JP2012115124A - 回転電機のステータ - Google Patents

回転電機のステータ Download PDF

Info

Publication number
JP2012115124A
JP2012115124A JP2011159267A JP2011159267A JP2012115124A JP 2012115124 A JP2012115124 A JP 2012115124A JP 2011159267 A JP2011159267 A JP 2011159267A JP 2011159267 A JP2011159267 A JP 2011159267A JP 2012115124 A JP2012115124 A JP 2012115124A
Authority
JP
Japan
Prior art keywords
press
teeth
stator
width
fit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011159267A
Other languages
English (en)
Inventor
Keiji Kondo
啓次 近藤
Makoto Taniguchi
真 谷口
Takeo Maekawa
武雄 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011159267A priority Critical patent/JP2012115124A/ja
Priority to US13/287,330 priority patent/US20120112600A1/en
Publication of JP2012115124A publication Critical patent/JP2012115124A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

【課題】磁束路ヨークにティースを圧入して形成されたステータコアを有する回転電機のステータにおいて、結合部の十分な保持力を確保しつつ、圧入荷重を低減させ、且つ、結合部周辺の残留圧縮応力を小さくすることにある。
【解決手段】まず、ステータコイル8が分布巻き方式でステータコア7に巻装されている。これによれば、ステータコイル8の荷重を複数のティース10により分担して受け、各結合部30に掛かる負担は小さくなるため、結合部30に必要な保持力は小さくてすみ、圧入代が小さくてすむ。このため、結合部30周辺の残留圧縮応力を小さくできる。また、ティース10と磁束路ヨーク11との径方向接触面31、32の幅a、b、およびティース幅eが、a+b≦e/2の関係を満たす。これにより、圧入荷重を圧入装置の破損を招く虞の生じる上限値よりも低くすることができる。
【選択図】図4

Description

本発明は、自動車やトラック等に搭載される回転電機のステータに関する。また、産業用機器、家庭電化製品等への適用も可能である。
従来より、図11(a)に示すように、回転電機のステータコア100として、先端がロータ101に対向するティース102と、ティース102とは別体で形成されるとともにティース102同士を反ロータ側で磁気的に接続する磁束路ヨーク103とを備えるものがある。
このステータコア100は、磁束路ヨーク103のロータ側に形成された溝104内に、ティース102を圧入して形成されている(特許文献1参照)。
特開2005−73490号公報
ティース102にステータコイル(図示せず)を集中巻き方式で装着する場合、1つのティース102に巻かれるステータコイルの荷重を、その巻かれたティース102のみで支えることになる。
このため、磁束路ヨーク103とティース102とが圧入嵌合されている場合には、ステータコイルの荷重を、1箇所の磁束路ヨーク103とティース102との結合部107で支えなければならず、特に、振動などの外力が回転電機に負荷された場合に、結合部107の保持力(磁束路ヨーク103がティース102を保持する力)が、外力によるステータコイルの振動に対して耐えられず、ティース102が磁束路ヨーク103から外れる虞が考えられる。
また、磁束路ヨーク103にティース102を圧入する際の圧入荷重を減らすべく、ティース102の磁束路ヨーク103に接触する接触面108に凹部109を設けているため(図11(b)参照)、ティース102と磁束路ヨーク103との接触面積が小さくなり、結合部107の保持力が低下する虞がある。
なお、結合部107の保持力を高めるため、圧入代を大きくする方法が考えられるが、圧入代を大きくすると、結合部107周辺の残留圧縮応力が増大してしまい、鉄損が増加するという問題点がある。
すなわち、圧入荷重を低減しようとすると、結合部107の保持力が低下し、結合部107の保持力を高めようとすると、結合部107周辺の残留圧縮応力の増大という問題点が生じる。
そこで、本発明は、磁束路ヨークにティースを圧入して形成されたステータコアを有する回転電機のステータにおいて、結合部の十分な保持力を確保しつつ、圧入荷重を低減させ、且つ、結合部周辺の残留圧縮応力を小さくすることを目的とする。
〔請求項1の手段〕
請求項1に記載の回転電機のステータは、周方向に複数のティースを有するステータコアと、ティースに巻装されるステータコイルとを備える。そして、ステータコアは、先端がロータに対向するティースと、ティースとは別体で形成されるとともにティース同士を反ロータ側で磁気的に接続する磁束路ヨークとを有し、ティースと磁束路ヨークとが圧入嵌合により組み付けられて構成されている。
そして、ステータコイルは、ティースに分布巻き方式により巻装されている。
これによれば、ステータコイルの荷重が1つのティースに集中することがなく、ステータコイルの荷重を複数のティースにより分担して受けることができる。このため、集中巻き方式の場合と比較して、磁束路ヨークとティースとの結合部にかかる負担が少なくなる。したがって、外力に対する結合部の保持力を十分に確保することが可能になる。
この結果、保持力を高めるために圧入代を大きくする必要はないので、残留圧縮応力の増大による鉄損の増加という問題を回避することができる。
また、磁束路ヨークは、ティースを圧入する圧入溝を有し、ティースは、後端側(反ロータ側)に形成されて圧入溝に圧入される圧入部と、圧入部から先端側(ロータに対向する側)に突出するティース脚部とを有する。
そして、圧入部は、後端面に、幅方向の両端部において圧入溝の溝底面に接触する第1の接触面を有し、幅方向の一端部の第1の接触面の幅aは、幅方向の他端部の第1の接触面の幅bと等しく、第1の接触面の幅a、bと、ティース脚部の圧入部側端部のティース幅eとは、
a+b≦e/2
の関係を満たす。
これによれば、圧入荷重を、圧入装置の破損を招く虞の生じる上限値よりも低く抑えることができるとともに、鉄損の増加を一層抑制でき、不必要に効率低下させることはない。
〔請求項2の手段〕
請求項2に記載の回転電機のステータは、圧入部の後端側部におけるティース幅dと、ティース幅eとが、
d≒e
の関係を満たす。
これによれば、ティース自体の質量を小さく設定可能になるため、外力に対する結合部の保持力を十分に確保することができるとともに、回転電機の性能を維持するのに必要な磁束量を確保することができる。
好適には、0.8≦d/e≦1.2の範囲に設定する。
〔請求項3の手段〕
請求項3に記載の回転電機のステータによれば、圧入部は、幅方向の両端面に、圧入溝の溝側面と接触する第2の接触面を有しており、第2の接触面と、ティースの幅方向の中心線とのなす角度αは、
0°<α<45°
を満たす。
これによれば、加工寸法精度が圧入代に与える影響を小さくできる。すなわち、加工寸法精度によって圧入代の不足や圧入代の過多が生じるのを防ぐことができる。このため、圧入代不足による結合部の保持力不足や、圧入代過多による圧入荷重の著しい増加や残留圧縮応力の増大を回避することができる。
〔請求項4の手段〕
請求項4に記載の回転電機のステータは、ティース脚部の先端側部のティース幅W1と、圧入部の先端側部のティース幅W2とが、
W1<W2
の関係を満たす。
これによれば、ティース脚部の先端側部の磁束密度は、圧入部の先端側部の磁束密度よりも小さくなる。
すなわち、圧入により残留圧縮応力を生じる部位である圧入部の先端側部での磁束密度を小さくすることで、鉄損の増加を抑えることができる。
〔請求項5の手段〕
請求項5に記載の回転電機のステータは、磁束路ヨークの径方向の厚さβ2と、圧入溝の深さβ1とが、
β1≦β2/2
の関係を満たす。
これによれば、圧入溝の溝側面と圧入部とが接触する接触面は小さくなり、圧入荷重を低減できる。また、圧入により残留圧縮応力を生じる範囲を小さくできるため鉄損の増加を抑えることができる。また、ティースとの分割面のない磁束路ヨークの範囲を大きくすることで、回転電機の性能を確保するのに必要な磁束量を確保することができる。
回転電機の概略断面図である(実施例)。 ステータコアの平面図である(実施例)。 ステータコアへのステータコイルの巻き方を説明する図である(実施例)。 (a)はステータコアの部分拡大図であり、(b)は(a)の部分拡大図である(実施例)。 鉄損と磁束密度に与える残留圧縮応力の影響を示す図である(実施例)。 径方向接触面の幅(a+b)と、ティース保持力比及び効率比との関係を示す図である(実施例)。 圧入部の後端側部におけるティース幅dとティース脚部の先端側部のティース幅eとの比と、ティース質量及びティース磁束量との関係を示す図である(実施例)。 加工寸法精度のばらつきが圧入代に与える影響を説明する図である(実施例)。 径方向の寸法ばらつきに対するθ方向接触面の圧入代gと、θ方向接触面の角度αとの関係を示す図である(実施例)。 磁束路ヨーク厚さβ2に対する圧入溝の深さβ1の比率と、トルク比及びティース保持力比との関係を示す図である(実施例)。 (a)はステータコアの平面図であり、(b)は(a)の部分拡大図である(従来例)。
本発明を実施するための形態を以下の実施例により詳細に説明する。
〔実施例の構成〕
実施例の回転電機1を、図1〜図10を用いて説明する。
実施例の回転電機1は、3相交流モータであって、回転磁界を発生させるステータ2、ステータ2の内周側に配されて回転磁界により回転するロータ3、ロータ3の回転により回転するモータ出力軸4とを備える(図1参照)。
ステータ2は、ステータコア7とステータコア7に巻装されたステータコイル8とを有し、ステータコイル8に3相交流電流を流すことにより回転磁界を形成し、回転磁界内に配されるロータ3を回転させる。ロータ3は、例えば、表面磁石型(SPM)である。他にも、ロータ3は、埋込磁石型(IPM)、電磁石型、鉄心型等、様々な態様をとり得る。
ステータ2は、積層電磁鋼板により円筒状に形成されたステータコア7にステータコイル8を巻装してなる。ステータコイル8は、3相のコイル(U相コイル、V相コイル、W相コイル)を有している。
ステータコア7は、先端がロータ3に対向するティース10と、ティース10とは別体で形成されるとともにティース10同士を反ロータ側(外周側)で磁気的に接続する磁束路ヨーク11とを有している(図2参照)。
磁束路ヨーク11は、円筒状を呈しており、内周側(ロータ側)に周方向に並ぶ複数のティース10が組み付けられることで、ステータコア7が形成されている。
隣合うティース10同士の間には、ステータコイル8が配置されるスロット12が設けられている。
そして、ステータコイル8は、分布巻き方式でステータコア7に巻装されている。図3では、U相コイル8Uのみを取り上げて、コイルの巻き方を示している。U相コイル8Uは導線の束である集合線で形成されており、ステータコア7の軸方向端面から突出するコイルエンド部15と、スロット12内に収容されるスロット収容部16とを周方向に交互に有している。
そして、例えば、図3に示すように、U相コイル8Uは、スロット収容部16aがスロット12aに収容され、スロット収容部16bがスロット12dに収容され、スロット収容部16aとスロット収容部16bとの間のコイルエンド部15aが2つのスロット12b、12cを跨ぐように巻装される。つまり、スロット12aと12dとの間に存在する3本のティース10a〜10cにコイルエンド部15aが掛かるように巻かれる。なお、V相コイル、W相コイルも同様の態様で巻かれている。
このように、分布巻き方式では、集中巻き方式とは異なり、1つの連続するコイルが1つのティース10に集中的に巻かれるのではなく、複数のティース10に亘って巻かれる。
次に、磁束路ヨーク11とティース10の具体的な構成について以下で説明する。
磁束路ヨーク11は、内周面の周方向に並ぶ複数の圧入溝18を有し、それぞれの圧入溝18にティース10が圧入により組み付けられている(図4参照)。
なお、圧入溝18は、内周側に開口する溝であって、圧入溝18の外周端が溝底面19となっている。そして、圧入溝18は内周側にむかうにつれて、溝幅(周方向の溝の幅)がテーパ状に狭くなっており、溝側面20はテーパ面となっている。また、圧入溝18の開口端部には、圧入溝18の開口端の溝幅よりもわずかに溝幅が狭くされたくびれ部21が設けられている。
ティース10は、磁気突極を形成するものであり、外周側(反ロータ側(ティース10の後端側))に形成されて圧入溝18に圧入される部位となる圧入部22と、圧入部22から内周側(ロータ3に対向する側(ティース10の先端側))に延びるティース脚部23と、ティース脚部23の内周側でティース脚部23よりも幅広に設けられたティースチップ部24とを有する(図4(a)参照)。
圧入部22は、圧入溝18に対応した形状を呈している。そして、くびれ部21に圧入される部分でティース幅が絞られており、その内周側に形成されるティース脚部23のティース幅よりも小さくなっている(図4(b)参照)。
また、ティース脚部23は、圧入部22から内周側に向けて同じ幅(周方向長さ)で延びる直線部25と、直線部25から内周側に向けて徐々に幅が小さくなるテーパ部26とを有している(図4(a)参照)。
そして、ティース10の圧入部22が磁束路ヨーク11の圧入溝18に圧入嵌合されることで、ステータコア7が形成されている。なお、磁束路ヨーク11とティース10とが圧入嵌合している部分を結合部30と呼ぶ。
そして、圧入部22の外周面(後端面)には、幅方向(周方向)の両端部において溝底面19に接触する第1の接触面(以下、径方向接触面31、32と呼ぶ)が設けられている。
圧入溝18の溝底面19には、周方向の中央部に、外径側に凹む凹部33が設けられており、その凹部33の周方向両側が、ティース10との圧入嵌合時に圧入部22の径方向接触面31、32と接触する接触面となっている(図4(b)参照)。
なお、凹部33は、圧入荷重を減らすべく、圧入部22と溝底面19との接触面積を小さくするために設けられている。
また、圧入部22は、周方向の両端面に、圧入溝18の溝側面20と接触する第2の接触面(以下、θ方向接触面36と呼ぶ)を有している。なお、θ方向接触面36は、溝側面20の形状に合わせて、内周側に向かうにつれてティース幅を狭くするようなテーパ面となっており、ティース10の幅方向(周方向)の中心線Xから周方向に所定角度α傾いている(図4(b)参照)。この中心線Xとは、ロータ3の回転軸とティース10の幅方向の中心とを結んだ仮想中心線である。
以上で説明した磁束路ヨーク11とティース10とを圧入嵌合して形成されるステータコア7は、以下の寸法条件(1)〜(5)を満たして形成されている。
(1)径方向接触面31の幅(周方向長さ)を径方向接触面幅a、径方向接触面32の幅(周方向長さ)を径方向接触面幅b、ティース脚部23の圧入部側端部(直線部)のティース幅をティース幅eとすると、径方向接触面幅a、径方向接触面幅b、およびティース幅eは、
a+b≦e/2
の関係を満たしている(図4(b)参照)。
(2)圧入嵌合した状態における圧入部22の外周側部(以下、圧入部後端部38とする)のティース幅dと、ティース脚部23の直線部25のティース幅eとは、
d≒e
の関係を満たしている。好ましくは、d/e〔%〕が80〜120%となるように設けられている(図4(b)参照)。
(3)θ方向接触面36と中心線Xとがなす角度をθ接触面傾斜角αとすると、θ接触面傾斜角αは、0°<α<45°の範囲に設けられている(図4(b)参照)。
なお、この中心線Xとは、ロータ3の回転軸とティース10の幅方向の中心とを結んだ仮想中心線である。
(4)また、ティース脚部23のテーパ部26の内周側部(以下、ティース先端部39とする)のティース幅をティース幅W1、圧入部22の内周側部(くびれ部21に圧入される部分。以下、圧入部先端部40とする)のティース幅をティース幅W2とすると、ティース幅W1とW2は、
W1<W2
の関係を満たしている(図4(a)参照)。
(5)圧入溝18の深さを溝深さβ1、磁束路ヨーク11の径方向の厚さをバックヨーク厚さβ2とすると、溝深さβ1とバックヨーク厚さβ2とは、
β1≦β2/2
の関係を満たしている(図4(a)参照)。
〔実施例の作用効果〕
実施例の回転電機1のステータ2によれば、ステータコイル8は、分布巻き方式でステータコア7に巻装されている。
これによれば、集中巻き方式の場合のようにステータコイル8の荷重が1つのティース10に集中することがなく、ステータコイル8の荷重を複数のティース10により分担して受けることができる。
このため、集中巻き方式の場合と比較して、磁束路ヨーク11とティース10との結合部30にかかる負担が少なくなる。つまり、外力によりステータコイル8が振動した場合でも、荷重が複数のティース10に分散されるため、各結合部30に掛かる負担は小さい。
このため、外力により回転電機1が振動した場合でも、ステータコイル8の振動による衝撃を複数の結合部30が分担して受けることになる。したがって、各結合部30に必要な保持力は少なくてすむ。結果として、外力に対する結合部30の保持力を確保することが容易になる。つまり、必要な結合部30の保持力が過大にならないため、圧入代を大きくして保持力を高める必要はなく、圧入代が小さくても必要な結合部30の保持力を得ることが可能となる。
なお、圧入代を大きくすると、圧入嵌合された状態における結合部30周辺の残留圧縮応力が増大する。そして、図5に示すように、残留圧縮応力が増大すると、同じ磁束密度でも鉄損が増加する傾向にある。
つまり、同じ磁束密度でも、残留圧縮応力が無い場合(図5の破線(圧縮応力 無)参照)は、鉄損が小さく、残留圧縮応力がある場合(図5の実線(圧縮応力 有(大))、一点鎖線(圧縮応力 有(小))参照)は、鉄損が大きい。また、残留圧縮応力が大きいほど(図5の実線、一点鎖線参照)、同じ磁束密度でも鉄損が大きい。
したがって、本実施例では圧入代を小さく抑えることができるので、結合部30周辺の残留圧縮応力を低減し、鉄損の増加を抑えることができる。
また、本実施例では、径方向接触面幅a、径方向接触面幅b、およびティース幅eが、
a+b≦e/2
の関係を満たしている(寸法条件(1))。
図6に示すように、径方向接触面幅aと径方向接触面幅bとの和(a+b)が大きいほど、圧入荷重は大きくなる。
そして、圧入荷重を圧入装置の破損を招く虞の生じる上限値よりも低く抑えるためには、a+bをe/2以下にする必要がある。
すなわち、a+b≦e/2の関係を満たしていれば、圧入荷重を圧入装置の破損を招く虞の生じる上限値よりも低くすることができる。
加えて、ティース10の嵌合後にステータコア7に生じる残留応力の増加を抑えることができる。このため、不必要に鉄損を増加させることがないため、回転電機1の効率(入力に対する出力の効率)の低下を最小限に抑えることができる。
図6に、結合部30でのティース保持力比とa+b量との関係、効率比とa+b量との関係とを示す。なお、ティース保持力比とは、必要保持力を1.0とした場合の保持力の比率であり、効率比とは、ステータコア7に残留応力がない場合の効率を1.0とした場合の効率の比率である。
図6に示すように、a+b=eの場合、ティース保持力が必要保持力の1.5倍にまで上昇してしまい、保持力が過剰になる。この場合、圧入装置の大型化が避けられず不経済である。
また、図6に示すように、効率は、a+bがe/2を超えるあたりから急激に悪化し、a+b=eのときには、2割程度低下する。なお、この効率低下は、前述のとおり、圧入部22と圧入溝18との間の接触面積増大に伴う残留応力増大による鉄損の増加に起因する。
以上のように、a+b≦e/2とすることで、ティース保持力の確保と効率の確保を両立させることができる。
また、本実施例では、圧入嵌合した状態における圧入部後端部38のティース幅dと、ティース脚部23の直線部25のティース幅eとが、
d≒e
の関係を満たしている(寸法条件(2))。
好ましくは、d/e〔%〕が80〜120%となるように設けられている。
図7に示すように、d/e〔%〕の値が大きくなるにつれて、ティース質量は大きくなる。つまり、直線部25のティース幅eを固定したまま、圧入部後端部38のティース幅dを大きくしていくと、ティース10自体の質量は大きくなる(図7の実線(ティース質量)参照)。
一方、d/e〔%〕を小さくすると、磁束量が低下する。つまり、直線部25のティース幅eに対して、圧入部後端部38のティース幅dを小さくしすぎると、磁束量が低下してしまう(図7の破線(ティース磁束量)参照)。
ティース質量が小さくなることは、結合部30での必要な保持力を小さくできるという観点から好ましい。つまり、外力に対する保持力の確保が容易になる。しかし、磁束量が低下してしまっては、回転電機1の性能を維持するのに必要な磁束量を得る観点からは好ましくない。
図7によれば、d/e〔%〕が120%を超えると、ティース質量が、結合部30での保持力確保の観点から定めたティース質量の上限値を越えてしまう。
また、d/e〔%〕が80%よりも低くなると、磁束量が、回転電機1の性能(例えば、必要トルク)確保の観点から定めた磁束量の下限値よりも低くなり、磁束量が著しく低下してしまう。
そこで、圧入部後端部38のティース幅dと、ティース脚部23の直線部25のティース幅eとの関係をd/e〔%〕=80〜120%(すなわち、d≒e)とするならば、ティース質量を小さくして外力に対する結合部30の保持力を十分に確保することができるとともに、回転電機1の性能を維持するのに必要な磁束量をも確保することができる。
また、本実施例では、θ接触面傾斜角αが0°<α<45°の範囲に設けられている(寸法条件(3))。
圧入部22の加工の際に、径方向の加工誤差δが生じた場合、圧入溝18の溝幅方向に対する圧入代が変化してしまう。
例えば、図8の破線で示す圧入部22の形状が設計形状であって、加工寸法精度のばらつきによって、径方向内側にδ分の加工誤差が生じた場合、圧入部22の幅方向(周方向)への寸法が大きくなってしまい、結果として圧入代がgだけ大きくなることになる(図8の実線参照)。
図9は、この加工誤差δに対する圧入代の変化量gの割合と、θ接触面傾斜角αとの関係を示したものである。図9によれば、θ接触面傾斜角αが小さいほど、加工誤差δに対する圧入代の変化量gの割合が小さいことがわかる。
つまり、θ接触面傾斜角αが小さいほど、圧入部22の加工誤差δが圧入代に与える影響を小さくすることができる。したがって、θ接触面傾斜角αを45°以上と大きくするのは好ましくなく、θ接触面傾斜角αは0°<α<45°の範囲に設けられている。
これによれば、加工寸法精度によって圧入代の不足や圧入代の過多が生じるのを防ぐことができる。このため、圧入代不足による結合部30の保持力不足や、圧入代過多による圧入荷重の著しい増加や残留圧縮応力の増大を回避することができる。
また、本実施例では、ティース先端部39のティース幅W1と、圧入部先端部40のティース幅W2とが、
W1<W2
の関係を満たしている(寸法条件(4))。
これによれば、圧入部先端部40からティース先端部39の区間のティース10内の磁束路において、ティース先端部39の磁束密度は、圧入部先端部40の磁束密度よりも小さくなる。
図5によれば、残留圧縮応力が大きいほど鉄損は増加する。加えて、鉄損は磁束密度が大きいほど増加する。
すなわち、本実施例では、W1<W2として、圧入により残留圧縮応力を生じる部位である圧入部先端部40での磁束密度を低くすることで、鉄損の増加を抑えることができる。
なお、ティース先端部39の磁束密度は高くなるが、この部位では残留圧縮応力が発生しないため、残留圧縮応力による鉄損の増加を抑えることができる。
また、本実施例では、圧入溝18の深さである溝深さβ1と、磁束路ヨーク11の径方向の厚さであるバックヨーク厚さβ2とが、
β1≦β2/2
の関係を満たしている(寸法条件(5))。
図10に示すように、β1/β2〔%〕が大きくなるにしたがって、回転電機1のトルクが低下する。つまり、バックヨーク厚さβ2に対して溝深さβ1が占める割合が大きくなるにしたがって、トルクが低下する。
ティース10と磁束路ヨーク11をそれぞれ別体として、圧入嵌合により組み付けてなるステータコア7の場合、磁束路ヨーク11を流れる磁束が、ティース10と磁束路ヨーク11との分割面の影響を受けて、磁気特性が悪化し、トルクが低下する場合がある。とくに、分割面が大きいほど、この影響は大きくなる。
したがって、β1/β2〔%〕を小さくする、つまり、バックヨーク厚さβ2に対して溝深さβ1が占める割合を小さくすれば、トルクの低下を抑えることができる。
そこで、本実施例では、β1/β2〔%〕を50%以下にしている(β1≦β2/2)。これによれば、回転電機1の性能(必要トルク)を確保するのに必要な磁束量を確保することができる。
また、溝深さβ1を小さくすることで、θ方向接触面36を小さくできるため、圧入荷重を低減できる。また、圧入により残留圧縮応力を生じる範囲を小さくできるため鉄損の増加を抑えることができる。
なお、結合部30での保持力確保の観点から、β1/β2〔%〕は20%以上にすることが好ましい。以下、この点を図10から具体的に説明する。
図10に、結合部30でのティース保持力比とβ1/β2〔%〕との関係、トルク比とβ1/β2〔%〕との関係とを示す。なお、トルク比とは、β1/β2〔%〕が20%のときのトルクを1.0とした場合の効率の比率である。
図10に示すように、β1/β2が20%から50%に増加すると、トルクは1割程度減少してしまう。また、β1/β2が50%を超えると、ティース保持力が必要保持力の1.5倍を超えてしまい、保持力が過剰になる。
従って、ティース保持力の確保とトルクの確保を両立させる観点からは、β1/β2〔%〕が20%以上50%以下であることが好ましい。
〔変形例〕
本発明の実施態様は、実施例に限定されず種々の変形例を考えることができる。
例えば、回転電機1は3相交流モータであったが、モータに限らず、例えば、発電機であってもよい。なお、発電機の場合、回転電機1の性能を例えば発電量で表すことができる。
また、実施例のモータは内側にロータ3を有するインナーロータタイプであったが、アウターロータタイプのものに本発明のステータ2を適用してもよい。
また、実施例のステータ2は、寸法条件(1)〜(5)の全てを満たす構造であったが、少なくとも寸法条件(1)を満たしていればよい。ただし、寸法条件(1)〜(5)の全てを満足すれば最良のステータ2を構成できることは言うまでもない。
1 回転電機
2 ステータ
3 ロータ
7 ステータコア
8 ステータコイル
10 ティース
11 磁束路ヨーク
18 圧入溝
19 溝底面
20 溝側面
22 圧入部
23 ティース脚部
25 直線部(ティース脚部の圧入部側端部)
30 結合部
31 径方向接触面(第1の接触面)
32 径方向接触面(第1の接触面)
36 θ方向接触面(第2の接触面)
38 圧入部後端部(圧入部の後端側部)
39 ティース先端部(ティース脚部の先端側部)
40 圧入部先端部(圧入部の先端側部)
a 径方向接触面31の幅
b 径方向接触面32の幅
e 直線部25のティース幅
d 圧入部後端部38のティース幅
α θ接触面傾斜角
W1 ティース先端部39のティース幅
W2 圧入部先端部40のティース幅
β1 圧入溝18の溝深さ
β2 バックヨーク厚さ(磁束路ヨーク11の径方向の厚さ)

Claims (5)

  1. 周方向に複数のティースを有するステータコアと、
    前記ティースに巻装されるステータコイルとを備え、
    前記ステータコアは、先端がロータに対向する前記ティースと、前記ティースとは別体で形成されるとともに前記ティース同士を反ロータ側で磁気的に接続する磁束路ヨークとを有し、前記ティースと前記磁束路ヨークとが圧入嵌合により組み付けられてなる回転電機のステータであって、
    前記ステータコイルは、前記ティースに分布巻き方式により巻装されており、
    前記磁束路ヨークは、前記ティースを圧入する圧入溝を有し、
    前記ティースにおいて、前記ロータに対向する側を先端側、反ロータ側を後端側とすると、
    前記ティースは、後端側に形成されて前記圧入溝に圧入される圧入部と、該圧入部から先端側に突出するティース脚部とを有し、
    前記圧入部は、後端面に、幅方向の両端部において前記圧入溝の溝底面に接触する第1の接触面を有し、
    幅方向の一端部の前記第1の接触面の幅aは、幅方向の他端部の前記第1の接触面の幅bと等しく、前記第1の接触面の幅a、bと、前記ティース脚部の圧入部側端部のティース幅eとは、
    a+b≦e/2
    の関係を満たすことを特徴とする回転電機のステータ。
  2. 請求項1に記載の回転電機のステータにおいて、
    前記圧入部の後端側部におけるティース幅dと、前記ティース幅eとは、
    d≒e
    の関係を満たし、好ましくは0.8≦d/e≦1.2を満たすことを特徴とする回転電機のステータ。
  3. 請求項1または2に記載の回転電機のステータにおいて、
    前記圧入部は、幅方向の両端面に、前記圧入溝の溝側面と接触する第2の接触面を有しており、
    前記第2の接触面と、前記ティースの幅方向の中心線とのなす角度αは、
    0°<α<45°
    を満たすことを特徴とする回転電機のステータ。
  4. 請求項1〜3のいずれか1つに記載の回転電機のステータにおいて、
    前記ティース脚部の先端側部のティース幅W1と、前記圧入部の先端側部のティース幅W2とは、
    W1<W2
    の関係を満たすことを特徴とする回転電機のステータ。
  5. 請求項1〜4のいずれか1つに記載の回転電機のステータにおいて、
    前記磁束路ヨークの径方向の厚さβ2と、前記圧入溝の深さβ1とは、
    β1≦β2/2
    の関係を満たすことを特徴とする回転電機のステータ。
JP2011159267A 2010-11-05 2011-07-20 回転電機のステータ Withdrawn JP2012115124A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011159267A JP2012115124A (ja) 2010-11-05 2011-07-20 回転電機のステータ
US13/287,330 US20120112600A1 (en) 2010-11-05 2011-11-02 Stator for electric rotating machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010248612 2010-11-05
JP2010248612 2010-11-05
JP2011159267A JP2012115124A (ja) 2010-11-05 2011-07-20 回転電機のステータ

Publications (1)

Publication Number Publication Date
JP2012115124A true JP2012115124A (ja) 2012-06-14

Family

ID=46018950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011159267A Withdrawn JP2012115124A (ja) 2010-11-05 2011-07-20 回転電機のステータ

Country Status (2)

Country Link
US (1) US20120112600A1 (ja)
JP (1) JP2012115124A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118744A (ja) * 2015-12-25 2017-06-29 サンデンホールディングス株式会社 コンプレッサ用モータ及びそれを備えたコンプレッサ
JP2019022425A (ja) * 2017-07-21 2019-02-07 三菱電機株式会社 ステータコア、ステータコアの製造装置、ステータコアの製造方法、電動機および送風機
WO2021045383A1 (ko) * 2019-09-04 2021-03-11 엘지전자 주식회사 스테이터
WO2024127838A1 (ja) * 2022-12-13 2024-06-20 パナソニックIpマネジメント株式会社 ステータコア及びモータ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015094103A1 (en) * 2013-12-20 2015-06-25 Sibbhultsverken Ab Stator for an electric machine
TWI517528B (zh) * 2014-07-01 2016-01-11 Victory Ind Corp 製造交流發電機定子繞組的方法
TWI517530B (zh) 2014-07-01 2016-01-11 Victory Ind Corp Alternator stator windings and stator windings
TWI517524B (zh) * 2014-07-01 2016-01-11 Victory Ind Corp 交流發電機定子及定子繞組
JP6787257B2 (ja) * 2017-06-06 2020-11-18 株式会社デンソー 回転電機
FR3082376B1 (fr) * 2018-06-07 2020-07-17 Moteurs Leroy-Somer Stator de machine electrique tournante
TWI723493B (zh) * 2019-08-14 2021-04-01 財團法人工業技術研究院 組合式馬達定子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102204A (ja) * 1972-04-13 1973-12-22
JPH1146462A (ja) * 1997-07-25 1999-02-16 Toshiba Corp 電動機の固定子
JPH11252842A (ja) * 1998-02-27 1999-09-17 Hitachi Ltd コイル成形体、その製造方法、コア、その製造方法および回転機
JP2001128394A (ja) * 1999-10-25 2001-05-11 Hitachi Ltd 回転電機
JP2006524031A (ja) * 2003-04-15 2006-10-19 ホガナス アクチボラゲット 電気機械用コア・バック及びその製造方法
JP2007104782A (ja) * 2005-10-03 2007-04-19 Denso Corp 回転電機
US20100019613A1 (en) * 2008-07-28 2010-01-28 Direct Drive Systems, Inc. Stator for an electric machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2308028A (en) * 1942-01-28 1943-01-12 Westinghouse Electric & Mfg Co Salient-pole tightening means
US3445702A (en) * 1967-06-29 1969-05-20 Reliance Electric & Eng Co Dynamoelectric machine stator yoke with keyed salient poles
FR2184602B1 (ja) * 1972-05-18 1976-11-05 Siemens Ag
DE19538483A1 (de) * 1995-10-17 1997-04-24 Bosch Gmbh Robert Verfahren zum Herstellen einer Fügeverbindung, insbesondere zwischen Erregerpolen und Polgehäuse einer Elektromaschine und nach dem Verfahren hergestellte Maschine
EP1416608A1 (en) * 2001-08-09 2004-05-06 Honda Giken Kogyo Kabushiki Kaisha Stator and method for manufacturing stator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102204A (ja) * 1972-04-13 1973-12-22
JPH1146462A (ja) * 1997-07-25 1999-02-16 Toshiba Corp 電動機の固定子
JPH11252842A (ja) * 1998-02-27 1999-09-17 Hitachi Ltd コイル成形体、その製造方法、コア、その製造方法および回転機
JP2001128394A (ja) * 1999-10-25 2001-05-11 Hitachi Ltd 回転電機
JP2006524031A (ja) * 2003-04-15 2006-10-19 ホガナス アクチボラゲット 電気機械用コア・バック及びその製造方法
JP2007104782A (ja) * 2005-10-03 2007-04-19 Denso Corp 回転電機
US20100019613A1 (en) * 2008-07-28 2010-01-28 Direct Drive Systems, Inc. Stator for an electric machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118744A (ja) * 2015-12-25 2017-06-29 サンデンホールディングス株式会社 コンプレッサ用モータ及びそれを備えたコンプレッサ
JP2019022425A (ja) * 2017-07-21 2019-02-07 三菱電機株式会社 ステータコア、ステータコアの製造装置、ステータコアの製造方法、電動機および送風機
WO2021045383A1 (ko) * 2019-09-04 2021-03-11 엘지전자 주식회사 스테이터
KR20210028425A (ko) * 2019-09-04 2021-03-12 엘지전자 주식회사 스테이터
KR102391686B1 (ko) * 2019-09-04 2022-04-28 엘지전자 주식회사 스테이터
AU2020342033B2 (en) * 2019-09-04 2023-11-23 Lg Electronics Inc. Stator
WO2024127838A1 (ja) * 2022-12-13 2024-06-20 パナソニックIpマネジメント株式会社 ステータコア及びモータ

Also Published As

Publication number Publication date
US20120112600A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP2012115124A (ja) 回転電機のステータ
US8760027B2 (en) Stator
US9419481B2 (en) Rotary electric machine
JP5902563B2 (ja) 回転子およびそれを用いた回転電機
US9136747B2 (en) Hybrid excitation rotating electrical machine
JP4886624B2 (ja) 永久磁石式回転電機、及び永久磁石式回転電機システム
JP5958502B2 (ja) 回転子およびそれを用いた回転電機
WO2013121611A1 (ja) ロータコア、モータ、およびモータの製造方法
WO2014034344A1 (ja) 回転電機
JP5617313B2 (ja) 回転電気機械の組み立て方法
US9385567B2 (en) Rotating electric machine
JP5347588B2 (ja) 埋め込み磁石式モータ
JP2008278553A (ja) 回転電機の回転子及び回転電機
JP6048191B2 (ja) マルチギャップ型回転電機
JP7112340B2 (ja) 回転電機のロータおよび回転電機
JP6406355B2 (ja) ダブルステータ型回転機
JP2014045634A (ja) ロータ及びこのロータを備える回転電機
JP2009118629A (ja) 交流モータ
JP2015228730A (ja) 回転電機
JP5390752B2 (ja) 埋め込み磁石モータ
JP2017055560A (ja) 永久磁石式回転電機
JP2011172359A (ja) 分割型回転子及び電動機
JP5623147B2 (ja) 外転型回転電機
JP2015220846A (ja) 回転電機の回転子
JP5884463B2 (ja) 回転電機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20141015