、および/または、電力が固定部材に供給される場合には可動部材を動かす。本明細書においては、参照の便宜上、電気機械102を、回転電気機械として説明し、ここで、可動部材は、固定部材すなわち固定子108内で回転するように支持される回転子106とする。回転子106は、随伴デバイス104に結合されて、随伴デバイス104を駆動する、および/または随伴デバイス104により駆動される。図1Aは、水平方向に配向された随伴デバイス104に結合された、水平方向に配向された電気機械を図示するが、他の実装形態では、様々な配向の中でもとりわけ、垂直方向に配向された随伴デバイスに結合されそれを駆動させることが可能な、垂直方向に配向された電気機械を実現することもできる。さらに、他の例においては、電気機械102は、別のタイプの電気機械であることが可能である。例えば、電気機械102は、可動部材が線形往復運動するシャフトである、線形電気機械であることが可能である。この線形往復運動するシャフトが、随伴デバイス104に結合されて、随伴デバイス104を駆動してもよく、および/または随伴デバイス104により駆動されてもよい。以下においてさらに詳細に説明されるように、電気機械102は、交流(AC)の同期式の永久磁石(PM)電気機械であり、永久磁石を含む回転子106と、鉄心の周囲に複数の成形巻線またはケーブル巻線を備える固定子108とを有する。他の例においては、電気機械は、回転子および固定子の両方が巻線を備えるACの非同期式の誘導機械、または別のタイプの電気機械などの、他のタイプの電気機械であることが可能である。いくつかの例においては、電気機械102は、ハウジング110によって担持され、ハウジング110内に収容される。ハウジング110は、随伴デバイス104とは完全に別個のものであることが可能であり、随伴デバイス104と別個のものであって随伴デバイス104に結合させることが可能であり、または、随伴デバイス104との間で部分的にもしくは完全に共有されるものである(すなわち、電気機械102および随伴デバイス104が、共通のハウジングによって担持され、共通のハウジング内に収容される)ことが可能である。
いくつかの例においては、電気機械システム100は、外海(すなわちウェルまたはパイプラインの外部)中に浸漬される、海中作動用に構成された海中電気機械であってよい。このために、ハウジング110は、ハウジング110の内側と周囲環境(例えば周囲の海水)との間における流体の移動を防ぐようにシールされた高圧容器である。ハウジング110は、電気機械システム100の周囲の周囲圧力、周囲環境によってかけられる熱負荷、ならびに、電気機械102および随伴デバイス104の作動時に生じる圧力および熱負荷に耐えるように構成される。ハウジング110は、例えばステンレス鋼、ニッケル合金(Special Metals Corporation社の商標であるInconelなど)、および/または他の材料などの、耐腐食性を有する材料から構成されてよい。さらに、または代替として、ハウジング110は、例えばInconel、エポキシ、ポリエーテルエーテルケトン、エチレンクロロトリフルオロエチレン、および/または他の材料などの、耐腐食性を有する材料によりめっきまたは被覆されてもよい。いくつかの例においては、ハウジング110は、腐食耐性を補助するためにアノード(図示せず)を担持してもよい。いくつかの例においては、ハウジング110は、他の海中構造体に(例えばガイド・コーンを受けるガイド・チューブによって)整列し係合するスキッドまたは他の構造体に結合されてもよい。
随伴デバイス104が原動機である場合には、随伴デバイスは、複数の種々の可能なデバイスを含むことが可能である。例えば、原動機は、流体(ガス/液体)流を機械エネルギーに変換するように作動可能な流体モータ、空気/流体混合気を燃焼させ、燃焼によるエネルギーを機械エネルギーに変換するように作動可能なガス・タービン・システム、内燃機関、および/または他のタイプの原動機の中の、1つまたは複数を含んでもよい。随伴デバイス104が、電気機械102により駆動される場合には、随伴デバイスは、複数の種々の可能なデバイスを含むことが可能である。例えば、随伴デバイス104は、回転ポンプおよび/または往復ポンプ、回転圧縮機および/または往復圧縮機、混合デバイス、あるいは他のデバイスの中の、1つまたは複数を含むことが可能である。ポンプのいくつかの例には、遠心ポンプ、軸流ポンプ、ロータリー・ベーン・ポンプ、歯車ポンプ、スクリュー・ポンプ、ローブ・ポンプ、プログレッシブ・キャビティ・ポンプ、往復動容積型ポンプもしくはプランジャ・ポンプ、ダイヤフラム・ポンプ、および/または他のタイプのポンプが含まれる。圧縮機のいくつかの例には、遠心圧縮機、軸流圧縮機、ロータリー・ベーン圧縮機、スクリュー圧縮機、往復動容積型圧縮機、および/または他のタイプの圧縮機が含まれる。電気機械102は、同時に2つ以上の随伴デバイス104に結合させることが可能である。
電気機械102は、単一の随伴デバイス104と共に図示されるが、2つ以上の随伴デバイス104に結合させる(それにより、デバイス104を駆動する、および/またはデバイス104によって駆動される)ことも可能である。いくつかの例においては、1つまたは複数の随伴デバイス104を、電気機械102の各端部に設けることが可能である。例えば、2つの随伴デバイス104を備える構成においては、一方の随伴デバイス104が、電気機械102の一方の端部に設けられ、他方の随伴デバイス104が、電気機械の逆の端部に設けられてよい。別の例においては、2つの随伴デバイス104を備える構成が、一方の随伴デバイス104を電気機械102の一方の端部に設け、他方の随伴デバイス104をこの第1の随伴デバイスに結合させることが可能である。さらに、複数の随伴デバイス104が設けられる場合に、それらは、全てが同じタイプの随伴デバイスである必要はない。
図1Bは、例示的な電気機械システム100aを図示し、ここでは、随伴デバイス104aは、電気機械102aにより駆動されるポンプである。1つのポンプ随伴デバイス104aが図示される。他の例においては、さらに多数のポンプ随伴デバイス104aを設けることが可能である。例えば、2つのポンプ随伴デバイス104aを、電気機械102aの両端部上に設ける(例えば、以下に示される圧縮機随伴デバイス104bと同様の構成において)ことが可能である。いくつかの例においては、2つ以上のポンプ随伴デバイス104aを、電気機械102aの同じ側に設けることが可能である。この例示的な電気機械システム100aは、外海(すなわちウェルの外部)中に浸漬される海中作動用に構成される。換言すれば、例示的な電気機械システム100aは、海中ポンプ・システムである。
ハウジング110aは、ハウジング110aの内側と周囲環境(例えば周囲の海水)との間における流体の移動を防ぐようにシールされた高圧容器である。いくつかの例においては、このハウジングは、回転子106および固定子108の両方に送られる熱伝達流体で満たされる。いくつかの例においては、この熱伝達流体は、液体を含み、主に液体であり、および/または完全に液体である。熱伝達流体は、水、モノエチレングリコール(MEG)、モノプロピレングリコール(MPG)、油、ポンプ随伴デバイス104aによって汲み上げられるのと同様のまたは同一の流体、および/または他の流体を含むことが可能である。本明細書においては熱伝達流体と呼ぶが、この流体は、電気機械102aに熱伝達を行う以外の他の機能を果たしてもよい。いくつかの例においては、この流体は、軸受表面を潤滑し、および/または他の機能を果たす。いくつかの例においては、熱伝達流体は、ポンプ随伴デバイス104aによって達成される最大作動圧力を上回る圧力にて維持される。熱伝達流体が、ポンプ随伴デバイス104aによって達成される最大作動圧力を上回る圧力にあることにより、電気機械102aとポンプ随伴デバイス104との間における漏出は、ポンプ随伴デバイス104aの方向への熱伝達流体の漏出となる傾向がある。いくつかの例においては、熱伝達流体の圧力は、電気機械システム100a中を熱伝達流体が循環する際に生じる随伴圧力を十分に上回る量だけ、電気機械システム100aの外側の周りの周囲圧力を上回る。ハウジング110aは、電気機械102aの駆動端部の近位にフランジ112を有する。フランジ112は、例えば随伴デバイス104aの対応するフランジ124にて、随伴デバイス104aにボルトおよび/または他の方法によりシール接合されるように構成される。いくつかの例においては、シール(例えばリング・ガスケット、Oリング、および/または他のもの)が、フランジ112とフランジ124との間に設けられてよい。図1Bは、直動式海中ポンプ・システムを図示し、電気機械102aのハウジング110aは、ポンプ随伴デバイス104aのハウジング148に直接的に装着される。他の例においては、海中ポンプ・システムは、電気機械および随伴デバイスが共通のハウジングおよび/または共通のシャフトを有する、一体構成のものであることが可能である。例えば、いくつかの共通ハウジング構成においては、電気機械および随伴デバイスの両方を囲むハウジング本体が、一体成形部材である(すなわち、固定具の取外しなどによって容易に分離できない)ことが可能である。いくつかの共通シャフト構成においては、電気機械の回転子が、随伴デバイスの駆動シャフトと一体である(すなわち、固定具の取外しまたは駆動結合部の解除などによって容易に分離できない)ことが可能である。他の例においては、海中ポンプ・システムが、ポンプ随伴デバイス104aのハウジングとは完全に別個の(結合されていない、および/または実質的に結合されていない)電気機械102aのハウジングを有する、非一体構成のものであることが可能である。
図示されるハウジング110aは、4つの主要要素において構成され、この4つの主要要素には、ハウジング本体114、電気機械102aの駆動端部の近位の駆動端部プレート116a、電気機械102aの駆動端部の対向側の非駆動端部プレート118a、およびハウジング本体114の端部にて非駆動端部プレート118aに隣接する端部キャップ119が含まれる。いくつかの例においては、ハウジング110aは、より少数のまたはより多数の要素において構成されてよい。1つまたは複数のシール120(例えばガスケット、Oリング、および/または他のもの)が、ハウジング110a内へのおよび/またはハウジング110a外への流体の移動を防ぐようにシールするために、端部キャップ119とハウジング本体114との間に設けられてよい。いくつかの例においては、追加的にまたは代替として、シールが、駆動端部プレート116aとハウジング本体114との間に、および/または非駆動端部プレート118aとハウジング本体114との間に設けられてよい。回転子106の駆動スタブ117aが、随伴デバイス104aとの間で機械的動作を伝達するために、駆動端部プレート116aを貫通して延在する。
端部プレート116a、118aは、固定子108内において回転軸を中心として回転する回転子106を受け支持する軸受112を担持する。これらの軸受122は、複数の種々の可能なタイプの軸受であることが可能であり、駆動端部プレート116aによって担持される軸受の個数およびタイプは、非駆動端部プレート118aによって担持される軸受の個数およびタイプと異なることが可能である。軸受122は、ジャーナル軸受(例えばティルト・パッド・ジャーナル軸受および/または他のタイプ)、磁気軸受(例えば、米国特許第6,700,258号に記載のもの、米国特許第6,727,617号に記載のもの、米国特許公開第2002/0175578号に記載のもの、および/または他のタイプのものなど)、ハイブリッド型磁気軸受、玉軸受、および/または他のタイプの軸受の中の、1つまたは複数を含むことが可能である。軸受122の中の1つまたは複数が、スラスト軸受(例えばティルト・パッド・スラスト・パッドおよび/または他のタイプのもの)である。いくつかの例においては、非駆動端部プレート118aが、ハウジング110aに対して回転子106を軸方向に保持するための少なくとも1つの軸方向軸受またはスラスト軸受と、ハウジング110aに対して回転子106をラジアル方向に支持するための少なくとも1つのラジアル軸受とを備え、駆動端部プレート116aが、ハウジング110aに対して回転子106をラジアル方向に支持するための少なくとも1つのラジアル軸受を備える。
固定子108は、概して円筒状であり、その外径部は、ハウジング110aに対して固定子108を支持するために、ハウジング110aの内径部内に密接に受けられる。固定子108の外径部は、ハウジング110aに対して固定子108を回転的に取り付けるために、ハウジング110aの内径部にキー固定されて(雌受容部内に受けられる突出雄キーを使用して)、ボルト固定されて、および/または他の態様で固定されてよい。いくつかの例においては、固定子108は、ハウジング110aにボルト固定および/または他の態様で取り付けられる端部リング126によって、軸方向に保持される。1つまたは複数の貫通体128(例示を簡略化するために1つが図示される)が、ハウジング110aの内側に流体および/または電力を送るために、ハウジング110aを貫通して設けられ、ハウジング110aとシール固定されまたは実質的にシール固定される。例えば三相電気機械102aに関連してなど、いくつかの例においては、少なくとも3つの貫通体128が、パワー・エレクトロニクス・システム(すなわち電気機械のための制御システム)から固定子108の巻線まで電気導体を案内するために設けられる。ハウジング110aから漏出した分の熱伝達流体を補充するために熱伝達流体供給源に結合された導管を含む、別の貫通体128が設けられてもよい。
回転子106の非駆動端部は、ハウジング110a内においておよび外部熱交換器132中に熱伝達流体を循環させる、流体循環ポンプ130を担持する。このポンプ130は、回転子106の非駆動端部に結合されて、回転子106と共に回転する。ポンプ130は、シュラウド付きまたはシュラウド無しの遠心羽根車ポンプ、ラジアル羽根車ポンプ、ロータリー・ベーン・ポンプ、歯車ポンプ、スクリュー・ポンプ、ローブ・ポンプ、および/または他のタイプのポンプを含む、複数の種々のタイプのポンプであることが可能である。いくつかの例においては、外部熱交換器132は、ハウジング110aの外側の周囲に螺旋状に巻かれた連続導管を含む。この外部熱交換器は、電気機械102aの駆動端部の近位に出口を、およびポンプ130の近位に入口を有する。ポンプ130は、非駆動端部プレート118a中のポート134を介して外部熱交換器132内に熱伝達流体を汲み上げる。この流体は、固定子108越しに電気機械102aの駆動端部の方向に流れ、固定子108と回転子106との間のギャップを通り、および固定子108と回転子106との間のギャップを通り流れる。熱伝達流体が固定子108および/または回転子106よりも冷たい場合には、この流体は、固定子108および/または回転子106から抽熱する(すなわち固定子108および/または回転子106を冷却する)。いくつかの例において、シャフト被動循環ポンプが駆動端部上に設置される場合には、電気機械102aの駆動端部に位置する流体は、熱交換器132内に流れ、螺旋状コイルを通り循環される際に冷却され、固定子108越しに電気機械102aの非駆動端部に戻され、固定子108と回転子106との間のギャップを通り、および固定子108とハウジング110aとの間の軸方向ギャップを通り、ポンプ130に戻されて、循環を繰り返す。他の例においては、固定子108とハウジング110aとの間の流体循環ギャップを省くことが可能である。電気機械システム100aが海中にある場合には、海水が、熱交換器132の螺旋状コイルを通り循環される熱伝達流体を冷却するのに役立つ。この外部熱交換器132は、ハウジング110a内からの熱伝達流体を冷却するように図示されるが、さらにまたは代替として、随伴デバイスの作用を受けるプロセス流体を受け、冷却することが可能である。さらに、以下に説明されるように、ハウジング110a内の熱伝達流体およびプロセス流体は、同一であることが可能である。いくつかの例においては、ハウジング110a内からの流体を冷却するために熱交換器132を使用し、随伴デバイスの作用を受けるプロセス流体を受け、冷却するために、追加の外部熱交換器(図示せず)をハウジング110aの周囲に設けることが可能である。
ポンプ随伴デバイス104aは、複数の種々のタイプのポンプであることが可能であるが、図1Bは、多段遠心ポンプを図示する。ポンプ随伴デバイス104aの中心駆動シャフト142a上に配置された8つの遠心羽根車140aが図示される。他の例においては、より少数のまたはより多数の羽根車を設けることが可能である。駆動シャフト142aが、駆動結合部144により回転子106の駆動スタブ117aに結合されているのが示される。駆動結合部144は、駆動スタブ117aおよび駆動シャフト142aの両雄端部を内部に受ける2つの雌端部を有するものとして図示されるが、他の例においては、駆動結合部144は、駆動スタブ117aおよび駆動シャフト142a中に形成された両雌受容部内に受けられる雄連結部であることが可能である。いくつかの例においては、駆動スタブ117aおよび駆動シャフト142aを結合する様式が、雄および雌の両方の駆動結合部構成および/または他の構成の組合せを含むことが可能である。いくつかの例においては、駆動シャフト142aは、回転子106と一体である(すなわち、回転子106と一体成形部分として構成され、結合部、ギア・ボックス、ねじ山、または他の機械的連結部を有さない)ことが可能である。駆動シャフト142aは、随伴機械ハウジング148に固定されたポンプ本体146a内に担持される軸受122の上に支持される。上述のように、軸受122は、複数の種々の可能なタイプの軸受であることが可能であり、軸受の個数およびタイプは、駆動シャフト142aに沿ったそれぞれ異なる位置で、それぞれ異なることが可能である。軸受122は、ジャーナル軸受(例えばティルト・パッド・ジャーナル軸受および/または他のタイプのもの)、磁気軸受、ハイブリッド型磁気軸受、玉軸受、および/または他のタイプの軸受の中の、1つまたは複数を含むことが可能である。軸受122の中の1つまたは複数が、スラスト軸受(例えばティルト・パッド・スラスト・パッドおよび/または他のタイプのもの)である。いくつかの例においては、(駆動結合部144に最も近い)駆動シャフト142aの駆動端部が、ポンプ本体146aに対して駆動シャフト142aを軸方向に保持するための少なくとも1つの軸方向軸受またはスラスト軸受と、随伴機械ハウジング148に対して駆動シャフト142aをラジアル方向に支持するための少なくとも1つのラジアル軸受とを備え、駆動シャフト142aの非駆動端部が、随伴機械ハウジング148に対して駆動シャフト142aをラジアル方向に支持するための少なくとも1つのラジアル軸受を備える。シール120が、遠心羽根車140aから電気機械102aの方向への流体流を防ぐようにシールするまたは実質的にシールするために、駆動シャフト142aの周囲に設けられてもよい。
随伴機械ハウジング148は、入口150を備え、この入口150を介して、汲み上げられたプロセス流体が、遠心羽根車140aに送られる。遠心羽根車140aを回転させることにより、随伴機械ハウジング148の出口152の方向にこの流体を汲み出す。他の実装形態においては、流体流が、逆転されてよく、遠心羽根車140aは、出口152から機械ハウジング148を通り入口150を介して出る流体流を生じさせるようになされる。
電気機械システム100aの作動時には、三相AC電流が、貫通体128を介して電気機械102aの固定子108に供給される。この電流は、固定子108の巻線に通電し、回転子106を回転させる。回転子106を回転させることにより、ポンプ随伴デバイス104aの駆動シャフト142aを駆動させ、入口150から出口152にプロセス流体を汲み上げる。さらに、回転子106を回転させることにより、流体循環ポンプ130を駆動させて、電気機械102aの非駆動端部から熱交換器132内に、固定子108越しに駆動端部の方向に、および固定子108と回転子106との間のギャップを通り、電気機械102aの非駆動端部の方向に流体を汲み出す。電気機械102aの非駆動端部の近位の流体は、熱交換器132内に流れ、熱交換器132の螺旋状コイルを通過して電気機械102aの駆動端部に進む際に冷却される。シャフト被動流体循環ポンプの構成に応じて、流体は、代替として、逆方向に(すなわち熱交換器132を通り非駆動端部の方向に)流れることが可能である。
図1Cは、例示的な電気機械システム100bを図示し、ここでは、随伴デバイスは、圧縮機104bである。図1Cにおいて、この例示的な電気機械システム100bは、電気機械102bの両端部上に設置された2つの圧縮機随伴デバイス104bを含む。他の例においては、より少数のまたはより多数の圧縮機随伴デバイス104bを設けることが可能である。いくつかの例においては、2つ以上のポンプ随伴デバイス104aを、電気機械102aの同じ側に設けることが可能である。この例示的な電気機械システム100bは、外海(すなわちウェルの外部)中に浸漬される海中作動用に構成される。換言すれば、例示的な電気機械システム100bは、海中圧縮機システムである。
概して、電気機械システム100bの構成は、上述の電気機械システム100aの構成と同様である。図1Cは、電気機械102をカートリッジ式に設置/取外しするように構成されたシステム100bを図示する。このために、固定子108および回転子106を含む電気機械102の全てまたは大半が、ハウジング110bによって受けられる中間ハウジング115内に担持される。電気機械102の構成要素を担持するこの中間ハウジング115は、ユニットまたはカートリッジとして、主ハウジング110b内に設置する、または主ハウジング110bから取り外すことが可能である。このカートリッジ式の設置/取外しにより、電気機械102を1つ1つの部材ごとに主ハウジング110b内に組み付ける/主ハウジング110bから分解する必要がなくなるため、電気機械102の点検または交換が簡単になる。さらに、電気機械102は、主ハウジング110b内に設置する前に、中間ハウジング115内に組み付け、試験することが可能である。
やはり注意すべき点として、ハウジング110bの内側は、圧縮機随伴デバイス104bが作動する対象のプロセス流体と連通状態にある。したがって、電気機械の構成要素は、電気機械システム100bの作動中に、このプロセス流体にさらされる。プロセス流体は、圧縮機随伴デバイス104bによって圧縮されているため、加圧下にある。いくつかの例においては、このプロセス流体は、電気機械システム100b中をプロセス流体が循環する際に生じる随伴圧力を十分に上回る量だけ、電気機械システム100bの外側の周りの周囲圧力を上回る。いくつかの例においては、シールを省くことによって、または圧縮機随伴デバイス104bの駆動シャフト142bの周囲に不完全なシールを施すことによって、および/または圧縮機随伴デバイス104bからの他の流体連通路を設けることによって、連通が確立される。さらに、端部プレート116b、118bが、回転子106と固定子108との間のギャップ内にプロセス流体を送るのを容易にするために、ポート154を備えてもよい。さらに、電気機械102bは、一体型流体循環ポンプ130を備えなくてもよい。
いくつかの例においては、この電気機械の作動時に使用される、熱交換流体および他のプロセス流体を含む流体は、電気機械102bの構成要素の中の1つまたは複数に対して腐食性、反応性、および/または他の意味で有害性を有し得る成分を含む可能性がある。以下においてさらに詳細に説明されるように、回転子106および固定子108は、これらのプロセス流体への露出に対して防御を施されてよい。以下においてさらに詳細に説明されるように、いくつかの例においては、回転子106および/または固定子108は、プロセス流体への露出を防ぐようにシールされてよく、および/または、保護コーティングによって被覆されてもよい。
圧縮機随伴デバイス104bは、複数の種々のタイプの圧縮機であることが可能であるが、図1Cは、多段遠心圧縮機を図示する。圧縮機随伴デバイス104bの中心駆動シャフト142b上に配置された8つの遠心羽根車140bが図示される。他の例においては、より少数のまたはより多数の羽根車を設けることが可能である。上述のように、駆動シャフト142bが、駆動結合部144により回転子106の駆動端部に結合されているのが示される。他の例においては、駆動シャフト142bは、回転子106と一体である(すなわち、回転子106と一体成形部分として構成され、結合部、ギア・ボックス、ねじ山、または他の機械的連結部を有さない)ことが可能である。
図1Cは、磁気軸受122を組み込んだ電気機械システム100bを図示する。いくつかの例においては、回転子106の一方の端部が、端部プレート118b内に担持された軸方向およびラジアル方向磁気軸受122によって支持されてよく、回転子106の他方の端部が、端部プレート116b内に担持されたラジアル方向磁気軸受122によって支持されてよい。回転子106に対する二次的支持部および/または予備支持部を形成するために、例えばカートリッジ式玉軸受および/または別のタイプのものなどの追加の従来型の軸受が設けられてもよい。さらに、随伴デバイス104bは、圧縮機本体146b内に担持される磁気軸受122を備えることも可能である。
電気機械システム100bの作動時には、三相AC電流が、貫通体を介して電気機械102bの固定子108に供給される。この電流は、固定子108の巻線に通電し、回転子106を回転させる。回転子106を回転させることにより、圧縮機随伴デバイス104bの駆動シャフト142bを駆動させ、入口150から出口152へとプロセス流体を圧縮する。このプロセス流体の一部分は、ハウジング110bの内側との間で交換され、プロセス流体が、固定子108越しに、および固定子108と回転子106との間のギャップを通り循環される。熱交換器132を通るさらなる流体流が供給されてもよく、この流体は、熱交換器132の螺旋状コイルを通過する際に冷却される。
図2Aは、モータおよび/または発電機などの電気機械システムにおいて使用するための例示的な回転子200の断面図を示す。回転子200は、上述の回転子106として使用することが可能である。さらに、回転子200の実装形態は、海中作動および/または腐食性環境内作動に適合させることが可能である。いくつかの例においては、耐腐食化のために、Inconel、エポキシ、ポリエーテルエーテルケトン(PEEK)、エチレンクロロトリフルオロエチレンコポリマー、および/または他の処理材料によって、回転子200の複数の部分および回転子構成要素を被覆または処理することが可能である。回転子200は、回転子ハブ202および回転子シャフト206を有する回転子鉄心を含むことが可能である。回転子ハブ202は、電気機械システム内に設けられた固定子と磁気的に相互作用するように位置決めされた永久磁石204を支持するように構成される。磁石204は、回転子ハブ202に接合させるまたは他の方法で連結させることが可能である。例えばネオジウム−鉄−ボロン・ベース磁石、またはサマリウム−コバルト・ベース磁石などの、高エネルギー永久磁石204を使用することが可能である。いくつかの例においては、永久磁石204は、回転子ハブ202に接合される。回転子200の回転軸を形成する回転子シャフト206を設けることが可能である。回転子シャフト206は、回転子ハブ202の両端部から軸方向に延在する。回転子シャフト206は、単一部材として構成されてもよく、または複数のシャフト・セグメントからモジュール式に構成されてもよい。いくつかの例においては、回転子シャフト206は、回転子ハブを含めて中空であることが可能であり、これにより、回転子の冷却が促進され、または流体が電気機械を通り流れることが容易になる。さらに、回転子200は、回転子の内部を介して流体を送るために、内部を貫通する1つまたは複数の冷却通路217を備えることが可能である。図2Aにおいては、回転子ハブ202の外周表面上から進入し回転子の中心を通る中央通路217が図示される。
回転子スリーブ212は、回転子200全体または回転子ハブ202および磁石204などの回転子200の複数部分の外方表面を包囲する役割を果たすことが可能である。回転子スリーブ212は、回転子ハブ202などの回転子構成要素を保護すると共に回転子構成要素に構造的支持を与えることを可能にする材料から製造することが可能である。いくつかの例においては、回転子スリーブ212は、炭素繊維複合材料、アラミド繊維複合材料(例えばI.E. Dupont De Nemours社の登録商標であるKevlarなど)、または繊維ガラス複合材料などの繊維強化複合材料、金属(例えばInconel、ステンレス鋼、SPS Technologies社の登録商標のMP35N、および/または他の金属など)、および/または他の材料から構成することが可能である。例えば、スリーブ・カバー212は、回転子ハブ202およびその上に位置決めされる磁石204に対してラジアル方向支持を与える役割を果たすことが可能であり、回転子200が高回転速度で作動している際に、磁石204が回転子ハブ202から緩むまたは脱落するのを防ぐ。
いくつかの例においては、スリーブ212は、外部要素から回転子200および回転子構成要素を隔離する役割を果たすことも可能である。例えば、海中用におよび/または腐食性環境内作動を受けるように適合化された回転子においては、スリーブ212は、回転子構成要素をシールするために気密または水密になるように構成することが可能である。例えば、中に回転子200が配設される電気機械システムが、回転子200に対して有害な熱伝達流体、プロセス流体、および/または他の流体を含む場合がある。このスリーブ212は、腐食に弱いまたは他の意味でこれらの流体との接触に不都合な回転子200の部分を覆い、隔離することができる。
いくつかの例においては、回転子200は、少なくとも回転子ハブ202をシールするために回転子200に回転子スリーブ212を設置するための回転子要素および技術を組み込むことができる。図2Bの例において示されるように、回転子200は、回転子ハブ202の一方のまたは両方の端部に位置決めされ、回転子シャフト206の上に同軸状に設置される、端部リング214を備えることが可能である。この例においては、端部リング214は、端部リング214の内方表面が回転子ハブ202の端部に当接するように、回転子200に接合されまたは他の態様で装着されて、回転子ハブ202の上に位置決めされた磁石204に対して軸方向支持を与えるようにラジアル方向に延在する。端部リング214は、回転子ハブ202の各端部に位置決めされる。端部リング214は、金属材料(例えばInconel、MP35N、および/または他の材料など)からなるものであることが可能である。いくつかの例においては、この材料は、磁性回転子ハブ202の電磁作用を強化するために、またはその電磁作用への干渉を回避するために、その強磁性特性に関しても選択することが可能である。さらに、端部リング214のいくつかの例は、例えば端部リング材料に亜鉛めっきまたは陽極処理を施すことなどによって端部リングを耐腐食化するように構成されてよい。他の例においては、端部リング214は、回転子ハブ202自体に組み込む、または回転子ハブ202自体と一体化することが可能である。例えば、回転子ハブ202が、磁石を設置するための嵌込み部を備えてもよく、その結果、ハブの端部セクションは、この嵌込み部よりも大きな直径を有することとなる。
レッジ217を端部リング214の外径部上に円周方向に設けることが可能である。このレッジ217は、端部リング214の外径部の周囲に円筒またはフープの形状の端部処理ストリップ220を位置決めするための取付台としての役割を果たす。いくつかの例においては、薄い端部処理ストリップ220の外径が、上に設置された磁石204を含む回転子ハブ202の直径と等しいか、または実質的に等しい。端部処理ストリップ220は、スリーブ212に接合することが可能な複合材料であることが可能である。いくつかの例においては、端部処理ストリップ220およびスリーブ212は、事前含浸炭素繊維または他の材料などの、同様の材料から構成される。さらに、シール222(例えばOリング・ガスケット、および/または他のシール)をレッジ表面217の上に位置決めすることが可能となるように、外周溝221を端部リング214のレッジ217上に設けることも可能である。シール222は、端部リング214と、端部リングのレッジ217の周囲に覆い付けられる端部処理ストリップ220との間をシールする、または実質的にシールする。注意すべきであるのは、いくつかの例において、外周溝221は、(以下において説明されるように)端部リング214が回転子200に設置される前および/または後に、端部リング214上に機械加工することが可能である点である。
一例においては、スリーブ212は、シャフト206上に端部リング214を摺動させておよび/または螺合させて、回転子ハブ202の端部に当接させることによって、回転子200にシール固定させることが可能である。いくつかの例においては、シール(例えばOリング・ガスケット、および/または他のシール)および/またはシーラント(例えばねじシーラント、シャフト206と端部リング214との間の接合部に塗布されるシーラント、および/または他のシーラント)を、シャフト206と端部リング214との間に配置することが可能である。シール222は、シャフト206に対して端部リング214を位置決めおよび連結する前または後に、端部リング214中に位置決めすることが可能である。端部リング214がシャフト206上に螺合される場合には、端部リング214の各ねじ山は、回転子200が平常作動において回転された場合に、端部リング214がシャフト206に対して締め付けられるように、配向することが可能である。いくつかの例においては、さらに、端部リング214は、接着剤によって回転子ハブ202に取り付けることが可能である。
(例えば螺合、溶接、および/または他の方法により)シャフト206に対して端部リング214を剛体的に連結した後に、端部処理ストリップ220が、端部リング214の外径部上のレッジ217の上に位置決めされる。このとき、端部処理ストリップ220は、端部リング214上にストリップ220を位置決めするために、レッジ217上に巻き付けられてもよく、または端部リング214の上をレジ217上の定位置まで単に摺動されてもよい。端部リング214、シール222、および端部処理ストリップ220が定位置に置かれると、スリーブ212の組立を完了することが可能となる。回転子ハブ202上におよび端部処理ストリップ220の頂部上にスリーブ212を巻き付けるまたは他の方法で固定的に覆い付けることにより、レッジ表面217に対してラジアル方向に端部処理ストリップ220を押し付けることが可能となり、これにより、ストリップ220は、端部リング214に対して堅く収縮される。さらに、この圧力は、溝221内にシール222を押し付けて、ストリップ220と端部リング214との間にシール部を形成する。スリーブ212が回転子200上に巻き付けられる際に、スリーブ212はストリップ220に接合される。この接合は、ストリップ220と端部リング214との間のシール部をスリーブ212にまで拡張させ、それにより、スリーブ212によって覆われる回転子ハブ202をシールする。いくつかの例においては、スリーブが回転子200に覆い付けられ、ストリップ220に接合される際に、端部リング214にストリップ220を固定するために、クランプを使用してもよい。さらに、スリーブ212に対するストリップ220の接合は、感温性の低い接合部を実現するために、高温で行うことが可能である。
回転子アセンブリにスリーブをシール固定するために、代替的な技術を利用することが可能である。例えば、いくつかの実装形態においては、端部処理ストリップ220、シール222、およびシール溝221が省かれてもよい。いくつかの例においては、スリーブは、回転子ハブ202および端部リング214の外周表面の上に固定的に巻き付けられてよい。スリーブ212は、ポリエーテルエーテルケトン(PEEK)などの熱可塑性材料を含浸した炭素繊維から製造されてもよい。さらに、PEEKなどの熱可塑性材料が、ハブ・アセンブリ上にスリーブ212を巻き付ける前に、端部リング214の外径部に対して塗布または事前被覆されてもよい。回転子センブリの研磨が必要とされ得る場合には、事前被覆される端部リング214は、例えばPEEK(または他の材料)から形成されるコーティングが、研磨後におよび端部リング214および回転子ハブ・アセンブリの両方の上へのスリーブ212の巻付け前に、端部リング214上に残るように、十分な材料で塗布されてよい。スリーブがPEEK被覆された端部リングに接触している状態において、熱または圧力を加えることにより端部リングに対してスリーブを接合し、スリーブ212の各端部にPEEKでシール部を形成し、それにより、危険なおそれのある外部流体および/または他の材料との接触から、スリーブによって覆われる回転子ハブ、磁石セグメント、および他の構成要素を隔離してよい。
スリーブ212が回転子220の上に覆い付けられた後で、二次端部リング215が、シャフト206上に摺動および/または螺合されて、端部リング214に当接してよい。この二次端部リング215は、スリーブ212の直径と実質的に等しい直径を有し、スリーブ212の外方表面を保護するおよび/または(材料の除去または追加による)回転子のバランス調整のための場所を与える役割を果たす。いくつかの例においては、シール(例えばOリング・ガスケット、および/または他のシール)および/またはシーラント(例えばねじシーラント、シャフト206と二次端部リング215との間の接合部に塗布されるシーラント、および/または他のシーラント)を、シャフト206と二次端部リング215と間に配置することが可能である。さらに、二次端部リング215と端部リング214との間の接合部は、樹脂および/または接着剤で充填する(したがって、端部リング214に対して二次端部リング215を接着し、充填する)ことが可能である。二次端部リング215がシャフト206に螺合される場合には、二次端部リング215の各ねじ山は、回転子200が平常作動において回転された場合に、二次端部リング215がシャフト206に対して締め付けられるように、配向することが可能である。いくつかの例においては、二次端部リング215の外向端部を丸めることが可能であり、または、これらのリングの外方表面は、二次端部リング215上の流体流を促進するように円錐形であってよい(外方に向かうにしたがって直径が次第に小さくなる)。
いくつかの実装形態は、二次端部リング215に加えて、またはその代替としてスリーブ212の端部を保護するために、追加的な手段を利用してもよい。例えば、複合材料スリーブ212よりも磨耗および他の損傷に対する耐久性が高い材料(例えば非磁性金属、セラミック、ポリマー、および/または他の材料)から構成された管状バンドを、回転子ハブの各端部に、スリーブ212の頂部上に同心状に位置決めしてよい。その結果として、管状バンドは、スリーブの端部を覆い、それにより、回転子200の作動時に引き起こされ得る腐食、摩滅、または他の損傷からスリーブの端部を保護することができる。図2Cおよび図2Dに例示される別の実装形態においては、管状バンドが、薄い非磁性金属合金テープ223(例えばニッケル合金(例えばInconel)、非磁性ステンレス鋼、チタン、および/または他の金属)に置き換えられてよく、この薄い非磁性金属合金テープ223は、回転子スリーブ212の外方表面の周囲に覆い付けられ、回転子シャフト206上に位置決めされた端部リング(図示せず)に接合されて、スリーブ229を形成する。いくつかの例においては、この金属は、耐腐食性のものであることが可能である。いくつかの実装形態においては、テープ223の隣接し合う重なり合い部の間を電流が流れるのを防ぐために、絶縁コーティングおよび/または表面処理がテープ223に対して施されてもよい。コーティングおよび/または表面処理のいくつかの例には、酸化、陽極処理、リン酸塩/クロム酸塩/ケイ酸塩コーティング(例えば、米国材料試験協会(ASTM)、A976、C−4および/またはC−5)、および/または他のコーティングが含まれる。いくつかの実装形態においては、スリーブ229は、回転子スリーブ212の端部を軸方向に越えて延在してもよい。
一実装形態においては、一片のテープ223の第1の端部が、第1のスリーブ端部225に隣接する端部リングに接合されてよい。テープ223は、レーザ溶接、抵抗溶接、TIG溶接、化学結合、または任意の接合方法を用いて、端部リングに接合されてよい。テープ223は、スリーブ端部を覆い、回転子200のあらゆる作動条件においてテープ223と回転子スリーブ212との間に正圧を維持するのに十分な張力で、回転子スリーブの頂部上に巻き付けられてよい。結果的に得られるテープ巻部223は、回転子スリーブの外方表面全体にバット・ラップ式に(in butt laps)配置されてよく、これによりテープ巻部223の厚さを最小限に抑えた平滑な表面が得られる。薄い合金テープ・ラッピング223は、様々な利点の中でもとりわけ、回転子200または対応する電気機械の磁場により金属テープ中に生じる寄生質量および寄生電流を最小限に抑えることができる。他の実装形態が、回転子スリーブを補強および保護するために、他の巻付け技術および様々なテープ材料を使用してよい。回転子ハブ202全体にテープを巻き付けて、スリーブ227の第2の端部を覆う際に、その一片のテープ223の第2の端部は、対向側の端部リングに接合されてよい。例えばバット・ラップ式巻付けなどのいくつかの例においては、余剰のテープが、端部リングの端部に位置する場合がある。この余剰テープは、端部リング面に合わせて切り取られて、テープ巻部223を完成させてよい。
図2Eは、例示的なスリーブ212の詳細な破断断面図である。スリーブ212は、例えば繊維強化複合材料などの、特定の回転子実装形態に望ましい構造的特性、抵抗特性、および/または化学的特性を有する任意の材料から製造または構成することが可能である。スリーブ212は、複数の機能を果たすことが可能である。例えば、海中用および/または腐食性環境用の回転子の実装形態においては、スリーブ212は、回転子ハブに構造的支持を与え回転子ハブを腐食保護すると共に、外的要素への露出から回転子ハブをシール保護することが可能な複合材料から構成することが可能である。回転子200の加熱により、回転子要素の中の1つまたは複数またはスリーブが熱膨張する可能性がある。加熱が、回転子全体において均一ではない場合には、回転子および回転子スリーブのいくつかのセクションが、他のセクションとは異なるように膨張する可能性がある。熱膨張差により、差異のあるおよび損傷を与え得る複数の応力が、スリーブ212に対してかかる結果となるおそれがある。応力は、スリーブ自体の膨張差によって、または下層の回転子構造体の膨張差によって生じ得る。したがって、以下に説明するスリーブ構成は、様々な利点の中でもとりわけ、スリーブおよび回転子自体の両方の熱膨張をより均一に制御し、および/または許容することが可能なものである。
回転子スリーブ212のいくつかの例においては、炭素繊維などの繊維強化複合材料スリーブ材を使用することが可能である。いくつかの例においては、図2Eの例に示されるように、スリーブは、多層であってよい。図2Eは、多層繊維強化複合材料スリーブ・ラッピング212を図示する。頂部層224(またはいくつかの例においては複数の頂部層)は、装飾層である。これらの層は、機能的特徴を有してもよい。例えば、強度および剛性を与え、1つまたは複数の方向への熱膨張差を制御するために、これらの層が、大部分においてまたは全てにおいて、同一の方向に配向された(例えば一方向において最大強度を有する)または異なる配向で配向された(複数の方向において強度を有する)繊維を含むことが可能である。
いくつかの例においては、中間層226は、装飾層224の下方に(すなわち回転子200の外方外周表面により近くに)積層された、第1の、主に軸方向に配向された炭素繊維を含む複合材料層であることが可能である。この層226は、非常に強い軸方向支持を与えると共に、腐食保護および漏出防止を実現することが可能な、事前含浸炭素繊維複合材料シートから作製することが可能である。層226の下方に位置決めされる層228は、主に円周方向に配向された事前含浸炭素繊維のテープを含む、1つまたは複数の炭素繊維複合材料層であることが可能である。層228などの円周方向に配向された炭素繊維を含む層は、大きな軸方向強度をもたらさないが、代わりに円周方向強度をもたらす。さらに、円周方向に配向された炭素繊維層は、ラジアル方向の熱膨張の制御においては有効であるが、軸方向膨張の制限についてはあまり有効ではない。層230は、底部の、主に軸方向に配向された炭素繊維の層であり、いくつかの例においては事前含浸炭素繊維複合材料シートから作製される。層230などの軸方向に配向された層は、構造的支持および熱膨張支持の両方に関して、円周方向に配向された炭素繊維の層の構造上の不足を補うことが可能である。したがって、いくつかの例においては、中間層226および底部層230は、実質的に軸方向の強化複合材料繊維を含むことが可能であり、層228は、実質的に円周方向の強化複合材料繊維を含むことが可能である。
層230は、回転子200、回転子ハブ202、回転子ハブ磁石204、および/または端部リング214に直接的に接触するように覆い付けられて、回転子200の全てまたは一部分を覆うことが可能である。いくつかの例においては、層230と回転子200との間に追加の層を設けることが可能である。さらに、層224、226、228、230の間に追加の層を設けてもよい。実際に、いくつかの例が、同様のまたは異なる配向および順序において層224、226、228、230を反復的に積層したものを使用することができる。軸方向に配向された層および円周方向に配向された層に関連して上述したが、層224、226、228、230の中の1つまたは複数の配向を、非軸方向および/または非円周方向に配向することが可能である。例えば、層224、226、228、230の中の1つまたは複数を、軸方向に対して45度、30度、および/または別の角度に配向することが可能である。実際に、いくつかの例においては、繊維強化複合材料中の繊維が、同一方向に配向される必要はない。したがって、いくつかの例においては、軸方向支持および円周方向支持を与えるために、軸方向または円周方向の中の一方に主に向いた繊維を含む繊維強化複合材料を選択することが可能である。かかる例においては、層は、ある配向または次元に基づいて配向された繊維を、他の次元に配向された繊維よりも高い密度にて含むことが可能である。
多層スリーブ212の層を形成する材料は、均一である必要はない。いくつかの例においては、1つまたは複数の層材料が、作動の際の熱膨張による回転子ハブ202、磁石204、および周囲のスリーブ212に対する応力を最小限に抑えるように、選択されてよい。これらの応力を最小限に抑えるための1つの技術が、回転子200の作動温度にて内部の回転子構成要素と共に軸方向に膨張するスリーブ212を構築することである。
回転子200、回転子構成要素、およびスリーブ層は、回転子およびスリーブにおいて使用される材料の熱膨張率(CTE)に応じて膨張する。したがって、回転子スリーブ212の材料は、回転子スリーブ212により覆われることとなる回転子200または回転子要素の部分のCTEと同様のCTEを有するように、選択および/または加工することが可能である。例えば、繊維強化複合材料回転子スリーブにおいては、回転子スリーブの形成のために使用される繊維および/または樹脂は、回転子シャフト206、回転子ハブ202、および/または磁石204の材料のCTEと等しい、実質的に等しい、相補的な、または他の意味で適合するCTEを有する複合材料スリーブ材が得られるように、選択することが可能である。CTEを合致させることにより、様々な利点の中でもとりわけ、スリーブ212内に覆い付けられる回転子構成要素の膨張に合わせて、スリーブ212を膨張させることが可能となる。
いくつかの例においては、スリーブ層または回転子構成要素において所望のCTEを実現するために、スリーブまたは回転子構成要素において使用される材料を、より高いまたはより低いCTEを有する他の材料でドープして、結果的に得られるスリーブまたは回転子構成要素の正味のCTEに影響を与えることが可能である。例えば、炭素繊維スリーブ層のCTEが、例えば回転子ハブ202の上に設置されるネオジウム−鉄−ボロン・ベース磁石またはサマリウム−コバルト・ベース磁石などの、スリーブによって覆われる回転子構成要素のCTEと合致するように、炭素繊維スリーブ層の樹脂にドープを行うことが可能である。さらに、スリーブまたはスリーブ層の正味のCTEを工学操作するために、繊維強化スリーブ中で使用される繊維の密度を調節することも可能である。いくつかの例においては、軸方向に配向された層、円周方向に配向された層、および/または他の方向に配向された層を含む、様々なCTEを有する1つまたは複数の層を選択することにより、スリーブ212によって覆われることとなる回転子200の関連部分に合致する正味のCTEを有するスリーブを加工してよい。いくつかの例においては、CTEの合致しないスリーブ層を、スリーブ212中のCTEの合致するスリーブ層に加えて設けることが可能である。例えば、回転子ハブ202の表面に最も近いスリーブ層が、回転子ハブまたは回転子ハブ構成要素のCTEに合致するCTEを有するように選択されてよい一方で、外方スリーブ層材料は、構造的支持、穿刺抵抗、または耐腐食性などの他の考慮要件に基づいて選択される。
いくつかの実装形態においては、スリーブ212により覆われることとなる回転子200のCTEが、例えば回転子200の中または上において使用される回転子要素などに応じて、回転子200中において多様であることが可能である。CTE差を有する回転子により、回転子および回転子を覆うスリーブにおいて熱膨張に差が生じ得る。したがって、いくつかの実装形態においては、例えば、覆われることとなる複数の回転子部分における様々なCTEに対応させるように、スリーブの全長にわたるドーピングに差を与えることによって、CTE差を有するように回転子スリーブを加工することが可能である。
図2Fおよび図2Gは、例示的な回転子スリーブ212の別の実装形態を示す。図2Fは、多層回転子スリーブ212の詳細な断面図を示す。図2Gは、図2Fに示されるスリーブの詳細な斜視図である。外方層232、234のセットを、セグメント化された層236、238、239、240のセットと共に、スリーブ212内に設けることが可能である。外方層232、234は、軸方向に配向された層、円周方向に配向された層、および/または他の方向に配向された層を含む、1つまたは複数の複合材料層を含むことが可能である。セグメント化された層236、238、239、240は、区分されたフープ状の層である。セグメント化された層は、他のセグメント化された層とは無関係に膨張および収縮することが可能である。ある差温が、膨張差または収縮差を生じさせるような場合には、セグメント化された層236、238、239、240は、それらの差温の範囲内で膨張および収縮することが可能であり、膨張または収縮に付随する力を、他のセグメント化された層、外方層232、234、またはスリーブ212にわたって殆ど伝搬しないことが可能である。
いくつかの例においては、セグメント化された層236、238、239、240は、回転子200上の磁石204a、204b、204c、204dの円周方向区分に対応するように、スリーブ212において幅および位置を有することが可能である。例えば、図2Fに示されるように、円周方向にセグメント化された磁石204を有する回転子においては、セグメント化された層236、238、239、240が、磁石204a、204b、204c、204dの中の1つまたは複数の円周方向区分に整列するように位置決めされることにより、各セグメント化された層が、磁石の1つまたは複数の円周方向列に位置合わせされる。これにより、各セグメント化された層236、238、239、240の膨張および収縮が、それらの下方に位置決めされる磁石列204a、204b、204c、204dの熱膨張および熱収縮の影響を被ることが可能となる。図2Fおよび図2Gの例は、単一の磁石列に対応する軸方向幅を有するセグメント化された層を示すが、セグメント化された層は、2つ以上の列の磁石セグメントに対応し、それらを覆うことが可能である。さらに、セグメント化された層236、238、239、240は、主に円周方向に配向された繊維を含む繊維強化複合材料フープであることが可能であり、これによりフープ層の下方に位置決めされる磁石セグメントに対して構造的支持を与える。いくつかの例においては、磁石セグメントは、(例えば高速で回転子が回転する際などに)より大きな熱膨張を被り、より大きな構造的脆弱性を負い得るため、これらの傾向を抑制するために追加的なラジアル方向支持を要する場合がある。
図示される例においては、磁石204aにおける温度が、磁石204cにおける温度よりも高い場合がある。磁石列204aと204cとの間のこの温度差により、磁石204aは、磁石列204cが被る熱膨張よりも大きな熱膨張を被る可能性がある。したがって、磁石列204aに整列するように位置決めされたセグメント化された層236は、磁石列204cに整列するように位置決めされたセグメント化された層239よりも膨張する場合がある。あるセグメント化された列の膨張が他のセグメント化された層に干渉しないようにするために、セグメント化された層236、238、239、240の間にギャップが存在してよい。さらに、1つまたは複数のフープ・セグメントに対応する熱膨張差によりもたらされる、セグメント化された層の上方に位置決めされた層232、234における膨張力が、その影響を被るフープ・セグメント間のギャップを含む、対応するフープ・セグメントにまたはその付近に集中されてよい。例えば、上述の例においては、層232、234に伝達される熱膨張力が、隣接し合うフープ・セグメント236と238、238と239、および239と240との間のギャップに集中されてよい。
さらに、セグメント化された層は、一体成形スリーブ層を使用して実現することも可能である。例えば、スリーブ層が、スリーブ層の長さにわたって多様な強度特徴を有することが可能である。スリーブ層の強度の多様性は、最も高い強度の区域が、最強の補強を要するまたは熱膨張差をより大きく被る回転子の区域に位置合わせされるように、磁石セグメント列などの要素に合わせることが可能である。例えば、それぞれ異なる物理的特徴の複数の層をグループ化して、複数の帯状強度セクションを有するスリーブを形成し、これらのセクション間のギャップが、それらのセクション自体とは異なる強度特徴または熱膨張特徴を呈するようにすることが可能である。これを実現し得る1つの方法は、異なる熱膨張率(CTE)を有するスリーブを組み付けることによるものである。さらに、いくつかの例においては、磁石セグメント列204a、204b、204c、204dに位置合わせされる、セグメント化された層236、238、239、240またはセグメント化されたフープが、それらの下方に位置決めされる磁石204a、204b、204c、204dのCTEに合致するCTEを有する材料から構成されてよい。
図2A、図2F、および図2Gは、軸方向にセグメント化された(セグメント境界が回転子ハブ202の軸方向本体に沿って円周方向平面内に形成されている)磁石204を有する回転子ハブ202の例を示すが、磁石204は、ハブ本体202の長さにわたって軸方向に延在する単一部材の磁石として実装することも可能である。さらに、磁石は、図2Eに図示されるように、円周方向にセグメント化する(セグメント境界がラジアル−軸平面内に形成されている)ことが可能である。その一方で、ある磁石は、セグメント片としての方が価格面でより入手しやすく実装がより容易である場合があるため、磁石のセグメント化が、有利となる可能性がある。さらに、セグメント化された磁石204は、回転子の電気的特徴および電磁的特徴を変更することが可能であり、それにより、いくつかの回転子用途において機能的に望ましいものとなり得る。
図2H〜図2Pは、例示的な回転子ハブ202の断面図である。均一なまたは非均一な強度の磁石204を、回転子ハブ202の外方表面に対して直接的に設置することが可能であり、および/または、例えば回転子ハブ202から磁石204を電気的に絶縁するために、回転子ハブ202に接合させるもしくは回転子ハブ202への接合を向上させるために、および/または他の理由により、中間材料を介して回転子ハブ202に設置することが可能である。いくつかの例においては、この中間材料は、接着剤(例えばアクリル系接着剤および/または他の接着剤)、電気絶縁テープ、はんだ材料、反応性ナノフィルム、および/または別の材料を含むことが可能である。いくつかの例においては、間隙充填材料が、磁石204間および/または磁石204と回転子ハブ202との間のスペースを充填するために、回転子200に用いられる。例示的な材料は、ステンレス鋼パテ(例えば、ITW Devcon社により製造されるステンレス鋼パテなど)および/または他の材料を含む。いくつかの例においては、回転子200は、磁石204間、磁石204と回転子ハブ202との間、端部リング214間、磁石204と端部リング214との間、および/または回転子ハブ202と端部リング214との間の全てのギャップが充填され、さらに流体の進入から保護されるようにするために、スリーブ212を設置する前にエポキシ樹脂中に浸漬するまたはエポキシ樹脂で満たすことが可能である。
いくつかの例においては、間隙充填材料は、回転子ハブ・アセンブリ内を真空化しながら、このハブ・アセンブリ内に注入されてよい。例えば、磁石セグメント204が、回転子ハブ202に設置されたら、磁石204および回転子ハブ202は、使い捨てスリーブ(例えばポリマー・バッグおよび/または他のスリーブ)内に封入されてよく、このスリーブは、回転子ハブ・アセンブリの両端部にてシールされてよい。真空は、磁石204間および/または磁石204と回転子ハブ202との間の空部内に残留しているガスを含む、スリーブ内の空気および/または他のガス(「複数のガス」)を除去するように作用することが可能である。触媒作用を受ける前の低粘性の熱硬化性樹脂が、回転子ハブ・アセンブリ内の空スペースに浸透させるために、使い捨てスリーブ内に送られてよい。この樹脂を硬化させたら、使い捨てスリーブは除去されてよい。その後、回転子ハブ・アセンブリの周囲に保護回転子スリーブ212を覆い付けることを含む、回転子の製造が再開されてよい。
いくつかの実装形態においては、回転子スリーブ212自体が、先述の例の使い捨てスリーブの代わりに使用されてよい。閉塞可能な入口が、端部リング214のそれぞれの上に設けられてよく、これにより、真空ポンプをハブ・アセンブリの一方の端部に連結し、高圧ポンプを他方の端部に連結することが可能となる。真空ポンプは、スリーブ212によってシールされたハブ・アセンブリから空気を抜く。ハブ・アセンブリの内部から空気が除去されたら、高圧ポンプにより、ハブ・アセンブリ内の空部中に樹脂を注入してよい。これらの端部リング入口は、閉塞されてよく、樹脂は、ハブ・アセンブリの内部をシールするために硬化されてよい。次いで、以降の製造作業が行われてよい。
説明されたまたは他の技術を用いた回転子ハブ・アセンブリ内の空部の充填を容易にするために、ハブおよび/または磁石セグメントは、ハブ202と磁石セグメント204との間の空部内に充填材料を案内するための流路チャネルを備えてよい。図2Q〜図2Rは、かかる構成体の例を示す。例えば、図2Qは、複数の磁石セグメント204がハブ202の上に設置された回転子ハブ202を含む回転子ハブ・アセンブリ201を図示する。この磁石セグメント204はそれぞれ、磁石セグメント204がハブ202に設置された場合に流路チャネル258が形成されるようなジオメトリをとるように形成されている。これらのチャネル258は、隣接し合う磁石セグメント204間の区域などの、空部が生じ得るハブ202および磁石セグメント204の区域に合わせられてよい。いくつかの例においては、図2Rに示されるように、追加的な溝260が、磁石セグメント204のジオメトリの代替としてまたはそれに加えてハブ202上に設けられてよく、これにより流路258を設ける。
さらに、アセンブリの端部リングが、充填材料の流れを案内するために使用されてもよい。図2Sに図示されるように、回転子ハブに隣接して配置されることとなる端部リング214の内面が、回転子ハブ・アセンブリの周囲に、および回転子ハブの周囲に位置決めされる空部または他の流路チャネル内に、充填材料を配向する役割を果たし得る、環状チャネル262を備えることが可能である。いくつかの実装形態においては、チャネル262と連通状態にある入口264が、端部リング214の上に設けられてよい。この入口264は、端部リング214に1つまたは複数の真空ポンプまたは注入ポンプを結合して、ハブ・アセンブリ内の空部内に充填材料を送り配向するために、使用されてよい。
回転子ハブ202の上にこれらのように磁石を次元設定し配向することが、ハブ202の周囲に磁石セグメントからなる実質的な円筒を形成するのに有効であってよい。いくつかの実装形態においては、磁石セグメントの外方表面は、磁石セグメントをハブ202に設置した際に、研磨を要する場合がある。磁石セグメントの外方表面の研磨は、回転子ハブ202を実質的に均一な円筒状外方表面に形成するために用いられてよい。さらに、回転子に結合された磁石が、むらのない円筒を形成し得る一方で、個々の磁石セグメント204a〜204tが、磁場の配向および大きさならびに重量においてそれぞれ異なることにより、回転子ハブ202の所望の電磁プロファイル、回転プロファイル、および慣性プロファイルを実現することが可能である。
図2Hは、1つの例示的な回転子ハブ磁石構成の断面図を示す。この例においては、16個の円周方向にセグメント化された磁石204a〜204tが、回転子ハブ202の外周部の周りに位置決めされる。個々の磁石セグメント204a〜204tおよび回転子ハブ202の外方表面のこのジオメトリにより、磁石セグメント204a〜204tを回転子ハブ202に直接的に設置することが可能となる。図2Hに図示されるように、回転子ハブ202の外方表面は、いくつかの例においては、完全に円形ではなくてもよく、例えば、磁石セグメント204a〜204tが設置される回転子ハブ202の部分は、等辺の個数がハブ202の上に設置されることとなる磁石セグメント204a〜204tの個数と等しい、規則的な多角形であってもよい。図2Hは、回転子ハブ202の軸方向長さにわたって延在する16個の平坦表面を有し、これらの平坦表面に対して16個の磁石セグメント204a〜204tの対応する16個の平坦表面が当接する、回転子ハブ202の外方表面を図示する。回転子ハブ202上および磁石セグメント204a〜204t上の平坦表面は、ハブ202の中心から始まるラジアル方向線に対して垂直である。
これらの磁石セグメント204a〜204tは、2極構成に配置することが可能である。例えば、回転子ハブ202の中心から実質的にラジアル方向に離れるように配向された磁場を有する7つの磁石セグメント204a〜204gが、回転子の磁気構成の北磁極のベースとしての役割を果たしてよい。他の7つの磁石セグメント204j〜204sは、回転子ハブ202の他方の側に位置決めすることが可能であり、これらの各磁石セグメント204j〜204sは、回転子ハブ202の中心の方向に実質的にラジアル方向に配向された磁場を有し、回転子の磁気構成の南磁極のためのベースとしての役割を果たす。磁石セグメント204は、磁石セグメントの磁場ベクトルが均一になるように磁化され得る。換言すれば、均一に磁化された磁石セグメントに沿った任意の一点における磁場ベクトルは、図2Tに図示されるように、磁石セグメントに沿った任意の他の一点における磁場ベクトルと平行である。いくつかの例においては、磁石セグメントの中心の磁場ベクトルが、ラジアル方向に向く。以下においてさらに詳細に説明されるように、他の例においては、磁場ベクトルは、ラジアル方向に対して垂直であることが可能であり、または回転子と同一の中心を有する弧状であることが可能である。代替としては、図2Uに図示されるように、真にラジアル方向に配向された磁場を有する磁石セグメント204が、それぞれがラジアル方向に向かう磁場方向ベクトルを有する磁場を有する。磁石セグメントの外方表面が円形回転子の円形外方表面の中の1つの弧である例においては、磁場方向ベクトルは、磁石セグメントの外方表面268に対して垂直であることが可能である。均一な磁性のセグメントにおいては、複数の磁場方向ベクトルの全てが、磁石セグメントと回転子ハブとの対合する平坦表面に対して垂直となるように配向され得る。ラジアル方向磁性のセグメントにおいては、この磁性のセグメントの中心線における磁場方向ベクトルが、磁石セグメントと回転子ハブとの対合する平坦表面に対して垂直となるように配向され得る。
図2Hに戻ると、2つの磁極の間に補極磁石セグメント204h、204tが配設される。補極磁石セグメント204h、204tは、回転子200の磁束分布を調節するために設けることが可能であり、2つの磁極間において磁場を移行させる。図2Hに図示される実装形態においては、補極磁石セグメント204h、204tは、ラジアル方向磁場セグメント204a〜204g、204j〜204sと同様のジオメトリを有し、これらのラジアル方向磁場に対して垂直に配向された、または回転子200の外周部に対して接線方向に配向された磁場を有する。
回転子ハブ202上の永久磁石セグメントのこの配置により、回転子200に関して正味の磁極中心ベクトル270を得ることが可能となる。図2Hの例においては、この磁極中心は、回転子の北磁極のジオメトリ中心である磁石セグメント204dを中心とした方向ベクトル成分を有する。図2Hに図示される回転子は、正規磁極中心を有する。図2Pに図示される回転子200の磁極中心270もまた、正規に位置する。図2Pに図示されるように、磁極中心ベクトル270は、磁石セグメント204bと204cとの間に合わせられる。この境界面は、回転子200における頂極のジオメトリ中心に相当する。磁極中心270が、北磁極(または南磁極)を確立する磁石セグメントのアレイのジオメトリ中間点に合わせられる場合には、この磁極中心は、正規に位置する。他方において、図2Kは、非正規磁極中心270を有する回転子の例を示す。図2Kにおける回転子200のジオメトリ中心は、磁石セグメント204dの弧中間点である。図示されるように、図2Kにおける磁極中心270は、回転子のジオメトリ中心には合わせられない。固定子の設計および電気機械の目的に応じて、正規磁極中心ベクトルまたは非正規磁極中心ベクトルを有する回転子を実装することが望ましい可能性がある。
図2Iは、別の回転子磁石構成の断面図を示す。図2Iの回転子磁石構成の構造的次元は、図2Hの回転子磁石構成の構造的次元と実質的に同様であることが可能である。図2Hおよび図2Iの構成は、実質的に同一の物理的次元を有する同じ個数の磁石セグメントを有することが可能である。しかし、図2Hが、例示的な2極回転子設計を図示するのに対して、図2Iは、例示的な4極設計を図示する。図2Iの第1の磁極は、磁石セグメント204a、204b、204cを含み、第2の磁極は、磁石セグメント204e、204f、204gを含み、第3の磁極は、磁石セグメント204j、204k、204mを含み、第4の磁極は、磁石セグメント204p、204q、204sを含む。少なくとも1つの補極磁石セグメント204d、204h、204n、204tを、この構成内の各磁極に対して設けることが可能であり、補極磁石セグメント204d、204h、204n、204tは、2つの隣接し合う磁極の間に位置決めされる。補極磁石セグメント204d、204h、204n、204tは、残りの磁石セグメントのラジアル方向磁場に対してほぼ垂直に配向された磁場を有することが可能である。いくつかの例においては、補極磁石セグメントの半数204h、204tが、時計回り方向に配向された磁場を有することが可能であり、他方の補極磁石セグメント204d、204nが、反時計回り方向に配向された磁場を有することが可能である。
図2Hおよび図2Iはそれぞれ、列あたり16個の磁石セグメント(すなわち16個のハブ小面およびそれらに対応するように形状設定された磁石セグメント)を有して実装されるが、永久磁石セグメントを使用する他の回転子設計がなされてもよい。例えば、様々なジオメトリを有する小面を含む、16個より多いまたは少ない小面を用いることが可能である。例えば、隣接し合う磁石セグメント間に流路チャネルを設ける、図2Qおよび図2Rに関連して上述されるものなどのジオメトリを使用することが可能である。いくつかの例においては、磁石セグメントの外方表面は、図2Hおよび図2Iにおける丸いものとは異なり、平坦であることが可能である。さらに、磁石セグメントの回転子ハブとの境界面が、(例えば図2G〜図2Rなどに示されるように、小面の場合におけるように)そのジオメトリに影響を及ぼすことも可能である。実際に、同等の磁気プロファイルを有する他の回転子設計の代わりに、代替的な構成、小面数、およびジオメトリを用いることが可能である。例えば、図2Jに図示されるように回転子ハブ202に設置された4つのみの円周方向磁石セグメントを使用して、図2Hに図示される2極回転子の代替形態を実現することが可能である。2極磁石セグメント204w、204yを、回転子の北磁極および南磁極に使用し、2つの追加の補極磁石セグメント204x、204zを、磁石セグメント204w、204y間に配設することが可能である。磁極セグメント204w、204yを、回転子200のための主要磁気セグメントとする場合には、図2Jに図示される例を含むいくつかの実装形態は、移行補極磁石セグメント204x、204zよりも長い弧の長さを有する磁極セグメント204w、204yを用意してもよい。さらに、磁石セグメントの外方表面は、回転子ハブ202上に設置されると、図2Hの16個の小面の例においても例示されるように、回転子200の円筒状外方表面を形成することが可能である。図2Jの4つの磁石セグメントの回転子は、図2Hにおけるように2つの磁極を有するが、図2Jの回転子は、図2Hの16個の小面の回転子とは異なる磁気プロファイルおよび性能特徴を有してもよい。さらに、設計者の経済上および性能上の考慮要件に合わせた複数の小面ベース設計オプションを許容する、図2Hおよび図2Jの例において示される原理を使用する他の構成が、本開示の範囲内に含まれる。
図2Kは、さらに別の例示的な2極磁石構成の断面図である。図2Kの2極磁石構成の例は、分離補極構成を用いた補極磁石セグメント204h、204tを使用することが可能である。各補極磁石セグメント204h、204tは、共に接合されて単一の磁石セグメントを形成する2つの別個の磁石片254、256から構成することが可能である。ラジアル方向磁石セグメント片254は、ラジアル方向に配向された磁場を有する磁石であることが可能である。補極磁石セグメント204hに属する磁石セグメント片254hは、回転子ハブ202の中心から離れる方向に配向されたラジアル方向磁場を有することが可能である。さらに、補極磁石セグメント204tに属する磁石セグメント片254tは、回転子ハブ202の中心の方向に配向されたラジアル方向磁場を有することが可能である。垂直方向磁石セグメント片256h、256tは、ラジアル方向磁石セグメント片254h、254tに接合されて、各補極磁石セグメント204h、204tを形成することが可能である。ラジアル方向磁石片254hに接合される垂直方向磁石片256hは、片254hのラジアル方向磁場に対して垂直に配向され、反時計回り方向に配向された磁場を有することが可能である。ラジアル方向片254tに接合される垂直方向磁石片256tは、ラジアル方向に対して垂直な磁場を有することが可能であり、垂直方向片256tのこの磁場は、時計回り方向に配向される。磁石片254、256は、同一のまたは異なる磁性材料から構成することが可能である。磁石片254、256は、均等なサイズであることが可能であり、または、代替としては、一方の磁石片が、他方の磁石片よりも大きいことが可能である。回転子の設計者が補極磁石セグメント204h、204tの磁性特徴を改良することにより、回転子のいくつかの磁束特徴を修正することが可能となるように、補極磁石セグメント204h、204tの磁性特徴を工学設計するために、磁石片254、256の材料と、他方の磁石片に対する一方の磁石片のサイズとの選択を行うことが可能である。
図2Lに図示されるように、図2Kの例と共に上述されたものと同様の分離補極磁石セグメント設計を、3つ以上の磁極を有する磁石構成において使用することもまた可能である。例えば、分離補極磁石セグメント204d、204h、204n、204tを、例えば図2Iにおいて説明される4極磁石構成と同様の4極磁石構成において使用することが可能である。
回転子ハブ202の磁石構成は、磁極ごとに2つ以上の補極磁石セグメントを使用することが可能である。図2H〜図2Iに図示される回転子ハブ202の例は、様々な磁場配向、磁気材料特徴、および材料密度を有するモジュール式磁石セグメント204a〜204tの様々な組合せをハブ202の上に設置することによって多数の様々な磁石構成を構築するためのベースを形成することが可能である。例えば、図2Iの4極構成の例は、図2Mに図示されるように、ラジアル方向に配向された磁石セグメント204a、204c、204e、204g、204j、204m、204p、204sを非ラジアル方向磁石セグメントと置換することによって修正して、隣接し合う磁石セグメント204a〜204c、204e〜204g、204j〜204m、204p〜204sが、平行方向に配向された磁場を有するようにすることが可能である。図2Nに図示されるように、他の実装形態が、図2Iの垂直方向に配向された補極磁石セグメントを、図2Lの分離補極磁石セグメントの2つの磁石セグメント片のベクトル和に近似する方向ベクトルで配向された磁場を有する補極磁石セグメント204d、204h、204n、204tと交換することによって、図2Iの4極構成を変更してもよい。
回転子ハブ202およびモジュール式磁石セグメント204a〜204tの広範な適合性を示すさらに別の例が、図2Oに図示される。全ての磁石セグメント204a〜204tが回転子ハブ202上に設置された場合に、各磁石セグメントの磁場が他の全ての磁石セグメントの磁場に対して平行におよび同一方向に配向されるように構成された磁石セグメント204a〜204tによって、均一な磁性を有する2極磁気構成を構築することが可能である。電気機械内の協働する固定子の構成次第では、図2Oの2極設計などの実質的に均一な回転子磁性が、より効率的な電磁力変換を達成する可能性がある。
図2Oの2極の均一磁性の設計に加えて、既述の小面ベース・アプローチを用いた4極均一回転子設計が、実現可能である。例えば、図2Pにおいては、16小面回転子が用意される。図2Pの例においては、第1の磁極が、磁石セグメント204a、204b、204c、および204dを含む。この第1の磁極における各磁石セグメントの磁場方向ベクトルは、回転子ハブ202に設置される場合に、この磁極における他の磁石セグメントの磁場方向ベクトルに対して平行となる。図2Pの回転子の例の他の3つの磁極においても、これは当てはまる。第2の磁極は、磁石セグメント204j、204k、204l、および204mを含むことが可能である。この例における第2の磁極の磁石セグメントは、第1の磁極の磁場方向ベクトルに対して平行な磁場方向ベクトルを有するが、第1の磁極の磁石セグメントの磁場とは逆方向に配向される。第3および第4の磁極はそれぞれ、第1の磁極および第2の磁極の磁場に対して直交する磁場方向ベクトルを有して用意される。第3の磁極は、磁石セグメント204e、204f、204g、204hを含むことが可能である。第4の磁極は、磁石セグメント204n、204p、204q、204rを含むことが可能である。第3および第4の磁極の磁場方向ベクトルは、やはり互いに対して平行かつ逆方向である。
図2H〜図2Rに図示され上述される例は、回転子ハブ202に関して予期される可能な磁気構成を限定するようには意図されない。実際に、特定の回転子用途に対して多様な磁性特徴および構造的特徴を実現するために、複数のさらなる実装形態および磁石構成を実装することも可能である。上述の小面ベース回転子のコンセプトを用いて、様々な用途に応じた多様な可能な回転子構成を展開することが可能である。実際に、共通の回転子ハブ・ジオメトリが回転子製造業者により使用される場合には、複数の回転子設計にわたって共通の磁石セグメント・ジオメトリを使用することが可能となり、これにより、設計者は、適切な磁場ベクトルを有する磁石セグメントを入れ替えることによってほぼ無限の回転子の変形形態を構築することが可能となる。さらに、均一の弧長を有する磁石セグメントを考慮した回転子ハブ202が使用される場合には、単一のジオメトリの磁石セグメントのみを製造することが必要となるため、磁石セグメントの組付けおよび必要となる磁石セグメントの組合せを簡素化することが可能となる。さらに、磁気プロファイルの種類が最少に抑えられた磁石セグメントを使用する設計においては、製造および備蓄する必要のある種々の磁石セグメントの個数をさらに最小限に抑えることが可能であり、回転子の設計者は、様々な利点の中でもとりわけ、サプライ・チェーンおよび製造コストを最小限に抑えつつ、様々な回転子製品を供給することが可能となる。
次に図3Aを参照すると、例示的な電気機械319が図示される。この電気機械319は、図1Bに図示される電気機械102aと同様であり、図1Bに図示される電気機械102aとして使用されてよい。電気機械319は、内部308を画成するハウジング314を備える。回転子306は、固定子300に対して回転可能であり、固定子300の内部308に配設される。固定子300と回転子306との間にはギャップ310が存在する。この例示の固定子300は、円筒状固定子鉄心304の上に設置される電磁巻線302を備える。固定子300は、上述の固定子108として使用するのに適している。巻線302のいくつかの実装形態は、同期式のAC電気機械としてこの電気機械を機能させるように構成することが可能である。巻線302のいくつかの実装形態は、2極巻線を含むことにより、三相電磁石を形成することが可能である。電気機械の用途に応じて、4極巻線、単相巻線、および他の巻線構成を含む、他の実装形態もまた可能である。
巻線302は、固定子鉄心スロットを通してケーブル導体または形成導体を巻き付けて巻線ループまたは巻線コイルを形成することによって、構成することが可能である。固定子鉄心304は、金属製の積層プレートから構成することが可能であり、これらのプレートは、共に接合されて、鉄心構造体を形成する。固定子鉄心304のプレートに使用される材料は、鉄心スロットの周囲に巻き付けられる巻線302の電磁束特徴を調節するように選択することが可能である。また、鉄心材料は、所望の電磁固定子プロファイルを実現するために、巻線のケーブルに使用される材料を考慮することにより選択することが可能である。例えば、銅ベースの絶縁保護されたケーブルを、巻線302に使用することが可能である。このケーブルは、ケイ素ベースの低損失積層板と共に積層された鋼プレートから構築された鉄心304の周囲に巻き付けることが可能である。様々なスロット形状およびスロット・サイズを用いて、以下においてさらに詳細に説明されるような固定子鉄心304のスロットを実装することが可能であることが予期される。スロットジオメトリの選択は、巻線に使用されるケーブルのタイプ(または複数のタイプ)に基づくことが可能である。さらに、巻線302は、成形巻きコイルまたはランダム巻きコイルとして構成することが可能である。いくつかの例においては、巻線302は、最終的には、固定子鉄心304の軸方向端部に位置決めされる巻線端部ターン312となる。以下においてさらに詳細に示されるように、様々な端部ターン巻線技術を使用して、ある特定の固定子設計にとって望ましい特定の構造的特徴および電磁的特徴を有する端部ターン312を用意することが可能である。
固定子300のいくつかの実装形態は、海中作動および/または腐食性環境内作動向けに適合化することが可能である。例えば、固定子300のいくつかの例は、固定子300の周囲に保護バリア316を設けることによって、または他の方法で固定子300をシールすることによって、熱伝達流体、プロセス流体、他の腐食性のまたは有害な物質、および/または他の外来物質への露出からシール保護する、または他の態様で保護することが可能である。例えば、電気機械システムのいくつかの例は、「満液式」システムを実現してもよい。保護バリア316を設けることにより、電気機械システム内に供給された流体によって固定子300が冷却されるのを可能にしつつ、固定子300の要素を腐食から防ぐことが可能である。他の実装形態は、露出または腐食から固定子300をシール保護するために、固定子上にコーティングまたは他のシールを施してもよい。例えば、耐腐食化のために、いくつかのまたは全ての固定子を、エポキシ、ポリエーテルエーテルケトン、エチレンクロロトリフルオロエチレンコポリマー、および/または他の処理材料によりコーティングまたは処理することが可能である。固定子300のいくつかの実装形態は、剛体的な構造的支持を与え保護を実現する保護カバーを備えることが可能である。
図3Aに図示される固定子などの固定子は、固定子鉄心および固定子鉄心を貫通して延在する巻線302から形成されてよい。例示的な固定子鉄心335が、図3Bに図示される。固定子鉄心335は、端部プレート307により両端部で画定された、長手方向305に延在する複数の隣接し合う継鉄303(すなわち固定子スタック)から形成される。さらに、複数の固定子バー309が、長手方向305に延在し、継鉄303を軸方向、ラジアル方向、および円周方向に位置合わせする役割を果たすことが可能である。複数の歯301が、継鉄303によって形成されたスロットまたはチャネル内に保持され、これは、以下においてさらに詳細に説明される。例えば図3Gを参照されたい。
図3Cは、一対の隣接し合う継鉄303より形成された固定子スタック325を図示する。固定子歯および電磁巻線を含まずに示されるこの固定子スタック325を、以下においてさらに詳細に説明する。いくつかの実装形態によれば、固定子300は、8つの継鉄303のスタックを含んでよい。しかし、他の実装形態は、追加のまたはより少数の継鉄303を含んでよい。継鉄303の中の1つまたは複数が、セグメント化されてよい。すなわち、継鉄303の中の1つまたは複数が、複数の弧形状セグメント315から形成されてよい。いくつかの実装形態においては、全ての継鉄303が、セグメント化される。
図示されるように、継鉄303は、4つのセグメント315から形成され、したがって、継鉄303は、四分円弧に分割される。しかし、他の例においては、継鉄303は、より多数のまたはより少数のセグメント315から形成されてよい。例示的なセグメント315が、図3Dに示されるが、このセグメント315は、複数の積層板311から形成される。この図示される例のセグメント315は、10個の積層板311から形成されるが、他の実装形態は、追加のまたはより少数の積層板311から形成されてよい。いくつかの実装形態においては、積層板311は、低損失ケイ素鋼などの鋼から形成されてよい。他の実装形態においては、積層板311は、種々のタイプの鋼、または他のタイプの金属、合金、複合材料、または他のタイプの適切な材料から形成されてよい。積層板311は、化学的にまたは機械的に共に接合されてよい。例えば、積層板311は、接着剤により共に接合されてよい。代替としては、積層板311は、積層板311を互いにインターロックすることにより機械的に結合されてよい。いくつかの例においては、1つの積層板311の一部分が、隣接する積層板311の中に突出してよい。さらに、いくつかの実装形態においては、ある積層板311が、隣接する積層板311にインターロックする一方で、他の積層板311が、他の積層板311にインターロックしなくてもよい。
各セグメント315は、複数のラジアル方向に内方に延在する突出部317を備える。これらの突出部317は、セグメント315の内側周囲部318に沿って形成された複数の第1のノッチ320を画成する。図示される例において示されるように、各セグメント315は、6つの突出部317を備えるが、他の例においては、各セグメント315は、より多数のまたはより少数の第1のノッチ320を画成するより多数のまたはより少数の突出部317を備えてよい。図3Cに図示されるように、第1のノッチ320は、整列されて、歯301(以下においてさらに詳細に説明される)を受ける歯チャネル321の少なくとも一部分を形成する。さらに、各セグメント315は、セグメント315の外方周囲部324上に形成された複数の第2のノッチ322を備える。図3Cに図示されるように、第2のノッチ322は、整列されて、図3Bに図示されるように固定子バー309が中に保持されるチャネル326の少なくとも一部分を形成する。チャネル326内に保持される固定子バー309は、組み付けられる固定子300の位置合わせを行い、その固定子300に構造的支持を与える。
例示的な固定子バー309が、図3Eに図示される。この図示される固定子バー309は、一定の矩形断面を有する細長部材である。やはり図3Cに図示されるように、チャネル326もまた、固定子バー309を受け保持するために、一定の矩形断面を有する。しかし、図3Eに図示される固定子バー309および図3Cに図示されるチャネル326は、単なる例に過ぎず、固定子バー309およびチャネル326は、他の断面形状を有してもよい。
再度図3Cを参照すると、継鉄303は、セグメント315同士の隣接し合う端部に形成される複数の接合部313が互いから位置をずらされることにより、隣接し合う継鉄303の接合部313同士が整列しないように、組み付けられる。しかし、他の実装形態においては、隣接し合う接合部313は、整列してよい。図示されるように、隣接し合う継鉄303の接合部313同士の角度オフセット(θ)は45°であるが、他の角度オフセットが用いられてもよい。いくつかの例においては、継鉄303は、共に溶接されてよく、接着剤により共に接合されてよく、固定具により組み付けられてよく、インターロックにより結合されてよく、および/または別の態様で組み付けられてよい。さらに、組み付けられた固定子300および/または固定子鉄心335が、ポリエーテルエーテルケトン(PEEK)、エチレンクロロトリフルオロエチレンコポリマー(「ECTFE」)、酸化物コーティング、および/または別の材料により被覆されてもよい。
図3Fは、固定子300の例示的な端部プレート307を示す。この端部プレート307は、組み付けられた固定子鉄心335の両端部に配設される。いくつかの例においては、端部プレート307は、単体の連続プレートであってよい。さらに、端部プレート307は、端部プレート307の内側周囲部332中に形成された複数の突出部331を備える。これらの突出部331は、それらの間に第1のノッチ330を形成する。さらに、端部プレート307は、端部プレート307の外側周囲部336中に形成された複数の第2のノッチ334を備える。固定子スタックおよび歯301と組み合わされる場合には、突出部331は、歯チャネル321内に保持された歯301に重なる。第1のノッチ330は、歯301間に形成されたチャネル、すなわち以下において説明される巻線チャネル350に整列される。第2のノッチ334は、第2のノッチ322に整列されて、チャネル326を形成する。いくつかの例においては、図3Gに図示されるように、歯チャネル321は、蟻継ぎの形状を有してよく、これにより、歯301とそれに対応する歯チャネル321とがインターロックして、歯301がこの歯チャネル321内にロッキング保持される。しかし、チャネル321は、歯301を保持する任意の形状をなしてよい。さらに、歯チャネル321は、いくつかの例においては高アスペクト比を有してよいが、他の例においては、歯チャネル321は、より低いアスペクト比を有してよく、すなわち歯チャネル321は、より浅くより幅広であってよい。
各歯301は、複数の歯セグメント338から形成されてよく、その一例が、図3Hに図示される。図示される例によれば、歯セグメント338は、テーパ状断面を有する。歯セグメント338の第1の端部340は、歯セグメント338の第2の端部342の寸法D2よりも大きな寸法D1を有する。歯セグメント338の第1の端部340に対応する組み付けられた歯301の端部が、歯チャネル321内に保持される。
いくつかの実装形態においては、歯セグメント338は、複数の積層板339から形成されてよい。図示されるように、この例示的な歯セグメント338は、10個の積層板から形成される。他の例においては、歯セグメント338は、追加のまたはより少数の積層板から形成されてよい。歯301は、長さが同一またはほぼ同一の複数のセグメント338から形成されてよい。他の実装形態においては、歯301は、長さの異なる複数の歯セグメント338から形成されてよい。いくつかの例においては、歯セグメント338は、他の歯セグメント338よりも多数のまたは少数の積層板339を有することによって、異なる長さを有することができる。積層板339は、化学的にまたは機械的に接合されてよい。例えば、積層板339のいくつかが、接着剤により共に接合されてよい。他の例においては、積層板339のいくつかが、インターロックにより結合されてよい。例えば、ある積層板339中に形成された突出部が、隣接する積層板339中に形成された受容部の中に受けられてよい。
いくつかの実装形態においては、歯301の1つまたは複数が、長さの異なる複数の歯セグメント338から形成されてよい。例えば、図3Kは、チャネル321を通り延在する歯301の概略図を示す。歯301は、異なる長さを有する歯セグメント338aおよび338bから形成される。図示されるこの実装形態においては、歯セグメント338aは、歯セグメント338bの長さの半分の長さを有する。さらに、継鉄303の長さは、歯セグメント338bと同一であってよい。図示されるように、歯301においては、端部プレート307に当接する歯セグメント338aが先頭に来る。歯セグメント338aは、第1の継鉄303中に延在するチャネル321の部分の長さの半分を占める。歯セグメント338bが、歯セグメント338aに隣接して配置され、これにより、歯セグメント338bは、隣接する継鉄303に重なる。すなわち、この歯セグメント338bの第1の半部が、ある継鉄303内に位置し、この歯セグメント338bの第2の半部が、隣接する継鉄303内に延在する。隣接する継鉄303内に歯セグメント338bを重ねることにより、剛性が与えられ、固定子300の機械的強度が向上する。これらの歯セグメント338bは、隣接する継鉄303に半分だけ重なるものとして説明されるが、歯セグメント338bは、隣接する継鉄303に異なる量だけ重なることが可能である。例えば、いくつかの実装形態においては、歯セグメント338は、以下のパーセンテージ、すなわち60%〜40%、65%〜35%、70%〜30%、または80%〜20%の割合にて、隣接する継鉄303に重なってよい。しかし、任意の所望の重なり量を用いることが、本開示に含まれる。さらに、歯セグメント338bは、第1の継鉄303内に部分的に延在し、1つまたは複数の隣接する継鉄303を完全に貫通して延在し、さらなる継鉄303内に部分的に延在する長さのものであってもよい。
図3Iを参照すると、各歯セグメント338は、第1の面346上の突出部344と、第2の面347上の受容部348とを備えてよい。ある歯セグメント338の上の突出部344が、隣接する歯セグメント338上の受容部348の中に受けられて、隣接し合う歯積層板の位置合わせまたは装着の少なくとも一方が実現される。図3Jは、歯セグメント338上に形成される突出部344および受容部348の別の構成を示す。
いくつかの実装形態によれば、歯301は、継鉄303の中の1つまたは複数とは異なる材料から形成されてよい。特に、歯301は、継鉄303を形成する材料よりも高い磁束容量を有する材料を含んでよい。いくつかの例においては、歯セグメント338は、少なくとも部分的には、コバルト−鉄合金から形成される。例えば、歯セグメント338を形成する積層板339の中の1つまたは複数が、コバルト−鉄合金から形成され、他の積層板339が、異なる材料から形成されてよい。例示的なコバルト−鉄合金には、Carpenter Technology Corporation社の製品であるHiperco、Arnold Magnetic Technologies Corporation社の製品であるSilectron、および/または他の合金が含まれる。さらに、歯セグメント338は、全てが同一の材料から形成される必要はない。すなわち、いくつかの実装形態においては、歯セグメント338のいくつかが、ある材料から形成され、他の歯セグメント338が、異なる材料から形成されてよい。いくつかの例においては、高磁束材料が他の材料よりも一般的に高価であるため、歯セグメント338のある部分(例えば1つまたは複数のセグメント338、または1つまたは複数のセグメント338の1つまたは複数の積層板339)が、飽和磁束容量の高い材料から形成され、残りの部分が、より安価な材料から形成されてよい。いくつかの例においては、より安価な材料が、積層板311の中の1つまたは複数を形成するために使用されてよい。歯セグメント338またはその積層板339の種々の材料が、固定子300の長さにわたって規則的なまたは不規則なパターンで交互に配置されてよい。例えば、1つおきの、2つおきの、3つおきの、または他の様式で指定された歯セグメント338が、飽和磁束密度の比較的高い材料から形成され、それらの間の歯セグメント338が、より安価な、飽和磁束密度のより低い材料から形成されてよい。結果的に得られる歯301は、より安価な材料のみよりも高い複合的な飽和磁束容量を有するが、磁束容量のより高い材料のみから作製された歯301よりも低コストになる。いくつかの実装形態においては、飽和磁束の高い材料は、固定子300の端部が比較的低い飽和磁束密度を有するように、固定子300中に分布されてよい。他の例においては、固定子300の端部は、最低の飽和磁束密度を有してよい。
別の例においては、固定子300の長さにわたって所望の温度分布を実現するように、および/または固定子300の長さに沿った抽熱および/または発熱のばらつきを補償するように、歯301に沿った様々な位置における歯セグメント338の材料(歯セグメント338の積層板339の材料を含む)のタイプの選択を行うことが可能である。いくつかの例においては、歯セグメント338の材料は、均一な温度分布を実現するように、または均質材料タイプの歯セグメント338によって実現されるものよりもより均一な温度分布を固定子300の長さにわたって実現するように、配置することが可能である。例えば、冷却熱伝達があまり行われない固定子300の区域に、比較的高密度(単位長さ当たりにおいて比較的多数)の比較的高磁束材料からなる歯セグメント338を設けることが可能である。これらの区域において磁束容量を高めることにより、発熱がより低くなり、冷却の低さを少なくとも部分的に補うことが可能となる。同様に、冷却熱伝達が比較的多く行われる区域においては、比較的低密度の比較的高磁束材料からなる歯セグメント338を設けることが可能である。いくつかの例においては、例えば、熱伝達流体が回転子および固定子300の端部を介して案内される場合には、歯301の軸方向中心付近の歯セグメント338またはそれらの一部分が、歯301の端部付近の歯セグメント338よりも密度の高い比較的高磁束密度の材料を有することにより、固定子300の軸方向中心における熱伝達の低さを補うことが可能である。
図3Gを再度参照すると、積層歯301は、上述の説明のように、各歯チャネル321内に挿入される。組み立てられた固定子300は、隣接し合う歯301間に形成されたチャネル350を備える。ケーブル導体および/または形成導体が、これらの巻線チャネル350を通して送られて、またはこれらの巻線チャネル350内に配置されて、固定子300の巻線を形成することができる。
説明したように、(図3Gにおいて図示される)組み立てられた固定子300は、歯および継鉄部分が同一材料から作製された場合よりも高い磁束密度を実現することが可能な固定子鉄心となる。さらに、かかる構成により、比較的高価な材料を、高磁束密度を要する歯領域などのいくつかの箇所のみに使用し、継鉄などの重要度の低い区域においては使用しないことによって、コストの節減が得られる。さらに、複数のセグメント315から継鉄303を構成することにより、製造における無駄が減少する。特に、シート材料からそれぞれセグメント315または歯セグメント338を形成するために積層板311、339を製造する場合には、積層板311および339は、このシート上により高密度に配置できるため、無駄が削減される。さらに、歯セグメント338および継鉄セグメント315は、大量生産が可能であるため、製造コストをさらに削減することができる。
上述の固定子300などの電気機械の固定子は、複数の様々な態様で組み立てることが可能である。いくつかの例においては、固定子鉄心335は、4つの継鉄セグメント315を接合して継鉄303を形成し、この継鉄303に適切な個数の歯セグメント338を接合し、次いで結果的に得られたアセンブリを端部プレート307と共に互いに接合して固定子鉄心335を形成することにより、組み立てられてよい。いくつかの例においては、固定子鉄心335は、完成した歯301(すなわち、歯セグメント338を共に接合することにより形成する)と完成した固定子スタック(すなわち、複数の継鉄303を共に接合することにより形成する)とを形成し、次いで完成した歯301を完成した固定子スタックに組み付け、端部プレート307を付け加えて固定子鉄心335を形成することによって、組み立てられてよい。いくつかの例においては、固定子鉄心335は、別の態様で組み立てられてよい。巻線302は、複数の様々な態様で固定子鉄心335に巻き付けられてよい。いくつかの例においては、巻線302は、固定子スタックに組み付ける前に、完成した歯301(例えば固定具により互いに対して定位置に保持された歯301)に巻き付けられてよい。いくつかの例においては、巻線302は、完成した固定子鉄心335に巻き付けられてよく、すなわち固定子スタックと歯301とが共に組み付けられた後に巻き付けられてよい。巻線302と歯301とのアセンブリおよび/または組み立てられた固定子300全体が、コーティング材料で真空加圧含浸されて、焼成されることにより、例えば所望の機械的特性および電気的特性を実現してよい。いくつかの例においては、ロッキング・プレートが、歯301を固定子スタックに固定するために、固定子スタックの端部に装着されてよい。
上述のように、この固定子300の構成においては、歯と継鉄との間で異なる材料を使用することが可能である。かかる構成により、磁束密度の最適化、ロスの削減、およびそれに伴う製造コストの削減が可能となる。この組立プロセスは、他では実現不能な巻線技術を利用するというさらなる利点を有する。さらに、このように形成された巻線には、冷却デバイスを装着させることができる。そのような組合せは、従来の巻線技術では不可能である。
図3L〜図3Qは、電気機械102などの電気機械の固定子300または108などの固定子の周囲に形成された、保護バリア316の実装形態を示す。保護バリア316は、中に固定子300が置かれる固定子空洞部353を形成する。固定子空洞部353は、流体で充填されてよく、または充填されなくてもよい。図3Lは、電気機械102と同様であってよい例示的な電気機械の断面図を示す。この電気機械は、ハウジング314、固定子300、回転子306、および保護バリア316を備える。保護バリア316は、電気機械102を通過する流体の固定子空洞部353内への侵入を防ぐこともできる。保護バリア316は、内半径部に円筒形状の閉端部354を、および外半径部に円筒形状の開端部356を有する。閉端部354は、円筒358によって形成され、開端部356は、側部フランジ360によって画成される。側部フランジ360は、ハウジング314に当接し、および/または装着される。上述のように、保護バリア316は、例えば電気機械102が回転子306と固定子300との間に流体(矢印362によって示される)を通過させる満液式の応用例などにおいては、固定子300を保護する。したがって、保護バリア316は、電気機械およびその構成要素が電気機械を通過する流体(例えば海水、冷却流体、プロセス流体など)または他の外来物質にさらされるのを防ぐ。
さらに、保護バリア316は、固定子300と回転子306との間の接触を防ぐことによって、電気機械を保護する。さらに、保護バリア316は、固定子300と回転子306との間において電気機械102を通過する流体(その中に含まれる任意の微粒子および/または汚染物質を含む)によって引き起こされ得る摩滅および/または腐食などの、腐食および/または摩滅に対して耐性を有する材料から形成されてよい。また、保護バリア316は、電気機械を通過する流体と固定子空洞部353内に収容される任意の流体との間における圧力変化に耐えるように構成されてもよい。また、保護バリア316は、ハウジング314および固定子300の熱膨張および熱収縮を許容するように構成されてもよい。
図3Mは、例示的な電気機械の部分断面図を示す。図示されるように、保護バリア316の円筒358は、第1の部分364と、当接する第2の部分またはリング366とを含む。いくつかの例においては、円筒358は、一般的な市販の事前成形された管材であることが可能である。いくつかの実装形態によれば、円筒358の第1の部分364の第1の端部368が、外方張出し部分370およびテーパ状部分372を備えてよい。テーパ状部分372は、外方張出し部分370から延在する。テーパ状部分372は、側部フランジ360のうちの1つの中に形成されたテーパ状チャネル374内に受けられる。テーパ状部分372およびテーパ状チャネル374は、共に嵌められることによってシール部を形成してよい。例えば、テーパ状部分372およびテーパ状チャネル374は、締まり嵌めにより共に嵌められてよい。いくつかの例においては、このシール部は、流体の進入を防ぐ。さらに、テーパ状チャネル374は、例えばテーパ状チャネルの内側部分から周囲環境までまたは固定子空洞部353まで延在する少なくとも1つの開口376を備える。この少なくとも1つの開口376により、テーパ状部分372をテーパ状チャネル374内に組み付ける際に空気がチャネルから逃げることが可能となり、それによりしっかりした装着が実現される。
リング366の第1の端部378が、やはりテーパ状であってよく、第2の側部フランジ360中に形成された別のテーパ状チャネル374内に同様に受けられてよい。リング366の第1の端部378およびテーパ状チャネル374もまた、締まり嵌めにより共に嵌められて、流体の侵入を防ぐシール部を形成してよい。さらに、上述のように、テーパ状チャネル374は、上述の1つまたは複数の開口376を備えることにより、第1の端部378とテーパ状チャネル374との組付けの際に空気がテーパ状チャネル374から逃げる(すなわち均圧化)のを可能にしてよい。
第1の部分364の第2の端部382およびリング366の第2の端部384は、重なって、テーパ状接合部386を形成する。特に、いくつかの実装形態においては、第1の部分364の第2の端部382およびリング366の第2の端部384の隣接し合う表面が、重なり、互いに当接して、テーパ状接合部386を形成する。このテーパ状接合部は、流体の進入を防ぐためのシール部を形成する。いくつかの例においては、第1の部分364の第2の端部382は、外方に張り出してよい。テーパ状接合部386は、固定子空洞部353内への流体の侵入を防ぐためのシール部を維持しつつ、保護バリア354の寸法上の変動を許容する。例えば、電気機械102の作動中に、電気機械102の構成要素が、回転速度および/または温度変化などにより膨張および/または収縮を受ける場合があるが、テーパ状接合部386は、係合状態を維持することができる。いくつかの例においては、テーパ状接合部386は、水密シール部を形成してよい。さらに、テーパ状接合部386における第1の部分364とリング366との間の接触圧が、ハウジング314の膨張によって上昇し得る。代替的には、テーパ状接合部386は、テーパ状接合部386のこの接触圧がハウジング314の収縮によって上昇し得るように構成されてもよい。
いくつかの実装形態によれば、円筒358の第1の部分364またはリング366のいずれかまたは両方(すなわち回転子の永久磁石に対して近位に位置する部分)が、繊維およびポリマーの複合材料から形成されてよい。いくつかの例においては、円筒358は、熱可塑性母材または熱硬化性母材内に炭素繊維またはガラス繊維の複合材料を添加したものから形成されてよい。かかる材料は、高い強度、耐腐食性、および耐摩耗性をもたらし、磁気不透過性である。いくつかの例においては、側部フランジ360は、金属から形成されてよい。
図3Nは、テーパ状接合部を有さない保護バリア354の別の実装形態を示す。かかる実装形態においては、円筒358は、張出しチャネル374内に受けられる両テーパ状端部388を備える。テーパ状端部388およびテーパ状チャネル374もまた、締まり嵌めをなして、シール部を形成してよい。いくつかの例においては、このシール部は、流体の侵入を防ぐ水密シール部であってよい。さらに、上述のように、テーパ状チャネル374は、組付けの際の均圧化を可能にするために、1つまたは複数の開口376を備えてよい。さらに、円筒358は、上述のように複合材料から形成されてよく、円筒358の熱膨張率がハウジング314の熱膨張率と合致することにより、テーパ状接合部の必要性を解消するように、その複合材料の繊維を配向すること、および/またはその母材を選択することができる。いくつかの例においては、円筒358は、一般的な市販の事前成形された管材であることが可能である。
図3Oに図示される実装形態は、ハウジング314の熱膨張率と合致する熱膨張率を有する複合材料から形成された保護バリア354を図示する。この実装形態においては、円筒358は、一体型側部フランジ392およびテーパ状端部388を有する。上記において説明したように、テーパ状端部388は、テーパ状チャネル374内に嵌入されて、締まり嵌め部を形成してよい。テーパ状チャネル374および固定子空洞部353から側部フランジ360中に形成された1つまたは複数の開口376を介して、テーパ状チャネル374内および周囲環境内の圧力を均圧化してよい。一体型側部フランジ392は、一体型側部フランジ392の外方端部396を保護する役割も果たし得るリング394によって、ハウジング314に直接的に固定されてよい。いくつかの例においては、リング394は、金属から形成されてよい。
図3Pおよび図3Qは、保護バリア354のさらなる代替の実装形態を示す。これらの実装形態において例示される保護バリア354もまた、ハウジング314の熱膨張率と合致する熱膨張率を有するように設計された複合材料から形成されてよい。図3Pに図示されるように、保護バリア354の円筒358は、側部フランジ360の内方表面393に当接する外方表面391を備えるリップ398を備えてよい。リング395を使用して、リップ398がリング395と側部フランジ360との間に挟まれるように、円筒358を定位置にクランプ固定してよい。いくつかの実装形態においては、リング395および側部フランジ360は、金属から形成されてよく、さらに他の実装形態においては、リング395および側部フランジ360は、同一のタイプの金属から形成されてよい。1つまたは複数の固定具を使用して、リング395、円筒358、および側部フランジ360を共に固定してよい。代替としてまたは組み合わせて、接着剤を使用してもよい。
図3Qは、円筒358の外方端部397の内方表面381が、側部フランジ360の外方表面383に当接する、別の実装形態を示す。リング385を使用して、外方端部397にて円筒358を側部フランジ360に固定してよい。いくつかの実装形態においては、固定具および/または接着剤を使用して、リング385、円筒358、および側部フランジ360を共に固定してよい。これらの方法に加えて、または代替として、このリングは、円筒358の内径よりも若干大きな外径を有してよい。これにより、リング395および円筒358が、締まり嵌めにより生じる摩擦によって側部フランジ360に対して定位置に保持されてよい。さらに、リング385および側部フランジ360は、金属から形成されてよく、さらに他の例においては、リング385および側部フランジ360は、同一のタイプの金属から形成されてよい。
図4Aは、電気機械のための固定子の例示的な鉄心400の部分概略端面図である。この例示的な鉄心400は、電気機械102の固定子108において使用するのに適している。鉄心400は、電気機械の回転子を受けるために実質的に円筒状の内方体積を画成する。鉄心400は、鉄心の継鉄422から鉄心の内方体積の外周部までラジアル方向に延在する歯402を備える。これらの歯は、導電性巻線を受けるためのスロット404を画成する。例えば、隣り合う歯402aおよび402bが、スロット404aを画成し、隣り合う歯402bおよび402cが、スロット404bを画成する。各歯404が、先端部420を有する。例えば図4A、図4B、および図4Cに図示されるように、固定子は、歯の各対の間にスロットを有することが可能であり、ここで、各スロットは、平行なスロット側部を有するスロット領域を有し、各歯は、平行な歯側部を有する歯セクションを有する。
各歯402は、継鉄422から歯の先端部420まで延在するラジアル方向長さを有する。例えば、歯402aは、継鉄422から先端部420aまで延在するラジアル方向長さを有し、歯402bは、継鉄422から先端部420bまで延在するラジアル方向長さを有する。図示される例においては、全ての歯402が、同一のラジアル方向長さを有する。いくつかの実装形態においては、いくつかの歯402が、均等でないラジアル方向長さを有する。各スロット404は、継鉄422から内方体積まで延在するラジアル方向深さを有する。スロット404のラジアル方向深さは、スロット404を画成する継鉄422および歯402の側部によって画定され得る。例えば、スロット404aのラジアル方向深さは、継鉄422と歯402aおよび402bの側部とによって画定され、スロット404bのラジアル方向深さは、継鉄422と歯402bおよび402cの側部とによって画定される。
各歯402は、歯402のラジアル方向長さに沿って幅を有する。例えば、所与の箇所における歯の幅は、所与の箇所において歯が広がる方位角に関係する。歯402は、歯の幅が歯402のラジアル方向長さに沿って一定または実質的に一定である、第1のラジアル方向セクションを有してよい。そのため、歯は、その歯の少なくとも1つのセクションにおいて平行な歯側部を有することが可能である。歯402は、歯の幅が歯402のラジアル方向長さに沿って変化する、第2のラジアル方向セクションを有してよい。そのため、歯は、その歯の少なくとも1つのセクションにおいて非平行な側部を有することも可能である。この歯の幅は、第2のラジアル方向セクションにおいては、歯のラジアル方向長さに沿って線形におよび/または非線形に変化してよい。歯のラジアル方向長さおよび幅は、歯の面積を決定することが可能である。例えば、歯の面積は、歯のラジアル方向長さにわたる歯幅の積分として計算されてよい。
各スロット404は、スロット404のラジアル方向深さに沿って幅を有する。例えば、所与の箇所におけるスロットの幅は、スロット404を画成する2つの歯402の間の所与の箇所における方位角に関係する。スロット404は、スロットの幅がスロット404のラジアル方向深さに沿って均一または実質的に均一である、第1のラジアル方向セクションを有してよい。そのため、スロットは、そのスロットの少なくとも1つの領域において平行なスロット側部を有することが可能である。スロット404は、スロットの幅がスロット404のラジアル方向深さに沿って変化する、第2のラジアル方向セクションを有してよい。そのため、スロットは、そのスロットの少なくとも1つの領域において非平行な側部を有することも可能である。このスロットの幅は、第2のラジアル方向セクションにおいては、スロットのラジアル方向深さに沿って線形におよび/または非線形に変化してよい。スロットのラジアル方向深さおよび幅は、スロットの面積を決定することが可能である。例えば、スロットの面積は、スロットのラジアル方向深さにわたるスロット幅の積分として計算されてよい。
歯402およびスロット404のジオメトリ(例えば長さ、深さ、幅、面積など)は、固定子の(したがって電気機械の)性能および効率の面に影響を与えることが可能である。スロット404のジオメトリは、スロット内に設置することが可能な導電性コイルの位置、分布、および/または断面積に影響を与えることが可能である。鉄心400の歯の面積に対するスロット面積の比率が、鉄心400により実現可能な最大出力、力率、および/または効率に影響を与える場合がある。歯幅が歯のラジアル方向長さに沿って変化する第1のラジアル方向セクションと、歯幅が歯のラジアル方向長さに沿って均一である第2のラジアル方向セクションとを有する歯が、スロット幅がラジアル方向深さに沿って変化するまたは均一である第1のラジアル方向セクションと、スロット幅が変化する第2のラジアル方向セクションとを有するスロットを画成してよい。スロット幅がラジアル方向深さに沿って変化する第1のラジアル方向セクションと、スロット幅がラジアル方向深さに沿って均一である第2のラジアル方向セクションとを有するスロットが、電気機械の性能および/または効率を向上させることが可能である。このタイプのスロットを有する鉄心は、固定子鉄心材料(例えば鉄または別の材料)および導電性巻線材料(例えば銅または別の材料)の利用率のバランスをとることができる。例えば、スロット幅がラジアル方向深さに沿って変化する第1のラジアル方向セクションと、スロット幅がラジアル方向深さに沿って均一である第2のラジアル方向セクションとを有するスロットは、スロットの一部分において導電性材料の断面積をより広くすることが可能であり、歯の様々な部分(例えば継鉄422の付近の歯の「付根」など)において鉄が過量になるのを防ぐことが可能である。この構成を有するスロットは、ケーブル巻線(例えば第1のセクションにおいて)と、成形巻線(例えば第2のセクションにおいて)との両方を収容することができる。いくつかの場合においては、歯の付根の過量な鉄心材料は、磁気的に利用されない材料を含む。いくつかの場合においては、歯の先端部420における磁束密度を高めることにより、電気機械の磁束負荷を制限し、機械性能を低下させ得る過剰な磁束の漏れ経路をスロット404全体に与える。
図4Aの例示的な鉄心400においては、全ての歯402およびスロット404が、同一である。歯402bのラジアル方向セクション406bは、歯402bのラジアル方向長さに沿って変化する幅を有し、歯402bのラジアル方向セクション410bは、歯402bのラジアル方向長さに沿って均一な幅を有する。スロット404bのラジアル方向セクション408bは、スロット404bのラジアル方向深さに沿って均一な幅を有し、スロット404bのラジアル方向セクション412bは、スロット404bのラジアル方向深さに沿って変化する幅を有する。各スロット404の断面は、継鉄422に2つの丸められた角を有する。これらの丸められた角は、図4Bに図示されるケーブル巻線コイルなどの、円い断面を有するコイルを受けることが可能である。図4Aの各歯402は、鉄心400の磁束および/または他の特性を高め得る幅広先端部420を有する。
図4Bは、図4Aの例示的な鉄心400の部分概略端面図である。図4Bは、スロット404b内に設置された例示的な導電性コイルを図示する。図示されるコイルは、ケーブル巻線のコイルである。コイル414a、414b、414c、および414dは、スロット404bのセクション408b内に位置する。コイル414e、414f、414g、414h、414i、414j、414k、および414lは、スロット404bのセクション412b内に位置する。
図4Cは、電気機械のための固定子の例示的な鉄心の部分概略端面図である。この例示的な鉄心400は、電気機械102の固定子108の鉄心であることが可能である。図4Cの例示的な鉄心400においては、歯402およびスロット404の全てが、同一である。歯402bのラジアル方向セクション406bは、歯402bのラジアル方向長さに沿って変化する幅を有し、歯402bのラジアル方向セクション410bは、歯402bのラジアル方向長さに沿って均一な幅を有する。スロット404bのラジアル方向セクション408bは、スロット404bのラジアル方向深さに沿って均一な幅を有し、スロット404bのラジアル方向セクション412bは、スロット404bのラジアル方向長さに沿って変化する幅を有する。各スロット404の断面は、継鉄422に2つの実質的に直角な角を有する。これらの実質的に直角な角は、図4Cに図示される成形巻線コイル416などの、直角の角を有する断面を有するコイルを受けることが可能である。
図4Cは、スロット404b内に設置された例示的な導電性コイルを示す。図示されるコイルのいくつかが、成形巻線のコイルであり、図示されるコイルのいくつかが、ケーブル巻線のコイルである。成形巻線コイル416aおよび416bは、スロット404bのセクション408b内に位置する。ケーブル巻線コイル414は、スロット404bのセクション412b内に位置する。図4Cの各歯402は、鉄心400の磁束および/または他の特性を高め得る幅細先端部420を有する。
図4Dは、例示的な鉄心400の部分概略端面図である。図4Dは、各歯が非平行な側部を有する2つのセクションを含む、例示的な角度パラメータを示す。各歯の第1のセクションは、第1の角度にて非平行な側部を有し、各歯の第2のセクションは、第2の角度で非平行な側部を有する。第1の角度と第2の角度とは、異なる。図示される例においては、第1の角度は、1.9度であり、第2の角度は、第1の角度よりも0.7度大きい(すなわち2.6度)。他の角度および/または角度差が用いられてもよい。
図4Eは、電気機械のための固定子の例示的な鉄心の部分概略端面図である。この例示的な鉄心400は、電気機械102の固定子108の鉄心であることが可能である。図4Eの例示的な鉄心400においては、歯402およびスロット404の全てが、同一である。歯402bのラジアル方向セクション406bは、歯402bのラジアル方向長さに沿って均一な幅を有し、歯402bのラジアル方向セクション410bは、歯402bのラジアル方向長さに沿って変化する幅を有する。スロット404bのラジアル方向セクション408bは、スロット404bのラジアル方向深さに沿って変化する幅を有し、スロット404bのラジアル方向セクション412bは、スロット404bのラジアル方向長さに沿って均一な幅を有する。各スロット404の断面は、継鉄422に2つの実質的に丸められた角を有する。これらの実質的に丸められた角は、丸められたケーブル巻線コイルなどの、円形断面を有するコイルを受けることが可能である。
図4Eにおいては、図示されるコイルのいくつかが、成形巻線のコイルであり、図示されるコイルのいくつかが、ケーブル巻線のコイルである。ケーブル巻線コイル414は、スロット404bのセクション408b内に位置する。成形巻線コイル416cおよび416dは、スロット404bのセクション412b内に位置する。図4Eの各歯402は、鉄心400の磁束および/または他の特性を高め得る幅細先端部420を有する。
図4Fは、電気機械のための固定子450の例示的な端部ターンの概略端面図である。この例示的な固定子450は、電気機械102の固定子108の代わりに使用することが可能である。固定子450の端部ターン452および固定子450の鉄心454の一部分のみが、図4Fには図示される。固定子450は、図4Fには図示されない他の部品を含む。
固定子450は、成形巻線を備える。成形巻線のコイルは、固定子鉄心の軸方向長さにわたって延在する軸方向セクション(図4Fには図示せず)を備える。成形巻線のコイルは、複数の端部ターン452を含み、これらの端部ターン452は、固定子鉄心の軸方向端部を越えた位置に端部ターン束を形成する。端部ターン束は、2つのグループの端部ターン452を含み、これらのグループは、端部ターン452の4つの交互に配置されたラジアル方向層464を形成する。各グループが、4つの層464の中の2つを形成する。各グループの1つの層が、ラジアル方向において他方のグループの2つの層の間に位置する。
固定子450は、内方ボア451を画成する鉄心454を備え、この内方ボア451は、電気機械の回転子を受けるための実質的に円筒状の内方体積である。図4Gに図示されるように、鉄心454は、ボア451の方向にラジアル方向に内方に延在する複数の歯456を有し、これらの歯456は、導電性巻線(例えば成形巻線、ケーブル巻線、または別のタイプなど)を受けるためのスロット458を画成する。これらの巻線のコイルは、鉄心の軸方向長さに及ぶ軸方向セクション(図4Gには図示せず)を備える。各軸方向セクションは、鉄心の2つの軸方向端部間に延在してよい。これらの巻線のコイルは、鉄心の軸方向端部を越えて延在する端部ターン452を含む。各端部ターン452は、コイルの2つの軸方向セクションを連結する。1つまたは複数のコイルの軸方向セクションが、各スロット内に位置してよい。各端部ターン452は、第1の軸方向セクションに連結する第1の端部と、第2の軸方向セクションに連結する第2の端部とを有する。図4Gに図示されるように、各端部ターンの第1の端部は、第1の外周位置にて連結し、各端部ターンの第2の端部は、第2の外周位置にて連結する。図4Gに図示される実装形態においては、この第1の端部は、鉄心のラジアル方向中心から第1のラジアル方向距離にて連結し、この第2の端部は、鉄心のラジアル方向中心から第2のラジアル方向距離にて連結する。いくつかの実装形態においては、端部ターンの両端部が、鉄心の中心から同一のラジアル方向距離にてコイルの軸方向セクションに連結する。
端部ターン束は、図4Fに図示されるように、複数グループの端部ターン452を含むことが可能である。端部ターン452の各グループは、鉄心454のラジアル方向中心の周囲の異なる半径位置に層464を形成することが可能である。1つの端部ターン452は、主として、複数グループの中の1つにより形成される2つの層に属する。例えば、ある端部ターン452aが、層464a中に第1の部分を有し、その端部ターン452aが、別の層464c中に第2の部分を有する。別の例としては、ある端部ターン452bが、層464b中に第1の部分を有し、その端部ターン452bが、別の層464d中に第2の部分を有する。層464aおよび464cは、端部ターン452aとしてラジアル方向に位置決めされる第1のグループの端部ターン452により形成される。この第1のグループ内の各端部ターン452は、第1のグループ内の他の部材から円周方向に位置をずらされる。層464bおよび464dは、端部ターン452bとしてラジアル方向に位置決めされる第2のグループの端部ターン452によって形成される。第2のグループ内の各端部ターン452は、第2のグループの他の部材から円周方向に位置をずらされる。層464aは、層464bのラジアル方向に内側に位置し、層464bは、層464cのラジアル方向に内側に位置し、層464cは、層464dのラジアル方向に内側に位置する。したがって、第1のグループの端部ターン(端部ターン452aとしてラジアル方向に構成される)および第2のグループの端部ターン(端部ターン452bとしてラジアル方向に構成される)は、交互に配置されて、端部ターンの4つの層を形成する。
各端部ターン452は、鉄心454の端部に対して平行な平坦断面を貫通する。第1のグループの端部ターンの各端部ターン452は、第1の半径位置および第3の半径位置にて平坦断面を貫通する、端部ターンの2つの層を形成する。第1の半径は、第3の半径よりも小さい。第2のグループの端部ターンの各端部ターン452は、第2の半径位置および第4の半径位置にて平坦断面を貫通する別の2つの層を形成する。第2の半径は、第4の半径よりも小さい。第1のグループの端部ターンおよび第2のグループの端部ターンは、第2の層が第1の層と第3の層との間に位置し(すなわち第1の半径が第2の半径より小さく、第2の半径が第3の半径より小さい)、第3の層が第2の層と第4の層との間に位置する(すなわち第2の半径が第3の半径より小さく、第3の半径が第4の半径より小さい)ように、交互に配置される。
各端部ターン452は、鉄心454から延在する部分ループを形成するように、端部ターンの2つの端部の間に延在する。いくつかの実装形態においては、2つのグループの端部ターンが交互に配置される場合に、一方のグループの各端部ターンが、他方のグループ内の端部ターンの1つまたは複数により形成される部分ループを通る。例えば、端部ターン452aは、端部ターン452bにより形成された部分ループを通る。
いくつかの場合においては、端部ターンの4つの交互に配置されたラジアル方向層を形成する2つのグループの端部ターンを含む端部ターン束が、他の構成よりも長手方向において短い端部ターン束を形成することが可能である。例えば、2つのグループの端部ターンが交互に配置されず、代わりに、これらの2つのグループが端部ターンの3つ以下の層を形成する場合には、端部ターン束は、4層束のほぼ2倍の長さになり得る。比較的長い端部ターン束は、電気機械において比較的大きな軸方向スペースを占めるため、回転子軸受ジャーナル同士が、さらに離間されて位置決めされることとなり得る。比較的短い端部ターン束は、電気機械において比較的小さな軸方向スペースを占めるため、回転子軸受ジャーナル同士を共により近くに位置決めすることが可能となり得る。回転子軸受ジャーナル同士が、軸方向において共により近くに位置する場合には、軸受ジャーナルは、比較的小さな応力および損傷を被ることができ、および/または回転子に対してより良好な安定性を与えることができる。したがって、2つの交互に配置されるグループの端部ターンを含む端部ターン束は、電気機械において比較的小さな軸方向スペースを占めることができ、回転子軸受ジャーナル同士の間の軸方向距離をより短くすることができ、および/または、電気機械の部品に対する磨耗および/または損傷を低下させることができる。いくつかの場合においては、2つの交互に配置されるグループの端部ターンを含む端部ターン束が占める軸方向スペースは、他の構成において端部ターン束が占める軸方向スペースの約半分となる場合がある。
図4Hは、例示的な固定子450の部分概略側面図である。図4Iは、固定子450の鉄心454および例示的な端部ターン452a、452bの一部分の部分概略側面図である。図4Jは、例示的な固定子450の軸方向中心付近から例示的な固定子450の軸方向端部の方向に見た概略断面図である。図4Kは、固定子450の端部ターン452aおよび452bの部分概略図である。
図4Lは、例示的な端部ターン460および例示的な端部ターン4200の概略図である。例示的な端部ターン460は、電気機械102の固定子108に含めることが可能である。例示的な端部ターン460は、4つのラジアル方向層を有する端部ターン束を形成する交互に配置された2つのセットの端部ターンを含む重ね巻き構成に含めることが可能である。例示的な端部ターン4200は、交互に配置されるセットの端部ターンを含まない従来的な重ね巻き構成向けに設計される。実質的に均一なラジアル方向寸法を有する固定子内でのこれらの各構成においては、例示的な端部ターン460および4200は、同一の方位角に広がることが可能である。図4Lは、端部ターン460および4200の例示的な寸法を含む。いくつかの場合においては、端部ターンは、異なる寸法を有する。
図4Mは、例示的な端部ターン460および固定子鉄心462の一部分の概略斜視図である。固定子のラジアル方向寸法は、例示のために、図4Mにおいては直線方向寸法に対応付けされる。端部ターン460は、直線座標系において端部ターン452を示す。鉄心462は、直線座標系において鉄心454を示す。端部ターン460は、2つのグループの端部ターンを含み、これらの端部ターンは、直線座標系において示される端部ターンの4つの交互に配置されるラジアル方向層を形成する。端部ターン460aを含む第1のグループの端部ターンは、端部ターン460aと同一のラジアル方向位置に、端部ターン460aから円周方向に位置をずらされた複数の端部ターンを含む。端部ターン460bを含む第2のグループの端部ターンは、端部ターン460bと同一のラジアル方向位置に、端部ターン460bから円周方向に位置をずらされた複数の端部ターンを含む。
図4Nは、直線座標系において示された、例示的な固定子鉄心462と例示的な端部ターン460aおよび460bとの一部分の概略斜視図である。図4Nに図示されるように、端部ターン460の端部および鉄心462は、固定子鉄心のスロット内にギャップ466を画成する。各スロットが、2つのギャップを備える。1つのギャップが、2つの異なる端部ターンの端部間に位置する。ギャップ466aは、第1のスロット内に、第1の半径位置に、固定子鉄心と第1のスロット内に位置する端部ターンの端部との間に形成され、ギャップ466bは、第2のスロット内に、第2の半径位置に、第2のスロット内に位置する2つの端部ターンの端部間に形成され、ギャップ466cは、第1のスロット内に、第3の半径位置に、第1のスロット内に位置する2つの端部ターンの端部間に形成され、ギャップ466dは、第2のスロット内に、第4の半径位置に、第2のスロット内に位置する端部ターンの端部を越えた位置に形成される。いくつかの場合においては、冷却材流体(例えば空気、窒素、または他のガス)が、導電性巻線を冷却するためにスロット内のギャップ466を通り流れることが可能である。例えば、ギャップ466が、固定子の軸方向端部間において軸方向に延在し、固定子の軸方向長さの全体または一部に沿って冷却材流路を形成することが可能である。冷却材流体は、(例えばギャップ466bおよび466cにおいて)固定子鉄心中の導電性巻線の軸方向セクション同士の間を流れることが可能である。冷却材流体は、(例えばギャップ466aにおいて)導電性巻線の軸方向セクションと固定子鉄心との間を流れることが可能である。冷却材流体は、(例えばギャップ466dにおいて)導電性巻線の軸方向セクションと回転子との間を流れることが可能である。この冷却材は、中間スタック入口から端部ターンを囲む体積まで流れて、巻線の端部ターンおよび軸方向セクションを冷却することが可能である。この冷却材は、端部ターンを囲む体積から中間スタック出口まで流れて、巻線の端部ターンおよび軸方向セクションを冷却することが可能である。さらに、または代替として、冷却材が、回転子と固定子との間のギャップ内を流れることが可能である。
いくつかの場合においては、スロットは、それぞれ異なる深さを有する。例えば、鉄心462中のスロットのいくつかが、浅いスロット深さを有することにより、ギャップ466aの体積を無くすまたは低減させることができる。これにより、固定子の磁束特性を高めることができる。
図4Oは、直線座標系において示された例示的な端部ターンの概略斜視図である。明瞭化のために、図4Oにおいては2つの端部ターン460aおよび460bのみが示される。
端部ターンの4つの層を形成するように交互に配置された2つのグループの端部ターンを含む端部ターン束は、成形巻線、ケーブル巻線、またはそれらの組合せを含むことが可能である。図4F、図4G、図4H、図4I、図4J、図4K、図4L、図4M、図4N、および図4Oは、成形端部ターンの4つの層を形成するように交互に配置された2つのグループの成形端部ターンを含む、成形端部ターン束の一例の複数の態様を示す。図4F、図4G、図4H、図4I、図4J、図4K、図4L、図4M、図4N、および図4Oの例示的な端部ターンはそれぞれ、標準的な端部ターン成形装置を使用して作製することが可能である。しかし、いくつかの図示されない実装形態は、非標準的な端部ターン成形プロセスを要する場合がある。図4Pおよび図4Qは、ケーブル端部ターンの4つの層を形成するように交互に配置された2つのグループのケーブル端部ターンを含むケーブル端部ターン束の一例を示す。
図4Pは、電気機械の固定子の例示的な端部ターン束470の概略側面図である。この例示的な端部ターン束470は、電気機械102の固定子108に含めることが可能である。図4Qは、この例示的な端部ターン束470の概略斜視図である。図4EEは、この例示的な端部ターン束470の概略端面図である。図4FFは、この例示的な端部ターン束470の中の2つの端部ターンの概略端面図である。図4GGは、この例示的な端部ターン束470の中の4つの端部ターンの概略端面図である。図4HHは、この例示的な端部ターン束470の中の2つの端部ターンの概略側面図である。図4IIは、例示的な固定子の軸方向中心付近からこの例示的な固定子の軸方向端部の方向に見た場合の、この例示的な端部ターン束470の概略断面図である。
図示される例示的な端部ターン束470は、ケーブル巻線を含むことが可能である。ケーブル巻線のコイルは、固定子鉄心の軸方向長さにわたって延在する軸方向セクション(図4P、図4Q、図4EE、図4FF、図4GG、図4HH、および図4IIには図示せず)を備える。ケーブル巻線のコイルは、複数の端部ターンを含み、これらの端部ターンは、固定子鉄心の軸方向端部を越えた位置に端部ターン束470を形成する。端部ターン束470は、端部ターンの4つの交互に配置されたラジアル方向層を形成する2つのグループの端部ターンを含む。第1のグループの端部ターンは、端部ターン4001a、4001c、および4001eを含む。第2のグループの端部ターンは、端部ターン4001bおよび4001dを含む。各グループが、4つの層の中の2つを形成する。第1のグループは、端部ターンの第1の(最外)層と、端部ターンの第3の層とを形成する。第2のグループは、端部ターンの第4の(最内)層と、端部ターンの第2の層とを形成する。各グループ中の1つの層が、ラジアル方向において他のグループの2つの層の間に位置する。特に、第2の層は、ラジアル方向において第1の層と第3の層との間に位置し、第3の層は、ラジアル方向において第2の層と第4の層との間に位置する。
図4FF、図4GG、および図4IIに図示されるように、この例示的な端部ターン束470の中の2つのグループの端部ターンは、固定子に最も近い端部ターン束の軸方向セクションではラジアル方向層を2つだけ形成する。特に、この端部ターン束470の中の全ての端部ターンが、鉄心の端部面上の第1の半径位置にてこの端部面から出て、この端部面の第2の半径位置にて鉄心に再入する。第1のグループの端部ターン(4001a、4001c、および4001eを含む)は、この第1の半径位置上の出外位置にて鉄心の端部面を貫通して鉄心から出て、第1のラジアル方向層の方向に曲がり、第1のラジアル方向層を通り延在し、第3のラジアル方向層の方向に曲がり、第3のラジアル方向層を通り延在し、第2の半径位置上の再入位置にて端部面を貫通して鉄心に再入する。図示される例においては、鉄心に再入する前に、第1のグループの端部ターンはそれぞれ、第3の層から第2の半径位置の方向にラジアル方向に内方に湾曲する。
第2のグループの端部ターン(4001bおよび4001dを含む)は、第1の半径位置上の出外位置にて端部面を貫通して鉄心から出て、第2のラジアル方向層の方向に曲がり、第2のラジアル方向層を通り延在し、第4のラジアル方向層の方向に曲がり、第4のラジアル方向層を通り延在し、第2の半径位置上の再入位置にて端部面を貫通して鉄心に再入する。図示される例においては、第2のグループ中の各端部ターンが、第1のグループ中の隣接するコイルを抱き込む。例えば、図4GGに図示されるように、端部ターン4001dは、第1の半径位置上で端部面を出て、ラジアル方向に外方に曲がり、端部ターンの第2の層を通り延在し、ラジアル方句に内方に曲がり、端部ターンの第4の層を通り延在し、ラジアル方向に内方に曲がって端部ターン4001eを抱き込み、次いでラジアル方向に外方に曲がって、第2のラジアル位置上にて端部面に再入する。
図4Rおよび4Sは、電気機械のための固定子の例示的な鉄心400の部分概略端面図を示す。この例示的な鉄心400は、電気機械102の固定子108の鉄心であることが可能である。この例示的な鉄心400は、電気機械のいくつかの実装形態に応じて異なる形状を有するスロット404を備える。スロット404は、偶数のコイル414を含むように図示されるが、奇数のコイル414を使用してもよい。いくつかの実装形態においては、このスロット404の形状は、重ね巻き構成のコイルおよび同心巻き構成のコイルを含む巻線を担持してよいが、このスロット形状は、他のタイプの巻線においても使用されてよい。
図4Rに図示されるように、各スロット404は、コイル414を保持する第1のスロット領域421と、コイル414を保持する第2のスロット領域419とを備える。第1のスロット領域421は、2つの非平行な対向するスロット側部部分415cおよび415dによって画成される。第2のスロット領域419は、2つの平行な対向するスロット側部部分415aおよび415bによって画成される。スロット側部部分415aおよび415cは、スロットの一方の側部の一部を形成する。スロット側部部分415bおよび415dは、スロットの他方の側部の一部を形成する。スロット側部部分415aおよび415cは、417aにて第1の角度を画成し、スロット側部部分415bおよび415dは、417bにて第2の角度を画成する。第1の角度および第2の角度は、図4Rに図示されるように、異なる角度である。例えば、417aの第1の角度は、180度未満の鈍角であり、417bの第2の角度は、180度である。他の角度を使用してもよい。
図4Tは、スロット404が奇数のコイル414を含む、電気機械のための固定子の例示的な鉄心400の部分概略端面図を示す。図示される例においては、コイル414は、コイル414A、414B、および414Cを含む。コイル414Aおよびコイル414Bは、偶数のコイルを含むように図示されるが、コイル414Aおよびコイル414Bは、奇数のコイルを含んでもよい。さらに、コイル414Aは、左コイル側の重ねコイルであってよく、コイル414Bは、右コイル側の重ね巻線であってよい。コイル414Cは、同心巻線のコイルである。したがって、各スロット404内にコイル414Cを含むことにより、各スロット404内に収容されるコイル414の総数は、奇数となる。各スロット内に奇数のコイルを有することにより、これらのコイルに関連付けられる電気機械の電圧は、比較的小さな増分レベルにて変化させ得るため、電気機械の出力の制御がさらに良好になる。
図4Uは、スロット404内でのコイル414の重ね合わせまたは詰め込みをより良好にするためにコイル414がそれぞれ異なるサイズであり得る、別の鉄心400を示す。コイル414Aおよびコイル414Bが、あるサイズのワイヤまたはケーブルからなるものであり、コイル414Cが、より小さなサイズなどの異なるサイズのものであってよい。これらの異なるサイズのコイルにより、スロット404はより緊密に詰め込まれ得る。さらに、コイル414A、414B、または414Cの中のいずれかが、単一ターン巻きプロセスにより製造されてよいが、複数のケーブルが、平行に巻かれてよい。さらに、概して三角形または台形の断面のウェッジ1000が、コイル414Aおよび/または414Bを詰め込み状態に維持するために、スロット404の中の1つまたは複数の中の備えられてよい。時間の経過および電気機械の作動と共に、コイルは、スロット内で緩む場合があり、これは、機械の性能に悪影響を与える場合がある。例えば、コイルがスロット内部で緩むと、それらのコイルは、スロット内で弛むおよび/または変位する場合がある。その結果、コイルは、振動および/または摩擦により損傷を被る場合がある。したがって、ウェッジ1000は、コイル414Aおよび/または414Bを詰め込み状態に維持するために、スロットの中に備えられる。いくつかの実装形態によれば、ウェッジ1000は、コイルを詰め込み状態に維持するために、コイルに対して付勢力を加えてよい。例えば、ウェッジ1000は、図4Vに図示されるように、長手方向湾曲部を有してよい。いくつかの実装形態においては、ウェッジ1000は、スロット内に挿入されると、応力を受け、この応力により、スロット内のコイルに対して付勢力がかけられることとなる。ウェッジ1000により加えられる付勢力により、実質的に固定位置にコイルを保持することができ、これにより、コイルの緩みおよび/または弛みを解消するまたは減らすことができる。例えば、スロット内のウェッジ1000は、コイルを定位置に保持し、コイルの緩み、弛み、および/または変位により生じ得る損傷を防ぐことができる。
図4Vにおいては、例示的なウェッジ1000は、C字型断面を有するものとして図示される。ウェッジ1000は、図4Uおよび図4Zに図示されるように、C字型断面の開部分が鉄心400のラジアル方向中心を向いた状態で、スロット404内に位置決めされてよい。代替としては、ウェッジ1000は、C字型断面の開部分が鉄心400のラジアル方向中心から離れる方向に向くように、スロット404内に挿入されてよい。ウェッジは、他の形状を有してもよい。平坦ストリップ1002を使用してもよい。
いくつかの実装形態において、例えばウェッジ1000が、図4Uおよび図4Zに図示されるように、ウェッジ1000の開端部が鉄心400の中心を向く状態で位置決めされる場合には、その機械の冷却特性を高めることができる。回転子と回転子を囲む流体(例えば回転子と固定子との間の機械ギャップ内の流体)との間の摩擦が、熱を発生させる可能性がある。過熱を防ぐために、冷却流体(例えば空気または別のタイプの流体)が、回転子と固定子との間の機械ギャップを通るように配向されてよい。ウェッジ1000は、図4Uおよび図4Zに図示されるように、機械ギャップの体積を効果的に増大させるように構成することが可能である。例えば、鉄心400の中心の方に開くウェッジ1000および平坦ストリップ1002により、機械ギャップの体積の増大が効果的にもたらされる。機械ギャップの体積を増大させることにより、機械の冷却システムに対する要件を下げることができる。例えば、この体積の増大により、機械ギャップに沿った圧力降下を低減させることができ、したがって、これにより、機械ギャップを通る冷却流体の流れを生じさせるブロワまたはポンプに対して課せられる要件を下げることができる。
図4AA〜図4DDは、電気機械の固定子400におけるコイル414およびウェッジ1000の他の例示的な構成を示す。図4AAは、重ね巻き構成の第1の複数のコイル414Aと、同心巻き構成の第2の複数のコイル414Bとを含む、固定子400を示す(重ね巻き構成のコイル414Aは、図4AA〜図4DDにおいては網掛け表示されず、同心巻き構成のコイル414Bは、図4AA〜図4DDにおいては網掛け表示される)。図4AAのこれらのスロット404はそれぞれ、同一の形状を有し、同一個数の導体を担持する。図4AAにおいては、各スロットは、1つのターンを有する同心コイル414Bを担持し、ウェッジ1000を担持する。図4AAに図示される同心コイル414Bは、2極の三相電気機械の「1−1−1」同心コイル構成に配線することが可能である。この「1−1−1」同心コイル構成は、図4Wに関連してさらに説明される。
図4BBは、重ね巻き構成の第1の複数のコイル414Aと、同心巻き構成の第2の複数のコイル414Bとを含む、固定子400を示す。図4BBの固定子400は、それぞれ異なる形状を有する複数のスロットを備える。例えば、スロット404Cおよび404Dは、同一形状を有し、それぞれが10個の導体を担持するが、スロット404Eは、スロット404Cおよび404Dとは異なる形状を有し、9つの導体を担持する。図4BBにおいては、スロット404Cおよび404Dはそれぞれ、2つのターンを有する同心コイル414Bを担持し、スロット404Eは、1つのターンを有する同心コイル414Bを担持する。さらに図4BBにおいては、スロットはそれぞれ、ウェッジ1000を備える。図4AAに図示される同心コイル414Bは、2極の三相電気機械の「2−2−1」同心コイル構成に配線することが可能である。
図4CCは、重ね巻き構成の第1の複数のコイル414Aと、同心巻き構成の第2の複数のコイル414Bとを含む、固定子400を示す。図4CCの固定子400は、それぞれ異なる形状を有する複数のスロットを備える。例えば、スロット404Cおよび404Eは、同一形状を有し、それぞれが9つの導体を担持するが、スロット404Dは、スロット404Cおよび404Eとは異なる形状を有し、10個の導体を担持する。図4CCにおいては、スロット404Cおよび404Eはそれぞれ、1つのターンを有する同心コイル414Bを担持し、スロット404Dは、2つのターンを有する同心コイル414Bを担持する。さらに図4CCにおいては、スロットはそれぞれ、ウェッジ1000を備える。図4CCに図示される同心コイル414Bは、2極の三相電気機械の「2−1−2/1−2−1」同心コイル構成に配線することが可能である。
図4DDは、重ね巻き構成の第1の複数のコイル414Aと、同心巻き構成の第2の複数のコイル414Bとを含む、固定子400を示す。図4DDの固定子400は、全てが同一の形状を有するが、全てが同一個数の導体を担持するわけではないスロットを備える。例えば、スロット404Cおよび404Dはそれぞれ、10個の導体を担持するが、スロット404Eは、9つの導体を担持する。図4DDにおいては、スロット404Cおよび404Dはそれぞれ、2つのターンを有する同心コイル414Bを担持し、スロット404Eは、1つのターンを有する同心コイル414Bを担持する。さらに図4DDにおいては、スロットはそれぞれ、第1のウェッジ1000Aまたは第2のウェッジ1000Bのいずれかを備える。スロット414Cおよび414D内の第1のウェッジ1000Aは、比較的小さく、スロット414Cおよび414D内の導体に対してより大きなスペースを残す。スロット414E内の第2のウェッジ1000Bは、スロット414E内の導体に対してより小さなスペースを残す。図4DDに図示される同心コイル414Bは、2極の三相電気機械の「2−2−1」同心コイル構成に配線することが可能である。
図4JJは、電気機械のための例示的な鉄心400の概略断面図である。この鉄心400は、複数のスロットを画成し、各スロットは、導電性コイル414およびウェッジを担持する。2つの異なるタイプのウェッジが、図4JJに図示される。第1のタイプのウェッジ1004は、C字型縦断面形状を有する。図4MMは、例示的なウェッジ1004の斜視図を示す。第2のタイプのウェッジ1006は、E字型縦断面形状を有する。図4LLは、例示的なウェッジ1006の斜視図を示す。ウェッジ1004および1006は共に、スロットの第1の領域からスロットの第2の領域にラジアル方向に流体を流すことを可能にする穴1008を画成する。例えば、C字型ウェッジ1004を担持するスロット内においては、ウェッジ1004は、スロット内に第1の領域1005を画成し、コイル414は、スロット内の第2の領域に位置する。この第1の領域1005により、スロットを通る冷却流体の軸方向流が可能となる。ウェッジ1004中に画成される穴1008により、流体が、第1の領域1005から第2の領域に流れて、コイル414を冷却することが可能となる。さらに、穴1008により、流体は、例えばコイル414に接触した後に、第2の領域から第1の領域1005内に流れることが可能となる。別の例としては、E字型ウェッジ1006を担持するスロット内においては、ウェッジ1006は、スロット内に第1の領域1009を画成し、コイル414は、スロット内の第2の領域に位置する。第1の領域1009により、スロットを通る冷却流体の軸方向流が可能となる。ウェッジ1006中に画成される穴1007により、流体が、第1の領域1009から第2の領域に流れて、コイル414を冷却することが可能となる。さらに、穴1007により、流体は、例えばコイル414に接触した後に、第2の領域から第1の領域1005内に流れることが可能となる。
各ウェッジは、図4LLおよび図4MMに図示されるように、ウェッジの軸方向長さに沿って複数の穴を画成してよい。これらの穴は、規則的な間隔で、不規則な間隔で、または別の態様で離間されてよい。単一のウェッジ1006または1004が、コイル414への流体流を制御するために、様々なサイズ、形状、または寸法の穴を画成してよい。例えば、比較的大きな穴が、その穴を介してより大きな流量を助長するためにウェッジ1006上のいくつかの位置に画成されてよく、比較的小さな穴が、その穴を介して流量を制限するためにウェッジ1006上の他の位置に画成されてよい。ウェッジ中の穴のサイズ、形状、間隔、および他のパラメータは、電気機械の固定子における冷却を向上させ、それにより電気機械の効率を向上させるように、設定されてよい。したがって、いくつかの場合においては、ウェッジは、固定子内において流れ制御デバイスとして使用することが可能である。図4LLおよび図4MMにおいては、単一の穴が、ウェッジの軸方向長さに沿って複数の位置のそれぞれに画成される。いくつかの実装形態においては、軸方向長さに沿って各位置に複数の穴が画成されてもよい。
ウェッジ1004および1006は、図4Vに図示されるウェッジ1000のように長手方向湾曲部を有してもよい。この長手方向湾曲部により、ウェッジ1004および1006は、スロット内においてコイル414を安定化させるのに有効な付勢力をコイル414に対して加えることができる。例えば、ウェッジにより加えられる付勢力は、コイル414の弛みを防ぐことができる。
図4PPにおいて分かるように、ウェッジは、シムまたはシムのスタック1030により長手方向に隔てられた、第1の部分1028および第2の部分1032などの2つ以上の部分に形成することが可能である。スロット内に設置された場合に、第1の部分1028は、スロットの開端部に隣接して位置し、第2の部分1032は、コイルに隣接して位置する。第2の部分1032によりコイルに対して加えられる力を制御するために、様々な厚さのシムまたはシム・スタック1032を選択することが可能である。例えば、第1の部分1028および第2の部分1032を、所与のスロット内に設置することが可能であり、同一のおよび/または異なる厚さの1つまたは複数のシム1032が、第2の部分1032によりコイルに対して加えられる力を増加させるために付加される。いくつかの例においては、同一の電気機械の異なるスロットが、コイルに対してかけられる力を同一にするために、異なるシムを要する場合がある。シムまたはシム・スタック1030は、コイルの絶縁またはコーティングに対して損傷を与えることなく所望の力を達成するのを容易にするために、第1の部分1028または第2の部分1032の中の1つまたは複数がスロット内に設置された後に、設置することが可能である。代替としては、シムまたはシム・スタック1030は、第1の部分1028および第2の部分1032と実質的に同時に設置することが可能である。したがって、シム1032は、ウェッジの挿入の際にケーブルに損傷を与えることなく、ウェッジとコイルとスロットとの間の調節可能な緊密な嵌着を可能にする。第1の部分1028および/または第2の部分1032は、中実のものとして図示されるが、それぞれがC字型断面または他の断面を有し、上述のように、流体流のための軸方向チャネルおよびラジアル方向流のための穴を画成することが可能である。
図4KKは、電気機械のための例示的な鉄心400の概略断面図である。図4KKの鉄心400は、複数のスロットを画成し、各スロットが、コイル414およびウェッジ1010を担持する。C字型ウェッジ1010はそれぞれ、流体がスロットの複数の領域間をラジアル方向に流れるのを可能にする穴1012を画成する。
図4NNは、保持リング1016を使用して保持される、上述の構成のいずれかと同様のおよび/または別の構成のウェッジ1014を有する、例示的な鉄心400の概略端面図である。ウェッジ保持リング1016は、固定子鉄心400内の中央開口を円く囲み、鉄心400の端部面に対して(例えばボルト、ねじ、および/または他の方法により)固定される。保持リング1016は、ウェッジ1014を捕獲し、ウェッジ1014が固定子鉄心400に沿って軸方向に移動するのを防ぐために、固定子鉄心400の両端部に配置することが可能である。保持リング1016は、各ウェッジ1014の端部の突出部1020を受け、それとインターロックするスロットを有し、ウェッジ1014がラジアル方向に移動するのを防ぐ。さらに、保持リング1016は、固定子スロットの頂部に対してウェッジ1014を押し付ける。図4PPなどの、ウェッジが複数の部分に形成され、および/または1つまたは複数のシムを備える例においては、保持リング1016は、複数のウェッジ部分およびシムを保持することも可能である。図4OOは、突出部1020がより良好に図示され、さらに穴1026を有する、例示的なC字型ウェッジ1014の斜視図である。このC字形状は、ウェッジ1014を貫通する軸方向通路1024を画成する。図4NNにおいて分かるように、保持リング1016は、保持リング1016中に流体が流れるのを可能にするために、軸方向通路1024と整列された開口1022を有することが可能である。
図4QQは、電気機械の固定子鉄心400中の固定子スロットの内側をライニングするためのスロット・ライナ1034を示す。このスロット・ライナ1034は、ポリエステル、ポリアミド、および/または他の材料などの、可撓性、耐引裂性および耐熱性のフィルムから作製される。図4QQは、平坦に置かれたライナ1034を示す。図4RRにおけるようにスロット内に設置されると、ライナ1034は、固定子鉄心400の両端部にてスロットから延在し、固定子鉄心400の端部面上に折り畳むことが可能となる。ライナ1034の突出端部は、ライナ1034を定位置に保持するために、保持リング(図NNにおけるような)により、および/または他のクランプにより、固定子鉄心400の端部面にクランプ固定される。図4RRは、固定具1038(例えばボルト、ねじ、および/または他の固定具)により端部面に保持される単一バー・クランプ1036aを図示し、この単一バー・クランプ1036aは、2つの隣接し合うライナの一部分を固定子鉄心400の端部にクランプ固定する。図4SSは、同様に固定具1038により端部面に保持されるU字形状クランプ1036bを図示する。これらのクランプは、他の態様において固定子鉄心400に保持することが可能である。スロット・ライナ1038は、巻き付けの際にケーブルおよびケーブル上の絶縁を保護するために、スロット内にコイルを巻き付ける前に設置される。いくつかの例においては、ライナ1034は、スロットから除去することが可能である。いくつかの例においては、ライナ1034は、電気機械の残りの部分が組み付けられる際にスロット内に留まることが可能であり、電気機械が作動している際にスロット内に留まることが可能である。スロット・ライナ1034は、固定子鉄心400の端部面に対して保持されるため、巻付け中およびその後の機械の作動中の変位に耐え、ケーブルが固定子鉄心に対して擦れるのを防ぐ。ライナ1034が除去される例においては、複数部分からなるウェッジおよびシム(または複数のシム)(図4PPにおけるような)を使用することにより、シムが設置されていない状態においてはコイルがスロット内で緩み、ライナ1034をスロットからより容易に引き出し得るようにすることが可能である。その後、シムは、スロット内にコイルを固定するために設置される。
図4Wは、いくつかの実装形態による巻線概略図を示す。図4Wに図示される巻線方式は、単一の固定子において同心コイルおよび重ねコイルの両方を使用する。この概略図は、2極の三相電気機械の巻線を図示する。文字グループA、A’、a、およびa’は、第1の相の巻線を示す。文字グループB、B’、b、およびb’は、第2の相の巻線を示す。文字グループC、C’、c、およびc’は、第3の相の巻線を示す。AおよびA’により示される3つのコイルは、第1の相の巻線の重ね部分である。3つのコイルaおよびa’は、第1の相の巻線の同心部分に相当する。実線および破線は、第1の相の巻線のための端部ターン接続を示す。各線が、単一のターンまたは複数のターンを示し得る。第2の相および第3の相のための端部ターン接続は、図示されないが、第1の相のための接続構成と同一のものが、第2および第3の相に対しても使用されてよい。
図4Wは、「1−1−1」同心コイル構成の一例を示す。図示される「1−1−1」同心コイル構成においては、第1の相の巻線の同心部分の3つのコイルのそれぞれが、単一のターンを含む。そのため、「1−1−1」同心コイル構成における固定子の各スロットは、同一個数のターンを担持し、すなわちそれぞれが1つのターンを担持する。図4AAに図示される同心コイル414Bは、「1−1−1」同心コイル構成にある。より一般的には、「n−n−n」同心コイル構成は、各スロット内に「n」個の同心コイル・ターンを担持する。「n」の例示的な値は、1、2、3、・・・10、およびより高い値を含むことが可能である。他のタイプの同心コイル構成もまた可能である。他の例示的な同心コイル構成には、「2n−n−2n/n−2n−n」同心コイル構成(例えば、図4CCに図示される「2−1−2/1−2−1」同心コイル構成、または別のものなど)、「2n−2n−n」同心コイル構成(例えば、図4DDに図示される「2−2−1」同心コイル構成、または別のものなど)、および/または他の構成が含まれる。「n」の例示的な値は、1、2、3、・・・10、およびより高い値を含むことが可能である。
2つの他の例示的な同心コイル構成が、図4Xおよび図4Yに図示される。図4Xは、「2−1−1」同心コイル構成の一例を示す。図示される「2−1−1」同心コイル構成においては、第1の相の巻線の同心部分の最外コイルが、2つのターンを含み、第1の相の巻線の同心部分の2つの内方コイルのそれぞれが、単一のターンを含む。そのため、「2−1−1」同心コイル構成における固定子のそれぞれ異なるスロットが、異なる個数のターンを担持する。特に、第1のスロットは、第1の相の巻線の同心部分の2つのターンを担持し、第2および第3のスロットはそれぞれ、第1の相の巻線の同心部分の1つのターンのみを担持する。他のタイプの「2n−n−n」同心コイル構成が使用されてもよい。「n」の例示的な値は、1、2、3、・・・10、およびより高い値を含むことが可能である。
図4Yは、「2−1−0」同心コイル構成の一例を示す。図示される「2−1−0」同心コイル構成においては、同心コイル構成は、各相の巻線に対して2つの同心コイルと、各相の巻線に対して3つの重ねコイルとを含む。外方同心コイルは、2つのターンを含み、内方同心コイルは、1つのターンを含む。そのため、「2−1−0」同心コイル構成における固定子のそれぞれ異なるスロットが、異なる個数のターンを担持する。特に、第1のスロットは、第1の相の巻線の同心部分の2つのターンを担持し、第2のスロットは、第1の相の巻線の同心部分の1つのターンを担持し、第3のスロットは、同心コイル・ターンを担持しない。他のタイプの「2n−n−0」同心コイル構成が使用されてもよい。「n」の例示的な値は、1、2、3、・・・10、およびより高い値を含むことが可能である。
図4TT、図4UU、図4VV、図4WW、および図4XXは、図4Wの図に示される巻線を含む電気機械の例示的な固定子4100の立体モデルを示す。例示的な固定子4100は、電気機械102の固定子108の代わりに使用することが可能である。図4TTおよび図4VVは、例示的な固定子4100の第1の端部の斜視図である。図4UUは、固定子の第1の端部から見た、例示的な固定子4100の端面図である。図4WWは、例示的な固定子4100の第2の端部の側面図である。図4XXは、例示的な固定子4100の第2の端部の斜視図である。図4TT、図4UU、図4VV、図4WW、および図4XXに図示されるように、この例示的な固定子は、長尺固定子鉄心4102と、鉄心4102により担持される3つの導電性巻線とを備える。第1の巻線は、同心巻きコイル4104aおよび重ね巻きコイル4106aを含む。第2の巻線は、同心巻きコイル4104bおよび重ね巻きコイル4106bを含む。第3の巻線は、同心巻きコイル4104cおよび重ね巻きコイル4106cを含む。重ね巻きコイルに対する文字標識A、A’、B、B’、C、およびC’と、同心巻きコイルに対する文字標識a、a’、b、b’、c、およびc’が、図4Wとの対応を示すために含まれる。図4TT、図4UU、図4VV、図4WW、および図4XXにおいては、コイルの端部ターンが主に見えるが、コイルは、固定子鉄心4102内において端部ターン間に延在する軸方向部分をさらに備える。図4UUに図示されるように、長尺鉄心4102は、電気機械の回転子を内部に受けるように構成される。
各巻線中のコイルは、直列にて連結される。各コイルは、直列または並列で連結された複数のターンを含んでよい。各スロットは、奇数のターンまたは偶数のターンを担持することが可能である。いくつかの実装形態においては、固定子4102中のスロットの全てが、同一個数のターンを担持するわけではない。いくつかの実装形態においては、巻線中の同心巻きコイルの全てが、第1の個数のターンを有し、同じ巻線中の重ね巻きコイルの全てが、第1の個数のターンとは異なる第2の個数のターンを有する。コイルの中の1つまたは複数の設置は、鉄心4102の外部に巻線構造体を形成し、鉄心4102内に成形巻構造体を設置することを含んでよい。コイルの中の1つまたは複数の設置は、鉄心4102内に個別のコイルのそれぞれを連続的に形成することを含んでよい。
鉄心1402は、図4TTおよび図4VVに図示される第1の端部面4108aを備える。鉄心1402は、図4WWおよび図4XXに図示される第2の対向側の端部面4108bを備える。コイル4104a、4104b、4104c、4106a、4106b、および4108cはそれぞれ、ループを画成し、このループは、長尺鉄心4102を貫通して軸方向に延在し、出外位置にて端部面4108aを貫通して鉄心4102から出て、再入位置にて端部面4108aを貫通して鉄心に再入する。コイルはそれぞれ、その出外位置と再入位置との間で端部面上にてある距離にわたり広がる。
第1の巻線中の重ね巻きコイル4106aはそれぞれ、第1の巻線中の他の重ね巻きコイル4106aのそれぞれが広がる距離と実質的に等しい距離だけ広がり、第1の巻線中の同心巻きコイル4104aはそれぞれ、第1の巻線中の他の同心巻きコイル4104aのいずれかが広がる距離と等しくない距離だけ広がる。同様に、第2の巻線中の重ね巻きコイル4106bはそれぞれ、第2の巻線中の他の重ね巻きコイル4104bのそれぞれが広がる距離と実質的に等しい距離だけ広がり、第2の巻線中の同心巻きコイル4104bはそれぞれ、第2の巻線中の他の同心巻きコイル4104bのいずれかが広がる距離と等しくない距離だけ広がり、第3の巻線中の重ね巻きコイル4106cはそれぞれ、第3の巻線中の他の重ね巻きコイル4106cのそれぞれが広がる距離と実質的に等しい距離だけ広がり、第3の巻線中の同心巻きコイル4104cはそれぞれ、第3の巻線中の他の同心巻きコイル4104cのいずれかが広がる距離と等しくない距離だけ広がる。
各コイルが広がる端部面上の距離は、コイルの出外位置とコイルの再入位置との間の端部面上の角距離であることが可能である。例えば、鉄心の端部面が、外周部を画定する場合に、コイルが広がる端部面上の距離は、この外周部の中心点に対する、コイルの出外位置とコイルの再入位置との間の角度であることが可能である。この例においては、各コイルは、その出外位置と再入位置との間において外周部上に中間点を画定する。同心巻きコイル4104a、4104b、および4104cについては、各コイルの中間点は、同じ巻線中のそれぞれの他の同心巻きコイルの中間点と実質的に同一の角度で外周部上に位置する。重ね巻きコイル4106a、4106b、および4106cについては、各コイルの中間点は、同じ巻線中の任意の他の重ね巻きコイルの中間点とは異なる角度で外周部上に位置する。
鉄心4102は、鉄心4102の軸方向中心の付近にラジアル方向に延在する歯を備える。これらの歯は、歯同士の間にラジアル方向スロットを画成し、コイルは、スロット内に担持される。したがって、鉄心は、巻線を担持するためのスロットのアレイを画成する。各コイルは、一対の隣接しないスロット内に位置し、したがって、各コイルは、コイルが中に位置する隣接しないスロット同士の間で複数のスロットにわたり広がる。第1の巻線中の重ね巻きコイル4106aはそれぞれ、第1の巻線中の他の重ね巻きコイル4106aのそれぞれが広がる個数のスロットと等しい個数のスロットにわたり広がり、第1の巻線中の同心巻きコイル4104aはそれぞれ、第1の巻線中の他の同心巻きコイル4104aのいずれかが広がる個数のスロットと等しくない個数のスロットにわたり広がる。例えば、重ね巻きコイル4106aはそれぞれ、8つのスロットにわたり広がり、3つの同心巻きコイル4104aは、それぞれ6個、8個、および10個にわたり広がる。同様に、第2の巻線中の重ね巻きコイル4106bはそれぞれ、第2の巻線中の他の重ね巻きコイル4106bのそれぞれが広がる個数のスロットと等しい個数のスロットにわたり広がり、第2の巻線中の同心巻きコイル4104bはそれぞれ、第2の巻線中の他の同心巻きコイル4104bのいずれかが広がる個数のスロットと等しくない個数のスロットにわたり広がり、第3の巻線中の重ね巻きコイル4106cはそれぞれ、第3の巻線中の他の重ね巻きコイル4106cのそれぞれが広がる個数のスロットと等しい個数のスロットにわたり広がり、第3の巻線中の同心巻きコイル4104cはそれぞれ、第3の巻線中の他の同心巻きコイル4104cのいずれかが広がる個数のスロットと等しくない個数のスロットにわたり広がる。
複数の実装形態を説明した。しかし、様々な修正を行い得ることが理解されよう。したがって、他の実装形態が、以下の特許請求の範囲内に含まれる。

Claims (64)

  1. 回転子ハブと、
    前記回転子ハブの周囲部の周りに取り付けられる複数の永久磁石セグメントと
    を備え、前記複数の永久磁石セグメントは、
    実質的に均一な弧長の、前記永久磁石セグメントの中の第1の複数のセグメント、および
    前記第1の複数の永久磁石セグメントよりもそれぞれの弧長が短い2つの片を含む、マルチピース永久磁石セグメントであり、前記片の中の1つの磁化方向ベクトルが前記マルチピース・セグメント中の少なくとも1つの他の片の磁化方向ベクトルとは異なる、マルチピース永久磁石セグメント
    を備える、電気機械のための回転子。
  2. 前記第1の複数のセグメント中の磁石セグメントが、単一の一体成形材料片から形成される、請求項1に記載の回転子。
  3. 前記マルチピース・セグメントの弧長と前記第1の複数のセグメントの弧長とが、実質的に同一である、請求項1に記載の回転子。
  4. 第2の複数の永久磁石セグメントをさらに備え、前記第2の複数のセグメント中のセグメントの弧長が、前記第1の複数のセグメント中の前記セグメントの弧長とは異なる、請求項1に記載の回転子。
  5. 前記複数のマルチピース磁石セグメントが、補極セグメントである、請求項1に記載の回転子。
  6. マルチピース・セグメント中の1つの片の弧長が、同じマルチピース・セグメント中の第2の片の弧長よりも長い、請求項1に記載の回転子。
  7. マルチピース・セグメント中の1つの片が、同じマルチピース・セグメント中の第2の片の材料とは異なる材料から形成される、請求項1に記載の回転子。
  8. 前記マルチピース・セグメント中の1つの片の材料が、同じマルチピース・セグメント中の前記第2の片の材料よりも高い磁化レベルを有する、請求項7に記載の回転子。
  9. 前記マルチピース・セグメントの材料が、同じマルチピース・セグメント中の前記第2の片の材料とは異なる磁気的特徴を有する、請求項7に記載の回転子。
  10. マルチピース・セグメント中の少なくとも1つの片が、前記第1の複数のセグメントと等しい弧長の、かつ前記第1の複数のセグメントと同一の材料から形成される、単一の永久磁石セグメントをセグメント化することにより構成される、請求項1に記載の回転子。
  11. マルチピース・セグメント中の1つの片が、同じマルチピース・セグメント中の第2の片の磁気方向ベクトルに対して垂直な磁気方向ベクトルを有する、請求項1に記載の回転子。
  12. 前記回転子は、実質的に円筒状の長尺の回転子である、請求項1に記載の回転子。
  13. 前記回転子は、深海中作動用に適合化される、請求項1に記載の回転子。
  14. 電気機械の回転子のための永久磁石セグメントであって、前記永久磁石は、前記回転子の円筒状外方表面の1セクションを形成する形で前記回転子に設置されるようになされており、前記永久磁石セグメントは、
    第1の磁化方向ベクトルを有する第1の永久磁石セクションと、
    前記第1の永久磁石セクションに取り付けられ、前記第1の磁化方向ベクトルとは異なる磁化方向ベクトルを有する、第2の永久磁石セクションと
    を備える、永久磁石セグメント。
  15. 前記第1の永久磁石セクションおよび前記第2の永久磁石セクションは、共に接合される、請求項14に記載の永久磁石セグメント。
  16. 前記第2の永久磁石セクションのサイズが、前記第1の永久磁石セクションよりも大きい、請求項14に記載の永久磁石セグメント。
  17. 前記第1および前記第2の永久磁石セクションの前記磁化ベクトルは、方向成分および大きさ成分を含み、前記第1および前記第2の永久磁石セクションの前記磁化ベクトルは、それぞれ異なる方向成分を有する、請求項14に記載の永久磁石セグメント。
  18. 前記第1および前記第2の永久磁石セクションの前記磁化ベクトルは、方向成分および大きさ成分を含み、第1およびセクションの永久磁石セグメントの磁化ベクトルが、それぞれ異なる大きさ成分を有する、請求項14に記載の永久磁石セグメント。
  19. 電気機械のための回転子を形成する方法であって、
    回転子ハブの周囲部に均一弧長の第1の複数の永久磁石セグメントを取り付けるステップと、
    前記回転子ハブの前記周囲部にマルチピース永久磁石セグメントを取り付けるステップであり、前記マルチピース・セグメントは、前記第1の複数の永久磁石セグメントよりもそれぞれの弧長が短い2つの片を備え、前記マルチピース・セグメント中の第1の片の磁化方向ベクトルが、前記マルチピース・セグメント中の第2の片の磁化方向ベクトルとは異なる、ステップと
    を含む、方法。
  20. 前記第1の複数のセグメントと等しい弧長の、かつ前記第1の複数のセグメントと同一の材料から形成される、単一の永久磁石セグメントをセグメント化することにより、前記マルチピース・セグメントの片を形成するステップをさらに含む、請求項19に記載の方法。
  21. 前記第1の片の前記磁化方向ベクトルは、前記第1の複数のセグメントの磁化方向とは異なる、請求項19に記載の方法。
  22. 電気機械のための多極回転子であって、
    回転子ハブと、
    前記回転子ハブの周囲部の周りの複数の一次永久磁石セグメントであり、各一次磁石セグメントの外方面が、実質的に弧状であり、前記回転子ハブに設置された場合にこの回転子の実質的に円筒状の表面の1セクションを画成し、各一次永久磁石セグメントが、ラジアル方向に磁化されて、その外方面に対して垂直な磁気方向ベクトルを有する磁場を有する、複数の一次永久磁石セグメントと、
    前記回転子ハブの周囲部の周りの複数の補極永久磁石セグメントであり、各補極磁石セグメントの外方面が、実質的に弧状であり、前記回転子ハブに設置された場合にこの回転子の実質的に円筒状の表面の1セクションを画成し、各補極永久磁石セグメントが、その外方面に対して垂直ではない磁気方向ベクトルを有する磁場を有する、複数の補極永久磁石セグメントと
    を備える、多極回転子。
  23. 前記一次永久磁石セグメントの弧長と前記補極永久磁石セグメントの弧長とが、均一である、請求項22に記載の回転子。
  24. 前記回転子中の磁極の数と少なくとも同一数の補極永久磁石セグメントを備える、請求項22に記載の回転子。
  25. 補極永久磁石セグメントの総数が2つであり、前記一次永久磁石セグメントおよび前記補極永久磁石セグメントが、2極を規定する、請求項22に記載の回転子。
  26. 補極永久磁石セグメントの総数が4つであり、前記一次永久磁石セグメントおよび前記補極永久磁石セグメントが、4極を規定する、請求項22に記載の回転子。
  27. 前記一次永久磁石セグメントおよび前記補極永久磁石セグメントが、多極を規定する、請求項22に記載の回転子。
  28. 電気機械のための2極回転子であって、
    回転子ハブと、
    前記回転子ハブの周囲部の周りに位置し、この回転子の実質的に円筒状の表面を画成する、少なくとも4つの永久磁石セグメントと
    を備え、前記永久磁石セグメントの中の少なくとも4つがそれぞれ、前記磁気セグメントを二等分する前記円筒状表面の半径に対して異なる方向を有する磁気方向ベクトルを有する、2極回転子。
  29. 少なくとも2つの磁石セグメントが、前記回転子ハブの表面に対して実質的に垂直な磁気方向ベクトルを有する、請求項28に記載の回転子。
  30. 前記回転子ハブの表面が、前記回転子の半径に対して垂直である、請求項29に記載の回転子。
  31. 少なくとも2つの磁気方向ベクトルが、前記回転子の半径に対して実質的に垂直である、請求項29に記載の回転子。
  32. 前記永久磁石セグメントのそれぞれの弧長が、均一である、請求項28に記載の回転子。
  33. 前記永久磁石の中の少なくとも2つが、補極磁石である、請求項28に記載の回転子。
  34. 電気機械のための回転子であって、
    回転子ハブと、
    前記回転子ハブの周囲部の周りに端部同士を接した状態で位置する複数の永久磁石セグメントであり、各永久磁石セグメントの外方面が弧状であり、これらの永久磁石セグメントが一体としてこの回転子の円筒状表面を画成し、各磁石セグメントが、前記円筒状表面の中心からラジアル方向に向かう、その磁石セグメントを二等分する中心線を備える、複数の永久磁石セグメントと
    を備え、前記複数の磁石セグメントは、磁極を規定し、この磁極は、前記複数の磁石セグメントのそれぞれの中心線から方位角において位置をずらされる、前記円筒状表面の中心からラジアル方向に向かい前記磁極を二等分する磁気方向ベクトルを有する、回転子。
  35. 前記磁気方向ベクトルは、前記複数の磁石セグメントのそれぞれの端部から方位角において位置をずらされる、請求項34に記載の回転子。
  36. 前記回転子は2極回転子である、請求項34に記載の回転子。
  37. 前記回転子は3つ以上の磁極を有する、請求項34に記載の回転子。
  38. 前記複数のセグメントの中の少なくとも2つのセグメントが、補極セグメントである、請求項34に記載の回転子。
  39. 前記補極セグメントは、分離補極セグメントである、請求項38に記載の回転子。
  40. 電気機械のための回転子であって、
    中心軸を有する回転子ハブと、
    前記回転子ハブの周囲部の周りに位置し、この回転子の実質的に円筒状の表面を形成する、複数の永久磁石セグメントと
    を備え、前記磁石セグメントのそれぞれが、前記円筒状表面の前記中心から実質的にラジアル方向に向かう、または、前記円筒状表面に対する接線に対して実質的に平行であるかもしくは前記回転子ハブの中心を中心として弧状であるかのうちの少なくとも1つである、磁気方向ベクトルを有する、回転子。
  41. 前記円筒状表面に対する接線に対して平行な磁気方向ベクトルを有するセグメントが、同一の弧長を有し、前記円筒状表面の中心からラジアル方向に向かう磁気方向ベクトルを有するセグメントが、同一の弧長を有する、請求項40に記載の回転子。
  42. 前記円筒状表面の中心からラジアル方向に向かう磁気方向ベクトルを有するセグメントの弧長が、前記円筒状表面に対する接線に対して平行な磁気方向ベクトルを有するセグメントの弧長とは異なる、請求項40に記載の回転子。
  43. 電気機械のための2極回転子であって、
    回転子ハブと、
    前記回転子ハブの周囲部に取り付けられ、この回転子の実質的に円筒状の外方表面を画成する、複数の永久磁石セグメントであり、これらの磁石セグメントはそれぞれ、方向ベクトル成分を有する磁場を有し、前記回転子ハブの前記周囲部に取り付けられたこれらの磁石セグメントの方向ベクトル成分が、互いに実質的に平行であり、実質的に同一方向に配向される、複数の永久磁石セグメントと
    を備える、2極回転子。
  44. 前記複数の永久磁石セグメントは、実質的に同一の弧長を有する、請求項43に記載の回転子。
  45. 各磁石セグメントの方向ベクトル成分の配向が、前記セグメントの弧長全体にわたって均一である、請求項43に記載の回転子。
  46. 前記回転子ハブの前記周囲部に取り付けられた4つの永久磁石セグメントを備える、請求項43に記載の回転子。
  47. 前記回転子ハブの前記周囲部に取り付けられた16個の永久磁石セグメントを備える、請求項43に記載の回転子。
  48. 前記磁石セグメントは、曲線状の外向表面を備える、請求項43に記載の回転子。
  49. 第1の磁石セグメントの方向ベクトル成分が、その外向表面に対して第1の方向に配向され、第2の磁石セグメントの方向ベクトル成分が、前記第2の磁石セグメントの外向表面に対して第2の別の方向に配向される、請求項43に記載の回転子。
  50. 第1および第2の磁極を規定するステップであり、
    各磁極が、電気機械の回転子の実質的に円筒状の外方表面を画成するように構成された複数の磁石セグメント中の永久磁石セグメントの磁場によって規定され、
    磁極を規定する磁場の方向ベクトル成分が、互いに実質的に平行である、ステップと、
    電気機械の固定子内において前記磁場を回転させるステップと
    を含む、方法。
  51. 前記複数の磁場は、4つの磁場を含む、請求項50に記載の方法。
  52. 前記複数の磁場は、16個の磁場を含む、請求項50に記載の方法。
  53. 前記複数の磁場は、実質的に同一強度のものである、請求項50に記載の方法。
  54. 電気機械のための4極回転子であって、
    回転子ハブと、
    前記回転子ハブに取り付けられ、この回転子の円筒状の外方表面の第1の弧を画成し、この回転子の第1の磁極を規定する、第1の複数の永久磁石セグメントであり、各第1の磁石セグメントが、方向ベクトル成分を有する磁場を有し、前記回転子ハブに取り付けられたこれらの第1の磁石セグメントのベクトル方向成分が、互いに実質的に平行であり、実質的に同一の第1の方向に配向される、第1の複数の永久磁石セグメントと、
    前記回転子ハブに取り付けられ、この回転子の円筒状の外方表面の第2の弧を画成し、この回転子の第2の磁極を規定する、第2の複数の永久磁石セグメントであり、各第2の磁石セグメントが、方向ベクトル成分を有する磁場を有し、前記回転子ハブに取り付けられたこれらの第2の磁石セグメントのベクトル方向成分が、互いに実質的に平行であり、実質的に同一の第2の方向に配向される、第2の複数の永久磁石セグメントと、
    前記回転子ハブに取り付けられ、この回転子の円筒状の外方表面の第3の弧を画成し、この回転子の第3の磁極を規定する、第3の複数の永久磁石セグメントであり、各第3の磁石セグメントが、方向ベクトル成分を有する磁場を有し、前記回転子ハブに取り付けられたこれらの第3の磁石セグメントのベクトル方向成分が、互いに実質的に平行であり、実質的に同一の第3の方向に配向される、第3の複数の永久磁石セグメントと、
    前記回転子ハブに取り付けられ、この回転子の円筒状の外方表面の第4の弧を画成し、この回転子の第4の磁極を規定する、第4の複数の永久磁石セグメントであり、各第4の磁石セグメントが、方向ベクトル成分を有する磁場を有し、前記回転子ハブに取り付けられたこれらの第4の磁石セグメントのベクトル方向成分が、互いに実質的に平行であり、実質的に同一の第4の方向に配向される、第4の複数の永久磁石セグメントと
    を備える、4極回転子。
  55. 前記第1の方向が、前記第3の方向に対して逆方向かつ実質的に平行に配向され、前記第2の方向が、前記第4の方向に対して逆方向かつ実質的に平行に配向される、請求項54に記載の回転子。
  56. 前記第1および前記第3の方向は、前記第2および前記第4の方向に対して直交方向に配向される、請求項55に記載の回転子。
  57. 前記第1の弧は、前記第3の弧に対して直径方向に位置決めされ、前記第2の弧は、前記第4の弧に対して直径方向に位置決めされる、請求項55に記載の回転子。
  58. 前記第1、前記第2、前記第3、および前記第4の複数のセグメントは、等しい個数のセグメントを含む、請求項54に記載の回転子。
  59. 前記第1、前記第2、前記第3、および前記第4の複数のセグメントの中のセグメントが、実質的に均一な弧長のものである、請求項54に記載の回転子。
  60. 前記第1、前記第2、前記第3、および前記第4の複数のセグメントは、協働して、前記回転子の円筒状外方表面を画成する、請求項54に記載の回転子。
  61. 互いに実質的に平行な方向ベクトル成分を有する第1の複数の磁場を有する第1の磁極を規定するステップであり、前記第1の複数の磁場は、実質的に円筒状の表面の第1の四分円弧を画成するように構成された第1の複数の永久磁石によって生じる、ステップと、
    互いに実質的に平行な方向ベクトル成分を有する第2の複数の磁場を有する第2の磁極を規定するステップであり、前記第2の複数の磁場は、実質的に円筒状の表面の第2の四分円弧を画成するように構成された第2の複数の永久磁石によって生じる、ステップと、
    互いに実質的に平行な方向ベクトル成分を有する第3の複数の磁場を有する第3の磁極を規定するステップであり、前記第3の複数の磁場は、実質的に円筒状の表面の第3の四分円弧を画成するように構成された第3の複数の永久磁石によって生じる、ステップと、
    互いに実質的に平行な方向ベクトル成分を有する第4の複数の磁場を有する第4の磁極を規定するステップであり、前記第4の複数の磁場は、実質的に円筒状の表面の第4の四分円弧を画成するように構成された第4の複数の永久磁石によって生じる、ステップと、
    電気機械の固定子内で前記磁極を回転させるステップと
    を含む、方法。
  62. 磁場の総数が、16個の磁場を含む、請求項61に記載の方法。
  63. 前記複数の磁場は、実質的に同一強度である、請求項61に記載の方法。
  64. 前記第1の複数の磁場は、前記第2の複数の磁場とは異なる方向に配向される、請求項61に記載の方法。
JP2011521258A 2008-07-28 2009-07-28 電気機械のための回転子 Pending JP2011529681A (ja)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US8423808P 2008-07-28 2008-07-28
US61/084,238 2008-07-28
US9629008P 2008-09-11 2008-09-11
US61/096,290 2008-09-11
US12/496,552 2009-07-01
US12/496,619 US8179009B2 (en) 2008-07-28 2009-07-01 Rotor for an electric machine
US12/496,552 US20100019598A1 (en) 2008-07-28 2009-07-01 Rotor for an electric machine
US12/496,621 US20100019599A1 (en) 2008-07-28 2009-07-01 Rotor for an electric machine
US12/496,621 2009-07-01
US12/496,619 2009-07-01
PCT/US2009/052011 WO2010014646A2 (en) 2008-07-28 2009-07-28 Rotor for an electric machine

Publications (1)

Publication Number Publication Date
JP2011529681A true JP2011529681A (ja) 2011-12-08

Family

ID=41567995

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2011521259A Expired - Fee Related JP5819193B2 (ja) 2008-07-28 2009-07-28 電気機械のための固定子
JP2011521257A Expired - Fee Related JP5497033B2 (ja) 2008-07-28 2009-07-28 電気機械の巻線構成
JP2011521255A Pending JP2011529679A (ja) 2008-07-28 2009-07-28 電気機械
JP2011521258A Pending JP2011529681A (ja) 2008-07-28 2009-07-28 電気機械のための回転子

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2011521259A Expired - Fee Related JP5819193B2 (ja) 2008-07-28 2009-07-28 電気機械のための固定子
JP2011521257A Expired - Fee Related JP5497033B2 (ja) 2008-07-28 2009-07-28 電気機械の巻線構成
JP2011521255A Pending JP2011529679A (ja) 2008-07-28 2009-07-28 電気機械

Country Status (6)

Country Link
US (13) US8310123B2 (ja)
EP (13) EP2378641A3 (ja)
JP (4) JP5819193B2 (ja)
KR (4) KR101633823B1 (ja)
CA (6) CA2732275C (ja)
WO (3) WO2010014647A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071763A (ja) * 2017-10-05 2019-05-09 ファナック株式会社 回転子、回転電機及び被覆筒の製造方法
US10903703B2 (en) 2017-10-05 2021-01-26 Fanuc Corporation Rotor, rotating electrical machine and production method of cover tube

Families Citing this family (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050092395A1 (en) * 2002-02-15 2005-05-05 Masaaki Aoki Magnetic field generator and its manufacturing method
CN101523699B (zh) * 2006-10-17 2011-10-19 山洋电气株式会社 电动机用转子及其制造方法
US20090232183A1 (en) * 2008-03-13 2009-09-17 General Electric Company System and method to measure temperature in an electric machine
US8698367B2 (en) * 2008-04-17 2014-04-15 Synchrony, Inc. High-speed permanent magnet motor and generator with low-loss metal rotor
BE1018010A3 (nl) 2008-06-13 2010-03-02 Atlas Copco Airpower Nv Werkwijze voor het met een klempassing monteren van een bus rond een gedeelte van een as.
US20100071883A1 (en) * 2008-09-08 2010-03-25 Jan Vetrovec Heat transfer device
EP2379635B1 (en) 2008-12-16 2016-08-10 Carlsberg A/S Cellulose based polymer material
FR2944393B1 (fr) * 2009-04-09 2014-10-17 Converteam Technology Ltd Bobine pour une machine electrique tournante
WO2011106247A2 (en) * 2010-02-24 2011-09-01 Dolby Laboratories Licensing Corporation Display management methods and apparatus
US9391500B2 (en) 2010-03-22 2016-07-12 Regal Beloit America, Inc. Axial flux electric machine
US8366581B2 (en) 2010-06-09 2013-02-05 GM Global Technology Operations LLC Multi-speed transmission having stacked planetary gear sets
US8277355B2 (en) 2010-07-07 2012-10-02 GM Global Technology Operations LLC Multi-speed transmission having stacked planetary gear sets
NO331710B1 (no) * 2010-07-09 2012-03-05 Smartmotor As Elektrisk maskin for undervannsanvendelser og system for energiomforming.
US8575871B1 (en) 2010-07-23 2013-11-05 Christopher Moore Modular component electric machine
CN102959834B (zh) 2010-07-28 2017-10-20 丹佛斯公司 制冷压缩机磁性轴承
GB201014073D0 (en) * 2010-08-24 2010-10-06 Dyson Technology Ltd Rotor core assembly
GB201014074D0 (en) 2010-08-24 2010-10-06 Dyson Technology Ltd Rotor for an electrical machine
US8801565B2 (en) 2010-09-13 2014-08-12 Gm Global Technology Operations, Llc Multi-speed transmission having stacked planetary gear sets
MY161796A (en) * 2010-09-21 2017-05-15 Nissan Motor Winding structure, rotating electric machine, and rotating electric machine manufacturing method
JP2012115124A (ja) * 2010-11-05 2012-06-14 Denso Corp 回転電機のステータ
US20130278091A1 (en) * 2010-12-22 2013-10-24 Ihi Corporation Rotary machine
DE102010055821B4 (de) * 2010-12-23 2014-09-25 Avl Trimerics Gmbh Elektrische Maschine mit Spaltrohr und Verfahren zur Herstellung derselben
US8419585B2 (en) 2011-01-05 2013-04-16 GM Global Technology Operations LLC Multi-speed transmission having stacked planetary gear sets
WO2012110056A1 (en) * 2011-02-17 2012-08-23 Cern - European Organization For Nuclear Research A system and method for positioning and fixing objects relative to each other
US8587165B2 (en) 2011-03-30 2013-11-19 Dayton-Phoenix Group, Inc. Cooled fan motor and method of operation
US9667109B2 (en) 2011-03-31 2017-05-30 Abb Research Ltd. Permanent magnet electrical machine rotors with stacked annular magnets and retainers and construction methods therefor
US11708752B2 (en) 2011-04-07 2023-07-25 Typhon Technology Solutions (U.S.), Llc Multiple generator mobile electric powered fracturing system
US9140110B2 (en) 2012-10-05 2015-09-22 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11255173B2 (en) 2011-04-07 2022-02-22 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
JP5331160B2 (ja) * 2011-05-18 2013-10-30 トヨタ自動車株式会社 回転電機のコイル固定部材、および、回転電機
JP2013027087A (ja) * 2011-07-19 2013-02-04 Seiko Epson Corp 電気機械装置、ロボット及び移動体
US9203279B2 (en) * 2011-08-03 2015-12-01 Vycon, Inc. Electric machine with inner magnet hub
UA109733C2 (uk) * 2011-08-10 2015-09-25 Транспортер безперервної дії для транспортування важких сипучих матеріалів або штучних матеріалів
US8458895B2 (en) 2011-09-30 2013-06-11 General Electric Company Assembly for positioning a rotor retaining ring
CN103999330B (zh) 2011-11-30 2017-03-29 Abb研究有限公司 电机和电机转子
US9166451B2 (en) * 2011-12-02 2015-10-20 Lg Electronics Inc. Stator of electric machine, electromotor having the same, and electric vehicle having the electromotor
CN102931788A (zh) * 2011-12-16 2013-02-13 沈坤元 一种碟形复式多组合三维永磁电机
JP5884466B2 (ja) * 2011-12-22 2016-03-15 日産自動車株式会社 固定子及び回転電機
EP2805405A4 (en) * 2012-01-20 2015-12-23 Idénergie Inc ELECTRICAL DEVICE WITH LOW-POWER GENERATION FOR TORQUE TRANSMISSION BETWEEN TWO ADJUSTABLE ROTORS
FR2986919B1 (fr) * 2012-02-10 2016-04-22 Converteam Tech Ltd Moteur electrique a grande vitesse
US9303766B2 (en) * 2012-03-07 2016-04-05 Romaine Electric Oil seal for delco remy 50DN oil cooled, heavy duty automotive alternator
US8963392B2 (en) 2012-04-13 2015-02-24 Regal Beloit America, Inc. Axial load sharing bearing system and associated method of use
EP2842219B1 (en) * 2012-04-27 2017-08-23 Atlas Copco Airpower N.V. Method of composing a sleeve assembly for containment purposes in high centrifugal applications
EP2845294A4 (en) * 2012-05-04 2016-04-13 Moog Inc MAGNET RETENTION ON ROTORS
GB2502621A (en) * 2012-06-01 2013-12-04 Crompton Technology Group Ltd Rotor magnet securing arrangement
ITCO20120033A1 (it) * 2012-06-19 2013-12-20 Nuovo Pignone Srl Assieme magnetico incapsulato, metodo per spurgare un meato macchina rotante e impianto petrolifero / gassifero
GB2503500A (en) * 2012-06-29 2014-01-01 Nidec Motors & Actuators Gmbh Germany An armature connecting wire arrangment for an electric motor
US10461591B2 (en) * 2012-07-06 2019-10-29 Mitsubishi Electric Corporation Rotary electric machine with armature coil end top portions displaced in a radial direction
US10221855B2 (en) 2012-07-20 2019-03-05 Regal Beloit America, Inc. Furnace air handler blower assembly utilizing a motor connected to an impeller fan that is suspended with mounting arms
US9777735B2 (en) 2012-07-20 2017-10-03 Regal Beloit America, Inc. Blower motor assembly having air directing surface
DE102013108461A1 (de) * 2012-08-09 2014-02-13 Remy Technologies, L.L.C. Dauermagnet- (PM-) Elektromaschine, die mit einem Wärmeleitmaterial (TIM) zwischen benachbarten Dauermagneten versehen ist
US20140056700A1 (en) * 2012-08-27 2014-02-27 Hamilton Sundstrand Corporation Compressor inlet housing and method of manufacturing
US9263926B2 (en) * 2012-09-10 2016-02-16 Remy Technologies, L.L.C. Permanent magnet electric machine having magnets provided with a thermal enhancement bonding coating
US8987953B2 (en) * 2012-09-11 2015-03-24 Remy Technologies, L.L.C. Permanent magnet electric machine including permanent magnets having a sleeve formed from a thermal interface material
DE102013109913A1 (de) * 2012-09-14 2014-03-20 Remy Technologies, Llc Elektrische Maschine mit Wärmeübertragung durch Flüssigkeit
WO2014048464A1 (de) * 2012-09-26 2014-04-03 Siemens Aktiengesellschaft Aktivteil einer elektrischen maschine, radialmagnetlager und verfahren zur herstellung eines radialmagnetlagers
US9334756B2 (en) 2012-09-28 2016-05-10 United Technologies Corporation Liner and method of assembly
US10033250B2 (en) 2012-10-01 2018-07-24 Abb Research, Ltd. Electrical machine rotors
US20140097711A1 (en) * 2012-10-05 2014-04-10 Larry Kubes One piece rotor hub/shaft for an electric machine and method
US9856865B2 (en) 2012-11-21 2018-01-02 White Knight Fluid Handling Inc. Pneumatic reciprocating fluid pump with reinforced shaft
GB2508416A (en) * 2012-11-30 2014-06-04 Univ Sheffield Reducing dominant undesirable harmonics in an electric machine
DK2747256T3 (en) * 2012-12-19 2019-04-29 Leantec Motor Gmbh & Co Kg Method of manufacturing a rotor for an electric motor
EP4019754A1 (en) 2013-03-15 2022-06-29 Raytheon Technologies Corporation Acoustic liner with varied properties
US9621013B2 (en) 2013-03-15 2017-04-11 Ingersoll-Rand Company Rotating machine with magnetic bearing
US9574563B2 (en) * 2013-04-09 2017-02-21 Harris Corporation System and method of wrapping flow in a fluid working apparatus
US9133841B2 (en) 2013-04-11 2015-09-15 Cameron International Corporation Progressing cavity stator with metal plates having apertures with englarged ends
EP2806534B1 (en) * 2013-05-23 2016-04-06 Siemens Aktiengesellschaft Electrical machine having partially parallel slots and teeth
US9577478B2 (en) 2013-05-29 2017-02-21 Regal Beloit America, Inc. Axial flux motor with stator pre-load
DE102013212909A1 (de) * 2013-07-02 2015-01-08 Robert Bosch Gmbh Maschinenkomponente für eine elektrische Maschine mit mehreren Wicklungen
US20150022041A1 (en) * 2013-07-18 2015-01-22 Honeywell International Inc. Method of cooling a generator or motor rotor with end disks and a hybrid shaft assembly
CN103475125B (zh) * 2013-09-02 2015-11-25 广东瑞荣泵业有限公司 无刷直流潜水电机转子结构
US10429105B1 (en) 2013-09-24 2019-10-01 National Technology & Engineering Solutions Of Sandia, Llc Heating and cooling devices, systems and related method
KR20150044471A (ko) * 2013-10-16 2015-04-27 현대모비스 주식회사 이탈 방지용 회전자, 이를 적용한 전동 모터, 및 이의 제조 방법
US10411532B2 (en) * 2013-10-27 2019-09-10 Moovee Innovations Inc. Software-defined electric motor
US10673288B2 (en) 2013-10-31 2020-06-02 General Electric Company Method for forming a nitrogenation barrier and machine formed using a body having the nitrogenation barrier
DE102013225396A1 (de) * 2013-12-10 2015-06-11 Bayerische Motoren Werke Aktiengesellschaft Elektrische Maschine mit optimierter Permanentmagnetverteilung
JP6255231B2 (ja) * 2013-12-11 2017-12-27 株式会社ダイナックス アキシャルギャップモータ
EP2887502B1 (en) * 2013-12-18 2016-10-05 Skf Magnetic Mechatronics Rotor assembly with permanent magnets and method of manufacture
JP5820046B2 (ja) * 2013-12-27 2015-11-24 ファナック株式会社 磁石保持構造を備えた電動機の回転子及びそれを備える電動機
CN106164495B (zh) 2014-02-03 2020-03-13 诺沃皮尼奥内股份有限公司 具有嵌入的电动机的多级涡轮机
DK2916438T3 (en) * 2014-03-05 2017-05-15 Lappeenrannan Teknillinen Yliopisto Electric turbo machine and a power plant
US10381889B2 (en) * 2014-06-27 2019-08-13 General Electric Company Permanent magnet machine with segmented sleeve for magnets
US10720804B2 (en) 2014-06-27 2020-07-21 General Electric Company Permanent magnet machine with segmented sleeve for magnets
EP2978102B1 (de) * 2014-07-22 2017-02-22 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Rotors
DE102014013384A1 (de) * 2014-09-09 2016-03-10 Linde Aktiengesellschaft Polträger für einen elektro-mechanischen Energiewandler
KR20160049507A (ko) * 2014-10-01 2016-05-09 오션 플루어 지오피직스 인코포레이티드 자율 수중선 매핑 조사용 자기 데이터의 보상
JP5980874B2 (ja) * 2014-10-20 2016-08-31 ファナック株式会社 回転電機に使用される磁石保持部材、回転子、回転電機および工作機械
JP2016111842A (ja) * 2014-12-08 2016-06-20 株式会社デンソー ダブルステータ型回転電機
US11421696B2 (en) 2014-12-31 2022-08-23 Ingersoll-Rand Industrial U.S., Inc. Multi-stage compressor with single electric direct drive motor
US9777723B2 (en) 2015-01-02 2017-10-03 General Electric Company System and method for health management of pumping system
KR101696710B1 (ko) 2015-01-28 2017-01-16 엘지전자 주식회사 비엘디시 모터 및 그를 갖는 청소기
JP6208702B2 (ja) * 2015-03-06 2017-10-04 ファナック株式会社 外筒を備えるステータ、およびモータ
GB201504283D0 (en) * 2015-03-13 2015-04-29 Rolls Royce Plc Sleeve for an electrical machine
US10340761B2 (en) * 2015-03-26 2019-07-02 GM Global Technology Operations LLC Electric device and a stator assembly for the electric device
EP3089328B1 (de) * 2015-04-27 2017-04-19 Siemens Aktiengesellschaft Rotor einer elektrischen maschine
US10454330B2 (en) * 2015-06-19 2019-10-22 Ward Leonard Investment Holdings, LLC Motor including stator cooling channel adjacent to stator slots
CN111306071B (zh) * 2015-07-24 2021-06-15 浙江三花汽车零部件有限公司 转子组件以及电子泵
US9872115B2 (en) * 2015-09-14 2018-01-16 Cochlear Limited Retention magnet system for medical device
JP6594143B2 (ja) * 2015-09-28 2019-10-23 アイシン・エィ・ダブリュ株式会社 ステータおよびステータの製造方法
BG66932B1 (bg) * 2015-10-08 2019-08-15 "Алмотт" Оод Статор на електрическа машина
WO2017083984A1 (en) * 2015-11-20 2017-05-26 Kelso Energy Ltd. Recessed-magnet flywheel construction for vertical axis wind turbines
DE102015226158A1 (de) * 2015-12-21 2017-06-22 Ksb Aktiengesellschaft Läufer für permanentmagneterregten Unterwasser-Pumpenmotor
JP6298086B2 (ja) * 2016-02-24 2018-03-20 ファナック株式会社 電動機のロータ及びその製造方法
JP2017163752A (ja) * 2016-03-10 2017-09-14 株式会社明電舎 永久磁石式回転電機の回転子
US10177618B2 (en) * 2016-03-15 2019-01-08 General Atomics Rotor assembly and method of manufacturing
JP6527102B2 (ja) * 2016-04-22 2019-06-05 ファナック株式会社 保持部材、これを備える回転電機の回転子、及びそれを備える回転電機
US10439456B2 (en) * 2016-04-25 2019-10-08 General Electric Company Sleeve rotor synchronous reluctance electric machine
ES2711341T3 (es) 2016-05-13 2019-05-03 Nidec Asi S P A Motor eléctrico
EP3249786A1 (en) * 2016-05-25 2017-11-29 Celeroton AG Electrical machine and rotor for an electrical machine
US10714998B2 (en) * 2016-06-13 2020-07-14 Borgwarner Inc. Retention sleeve and balance strategy for a high speed permanent magnet rotor
DE102016211127A1 (de) * 2016-06-22 2017-12-28 BSH Hausgeräte GmbH Elektrische Maschine für ein Haushaltsgerät mit zumindest teilweise umspritzten Stator, Pumpe, Haushaltsgerät sowie Verfahren
US10547218B2 (en) * 2016-07-20 2020-01-28 Quantakinetic Technologies, Llc Variable magnetic monopole field electro-magnet and inductor
DE102016114569A1 (de) 2016-08-05 2018-02-08 Volabo Gmbh Elektrische Maschine
US9941771B2 (en) * 2016-09-08 2018-04-10 Borgwarner Inc. Electric motor rotor with extended shoulders for bearings
NO20171365A1 (en) * 2016-09-20 2018-03-21 Vetco Gray Scandinavia As Improved arrangement for pressurizing of fluid
BE1024712B1 (nl) 2016-11-03 2018-06-07 Atlas Copco Airpower Nv Aandrijving voor een compressorelement en watergeïnjecteerde compressorinrichting daarmee uitgerust
JP6880668B2 (ja) * 2016-11-16 2021-06-02 トヨタ紡織株式会社 回転電機のロータ
JP6279059B1 (ja) * 2016-11-25 2018-02-14 三菱電機株式会社 回転電機
EP3555477B1 (en) * 2016-12-15 2020-08-12 Carrier Corporation Screw compressor with magnetic gear
WO2018112399A2 (en) 2016-12-16 2018-06-21 Upwing Energy, LLC Electric machine for downhole applications
JP2018107975A (ja) * 2016-12-28 2018-07-05 株式会社デンソー 電動モータ
JP2018135956A (ja) * 2017-02-22 2018-08-30 大同メタル工業株式会社 立型軸受装置
CN107154691B (zh) * 2017-04-14 2020-04-10 北京精密机电控制设备研究所 一种低压大电流伺服电机
US11081918B2 (en) 2017-04-27 2021-08-03 Calnetix Technologies, Llc Electric machine having a rotor with retaining sleeve
US11081919B2 (en) 2017-04-27 2021-08-03 Calnetix Technologies, Llc Electric machine with metallic shield rotor
US10407311B2 (en) * 2017-05-17 2019-09-10 Saudi Arabian Oil Company Zeolites, the production thereof, and their uses for upgrading heavy oils
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
CN110663159B (zh) * 2017-05-29 2021-08-20 三菱电机株式会社 转子、旋转电机及转子的制造方法
US10518624B2 (en) * 2017-06-15 2019-12-31 Ford Global Technologies, Llc Motor having non-rectangular rotor magnets
US10454322B2 (en) * 2017-06-27 2019-10-22 Hitachi Automotive Systems, Ltd. Dynamo-electric machine
US10804756B2 (en) * 2017-07-25 2020-10-13 Toshiba International Corporation Stators comprising air flow slots with adjacent winding slots
US11728698B2 (en) * 2017-07-31 2023-08-15 William R. Benner, Jr. Variable torque low inertia brushless motor
GB201714242D0 (en) * 2017-09-05 2017-10-18 Rolls Royce Plc Electrical machine rotor
RU2656863C1 (ru) * 2017-09-08 2018-06-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Ротор для высокоскоростных электромеханических преобразователей энергии с высококоэрцитивными постоянными магнитами
JP7064850B2 (ja) * 2017-11-17 2022-05-11 日本電産サンキョー株式会社 ロータおよびモータ
US11201482B2 (en) * 2017-11-30 2021-12-14 Otto S.R.L. Solenoid generator, corresponding electrical supply system and device
FR3074622B1 (fr) * 2017-12-04 2021-07-30 Ifp Energies Now Dispositif de compression d'un fluide entraine par une machine electrique avec un arbre de rotor ayant une frette amagnetique
FR3075504B1 (fr) * 2017-12-20 2020-07-17 Valeo Equipements Electriques Moteur Stator pour machine electrique tournante
WO2019176543A1 (ja) * 2018-03-16 2019-09-19 株式会社三井ハイテック 鉄心製品の製造方法、鉄心製品及び回転体の製造方法
JP2019176660A (ja) * 2018-03-29 2019-10-10 日本電産株式会社 ロータ組立体、モータ、送風装置及び掃除機
CN108599415B (zh) * 2018-04-28 2020-02-18 东南大学 一种含有组合式导磁护套的高速永磁电机转子
CN108400663B (zh) * 2018-05-09 2024-01-09 江苏富丽华通用设备股份有限公司 一种永磁电机的永磁转子
US10790721B2 (en) 2018-06-04 2020-09-29 Abb Schweiz Ag Bonded rotor shaft
JP6981373B2 (ja) * 2018-06-29 2021-12-15 株式会社豊田自動織機 ロータの製造方法
US11183907B2 (en) * 2018-07-11 2021-11-23 Abb Schweiz Ag Electrical apparatus and methods for forming an electrical machine and an electrical apparatus
US11296569B2 (en) 2018-07-12 2022-04-05 Zunum Aero, Inc. Multi-filar coil winding for electric machine
US11387764B2 (en) 2018-07-12 2022-07-12 Zunum Aero, Inc. Multi-inverter system for electric machine
JP2021531724A (ja) * 2018-07-24 2021-11-18 メインスプリング エナジー, インコーポレイテッド リニア電磁機械
US11196310B2 (en) 2018-07-30 2021-12-07 Zunum Aero, Inc. Permanent magnet assemblies for a cylinder of an electrical machine
CN112655142A (zh) * 2018-08-28 2021-04-13 波士顿科学国际有限公司 经皮循环支撑装置的轴向磁通电机
JP7238312B2 (ja) * 2018-09-28 2023-03-14 日本電産株式会社 モータ
DE102018125828A1 (de) * 2018-10-18 2020-04-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Anordnung von elektrischen Leitern in einem Stator eines Elektromotors
DE102018125839A1 (de) * 2018-10-18 2020-04-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Anordnung von elektrischen Leitern in einem Stator eines Elektromotors
CN109149821A (zh) * 2018-11-07 2019-01-04 珠海格力电器股份有限公司 电机转子和永磁电机
EP3654497A1 (en) 2018-11-15 2020-05-20 Black & Decker Inc. Winding retention insert for a brushless motor
WO2020106864A1 (en) * 2018-11-20 2020-05-28 Crs Holdings, Inc. A method of making a multi-material segmented stator for a rotating electric machine and a stator made by said method
CN111384790A (zh) * 2018-12-28 2020-07-07 福特全球技术公司 用于电机的定子及电机
US11329585B2 (en) 2019-01-25 2022-05-10 General Electric Company Electric machines with air gap control systems, and systems and methods of controlling an air gap in an electric machine
JP7293701B2 (ja) * 2019-02-08 2023-06-20 株式会社デンソー 回転電機
US10982730B2 (en) 2019-03-04 2021-04-20 Saint- Augustin Canada Electric Inc. Flywheel systems and related methods
DE102019203617A1 (de) * 2019-03-18 2020-09-24 Federal-Mogul Nürnberg GmbH Kolben für einen Verbrennungsmotor
GB2582345B (en) * 2019-03-20 2023-06-28 Safran Electrical & Power Improved method for manufacturing a rotor
US20200304002A1 (en) * 2019-03-21 2020-09-24 Baker Hughes Oilfield Operations Llc Permanent Magnet Motor For Electrical Submersible Pump
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
DE102019113432A1 (de) * 2019-05-21 2020-11-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Stator einer elektrischen Maschine und elektrische Maschine
KR102222126B1 (ko) * 2019-06-13 2021-03-03 현대일렉트릭앤에너지시스템(주) 모터
US11936263B2 (en) * 2019-07-17 2024-03-19 Schaeffler Technologies AG & Co. KG Stator assembly and stator for motor
JP2021029062A (ja) * 2019-08-09 2021-02-25 日本電産サンキョー株式会社 ロータおよびモータ
US10961914B1 (en) 2019-09-13 2021-03-30 BJ Energy Solutions, LLC Houston Turbine engine exhaust duct system and methods for noise dampening and attenuation
US11555756B2 (en) 2019-09-13 2023-01-17 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
CA3092859A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
WO2021050870A1 (en) 2019-09-13 2021-03-18 Upwing Energy, LLC Flow through magnetic drive system for artificial lift
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US20210159760A1 (en) * 2019-11-25 2021-05-27 Borgwarner Inc. Rotor balance ring and oil flinger
JP6873219B1 (ja) * 2019-12-13 2021-05-19 三菱電機株式会社 回転電機
EP4096062A4 (en) * 2020-01-21 2023-01-18 Mitsubishi Electric Corporation STATOR AND ROTATING ELECTRICAL MACHINE WITH IT
NL2025180B1 (en) * 2020-03-20 2021-10-20 Tecnotion Assets B V AC synchronous motor and primary part
JP7231112B2 (ja) * 2020-03-25 2023-03-01 株式会社Ihi 回転電機のロータ
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
CN112311174A (zh) * 2020-05-29 2021-02-02 深圳市一吉制造有限公司 一种新型四定子四转子的组合节能电机
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11652393B2 (en) 2020-07-01 2023-05-16 Garrett Transportation I Inc Rotor assembly for electric motor of turbomachine with carbon-carbon composite magnet-retaining jacket member
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
DE102020121277A1 (de) * 2020-08-13 2022-02-17 Schaeffler Technologies AG & Co. KG Elektromotor mit Kühleinrichtung zur aktiven Kühlung der Wicklungsabschnitte innerhalb von Nutbereichen eines Grundkörpers
JP2022055707A (ja) * 2020-09-29 2022-04-08 本田技研工業株式会社 回転電機
JP2022055714A (ja) * 2020-09-29 2022-04-08 本田技研工業株式会社 回転電機
JP2022055717A (ja) * 2020-09-29 2022-04-08 本田技研工業株式会社 回転電機
JP2022098916A (ja) * 2020-12-22 2022-07-04 日本電産株式会社 ロータおよびモータ
US11722025B2 (en) 2020-12-31 2023-08-08 Trane International Inc. Rotor for electric motors
US11870305B2 (en) 2021-03-22 2024-01-09 Rolls-Royce Singapore Pte. Ltd. System and method for reduced rotor losses
US11735965B2 (en) 2021-03-22 2023-08-22 Rolls-Royce Plc Rotor assembly
DE102021107454B4 (de) * 2021-03-25 2023-02-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Statoreinrichtung für eine elektrische Maschine und Verfahren zur Herstellung
US20220337113A1 (en) * 2021-04-20 2022-10-20 Rivian Ip Holdings, Llc Rotor assembly and method for motor end winding cooling and bearing lubrication
US11661646B2 (en) 2021-04-21 2023-05-30 General Electric Comapny Dual phase magnetic material component and method of its formation
US11926880B2 (en) 2021-04-21 2024-03-12 General Electric Company Fabrication method for a component having magnetic and non-magnetic dual phases
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
DE102021113691A1 (de) * 2021-05-27 2022-12-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Stator einer elektrischen Antriebsmaschine und Verfahren zum Herstellen desselben
DE102021122453A1 (de) 2021-08-31 2023-03-02 Elaphe Propulsion Technologies, Ltd. Stator mit permanenter Schutzbarriereabdichtung
WO2023056047A1 (en) * 2021-10-01 2023-04-06 Baker Hughes Oilfield Operations Llc Permanent magnet motor for electrical submersible pump and method of assembly rotor
US20230108862A1 (en) * 2021-10-04 2023-04-06 Rolls-Royce Electrical Norway AS Electric machine stator tube
WO2023060063A1 (en) * 2021-10-08 2023-04-13 Crs Holdings, Llc Multi-material segmented stator
US11942822B2 (en) * 2021-12-23 2024-03-26 GM Global Technology Operations LLC Stator tooth and winding conductor designs for electric machines
CN114552821B (zh) * 2022-04-26 2022-07-19 深圳市好盈科技有限公司 一种电动机及电动玩具
CN114640235B (zh) 2022-05-09 2022-08-23 浙江大学 电磁泵
GB2621836A (en) * 2022-08-22 2024-02-28 Victrex Mfg Ltd Polymeric materials
US11949306B2 (en) 2022-09-06 2024-04-02 Harbinger Motors Inc. Fractional-slot-winding motors and electrical vehicles comprising thereof
WO2024061459A1 (en) * 2022-09-21 2024-03-28 Indrivetec Ag Protection for armature of electromagnetic linear drive
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870541A (ja) * 1994-08-30 1996-03-12 Toshiba Corp 永久磁石式回転電機
JPH09149572A (ja) * 1995-09-18 1997-06-06 Toshiba Corp 永久磁石式回転電機
JPH1094202A (ja) * 1996-09-13 1998-04-10 Matsushita Electric Ind Co Ltd 永久磁石モータとロータ着磁器
JP2002136009A (ja) * 2000-10-18 2002-05-10 Toshiba Corp 永久磁石型回転子
JP2003164085A (ja) * 2001-11-29 2003-06-06 Sawafuji Electric Co Ltd 回転電機
JP2004357489A (ja) * 2003-05-28 2004-12-16 Akira Chiba 単方向着磁の永久磁石モータ
JP2007014110A (ja) * 2005-06-30 2007-01-18 Asmo Co Ltd 回転電機
JP2007221877A (ja) * 2006-02-15 2007-08-30 Kokusan Denki Co Ltd 磁石回転子

Family Cites Families (424)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1227414A (en) 1913-12-31 1917-05-22 Westinghouse Electric & Mfg Co Dynamo-electric machine.
US1269537A (en) 1916-01-08 1918-06-11 Gen Electric Dynamo-electric machine.
GB637896A (en) 1945-12-28 1950-05-31 Vickers Electrical Co Ltd Improvements in dynamo electric machines
US2551135A (en) 1949-06-25 1951-05-01 Harold D Justice Coil winding tool
US2920218A (en) * 1951-08-23 1960-01-05 Allis Chalmers Mfg Co Supercharged dynamoelectric machine with cooling gas in contact with conductors
US2745030A (en) 1952-09-03 1956-05-08 Gen Electric Dynamoelectric machine core member and method of making same
US2742582A (en) * 1953-07-21 1956-04-17 Gen Electric Gas-cooled high voltage bushing for large generator
US2761985A (en) * 1953-09-24 1956-09-04 Edward J Schaefer Submersible motor construction
US2783393A (en) 1953-11-30 1957-02-26 Haegglund & Soener Ab Apparatus for emergency power transfer
US3154708A (en) * 1963-04-25 1964-10-27 Gen Electric Stator for use in an alternating current induction motor
GB1098125A (en) 1966-02-21 1968-01-03 Artur Scheib Method for the fabrication of electrical machine stators and rotors with grooved iron cores
CH461617A (de) 1966-04-07 1968-08-31 Licentia Gmbh Elektrische Maschine mit Abschnittskühlung
US3594597A (en) * 1969-12-24 1971-07-20 Vasily Semenovich Kildishev Device for fixing stator winding bars in the slots of electric machines
US3735169A (en) * 1971-04-04 1973-05-22 Gen Electric Channel,shaped,laminated,high temperature slot wedge for dynamoelectric machines
DE2130201A1 (de) * 1971-06-18 1972-12-21 Kraftwerk Union Ag Anordnung zur Fixierung der Staenderwicklungsstaebe elektrischer Maschinen,insbesondere bei Turbogeneratoren
US3751699A (en) 1972-04-25 1973-08-07 Gen Electric Gas filled vertical dynamoelectric machine
CH545027A (de) 1972-05-09 1973-11-30 Bbc Brown Boveri & Cie Elektrische Maschine
JPS49143705U (ja) * 1973-04-10 1974-12-11
CA990772A (en) 1973-09-24 1976-06-08 Eric Whiteley Permanent magnet field structure for dynamoelectric machines
US3933535A (en) 1974-01-28 1976-01-20 General Electric Company Method for producing large and/or complex permanent magnet structures
CA1004275A (en) 1974-04-04 1977-01-25 Eric Whiteley Permanent magnet synchronous dynamoelectric machine
US3983435A (en) 1974-11-05 1976-09-28 General Electric Company Stator assembly formed of flat, strip material
US3955112A (en) 1975-01-24 1976-05-04 Sell Otto W Hermetically sealed rotor
US4025840A (en) 1975-04-09 1977-05-24 General Electric Company Permanent magnet generator with output power adjustment by means of magnetic shims
US4088177A (en) 1976-01-07 1978-05-09 General Electric Company Permanent magnet D.C. dynamoelectric machine and method of making same
CA1066381A (en) 1976-07-30 1979-11-13 Herbert Hollitscher Permanent magnet latch for speed switching device
JPS5444707A (en) * 1977-09-14 1979-04-09 Sony Corp Dc brushless motor
US4141137A (en) * 1977-10-25 1979-02-27 General Electric Company Method of making a permanent magnet field pole for a direct current dynamoelectric machine
US4371799A (en) * 1977-10-25 1983-02-01 General Electric Company Permanent magnet field pole for a direct current dynamoelectric machine
JPS54100808A (en) * 1978-01-25 1979-08-08 Suwa Seikosha Kk Printer
US4578610A (en) * 1978-06-12 1986-03-25 General Electric Company Synchronous disk motor with amorphous metal stator and permanent magnet rotor and flywheel
US4233960A (en) 1978-07-21 1980-11-18 Johnson Steven A Heat storage apparatus and method
US4371801A (en) * 1978-10-11 1983-02-01 General Electric Company Method and apparatus for output regulation of multiple disk permanent magnet machines
US4476408A (en) 1979-05-23 1984-10-09 General Electric Company High efficiency, low cost permanent magnet AC machine
US4262226A (en) * 1979-08-22 1981-04-14 Kobe, Inc. Insulating fluid system for protecting submersible electric motors from surrounding fluids
JPS573545A (en) * 1980-06-10 1982-01-09 Toyo Electric Mfg Co Ltd Stator of electric rotary machine
US4348604A (en) 1980-06-13 1982-09-07 General Dynamics Corp. Totally enclosed air cooled electrical machines
US4308479A (en) 1980-08-28 1981-12-29 General Electric Company Magnet arrangement for axial flux focussing for two-pole permanent magnet A.C. machines
US4354126A (en) 1980-09-12 1982-10-12 Westinghouse Electric Corp. Dynamoelectric machine with a permanent magnet rotor having laminated poles
US4361791A (en) 1981-05-12 1982-11-30 General Electric Company Apparatus for controlling a PWM inverter-permanent magnet synchronous motor drive
US4388545A (en) 1981-06-10 1983-06-14 General Electric Company Rotor for a permanent magnet AC motor
JPS5815450A (ja) * 1981-07-16 1983-01-28 Mitsubishi Electric Corp 回転電機の通風装置
US4417168A (en) 1981-10-26 1983-11-22 General Electric Company Permanent magnet rotor for a dynamo electric machine
US4405873A (en) 1981-10-26 1983-09-20 General Electric Company Rotor for a line-start permanent-magnet motor
US4811375A (en) * 1981-12-02 1989-03-07 Medical Electronic Imaging Corporation X-ray tubes
US4469970A (en) 1981-12-24 1984-09-04 General Electric Company Rotor for permanent magnet excited synchronous motor
JPS58163255A (ja) 1982-03-24 1983-09-28 Okuma Mach Works Ltd 永久磁石式同期モ−タの回転子
US4464596A (en) 1982-09-27 1984-08-07 General Electric Company Multi-section permanent magnet rotor
US4779069A (en) * 1982-09-30 1988-10-18 Comair Rotron, Inc. Apparatus and method for making integral coaxial communication and rotor magnets
US4443934A (en) * 1982-10-04 1984-04-24 General Electric Company Method of assembling permanent magnet dc machines
US4510680A (en) 1982-12-27 1985-04-16 General Electric Company Method of making a permanent magnet rotor
US4480207A (en) 1982-12-27 1984-10-30 General Electric Company Permanent magnet rotor and method of making same
EP0118802B1 (de) 1983-03-10 1986-05-07 BBC Aktiengesellschaft Brown, Boveri & Cie. Gasgekühlte Wechselstrommaschine
US4492890A (en) 1983-05-18 1985-01-08 Litton Industrial Products, Inc. Stator winding providing magnetomotive force wave of reduced harmonic content
US4460834A (en) 1983-08-29 1984-07-17 Power Group International Corp. Uninterruptible power system
US4486678A (en) 1983-09-06 1984-12-04 Sundstrand Corporation Rotor for a permanent magnet generator
US4525925A (en) 1983-09-22 1985-07-02 General Electric Company Method of making permanent magnet rotor
US4472651A (en) 1983-09-22 1984-09-18 General Electric Company Permanent magnet rotor
US4570333A (en) * 1983-10-28 1986-02-18 General Electric Company Method of making a permanent magnet rotor
US4486679A (en) 1983-10-28 1984-12-04 General Electric Company Permanent magnet rotor and method of making same
US4759116A (en) 1983-11-03 1988-07-26 General Electric Company Method of applying containment shroud on permanent magnet rotors
CA1200270A (en) 1983-12-21 1986-02-04 Duncan T. Bath Flexible stator slot closure arrangement
JPS60167639A (ja) * 1984-02-10 1985-08-31 Hitachi Ltd 回転電機の磁性冠
US4506181A (en) * 1984-03-02 1985-03-19 General Electric Company Permanent magnet rotor with complete amortisseur
JPS611246A (ja) * 1984-06-11 1986-01-07 Matsushita Electric Ind Co Ltd 永久磁石回転子
DE3583078D1 (en) 1984-07-13 1991-07-11 John Leishman Sneddon Fluidmaschine.
JPS6126460A (ja) * 1984-07-17 1986-02-05 Hitachi Ltd 永久磁石回転子
JPS6162330A (ja) * 1984-08-30 1986-03-31 Mitsubishi Electric Corp 回転電機の積層鉄心
JPS6194550A (ja) * 1984-10-15 1986-05-13 Toshiba Corp 回転機用永久磁石とその製造方法
US4649331A (en) 1985-05-13 1987-03-10 General Electric Company Flux-weakening regime operation of an interior permanent magnet synchronous motor
US4729160A (en) 1985-08-14 1988-03-08 Kollmorgen Technologies Corporation Method for manufacturing a composite sleeve for an electric motor
JPH0357083Y2 (ja) * 1985-09-20 1991-12-25
US4633113A (en) * 1985-10-16 1986-12-30 Sundstrand Corporation Side plate construction for permanent magnet rotor
CA1323650C (en) 1985-11-12 1993-10-26 Franklin Lee Forbes Electrically commutated motor having an edgewise wound yoke
US4678954A (en) 1986-03-05 1987-07-07 Kabushiki Kaisha Toshiba Rotor with permanent magnets having thermal expansion gaps
JPS62145474U (ja) * 1986-03-05 1987-09-14
US4928553A (en) 1986-04-30 1990-05-29 Wagner John T Variable-inertia flywheels and transmission
US4723188A (en) * 1986-09-15 1988-02-02 General Electric Company Permanent magnet surge arrestor for DC power converter
US4893040A (en) * 1987-05-08 1990-01-09 Aisin Seiki Kabushiki Kaisha Dynamo-electric machines
US4936098A (en) 1987-05-13 1990-06-26 Gibbs & Hill, Inc. Utilization of circulating fluidized bed combustors for compressed air energy storage application
US4872307A (en) 1987-05-13 1989-10-10 Gibbs & Hill, Inc. Retrofit of simple cycle gas turbines for compressed air energy storage application
KR880014715A (ko) * 1987-05-29 1988-12-24 서주인 다극형 회전기의 고정자 권선방법
JPH0683593B2 (ja) 1987-08-14 1994-10-19 株式会社日立製作所 発電電動装置及び制御方法
DE3730615A1 (de) * 1987-09-11 1989-03-30 Marinescu Marlene Elektrische maschine mit permanentmagnet-erregung
JPH01152992A (ja) 1987-12-10 1989-06-15 Mitsubishi Electric Corp かご形誘導電動機
US4814677A (en) 1987-12-14 1989-03-21 General Electric Company Field orientation control of a permanent magnet motor
US4916346A (en) * 1987-12-28 1990-04-10 General Electric Company Composite rotor lamination for use in reluctance hompolar, and permanent magnet machines
US4918831A (en) * 1987-12-28 1990-04-24 General Electric Company Method of fabricating composite rotor laminations for use in reluctance, homopolar and permanent magnet machines
GB8805420D0 (en) * 1988-03-08 1988-04-07 Framo Dev Ltd Electrically powered pump unit
US4862009A (en) 1988-03-22 1989-08-29 General Electric Company Combined electric starter and alternator system using a permanent magnet synchronous machine
US5345669A (en) 1988-06-08 1994-09-13 General Electric Company Method of making a permanent magnet rotor
US5237737A (en) 1988-06-08 1993-08-24 General Electric Company Method of making a permanent magnet rotor
US5563463A (en) 1988-06-08 1996-10-08 General Electric Company Permanent magnet rotor
US5144735A (en) 1988-06-08 1992-09-08 General Electric Company Apparatus for assembling a permanent magnet rotor
US5040286A (en) 1988-06-08 1991-08-20 General Electric Company Method for making permanent magnet rotor
US4857755A (en) 1988-09-27 1989-08-15 Comstock W Kenneth Constant power system and method
US4912618A (en) 1988-11-04 1990-03-27 Sundstrand Corporation Variable speed, constant frequency generating system with input transformer
US5285699A (en) 1988-12-07 1994-02-15 Board Of Regents, University Of Texas System Reinforced composite flywheels and shafts
US4888749A (en) 1989-01-30 1989-12-19 Timex Corporation Three hand movement for a timepiece having a stepping motor
JPH02211033A (ja) * 1989-02-08 1990-08-22 Fuji Elelctrochem Co Ltd モータ用ロータ
US5081368A (en) 1989-04-28 1992-01-14 Atlas Energy Systems, Inc. Uninterruptible power supply with a variable speed drive driving an induction motor/generator
US5216308A (en) 1989-05-25 1993-06-01 Avcon-Advanced Controls Technology, Inc. Magnetic bearing structure providing radial, axial and moment load bearing support for a rotatable shaft
JPH0354365U (ja) 1989-06-01 1991-05-27
JP2847756B2 (ja) * 1989-06-06 1999-01-20 いすゞ自動車株式会社 回転電機の回転子
GB8921071D0 (en) 1989-09-18 1989-11-01 Framo Dev Ltd Pump or compressor unit
US5142180A (en) 1989-09-27 1992-08-25 Shell Oil Company Direct current motor for operation at elevated temperatures in a hostile environment
GB8923280D0 (en) 1989-10-16 1989-12-06 Framo Dev Ltd Pump apparatus
US5055764A (en) 1989-12-11 1991-10-08 Sundstrand Corporation Low voltage aircraft engine starting system
US5057697A (en) 1990-03-22 1991-10-15 The United States Of America As Represented By The Secretary Of The Navy DC uninterrupted power supply having instantaneous switching followed by low impedance switching
US5031746A (en) 1990-03-30 1991-07-16 Erkki Koivunen Multi-mode clutch for change-speed transmissions
JP2523933B2 (ja) 1990-04-26 1996-08-14 三菱電機株式会社 ステ―タの製造方法
JPH0669277B2 (ja) * 1990-05-09 1994-08-31 株式会社前川製作所 キャンドモーター用キヤンの構造
GB9014237D0 (en) 1990-06-26 1990-08-15 Framo Dev Ltd Subsea pump system
JPH04219493A (ja) 1990-08-10 1992-08-10 Ebara Corp ターボ分子ポンプ
US5122704A (en) 1990-10-25 1992-06-16 Sundstrand Corporation Composite rotor sleeve
US5229650A (en) 1990-11-07 1993-07-20 Yuasa Battery Company Limited Uniterruptible power system
JP3036854B2 (ja) * 1990-12-21 2000-04-24 日本電気株式会社 干渉検出回路
US5083039B1 (en) 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
US5311062A (en) 1991-04-04 1994-05-10 Otto Farkas Transient-free synchronous electrical power machine
GB9112059D0 (en) 1991-06-05 1991-07-24 Jestar Ltd Electrical machines
ES2095474T3 (es) 1991-06-17 1997-02-16 Electric Power Res Inst Central termoelectrica que utiliza acumulacion de energia de aire comprimido y saturacion.
US5137286A (en) 1991-08-23 1992-08-11 General Electric Company Permanent magnet floating shaft seal
US5250867A (en) 1991-11-20 1993-10-05 General Electric Company Permanent magnet brushless DC motor having reduced cogging
DE4142461C2 (de) * 1991-12-20 1997-06-05 Piller Gmbh Co Kg Anton Rotor für permanentmagneterregte elektrische Maschinen hoher Drehzahl sowie mit diesem Rotor konfektionierte elektrische Maschine
US5179308A (en) 1992-01-14 1993-01-12 Charles Stark Draper Laboratory, Inc. High-speed, low-loss antifriction bearing assembly
GB9201600D0 (en) 1992-01-24 1992-03-11 Turner Intellect Property Ltd Power tool
JPH05276704A (ja) * 1992-03-25 1993-10-22 Toshiba Corp 回転電機
US6348752B1 (en) 1992-04-06 2002-02-19 General Electric Company Integral motor and control
US5881448A (en) * 1992-04-06 1999-03-16 General Electric Company Method for making permanent magnet rotor
US5257872A (en) 1992-05-05 1993-11-02 Hughes Aircraft Company High power waveguide switch and method
GB9211124D0 (en) 1992-05-26 1992-07-08 Univ Cardiff Permanent magnet motor
US5327069A (en) 1992-06-19 1994-07-05 General Electric Company Switched reluctance machine including permanent magnet stator poles
US5309081A (en) 1992-08-18 1994-05-03 Sundstrand Corporation Power conversion system with dual permanent magnet generator having prime mover start capability
US5283471A (en) * 1992-08-31 1994-02-01 Eemco/Datron, Inc. DC generator and back-up engine starting apparatus
JPH0690538A (ja) * 1992-09-09 1994-03-29 Matsushita Electric Ind Co Ltd ブラシレスモータ
US5288447A (en) * 1993-02-22 1994-02-22 General Electric Company Method of making permanent magnet rotors
JP3507117B2 (ja) * 1993-02-26 2004-03-15 キヤノン株式会社 Tft基板及び該基板を有する液晶表示装置
US5345130A (en) 1993-04-28 1994-09-06 General Electric Company Modable permanent magnet rotor for optimized field shaping
US5337472A (en) * 1993-05-26 1994-08-16 The United States Of America As Represented By The Secretary Of The Army Method of making cylindrical and spherical permanent magnet structures
GB9311634D0 (en) 1993-06-03 1993-07-21 Spooner Edward Electromagnetic machine
US5602957A (en) 1993-06-07 1997-02-11 General Electric Company Permanent magnet direct current motor
FR2708803B1 (fr) 1993-07-30 1995-10-20 Jeumont Ind Machine tournante chemisée.
US5398571A (en) 1993-08-13 1995-03-21 Lewis; David W. Flywheel storage system with improved magnetic bearings
US5689174A (en) 1993-08-13 1997-11-18 Pacheco, Sr.; Angel Luis Electrical power system
GB9319323D0 (en) 1993-09-17 1993-11-03 British Gas Plc An electrical power generating arrangement
GB2283133B (en) 1993-10-20 1998-04-15 Gen Electric Dynamoelectric machine and method for manufacturing same
US5852338A (en) 1997-02-03 1998-12-22 General Electric Company Dynamoelectric machine and method for manufacturing same
IL108546A (en) 1994-02-03 1997-01-10 Israel Electric Corp Ltd Compressed air energy storage method and system
JPH07231591A (ja) * 1994-02-21 1995-08-29 Mitsubishi Electric Corp 車両用交流発電機
FR2718902B1 (fr) 1994-04-13 1996-05-24 Europ Gas Turbines Sa Ensemble turbine-générateur sans réducteur.
EP0678967A1 (en) * 1994-04-18 1995-10-25 General Electric Company Rotor for permanent magnet motor
JP2553319B2 (ja) 1994-06-17 1996-11-13 株式会社東芝 可変速発電電動装置
US6397946B1 (en) 1994-10-14 2002-06-04 Smart Drilling And Completion, Inc. Closed-loop system to compete oil and gas wells closed-loop system to complete oil and gas wells c
US6868906B1 (en) 1994-10-14 2005-03-22 Weatherford/Lamb, Inc. Closed-loop conveyance systems for well servicing
US5644181A (en) * 1995-01-05 1997-07-01 Dayton-Phoenix Group, Inc. Stator lamination design having a tapered opening
US5602462A (en) 1995-02-21 1997-02-11 Best Power Technology, Incorporated Uninterruptible power system
JP3322060B2 (ja) 1995-03-23 2002-09-09 株式会社日立製作所 発電プラント及び発電プラントの制御装置
US5611516A (en) * 1995-03-27 1997-03-18 Marotta Scientific Control, Inc. Rotary ball valve with retracting seat
JP3369024B2 (ja) * 1995-04-14 2003-01-20 松下電器産業株式会社 永久磁石回転子とその製造方法
JP3143644B2 (ja) * 1995-04-28 2001-03-07 株式会社スギノマシン 超高圧流体封止装置
US5769069A (en) 1995-06-07 1998-06-23 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Low flow-rate pump
JP3509304B2 (ja) * 1995-06-28 2004-03-22 株式会社明電舎 回転子の永久磁石
US5605193A (en) * 1995-06-30 1997-02-25 Baker Hughes Incorporated Downhole gas compressor
US6177734B1 (en) * 1998-02-27 2001-01-23 Isad Electronic Systems Gmbh & Co. Kg Starter/generator for an internal combustion engine, especially an engine of a motor vehicle
SE505214C2 (sv) 1995-09-04 1997-07-14 Chandur Sadarangani Hybriddrivsystem
DE19538381C2 (de) 1995-10-14 1999-07-15 Aeg Energietechnik Gmbh Anordnung zur unterbrechungsfreien Stromversorgung elektrischer Verbraucher
US5637049A (en) 1995-10-24 1997-06-10 Vehicular Technologies, Inc. Locking differential
JP3454036B2 (ja) 1995-11-13 2003-10-06 トヨタ自動車株式会社 ハイブリッド駆動装置
US5821630A (en) 1995-11-13 1998-10-13 Schutten; Herman P. Flywheel-speed sensing for control of an emergency-power engine
US5758709A (en) 1995-12-04 1998-06-02 General Electric Company Method of fabricating a rotor for an electric motor
US5795135A (en) 1995-12-05 1998-08-18 Westinghouse Electric Corp. Sub-sea pumping system and an associated method including pressure compensating arrangement for cooling and lubricating fluid
US6059539A (en) 1995-12-05 2000-05-09 Westinghouse Government Services Company Llc Sub-sea pumping system and associated method including pressure compensating arrangement for cooling and lubricating
JPH09200984A (ja) * 1996-01-19 1997-07-31 Fuji Electric Co Ltd 回転電機の磁石付回転子
US5627744A (en) 1996-02-02 1997-05-06 Sundstrand Corporation Converter enhanced variable frequency power bus architecture
US5646458A (en) 1996-02-22 1997-07-08 Atlas Energy Systems, Inc. Uninterruptible power system with a flywheel-driven source of standby power
ES2113314B1 (es) 1996-04-12 1999-01-01 Hart Monetic S A Sistema de alimentacion electrica ininterrumpida.
US5982045A (en) 1996-04-19 1999-11-09 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system adapted to prevent concurrent mode change and transmission shifting or torque distribution ratio change
WO1997043892A2 (en) 1996-05-06 1997-11-27 Superconductivity, Inc. System and method for estimating a load to optimize a backup energy system response
DE29610872U1 (de) 1996-06-21 1996-08-29 Elbtalwerk Heidenau Gmbh Läufer einer permanenterregten Synchronmaschine mit hoher Drehzahl
JP3512950B2 (ja) * 1996-06-24 2004-03-31 本田技研工業株式会社 内燃機関用の発電装置
US5796194A (en) 1996-07-15 1998-08-18 General Electric Company Quadrature axis winding for sensorless rotor angular position control of single phase permanent magnet motor
US5767591A (en) 1996-09-09 1998-06-16 Active Power, Inc. Method and apparatus for providing startup power to a genset-backed uninterruptible power supply
US5811960A (en) 1996-10-02 1998-09-22 United Power Corporation Battery-less uninterruptable sequel power supply
JPH10112948A (ja) * 1996-10-03 1998-04-28 Toshiba Corp 回転電機の2極電機子巻線とその製造方法
DE19645943A1 (de) 1996-11-07 1998-05-14 Bosch Gmbh Robert Startereinheit für eine Brennkraftmaschine
US6396186B1 (en) 1996-12-02 2002-05-28 The Regents Of The University Of California Electromechanical battery design suitable for back-up power applications
US6411002B1 (en) 1996-12-11 2002-06-25 Smith Technology Development Axial field electric machine
US5990588A (en) 1996-12-13 1999-11-23 General Electric Company Induction motor driven seal-less pump
US5801470A (en) 1996-12-19 1998-09-01 General Electric Company Rotors with retaining cylinders and reduced harmonic field effect losses
ATE207668T1 (de) * 1996-12-20 2001-11-15 Ponte Manuel Dos Santos Da Hybridgeneratorvorrichtung
US5831364A (en) 1997-01-22 1998-11-03 Ingersoll-Dresser Pump Company Encapsulated magnet carrier
US6462976B1 (en) 1997-02-21 2002-10-08 University Of Arkansas Conversion of electrical energy from one form to another, and its management through multichip module structures
DE19715468C1 (de) * 1997-04-14 1998-10-01 Piller Gmbh System zur Stabilisierung eines Stromversorgungsnetzes
US5994794A (en) 1997-05-09 1999-11-30 Active Power, Inc. Methods and apparatus for providing protection to batteries in an uninterruptible power supply
JP3456140B2 (ja) * 1997-05-26 2003-10-14 株式会社デンソー 車両用交流発電機
US5929538A (en) 1997-06-27 1999-07-27 Abacus Controls Inc. Multimode power processor
JPH1127888A (ja) * 1997-06-30 1999-01-29 Hitachi Ltd 回転電機の固定子及び固定子コイル挿入装置
US6169352B1 (en) * 1997-07-21 2001-01-02 University Of Chicago Trapped field internal dipole superconducting motor generator
US5894182A (en) * 1997-08-19 1999-04-13 General Electric Company Motor with rotor and stator core paired interlocks
US6020657A (en) * 1997-08-27 2000-02-01 Perfect Power Inc. Power supply for providing instantaneous energy during utility power outages
JP3775012B2 (ja) 1997-08-29 2006-05-17 アイシン・エィ・ダブリュ株式会社 車両用ハイブリッド駆動装置
JP3484051B2 (ja) * 1997-09-10 2004-01-06 株式会社 日立インダストリイズ 永久磁石式同期電動機及びその製造方法ならびに永久磁石式同期電動機を備えた遠心圧縮機
US6107693A (en) 1997-09-19 2000-08-22 Solo Energy Corporation Self-contained energy center for producing mechanical, electrical, and heat energy
US5923111A (en) * 1997-11-10 1999-07-13 Goulds Pumps, Incoporated Modular permanent-magnet electric motor
JP4076721B2 (ja) * 1997-11-24 2008-04-16 エイチ. ウィルス、ロバート 分散型発電用耐単独運転方法および装置
US5845479A (en) 1998-01-20 1998-12-08 Electric Power Research Institute, Inc. Method for providing emergency reserve power using storage techniques for electrical systems applications
US5984173A (en) 1998-02-02 1999-11-16 Siemens Power Transmission & Distribution, Llc Neutral point connected apparatus providing compensation to an AC power line
US6046554A (en) 1998-02-13 2000-04-04 General Electric Company Method and apparatus for calibrating a permanent-magnet motor using back EMF measurement
US5859513A (en) 1998-03-13 1999-01-12 General Electric Company Starting and synchronizing system for line-start permanent magnet motor
US6084330A (en) 1998-03-13 2000-07-04 Kollmorgen Corporation Permanent magnet rotor and method of assembly
US6241486B1 (en) 1998-03-18 2001-06-05 Flowserve Management Company Compact sealless screw pump
US6488401B1 (en) 1998-04-02 2002-12-03 Anthony E. Seaman Agitators for wave-making or mixing as for tanks, and pumps and filters
US6991362B1 (en) * 1998-04-02 2006-01-31 Seaman Anthony E Agitators for wave-making or mixing as for tanks, and pumps and filters
US6104113A (en) 1998-05-14 2000-08-15 General Electric Company Coil assembly for sensorless rotor angular position control of single phase permanent magnet motor
ID28260A (id) 1998-05-19 2001-05-10 Sure Power Corp Sistem daya
US6002191A (en) 1998-06-19 1999-12-14 General Electric Company Paired interlocks for stacking of non-rotated lamination cores
US6025666A (en) 1998-06-22 2000-02-15 General Electric Company Controllable flux permanent magnet motor
US6777847B1 (en) 1998-06-26 2004-08-17 General Electric Company Rotor core utilizing laminations having slots with dual direction skew portions
US5934063A (en) 1998-07-07 1999-08-10 Nakhamkin; Michael Method of operating a combustion turbine power plant having compressed air storage
US6018207A (en) * 1998-07-10 2000-01-25 General Electric Company Paired interlocks for flexible indexing of rotated stator cores
US6223417B1 (en) 1998-08-19 2001-05-01 General Electric Corporation Method for forming motor with rotor and stator core paired interlocks
US6321539B1 (en) 1998-09-10 2001-11-27 Ormat Industries Ltd. Retrofit equipment for reducing the consumption of fossil fuel by a power plant using solar insolation
US6175495B1 (en) * 1998-09-15 2001-01-16 John Samuel Batchelder Heat transfer apparatus
US6296765B1 (en) 1998-10-21 2001-10-02 Baldwin Filters, Inc. Centrifuge housing for receiving centrifuge cartridge and method for removing soot from engine oil
US6133716A (en) 1998-10-23 2000-10-17 Statordyne, Inc. High-efficiency high-power uninterrupted power system
JP3456158B2 (ja) 1999-01-11 2003-10-14 国産電機株式会社 内燃機関用スタータジェネレータ
US6120620A (en) 1999-02-12 2000-09-19 General Electric Company Praseodymium-rich iron-boron-rare earth composition, permanent magnet produced therefrom, and method of making
US6150731A (en) 1999-02-16 2000-11-21 Electric Boat Corporation Integrated high frequency marine power distribution arrangement with transformerless high voltage variable speed drive
US6198176B1 (en) * 1999-02-16 2001-03-06 Statordyne Llc UPS/CPS system
US6140719A (en) 1999-02-17 2000-10-31 American Superconductor Corporation High temperature superconducting rotor for a synchronous machine
US6204572B1 (en) 1999-03-18 2001-03-20 Perfect Power Inc. Power supply for providing instantaneous energy during electric utility outage
US6229243B1 (en) * 1999-04-30 2001-05-08 Precise Power Corporation Rotor construction for controlled-pole electric machines
US6232671B1 (en) 1999-05-03 2001-05-15 Mario Gottfried, Jr. Flywheel energy storage apparatus with braking capability
US6169390B1 (en) * 1999-05-12 2001-01-02 Abb Power T&D Company Inc. Flywheel-microturbine system
JP2000341889A (ja) 1999-05-25 2000-12-08 Hitachi Ltd 回転機用コア、その製造方法、コア用素片および回転機
US6255743B1 (en) 1999-05-26 2001-07-03 Active Power, Inc. Method and apparatus for providing an uninterruptible supply of electric power to a critical load
US6192687B1 (en) * 1999-05-26 2001-02-27 Active Power, Inc. Uninterruptible power supply utilizing thermal energy source
US6108206A (en) 1999-06-21 2000-08-22 General Electric Company Semiconductor thermal protection arrangement
JP4450124B2 (ja) * 1999-06-25 2010-04-14 株式会社デンソー 回転電機およびその製造方法
GB9915370D0 (en) 1999-07-02 1999-09-01 Black & Decker Inc Electrical machines
US6184593B1 (en) * 1999-07-29 2001-02-06 Abb Power T&D Company Inc. Uninterruptible power supply
JP2001057751A (ja) * 1999-08-12 2001-02-27 Hitachi Ltd 永久磁石式同期電動機及び空気圧縮機
US6160722A (en) 1999-08-13 2000-12-12 Powerware Corporation Uninterruptible power supplies with dual-sourcing capability and methods of operation thereof
US6198803B1 (en) 1999-08-20 2001-03-06 General Electric Company Bearing assembly including rotating element and magnetic bearings
US6069421A (en) * 1999-08-30 2000-05-30 Electric Boat Corporation Electric motor having composite encapsulated stator and rotor
EP1221190B1 (de) 1999-10-08 2005-03-02 RWE Piller Gmbh Vorrichtung zur unterbrechungsfreien stromversorgung mit einer elektrischen maschine und einem schwungrad
JP3419721B2 (ja) * 1999-12-06 2003-06-23 三菱電機株式会社 車両用交流発電機
US6404655B1 (en) 1999-12-07 2002-06-11 Semikron, Inc. Transformerless 3 phase power inverter
JP3347116B2 (ja) * 2000-01-12 2002-11-20 三菱電機株式会社 交流発電機
JP3155534B1 (ja) 2000-01-20 2001-04-09 三菱電機株式会社 交流発電機の固定子
IT1309954B1 (it) 1999-12-30 2002-02-05 Lucio Berto Struttura di valvola di sicurezza particolarmente per gas.
US6388356B1 (en) 1999-12-30 2002-05-14 General Electric Company Methods and apparatus for controlling electromagnetic flux in dynamoelectric machines
US6268668B1 (en) 2000-01-03 2001-07-31 General Electric Co. Gas cooled generator stator structure and method for impingement cooling of generator stator coil
US6204584B1 (en) * 2000-01-18 2001-03-20 Cleveland Motion Controls, Inc. Low cogging torque brushless motor rotor
DE10002583A1 (de) 2000-01-21 2001-08-09 Piller Gmbh Vorrichtung zur unterbrechungsfreien Stromversorgung einer elektrischen Last mit Wechselstrom
JP2001211588A (ja) 2000-01-27 2001-08-03 Mitsubishi Electric Corp 交流発電機
US6700214B2 (en) * 2000-02-14 2004-03-02 Aura Systems, Inc. Mobile power generation system
US6239513B1 (en) 2000-02-24 2001-05-29 Design Power Solutions International Emergency supplemental power supply for outage protection of critical electric loads
US6557642B2 (en) 2000-02-28 2003-05-06 Xl Technology Ltd Submersible pumps
US20010030486A1 (en) 2000-03-06 2001-10-18 Pijanowski Joseph M. Electric machine with structural spacer
IT1317135B1 (it) * 2000-03-08 2003-05-27 Ilpea Ind Spa Profilo magnetico in plastoferrite adatto a fungere da magnete ingeneratori e motori elettrici.
NO313767B1 (no) 2000-03-20 2002-11-25 Kvaerner Oilfield Prod As Fremgangsmåte for å oppnå samtidig tilförsel av drivfluid til flere undersjöiske brönner og undersjöisk petroleums-produksjons-arrangement for samtidig produksjon av hydrokarboner fra flereundersjöiske brönner og tilförsel av drivfluid til de s
FR2806851B1 (fr) 2000-03-21 2003-01-17 Valeo Equip Electr Moteur Machine electrique tournante dont le stator comporte un empilage axial de plaques de tole de permeabilites magnetiques differentes
AU2001265232A1 (en) 2000-05-31 2001-12-11 Sure Power Corporation Power system utilizing a dc bus
DE10027859A1 (de) 2000-06-06 2001-12-20 Bosch Gmbh Robert Verfahren zur Wirkungsgradsteigerung einer elektrischen Maschine
JP3677584B2 (ja) * 2000-06-09 2005-08-03 株式会社日立製作所 回転電機の回転子
US6324494B1 (en) 2000-06-16 2001-11-27 General Electric Company Method and system for modeling stator winding end-turn leakage reactance of an electric motor
SE517440C2 (sv) 2000-06-20 2002-06-04 Ericsson Telefon Ab L M Elektriskt avstämbar anordning och ett förfarande relaterande därtill
US6462448B1 (en) 2000-07-05 2002-10-08 Black & Decker Inc. Flux ring for an electric motor
US6707169B2 (en) 2000-07-19 2004-03-16 Honda Giken Kogyo Kabushiki Kaisha Engine generator, controller, starter apparatus, and remote control system for the engine generator
US6359353B1 (en) * 2000-07-21 2002-03-19 F. E. Myers Division Of Pentair Pump Group Submersible motor unit
JP2002078257A (ja) * 2000-08-24 2002-03-15 Mitsubishi Electric Corp モーター及びそのローター
DE10043120A1 (de) * 2000-08-31 2002-04-11 Wolfgang Hill Elektrische Maschine für hohe Ummagnetisierungsfrequenzen
US6624542B1 (en) 2000-09-23 2003-09-23 Indigo Energy, Inc. Flywheel power source with passive generator cooling
US6281595B1 (en) 2000-09-25 2001-08-28 General Electric Company Microturbine based power generation system and method
US6727625B2 (en) * 2000-09-25 2004-04-27 Denso Corporation Rotary electric machine and method for manufacturing the same
DE10124193A1 (de) 2000-09-26 2002-04-11 Siemens Ag Magnetlager
DE10047755B4 (de) 2000-09-27 2011-03-31 Daimler Ag Starter-Generator-Vorrichtung für Verbrennungskraftmaschinen und Verfahren zum Betreiben der Vorrichtung
JP2002136094A (ja) * 2000-10-30 2002-05-10 Minebea Co Ltd ステッピングモータ
US6700233B2 (en) * 2000-12-07 2004-03-02 Frank Cordiale Brushless electric motor
DK1223662T3 (da) 2001-01-15 2004-07-05 Atlas Copco Airpower Nv Fremgangsmåde til fremstilling af en permanentmagnetiseret rotor til en elektrisk höjhastighedsmotor
US6445079B1 (en) 2001-01-20 2002-09-03 Ford Global Technologies, Inc. Method and apparatus for controlling an induction machine
JP2002218798A (ja) * 2001-01-22 2002-08-02 Mitsubishi Electric Corp 車両用電源装置
US7071581B2 (en) 2001-01-31 2006-07-04 Satcon Technology Corp. Uninterruptible power supply system using a slip-ring, wound-rotor-type induction machine and a method for flywheel energy storage
US6494042B2 (en) 2001-02-12 2002-12-17 Ormat Industries Ltd. Method of and apparatus for producing uninterruptible power
JP3633498B2 (ja) 2001-03-23 2005-03-30 株式会社デンソー 回転電機
US6518867B2 (en) * 2001-04-03 2003-02-11 General Electric Company Permanent magnet assembly and method of making thereof
US6662434B2 (en) * 2001-04-03 2003-12-16 General Electric Company Method and apparatus for magnetizing a permanent magnet
JP3566665B2 (ja) 2001-04-06 2004-09-15 三菱電機株式会社 回転電機の固定子
US6563229B2 (en) 2001-04-18 2003-05-13 Otto Farkas Standby power system
JP2002327696A (ja) * 2001-04-27 2002-11-15 Ebara Corp 封液式サブマージドモータポンプ
US6463738B1 (en) 2001-05-21 2002-10-15 Active Power, Inc. Method and apparatus for providing a continuous supply of electric power
US6507128B2 (en) 2001-05-23 2003-01-14 General Electric Company Low-energy storage fast-start uninterruptible power supply system and method
US6700258B2 (en) 2001-05-23 2004-03-02 Calnetix Magnetic thrust bearing with permanent bias flux
JP2002354721A (ja) 2001-05-29 2002-12-06 Hitachi Ltd 永久磁石式回転子を備えた回転電機
NL1018212C2 (nl) 2001-06-05 2002-12-10 Siemens Demag Delaval Turbomac Compressoreenheid omvattende een centrifugaalcompressor en een elektromotor.
JP4720024B2 (ja) * 2001-06-05 2011-07-13 株式会社安川電機 永久磁石形同期電動機
US6504337B1 (en) * 2001-06-08 2003-01-07 General Electric Company Motor modeling using harmonic ampere-turn saturation method
DE10135019A1 (de) 2001-07-18 2003-01-30 Bosch Gmbh Robert Permanentmagnetisch erregter Elektromotor
US6437533B1 (en) 2001-08-08 2002-08-20 Buehler Motor, Inc. Actuator position control with inductive sensing
JP4250878B2 (ja) * 2001-08-08 2009-04-08 パナソニック株式会社 バーニヤ型ブラシレスモータ
US6596096B2 (en) 2001-08-14 2003-07-22 General Electric Company Permanent magnet for electromagnetic device and method of making
US6858962B2 (en) * 2001-09-05 2005-02-22 The Regents Of The University Of California Halbach array generator/motor having an automatically regulated output voltage and mechanical power output
CN1636111B (zh) 2001-09-17 2010-05-26 净流有限合伙企业 水力涡轮发电机装置
US6657321B2 (en) 2001-10-02 2003-12-02 General Electric Company Direct current uninterruptible power supply method and system
JP4032687B2 (ja) * 2001-10-03 2008-01-16 日産自動車株式会社 回転電機
US6934666B2 (en) * 2001-10-15 2005-08-23 General Electric Company Method for optimizing strategy for electric machines
DE10152497A1 (de) * 2001-10-24 2003-05-15 Pierburg Gmbh Nassläuferpumpe
US6737762B2 (en) 2001-10-26 2004-05-18 Onan Corporation Generator with DC boost for uninterruptible power supply system or for enhanced load pickup
JP3560947B2 (ja) 2001-11-06 2004-09-02 株式会社日立製作所 回転電機
DE10157582A1 (de) * 2001-11-23 2003-06-05 Alstom Switzerland Ltd Dynamoelektrische Maschine mit verkeilten Wicklungsstäben
US6614132B2 (en) 2001-11-30 2003-09-02 Beacon Power Corporation Multiple flywheel energy storage system
JP2003189514A (ja) 2001-12-14 2003-07-04 Hitachi Ltd 積層コアを有する電気機器及び電気機器用積層コアプレス金型及び積層コア組立設備
US6882077B2 (en) * 2002-12-19 2005-04-19 Visteon Global Technologies, Inc. Stator winding having cascaded end loops
EP1468483A4 (en) * 2002-01-25 2008-02-27 California Linear Devices Inc SURFACE LAYER FOR MAGNETIC MOTOR
EP1333558A3 (en) * 2002-01-31 2005-01-26 Hitachi, Ltd. Rotor for rotating electric machine and method of fabricating the same, for gas turbine power plant
US6963151B2 (en) * 2002-02-04 2005-11-08 Electric Boat Corporation Composite lamina arrangement for canning of motors
US6727617B2 (en) 2002-02-20 2004-04-27 Calnetix Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack
FR2838883B1 (fr) * 2002-02-28 2004-08-13 Valeo Equip Electr Moteur Elements conducteurs pour un stator d'une machine electrique tournante et machine electrique tournante pourvue de tels elements conducteurs
GB2386259A (en) 2002-03-08 2003-09-10 Rolls Royce Plc A liner for a fluid-cooled stator
WO2003088411A1 (en) 2002-04-10 2003-10-23 South Bank University Enterprises Ltd Tuneable dielectric resonator
US6894417B2 (en) * 2002-05-15 2005-05-17 Remy Inc. Multi-set rectangular copper hairpin windings for electric machines
US6883328B2 (en) 2002-05-22 2005-04-26 Ormat Technologies, Inc. Hybrid power system for continuous reliable power at remote locations
JP3590623B2 (ja) * 2002-05-23 2004-11-17 三菱電機株式会社 車両用交流回転電機
DE10224776A1 (de) * 2002-06-04 2004-03-11 Magnet-Motor Gesellschaft Für Magnetmotorische Technik Mbh Elektrische Maschine
JP3745707B2 (ja) * 2002-06-12 2006-02-15 株式会社デンソー セグメント順次接合型ステータコイルを有する高電圧車両用回転電機
JP2004048890A (ja) * 2002-07-11 2004-02-12 Denso Corp 回転電機
US7313840B2 (en) * 2002-07-25 2008-01-01 Charles E. Watkins Induction liquid pump and magnetic tank scrubber
US6753619B2 (en) 2002-08-06 2004-06-22 Visteon Global Technologies, Inc. Fly-wheel-based regenerative energy management system
JP2004080931A (ja) 2002-08-20 2004-03-11 Kokusan Denki Co Ltd 内燃機関用スタータジェネレータ
US6844706B2 (en) * 2002-08-30 2005-01-18 Active Power, Inc. Multiple path variable speed constant frequency device having automatic power path selection capability
JP2004112849A (ja) 2002-09-13 2004-04-08 Honda Motor Co Ltd 永久磁石型回転子
JP3864878B2 (ja) * 2002-09-17 2007-01-10 株式会社デンソー 高電圧回転電機
FR2844646B1 (fr) * 2002-09-17 2006-02-24 Denso Corp Machine rotative electrique a haute tension
DE10244201A1 (de) * 2002-09-23 2004-04-01 Alstom (Switzerland) Ltd. Elektrische Maschine sowie Verfahren zum Montieren einer solchen elektrischen Maschine
DE10248771A1 (de) * 2002-10-18 2004-04-29 Siemens Ag Permanenterregte Synchronmaschine
US6879053B1 (en) 2002-10-22 2005-04-12 Youtility, Inc. Transformerless, load adaptive speed controller
US7108095B1 (en) 2002-11-13 2006-09-19 Jerry Washington System and method for generating power
US6727600B1 (en) 2002-11-18 2004-04-27 Ilich Abdurachmanov Small underwater generator with self-adjusting axial gap
US6813328B2 (en) 2002-12-13 2004-11-02 Curtiss-Wright Electro-Mechanical Corporation Nuclear reactor submerged high temperature spool pump
JP2004201438A (ja) * 2002-12-19 2004-07-15 Denso Corp 回転電機の固定子
US6825666B2 (en) 2002-12-23 2004-11-30 General Electric Company Pole face for permanent magnet MRI with laminated structure
US7075399B2 (en) 2003-03-28 2006-07-11 Hamilton Sunstrand Corporation Liquid-cooled inductive devices with interspersed winding layers and directed coolant flow
GB0310639D0 (en) * 2003-05-08 2003-06-11 Corac Group Plc Rotary electric machine
JP2004350427A (ja) * 2003-05-22 2004-12-09 Denso Corp 回転電機とその回転子
US7253548B2 (en) * 2003-06-16 2007-08-07 Pratt & Whitney Canada Corp. Method and apparatus for controlling an electric machine
DE10329572A1 (de) * 2003-06-30 2005-01-20 Robert Bosch Gmbh Verfahren zur Herstellung eines elektromagnetisch erregbaren Kerns
CN100380779C (zh) * 2003-07-22 2008-04-09 爱知制钢株式会社 薄型混合磁化环状磁铁和具有轭部的薄型混合磁化环状磁铁、以及无电刷电机
US7075204B2 (en) 2003-08-06 2006-07-11 Honeywell International, Inc. Threaded inner sleeve for generator magnet
US20050062572A1 (en) * 2003-09-22 2005-03-24 General Electric Company Permanent magnet alloy for medical imaging system and method of making
US7423431B2 (en) * 2003-09-29 2008-09-09 General Electric Company Multiple ring polefaceless permanent magnet and method of making
US7148689B2 (en) 2003-09-29 2006-12-12 General Electric Company Permanent magnet assembly with movable permanent body for main magnetic field adjustable
US7218195B2 (en) 2003-10-01 2007-05-15 General Electric Company Method and apparatus for magnetizing a permanent magnet
JP2005117844A (ja) 2003-10-10 2005-04-28 Toyoda Mach Works Ltd モータ用ステータコア、電動パワーステアリング用モータ、モータ用コア及びモータ用コアのティース構造
US7407371B2 (en) 2003-10-29 2008-08-05 Michele Leone Centrifugal multistage pump
US20050104470A1 (en) 2003-11-13 2005-05-19 Perkins William P. Integrated stator-axle for in-wheel motor of an electric vehicle
GB0327023D0 (en) 2003-11-20 2003-12-24 Head Philip Electric motors for powering downhole tools
US7049725B2 (en) 2003-11-24 2006-05-23 Tm4 Inc. Dynamoelectric machine stator and method for mounting prewound coils thereunto
DE10361857A1 (de) 2003-12-30 2005-07-28 Robert Bosch Gmbh Verfahren zur Herstellung eines Ständers sowie danach hergestellter Ständer
US7042108B2 (en) 2004-02-06 2006-05-09 Otto Farkas Backup power system
US6998724B2 (en) * 2004-02-18 2006-02-14 Fmc Technologies, Inc. Power generation system
US7137450B2 (en) 2004-02-18 2006-11-21 Fmc Technologies, Inc. Electric-hydraulic power unit
JP4186872B2 (ja) * 2004-05-24 2008-11-26 株式会社デンソー 4層型セグメント順次接合ステータコイル及びその製造方法
JP4596127B2 (ja) * 2004-06-02 2010-12-08 株式会社デンソー 回転電機の固定子
WO2005124795A1 (ja) 2004-06-17 2005-12-29 Matsushita Electric Industrial Co., Ltd. 自己組織化希土類-鉄系ボンド磁石の製造方法とそれを用いたモータ
US7247966B2 (en) * 2004-06-24 2007-07-24 Siemens Power Generation, Inc. Flexible rotor pole crossover for a generator
DE102004035084A1 (de) * 2004-07-20 2006-02-16 Elmotec Statomat Vertriebs Gmbh Verfahren und Vorrichtung zur Herstellung einer Spulenwicklung für Statoren oder Rotoren elektrischer Maschinen sowie damit herzustellender Stator oder Rotor
US7098569B2 (en) * 2004-07-30 2006-08-29 Ballard Power Systems Corporation Rotor assembly for a permanent magnet power electric machine
US7247967B2 (en) 2004-08-09 2007-07-24 A. O. Smith Corporation Electric motor having a stator
US7737598B2 (en) * 2004-08-09 2010-06-15 A. O. Smith Corporation Electric motor having a stator
KR100673442B1 (ko) * 2004-08-25 2007-01-24 엘지전자 주식회사 모터의 스테이터
US6967461B1 (en) 2004-08-31 2005-11-22 Hamilton Sundstrand Corporation North-south pole determination for carrier injection sensorless position sensing systems
US7230344B2 (en) 2004-09-17 2007-06-12 Rockwell Automation Technologies, Inc. Apparatus and method for transient and uninterruptible power
US7358620B2 (en) 2004-09-30 2008-04-15 Rockwell Automation Technologies, Inc. Methods and apparatus for ride-through operation of a complementary device to a transient power source
JP2006101673A (ja) 2004-09-30 2006-04-13 Hitachi Industrial Equipment Systems Co Ltd 永久磁石を備えた回転電機及びその固定子鉄心の歯部製造方法
US7156183B2 (en) 2004-11-17 2007-01-02 Fmc Technologies, Inc. Electric hydraulic power unit and method of using same
GB0426350D0 (en) 2004-12-01 2005-01-05 South Bank Univ Entpr Ltd Tuneable dielectric resonator
US7226277B2 (en) 2004-12-22 2007-06-05 Pratt & Whitney Canada Corp. Pump and method
DE102005004566A1 (de) 2005-02-01 2006-08-10 Robert Bosch Gmbh Nutverschlusskeil für einen Stator oder einen Rotor einer elektrischen Maschine
US7228616B2 (en) 2005-03-31 2007-06-12 General Electric Company System and method for magnetization of permanent magnet rotors in electrical machines
US7791238B2 (en) * 2005-07-25 2010-09-07 Hamilton Sundstrand Corporation Internal thermal management for motor driven machinery
US7611339B2 (en) * 2005-08-25 2009-11-03 Baker Hughes Incorporated Tri-line power cable for electrical submersible pump
US7573168B2 (en) 2005-10-24 2009-08-11 General Electric Company Method and apparatus for assembling a permanent magnet pole assembly
JP2007135360A (ja) 2005-11-11 2007-05-31 Sumitomo Electric Ind Ltd モータコア部品及びモータ部品
JP4723595B2 (ja) 2005-12-16 2011-07-13 株式会社日立製作所 ガスタービン用永久磁石発電機ロータ、その製造方法及びガスタービン
JP2007215304A (ja) 2006-02-08 2007-08-23 Tamagawa Seiki Co Ltd ステータ巻線構造
NO324241B1 (no) 2006-02-28 2007-09-17 Smartmotor As Anordning ved elektrisk maskin
US7208854B1 (en) * 2006-03-09 2007-04-24 Hamilton Sundstrand Corporation Rotor cooling system for synchronous machines with conductive sleeve
US8072109B2 (en) * 2006-03-16 2011-12-06 Panasonic Corporation Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, and iron core-equipped permanent magnet motor
JP4876661B2 (ja) 2006-03-24 2012-02-15 株式会社デンソー 車両用発電電動装置
JP4697545B2 (ja) 2006-03-31 2011-06-08 アイシン・エィ・ダブリュ株式会社 ステータ及び回転電機
US7709988B2 (en) 2006-04-07 2010-05-04 General Electric Company Methods and apparatus for using an electrical machine to transport fluids through a pipeline
JP4716505B2 (ja) 2006-04-10 2011-07-06 日本電産サンキョー株式会社 モータ及びそれを使用した電動機器
JP5013751B2 (ja) 2006-05-30 2012-08-29 東芝機械株式会社 電動機
JP4068653B2 (ja) * 2006-05-31 2008-03-26 山洋電気株式会社 モータ用回転子
ES2638426T3 (es) 2006-06-05 2017-10-20 Mitsubishi Electric Corporation Núcleo dividido y procedimiento de fabricación del mismo, y núcleo de estator
JP5062464B2 (ja) 2006-06-16 2012-10-31 株式会社Ihi モータロータ
US7521835B2 (en) 2006-06-27 2009-04-21 General Electric Company Permanent magnet machine with windings having strand transposition
JP4259548B2 (ja) 2006-07-24 2009-04-30 トヨタ自動車株式会社 モータ用ロータおよびその製造方法
JP2008048502A (ja) 2006-08-11 2008-02-28 Jtekt Corp 電動モータ
JP4737431B2 (ja) * 2006-08-30 2011-08-03 信越化学工業株式会社 永久磁石回転機
JPWO2008044703A1 (ja) 2006-10-12 2010-02-12 三菱電機株式会社 回転電機の固定子およびその固定子の製造方法並びに回転電機の製造方法
JP5055937B2 (ja) * 2006-10-12 2012-10-24 株式会社明電舎 回転電機の巻線絶縁構造
JP4914169B2 (ja) 2006-10-16 2012-04-11 株式会社日立製作所 回転電機
JP4234749B2 (ja) 2006-10-19 2009-03-04 株式会社日立製作所 回転電機、クランク形状の連続巻きコイル、分布巻き固定子及びそれらの形成方法
US7710081B2 (en) 2006-10-27 2010-05-04 Direct Drive Systems, Inc. Electromechanical energy conversion systems
US7400052B1 (en) 2006-11-29 2008-07-15 Active Power, Inc. Transient energy systems and methods for use of the same
US7830062B2 (en) 2006-12-12 2010-11-09 Nidec Corporation Motor having round and angular coils
FR2910196B1 (fr) 2006-12-14 2009-07-24 Mecanique Magnetique Sa Soc D Machine electrique chemisee ou surmoulee
US7791237B2 (en) 2006-12-19 2010-09-07 General Electric Company Fault-tolerant synchronous permanent magnet machine
US20080157622A1 (en) 2007-01-03 2008-07-03 General Electric Company Fault-tolerant permanent magnet machine
JP2008220143A (ja) * 2007-02-09 2008-09-18 Asmo Co Ltd 回転電機のロータ及び回転電機
TWI329814B (en) 2007-03-13 2010-09-01 Keystone Semiconductor Corp Discrete fourier transform apparatus utilizing cooley-tukey algorithm for n-point discrete fourier transform
WO2008113018A1 (en) 2007-03-15 2008-09-18 Direct Drive Systems, Inc. Cooling an electrical machine
US20080238234A1 (en) 2007-03-27 2008-10-02 Hamilton Sundstrand Corporation Segmented permanent magnet rotor for high speed synchronous machines
US7605504B2 (en) 2007-03-28 2009-10-20 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable stator core slot flux paths
US7605503B2 (en) 2007-03-28 2009-10-20 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable stator core slot opening and back iron flux paths
US7541705B2 (en) 2007-03-28 2009-06-02 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable flux paths in stator back iron
US20090009012A1 (en) 2007-07-03 2009-01-08 General Electric Company Assembly and method for magnetization of permanent magnet rotors in electrical machines
JP2009118629A (ja) * 2007-11-06 2009-05-28 Denso Corp 交流モータ
US7573144B1 (en) 2008-02-07 2009-08-11 Direct Drive Systems, Inc. Reconfigurable power system using multiple phase-set electric machines
US7859212B2 (en) 2008-03-03 2010-12-28 Direct Drive Systems, Inc. Electric drive system with redundancy
US20090232664A1 (en) 2008-03-12 2009-09-17 General Electric Permanent magnet motor for subsea pump drive
JP4935799B2 (ja) * 2008-11-17 2012-05-23 株式会社デンソー 回転電機とその回転子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870541A (ja) * 1994-08-30 1996-03-12 Toshiba Corp 永久磁石式回転電機
JPH09149572A (ja) * 1995-09-18 1997-06-06 Toshiba Corp 永久磁石式回転電機
JPH1094202A (ja) * 1996-09-13 1998-04-10 Matsushita Electric Ind Co Ltd 永久磁石モータとロータ着磁器
JP2002136009A (ja) * 2000-10-18 2002-05-10 Toshiba Corp 永久磁石型回転子
JP2003164085A (ja) * 2001-11-29 2003-06-06 Sawafuji Electric Co Ltd 回転電機
JP2004357489A (ja) * 2003-05-28 2004-12-16 Akira Chiba 単方向着磁の永久磁石モータ
JP2007014110A (ja) * 2005-06-30 2007-01-18 Asmo Co Ltd 回転電機
JP2007221877A (ja) * 2006-02-15 2007-08-30 Kokusan Denki Co Ltd 磁石回転子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071763A (ja) * 2017-10-05 2019-05-09 ファナック株式会社 回転子、回転電機及び被覆筒の製造方法
US10903703B2 (en) 2017-10-05 2021-01-26 Fanuc Corporation Rotor, rotating electrical machine and production method of cover tube

Also Published As

Publication number Publication date
US8421297B2 (en) 2013-04-16
EP2378639A2 (en) 2011-10-19
WO2010014642A2 (en) 2010-02-04
US8247938B2 (en) 2012-08-21
KR101771009B1 (ko) 2017-08-24
CA2732275C (en) 2016-06-21
KR101633823B1 (ko) 2016-06-27
EP2378643B1 (en) 2021-09-22
EP2378637A2 (en) 2011-10-19
EP2319158A4 (en) 2012-12-26
CA2732271C (en) 2016-06-21
CA2957201C (en) 2018-01-02
EP2324557A4 (en) 2012-12-12
JP5497033B2 (ja) 2014-05-21
EP2378636A3 (en) 2012-12-12
KR20110053440A (ko) 2011-05-23
EP2324556B1 (en) 2021-04-21
WO2010014647A2 (en) 2010-02-04
US20100171383A1 (en) 2010-07-08
US20100019613A1 (en) 2010-01-28
EP2378628A3 (en) 2012-12-26
CA2732275A1 (en) 2010-02-04
EP2378641A2 (en) 2011-10-19
US20100019598A1 (en) 2010-01-28
EP2365612A3 (en) 2013-06-05
US8179009B2 (en) 2012-05-15
CA2957203C (en) 2018-07-17
US8350432B2 (en) 2013-01-08
EP2319158A2 (en) 2011-05-11
US8415854B2 (en) 2013-04-09
JP5819193B2 (ja) 2015-11-18
EP2324556A4 (en) 2012-12-19
JP2011529679A (ja) 2011-12-08
KR20110048537A (ko) 2011-05-11
EP2365612B1 (en) 2021-09-22
EP2378638A3 (en) 2012-12-12
KR101666233B1 (ko) 2016-10-13
EP2319157A2 (en) 2011-05-11
EP2378640A3 (en) 2012-12-19
EP2378636A2 (en) 2011-10-19
US20100019603A1 (en) 2010-01-28
EP2378628A2 (en) 2011-10-19
US20100019589A1 (en) 2010-01-28
US20100019590A1 (en) 2010-01-28
US20100019626A1 (en) 2010-01-28
US8183734B2 (en) 2012-05-22
US8253298B2 (en) 2012-08-28
EP2378640A2 (en) 2011-10-19
EP2378643A2 (en) 2011-10-19
CA2957201A1 (en) 2010-02-04
US20100019601A1 (en) 2010-01-28
EP2324557B1 (en) 2021-11-10
EP2378638A2 (en) 2011-10-19
US8040007B2 (en) 2011-10-18
CA2732999C (en) 2016-06-21
US20100019600A1 (en) 2010-01-28
WO2010014646A3 (en) 2010-05-06
EP2378643A3 (en) 2012-12-26
KR20110049831A (ko) 2011-05-12
WO2010014642A3 (en) 2010-04-22
US20100019602A1 (en) 2010-01-28
EP2378637A3 (en) 2012-12-12
CA2732999A1 (en) 2010-02-04
JP2011529682A (ja) 2011-12-08
US8310123B2 (en) 2012-11-13
US8237320B2 (en) 2012-08-07
US20100019599A1 (en) 2010-01-28
CA2732271A1 (en) 2010-02-04
EP2324557A2 (en) 2011-05-25
KR20110055578A (ko) 2011-05-25
CA2732998C (en) 2017-03-21
EP2324556A2 (en) 2011-05-25
EP2378639A3 (en) 2012-12-12
US20100019610A1 (en) 2010-01-28
EP2378638B1 (en) 2021-09-22
WO2010014646A2 (en) 2010-02-04
KR101697380B1 (ko) 2017-01-17
WO2010014647A3 (en) 2010-04-22
CA2732998A1 (en) 2010-02-04
JP2011529680A (ja) 2011-12-08
EP2365612A2 (en) 2011-09-14
CA2957203A1 (en) 2010-02-04
EP2378641A3 (en) 2013-01-09
EP2319157A4 (en) 2013-06-05
US20100019609A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5819193B2 (ja) 電気機械のための固定子
WO2010014640A2 (en) Electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708