BR102021016559A2 - Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola - Google Patents

Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola Download PDF

Info

Publication number
BR102021016559A2
BR102021016559A2 BR102021016559-6A BR102021016559A BR102021016559A2 BR 102021016559 A2 BR102021016559 A2 BR 102021016559A2 BR 102021016559 A BR102021016559 A BR 102021016559A BR 102021016559 A2 BR102021016559 A2 BR 102021016559A2
Authority
BR
Brazil
Prior art keywords
map
predictive
agricultural
control
values
Prior art date
Application number
BR102021016559-6A
Other languages
English (en)
Inventor
Nathan R. Vandike
Bhanu Kiran Reddy Palla
Nathan Greuel
Original Assignee
Deere & Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deere & Company filed Critical Deere & Company
Publication of BR102021016559A2 publication Critical patent/BR102021016559A2/pt

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • A01B79/005Precision agriculture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Um ou mais mapas de informação são obtidos por uma máquina de trabalho agrícola. O um ou mais mapas de informação mapeiam um ou mais valores de característica agrícola em diferentes locais geográficos de um campo. Um sensor in-situ na máquina de trabalho agrícola sensoreia uma característica agrícola quando a máquina de trabalho agrícola se move através do campo. Um gerador de mapa preditivo gera um mapa preditivo que prediz uma característica agrícola preditiva em diferentes locais no campo com base em uma relação entre os valores no um ou mais mapas de informação e a característica agrícola sensoreada pelo sensor in-situ. O mapa preditivo pode ser fornecido e usado no controle de máquina automático.

Description

MÁQUINA DE TRABALHO AGRÍCOLA, E, MÉTODO IMPLEMENTADO POR COMPUTADOR PARA CONTROLAR UMA MÁQUINA DE TRABALHO AGRÍCOLA CAMPO DA DESCRIÇÃO
[001] A presente descrição se refere a máquinas agrícolas, máquinas de exploração florestal, máquinas de construção, e máquinas de cultivo de gramados.
FUNDAMENTOS
[002] Existe uma grande variedade de tipos diferentes de máquinas agrícolas. Algumas máquinas agrícolas incluem colheitadeiras, tais como colheitadeiras combinadas, colheitadeiras de cana-de-açúcar, colheitadeiras de algodão, colheitadeiras de forragem autopropulsionadas, e ceifadeiras alinhadoras. Algumas colheitadeiras podem também ser providas com tipos diferentes de cabeças para colher tipos diferentes de cultivos.
[003] Quando uma colheitadeira se desloca através de, e completa uma operação de colheita, os subprodutos da operação de colheita, chamados de material diferente de grão (MOG), são dispersados pela colheitadeira agrícola através do campo.
[004] A discussão acima é meramente provida para a informação geral dos fundamentos e não é destinada a ser usada como um auxílio na determinação do escopo da matéria reivindicada.
SUMÁRIO
[005] Um ou mais mapas de informação são obtidos por uma máquina de trabalho agrícola. O um ou mais mapas de informação mapeiam um ou mais valores de característica agrícola em diferentes locais geográficos de um campo. Um sensor in-situ na máquina de trabalho agrícola sensoreia uma característica agrícola conforme a máquina de trabalho agrícola se move através do campo. Um gerador de mapa preditivo gera um mapa preditivo que prediz uma característica agrícola preditiva em diferentes locais no campo com base em uma relação entre os valores no um ou mais mapas de informação e a característica agrícola sensoreada pelo sensor in-situ. O mapa preditivo pode ser fornecido e usado no controle de máquina automático. Este sumário é provido para apresentar uma seleção de conceitos de uma forma simplificada, que serão mais detalhadamente descritos abaixo na descrição detalhada. Este sumário não é destinado a identificar características importantes ou características essenciais da matéria reivindicada, nem é destinado a ser usado como um auxílio na determinação do escopo da matéria reivindicada. A matéria reivindicada não é limitada aos exemplos que solucionam qualquer ou todas das desvantagens notadas nos fundamentos.
BREVE DESCRIÇÃO DOS DESENHOS
[006] A figura 1 é uma ilustração simbólica parcial, esquemática parcial, de um exemplo de uma colheitadeira combinada.
[007] A figura 2 é um diagrama de blocos mostrando algumas porções de uma colheitadeira agrícola em mais detalhe, de acordo com alguns exemplos da presente descrição
[008] As figuras 3A-3B (coletivamente referidas aqui como a figura 3) mostram um fluxograma ilustrando um exemplo de operação de uma colheitadeira agrícola na geração de um mapa.
[009] A figura 4 é um diagrama de blocos mostrando um exemplo de um gerador de modelo preditivo e um gerador de mapa preditivo.
[0010] A figura 5 é um fluxograma mostrando um exemplo de operação de uma colheitadeira agrícola na recepção de um mapa de índice vegetativo, de umidade e/ou topográfico, detectando uma característica de resíduo, e a geração de um mapa de resíduo preditivo funcional para uso no controle da colheitadeira agrícola durante uma operação de colheita.
[0011] A figura 6 é um diagrama de blocos mostrando um exemplo de um gerador de zona de controle.
[0012] A figura 7 é um fluxograma ilustrando um exemplo da operação do gerador de zona de controle, mostrado na figura 6.
[0013] A figura 8 ilustra um fluxograma mostrando um exemplo de operação de um sistema de controle na seleção de um valor de regulagem alvo para controlar uma colheitadeira agrícola.
[0014] A figura 9 é um diagrama de blocos mostrando um exemplo de um controlador de interface de operador.
[0015] A figura 10 é um fluxograma ilustrando um exemplo de um controlador de interface de operador.
[0016] A figura 11 é uma ilustração simbólica mostrando um exemplo de uma exibição de interface de operador.
[0017] A figura 12 é um diagrama de blocos mostrando um exemplo de uma colheitadeira agrícola em comunicação com um ambiente de servidor remoto.
[0018] As figuras 13 a 15 mostram exemplos de dispositivos móveis que podem ser usados em uma colheitadeira agrícola.
[0019] A figura 16 é um diagrama de blocos mostrando um exemplo de um ambiente de computação que pode ser usado em uma colheitadeira agrícola.
DESCRIÇÃO DETALHADA
[0020] Para as finalidades de promover uma compreensão dos princípios da presente invenção, referência será agora feita aos exemplos ilustrados nos desenhos, e linguagem específica será usada para descrever os mesmos. Será entendido, não obstante, que uma limitação do escopo da invenção não é pretendida. Quaisquer alterações e outras modificações aos dispositivos descritos, os sistemas, métodos, e qualquer outra aplicação dos princípios da presente invenção são totalmente contempladas como ocorreriam normalmente a uma pessoa especializada na técnica à qual a invenção se relaciona. Em particular, é totalmente contemplado que as características, componentes, etapas, ou uma combinação dos mesmos, descritos com relação a um exemplo, podem ser combinados com as características, componentes, etapas, ou uma combinação dos mesmos, descritos com relação a outros exemplos da presente invenção.
[0021] A presente descrição se refere ao uso de dados in-situ simultaneamente com uma operação agrícola, em combinação com dados preditivos ou anteriores, para gerar um mapa preditivo, tal como um mapa de resíduo preditivo. Em alguns exemplos, o mapa preditivo pode ser usado para controlar uma máquina de trabalho agrícola, tal como uma colheitadeira agrícola para espalhar resíduo através de um campo uniformemente.
[0022] O espalhamento de resíduo de maneira uniforme pode aumentar a produção global de um campo. A cobertura de resíduo não uniforme pode causar uma variedade de diferentes problemas. Por exemplo, os nutrientes no resíduo serão concentrados sob as bandas de alto resíduo. Ou, por exemplo, pestes, tais como insetos, lesmas, e roedores residem nas maiores pilhas de resíduo. Ou, por exemplo, sementes de ervas daninhas e grão perdidos através da combinada serão concentrados nas manchas residuais. Ou, por exemplo, a efetividade de herbicida será comprometida, porque os herbicidas são bloqueados de chegar ao solo por manchas residuais. Ou, por exemplo, amontoados ou pilhas de resíduo podem reduzir o desempenho de uma plantadora porque os abridores de semente não podem cortar através de resíduo excessivo, e sementes não são plantadas no solo. Ou, por exemplo, a cobertura de resíduo não uniforme pode também causar condições não uniformes de temperatura e umidade do solo. O solo sob áreas de mais resíduo serão mais frias por vários graus e serão mais úmidas do que o solo nu, causando diferenças no desenvolvimento do cultivo.
[0023] O desempenho de um espalhador de resíduo em uma colheitadeira agrícola pode ser prejudicialmente afetado com base em um número de diferentes critérios. Por exemplo, as áreas com variância em vegetação, tal como intensidade de ervas daninhas ou as plantas de cultivo, podem ter efeitos prejudiciais sobre a operação de espalhamento de resíduo. A vegetação aumentada pode elevar a massa de resíduo sendo espalhada pela colheitadeira agrícola.
[0024] Ou, por exemplo, as características topográficas afetam a orientação da colheitadeira agrícola (por exemplo, balanço e rolagem) conforme ela se desloca sobre o terreno. Essa orientação da colheitadeira agrícola afeta a maneira na qual a colheitadeira espalha resíduo através do campo. Por exemplo, quando a colheitadeira agrícola rola ou para o lado esquerdo ou direito, o lado de colina ascendente pode ter uma menor distância de espalhamento de resíduo.
[0025] Ou, por exemplo, áreas com variância em umidade de vegetação, tal como umidade na erva daninha e nas plantas de cultivo, podem ter efeitos prejudiciais sobre a operação de espalhamento de resíduo. Por exemplo, material tendo uma mais alta umidade pode se espalhar em uma menor largura devido à elevada fricção no sistema de resíduo ou devido à elevada massa do material. Ou, em alguns casos, o material tendo uma mais alta umidade pode se espalhar para mais longe por causa da elevada inércia do material, que resiste aos efeitos da resistência de ar ou do vento.
[0026] Um mapa de índice vegetativo ilustrativamente mapeia valores de índice vegetativo (que podem ser indicativos de crescimento vegetativo) através de diferentes locais geográficos em um campo de interesse. Um exemplo de um índice vegetativo inclui um índice de vegetação de diferença normalizado (NDVI). Existem muitos outros índices vegetativos que estão dentro do escopo da presente descrição. Em alguns exemplos, um índice vegetativo pode ser derivado de leituras de sensor de uma ou mais bandas de radiação eletromagnética refletida pelas plantas. Sem limitações, essas bandas podem ser nas porções de microondas, infravermelhas, visíveis, ou ultravioletas do espectro eletromagnético.
[0027] Um mapa de índice vegetativo pode ser usado para identificar a presença e local de vegetação. Em alguns exemplos, esses mapas permitem que ervas daninhas sejam identificadas e geograficamente referenciadas em uma presença de solo nu, resíduo de cultivo, ou outras plantas, incluindo o cultivo ou outras ervas daninhas. Por exemplo, no final de uma estação de crescimento, quando um cultivo está maduro, as plantas de cultivo podem mostrar um reduzido nível de vegetação viva em crescimento. Todavia, as ervas daninhas frequentemente persistem em um estado de crescimento depois da maturidade do cultivo. Portanto, se um mapa de índice vegetativo for gerado relativamente tarde na estação de crescimento, o mapa de índice vegetativo pode ser indicativo do local de ervas daninhas no campo.
[0028] Um mapa topográfico ilustrativamente mapeia elevações do solo através de diferentes locais geográficos em um campo de interesse. Uma vez que a inclinação do solo é indicativa de uma alteração em elevação, a provisão de dois ou mais valores de elevação permite o cálculo de inclinação através das áreas que têm conhecidos valores de elevação. A maior granulosidade de inclinação pode ser realizada por se ter mais áreas com conhecidos valores de elevação. Quando uma colheitadeira agrícola se desloca através do terreno em conhecidas direções, o balanço e rolagem da colheitadeira agrícola podem ser determinados com base na inclinação do solo (isto é, áreas de alteração de elevação). As características topográficas, conforme referidas abaixo, podem incluir, mas não são limitadas a, a elevação, inclinação (por exemplo, incluindo a orientação de máquina com relação à inclinação), e perfil do solo (por exemplo, aspereza).
[0029] Um mapa de umidade de vegetação ilustrativamente mapeia a umidade de vegetação através de diferentes locais geográficos em um campo de interesse. Em um exemplo, a umidade de vegetação pode ser sensoreada antes de uma operação de colheita por um veículo aéreo não tripulado (UAV) equipado com um sensor de umidade. Conforme o UAV se desloca através do campo, as leituras de umidade de vegetação são geograficamente posicionadas para criar um mapa de umidade de vegetação. Esse é somente um exemplo e o mapa de umidade de vegetação pode ser criado também de outras maneiras. Por exemplo, a umidade de vegetação através de um campo pode ser predita com base nas condições climáticas, tais como precipitação, temperatura, ou vento, as características de superfície, tais como topografia ou umidade do solo, ou combinações dos mesmos. Em alguns exemplos, o mapa de umidade de vegetação pode ser gerado por subtração da diferença entre evapotranspiração potencial e umidade para determinar qualquer déficit. Em um tal método, as características climáticas, tais como a precipitação e temperatura, bem como os índices de umidade de vegetação, previamente calculados, podem ser usadas como entradas
[0030] A presente discussão, assim, prossegue com relação a sistemas que recebem um mapa de informação predito ou gerado com base em uma operação anterior e também usam um sensor in-situ para detectar a variável indicativa de um ou mais de uma característica agrícola, tal como uma característica de resíduo durante uma operação de colheita. Os sistemas geram um modelo que modela uma relação entre os valores no mapa de informação e os valores de saída do sensor in-situ. O modelo é usado para gerar um mapa preditivo funcional que prediz, por exemplo, as características de resíduo em diferentes locais no campo. O mapa preditivo funcional, gerado durante a operação de colheita, pode ser apresentado a um operador ou a outro usuário ou usado em automaticamente controlar uma colheitadeira agrícola durante a operação de colheita ou ambos. O mapa preditivo funcional pode ser usado para controlar o subsistema de manipulação de resíduo ou outros componentes de uma colheitadeira agrícola.
[0031] A figura 1 é uma ilustração parcialmente simbólica, parcialmente esquemática, de uma colheitadeira agrícola autopropulsionada 100. No exemplo ilustrado, a colheitadeira agrícola 100 é uma colheitadeira combinada. Além disso, embora colheitadeiras combinadas sejam providas como exemplos por toda a presente descrição, será apreciado que a presente descrição é também aplicável a outros tipos de colheitadeiras, tais como colheitadeiras de algodão, colheitadeiras de cana-de-açúcar, colheitadeiras de forragem autopropulsionadas, ceifadeiras alinhadoras, ou outras máquinas de trabalho agrícolas. Consequentemente, a presente invenção é destinada a compreender os vários tipos de colheitadeiras conforme descritas e não é, assim, limitada às colheitadeiras combinadas. Além disso, a presente invenção é dirigida a outros tipos de máquinas de trabalho, tais como semeadoras e pulverizadores agrícolas, equipamento de construção, equipamento de exploração florestal, e equipamento de cultivo de gramados, nos quais a geração de um mapa preditivo pode ser aplicável. Consequentemente, a presente invenção é destinada a abranger esses vários tipos de colheitadeiras e outras máquinas de trabalho e não é, assim, limitada às colheitadeiras combinadas.
[0032] Conforme mostrado na figura 1, a colheitadeira agrícola 100 ilustrativamente inclui um compartimento de operador 101, que pode ter uma variedade de diferentes mecanismos de interface de operador, para controlar a colheitadeira agrícola 100. A colheitadeira agrícola 100 inclui equipamento de extremidade dianteira, tal como a plataforma de corte 102, e um cortador geralmente indicado em 104. A colheitadeira agrícola 100 também inclui um alimentador 106, um acelerador de alimentação 108, e um debulhador geralmente indicado em 110. O alimentador 106 e o acelerador de alimentação 108 fazem parte de um subsistema de manipulação de material 125. A plataforma de corte 102 é acoplada de forma pivotante a uma armação 103 da colheitadeira agrícola 100 ao longo do eixo geométrico de pivô 105. Um ou mais atuadores 107 acionam o movimento de plataforma de corte 102 em torno do eixo geométrico 105 na direção geralmente indicada pela seta 109. Assim, uma posição vertical da plataforma de corte 102 (a altura da plataforma de corte) acima do solo 111 sobre o qual a plataforma de corte 102 se desloca é controlável pela atuação do atuador 107. Embora não mostrado na figura 1, a colheitadeira agrícola 100 pode também incluir um ou mais atuadores que operam para aplicar um ângulo de inclinação, um ângulo de rolagem, ou ambos, à plataforma de corte 102 ou porções de plataforma de corte 102. Inclinação se refere a um ângulo no qual o cortador 104 engata o cultivo. O ângulo de inclinação é aumentado, por exemplo, por controle da plataforma de corte 102 para apontar para uma borda distal 113 do cortador 104 mais na direção para o solo. O ângulo de inclinação é diminuído por controle da plataforma de corte 102 para apontar para a borda distal 113 do cortador 104 mais para longe do solo. O ângulo de rolamento se refere à orientação de plataforma de corte 102 em torno do eixo geométrico longitudinal de frente para trás da colheitadeira agrícola 100.
[0033] O debulhador 110 ilustrativamente inclui um rotor de debulhe 112 e um conjunto de côncavos 114. Além disso, a colheitadeira agrícola 100 também inclui um separador 116. A colheitadeira agrícola 100 também inclui um subsistema de limpeza ou sapata de limpeza (coletivamente referidos como o subsistema de limpeza 118) que inclui uma ventoinha de limpeza 120, o crivo superior 122, e a peneira 124. O subsistema de manipulação de material 125 também inclui o batedor de descarga 126, o elevador de rejeitos 128, o elevador de grão limpo 130, bem como o parafuso sem-fim de descarregamento 134 e boca de descarga 136. O elevador de grão limpo move grão limpo para dentro do tanque de grão limpo 132. A colheitadeira agrícola 100 também inclui um subsistema de resíduos 138 que pode incluir o picador 140 e o espalhador 142. A colheitadeira agrícola 100 também inclui um subsistema de propulsão que inclui um motor que aciona componentes engatando o solo 144, tais como rodas ou esteiras. Em alguns exemplos, uma colheitadeira combinada dentro do escopo da presente invenção pode ter mais que um de qualquer dos subsistemas mencionados acima. Em alguns exemplos, a colheitadeira agrícola 100 pode ter subsistemas de limpeza, separadores, esquerdo e direito, etc. que não são mostrados na figura 1.
[0034] Na operação, e a título de visão geral, a colheitadeira agrícola 100 ilustrativamente se move através de um campo na direção indicada pela seta 147. Conforme a colheitadeira agrícola 100 se move, plataforma de corte 102 (e o carretel associado 164) engata o cultivo a ser colhido e recolhe o cultivo na direção para o cortador 104. Um operador da colheitadeira agrícola 100 pode ser um operador humano local, um operador humano remoto, ou um sistema automático. Um comando de operador é um comando por um operador. O operador da colheitadeira agrícola 100 pode determinar um ou mais de uma regulagem de altura, uma regulagem de ângulo de inclinação, ou uma regulagem de ângulo de rolagem para a plataforma de corte 102. Por exemplo, o operador alimenta uma regulagem ou regulagens a um sistema de controle, descrito em mais detalhe abaixo, que controla o atuador 107. O sistema de controle pode também receber uma regulagem do operador para estabelecer o ângulo de inclinação e o ângulo de rolagem da plataforma de corte 102 e implementar as regulagens alimentadas por meio do controle de atuadores associados, não mostrados, que operam para alterar o ângulo de inclinação e o ângulo de rolagem da plataforma de corte 102. O atuador 107 mantém a plataforma de corte 102 a uma altura acima do solo 111 com base em uma regulagem de altura e, onde aplicável, nos ângulos de inclinação e de rolagem desejados. Cada uma das regulagens de altura, rolagem, e inclinação, pode ser implementada independentemente umas das outras. O sistema de controle responde ao erro de plataforma de corte (por exemplo, a diferença entre a regulagem de altura e a altura medida da plataforma de corte 104 acima do solo 111 e, em alguns exemplos, os erros do ângulo de inclinação e do ângulo de rolagem) com uma responsividade que é determinada com base em um nível de sensitividade selecionado. Se o nível de sensitividade for ajustado em um nível de sensitividade maior, o sistema de controle responde a menores erros de posição da plataforma de corte, e tenta reduzir os erros detectados mais rapidamente que quando a sensitividade está a um nível mais baixo de sensitividade.
[0035] Retornando para a descrição da operação da colheitadeira agrícola 100, depois de os cultivos serem cortados pelo cortador 104, o material de cultivo separado é movido através de um transportador no alimentador 106 na direção para o acelerador de alimentação 108, que acelera o material de cultivo para dentro do debulhador 110. O material de cultivo é debulhado pelo rotor 112 girando o cultivo contra os côncavos 114. O material de cultivo debulhado é movido por um rotor de separador no separador 116, onde uma porção do resíduo é movida pelo batedor de descarga 126 na direção para o subsistema de resíduos 138. A porção de resíduo transferida para o subsistema de resíduos 138 é picada pelo picador de resíduo 140 e espalhada sobre o campo pelo espalhador 142. Em outras configurações, o resíduo é liberado da colheitadeira agrícola 100 em uma deposição em fiada. Em outros exemplos, o subsistema de resíduos 138 pode incluir eliminadores de sementes de ervas daninhas (não mostrados), tais como ensacadores de sementes ou outros coletores de sementes, ou trituradores de sementes ou outros destruidores de sementes.
[0036] Grão cai ao subsistema de limpeza 118. O crivo superior 122 separa algumas peças maiores de material do grão, e a peneira 124 separa algumas das peças mais finas de material do grão limpo. Grão limpo cai em um parafuso sem-fim que move o grão para uma extremidade de entrada do elevador de grão limpo 130, e o elevador de grão limpo 130 move o grão limpo para cima, depositando o grão limpo no tanque de grão limpo 132. O resíduo é removido do subsistema de limpeza 118 por fluxo de ar gerado pela ventoinha de limpeza 120. A ventoinha de limpeza 120 direciona ar ao longo de um trajeto de fluxo de ar para cima através das peneiras e dos crivos superiores. O fluxo de ar transporta resíduo para trás na colheitadeira agrícola 100 na direção para o subsistema de resíduos 138.
[0037] O elevador de rejeitos 128 retorna os rejeitos para o debulhador 110, onde os rejeitos são re-debulhados. Alternativamente, os rejeitos também podem ser passados para um mecanismo de re-debulhe separado pelo elevador de rejeitos ou outros dispositivos de transporte, onde os rejeitos são também re-debulhados.
[0038] A figura 1 também mostra que, em um exemplo, a colheitadeira agrícola 100 inclui o sensor de velocidade de solo 146, um ou mais sensores de perda de separador 148, uma câmera de grão limpo 150, um mecanismo de captura de imagem voltado para frente 151, que pode ser na forma de uma câmera estéreo ou mono, e um ou mais sensores de perda 152 providos no subsistema de limpeza 118.
[0039] O sensor de velocidade de solo 146 sensoreia a velocidade de deslocamento da colheitadeira agrícola 100 sobre o solo. O sensor de velocidade de solo 146 pode sensorear a velocidade de deslocamento da colheitadeira agrícola 100 por sensorear a velocidade de rotação dos componentes engatando o solo (tais como rodas ou esteiras), um eixo de acionamento, um eixo, ou outros componentes. Em alguns casos, a velocidade de deslocamento pode ser sensoreada usando um sistema de posicionamento, tal como um sistema de posicionamento global (GPS), um sistema de reconhecimento passivo, o sistema de navegação a grande distância (LORAN), ou uma extensa variedade de outros sistemas ou sensores que provêm uma indicação da velocidade de deslocamento.
[0040] Os sensores de perda 152 ilustrativamente provêm um sinal de saída indicativo da quantidade da perda de grãos que ocorre em ambos os lados direito e esquerdo do subsistema de limpeza 118. Em alguns exemplos, os sensores 152 sãos sensores de choque que contam os choques de grão por unidade de tempo ou por unidade de distância percorrida para prover uma indicação da perda de grãos que ocorre no subsistema de limpeza 118. Os sensores de choque para os lados direito e esquerdo do subsistema de limpeza 118 pode prover sinais individuais ou um sinal combinado ou agregado. Em alguns exemplos, os sensores 152 podem incluir um único sensor, em oposição a sensores separados providos para cada subsistema de limpeza 118.
[0041] O sensor de perda de separador 148 provê um sinal indicativo da perda de grãos nos separadores esquerdo e direito, não separadamente mostrados na figura 1. Os sensores de perda de separador 148 podem ser associados aos separadores esquerdo e direito e pode prover sinais de perda de grão separados ou um sinal combinado ou agregado. Em alguns casos, o sensoreamento da perda de grãos nos separadores pode também ser realizado também usando uma extensa variedade de tipos diferentes de sensores.
[0042] A colheitadeira agrícola 100 pode também incluir outros sensores e mecanismos de medição. Por exemplo, a colheitadeira agrícola 100 pode incluir um ou mais dos seguintes sensores: um sensor de altura da plataforma de corte que sensoreia uma altura da plataforma de corte 102 acima do solo 111; sensores de estabilidade que sensoreiam a oscilação ou o movimento de saltos (e amplitude) da colheitadeira agrícola 100; um sensor de regulagem de resíduo, que é configurado para sensorear se a colheitadeira agrícola 100 está configurada para picar o resíduo, produzir uma deposição em fiada, etc.; um sensor de velocidade da ventoinha da sapata de limpeza para sensorear a velocidade de ventoinha de limpeza 120; um sensor de folga de côncavos que sensoreia a folga entre o rotor 112 e os côncavos 114; um sensor de velocidade do rotor de debulhe que sensoreia uma velocidade de rotor do rotor 112; um sensor de vão de crivo superior que sensoreia o tamanho das aberturas no crivo superior 122; um sensor de vão de peneira que sensoreia o tamanho das aberturas em a peneira 124; um sensor de umidade de material diferente de grão (MOG) que sensoreia um nível de umidade do MOG passando através da colheitadeira agrícola 100; um ou mais sensores de regulagem de máquina, configurados para sensorear várias regulagens configuráveis da colheitadeira agrícola 100; um sensor de orientação de máquina que sensoreia a orientação da colheitadeira agrícola 100; e os sensores de propriedade de cultivo que sensoreiam uma variedade de tipos diferentes de propriedades de cultivo, tais como tipo de cultivo, umidade do cultivo, e outras propriedades de cultivo. Os sensores de propriedade de cultivo podem também ser configurados para sensorear características do material de cultivo separado quando o material de cultivo está sendo processado pela colheitadeira agrícola 100. Por exemplo, em alguns casos, os sensores de propriedade de cultivo podem sensorear a qualidade de grão, tal como grão quebrado, níveis de MOG; constituintes de grão, tais como amidos e proteína; e taxa de alimentação de grão quando o grão se desloca através do alimentador 106, o elevador de grão limpo 130, ou em outro lugar na colheitadeira agrícola 100. Os sensores de propriedade de cultivo podem também sensorear a taxa de alimentação de biomassa através de alimentador 106, através do separador 116 ou em outro lugar na colheitadeira agrícola 100. Os sensores de propriedade de cultivo podem também sensorear a taxa de alimentação como uma vazão em massa de grão através do elevador 130 ou através de outras porções da colheitadeira agrícola 100 ou provêm outros sinais de saída indicativos de outras variáveis sensoreadas. Os sensores de propriedade de cultivo podem incluir um ou mais sensores de produção que sensoreiam a produção de cultivo sendo colhido pela colheitadeira agrícola.
[0043] Antes de descrever como a colheitadeira agrícola 100 gera um mapa de produção preditiva funcional e usa o mapa de produção preditiva funcional para a apresentação ou controle, uma breve descrição de alguns dos itens na colheitadeira agrícola 100, e seu operação, serão primeiramente descritas. A descrição das figuras 2 e 3 descrevem a recepção de um tipo geral de mapa de informação anterior e combinação de informação do mapa de informação anterior com um sinal de sensor geograficamente referenciado, gerado por um sensor in-situ, onde o sinal de sensor é indicativo de uma característica no campo, tal como as características de cultivo ou de ervas daninhas presentes no campo. As características do campo podem incluir, mas não são limitadas a, características de um campo, tais como inclinação, intensidade de ervas daninhas, tipo de ervas daninhas, umidade do solo, qualidade da superfície; características de propriedades de cultivo tal como a altura de cultivo, umidade do cultivo, densidade de cultivo, o estado de cultivo; características das propriedades de grão, tais como umidade de grão, tamanho de grão, peso de teste de grão; e características do desempenho de máquina, tais como níveis de perda, qualidade do trabalho, consumo de combustível, e utilização de energia. Uma relação entre os valores característicos obtidos de sinais de sensor in-situ e o mapa anterior de valores de informação é identificado, e essa relação é usada para gerar um novo mapa preditivo funcional. Um mapa preditivo funcional prediz valores em diferentes locais geográficos em um campo, e um ou mais daqueles valores podem ser usados para controlar a máquina, tal como um ou mais subsistemas de uma colheitadeira agrícola. Em alguns casos, um mapa preditivo funcional pode ser apresentado a um usuário, tal como um operador de uma máquina de trabalho agrícola, que pode ser uma colheitadeira agrícola. Um mapa preditivo funcional pode ser apresentado a um usuário visualmente, tal como por intermédio de uma exibição, de forma táctil, ou de forma audível. O usuário pode interagir com o mapa preditivo funcional para realizar operações de edição e outras operações de interface de usuário. Em alguns casos, um mapa preditivo funcional pode ser usado para um ou mais do controle de uma máquina de trabalho agrícola, tal como uma colheitadeira agrícola, apresentação para um operador ou outro usuário, e apresentação para um operador ou usuário para interação pelo operador ou usuário.
[0044] Depois de a abordagem geral ser descrita com relação às figuras 2 e 3, uma abordagem mais específica para gerar um mapa de produção preditiva funcional que pode ser apresentado a um operador ou usuário, ou usado para controlar a colheitadeira agrícola 100, ou ambos, é descrita com relação às figuras 4 e 5. Novamente, embora a presente discussão prossiga com relação a uma colheitadeira agrícola e, particularmente, uma colheitadeira combinada, o escopo da presente invenção compreende outros tipos das colheitadeiras agrícolas ou outras máquinas de trabalho agrícolas.
[0045] A figura 2 é um diagrama de blocos mostrando algumas porções de uma colheitadeira agrícola de exemplo 100. A figura 2 mostra que a colheitadeira agrícola 100 ilustrativamente inclui um ou mais processadores ou servidores 201, o banco de dados 202, o sensor de posição geográfica 204, o sistema de comunicação 206, e um ou mais sensores in-situ 208 que sensoreiam uma ou mais características agrícolas de um campo simultaneamente com uma operação de colheita. Uma característica agrícola pode incluir qualquer característica que pode ter um efeito da operação de colheita. Alguns exemplos de característica agrícolas incluem as características da máquina de colheita, do campo, das plantas no campo, e do clima. Outros tipos de característica agrícolas são também incluídos. Os sensores in-situ 208 geram valores correspondentes às características sensoreadas. A colheitadeira agrícola 100 também inclui um gerador de modelo ou relação produtivo (coletivamente referido daqui em diante como “gerador de modelo preditivo 210”), o gerador de mapa preditivo 212, o gerador de zona de controle 213, o sistema de controle 214, um ou mais subsistemas controláveis 216, e um mecanismo de interface de operador 218. A colheitadeira agrícola 100 pode também incluir uma extensa variedade de outras funcionalidades de colheitadeira agrícola 220. Os sensores in-situ 208 incluem, por exemplo, os sensores a bordo 222, os sensores remotos 224, e outros sensores 226 que sensoreiam características de um campo durante o curso de uma operação agrícola. O gerador de modelo preditivo 210 ilustrativamente inclui a prior gerador de modelo de variável-para-variável insitu de informação 228, e o gerador de modelo preditivo 210 pode incluir outros itens 230. O sistema de controle 214 inclui o controlador de sistema de comunicação 229, o controlador de interface de operador 231, um controlador de regulagens 232, o controlador de planejamento de trajeto 234, o controlador de taxa de alimentação 236, o controlador do carretel da plataforma de corte 238, o controlador de correia draper 240, o controlador da posição de placa de cobertura 242, o controlador de posição de resíduo 244, o controlador de limpeza de máquina 245, o controlador de zona 247, e o sistema de controle 214 pode incluir outros itens 246. Os subsistemas controláveis 216 incluem os atuadores de máquina e de plataforma de corte 248, o subsistema de propulsão 250, o subsistema de direção 252, o subsistema de resíduo 138, o subsistema de limpeza de máquina 254, e os subsistemas controláveis 216 pode incluir uma extensa variedade de outros subsistemas 256.
[0046] A figura 2 também mostra que a colheitadeira agrícola 100 pode receber o mapa de informação 258. Conforme descrito abaixo, um mapa de informação 258 inclui, por exemplo, um mapa de índice vegetativo ou um mapa de vegetação de uma operação anterior ou um mapa de resíduo preditivo. Todavia, o mapa de informação 258 podem também compreender outros tipos de dados que foram obtidos antes de uma operação de colheita ou um mapa de uma operação anterior, tal como mapas de produção histórica dos anos anteriores, que contêm informação contextual associada à produção histórica. A figura 2 também mostra que um operador 260 pode operar a colheitadeira agrícola 100. O operador 260 interage com mecanismos de interface de operador 218.
[0047] Em alguns exemplos, os mecanismos de interface de operador 218 podem incluir alavancas de controle, alavancas, um volante, conjuntos de articulação, pedais, botões, mostradores, teclados, elementos atuáveis por usuário (tais como ícones, teclas, etc.) em um dispositivo de exibição de interface de usuário, um microfone e alto-falante (onde o reconhecimento de voz e síntese de voz são providos, dentre uma extensa variedade de outros tipos de dispositivos de controle. Onde um sistema de exibição sensível ao toque é provido, o operador 260 pode interagir com mecanismos de interface de operador 218 usando gestos de toque. Esses exemplos descritos acima são providos como exemplos ilustrativos e não são destinados a limitar o escopo da presente invenção. Consequentemente, outros tipos de mecanismos de interface de operador 218 podem ser usados e estão dentro do escopo da presente invenção. Em alguns exemplos, os mecanismos de interface de operador 218 podem incluir alavancas de controle, alavancas, um volante, conjuntos de articulação, pedais, botões, mostradores, teclados, elementos atuáveis por usuário (tais como ícones, teclas, etc.) em um dispositivo de exibição de interface de usuário, um microfone e alto-falante (onde o reconhecimento de voz e síntese de voz são providos, dentre uma extensa variedade de outros tipos de dispositivos de controle. Onde um sistema de exibição sensível ao toque é provido, o operador 260 pode interagir com mecanismos de interface de operador 218 usando gestos de toque. Esses exemplos descritos acima são providos como exemplos ilustrativos e não são destinados a limitar o escopo da presente invenção. Consequentemente, outros tipos de mecanismos de interface de operador 218 podem ser usados e estão dentro do escopo da presente invenção.
[0048] O mapa de informação anterior 258 pode ser baixado à colheitadeira agrícola 100 e armazenado no banco de dados 202, usando o sistema de comunicação 206 ou de outras maneiras. Em alguns exemplos, o sistema de comunicação 206 pode ser um sistema de comunicação celular, um sistema para a comunicação sobre uma rede de área larga ou uma rede de área local, um sistema para a comunicação sobre uma rede de comunicação de campo próximo, ou um sistema de comunicação configurado para se comunicar sobre qualquer de uma variedade de outras redes ou combinações de redes. O sistema de comunicação 206 pode também incluir um sistema que facilita baixamentos ou transferências de informação para, e de, um cartão Secure Digital (SD) ou um cartão de barramento série universal (USB), ou ambos.
[0049] O sensor de posição geográfica 204 ilustrativamente sensoreia ou detecta a posição ou local geográfico da colheitadeira agrícola 100. O sensor de posição geográfica 204 pode incluir, mas não é limitado a, um receptor de sistema de navegação global por satélite (GNSS), que recebe sinais de um transmissor de satélite de GNSS. O sensor de posição geográfica 204 pode também incluir um componente de cinemático em tempo real (RTK) que é configurado para melhorar a precisão de dados de posição derivados do sinal de GNSS. O sensor de posição geográfica 204 pode incluir um sistema de reconhecimento passivo, um sistema de triangulação celular, ou qualquer de uma variedade de outros sensores de posição geográfica.
[0050] Os sensores in-situ 208 podem ser qualquer dos sensores descritos acima com relação à figura 1. Os sensores in-situ 208 incluem sensores a bordo 222, que são montados a bordo da colheitadeira agrícola 100. Tais sensores podem incluir, por exemplo, um sensor de placa de impacto, um sensor de atenuação de radiação, ou um sensor de imagem que é interno à colheitadeira agrícola 100 (tal como uma câmera de grão limpo). Os sensores in-situ 208 podem também incluir sensores in-situ remotos 224 que capturam informação in-situ. Os dados in-situ incluem dados tomados de um sensor a bordo da colheitadeira agrícola ou tomados por qualquer sensor, onde os dados são detectados durante a operação de colheita.
[0051] O gerador de modelo preditivo 210 gera um modelo que é indicativo de uma relação entre os valores sensoreados pelo sensor in-situ 208 e a característica mapeada para o campo pelo mapa de informação anterior 258. Por exemplo, se o mapa de informação anterior 258 mapear um valor de índice vegetativo para diferentes locais no campo, e o sensor in-situ 208 está sensoreando um valor indicativo de produção, então prior gerador de modelo de variável-para-variável in-situ de informação 228 gera um modelo de produção preditiva que modela a relação entre os valores de índice vegetativo e a largura de espalhamento de resíduo. O modelo de resíduo preditivo pode também ser gerado com base em valores de um mapa de informação 258 e múltiplos valores de dado in-situ gerados pelos sensores in-situ 208. Então, o gerador de mapa preditivo 212 usa o modelo de resíduo preditivo gerado pelo gerador de modelo preditivo 210 para gerar um mapa de resíduo preditivo funcional que prediz o valor de múltiplos valores sensoreados pelos múltiplos sensores in-situ 208 em diferentes locais no campo com base em um mapa de informação 258. Em alguns exemplos, o tipo dos valores no mapa preditivo funcional 263 pode ser o mesmo que o tipo de dados in-situ sensoreados pelos sensores in-situ 208. Em alguns casos, o tipo dos valores no mapa preditivo funcional 263 pode ter diferentes unidades dos dados sensoreados pelos sensores in-situ 208. Em alguns exemplos, o tipo de valores no mapa preditivo funcional 263 pode ser diferente do tipo de dados sensoreado pelos sensores in-situ 208, mas têm uma relação ao tipo do tipo de dados sensoreado pelos sensores in-situ 208. Por exemplo, em alguns exemplos, o tipo de dados sensoreado pelos sensores in-situ 208 pode ser indicativo do tipo dos valores no mapa preditivo funcional 263. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 pode ser diferente que o tipo de dados no mapa de informação 258. Em alguns casos, o tipo de dados no mapa preditivo funcional 263 pode ter diferentes unidades dos dados no mapa de informação 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 pode ser diferente do tipo de dados no mapa de informação 258, mas tem uma relação ao tipo de dados no mapa de informação 258. Por exemplo, em alguns exemplos, o tipo de dados no mapa de informação 258 pode ser indicativo do tipo de dados no mapa preditivo funcional 263. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é diferente que um de, ou ambos do tipo de dados in-situ sensoreados pelos sensores in-situ 208 e do tipo de dados no mapa de informação 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é o mesmo que um de, ou ambos de, o tipo de dados in-situ sensoreados pelos sensores in-situ 208 e o tipo de dados em mapa de informação 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é o mesmo que um do tipo de dados in-situ sensoreados pelos sensores in-situ 208 ou do tipo de dados no mapa de informação 258, e diferentes um do outro.
[0052] Conforme mostrado na figura 2, o mapa preditivo 264 prediz o valor de uma característica sensoreada (sensoreada pelos sensores in-situ 208), ou uma característica relacionada à característica sensoreada, em vários locais através do campo com base em um valor de informação no mapa de informação 258 naqueles locais e usando o modelo preditivo. Por exemplo, se o gerador de modelo preditivo 210 tiver gerado um modelo preditivo indicativo de uma relação entre a umidade de vegetação e a largura de espalhamento de resíduo, então, dado o valor de umidade em diferentes locais através do campo, o gerador de mapa preditivo 212 gera um mapa preditivo 264 que prediz o valor da largura de espalhamento de resíduo em diferentes locais através do campo. O valor de umidade, obtido do mapa de umidade, naqueles locais, e a relação entre o valor de umidade e a largura de espalhamento de resíduo, obtida do modelo preditivo, são usados para gerar o mapa preditivo 264.
[0053] Algumas variações nos tipos de dados que são mapeados no mapa de informação 258, os tipos de dados sensoreados pelos sensores in-situ 208, e os tipos de dados preditos no mapa preditivo 264 serão agora descritos.
[0054] Em alguns exemplos, o tipo de dados no mapa de informação 258 é diferente do tipo de dados sensoreado pelos sensores in-situ 208, ainda o tipo de dados no mapa preditivo 264 é o mesmo que o tipo de dados sensoreado pelos sensores in-situ 208. Por exemplo, um mapa de informação 258 pode ser um mapa de índice vegetativo, e a variável sensoreada pelos sensores in-situ 208 pode ser a produção. O mapa preditivo 264 pode então ser um mapa de produção preditiva que mapeia os valores de produção preditos para os diferentes locais geográficos no campo. Em outro exemplo, o mapa de informação 258 pode ser um mapa de índice vegetativo, e a variável sensoreada pelos sensores in-situ 208 pode ser a altura de cultivo. O mapa preditivo 264 pode então ser um mapa de altura de cultivo preditiva que mapeia os valores de altura de cultivo preditos para os diferentes locais geográficos no campo.
[0055] Também, em alguns exemplos, o tipo de dados no mapa de informação 258 é diferente do tipo de dados sensoreado pelos sensores in-situ 208, e o tipo de dados no mapa preditivo 264 é diferente tanto do tipo de dados no mapa de informação 258 quanto do tipo de dados sensoreado pelos sensores in-situ 208. Por exemplo, um mapa de informação 258 pode ser um mapa de índice vegetativo, e a variável sensoreada pelos sensores in-situ 208 pode ser a altura de cultivo. O mapa preditivo 264 pode então ser um mapa de biomassa preditivo que mapeia os valores de biomassa preditos para os diferentes locais geográficos no campo. Em outro exemplo, o mapa de informação 258 pode ser um mapa de índice vegetativo, e a variável sensoreada pelos sensores in-situ 208 pode ser a produção. O mapa preditivo 264 pode então ser um mapa de velocidade preditivo que mapeia os valores de velocidade de colheitadeira preditos para os diferentes locais geográficos no campo.
[0056] Em alguns exemplos, um mapa de informação 258 é de um passe anterior através do campo durante uma operação anterior e o tipo de dados é diferente to tipo de dados sensoreado pelos sensores in-situ 208, ainda o tipo de dados no mapa preditivo 264 é o mesmo que o tipo de dados sensoreado pelos sensores in-situ 208. Por exemplo, um mapa de informação 258 pode ser um mapa de população de semente gerado durante plantio, e a variável sensoreada pelos sensores in-situ 208 pode ser o tamanho do caule. O mapa preditivo 264 pode então ser um mapa de tamanho de caule preditivo que mapeia os valores de tamanho de caule preditos para os diferentes locais geográficos no campo. Em outro exemplo, um mapa de informação 258 pode ser um mapa híbrido de semeadura, e a variável sensoreada pelos sensores insitu 208 pode ser o estado de cultivo, tal como o cultivo em pé ou o cultivo caído. O mapa preditivo 264 pode então ser um mapa de estado de cultivo preditivo que mapeia os valores de estado de cultivo preditos para os diferentes locais geográficos no campo.
[0057] Em alguns exemplos, um mapa de informação 258 é de um passe anterior através do campo durante uma operação anterior e o tipo de dados é o mesmo que o tipo de dados sensoreado pelos sensores in-situ 208, e o tipo de dados no mapa preditivo 264 é também o mesmo que o tipo de dados sensoreado pelos sensores in-situ 208. Por exemplo, um mapa de informação 258 pode ser um mapa de produção gerado durante um ano anterior, e a variável sensoreada pelos sensores in-situ 208 pode ser a produção. O mapa preditivo 264 pode então ser um mapa de produção preditiva que mapeia os valores de produção preditos para os diferentes locais geográficos no campo. Em um tal exemplo, as diferenças de produção relativas no mapa de informação geograficamente referenciado 258 do ano anterior pode ser usadas pelo gerador de modelo preditivo 210 para gerar um modelo preditivo que modela uma relação entre as diferenças de produção relativas no mapa de informação 258 e os valores de produção sensoreados pelos sensores in-situ 208 durante a operação atual de colheita. O modelo preditivo é então usado pelo gerador de mapa preditivo 210 para gerar um mapa de produção preditiva.
[0058] Em alguns exemplos, o mapa preditivo 264 pode ser provido para o gerador de zona de controle 213. O gerador de zona de controle 213 agrupa porções adjacentes de uma área em uma ou mais zonas de controle com base em valores de dados do mapa preditivo 264, que são associados àquelas porções adjacentes. Uma zona de controle pode incluir duas ou mais porções contíguas de uma área, tal como um campo, para a qual um parâmetro de controle correspondente à zona de controle, para controlar um subsistema controlável, é constante. Por exemplo, um tempo de resposta para alterar uma regulagem dos subsistemas controláveis 216 pode ser inadequado para satisfatoriamente responder a alterações nos valores contidos em um mapa, tal como no mapa preditivo 264. Nesse caso, o gerador de zona de controle 213 analisa o mapa e identifica as zonas de controle que são de um tamanho definido para acomodar o tempo de resposta dos subsistemas controláveis 216. Em outro exemplo, as zonas de controle podem ser dimensionadas para reduzir o desgaste do movimento de atuador excessivo que resulta do ajuste contínuo. Em alguns exemplos, pode existir um diferente conjunto de zonas de controle para cada subsistema controlável 216 ou para grupos dos subsistemas controláveis 216. As zonas de controle podem ser adicionadas ao mapa preditivo 264 para obter o mapa de zona de controle preditivo 265. O mapa de zona de controle preditivo 265 pode assim ser similar ao mapa preditivo 264, exceto que o mapa de zona de controle preditivo 265 inclui informação de zona de controle definindo as zonas de controle. Assim, um mapa preditivo funcional 263, conforme descrito aqui, pode ou pode não incluir zonas de controle. Tanto o mapa preditivo 264 quanto o mapa de zona de controle preditivo 265 são mapas preditivos funcionais 263. Em um exemplo, um mapa preditivo funcional 263 não inclui zonas de controle, tal como o mapa preditivo 264. Em outro exemplo, um mapa preditivo funcional 263 does incluem zonas de controle, tal como o mapa de zona de controle preditivo 265. Em alguns exemplos, múltiplos cultivos podem estar simultaneamente presentes em um campo, de um sistema de produção intercultivo for implementado. Em nesse caso, o gerador de mapa preditivo 212 e o gerador de zona de controle 213 são capazes de identificar o local e características dos dois ou mais cultivos e então gerar o mapa preditivo 264 e o mapa de zona de controle preditivo 265, consequentemente.
[0059] Será apreciado que o gerador de zona de controle 213 pode agrupar valores para gerar zonas de controle e as zonas de controle podem ser adicionadas ao mapa de zona de controle preditivo 265, ou um mapa separado, mostrando somente as zonas de controle que são geradas. Em alguns exemplos, as zonas de controle podem ser usadas para controlar ou calibrar a colheitadeira agrícola 100 ou ambos. Em outros exemplos, as zonas de controle podem ser apresentadas ao operador 260 e usadas para controlar ou calibrar a colheitadeira agrícola 100, e, em outros exemplos, as zonas de controle podem ser apresentadas ao operador 260 ou a outro usuário ou armazenadas para o uso posterior.
[0060] O mapa preditivo 264 ou o mapa de zona de controle preditivo 265 ou ambos são providos para o sistema de controle 214, que gera sinais de controle com base no mapa preditivo 264 ou no mapa de zona de controle preditivo 265 ou em ambos. Em alguns exemplos, o controlador de sistema de comunicação 229 controla o sistema de comunicação 206 para comunicar com o mapa preditivo 264 ou o mapa de zona de controle preditivo 265 ou sinais de controle com base no mapa preditivo 264 ou o mapa de zona de controle preditivo 265 a outras colheitadeira agrícolas que estão colhendo no mesmo campo. Em alguns exemplos, o controlador de sistema de comunicação 229 controla o sistema de comunicação 206 para enviar o mapa preditivo 264, o mapa de zona de controle preditivo 265, ou ambos, para outros sistemas remotos.
[0061] O controlador de interface de operador 231 é operável para gerar sinais de controle para controlar os mecanismos de interface de operador 218. O controlador de interface de operador 231 é também operável para apresentar o mapa preditivo 264 ou o mapa de zona de controle preditivo 265 ou outra informação derivada de, ou com base em, o mapa preditivo 264, o mapa de zona de controle preditivo 265, ou de ambos, para o operador 260. O operador 260 pode ser um operador local ou um operador remoto. Como um exemplo, o controlador 231 gera sinais de controle para controlar um mecanismo de exibição para exibir um ou ambos do mapa preditivo 264 e do mapa de zona de controle preditivo 265 para o operador 260. O controlador 231 pode gerar mecanismos atuáveis por operador que são exibidos e podem ser atuados pelo operador para interagir com o mapa exibido. O operador pode editar o mapa por, por exemplo, corrigir um espalhamento de resíduo, exibido no mapa, com base na observação do operador. O controlador de regulagens 232 pode gerar sinais de controle para controlar várias regulagens na colheitadeira agrícola 100 com base no mapa preditivo 264, no mapa de zona de controle preditivo 265, ou em ambos. Por exemplo, o controlador de regulagens 232 pode gerar sinais de controle para controlar a máquina e os atuadores de plataforma de corte 248. Em resposta aos sinais de controle gerados, a máquina e os atuadores de plataforma de corte 248 operam para controlar, por exemplo, um ou mais das regulagens de peneira e de crivo superior, folga de côncavos, regulagens do rotor, regulagens de velocidade de ventoinha de limpeza, altura da plataforma de corte, funcionalidade de plataforma de corte, velocidade do carretel, posição do carretel, funcionalidade de draper (onde colheitadeira agrícola 100 é acoplada a uma plataforma de corte draper), funcionalidade de plataforma de corte de milho, controle de distribuição interna e outros atuadores 248 que afetam as outras funções da colheitadeira agrícola 100. O controlador de planejamento de trajeto 234 ilustrativamente gera sinais de controle para controlar o subsistema de direção 252 para direcionar a colheitadeira agrícola 100 de acordo com um trajeto desejado. O controlador de planejamento de trajeto 234 pode controlar um sistema de planejamento de trajeto para gerar uma rota para colheitadeira agrícola 100 e pode controlar o subsistema de propulsão 250 e o subsistema de direção 252 para direcionar a colheitadeira agrícola 100 ao longo dessa rota. O controlador de taxa de alimentação 236 pode controlar vários subsistemas, tais como o subsistema de propulsão 250 e os atuadores de máquina 248, para controlar uma taxa de alimentação com base no mapa preditivo 264 ou no mapa de zona de controle preditivo 265 ou em ambos. Por exemplo, quando a colheitadeira agrícola 100 se aproxima a um canteiro de erva daninha tendo um valor de intensidade acima de um limite selecionado, o controlador de taxa de alimentação 236 pode reduzir a velocidade da máquina 100 para manter constante a taxa de alimentação de biomassa através da máquina. O controlador de plataforma de corte e carretel 238 pode gerar sinais de controle para controlar uma plataforma de corte ou um carretel ou outra funcionalidade de plataforma de corte. O controlador de correia de draper 240 pode gerar sinais de controle para controlar uma correia de draper ou outra funcionalidade de draper com base no mapa preditivo 264, no mapa de zona de controle preditivo 265, ou em ambos. O controlador de posição de placa de cobertura 242 pode gerar sinais de controle para controlar a posição de uma placa de cobertura incluída em uma plataforma de corte com base no mapa preditivo 264 ou no mapa de zona de controle preditivo 265 ou em ambos. O controlador de sistema de resíduo 244 pode gerar sinais de controle para controlar um subsistema de resíduo 138 com base no mapa preditivo 264 ou mo mapa de zona de controle preditivo 265, ou em ambos. O controlador de limpeza de máquina 245 pode gerar sinais de controle para controlar o subsistema de limpeza de máquina 254. Outros controladores incluídos na colheitadeira agrícola 100 podem controlar outros subsistemas com base no mapa preditivo 264 ou no mapa de zona de controle preditivo 265 ou também em ambos.
[0062] As figuras 3A e 3B (coletivamente referidas aqui como a figura 3) mostram um fluxograma ilustrando um exemplo da operação de colheitadeira agrícola 100 na geração de um mapa preditivo 264 e o mapa de zona de controle preditivo 265 com base no mapa de informação 258.
[0063] Em 280, a colheitadeira agrícola 100 recebe o mapa de informação 258. Exemplos de mapa de informação 258 ou da recepção de mapa de informação 258 são discutidos com relação aos blocos 281, 282, 284 e 286. Conforme discutido acima, o mapa de informação anterior 258 mapeia os valores de uma variável, correspondentes a uma primeira característica, para diferentes locais no campo, como indicado no bloco 282. Conforme indicado no bloco 281, a recepção de um mapa de informação 258 pode envolver selecionar um ou mais da pluralidade de possíveis mapas de informação que são disponíveis. Por exemplo, um mapa de informação pode ser um mapa de índice vegetativo gerado de formações aéreas de imagem. Outro mapa de informação pode ser um mapa gerado durante um passe anterior através do campo, que pode ter sido realizado por uma diferente máquina que realizou uma operação prévia no campo, tal como um pulverizador ou outra máquina. O processo por meio do qual um ou mais mapas de informação são selecionados pode ser manual, semiautomático, ou automático. Um mapa de informação 258 é baseado em dados coletados antes da operação atual de colheita. Isso é indicado pelo bloco 284. Por exemplo, os dados podem ser coletados com base em imagens aéreas tomadas durante um ano anterior, ou mais anteriormente na estação de crescimento atual, ou em outros momentos. Os dados podem ser com base em dados detectados de outras maneiras que usando imagens aéreas. Por exemplo, a colheitadeira agrícola 100 pode ser provida com um sensor, tal como um sensor óptico interno, que identifica as sementes de ervas daninhas que estão abandonando a colheitadeira agrícola 100. Os dados de semente de erva daninha detectados pelo sensor durante uma colheita do ano anterior podem ser usados como dados usados para gerar um mapa de informação 258. Os dados de erva daninha sensoreados podem ser combinados com outros dados para gerar um mapa de informação 258. Por exemplo, com base na magnitude das sementes de ervas daninhas abandonando a colheitadeira agrícola 100 em diferentes locais e com base em outros fatores, tais como se as sementes estão sendo espalhadas por um espalhador ou deixadas cair em um depósito em fiada; as condições climáticas, tais como o vento, quando as sementes estão sendo deixadas cair ou espalhadas; as condições de drenagem que podem mover as sementes em torno no campo; ou outra informação, o local daquelas sementes de ervas daninhas pode ser predito de forma que o mapa de informação 258 mapeie os locais de semente preditos no campo. Os dados para o mapa de informação 258 podem ser transmitidos para a colheitadeira agrícola 100 usando o sistema de comunicação 206 e armazenados no branco de dados 202. Os dados para um mapa de informação 258 podem ser providos para a colheitadeira agrícola 100 usando o sistema de comunicação 206 também de outras maneiras, e isso é indicado pelo bloco 286 no fluxograma da figura 3. Em alguns exemplos, o mapa de informação 258 pode ser recebido pelo sistema de comunicação 206.
[0064] No começo de uma operação de colheita, os sensores in-situ 208 geram sinais de sensor indicativos de um ou mais valores de dados insitu, indicativos de uma característica, tal como uma característica de resíduo, conforme indicado pelo bloco 288. Exemplos dos sensores in-situ são discutidos com relação aos blocos 222, 290, e 226. Como explicado acima, os sensores in-situ 208 incluem sensores a bordo 222, tal como uma câmera voltada para trás; sensores in-situ remotos 224, tais como Sensores baseados em UAV que voaram em um momento para recolher dados in-situ, mostrados no bloco 290; ou outros tipos dos sensores in-situ, designados por sensores insitu 226. Em alguns exemplos, os dados dos sensores a bordo são geograficamente referenciados usando a posição, rumo ou os dados de velocidade do sensor de posição geográfica 204.
[0065] O gerador de modelo preditivo 210 controla um gerador de modelo de variável de informação-para-variável in-situ 228 para gerar um modelo que modela uma relação entre os valores mapeados contidos no mapa de informação 258 e os valores in-situ sensoreados pelos sensores in-situ 208, conforme indicado pelo bloco 292. As características ou os tipos de dados representados pelos valores mapeados no mapa de informação 258 e os valores in-situ sensoreados pelos sensores in-situ 208 podem ser o mesmo tipo de características ou dados ou tipos diferentes de características ou dados.
[0066] A relação ou modelo gerado pelo gerador de modelo preditivo 210 é provido para o gerador de mapa preditivo 212. O gerador de mapa preditivo 212 gera um mapa preditivo 264, que prediz um valor da característica sensoreada pelos sensores in-situ 208 em diferentes locais geográficos em um campo sendo colhido, ou uma diferente característica que é relacionada à característica sensoreada pelos sensores in-situ 208,, usando o modelo preditivo e o mapa de informação 258, conforme indicado pelo bloco 294.
[0067] Deve ser notado que, em alguns exemplos, o mapa de informação 258 pode incluir dois ou mapas diferentes ou duas ou mais camadas de mapa diferentes de um único mapa. Cada camada de mapa pode representar um tipo de dado diferente do tipo de dados de outra camada de mapa ou a camadas de mapa pode ter o mesmo tipo de dados que foram obtidos em diferentes tempos. Cada mapa nos dois ou mais mapas diferentes ou cada camada nas duas ou mais camadas de mapa diferentes de um mapa mapeia um tipo diferente de variável para os locais geográficos no campo. Em tal exemplo, o gerador de modelo preditivo 210 gera um modelo preditivo que modela a relação entre os dados in-situ e cada uma das diferentes variáveis mapeadas pelos dois ou mais mapas diferentes ou as duas ou mais camadas de mapa diferentes. Similarmente, os sensores in-situ 208 podem incluir dois ou mais sensores, cada um sensoreando um tipo diferente de variável. Assim, o gerador de modelo preditivo 210 gera um modelo preditivo que modela as relações entre cada tipo de variável mapeada pelo mapa de informação 258 e cada tipo de variável sensoreada pelos sensores in-situ 208. O gerador de mapa preditivo 212 pode gerar um mapa preditivo funcional 263, que prediz um valor para cada característica sensoreada pelos sensores in-situ 208 (ou uma característica relacionada à característica sensoreada) em diferentes locais no campo sendo colhido usando o modelo preditivo e cada um dos mapas ou das camadas de mapa no mapa de informação anterior 258.
[0068] O gerador de mapa preditivo 212 configura o mapa preditivo 264 de modo que o mapa preditivo 264 seja acionável (ou consumível) pelo sistema de controle 214. O gerador de mapa preditivo 212 configura mapa preditivo 264 de modo que o mapa preditivo 264 seja acionável (ou consumível) pelo sistema de controle 214. O gerador de mapa preditivo 212 pode prover o mapa preditivo 264 para o sistema de controle 214 ou para o gerador de zona de controle 213 ou ambos. Alguns exemplos de diferentes maneiras nas quais o mapa preditivo 264 pode ser configurado ou fornecido são descritas com relação aos blocos 296, 295, 299, e 297. Por exemplo, o gerador de mapa preditivo 212 configura o mapa preditivo 264 de forma que o mapa preditivo 264 inclua valores que possam ser lidos pelo sistema de controle 214 e usados como a base para a geração de sinais de controle para um ou mais dos diferentes subsistemas controláveis da colheitadeira agrícola 100, conforme indicado pelo bloco 296.
[0069] O gerador de zona de controle 213 pode dividir o mapa preditivo 264 em zonas de controle com base nos valores no mapa preditivo 264. Os valores contiguamente geograficamente posicionados que estão dentro de um valor limite de um outro podem ser agrupados em uma zona de controle. O valor limite pode ser um valor limite padrão, ou o valor limite pode ser ajustado com base em uma entrada de operador, com base em uma entrada de um sistema automático, ou com base em outros critérios. Um tamanho das zonas pode ser com base em uma responsividade do sistema de controle 214, dos subsistemas controláveis 216, com base em considerações de desgaste, ou em outros critérios, conforme indicado pelo bloco 295. O gerador de mapa preditivo 212 configura o mapa preditivo 264 para a apresentação a um operador ou outro usuário. O gerador de zona de controle 213 pode configure o mapa de zona de controle preditivo 265 para a apresentação a um operador ou outro usuário. Isso é indicado pelo bloco 299. Quando apresentado a um operador ou outro usuário, a apresentação do mapa preditivo 264 ou do mapa de zona de controle preditivo 265 ou ambos pode conter um ou mais dos valores preditivos no mapa preditivo 264 correlacionados ao local geográfico, as zonas de controle no mapa de zona de controle preditivo 265 correlacionadas ao local geográfico, e os valores de regulagem ou os parâmetros de controle que são usados com base nos valores preditos no mapa 264 ou zonas no mapa de zona de controle preditivo 265. A apresentação pode, em outro exemplo, incluir informação mais abstrata ou informação mais detalhada. A apresentação pode também incluir um nível de confiança que indica uma precisão com a qual os valores preditivos no mapa preditivo 264 ou nas zonas no mapa de zona de controle preditivo 265 se conformam com os valores medidos que pode ser medidos pelos sensores na colheitadeira agrícola 100 quando a colheitadeira agrícola 100 se move através do campo. Ainda, onde informação é apresentada a mais que um local, um sistema de autenticação e autorização pode ser provido para implementar processos de autenticação e autorização. Por exemplo, pode existir uma hierarquia de indivíduos, que são autorizados a visualizar e alterar os mapas e outra informação apresentada. A título de exemplo, um dispositivo de exibição a bordo pode mostrar os mapas em tempo quase real, localmente, na máquina, somente, ou os mapas podem também ser gerados em um ou mais locais remotos. Em alguns exemplos, cada dispositivo de exibição físico em cada local pode ser associado a um nível de permissão de pessoa ou de um usuário. O nível de permissão de usuário pode ser usado para determinar quais marcadores de exibição são visíveis no dispositivo de exibição físico, e quais valores a correspondente pessoa pode alterar. Como um exemplo, um operador local da colheitadeira agrícola 100 pode ser incapaz de ver a informação correspondente ao mapa preditivo 264 ou de fazer quaisquer alterações na operação da máquina. Um supervisor, em um local remoto, Todavia, pode ser capaz de ver o mapa preditivo 264 na exibição, mas não pode fazer alterações. Um gerenciador, que pode estar em um local remoto separado, pode ser capaz de ver todos dos elementos no mapa preditivo 264 e também alterar o mapa preditivo 264 que é usado no controle da máquina. Isso é um exemplo de uma hierarquia de autorização que pode ser implementada. O mapa preditivo 264 ou o mapa de zona de controle preditivo 265, ou ambos, podem ser configurados também de outras maneiras, conforme indicado pelo bloco 297.
[0070] No bloco 298, a entrada do sensor de posição geográfica 204 e outros sensores in-situ 208 são recebidas pelo sistema de controle. O bloco 300 representa a recepção pelo sistema de controle 214 de uma entrada do sensor de posição geográfica 204 identificando um local geográfico da colheitadeira agrícola 100. O bloco 302 representa a recepção pelo sistema de controle 214 de entradas de sensor indicativas de trajetória ou rumo da colheitadeira agrícola 100, e o bloco 304 representa a recepção pelo sistema de controle 214 de uma velocidade da colheitadeira agrícola 100. O bloco 306 representa a recepção pelo sistema de controle 214 de outra informação de vários sensores in-situ 208.
[0071] No bloco 308, o sistema de controle 214 gera sinais de controle para controlar os subsistemas controláveis 216 com base no mapa preditivo 264 ou no mapa de zona de controle preditivo 265 ou ambos e a entrada do sensor de posição geográfica 204 e quaisquer outros sensores insitu 208. No bloco 310, o sistema de controle 214 aplica os sinais de controle aos subsistemas controláveis. Será apreciado que os sinais de controle particulares, que são gerados, e os subsistemas controláveis particulares 216, que são controlados, podem variar com base em um ou mais fatores diferentes. Por exemplo, os sinais de controle, que são gerados e os subsistemas controláveis 216, que são controlados, podem ser baseados no tipo de mapa preditivo 264 ou no mapa de zona de controle preditivo 265, ou ambos, que estão sendo usados. Similarmente, os sinais de controle, que são gerados e os subsistemas controláveis 216, que são controlados, e a temporização dos sinais de controle podem ser baseados em várias latências do fluxo de cultivo através da colheitadeira agrícola 100 e da responsividade dos subsistemas controláveis 216.
[0072] A título de exemplo, um mapa preditivo gerado 264 na forma de um mapa de produção preditiva pode ser usado para controlar um ou mais subsistemas controláveis 216. Por exemplo, o mapa de produção preditiva funcional pode incluir valores de produção georreferenciados a locais dentro do campo sendo colhido. O mapa de produção preditiva funcional pode ser extraído e usado para controlar os subsistemas de direção e propulsão 252 e 250. Por meio do controle dos subsistemas de direção e propulsão 252 e 250, uma taxa de alimentação de material ou grão se movendo através da colheitadeira agrícola 100 pode ser controlada. Similarmente, a altura da plataforma de corte pode ser controlada para captar mais ou menos material e, assim, a altura da plataforma de corte pode também ser controlada para controlar a taxa de alimentação de material através da colheitadeira agrícola 100. Em outros exemplos, se o mapa preditivo 264 mapear a produção à frente da máquina sendo mais alta em uma porção da plataforma de corte que outra porção da plataforma de corte, resultando em uma diferente biomassa entrando em um lado da plataforma de corte que o outro lado, o controle da plataforma de corte pode ser implementado. Por exemplo, uma velocidade de draper em um lado da plataforma de corte pode ser aumentada ou diminuída com relação à velocidade de draper no outro lado da plataforma de corte para levar em conta a biomassa adicional. Assim, o controlador do carretel da plataforma de corte 238 pode ser controlado usando valores georreferenciados presentes no mapa de produção preditiva para controlar as velocidades de draper das correias de draper na plataforma de corte. O exemplo precedente envolvendo o controle de taxa de alimentação e plataforma de corte usando um mapa de produção preditiva funcional é provido meramente como um exemplo. Consequentemente, uma extensa variedade de outros sinais de controle pode ser gerado usando os valores obtidos de um mapa de produção preditiva ou outro tipo de mapa preditivo funcional para controlar um ou mais dos subsistemas controláveis 216.
[0073] No bloco 312, uma determinação é feita de se a operação de colheita foi completada. Se a colheita não foi completada, o processamento avança para o bloco 314, onde os dados de sensor in-situ do sensor de posição geográfica 204 e os sensores in-situ 208 (e talvez outros sensores) continuam a ser lidos.
[0074] Em alguns exemplos, no bloco 316, a colheitadeira agrícola 100 pode também detectar critérios de disparo de aprendizagem para realizar a aprendizagem por máquina em um ou mais do mapa preditivo 264, do mapa de zona de controle preditivo 265, do modelo gerado pelo gerador de modelo preditivo 210, das zonas geradas pelo gerador de zona de controle 213, um ou mais algoritmos de controle implementados pelos controladores no sistema de controle 214, e outra aprendizagem disparada.
[0075] Os critérios de disparo de aprendizagem podem incluir qualquer de uma extensa variedade de critérios diferentes. Alguns exemplos de detecção de critérios de disparo são discutidos com relação aos blocos 318, 320, 321, 322 e 324. Por exemplo, em alguns exemplos, a aprendizagem disparada pode envolver a recreação de uma relação usada para gerar um modelo preditivo quando uma quantidade limite de dados de sensor in-situ é obtida dos sensores in-situ 208. Em tais exemplos, a recepção de uma quantidade de dados de sensor in-situ dos sensores in-situ 208 que excede um limite, dispara ou causa com que o gerador de modelo preditivo 210 gere um novo modelo preditivo que é usado pelo gerador de mapa preditivo 212. Assim, conforme a colheitadeira agrícola 100 continua uma operação de colheita, a recepção da quantidade limite de dados de sensor in-situ dos sensores in-situ 208 dispara a criação de uma nova relação representada por um modelo preditivo gerado pelo gerador de modelo preditivo 210. Além disso, o novo mapa preditivo 264, o mapa de zona de controle preditivo 265, ou ambos, podem ser re-gerados usando o novo modelo preditivo. O bloco 318 representa a detecção de uma quantidade limite de dados de sensor in-situ usada para disparar a criação de um novo modelo preditivo.
[0076] Em outros exemplos, os critérios de disparo de aprendizagem podem ser baseados em quanto os dados de sensor in-situ dos sensores in-situ 208 estão se alterando, tal como sobre o tempo ou em comparação com os valores anteriores. Por exemplo, se variações dentro dos dados de sensor insitu (ou a relação entre os dados de sensor in-situ e a informação em mapa de informação anterior 258) estiverem dentro de uma faixa selecionada ou forem inferiores a uma quantidade definida ou é abaixo de um valor de limite, então um novo modelo preditivo não é gerado pelo gerador de modelo preditivo 210. Como um resultado, o gerador de mapa preditivo 212 não gera um novo mapa preditivo 264, o mapa de zona de controle preditivo 265, ou ambos. Todavia, se variações dentro dos dados de sensor in-situ são fora da faixa selecionada, são maiores que a quantidade definida, ou estiverem acima do valor de limite, por exemplo, então o gerador de modelo preditivo 210 gera um novo modelo preditivo usando todos ou uma porção dos novos dados de sensor recebidos, que o gerador de mapa preditivo 212 usa para gerar um novo mapa preditivo 264. No bloco 320, as variações de dados de sensor insitu, como uma magnitude de uma quantidade pela qual os dados excedem a faixa selecionada ou uma magnitude da variação da relação entre os dados de sensor in-situ e a informação no mapa de informação anterior 258, podem ser usadas como um gatilho para causar a geração de um novo modelo preditivo e o mapa preditivo. Mantendo os exemplos descritos acima, o limite, a faixa, e a quantidade definidas podem ser ajustados para os valores padrão; ajustados por um operador ou interação de usuário através de uma interface de usuário; ajustados por um sistema automático; ou ajustados de outras maneiras.
[0077] Outros critérios de disparo de aprendizagem podem também ser usados. Por exemplo, se o gerador de modelo preditivo 210 comutar para um diferente mapa de informação anterior (diferente do originalmente selecionado mapa de informação anterior 258), então a comutação para o diferente de informação anterior pode disparar a reaprendizagem pelo gerador de modelo preditivo 210, o gerador de mapa preditivo 212, o gerador de zona de controle 213, o sistema de controle 214, ou outros itens. Em outro exemplo, a transição da colheitadeira agrícola 100 para uma topografia diferente ou para uma zona de controle diferente pode ser usada também como critérios de disparo de aprendizagem.
[0078] Em alguns casos, o operador 260 pode também editar o mapa preditivo 264 ou o mapa de zona de controle preditivo 265, ou ambos. As edições podem alterar um valor no mapa preditivo 264; alterar um tamanho, formato, posição, ou existência de uma zona de controle no mapa de zona de controle preditivo 265; ou ambos. O bloco 321 mostra que informação editada pode ser usada como critérios de disparo de aprendizagem.
[0079] Em alguns casos, pode também ser que o operador 260 observe que o controle automático de um subsistema controlável não é o que o operador deseja. Em tais casos, o operador 260 pode prover um ajuste manual para o subsistema controlável refletindo que o operador 260 deseja que o subsistema controlável opere de uma maneira diferente da que está sendo comandada pelo sistema de controle 214. Assim, a alteração manual de uma regulagem pelo operador 260 pode causar com que um ou mais do gerador de modelo preditivo 210 reaprenda um modelo, o gerador de mapa preditivo 212 para regenerar o mapa 264, o gerador de zona de controle 213 para regenerar uma ou mais zonas de controle no mapa de zona de controle preditivo 265, e o sistema de controle 214 para reaprender um algoritmo de controle ou para realizar a aprendizagem por máquina em um ou mais dos componentes de controlador 232 a 246 no sistema de controle 214 com base no ajuste pelo operador 260, conforme mostrado no bloco 322. O bloco 324 representa o uso de outros critérios de aprendizagem disparados.
[0080] Em outros exemplos, a reaprendizagem pode ser realizada periodicamente ou intermitentemente com base, por exemplo, em um intervalo de tempo selecionado, tal como um intervalo de tempo discreto ou um intervalo de tempo variável, conforme indicado pelo bloco 326.
[0081] Se a reaprendizagem for disparada, se com base em critérios de disparo de aprendizagem ou com base na passagem de um intervalo de tempo, conforme indicado pelo bloco 326, então um ou mais do gerador de modelo preditivo 210, do gerador de mapa preditivo 212, do gerador de zona de controle 213, e do sistema de controle 214 realiza a aprendizagem por máquina para gerar um novo modelo preditivo, um novo mapa preditivo, uma nova zona de controle, e um novo algoritmo de controle, respectivamente, com base nos critérios de disparo de aprendizagem. O novo modelo preditivo, o novo mapa preditivo, e o novo algoritmo de controle são gerados usando qualquer dado adicional que foi coletado desde que a última operação de aprendizagem foi realizada. A realização da reaprendizagem é indicada pelo bloco 328.
[0082] Se a operação de colheita foi completada, a operação se move do bloco 312 para o bloco 330, onde um ou mais do mapa preditivo 264, do mapa de zona de controle preditivo 265, e do modelo preditivo, gerados pelo gerador de modelo preditivo 210 são armazenados. O mapa preditivo 264, o mapa de zona de controle preditivo 265, e o modelo preditivo podem ser armazenados localmente no banco de dados 202 ou enviados para um sistema remoto usando o sistema de comunicação 206 para o futuro uso.
[0083] Será notado que enquanto alguns exemplos descrevem aqui o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 recebendo um mapa de informação anterior na geração de um modelo preditivo e um mapa preditivo funcional, respectivamente, em outros exemplos, o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 podem receber, na geração de um modelo preditivo e um mapa preditivo funcional, respectivamente outros tipos de mapas, incluindo os mapas preditivos, tais como um mapa preditivo funcional gerado durante a operação de colheita.
[0084] A figura 4 é um diagrama de blocos de uma porção da colheitadeira agrícola 100 mostrada na figura 1. Particularmente, a figura 4 mostra, dentre outros fatores, exemplos do gerador de modelo preditivo 210 e do gerador de mapa preditivo 212 em mais detalhe. A figura 4 também ilustra o fluxo de informação entre os vários componentes mostrados aqui. Conforme mostrado, o gerador de modelo preditivo 210 recebe um ou mais de um mapa de índice vegetativo 332 ou um mapa de produção histórica 333 as um mapa de informação anterior. O mapa de produção histórica 333 inclui os valores de produção histórica 335 indicativos de valores de produção através do campo durante uma colheita passada ou anterior. O mapa de produção histórica 333 também inclui dados contextuais 337 que são indicativos do contexto ou condições que podem ter influenciado o valor de produção para o(s) ano(s) anteriores. Por exemplo, dados contextuais 337 podem incluir tipo de solo, elevação, inclinação, data da plantação, data da colheita, aplicação de fertilizante, tipo de semente (híbrida, etc.), uma medida da presença de ervas daninhas, uma medida da presença de peste, condições climáticas, por exemplo, precipitação de chuva, cobertura por neve, granizo, vento, temperatura, etc. O mapa de produção histórica 333 pode incluir também outros itens, conforme indicado pelo bloco 339. Conforme mostrado no exemplo ilustrado, o mapa de índice vegetativo 332 não contém informação adicional. Todavia em outros exemplos, o mapa de índice vegetativo 332 pode incluir também outros itens. Por exemplo, o crescimento de ervas daninhas tem um efeito sobre uma leitura de índice vegetativo. Consequentemente, a aplicação de herbicida em relação temporal ao sensoreamento de índice vegetativo usado para gerar mapa de índice vegetativo 332 pode ser informação contextual incluída no mapa de índice vegetativo 332 para prover o contexto aos valores de índice vegetativo.
[0085] Em alguns exemplos, o sensor de resíduo 336 pode ser um sensor óptico, tal como uma câmera, que gera imagens de uma área de um campo que foi colhida. Em alguns casos, o sensor óptico pode ser arranjado na colheitadeira agrícola 100 para coletar imagens de uma área adjacente à colheitadeira agrícola 100, tal como em uma área que se situa atrás de, ao lado de, ou em outra direção com relação à colheitadeira agrícola 100 quando a colheitadeira agrícola 100 se move através do campo durante uma operação de colheita. O sensor óptico pode também ser posicionado na, ou dentro da, colheitadeira agrícola 100, para obter imagens de uma ou mais porções de um exterior ou interior da colheitadeira agrícola 100. O sistema de processamento 338 processa uma ou mais imagens obtidas por intermédio do sensor de resíduo 336 para gerar dados de imagem processados que identificam uma ou mais características de resíduo na imagem. As características de resíduo detectadas pelo sistema de processamento 338 podem incluir um espalhamento dimensional (largura e distância traseira do espalhamento), uniformidade de resíduo, e teor de resíduo (por exemplo, qualidade da palha picada, tamanho da palha, sementes de ervas daninhas, etc.).
[0086] O sensor in-situ 208 pode ser, ou incluir, outros tipos de sensores, tais como uma câmera posicionada ao longo de um trajeto pelo material de cultivo separado se desloca na colheitadeira agrícola 100 (referida daqui em diante como “a câmara de processo”). Uma câmara de processo pode ser posicionada interna à colheitadeira agrícola 100 e pode capturar imagens do material de cultivo, incluindo sementes, conforme o material de cultivo se move através de, ou é expelido de, a colheitadeira agrícola 100. Assim, em alguns exemplos, o sistema de processamento 338 é operável para detectar uma presença de material passando através da colheitadeira agrícola 100 durante o curso de uma operação de colheita.
[0087] Em outros exemplos, o sensor de resíduo 336 pode contar com comprimento(s) de onda da energia eletromagnética e a maneira em que a energia eletromagnética é refletida por, absorvida por, atenuada por, ou transmitida através do material de resíduo. O sensor de resíduo 336 pode sensorear outras propriedades eletromagnéticas do material de resíduo, tais como permissividade elétrica, quando o material de resíduo passa entre duas placas capacitivas. Outras propriedades de material e sensores podem também ser usados. Em alguns exemplos, dados brutos ou processados do sensor de resíduo 336 podem ser apresentados para o operador 260 por intermédio do mecanismo de interface de operador 218. O operador 260 pode estar a bordo da colheitadeira agrícola 100 ou em um local remoto.
[0088] A presente discussão prossegue com relação a um exemplo no qual o sensor de resíduo 336 é um sensor de imagem, tal como uma câmera. Será apreciado que esse é apenas um exemplo, e os sensores mencionados acima, como outros exemplos do sensor de resíduo 336, são contemplados também aqui. Conforme mostrado na figura 4, o gerador de modelo preditivo 210, de exemplo, inclui uma ou mais da característica de gerador de modelo de resíduo-para-índice vegetativo 342, da característica de gerador de modelo de resíduo-para-umidade 344, e da característica de gerador de modelo de resíduo-para-característica topográfica 346. Em outros exemplos, o gerador de modelo preditivo 210 pode incluir adicionais, menos, ou diferentes componentes que aqueles mostrados no exemplo da figura 4. Consequentemente, em alguns exemplos, o gerador de modelo preditivo 210 pode incluir também outros itens 348, que podem incluir outros tipos de geradores de modelo preditivos para gerar outros tipos de modelos de resíduo.
[0089] O gerador de modelo 342 identifica uma relação entre característica de resíduo detectada nos dados de imagem 340, em um local geográfico correspondente a onde os dados de imagem 340 foram geograficamente referenciados, e os valores de índice vegetativo do mapa de índice vegetativo 331 correspondentes ao mesmo local no campo onde a característica de resíduo foi detectada. Com base nessa relação estabelecida pelo gerador de modelo 342, o gerador de modelo 342 gera um modelo de resíduo preditivo 350. O modelo de resíduo preditivo 350 é usado pelo gerador de mapa de resíduo 352 para predizer as características de resíduo em diferentes locais no campo com base no valor de índice vegetativo, geograficamente referenciado, contido no mapa de índice vegetativo 331 nos mesmos locais no campo.
[0090] O gerador de modelo 344 identifica uma relação entre a característica de resíduo nos dados de imagem processados 340, em um local geográfico correspondente a onde os dados de imagem 340 foram geograficamente referenciados, e o valor de umidade no mesmo local geográfico. Novamente, o valor de umidade é o valor geograficamente referenciado contido no mapa de umidade 332. O gerador de modelo 344 então gera um modelo de resíduo preditivo 350 que é usado pelo gerador de mapa de resíduo 352 para predizer a característica de resíduo em um local no campo com base no valor de umidade para este local no campo.
[0091] O gerador de modelo 346 identifica uma relação entre a característica de resíduo nos dados de imagem processados 340, em um local geográfico correspondente a onde os dados de imagem 340 foram geograficamente referenciados, e o valor de característica topográfica do mapa topográfico 333 neste mesmo local. O gerador de modelo 346 gera um modelo de resíduo preditivo 350 que é usado pelo gerador de mapa de resíduo 352 para predizer a característica de resíduo em um local particular no campo com base no valor de característica topográfica neste local no campo.
[0092] À luz do acima, o gerador de modelo preditivo 210 é operável para produzir uma pluralidade de modelos de resíduo preditivos, tais como um ou mais dos modelos de resíduo preditivos gerados pelo geradores de modelo 342, 344, e 346. Em outro exemplo, dois ou mais dos modelos de resíduo preditivos descritos acima podem ser combinados em um único modelo de resíduo preditivo que pode ser usado para predizer características de resíduo com base em dois ou mais do índice vegetativo, umidade e valor topográfico e diferentes locais no campo. Qualquer desses modelos de resíduo, ou combinações dos mesmos, são representados coletivamente pelo modelo de resíduo 350 na figura 4
[0093] O modelo de resíduo preditivo 350 é provido para o gerador de mapa preditivo 212. No exemplo da figura 4, o gerador de mapa preditivo 212 inclui um gerador de mapa de resíduo 352. Em outros exemplos, o gerador de mapa preditivo 212 pode incluir adicionais ou diferentes geradores de mapa. Assim, em alguns exemplos, o gerador de mapa preditivo 212 pode incluir outros itens 358, que podem incluir outros tipos do geradores de mapa para gerar mapas para outros tipos de características. O gerador de mapa de resíduo 352 recebe o modelo de resíduo preditivo 350 e gera um mapa preditivo que prediz as características de resíduo em diferentes locais no campo com base em valores de um ou mais do mapa de índice vegetativo 331, do mapa de umidade 332 e do mapa topográfico 333 e do modelo de resíduo preditivo 350.
[0094] O gerador de mapa preditivo 212 fornece um ou mais mapas de resíduo preditivos 360 que são preditivos de uma ou mais características de resíduo, tais como a largura de espalhamento de resíduo, espessura de resíduo, e teor de resíduo. O mapa de resíduo preditivo gerado 360 pode ser provido para o gerador de zona de controle 213, o sistema de controle 214, ou ambos. O gerador de zona de controle 213 gera zonas de controle e incorpora aquelas zonas de controle ao mapa preditivo funcional, isto é, o mapa preditivo 360, para produzir o mapa de zona de controle preditivo 265. Um ou ambos do mapa preditivo 264 e mapa de zona de controle preditivo 265 podem ser providos para o sistema de controle 214, que gera sinais de controle para controlar um ou mais dos subsistemas controláveis 216 com base no mapa preditivo 264, no mapa de zona de controle preditivo 265, ou em ambos.
[0095] A figura 5 é um fluxograma de um exemplo de operação do gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 na geração do modelo de resíduo preditivo 350 e do mapa de resíduo preditivo 360. No bloco 362, o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 recebem o mapa de índice vegetativo 331, o mapa de umidade 332, mapa topográfico 333, ou alguma combinação dos mesmos. No bloco 364, o sistema de processamento 338 recebe um ou mais sinais de sensor do sensor de resíduo 336. Conforme discutido acima, o sensor de resíduo 336 pode ser uma câmera, tal como a câmera voltada para trás 366; um sensor óptico 368, tal como uma câmera, voltada pelo menos parcialmente para dentro de uma colheitadeira agrícola; ou outro tipo de sensor de resíduo 370. Por exemplo, outros sensores de resíduo 370 poderiam incluir um sensor de força de impacto ou outros sensores eletromagnéticos.
[0096] No bloco 372, o sistema de processamento 338 processa o um ou mais sinais de sensor para gerar dados indicativos de uma característica de resíduo. No bloco 373, os dados de sensor podem ser indicativos de espalhamento de resíduo. O espalhamento de resíduo pode incluir uma ou mais dimensões com relação à combinada, por exemplo, uma largura com relação a, ou uma distância expelida de, ou uma distância deslocada da colheitadeira agrícola. Em alguns casos, conforme indicado no bloco 374, os dados de sensor podem ser indicativos da espessura de resíduo. A espessura de resíduo é indicativa da profundidade ou quantidade de resíduo na superfície do campo. Em alguns casos, conforme indicado no bloco 375, os dados de sensor podem ser indicativos de uniformidade de resíduo. Uniformidade de resíduo é indicativa da distribuição do resíduo através de uma superfície. Em alguns casos, conforme indicado no bloco 376, os dados de sensor podem ser indicativos do teor de resíduo. Teor de resíduo é indicativo dos tipos de material no resíduo (por exemplo, ervas daninhas, as plantas de cultivo, caules, sementes de ervas daninhas, grão, etc.) e/ou da qualidade do material (por exemplo, comprimento de palha picada, qualidade da semente esmagada, etc.). Os dados de sensor podem incluir também outros dados, conforme indicado pelo bloco 377.
[0097] No bloco 382, o gerador de modelo preditivo 210 também obtém o local geográfico correspondente aos dados de imagem. Por exemplo, o gerador de modelo preditivo 210 pode obter a posição geográfica de sensor de posição geográfica 204 e determinar, com base em atrasos de máquina, uma velocidade de máquina, campo de visão da câmera, etc., um local geográfico preciso onde a imagem foi tomada ou a quais dados de imagem 340 correspondem. Em alguns casos, os pixels na imagem são correlacionados com locais geográficos no campo e o local de pixel dos dados de sensor é transladado para um local geográfico no campo.
[0098] No bloco 384, o gerador de modelo preditivo 210 gera um ou mais modelos de resíduo preditivos, tais como o modelo de resíduo 350, que modelam uma relação entre um valor obtido de um mapa de informação, tal como o mapa de informação 258, e um valor de característica de resíduo sendo sensoreado pelo sensor in-situ 208 ou uma característica relacionada. Por exemplo, o gerador de modelo preditivo 210 pode gerar um modelo de resíduo preditivo que modela a relação entre um valor de índice vegetativo e uma característica de resíduo sensoreada, indicada pelos dados de imagem obtidos do sensor in-situ 208.
[0099] No bloco 385, o modelo de resíduo preditivo, tal como o modelo de resíduo preditivo 350, é provido para o gerador de mapa preditivo 212 que gera um mapa de resíduo preditivo 360 que mapeia uma característica de resíduo predita com base no modelo de resíduo preditivo 350 e um ou mais do mapa de índice vegetativo 331, do mapa de umidade 332, e do mapa topográfico 333. Por exemplo, em alguns exemplos, o mapa de resíduo preditivo 360 prediz o espalhamento de resíduo, conforme indicado pelo bloco 386. Em alguns exemplos, o mapa de resíduo preditivo 360, prediz a espessura de resíduo, conforme indicado pelo bloco 387. Em alguns exemplos, o mapa de resíduo preditivo 360 prediz a uniformidade de resíduo, conforme indicado pelo bloco 388. Em alguns exemplos, o mapa de resíduo preditivo 360 prediz o teor de resíduo, conforme indicado pelo bloco 389. Em alguns exemplos, o mapa preditivo 360 prediz outros itens ou alguma combinação de itens, conforme indicado pelo bloco 390. Ainda, o mapa de resíduo preditivo 360 pode ser gerado durante o curso de uma operação agrícola. Assim, quando uma colheitadeira agrícola está se movendo através de um campo realizando uma operação agrícola, o mapa de resíduo preditivo 360 é gerado quando a operação agrícola está sendo realizada.
[00100] No bloco 394, o gerador de mapa preditivo 212 fornece o mapa de resíduo preditivo 360. No bloco 391, o gerador de mapa de resíduo preditivo 212 fornece o mapa de resíduo preditivo para a apresentação para, e possível interação por, o operador 260. No bloco 393, o gerador de mapa preditivo 212 pode configurar o mapa para o consumo pelo sistema de controle 214. No bloco 395, o gerador de mapa preditivo 212 pode também prover o mapa 360 para o gerador de zona de controle 213 para geração de zonas de controle. No bloco 397, o gerador de mapa preditivo 212 configura o mapa de resíduo preditivo 360 também de outras maneiras. O mapa de resíduo preditivo 360 (com ou sem as zonas de controle) é provido para o sistema de controle 214. No bloco 396, o sistema de controle 214 gera sinais de controle para controlar os subsistemas controláveis 216 com base no mapa de resíduo preditivo 360.
[00101] A figura 6 mostra um diagrama de blocos ilustrando um exemplo do gerador de zona de controle 213. O gerador de zona de controle 213 inclui um seletor de atuador de máquina de trabalho (WMA) 486, o sistema de geração de zona de controle 488, e o sistema de geração de zona de regime 490. O gerador de zona de controle 213 pode também incluir outros itens 492. O sistema de geração de zona de controle 488 inclui o componente identificador de critérios de zona de controle 494, o componente de definição de limite de zona de controle 496, o componente identificador de regulagem de alvo 498, e outros itens 520. O sistema de geração de zona de regime 490 inclui o componente de identificação de critérios de zona de regime 522, o componente de definição de limite de zona de regime 524, o componente identificador de resolvedor de regulagem 526, e outros itens 528. Antes de descrever a operação global do gerador de zona de controle 213 em mais detalhe, uma breve descrição de alguns dos itens no gerador de zona de controle 213 e das respectivas operações dos mesmos será primeiro provida.
[00102] A colheitadeira agrícola 100, ou outras máquinas de trabalho, podem ter uma extensa variedade de diferentes tipos de atuadores controláveis que realizam diferentes funções. O atuadores controláveis na colheitadeira agrícola 100 ou outras máquinas de trabalho são coletivamente referidos como atuadores de máquina de trabalho (WMAs). Cada WMA pode ser independentemente controlável com base em valores em um mapa preditivo funcional, ou os WMAs podem ser controlados como conjuntos com base em um ou mais valores em um mapa preditivo funcional. Por conseguinte, o gerador de zona de controle 213 pode gerar zonas de controle correspondentes a cada WMA individualmente controlável ou correspondentes aos conjuntos de WMAs que são controlados em coordenação uns com os outros.
[00103] O seletor de WMA 486 seleciona um WMA ou um conjunto de WMAs, para o qual as correspondentes zonas de controle devem ser geradas. O sistema de geração de zona de controle 488 então gera as zonas de controle para o WMA selecionado ou o conjunto de WMAs. Para cada WMA ou conjunto de WMAs, critérios diferentes podem ser usados na identificação de zonas de controle. Por exemplo, para um WMA, o tempo de resposta de WMA pode ser usado como os critérios para definir os limites das zonas de controle. Em outro exemplo, características de desgaste (por exemplo, quanto um atuador ou mecanismo particular se desgasta como um resultado de movimento do mesmo) podem ser usadas como os critérios para identificar os limites de zonas de controle. O componente identificador de critérios de zona de controle 494 identifica critérios particulares, que devem ser usados na definição de zonas de controle para o WMA selecionado ou o conjunto de WMAs. O componente de definição de limite de zona de controle 496 processa os valores em um mapa preditivo funcional sob análise para definir os limites das zonas de controle nesse mapa preditivo funcional com base nos valores no mapa preditivo funcional sob análise e com base nos critérios de zona de controle para o WMA selecionado ou o conjunto de WMAs.
[00104] O componente identificador de regulagem alvo 498 ajusta um valor do ajuste alvo que será usado para controlar o WMA ou o conjunto de WMAs em diferentes zonas de controle. Por exemplo, se o WMA selecionada é o sistema de propulsão 250 e o mapa preditivo funcional sob análise é um mapa de velocidade preditivo funcional 438, então a regulagem alvo em cada zona de controle pode ser uma regulagem de velocidade alvo com base em valores de velocidade contidos no mapa de velocidade preditivo funcional 238 dentro da zona de controle identificada.
[00105] Em alguns exemplos, onde a colheitadeira agrícola 100 deve ser controlada com base em um local atual ou futuro da colheitadeira agrícola 100,, múltiplas regulagens alvo podem ser possíveis para um WMA em uma dada posição. Neste caso, as regulagens alvos podem ter diferentes valores e podem estar competindo. Assim, as regulagens alvos precisam ser resolvidas de forma que somente uma única regulagem alvo seja usada para controlar o WMA. Por exemplo, onde o WMA é um atuador no sistema de propulsão 250, que está sendo controlado, a fim de controlar a velocidade da colheitadeira agrícola 100, múltiplos diferentes conjuntos concorrentes de critérios podem existir, que são considerados pelo sistema de geração de zona de controle 488 na identificação das zonas de controle e as regulagens alvos para o WMA selecionada nas zonas de controle. Todavia, em qualquer dado tempo, a colheitadeira agrícola 100 não pode se deslocar sobre o solo a múltiplas velocidades simultaneamente. Ao contrário, em qualquer dado tempo, a colheitadeira agrícola 100 se desloca a uma única velocidade. Assim, uma das regulagens alvos concorrentes é selecionada para controlar a velocidade da colheitadeira agrícola 100.
[00106] Por conseguinte, em alguns exemplos, o sistema de geração de zona de regime 490 gera zonas de regime para resolver múltiplas diferentes regulagens alvos concorrentes. O componente de identificação de critérios de zona de regime 522 identifica os critérios, que são usados para estabelecer zonas de regime para o WMA selecionado ou o conjunto de WMAs no mapa preditivo funcional sob análise. Alguns critérios que podem ser usados para identificar ou definir as zonas de regime incluem, por exemplo, tipo de cultivo ou variedade de cultivo com base em um mapa conforme a plantação ou outra fonte do tipo de cultivo ou variedade de cultivos, tipo de ervas daninhas, intensidade de ervas daninhas, ou do estado de cultivo, tal como se o cultivo está caído, parcialmente caído ou em pé. Assim como cada WMA ou o conjunto de WMAs pode ter uma correspondente zona de controle, os diferentes WMAs ou conjuntos de WMAs podem ter uma correspondente zona de regime. O componente de definição de limite de zona de regime 524 identifica os limites de zonas de regime no mapa preditivo funcional sob análise com base nos critérios de zona de regime identificados pelo componente de identificação de critérios de zona de regime 522.
[00107] Em alguns exemplos, as zonas de regime podem se sobrepor umas às outras. Por exemplo, uma zona de regime de variedade de cultivo pode se sobrepor uma porção de, ou uma totalidade de, um zona de regime de estado de cultivo. Em um tal exemplo, as diferentes zonas de regime podem ser atribuídas a uma hierarquia de precedência, de forma que, onde duas ou mais zonas de regime se sobrepõem, a zona de regime atribuída a uma mais alta posição hierárquica ou importância na hierarquia de precedência tem precedência sobre as zonas de regime que têm mais baixas posições hierárquicas ou importância na hierarquia de precedência. A hierarquia de precedência das zonas de regime pode ser manualmente ajustada ou pode ser automaticamente ajustada usando um sistema baseado em regras, um sistema baseado em modelo, ou outro sistema. Como um exemplo, onde uma zona de regime de cultivo derrubado se sobrepõe a uma zona de regime de variedade de cultivo, a zona de regime de cultivo derrubado pode ser atribuída a uma maior importância na hierarquia de precedência que a zona de regime de variedade de cultivo, de forma que a zona de regime de cultivo derrubado tenha precedência.
[00108] Além disso, cada zona de regime pode ter um único resolvedor de regulagem para um dado WMA ou o conjunto de WMAs. O componente identificador de resolução de regulagens526 identifica um resolvedor de regulagem particular para cada zona de regime identificada no mapa preditivo funcional sob análise e um resolvedor de regulagem particular para o WMA selecionado ou o conjunto de WMAs.
[00109] Uma vez quando o resolvedor de regulagem para a zona de regime particular é identificado, este resolvedor de regulagem pode ser usado para resolver regulagens alvos concorrentes, onde mais que um ajuste alvo é identificado com base nas zonas de controle. Os tipos diferentes de resolvedores de regulagens podem ter diferentes formas. Por exemplo, os resolvedores de regulagem, que são identificados para cada zona de regime podem incluir um resolvedor de escolha humano, no qual as regulagens alvos concorrentes estão apresentadas a um operador ou outro usuário para resolução. Em outro exemplo, o resolvedor de regulagem pode incluir uma rede neuronal ou outra inteligência artificial ou um sistema de aprendizagem por máquina. Em tais casos, os resolvedores de regulagem pode resolver as regulagens alvos concorrentes com base em uma métrica de qualidade predita ou histórica, correspondente a cada um das diferentes regulagens alvos. Como um exemplo, um ajuste de velocidade de veículo elevada pode reduzir o tempo para colher um campo e reduzir o correspondente trabalho baseado em tempo e os custos de equipamento, mas pode aumentar a perda de grãos. Um ajuste de velocidade de veículo reduzida pode aumentar o tempo para colher um campo e aumentar o correspondente trabalho baseado em tempo e os custos de equipamento, mas pode diminuir a perda de grãos. Quando a perda de grãos ou o tempo para colher é selecionado como uma métrica de qualidade, o valor predito ou histórico para a métrica de qualidade selecionada, dados os dois valores de regulagem de velocidade de veículo concorrentes, pode ser usado para resolver a regulagem de velocidade. Em alguns casos, os resolvedores de regulagem podem ser um conjunto de regras de limite que pode ser usado em vez de, ou em adição a, as zonas de regime. Um exemplo de uma regra de limite pode ser expresso como segue: Se os valores de biomassa preditos dentro dos 20 pés da plataforma de corte da colheitadeira agrícola 100 forem maiores que x quilogramas (onde x é um valor selecionado ou predeterminado), então o uso do valor de regulagem alvo que é escolhido com base na taxa de alimentação sobre outras regulagens alvos concorrentes, de outra maneira uso do valor de regulagem alvo com base na perda de grãos sobre outros valores de ajuste alvo concorrentes. Os resolvedores de regulagem podem ser componentes lógicos que executam regras lógicas na identificação de um ajuste alvo. Por exemplo, o resolvedor de regulagem pode resolver regulagens alvos enquanto tenta minimizar o tempo de colheita ou minimizar o custo total da colheita ou maximizar os grãos colhidos ou com base em outras variáveis, que são computadas como uma função das diferentes regulagens alvos candidatas. Um tempo de colheita pode ser minimizado quando uma quantidade para completar a colheita é reduzida para, ou para abaixo de, um limite selecionado. Um custo total de colheita pode ser minimizado, onde o custo total de colheita é reduzido para, ou para abaixo de, um limite selecionado. Grão colhido pode ser maximizado, onde a quantidade de grão colhido é aumentada para, ou acima de, um limite selecionado.
[00110] A figura 7 é um fluxograma ilustrando um exemplo da operação do gerador de zona de controle 213 na geração de zonas de controle e zonas de regime para um mapa que o gerador de zona de controle 213 recebe para o processamento de zona (por exemplo, para um mapa sob análise).
[00111] No bloco 530, o gerador de zona de controle 213 recebe um mapa sob análise para processamento. Em um exemplo, conforme mostrado no bloco 532, o mapa sob análise é um mapa preditivo funcional. Por exemplo, o mapa sob análise pode ser um dos mapas preditivos funcionais 436, 437, 438, ou 440. O bloco 534 indica que o mapa sob análise pode ser também outros mapas.
[00112] No bloco 530, o gerador de zona de controle 213 recebe um mapa sob análise para processamento. Em um exemplo, conforme mostrado no bloco 532, o mapa sob análise é um mapa preditivo funcional. Por exemplo, o mapa sob análise pode ser um dos mapas preditivos funcionais 436, 437, 438, ou 440. O bloco 534 indica que o mapa sob análise pode ser também outros mapas.
[00113] No bloco 554, o componente de identificação de critérios de zona de regime 522 obtém critérios de definição de zona de regime para o WMA selecionado ou o conjunto de WMAs. O bloco 556 indica um exemplo, no qual os critérios de definição de zona de regime são baseados em uma entrada manual do operador 260 ou outro usuário. O bloco 558 ilustra um exemplo, no qual os critérios de definição de zona de regime são baseados em tipo de cultivo ou variedade de cultivos. O bloco 560 ilustra um exemplo, no qual os critérios de definição de zona de regime são baseados em tipo de ervas daninhas ou as intensidade de ervas daninhas, ou ambos. O bloco 562 ilustra um exemplo, no qual os critérios de definição de zona de regime são baseados ou incluem o estado de cultivo. O bloco 564 indica um exemplo, no qual os critérios de definição de zona de regime são, ou incluem, também outros critérios. Por exemplo, os critérios de definição de zona de regime são baseados em, ou incluem, as características topográficas.
[00114] No bloco 566, o componente de definição de limite de zona de controle 496 gera os limites de zonas de controle no mapa sob análise com base nos critérios de zona de controle. O componente de definição de limite de zona de regime 524 gera os limites de zonas de regime no mapa sob análise com base nos critérios de zona de regime. O bloco 568 indica um exemplo, no qual os limites de zona são identificados para as zonas de controle e as zonas de regime. O bloco 570 mostra que o componente identificador de regulagem alvo 498 identifica as regulagens alvos para cada uma das zonas de controle. As zonas de controle e zonas de regime podem ser gerada também de outras maneiras, e isso é indicado pelo bloco 572.
[00115] No bloco 574, o componente identificador de resolução de regulagens526 identifica o resolvedor de regulagem para o WMA selecionado em cada zona de regime definida pelo componente de definição de limite de zona de regimes 524. Conforme discutido acima, o resolvedor de zona de regime pode ser um resolvedor humano 576, uma inteligência artificial ou um resolvedor de sistema de aprendizagem por máquina 578, um resolvedor 580 com base em qualidade predita ou histórica para cada ajuste alvo concorrente, um resolvedor baseado em regras 582, um resolvedor baseados em critérios de desempenho 584, ou outros resolvedores 586.
[00116] No bloco 588, o seletor de WMA 486 determina se existem mais WMAs ou conjuntos de WMAs para processar. Se WMAs ou conjuntos de WMAs adicionais estão restando a ser processados, o processamento reverte para o bloco 436, onde o próximo WMA ou o conjunto de WMAs, para o qual as zonas de controle e zonas de regime devem ser definidas, é selecionado. Quando nenhum dos WMAs ou dos conjuntos de WMAs adicionais, para os quais as zonas de controle ou zonas de regime devem ser geradas, é restante, o processamento se move para o bloco 590, onde o gerador de zona de controle 213 fornece um mapa com zonas de controle, regulagens alvos, as zonas de regime, e resolvedores de regulagens para cada dos WMAs ou conjuntos de WMAs. Conforme discutido acima, o mapa atualizado pode ser apresentado ao operador 260 ou a outro usuário; o mapa atualizado pode ser provido para controlar o sistema 214; ou o mapa atualizado pode ser fornecido de outras maneiras.
[00117] A figura 8 ilustra um exemplo da operação do sistema de controle 214 no controle da colheitadeira agrícola 100 com base em um mapa que é fornecido pelo gerador de zona de controle 213. Assim, no bloco 592, o sistema de controle 214 recebe um mapa do sítio de trabalho. Em alguns casos, o mapa pode ser um mapa preditivo funcional que pode incluir zonas de controle e zonas de regime, conforme representado pelo bloco 594. Em alguns casos, o mapa recebido pode ser um mapa preditivo funcional que exclui zonas de controle e zonas de regime. O bloco 596 indica um exemplo, no qual o mapa recebido do sítio de trabalho pode ser um mapa de informação anterior tendo zonas de controle e zonas de regime identificadas no mesmo. O bloco 598 indica um exemplo, no qual o mapa recebido pode incluir múltiplos mapas diferentes ou múltiplas camadas de mapa diferentes. O bloco 610 indica um exemplo, no qual o mapa recebido pode assumir também outras formas.
[00118] No bloco 612, o sistema de controle 214 recebe um sinal de sensor de sensor de posição geográfica 204. O sinal de sensor de sensor de posição geográfica 204 pode incluir dados que indica o local geográfico 614 da colheitadeira agrícola 100, a velocidade 616 da colheitadeira agrícola 100, o rumo 618 ou colheitadeira agrícola 100, ou outra informação 620. No bloco 622, o controlador de zona 247 seleciona a zona de regime, e, no bloco 624, o controlador de zona 247 seleciona Uma zona de controle no mapa com base no sinal de sensor de posição geográfica. No bloco 626, o controlador de zona 247 seleciona um WMA ou um conjunto de WMAs a ser controlado. No bloco 628, o controlador de zona 247 obtém um ou mais regulagens alvos para o WMA selecionado ou o conjunto de WMAs. As regulagens alvos, que são obtidas para o WMA selecionado ou o conjunto de WMAs podem provir de uma variedade de diferentes fontes. Por exemplo, o bloco 630 mostra um exemplo, no qual uma ou mais das regulagens alvos para o WMA selecionado ou o conjunto de WMAs é com base em uma entrada das zonas de controle no mapa do sítio de trabalho. O bloco 632 mostra um exemplo, no qual uma ou mais das regulagens alvos são obtidas de entradas por humano do operador 260 ou outro usuário. O bloco 634 mostra um exemplo, no qual as regulagens alvos são obtidas de um sensor in-situ 208. O bloco 636 mostra um exemplo, no qual a uma ou mais regulagens alvos são obtidas de um ou mais sensores em outras máquinas trabalhando no mesmo campo ou simultaneamente com colheitadeira agrícola 100 ou de um ou mais sensores em máquinas que trabalharam no mesmo campo no passado. O bloco 638 mostra um exemplo, no qual as regulagens alvos são obtidas também de outras fontes.
[00119] No bloco 640, o controlador de zona 247 acessa o resolvedor de regulagem para a zona de regime selecionada e controla o resolvedor de regulagem para resolver regulagens alvos concorrentes para um ajuste alvo resolvido. Conforme discutido acima, em alguns casos, o resolvedor de regulagem pode ser um resolvedor humano, em cujo caso o controlador de zona 247 controla mecanismos de interface de operador 218 para apresentar as regulagens alvos concorrentes para o operador 260 ou outro usuário para resolução. Em alguns casos, o resolvedor de regulagem pode ser uma rede neuronal ou outra inteligência artificial ou um sistema de aprendizagem por máquina, e o controlador de zona 247 submete as regulagens alvos concorrentes à rede neuronal, inteligência artificial, ou um sistema de aprendizagem por máquina para a seleção. Em alguns casos, o resolvedor de regulagem pode ser baseado em uma métrica de qualidade predita ou histórica, em regras de limite, ou em componentes lógicos. Em qualquer dos últimos exemplos, o controlador de zona 247 executa o resolvedor de regulagem para obter um ajuste alvo resolvido com base na métrica de qualidade predita ou histórica, com base nas regras de limite, ou com o uso dos componentes lógicos.
[00120] No bloco 642, com o controlador de zona 247 tendo identificado o ajuste alvo resolvido, o controlador de zona 247 provê o ajuste alvo resolvido para outros controladores no sistema de controle 214, que geram e aplicam sinais de controle ao WMA selecionado ou ao conjunto de WMAs com base no ajuste alvo resolvido. Por exemplo, onde o WMA selecionado é a máquina ou o atuador de plataforma de corte 248, o controlador de zona 247 provê o ajuste alvo resolvido para o controlador de regulagens 232 ou controlador de plataforma de corte/carretel 238 ou ambos para gerar sinais de controle com base no ajuste alvo resolvido, e aqueles sinais de controle gerados são aplicados aos atuadores de máquina ou de plataforma de corte 248. No bloco 644, se WMAs adicionais ou conjuntos de WMAs adicionais devem ser controlados no local geográfico atual da colheitadeira agrícola 100 (como detectado no bloco 612), então o processamento reverte para o bloco 626, onde o próximo WMA ou o conjunto de WMAs é selecionado. Os processos representados pelos blocos 626 através de 644 continuam até todos dos WMAs ou conjuntos de WMAs a serem controlados no local geográfico atual da colheitadeira agrícola 100 terem sido abordados. Se nenhum dos WMAs ou conjuntos de WMAs adicionais deve ser controlado no local geográfico atual da colheitadeira agrícola 100 permanece, o processamento prossegue para o bloco 646, onde o controlador de zona 247 determina se zonas de controle adicionais a serem consideradas existem na zona de regime selecionada. Se existirem zonas de controle a serem consideradas, o processamento reverte para o bloco 624, onde uma próxima zona de controle é selecionada. Se nenhuma das zonas de controle está restando a ser considerada, o processamento prossegue para o bloco 648, onde a determinação de se zonas de regime adicionais são permanecendo a ser consideradas. O controlador de zona 247 determina se zonas de regime adicionais estão permanecendo a ser consideradas. Se zonas de regime adicionais estão permanecendo a ser considerados, o processamento reverte para o bloco 622, onde uma próxima zona de regime é selecionada.
[00121] No bloco 650, o controlador de zona 247 determina se a operação que colheitadeira agrícola 100 está realizando está completa. Se não, o controlador de zona 247 determina se um critério de zona de controle foi satisfeito para continuar o processamento, conforme indicado pelo bloco 652. Por exemplo, conforme mencionado acima, os critérios de definição de zona de controle podem incluir critérios definindo quando um limite de zona de controle pode ser cruzado pela colheitadeira agrícola 100. Por exemplo, se um limite de zona de controle puder ser cruzado pela colheitadeira agrícola 100, pode ser definido por um período de tempo selecionado, significando que a colheitadeira agrícola 100 é prevenida de cruzar um limite de tempo até uma quantidade selecionada do tempo tiver transpirado. Em nesse caso, no bloco 652, o controlador de zona 247 determina se o período de tempo selecionado decorreu. Adicionalmente, o controlador de zona 247 pode realizar o processamento continuamente. Assim, o controlador de zona 247 não espera por qualquer período de tempo particular antes de continuar a determinar se uma operação da colheitadeira agrícola 100 está completa. No bloco 652, o controlador de zona 247 determina que existe tempo para continuar o processamento, então o processamento continua no bloco 612 onde o controlador de zona 247 novamente recebe uma entrada de sensor de posição geográfica 204. Será apreciado que o controlador de zona 247 pode controlar os WMAs e conjuntos de WMAs simultaneamente usando um controlador de múltiplas entradas, múltiplas saídas, ao invés de controlar os WMAs e conjuntos de WMAs sequencialmente.
[00122] A figura 9 é um diagrama de blocos mostrando um exemplo de um controlador de interface de operador 231. No exemplo ilustrado, o controlador de interface de operador 231 inclui o sistema de processamento de comando de entrada de operador 654, outro sistema de interação de controlador 656, o sistema de processamento de voz 658, e o gerador de sinal de ação 660. O sistema de processamento de comando de entrada de operador 654 inclui o sistema de manipulação de voz 662, o sistema de manipulação de gestos de toque 664, e outros itens 666. Outro sistema de interação de controlador 656 inclui o sistema de processamento de entrada de controlador 668 e o gerador de saída de controlador 670. O sistema de processamento de voz 658 inclui o detector de disparo 672, o componente de reconhecimento 674, o componente de síntese 676, o sistema de compreensão de linguagem natural 678, o sistema de gerenciamento de diálogo 680, e outros itens 682. O gerador de sinal de ação 660 inclui o gerador de sinal de controle visual 684, o gerador de sinal de controle de áudio 686, o gerador de sinal de controle táctil 688, e outros itens 690. Antes da descrição da operação do exemplo do controlador de interface de operador 231, mostrado na figura 11, na manipulação de várias ações de interface de operador, uma breve descrição de alguns dos itens no controlador de interface de operador 231 e da operação associada dos mesmos é primeiramente provida.
[00123] O sistema de processamento de comando de entrada de perador 654 detecta as entradas de operador nos mecanismos de interface de operador 218 e processa aquelas entradas para os comandos. O sistema de manipulação de voz 662 detecta entradas de voz e manipula as interações com o sistema de processamento de voz 658 para processar as entradas de voz para os comandos. O sistema de manipulação de gestos de toque 664 detecta gestos de toque nos elementos sensíveis ao toque nos mecanismos de interface de operador 218 e processa aquelas entradas para os comandos.
[00124] Outro sistema de interação de controlador 656 manipula interações com outros controladores no sistema de controle 214. O sistema de processamento de entrada de controlador 668 detecta e processa entradas de outros controladores no sistema de controle 214, e o gerador de saída de controlador 670 gera as saídas e provê aquelas saídas para outros controladores no sistema de controle 214. O sistema de processamento de voz 658 reconhece entradas de voz, determina os significados daquelas entradas, e provê uma saída indicativa dos significados das entradas faladas. Por exemplo, o sistema de processamento de voz 658 pode reconhecer uma entrada de voz do operador 260, como um comando de alteração de regulagem e em que o operador 260 está comandando o sistema de controle 214 para alterar uma regulagem para um subsistema controlável 216. Em um tal exemplo, o sistema de processamento de voz 658 reconhece o teor do comando falado, identifica o significado desse comando como um comando de alteração de regulagem, e provê o significado dessa entrada de volta para o sistema de manipulação de voz 662. O sistema de manipulação de voz 662, por sua vez, interage com o gerador de saída de controlador 670 para prover a saída comandada para o controlador apropriado no sistema de controle 214 para realizar o comando de alteração de regulagem falado.
[00125] O sistema de processamento de voz 658 pode ser invocado em uma variedade de maneiras diferentes. Por exemplo, em um exemplo, o sistema de manipulação de voz 662 continuamente provê uma entrada de um microfone (sendo um dos mecanismos de interface de operador 218) ao sistema de processamento de voz 658. O microfone detecta a voz do operador 260, e o sistema de manipulação de voz 662 provê a voz detectada para o sistema de processamento de voz 658. O detector de disparo 672 detecta um gatilho indicando que o sistema de processamento de voz 658 é invocado. Em alguns casos, quando o sistema de processamento de voz 658 está recebendo entradas de voz contínuas do sistema de manipulação de voz 662, o componente de reconhecimento de voz 674 realiza o reconhecimento de voz contínuo em todas as falas proferidas pelo operador 260. Em alguns casos, o sistema de processamento de voz 658 é configurado para invocação usando uma palavra de despertar. Isto é, em alguns casos, a operação do sistema de processamento de voz 658 pode ser iniciada com base no reconhecimento de uma palavra falada selecionada, referida como a palavra de despertar. Em um tal exemplo, onde o componente de reconhecimento 674 reconhece a palavra de despertar, o componente de reconhecimento 674 provê uma indicação que a palavra de despertar foi reconhecida para disparar detector 672. O detector de disparo 672 detecta que o sistema de processamento de voz 658 foi invocado ou disparado por a palavra de despertar. Em outro exemplo, o sistema de processamento de voz 658 pode ser invocado por um operador 260 atuando um atuador em um mecanismo de interface de usuário, tal como por tocar um atuador em uma tela de exibição sensível ao toque, por compressão de uma tecla, ou por prover outra entrada de disparo. Em um tal exemplo, o detector de disparo 672 pode detectar que o sistema de processamento de voz 658 foi invocado quando uma entrada de disparo por intermédio de um mecanismo de interface de usuário é detectada. O detector de disparo 672 pode detectar que o sistema de processamento de voz 658 foi invocado também de outras maneiras.
[00126] Uma vez quando o sistema de processamento de voz 658 é invocado, a entrada de voz do operador 260 é provida para o componente de reconhecimento de voz 674. O componente de reconhecimento de voz 674 reconhece os elementos linguísticos na entrada de voz, tal como palavras, frases, ou outras unidades linguísticas. O sistema de compreensão de linguagem natural 678 identifica um significado da fala reconhecida. Os significados pode ser uma saída de linguagem natural, uma saída de comando identificando um comando refletido na fala reconhecida, uma saída de valor identificando um valor na fala reconhecida, ou qualquer de uma extensa variedade de outras saídas que refletem a compreensão da fala reconhecida. Por exemplo, o sistema de compreensão de linguagem natural 678 e o sistema de processamento de voz 568, mais geralmente, podem compreender os significados da fala reconhecida no contexto da colheitadeira agrícola 100.
[00127] Em alguns exemplos, o sistema de processamento de voz 658 pode também gerar saídas, que navegam o operador 260 através de uma experiência do usuário com base em a entrada de voz. Por exemplo, o sistema de gerenciamento de diálogo 680 pode gerar e gerenciar um diálogo com o usuário a fim de identificar o que o usuário deseja fazer. O diálogo pode eliminar a ambiguidade um comando do usuário; identificar um ou mais valores específicos, que são necessários para realizar o comando do usuário; ou obter outra informação do usuário ou prover outra informação ao usuário, ou ambos. O componente de síntese 676 pode gerar síntese de voz que pode ser apresentado ao usuário através de um mecanismo de interface de operador de áudio, tal como um alto-falante. Assim, o diálogo gerenciado pelo sistema de gerenciamento de diálogo 680 pode ser exclusivamente um diálogo falado ou uma combinação tanto de um diálogo visual quanto de um diálogo falado.
[00128] O gerador de sinal de ação 660 gera os sinais de ação para controlar os mecanismos de interface de operador 218 com base em saídas de um ou mais do sistema de processamento de comando de entrada de operador 654, outro sistema de interação de controlador 656, e o sistema de processamento de voz 658. O gerador de sinal de controle visual 684 gera sinais de controle para controlar itens visuais em mecanismos de interface de operador 218. Os itens visuais podem ser luzes, uma tela de exibição, indicadores de advertência, ou outros itens visuais. O gerador de sinal de controle de áudio 686 gera as saídas que controlam os elementos de áudio de mecanismos de interface de operador 218. Os elementos de áudio incluem um alto-falante, os mecanismos de alerta audíveis, buzinas, ou outros elementos audíveis. O gerador de sinal de controle táctil 688 gera sinais de controle, que são fornecidos para controlar os elementos tácteis dos mecanismos de interface de operador 218. Os elementos tácteis incluem elementos de vibração que podem ser usados para vibrar, por exemplo, o assento do operador, o volante, pedais, ou alavancas de controle, usados pelo operador. Os elementos tácteis podem incluir elementos de realimentação táctil ou de realimentação de força, que provêm a realimentação táctil ou a realimentação de força para o operador através de mecanismos de interface de operador. Os elementos tácteis podem incluir também uma extensa variedade de outros elementos tácteis.
[00129] A figura 10 é um fluxograma ilustrando um exemplo da operação do controlador de interface de operador 231 na geração de uma exibição de interface de operador em um mecanismo de interface de operador 218, que pode incluir uma tela de exibição sensível ao toque. A figura 12 também ilustra um exemplo de como o controlador de interface de operador 231 pode detectar e processar as interações do operador com a tela de exibição sensível ao toque.
[00130] No bloco 692, o controlador de interface de operador 231 recebe um mapa. O bloco 694 indica um exemplo, no qual o mapa é um mapa preditivo funcional, e o bloco 696 indica um exemplo, no qual o mapa é outro tipo de mapa. No bloco 698, o controlador de interface de operador 231 recebe uma entrada de sensor de posição geográfica 204 identificando o local geográfico da colheitadeira agrícola 100. Como indicado no bloco 700, a entrada do sensor de posição geográfica 204 pode incluir o rumo, ao longo de com o local, da colheitadeira agrícola 100. O bloco 702 indica um exemplo, no qual a entrada do sensor de posição geográfica 204 inclui a velocidade da colheitadeira agrícola 100, e o bloco 704 indica um exemplo, no qual a entrada do sensor de posição geográfica 204 inclui outros itens.
[00131] No bloco 706, o gerador de sinal de controle visual 684 no controlador de interface de operador 231 controla a tela de exibição sensível ao toque em mecanismos de interface de operador 218 para gerar uma exibição mostrando toda ou uma porção de um campo representado pelo mapa recebido. O bloco 708 indica que o campo exibido pode incluir um marcador da posição atual mostrando uma posição atual da colheitadeira agrícola 100 com relação ao campo. O bloco 710 indica um exemplo, no qual o campo exibido inclui um próximo marcador de unidade de trabalho que identifica uma próxima unidade de trabalho (ou área no campo) em que a colheitadeira agrícola 100 estará operando. O bloco 712 indica um exemplo, no qual o campo exibido inclui uma porção de exibição de área próxima que exibe áreas, que ainda devem ser processadas pela colheitadeira agrícola 100, e o bloco 714 indica um exemplo, no qual o campo exibido inclui porções de exibição anteriormente visitadas que representam as áreas do campo, que a colheitadeira agrícola 100 já processou. O bloco 716 indica um exemplo, no qual o campo exibido exibe várias características do campo tendo locais georreferenciados no mapa. Por exemplo, se o mapa recebido for um mapa de produção, o campo exibido pode mostrar os diferentes valores de produção no campo georreferenciado dentro do campo exibido. As características mapeadas podem ser mostradas nas áreas previamente visitadas (conforme mostrado no bloco 714), nas próximas áreas (conforme mostrado no bloco 712), e na próxima unidade de trabalho (conforme mostrado no bloco 710). O bloco 718 indica um exemplo, no qual o campo exibido inclui também outros itens.
[00132] A figura 11 é uma ilustração simbólica mostrando um exemplo de uma exibição de interface de usuário 720 que pode ser gerada em uma tela de exibição sensível ao toque. Em outros casos, a exibição de interface de usuário 720 pode ser gerada em outros tipos de exibições. A tela de exibição sensível ao toque pode ser montada no compartimento de operador da colheitadeira agrícola 100 ou no dispositivo móvel ou em outro lugar. A exibição de interface de usuário 720 será descrita antes de continuar com a descrição do fluxograma mostrado na figura 10.
[00133] No exemplo mostrado na figura 11, a exibição de interface de usuário 720 ilustra que a tela de exibição sensível ao toque inclui uma característica de exibição para operar um microfone 722 e um alto-falante 724. Assim, a exibição sensível ao toque pode ser comunicativamente acoplada ao microfone 722 e o alto-falante 724. O bloco 726 indica que a tela de exibição sensível ao toque pode incluir uma extensa variedade de atuadores de controle de interface de usuário, tal como botões, teclados, teclados macios, conexões, ícones, interruptores, etc. O operador 260 pode atuar os atuadores de controle de interface de usuário para realizar várias funções.
[00134] No exemplo mostrado na figura 11, a exibição de interface de usuário 720 inclui uma porção de exibição de campo 728 que exibe pelo menos uma porção do campo em que a colheitadeira agrícola 100 está operando. A porção de exibição de campo 728 é mostrada com um marcador da posição atual 708, que corresponde a uma posição atual da colheitadeira agrícola 100 na porção do campo mostrada na porção de exibição de campo 728. Em um exemplo, o operador pode controlar a exibição sensível ao toque a fim de amplificar as porções de porção de exibição de campo 728 ou para deslocar ou rolar a porção de exibição de campo 728 para mostrar as diferentes porções do campo. Uma próxima unidade de trabalho 730 é mostrada como uma área do campo diretamente à frente do marcador da posição atual 708 da colheitadeira agrícola 100. O marcador da posição atual 708 pode também ser configurado para identificar a direção de deslocamento da colheitadeira agrícola 100, a velocidade de deslocamento da colheitadeira agrícola 100, ou ambas. Na figura 13, o formato do marcador da posição atual 708 provê uma indicação de como a orientação da colheitadeira agrícola 100 dentro do campo que pode ser usada como uma indicação de uma direção de deslocamento da colheitadeira agrícola 100.
[00135] O tamanho da próxima unidade de trabalho 730 marcada na porção de exibição de campo 728 pode variar com base em uma extensa variedade de critérios diferentes. Por exemplo, o tamanho de próxima unidade de trabalho 730 pode variar com base na velocidade de deslocamento da colheitadeira agrícola 100. Assim, quando a colheitadeira agrícola 100 está se deslocando mais rapidamente, então a área da próxima unidade de trabalho 730 pode ser maior que a área da próxima unidade de trabalho 730, se a colheitadeira agrícola 100 estiver se deslocando mais lentamente. A porção de exibição de campo 728 é também mostrada exibindo a área previamente visitada 714 e as próximas áreas 712. As áreas previamente visitadas 714 representam áreas, que já foram colhidas, enquanto as áreas próximas 712 representam áreas que ainda precisam ser colhidas. A porção de exibição de campo 728 é também mostrada exibindo diferentes características do campo. No exemplo ilustrado na figura 13, o mapa, que está sendo exibido é um mapa de produção. Por conseguinte, uma pluralidade de diferentes marcadores de produção é exibida na porção de exibição de campo 728. Existem um conjunto de marcadores de produção de exibição 732 mostrados nas áreas já visitadas 714. Existe também um conjunto de marcadores de produção de exibição 734 mostrados nas próximas áreas 712, e existe um conjunto de marcadores de produção de exibição 736 mostrados na próxima unidade de trabalho 730. A figura 13 mostra que os marcadores de produção de exibição 732, 734, e 736 são constituídos de símbolos diferentes. Cada um dos símbolos representa uma quantidade de produção. No exemplo mostrado na figura 3, o símbolo @ representa alta produção; o símbolo * representa média produção; e o símbolo # representa baixa produção. Assim, a porção de exibição de campo 728 mostra diferentes quantidades de produção, que são posicionadas em diferentes áreas dentro do campo. Conforme descrito anteriormente, os marcadores de exibição 732 podem ser constituídos de diferentes símbolos, e, conforme descrito abaixo, os símbolos podem ser qualquer característica de exibição, tal como diferentes cores, formatos, padrões, intensidades, texto, ícones, ou outras características de exibição. Em alguns casos, cada local do campo pode ter um marcador de exibição associado ao mesmo. Assim, em alguns casos, um marcador de exibição pode ser provido em cada local da porção de exibição de campo 728 para identificar a natureza da característica sendo mapeada para cada local particular do campo. Consequentemente, a presente invenção compreende prover um marcador de exibição, tal como o marcador de exibição de nível de perda 732 (conforme no contexto da presente exemplo da figura 11), em um ou mais locais na porção de exibição de campo 728 para identificar a natureza, grau, etc., da característica sendo exibida, identificando assim a característica no correspondente local no campo sendo exibido.
[00136] Em outros exemplos, o mapa sendo exibido pode ser um ou mais dos mapas descritos aqui, incluindo mapas de informação, mapas de informação, os mapas preditivos funcionais, tais como os mapas preditivos ou os mapas de zona de controle preditivos, ou uma combinação dos mesmos. Assim, os marcadores e características sendo exibidos se correlacionarão com a informação, dados, características, e valores providos pelo um ou mais mapas sendo exibidos.
[00137] No exemplo da figura 11, a exibição de interface de usuário 720 também tem uma porção de exibição de controle 738. A porção de exibição de controle 738 permite ao operador visualizar informação e interagir com exibição de interface de usuário 720 de várias maneiras.
[00138] Os atuadores e os marcadores de exibição na porção 738 podem ser exibidos como, por exemplo, itens individuais, listas fixas, listas roláveis, menus pendentes, ou listas pendentes. No exemplo mostrado na figura 13, a porção de exibição 738 mostra informação para as três diferentes quantidades de produção, que correspondem aos três símbolos mencionados acima. Em outros exemplos, os valores de produção podem ser em maior granulosidade que os três níveis de valores de produção mostrados. A porção de exibição 738 também inclui um conjunto de atuadores sensíveis ao toque, com os quais o operador 260 pode interagir por toque. Por exemplo, o operador 260 pode tocar os atuadores sensíveis ao toque com um dedo para ativar o respectivo atuador sensível ao toque.
[00139] Conforme mostrado na figura 11, a porção de exibição 738 inclui uma porção de exibição de sinalização interativa, indicada geralmente em 741. A porção de exibição de sinalização interativa 741 inclui uma coluna de sinalização 739 que mostra sinalizadores que foram automaticamente ou manualmente ajustadas. O atuador de sinalização 740 permite ao operador 260 marcar um local, tal como o local atual da colheitadeira agrícola, ou outro local no campo designado pelo operador e adicionar informação indicando o comprimento de palha encontrado no local atual. Por exemplo, quando o operador 260 atua o atuador de sinalização 740 por tocar o atuador de sinalização 740, o sistema de manipulação de gesto de toque 664 no controlador de interface de operador 231 identifica o local atual como um local onde a colheitadeira agrícola 100 gerou comprimento longo de palha. Quando o operador 260 toca o botão 742, o sistema de manipulação de gesto de toque 664 identifica o local atual como um local onde a colheitadeira agrícola 100 gerou comprimento médio de palha. Quando o operador 260 toca o botão 744, o sistema de manipulação de gesto de toque 664 identifica o local atual como um local onde a colheitadeira agrícola 100 gerou comprimento curto de palha. Na atuação de um dos atuadores de sinalização 740, 742, ou 744, o sistema de manipulação de gesto de toque 664 pode controlar o gerador de sinal de controle visual 684 para adicionar um símbolo correspondente a um comprimento de palha identificado na porção de exibição de campo 728 em um local que o usuário identificar. Dessa maneira, áreas do campo onde o valor predito não representou precisamente um valor atual podem ser marcadas para a posterior análise, e podem também ser usadas na aprendizagem por máquina. Em outros exemplos, o operador pode designar áreas à frente da, ou em torno da, colheitadeira agrícola 100 por atuar um dos atuadores de sinalização 740, 742, ou 744, de modo que o controle da colheitadeira agrícola 100 possa ser realizado com base no valor designado pelo operador 260.
[00140] A porção de exibição 738 também inclui uma porção de exibição de marcador interativo, indicada geralmente em 743. A porção de exibição de marcador interativo 743 inclui uma coluna de símbolo 746 que exibe os símbolos correspondentes a cada categoria de valores ou características (no caso da figura 11, o comprimento de palha) que estão sendo rastreados na porção de exibição de campo 728. A porção de exibição 738 também inclui uma porção de exibição de designador interativo, indicada geralmente em 745. Uma porção de exibição de designador de interador 745 inclui uma coluna de designador 748 que mostra o designador (que pode ser um designador textual ou outro designador) identificando a categoria de valores ou características (no caso da figura 11, os comprimento de palha). Sem limitação, os símbolos na coluna de símbolo 746 e os designadores na coluna de designador 748 podem incluir qualquer característica de exibição tal como diferentes cores, formatos, padrões, intensidades, texto, ícones, ou outras características de exibição, e podem ser personalizáveis por interação de um operador da colheitadeira agrícola 100.
[00141] A porção de exibição 738 também inclui uma porção de exibição de valor interativo, indicada geralmente em 747. A porção de exibição de valor interativo 747 inclui uma coluna de exibição de valor 750 que exibe os valores selecionados. Os valores selecionados correspondem às características ou valores sendo rastreados ou exibidos, ou ambos, na porção de exibição de campo 728. Os valores selecionados podem ser selecionados por um operador da colheitadeira agrícola 100. Os valores selecionados na coluna de exibição de valor 750 definem uma faixa de valores ou um valor, pelo qual outros valores, tais como os valores preditos, devem ser classificados. Os valores selecionados na coluna de exibição de valor 750 são ajustáveis por um operador da colheitadeira agrícola 100. Em um exemplo, o operador 260 pode selecionar a parte particular da porção de exibição de campo 728, para a qual os valores na coluna 750 devem ser exibidos. Assim, os valores na coluna 750 podem corresponder aos valores nas porções de exibição 712, 714 ou 730.
[00142] A porção de exibição 738 também inclui uma porção de exibição de limite interativo, indicada geralmente em 749. A porção de exibição de limite interativo 749 inclui uma coluna de exibição de valor limite 752 que exibe valores limites de ação. Os valores limites de ação na coluna 752 podem ser valores limites correspondentes aos valores selecionados na coluna de exibição de valor 750. Se os valores preditos ou medidos de características sendo rastreadas ou exibidas, ou ambos, satisfizerem os correspondentes valores limites de ação na coluna de exibição de valor limite 752, então o sistema de controle 214 toma a ação identificada na coluna 754. Em alguns casos, um valor medido ou predito pode satisfazer um correspondente valor de limite de ação por satisfazer ou exceder um correspondente valor limite de ação. Em um exemplo, o operador 260 pode selecionar um valor limite, por exemplo, a fim de alterar o valor limite por tocar o valor limite na coluna de exibição de valor limite 752. Uma vez selecionado, o operador 260 pode alterar o valor limite. Os valores limites na coluna 752 podem ser configurados de modo que a ação designada seja realizada quando o valor medido ou predito da característica exceder o valor limite, seja igual ao valor limite, ou seja inferior ao valor limite. Em alguns casos, o valor limite pode representar uma faixa de valores, ou faixa de desvio dos valores selecionados na coluna de exibição de valor 750, de modo que um valor de característica predito ou medido que satisfaz ou cai dentro da faixa satisfaça o valor limite. Por exemplo, no exemplo da figura 11, um valor predito que cai dentro de 20 mm de 200 mm irá satisfazer um correspondente valor limite de ação e uma ação, tal como ajustar as regulagens do picador, será tomada pelo sistema de controle 214. Em outros exemplos, os valores limites na coluna de exibição de valor limite de coluna 752 são separados dos valores selecionados na coluna de exibição de valor 750, de modo que os valores na coluna de exibição de valor 750 definam a classificação e exibição de valores preditos ou medidos, enquanto os valores limites de ação definem quando uma ação deve ser tomada com base nos valores medidos ou preditos. Por exemplo, enquanto um valor de comprimento de palha predito ou medido de 100 mm pode ser designado como um “comprimento médio de palha” para finalidades de classificação e exibição, o valor limite de ação pode ser 10 m de modo que nenhuma ação será tomada até o valor de comprimento de palha satisfazer o valor limite. Em outros exemplos, os valores limites na coluna de exibição de valor limite 752 podem incluir distâncias ou tempos. Por exemplo, no exemplo de uma distância, o valor limite pode ser uma distância limite da área do campo onde o valor medido ou predito é geograficamente referenciado, que a colheitadeira agrícola 100 deve estar antes de uma ação ser tomada. Por exemplo, um valor de distância limite de 3,05 m (10 pés) significaria que uma ação será tomada quando a colheitadeira agrícola está em, ou dentro de, 3,05 m (10 pés) da área do campo onde o valor medido ou predito é geograficamente referenciado. Em um exemplo no qual o valor limite é o tempo, o valor limite pode ser um tempo limite para a colheitadeira agrícola 100 alcançar a área do campo onde o valor medido ou predito é geograficamente referenciado. Por exemplo, um valor limite de 5 segundos significaria que uma ação será tomada quando a colheitadeira agrícola 100 está 5 segundos longe da área do campo onde o valor medido ou predito é geograficamente referenciado. Em um tal exemplo, o local atual e a velocidade de deslocamento da colheitadeira agrícola podem ser levados em conta.
[00143] A porção de exibição 738 também inclui uma porção de exibição de ação interativa, indicada geralmente em 751. A porção de exibição de ação interativa 751 inclui uma coluna de exibição de ação 754 que exibe identificadores de ação que ações indicadas a serem tomadas quando um valor predito ou medido satisfaz um valor limite de ação na coluna de exibição de valor limite 752. O operador 260 pode tocar os identificadores de ação na coluna 754 para alterar a ação que deve ser tomada. Quando um limite é satisfeito, uma ação pode ser tomada. Por exemplo, na base da coluna 754, uma ação de aumento da velocidade de ventoinha de limpeza e uma ação de redução da velocidade de ventoinha de limpeza são identificadas como ações que serão tomadas se o valor medido na coluna 750 satisfaz o valor limite na coluna 752. Em alguns exemplos, então um limite é satisfeito, múltiplas ações podem ser tomadas. Por exemplo, uma velocidade de ventoinha de limpeza pode ser ajustada, uma velocidade de rotor de debulhe pode ser ajustada, e uma folga de côncavos pode ser ajustada em resposta a um limite sendo satisfeito.
[00144] As ações que podem ser ajustadas na coluna 754 podem ser qualquer de uma extensa variedade de diferentes tipos de ações. Por exemplo, as ações podem incluir um ação de se afastar, que, quando executada, inibe a colheitadeira agrícola 100 de ainda fazer a colheita em uma área. As ações podem incluir uma ação de mudança de velocidade que, quando executada, altera a velocidade de deslocamento da colheitadeira agrícola 100 através do campo. As ações podem incluir uma ação de mudança de regulagem para alterar uma regulagem de um atuador interno ou outro WMA ou conjunto de WMAs ou para implementar uma ação de alteração de regulagem que altera uma regulagem de uma velocidade de rotor de debulhe, uma velocidade de ventoinha de limpeza, uma posição (por exemplo, inclinação, altura, rolagem, etc.) da plataforma de corte, juntamente com várias outras regulagens. Esses são somente exemplos, e uma extensa variedade de outras ações são contempladas aqui.
[00145] Os itens mostrados na exibição de interface de usuário 720 podem ser visualmente controlados. O controle visual da exibição de interface 720 pode ser realizado para capturar a atenção do operador 260. Por exemplo, os marcadores de exibição podem ser controlados para modificar a intensidade, cor, ou padrão com os quais os marcadores de exibição são exibidos. Adicionalmente, os marcadores de exibição podem ser controlados para piscar. As alterações descritas à aparência visual dos marcadores de exibição são providas como exemplos. Consequentemente, outros aspectos da aparência visual dos marcadores de exibição podem ser alterados. Por conseguinte, os marcadores de exibição podem ser modificados sob várias circunstâncias em uma maneira desejada, a fim de, por exemplo, capturar a atenção do operador 260. Adicionalmente, embora um número particular de itens sejam mostrados na exibição de interface de usuário 720, esse não precisa ser o caso. Em outros exemplos, mais ou menos itens, incluindo mais ou menos de um item particular, podem ser incluídos na exibição de interface de usuário 720.
[00146] Retornando agora para o fluxograma da figura 10, uma descrição da operação de controlador de interface de operador 231 continua. No bloco 760, o controlador de interface de operador 231 detecta uma entrada ajustando um sinalizador e controla a exibição sensível ao toque da interface de usuário 720 para exibir a sinalização na porção de exibição de campo 728. A entrada detectada pode ser uma entrada de operador, conforme indicado em 762, ou uma entrada de outro controlador, conforme indicado em 764. No bloco 766, o controlador de interface de operador 231 detecta uma entrada do sensor in-situ, indicativa de uma característica medida do campo de um dos sensores in-situ 208. No bloco 768, o gerador de sinal de controle visual 684 gera sinais de controle para controlar a exibição de interface de usuário 720 para exibir atuadores para modificar a exibição de interface de usuário 720 e para modificar o controle de máquina. Por exemplo, o bloco 770 representa que um ou mais dos atuadores para regular ou modificar os valores na colunas 739, 746, e 748 podem ser exibidos. Assim, o usuário pode ajustar sinalizadores e modificar as características daqueles sinalizadores. Por exemplo, um usuário pode modificar os comprimentos de palha e os designadores de comprimento de palha correspondentes aos sinalizadores. O bloco 772 representa quais valores limites de ação na coluna 752 são exibidos. O bloco 776 representa que as ações na coluna 754 são exibidas, e o bloco 778 representa que os dados in-situ medidos na coluna 750 são exibidos. O bloco 780 indica que uma extensa variedade de outras informações e atuadores pode ser exibida também na exibição de interface de usuário 720.
[00147] No bloco 782, o sistema de processamento de comando de entrada de operador 654 detecta e processa as entradas de operador correspondentes às interações com a exibição da interface de usuário 720 realizada pelo operador 260. Quando o mecanismo de interface de usuário no qual a exibição de interface de usuário 720 é exibida é uma tela de exibição sensível ao toque, as entradas de interação com a tela de exibição sensível ao toque pelo operador 260 podem ser gestos de toque 784. Em alguns casos, as entradas de interação de operador podem ser entradas usando um dispositivo de apontar e clicar 786 ou outras entradas de interação de operador 788.
[00148] No bloco 790, o controlador de interface de operador 231 recebe sinais indicativos de uma condição de alerta. Por exemplo, o bloco 792 indica que sinais podem ser recebidos pelo sistema de processamento de entrada de controlador 668 indicando que os valores detectados na coluna 750 satisfazem as condições de limite presentes na coluna 752. Como explicado anteriormente, as condições de limite podem incluir valores que estão abaixo de um limite, em um limite, ou acima de um limite. O bloco 794 mostra que o gerador de sinal de ação 660 pode, em resposta à recepção de uma condição de alerta, alerta o operador 260 por usar o gerador de sinal de controle visual 684 para gerar alertas visuais, por usar o gerador de sinal de controle de áudio 686 para gerar alertas de áudio, por usar o gerador de sinal de controle táctil 688 para gerar alertas tácteis, ou por usar qualquer combinação desses. Similarmente, conforme indicado pelo bloco 796, o gerador de saída de controlador 670 pode gerar saídas para outros controladores no sistema de controle 214 de forma que aqueles controladores realizem uma correspondente ação identificada na coluna 754. O bloco 798 mostra que o controlador de interface de operador 231 pode detectar e processar as condições de alerta também de outras maneiras.
[00149] O bloco 900 mostra que o sistema de manipulação de voz 662 pode detectar e processar entradas invocando o sistema de processamento de voz 658. O bloco 902 mostra que a realização do processamento de voz pode incluir o uso do sistema de gerenciamento de diálogo 680 para conduzir um diálogo com o operador 260. O bloco 904 mostra que o processamento de voz pode incluir prover sinais para o gerador de saída de controlador 670 de forma que as operações de controle sejam automaticamente realizadas com base nas entradas de voz.
[00150] A tabela 1, abaixo, mostra um exemplo de um diálogo entre o controlador de interface de operador 231 e o operador 260. Na tabela 1, o operador 260 usa uma palavra de gatilho ou uma palavra de despertar que é detectada pelo detector de gatilho 672 para invocar o sistema de processamento de voz 658. No exemplo mostrado Na tabela 1, a palavra de despertar é “Johnny”.
Tabela 1
Operador: “Johnny, fale-me sobre as sementes atuais de ervas daninhas no resíduo”
Controlador de interface de operador: “ Cânhamo d'água 55%. Rabo de raposa verde 25%. Ambrósia gigante está a 20%”.
[00151] A tabela 2 mostra um exemplo em que o componente de síntese de voa 676 provê uma saída para o gerador de sinal de controle de áudio 686 para prover atualizações audíveis em uma base intermitente ou periódica. O intervalo entre as atualizações pode ser com base no tempo, tal como a cada cinco minutos, ou cobertura ou com base na distância base, tal como a cada cinco acres, ou, com base em exceção, tal como quando um valor medido é maior que um valor limite.
Tabela 2
Controlador de interface de operador: “Sobre os últimos 10 minutos, comprimento de palha foi colocado na média de 150 mm”
[00152] O exemplo mostrado na tabela 3 ilustra que alguns atuadores ou mecanismos de entrada de usuário na exibição sensível ao toque 720 podem ser suplementados com o diálogo de voz. O exemplo na tabela 3 ilustra que o gerador de sinal de ação 660 pode gerar sinais de ação para automaticamente controlar a distribuição de resíduo no campo sendo colhido.
Tabela 3
Humano: “Johnny, espalhe resíduo para a direita”.
Controlador de interface de operador: “Desvio de resíduo para a direita3,05 m (10 pés)”.
[00153] O exemplo mostarda Na tabela 4 ilustra que o gerador de sina de ação 160 pode gerar sinais para controlar um subsistema de resíduo de outras maneiras que a tabela 3.
Tabela 4
Humano: “Johnny, pique palha longa para o próximo acre”.
Controlador de interface de operador: “A palha para o próximo acre será picada longa”.
[00154] Retornando novamente à figura 10, o bloco 906 ilustra que controlador de interface de operador 231 pode detectar e processar condições para o fornecimento de uma mensagem ou outra informação também de outras maneiras. Por exemplo, outro sistema de interação de controlador 656 pode detectar entradas de outros controladores indicando que alertas ou mensagens de saída devem ser apresentados ao operador 260. O bloco 908 mostra que as saídas podem ser mensagens de áudio. O bloco 910 mostra que as saídas podem ser mensagens visuais, e o bloco 912 mostra que as saídas podem ser mensagens tácteis. Até o controlador de interface de operador 231 determinar que a operação de colheita atual está completa, conforme indicado pelo bloco 914, o processamento reverte para o bloco 698, onde o local geográfico da colheitadeira 100 é atualizado e o processamento prossegue conforme descrito acima para atualizar a exibição de interface de usuário 720.
[00155] Uma vez quando a operação está completa, então quaisquer valores desejados que são exibidos, ou foram exibidos na exibição de interface de usuário 720, podem ser salvos. Aqueles valores podem também ser usados na aprendizagem por máquina para melhorar diferentes porções do gerador de modelo preditivo 210, do gerador de mapa preditivo 212, do gerador de zona de controle 213, algoritmos de controle, ou outros itens. O salvamento dos valores desejados é indicado pelo bloco 916. Os valores podem ser salvos localmente na colheitadeira agrícola 100, ou os valores podem ser salvos em um local de servidor remoto ou enviados para outro sistema remoto.
[00156] Pode assim ser visto que um mapa de informação é obtido por uma colheitadeira agrícola e mostra valores de índice vegetativo, valores de umidade, e valores topográficos em diferentes locais geográficos de um campo sendo colhido. Um sensor in-situ na colheitadeira sensoreia uma característica de resíduo conforme a colheitadeira agrícola se move através do campo. Um gerador de mapa preditivo gera um mapa preditivo que prediz valores de controle, que podem ser valores de uma característica de resíduo em alguns exemplos, para diferentes locais no campo com base nos valores no mapa de informação e na característica de resíduo sensoreada pelo sensor insitu. Um sistema de controle controla o subsistema controlável com base nos valores de controle no mapa preditivo.
[00157] Um valor de controle é um valor no qual uma ação pode ser baseada. Um valor de controle, conforme descrito aqui, pode incluir qualquer valor (ou características indicadas pelo, ou derivadas do, valor) que pode ser usado no controle da colheitadeira agrícola 100. Um valor de controle pode ser qualquer valor indicativo de uma característica agrícola. Um valor de controle pode ser um valor predito, um valor medido, ou um valor detectado. Um valor de controle pode incluir qualquer dos valores providos por um mapa, tal como qualquer dos mapas descritos aqui, por exemplo, um valor de controle pode ser um valor provido por um mapa de informação, um valor provido por um mapa de informação anterior, ou um valor provido do mapa preditivo, tal como um mapa preditivo funcional. Um valor de controle pode também incluir qualquer das características indicadas pelos, ou derivadas dos, valores detectados por qualquer dos sensores descritos aqui. Em outros exemplos, um valor de controle pode ser provido por um operador da máquina agrícola, tal como uma entrada de comando por um operador da máquina agrícola.
[00158] A presente discussão mencionou processadores e servidores. Em alguns exemplos, os processadores e servidores incluem processadores de computador com memória e circuitos de temporização associados, não separadamente mostrados. Os processadores e servidores são partes funcionais dos sistemas ou dispositivos aos quais os processadores e servidores pertencem e pelos quais são ativados e facilitam a funcionalidade de outros componentes ou itens naqueles sistemas.
[00159] Também, um número de exibições de interface de usuário foi discutido. As exibições podem assumir uma extensa variedade de diferentes formas e podem ter uma extensa variedade de diferentes mecanismos de interface de operadores dispostos no mesmo, atuáveis por usuário. Por exemplo, os mecanismos de interface de operador atuáveis por usuário pode incluir caixas de texto, caixas de verificação, ícones, conexões, menus pendentes, caixas de pesquisa, etc. Os mecanismos de interface de operador atuáveis por usuário podem também ser atuados em uma extensa variedade de maneiras diferentes. Por exemplo, os mecanismos de interface de operador atuáveis por usuário podem ser atuados usando mecanismos de interface de operador tal como um dispositivo de apontar e clicar, tal como uma esfera rolante ou Mouse, botões de hardware, interruptores, uma alavanca de controle ou teclado, alavancas livres ou painéis para polegar, etc., um teclado virtual ou outros atuadores virtuais. Além disso, quando a tela na qual os mecanismos de interface de operador atuáveis por usuário são exibidos é uma tela sensível ao toque, os mecanismos de interface de operador atuáveis por usuário podem ser atuados usando gestos de toque. Também, os mecanismos de interface de operador atuáveis por usuário podem ser atuados usando comandos de voz usando funcionalidade de reconhecimento de voz. O reconhecimento de voz pode ser implementado usando um dispositivo de detecção de voz, tal como um microfone, e software que funciona para reconhecer a voz detectada e executar comandos com base na voz recebida.
[00160] Um número de bancos de dados foi também discutido. Será também notado que eles podem cada, ser desmembrados em múltiplos bancos de dados. Todos podem ser locais aos sistemas que acessam os mesmos, todos podem ser remotos, ou alguns podem ser locais, enquanto outros são remotos.
Todas dessas configurações são contempladas aqui.
[00161] Será notado que a discussão acima descreveu uma variedade de diferentes sistemas, componentes e/ou lógica. Será apreciado que tais sistemas, componentes e/ou lógica podem ser compreendidos de itens de hardware (tais como processadores e memória associada, ou outros componentes de processamento, alguns dos quais são descritos abaixo) que realizam as funções associadas com aqueles sistemas, componentes e/ou lógica. Em adição, os sistemas, componentes e/ou lógica podem ser compreendidos de software que é carregado em uma memória e é subsequentemente executado por um processador ou servidor, ou outro componente de computação, conforme descrito abaixo. Os sistemas, componentes e/ou lógica podem também ser compreendidos de diferentes combinações de hardware, software, firmware, etc., alguns exemplos dos quais são descritos abaixo. Esses são somente alguns exemplos de diferentes estruturas que podem ser usadas para formar os sistemas, componentes e/ou lógica descritos acima. Outras estruturas podem ser também usadas.
[00162] A figura 12 é um diagrama de blocos da colheitadeira agrícola 600, que pode ser similar à colheitadeira agrícola 100 mostrada na figura 2. A colheitadeira agrícola 600 se comunica com elementos em uma arquitetura de servidor remoto 500. Em alguns exemplos, a arquitetura de servidor remoto 500 provê computação, software, acesso de dados, e serviços de armazenamento que não requerem o conhecimento pelo usuário final do local físico ou configuração do sistema que fornece os serviços. Em vários exemplos, os servidores remotos podem fornecer os serviços sobre uma rede de área larga, tal como a Internet, usando protocolos apropriados. Por exemplo, os servidores remotos podem fornecer aplicativos sobre uma rede de área larga e podem ser acessíveis através de um navegador da Web ou qualquer outro componente de computação. O software ou componentes mostrados na figura 2 bem como os dados associados aos mesmos, podem ser armazenados nos servidores em um local remoto. Os recursos de computação em um ambiente de servidor remoto podem ser consolidados em um local de centro de dados remoto, ou os recursos de computação podem ser dispersos para uma pluralidade de centros de dados remotos. As infraestruturas de servidor remoto podem fornecer serviços através de centros de dados compartilhados, mesmo se os serviços aparecerem como um único ponto de acesso para o usuário. Assim, os componentes e funções descritos aqui podem ser providos de um servidor remoto em um local remoto usando uma arquitetura de servidor remoto. Alternativamente, os componentes e funções podem ser providos de um servidor, ou os componentes e funções podem ser instalados nos dispositivos de cliente diretamente, ou de outras maneiras
[00163] Nos exemplo mostrado na figura 12, alguns itens são similares àqueles mostrados na figura 2 e aqueles itens são similarmente enumerados. A figura 14 especificamente mostra que o gerador de modelo preditivo 210 ou o gerador de mapa preditivo 212, ou ambos, podem ser posicionados em um servidor local 502, que é remoto à colheitadeira agrícola 600. Por conseguinte, no exemplo mostrado na figura 14, a colheitadeira agrícola 600 acessa os sistemas através do local de servidor remoto 502.
[00164] A figura 12 também representa outro exemplo de uma arquitetura de servidor remoto. A figura 14 mostra que alguns elementos da figura 2 podem ser dispostos em um local de servidor remoto 502, enquanto outros podem ser posicionados em outro lugar. A título de exemplo, o banco de dados 202 pode ser disposto em um local separado do local 502 e acessado por intermédio do servidor remoto no local 502. Independentemente de onde os elementos estão localizados, os elementos podem ser acessados diretamente pela colheitadeira agrícola 600 através de uma rede, tal como uma rede de área larga ou uma rede de área local; os elementos podem ser hospedados em um sítio remoto por um serviço; ou os elementos podem ser providos como um serviço ou acessados por um serviço de conexão que reside em um local remoto. Também, dados podem ser armazenados em qualquer local, e os dados armazenados podem ser acessados por, ou transmitidos para, os operadores, usuários, ou sistemas. Por exemplo, portadores físicos podem ser usados em vez de, ou em adição a, portadores de ondas eletromagnéticas. Em alguns exemplos, onde a cobertura de serviço de telecomunicação sem fio é deficiente ou inexistente, outra máquina, tal como um caminhão de combustível ou outro veículo ou máquina móvel, pode ter um sistema de coleta de informação automático, semiautomático, ou manual. Conforme a colheitadeira combinada 600 se aproxima à máquina contendo o sistema de coleta de informação, tal como um caminhão de combustível antes do abastecimento, o sistema de coleta de informação coleta a informação da colheitadeira combinada 600 usando qualquer tipo de conexão sem fio para essa finalidade. A informação coletada pode então ser transmitida para outra rede, quando a máquina contendo a informação recebida chegar a um local, onde a cobertura de serviço de telecomunicação sem fio ou outra cobertura sem fio é disponível. Por exemplo, um caminhão de combustível pode entrar em uma área tendo cobertura de comunicação sem fio quando se desloca para um local para abastecer outras máquinas ou quando em um local de armazenamento de combustível principal. Todas dessas arquiteturas são contempladas aqui. Além disso, a informação pode ser armazenada na colheitadeira agrícola 600 até a colheitadeira agrícola 600 entrar em uma área tendo cobertura de comunicação sem fio. A colheitadeira agrícola 600, propriamente dita, pode enviar a informação para outra rede.
[00165] Será também notado que os elementos da figura 2, ou as porções dos mesmos, podem ser dispostos em uma extensa variedade de diferentes dispositivos. Um ou mais daqueles dispositivos podem incluir um computador a bordo, uma unidade de controle eletrônica, uma unidade de exibição, um servidor, um computador de mesa, um computador portátil, um computador táblete, ou outro dispositivo móvel, tal como um computador de bolso, um telefone celular, um telefone inteligente, um reprodutor de multimídia, um assistente digital pessoal, etc.
[00166] Em alguns exemplos, a arquitetura de servidor remoto 500 pode incluir medidas de segurança cibernética. Sem limitação, essas medidas podem incluir criptografia de dados nos dispositivos de armazenamento, criptografia de dados enviados entre os nós de rede, autenticação de pessoas ou dados de acesso a processos, bem como o uso de registros para gravar metadados, dados, transferências de dados, acessos de dados, e transformações de dados. Em alguns exemplos, os registros podem ser distribuídos e imutáveis (por exemplo, implementados como corrente de blocos)
[00167] A figura 7 é um diagrama de blocos simplificado de um exemplo ilustrativo de um dispositivo de computação portátil ou móvel que pode ser usado como um dispositivo portátil do usuário ou do cliente 16, em que o presente sistema (ou partes do mesmo) pode ser implementado. Por exemplo, um dispositivo móvel pode ser implementado no compartimento de operador da colheitadeira agrícola 100 para uso na geração de, ou o processamento, ou a exibição dos mapas discutidos acima. As figuras 14 e 15 são exemplos de dispositivos portáteis ou móveis.
[00168] A figura 13 provê um diagrama de blocos geral dos componentes de um dispositivo de cliente 16 que pode rodar alguns componentes mostrados na figura 2, que interagem com os mesmos, ou ambos. No dispositivo 16, uma conexão de comunicação 13 é provida, que permite ao dispositivo portátil se comunicar com outros dispositivos de computação e, em alguns exemplos, provê um canal para receber informação automaticamente, tal como por varredura. Exemplos de conexão de comunicações 13 incluem permitir a comunicação através de um ou mais protocolos de comunicação, tais como os serviços sem fio usados para prover o acesso celular a uma rede, bem como protocolos que provêm conexões sem fio locais às redes.
[00169] Em outros exemplos, aplicativos podem ser recebidos em um cartão Secure Digital (SD) removível, que é conectado a uma interface 15. A interface 15 e conexões de comunicação 13 se comunicam com um processador 17 (que pode também incorporar os processadores ou servidores das outras figuras) ao longo de um barramento 19 que é também conectado à memória 21 e componentes de entrada/saída (E/S) 23, bem como o relógio 25 e o sistema local 27.
[00170] Os componentes de E/S 23, em um exemplo, são providos para facilitar as operações de entrada e saída. Os componentes de E/S 23 para vários exemplos do dispositivo 16 pode incluir componentes de entrada, tais como botões, os sensores sensíveis ao toque, os sensores ópticos, microfones, telas sensíveis ao toque, os sensores de proximidade, acelerômetros, os sensores de orientação, e componentes de saída, tais como um dispositivo de exibição, um alto-falante, e ou uma porta de impressora. Outros componentes de E/S 23 podem ser também usados.
[00171] O relógio 25 ilustrativamente compreende um componente de relógio de tempo real, que fornece a hora e a data. Ilustrativamente, ele pode também prover funções de temporização para processador 17.
[00172] O sistema local 27 ilustrativamente inclui um componente que fornece um local geográfico atual do dispositivo 16. Esse pode incluir, por exemplo, um receptor de sistema de posicionamento global (GPS), um sistema LORAN, um sistema de reconhecimento passivo, um sistema de triangulação celular, ou ouro sistema de posicionamento. O sistema local 27 pode também incluem, por exemplo, software de mapeamento ou software de navegação que gera os desejados mapas, as desejadas rotas de navegação e outras funções geográficas.
[00173] A memória 21 armazena o sistema operacional 29, as regulagens de rede 31, aplicativos 33, as regulagens de configuração de aplicativo 35, o banco de dados 37, os controladores de comunicação 39, e as regulagens de configuração de comunicação 41. A memória 21 pode incluir todos os tipos de dispositivos de memória legíveis por computador, voláteis e não voláteis, tangíveis. A memória 21 pode também incluir meios de armazenamento em computador (descritos abaixo). A memória 21 armazena instruções legíveis por computador que, quando executadas pelo processador 17, fazem com que o processador realize as etapas ou funções implementadas por computador de acordo com as instruções. O processador 17 pode ser ativado por outros componentes para facilitar também sua funcionalidade.
[00174] A figura 14 mostra um exemplo, no qual o dispositivo 16 é um computador táblete 600. Na figura 16, o computador 601 é mostrado com a tela de exibição de interface de usuário 602. A tela 602 pode ser uma tela sensível ao toque ou uma interface ativada por caneta, que recebe entradas de uma caneta ou agulha. O computador táblete 600 pode também uso um teclado virtual na tela. Naturalmente, o computador 601 poderia também ser afixado a um teclado ou a outro dispositivo de entrada de usuário através de um mecanismo de afixação apropriado, tal como uma conexão sem fio ou porta USB, por exemplo. O computador 601 pode também ilustrativamente recebem entradas de voz.
[00175] A figura 15 é similar à figura 14, exceto que o dispositivo é um telefone inteligente 71. O telefone inteligente 71 tem uma exibição sensível ao toque 73 que exibe ícones ou azulejos ou outros mecanismos de entrada de usuário 75. Os mecanismos 75 podem ser usados por um usuário para rodar aplicativos, fazer chamadas, realizar operações de transferência de dados, etc. Em geral, o telefone inteligente 71 é construído em um sistema operacional móvel e oferece capacidade de computação e conectividade mais avançadas que um telefone comum.
[00176] Note que outras formas dos dispositivos são possíveis.
[00177] A figura 16 é um exemplo de um ambiente de computação no qual os elementos da figura 2 podem ser implementados. Com referência à figura 18, um sistema de exemplo para implementar algumas modalidades inclui um dispositivo de computação na forma de um computador 810 programado para operar conforme discutido acima. Os componentes de computador 810 podem incluir, mas não são limitados a, uma unidade de processamento 820 (que pode compreender os processadores ou servidores das figuras anteriores), uma memória de sistema 830, e um barramento de sistema 821 que acopla vários componentes do sistema incluindo a memória de sistema à unidade de processamento 820. O barramento de sistema 821 pode ser qualquer de vários tipos de estruturas de barramento incluindo um barramento de memória ou controlador de memória, um barramento periférico, e um barramento local usando qualquer de uma variedade de arquiteturas de barramento. A memória e programas descritos com relação à figura 2 podem ser implementados em porções correspondentes da figura 18.
[00178] O computador 810 tipicamente inclui uma variedade de meios legíveis por computador. Os meios legíveis por computador podem ser quaisquer meios disponíveis que podem ser acessados pelo computador 810 e inclui meios tanto voláteis quanto não voláteis, meios removíveis e não removíveis. A título de exemplo, e não de limitação, o meios legíveis por computador pode compreender meios de armazenamento em computador e meios de comunicação. Os meios de armazenamento em computador são diferentes de, e não incluem, um sinal de dado modulado ou onda portadora. Os meios legíveis por computador incluem meios de armazenamento de hardware incluindo meios removíveis e não removíveis, tanto voláteis quanto não voláteis, implementados em qualquer método ou tecnologia para o armazenamento de informação, tal como instruções legíveis por computador, estruturas de dados, os módulos de programa ou outros dados. Os meios de armazenamento em computador incluem, mas não é limitados a, RAM, ROM, EEPROM, memória flash ou outra tecnologia de memória, CD-ROM, discos versáteis digitais (DVD) ou outro armazenamento de disco óptico, cassetes magnéticos, fita magnética, armazenamento em disco magnético ou outros dispositivos de armazenamento magnéticos, ou qualquer outro meio que pode ser usado para armazenar a informação desejada e que pode ser acessado por computador810. Os meios de comunicação podem incorporar instruções legíveis por computador, estruturas de dados, os módulos de programa ou outros dados em um mecanismo de transporte e incluem quaisquer meios de fornecimento de informação. O termo “sinal de dado modulado” significa um sinal que tem um ou mais de suas características ajustadas ou alteradas de uma tal maneira a codificar informação no sinal.
[00179] A memória de sistema 830 inclui meios de armazenamento em computador na forma de memória volátil e/ou não volátil, ou ambas, tais como memória exclusivamente de leitura (ROM) 831 e memória de acesso aleatório (RAM) 832. Um sistema de entrada/saída básico 833 (BIOS), contendo as rotinas básicas que ajudam a transferir a informação entre os elementos dentro do computador 810, tal como durante a inicialização, é tipicamente armazenado no ROM 831. A RAM 832 tipicamente contém dados ou módulos de programa ou ambos, que são imediatamente acessíveis à, e/ou atualmente sendo operado pela, unidade de processamento 820. A título de exemplo, e não de limitação, a figura 18 ilustra o sistema operacional 834, os programas de aplicativo 835, outros módulos de programa 836, e os dados de programa 837.
[00180] O computador 810 pode também incluir outros meios de armazenamento em computador removíveis/não removíveis, voláteis/não voláteis. Somente a título de exemplo, a figura 18 ilustra uma unidade de disco rígido 841 que lê ou inscreve em meios magnéticos não voláteis, não removíveis, uma unidade de disco óptico 855, e o disco óptico não volátil 856. A unidade de disco rígido 841 é tipicamente conectada ao barramento de sistema 821 através de uma interface de memória não removível, tal como a interface 840, e a unidade de disco óptico 855 é tipicamente conectada ao barramento de sistema 821 por uma interface de memória removível, tal como a interface 850.
[00181] Alternativamente, ou além disso, a funcionalidade descrita aqui pode ser realizada, pelo menos em parte, por um ou mais componentes lógicos de hardware. Por exemplo, e sem limitação, tipos ilustrativos dos componentes lógicos de hardware que podem ser usados incluem redes de portas lógicas programáveis (FPGAs), circuitos integrados específicos de aplicação (por exemplo, ASICs), circuitos integrados específicos de aplicação (por exemplo, ASSPs), os sistemas de sistema em uma pastilha (SOCs), dispositivos lógicos programáveis complexos (CPLDs), etc.
[00182] Os controladores e seus meios de armazenamento em computador associados discutidos acima e ilustrados na figura 18, provêm o armazenamento de instruções legíveis por computador, estruturas de dados, módulos de programa e outros dados para o computador 810. Na figura 18, por exemplo, a unidade de disco rígido 841 é ilustrada como armazenando o sistema operacional 844, os programas de aplicativo 845, outros módulos de programa 846, e os dados de programa 847. Note que esses componentes podem ser ou os mesmos que, ou diferentes, os do sistema operacional 834, os programas de aplicativo 835, outros módulos de programa 836, e os dados de programa 837.
[00183] Um usuário pode alimentar comandos e informação ao computador 810 através de dispositivos de entrada, tais como um teclado 862, um microfone 863, e um dispositivo de apontar 861, tal como um Mouse, esfera rolante ou painel sensível ao toque. Outros dispositivos de entrada (não mostrados) podem incluir uma alavanca de controle, painéis de jogos, antena parabólica, escâner, ou semelhante. Esses e outros dispositivos de entrada são frequentemente conectados à unidade de processamento 820 através de uma interface de entrada de usuário 860 que é acoplada ao barramento de sistema, mas podem ser conectados por outras estruturas de interface e barramento. Uma exibição visual 891 ou outro tipo de dispositivo de exibição é também conectado ao barramento de sistema 821 por intermédio de uma interface, tal como uma interface de vídeo 890. Em adição ao monitor, os computadores podem também incluir outros dispositivos de saída periféricos, tais como altofalantes 897 e impressora 896, que podem ser conectados através de uma interface periférica de saída 895.
[00184] O computador 810 é operado em um ambiente conectado em rede usando conexões lógicas (tal como uma rede de área de controlador, – CAN, rede de área local, – LAN, ou rede de área larga WAN) a um ou mais computadores remotos, tais como um computador remoto 880.
[00185] Quando usado em um ambiente conectado em rede LAN, o computador 810 é conectado à LAN 871 através de uma rede, interface ou adaptador 870. Quando usado em um ambiente conectado em rede WAN, o computador 810 tipicamente inclui um Modem 872 ou outros meios para estabelecer comunicações sobre a WAN 873, tal como a Internet. Em um ambiente conectado em rede, os módulos de programa podem ser armazenados no um dispositivo de armazenamento de memória remoto. A figura 18 ilustra, por exemplo, que os programas de aplicativo remotos 885 podem residir no computador remoto 880.
[00186] Deve ser também notado que os diferentes exemplos descritos aqui podem ser combinados de maneiras diferentes. Isto é, partes de um ou mais exemplos pode ser combinadas com partes de um ou mais outros exemplos. Tudo disso é contemplado aqui.
[00187] O exemplo 1 é uma máquina de trabalho agrícola compreendendo: um sistema de comunicação que recebe um mapa de informação que inclui valores de uma característica agrícola correspondente a diferentes locais geográficos em um campo; a sensor de posição geográfica que detecta um local geográfico da máquina de trabalho agrícola; um sensor in-situ que detecta um valor de uma característica de resíduo correspondente ao local geográfico; um gerador de mapa preditivo que gera um mapa agrícola preditivo funcional do campo que mapeia valores preditivos da característica de resíduo para os diferentes locais geográficos no campo com base nos valores da característica agrícola no mapa de informação e com base no valor da característica de resíduo; um subsistema controlável; e um sistema de controle que gera um sinal de controle para controlar o subsistema controlável com base na posição geográfica da máquina de trabalho agrícola e com base nos valores preditivos da característica de resíduo no mapa agrícola preditivo funcional.
[00188] O exemplo 2 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o gerador de mapa preditivo compreende: um gerador de mapa de característica de subsistema de resíduo preditivo
[00189] um gerador de mapa de característica de subsistema de resíduo preditivo que gera um mapa de característica de subsistema de resíduo preditivo funcional que mapeia predições de uma característica de subsistema de resíduo para os diferentes locais geográficos no campo.
[00190] O exemplo 3 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o sistema de controle compreende: um controlador de subsistema de resíduo que gera um sinal de controle de subsistema de resíduo, com base no local geográfico e no mapa de característica de subsistema de resíduo preditivo funcional, e controla um subsistema de resíduo como o subsistema controlável com base no sinal de controle de subsistema de resíduo.
[00191] O exemplo 4 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o controlador de subsistema de resíduo controla um espalhador de resíduo do subsistema de resíduo com base no sinal de controle de subsistema de resíduo.
[00192] O exemplo 5 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de informação compreende um mapa de índice vegetativo que mapeia, como a característica agrícola, valores de índice vegetativo para os diferentes locais geográficos no campo.
[00193] O exemplo 6 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de informação compreende um mapa de umidade que mapeia, como a característica agrícola, valores de umidade para os diferentes locais geográficos no campo.
[00194] O exemplo 7 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de informação compreende um mapa topográfico que mapeia, como a característica agrícola, valores de característica topográfica para os diferentes locais geográficos no campo.
[00195] O exemplo 8 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que a característica de resíduo compreende um espalhamento de resíduo em um ou mais dimensões.
[00196] O exemplo 9 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que a característica de resíduo compreende uniformidade de resíduo.
[00197] O exemplo 10 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o sistema de controle compreende adicionalmenteum controlador de interface de operador que gera uma representação de mapa de interface de usuário do mapa agrícola preditivo funcional, a representação de mapa de interface de usuário compreendendo uma porção de campo com um ou mais marcadores indicando os valores preditivos da característica de resíduo em um ou mais locais geográficos na porção de campo.
[00198] O exemplo 11 é um método implementado por computador para controlar uma máquina de trabalho agrícola compreendendo: obter um mapa de informação que inclui valores de uma característica agrícola correspondente a diferentes locais geográficos em um campo; detectar um local geográfico da máquina de trabalho agrícola; detectar, com um sensor in-situ, um valor de uma característica de resíduo correspondente a um local geográfico; gerar um mapa agrícola preditivo funcional do campo que mapeia valores de controle preditivos para os diferentes locais geográficos no campo com base nos valores da característica agrícola no mapa de informação e com base no valor da característica de resíduo correspondente ao local geográfico; e controlar um subsistema controlável com base na posição geográfica da máquina de trabalho agrícola e com base nos valores de controle no mapa agrícola preditivo funcional.
[00199] O exemplo 12 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, em que a geração de um mapa agrícola preditivo funcional compreende: gerar um mapa de característica de resíduo preditivo funcional que mapeia características de resíduo preditivas como os valores de controle para os diferentes locais geográficos no campo.
[00200] O exemplo 13 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de característica de resíduo preditivo funcional mapeia valores de espalhamento de resíduo preditivos como as características de resíduo preditivas para os diferentes locais geográficos no campo.
[00201] O exemplo 14 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, em que controlar um subsistema controlável compreende: gerar um sinal de controle de resíduo com base no local geográfico detectado e no mapa de característica de resíduo preditivo funcional; e controlar o subsistema controlável com base no sinal de controle de resíduo para controlar um espalhador de resíduo da máquina de trabalho agrícola.
[00202] O exemplo 15 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de característica de resíduo preditivo funcional mapeia os valores de teor de resíduo preditivos como característica de resíduo para os diferentes locais geográficos no campo.
[00203] O exemplo 16 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, em que controlar um subsistema controlável compreende: a geração de um sinal de controle de resíduo com base no local geográfico detectado e no mapa de característica de resíduo preditivo funcional; e controlar o subsistema controlável com base no sinal de controle de resíduo para controlar um picador de resíduo da máquina de trabalho agrícola.
[00204] O exemplo 17 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de característica de resíduo preditivo funcional mapeia os valores de uniformidade de resíduo preditivos como as características de resíduo preditivas para os diferentes locais geográficos no campo.
[00205] O exemplo 18 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, em que controlar um subsistema controlável compreende: gerar um sinal de controle de resíduo com base no local geográfico detectado e no mapa de característica de resíduo preditivo funcional; e controlar o subsistema controlável com base no sinal de controle de resíduo.
[00206] O exemplo 19 é uma máquina de trabalho agrícola compreendendo: um sistema de comunicação que recebe um mapa de informação que inclui valores de uma característica agrícola correspondente a diferentes locais geográficos em um campo; a sensor de posição geográfica que detecta um local geográfico da máquina de trabalho agrícola; um sensor in-situ que detecta um valor de uma característica de resíduo correspondente a um local geográfico; um gerador de modelo preditivo que gera um modelo preditivo agrícola que modela uma relação entre a característica agrícola e a característica de resíduo com base em um valor da característica agrícola no mapa de informação no local geográfico e um valor da característica de resíduo detectado pelo sensor in-situ no local geográfico; Um gerador de mapa preditivo que gera um mapa agrícola preditivo funcional do campo que mapeia valores de controle preditivos para os diferentes locais geográficos no campo com base nos valores da característica agrícola no mapa de informação e com base no modelo agrícola preditivo; um subsistema controlável; e um sistema de controle que gera um sinal de controle para controlar o subsistema controlável com base na posição geográfica da máquina de trabalho agrícola e com base nos valores de controle no mapa agrícola preditivo funcional.
[00207] Exemplo 20 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o sistema de controle compreende: um controlador de resíduo que gera um sinal de controle de resíduo com base no local geográfico detectado e no mapa agrícola preditivo funcional e controla um ou mais de um picador de resíduo, um espalhador de resíduo, e um eliminador de semente como o subsistema controlável com base no sinal de controle de resíduo.
[00208] Embora a matéria tenha sido descrita em linguagem específica às características estruturais ou atos metodológicos, deve ser entendido que a matéria definida nas reivindicações anexas não é necessariamente limitada às características ou atos específicos acima. Ao contrário, as características e atos específicos descritos acima são expostos como formas de exemplo das reivindicações.

Claims (15)

  1. Máquina de trabalho agrícola (100), caracterizada pelo fato de que compreende um sistema de comunicação (206) que recebe um mapa de informação (258) que inclui valores de uma característica agrícola correspondente a diferentes locais geográficos em um campo; um sensor de posição geográfica (204) que detecta um local geográfico da máquina de trabalho agrícola (100); um sensor in-situ (208) que detecta um valor de uma característica de resíduo correspondente ao local geográfico; um gerador de mapa preditivo (212) que gera um mapa agrícola preditivo funcional do campo que mapeia valores preditivos da característica de resíduo para os diferentes locais geográficos no campo com base nos valores da característica agrícola no mapa de informação (258) e com base no valor da característica de resíduo; um subsistema controlável (216); e um sistema de controle (214) que gera um sinal de controle para controlar o subsistema controlável (216) com base na posição geográfica da máquina de trabalho agrícola (100) e com base nos valores preditivos da característica de resíduo no mapa agrícola preditivo funcional.
  2. Máquina de trabalho agrícola de acordo com a reivindicação 1, caracterizada pelo fato de que o gerador de mapa preditivo compreende: um gerador de mapa de característica de subsistema de resíduo preditivo que gera um mapa de característica de subsistema de resíduo preditivo funcional que mapeia predições de uma característica de subsistema de resíduo para os diferentes locais geográficos no campo
  3. Máquina de trabalho agrícola de acordo com a reivindicação 2, caracterizada pelo fato de que o sistema de controle compreende: um controlador de subsistema de resíduo que gera um sinal de controle de subsistema de resíduo, com base no local geográfico e no mapa de característica de subsistema de resíduo preditivo funcional, e controla um subsistema de resíduo como o subsistema controlável com base no sinal de controle de subsistema de resíduo.
  4. Máquina de trabalho agrícola de acordo com a reivindicação 3, caracterizada pelo fato de que o controlador de subsistema de resíduo controla um espalhador de resíduo do subsistema de resíduo com base no sinal de controle de subsistema de resíduo.
  5. Máquina de trabalho agrícola de acordo com a reivindicação 1, caracterizada pelo fato de que o mapa de informação compreende um mapa de índice vegetativo que mapeia, como a característica agrícola, valores de índice vegetativo para os diferentes locais geográficos no campo.
  6. Máquina de trabalho agrícola de acordo com a reivindicação 1, caracterizada pelo fato de que o mapa de informação compreende um mapa de umidade que mapeia, como a característica agrícola, valores de umidade para os diferentes locais geográficos no campo.
  7. Máquina de trabalho agrícola de acordo com a reivindicação 1, caracterizada pelo fato de que o mapa de informação compreende um mapa topográfico que mapeia, como a característica agrícola, valores de característica topográfica para os diferentes locais geográficos no campo.
  8. Máquina de trabalho agrícola de acordo com a reivindicação 1, caracterizada pelo fato de que a característica de resíduo compreende um resíduo espalhado em uma ou mais dimensões.
  9. Máquina de trabalho agrícola de acordo com a reivindicação 1 caracterizada pelo fato de que a característica de resíduo compreende uniformidade de resíduo.
  10. Máquina de trabalho agrícola de acordo com a reivindicação 1, caracterizada pelo fato de que o sistema de controle compreende adicionalmente:um controlador de interface de operador que gera uma representação de mapa de interface de usuário do mapa agrícola preditivo funcional, a representação de mapa de interface de usuário compreendendo uma porção de campo com um ou mais marcadores indicando os valores preditivos da característica de resíduo em um ou mais locais geográficos na porção de campo.
  11. Método implementado por computador para controlar uma máquina de trabalho agrícola (100), caracterizado pelo fato de que compreende: obter um mapa de informação (258) que inclui valores de uma característica agrícola correspondente a diferentes locais geográficos em um campo; detectar um local geográfico da máquina de trabalho agrícola (100); detectar, com um sensor in-situ (208), um valor de uma característica de resíduo correspondente a um local geográfico; gerar um mapa agrícola preditivo funcional do campo que mapeia valores de controle preditivos para os diferentes locais geográficos no campo com base nos valores da característica agrícola no mapa de informação (258) e com base no valor da característica de resíduo correspondente ao local geográfico; e controlar um subsistema controlável (216) com base na posição geográfica da máquina de trabalho agrícola (100) e com base nos valores de controle no mapa agrícola preditivo funcional.
  12. Método implementado por computador de acordo com a reivindicação 11, caracterizado pelo fato de que gerar um mapa agrícola preditivo funcional compreende: gerar um mapa de característica de resíduo preditivo funcional que mapeia características de resíduo preditivas como os valores de controle para os diferentes locais geográficos no campo.
  13. Método implementado por computador de acordo com a reivindicação 12, caracterizado pelo fato de que o mapa de característica de resíduo preditivo funcional mapeia valores de espalhamento de resíduo preditivos como as características de resíduo preditivas para os diferentes locais geográficos no campo.
  14. Método implementado por computador de acordo com a reivindicação 13, caracterizado pelo fato de que controlar um subsistema controlável compreende: gerar um sinal de controle de resíduo com base no local geográfico detectado e no mapa de característica de resíduo preditivo funcional; e controlar o subsistema controlável com base no sinal de controle de resíduo para controlar um espalhador de resíduo da máquina de trabalho agrícola.
  15. Máquina de trabalho agrícola (100), caracterizada pelo fato de que compreende: um sistema de comunicação (206) que recebe um mapa de informação (258) que inclui valores de uma característica agrícola correspondente a diferentes locais geográficos em um campo; um sensor de posição geográfica (204) que detecta um local geográfico da máquina de trabalho agrícola; um sensor in-situ (208) que detecta um valor de uma característica de resíduo correspondente a um local geográfico; um gerador de modelo preditivo (210) que gera um modelo agrícola preditivo que modela uma relação entre a característica agrícola e a característica de resíduo com base em um valor da característica agrícola no mapa de informação no local geográfico e um valor da característica de resíduo detectada pelo sensor in-situ no local geográfico; um gerador de mapa preditivo (212) que gera um mapa agrícola preditivo funcional do campo que mapeia valores de controle preditivos para os diferentes locais geográficos no campo com base nos valores da característica agrícola no mapa de informação e com base no modelo agrícola preditivo; um subsistema controlável (216); e um sistema de controle (214) que gera um sinal de controle para controlar o subsistema controlável (216) com base na posição geográfica da máquina de trabalho agrícola (100) e com base nos valores de controle no mapa agrícola preditivo funcional.
BR102021016559-6A 2020-10-09 2021-08-20 Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola BR102021016559A2 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/066,869 US11711995B2 (en) 2020-10-09 2020-10-09 Machine control using a predictive map
US17/066869 2020-10-09

Publications (1)

Publication Number Publication Date
BR102021016559A2 true BR102021016559A2 (pt) 2022-04-26

Family

ID=81044711

Family Applications (1)

Application Number Title Priority Date Filing Date
BR102021016559-6A BR102021016559A2 (pt) 2020-10-09 2021-08-20 Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola

Country Status (3)

Country Link
US (2) US11711995B2 (pt)
CN (1) CN114303617A (pt)
BR (1) BR102021016559A2 (pt)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11632895B2 (en) * 2019-05-02 2023-04-25 Deere & Company Residue monitoring and residue-based control
EP3991543A4 (en) * 2019-06-27 2023-12-27 Kubota Corporation THRESHING DEVICE
US11845449B2 (en) * 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11874669B2 (en) * 2020-10-09 2024-01-16 Deere & Company Map generation and control system
WO2024134326A1 (en) * 2022-12-19 2024-06-27 Precision Planting Llc Methods for imaging a field

Family Cites Families (968)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE441597C (de) 1927-03-05 Paul Frenzel Vorrichtung fuer Grasmaehmaschinen, um diese zum Maehen des Kartoffelkrautes geeignet zu machen
DE504035C (de) 1930-07-31 Hermann Lindstaedt Kartoffelerntemaschine mit an das Schar anschliessendem Foerderwerk und hinter diesem angeordnetem Ablegerost
FI5533A (fi) 1913-11-06 Williamstown Glass Company Anordningar vid glasbearbetningsmaskiner och sätt att tillverka buteljer med sådana
DE152380C (de) 1897-07-11 1904-06-09 Bauer & Co Verfahren zur Darstellung von Casein- und anderen Eiweisspräparaten
GB901081A (en) 1958-07-31 1962-07-11 Dunn Engineering Associates In Improvements in apparatus for punching jacquard cards
US3568157A (en) 1963-12-31 1971-03-02 Bell Telephone Labor Inc Program controlled data processing system
US3599543A (en) 1964-12-02 1971-08-17 Stothert & Pitt Ltd Vibratory machines
FR1451480A (fr) 1965-07-20 1966-01-07 France Etat Procédé et appareil de mesure du tassement du sol sous les remblais et ouvrages d'art
US3580257A (en) 1969-12-24 1971-05-25 Earl E Teague Weed seed collector for a thresher combine
DE2018219C3 (de) 1970-04-16 1979-02-22 Losenhausen Maschinenbau Ag, 4000 Duesseldorf Vorrichtung zur Erzeugung eines Anzeige- oder Steuersignals für den Fahrantrieb eines dynamischen Bodenverdichters
CH569747A5 (pt) 1972-08-25 1975-11-28 Ciba Geigy Ag
DE2354828A1 (de) 1973-11-02 1975-05-15 Held & Francke Bau Ag Verfahren zum verdichten des bodens und vorrichtung zur durchfuehrung dieses verfahrens
CH618682A5 (pt) 1975-11-07 1980-08-15 Ciba Geigy Ag
DE2646143A1 (de) 1976-10-13 1978-04-20 Bayer Ag 4,5-dichlor-imidazol-1-carbonsaeure- arylester, verfahren zu ihrer herstellung sowie ihre verwendung als pflanzenschutzmittel
US4166735A (en) 1977-01-21 1979-09-04 Shell Oil Company Cycloalkanecarboxanilide derivative herbicides
EP0000351A1 (de) 1977-07-07 1979-01-24 Ciba-Geigy Ag Phenoxy-phenylthio-alkancarbonsäurederivate, Verfahren zu deren Herstellung und deren Verwendung als Herbizide und als Pflanzenwachstumsregulierungsmittel
SU834514A1 (ru) 1978-11-04 1981-05-30 Smolyanitskij Leonid A Способ контрол качества уплотнени гРуНТА
SU887717A1 (ru) 1979-09-18 1981-12-07 Новосибирский филиал Всесоюзного научно-исследовательского института транспортного строительства Устройство дл контрол качества уплотнени грунта
US4360677A (en) 1979-09-20 1982-11-23 Uniroyal, Inc. Herbicidal 2-(alpha-chloromethylsulfonyl) pyridine-1-oxides
US4268679A (en) 1980-02-19 1981-05-19 Ppg Industries, Inc. 3-[5- or 3-Substituted-5- or 3-isoxazolyl]-1-allyl or alkyl-4-substituted-5-substituted or unsubstituted-2-imidazolidinones
DE3167425D1 (en) 1980-06-14 1985-01-10 Claydon Yield O Meter Limited Crop metering device for combine harvesters
SU1052940A1 (ru) 1980-09-02 1983-11-07 Войсковая часть 70170 Способ измерени фильтрационных характеристик несв занных грунтов
AU544099B2 (en) 1980-12-15 1985-05-16 Sumitomo Chemical Company, Limited Triazolylpentenols
DOP1981004033A (es) 1980-12-23 1990-12-29 Ciba Geigy Ag Procedimiento para proteger plantas de cultivo de la accion fitotoxica de herbicidas.
FR2509135A1 (fr) 1981-07-10 1983-01-14 Ugine Kuhlmann Compositions herbicides a base de derives d'amino-4 chloro-6 alkylthio-5 pyrimidine et de derives de la dinitro-2,6 aniline et procede de traitement des cultures a l'aide desdites compositions
US4566901A (en) 1982-05-06 1986-01-28 Ciba-Geigy Corporation Novel oxime ethers, the preparation thereof, compositions containing them and the use thereof
US4527241A (en) 1982-08-30 1985-07-02 Sperry Corporation Automatic combine harvester adjustment system
EP0126713B1 (de) 1983-05-18 1989-01-18 Ciba-Geigy Ag Cyclohexandion-carbonsäurederivate mit herbizider und das Pflanzenwachstum regulierender Wirkung
SU1134669A1 (ru) 1983-09-30 1985-01-15 Всесоюзный научно-исследовательский институт транспортного строительства Устройство дл непрерывного контрол степени уплотнени грунта
US4687505A (en) 1983-11-02 1987-08-18 Sylling Truman V Method for desalination and rehabilitation of irrigated soil
EP0158600B1 (de) 1984-04-11 1991-04-03 Ciba-Geigy Ag Verfahren zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen
JPH0243845B2 (ja) 1984-05-30 1990-10-01 Shimizu Construction Co Ltd Tsuchinogenbamitsudosokuteihohooyobisonosochi
CS247426B1 (cs) 1984-12-21 1986-12-18 Josef Hula Zařízení pro mdření ulehlosti půdy
CS248318B1 (en) 1984-12-21 1987-02-12 Josef Hula Device for soil compactness measuring
GB2178934A (en) 1985-03-22 1987-02-25 Massey Ferguson Mfg Agricultural husbandry
US5250690A (en) 1985-05-02 1993-10-05 Dowelanco Haloalkoxy anilide derivatives of 2-4(-heterocyclic oxyphenoxy)alkanoic or alkenoic acids and their use as herbicides
US4857101A (en) 1985-12-06 1989-08-15 Rohm And Haas Company Method of selectively controlling weeds in crops of cereals
US5246915A (en) 1986-06-20 1993-09-21 Janssen Pharmaceutica N.V. Method for controlling weeds
SU1526588A1 (ru) 1987-05-29 1989-12-07 Всесоюзный научно-исследовательский институт по применению полимерных материалов в мелиорации и водном хозяйстве Устройство дл измерени степени уплотнени почв
JP2523324B2 (ja) 1987-06-09 1996-08-07 建設省土木研究所長 地盤の締固め程度の測定方法
SU1540053A1 (ru) 1987-06-16 1991-01-15 Головное специализированное конструкторское бюро по комплексам зерноуборочных машин Производственного объединения "Ростсельмаш" Способ управлени технологическим процессом уборочной машины
DE3728669A1 (de) 1987-08-27 1989-03-16 Arcus Elektrotech Messsonde zur messung der bodenverdichtung
BR6800140U (pt) 1988-01-22 1989-09-12 Adalberto Wilke Aplicador de herbicida com protetores para culturas em fase inicial de desenvolvimento
GB8916722D0 (en) 1988-08-18 1989-09-06 Ici Plc Heterocyclic compounds
JP2671143B2 (ja) 1989-01-25 1997-10-29 株式会社光電製作所 土の締固め測定装置
JP2767266B2 (ja) 1989-02-15 1998-06-18 ヤンマー農機株式会社 収穫機
US5089043A (en) 1989-11-09 1992-02-18 Shionogi & Co., Ltd. Heterocyclic oxy-phenoxyacetic acid derivatives and their use as herbicides
SU1761864A1 (ru) 1990-03-27 1992-09-15 Московский Автомобильно-Дорожный Институт Способ контрол степени уплотнени грунтов
RU1791767C (ru) 1990-06-12 1993-01-30 Усть-Каменогорский Строительно-Дорожный Институт Прибор дл определени физико-механических свойств грунтов при уплотнении
US5059154A (en) 1990-10-19 1991-10-22 The Board Of Trustees Of The University Of Arkansas Grain cleaner and destructor of foreign matter in harvesting crops
GB9108199D0 (en) 1991-04-17 1991-06-05 Rhone Poulenc Agriculture New compositions of matter
EP0532146B1 (en) 1991-09-11 1998-08-19 E.I. Du Pont De Nemours And Company Herbicidal substituted bicyclic triazoles
US5246164A (en) 1991-12-16 1993-09-21 Mccann Ian R Method and apparatus for variable application of irrigation water and chemicals
US5477459A (en) 1992-03-06 1995-12-19 Clegg; Philip M. Real time three-dimensional machine locating system
PT639050E (pt) 1992-05-06 2001-06-29 Novartis Ag Composicao sinergistica e processo para controlo selectivo de ervas daninhas
US5300477A (en) 1992-07-17 1994-04-05 Rohm And Haas Company 2-arylpyrimidines and herbicidal use thereof
US5296702A (en) 1992-07-28 1994-03-22 Patchen California Structure and method for differentiating one object from another object
US5585626A (en) 1992-07-28 1996-12-17 Patchen, Inc. Apparatus and method for determining a distance to an object in a field for the controlled release of chemicals on plants, weeds, trees or soil and/or guidance of farm vehicles
AU658066B2 (en) 1992-09-10 1995-03-30 Deere & Company Neural network based control system
JP3359702B2 (ja) 1993-06-28 2002-12-24 株式会社前川製作所 異種植物検出方法と該検出方法を用いた雑草駆除方法
EP0631906B2 (en) 1993-06-28 2002-03-20 New Holland Belgium N.V. Process for the control of self-propelled agricultural harvesting machines
US5592606A (en) 1993-07-30 1997-01-07 Myers; Allen Method and apparatus for storage and display of hierarchally organized data
EP0735820B1 (en) 1993-12-22 1999-06-23 Zeneca Limited Herbicidal diphenyl ether and nitrogen solution compositions and method
US5995859A (en) 1994-02-14 1999-11-30 Nihon Kohden Corporation Method and apparatus for accurately measuring the saturated oxygen in arterial blood by substantially eliminating noise from the measurement signal
US5767373A (en) 1994-06-16 1998-06-16 Novartis Finance Corporation Manipulation of protoporphyrinogen oxidase enzyme activity in eukaryotic organisms
US5606821A (en) 1994-07-25 1997-03-04 Loral Corporation Smart weed recognition/classification system
DE4431824C1 (de) 1994-09-07 1996-05-02 Claas Ohg Mähdrescherbetrieb mit Betriebsdatenkataster
US5957304A (en) 1995-01-25 1999-09-28 Agco Limited Crop harvester
GB9504345D0 (en) 1995-03-03 1995-04-19 Compaction Tech Soil Ltd Method and apparatus for monitoring soil compaction
DE19509496C2 (de) 1995-03-16 1998-07-09 Claas Ohg Selbstfahrender Mähdrescher
DE19514223B4 (de) 1995-04-15 2005-06-23 Claas Kgaa Mbh Verfahren zur Einsatzoptimierung von Landmaschinen
DE19528663A1 (de) 1995-08-04 1997-02-06 Univ Hohenheim Verfahren zur Einstellung einer mobilen Arbeitsmaschine
WO1997011858A1 (en) 1995-09-29 1997-04-03 Ingersoll-Rand Company A soil compactor and traction control system thereon
US5991694A (en) 1995-11-13 1999-11-23 Caterpillar Inc. Method and apparatus for determining the location of seedlings during agricultural production
US5721679A (en) 1995-12-18 1998-02-24 Ag-Chem Equipment Co., Inc. Heads-up display apparatus for computer-controlled agricultural product application equipment
WO1997028432A1 (en) 1996-02-01 1997-08-07 Bolt Beranek And Newman Inc. Soil compaction measurement
PL178299B1 (pl) 1996-02-13 2000-04-28 Jan Liszkowski Sposób renowacji wałów przeciwpowodziowych
ES2116215B1 (es) 1996-02-22 1999-02-16 Zuniga Escobar Orlando Electrosonda para medir el contenido de humedad del suelo y la compactacion del mismo, metodo de medida correspondiente y utilizacion de dicha electrosonda.
US7032689B2 (en) 1996-03-25 2006-04-25 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system of a given formation
DE29607846U1 (de) 1996-04-30 1996-07-25 Neuhaus Neotec Maschinen- und Anlagenbau GmbH, 21465 Reinbek Vorrichtung zum Dosieren von Mahlkaffee in Kaffeeverpackungen
DE19629618A1 (de) 1996-07-23 1998-01-29 Claas Ohg Routenplanungssystem für landwirtschaftliche Arbeitsfahrzeuge
US5771169A (en) 1996-08-29 1998-06-23 Case Corporation Site-specific harvest statistics analyzer
ATE195157T1 (de) 1996-10-21 2000-08-15 Ammann Verdichtung Ag Verfahren zur messung mechanischer daten eines bodens sowie zu dessen verdichtung und mess- bzw. bodenverdichtungsvorrichtung
US5789741A (en) 1996-10-31 1998-08-04 Patchen, Inc. Detecting plants in a field by detecting a change in slope in a reflectance characteristic
DE19647523A1 (de) 1996-11-16 1998-05-20 Claas Ohg Landwirtschaftliches Nutzfahrzeug mit einem in seiner Lage und/oder Ausrichtung gegenüber dem Fahrzeug verstellbar angeordneten Bearbeitungsgerät
US5902343A (en) 1996-11-22 1999-05-11 Case Corporation Automatic scaling of GPS field maps
US6029106A (en) 1996-11-22 2000-02-22 Case Corporation Global position correction for the electronic display of field maps
US5978723A (en) 1996-11-22 1999-11-02 Case Corporation Automatic identification of field boundaries in a site-specific farming system
US5974348A (en) 1996-12-13 1999-10-26 Rocks; James K. System and method for performing mobile robotic work operations
JPH10191762A (ja) 1997-01-13 1998-07-28 Yanmar Agricult Equip Co Ltd コンバインの動力制御装置
US5841282A (en) 1997-02-10 1998-11-24 Christy; Colin Device for measuring soil conductivity
DE19705842A1 (de) 1997-02-15 1998-08-20 Same Deutz Fahr Spa Ernteverfahren
DE19706614A1 (de) 1997-02-20 1998-08-27 Claas Ohg Situationsbezogene programmgesteuerte elektronische Kartenbilddarstellung in einem Kraftfahrzeug
US5809440A (en) 1997-02-27 1998-09-15 Patchen, Inc. Agricultural implement having multiple agents for mapping fields
US5995894A (en) 1997-05-27 1999-11-30 Case Corporation System for analyzing spatially-variable harvest data by pass
JP3013036B2 (ja) 1997-06-04 2000-02-28 ヤンマー農機株式会社 コンバイン
US5991687A (en) 1997-07-02 1999-11-23 Case Corporation System and method for communicating information related to a geographical area
US5899950A (en) 1997-07-07 1999-05-04 Case Corporation Sequential command repeater system for off-road vehicles
US5878821A (en) 1997-07-08 1999-03-09 Flenker; Kevin P. Tillage implement with on-the-go angle and depth controlled discs
US5995895A (en) 1997-07-15 1999-11-30 Case Corporation Control of vehicular systems in response to anticipated conditions predicted using predetermined geo-referenced maps
GB9716251D0 (en) 1997-08-01 1997-10-08 Philips Electronics Nv Attribute interpolation in 3d graphics
PT1431463E (pt) 1997-08-20 2007-04-30 Roxbury Ltd Tratamento do solo
DE19740346A1 (de) 1997-09-13 1999-03-18 Claas Selbstfahr Erntemasch Selbstfahrende Arbeitsmaschine
US6178253B1 (en) 1997-10-10 2001-01-23 Case Corporation Method of determining and treating the health of a crop
DE19800238C1 (de) 1998-01-07 1999-08-26 Claas Selbstfahr Erntemasch System zur Einstellung einer selbstfahrenden Erntemaschine
US6041582A (en) 1998-02-20 2000-03-28 Case Corporation System for recording soil conditions
GB9811177D0 (en) 1998-05-26 1998-07-22 Ford New Holland Nv Methods for generating field maps
DE19828355C2 (de) 1998-06-25 2000-09-07 Lausitzer Und Mitteldeutsche B Pneumatisch-Dynamische-Sonde und Verfahren zur Erkundung und Beurteilung kollabiler, nichtbindiger Böden
US6199000B1 (en) 1998-07-15 2001-03-06 Trimble Navigation Limited Methods and apparatus for precision agriculture operations utilizing real time kinematic global positioning system systems
US6141614A (en) 1998-07-16 2000-10-31 Caterpillar Inc. Computer-aided farming system and method
US6016713A (en) 1998-07-29 2000-01-25 Case Corporation Soil sampling "on the fly"
DE19836659A1 (de) 1998-08-13 2000-02-17 Hoechst Schering Agrevo Gmbh Herbizide Mittel für tolerante oder resistente Baumwollkulturen
US6327569B1 (en) 1998-10-15 2001-12-04 Milestone Technology, Inc. System and methods for real time linkage between harvest environment and marketplace
US6272819B1 (en) 1998-11-17 2001-08-14 Case Corporation Sugar cane yield monitor
US6216071B1 (en) 1998-12-16 2001-04-10 Caterpillar Inc. Apparatus and method for monitoring and coordinating the harvesting and transporting operations of an agricultural crop by multiple agricultural machines on a field
US6380745B1 (en) 1999-03-17 2002-04-30 Dennis M. Anderson Electrical geophysical apparatus for determining the density of porous materials and establishing geo-electric constants of porous material
US6205381B1 (en) 1999-03-26 2001-03-20 Caterpillar Inc. Method and apparatus for providing autoguidance for multiple agricultural machines
US6119442A (en) 1999-05-14 2000-09-19 Case Corporation Combine setting autoadjust with machine vision
GB2350275B (en) 1999-05-25 2003-12-24 Agco Ltd Improvements in yield mapping
US6374173B1 (en) 1999-05-28 2002-04-16 Freightliner Llc Terrain adaptive cruise control
US6188942B1 (en) 1999-06-04 2001-02-13 Caterpillar Inc. Method and apparatus for determining the performance of a compaction machine based on energy transfer
JP3460224B2 (ja) 1999-06-09 2003-10-27 株式会社大林組 盛土転圧管理システム
US6236924B1 (en) 1999-06-21 2001-05-22 Caterpillar Inc. System and method for planning the operations of an agricultural machine in a field
US6119531A (en) 1999-08-03 2000-09-19 Case Corporation Crop sampling system
JP2001057809A (ja) 1999-08-20 2001-03-06 Yanmar Agricult Equip Co Ltd 農作業機におけるエラー信号の記憶制御装置
US6505146B1 (en) 1999-09-24 2003-01-07 Monsanto Company Method and system for spatial evaluation of field and crop performance
CA2283767C (en) 1999-09-27 2007-06-19 Monsanto Company Method and system for spatial evaluation of field crop perfomance
EE05542B1 (et) 1999-10-14 2012-06-15 Basf Aktiengesellschaft Snergilised herbitsiidsed meetodid ja kompositsioonid
WO2001052160A1 (en) 2000-01-14 2001-07-19 Ag-Chem Equipment Company, Inc. Application report and method for creating the same
CA2330979A1 (en) 2000-02-10 2001-08-10 L. Gregory Alster Method and apparatus for controlling harvesting of trees
DE10023443A1 (de) 2000-05-12 2001-11-15 Deere & Co Fördervorrichtung
FI114171B (fi) 2000-05-12 2004-08-31 Antti Paakkinen Menetelmä ja laite maamassojen ja muiden niiden kaltaisten massojen tiivistysominaisuuksien mittaamiseksi
GT200100103A (es) 2000-06-09 2002-02-21 Nuevos herbicidas
US6460008B1 (en) 2000-07-19 2002-10-01 Ivan E. Hardt Yield monitoring system for grain harvesting combine
US6735568B1 (en) 2000-08-10 2004-05-11 Eharmony.Com Method and system for identifying people who are likely to have a successful relationship
US6522948B1 (en) 2000-08-14 2003-02-18 Flexi-Coil Ltd. Agricultural product application tracking and control
SE520299C2 (sv) 2000-08-23 2003-06-24 Bengt Soervik Förfarande och system för hantering av virkesbitar
US6539102B1 (en) 2000-09-01 2003-03-25 Large Scale Proteomics Reference database
US6591145B1 (en) 2000-09-21 2003-07-08 Bechtel Bwxt Idaho, Llc Systems and methods for autonomously controlling agricultural machinery
DE10050224A1 (de) 2000-10-11 2002-04-25 Volkswagen Ag Verfahren und Einrichtung zum Überwachen und/oder Steuern von beweglichen Objekten
DE10053446B4 (de) 2000-10-27 2006-03-02 Wacker Construction Equipment Ag Lenkbare Vibrationsplatte und fahrbares Vibrationsplattensystem
CN2451633Y (zh) 2000-11-23 2001-10-03 鹤壁市公路管理总段第二工程处 公路灰土基层压实度测定取样机
FR2817344B1 (fr) 2000-11-28 2003-05-09 Sol Solution Penetrometre dynamique a energie variable
JP2002186348A (ja) 2000-12-20 2002-07-02 Yanmar Agricult Equip Co Ltd 穀物貯蔵施設への穀物運搬システム
DE10064861A1 (de) 2000-12-23 2002-06-27 Claas Selbstfahr Erntemasch Vorrichtung und Verfahren zur automatischen Steuerung einer Überladeeinrichtung an landwirtschaftlichen Erntemaschinen
US6682416B2 (en) 2000-12-23 2004-01-27 Claas Selbstfahrende Erntemaschinen Gmbh Automatic adjustment of a transfer device on an agricultural harvesting machine
DE10064862A1 (de) 2000-12-23 2002-07-11 Claas Selbstfahr Erntemasch Vorrichtung und Verfahren zur Koordination und Einstellung von landwirtschaftlichen Fahrzeugen
GB2372105B (en) 2001-02-13 2004-10-27 Agco Ltd Improvements in Mapping Techniques
EP1238579B1 (en) 2001-03-08 2006-04-05 Deere & Company Crop width measuring means
DE10120173B4 (de) 2001-04-24 2006-02-23 Gebr. Pöttinger GmbH Verfahren und Vorrichtung zum Betreiben von Landmaschinen
DE10129135B4 (de) 2001-06-16 2013-10-24 Deere & Company Einrichtung zur Positionsbestimmung eines landwirtschaftlichen Arbeitsfahrzeugs sowie ein landwirtschaftliches Arbeitsfahrzeug mit dieser
DE10129133A1 (de) 2001-06-16 2002-12-19 Deere & Co Einrichtung zur selbsttätigen Lenkung eines landwirtschaftlichen Arbeitsfahrzeugs
US6549849B2 (en) 2001-06-25 2003-04-15 Trimble Navigation Ltd. Guidance pattern allowing for access paths
DE10130665A1 (de) 2001-06-28 2003-01-23 Deere & Co Vorrichtung zur Messung der Menge von auf einem Feld stehenden Pflanzen
DE10133191A1 (de) 2001-07-07 2003-01-16 Deere & Co Landwirtschaftliche Bestellkombination
DE10134141A1 (de) 2001-07-13 2003-02-06 Deere & Co Verteilvorrichtung für aus einer Erntemaschine austretendes Häckselgut
US6553300B2 (en) 2001-07-16 2003-04-22 Deere & Company Harvester with intelligent hybrid control system
US6591591B2 (en) 2001-07-30 2003-07-15 Deere & Company Harvester speed control with header position input
US6834550B2 (en) 2001-09-10 2004-12-28 The Regents Of The University Of California Soil profile force measurement using an instrumented tine
US6592453B2 (en) 2001-09-27 2003-07-15 Deere & Company Harvester feedrate control with tilt compensation
US6741921B2 (en) 2001-10-05 2004-05-25 Caterpillar Inc Multi-stage truck assignment system and method
US6655351B2 (en) 2001-10-24 2003-12-02 Deere & Company Vehicle engine control
US7034666B2 (en) 2002-02-20 2006-04-25 Scott William Knutson Device used to aid in the loading and unloading of vehicles and implements
US6943824B2 (en) 2002-03-13 2005-09-13 Deere & Company Image processing spout control system
US7761334B2 (en) 2002-03-20 2010-07-20 Deere & Company Method and system for automated tracing of an agricultural product
US6726559B2 (en) 2002-05-14 2004-04-27 Deere & Company Harvester with control system considering operator feedback
NL1020804C2 (nl) 2002-06-06 2003-12-09 Lely Entpr Ag Werkwijze en systeem voor het uitvoeren van ten minste twee landbouwbewerkingen op een landbouwperceel.
NL1020792C2 (nl) 2002-06-06 2003-12-09 Lely Entpr Ag Landbouwmachine voor het uitvoeren van een landbouwbewerking.
US7062368B2 (en) 2002-06-11 2006-06-13 Cnh America Llc Combine having a system estimator to automatically estimate and dynamically change a target control parameter in a control algorithm
DE10230474A1 (de) 2002-07-06 2004-01-15 Deere & Company, Moline Einrichtung zur Dokumentierung des Betriebs eines Zusatzgeräts für eine Arbeitsmaschine
US6681551B1 (en) 2002-07-11 2004-01-27 Deere & Co. Programmable function control for combine
GB0217297D0 (en) 2002-07-26 2002-09-04 Cnh Belgium Nv Methods of optimising stochastic processing parameters in crop harvesting machines
US7103451B2 (en) 2002-08-19 2006-09-05 Intime, Inc. Method and system for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data
DE10240219A1 (de) 2002-08-28 2004-03-11 Claas Selbstfahrende Erntemaschinen Gmbh Vorrichtung zur Steuerung einer Überladeeinrichtung
US6687616B1 (en) 2002-09-09 2004-02-03 Pioneer Hi-Bred International, Inc. Post-harvest non-containerized reporting system
US20040073468A1 (en) 2002-10-10 2004-04-15 Caterpillar Inc. System and method of managing a fleet of machines
EP1410715A1 (en) 2002-10-19 2004-04-21 Bayer CropScience GmbH Combinations of aryloxyphenoxypropionates and safeners and their use for increasing weed control
DE10303516A1 (de) 2003-01-30 2004-08-12 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Vorrichtung zum Bearbeiten und/oder Bestellen von landwirtschaftlichen Flächen
US6999877B1 (en) 2003-01-31 2006-02-14 Deere & Company Method and system of evaluating performance of a crop
US7047133B1 (en) 2003-01-31 2006-05-16 Deere & Company Method and system of evaluating performance of a crop
WO2004083531A2 (en) 2003-03-13 2004-09-30 Burton James D Soil sampler apparatus and method
DE10314573A1 (de) 2003-03-31 2004-10-28 Henkel Kgaa Verfahren zum rechnergestützten Regeln einer Mehrzahl von in Serie miteinander gekoppelten Maschinen, Regelungseinrichtung und Maschinen-Anordnung
US6907336B2 (en) 2003-03-31 2005-06-14 Deere & Company Method and system for efficiently traversing an area with a work vehicle
IL156478A0 (en) 2003-06-17 2004-07-25 Odf Optronics Ltd Compact rotating observation assembly with a separate receiving and display unit
US7073374B2 (en) 2003-07-30 2006-07-11 Bbnt Solutions Llc Soil compaction measurement on moving platform
DE10342922A1 (de) 2003-09-15 2005-05-19 Claas Selbstfahrende Erntemaschinen Gmbh Häcksel- und Verteilvorrichtung
EP1516961B1 (de) 2003-09-19 2013-12-25 Ammann Aufbereitung AG Verfahren zur Ermittlung einer Bodensteifigkeit und Bodenverdichtungsvorrichtung
US7408145B2 (en) 2003-09-23 2008-08-05 Kyle Holland Light sensing instrument with modulated polychromatic source
CN1894202A (zh) 2003-12-19 2007-01-10 巴斯福股份公司 苯甲酰基取代的苯基丙氨酸酰胺
US7191062B2 (en) 2003-12-22 2007-03-13 Caterpillar Inc Method and system of forecasting compaction performance
US8407157B2 (en) 2003-12-22 2013-03-26 Deere & Company Locating harvested material within a work area
US20050150202A1 (en) 2004-01-08 2005-07-14 Iowa State University Research Foundation, Inc. Apparatus and method for monitoring and controlling an agricultural harvesting machine to enhance the economic harvesting performance thereof
JP2005227233A (ja) 2004-02-16 2005-08-25 Taisei Corp 地盤密度の測定システム
DE102004011789A1 (de) 2004-03-09 2005-09-29 Claas Selbstfahrende Erntemaschinen Gmbh Vorrichtung zum Erfassen eines Ladewagens
DE502005006470D1 (de) 2004-03-27 2009-03-05 Bayer Cropscience Ag Verwendung von sulfonylharnstoffen
DE102004025135B4 (de) 2004-05-17 2006-04-20 Pt-Poly-Tec Gmbh Vertrieb Und Herstellung Von Dichtsystemen Verfahren und Anordnung zur Leckagevorwarnung und Bauteilpositionierungsanzeige bei Muffenverbindungen
US20070199903A1 (en) 2004-05-18 2007-08-30 Denney Larry W System For Removing Solids From Aqueous Solutions
US20050283314A1 (en) 2004-06-10 2005-12-22 Pioneer Hi-Bred International, Inc. Apparatus, method and system of information gathering and use
US7261632B2 (en) 2004-06-21 2007-08-28 Deere & Company Self-propelled harvesting machine
DE102004031211A1 (de) 2004-06-28 2006-02-09 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zur Steuerung einer landwirtschaftlichen Arbeitsmaschine
DE102004034799A1 (de) 2004-07-19 2006-03-16 Claas Selbstfahrende Erntemaschinen Gmbh Kommunikationssystem für mobile und stationäre Einrichtungen
DE102004039460B3 (de) 2004-08-14 2006-04-20 Deere & Company, Moline System zur Bestimmung der relativen Position eines zweiten landwirtschaftlichen Fahrzeugs in Bezug auf ein erstes landwirtschaftliches Fahrzeug
US7703036B2 (en) 2004-08-16 2010-04-20 Microsoft Corporation User interface for displaying selectable software functionality controls that are relevant to a selected object
US7398137B2 (en) 2004-08-25 2008-07-08 Caterpillar Inc. System and method for remotely controlling machine operations using mapping information
DE102004043169A1 (de) 2004-09-03 2006-03-09 Claas Selbstfahrende Erntemaschinen Gmbh Elektronisches Datenaustauschsystem
DE202004015141U1 (de) 2004-09-27 2004-12-09 Weber Maschinentechnik Gmbh Bodenverdichter
DE102004052298A1 (de) 2004-10-06 2006-06-08 Claas Selbstfahrende Erntemaschinen Gmbh Überladeassistenzsystem
US7211994B1 (en) 2004-10-12 2007-05-01 Federal Network Systems Inc. Lightning and electro-magnetic pulse location and detection for the discovery of land line location
US7248968B2 (en) 2004-10-29 2007-07-24 Deere & Company Obstacle detection using stereo vision
DE102004061439A1 (de) 2004-12-17 2006-07-13 Claas Selbstfahrende Erntemaschinen Gmbh Datengenerierungs- und -übertragungssystem in landwirtschaftlichen Arbeitsmaschinen
JP2006166871A (ja) 2004-12-20 2006-06-29 Iseki & Co Ltd 収穫作業機制御用のコンバイン制御装置
DE102004063104A1 (de) 2004-12-22 2006-07-13 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
DE102005000770B3 (de) 2005-01-05 2006-07-20 Langlott, Jürgen Verfahren zur Steuerung der Arbeitsorgane und der Fahrgeschwindigkeit eines Mähdreschers
DE102005000771A1 (de) 2005-01-05 2006-08-24 Langlott, Jürgen Verfahren zur Steuerung einer selbstfahrenden Erntemaschine
US7194965B2 (en) 2005-01-06 2007-03-27 Deere & Company Variety locator
RU2005102554A (ru) 2005-02-02 2006-07-10 Дальневосточный научно-исследовательский и проектно-технологический институт механизации и электрификации сельского хоз йства (ГНУ ДальНИПТИМЭСХ) (RU) Способ оценки уплотненности полей
US7261633B2 (en) * 2005-02-15 2007-08-28 Cnh America Llc Unitary pivoting spreader apparatus
DE102005008105A1 (de) 2005-02-21 2006-08-31 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Elektronisches Maschinen-Management-System
US20060200334A1 (en) 2005-03-07 2006-09-07 Deere & Company, A Delaware Corporation Method of predicting suitability for a soil engaging operation
US7167797B2 (en) 2005-03-07 2007-01-23 Deere & Company Method of predicting suitability for a crop harvesting operation
US7167800B2 (en) 2005-04-12 2007-01-23 Deere & Company Method of optimizing remote sensing operation timing
HU3056U (en) 2005-04-29 2006-03-28 G & G Noevenyvedelmi Es Keresk Construction for making weed map
DE102005025318A1 (de) 2005-06-02 2006-12-14 Deere & Company, Moline Landwirtschaftliche Erntemaschine mit einer Austrageinrichtung und einem Kollisionssensor
BRPI0502658A (pt) 2005-06-28 2007-02-13 Unicamp sistema e processo de monitoramento de peso em esteiras de transporte de produtos com taliscas
DE102005031426A1 (de) 2005-07-04 2007-01-18 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zur Optimierung von Betriebsparametern einer landwirtschaftlichen Arbeitsmaschine
US20070021948A1 (en) 2005-07-21 2007-01-25 Anderson Noel W Variable rate prescription generation using heterogenous prescription sources with learned weighting factors
DE102005038553A1 (de) 2005-08-12 2007-02-22 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zum Überladen von Erntegut
DE102005043991A1 (de) 2005-09-14 2007-08-09 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Einstellung eines Arbeitsaggregats einer Erntemaschine
CN100416590C (zh) 2005-09-23 2008-09-03 中国农业机械化科学研究院 利用位置和纹理特征自动识别作物苗期田间杂草的方法
US7302837B2 (en) 2005-09-27 2007-12-04 Cnh America Llc Tire inflation system for use with an agricultural implement
US7945364B2 (en) 2005-09-30 2011-05-17 Caterpillar Inc. Service for improving haulage efficiency
US7725233B2 (en) 2005-10-25 2010-05-25 Deere & Company Crop attribute map input for vehicle guidance
US7827042B2 (en) 2005-11-30 2010-11-02 The Invention Science Fund I, Inc Methods and systems related to transmission of nutraceutical associated information
DE102005059003A1 (de) 2005-12-08 2008-03-27 Claas Selbstfahrende Erntemaschinen Gmbh Routenplanungssystem für landwirtschaftliche Arbeitsmaschinen
ES2311322B1 (es) 2005-12-16 2009-11-30 Consejo Superior Investigaciones Cientificas Procedimiento para la discriminacion y mapeo de los rodales de malas hierbas gramineas en cultivos de cereales mediante teledeteccion.
RU2008129627A (ru) 2005-12-22 2010-01-27 Басф Се (De) Пестицидные композиции
US7318010B2 (en) 2006-02-07 2008-01-08 Deere & Company Method of regulating wireless sensor network energy use
US20070185749A1 (en) 2006-02-07 2007-08-09 Anderson Noel W Method for tracking hand-harvested orchard crops
US20080276590A1 (en) 2006-02-10 2008-11-13 Agco Corporation Flexible draper and cutter bar with tilt arm for cutterbar drive
US20070208510A1 (en) 2006-03-02 2007-09-06 Deere & Company, A Delaware Corporation Method of identifying and localizing drainage tile problems
DE102006015203A1 (de) 2006-03-30 2007-11-15 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung von landwirtschaftlichen Maschinensystemen
DE102006015204A1 (de) 2006-03-30 2007-10-18 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Erstellung eines Routenplans für landwirtschaftliche Maschinensysteme
US20070239337A1 (en) 2006-04-10 2007-10-11 Deere & Company, A Delaware Corporation System and method of optimizing ground engaging operations in multiple-fields
US7347168B2 (en) 2006-05-15 2008-03-25 Freightliner Llc Predictive auxiliary load management (PALM) control apparatus and method
DE102006026572A1 (de) 2006-06-06 2007-12-13 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zur Anzeige von Fahrzeugbewegungen
US7313478B1 (en) 2006-06-08 2007-12-25 Deere & Company Method for determining field readiness using soil moisture modeling
DE102006028909A1 (de) 2006-06-21 2007-12-27 Claas Selbstfahrende Erntemaschinen Gmbh Kommunikationsnetz und Betriebsverfahren dafür
MXGT06000012A (es) 2006-08-01 2008-01-31 Univ Guanajuato Dispositivo para medir y mapear la compactacion del suelo, acoplable a tractor agricola.
US20080030320A1 (en) 2006-08-03 2008-02-07 Deere & Company, A Delaware Corporation Agricultural lift with data gathering capability
DE102006045280A1 (de) 2006-09-22 2008-04-03 Claas Selbstfahrende Erntemaschinen Gmbh Vorrichtung und Verfahren zur Koordination eines Maschinenparks
CZ17266U1 (cs) 2006-11-09 2007-02-15 Šarec@Ondrej Zařízení pro měření utužení půdy - penetrometr
US7628059B1 (en) 2006-11-22 2009-12-08 The Toro Company Mobile turf instrument apparatus having driven, periodically insertable, ground penetrating probe assembly
US20080140431A1 (en) 2006-12-07 2008-06-12 Noel Wayne Anderson Method of performing an agricultural work operation using real time prescription adjustment
EP1938686A1 (de) 2006-12-29 2008-07-02 Bayer CropScience AG Substituierte 1-(3-Pyridinyl)pyrazol-4-yl-essigsäuren, Verfahren zu deren Herstellung und deren Verwendung als Herbizide und Pflanzenwachstumsregulatoren
US9615501B2 (en) 2007-01-18 2017-04-11 Deere & Company Controlling the position of an agricultural implement coupled to an agricultural vehicle based upon three-dimensional topography data
CN101236188B (zh) 2007-01-31 2011-04-13 北京林业大学 土壤水分无线测量装置
DE102007016670A1 (de) 2007-04-04 2008-10-09 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende landwirtschaftliche Erntemaschine mit steuerbarer Überladeeinrichtung
BRPI0808408B1 (pt) 2007-04-05 2018-04-17 Iowa State University Research Foundation, Inc. Sistema de colheita de resíduo de cultura para uma máquina de colheita, máquina de colheita e método para colher uma cultura usando uma máquina de colheita
DE102007018743A1 (de) 2007-04-22 2008-10-23 Bomag Gmbh Verfahren und System zur Steuerung von Verdichtungsmaschinen
US7487024B2 (en) 2007-04-26 2009-02-03 Cnh America Llc Apparatus and method for automatically setting operating parameters for a remotely adjustable spreader of an agricultural harvesting machine
EP1987718A1 (de) 2007-04-30 2008-11-05 Bayer CropScience AG Verwendung von Pyridin-2-oxy-3-carbonamiden als Safener
US8010261B2 (en) 2007-05-23 2011-08-30 Cnh America Llc Automatic steering correction of an agricultural harvester using integration of harvester header row sensors and harvester auto guidance system
TW200904330A (en) 2007-06-15 2009-02-01 Bayer Cropscience Sa Pesticidal composition comprising a strigolactone derivative and a fungicide compound
TW200904331A (en) 2007-06-15 2009-02-01 Bayer Cropscience Sa Pesticidal composition comprising a strigolactone derivative and an insecticide compound
FR2901291B1 (fr) 2007-07-06 2020-10-09 Soc Du Canal De Provence Et Damenagement De La Region Provencale Dispositif pour mesurer le tassement du sol soutenant une construction
DE102007032309A1 (de) 2007-07-11 2009-01-15 Deere & Company, Moline Bedienvorrichtung
ATE546991T1 (de) 2007-08-03 2012-03-15 Agrocom Gmbh & Co Agrarsystem Kg Landwirtschaftliche arbeitsmaschine
US8073235B2 (en) 2007-08-13 2011-12-06 Pioneer Hi-Bred International, Inc. Method and system for digital image analysis of ear traits
CA2694963C (en) 2007-08-13 2015-11-24 Dow Agrosciences, Llc 2-(2-fluoro-substituted phenyl)-6-amino-5-chloro-4-pyrimidinecarboxylates and their use as herbicides
GB0717986D0 (en) 2007-09-14 2007-10-24 Cnh Belgium Nv A method and apparatus for detecting errors in electronically processed images
LT2193352T (lt) 2007-09-26 2017-05-10 Precision Planting Llc Reikiamos prispaudimo jėgos sėjamosios lysvės apdorojimo sekcijai nustatymo būdas ir sistema
US8060283B2 (en) 2007-10-15 2011-11-15 Deere & Company Method and system for controlling the loading of a container associated with a vehicle
EP2052604A1 (de) 2007-10-24 2009-04-29 Bayer CropScience AG Salz des 2-lodo-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoyl] benzolsulfonamids,Verfahren zu deren Herstellung, sowie deren Verwendung als Herbizide und Pflanzenwachstumregulatoren
EP2052616A1 (de) 2007-10-24 2009-04-29 Bayer CropScience AG Herbizid-Safener-Kombination
DE102007053912A1 (de) 2007-11-09 2009-05-14 Claas Selbstfahrende Erntemaschinen Gmbh Überladeassistenzsystem
US8024074B2 (en) 2007-12-07 2011-09-20 Deere & Company System and method of managing substances in a plant root zone
US8924030B2 (en) 2008-01-24 2014-12-30 Cnh Industrial America Llc Method and apparatus for optimization of agricultural field operations using weather, product and environmental information
US8190335B2 (en) 2008-02-04 2012-05-29 Caterpillar Inc. Performance management system for multi-machine worksite
PE20100014A1 (es) 2008-02-13 2010-02-17 Raymond Brian Harrington Destruccion de maleza y semillas de poblaciones voluntarias
US20090216410A1 (en) 2008-02-26 2009-08-27 William Edward Allen Automated machine management system with destination selection
DE102008015277A1 (de) 2008-03-20 2009-09-24 Deere & Company, Moline Verfahren und Vorrichtung zur Lenkung einer zweiten landwirtschaftlichen Maschine, die relativ zu einer ersten landwirtschaftlichen Maschine über ein Feld lenkbar ist
US20090259483A1 (en) 2008-04-11 2009-10-15 Larry Lee Hendrickson Method for making a land management decision based on processed elevational data
US8060269B2 (en) 2008-04-16 2011-11-15 Cnh America Llc Swath line creation including slope compensation for an automatic guidance system of a work vehicle
DE102008020494A1 (de) 2008-04-23 2009-10-29 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zum Koordinieren von fahrbaren landwirtschaftlichen Maschinen
DE102008021785A1 (de) 2008-04-30 2009-11-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zum Koordinieren eines Bearbeitungsvorgangs von landwirtschaftlicher Fläche
CN201218789Y (zh) 2008-05-09 2009-04-08 昆明理工大学 一种手持式定压土壤压实度测量装置
CA2629555A1 (en) 2008-05-14 2009-11-14 Gerard Voon Related/overlapping innovations in health/energy/transport/farming and infrastructure
DE102008002006A1 (de) 2008-05-27 2009-12-03 Deere & Company, Moline Steueranordnung zur Kontrolle des Überladens landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug
DE102008027282A1 (de) 2008-06-06 2009-12-10 Claas Industrietechnik Gmbh Landwirtschaftliches Fahrzeug und Betriebsverfahren dafür
US8175775B2 (en) 2008-06-11 2012-05-08 Cnh America Llc System and method employing short range communications for establishing performance parameters of an exemplar agricultural machine among a plurality of like-purpose agricultural machines
DE102008027906A1 (de) 2008-06-12 2009-12-17 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine
US8147176B2 (en) 2008-06-17 2012-04-03 Deere & Company Work machine and unloading system for unloading an agricultural product from a work machine
ES2332567B1 (es) 2008-06-27 2011-02-10 Consejo Superior Investigacion Procedimiento automatico para seccionar imagenes remotas y caracterizar indicadores agronomicos y ambientales en las mismas
US8032255B2 (en) 2008-06-30 2011-10-04 Deere & Company Monitoring of bin level for an agricultural product
CN101303338B (zh) 2008-07-01 2011-10-05 中国农业大学 一种车载行进式土壤坚实度传感器
WO2010003421A1 (en) 2008-07-08 2010-01-14 Aarhus Universitet Method for optimizing harvesting of crops
DE102008032418A1 (de) 2008-07-10 2010-01-14 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftlicher Maschinenverband
BRPI0802384B1 (pt) 2008-07-23 2019-04-30 Roberto Shiniti Sako Penetrômetro portátil para análise de compactação de solo
KR100974892B1 (ko) 2008-08-01 2010-08-11 한국철도기술연구원 지반의 다짐 품질 측정 방법
US9152938B2 (en) 2008-08-11 2015-10-06 Farmlink Llc Agricultural machine and operator performance information systems and related methods
US8280595B2 (en) 2008-08-12 2012-10-02 Cnh America Llc System and method employing short range communications for communicating and exchanging operational and logistical status information among a plurality of agricultural machines
US8818567B2 (en) 2008-09-11 2014-08-26 Deere & Company High integrity perception for machine localization and safeguarding
US8478493B2 (en) 2008-09-11 2013-07-02 Deere & Company High integrity perception program
US8224500B2 (en) 2008-09-11 2012-07-17 Deere & Company Distributed knowledge base program for vehicular localization and work-site management
US8195358B2 (en) 2008-09-11 2012-06-05 Deere & Company Multi-vehicle high integrity perception
US8195342B2 (en) 2008-09-11 2012-06-05 Deere & Company Distributed knowledge base for vehicular localization and work-site management
US9235214B2 (en) 2008-09-11 2016-01-12 Deere & Company Distributed knowledge base method for vehicular localization and work-site management
US8145393B2 (en) 2008-09-17 2012-03-27 Cnh America Llc System and method employing short range communications for interactively coordinating unloading operations between a harvester and a grain transport
GB0817172D0 (en) 2008-09-19 2008-10-29 Cnh Belgium Nv Control system for an agricultural harvesting machine
CN101363833B (zh) 2008-09-25 2012-02-22 中国科学院地质与地球物理研究所 一种土体击实排水模型试验装置
DE102008050460A1 (de) 2008-10-08 2010-04-15 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Einsatzsteuerung von landwirtschaftlichen Maschinen
US8639408B2 (en) 2008-10-15 2014-01-28 Deere & Company High integrity coordination system for multiple off-road vehicles
DE102008056557A1 (de) 2008-11-10 2010-05-12 Claas Selbstfahrende Erntemaschinen Gmbh Erstellung von Bilddatenbanken für Bildauswertung
DE102008061252A1 (de) 2008-11-24 2010-05-27 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Unterstützung der Automatisierung landwirtschaftlicher Leistungen
EP2191719A1 (de) 2008-11-29 2010-06-02 Bayer CropScience AG Herbizid-Safener-Kombination
KR101067576B1 (ko) 2008-12-03 2011-09-27 한국수자원공사 성토재료의 다짐특성 실내 측정방법 및 장치
US8577537B2 (en) 2008-12-16 2013-11-05 Agco Corporation Methods and systems for optimizing performance of vehicle guidance systems
EP2210879A1 (de) 2008-12-30 2010-07-28 Bayer CropScience AG Pyrimidinderivate und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwachstums
DE102009009767A1 (de) 2009-02-20 2010-08-26 Claas Selbstfahrende Erntemaschinen Gmbh Fahrerassistenzsystem für landwirtschaftliche Arbeitsmaschine
DE102009009817A1 (de) 2009-02-20 2010-08-26 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliches Arbeitsfahrzeug und Steuereinheit dafür
CN101929166B (zh) 2009-04-14 2012-08-08 洛阳路为电子科技有限公司 便携式土基密实度测量仪
US9538714B2 (en) 2009-04-21 2017-01-10 Deere & Company Managing resource prescriptions of botanical plants
US8321365B2 (en) 2009-04-21 2012-11-27 Deere & Company Horticultural knowledge base for managing yards and gardens
US7993188B2 (en) 2009-06-09 2011-08-09 Deere & Company Variable rate diverter for a crop residue collecting device carried by a combine harvester
DE102009025438A1 (de) 2009-06-16 2011-01-05 Claas Selbstfahrende Erntemaschinen Gmbh Routenplanungsverfahren und -system
US20100319941A1 (en) 2009-06-22 2010-12-23 Agco Corp. Trenching Device And System
DE102009027245A1 (de) 2009-06-26 2010-12-30 Deere & Company, Moline Steueranordnung zur Kontrolle des Überladens landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug
KR20110018582A (ko) 2009-08-18 2011-02-24 진성기 약액형 및 분말형 고화제를 이용한 고화 흙벽돌 및 블록 제작 방법
PL2311307T3 (pl) 2009-09-07 2012-09-28 Claas E Systems Gmbh Wskaźnik stopnia napełnienia, pojazd rolniczy zawierający taki wskaźnik oraz sposób kontroli napełniania obszaru docelowego
DE102009041646A1 (de) 2009-09-17 2011-03-24 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Maschine mit Autopilot
US20110224873A1 (en) 2009-09-17 2011-09-15 Reeve David R Vehicle assembly controller with automaton framework and control method
AU2010224431A1 (en) 2009-09-29 2011-04-14 Riteway Holdings Australia Pty Ltd An apparatus to be used in conjunction with a grain harvester for collecting weeds, weed seeds, chaff and so forth
US9345194B2 (en) 2009-09-30 2016-05-24 Cnh Industrial America Llc Automatic display of remote camera image
CZ20252U1 (cs) 2009-10-06 2009-11-16 Šarec@Petr Přístroj pro měření utužení půdy s laserovým snímáním hloubky - laserový penetrometr
US8082809B2 (en) 2009-10-08 2011-12-27 Pioneer Hi-Bred International, Inc. Combine harvester and associated method for selectively gathering grain test data
US8344897B2 (en) 2009-10-12 2013-01-01 Agco Corporation System and method for assisting in the refilling of agricultural vehicles
KR101134075B1 (ko) 2009-10-13 2012-04-13 한국건설기술연구원 지반다짐장비의 이동에 따른 지반의 연속 다짐정보 제공장치 및 이를 이용한 지반의 연속 다짐정보 제공방법
US8738238B2 (en) 2009-11-12 2014-05-27 Deere & Company Coordination of vehicle movement in a field
WO2011063814A1 (en) 2009-11-25 2011-06-03 Aarhus Universitet System for reducing compaction of soil
US8635903B2 (en) 2009-12-22 2014-01-28 Caterpillar Paving Products Inc. Method and system for compaction measurement
US20110160961A1 (en) 2009-12-29 2011-06-30 Agco Corporation Guidance using a worked edge for wayline generation
DE102010004648A1 (de) 2010-01-13 2011-07-14 CLAAS Selbstfahrende Erntemaschinen GmbH, 33428 Erntemaschine, insbesondere Feldhäcksler
BRPI1012101B1 (pt) 2010-01-15 2020-01-21 Leica Geosystems Ag sistema e método de compartilhamento de dados
CN102138383A (zh) 2010-01-28 2011-08-03 中国农业机械化科学研究院 一种联合收割机谷物损失空间分布的测量方法及其装置
EP2353353A1 (en) 2010-02-05 2011-08-10 Flander's Mechatronics Technology Centre v.z.w. In use adaptation of schedule for multi-vehicle ground processing operations
RU2421744C1 (ru) 2010-02-15 2011-06-20 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" Компактный полигон для измерения характеристик различных антенных систем
US10537061B2 (en) 2010-02-26 2020-01-21 Cnh Industrial America Llc System and method for controlling harvest operations
JP5522785B2 (ja) 2010-03-19 2014-06-18 株式会社日立ソリューションズ 農作業車両運行管理システム
JP2011205967A (ja) 2010-03-30 2011-10-20 Takayuki Nishida 水田における雑草の発生防止用ロボット
US20110257850A1 (en) 2010-04-14 2011-10-20 Reeve David R Vehicle assembly control system and method for composing or decomposing a task
US8527157B2 (en) 2010-04-28 2013-09-03 Deere & Company Agricultural combine and draper header
US8463510B2 (en) 2010-04-30 2013-06-11 Cnh America Llc GPS controlled residue spread width
CN101839906B (zh) 2010-05-10 2013-10-09 吉林大学 一种具有耐磨几何结构表面的锥形触土部件
CA135611S (en) 2010-05-19 2011-05-05 Rhonda Genest Weed removing and grooming garden hand tool
WO2011150353A1 (en) 2010-05-28 2011-12-01 Gvm, Inc. Remote management system for equipment
US8380401B2 (en) 2010-06-09 2013-02-19 Cnh America Llc Automatic grain transfer control system based on real time modeling of a fill level profile for regions of the receiving container
DE102010017687A1 (de) 2010-07-01 2012-01-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Einstellung zumindest eines Arbeitsorganes einer selbstfahrenden Erntemaschine
BE1019422A3 (nl) 2010-07-14 2012-07-03 Cnh Belgium Nv Werkwijze en toestel voor voorspellende sturing van een landbouwvoertuigsysteem.
DE102010038661B4 (de) 2010-07-29 2020-07-02 Deere & Company Erntemaschine mit einem an einem Fluggerät befestigten Sensor
US8544397B2 (en) 2010-09-15 2013-10-01 Dawn Equipment Company Row unit for agricultural implement
DE102010053331A1 (de) 2010-09-28 2012-03-29 Lacos Computerservice Gmbh Verfahren und Navigationsvorrichtung zur Optimierung des Transportes landwirtschaftlicher Produkte
US9043129B2 (en) 2010-10-05 2015-05-26 Deere & Company Method for governing a speed of an autonomous vehicle
US9072227B2 (en) 2010-10-08 2015-07-07 Deere & Company System and method for improvement of harvest with crop storage in grain bags
US8789563B2 (en) 2010-10-12 2014-07-29 Deere & Company Intelligent grain bag loader
US8677724B2 (en) 2010-10-25 2014-03-25 Deere & Company Round baler for baling crop residue
US8596194B2 (en) 2010-10-28 2013-12-03 Deere & Company Method and apparatus for determining fraction of hay at different moisture levels
DE102010043854B4 (de) 2010-11-12 2016-01-14 Deere & Company Steueranordnung zur Kontrolle des Überladens landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug
DE102010052713A1 (de) 2010-11-26 2012-05-31 Bomag Gmbh Verfahrbare Vorrichtung zur Verdichtung eines Bodenschichtaufbaus und Verfahren zur Ermittlung eines Schicht-E-Moduls einer obersten Schicht dieses Bodenschichtaufbaus
GB2492954A (en) 2010-12-06 2013-01-23 Agco Corp A system for automatic agricultural reporting
RU2447640C1 (ru) 2010-12-08 2012-04-20 Василий Васильевич Ефанов Способ управления технологическим процессом уборочной машины и система для его осуществления
CN102080373B (zh) 2010-12-09 2012-07-04 西安建筑科技大学 用ddc桩和桩基础联合处理黄土地基湿陷性的施工方法
WO2012094256A1 (en) 2011-01-04 2012-07-12 Precision Planting, Inc. Methods for generating soil maps and application prescriptions
ITTO20110133A1 (it) 2011-02-16 2012-08-17 Cnh Italia Spa Sistema di comunicazione senza fili per veicoli agricoli
US8463460B2 (en) 2011-02-18 2013-06-11 Caterpillar Inc. Worksite management system implementing anticipatory machine control
US8606454B2 (en) 2011-02-18 2013-12-10 Cnh America Llc System and method for synchronized control of a harvester and transport vehicle
BR112013021038B1 (pt) 2011-02-18 2018-06-26 Cnh Industrial America Llc Sistema e método de controle de bico de descarga de ceifadeira
US8655505B2 (en) 2011-02-18 2014-02-18 Caterpillar Inc. Worksite management system implementing remote machine reconfiguration
US9002591B2 (en) 2011-02-18 2015-04-07 Cnh Industrial America Llc Harvester spout control system and method
EP2675260B1 (en) 2011-02-18 2018-10-03 CNH Industrial Belgium nv System and method for trajectory control of a transport vehicle used with a harvester
US8577561B2 (en) 2011-03-08 2013-11-05 Deere & Company Control system and method of operating a product distribution machine
DE102011005400B4 (de) 2011-03-11 2015-05-28 Deere & Company Anordnung und Verfahren zur Abschätzung des Füllgrades beim Überladen landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug
US10318138B2 (en) 2011-03-11 2019-06-11 Intelligent Agricultural Solutions Llc Harvesting machine capable of automatic adjustment
US9629308B2 (en) 2011-03-11 2017-04-25 Intelligent Agricultural Solutions, Llc Harvesting machine capable of automatic adjustment
US9631964B2 (en) 2011-03-11 2017-04-25 Intelligent Agricultural Solutions, Llc Acoustic material flow sensor
US9043096B2 (en) 2011-03-31 2015-05-26 Ag Leader Technology Combine bin level monitoring system
DE102011001858A1 (de) 2011-04-07 2012-10-11 Claas Selbstfahrende Erntemaschinen Gmbh Vorrichtung und Verfahren zur Überwachung der Befahrbarkeit eines Bodens
DE102011016743A1 (de) 2011-04-12 2012-10-18 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliches Transportfahrzeug und Fahrzeugverbund
DE102011002071A1 (de) 2011-04-15 2012-10-18 Claas Selbstfahrende Erntemaschinen Gmbh System und Verfahren zur Steuerung der Erntegutüberladung
DE102011007511A1 (de) 2011-04-15 2012-10-18 Deere & Company Verfahren zur Einstellung einer Reinigungseinrichtung eines Mähdreschers und Reinigungseinrichtung
CN102277867B (zh) 2011-05-13 2013-10-09 西安建筑科技大学 一种湿陷性黄土地基的施工方法
CN202110103U (zh) 2011-05-14 2012-01-11 长沙亚星数控技术有限公司 电液伺服车载式混填土压实度快速测定系统
DE102011050474A1 (de) 2011-05-19 2012-11-22 Amazonen-Werke H. Dreyer Gmbh & Co.Kg Landwirtschaftliches Gerät
DE102011050629A1 (de) 2011-05-25 2012-11-29 Claas Selbstfahrende Erntemaschinen Gmbh Erntevorrichtung
EP2529610A1 (en) 2011-05-30 2012-12-05 Agri-Esprit SAS Method for harvest monitoring
CN202119772U (zh) 2011-06-01 2012-01-18 王新勇 一种车载土基密实度在线测量仪
US10878141B2 (en) 2011-06-13 2020-12-29 The Climate Corporation Systems and methods for placing and analyzing test plots
US20130022430A1 (en) 2011-07-20 2013-01-24 Anderson Noel W Material transfer system
US20130019580A1 (en) 2011-07-20 2013-01-24 Anderson Noel W Bidirectional harvesting system
CN103781725A (zh) 2011-08-12 2014-05-07 罗地亚运作公司 在水性介质中氟化金属卤化物的方法
DE102011052688B4 (de) 2011-08-12 2021-02-04 Andreas Reichhardt Verfahren und System zur Befüllung von Transportfahrzeugen mit Erntegut
US9511633B2 (en) 2011-08-17 2016-12-06 Deere & Company Soil compaction management and reporting
US8843269B2 (en) 2011-08-17 2014-09-23 Deere & Company Vehicle soil pressure management based on topography
DE102011082052B4 (de) 2011-09-02 2015-05-28 Deere & Company Anordnung und Verfahren zur selbsttätigen Überladung von Erntegut von einer Erntemaschine auf ein Transportfahrzeug
DE102011082908A1 (de) 2011-09-19 2013-03-21 Deere & Company Verfahren und Anordnung zur optischen Beurteilung von Erntegut in einer Erntemaschine
DE102011054630A1 (de) 2011-10-20 2013-04-25 Claas Agrosystems GmbH Visualisierungseinrichtung
UA111237C2 (uk) 2011-10-21 2016-04-11 Піонір Хай-Бред Інтернешнл, Інк. Спосіб збирання зерна з використанням комбінованої збиральної машини
EP2771860A4 (en) 2011-10-24 2015-01-21 Trimble Navigation Ltd AGRICULTURAL AND GROUND MANAGEMENT
DE102011085380A1 (de) 2011-10-28 2013-05-02 Deere & Company Anordnung und Verfahren zur vorausschauenden Untersuchung von mit einer Erntemaschine aufzunehmenden Pflanzen
DE102011085977A1 (de) 2011-11-09 2013-05-16 Deere & Company Sieb für eine Reinigungseinrichtung eines Mähdreschers
US20130124239A1 (en) 2011-11-15 2013-05-16 Uriel Rosa Crop yield per location measurer
WO2013078328A2 (en) 2011-11-22 2013-05-30 Precision Planting Llc Stalk sensor apparatus, systems, and methods
CN202340435U (zh) 2011-11-28 2012-07-25 南京工业职业技术学院 基于作业路径的玉米产量实时测量系统
DE102011120402A1 (de) 2011-12-03 2013-06-06 Robert Bosch Gmbh Verfahren und Vorrichtung zum Koordinieren einer Transportlogistik sowie Transportlogistiksystem
BR102012017584B1 (pt) 2011-12-08 2019-03-26 Agco Do Brasil Máquinas E Equipamentos Agrícolas Ltda. Sistema e método de auxílio de correção de velocidade
DE102011121414A1 (de) 2011-12-17 2013-06-20 Robert Bosch Gmbh Verfahren und eine Vorrichtung zur Regelung einer Fahrt einer ersten selbstfahrenden Arbeitsmaschine in Bezug zu einer zweiten selbstfahrenden Arbeitsmaschine
US8801512B2 (en) 2011-12-19 2014-08-12 Agco Corporation Method for measuring air efficiency and efficacy in a combine harvester
US8626406B2 (en) 2011-12-22 2014-01-07 Deere & Company Method and system for transferring material between vehicles
US20130187247A1 (en) 2012-01-23 2013-07-25 Qualcomm Incorporated Multi-bit magnetic tunnel junction memory and method of forming same
DE102012201333A1 (de) 2012-01-31 2013-08-01 Deere & Company Landwirtschaftliche Maschine mit einem System zur selbsttätigen Einstellung eines Bearbeitungsparameters und zugehöriges Verfahren
AU2013235751A1 (en) 2012-02-10 2014-08-21 Deere & Company System and method of material handling using one or more imaging devices on the transferring vehicle and on the receiving vehicle to control the material distribution into the storage portion of the receiving vehicle
US9392746B2 (en) 2012-02-10 2016-07-19 Deere & Company Artificial intelligence for detecting and filling void areas of agricultural commodity containers
US8649940B2 (en) 2012-02-10 2014-02-11 Deere & Company Method and stereo vision system for managing the unloading of an agricultural material from a vehicle
US8868304B2 (en) 2012-02-10 2014-10-21 Deere & Company Method and stereo vision system for facilitating the unloading of agricultural material from a vehicle
US9861040B2 (en) 2012-02-10 2018-01-09 Deere & Company Method and stereo vision system for facilitating the unloading of agricultural material from a vehicle
DE102012208554A1 (de) 2012-05-22 2013-11-28 Hamm Ag Verfahren zur Planung und Durchführung von Bodenverdichtungsvorgängen, insbesondere zurAsphaltverdichtung
US9288938B2 (en) 2012-06-01 2016-03-22 Rowbot Systems Llc Robotic platform and method for performing multiple functions in agricultural systems
US20130319941A1 (en) 2012-06-05 2013-12-05 American Water Works Company, Inc. Simultaneous recovery of coagulant and acid
US8930039B2 (en) 2012-06-11 2015-01-06 Cnh Industrial America Llc Combine performance evaluation tool
US9117790B2 (en) 2012-06-25 2015-08-25 Marvell World Trade Ltd. Methods and arrangements relating to semiconductor packages including multi-memory dies
DE102012211001A1 (de) 2012-06-27 2014-01-02 Deere & Company Anordnung zur Kontrolle einer Austrageinrichtung einer Erntemaschine mit einer selbsttätigen Positionierung in einer Ruhestellung bei nicht möglichen bzw. stattfindendem Überladevorgang
RU2502047C1 (ru) 2012-07-13 2013-12-20 Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) Способ оценки проходимости местности вне дорог
DE102013106128A1 (de) 2012-07-16 2014-06-12 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine mit zumindest einer Steuerungseinrichtung
US20140067745A1 (en) 2012-08-30 2014-03-06 Pioneer Hi-Bred International, Inc. Targeted agricultural recommendation system
US9095090B2 (en) 2012-08-31 2015-08-04 Deere & Company Pressure-based control system for an agricultural implement
WO2014046685A1 (en) 2012-09-24 2014-03-27 Deere & Company Bidirectional harvesting system
CN104737214B (zh) 2012-09-26 2017-09-01 株式会社久保田 联合收割机、以及联合收割机管理系统
WO2014050524A1 (ja) 2012-09-26 2014-04-03 株式会社クボタ 農作管理システム及び農作物収穫機
DE202012103730U1 (de) 2012-09-28 2012-10-16 Agco International Gmbh Erntemaschine mit einer Überladeeinrichtung
US20140121882A1 (en) 2012-10-31 2014-05-01 Brian J. Gilmore System for Coordinating the Relative Movements of an Agricultural Harvester and a Cart
CN203053961U (zh) 2012-11-02 2013-07-10 昆明理工大学 一种土壤压实数据监测装置
DE102012021469A1 (de) 2012-11-05 2014-05-08 Claas Selbstfahrende Erntemaschinen Gmbh Assistenzsystem zur Optimierung des Fahrzeugbetriebes
DE102012220109A1 (de) 2012-11-05 2014-05-08 Deere & Company Einrichtung zur Erfassung des Betriebszustands einer Arbeitsmaschine
KR101447197B1 (ko) 2012-11-07 2014-10-06 최준성 다짐 평가용 동적 관입 시험 장치 및 이를 이용한 다짐 평가 방법
DE102012220916A1 (de) 2012-11-15 2014-05-15 K&K Maschinenentwicklungs GmbH & Co. KG Verfahren zum Neuherstellen, Sanieren oder Rückbauen einer Schienenfahrbahn
DE102012221344B3 (de) 2012-11-22 2014-05-15 Hamm Ag Umkleidungsanordnung, Bodenbearbeitungswalze und Verfahren zum Anbringen einer Umkleidungsanordnung
WO2014093814A1 (en) 2012-12-14 2014-06-19 Agco Corporation Predictive load estimation through forward vision
DE102012223434B4 (de) 2012-12-17 2021-03-25 Deere & Company Verfahren und Anordnung zur Optimierung eines Betriebsparameters eines Mähdreschers
US20140172224A1 (en) 2012-12-19 2014-06-19 Agco Corporation Speed control in agricultural vehicle guidance systems
US20140172225A1 (en) 2012-12-19 2014-06-19 Agco Corporation Speed control in agricultural vehicle guidance systems
US20140172222A1 (en) 2012-12-19 2014-06-19 Agco Corporation Speed control in agricultural vehicle guidance systems
DE102012223768B4 (de) 2012-12-19 2014-07-03 Deere & Company Fremdkörpernachweiseinrichtung für eine landwirtschaftliche Erntemaschine
JP6059027B2 (ja) 2013-01-21 2017-01-11 株式会社クボタ 農作業機と農作業管理プログラム
US9497898B2 (en) 2013-01-24 2016-11-22 Tribine Industries, LLC Agricultural harvester unloading assist system and method
DE102013001157A1 (de) 2013-01-24 2014-08-07 Zind Systementwicklungs Gmbh Fertigungsanlage zur Fertigung von Gefäßen aus Gefäßrohlingen und Fertigungsverfahren
US8955402B2 (en) 2013-01-25 2015-02-17 Trimble Navigation Limited Sugar cane yield mapping
CN203206739U (zh) 2013-01-25 2013-09-25 蒋行宇 打瓜联合收获机
CN103088807B (zh) 2013-01-30 2014-12-10 青岛市勘察测绘研究院 强夯地基加固处理系统及其方法
DE102013201996A1 (de) 2013-02-07 2014-08-07 Deere & Company Verfahren zur Einstellung von Arbeitsparametern einer Erntemaschine
WO2014137533A2 (en) 2013-02-07 2014-09-12 Brown Owen J Jr Wireless monitor maintenance and control system
US9326444B2 (en) 2013-02-08 2016-05-03 Deere & Company Method and stereo vision system for facilitating the unloading of agricultural material from a vehicle
GB2510630B (en) 2013-02-11 2015-08-05 Kverneland Group Les Landes Genusson Strip tilling system
GB2510629B (en) 2013-02-11 2015-10-14 Kverneland Group Les Landes Genusson Strip tilling system
UY35335A (es) 2013-02-19 2014-07-31 Grains Res & Dev Corp Dispositivo de desvitalización de semillas de malezas
US9693503B2 (en) 2013-02-20 2017-07-04 Deere & Company Crop sensing
US9066465B2 (en) 2013-02-20 2015-06-30 Deere & Company Soil compaction reduction system and method
US10178828B2 (en) 2013-02-20 2019-01-15 Deere & Company Per plant crop sensing resolution
US11212962B2 (en) 2013-02-20 2022-01-04 Deere & Company Field condition determination
US9668420B2 (en) 2013-02-20 2017-06-06 Deere & Company Crop sensing display
US20140257911A1 (en) 2013-03-08 2014-09-11 Deere & Company Methods and apparatus to schedule refueling of a work machine
CN103181263A (zh) 2013-03-11 2013-07-03 西北农林科技大学 一种多机器协作的小麦收割系统
US9410840B2 (en) 2013-03-15 2016-08-09 Raven Industries, Inc. Multi-variable yield monitor and methods for the same
US20140277960A1 (en) 2013-03-18 2014-09-18 Deere & Company Harvester with fuzzy control system for detecting steady crop processing state
WO2014160589A1 (en) 2013-03-24 2014-10-02 Bee Robotics Corporation Aerial farm robot system for crop dusting, planting, fertilizing and other field jobs
KR102234179B1 (ko) 2013-03-27 2021-03-31 가부시끼 가이샤 구보다 콤바인
EP3020265B1 (en) 2013-04-02 2017-09-20 Deere & Company Control arrangement and method for controlling a position of a transfer device of a harvesting machine
US9992932B2 (en) 2013-04-02 2018-06-12 Deere & Company Control arrangement and method for controlling a position of a transfer device of a harvesting machine
US10129528B2 (en) 2013-04-02 2018-11-13 Deere & Company Control arrangement and method for controlling a position of a transfer device of a harvesting machine
US9119342B2 (en) 2013-04-22 2015-09-01 Deere & Company, A Delaware Corporation Methods for improving the robustness of an automated unloading system
CN203275401U (zh) 2013-04-24 2013-11-06 陈金 一种新型公路土工击实快速测厚调节仪
CN203055121U (zh) 2013-04-26 2013-07-10 昆明理工大学 一种基于Zigbee技术的土壤压实数据无线传输装置
EP2798928B1 (en) 2013-04-29 2024-02-07 CLAAS E-Systems GmbH Operating system for and method of operating an automatic guidance system of an agricultural vehicle
CA2814599A1 (en) 2013-04-29 2014-10-29 Fieldstone Land Management Inc. Method and apparatus for tangible effect calculation and compensation
US10740703B2 (en) 2013-04-29 2020-08-11 Verge Technologies Inc. Method and system for determining optimized travel path for agricultural implement on land with obstacle
DE102013209197A1 (de) 2013-05-17 2014-11-20 Deere & Company Erntemaschine mit vorausschauender Vortriebsgeschwindigkeitsregelung
USD721740S1 (en) 2013-05-23 2015-01-27 Deere & Company Display interface or housing thereof
US10492361B2 (en) * 2013-05-26 2019-12-03 360 Yield Center, Llc Apparatus, system and method for generating crop nutrient prescriptions
BE1021150B1 (nl) 2013-06-03 2016-01-13 Cnh Industrial Belgium Nv Werkwijze voor het verwerken van belastingssignaal van een balenpers
DE102013105821A1 (de) 2013-06-06 2014-12-11 Claas Selbstfahrende Erntemaschinen Gmbh Erntemaschine zur Aufnahme von Erntegut
DE102013212151A1 (de) 2013-06-26 2014-12-31 Robert Bosch Gmbh Baumaschine mit einer Vibrationseinheit
DE102013107169A1 (de) 2013-07-08 2015-01-08 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine
EP3018987B1 (en) 2013-07-10 2020-09-02 Agco Corporation Automating distribution of work in a field
DE102013012027A1 (de) 2013-07-19 2015-01-22 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende Erntemaschine und Fahrzeugverbund
GB2517049B (en) 2013-07-28 2019-09-11 Deere & Co Artificial intelligence for detecting and filling void areas of agricultural commodity containers
US9301466B2 (en) 2013-07-29 2016-04-05 Syngenta Participations Ag Variety corn line HID3259
US9188518B2 (en) 2013-08-19 2015-11-17 Bridgestone Americas Tire Operations, Llc Ground compaction images
JP6134609B2 (ja) 2013-08-28 2017-05-24 ヤンマー株式会社 遠隔サーバ
US9767521B2 (en) 2013-08-30 2017-09-19 The Climate Corporation Agricultural spatial data processing systems and methods
US20160360697A1 (en) 2013-09-03 2016-12-15 Agco Corporation System and method for automatically changing machine control state
WO2015038751A1 (en) 2013-09-13 2015-03-19 Agco Corporation Method to automatically estimate and classify spatial data for use on real time maps
US9234317B2 (en) 2013-09-25 2016-01-12 Caterpillar Inc. Robust system and method for forecasting soil compaction performance
WO2015048499A1 (en) 2013-09-27 2015-04-02 John Earl Acheson Yield monitor calibration method and system
US9804756B2 (en) 2013-09-27 2017-10-31 Iteris, Inc. Comparative data analytics and visualization tool for analyzing traffic performance data in a traffic management system
US9188986B2 (en) 2013-10-01 2015-11-17 Jaybridge Robotics, Inc. Computer-implemented method and system for dynamically positioning a vehicle relative to another vehicle in motion for on-the-fly offloading operations
JP2015070812A (ja) 2013-10-03 2015-04-16 ヤンマー株式会社 農作物情報管理システム
US20160247082A1 (en) 2013-10-03 2016-08-25 Farmers Business Network, Llc Crop Model and Prediction Analytics System
US10104824B2 (en) 2013-10-14 2018-10-23 Kinze Manufacturing, Inc. Autonomous systems, methods, and apparatus for AG based operations
US10362733B2 (en) 2013-10-15 2019-07-30 Deere & Company Agricultural harvester configured to control a biomass harvesting rate based upon soil effects
BE1021164B1 (nl) 2013-10-28 2016-01-18 Cnh Industrial Belgium Nv Ontlaadsystemen
BE1021108B1 (nl) 2013-10-28 2016-01-18 Cnh Industrial Belgium Nv Ontlaadsystemen
JP6087258B2 (ja) 2013-10-28 2017-03-01 ヤンマー株式会社 遠隔配車サーバ
DE102013222122B4 (de) 2013-10-30 2020-10-15 Mts Maschinentechnik Schrode Ag Verfahren zum Betreiben eines Bodenverdichtungs- oder Bodenprüfgeräts, sowie Bodenverdichtungs- oder Verdichtungsprüfgerät
US10371561B2 (en) 2013-11-01 2019-08-06 Iowa State University Research Foundation, Inc. Yield measurement and base cutter height control systems for a harvester
DE102013019098B3 (de) 2013-11-11 2015-01-08 Hochschule für Technik und Wirtschaft Dresden System zum Erfassen von Parametern der Umwelt und Umgebung
CN203613525U (zh) 2013-11-25 2014-05-28 杨振华 一种公路灰土基层压实度测定取样机
CN203658201U (zh) 2013-12-09 2014-06-18 长安大学 一种用于测量路基土压实度的装置
US9714856B2 (en) 2013-12-13 2017-07-25 Ag Leader Technology, Inc. Automatic compensation for the effect of grain properties on mass flow sensor calibration
JP5986064B2 (ja) 2013-12-25 2016-09-06 Necプラットフォームズ株式会社 冷却システムおよび電子機器
DE102014100136A1 (de) 2014-01-08 2015-07-09 Claas Selbstfahrende Erntemaschinen Gmbh Erntevorrichtung
CN203741803U (zh) 2014-01-10 2014-07-30 瑞和安惠项目管理集团有限公司 工程监理用路基压实度检测取土装置
DE102014201203A1 (de) 2014-01-23 2015-07-23 Deere & Company Landwirtschaftliches Arbeitsfahrzeug mit einem Fluggerät und zugehöriger Stromversorgung
US20150211199A1 (en) 2014-01-24 2015-07-30 Caterpillar Inc. Device and process to measure ground stiffness from compactors
WO2015120470A1 (en) 2014-02-10 2015-08-13 Precision Planting Llc Methods and systems for generating shared collaborative maps
JP6298313B2 (ja) 2014-02-18 2018-03-20 鹿島建設株式会社 地盤剛性測定装置、締固め機械及び地盤剛性測定方法
DE102014203005B3 (de) 2014-02-19 2015-05-13 Deere & Company Vibrationsdämpfende Ansteuerung eines Aktors einer landwirtschaftlichen Arbeitsmaschine
US20150254800A1 (en) 2014-03-06 2015-09-10 F12 Solutions, Llc Nitrogen status determination in growing crops
DE102014205233A1 (de) 2014-03-20 2015-09-24 Deere & Company Erntemaschine mit vorausschauender Vortriebsgeschwindigkeitsvorgabe
NL2012485B1 (en) 2014-03-20 2016-01-18 Lely Patent Nv Method and system for navigating an agricultural vehicle on a land area.
US9529364B2 (en) 2014-03-24 2016-12-27 Cnh Industrial America Llc System for coordinating agricultural vehicle control for loading a truck
DE102014205503A1 (de) 2014-03-25 2015-10-01 Hamm Ag Verfahren zur Korrektur eines Messwerteverlaufs durch das Eliminieren periodisch auftretender Messartefakte, insbesondere bei einem Bodenverdichter
BR102014007178B1 (pt) 2014-03-26 2020-12-22 São Martinho S/A processo de geração de mapas de aplicação de herbicida em função das espécies de plantas daninhas e teores de argila e matéria orgânica de solo
US9489576B2 (en) 2014-03-26 2016-11-08 F12 Solutions, LLC. Crop stand analysis
CN103954738B (zh) 2014-04-01 2015-11-04 中国科学院力学研究所 一种测量土体振动传播特性的室内试验装置
AU2015240770B2 (en) 2014-04-01 2018-07-19 Climate Llc Agricultural implement and implement operator monitoring apparatus, systems, and methods
US9810679B2 (en) 2014-04-02 2017-11-07 Colorado School Of Mines Intelligent pad foot soil compaction devices and methods of using same
DE102014104619A1 (de) 2014-04-02 2015-10-08 Claas Agrosystems Kgaa Mbh & Co. Kg Planungssystem und Verfahren zur Planung einer Feldbearbeitung
WO2015160837A2 (en) 2014-04-15 2015-10-22 Raven Industries, Inc. Reaping based yield monitoring system and method for the same
US9974226B2 (en) 2014-04-21 2018-05-22 The Climate Corporation Generating an agriculture prescription
US9405039B2 (en) 2014-04-22 2016-08-02 Deere & Company Ground engaging member accumulation determination
US9523180B2 (en) 2014-04-28 2016-12-20 Deere & Company Semi-automatic material loading
DE102014208070A1 (de) 2014-04-29 2015-12-17 Deere & Company Die Fahrzeugdynamik berücksichtigendes Kontrollsystem zur Positionssteuerung eines Geräts für ein landwirtschaftliches Arbeitsfahrzeug
DE102014208068A1 (de) 2014-04-29 2015-10-29 Deere & Company Erntemaschine mit sensorbasierter Einstellung eines Arbeitsparameters
WO2015171954A2 (en) 2014-05-09 2015-11-12 Raven Industries, Inc. Refined row guidance parameterization with hough transform
FR3021114B1 (fr) 2014-05-13 2017-08-11 Sol Solution Penetrometre dynamique, ensemble de mesure, systeme et methode de determination de la compacite et de la capacite portante d'un sol
JP6410130B2 (ja) 2014-05-15 2018-10-24 株式会社Jsol 農作物の収穫予測装置、収穫予測システム及び収穫予測方法
US9578808B2 (en) 2014-05-16 2017-02-28 Deere & Company Multi-sensor crop yield determination
US10104836B2 (en) 2014-06-11 2018-10-23 John Paul Jamison Systems and methods for forming graphical and/or textual elements on land for remote viewing
BR102015013228B1 (pt) 2014-06-13 2020-11-24 Cnh Industrial America Llc SISTEMA E METODO DE CONTROLE PARA UM VEfCULO AGRiCOLA
DE102014009090B4 (de) 2014-06-19 2017-04-06 Technische Universität Dresden Landwirtschaftliches Gerät zur konservierenden Bodenbearbeitung
US20150370935A1 (en) 2014-06-24 2015-12-24 360 Yield Center, Llc Agronomic systems, methods and apparatuses
CN204000818U (zh) 2014-07-02 2014-12-10 四川农业大学 一种土壤坚实度测定装置
US10126153B2 (en) 2014-07-22 2018-11-13 Deere & Company Particulate matter impact sensor
US10034423B2 (en) 2014-07-29 2018-07-31 Deere & Company Biomass sensing
FR3024772B1 (fr) 2014-08-07 2016-09-02 Electricite De France Procede et dispositif pour la determination de la profondeur de l'origine d'un tassement de sol
US9717178B1 (en) 2014-08-08 2017-08-01 The Climate Corporation Systems and method for monitoring, controlling, and displaying field operations
US10568316B2 (en) 2014-08-15 2020-02-25 Monsanto Technology Llc Apparatus and methods for in-field data collection and sampling
US9131644B2 (en) 2014-08-19 2015-09-15 Iteris, Inc. Continual crop development profiling using dynamical extended range weather forecasting with routine remotely-sensed validation imagery
DE102014216593A1 (de) 2014-08-21 2016-02-25 Deere & Company Bedienerassistenzsystem für eine landwirtschaftliche Arbeitsmaschine
CA2957081C (en) 2014-08-22 2024-06-25 The Climate Corporation Methods for agronomic and agricultural monitoring using unmanned aerial systems
EP3185666B1 (en) 2014-08-27 2019-11-13 Premier Crop Systems, LLC System and method for controlling machinery for randomizing and replicating predetermined agronomic input levels
US9829364B2 (en) 2014-08-28 2017-11-28 Raven Industries, Inc. Method of sensing volume of loose material
US10109024B2 (en) 2014-09-05 2018-10-23 The Climate Corporation Collecting data to generate an agricultural prescription
DE102014113001A1 (de) 2014-09-10 2016-03-10 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung eines Überladeprozesses
US10564316B2 (en) 2014-09-12 2020-02-18 The Climate Corporation Forecasting national crop yield during the growing season
US11113649B2 (en) 2014-09-12 2021-09-07 The Climate Corporation Methods and systems for recommending agricultural activities
US11080798B2 (en) 2014-09-12 2021-08-03 The Climate Corporation Methods and systems for managing crop harvesting activities
US10667456B2 (en) 2014-09-12 2020-06-02 The Climate Corporation Methods and systems for managing agricultural activities
US10085379B2 (en) 2014-09-12 2018-10-02 Appareo Systems, Llc Grain quality sensor
DE102014113335A1 (de) 2014-09-16 2016-03-17 Claas Tractor Sas Landwirtschaftliche Arbeitsmaschine mit und Verfahren zur vorausschauenden Regelung einer Antriebsleistung und/oder eines Antriebsstranges
US10126282B2 (en) 2014-09-23 2018-11-13 Deere & Company Yield estimation
US9903979B2 (en) 2014-09-23 2018-02-27 Deere & Company Yield estimation
DE102014113874A1 (de) 2014-09-25 2016-03-31 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zum Überladen bei Erntemaschinen
DE102014113887A1 (de) 2014-09-25 2016-03-31 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher mit einer Verteilvorrichtung
DE102014113965A1 (de) 2014-09-26 2016-03-31 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher mit Fahrerassistenzsystem
JP2016071726A (ja) 2014-09-30 2016-05-09 井関農機株式会社 作業情報記憶装置
US9807933B2 (en) 2014-10-20 2017-11-07 Cnh Industrial America Llc Sensor equipped agricultural harvester
US10295998B2 (en) 2014-11-13 2019-05-21 Yanmar Co., Ltd. Agricultural work vehicle
AU2014411244B2 (en) 2014-11-14 2018-11-29 Bitstrata Systems Inc. System and method for measuring grain cart weight
GB201421527D0 (en) 2014-12-04 2015-01-21 Agco Int Gmbh Automated agriculture system
WO2016090212A1 (en) 2014-12-05 2016-06-09 Board Of Trustees Of Michigan State University Methods and systems for precision crop management
DE102014226189B4 (de) 2014-12-17 2017-08-24 Continental Automotive Gmbh Verfahren zur Ermittlung eines Unkrautanteils und Landtechnik-Steuereinrichtung
US9563492B2 (en) 2015-01-09 2017-02-07 Deere & Company Service diagnostic trouble code sequencer and method
US9792557B2 (en) 2015-01-14 2017-10-17 Accenture Global Services Limited Precision agriculture system
CN204435344U (zh) 2015-01-22 2015-07-01 中交四公局第二工程有限公司 一种用于测定土层压实度的可行走式取样机
WO2016118686A1 (en) 2015-01-23 2016-07-28 Iteris, Inc. Modeling of crop growth for desired moisture content of targeted livestock feedstuff for determination of harvest windows using field-level diagnosis and forecasting of weather conditions and observations and user input of harvest condition states
US9009087B1 (en) 2015-01-23 2015-04-14 Iteris, Inc. Modeling the impact of time-varying weather conditions on unit costs of post-harvest crop drying techniques using field-level analysis and forecasts of weather conditions, facility metadata, and observations and user input of grain drying data
US9140824B1 (en) 2015-01-23 2015-09-22 Iteris, Inc. Diagnosis and prediction of in-field dry-down of a mature small grain, coarse grain, or oilseed crop using field-level analysis and forecasting of weather conditions, crop characteristics, and observations and user input of harvest condition states
WO2016127094A1 (en) 2015-02-06 2016-08-11 The Climate Corporation Methods and systems for recommending agricultural activities
US20160247076A1 (en) 2015-02-20 2016-08-25 Iteris, Inc. Simulation of soil condition response to expected weather conditions for forecasting temporal opportunity windows for suitability of agricultural and field operations
JP2016160808A (ja) 2015-02-27 2016-09-05 井関農機株式会社 コンバインのエンジン制御システム
US20160260021A1 (en) 2015-03-06 2016-09-08 William Marek System and method for improved agricultural yield and efficiency using statistical analysis
CN204475304U (zh) 2015-03-17 2015-07-15 攀枝花天誉工程检测有限公司 土工压实度检测成孔器
CN106998651B (zh) 2015-03-18 2019-10-18 株式会社久保田 联合收割机
RO130713B1 (ro) 2015-03-19 2023-05-30 Universitatea De Ştiinţe Agronomice Şi Medicină Veterinară Din Bucureşti Sistem automat gis pentru realizarea hărţilor cu distribuţia speciilor de buruieni
US20180014452A1 (en) 2015-03-25 2018-01-18 360 Yield Center, Llc Agronomic systems, methods and apparatuses
US10095200B2 (en) 2015-03-30 2018-10-09 Uop Llc System and method for improving performance of a chemical plant with a furnace
DE102015004174A1 (de) 2015-04-02 2016-10-06 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
DE102015004344A1 (de) 2015-04-02 2016-10-06 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
DE102015004343A1 (de) 2015-04-02 2016-10-06 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
DE102015106302A1 (de) 2015-04-24 2016-10-27 Claas Selbstfahrende Erntemaschinen Gmbh Erntesystem mit einer selbstfahrenden Erntemaschine
US20170270446A1 (en) 2015-05-01 2017-09-21 360 Yield Center, Llc Agronomic systems, methods and apparatuses for determining yield limits
JP2018523447A (ja) 2015-05-01 2018-08-16 ハイリーオン インク.Hyliion Inc. 動力供給を増大させ、燃料要求を低減させるモーター車両の装備
US10209235B2 (en) 2015-05-04 2019-02-19 Deere & Company Sensing and surfacing of crop loss data
EP3295344A4 (en) 2015-05-14 2019-01-23 Board of Trustees of Michigan State University PROCESSES AND SYSTEMS FOR THE ASSESSMENT OF HARVEST AREAS AND ADMINISTRATION OF THE GROWTH OF ERNTEGUT
US9872433B2 (en) 2015-05-14 2018-01-23 Raven Industries, Inc. System and method for adjusting harvest characteristics
US10039231B2 (en) 2015-05-19 2018-08-07 Deere & Company System for measuring plant attributes using a priori plant maps
EP3095310B1 (en) 2015-05-21 2018-05-16 Robert Thomas Farms Ltd Agricultural apparatus
DE102015006398B3 (de) 2015-05-21 2016-05-04 Helmut Uhrig Strassen- und Tiefbau GmbH Bodenverdichtung mit einem Baggeranbauverdichter
US20160342915A1 (en) 2015-05-22 2016-11-24 Caterpillar Inc. Autonomous Fleet Size Management
DE102015108374A1 (de) 2015-05-27 2016-12-01 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Ansteuerung einer selbstfahrenden Erntemaschine
WO2016191825A1 (en) 2015-06-05 2016-12-08 The University Of Sydney Automatic target recognition and management system
US10791666B2 (en) 2015-06-08 2020-10-06 The Climate Corporation Agricultural data analysis
DE102015109799A1 (de) 2015-06-18 2016-12-22 Claas E-Systems Kgaa Mbh & Co Kg Verfahren zur Synchronisation zweier unabhängiger, selbstfahrender landwirtschaftlicher Arbeitsmaschinen
EP3310150B1 (en) 2015-06-18 2021-05-12 Bail&Burnit Pty Ltd. Mechanical weed seed management system
CA2990438A1 (en) 2015-06-30 2017-01-05 The Climate Corporation Systems and methods for image capture and analysis of agricultural fields
CA2991256C (en) 2015-07-14 2021-12-07 Dean Mayerle Weed seed destruction formed as a common unit with straw spreader
US10492369B2 (en) 2015-07-14 2019-12-03 Dean Mayerle Weed seed destruction
US9968027B2 (en) 2015-07-14 2018-05-15 Clemson University Automated control systems and methods for underground crop harvesters
US9740208B2 (en) 2015-07-30 2017-08-22 Deere & Company UAV-based sensing for worksite operations
CN204989174U (zh) 2015-08-05 2016-01-20 中国农业大学 一种用于测量土壤压实的试验平台
US10015928B2 (en) 2015-08-10 2018-07-10 Deere & Company Method and stereo vision system for managing the unloading of an agricultural material from a vehicle
US9642305B2 (en) 2015-08-10 2017-05-09 Deere & Company Method and stereo vision system for managing the unloading of an agricultural material from a vehicle
DE102015113527A1 (de) 2015-08-17 2017-02-23 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine
EP3341129B1 (en) 2015-08-28 2024-04-03 Tecfarm PTY Ltd Apparatus and method for processing a crop residue
DE102015217496A1 (de) 2015-09-14 2017-03-16 Deere & Company Verfahren zum Ausbringen von Saatgutpartikeln oder Pflanzen auf ein Feld und eine entsprechende Maschine
JP6502221B2 (ja) 2015-09-14 2019-04-17 株式会社クボタ 作業車支援システム
US10183667B2 (en) 2015-09-15 2019-01-22 Deere & Company Human presence detection on a mobile machine
US9696162B2 (en) 2015-09-17 2017-07-04 Deere & Company Mission and path planning using images of crop wind damage
CN105205248B (zh) 2015-09-17 2017-12-08 哈尔滨工业大学 一种基于ode物理引擎的车辆地形通过性仿真分析组件的设计方法
US10025983B2 (en) 2015-09-21 2018-07-17 The Climate Corporation Ponding water detection on satellite imagery
US10188037B2 (en) 2015-09-24 2019-01-29 Deere & Company Yield estimation
US9699967B2 (en) 2015-09-25 2017-07-11 Deere & Company Crosswind compensation for residue processing
JP6770300B2 (ja) 2015-09-29 2020-10-14 株式会社ミツトヨ 計測機器用の信号処理回路
EP3150052B1 (en) 2015-09-30 2018-06-13 CLAAS E-Systems KGaA mbH & Co KG Crop harvesting machine
US9807940B2 (en) 2015-09-30 2017-11-07 Deere & Company System for prediction and control of drydown for windrowed agricultural products
RU2022103711A (ru) 2015-10-05 2022-03-16 Байер Кропсайенс Аг Способ эксплуатации уборочной машины с использованием модели роста растений
KR20170041377A (ko) 2015-10-07 2017-04-17 안범주 후방에 설치된 토양 경도 측정 센서를 갖는 차량
US10342174B2 (en) 2015-10-16 2019-07-09 The Climate Corporation Method for recommending seeding rate for corn seed using seed type and sowing row width
US9681605B2 (en) 2015-10-26 2017-06-20 Deere & Company Harvester feed rate control
US20170112061A1 (en) 2015-10-27 2017-04-27 Cnh Industrial America Llc Graphical yield monitor static (previous) data display on in-cab display
US20170115862A1 (en) 2015-10-27 2017-04-27 Cnh Industrial America Llc Graphical yield monitor real-time data display
US10080325B2 (en) 2015-10-27 2018-09-25 Cnh Industrial America Llc Predictive overlap control model
US10586158B2 (en) 2015-10-28 2020-03-10 The Climate Corporation Computer-implemented calculation of corn harvest recommendations
DE102015118767A1 (de) 2015-11-03 2017-05-04 Claas Selbstfahrende Erntemaschinen Gmbh Umfelddetektionseinrichtung für landwirtschaftliche Arbeitsmaschine
EP3371756A1 (en) 2015-11-05 2018-09-12 AGCO International GmbH Method and system for determining work trajectories for a fleet of working units in a harvest operation
US20170127606A1 (en) 2015-11-10 2017-05-11 Digi-Star, Llc Agricultural Drone for Use in Controlling the Direction of Tillage and Applying Matter to a Field
DE102016121523A1 (de) 2015-11-17 2017-05-18 Lacos Computerservice Gmbh Verfahren zum prädikativen Erzeugen von Daten zur Steuerung eines Fahrweges und eines Betriebsablaufes für landwirtschaftliche Fahrzeuge und Maschinen
US10890922B2 (en) 2015-11-19 2021-01-12 Agjunction Llc Automated multi-vehicle alignment steering
DK178711B1 (en) 2015-11-24 2016-11-28 Green Agro And Transp Aps Flexible wheel track system for in-field trailer
US11062223B2 (en) 2015-12-02 2021-07-13 The Climate Corporation Forecasting field level crop yield during a growing season
DE102015121210A1 (de) 2015-12-07 2017-06-08 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
US9721181B2 (en) 2015-12-07 2017-08-01 The Climate Corporation Cloud detection on remote sensing imagery
WO2017096489A1 (en) 2015-12-09 2017-06-15 Scanimetrics Inc. Measuring and monitoring a body of granular material
US10091925B2 (en) 2015-12-09 2018-10-09 International Business Machines Corporation Accurately determining crop yield at a farm level
WO2017099570A1 (es) 2015-12-11 2017-06-15 Pacheco Sanchez José Antonio Sistema y método para agricultura de precisión por análisis multiespectral e hiperespectral de imágenes aéreas utilizando vehículos aéreos no tripulados
CN105432228A (zh) 2015-12-16 2016-03-30 无锡同春新能源科技有限公司 一种无人玉米收获机
DE102015122269A1 (de) 2015-12-18 2017-06-22 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren für den Betrieb eines Mähdreschers
US9856612B2 (en) 2015-12-21 2018-01-02 Caterpillar Paving Products Inc. Compaction measurement using nearby sensors
WO2017116913A1 (en) 2015-12-29 2017-07-06 Agco Corporation Integrated driveline slip clutch system for large square baler
BR102016024930B1 (pt) 2016-01-06 2021-08-24 Cnh Industrial America Llc Sistema de controle para um veículo de reboque e método para controlar um veículo agrícola
BR102016024151B1 (pt) 2016-01-06 2021-10-13 Cnh Industrial America Llc Meio legível por computador não transitório tangível, sistema e método para controlar pelo menos um veículo agrícola autônomo
US10019790B2 (en) 2016-01-15 2018-07-10 Deere & Company Fill level indicator for an automated unloading system
EP3195719B1 (en) 2016-01-20 2018-10-24 CLAAS E-Systems KGaA mbH & Co KG Agricultural machine
EP3195720A1 (en) 2016-01-21 2017-07-26 CLAAS E-Systems KGaA mbH & Co KG Crop tank system
US10529036B2 (en) 2016-01-22 2020-01-07 The Climate Corporation Forecasting national crop yield during the growing season using weather indices
BE1023467B1 (nl) 2016-02-01 2017-03-29 Cnh Industrial Belgium Nv Beheer van een restantensysteem van een maaidorser door veldgegevens te gebruiken
US9891629B2 (en) 2016-02-04 2018-02-13 Deere & Company Autonomous robotic agricultural machine and system thereof
JP6688542B2 (ja) 2016-02-04 2020-04-28 ヤンマー株式会社 追従型コンバイン
JP6567440B2 (ja) 2016-02-05 2019-08-28 鹿島建設株式会社 地盤の締固め状態測定装置、締固め状態測定方法、及び締固め機械
BE1023485B1 (nl) 2016-02-23 2017-04-06 Cnh Industrial Belgium Nv Kafstrooier met zaadkneuzing
US10588258B2 (en) 2016-02-25 2020-03-17 Deere & Company Automatic determination of the control unit parameters of an arrangement to control an actuator for the adjustment of an adjustable element of an agricultural machine
US9675008B1 (en) 2016-02-29 2017-06-13 Cnh Industrial America Llc Unloading arrangement for agricultural harvesting vehicles
US10201121B1 (en) * 2016-03-01 2019-02-12 Ag Leader Technology Prediction of amount of crop or product remaining for field
US10028435B2 (en) 2016-03-04 2018-07-24 Deere & Company Sensor calibration using field information
KR101653750B1 (ko) 2016-03-10 2016-09-02 한국건설기술연구원 식생매트 고정용 앵커핀의 인발 시험 장치 및 방법
BE1023982B1 (nl) 2016-03-23 2017-10-03 Cnh Industrial Belgium Nv Geautomatiseerd lossysteem voor het lossen van gewas
EP3435319A4 (en) 2016-03-25 2019-08-21 Nec Corporation INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND RECORDING MEDIUM WITH INFORMATION PROCESSING APPARATUS RECORDED THEREFOR
WO2017170507A1 (ja) 2016-03-29 2017-10-05 ヤンマー株式会社 コンバイン
US9903077B2 (en) 2016-04-04 2018-02-27 Caterpillar Paving Products Inc. System and method for performing a compaction operation
RU164128U1 (ru) 2016-04-05 2016-08-20 Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского" Установка для испытания на изнашиваемость материалов для рабочих органов почвообрабатывающих машин
WO2017181127A1 (en) 2016-04-15 2017-10-19 The Regents Of The University Of California Robotic plant care systems and methods
CN105741180B (zh) 2016-04-21 2021-06-18 江苏大学 一种联合收获机谷物产量图绘制系统
JP6755117B2 (ja) 2016-04-26 2020-09-16 ヤンマーパワーテクノロジー株式会社 コンバイン
US10275550B2 (en) 2016-04-27 2019-04-30 The Climate Corporation Assimilating a soil sample into a digital nutrient model
US10152891B2 (en) 2016-05-02 2018-12-11 Cnh Industrial America Llc System for avoiding collisions between autonomous vehicles conducting agricultural operations
DE102016118203A1 (de) 2016-05-10 2017-11-16 Claas Selbstfahrende Erntemaschinen Gmbh Zugmaschinen-Geräte-Kombination mit Fahrerassistenzsystem
CA3024402A1 (en) 2016-05-12 2017-11-16 Basf Se Recognition of weed in a natural environment
DE102016108902A1 (de) 2016-05-13 2017-11-16 Claas Saulgau Gmbh Verfahren und Steuerungseinrichtung zum Betreiben eines landwirtschaftlichen Transportwagens sowie Transportwagen
US10051787B2 (en) 2016-05-17 2018-08-21 Deere & Company Harvesting head with yield monitor
CN106053330B (zh) 2016-05-23 2018-12-18 北京林业大学 土壤紧实度及水分复合测量方法及装置
US11372402B2 (en) 2016-05-24 2022-06-28 Cnh Industrial America Llc Autonomous grain cart dimensioned to fit behind header
WO2017205410A1 (en) 2016-05-24 2017-11-30 Cnh Industrial America Llc Grain cart for continuous conveying agricultural product
US9563852B1 (en) 2016-06-21 2017-02-07 Iteris, Inc. Pest occurrence risk assessment and prediction in neighboring fields, crops and soils using crowd-sourced occurrence data
DE102016111665A1 (de) 2016-06-24 2017-12-28 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine und Verfahren zum Betrieb einer landwirtschaftlichen Arbeitsmaschine
EP3262934A1 (de) 2016-06-28 2018-01-03 Bayer CropScience AG Verfahren zur unkrautbekämpfung
UY36763A (es) 2016-07-01 2018-01-31 Carlos Hartwich Roturador y plantador en plataforma motorizada unitaria con navegador automático
US9563848B1 (en) 2016-07-06 2017-02-07 Agrian, Inc. Weighted multi-year yield analysis for prescription mapping in site-specific variable rate applications in precision agriculture
US9928584B2 (en) 2016-07-11 2018-03-27 Harvest Moon Automation Inc. Inspecting plants for contamination
US10231371B2 (en) 2016-07-18 2019-03-19 Tribine Industries Llc Soil compaction mitigation assembly and method
US10795351B2 (en) 2016-07-19 2020-10-06 Raven Industries, Inc. System and method for autonomous control of agricultural machinery and equipment
CN106248873B (zh) 2016-07-22 2019-04-12 黄哲敏 一种通过检测设备测定松树坚固程度的方法
CN106226470B (zh) 2016-07-22 2019-06-11 孙红 一种通过测量装置测定槐树的稳固性能的方法
CN106198877A (zh) 2016-07-22 2016-12-07 陈显桥 通过测量设备检验杨树稳定性的方法
US20180022559A1 (en) 2016-07-22 2018-01-25 Scott William Knutson Loader Positioning System
CN106198879B (zh) 2016-07-22 2018-11-16 广东双木林科技有限公司 一种检测杉树抗风稳定性能的方法
DE102016009085A1 (de) 2016-07-26 2018-02-01 Bomag Gmbh Bodenverdichtungswalze mit Sensoreinrichtung an der Walzbandage und Verfahren zur Ermittlung der Bodensteifigkeit
US10351364B2 (en) 2016-08-05 2019-07-16 Deere & Company Automatic vehicle and conveyor positioning
DE102016214554A1 (de) 2016-08-05 2018-02-08 Deere & Company Verfahren zur Optimierung eines Arbeitsparameters einer Maschine zur Ausbringung von landwirtschaftlichem Material auf ein Feld und entsprechende Maschine
US10154624B2 (en) 2016-08-08 2018-12-18 The Climate Corporation Estimating nitrogen content using hyperspectral and multispectral images
US10410299B2 (en) 2016-08-24 2019-09-10 The Climate Corporation Optimizing split fertilizer application
EP3287007A1 (de) 2016-08-24 2018-02-28 Bayer CropScience AG Bekämpfung von schadorganismen auf basis der vorhersage von befallsrisiken
US10609856B2 (en) 2016-08-29 2020-04-07 Troy Oliver Agriculture system and method
DE102016116043A1 (de) 2016-08-29 2018-03-01 Claas Selbstfahrende Erntemaschinen Gmbh Transportfahrzeug
CN106327349A (zh) 2016-08-30 2017-01-11 张琦 一种基于云计算的园林绿化精细化管理装置
JP2018033407A (ja) 2016-09-01 2018-03-08 ヤンマー株式会社 配車システム
DE102016116461A1 (de) 2016-09-02 2018-03-08 Claas Saulgau Gmbh Verfahren und Steuerungseinrichtung zum Betreiben eines landwirtschaftlichen Transportwagens sowie Transportwagen
PL3298873T3 (pl) 2016-09-21 2020-08-24 Exel Industries Urządzenie sterujące do pojazdu, odpowiadający mu pojazd i sposób
DE102016117757A1 (de) 2016-09-21 2018-03-22 Claas Selbstfahrende Erntemaschinen Gmbh Feldhäcksler
DE102016118283A1 (de) 2016-09-28 2018-03-29 Claas Tractor Sas Landwirtschaftliche Arbeitsmaschine
DE102016118297A1 (de) 2016-09-28 2018-03-29 Claas Tractor Sas Verfahren und System zur Bestimmung eines Betriebspunktes
US10078890B1 (en) 2016-09-29 2018-09-18 CHS North LLC Anomaly detection
PT3518647T (pt) 2016-09-29 2021-03-24 Agro Intelligence Aps Um sistema e um método para determinação de uma trajectória a ser seguida por um veículo de trabalho agrícola
CN106290800B (zh) 2016-09-30 2018-10-12 长沙理工大学 一种土质边坡抗水流侵蚀能力模拟试验方法及装置
US10165725B2 (en) 2016-09-30 2019-01-01 Deere & Company Controlling ground engaging elements based on images
DE102016118651A1 (de) 2016-09-30 2018-04-05 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende landwirtschaftliche Arbeitsmaschine
US20180092302A1 (en) 2016-10-01 2018-04-05 Deere & Company Residue spread control using operator input of wind direction and combine bearing
US20180092301A1 (en) 2016-10-01 2018-04-05 Deere & Company Residue spread control using crop deflector commands input by the operator and satnav combine bearing
ES2883327T3 (es) 2016-10-18 2021-12-07 Basf Agro Trademarks Gmbh Planificación e implementación de medidas agrícolas
EP3528613B1 (en) 2016-10-24 2022-12-07 Board of Trustees of Michigan State University Method for mapping temporal and spatial sustainability of a cropping system
JP6832828B2 (ja) 2016-10-26 2021-02-24 株式会社クボタ 走行経路決定装置
US11256999B2 (en) 2016-10-28 2022-02-22 Deere & Company Methods and systems of forecasting the drying of an agricultural crop
EP3315005B1 (en) 2016-10-28 2022-04-06 Deere & Company Stereo vision system for managing the unloading of an agricultural material from a vehicle
WO2018081759A1 (en) 2016-10-31 2018-05-03 Bayer Cropscience Lp Method for mapping crop yields
US10832351B2 (en) 2016-11-01 2020-11-10 Deere & Company Correcting bias in agricultural parameter monitoring
US10408645B2 (en) 2016-11-01 2019-09-10 Deere & Company Correcting bias in parameter monitoring
US10928821B2 (en) 2016-11-04 2021-02-23 Intel Corporation Unmanned aerial vehicle-based systems and methods for generating landscape models
WO2018085095A1 (en) 2016-11-07 2018-05-11 The Climate Corporation Work layer imaging and analysis for implement monitoring, control and operator feedback
BR112019009308B8 (pt) 2016-11-07 2023-04-04 Climate Corp Implemento agrícola
US10398096B2 (en) 2016-11-16 2019-09-03 The Climate Corporation Identifying management zones in agricultural fields and generating planting plans for the zones
US10028451B2 (en) 2016-11-16 2018-07-24 The Climate Corporation Identifying management zones in agricultural fields and generating planting plans for the zones
US20180146624A1 (en) 2016-11-28 2018-05-31 The Climate Corporation Determining intra-field yield variation data based on soil characteristics data and satellite images
US11320279B2 (en) 2016-12-02 2022-05-03 Kubota Corporation Travel route management system and travel route determination device
CN106644663B (zh) 2016-12-12 2023-07-21 江苏省海洋水产研究所 一种紫菜孢子计数用过滤装置及计数方法
US10178823B2 (en) 2016-12-12 2019-01-15 Cnh Industrial Canada, Ltd. Agricultural implement with automatic shank depth control
WO2018116770A1 (ja) 2016-12-19 2018-06-28 株式会社クボタ 作業車自動走行システム
WO2018116772A1 (ja) 2016-12-19 2018-06-28 株式会社クボタ 作業車自動走行システム
JP6936356B2 (ja) 2016-12-19 2021-09-15 株式会社クボタ 作業車自動走行システム
GB201621879D0 (en) 2016-12-21 2017-02-01 Branston Ltd A crop monitoring system and method
JP6615085B2 (ja) 2016-12-22 2019-12-04 株式会社クボタ 収穫機
KR101873657B1 (ko) 2016-12-22 2018-08-03 현대건설주식회사 탄성파 속도를 이용한 성토지반 다짐특성 측정장치와 이를 활용한 다짐관리 방법
CN206330815U (zh) 2017-01-06 2017-07-14 福建九邦环境检测科研有限公司 一种土壤检测用土壤快速压实器
US10721859B2 (en) * 2017-01-08 2020-07-28 Dolly Y. Wu PLLC Monitoring and control implement for crop improvement
US10255670B1 (en) 2017-01-08 2019-04-09 Dolly Y. Wu PLLC Image sensor and module for agricultural crop improvement
US10775796B2 (en) 2017-01-10 2020-09-15 Cnh Industrial America Llc Aerial vehicle systems and methods
DE102017200336A1 (de) 2017-01-11 2018-07-12 Deere & Company Modellbasierte prädiktive Geschwindigkeitskontrolle einer Erntemaschine
KR200485051Y1 (ko) 2017-01-16 2017-11-22 서울특별시 다짐도 평가장치
US10699185B2 (en) 2017-01-26 2020-06-30 The Climate Corporation Crop yield estimation using agronomic neural network
JP6767892B2 (ja) 2017-02-03 2020-10-14 ヤンマーパワーテクノロジー株式会社 収穫量管理システム
DE102017104009A1 (de) 2017-02-27 2018-08-30 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliches Erntesystem
US10315655B2 (en) 2017-03-07 2019-06-11 Deere & Company Vehicle control based on soil compaction
CN206515118U (zh) 2017-03-10 2017-09-22 南京宁曦土壤仪器有限公司 多功能电动击实仪
CN206515119U (zh) 2017-03-10 2017-09-22 南京宁曦土壤仪器有限公司 电动击实仪
JP7075787B2 (ja) 2017-03-14 2022-05-26 株式会社フジタ トラフィカビリティ推定装置およびプログラム
DE102017105490A1 (de) 2017-03-15 2018-09-20 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Landwirtschaftliches Terminal
DE102017105496A1 (de) 2017-03-15 2018-09-20 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Landwirtschaftliches Terminal
DE102017204511A1 (de) 2017-03-17 2018-09-20 Deere & Company Landwirtschaftliche Erntemaschine zur Bearbeitung und Förderung von Erntegut mit einer Sensoranordnung zur Erkennung von unerwünschten Gefahr- und Inhaltsstoffen im Erntegut
CN206616118U (zh) 2017-03-21 2017-11-07 嵊州市晟祥盈净水设备有限公司 一种多层次深度净水设备
US20180271015A1 (en) 2017-03-21 2018-09-27 Blue River Technology Inc. Combine Harvester Including Machine Feedback Control
DE102017205293A1 (de) 2017-03-29 2018-10-04 Deere & Company Verfahren und Vorrichtung zur Bekämpfung unerwünschter Lebewesen auf einem Feld
US10152035B2 (en) 2017-04-12 2018-12-11 Bayer Ag Value added pest control system with smart learning
CN206906093U (zh) 2017-04-21 2018-01-19 青岛科技大学 一种岩土试件压实过程可以测量重量的装置
RU2017114139A (ru) 2017-04-24 2018-10-24 Общество с ограниченной ответственностью "Завод инновационных продуктов "КТЗ" Способ управления уборочным комбайном
AU2018260716B2 (en) 2017-04-26 2020-03-19 The Climate Corporation Method for leveling sensor readings across an implement
US10952374B2 (en) 2017-05-01 2021-03-23 Cnh Industrial America Llc System and method for monitoring residue output from a harvester
US10548260B2 (en) 2017-05-04 2020-02-04 Dawn Equipment Company System for automatically setting the set point of a planter automatic down pressure control system with a seed furrow sidewall compaction measurement device
DE102017109849A1 (de) 2017-05-08 2018-11-08 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Abarbeitung eines landwirtschaftlichen Ernteprozesses
US10531603B2 (en) 2017-05-09 2020-01-14 Cnh Industrial America Llc Agricultural system
BE1024513B1 (nl) 2017-05-09 2018-03-21 Cnh Industrial Belgium Nv Landbouwsysteem
BE1024475B1 (nl) 2017-05-09 2018-03-01 Cnh Industrial Belgium Nv Werkwijze voor het oogsten en oogsttoestel
US10317272B2 (en) 2017-05-17 2019-06-11 Deere & Company Automatic wireless wagon detection apparatus and method
CN206696107U (zh) 2017-05-18 2017-12-01 贵州省山地农业机械研究所 多用途土壤坚实度测量装置
DE102017208442A1 (de) 2017-05-18 2018-11-22 Deere & Company Selbstlernende, Korrektureingaben berücksichtigende Anordnung zur selbsttätigen Kontrolle eines Arbeitsparameters einer Erntegutförder- und/oder -bearbeitungseinrichtung
US10481142B2 (en) 2017-05-25 2019-11-19 Deere & Company Sensor system for determining soil characteristics
US10537062B2 (en) 2017-05-26 2020-01-21 Cnh Industrial America Llc Aerial vehicle systems and methods
CN207079558U (zh) 2017-05-31 2018-03-09 中铁二十一局集团第六工程有限公司 高速铁路路基沉降监测元件保护装置
BE1025282B1 (nl) 2017-06-02 2019-01-11 Cnh Industrial Belgium Nv Draagvermogen van de grond
US9984455B1 (en) 2017-06-05 2018-05-29 Hana Resources, Inc. Organism growth prediction system using drone-captured images
SE542261C2 (en) 2017-06-05 2020-03-31 Scania Cv Ab Method and control arrangement for loading
CN206941558U (zh) 2017-06-16 2018-01-30 中石化中原建设工程有限公司 一种公路灰土基层压实度测定取样机
US10310455B2 (en) 2017-06-19 2019-06-04 Deere & Company Combine harvester control and communication system
US10437243B2 (en) 2017-06-19 2019-10-08 Deere & Company Combine harvester control interface for operator and/or remote user
US10459447B2 (en) 2017-06-19 2019-10-29 Cnh Industrial America Llc System and method for generating partitioned swaths
US11589507B2 (en) 2017-06-19 2023-02-28 Deere & Company Combine harvester control interface for operator and/or remote user
US20180359917A1 (en) 2017-06-19 2018-12-20 Deere & Company Remote control of settings on a combine harvester
US10314232B2 (en) 2017-06-21 2019-06-11 Cnh Industrial America Llc System and method for destroying seeds in crop residue prior to discharge from agricultural harvester
WO2018235486A1 (ja) 2017-06-23 2018-12-27 株式会社クボタ 収穫機
JP6887323B2 (ja) 2017-06-23 2021-06-16 株式会社クボタ コンバイン及び圃場営農マップ生成方法
US11589508B2 (en) 2017-06-26 2023-02-28 Kubota Corporation Field map generating system
JP6827373B2 (ja) 2017-06-26 2021-02-10 株式会社クボタ コンバイン
DE102017006844B4 (de) 2017-07-18 2019-04-11 Bomag Gmbh Bodenverdichter und Verfahren zur Bestimmung von Untergrundeigenschaften mittels eines Bodenverdichters
US10757859B2 (en) 2017-07-20 2020-09-01 Deere & Company System for optimizing platform settings based on crop state classification
US11263707B2 (en) 2017-08-08 2022-03-01 Indigo Ag, Inc. Machine learning in agricultural planting, growing, and harvesting contexts
DK179454B1 (en) 2017-08-17 2018-10-19 Agro Intelligence Aps A system for controlling soil compaction caused by wheels, and use of such system
US10438302B2 (en) 2017-08-28 2019-10-08 The Climate Corporation Crop disease recognition and yield estimation
CN107576674A (zh) 2017-08-30 2018-01-12 曲阜师范大学 一种基于探地雷达测量土壤压实程度的方法
US11140807B2 (en) 2017-09-07 2021-10-12 Deere & Company System for optimizing agricultural machine settings
WO2019046967A1 (en) 2017-09-11 2019-03-14 Farmers Edge Inc. GENERATING A YIELD CARD FOR AN AGRICULTURAL FIELD USING REGRESSION AND CLASSIFICATION PROCESSES
US10368488B2 (en) 2017-09-18 2019-08-06 Cnh Industrial America Llc System and method for sensing harvested crop levels within an agricultural harvester
US10883437B2 (en) 2017-09-19 2021-01-05 Doug Abolt Horsepower on demand system
DE102017121654A1 (de) 2017-09-19 2019-03-21 Claas Tractor Sas Landwirtschaftliche Arbeitsmaschine
CN107736088B (zh) 2017-09-22 2020-06-26 江苏大学 一种用于精整地土壤密实度测量与自动调节系统
DE102017122300A1 (de) 2017-09-26 2019-03-28 Claas Selbstfahrende Erntemaschinen Gmbh Arbeitsmaschine
DE102017122710A1 (de) 2017-09-29 2019-04-04 Claas E-Systems Kgaa Mbh & Co. Kg Verfahren für den Betrieb einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine
DE102017122711A1 (de) 2017-09-29 2019-04-04 Claas E-Systems Kgaa Mbh & Co. Kg Verfahren für den Betrieb einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine
DE102017122712A1 (de) 2017-09-29 2019-04-04 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren für den Betrieb einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine
CN111386031A (zh) 2017-10-02 2020-07-07 精密种植有限责任公司 用于土壤和种子监测的系统和设备
US10423850B2 (en) 2017-10-05 2019-09-24 The Climate Corporation Disease recognition from images having a large field of view
CN107795095A (zh) 2017-10-10 2018-03-13 上海科城建设工程有限公司 一种预制混凝土地坪的连接工艺
US10517215B2 (en) 2017-10-12 2019-12-31 Deere & Company Roll center for attachment frame control arms
US11308735B2 (en) 2017-10-13 2022-04-19 Deere & Company Unmanned aerial vehicle (UAV)-assisted worksite data acquisition
BR112020007356A2 (pt) 2017-10-17 2020-10-06 Precision Planting Llc sistema de detecção de solos e implementos para detectar diferentes parâmetros de solo
US12026944B2 (en) 2017-10-24 2024-07-02 Basf Agro Trademarks Gmbh Generation of digital cultivation maps
CN107957408B (zh) 2017-10-30 2021-01-12 汕头大学 一种利用光反射理论测量土壤吸力的方法
EP3704443A1 (en) 2017-10-31 2020-09-09 Agjunction LLC Three-dimensional terrain mapping
CN108009542B (zh) 2017-11-01 2021-06-15 华中农业大学 油菜大田环境下杂草图像分割方法
US10914054B2 (en) 2017-11-07 2021-02-09 ModernAg, Inc. System and method for measurement and abatement of compaction and erosion of soil covering buried pipelines
US11568340B2 (en) 2017-11-09 2023-01-31 Climate Llc Hybrid seed selection and seed portfolio optimization by field
DK179951B1 (en) 2017-11-11 2019-10-24 Agro Intelligence Aps A system and a method for optimizing a harvesting operation
US10853377B2 (en) 2017-11-15 2020-12-01 The Climate Corporation Sequential data assimilation to improve agricultural modeling
US10521526B2 (en) 2017-11-20 2019-12-31 Nfl Players, Inc. Hybrid method of assessing and predicting athletic performance
US11151500B2 (en) 2017-11-21 2021-10-19 The Climate Corporation Digital modeling of disease on crops on agronomic fields
DE102017221134A1 (de) 2017-11-27 2019-05-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines mobilen Systems
US10412889B2 (en) 2017-12-05 2019-09-17 Deere & Company Combine harvester control information for a remote user with visual feed
US11197405B2 (en) 2017-12-07 2021-12-14 Kubota Corporation Harvesting machine and travel mode switching method
CN207567744U (zh) 2017-12-08 2018-07-03 山西省交通科学研究院 公路灰土基层压实度测定取样机
WO2019109191A1 (en) 2017-12-08 2019-06-13 Camso Inc. Systems and methods for monitoring off-road vehicles
DE102017222403A1 (de) 2017-12-11 2019-06-13 Deere & Company Verfahren und Vorrichtung zur Kartierung eventuell in einem Feld vorhandener Fremdkörper
WO2019117094A1 (ja) 2017-12-15 2019-06-20 株式会社クボタ スリップ判定システム、走行経路生成システム及び圃場作業車
US10660268B2 (en) 2017-12-16 2020-05-26 Deere & Company Harvester with electromagnetic plane crop material flow sensor
US11317557B2 (en) 2017-12-18 2022-05-03 Kubota Corporation Automatic steering system and automatic steering method
KR20200096496A (ko) 2017-12-18 2020-08-12 가부시끼 가이샤 구보다 콤바인 제어 시스템, 콤바인 제어 프로그램, 콤바인 제어 프로그램을 기록한 기록 매체, 콤바인 제어 방법, 수확기 제어 시스템, 수확기 제어 프로그램, 수확기 제어 프로그램을 기록한 기록 매체, 수확기 제어 방법
WO2019124225A1 (ja) 2017-12-18 2019-06-27 株式会社クボタ 農作業車、作業車衝突警戒システム及び作業車
KR20200096497A (ko) 2017-12-18 2020-08-12 가부시끼 가이샤 구보다 자동 주행 시스템, 자동 주행 관리 프로그램, 자동 주행 관리 프로그램을 기록한 기록 매체, 자동 주행 관리 방법, 영역 결정 시스템, 영역 결정 프로그램, 영역 결정 프로그램을 기록한 기록 매체, 영역 결정 방법, 콤바인 제어 시스템, 콤바인 제어 프로그램, 콤바인 제어 프로그램을 기록한 기록 매체, 콤바인 제어 방법
EP3498074A1 (en) 2017-12-18 2019-06-19 DINAMICA GENERALE S.p.A An harvest analysis system intended for use in a machine
KR20200096489A (ko) 2017-12-20 2020-08-12 가부시끼 가이샤 구보다 작업차, 작업차를 위한 주행 경로 선택 시스템, 및 주행 경로 산출 시스템
CN208047351U (zh) 2017-12-26 2018-11-06 南安市振邦家庭农场有限公司 一种高效率的玉米脱粒机
US10568261B2 (en) 2017-12-28 2020-02-25 Cnh Industrial America Llc Dynamic combine fire risk index and display
DK179771B1 (en) 2017-12-29 2019-05-15 Agro Intelligence Aps Apparatus and method for improving the yield of grass and clover harvested from an agricultural field
DK179768B1 (en) 2017-12-29 2019-05-15 Agro Intelligence Aps Apparatus and method for improving the conditioning quality of grass and clover prior to the collecting thereof
DK179878B1 (en) 2017-12-29 2019-08-16 Agro Intelligence Aps Apparatus and method for improving the quality of grass and clover by tedding
CN107941286A (zh) 2018-01-09 2018-04-20 东北农业大学 一种便携式田间多参数测量装置
US10477756B1 (en) 2018-01-17 2019-11-19 Cibo Technologies, Inc. Correcting agronomic data from multiple passes through a farmable region
US10909368B2 (en) 2018-01-23 2021-02-02 X Development Llc Crop type classification in images
CN108304796A (zh) 2018-01-29 2018-07-20 深圳春沐源控股有限公司 一种智能杂草警示方法及系统
US10687466B2 (en) 2018-01-29 2020-06-23 Cnh Industrial America Llc Predictive header height control system
JP7101488B2 (ja) 2018-01-30 2022-07-15 株式会社クボタ 作業車管理システム
JP2019146506A (ja) 2018-02-26 2019-09-05 井関農機株式会社 コンバインの自動走行制御装置
US11006577B2 (en) 2018-02-26 2021-05-18 Cnh Industrial America Llc System and method for adjusting operating parameters of an agricultural harvester based on estimated crop volume
DE102018104286A1 (de) 2018-02-26 2019-08-29 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrender Feldhäcksler
DE102018001551A1 (de) 2018-02-28 2019-08-29 Class Selbstfahrende Erntemaschinen Gmbh Selbstfahrende Erntemaschine und Betriebsverfahren dafür
US10830634B2 (en) 2018-03-06 2020-11-10 Deere & Company Fill level detection and control
CN208013131U (zh) 2018-03-16 2018-10-26 云南群林科技有限公司 一种基于多传感器的农业信息采集系统
CN111868782B (zh) 2018-04-17 2024-01-02 赫尔实验室有限公司 使用彩色图像的盲源分离确定农作物残茬分数的系统和方法
DE102018206507A1 (de) 2018-04-26 2019-10-31 Deere & Company Schneidwerk mit selbsttätiger Einstellung der Haspelzinkenorientierung
US11240959B2 (en) 2018-04-30 2022-02-08 Deere & Company Adaptive forward-looking biomass conversion and machine control during crop harvesting operations
EP3563654B1 (en) 2018-05-02 2022-12-21 AGCO Corporation Automatic header control simulation
BE1025780B1 (nl) 2018-05-07 2019-07-08 Cnh Industrial Belgium Nv Systeem en werkwijze voor het lokaliseren van een aanhangwagen ten opzichte van een landbouwmachine
US10820516B2 (en) 2018-05-08 2020-11-03 Cnh Industrial America Llc System and method for monitoring the amount of plant materials entering an agricultural harvester
DE102018111077A1 (de) 2018-05-08 2019-11-14 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher sowie Verfahren zum Betreiben eines Mähdreschers
DE102018111076A1 (de) 2018-05-08 2019-11-14 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
US11641790B2 (en) 2018-05-09 2023-05-09 Deere & Company Method of planning a path for a vehicle having a work tool and a vehicle path planning system
CN108614089A (zh) 2018-05-09 2018-10-02 重庆交通大学 压实土体冻融和风化环境模拟系统及其试验方法
US10782672B2 (en) 2018-05-15 2020-09-22 Deere & Company Machine control system using performance score based setting adjustment
DE102018111746A1 (de) 2018-05-16 2019-11-21 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
US20190351765A1 (en) 2018-05-18 2019-11-21 Cnh Industrial America Llc System and method for regulating the operating distance between work vehicles
JP7039026B2 (ja) 2018-05-28 2022-03-22 ヤンマーパワーテクノロジー株式会社 地図情報生成システム、および作業支援システム
US10813288B2 (en) 2018-05-31 2020-10-27 Deere & Company Automated belt speed control
DE102018113327A1 (de) 2018-06-05 2019-12-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung einer landwirtschaftlichen Erntekampagne
CN108881825A (zh) 2018-06-14 2018-11-23 华南农业大学 基于Jetson TK1的水稻杂草无人机监控系统及其监控方法
US11064653B2 (en) 2018-06-18 2021-07-20 Ag Leader Technology Agricultural systems having stalk sensors and data visualization systems and related devices and methods
US11419261B2 (en) 2018-06-25 2022-08-23 Deere & Company Prescription cover crop seeding with combine
US11395452B2 (en) 2018-06-29 2022-07-26 Deere & Company Method of mitigating compaction and a compaction mitigation system
DE102018116578A1 (de) 2018-07-09 2020-01-09 Claas Selbstfahrende Erntemaschinen Gmbh Erntesystem
US20200019159A1 (en) 2018-07-11 2020-01-16 Raven Indudstries, Inc. Agricultural control and interface system
DE102018116817A1 (de) 2018-07-11 2020-01-16 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung einer Datenübertragung zwischen einer landwirtschaftlichen Arbeitsmaschine und einer externen Sende-/Empfangseinheit
DE102018116990A1 (de) 2018-07-13 2020-01-16 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
DE102018212150A1 (de) 2018-07-20 2020-01-23 Deere & Company Verfahren zur Energieversorgung eines kabelgebundenen betriebenen Feldhäckslers
US11277956B2 (en) 2018-07-26 2022-03-22 Bear Flag Robotics, Inc. Vehicle controllers for agricultural and industrial applications
AU2019310030A1 (en) 2018-07-26 2021-02-11 Climate Llc Generating agronomic yield maps from field health imagery
WO2020026578A1 (ja) 2018-07-31 2020-02-06 株式会社クボタ 走行経路生成システム、走行経路生成方法、走行経路生成プログラム、及び走行経路生成プログラムが記録されている記録媒体と、作業管理システム、作業管理方法、作業管理プログラム、及び作業管理プログラムが記録されている記録媒体と、収穫機、走行パターン作成システム、走行パターン作成プログラム、走行パターン作成プログラムが記録されている記録媒体、及び走行パターン作成方法
WO2020026650A1 (ja) 2018-08-01 2020-02-06 株式会社クボタ 自動走行制御システム、自動走行制御方法、自動走行制御プログラム、及び、記憶媒体
WO2020026651A1 (ja) 2018-08-01 2020-02-06 株式会社クボタ 収穫機、走行システム、走行方法、走行プログラム、及び、記憶媒体
US11234357B2 (en) 2018-08-02 2022-02-01 Cnh Industrial America Llc System and method for monitoring field conditions of an adjacent swath within a field
JP6958508B2 (ja) 2018-08-02 2021-11-02 井関農機株式会社 収穫作業システム
CN112585424A (zh) 2018-08-06 2021-03-30 株式会社久保田 外形形状计算系统、外形形状计算方法、外形形状计算程序、以及记录有外形形状计算程序的记录介质、田地地图制作系统、田地地图制作程序、记录有田地地图制作程序的记录介质、以及田地地图制作方法
JP7034866B2 (ja) 2018-08-20 2022-03-14 株式会社クボタ 収穫機
US11154008B2 (en) 2018-08-20 2021-10-26 Cnh Industrial America Llc System and method for steering an agricultural harvester
WO2020038810A1 (en) 2018-08-22 2020-02-27 Agco International Gmbh Harvest logistics
EP3840560A1 (en) 2018-08-22 2021-06-30 Precision Planting LLC Implements and application units having sensors for sensing data to determine agricultural plant characteristics of agricultural fields
DE102018120741A1 (de) 2018-08-24 2020-02-27 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
KR20210039452A (ko) 2018-08-29 2021-04-09 가부시끼 가이샤 구보다 자동 조타 시스템 및 수확기, 자동 조타 방법, 자동 조타 프로그램, 기록 매체
CA3108902A1 (en) 2018-08-31 2020-03-05 The Climate Corporation Subfield moisture model improvement using overland flow modeling with shallow water computations
JP7121598B2 (ja) 2018-08-31 2022-08-18 三菱マヒンドラ農機株式会社 収穫機
US11197417B2 (en) 2018-09-18 2021-12-14 Deere & Company Grain quality control system and method
US20200090094A1 (en) 2018-09-19 2020-03-19 Deere & Company Harvester control system
US11475359B2 (en) 2018-09-21 2022-10-18 Climate Llc Method and system for executing machine learning algorithms on a computer configured on an agricultural machine
DE102018123478A1 (de) 2018-09-24 2020-03-26 Claas Tractor Sas Landwirtschaftliche Arbeitsmaschine
EP3863394A2 (en) 2018-10-11 2021-08-18 Mtd Products Inc. Localized data mapping for indoor and outdoor applications
US11676244B2 (en) 2018-10-19 2023-06-13 Mineral Earth Sciences Llc Crop yield prediction at field-level and pixel-level
US10729067B2 (en) 2018-10-20 2020-08-04 Deere & Company Biomass impact sensor having a conformal encasement enveloping a pressure sensitive film
AU2019368545A1 (en) 2018-10-24 2021-05-06 Bitstrata Systems Inc. Machine operational state and material movement tracking
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20200128738A1 (en) 2018-10-31 2020-04-30 Cnh Industrial America Llc System and method for calibrating alignment of work vehicles
US11206763B2 (en) 2018-10-31 2021-12-28 Deere & Company Weed seed based harvester working member control
US10986778B2 (en) 2018-10-31 2021-04-27 Deere & Company Weed seed devitalizer control
US20200133262A1 (en) 2018-10-31 2020-04-30 Cnh Industrial America Llc System and method for calibrating alignment of work vehicles
US11564349B2 (en) 2018-10-31 2023-01-31 Deere & Company Controlling a machine based on cracked kernel detection
US11399462B2 (en) 2018-10-31 2022-08-02 Cnh Industrial America Llc System and method for calibrating alignment of work vehicles
US11175170B2 (en) 2018-11-07 2021-11-16 Trimble Inc. Estimating yield of agricultural crops
US10996656B2 (en) 2018-11-08 2021-05-04 Premier Crop Systems, LLC System and method for aggregating test plot results based on agronomic environments
CN109357804B (zh) 2018-11-13 2023-09-19 西南交通大学 一种压实土水平应力测试装置及测试方法
US20200146203A1 (en) 2018-11-13 2020-05-14 Cnh Industrial America Llc Geographic coordinate based setting adjustment for agricultural implements
CN112996378B (zh) 2018-11-15 2023-04-18 株式会社久保田 收割机以及路径设定系统
CN111201879B (zh) 2018-11-21 2023-10-03 金华中科艾特智能科技研究所有限公司 基于图像识别的粮食收割、运输一体化装载装置/方法
KR20210093873A (ko) 2018-11-26 2021-07-28 가부시끼 가이샤 구보다 농작업기, 농작업기 제어 프로그램, 농작업기 제어 프로그램을 기록한 기록 매체, 농작업기 제어 방법, 수확기, 수확기 제어 프로그램, 수확기 제어 프로그램을 기록한 기록 매체, 수확기 제어 방법
US11483970B2 (en) 2018-11-28 2022-11-01 Cnh Industrial America Llc System and method for adjusting the orientation of an agricultural harvesting implement based on implement height
US11067994B2 (en) 2018-12-06 2021-07-20 Deere & Company Machine control through active ground terrain mapping
DE102018131142A1 (de) 2018-12-06 2020-06-10 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine sowie Verfahren zum Betreiben einer landwirtschaftlichen Arbeitsmaschine
DE102018132144A1 (de) 2018-12-13 2020-06-18 Claas E-Systems Gmbh Landwirtschaftliche Arbeitssystem
EP3671590A1 (en) 2018-12-21 2020-06-24 AGCO Corporation Method of unloading batch grain quantities for harvesting machines
JP7182471B2 (ja) 2019-01-11 2022-12-02 株式会社クボタ 作業管理システム及び作業機
CN109485353A (zh) 2019-01-18 2019-03-19 安徽马钢嘉华新型建材有限公司 一种新型钢渣混合土道路基层材料及制备方法
DE102019200794A1 (de) 2019-01-23 2020-07-23 Amazonen-Werke H. Dreyer Gmbh & Co. Kg System und Verfahren zur Identifizierung von Zeitfenstern und Flächenbereichen eines landwirtschaftlich genutzten Feldes mit günstigen Bedingungen für einen wirkungsvollen und umweltgerechten Einsatz und/oder die Befahrbarkeit von Landmaschinen
CN109633127B (zh) 2019-01-24 2024-06-04 山东省农业机械科学研究院 一种土壤压实度测定机构、装置及方法
US20200265527A1 (en) 2019-02-15 2020-08-20 Growers Edge Financial, Inc. Agronomic prescription product
CN109961024A (zh) 2019-03-08 2019-07-02 武汉大学 基于深度学习的小麦田间杂草检测方法
CN109763476B (zh) 2019-03-12 2024-06-28 上海兰德公路工程咨询设计有限公司 一种快速检测填土路基的压实度的装置及方法
JP7062610B2 (ja) 2019-03-26 2022-05-06 ヤンマーパワーテクノロジー株式会社 作業制御システム
CN210585958U (zh) 2019-03-28 2020-05-22 宁夏大学 霉变玉米识别与分拣的辅助装置
DE102019108505A1 (de) 2019-04-02 2020-10-08 Claas E-Systems Gmbh Landwirtschaftliche Arbeitsmaschine
US10677637B1 (en) 2019-04-04 2020-06-09 Scale Tec, Ltd. Scale controller with dynamic weight measurement
CN110232494A (zh) 2019-04-09 2019-09-13 丰疆智能科技股份有限公司 物流车调度系统和方法
CN110232493B (zh) 2019-04-09 2021-07-30 丰疆智能科技股份有限公司 收割机和物流车智能配合系统和方法
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11856882B2 (en) 2019-04-10 2024-01-02 Kansas Stte University Research Foundation Autonomous robot system for steep terrain farming operations
US11016049B2 (en) 2019-04-17 2021-05-25 Deere & Company Agricultural moisture and test weight sensor with co-planar electrodes
US20200337232A1 (en) 2019-04-24 2020-10-29 Deere & Company Information inference for agronomic data generation in sugarcane applications
FR3095572B1 (fr) 2019-05-02 2023-03-17 Agreenculture Procédé de gestion de flottes de véhicules agricoles autoguidés
DE102019206734A1 (de) 2019-05-09 2020-11-12 Deere & Company Sämaschine mit vorausschauender Ansteuerung
US10703277B1 (en) 2019-05-16 2020-07-07 Cnh Industrial America Llc Heads-up display for an agricultural combine
US11674288B2 (en) 2019-05-30 2023-06-13 Deere & Company System and method for obscurant mitigation
DE102019114872A1 (de) 2019-06-03 2020-12-03 Horsch Leeb Application Systems Gmbh System und Verfahren zur Simulation und/oder Konfiguration eines mittels einer landwirtschaftlichen Arbeitsmaschine durchzuführenden Arbeitsprozesses und landwirtschaftliche Arbeitsmaschine
US11457563B2 (en) 2019-06-27 2022-10-04 Deere & Company Harvester stability monitoring and control
CN110262287A (zh) 2019-07-14 2019-09-20 南京林业大学 用于收获机械割台高度自动控制的冠层高度在线探测方法
DE102019119110A1 (de) 2019-07-15 2021-01-21 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Abarbeitung eines landwirtschaftlichen Arbeitsprozesses auf einem Feld
JP2019216744A (ja) 2019-09-03 2019-12-26 ヤンマー株式会社 コンバイン
US11904871B2 (en) 2019-10-30 2024-02-20 Deere & Company Predictive machine control
CN110720302A (zh) 2019-11-29 2020-01-24 河南瑞创通用机械制造有限公司 一种谷物收获机智能调节系统及其控制方法
US11540447B2 (en) 2019-12-17 2023-01-03 Deere & Company Predictive crop characteristic mapping for product application
US11800829B2 (en) 2019-12-17 2023-10-31 Deere & Company Work machine zone generation and control system with geospatial constraints
CN111366555B (zh) * 2020-02-27 2021-01-26 浙江大学 一种耕地土壤中农膜残留的检测方法
US11641801B2 (en) 2020-04-21 2023-05-09 Deere & Company Agricultural harvesting machine control using machine learning for variable delays
CN111406505A (zh) 2020-04-30 2020-07-14 江苏大学 一种联合收获机粮箱剩余容量及剩余行走距离监测装置和方法
BR102021011031A2 (pt) * 2020-06-29 2022-01-11 Agco Corporation Métodos de medida de resíduo durante colheita
DE102021124212A1 (de) * 2020-10-08 2022-04-14 Deere & Company Maschinensteuerung mithilfe einer prädiktiven Karte

Also Published As

Publication number Publication date
CN114303617A (zh) 2022-04-12
US11711995B2 (en) 2023-08-01
US20230320254A1 (en) 2023-10-12
US20220110241A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
US12013698B2 (en) Machine control using a predictive map
US12075724B2 (en) Machine control using a predictive map
BR102021015171A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
BR102021016552A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional
US11983009B2 (en) Map generation and control system
BR102021016559A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
US20220113729A1 (en) Predictive map generation and control system
BR102021016550A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
US12063886B2 (en) Machine control using a predictive map
BR102021016289A2 (pt) Máquina de trabalho agríola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
US20220110262A1 (en) Predictive map generation and control system
US11946747B2 (en) Crop constituent map generation and control system
BR102022013985A2 (pt) Sistema agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
BR102021023437A2 (pt) Método para controlar uma máquina de trabalho agrícola, e, máquina de trabalho agrícola campo da descrição
BR102021017182A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
BR102021017298A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
US20230315096A1 (en) Machine control using a predictive map
BR102021015205A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
BR102021017051A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional
BR102021017308A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
BR102021017257A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional
BR102021015594A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
BR122021019410A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional

Legal Events

Date Code Title Description
B03A Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette]