BR102021016552A2 - Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional - Google Patents

Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional Download PDF

Info

Publication number
BR102021016552A2
BR102021016552A2 BR102021016552-9A BR102021016552A BR102021016552A2 BR 102021016552 A2 BR102021016552 A2 BR 102021016552A2 BR 102021016552 A BR102021016552 A BR 102021016552A BR 102021016552 A2 BR102021016552 A2 BR 102021016552A2
Authority
BR
Brazil
Prior art keywords
agricultural
map
predictive
characteristic
generator
Prior art date
Application number
BR102021016552-9A
Other languages
English (en)
Inventor
Nathan R. Vandike
Bhanu Kiran Reddy Palla
Bradley K. Yanke
Noel W. Anderson
Mehul BHAVSAR
Hrishikesh TUPE
Original Assignee
Deere & Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deere & Company filed Critical Deere & Company
Publication of BR102021016552A2 publication Critical patent/BR102021016552A2/pt

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1271Control or measuring arrangements specially adapted for combines for measuring crop flow
    • A01D41/1272Control or measuring arrangements specially adapted for combines for measuring crop flow for measuring grain flow
    • A01D41/1273Control or measuring arrangements specially adapted for combines for measuring crop flow for measuring grain flow for measuring grain loss
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/246Arrangements for determining position or orientation using environment maps, e.g. simultaneous localisation and mapping [SLAM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/247Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
    • G05D1/248Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons generated by satellites, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/247Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
    • G05D1/249Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons from positioning sensors located off-board the vehicle, e.g. from cameras
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • A01B79/005Precision agriculture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0026Lookup tables or parameter maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • B60W2050/046Monitoring control system parameters involving external transmission of data to or from the vehicle, e.g. via telemetry, satellite, Global Positioning System [GPS]
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/40Control within particular dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Environmental Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Soil Sciences (AREA)
  • Transportation (AREA)
  • Mining & Mineral Resources (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Animal Husbandry (AREA)
  • Agronomy & Crop Science (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Um ou mais mapas de informação são obtidos por uma máquina de trabalho agrícola. Um ou mais mapas de informação mapeiam um ou mais valores de característica agrícola em diferentes localizações geográficas de um campo. Um sensor in situ na máquina de trabalho agrícola sensoreia uma característica agrícola à medida que a máquina de trabalho agrícola move através do campo. Um gerador de mapa preditivo gera um mapa preditivo que prediz uma característica agrícola preditiva em diferentes localizações no campo com base em uma relação entre os valores em um ou mais mapas de informação e na característica agrícola sensoreada pelo sensor in situ. O mapa preditivo pode ser produzido e usado no controle de máquina automatizado.

Description

MÁQUINA DE TRABALHO AGRÍCOLA, E, MÉTODO IMPLEMENTADO POR COMPUTADOR PARA GERAR UM MAPA AGRÍCOLA PREDITIVO FUNCIONAL CAMPO DA DESCRIÇÃO
[001] A presente descrição se refere as máquinas agrícolas, máquinas florestais, máquinas de construção e máquinas de gerenciamento de grama.
FUNDAMENTOS
[002] Existe uma ampla variedade de diferentes tipos de máquinas agrícolas. Algumas máquinas agrícolas incluem colheitadeiras, tais como colheitadeiras combinadas, colheitadeiras de cana de açúcar, colheitadeiras de algodão, colheitadeiras de forragem autopropelidas e enfardadeiras. Algumas colheitadeiras podem também ser equipadas com diferentes tipos de coletores para colher diferentes tipos de culturas.
[003] A discussão apresentada é meramente provida para informação de fundo geral e não deve ser usada como um auxílio na determinação do escopo da matéria reivindicada.
SUMÁRIO
[004] Um ou mais mapas de informação são obtidos por uma máquina de trabalho agrícola. Um ou mais mapas de informação mapeiam um ou mais valores de característica agrícola em diferentes localizações geográficas de um campo. Um sensor in situ na máquina de trabalho agrícola sensoreia uma característica agrícola à medida que a máquina de trabalho agrícola move através do campo. Um gerador de mapa preditivo gera um mapa preditivo que prediz uma característica agrícola preditiva em diferentes localizações no campo com base em uma relação entre os valores em um ou mais mapas de informação e a característica agrícola sensoreada pelo sensor in situ. O mapa preditivo pode ser produzido e usado no controle de máquina automatizado.
[005] Este Sumário é provido para introduzir uma seleção de conceitos em uma forma simplificada que são descritos adicionalmente a seguir na Descrição Detalhada. Este Sumário não visa identificar aspectos chaves ou aspectos essenciais da matéria reivindicada, nem deve ser usado como um auxílio na determinação do escopo da matéria reivindicada. A matéria reivindicada não se limita a exemplos que solucionam qualquer ou todas as desvantagens notadas nos fundamentos.
BREVE DESCRIÇÃO DOS DESENHOS
[006] A FIG. 1 é uma ilustração pictorial parcial, esquemática parcial de um exemplo de uma colheitadeira combinada.
[007] A FIG. 2 é um diagrama de blocos mostrando algumas porções de uma colheitadeira agrícola em mais detalhe, de acordo com alguns exemplos da presente descrição.
[008] As FIGS. 3A-3B (coletivamente referidas no presente documento como FIG. 3) mostram um fluxograma que ilustra um exemplo de operação de uma colheitadeira agrícola na geração de um mapa.
[009] A FIG. 4A é um diagrama de blocos mostrando um exemplo de um gerador de modelo preditivo e um gerador de mapa preditivo.
[0010] A FIG. 4B é um diagrama de blocos mostrando um exemplo do gerador de modelo preditivo em mais detalhe.
[0011] A FIG. 5 é um fluxograma mostrando um exemplo de operação de uma colheitadeira agrícola receber um mapa, detectando uma característica com um sensor in situ e gerar um mapa preditivo funcional para apresentação ou uso no controle da colheitadeira agrícola durante uma operação de colheita
[0012] A FIG. 6 é um diagrama de blocos de um exemplo de um gerador de zona de controle.
[0013] FIG. 7 é um fluxograma mostrando um exemplo da operação do gerador de zona de controle.
[0014] A FIG. 8 é um fluxograma mostrando um exemplo de operação usando zonas de controle.
[0015] A FIG. 9 é um diagrama de blocos de um exemplo de um controlador de interface de operador.
[0016] FIG. 10 é um fluxograma mostrando um exemplo de operação do controlador de interface de operador.
[0017] A FIG. 11 é uma ilustração de um exemplo de uma exibição de interface de usuário.
[0018] A FIG. 12 é um diagrama de blocos mostrando um exemplo de uma colheitadeira agrícola em comunicação com um ambiente de servidor remoto.
[0019] As FIGS. 13-15 mostram exemplos de dispositivos móveis que podem ser usados em uma colheitadeira agrícola.
[0020] FIG. 16 é um diagrama de blocos mostrando um exemplo de um ambiente de computação que pode ser usado em uma colheitadeira agrícola.
DESCRIÇÃO DETALHADA
[0021] Para efeitos de promoção de um entendimento dos princípios da presente descrição, será feita agora referência aos exemplos ilustrados nos desenhos, e linguagem específica será usada para descrever os mesmos. No entanto, deve-se entender que nenhuma limitação do escopo da descrição é pretendida. Quaisquer alterações e modificações adicionais nos dispositivos, sistemas e métodos descritos, e qualquer aplicação adicional dos princípios da presente descrição é completamente contemplado como normalmente ocorreria a um versado na técnica ao qual a descrição diz respeito. Em particular, é totalmente contemplado que os aspectos, componentes e/ou etapas descritos com relação a um exemplo podem ser combinados com os aspectos, componentes e/ou etapas descritos com relação a outros exemplos da presente descrição.
[0022] A presente descrição se refere ao uso de dados in situ obtidos simultaneamente com uma operação agrícola, em combinação com dados de um mapa, para gerar um mapa preditivo.
[0023] Em alguns exemplos, um mapa preditivo pode ser usado para controlar uma máquina de trabalho agrícola, tal como uma colheitadeira agrícola. Como aqui discutido, o desempenho de uma colheitadeira agrícola pode ser degradado ou de outra forma afetado em diferentes condições. Por exemplo, o desempenho de uma colheitadeira (ou outra máquina agrícola) pode ser deleteriamente afetado com base na topografia de um campo. A topografia pode fazer com que a máquina sofra arfagem e rolamento uma certa quantidade durante navegação em uma inclinação lateral. Sem limitação, arfagem ou rolamento de máquina pode afetar as características de perda de grão, distribuição interna de material, qualidade de grão e rejeitos. Por exemplo, perda de grão pode ser afetada por uma característica topográfica que faz com que a colheitadeira agrícola 100 tanto tenha arfagem quanto rolamento. A maior arfagem pode fazer com que o grão vá para a traseira mais rapidamente, diminuição da arfagem pode manter o grão na máquina, e os elementos de rolamento podem sobrecarregar os lados do sistema de limpeza e levar a mais perda de grão nesses lados. Similarmente, a qualidade de grão pode ser impactada tanto pela arfagem quanto rolamento e, similar à perda de grão, as reações do material não grão que permanece na máquina ou que deixa a máquina com base na arfagem ou rolamento pode ter influência na produção de qualidade. Em outro exemplo, uma característica topográfica que influencia a arfagem terá um impacto na quantidade dos rejeitos que entram no sistema de rejeitos, dessa forma impactando uma saída do sensor de rejeitos. A consideração da arfagem e o tempo nesse nível podem ter uma relação de quanto o volume de rejeitos aumenta e poderia ser útil para estimar a necessidade de ter controles para prever esse nível e fazer ajustes. Em outros exemplos, características tais como genótipo, índice vegetativo, rendimento, biomassa e características de ervas daninhas, tal como tipo de ervas daninhas ou intensidade de ervas daninhas, podem afetar outras características tais como rejeitos, perda de cultura, qualidade de grão e distribuição interna de material.
[0024] Um mapa topográfico ilustrativamente mapeia elevações do chão em diferentes localizações geográficas em um campo de interesse. Uma vez que a inclinação do chão é indicativa de uma mudança na elevação, ter dois ou mais valores de elevação permite o cálculo da inclinação nas áreas com valores de elevação conhecidos. Maior granularidade da inclinação pode ser obtida tendo mais áreas com valores de elevação conhecidos. À medida que uma colheitadeira agrícola desloca através do terreno em direções conhecidas, a arfagem e rolamento da colheitadeira agrícola podem ser determinados com base na inclinação do chão (isto é, áreas de elevação variável). Características topográficas, quando referidas a seguir, podem incluir, mas sem se limitar à elevação, inclinação (por exemplo, incluindo a orientação da máquina em relação à inclinação) e perfil do chão (por exemplo, irregularidade).
[0025] Em alguns exemplos, um mapa de biomassa preditivo pode ser usado para controlar uma máquina de trabalho agrícola, tal como uma colheitadeira agrícola. Biomassa, na forma usada no presente documento, se refere a uma quantidade de material de vegetação acima do chão em uma dada área ou localização. Frequentemente, a quantidade é medida em termos de peso, por exemplo, peso por dada área, tal como tonelada por acre. Várias características podem ser indicativas de biomassa (referidas no presente documento como características de biomassa) e podem ser usadas para predizer a biomassa em um campo de interesse. Por exemplo, características de biomassa podem incluir várias características de cultura, tais como altura da cultura (a altura da cultura acima da superfície do campo), densidade da cultura (a quantidade de matéria de cultura em um dado espaço, que podem ser derivadas da massa de cultura e volume de cultura), massa de cultura (tal como um peso da cultura ou o peso de componentes de cultura), ou volume da cultura (quanto a dada área ou localização é ocupada pela cultura, que é o espaço que a cultura ocupa ou contém). Em outro exemplo, características de biomassa podem incluir várias características de máquina da colheitadeira agrícola, tais como ajustes ou características operacionais de máquina. Por exemplo, uma força, tal como uma pressão de fluido ou torque, usado para acionar um rotor de trilhagem da colheitadeira agrícola pode ser indicativa da biomassa.
[0026] O desempenho de uma colheitadeira agrícola pode ser afetado quando a colheitadeira agrícola engata áreas do campo com variâncias na biomassa. Por exemplo, se os ajustes de máquina da colheitadeira agrícola forem definidos com base em uma produção prevista ou desejada, a variância na biomassa pode fazer com que a produtividade varie, e, dessa forma, os ajustes de máquina podem ser aquém dos ideais para efetivamente processar a vegetação, incluindo a cultura. Como aqui mencionado, o operador pode tentar predizer a biomassa à frente da máquina. Adicionalmente, alguns sistemas, tais como sistemas de controle de realimentação, ajustam reativamente a velocidade em relação ao chão à frente da colheitadeira agrícola em uma tentativa de manter uma produtividade desejada. Isto pode ser feito tentando identificar a biomassa com base em entradas de sensor, tais como dos sensores que sensoreiam uma variável indicativa de biomassa. Entretanto, tais arranjos podem ser propensos a erro e podem ser muito lentos para reagir a uma mudança que se aproxima em biomassa para efetivamente alterar a operação da máquina para controlar produtividade, tal como alterando a velocidade à frente da colheitadeira. Por exemplo, tais sistemas são tipicamente reativos em que ajustamentos nos ajustes de máquina são feitos apenas após a vegetação ter sido encontrada pela máquina na tentativa de reduzir adicional o erro, tal como em um sistema de controle de realimentação.
[0027] Alguns sistemas atuais provêm mapas de índice vegetativo. Um mapa de índice vegetativo ilustrativamente mapeia valores de índice vegetativo (que podem ser indicativos de crescimento vegetativo) em diferentes localizações geográficas em um campo de interesse. Um exemplo de um índice vegetativo inclui um índice de vegetação com diferença normalizada (NDVI). Existem muitos outros índices vegetativos que estão dentro do escopo da presente descrição. Em alguns exemplos, um índice vegetativo pode ser derivado de leituras de sensor de uma ou mais faixas de radiação eletromagnética refletidas pelas plantas. Sem limitações, essas faixas podem ser nas porções de micro-ondas, infravermelho, visível ou ultravioleta do espectro eletromagnético.
[0028] Um mapa de índice vegetativo pode ser usado para identificar a presença e localização de vegetação. Em alguns exemplos, um mapa de índice vegetativo permite que culturas sejam identificadas e georreferenciadas na presença de solo descoberto, resíduo de cultura, ou outras plantas, tais como ervas daninhas. Em outros exemplos, um mapa de índice vegetativo permite a detecção de várias características de cultura, tais como crescimento da cultura e saúde ou vigor da cultura, em diferentes localizações geográficas em um campo de interesse.
[0029] Um mapa de genótipo de semente mapeia o genótipo (por exemplo, híbrido, cultivar, espécie, etc.) de semente plantada em diferentes localizações no campo. O mapa de genótipo de semente pode ser gerado por uma plantadeira ou por uma máquina que realiza uma operação subsequente, tal como um pulverizador com um detector óptico que detecta genótipo de planta.
[0030] Um mapa de rendimento preditivo inclui valores de rendimento preditivos georreferenciado.
[0031] Um mapa de ervas daninhas preditivo inclui um ou mais de características de ervas daninhas preditivas georreferenciadas, tais como valores de intensidade de ervas daninhas ou valores de tipo de ervas daninhas. Os valores de intensidade de ervas daninhas podem incluir, sem limitação, pelo menos um dentre população de ervas daninhas, estágio de crescimento de ervas daninhas, tamanho de ervas daninhas, biomassa de ervas daninhas, umidade de ervas daninhas, ou saúde de ervas daninhas. Os valores de tipo de ervas daninhas podem incluir, sem limitação, uma indicação de tipo de ervas daninhas, tal como uma identificação da espécie de ervas daninhas.
[0032] A presente discussão dessa forma continua com relação a sistemas que recebem pelo menos um ou mais dentre um mapa topográfico, um mapa de genótipo de semente, um mapa de índice vegetativo, um mapa de rendimento, uma mapa de biomassa, e um mapa de ervas daninhas e também usam um sensor in situ para detectar um valor indicativo de um ou mais dentre uma distribuição interna de material, perda de grão ou perda de cultura, características de rejeitos e qualidade de grão durante uma operação de colheita. Os sistemas geram um modelo que modela uma ou mais relações entre as características derivadas do mapa recebidas e os valores de saída dos sensores in situ. Um ou mais modelos são usados para gerar um mapa preditivo funcional que prediz uma característica tal como uma característica sensoreada por um ou mais sensores in situ ou característica relacionada em diferentes localizações geográficas no campo, com base em um ou mais mapas de informação anteriores. O mapa preditivo funcional, gerado durante a operação de colheita, pode ser usado para controlar automaticamente uma colheitadeira durante a operação de colheita. O mapa preditivo funcional pode também ser provido a um operador ou outro usuário igualmente.
[0033] A FIG. 1 é uma ilustração parcial pictorial, parcial esquemática de uma colheitadeira agrícola autopropelida 100. No exemplo ilustrado, a colheitadeira agrícola 100 é uma colheitadeira combinada. Adicionalmente, embora colheitadeiras combinadas sejam providas como exemplos em toda a presente descrição, percebe-se que a presente descrição é também aplicável a outros tipos de colheitadeiras, tais como colheitadeiras de algodão, colheitadeiras de cana de açúcar, colheitadeiras de forragem autopropelidas, enfardadeiras, ou outras máquinas de trabalho agrícola. Consequentemente, a presente descrição deve englobar os vários tipos de colheitadeiras descritos e não é, dessa forma, limitada a colheitadeiras combinadas. Além disso, a presente descrição é direcionada para outros tipos de máquinas de trabalho, tais como semeadeiras e pulverizadores agrícolas, equipamento de construção, equipamento florestal e equipamento de gerenciamento de grama onde a geração de um mapa preditivo pode ser aplicável. Consequentemente, a presente descrição deve englobar esses vários tipos de colheitadeiras e outras máquinas de trabalho e não é, dessa forma, limitada a colheitadeiras combinadas.
[0034] Como mostrado na FIG. 1, a colheitadeira agrícola 100 ilustrativamente inclui um compartimento do operador 101, que pode ter uma variedade de diferentes mecanismos de interface de operador, para controlar a colheitadeira agrícola 100. A colheitadeira agrícola 100 inclui equipamento de extremidade dianteira, tal como um coletor 102, e um cortador indicado no geral por 104. A colheitadeira agrícola 100 também inclui um alimentador 106, um acelerador de alimentação 108 e um trilhador indicado no geral por 110. O alimentador 106 e o acelerador de alimentação 108 formam parte de um subsistema de manipulação de material 125. O coletor 102 é acoplado a pivô a uma armação 103 da colheitadeira agrícola 100 ao longo do eixo geométrico pivô 105. Um ou mais atuadores 107 acionam o movimento do coletor 102 em torno do eixo geométrico 105 na direção indicada no geral pela seta 109. Dessa forma, uma posição vertical do coletor 102 (a altura do coletor) acima do chão 111 no qual o coletor 102 desloca é controlável pela atuação do atuador 107. Embora não mostrado na FIG. 1, a colheitadeira agrícola 100 pode também incluir um ou mais atuadores que operam para aplicar um ângulo de inclinação, um ângulo de rolamento, ou ambos, ao coletor 102 ou porções do coletor 102. Inclinação se refere a um ângulo no qual o cortador 104 engata a cultura. O ângulo de inclinação é aumentado, por exemplo, controlando o coletor 102 para apontar uma aresta distal 113 do cortador 104 mais para o chão. O ângulo de inclinação é diminuído controlando o coletor 102 para apontar a aresta distal 113 do cortador 104 mais para fora do chão. O ângulo de rolamento se refere à orientação do coletor 102 em torno do eixo geométrico longitudinal de frente para trás da colheitadeira agrícola 100.
[0035] O trilhador 110 ilustrativamente inclui um rotor de trilhagem 112 e um conjunto de contrabatedores 114. Adicionalmente, a colheitadeira agrícola 100 também inclui um separador 116. A colheitadeira agrícola 100 também inclui um subsistema de limpeza ou sapata de limpeza (coletivamente referidos como subsistema de limpeza 118) que inclui uma ventoinha de limpeza 120, crivo 122 e peneira 124. O subsistema de manipulação de material 125 também inclui batedor de descarga 126, elevador de rejeitos 128, elevador de grão limpo 130, bem como trado de descarregamento 134 e bico 136. O elevador de grão limpo move grão limpo para o tanque de grão limpo 132. A colheitadeira agrícola 100 também inclui um subsistema de resíduo 138 que pode incluir picador 140 e espalhador 142. A colheitadeira agrícola 100 também inclui um subsistema de propulsão que inclui um motor que aciona componentes de engate no chão 144, tais como rodas ou esteiras. Em alguns exemplos, uma colheitadeira combinada dentro do escopo da presente descrição pode ter mais de um de qualquer dos subsistemas supramencionados. Em alguns exemplos, a colheitadeira agrícola 100 pode ter subsistemas de limpeza esquerdo e direito, separadores, etc., que não são mostrados na FIG. 1.
[0036] Em operação, e a título de revisão, a colheitadeira agrícola 100 ilustrativamente move através de um campo na direção indicada pela seta 147. À medida que a colheitadeira agrícola 100 move, o coletor 102 (e o carretel associado 164) engata a cultura a ser colhida e reúne a cultura em direção ao cortador 104. Um operador da colheitadeira agrícola 100 pode ser um operador humano local, um operador humano remoto, ou um sistema automatizado. O operador da colheitadeira agrícola 100 pode determinar um ou mais dentre um ajuste de altura, um ajuste de ângulo de inclinação, ou um ajuste de ângulo de rolamento para o coletor 102. Por exemplo, o operador entra com um ajuste ou ajustes em um sistema de controle, descrito em mais detalhe a seguir, que controla o atuador 107. O sistema de controle pode também receber um ajuste do operador para estabelecer o ângulo de inclinação e ângulo de rolamento do coletor 102 e implementar os ajustes alimentados controlando os atuadores associados, não mostrados, que operam para mudar o ângulo de inclinação e o ângulo de rolamento do coletor 102. O atuador 107 mantém o coletor 102 a uma altura acima do chão 111 com base em um ajuste de altura e, onde aplicável, em ângulos de inclinação e rolamento desejados. Cada um dos ajustes de altura, rolamento e inclinação pode ser implementado independentemente dos outros. O sistema de controle responda erro do coletor (por exemplo, a diferença entre o ajuste de altura e a altura medida do coletor 104 acima do chão 111 e, em alguns exemplos, erros do ângulo de inclinação e ângulo de rolamento) com uma capacidade de resposta que é determinada com base em um nível de sensibilidade. Se o nível de sensibilidade for ajustado a um maior nível de sensibilidade, o sistema de controle responda menores erros de posição do coletor, e tenta reduzir os erros detectados mais rapidamente do que quando a sensibilidade está em um menor nível de sensibilidade.
[0037] De volta à descrição da operação da colheitadeira agrícola 100, após culturas serem cortadas pelo cortador 104, o material de cultura separado é movimentado através de um transportador no alimentador 106 para o acelerador de alimentação 108, que acelera o material de cultura para o trilhador 110. O material de cultura é trilhado pelo rotor 112 que roda a cultura contra os contrabatedores 114. O material de cultura trilhado é movimentado por um rotor de separador no separador 116 onde uma porção do resíduo é movimentada pelo batedor de descarga 126 para o subsistema de resíduo 138. A porção de resíduo transferida para o subsistema de resíduo 138 é picada pelo picador de resíduo 140 e espalhada no campo pelo espalhador 142. Em outras configurações, o resíduo é solto da colheitadeira agrícola 100 em um amontoado de feno. Em outros exemplos, o subsistema de resíduo 138 pode incluir eliminadores de sementes de ervas daninhas (não mostrados) tais como ensacadores de semente ou outros coletores de semente, ou trituradores de semente ou outros destruidores de semente.
[0038] Grão cai no subsistema de limpeza 118. O crivo 122 separa alguns pedaços maiores de material do grão, e a peneira 124 separa alguns dos pedaços mais finos de material do grão limpo. Grão limpo cai em um trado que move o grão para uma extremidade de entrada do elevador de grão limpo 130, e o elevador de grão limpo 130 move o grão limpo para cima, depositando o grão limpo no tanque de grão limpo 132. Resíduo é removido do subsistema de limpeza 118 pelo fluxo de ar gerado pela ventoinha de limpeza 120. A ventoinha de limpeza 120 direciona ar ao longo de um trajeto de fluxo de ar para cima através das peneiras e crivos. O fluxo de ar carrega resíduo para trás na colheitadeira agrícola 100 para o subsistema de manuseio de resíduo 138.
[0039] O elevador de rejeitos 128 retorna os rejeitos para o trilhador 110 onde os rejeitos são retrilhados. Alternativamente, os rejeitos também podem ser passados para um mecanismo de retrilhagem separado por um elevador de rejeitos ou outro dispositivo de transporte onde os rejeitos são retrilhados igualmente.
[0040] Embora não mostrada na FIG. 1, colheitadeira agrícola 100 pode, em alguns exemplos, incluir um ou mais elementos de engate de material ajustáveis dispostos no trajeto de fluxo de material dentro da colheitadeira agrícola 100. Esses elementos de engate de material ajustáveis podem incluir, sem limitação, lâminas, tais como lâminas de leme, ou outros membros ajustáveis, que podem ser movimentadas de forma ajustável (por exemplo, anguladas, pivotadas, etc.) para direcionar material no trajeto de fluxo. Os elementos de engate de material ajustáveis podem direcionar pelo menos uma porção da corrente de material para a direita ou esquerda em relação à direção de fluxo, tal como um subsistema de limpeza esquerdo ou direito, um separador esquerdo ou direito, ou vários outros componentes e subsistemas da colheitadeira agrícola que podem incluir tanto um esquerdo quanto um direito, como aqui descrito. Em alguns exemplos, a direção pode ser de áreas de maior profundidade de material para áreas de menor profundidade de material lateralmente ou longitudinalmente em relação à direção de fluxo de material. Esses elementos de engate de material ajustáveis podem ser controlados por meio de um atuador (por exemplo, hidráulico, elétrico, pneumático, etc.) para controlar a distribuição de material dentro da colheitadeira agrícola 100.
[0041] A FIG. 1 também mostra que, em um exemplo, a colheitadeira agrícola 100 inclui sensor de velocidade em relação ao chão 146, um ou mais sensores de perda no separador 148, uma câmara de grão limpo 150, um mecanismo de captura de imagem voltado para a frente 151, que pode ser na forma de uma câmera estéreo ou mono, e um ou mais sensores de perda 152 providos no subsistema de limpeza 118.
[0042] O sensor de velocidade em relação ao chão 146 sensoreia a velocidade de deslocamento da colheitadeira agrícola 100 no chão. O sensor de velocidade em relação ao chão 146 pode sensorear a velocidade de deslocamento da colheitadeira agrícola 100 sensoreando a velocidade de rotação dos componentes de engate no chão (tais como rodas ou esteiras), um eixo acionador, um eixo de rodas, ou outros componentes. Em alguns casos, a velocidade de deslocamento pode ser sensoreada usando uma sistema de posicionamento, tais como um sistema de posicionamento global (GPS), um sistema de posicionamento relativo, um sistema de navegação de longo alcance (LORAN), sensor de velocidade Doppler, ou uma ampla variedade de outros sistemas ou sensores que provêm uma indicação de velocidade de deslocamento. Os sensores de velocidade em relação ao chão 146 podem também incluir sensores de direção tais como uma bússola, um magnetômetro, um sensor gravimétrico, um giroscópio, derivação de GPS, para determinar a direção de deslocamento em duas ou três dimensões em combinação com a velocidade. Dessa maneira, quando a colheitadeira agrícola 100 está em uma inclinação, a orientação da colheitadeira agrícola 100 em relação à inclinação é conhecida. Por exemplo, uma orientação da colheitadeira agrícola 100 poderia incluir subir, descer ou percorrer transversalmente a inclinação. Velocidade da máquina ou em relação ao chão, quando referida nesta descrição, pode também incluir direção de deslocamento em duas ou três dimensões.
[0043] Os sensores de perda 152 ilustrativamente provêm um sinal de saída indicativo da quantidade de perda de grão que ocorre tanto no lado direito quanto esquerdo do subsistema de limpeza 118. Em alguns exemplos, os sensores 152 são sensores de colisão que contam colisões de grão por unidade de tempo ou por unidade de distância percorrida para prover uma indicação da perda de grão que ocorre no subsistema de limpeza 118. Os sensores de colisão para os lados direito e esquerdo do subsistema de limpeza 118 podem prover sinais individuais ou um sinal combinado ou agregado. Em alguns exemplos, os sensores 152 podem incluir um único sensor ao contrário de sensores separados providos para cada subsistema de limpeza 118.
[0044] O sensor de perda no separador 148 provê um sinal indicativo de perda de grão nos separadores esquerdo e direito, não mostrados separadamente na FIG. 1. Os sensores de perda no separador 148 podem ser associados aos separadores esquerdo e direito e podem prover sinais de perda de grão separados ou um sinal combinado ou agregado. Em alguns casos, o sensoreamento de perda de grão nos separadores pode também ser feito usando uma ampla variedade de diferentes tipos de sensores igualmente.
[0045] A colheitadeira agrícola 100 pode também incluir outros sensores e mecanismos de medição. Por exemplo, a colheitadeira agrícola 100 pode incluir um ou mais dos seguintes sensores: um sensor de altura do coletor que sensoreia uma altura do coletor 102 acima do chão 111; sensores de estabilidade que sensoreiam a oscilação ou movimento de salto (e amplitude) da colheitadeira agrícola 100; um sensor de ajuste de resíduo que é configurado para sensorear se a colheitadeira agrícola 100 está configurada para picar o resíduo, produzir um amontoado de feno, etc.; um sensor de velocidade da ventoinha da sapata de limpeza para sensorear a velocidade da ventoinha 120; um sensor de folga do contrabatedor que sensoreia a folga entre o rotor 112 e os contrabatedores 114; um sensor de velocidade do rotor de trilhagem que sensoreia a velocidade de rotor do rotor 112; um sensor de folga do crivo que sensoreia o tamanho das aberturas no crivo 122; um sensor de folga da peneira que sensoreia o tamanho das aberturas na peneira 124; um sensor de umidade de material não grão (MOG) que sensoreia um nível de umidade de MOG que passa através da colheitadeira agrícola 100; um ou mais sensores de ajuste de máquina configurados para sensorear vários ajustes da colheitadeira agrícola configuráveis 100; um sensor de orientação da máquina que sensoreia a orientação da colheitadeira agrícola 100; e sensores de propriedade de cultura que sensoreiam uma variedade de diferentes tipos de propriedades de cultura, tais como tipo de cultura, umidade de cultura e outras propriedades de cultura. Os sensores de propriedade de cultura podem também ser configurados para sensorear características do material de cultura separado à medida que o material de cultura é processado pela colheitadeira agrícola 100. Por exemplo, em alguns casos, os sensores de propriedade de cultura podem sensorear a qualidade de grão tais como grão quebrado, níveis de MOG; constituintes de grão tais como amidos e proteína; e taxa de alimentação de grão à medida que o grão desloca através do alimentador 106, elevador de grão limpo 130, ou em algum lugar na colheitadeira agrícola 100. Os sensores de propriedade de cultura podem também sensorear a taxa de alimentação de biomassa através do alimentador 106, através do separador 116 ou em algum lugar na colheitadeira agrícola 100. Os sensores de propriedade de cultura podem também sensorear a taxa de alimentação como uma vazão em massa de grão através do elevador 130 ou através de outras porções da colheitadeira agrícola 100 ou prover outros sinais de saída indicativos de outras variáveis sensoreadas. Um sensor de distribuição de material interna pode sensorear a distribuição de material interna na colheitadeira agrícola 100.
[0046] Exemplos de sensores usados para detectar ou sensorear as características de potência incluem, mas sem se limitar a um sensor de tensão, um sensor de corrente, um sensor de torque, um sensor de pressão hidráulica, um sensor de fluxo hidráulico, um sensor de força, um sensor de carga de mancal e um sensor rotacional. As características de potência podem ser medidas em níveis variados de granularidade. Por exemplo, o uso de potência pode ser sensoreado com relação à máquina, com relação a subsistema ou por componentes individuais dos subsistemas.
[0047] Exemplos de sensores usados para detectar distribuição interna de material incluem, mas sem se limitar a um ou mais câmeras, sensores capacitivos, sensores reflexivos em tempo de voo eletromagnéticos ou ultrassônicos, sensores de atenuação de sinal, sensores de peso ou massa, sensores de fluxo de material, etc. Esses sensores podem ser colocados em uma ou mais localizações na colheitadeira agrícola 100 para sensorear a distribuição do material na colheitadeira agrícola 100, durante a operação da colheitadeira agrícola 100.
[0048] Exemplos de sensores usados para detectar ou sensorear uma arfagem ou rolamento da colheitadeira agrícola 100 incluem acelerômetros, giroscópios, unidades de medição inercial, sensores gravimétricos, magnetômetros, etc. Esses sensores podem também ser indicativos da inclinação do terreno no qual a colheitadeira agrícola 100 está atualmente.
[0049] Antes de descrever como a colheitadeira agrícola 100 gera um mapa preditivo funcional, e usa o mapa preditivo funcional para controlar, uma breve descrição de alguns dos itens da colheitadeira agrícola 100, e sua operação, será primeiramente descrita. A descrição da FIG. 2 e 3 descreve o recebimento de um tipo geral de mapa de informação anterior e combinação de informação do mapa de informação anterior com um sinal de sensor georreferenciado gerado por um sensor in situ, onde o sinal de sensor pode ser indicativo de uma característica agrícola, tal como um ou mais dentre uma característica no campo, características de propriedades de cultura, as características de grão, ou características da colheitadeira agrícola 100. Características do “campo” podem incluir, mas sem se limitar a características de um campo tal como inclinação, características de ervas daninhas (tal como intensidade de ervas daninhas ou tipo de ervas daninhas), umidade do solo, e qualidade da superfície. Características de propriedades de cultura podem incluir, sem limitação, altura da cultura, umidade de cultura, qualidade de grão, densidade da cultura, e estado de cultura. As características de grão podem incluir, sem limitações, umidade do grão, tamanho de grão, peso de teste de grão; e características da colheitadeira agrícola 100 podem incluir, sem limitação, orientação, níveis de perda, qualidade do trabalho, consumo de combustível, distribuição interna de material, características de rejeitos, e utilização de potência. Uma relação entre os valores de característica obtidos de sinais de sensor in situ e os valores de mapa de informação anterior é identificada, e essa relação é usada para gerar um novo mapa preditivo funcional 263. Um mapa preditivo funcional 263 prediz valores em diferentes localizações geográficas em um campo, e um ou mais desses valores podem ser usados para controlar uma máquina. Em alguns casos, um mapa preditivo funcional 263 pode ser apresentado a um usuário, tal como um operador de uma máquina de trabalho agrícola, que pode ser uma colheitadeira agrícola. Um mapa preditivo funcional 263 pode ser apresentado a um usuário visualmente, tal como por meio de uma exibição, hapticamente ou audivelmente. O usuário pode interagir com o mapa preditivo funcional 263 para realizar operações de edição e outras operações de interface de usuário. Em alguns casos, um mapa preditivo funcional tanto pode ser usado para controlar uma máquina de trabalho agrícola, tal como uma colheitadeira agrícola, apresentação a um operador ou outro usuário, quanto para apresentação a um operador ou usuário para interação pelo operador ou usuário.
[0050] Após a abordagem geral ser descrita com relação às FIGS. 2 e 3, uma abordagem mais específica para gerar um mapa preditivo funcional 263 que pode ser apresentado a um operador ou usuário, ou usado para controlar a colheitadeira agrícola 100, ou ambos, é descrita com relação às FIGS. 4 e 5. Novamente, embora a presente discussão se dê com relação à colheitadeira agrícola e, particularmente, uma colheitadeira combinada, o escopo da presente descrição engloba outros tipos de colheitadeiras agrícolas ou outras máquinas de trabalho agrícola.
[0051] A FIG. 2 é um diagrama de blocos mostrando algumas porções de uma colheitadeira agrícola exemplificativa 100. A FIG. 2 mostra que a colheitadeira agrícola 100 ilustrativamente inclui um ou mais processadores ou servidores 201, armazenamento de dados 202, sensor de posição geográfica 204, sistema de comunicação 206, e um ou mais sensores in situ 208 que sensoreiam uma ou mais características agrícolas simultaneamente a uma operação de colheita. Uma característica agrícola pode incluir qualquer característica que pode ter um efeito na operação de colheita. Alguns exemplos de características agrícolas incluem características da colheitadeira agrícola, o campo, a plantas no campo e as condições climáticas. Outros tipos de características agrícolas são também incluídos. Os sensores in situ 208 geram valores correspondentes às características sensoreadas. A colheitadeira agrícola 100 também inclui um modelo preditivo ou gerador de relação (coletivamente referidos a seguir como “gerador de modelo preditivo 210”), o gerador de mapa preditivo 212, gerador de zona de controle 213, sistema de controle 214, um ou mais subsistemas controláveis 216 e um mecanismo de interface de operador 218. A colheitadeira agrícola 100 pode também incluir uma ampla variedade de outras funcionalidades de colheitadeira agrícola 220. Os sensores in situ 208 incluem, por exemplo, sensores internos 222, sensores remotos 224 e outros sensores 226 que sensoreiam características durante o curso de uma operação agrícola. O gerador de modelo preditivo 210 ilustrativamente inclui um gerador de modelo de variável de informação anterior para variável in situ 228, e o gerador de modelo preditivo 210 pode incluir outros itens 230. O sistema de controle 214 inclui controlador do sistema de comunicação 229, controlador de interface de operador 231, um controlador de ajustes 232, controlador de planejamento de trajeto 234, controlador de taxa de alimentação 236, controlador de coletor e carretel 238, controlador de correia de lona 240, controlador de posição de placa de convés 242, controlador do sistema de resíduo 244, controlador de limpeza de máquina 245, controlador de zona 247, e o sistema 214 pode incluir outros itens 246. Os subsistemas controláveis 216 incluem atuadores de máquina e coletor 248, subsistema de propulsão 250, subsistema de direção 252, subsistema de resíduo 138, subsistema de limpeza de máquina 254, e os subsistemas 216 podem incluir uma ampla variedade de outros subsistemas 256.
[0052] A FIG. 2 também mostra que a colheitadeira agrícola 100 pode receber mapa de informação anterior 258. Como descrito a seguir, o mapa de informação anterior 258 inclui, por exemplo, um mapa topográfico de uma operação anterior no campo, tal como um veículo aéreo não tripulado completando uma operação de varredura de alcance a partir de uma altitude conhecida, um mapa topográfico sensoreado por um avião, um mapa topográfico sensoreado por um satélite, um mapa topográfico sensoreado por um veículo terrestre, tal como uma plantadeira equipada com GPS, etc. O mapa de informação anterior 258 pode também incluir um ou mais dentre um mapa de genótipo de semente, um mapa de índice vegetativo (VI), um mapa de rendimento, um mapa de biomassa, ou um mapa de ervas daninhas. Entretanto, informação de mapa anterior pode também englobar outros tipos de dados que foram obtidos antes de uma operação de colheita ou um mapa de uma operação anterior. Por exemplo, um mapa topográfico pode ser recuperado de uma fonte remota tal como a United States Geological Survey (USGS). A FIG. 2 também mostra que um operador 260 pode operar a colheitadeira agrícola 100. O operador 260 interage com mecanismos de interface de operador 218. Em alguns exemplos, os mecanismos de interface de operador 218 podem incluir manches, alavancas, um volante, articulações, pedais, botões, diais, blocos de teclas, elementos atuáveis pelo usuário (tais como ícones, botões, etc.) em um dispositivo de exibição de interface de usuário, um microfone e alto-falante (onde reconhecimento de voz e síntese de voz são providos), dentre uma ampla variedade de outros tipos de dispositivos de controle. Onde um sistema de exibição sensível ao toque é provido, o operador 260 pode interagir com mecanismos de interface de operador 218 usando gestos de toque. Esses exemplos aqui descritos são providos como exemplos ilustrativos e não visam limitar o escopo da presente descrição. Consequentemente, outros tipos de mecanismos de interface de operador 218 podem ser usados e estão dentro do escopo da presente descrição.
[0053] O mapa de informação anterior 258 pode ser carregado na colheitadeira agrícola 100 e armazenado no armazenamento de dados 202, usando o sistema de comunicação 206, ou de outras maneiras. Em alguns exemplos, o sistema de comunicação 206 pode ser um sistema de comunicação celular, um sistema para comunicar por uma rede de área abrangente ou uma rede de área local, um sistema para comunicar por uma rede de comunicação de campo próximo, ou um sistema de comunicação configurado para comunicar por qualquer de uma variedade de outras redes ou combinações de redes. O sistema de comunicação 206 pode também incluir um sistema que facilita os carregamentos ou transferências de informação em um cartão de disco seguro digital (SD) ou um cartão de barramento serial universal (USB), ou ambos.
[0054] O sensor de posição geográfica 204 ilustrativamente sensoreia ou detecta a posição ou localização geográfica da colheitadeira agrícola 100. O sensor de posição geográfica 204 pode incluir, mais sem se limitar a um receptor de sistema de satélite de navegação global (GNSS) que recebe sinais de um transmissor de satélite GNSS. O sensor de posição geográfica 204 pode também incluir um componente cinemático em tempo real (RTK) que é configurado para melhorar a precisão de dados de posição derivados do sinal GNSS. O sensor de posição geográfica 204 pode incluir um sistema de posicionamento relativo, um sistema de triangulação celular, ou qualquer de uma variedade de outros sensores de posição geográfica.
[0055] Os sensores in situ 208 podem ser qualquer um dos sensores supradescritos com relação à FIG. 1. Os sensores in situ 208 incluem sensores internos 222 que são montados internamente na colheitadeira agrícola 100. Tais sensores podem incluir, por exemplo, um sensor de velocidade (por exemplo, um GPS, velocímetro, ou bússola), sensores de imagem que são internos à colheitadeira agrícola 100 (tal como a câmera de grão limpo ou câmeras montadas para identificar distribuição de material na colheitadeira agrícola 100, por exemplo, no subsistema de resíduo ou o sistema de limpeza), grão sensores de perda, sensores de característica de refugos, e sensores de qualidade de grão. Os sensores in situ 208 também incluem sensores in situ remotos 224 que capturam informação in situ. Dados in situ incluem dados coletados de um sensor interno à colheitadeira ou coletados de qualquer sensor onde os dados são detectados durante a operação de colheita.
[0056] O gerador de modelo preditivo 210 gera um modelo que é indicativo de uma relação entre os valores sensoreados pelo sensor in situ 208 e uma característica mapeada no campo pelo mapa de informação anterior 258. Por exemplo, se o mapa de informação anterior 258 mapear uma característica topográfica para diferentes localizações no campo, e o sensor in situ 208 estiver sensoreando um valor indicativo de distribuição interna de material, então o gerador de modelo de variável de informação anterior para variável in situ 228 gera um modelo preditivo que modela a relação entre as características topográficas e distribuição de material interno. O modelo de máquina preditivo pode também ser gerado com base em características de um ou mais dos mapas de informação anteriores 258 e um ou mais valores de dados in situ gerados por sensores in situ 208. Então, o gerador de mapa preditivo 212 usa o modelo preditivo gerado pelo gerador de modelo preditivo 210 para gerar um mapa preditivo funcional 263 que prediz o valor de uma característica, tais como distribuição interna de material, características de rejeitos, perda, ou qualidade de grão, sensoreado pelos sensores in situ 208 em diferentes localizações no campo com base no mapa de informação anterior 258.
[0057] Em alguns exemplos, o tipo de valores no mapa preditivo funcional 263 pode ser o mesmo que o tipo de dados in situ sensoreados pelos sensores in situ 208. Em alguns casos, o tipo de valores no mapa preditivo funcional 263 pode ter unidades diferentes dos dados sensoreados pelos sensores in situ 208. Em alguns exemplos, o tipo de valores no mapa preditivo funcional 263 pode ser diferente do tipo de dados sensoreado pelos sensores in situ 208, mas tem uma relação com o tipo do tipo de dados sensoreado pelos sensores in situ 208. Por exemplo, em alguns exemplos, o tipo de dados sensoreado pelos sensores in situ 208 pode ser indicativo do tipo de valores no mapa preditivo funcional 263. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 pode ser diferente do tipo de dados no mapa de informação anterior 258. Em alguns casos, o tipo de dados no mapa preditivo funcional 263 pode ter unidades diferentes dos dados no mapa de informação anterior 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 pode ser diferente do tipo de dados no mapa de informação anterior 258, mas tem uma relação com o tipo de dados no mapa de informação anterior 258. Por exemplo, em alguns exemplos, o tipo de dados no mapa de informação anterior 258 pode ser indicativo do tipo de dados no mapa preditivo funcional 263. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é diferente de um, ou ambos, do tipo de dados in situ sensoreados pelos sensores in situ 208 e do tipo de dados no mapa de informação anterior 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é o mesmo que um, ou ambos, do tipo de dados in situ sensoreados pelos sensores in situ 208 e do tipo de dados no mapa de informação anterior 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é o mesmo que um dentre o tipo de dados in situ sensoreados pelos sensores in situ 208 ou o tipo de dados no mapa de informação anterior 258, e diferentes entre si.
[0058] O gerador de mapa preditivo 212 pode usar as características no mapa de informação anterior 258 e o modelo gerado pelo gerador de modelo preditivo 210 para gerar um mapa preditivo funcional 263 que prediz as características em diferentes localizações no campo. O gerador de mapa preditivo 212 dessa forma produz o mapa preditivo 264
[0059] Como mostrado na FIG. 2, o mapa preditivo 264 prediz o valor de uma característica sensoreada (sensoreada pelos sensores in situ 208), ou uma característica relacionada à característica sensoreada, em várias localizações através do campo com base em um valor de informação anterior no mapa de informação anterior 258 nessas localizações e usando o modelo preditivo. Por exemplo, se o gerador de modelo preditivo 210 tiver gerado um modelo preditivo indicativo de uma relação entre uma característica topográfica e qualidade de grão, então, dado as características topográficas em diferentes localizações através do campo, o gerador de mapa preditivo 212 gera um mapa preditivo 264 que prediz o valor de qualidade de grão em diferentes localizações através do campo. A característica topográfica, obtida do mapa topográfico, nessas localizações e a relação entre a característica topográfica e a característica de qualidade de grão, obtida do modelo preditivo, são usadas para gerar o mapa preditivo 264. A qualidade de grão predita pode ser usada por um sistema de controle para ajustar, por exemplo, uma ou mais dentre aberturas de peneira e crivo, operação do rotor, folga do contrabatedor (isto é, o espaço entre o rotor de trilhagem e o contrabatedor), ou velocidade da ventoinha de limpeza.
[0060] Algumas variações nos tipos de dados que são mapeados no mapa de informação anterior 258, nos tipos de dados sensoreados pelos sensores in situ 208 e nos tipos de dados preditos no mapa preditivo 264 serão agora descritas. Esses são apenas exemplos para ilustrar que os tipos de dados podem ser os mesmos ou diferentes.
[0061] Em alguns exemplos, o tipo de dados no mapa de informação anterior 258 é diferente do tipo de dados sensoreado pelos sensores in situ 208, também o tipo de dados no mapa preditivo 264 é o mesmo que o tipo de dados sensoreado pelos sensores in situ 208. Por exemplo, o mapa de informação anterior 258 pode ser um mapa topográfico, e a variável sensoreada pelos sensores in situ 208 pode ser uma característica de qualidade de grão. O mapa preditivo 264 pode então ser um mapa de máquina preditivo que mapeia valores de característica de máquina preditos para diferentes localizações geográficas no campo.
[0062] Também, em alguns exemplos, o tipo de dados no mapa de informação anterior 258 é diferente do tipo de dados sensoreado pelos sensores in situ 208, e o tipo de dados no mapa preditivo 264 é diferente tanto do tipo de dados no mapa de informação anterior 258 quanto do tipo de dados sensoreado pelos sensores in situ 208. Por exemplo, o mapa de informação anterior 258 pode ser um mapa topográfico, e a variável sensoreada pelos sensores in situ 208 pode ser máquina arfagem/rolamento. O mapa preditivo 264 pode então ser um mapa de distribuição interna preditivo que mapeia valores distribuição interna preditos para diferentes localizações geográficas no campo.
[0063] Em alguns exemplos, o mapa de informação anterior 258 é de uma operação anterior através do campo, e o tipo de dados é diferente do tipo de dados sensoreado pelos sensores in situ 208, também o tipo de dados no mapa preditivo 264 é o mesmo que o tipo de dados sensoreado pelos sensores in situ 208. Por exemplo, o mapa de informação anterior 258 pode ser um mapa de genótipo de semente gerado durante o plantio, e a variável sensoreada pelos sensores in situ 208 pode ser perda. O mapa preditivo 264 pode então ser um mapa de perda preditivo que mapeia predito perda de grãos valores para diferentes localizações geográficas no campo. Em outro exemplo, o mapa de informação anterior 258 pode ser um mapa de genótipo de semeadura, e a variável sensoreada pelos sensores in situ 208 pode ser estado de cultura tal como cultura em pé ou cultura deitada. O mapa preditivo 264 pode então ser um mapa de estado de cultura preditivo que mapeia valores de estado de cultura preditos para diferentes localizações geográficas no campo.
[0064] Em alguns exemplos, o mapa de informação anterior 258 é de uma operação anterior através do campo, e o tipo de dados é o mesmo que o tipo de dados sensoreado pelos sensores in situ 208, e o tipo de dados no mapa preditivo 264 é também o mesmo que o tipo de dados sensoreado pelos sensores in situ 208. Por exemplo, o mapa de informação anterior 258 pode ser um mapa de rendimento gerado durante um ano anterior, e a variável sensoreada pelos sensores in situ 208 pode ser rendimento. O mapa preditivo 264 pode então ser um mapa de rendimento preditivo que mapeia valores de rendimento preditos para diferentes localizações geográficas no campo. Em um exemplo como esse, as diferenças de rendimento relativas no mapa de informação anterior georreferenciado 258 do ano anterior pode ser usado pelo gerador de modelo preditivo 210 para gerar um modelo preditivo que modela uma relação entre as diferenças de rendimento relativas no mapa de informação anterior 258 e os valores de rendimento sensoreados pelos sensores in situ 208 durante a operação de colheita atual. O modelo preditivo é então usado pelo gerador de mapa preditivo 210 para gerar um mapa de rendimento preditivo.
[0065] Em alguns exemplos, o mapa preditivo 264 pode ser provido ao gerador de zona de controle 213. O gerador de zona de controle 213 agrupa valores de dados de pontos individuais contíguos no mapa preditivo 264, em zonas de controle. Uma zona de controle pode incluir duas ou mais porções contíguas de uma área, tal como um campo, para as quais um parâmetro de controle correspondente à zona de controle para controlar um subsistema controlável é constante. Por exemplo, um tempo de resposta para alterar um ajuste de subsistemas controláveis 216 pode ser inadequado para responder satisfatoriamente a mudanças nos valores contidos em um mapa, tal como o mapa preditivo 264. Nesse caso, o gerador de zona de controle 213 analisa o mapa e identifica zonas de controle que são de um tamanho definido para acomodar o tempo de resposta dos subsistemas controláveis 216. Em outro exemplo, as zonas de controle podem ser dimensionadas para reduzir o desgaste proveniente do movimento excessivo do atuador resultante do ajuste contínuo. Em alguns exemplos, pode haver um conjunto diferente de zonas de controle para cada subsistema controlável 216 ou para grupos de subsistemas controláveis 216. As zonas de controle podem ser adicionadas ao mapa preditivo 264 para obter mapa de zona de controle preditivo 265. O mapa de zona de controle preditivo 265 pode dessa forma ser similar ao mapa preditivo 264, exceto que o da zona de controle preditivo 265 inclui informação de zona de controle definindo as zonas de controle. Dessa forma, um mapa preditivo funcional 263, como descrito no presente documento, pode ou não incluir zonas de controle. Tanto o mapa preditivo 264 quanto o mapa de zona de controle preditivo 265 são mapas preditivos funcionais 263. Em um exemplo, um mapa preditivo funcional 263 não inclui zonas de controle, tal como o mapa preditivo 264. Em outro exemplo, um mapa preditivo funcional 263 não inclui zonas de controle, tal como o mapa de zona de controle preditivo 265. Em alguns exemplos, múltiplas culturas podem estar simultaneamente presentes em um campo se um sistema de produção intercultura for implementado. Nesse caso, o gerador de mapa preditivo 212 e o gerador de zona de controle 213 são capazes de identificar a localização e as características das duas ou mais culturas e então gerar o mapa preditivo 264 e o mapa de zona de controle preditivo 265 correspondentemente.
[0066] Deve-se também perceber que o gerador de zona de controle 213 pode agrupar valores para gerar zonas de controle, e as zonas de controle podem ser adicionadas ao mapa de zona de controle preditivo 265, ou um mapa separado, mostrando apenas as zonas de controle que são geradas. Em alguns exemplos, as zonas de controle só podem ser usadas para controlar ou calibrar a colheitadeira agrícola 100, ou ambos. Em outros exemplos, as zonas de controle podem ser apresentadas ao operador 260 e usadas para controlar ou calibrar a colheitadeira agrícola 100 e, em outros exemplos, as zonas de controle podem apenas ser apresentadas ao operador 260 ou outro usuário, ou armazenadas para uso posterior.
[0067] O mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, são providos ao sistema de controle 214, que gera sinais de controle com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos. Em alguns exemplos, o controlador do sistema de comunicação 229 controla o sistema de comunicação 206 para comunicar o mapa preditivo 264 ou mapa de zona de controle preditivo 265 ou sinais de controle com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265 a outras colheitadeiras agrícolas que estão colhendo no mesmo campo. Em alguns exemplos, o controlador do sistema de comunicação 229 controla o sistema de comunicação 206 para enviar o mapa preditivo 264, o mapa de zona de controle preditivo 265, ou ambos, a outros sistemas remotos.
[0068] Em alguns exemplos, o mapa preditivo 264 pode ser provido ao gerador de rota/missão 267. O gerador de rota/missão 267 coloca em gráfico um trajeto de deslocamento para colheitadeira agrícola 100 deslocar durante a operação de colheita com base em mapa preditivo 264. O trajeto de deslocamento pode também incluir ajustes de controle de máquina correspondentes às localizações ao longo do trajeto de deslocamento igualmente. Por exemplo, se um trajeto de deslocamento subir uma colina, então, em um ponto anterior de acesso à colina, o trajeto de deslocamento pode incluir um controle indicativo de direcionamento de potência para os sistemas de propulsão para manter uma velocidade ou taxa de alimentação da colheitadeira agrícola 100. Em alguns exemplos, o gerador de rota/missão 267 analisa as diferentes orientações da colheitadeira agrícola 100 e as características de máquina preditas que as orientações são preditas gerar de acordo com o mapa preditivo 264, para uma pluralidade de diferente rotas de deslocamento, e seleciona um rota que tem resultados desejáveis (tal como pouco tempo de colheita ou utilização de potência desejada ou uniformidade de distribuição de material).
[0069] O controlador de interface de operador 231 é operável para gerar sinais de controle para controlar os mecanismos de interface de operador 218. O controlador de interface de operador 231 é também operável para apresentar o mapa preditivo 264 ou mapa de zona de controle preditivo 265 ou outra informação derivada ou baseada no mapa preditivo 264 no mapa de zona de controle preditivo 265, ou ambos, ao operador 260. O operador 260 pode ser um operador local ou um operador remoto. Como um exemplo, o controlador 231 gera sinais de controle para controlar um mecanismo de exibição para exibir um ou ambos do mapa preditivo 264 e do mapa de zona de controle preditivo 265 para o operador 260. O controlador 231 pode gerar mecanismos atuáveis pelo operador que são exibidos e podem ser atuados pelo operador para interagir com o mapa exibido. O operador pode editar o mapa, por exemplo, corrigindo uma utilização de potência exibido no mapa, com base na observação do operador. O controlador de ajustes 232 pode gerar sinais de controle para controlar vários ajustes na colheitadeira agrícola 100 com base no mapa preditivo 264, no mapa de zona de controle preditivo 265, ou ambos. Por exemplo, o controlador de ajustes 232 pode gerar sinais de controle para controlar os atuadores de máquina e coletor 248. Em resposta aos sinais de controle gerados, os atuadores de máquina e coletor 248 operam para controlar, por exemplo, um ou mais dos ajustes de peneira e crivo, folga do contrabatedor, ajustes do rotor, ajustes de velocidade da ventoinha de limpeza, altura do coletor, funcionalidade do coletor, velocidade do carretel, posição do carretel, funcionalidade da lona (onde a colheitadeira agrícola 100 é acoplada a uma espigadeira de lona), funcionalidade do coletor de milho, controle de distribuição interna e outros atuadores 248 que afetam as outras funções da colheitadeira agrícola 100. O controlador de planejamento de trajeto 234 ilustrativamente gera sinais de controle para controlar o subsistema de direção 252 para dirigir a colheitadeira agrícola 100 de acordo com um trajeto desejado. O controlador de planejamento de trajeto 234 pode controlar um sistema de planejamento de trajeto para gerar uma rota para a colheitadeira agrícola 100 e pode controlar o subsistema de propulsão 250 e o subsistema de direção 252 para dirigir a colheitadeira agrícola 100 ao longo dessa rota. O controlador de taxa de alimentação 236 pode controlar vários subsistemas, tais como o subsistema de propulsão 250 e atuadores de máquina 248, para controlar uma taxa de alimentação com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos. Por exemplo, à medida que a colheitadeira agrícola 100 se aproxima de um terreno em declínio com um valor de velocidade estimado acima de um limiar selecionado, o controlador de taxa de alimentação 236 pode reduzir a velocidade de máquina 100 para manter constante a taxa de alimentação de biomassa através da colheitadeira agrícola 100. O controlador de coletor e carretel 238 pode gerar sinais de controle para controlar um coletor ou um carretel ou outra funcionalidade do coletor. O controlador de correia de lona 240 pode gerar sinais de controle para controlar uma correia de lona ou outra funcionalidade da espigadeira com base no mapa preditivo 264, no mapa de zona de controle preditivo 265, ou ambos. Por exemplo, à medida que a colheitadeira agrícola 100 se aproxima de um terreno em declínio com um valor de velocidade estimado acima de um limiar selecionado, o controlador de correia de lona 240 pode aumentar a velocidade das correias de lona para impedir apoio de material nas correias. O controlador de posição de placa de convés 242 pode gerar sinais de controle para controlar uma posição de uma placa de convés incluída em um coletor com base em mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, e o controlador do sistema de resíduo 244 pode gerar sinais de controle para controlar um subsistema de resíduo 138 com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos. O controlador de limpeza de máquina 245 pode gerar sinais de controle para controlar o subsistema de limpeza de máquina 254. Por exemplo, quando a colheitadeira agrícola 100 está prestes a deslocar transversalmente uma inclinação onde estima-se que a distribuição de material interno será desproporcional em um lado de subsistema de limpeza 254, o controlador de limpeza de máquina 245 pode ajustar o subsistema de limpeza 254 para levar em conta, ou corrigir, o material desproporcionado. Outros controladores incluídos na colheitadeira agrícola 100 podem controlar outros subsistemas com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, igualmente
[0070] As FIGS. 3A e 3B (coletivamente referidas no presente documento como FIG. 3) mostram um fluxograma que ilustra um exemplo da operação da colheitadeira agrícola 100 na geração de um mapa preditivo 264 e mapa de zona de controle preditivo 265 com base no mapa de informação anterior 258.
[0071] Em 280, a colheitadeira agrícola 100 recebe o mapa de informação anterior 258. Exemplos de mapa de informação anterior 258 ou recebimento de mapa de informação anterior 258 são discutidos com relação aos blocos 281, 282, 284 e 286. Como aqui discutido, o mapa de informação anterior 258 mapeia valores de uma variável, correspondentes a uma primeira característica, para diferentes localizações no campo, como indicado no bloco 282. Como indicado no bloco 281, receber o mapa de informação anterior 258 pode envolver selecionar um ou mais dentre uma pluralidade de possíveis mapas de informação anteriores que são disponíveis. Por exemplo, um mapa de informação anterior pode ser um mapa de perfil de terreno gerado de formação de imagem por perfilometria de fase aérea. Outro mapa de informação anterior pode ser um mapa gerado durante um passe anterior através do campo que pode ter sido realizado por uma máquina diferente que realiza uma operação anterior no campo, tal como um pulverizador ou outra máquina. O processo pelo qual um ou mais mapas de informação anteriores são selecionados pode ser manual, semiautomatizado ou automatizado. O mapa de informação anterior 258 é baseado em dados coletados antes de uma operação de colheita atual. Isto é indicado pelo bloco 284. Por exemplo, os dados podem ser coletados por um receptor de GPS montado em uma peça de equipamento durante uma operação de campo anterior. Por exemplo, os dados podem ser coletados em uma operação de varredura de alcance lidar durante um ano anterior, ou anteriormente na época de crescimento atual, ou em outros momentos. Os dados podem ser baseados em dados detectados ou recebidos de outras maneiras sem ser usando varredura de alcance lidar. Por exemplo, um drone equipado com um sistema de perfilometria de projeção de franja pode detectar o perfil ou elevação do terreno. Ou, por exemplo, algumas características topográficas podem ser estimadas com base em padrões de tempo, tal como a formação de sulcos por causa da erosão ou a quebra de torrões em ciclos de congelamento-descongelamento. Em alguns exemplos, o mapa de informação anterior 258 pode ser criado combinando dados de inúmeras fontes tais como as aqui listadas. Ou, por exemplo, os dados para o mapa de informação anterior 258, tal como um mapa topográfico, podem ser transmitidos à colheitadeira agrícola 100 usando o sistema de comunicação 206 e armazenados no armazenamento de dados 202. Os dados para o mapa de informação anterior 258 podem ser providos à colheitadeira agrícola 100 usando o sistema de comunicação 206 de outras maneiras igualmente, e isto é indicado pelo bloco 286 no fluxograma da FIG. 3. Em alguns exemplos, o mapa de informação anterior 258 pode ser recebido pelo sistema de comunicação 206.
[0072] Mediante início de uma operação de colheita, os sensores in situ 208 geram sinais de sensor indicativos de um ou mais valores de dados in situ indicativos de uma característica de máquina, por exemplo, uso de potência, velocidade de máquina, distribuição interna de material, perda de grão, características de rejeitos (tais como nível de rejeitos, fluxo de rejeitos, volume de rejeitos e composição de rejeitos), ou qualidade de grão. Exemplos de sensores in situ 208 são discutidos com relação aos blocos 222, 290 e 226. Como aqui explicado, os sensores in situ 208 incluem sensores internos 222; sensores in situ remotos 224, tais como sensores baseados em UAV que voam em um momento para coletar dados in situ, mostrados no bloco 290; ou outros tipos de sensores in situ, designados pelos sensores in situ 226. Em alguns exemplos, dados de sensores internos são georreferenciados usando dados de posição, direção ou velocidade do sensor de posição geográfica 204.
[0073] O gerador de modelo preditivo 210 controla o gerador de modelo de variável de informação anterior para variável in situ 228 para gerar um modelo que modela uma relação entre os valores mapeados contidos no mapa de informação anterior 258 e os valores in situ sensoreados pelos sensores in situ 208 como indicado pelo bloco 292. As características ou tipos de dados representados pelos valores mapeados no mapa de informação anterior 258 e os valores in situ sensoreados pelos sensores in situ 208 podem ter as mesmas características ou tipo de dados, ou diferentes características ou tipos de dados.
[0074] A relação ou modelo gerada pelo gerador de modelo preditivo 210 é provida ao gerador de mapa preditivo 212. O gerador de mapa preditivo 212 gera um mapa preditivo 264 que prediz um valor de característica sensoreada pelos sensores in situ 208 em diferentes localizações geográficas em um campo que está sendo colhido, ou uma característica diferente que é relacionada à característica sensoreada pelos sensores in situ 208, usando o modelo preditivo e o mapa de informação anterior 258, como indicado pelo bloco 294.
[0075] Deve-se notar que, em alguns exemplos, o mapa de informação anterior 258 pode incluir dois ou mais diferentes mapas ou duas ou mais diferentes camadas de mapa de um único mapa. Cada mapa nos dois ou mais diferentes mapas ou cada camada nas duas ou mais diferentes camadas de mapa de um único mapa mapeiam um tipo de variável diferente para as localizações geográficas no campo. Em um exemplo como esse, o gerador de modelo preditivo 210 gera um modelo preditivo que modela a relação entre os dados in situ e cada uma das diferentes variáveis mapeadas pelos dois ou mais diferentes mapas ou as duas ou mais diferentes camadas de mapa. Similarmente, os sensores in situ 208 podem incluir dois ou mais sensores, cada um sensoreando um tipo de variável diferente. Dessa forma, o gerador de modelo preditivo 210 gera um modelo preditivo que modela as relações entre cada tipo de variável mapeada pelo mapa de informação anterior 258 e cada tipo de variável sensoreada pelos sensores in situ 208. O gerador de mapa preditivo 212 pode gerar um mapa preditivo funcional que prediz um valor para cada característica sensoreada, sensoreada pelos sensores in situ 208 (ou uma característica relacionada à característica sensoreada) em diferentes localizações no campo que está sendo colhido usando o modelo preditivo e cada um dos mapas ou camadas de mapa no mapa de informação anterior 258.
[0076] O gerador de mapa preditivo 212 configura o mapa preditivo 264 de forma que o mapa preditivo 264 seja acionável (ou consumível) pelo sistema de controle 214. O gerador de mapa preditivo 212 pode prover mapa preditivo 264 ao sistema de controle 214 ou ao gerador de zona de controle 213, ou ambos. Alguns exemplos de diferentes maneiras nas quais o mapa preditivo 264 pode ser configurado ou produzido são descritos com relação aos blocos 296, 293, 295, 299 e 297. Por exemplo, o gerador de mapa preditivo 212 configura o mapa preditivo 264 de forma que o mapa preditivo 264 inclua valores que podem ser lidos pelo sistema de controle 214 e usados como a base para gerar sinais de controle para um ou mais dos diferentes subsistemas controláveis da colheitadeira agrícola 100, como indicado pelo bloco 296.
[0077] O gerador de rota/missão 267 coloca em gráfico um trajeto de deslocamento para colheitadeira agrícola 100 deslocar durante a operação de colheita com base em mapa preditivo 204, como indicado pelo bloco 293. O gerador de zona de controle 213 pode dividir o mapa preditivo 264 em zonas de controle com base nos valores no mapa preditivo 264. Os valores contiguamente geolocalizados que estão dentro de um valor limiar de um outro podem ser agrupados em uma zona de controle. O valor limiar pode ser um valor limiar padrão, ou o valor limiar pode ser ajustado com base em uma entrada de operador, com base em uma entrada de um sistema automatizado ou com base em outros critérios. Um tamanho das zonas pode ser com base em uma capacidade de resposta do sistema de controle 214, dos subsistemas controláveis 216, ou com base em considerações de desgaste, ou em outros critérios como indicado pelo bloco 295. O gerador de mapa preditivo 212 configura o mapa preditivo 264 para apresentação a um operador ou outro usuário. O gerador de zona de controle 213 pode configurar o mapa de zona de controle preditivo 265 para apresentação a um operador ou outro usuário. Isto é indicado pelo bloco 299. Quando apresentado a um operador ou outro usuário, a apresentação do mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, pode conter um ou mais dos valores preditivos no mapa preditivo 264 correlacionados à localização geográfica, as zonas de controle no mapa de zona de controle preditivo 265 correlacionadas à localização geográfica, e valores de ajustes ou parâmetros de controle que são usados com base nos valores preditos no mapa preditivo 264 ou zonas no mapa de zona de controle preditivo 265. A apresentação pode, em outro exemplo, incluir informação mais abstrata ou informação mais detalhada. A apresentação pode também incluir um nível de confiança que indica uma precisão com a qual os valores preditivos no mapa preditivo 264 ou nas zonas no mapa de zona de controle preditivo 265 concordam com os valores medidos que podem ser medidos pelos sensores na colheitadeira agrícola 100 à medida que a colheitadeira agrícola 100 move através do campo. Adicionalmente onde a informação é apresentada a mais de uma localização, uma autenticação ou autorização sistema pode ser provido para implementar processos de autenticação e autorização. Por exemplo, pode haver uma hierarquia de indivíduos que são autorizados a ver e mudar mapas e outra informação apresentada. A título de exemplo, um dispositivo de exibição de bordo pode apresentar os mapas em tempo quase real localmente na máquina, apenas, ou os mapas podem também ser gerados em uma ou mais localizações remotas. Em alguns exemplos, cada dispositivo de exibição físico em cada localização pode ser associado a uma pessoa ou um nível de permissão de usuário. O nível de permissão de usuário pode ser usado para determinar quais elementos de exibição são visíveis no dispositivo de exibição físico, e quais valores a pessoa correspondente pode mudar. Como um exemplo, um operador local de máquina 100 pode ser incapaz de ver a informação correspondente ao mapa preditivo 264 ou fazer qualquer mudança na operação da máquina. Um supervisor, em uma localização remota, entretanto, pode ser capaz de ver o mapa preditivo 264 na exibição, mas sem fazer mudanças. Um gestor, que pode estar em uma localização remota separada, pode ser capaz de ver todos os elementos no mapa preditivo 264 e também mudar o mapa preditivo 264 que é usado no controle de máquina. Isto é um exemplo de uma hierarquia de autorização que pode ser implementada. O mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, pode ser configurado de outras maneiras igualmente, como indicado pelo bloco 297.
[0078] No bloco 298, a entrada do sensor de posição geográfica 204 e outros sensores in situ 208 é recebida pelo sistema de controle. O bloco 300 representa o recebimento pelo sistema de controle 214 de uma entrada do sensor de posição geográfica 204 identificar uma localização geográfica da colheitadeira agrícola 100. O bloco 302 representa o recebimento pelo sistema de controle 214 de entradas de sensor indicativas de trajetória ou direção da colheitadeira agrícola 100, e o bloco 304 representa o recebimento pelo sistema de controle 214 de uma velocidade da colheitadeira agrícola 100. O bloco 306 representa o recebimento pelo sistema de controle 214 de outra informação de vários sensores in situ 208.
[0079] No bloco 308, o sistema de controle 214 gera sinais de controle para controlar os subsistemas controláveis 216 com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, e a entrada do sensor de posição geográfica 204 e qualquer outro sensor in situ 208. No bloco 310, o sistema de controle 214 aplica os sinais de controle aos subsistemas controláveis. Percebe-se que os sinais de controle particulares que são gerados, e os subsistemas controláveis particulares 216 que são controlados, podem variar com base em uma ou mais diferentes coisas. Por exemplo, os sinais de controle que são gerados e os subsistemas controláveis 216 que são controlados podem ser com base no tipo de mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, que está sendo usado. Similarmente, os sinais de controle que são gerados e os subsistemas controláveis 216 que são controlados e o sincronismo dos sinais de controle podem ser com base em várias latências do fluxo de cultura através da colheitadeira agrícola 100 e na capacidade de resposta dos subsistemas controláveis 216.
[0080] A título de exemplo, um mapa preditivo gerado 264 na forma de um mapa de perda de cultura preditivo funcional pode ser usado para controlar um ou mais subsistemas 216. Por exemplo, o mapa de perda preditivo funcional pode incluir valores de perda de cultura georreferenciados nas localizações no campo que está sendo colhido. Os valores de perda de cultura do mapa de perda preditivo funcional podem ser extraídos e usados para controlar a velocidade da ventoinha para assegurar que a ventoinha de limpeza 120 minimiza perda de cultura através do subsistema de limpeza 118 à medida que a colheitadeira agrícola 100 move através do campo. O exemplo anterior envolvendo o uso de um mapa de perda de cultura preditivo é provido meramente como um exemplo. Consequentemente, uma ampla variedade de outros sinais de controle pode ser gerada usando valores obtidos de um mapa de máquina preditivo ou outro tipo de mapa preditivo para controlar um ou mais dos subsistemas controláveis 216.
[0081] No bloco 312, é feita uma determinação se a operação de colheita foi completada. Se a colheita não estiver completada, o processamento avança para o bloco 314 onde dados de sensor in situ do sensor de posição geográfica 204 e sensores in situ 208 (e talvez outros sensores) continua a ser lidos.
[0082] Em alguns exemplos, no bloco 316, a colheitadeira agrícola 100 pode também detectar critérios desencadeadores de aprendizagem para realizar aprendizagem de máquina em um ou mais dentre o mapa preditivo 264, o mapa de zona de controle preditivo 265, o modelo gerado pelo gerador de modelo preditivo 210, as zonas geradas pelo gerador de zona de controle 213, um ou mais algoritmos de controle implementados pelos controladores no sistema de controle 214, e outra aprendizagem desencadeada.
[0083] Os critérios desencadeadores de aprendizagem podem incluir qualquer um de uma ampla variedade de diferentes critérios. Alguns exemplos de detecção de critérios desencadeadores são discutidos com relação aos blocos 318, 320, 321, 322 e 324. Por exemplo, em alguns exemplos, a aprendizagem desencadeada pode envolver a recriação de uma relação usada para gerar um modelo preditivo quando uma quantidade limiar de dados de sensor in situ é obtido de sensores in situ 208. Em tais exemplos, o recebimento de uma quantidade de dados de sensor in situ dos sensores in situ 208 que excede um limiar acionador ou faz com que o gerador de modelo preditivo 210 gere um novo modelo preditivo que é usado pelo gerador de mapa preditivo 212. Dessa forma, à medida que a colheitadeira agrícola 100 continua uma operação de colheita, o recebimento da quantidade limiar de dados de sensor in situ dos sensores in situ 208 aciona a criação de uma nova relação representada por um modelo preditivo gerado pelo gerador de modelo preditivo 210. Adicionalmente, novo mapa preditivo 264, mapa de zona de controle preditivo 265, ou ambos, podem ser regenerados usando o novo modelo preditivo. O bloco 318 representa a detecção de uma quantidade limiar de dados de sensor in situ usados para acionar a criação de um novo modelo preditivo
[0084] Em outros exemplos, os critérios desencadeadores de aprendizagem podem ser com base em até que ponto os dados de sensor in situ dos sensores in situ 208 estão mudando em relação a valores anteriores ou em relação a um valor limiar. Por exemplo, se variações nos dados de sensor in situ (ou a relação entre os dados de sensor in situ e a informação no mapa de informação anterior 258) estiverem dentro de uma faixa, forem inferiores a uma quantidade definida, ou abaixo de um valor limiar, então um novo modelo preditivo não é gerado pelo gerador de modelo preditivo 210. Em decorrência disso, o gerador de mapa preditivo 212 não gera um novo mapa preditivo 264, mapa de zona de controle preditivo 265, ou ambos. Entretanto, se variações nos dados de sensor in situ excederem a faixa ou excederem a quantidade predefinida ou o valor limiar, por exemplo, ou se uma relação entre os dados de sensor in situ e a informação no mapa de informação anterior 258 variar em uma quantidade definida, por exemplo, então o gerador de modelo preditivo 210 gera um novo modelo preditivo usando todos ou uma porção dos dados de sensor in situ recém-recebidos que o gerador de mapa preditivo 212 usa para gerar um novo mapa preditivo 264. No bloco 320, variações nos dados de sensor in situ, tal como uma magnitude de uma quantidade pela qual os dados excedem a faixa selecionada ou uma magnitude da variação da relação entre os dados de sensor in situ e a informação no mapa de informação anterior 258, podem ser usadas como um acionador para causar a geração de um novo modelo preditivo e mapa preditivo. O limiar, a faixa e a quantidade definida podem ser ajustados em valores padrões, ou ajustados por um operador ou interação de usuário através de uma interface de usuário, ou ajustados por um sistema automatizado, ou de outras maneiras.
[0085] Outros critérios desencadeadores de aprendizagem podem também ser usados. Por exemplo, se o gerador de modelo preditivo 210 comutar para um mapa de informação anterior diferente (diferente do mapa de informação anterior originalmente selecionado 258), então a comutação para o mapa de informação anterior diferente pode desencadear a reaprendizagem pelo gerador de modelo preditivo 210, o gerador de mapa preditivo 212, gerador de zona de controle 213, sistema de controle 214, ou outros itens. Em outro exemplo, a transição da colheitadeira agrícola 100 para uma topografia diferente ou para uma zona de controle diferente pode ser usada como critérios desencadeadores de aprendizagem igualmente.
[0086] Em alguns casos, o operador 260 pode também editar o mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos. As edições podem mudar um valor no mapa preditivo 264 ou, mudar o tamanho, formato, posição ou existência de uma zona de controle, ou um valor no mapa de zona de controle preditivo 265, ou ambos. O bloco 321 mostra que informação editada pode ser usada como critérios desencadeadores de aprendizagem.
[0087] Em alguns casos, pode ser também que o operador 260 observa que o controle automatizado de um subsistema controlável não é o que o operador deseja. Em tais casos, o operador 260 pode prover um ajustamento iniciado pelo operador ao subsistema controlável refletindo que o operador 260 deseja que o subsistema controlável opere de uma maneira diferente da que está sendo comandada pelo sistema de controle 214. Dessa forma, alteração iniciada pelo operador de um ajuste pelo operador 260 pode fazer com que o gerador de modelo preditivo 210 reaprenda um modelo, o gerador de mapa preditivo 212 regenere o mapa preditivo 264, o gerador de zona de controle 213 regenere as zonas de controle no mapa de zona de controle preditivo 265 e o sistema de controle 214 reaprenda seu algoritmo de controle ou realize aprendizagem de máquina em um dos componentes de controlador 232-246 no sistema de controle 214 com base no ajuste pelo operador 260, como mostrado no bloco 322. O bloco 324 representa o uso de outros critérios de aprendizagem desencadeados.
[0088] Em outros exemplos, a aprendizagem pode ser feita periodicamente ou intermitentemente com base, por exemplo, em um intervalo de tempo selecionado tal como um intervalo de tempo discreto ou um intervalo de tempo variável. Isto é indicado pelo bloco 326.
[0089] Se a aprendizagem for desencadeada, quer com base em critérios desencadeadores de aprendizagem ou com base na passagem de um intervalo de tempo, como indicado pelo bloco 326, então um ou mais dentre o gerador de modelo preditivo 210, o gerador de mapa preditivo 212, o gerador de zona de controle 213 e sistema de controle 214 realiza aprendizagem de máquina para gerar um novo modelo preditivo, um novo mapa preditivo, new zonas de controle e um novo algoritmo de controle, respectivamente, com base nos critérios desencadeadores de aprendizagem. O novo modelo preditivo, o novo mapa preditivo e o novo algoritmo de controle são gerados usando qualquer dado adicional que foi coletado desde que a última operação de aprendizagem foi realizada. A realização da aprendizagem é indicada pelo bloco 328.
[0090] Se a operação de colheita foi completada, a operação move do bloco 312 para o bloco 330 onde um ou mais dentre o mapa preditivo 264, o mapa de zona de controle preditivo 265 e o modelo preditivo gerado pelo gerador de modelo preditivo 210 são armazenados. O mapa preditivo 264, o mapa de zona de controle preditivo 265 e o modelo preditivo podem ser armazenados localmente no armazenamento de dados 202 ou enviados a um sistema remoto usando o sistema de comunicação 206 para uso posterior.
[0091] Nota-se que, embora alguns exemplos no presente documento descrevam o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 recebendo um mapa de informação anterior na geração de um modelo preditivo e um mapa preditivo funcional, respectivamente, em outros exemplos, o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 podem receber, na geração de um modelo preditivo e um mapa preditivo funcional, respectivamente, outros tipos de mapas, incluindo mapas preditivos, tal como um mapa preditivo funcional gerado durante a operação de colheita.
[0092] A FIG. 4A é um diagrama de blocos de uma porção da colheitadeira agrícola 100 mostrada na FIG. 1. Particularmente, a FIG. 4A mostra, dentre outras coisas, um exemplo do gerador de mapa preditivo 212 em mais detalhe. A FIG. 4A também ilustra o fluxo de informação dentre os vários componentes mostrado. O gerador de modelo preditivo 210 recebe um mapa de informação 259. O mapa de informação 259 inclui valores de uma característica agrícola correspondente para diferentes localizações geográficas no campo. Em alguns exemplos, o mapa de informação 259 pode ser um mapa de informação anterior 258. Em alguns exemplos, o mapa de informação 259 pode ser um mapa preditivo que inclui valores preditivos de uma característica agrícola correspondente para diferentes localizações geográficas no campo, tal como um mapa preditivo funcional gerado usando o método descrito na FIG. 3. O mapa de informação 259 pode incluir, em alguns exemplos, um ou mais de mapa topográfico 332, mapa de genótipo de semente 335, mapa VI 336, mapa de rendimento 338, mapa de biomassa 340, ou mapa de ervas daninhas 342. O gerador de modelo preditivo 210 também recebe uma localização geográfica 334, ou uma indicação de uma localização geográfica, do sensor de posição geográfica 204. Os sensores in situ 208 detectam um valor de uma característica agrícola que é indicativo de uma característica de material processado. O material processado pode incluir, em alguns exemplos, grão ou outra cultura, rejeitos e MOG. Os sensores in situ 208 podem dessa forma incluir um ou mais de rejeitos característica sensor 344 que sensoreia um rejeitos característica, sensor de perda 346 que sensoreia uma característica indicativa de perda de grão ou cultura, sensor de qualidade de grão 348 que sensoreia uma característica indicativa de qualidade de grão, ou sensor de distribuição interna 350 que sensoreia uma característica indicativa de distribuição interna de material processado na colheitadeira agrícola 100, bem como um sistema de processamento 352. Em alguns casos, um ou mais sensores 344, 346, 348, e 350 pode ser localizado internamente na colheitadeira agrícola 100. O sistema de processamento 352 processa dados de sensor gerados de um ou mais sensores 344, 346, 348 e 350 para gerar dados processados 354, alguns exemplos dos quais são descritos a seguir.
[0093] Em alguns exemplos, um ou mais sensores 344, 346, 348 e 350 pode gerar sinais eletrônicos indicativos da característica que o sensor sensoreia. O sistema de processamento 352 processa um ou mais dos sinais de sensor obtidos por meio dos sensores para gerar dados processados identificando uma ou mais características. As características identificadas pelo sistema de processamento 352 podem incluir uma distribuição interna de material, perda, qualidade de grão, ou uma característica de rejeitos.
[0094] O sensor in situ 208 pode ser ou incluir sensores ópticos, tal como uma câmera disposta para ver porções internas da colheitadeira agrícola que processam o material agrícola. Dessa forma, em alguns exemplos, o sistema de processamento 352 é operável para detectar a distribuição interna do material agrícola que passa através da colheitadeira agrícola 100 com base em uma imagem capturada pelo sensor de distribuição interna 350. Em outros exemplos, a câmera de processo pode ser câmera de grão limpo 150, e o sistema de processamento 352 é operável para detectar qualidade de grão. Em outros exemplos, a câmera de processo pode ser configurada para capturar imagens de rejeitos material, e o sistema de processamento 352 é operável para detectar características de rejeitos. Em outros exemplos, o sensor de perda 346 pode ser ou incluir sensores de perda no separador 148 ou sensores de perda 152 que sensoreiam perda no sistema de limpeza 118 e sistema de processamento 352. O sensor de perda 346 é operável para detectar perda de cultura.
[0095] Em outros exemplos, o sensor in situ 208 pode ser ou incluir um sensor de GPS que sensoreia posição de máquina. Neste caso, o sistema de processamento 352 pode derivar velocidade e direção dos sinais de sensor igualmente. Em outro exemplo, sensor in situ 208 pode incluir um ou mais sensores de umidade de MOG que detectam características de umidade de MOG em um ou mais subsistemas na colheitadeira agrícola 100. O sistema de processamento 352, neste caso, pode detectar e produzir informação de umidade de MOG.
[0096] Outros sensores de máquina e propriedades podem também ser usados. Em alguns exemplos, dados brutos ou processados de sensores 344, 346, 348 e 350 podem ser apresentados ao operador 260 por meio do mecanismo de interface de operador 218. O operador 260 pode estar a bordo da colheitadeira agrícola 100 ou em uma localização remota.
[0097] A FIG. 4B é um diagrama de blocos mostrando um exemplo de gerador de modelo preditivo 210 em mais detalhe. No exemplo mostrado na FIG. 4B, o gerador de modelo preditivo 210 pode incluir um ou mais de gerador de modelo de característica topográfica para característica de rejeitos 356, gerador de modelo de característica topográfica para qualidade de grão 358, gerador de modelo de característica topográfica para perda 360, gerador de modelo de característica topográfica para distribuição interna 362, gerador de modelo de índice vegetativo para característica de rejeitos 364, gerador de modelo de índice vegetativo para qualidade de grão 366, gerador de modelo de índice vegetativo para perda 368, gerador de modelo de índice vegetativo para distribuição interna 370, gerador de modelo de genótipo para característica de rejeitos 372, gerador de modelo de genótipo para qualidade de grão 374, gerador de modelo de genótipo para perda 376, gerador de modelo de genótipo para distribuição interna 378, gerador de modelo de rendimento para característica de rejeitos 380, gerador de modelo de rendimento para qualidade de grão 382, gerador de modelo de rendimento para perda 384, gerador de modelo de rendimento para distribuição interna 386, gerador de modelo de biomassa para característica de rejeitos 388, gerador de modelo de biomassa para qualidade de grão 390, gerador de modelo de biomassa para perda 392, gerador de modelo de biomassa para distribuição interna 394, gerador de modelo de característica de ervas daninhas para característica de rejeitos 396, gerador de modelo de característica de ervas daninhas para qualidade de grão 398, gerador de modelo de característica de ervas daninhas para perda 400, gerador de modelo de característica de ervas daninhas para distribuição interna 402, gerador de modelo de combinação 404 e outros itens 406. Cada um dos geradores de modelo mostrados na FIG. 4B gera um modelo que modela uma relação entre os valores em um mapa de informação e valores sensoreados por um sensor in situ 208. O gerador de modelo de combinação 404 pode gerar um ou mais modelos com base em dados de diferentes combinações de um ou mais mapas de informação 259 e um ou mais sensores in situ 208.
[0098] O gerador de modelo de característica topográfica para característica de rejeitos 356 recebe dados processados 354 e um mapa topográfico 332 e modela uma relação entre as características topográficas no mapa topográfico 332 e características de rejeito sensoreadas pelo sensor de característica de rejeitos 334. O nível de rejeitos pode ser influenciado pela inclinação da colheitadeira agrícola 100 tanto nas direções frente/trás (inclinação) quanto lado a lado (rolamento). Em um exemplo, um fator de inclinação de máquina, indicando a orientação da colheitadeira agrícola 100, é derivado de mapa topográfico 332, embora o fator de inclinação de máquina possa ser obtido de um sensor de orientação da máquina na colheitadeira agrícola 100 igualmente. Pode haver diferentes relações entre nível de rejeitos e arfagem para cima vs. arfagem para baixo vs. ângulos de rolamento. Dessa forma, em um exemplo, o gerador de modelo de característica topográfica para característica de rejeitos 356 pode gerar múltiplos diferentes modelos, cada um modelando uma relação diferente ou um único modelo modelando algumas ou todas as relações. Por exemplo, o gerador de modelo 356 pode gerar um modelo que modela uma relação entre nível de rejeitos e arfagem para cima. O gerador de modelo 356 pode gerar um modelo separado que modela uma relação entre nível de rejeitos e arfagem para baixo. Em outro exemplo, múltiplas relações podem ser modeladas por um único modelo. Similarmente, quanto mais a colheitadeira agrícola 100 gasta em uma dada orientação (por exemplo, arfagem para cima, arfagem para baixo, etc.), tanto maior o acúmulo de volume de rejeitos ou nível de rejeitos em diferentes localizações na colheitadeira agrícola 100. Portanto, o gerador de modelo 356 pode também gerar um modelo que modela a relação entre a taxa de aumento ou diminuição do nível de rejeitos e as condições de inclinação de forma que o nível de rejeitos possa ser predito mais precisamente com o tempo. Além do mais, o gerador de modelo 356 pode gerar um modelo que considera o crivo, peneira, e ajustes de velocidade de ventoinha dado que esses ajustes influenciam o nível de rejeitos e a taxa de mudança do nível de rejeitos. Além do mais, o tipo de material (por exemplo, a composição do material) nos rejeitos pode ser influenciado pela inclinação da colheitadeira agrícola igualmente. Os tipos de material que podem ser identificados nos rejeitos podem incluir grão limpo ou livre, grão não trilhado, e tipo de MOG (por exemplo, pequeno, grande, verde, etc.). A composição pode incluir outras coisas igualmente, tal como o tipo de material nos rejeitos ou as quantidades relativas de diferentes materiais nos rejeitos. Dessa forma, o gerador de modelo 356 pode gerar um modelo que modela uma relação entre o tipo de material ou composição nos rejeitos e a inclinação da colheitadeira agrícola 100.
[0099] O gerador de modelo de característica topográfica para qualidade de grão 358 pode gerar um modelo que modela uma relação entre características topográficas no mapa topográfico 332 e qualidade de grão sensoreada pelo sensor de qualidade de grão 348. A qualidade de grão na colheitadeira agrícola 100 pode ser influenciada pela inclinação da colheitadeira agrícola 100 tanto na direção frente/trás quanto lado a lado. Um fator de inclinação, indicando a orientação da colheitadeira agrícola 100, pode ser derivado de mapa topográfico 332 ou de um sensor de orientação na colheitadeira agrícola 100. Pode haver diferentes relações entre características de qualidade de grão e arfagem para cima vs. arfagem para baixo vs. ângulos de rolamento. Dessa forma, o gerador de modelo 358 pode gerar diferentes modelos que modelam essas diferentes relações ou um único modelo que modela múltiplas relações. Similarmente, diferentes características de qualidade de grão podem ser modeladas por modelos separados ou podem ser parte de um modelo cumulativo. Tais características de qualidade de grão podem incluir grão limpo, grão quebrado, grão não trilhado, níveis de MOG e tipos de MOG. Também, quanto mais tempo a colheitadeira agrícola 100 fica em uma orientação particular, tanto mais as características de qualidade de grão podem ser afetadas. Portanto, o gerador de modelo 358 pode gerar um modelo que modela uma relação entre a taxa de mudança da característica de qualidade de grão e condições de inclinação de forma que as características de qualidade de grão podem ser mais precisamente preditas por longos períodos de tempo. Também, o crivo, peneira, velocidade da ventoinha, velocidade do separador, velocidade do trilhador, e ajustes de folga do contrabatedor podem influenciar as características de qualidade de grão e as mudanças e taxas de mudanças nas características de qualidade de grão. Dessa forma, o gerador de modelo 358 pode gerar modelos separados que modelam as relações entre um ou mais dentre o crivo, peneira, velocidade da ventoinha, velocidade do separador, velocidade do trilhador, e folga do contrabatedor e as características de qualidade de grão e as taxas de mudança nas características de qualidade de grão, ou o gerador de modelo 358 pode gerar modelos cumulativos que modela mais que uma dessas relações.
[00100] Perda de grão pela colheitadeira agrícola 100 pode ser pesadamente influenciada pela inclinação na qual a colheitadeira agrícola 100 está operando. Dessa forma, perda de grão pode ser pesadamente influenciada pela orientação da colheitadeira agrícola 100. A arfagem da colheitadeira agrícola 100 influencia o tempo de permanência do grão no subsistema de limpeza 118 e pode influenciar quão efetivamente o grão pode ser separado. A inclinação lateral (ou orientação de rolamento) da colheitadeira agrícola 100 pode determinar o quanto os grãos formam pilhas ou sobrecarregam um lado do subsistema de limpeza 118, essencialmente subutilizando o outro lado do subsistema de limpeza 118 e resultando em perdas em um lado da colheitadeira agrícola 100 por causa de formação de pilha de material em um lado do subsistema de limpeza 118. Embora esse fenômeno seja repetitível, os níveis de grão dentro da colheitadeira agrícola 100 são variáveis dependendo da severidade da inclinação, da quantidade de tempo que a colheitadeira agrícola 100 fica em uma inclinação, ajustes de máquina e condições de cultura. Dessa forma, o gerador de modelo de característica topográfica para perda 360 modela uma relação entre uma característica topográfica a partir do mapa 332 e a saída de sensor de perda 346.
[00101] Similarmente, o gerador de modelo de característica topográfica para distribuição interna 362 pode gerar um modelo que modela uma relação entre a característica topográfica no mapa 332 (tal como a inclinação, que pode determinar a orientação da colheitadeira agrícola 100) e a distribuição interna de material dentro da colheitadeira agrícola 100. A distribuição interna pode afetar a perda e outros itens dentro da colheitadeira agrícola 100. Também, a quantidade de tempo na inclinação pode influenciar tanto a perda, a taxa de mudança de perda, a distribuição de material quanto a taxa de mudança da distribuição de material. Portanto, o gerador de modelo de característica topográfica para perda 360 pode modelar as relações entre a quantidade de tempo que a colheitadeira agrícola 100 está em uma dada orientação e a perda. O modelo de característica topográfica para distribuição interna 362 pode modelar uma relação entre a quantidade de tempo que a colheitadeira agrícola 100 está em uma dada orientação e distribuição interna de material dentro da colheitadeira agrícola 100.
[00102] O gerador de modelo de índice vegetativo para característica de rejeitos 364 pode gerar um modelo que modela uma relação entre características no mapa VI 336 e características de rejeito sensoreadas pelo sensor de característica de rejeitos 334. O gerador de modelo 364 pode também receber uma entrada de outros sensores, tal como um sensor de umidade do grão ou um sensor de umidade de MOG. A quantidade de material de cultura que está sendo processado pela colheitadeira agrícola 100 pode ser estimada ou indicada pelas características no mapa VI 336. Isto pode também impactar as características de rejeitos tais como composição de rejeitos, os níveis de rejeitos, o fluxo de rejeitos, ou o volume de rejeitos na colheitadeira agrícola 100. Dessa forma, o gerador de modelo de índice vegetativo para característica de rejeitos 364 modela uma relação entre as características de índice vegetativo no mapa VI 336 e as saídas do sensor de característica de rejeitos 344.
[00103] O gerador de modelo de índice vegetativo para qualidade de grão 366 pode gerar um modelo que modela uma relação entre as características VI no mapa VI 336 e a saída de sensor de qualidade de grão 348. As características de qualidade de grão sensoreadas pelo sensor de qualidade de grão 348 podem incluir, como aqui discutido, grão limpo, grão quebrado, grão não trilhado, níveis de MOG e tipos de MOG que entram no tanque de grão limpo. Pode ser difícil, por exemplo, durante colheita de canola, gerar uma velocidade da ventoinha que retenha todo o grão, mas sopra para fora todas as vagens, pedados de caule e cernes, etc. A eficácia dessa ventoinha ao fazer isso pode ser dependente da biomassa do material vegetal, que, por sua vez, pode ser dependente do teor de umidade da planta que pode ser indicado pelas características VI. Dessa forma, a relação entre as características no mapa VI 336 e as características de qualidade de grão sensoreadas pelo sensor 348 pode ser usado pelo gerador de modelo 366 para gerar um modelo que modela essa relação.
[00104] Além do mais, quando mais biomassa ou mais grão chega através da colheitadeira agrícola 100 em um momento particular, isso pode levar a maiores valores de perda. Similarmente, a amplitude e frequência de variância de biomassa podem levar a valores de perda igualmente. Por exemplo, uma curta duração de maior volume ou densidade de cultura pode ter um curto impacto, mas se o maior volume ou densidade de cultura repetir frequentemente, isso pode levar a maiores valores de perda. Dessa forma, o gerador de modelo de índice vegetativo para perda 368 pode gerar um modelo que modela a relação entre os valores no mapa VI 336 e a saída de sensores de perda 346.
[00105] Como aqui discutido, a quantidade de biomassa que está sendo processada pela colheitadeira agrícola 100 pode também afetar a distribuição interna de material dentro da colheitadeira agrícola 100. Maiores níveis de biomassa podem levar a maiores níveis de material em diferentes áreas da colheitadeira agrícola 100. Portanto, o gerador de modelo 370 pode gerar um modelo que modela uma relação entre as características no mapa VI 336 e a saída de sensor de distribuição interna 350.
[00106] Diferentes genótipos de plantas têm diferentes características que podem se manifestar em até que ponto o grão é bem separado do MOG ou até que ponto as partes da planta (tais como sabugos de milho ou grão) são robustas. Essas características podem afetar as características de rejeitos, tal como a composição de grão não trilhado nos rejeitos, a quantidade de MOG nos rejeitos, se o MOG está quebrado em pedados maiores ou menores, etc. Portanto, o gerador de modelo de genótipo para característica de rejeitos 372 pode gerar uma relação entre valores de genótipos no mapa de genótipo de semente 335 e valores de sensor de característica de rejeitos gerados pelo sensor de característica de rejeitos 334.
[00107] Similarmente, diferentes genótipos podem se comportar de formas diferentes com relação a qualidade de grão. Por exemplo, em um dado conjunto de ajustes de máquina na colheitadeira agrícola 100, diferentes genótipos podem resultam em diferentes quantidades de grão quebrado, grão não trilhado, níveis de MOG e tipos de MOG. O gerador de modelo de genótipo para qualidade de grão 374 dessa forma gera um modelo que modela uma relação entre as características de genótipo de semente no mapa de genótipo de semente 335 e as características de qualidade de grão sensoreadas pelo sensor de qualidade de grão 348.
[00108] O tamanho ou massa de grão pode também diferir por genótipo. Isso pode resultar em diferentes níveis de perda em que maior grão pode ter uma maior tendência de saltar para fora da colheitadeira agrícola 100, enquanto menor grão pode ter uma maior tendência de ser soprado para fora pela ventoinha de limpeza. Diferentes genótipos podem também ter diferentes composições de planta e dessa forma impactar os níveis de perda por causa da maneira com que a cultura quebra durante o processamento dentro da colheitadeira agrícola 100. Dessa forma, o gerador de modelo de genótipo para perda 376 pode gerar um modelo que modela uma relação entre as características de genótipo de semente no mapa 335 e a saída de sensor de perda 346.
[00109] Diferentes genótipos podem também levar a diferentes distribuições internas. Por exemplo, culturas com diferentes maturidades relativas podem ter, no momento da colheita, diferentes níveis de umidade de MOG, o que pode levar a mais ou menos material sendo processado pela colheitadeira agrícola 100 a qualquer dado momento. Dessa forma, o gerador de modelo de genótipo para distribuição interna 378 pode gerar um modelo que modela uma relação entre as características de genótipo de semente no mapa de genótipo de semente 335 e as saídas de sensor de distribuição interna 350. map 335 e as saídas de sensor de distribuição interna 350.
[00110] O rendimento pode também afetar as características de rejeitos. Áreas de maior rendimento em um campo podem gerar mais rejeitos com uma composição diferente de áreas de menor rendimento. Dessa forma, o gerador de modelo de rendimento para característica de rejeitos 380 pode gerar um modelo que modela uma relação entre os valores de rendimento preditivos no mapa de rendimento 338 e as saídas do sensor de característica de rejeitos 334.
[00111] O rendimento pode também afetar a qualidade de grão. Por exemplo, em áreas de maior rendimento, a separação de MOG do grão pode ser mais difícil, resultando em mais MOG no tanque de grão limpo 132 da colheitadeira agrícola 100. Portanto, o gerador de modelo de rendimento para qualidade de grão 382 pode gerar um modelo que modela uma relação entre os valores de rendimento preditivos no mapa de rendimento 338 e as características de qualidade de grão sensoreadas pelo sensor de qualidade de grão 348
[00112] O rendimento pode também afetar a perda. Quando mais grão está passando pela colheitadeira agrícola 100, isso pode resultar em maiores níveis de perda. Dessa forma, áreas de maior rendimento podem produzir maiores níveis de perda igualmente. O gerador de modelo de rendimento para perda 384 pode dessa forma gerar um modelo que modela uma relação entre valores de rendimento preditivos no mapa de rendimento 338 e os valores de perda produzidos pelo sensor de perda 346.
[00113] O rendimento pode também ter um efeito na distribuição interna de material dentro da colheitadeira agrícola 100. Áreas de maior rendimento são frequentemente acompanhadas por maiores níveis de biomassa sendo processados pela colheitadeira agrícola 100. Os maiores níveis de biomassa que frequentemente acompanham áreas de maior rendimento podem afetar a quantidade e distribuição de material dentro da colheitadeira agrícola 100. Portanto, o gerador de modelo de rendimento para distribuição interna 386 pode gerar um modelo que modela uma relação entre os valores de rendimento preditivos no mapa de rendimento 338 e as características de distribuição interna sensoreadas pelo sensor de distribuição interna 350.
[00114] A quantidade de biomassa que está sendo processada pela colheitadeira agrícola 100 pode também afetar as características de rejeitos. Quando mais biomassa estiver sendo processada pela colheitadeira agrícola 100 em um dado momento, isso pode resultar em maiores volumes de rejeitos, e a composição dos rejeitos pode também ser afetada. Em áreas de cultura pesada e, dessa forma, maiores níveis de biomassa, a probabilidade de que mais grão não trilhado esteja presente nos rejeitos pode ser aumentada se os ajustes de máquina na colheitadeira agrícola 100 não forem regulados para levar em conta a maior biomassa. Em áreas de cultura leve e, dessa forma, baixos níveis de biomassa, um aumento na carga de joio, e, dessa forma, um aumento nos rejeitos, pode resultar, a menos que os ajustes de máquina na colheitadeira agrícola 100 sejam regulados para levar em conta a reduzida biomassa. Portanto, o gerador de modelo de biomassa para característica de rejeitos 388 pode gerar um modelo que modela uma relação entre biomassa valores de característica no mapa de biomassa 340 e características de rejeito sensoreadas pelo sensor de característica de rejeitos 344.
[00115] A biomassa pode também afetar qualidade de grão. Maiores níveis de biomassa podem afetar a trilhagem e limpeza, significando que pode haver mais grão não trilhado. Em decorrência disso, mais grão que não é limpo adequadamente pode estar entrando no tanque de grão limpo. Dessa forma, o gerador de modelo de biomassa para qualidade de grão 390 pode gerar um modelo que modela uma relação entre características de biomassa no mapa de biomassa 340 e características de qualidade de grão sensoreadas pelo sensor de qualidade de grão 348.
[00116] A biomassa pode também estar relacionada a perda de grão. Por exemplo, maiores níveis de biomassa frequentemente significam maior MOG na colheitadeira agrícola 100, o que pode levar a maior perda de grão Portanto, o gerador de modelo de biomassa para perda 392 pode gerar um modelo que modela uma relação entre as características de biomassa no mapa de biomassa 340 e as características de perda sensoreadas pelo sensor de perda 346.
[00117] Os níveis de biomassa podem também estar relacionados à distribuição interna de material dentro da colheitadeira agrícola 100. Por exemplo, a variação nos níveis de biomassa que está sendo processada pela colheitadeira 100 pode levar a níveis irregulares de distribuição de material na colheitadeira agrícola 100, de maneira tal que os níveis de material podem ser variáveis pela localização na colheitadeira agrícola, tal como um aumento de material em uma localização e uma diminuição de material em outra localização em decorrência de mudanças na biomassa que está sendo processada pela colheitadeira agrícola 100. Portanto, o gerador de modelo de biomassa para distribuição interna 394 pode gerar um modelo que modela uma relação entre características de biomassa no mapa de biomassa 340 e características de distribuição interna sensoreadas pelas características de distribuição interna sensoreadas pelo sensor de distribuição interna 350.
[00118] As características de rejeitos podem ser fortemente influenciadas pelas características de ervas daninhas, tal como a quantidade de ervas daninhas (por exemplo, intensidade de ervas daninhas) que são admitidas na colheitadeira agrícola 100. O material de ervas daninhas é tipicamente mais robusto e mais verde que o material de cultura e, dessa forma, tem uma maior probabilidade de atingir o sistema de rejeitos, o que pode causar grandes volumes de rejeitos e entupimentos na colheitadeira agrícola 100. Portanto, o gerador de modelo de característica de ervas daninhas para característica de rejeitos 396 pode gerar um modelo que modela uma relação entre características de ervas daninhas no mapa de ervas daninhas 342 e características de rejeito sensoreadas pelo sensor de característica de rejeitos 344. Além do mais, quando a colheitadeira agrícola 100 consome maiores períodos de tempo em uma área que tem uma intensidade de ervas daninhas relativamente alta, em relação a outras áreas do campo, isso pode levar a maiores níveis de rejeitos. Portanto, o gerador de modelo 396 pode gerar um modelo que modela uma relação entre a taxa de mudança em rejeitos e um tamanho de uma localização no campo que tem uma intensidade de ervas daninhas relativamente alta.
[00119] As características de ervas daninhas, tal como intensidade de ervas daninhas ou tipo de ervas daninhas, podem também ser relacionadas qualidade de grão. Por exemplo, maiores níveis de intensidade de ervas daninhas podem levar a níveis mais pesados de MOG na sapata de limpeza, o que aumenta as quantidades de MOG que são entregues ao tanque de grão limpo. Portanto, o gerador de modelo de característica de ervas daninhas para qualidade de grão 398 pode gerar um modelo que modela uma relação entre características de ervas daninhas no mapa de ervas daninhas 342 e características de qualidade de grão sensoreadas pelo sensor de qualidade de grão 348.
[00120] As características de ervas daninhas, tais como intensidade de ervas daninhas e tipo de ervas daninhas, podem também ser relacionadas a perda. Por exemplo, uma maior intensidade de ervas daninhas pode resultar em níveis mais pesados de MOG, o que pode aumentar a perda de grão. Portanto, o gerador de modelo de característica de ervas daninhas para perda 400 pode gerar um modelo que modela uma relação entre as características de ervas daninhas no mapa de ervas daninhas 342 e as características de perda sensoreadas pelo sensor de perda 346.
[00121] As características de ervas daninhas, tal como intensidade de ervas daninhas ou tipo de ervas daninhas, podem também ser relacionadas a distribuição interna de material dentro da colheitadeira agrícola 100. Portanto, o gerador de modelo de característica de ervas daninhas para distribuição interna 402 pode gerar um modelo que modela uma relação entre os valores de característica de ervas daninhas no mapa de ervas daninhas 342 e as características de distribuição interna sensoreadas pelo sensor de distribuição interna 350.
[00122] Retornando novamente à FIG. 4A, o gerador de mapa preditivo 212 pode incluir um ou mais de gerador de mapa de característica de rejeitos 410, gerador de mapa de perda 412, gerador de mapa de qualidade de grão 414, e gerador de mapa de distribuição interna 416. Inúmeros exemplos de diferentes combinações de sensores in situ 208 e mapas de informação 259 serão agora descritos.
[00123] A presente discussão prossegue com relação a um exemplo no qual o sensor in situ 208 é um sensor de distribuição interna 350 que sensoreia distribuição interna de material na colheitadeira agrícola 100. Percebe-se que isto é apenas um exemplo, e os sensores supramencionados, como outros exemplos de sensor in situ 208, são contemplados no presente documento, da mesma forma que outros mapas de informação 259, igualmente. O gerador de modelo preditivo 210 (mostrado em mais detalhe na FIG. 4B) identifica uma relação entre distribuição de material detectado em dados processados 354 (por exemplo, a distribuição de material na colheitadeira agrícola 100 pode ser identificada com base em sinais de sensor do sensor de distribuição interna 350), em uma localização geográfica correspondente a onde os dados de sensor foram derivados, e características de um ou mais dentre os mapas de informação 259 correspondentes à mesma localização no campo onde a distribuição de material foi detectada. Com base nesta relação estabelecida pelo gerador de modelo preditivo 210, o gerador de modelo preditivo 210 gera um modelo preditivo 408. O modelo preditivo 408 é usado pelo gerador de mapa de distribuição interna 416 para predizer a distribuição de material dentro da colheitadeira agrícola 100 em diferentes localizações no campo com base na característica topográfica georreferenciada contida no mapa de informação 259 nas mesmas localizações no campo.
[00124] A presente discussão prossegue com relação a um exemplo no qual o sensor de máquina 208 é um sensor de perda de grão 346. Percebe-se que isto é apenas um exemplo, e os sensores supramencionados, como outros exemplos de sensor in situ 208, bem como os outros mapas de informação 259, são igualmente contemplados no presente documento. O gerador de modelo preditivo 210 (mostrado em mais detalhe na FIG. 4B) identifica uma relação entre perda de grão detectada nos dados processados 354 em uma localização geográfica correspondente a onde os dados de sensor foram geolocalizados, e características do mapa de informação 259 correspondentes à mesma localização no campo onde a perda de grão foi geolocalizada. Com base nesta relação estabelecida pelo gerador de modelo preditivo 210, o gerador de modelo preditivo 210 gera um modelo preditivo 408. O modelo preditivo 408 é usado pelo gerador de mapa de perda 412 para predizer perda de grão em diferentes localizações no campo com base na característica georreferenciada contida no mapa de informação 259 nas mesmas localizações no campo.
[00125] A presente discussão prossegue com relação a um exemplo no qual o sensor in situ 208 é um sensor de característica de rejeitos 344. Percebe-se que isto é apenas um exemplo, e os sensores supramencionados, como outros exemplos de sensor in situ 336, bem como os outros mapas de informação 259, são igualmente contemplados no presente documento. O gerador de modelo preditivo 210 (mostrado em mais detalhe na FIG. 4B) identifica uma relação entre característica de rejeitos detectado em dados processados 354 em uma localização geográfica correspondente a onde os dados de sensor foram geolocalizados e características do mapa de informação 259 correspondentes à mesma localização no campo onde a característica de rejeitos foi geolocalizada. Com base nesta relação estabelecida pelo gerador de modelo preditivo 210, o gerador de modelo preditivo 210 gera um modelo preditivo 408. O modelo preditivo 408 é usado pelo gerador de mapa de característica de rejeitos 410 para predizer características de refugo em diferentes localizações no campo com base na característica georreferenciada contida no mapa de informação 259 nas mesmas localizações no campo.
[00126] A presente discussão prossegue com relação a um exemplo no qual o sensor in situ 208 é um sensor de qualidade de grão 348. Percebe-se que isto é apenas um exemplo, e os sensores supramencionados, como outros exemplos de sensor in situ 208, bem como os outros mapas de informação 259, são igualmente contemplados no presente documento. O gerador de modelo preditivo 210 (mostrado em mais detalhe na FIG. 4B) identifica uma relação entre qualidade de grão detectado em dados processados 354 em uma localização geográfica correspondente a onde os dados de sensor foram geolocalizados, e características do mapa de informação 259 correspondentes à mesma localização no campo onde a qualidade de grão foi geolocalizada. Com base nesta relação estabelecida pelo gerador de modelo preditivo 210, o gerador de modelo preditivo 210 gera um modelo preditivo 408. O modelo preditivo 408 é usado pelo gerador de mapa de qualidade de grão 414 para predizer qualidade de grão em diferentes localizações no campo com base na característica georreferenciada contida no mapa de informação 259 nas mesmas localizações no campo.
[00127] O gerador de modelo preditivo 210 é operável para produzir uma pluralidade de modelos preditivos, tal como um ou mais dos modelos preditivos gerados pelos geradores de modelo mostrados na FIG. 4B. Em outro exemplo, dois ou mais dos modelos preditivos supradescritos podem ser combinados em um único modelo preditivo que prediz duas ou mais características, por exemplo, de distribuição interna de material, característica de rejeitos, perda, e qualidade de grão com base nas características de um ou mais dos mapas de informação 259 em diferentes localizações no campo. Quaisquer desses modelos de máquina, ou combinações dos mesmos, são representados coletivamente pelo modelo de máquina 408 na FIG. 4A.
[00128] O modelo de máquina preditivo 408 é provido ao gerador de mapa preditivo 212. No exemplo da FIG. 4A, o gerador de mapa preditivo 212 inclui um gerador de mapa de distribuição interna 416, um gerador de mapa de perda 412, um gerador de mapa de característica de rejeitos 410, e um gerador de mapa de qualidade de grão 414. Em outros exemplos, o gerador de mapa preditivo 212 pode incluir geradores de mapa adicionais, em menor quantidade, ou diferentes. Dessa forma, em alguns exemplos, o gerador de mapa preditivo 212 pode incluir outros itens 417 que podem incluir outros tipos de geradores de mapa para gerar mapas para outros tipos de características.
[00129] O gerador de mapa de característica de rejeitos 410 ilustrativamente gera um mapa de rejeitos preditivo 418 que prediz características de refugo em diferentes localizações no campo com base nas características no mapa de informação 259 nessas localizações no campo e no modelo preditivo 408.
[00130] O gerador de mapa de perda 412 ilustrativamente gera um mapa de perda preditivo 420 que prediz perda de grão em diferentes localizações no campo com base nas características no mapa de informação 259 nessas localizações no campo e no modelo preditivo 408.
[00131] O gerador de mapa de qualidade de grão 414 ilustrativamente gera um mapa de qualidade de grão preditivo 422 que prediz uma característica indicativa de qualidade de grão em diferentes localizações no campo com base nas características no mapa de informação 259 nessas localizações no campo e no modelo preditivo 408.
[00132] O gerador de mapa de distribuição interna 416 ilustrativamente gera um mapa de distribuição interna preditivo 424 que prediz distribuição de material em diferentes localizações no campo com base nas características no mapa de informação 259 nessas localizações no campo e no modelo preditivo 408.
[00133] O gerador de mapa preditivo 212 produz um ou mais dos mapas preditivos funcionais 418, 420, 422 e 424 que são preditivos de uma característica. Cada um dos mapas preditivos funcionais 418, 420, 422 e 424 são mapas preditivos funcionais que predizem a respectiva característica em diferentes localizações em um campo. Cada um dos mapas preditivos funcionais 418, 420, 422 e 444 pode ser provido ao gerador de zona de controle 213, ao sistema de controle 214, ou ambos. O gerador de zona de controle 213 gera zonas de controle e incorpora essas zonas de controle nos mapas preditivos funcionais 418, 420, 422 e 424. Qualquer ou todos os mapas preditivos funcionais 418, 420, 422 ou 424 e os mapas preditivos funcionais correspondentes 418, 420, 422 ou 424 com zonas de controle podem ser providos ao sistema de controle 214, que gera sinais de controle para controlar um ou mais dos subsistemas controláveis 216 com base em um ou todos os mapas preditivos funcionais. Qualquer ou todos os mapas preditivos funcionais 418, 420, 422 ou 424 (com ou sem zonas de controle) podem ser apresentados ao operador 260 ou outro usuário.
[00134] A FIG. 5 é um fluxograma de um exemplo de operação do gerador de modelo preditivo 210 e do gerador de mapa preditivo 212 na geração do modelo de máquina preditivo 408 e dos mapas de característica preditivos 418, 420, 422 e 424, respectivamente. No bloco 430, o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 recebem um mapa de informação 259, que pode ser um ou mais dos mapas de informação mostrados na FIG. 4A. No bloco 432, o sistema de processamento 352 recebe um ou mais sinais de sensor dos sensores in situ 208. Como aqui discutido, o sensor in situ 208 pode ser um sensor de característica de rejeitos 344, sensor de perda 346, um sensor de qualidade de grão 348, ou um sensor de distribuição interna 350.
[00135] No bloco 434, o sistema de processamento 352 processa um ou mais sinais de sensor recebidos para gerar dados indicativos de uma característica. Em alguns casos, como indicado no bloco 436, os dados de sensor podem ser indicativos de uma característica de rejeitos. Em alguns casos, como indicado no bloco 438, os dados de sensor podem ser indicativos de perda de grão. Em alguns casos, como indicado pelo bloco 440, os dados de sensor podem ser indicativos de qualidade de grão. Em alguns casos, como indicado no bloco 442, os dados de sensor podem ser indicativos de distribuição interna de material dentro da colheitadeira agrícola 100.
[00136] No bloco 444, o gerador de modelo preditivo 210 também obtém a localização geográfica 334 correspondente aos dados de sensor. Por exemplo, o gerador de modelo preditivo 210 pode obter a posição geográfica do sensor de posição geográfica 204 e determinar, com base em atrasos de máquina, velocidade de máquina, etc., uma localização geográfica precisa onde os dados de sensor foram capturados ou derivados. Adicionalmente, no bloco 444, a orientação da colheitadeira agrícola 100 no campo pode ser determinada. A orientação da colheitadeira agrícola 100 pode ser obtida, por exemplo, para identificar sua orientação em relação à inclinação no campo.
[00137] No bloco 446, o gerador de modelo preditivo 210 gera um ou mais modelos preditivos, tal como modelo de máquina 408, que modela uma relação entre uma ou mais características em um mapa de informação 259 e uma característica que está sendo sensoreada pelo sensor in situ 208 ou uma característica relacionada.
[00138] No bloco 448, o modelo preditivo, tal como modelo preditivo 408, é provido ao gerador de mapa preditivo 212, e o gerador de mapa preditivo 212 gera um mapa preditivo funcional que mapeia uma característica predita com base nos dados georreferenciados em um mapa de informação 259 e no modelo preditivo 408. Em alguns exemplos, o mapa preditivo funcional é mapa de característica de rejeitos preditivo 418. Em alguns exemplos, o mapa preditivo funcional é mapa de perda preditivo 420. Em alguns exemplos, o mapa preditivo funcional é mapa de qualidade de grão preditivo 422. Em alguns exemplos, o mapa preditivo funcional é mapa de distribuição interna preditivo 424.
[00139] O mapa preditivo funcional pode ser gerado durante o curso de uma operação agrícola. Dessa forma, enquanto uma colheitadeira agrícola está movendo através de um campo realizando uma operação agrícola, o mapa preditivo funcional é gerado à medida que a operação agrícola é realizada.
[00140] No bloco 450, o gerador de mapa preditivo 212 produz o mapa preditivo funcional. No bloco 452, o gerador de mapa preditivo 212 produz o mapa preditivo funcional para apresentação e possível interação pelo operador 260. No bloco 454, o gerador de mapa preditivo 212 pode configurar o mapa preditivo funcional para consumo pelo sistema de controle 214. No bloco 456, o gerador de mapa preditivo 212 pode também prover o mapa preditivo funcional ao gerador de zona de controle 213 para geração de zonas de controle. No bloco 428, o gerador de mapa preditivo 212 configura o mapa preditivo funcional de outras maneiras igualmente. O mapa preditivo funcional (com ou sem as zonas de controle) é provido ao sistema de controle 214. No bloco 460, o sistema de controle 214 gera sinais de controle para controlar os subsistemas controláveis 216 com base no mapa preditivo funcional.
[00141] O sistema de controle 214 pode gerar sinais de controle para controlar os atuadores que controlam um ou mais dentre a velocidade e tamanho das aberturas na peneira 124 e crivo 122, a velocidade da ventoinha de limpeza 120 e rotor 112, o a pressão do rotor que aciona o rotor 112, e a folga entre o rotor 112 e os contrabatedores 114, ou outras coisas.
[00142] O sistema de controle 214 pode gerar sinais de controle para controlar o coletor ou outro(s) atuador(es) de máquina 248. O sistema de controle 214 pode gerar sinais de controle para controlar o subsistema de propulsão 250. O sistema de controle 214 pode gerar sinais de controle para controlar o subsistema de direção 252. O sistema de controle 214 pode gerar sinais de controle para controlar o subsistema de resíduo 138. O sistema de controle 214 pode gerar sinais de controle para controlar o subsistema de limpeza de máquina 254. O sistema de controle 214 pode gerar sinais de controle para controlar o trilhador 110. O sistema de controle 214 pode gerar sinais de controle para controlar o subsistema de manipulação de material 125. O sistema de controle 214 pode gerar sinais de controle para controlar o subsistema de limpeza de cultura 118. O sistema de controle 214 pode gerar sinais de controle para controlar o sistema de comunicação 206. O sistema de controle 214 pode gerar sinais de controle para controlar os mecanismos de interface de operador 218. O sistema de controle 214 pode gerar sinais de controle para controlar vários outros subsistemas controláveis 256.
[00143] Em um exemplo no qual o sistema de controle 214 recebe um mapa preditivo funcional ou um mapa preditivo funcional com zonas de controle adicionadas, o controlador de coletor/carretel 238 controla o coletor ou outros atuadores de máquina 248 para controlar uma altura, inclinação ou rolamento do coletor 102. Em um exemplo no qual o sistema de controle 214 recebe um mapa preditivo funcional ou um mapa preditivo funcional com zonas de controle adicionadas, o controlador de taxa de alimentação 236 controla o subsistema de propulsão 250 para controlar uma velocidade de deslocamento da colheitadeira agrícola 100. Em um exemplo no qual o sistema de controle 214 recebe um mapa preditivo funcional ou um mapa preditivo funcional com zonas de controle adicionadas, o controlador de planejamento de trajeto 234 controla o subsistema de direção 252 para dirigir a colheitadeira agrícola 100. Em outro exemplo no qual o sistema de controle 214 recebe um mapa preditivo funcional ou um mapa preditivo funcional com zonas de controle adicionadas, o controlador do sistema de resíduo 244 controla o subsistema de resíduo 138. Em outro exemplo no qual o sistema de controle 214 recebe um mapa preditivo funcional ou um mapa preditivo funcional com zonas de controle adicionadas, o controlador de ajustes 232 controla os ajustes de trilhador do trilhador 110. Em outro exemplo no qual o sistema de controle 214 recebe um mapa preditivo funcional ou um mapa preditivo funcional com zonas de controle adicionadas, o controlador de ajustes 232 ou outro controlador 246 controla o subsistema de manipulação de material 125. Em outro exemplo no qual o sistema de controle 214 recebe um mapa preditivo funcional ou um mapa preditivo funcional com zonas de controle adicionadas, o controlador de ajustes 232 controla o subsistema de limpeza de cultura 118. Em outro exemplo no qual o sistema de controle 214 recebe um mapa preditivo funcional ou um mapa preditivo funcional com zonas de controle adicionadas, o controlador de limpeza de máquina 245 controla o subsistema de limpeza de máquina 254 na colheitadeira agrícola 100. Em outro exemplo no qual o sistema de controle 214 recebe um mapa preditivo funcional ou um mapa preditivo funcional com zonas de controle adicionadas, o controlador do sistema de comunicação 229 controla o sistema de comunicação 206. Em outro exemplo no qual o sistema de controle 214 recebe um mapa preditivo funcional ou um mapa preditivo funcional com zonas de controle adicionadas, o controlador de interface de operador 231 controla os mecanismos de interface de operador 218 na colheitadeira agrícola 100. Em outro exemplo no qual o sistema de controle 214 recebe o mapa preditivo funcional ou o mapa preditivo funcional com zonas de controle adicionadas, o controlador de posição de placa de convés 242 controla os atuadores de máquina/coletor 248 para controlar uma placa de convés na colheitadeira agrícola 100. Em outro exemplo no qual o sistema de controle 214 recebe o mapa preditivo funcional ou o mapa preditivo funcional com zonas de controle adicionadas, o controlador de correia de lona 240 controla os atuadores de máquina/coletor 248 para controlar uma correia de lona na colheitadeira agrícola 100. Em outro exemplo no qual o sistema de controle 214 recebe o mapa preditivo funcional ou o mapa preditivo funcional com zonas de controle adicionadas, os outros controladores 246 controlam outros subsistemas controláveis 256 na colheitadeira agrícola 100.
[00144] Em alguns exemplos, o sistema de controle 214 recebe um mapa preditivo funcional ou um mapa preditivo funcional com zonas de controle adicionadas e gera sinais de controle para um ou mais dos subsistemas controláveis 216 para controlar ou compensar a distribuição de material interno na colheitadeira agrícola 100. Por exemplo, o sistema de controle 214 pode gerar um ou mais sinais de controle para controlar o subsistema de manipulação de material 125 para controlar ou compensar a distribuição de material interno na colheitadeira agrícola 100 com base no mapa preditivo funcional recebido (com ou sem zonas de controle). Por exemplo, o sistema de controle 214 pode gerar um ou mais sinais de controle para controlar os ajustes ou características operacionais de componentes de subsistema de manipulação de material 125 tal como controlar o acelerador de alimentação 108, controlar o trilhador 110, tal como controlar a velocidade do rotor de trilhagem 112, a folga do contrabatedor (o espaçamento entre o rotor de trilhagem 112 e os contrabatedores 114), controlar o separador 116, controlar o batedor de descarga 126, controlar o elevador de rejeitos 128, controlar o elevador de grão limpo 130, controlar o trado de descarregamento 134, ou controlar o bico 136, com base nos valores no mapa preditivo funcional (com ou sem zonas de controle). Em outro exemplo, o sistema de controle 214 pode gerar um ou mais sinais de controle para controlar o subsistema de limpeza 118 para controlar ou compensar a distribuição de material interno na colheitadeira agrícola com base no mapa preditivo funcional recebido (com ou sem zonas de controle). Por exemplo, o sistema de controle 214 pode gerar um ou mais sinais de controle para controlar os ajustes ou características operacionais de componentes de subsistema de limpeza 118 tal como controlar a ventoinha de limpeza 120, tal como aumentar ou diminuir a velocidade da ventoinha de limpeza 120, controlar o crivo 122, tal como controlar a folga do crivo (controlar o tamanho das aberturas no crivo 122), ou controlar a peneira 124, tal como controlar a folga da peneira (controlar o tamanho das aberturas em peneira 124, com base nos valores no mapa preditivo funcional (com ou sem zonas de controle). Em outro exemplo, o sistema de controle 214 pode gerar um ou mais sinais de controle para controlar o subsistema de resíduo 138 para controlar ou compensar a distribuição de material interno na colheitadeira agrícola 100 com base no mapa preditivo funcional recebido (com ou sem zonas de controle). Por exemplo, o sistema de controle 214 pode gerar um ou mais sinais de controle para controlar os ajustes ou características operacionais de componentes de subsistema de resíduo 138 tal como controlar picador 140 ou controlar espalhador 142 com base nos valores no mapa preditivo funcional (com ou sem zonas de controle)
[00145] Em alguns exemplos, o sistema de controle 214 pode gerar um ou mais sinais de controle para controlar os ajustes (por exemplo, posição, orientação, etc.) dos elementos de engate de material ajustáveis dispostos no trajeto de fluxo de material dentro da colheitadeira agrícola para controlar ou compensar a distribuição de material interno na colheitadeira agrícola 100. Por exemplo, um ou mais sinais de controle podem controlar um atuador para atuar o movimento dos elementos de engate de material ajustáveis para mudar uma posição ou orientação dos elementos de engate de material ajustáveis para direcionar pelo menos uma porção da corrente de material para a direita ou esquerda em relação à direção de fluxo. Em alguns exemplos, a direção pode ser de áreas de maior profundidade de material para áreas de menor profundidade de material lateralmente ou longitudinalmente em relação à direção de fluxo de material.
[00146] Pode-se dessa forma perceber que o presente sistema toma um ou mais mapas de informação que mapeiam características para diferentes localizações em um campo. O presente sistema também usa um ou mais sensores in situ que sensoreiam dados de sensor in situ que são indicativos de uma característica, e gera um modelo que modela uma relação entre a característica sensoreada usando o sensor in situ, ou uma característica relacionada, e a característica mapeada no mapa de informação. Dessa forma, o presente sistema gera um mapa preditivo funcional usando um modelo, dados in situ e um mapa de informação, e pode configurar o mapa preditivo funcional gerado para consumo por um sistema de controle ou para apresentação a um operador ou outro usuário local ou remoto. Por exemplo, o sistema de controle pode usar o mapa para controlar um ou mais sistemas de uma colheitadeira agrícola.
[00147] A FIG. 6 mostra um diagrama de blocos ilustrando um exemplo de gerador de zona de controle 213. O gerador de zona de controle 213 inclui seletor de atuador de máquina de trabalho (WMA) 486, sistema de geração de zona de controle 488 e sistema de geração de zona de regime 490. O gerador de zona de controle 213 pode também incluir outros itens 492. O sistema de geração de zona de controle 488 inclui componente de identificação de critérios de zona de controle 494, componente de definição de limite de zona de controle 496, componente de identificação de ajuste alvo 498 e outros itens 520. O sistema de geração de zona de regime 490 inclui componente de identificação de critérios de zona de regime 522, componente de definição de limite de zona de regime 524, componente de identificação de resolvedor de ajustes 526 e outros itens 528. Antes de descrever a operação geral do gerador de zona de controle 213 em mais detalhe, uma breve descrição de alguns dos itens no gerador de zona de controle 213 e as respectivas operações dos mesmos será primeiramente provida.
[00148] A colheitadeira agrícola 100, ou outras máquinas de trabalho, pode ter uma ampla variedade de diferentes tipos de atuadores controláveis que realizam diferentes funções. Os atuadores controláveis na colheitadeira agrícola 100 ou outras máquinas de trabalho são coletivamente referidos como atuadores de máquina de trabalho (WMAs). Cada WMA pode ser independentemente controlável com base em valores em um mapa preditivo funcional, ou os WMAs podem ser controlados como conjuntos com base em um ou mais valores em um mapa preditivo funcional. Portanto, o gerador de zona de controle 213 pode gerar zonas de controle correspondentes a cada WMA individualmente controlável ou correspondentes aos conjuntos de WMAs que são controlados em coordenação com um outro.
[00149] O seletor de WMA 486 seleciona um WMA ou um conjunto de WMAs para o qual zonas de controle correspondentes devem ser geradas. O sistema de geração de zona de controle 488 então gera as zonas de controle para o WMA ou conjunto de WMAs selecionado. Para cada WMA ou conjunto de WMAs, diferentes critérios podem ser usados na identificação de zonas de controle. Por exemplo, para um WMA, o tempo de resposta de WMA pode ser usado como o critério para definir os limites das zonas de controle. Em outro exemplo, características de desgaste (por exemplo, quanto um atuador ou mecanismo particular desgaste em decorrência de movimento do mesmo) podem ser usadas como o critério para identificar os limites de zonas de controle. O componente de identificação de critérios de zona de controle 494 identifica critérios particulares que devem ser usados na definição de zonas de controle para o WMA ou conjunto de WMAs selecionado. O componente de definição de limite de zona de controle 496 processa os valores em um mapa preditivo funcional em análise para definir os limites das zonas de controle nesse mapa preditivo funcional com base nos valores no mapa preditivo funcional em análise e com base nos critérios de zona de controle para o WMA ou conjunto de WMAs selecionado.
[00150] O componente de identificação de ajuste alvo 498 ajusta um valor do ajuste alvo que será usado para controlar o WMA ou conjunto de WMAs em diferentes zonas de controle. Por exemplo, se o WMA selecionado é sistema de propulsão 250 e o mapa preditivo funcional em análise é um mapa de velocidade preditivo funcional 438, então o ajuste alvo em cada zona de controle pode ser um ajuste de velocidade alvo com base em valores de velocidade contidos no mapa de velocidade preditivo funcional 238 dentro da zona de controle identificada.
[00151] Em alguns exemplos, onde a colheitadeira agrícola 100 deve ser controlada com base em uma localização atual ou futura da colheitadeira agrícola 100, múltiplos ajustes alvos podem ser possíveis para um WMA em uma dada localização. Nesse caso, os ajustes alvos podem ter diferentes valores e podem ser concorrentes. Dessa forma, os ajustes alvos precisam ser resolvidos de forma que apenas um único ajuste alvo é usado para controlar o WMA. Por exemplo, ondo WMA é um atuador no sistema de propulsão 250 que está sendo controlado a fim de controlar a velocidade da colheitadeira agrícola 100, múltiplos diferentes conjuntos concorrentes de critérios podem existir que são considerados pelo sistema de geração de zona de controle 488 na identificação das zonas de controle e os ajustes alvos para o WMA selecionado nas zonas de controle. Por exemplo, diferentes ajustes alvos para controlar a velocidade de máquina podem ser gerados com base, por exemplo, em um valor de taxa de alimentação detectado ou predito, um valor de eficiência de combustível detectado ou preditivo, um valor de perda de grão detectado ou predito, ou uma combinação desses. Entretanto, a qualquer dado momento, a colheitadeira agrícola 100 não pode deslocar no chão a múltiplas velocidades simultaneamente. Em vez disso, a qualquer dado momento, a colheitadeira agrícola 100 desloca em uma única velocidade. Dessa forma, um dos ajustes alvos concorrentes é selecionado para controlar a velocidade da colheitadeira agrícola 100.
[00152] Portanto, em alguns exemplos, o sistema de geração de zona de regime 490 gera zonas de regime para resolvedor múltiplos diferentes ajustes alvos concorrentes. O componente de identificação de critérios de zona de regime 522 identifica os critérios que são usados para estabelecer zonas de regime para o WMA ou conjunto de WMAs selecionado no mapa preditivo funcional em análise. Alguns critérios que podem ser usados para identificar ou definir zonas de regime incluem, por exemplo, tipo de cultura ou variedade de cultura com base em um mapa tal como plantado ou outra fonte do tipo de cultura ou variedade de cultura, tipo de ervas daninhas, intensidade de ervas daninhas, estado de cultura, tal como se a cultura está deitada, parcialmente deitada ou de pé, rendimento, biomassa, índice vegetativo, ou topografia. Uma vez que cada WMA ou conjunto de WMAs pode ter uma zona de controle correspondente, diferentes WMAs ou conjuntos de WMAs podem ter uma zona de regime correspondente. O componente de definição de limite de zona de regime 524 identifica os limites de zonas de regime no mapa preditivo funcional em análise com base nos critérios de zona de regime identificados pelo componente de identificação de critérios de zona de regime 522.
[00153] Em alguns exemplos, as zonas de regime podem se sobrepor. Por exemplo, uma zona de regime de variedade de cultura pode sobrepor a uma porção ou a totalidade de uma zona de regime de estado de cultura. Em um exemplo como esse, as diferentes zonas de regime podem ser atribuídas a uma hierarquia de precedência de forma que, onde duas ou mais zonas de regime se sobrepõem, a zona de regime atribuída com um maior posição hierárquica ou importância na hierarquia de precedência tem precedência em relação as zonas de regime que têm menores posições hierárquicas ou importância na hierarquia de precedência. A hierarquia de precedência das zonas de regime pode ser manualmente ajustada ou pode ser automaticamente ajustada usando um sistema baseado em regras, um sistema baseado em modelo, ou outro sistema. Como um exemplo, onde uma zona de regime de cultura deitada sobrepõe a uma zona de regime de variedade de cultura, a zona de regime de cultura deitada pode ser atribuída com uma maior importância na hierarquia de precedência do que a zona de regime de variedade de cultura de forma que a zona de regime de cultura deitada tem precedência.
[00154] Além do mais, cada zona de regime pode ter um resolvedor de ajustes exclusivo para um dado WMA ou conjunto de WMAs. O componente de identificação de resolvedor de ajustes 526 identifica um resolvedor de ajustes particular para cada zona de regime identificada no mapa preditivo funcional em análise e um resolvedor de ajustes particular para o WMA ou conjunto de WMAs selecionado.
[00155] Uma vez que o resolvedor de ajustes para uma zona de regime particular é identificado, esse resolvedor de ajustes pode ser usado para resolvedor ajustes alvos concorrentes, onde mais que um ajuste alvo é identificado com base nas zonas de controle. Os diferentes tipos de resolvedores de ajustes podem ter diferentes formas. Por exemplo, os resolvedores de ajustes que são identificados para cada zona de regime podem incluir um ser resolvedor de escolha humano no qual os ajustes alvos concorrentes são apresentados a um operador ou outro usuário para resolução. Em outro exemplo, os resolvedores de ajustes podem incluir uma rede neural ou outro sistema de inteligência artificial ou de aprendizagem de máquina. Em tais casos, os resolvedores de ajustes podem resolvedor os ajustes alvos concorrentes com base em uma métrica de qualidade predita ou histórica correspondente a cada um dos diferentes ajustes alvos. Como um exemplo, um ajuste de maior velocidade do veículo pode reduzir o tempo para colher um campo e reduzir os custos de mão de obra e equipamento baseados em tempo correspondentes, mas pode aumentar as perdas de grão. Um ajuste de velocidade de veículo reduzida pode aumentar o tempo para colher um campo e aumentar os custos de mão de obra e equipamento baseados em tempo correspondentes, mas pode diminuir perdas de grão. Quando a perda de grão ou o tempo para colher é selecionado como uma métrica de qualidade, o valor predito ou histórico para a métrica de qualidade selecionada, dados os dois valores de ajustes de velocidade do veículo concorrentes, pode ser usado para resolvedor o ajuste de velocidade. Em alguns casos, os resolvedores de ajustes podem ser um conjunto de regras de limiar que pode ser usado em substituição, ou em adição, às zonas de regime. Um exemplo de uma regra de limiar pode ser expresso da seguinte maneira: se valores de biomassa preditos dentro de 6,1 metros (20 pés) do coletor da colheitadeira agrícola 100 forem maiores que x quilogramas (onde x é um valor selecionado ou predeterminado), então usar o valor de ajuste alvo que é escolhido com base na taxa de alimentação sobre outros ajustes alvos concorrentes, senão usar o valor de ajuste alvo com base em perda de grão sobre outros valores de ajuste alvo concorrentes.
[00156] Os resolvedores de ajustes podem ser componentes lógicos que executam regras lógicas na identificação de um ajuste alvo. Por exemplo, os resolvedores de ajustes podem resolvedor ajustes alvos enquanto tentam minimizar o tempo de colheita ou minimizar o custo de colheita total ou maximizar o grão colhido ou com base em outras variáveis que são computadas como uma função dos diferentes ajustes alvos candidatos. Um tempo de colheita pode ser minimizado quando uma quantidade para completar uma colheita é reduzida para um valor igual ou abaixo de um limiar selecionado. Um custo de colheita total pode ser minimizado ondo custo de colheita total é reduzido para um valor igual ou abaixo de um limiar selecionado. O grão colhido pode ser maximizado onde a quantidade de grão colhido é aumentada para um valor igual ou acima de um limiar selecionado.
[00157] A FIG. 7 é um fluxograma que ilustra um exemplo da operação de gerador de zona de controle 213 na geração de zonas de controle e zonas de regime para um mapa que o gerador de zona de controle 213 recebe para processamento de zona (por exemplo, para um mapa em análise).
[00158] No bloco 530, o gerador de zona de controle 213 recebe um mapa em análise para processamento. Em um exemplo, como mostrado no bloco 532, o mapa em análise é um mapa preditivo funcional. Por exemplo, o mapa em análise pode ser um dos mapas preditivos funcionais 436, 437, 438, ou 440. O bloco 534 indica que o mapa em análise pode ser outros mapas igualmente.
[00159] No bloco 536, o seletor de WMA 486 seleciona um WMA ou um conjunto de WMAs para o qual zonas de controle devem ser geradas no mapa em análise. No bloco 538, o componente de identificação de critérios de zona de controle 494 obtém critérios de definição de zona de controle para o WMA ou conjunto de WMAs selecionado. O bloco 540 indica um exemplo no qual os critérios de zona de controle são ou incluem características de desgaste do WMA ou conjunto de WMAs selecionado. O bloco 542 indica um exemplo no qual os critérios de definição de zona de controle são ou incluem uma magnitude e variação de dados de fonte de entrada, tais como a magnitude e variação dos valores no mapa em análise ou a magnitude e variação de entradas de vários sensores in situ 208. O bloco 544 indica um exemplo no qual os critérios de definição de zona de controle são ou incluem características físicas de máquina, tais como as dimensões físicas da máquina, uma velocidade na qual diferentes subsistemas operam, ou outras características físicas de máquina. O bloco 546 indica um exemplo no qual os critérios de definição de zona de controle são ou incluem uma capacidade de resposta do WMA ou conjunto de WMAs selecionado de atingir valores de ajuste recém-comandados. O bloco 548 indica um exemplo no qual os critérios de definição de zona de controle são ou incluem métricas de desempenho de máquina. O bloco 550 indica um exemplo no qual os critérios de definição de zona de controle são ou incluem preferências de operador. O bloco 552 indica um exemplo no qual os critérios de definição de zona de controle são ou incluem outros itens igualmente. O bloco 549 indica um exemplo no qual os critérios de definição de zona de controle são baseados no tempo, significando que a colheitadeira agrícola 100 não cruzará o limite de uma zona de controle até que uma quantidade de tempo selecionada tenha sido decorrida desde que a colheitadeira agrícola 100 entrou em uma zona de controle particular. Em alguns casos, a quantidade de tempo selecionada pode ser uma mínima quantidade de tempo. Dessa forma, em alguns casos, os critérios de definição de zona de controle podem impedir que a colheitadeira agrícola 100 cruze um limite de uma zona de controle até que pelo menos a quantidade de tempo selecionada tenha decorrido. O bloco 551 indica um exemplo no qual os critérios de definição de zona de controle são com base em um valor de tamanho selecionado. Por exemplo, um critério de definição de zona de controle que é com base em um valor de tamanho selecionado pode impedir a definição de uma zona de controle que é menor que o tamanho selecionado. Em alguns casos, o tamanho selecionado pode ser um tamanho mínimo.
[00160] No bloco 554, o componente de identificação de critérios de zona de regime 522 obtém critérios de definição de zona de regime para o WMA ou conjunto de WMAs selecionado. O bloco 556 indica um exemplo no qual os critérios de definição de zona de regime são com base em uma entrada manual do operador 260 ou outro usuário. O bloco 558 ilustra um exemplo no qual os critérios de definição de zona de regime são com base em tipo de cultura ou variedade de cultura. O bloco 560 ilustra um exemplo no qual os critérios de definição de zona de regime são com base em características de ervas daninhas, tal como tipo de ervas daninhas ou intensidade de ervas daninhas, ou ambos. O bloco 561 ilustra um exemplo no qual os critérios de definição de zona de regime são com base em ou include topografia. O bloco 562 ilustra um exemplo no qual os critérios de definição de zona de regime são com base em ou include estado de cultura. O bloco 564 indica um exemplo no qual os critérios de definição de zona de regime são ou incluem outros critérios igualmente.
[00161] No bloco 566, o componente de definição de limite de zona de controle 496 gera os limites de zonas de controle no mapa em análise com base nos critérios de zona de controle. O componente de definição de limite de zona de regime 524 gera os limites de zonas de regime no mapa em análise com base nos critérios de zona de regime. O bloco 568 indica um exemplo no qual os limites de zona são identificados para as zonas de controle e as zonas de regime. O bloco 570 mostra que o componente de identificação de ajuste alvo 498 identifica os ajustes alvos para cada uma das zonas de controle. As zonas de controle e zonas de regime podem ser geradas de outras maneiras igualmente, e isto é indicado pelo bloco 572.
[00162] No bloco 574, o componente de identificação de resolvedor de ajustes 526 identifica os resolvedores de ajustes para o WMA selecionado em cada zona de regime definida pelo componente de definição de limite de zona de regimes 524. Como aqui discutido, a resolvedor de zona de regime pode ser um ser resolvedor humano 576, um resolvedor de sistema de inteligência artificial ou de aprendizagem de máquina 578, um resolvedor 580 baseado em qualidade predita ou histórica para cada ajuste alvo concorrente, um resolvedor baseado em regras 582, um resolvedor baseado em critérios de desempenho 584 ou outros resolvedores 586.
[00163] No bloco 588, o seletor de WMA 486 determina se existem mais WMAs ou conjuntos de WMAs para processar. Se existirem WMAs ou conjuntos de WMAs a serem processados, o processamento reverte para o bloco 436 ondo WMA ou conjunto de WMAs seguinte para o qual zonas de controle e zonas de regime devem ser definidas é selecionado. Quando não restar nenhum WMA ou conjunto de WMAs adicional para o qual zonas de controle ou zonas de regime devem ser geradas, o processamento move para o bloco 590 ondo gerador de zona de controle 213 produz um mapa com zonas de controle, ajustes alvos, zonas de regime e resolvedores de ajustes para cada um dos WMAs ou conjuntos de WMAs. Como aqui discutido, o mapa produzido pode ser apresentado ao operador 260 ou outro usuário; o mapa produzido pode ser provido ao sistema de controle 214; ou o mapa produzido pode ser produzido de outras maneiras.
[00164] A FIG. 8 ilustra um exemplo da operação de sistema de controle 214 no controle da colheitadeira agrícola 100 com base em um mapa que é produzido pelo gerador de zona de controle 213. Dessa forma, no bloco 592, o sistema de controle 214 recebe um mapa do local de trabalho. Em alguns casos, o mapa pode ser um mapa preditivo funcional que pode incluir zonas de controle e zonas de regime, como representado pelo bloco 594. Em alguns casos, o mapa recebido pode ser um mapa preditivo funcional que exclui zonas de controle e zonas de regime. O bloco 596 indica um exemplo no qual o mapa recebido do local de trabalho pode ser um mapa de informação anterior tendo zonas de controle e zonas de regime identificadas nele. O bloco 598 indica um exemplo no qual o mapa recebido pode incluir múltiplos diferentes mapas ou múltiplas diferentes camadas de mapa. O bloco 610 indica um exemplo no qual o mapa recebido tomado de outras formas igualmente.
[00165] No bloco 612, o sistema de controle 214 recebe um sinal de sensor do sensor de posição geográfica 204. O sinal de sensor do sensor de posição geográfica 204 pode incluir dados que indicam a localização geográfica 614 da colheitadeira agrícola 100, a velocidade 616 da colheitadeira agrícola 100, a direção 618 da colheitadeira agrícola 100, ou outra informação 620. No bloco 622, o controlador de zona 247 seleciona uma zona de regime, e, no bloco 624, o controlador de zona 247 seleciona uma zona de controle no mapa com base no sinal do sensor de posição geográfica. No bloco 626, o controlador de zona 247 seleciona um WMA ou um conjunto de WMAs a ser controlado. No bloco 628, o controlador de zona 247 obtém um ou mais ajustes alvos para o WMA ou conjunto de WMAs selecionado. Os ajustes alvos que são obtidos para o WMA ou conjunto de WMAs selecionado podem provir de uma variedade de diferentes fontes. Por exemplo, o bloco 630 mostra um exemplo no qual um ou mais dos ajustes alvos para o WMA ou conjunto de WMAs selecionado é com base em uma entrada das zonas de controle no mapa do local de trabalho. O bloco 632 mostra um exemplo no qual um ou mais dos ajustes alvos são obtidos de entradas de humano do operador 260 ou outro usuário. O bloco 634 mostra um exemplo no qual os ajustes alvos são obtidos de um sensor in situ 208. O bloco 636 mostra um exemplo no qual um ou mais ajustes alvos é obtido de um ou mais sensores em outras máquinas que trabalham no mesmo campo tanto simultaneamente à colheitadeira agrícola 100 quanto de um ou mais sensores em máquinas que trabalham no mesmo campo no passado. O bloco 638 mostra um exemplo no qual os ajustes alvos são obtidos de outras fontes igualmente.
[00166] No bloco 640, o controlador de zona 247 acessa os resolvedores de ajustes para a zona de regime selecionada e controla os resolvedores de ajustes para resolvedor ajustes alvos concorrentes em um ajuste alvo resolvido. Como aqui discutido, em alguns casos, os resolvedores de ajustes podem ser um ser resolvedor humano, caso este em que o controlador de zona 247 controla os mecanismos de interface de operador 218 para apresentar os ajustes alvos concorrentes ao operador 260 ou outro usuário para resolução. Em alguns casos, os resolvedores de ajustes podem ser uma rede neural ou outro sistema de inteligência artificial ou de aprendizagem de máquina, e o controlador de zona 247 submete os ajustes alvos concorrentes à sistema de rede neural, inteligência artificial ou aprendizagem de máquina para seleção. Em alguns casos, os resolvedores de ajustes podem ser com base em uma métrica de qualidade predita ou histórica, em regras de limiar, ou em componentes lógicos. Em qualquer desses exemplos a seguir, o controlador de zona 247 executa os resolvedores de ajustes para obter um ajuste alvo resolvido com base na métrica de qualidade predita ou histórica, com base nas regras de limiar, ou com o uso dos componentes lógicos.
[00167] No bloco 642, com o controlador de zona 247 tendo identificado o ajuste alvo resolvido, o controlador de zona 247 provê o ajuste alvo resolvido a outros controladores no sistema de controle 214, que geram e aplicam sinais de controle ao WMA ou conjunto de WMAs selecionado com base no ajuste alvo resolvido. Por exemplo, ondo WMA selecionado é um atuador de máquina ou coletor 248, o controlador de zona 247 provê o ajuste alvo resolvido ao controlador de ajustes 232 ou controlador coletor/real 238, ou ambos, para gerar sinais de controle com base no ajuste alvo resolvido, e esses sinais de controle gerados são aplicados ao atuador de máquina ou coletores 248. No bloco 644, se WMAs adicionais ou conjuntos de WMAs adicionais devem ser controlados na localização geográfica atual da colheitadeira agrícola 100 (detectada no bloco 612), então o processamento reverte para o bloco 626 ondo WMA ou conjunto de WMAs seguinte é selecionado. Os processos representados pelos blocos 626 a 644 continuam até que todos os WMAs ou conjuntos de WMAs a serem controlados na localização geográfica atual da colheitadeira agrícola 100 tenham sido abordadas. Se não permanecer nenhum WMA ou conjunto de WMAs adicional a ser controlado na localização geográfica atual da colheitadeira agrícola 100, o processamento prossegue no bloco 646 ondo controlador de zona 247 determina se existem zonas de controle adicionais a serem consideradas na zona de regime selecionada. Se existirem zonas de controle adicionais a serem consideradas, o processamento reverte para o bloco 624 onde uma zona de controle seguinte é selecionada. Se não restarem zonas de controle adicionais a serem consideradas, o processamento prossegue no bloco 648 onde uma determinação se restam zonas de regime adicionais a serem consideradas. O controlador de zona 247 determina se restam zonas de regime adicionais a serem consideradas. Se restarem zonas de regimes adicionais a serem consideradas, o processamento reverte para o bloco 622 onde uma zona de regime seguinte é selecionada.
[00168] No bloco 650, o controlador de zona 247 determina se a operação que colheitadeira agrícola 100 está realizando está completa. Se não, o controlador de zona 247 determina se um critério de zona de controle foi satisfeito para continuar o processamento, como indicado pelo bloco 652. Por exemplo, como aqui mencionado, os critérios de definição de zona de controle podem incluir critérios definindo quando um limite de zona de controle pode ser cruzado pela colheitadeira agrícola 100. Por exemplo, se um limite de zona de controle pode ser cruzado pela colheitadeira agrícola 100 pode ser definido por um período de tempo selecionado, significando que a colheitadeira agrícola 100 não pode cruzar um limite de zona até que uma quantidade de tempo selecionada tenha decorrido. Nesse caso, no bloco 652, o controlador de zona 247 determina se decorreu o período de tempo selecionado. Adicionalmente, o controlador de zona 247 pode realizar o processamento continuamente. Dessa forma, o controlador de zona 247 não espera nenhum período de tempo particular antes de continuar a determinar se uma operação da colheitadeira agrícola 100 foi completada. No bloco 652, o controlador de zona 247 determina que é hora de continua o processamento, então o processamento continua no bloco 612 ondo controlador de zona 247 novamente recebe uma entrada do sensor de posição geográfica 204. Deve-se também perceber que o controlador de zona 247 pode controlar os WMAs e conjuntos de WMAs simultaneamente usando um controlador de múltiplas entradas, múltiplas saídas em vez de controlar os WMAs e conjuntos de WMAs sequencialmente.
[00169] A FIG. 9 é um diagrama de blocos mostrando um exemplo de um controlador de interface de operador 231. Em um exemplo ilustrado, o controlador de interface de operador 231 inclui sistema de processamento de comando de entrada de operador 654, outro sistema de interação do controlador 656, sistema de processamento de voz 658 e gerador de sinal de ação 660. O sistema de processamento de comando de entrada de operador 654 inclui sistema de tratamento de voz 662, sistema de tratamento de gesto de toque 664 e outros itens 666. Outro sistema de interação do controlador 656 inclui sistema de processamento de entrada do controlador 668 e gerador de saída do controlador 670. O sistema de processamento de voz 658 inclui detector de acionador 672, componente de reconhecimento 674, componente de síntese 676, sistema de entendimento de linguagem natural 678, sistema de gerenciamento de diálogo 680 e outros itens 682. O gerador de sinal de ação 660 inclui gerador de sinal de controle visual 684, gerador de sinal de controle de áudio 686, gerador de sinal de controle háptico 688 e outros itens 690. Antes de descrever a operação do controlador de interface de operador exemplificativo 231 mostrado na FIG. 9 no tratamento de várias ações de interface de operador, uma breve descrição de alguns dos itens no controlador de interface de operador 231 e a operação associada do mesmo é primeiramente provida.
[00170] O sistema de processamento de comando de entrada de operador 654 detecta entradas de operador com em mecanismos de interface de operador 218 e processa essas entradas para comandos. O sistema de tratamento de voz 662 detecta entradas de voz e controla as interações com o sistema de processamento de voz 658 para processar as entradas de voz para comandos. O sistema de tratamento de gesto de toque 664 detecta gestos de toque em elementos sensíveis ao toque em mecanismos de interface de operador 218 e processa essas entradas para comandos.
[00171] Outro sistema de interação do controlador 656 controla interações com outros controladores no sistema de controle 214. O sistema de processamento de entrada do controlador 668 detecta e processa entradas de outros controladores no sistema de controle 214, e o gerador de saída do controlador 670 gera saídas e provê essas saídas a outros controladores no sistema de controle 214. O sistema de processamento de voz 658 reconhece entradas de voz, determina o significado dessas entradas, e provê uma saída indicativa do significado das entradas faladas. Por exemplo, o sistema de processamento de voz 658 pode reconhecer uma entrada de voz do operador 260 como um comando de mudança de ajustes em que o operador 260 está comandando o sistema de controle 214 para mudar um ajuste para um subsistema controlável 216. Em um exemplo como esse, o sistema de processamento de voz 658 reconhece o conteúdo do comando falado, identifica o significado desse comando como um comando de mudança de ajustes, e provê o significado dessa entrada de volta ao sistema de tratamento de voz 662. O sistema de tratamento de voz 662, por sua vez, interage com gerador de saída do controlador 670 para prover a saída comandada ao controlador apropriado no sistema de controle 214 para obter o comando de mudança de ajustes falado
[00172] O sistema de processamento de voz 658 pode ser invocado em uma variedade de diferentes maneiras. Por exemplo, em um exemplo, o sistema de tratamento de voz 662 provê continuamente uma entrada de um sistema de processamento de voz 658 de microfone (sendo um dos mecanismos de interface de operador 218). O microfone detecta voz do operador 260, e o sistema de tratamento de voz 662 provê a voz detectada ao sistema de processamento de voz 658. O detector de acionador 672 detecta um acionador indicando que o sistema de processamento de voz 658 é invocado. Em alguns casos, quando o sistema de processamento de voz 658 está recebendo entradas de voz contínuas do sistema de tratamento de voz 662, o componente de reconhecimento de voz 674 realiza reconhecimento de voz contínuo em toda a voz dita pelo operador 260. Em alguns casos, o sistema de processamento de voz 658 é configurado para invocação usando uma palavra de despertar. Ou seja, em alguns casos, a operação do sistema de processamento de voz 658 pode ser iniciada com base em reconhecimento de uma palavra dita selecionada, referida como a palavra de despertar. Em um exemplo como esse, ondo componente de reconhecimento 674 reconhece a palavra de despertar, o componente de reconhecimento 674 provê uma indicação de que a palavra de despertar foi reconhecida ao detector de acionador 672. O detector de acionador 672 detecta que o sistema de processamento de voz 658 foi invocado ou acionado pela palavra de despertar. Em outro exemplo, o sistema de processamento de voz 658 pode ser invocado por um operador 260 atuando em um atuador em um mecanismo de interface de usuário, tal como tocando em um atuador em uma tela de exibição sensível ao toque, pressionando um botão, ou provendo outra entrada de acionamento. Em um exemplo como esse, o detector de acionador 672 pode detectar que o sistema de processamento de voz 658 foi invocado quando uma entrada de acionamento por meio de um mecanismo de interface de usuário é detectada. O detector de acionador 672 pode detectar que o sistema de processamento de voz 658 foi invocado de outras maneiras igualmente.
[00173] Uma vez que o sistema de processamento de voz 658 é invocado, a entrada de voz do operador 260 é provida ao componente de reconhecimento de voz 674. O componente de reconhecimento de voz 674 reconhece elementos linguísticos na entrada de voz, tais como palavras, expressões, ou outras unidades linguísticas. O sistema de entendimento de linguagem natural 678 identifica um significado da voz reconhecida. O significado pode ser uma saída de linguagem natural, uma saída de comando identificar um comando refletido na voz reconhecida, uma saída de valor identificar um valor na voz reconhecida, ou qualquer uma de uma ampla variedade de outras saídas que reflete o entendimento da voz reconhecida. Por exemplo, o sistema de entendimento de linguagem natural 678 e o sistema de processamento de voz 568, mais no geral, pode entender o significado da voz reconhecida no contexto da colheitadeira agrícola 100.
[00174] Em alguns exemplos, o sistema de processamento de voz 658 pode também gerar saídas que navegam o operador 260 através de uma experiência de usuário com base na entrada de voz. Por exemplo, o sistema de gerenciamento de diálogo 680 pode gerar e gerenciar um diálogo com o usuário a fim de identificar o que o usuário quer fazer. O diálogo pode remover ambiguidade de um comando de usuário; identificar um ou mais valores específicos que são necessários para realizar o comando de usuário; ou obter outra informação do usuário ou prover outra informação ao usuário, ou ambos. O componente de síntese 676 pode gerar síntese de voz que pode ser apresentada ao usuário através de um mecanismo de interface de operador de áudio, tal como um alto-falante. Dessa forma, o diálogo gerenciado pelo sistema de gerenciamento de diálogo 680 pode ser exclusivamente um diálogo falado ou uma combinação tanto de um diálogo visual quanto um diálogo falado.
[00175] O gerador de sinal de ação 660 gera sinais de ação para controlar os mecanismos de interface de operador 218 com base em saídas de um ou mais dentre o sistema de processamento de comando de entrada de operador 654, outro sistema de interação do controlador 656, e sistema de processamento de voz 658. O gerador de sinal de controle visual 684 gera sinais de controle para controlar itens visuais em mecanismos de interface de operador 218. Os itens visuais podem ser luzes, uma exibição de exibição, indicadores de alerta ou outros itens visuais. O gerador de sinal de controle de áudio 686 gera saídas que controlam elementos de áudio de mecanismos de interface de operador 218. Os elementos de áudio incluem um alto-falante, mecanismos de alerta audível, buzinas ou outros elementos audíveis. O gerador de sinal de controle háptico 688 gera sinais de controle que são produzidos para controlar elementos hápticos de mecanismos de interface de operador 218. Os elementos hápticos incluem elementos de vibração que podem ser usados para vibrar, por exemplo, o assento do operador, o volante, pedais ou manches usados pelo operador. Os elementos hápticos podem incluir elementos de realimentação tátil ou realimentação de força que provêm realimentação tátil ou realimentação de força ao operador através de mecanismos de interface de operador. Os elementos hápticos podem incluir uma ampla variedade de outros elementos hápticos igualmente.
[00176] A FIG. 10 é um fluxograma que ilustra um exemplo da operação de controlador de interface de operador 231 na geração de uma exibição de interface de operador em um mecanismo de interface de operador 218, que pode incluir uma tela de exibição sensível ao toque. A FIG. 10 também ilustra um exemplo de como o controlador de interface de operador 231 pode detectar e processar interações de operador com a tela de exibição sensível ao toque.
[00177] No bloco 692, o controlador de interface de operador 231 recebe um mapa. O bloco 694 indica um exemplo no qual o mapa é um mapa preditivo funcional, e o bloco 696 indica um exemplo no qual o mapa é outro tipo de mapa. No bloco 698, o controlador de interface de operador 231 recebe uma entrada do sensor de posição geográfica 204 identificar a localização geográfica da colheitadeira agrícola 100. Como indicado no bloco 700, a entrada do sensor de posição geográfica 204 pode incluir a direção, junto com a localização, da colheitadeira agrícola 100. O bloco 702 indica um exemplo no qual a entrada do sensor de posição geográfica 204 inclui a velocidade da colheitadeira agrícola 100, e o bloco 704 indica um exemplo no qual a entrada do sensor de posição geográfica 204 inclui outros itens.
[00178] No bloco 706, o gerador de sinal de controle visual 684 no controlador de interface de operador 231 controla a tela de exibição sensível ao toque em mecanismos de interface de operador 218 para gerar uma exibição mostrando todo ou uma porção de um campo representado pelo mapa recebido. O bloco 708 indica que o campo exibido pode incluir um marcador de posição atual mostrando uma posição atual da colheitadeira agrícola 100 em relação ao campo. O bloco 710 indica um exemplo no qual o campo exibido inclui um marcador de unidade de trabalho seguinte que identifica uma unidade de trabalho seguinte (ou área no campo) na qual a colheitadeira agrícola 100 estará operando. O bloco 712 indica um exemplo no qual o campo exibido inclui uma porção de exibição de área seguinte que exibe áreas que devem ser ainda processadas pela colheitadeira agrícola 100, e o bloco 714 indica um exemplo no qual o campo exibido inclui porções de exibição previamente visitadas que representam áreas do campo que a colheitadeira agrícola 100 já processou. O bloco 716 indica um exemplo no qual o campo exibido exibe várias características do campo com localizações georreferenciadas no mapa. Por exemplo, se o mapa recebido for um mapa de perda preditivo, tal como o mapa de perda preditivo funcional 420, o campo exibido pode apresentar as diferentes categorias do nível de perda existentes no campo georreferenciado no campo exibido. As características mapeadas podem ser mostradas nas áreas previamente visitadas (como mostrado no bloco 714), nas áreas próximas (como mostrado no bloco 712), e na unidade de trabalho seguinte (como mostrado no bloco 710). O bloco 718 indica um exemplo no qual o campo exibido inclui outros itens igualmente.
[00179] A FIG. 11 é uma ilustração pictorial mostrando um exemplo de uma exibição de interface de usuário 720 que pode ser gerada em uma tela de exibição sensível ao toque. Em outras implementações, a exibição de interface de usuário 720 pode ser gerada em outros tipos de exibições. A tela de exibição sensível ao toque pode ser montada no compartimento do operador da colheitadeira agrícola 100 ou no dispositivo móvel ou em algum lugar. A exibição de interface de usuário 720 será descrita antes de continuar com a descrição do fluxograma mostrado na FIG. 10.
[00180] No exemplo mostrado na FIG. 11, a exibição de interface de usuário 720 ilustra que a tela de exibição sensível ao toque inclui um recurso de exibição para operar um microfone 722 e um alto-falante 724. Dessa forma, a exibição sensível ao toque pode ser comunicativamente acoplada ao microfone 722 e ao alto-falante 724. O bloco 726 indica que a tela de exibição sensível ao toque pode incluir uma ampla variedade de atuadores de controle de interface de usuário, tais como botões, blocos de teclas, blocos de teclas macios, ligações, ícones, interruptores, etc. O operador 260 pode atuar os atuadores de controle de interface de usuário para realizar várias funções.
[00181] No exemplo mostrado na FIG. 11, a exibição de interface de usuário 720 inclui uma porção de exibição de campo 728 que exibe pelo menos uma porção do campo na qual a colheitadeira agrícola 100 está operando. A porção de exibição de campo 728 é mostrada com um marcador de posição atual 708 que corresponda uma posição atual da colheitadeira agrícola 100 na porção do campo mostrada na porção de exibição de campo 728. Em um exemplo, o operador pode controlar a exibição sensível ao toque a fim de obter grande aproximação de porções de porção de exibição de campo 728 ou realizar uma panorâmica ou rolar a porção de exibição de campo 728 para mostrar diferentes porções do campo. Uma unidade de trabalho seguinte 730 é mostrada como uma área do campo diretamente na frente do marcador de posição atual 708 da colheitadeira agrícola 100. O marcador de posição atual 708 pode também ser configurado para identificar a direção de deslocamento da colheitadeira agrícola 100, uma velocidade de deslocamento da colheitadeira agrícola 100, ou ambos. Na FIG. 13, o formato do marcador de posição atual 708 provê uma indicação da orientação da colheitadeira agrícola 100 no campo que pode ser usada como uma indicação de uma direção de deslocamento da colheitadeira agrícola 100.
[00182] O tamanho da unidade de trabalho seguinte 730 marcado na porção de exibição de campo 728 pode variar com base em uma ampla variedade de diferentes critérios. Por exemplo, o tamanho da unidade de trabalho seguinte 730 pode variar com base na velocidade de deslocamento da colheitadeira agrícola 100. Dessa forma, quando a colheitadeira agrícola 100 está deslocando mais rapidamente, então a área da unidade de trabalho seguinte 730 pode ser maior que a área da unidade de trabalho seguinte 730 se colheitadeira agrícola 100 estiver deslocando mais lentamente. Em outro exemplo, o tamanho da unidade de trabalho seguinte 730 pode variar com base nas dimensões da colheitadeira agrícola 100, incluindo equipamento na colheitadeira agrícola 100 (tal como o coletor 102). Por exemplo, a largura da unidade de trabalho seguinte 730 pode variar com base em uma largura do coletor 102. A porção de exibição de campo 728 é também mostrada exibindo área previamente visitada 714 e áreas seguintes 712. Áreas previamente visitadas 714 representam áreas que já estão colhidas, enquanto áreas seguintes 712 representam áreas que ainda precisam ser colhidas. A porção de exibição de campo 728 é também mostrada exibindo diferentes características do campo. No exemplo ilustrado na FIG. 11, o mapa que é sendo exibido é um mapa de perda preditivo, tal como o mapa de perda preditivo funcional 420. Portanto, uma pluralidade de diferentes marcadores de nível de perda são exibidos na porção de exibição de campo 728. Existe um conjunto de marcadores de exibição de nível de perda 732 mostrado nas áreas já visitadas 714. Há também um conjunto de marcadores de exibição de nível de perda 732 mostrado nas áreas próximas 712, e existe um conjunto de marcadores de exibição de nível de perda 732 mostrado na unidade de trabalho seguinte 730. A FIG. 11 mostra que os marcadores de exibição de nível de perda 732 são constituídos de diferentes símbolos que indicam uma área de nível de perda similar. No exemplo mostrado na FIG. 3, o símbolo ! representa áreas de nível de perda alto; o símbolo * representa áreas de nível de perda médio; e o símbolo # representa uma área de nível de perda baixo. Dessa forma, a porção de exibição de campo 728 mostra diferentes valores medidos ou preditos (ou características indicadas pelos valores) que são localizados em diferentes áreas no campo e representam esses valores medidos ou preditos (ou características indicadas pelos valores) com uma variedade de marcadores de exibição 732. Como mostrado, a porção de exibição de campo 728 inclui marcadores de exibição, particularmente marcadores de exibição de nível de perda 732 no exemplo ilustrado da FIG. 11, em localizações particulares associadas com localizações particulares no campo que está sendo exibido. Em alguns casos, cada localização do campo pode ter um marcador de exibição associado com a mesma. Dessa forma, em alguns casos, um marcador de exibição pode ser provido em cada localização do porção de exibição de campo 728 para identificar a natureza da característica que está sendo mapeada para cada localização particular do campo. Consequentemente, a presente descrição engloba prover um marcador de exibição, tal como o marcador de exibição de nível de perda 732 (como no contexto da presente exemplo da FIG. 11), em uma ou mais localizações na porção de exibição de campo 728 para identificar a natureza, grau, etc., da característica que está sendo exibida, por meio disso identificar a característica na localização correspondente no campo sendo exibido. Como descrito anteriormente, os marcadores de exibição 732 podem ser constituídos de diferentes símbolos, e, como descrito a seguir, os símbolos podem ser qualquer recurso de exibição tais como diferentes cores, formatos, padrões, intensidades, texto, ícones ou outros recursos de exibição.
[00183] Em outros exemplos, o mapa que está sendo exibido pode ser um ou mais dos mapas descritos no presente documento, incluindo mapas de informação, mapas de informação anteriores, mapas preditivos funcionais, tais como mapas preditivos ou mapas de zona de controle preditivos, ou uma combinação dos mesmos. Dessa forma, os marcadores e características que estão sendo exibidos se correlacionará com a informação, dados, características e valores providos por um ou mais mapas que estão sendo exibidos.
[00184] No exemplo da FIG. 11, a exibição de interface de usuário 720 também tem uma porção de exibição de controle 738. A porção de exibição de controle 738 permite que o operador veja informação e interaja com a exibição de interface de usuário 720 de várias maneiras.
[00185] Os atuadores e elementos de exibição na porção 738 podem ser exibidos, por exemplo, como itens individuais, listas fixas, listas roláveis, menus suspensos ou listas suspensas. No exemplo mostrado na FIG. 11, a porção de exibição 738 mostra informação para os três diferentes níveis de perda que correspondem aos três símbolos supramencionados. A porção de exibição 738 também inclui um conjunto de atuadores sensíveis ao toque com os quais o operador 260 pode interagir por meio de toque. Por exemplo, o operador 260 por tocar os atuadores sensíveis ao toque com um dedo para ativar o respectivo atuador sensível ao toque.
[00186] Como mostrado na FIG. 11, a porção de exibição 738 inclui uma porção de exibição de sinalização interativa, indicada no geral por 741. A porção de exibição de sinalização interativa 741 inclui uma coluna de sinalização 739 que mostra sinalizações que foram ajustadas automática ou manualmente. O atuador de sinalização 740 permite que o operador 260 marque uma localização, tal como a localização atual da colheitadeira agrícola, ou outra localização no campo designada pelo operador e adicione informação indicando o nível de perda encontrado na localização atual. Por exemplo, quando o operador 260 atua o atuador de sinalização 740 ao tocar no atuador de sinalização 740, o sistema de tratamento de gesto de toque 664 no controlador de interface de operador 231 identifica a localização atual como uma onde a colheitadeira agrícola 100 encontrou nível de perda alto. Quando o operador 260 toca o botão 742, o sistema de tratamento de gesto de toque 664 identifica a localização atual como uma localização onde a colheitadeira agrícola 100 verificou nível de perda média. Quando o operador 260 toca o botão 744, o sistema de tratamento de gesto de toque 664 identifica a localização atual como uma localização onde a colheitadeira agrícola 100 encontrada baixo nível de perda. Mediante atuação de um dos atuadores de sinalização 740, 742 ou 744, o sistema de tratamento de gesto de toque 664 pode controlar o gerador de sinal de controle visual 684 para adicionar um símbolo correspondente ao nível de perda identificado na porção de exibição de campo 728 em uma localização que o usuário identifica. Dessa maneira, áreas do campo ondo valor predito não representa precisamente um valor real podem ser marcadas para análise posterior, e podem também ser usadas em aprendizagem de máquina. Em outros exemplos, o operador pode designar áreas à frente ou em torno da colheitadeira agrícola 100 pela atuação em um dos atuadores de sinalização 740, 742 ou 744 de maneira que o controle da colheitadeira agrícola 100 possa ser realizado com base no valor designado pelo operador 260.
[00187] A porção de exibição 738 também inclui uma porção de exibição de marcador interativo, indicada no geral por 743. A porção de exibição de marcador interativo 743 inclui uma coluna de símbolos 746 que exibe os símbolos correspondentes a cada categoria de valores ou características (no caso da FIG. 11, nível de perda) que estão senso rastreados na porção de exibição de campo 728. A porção de exibição 738 também inclui uma porção de exibição de designador interativo, indicada no geral por 745. Porção de exibição de designador de interação 745 inclui uma coluna de designador 748 que mostra o designador (que pode ser um designador textual ou outro designador) identificando a categoria de valores ou características (no caso da FIG. 11, nível de perda). Sem limitação, os símbolos na coluna de símbolos 746 e os designadores na coluna de designador 748 podem incluir qualquer recurso de exibição tais como diferentes cores, formatos, padrões, intensidades, texto, ícones ou outros recursos de exibição, e podem ser customizáveis pela interação de um operador da colheitadeira agrícola 100.
[00188] A porção de exibição 738 também inclui uma porção de exibição de valor interativo, indicada no geral por 747. A porção de exibição de valor interativo 747 inclui uma coluna de exibição de valor 750 que exibe valores selecionados. Os valores selecionados correspondem às características ou valores que estão sendo rastreados ou exibidos, ou ambos, na porção de exibição de campo 728. Os valores selecionados podem ser selecionados por um operador da colheitadeira agrícola 100. Os valores selecionados na coluna de exibição de valor 750 definem uma faixa de valores ou um valor pelo qual outros valores, tais como valores preditos, devem ser classificados. Dessa forma, no exemplo na FIG. 11, um nível de perda predito ou medido que satisfaz ou é maior que 1,5 alqueire/acre é classificado como “alto nível de perda”, e um nível de perda predito ou medido que satisfaz ou é menor que 0,5 alqueire/acre é classificado como “baixo nível de perda”. Em alguns exemplos, os valores selecionados podem incluir uma faixa, de maneira tal que um valor predito ou medido que está dentro da faixa do valor selecionado será classificado sob o designador correspondente. Como mostrado na FIG. 11, “médio nível de perda” inclui uma faixa de 0,51 alqueire/acre a 1,49 alqueire/acre de maneira tal que um nível de perda predito ou medido que cai na faixa 0,51 a 1,49 alqueire/acre é classificado como “médio nível de perda”. Os valores selecionados na coluna de exibição de valor 750 são ajustáveis por um operador da colheitadeira agrícola 100. Em um exemplo, o operador 260 pode selecionar a parte particular da porção de exibição de campo 728 para a qual os valores na coluna 750 devem ser exibidos. Dessa forma, os valores na coluna 750 podem corresponder aos valores nas porções de exibição 712, 714 ou 730.
[00189] A porção de exibição 738 também inclui uma porção de exibição de limiar interativa, indicada no geral por 749. A porção de exibição de limiar interativa 749 inclui uma coluna de exibição de valor limiar 752 que exibe valores limiares de ação. Os valores limiares de ação na coluna 752 podem ser valores limiares correspondentes aos valores selecionados na coluna de exibição de valor 750. Se os valores preditos ou medidos da característica que está sendo rastreada ou exibida, ou ambos, satisfizerem os valores limiares de ação correspondentes na coluna de exibição de valor limiar 752, então o sistema de controle 214 adota a ação identificada na coluna 754. Em alguns casos, um valor medido ou predito pode satisfazer um valor limiar de ação correspondente ao satisfazer ou exceder o valor limiar de ação correspondente. Em um exemplo, o operador 260 pode selecionar um valor limiar, por exemplo, a fim de mudar o valor limiar ao tocar no valor limiar na coluna de exibição de valor limiar 752. Uma vez selecionado, o operador 260 pode mudar o valor limiar. Os valores limiares na coluna 752 podem ser configurados de maneira tal que a ação designada seja realizada quando o valor medido ou predito da característica excedo valor limiar, é igual ao valor limiar, ou é menor que o valor limiar. Em alguns casos, o valor limiar pode representar uma faixa de valores, um ou uma faixa de desvio dos valores selecionados na coluna de exibição de valor 750, de maneira tal que um valor de característica predito ou medido que satisfaz ou cai na faixa satisfaz o valor limiar. Por exemplo, no exemplo da FIG. 11, um valor predito que cai dentro de 10% de 1,5 alqueire/acre satisfará o valor limiar de ação correspondente (dentro de 10% de 1,5 alqueire/acre) e uma ação, tal como redução da velocidade da ventoinha de limpeza, será adotada pelo sistema de controle 214. Em outros exemplos, os valores limiares na coluna de exibição de valor limiar 752 são separados dos valores selecionados na coluna de exibição de valor 750, de maneira tal que os valores na coluna de exibição de valor 750 definem a classificação e exibição de valores preditos ou medidos, enquanto os valores limiares de ação definem quando uma ação deve ser adotada com base nos valores medidos ou preditos. Por exemplo, embora um valor de perda predito ou medido de 1,0 alqueire/acre possa ser designado como um “médio nível de perda” para efeitos de classificação e exibição, o valor limiar de ação pode ser 1,2 alqueire/acre de maneira tal que nenhuma ação será adotada até que o valor de perda satisfaça o valor limiar. Em outros exemplos, os valores limiares na coluna de exibição de valor limiar 752 podem incluir distâncias ou tempos. Por exemplo, no exemplo de uma distância, o valor limiar pode ser uma distância limiar da área do campo ondo valor medido ou predito é georreferenciado que a colheitadeira agrícola 100 tem que estar antes de uma ação ser adotada. Por exemplo, um valor de distância limiar de 3,0 metros (10 pés) significaria que uma ação será adotada quando a colheitadeira agrícola estiver em ou dentro de 3,0 metros (10 pés) da área do campo onde o valor medido ou predito é georreferenciado. Em um exemplo onde o valor limiar é tempo, o valor limiar pode ser um tempo limiar para colheitadeira agrícola 100 chegar à área do campo onde o valor medido ou predito é georreferenciado. Por exemplo, um valor limiar de 5 segundos significaria que uma ação será adotada quando a colheitadeira agrícola 100 estiver 5 segundos fora da área do campo onde o valor medido ou predito é georreferenciado. Em um exemplo como esse, a localização e velocidade de deslocamento atuais da colheitadeira agrícola podem ser levadas em conta.
[00190] A porção de exibição 738 também inclui uma porção de exibição de ação interativa, indicada no geral por 751. A porção de exibição de ação interativa 751 inclui uma coluna de exibição de ação 754 que exibe identificadores de ação que indicaram ações a serem adotadas quando um valor predito ou medido satisfaz um valor limiar de ação na coluna de exibição de valor limiar 752. O operador 260 pode tocar nos identificadores de ação na coluna 754 para mudar a ação que deve ser adotada. Quando um limiar é satisfeito, uma ação pode ser adotada. Por exemplo, na base da coluna 754, uma ação de aumento na velocidade da ventoinha de limpeza e uma ação de redução na velocidade da ventoinha de limpeza são identificadas como ações que serão adotadas se o valor medido ou predito em atender o valor limiar na coluna 752. Em alguns exemplos, então um limiar é atendido, múltiplas ações podem ser adotadas. Por exemplo, uma velocidade da ventoinha de limpeza pode ser ajustada, um rotor de trilhagem velocidade pode ser ajustada, e um folga do contrabatedor pode ser ajustada em resposta a um limiar sendo satisfeito.
[00191] As ações que podem ser ajustadas na coluna 754 podem ser qualquer um de uma ampla variedade de diferentes tipos de ações. Por exemplo, as ações podem incluir uma ação de exclusão que, quando executada, impede que a colheitadeira agrícola 100 colha adicionalmente em uma área. As ações podem incluir uma ação de mudança de velocidade que, quando executada, muda a velocidade de deslocamento da colheitadeira agrícola 100 através do campo. As ações podem incluir um ação de mudança de ajuste para mudar um ajuste de um atuador interno ou outro WMA ou conjunto de WMAs ou para implementar uma ação de mudança de ajustes que muda um ajuste de um rotor de trilhagem velocidade, uma velocidade da ventoinha de limpeza, uma posição (por exemplo, inclinação, altura, rolamento, etc.) do coletor, junto com vários outros ajustes. Esses são apenas exemplos, e uma ampla variedade de outras ações é contemplada no presente documento.
[00192] Os itens mostrados na exibição de interface de usuário 720 podem ser visualmente controlados. O controle visual da exibição de interface 720 pode ser feito para prender a atenção do operador 260. Por exemplo, os elementos de exibição podem ser controlados para modificar a intensidade, cor ou padrão com os quais os elementos de exibição são exibidos. Adicionalmente, os elementos de exibição podem ser controlados para piscar. As alterações descritas na aparência visual dos elementos de exibição são providas como exemplos. Consequentemente, outros aspectos da aparência visual dos elementos de exibição podem ser alterados. Portanto, os elementos de exibição podem ser modificados em várias circunstâncias de uma maneira desejada, por exemplo, a fim de prender a atenção do operador 260. Adicionalmente, embora um número particular de itens seja mostrado na exibição de interface de usuário 720, isso não precisa ser o caso. Em outros exemplos, mais ou menos itens, incluindo mais ou menos de um item particular, podem ser incluídos na exibição de interface de usuário 720.
[00193] De volta ao fluxograma da FIG. 10, a descrição da operação de controlador de interface de operador 231 continua. No bloco 760, o controlador de interface de operador 231 detecta uma entrada ajustado uma sinalização e controla a exibição de interface de usuário sensível ao toque 720 para exibir a sinalização na porção de exibição de campo 728. A entrada detectada pode ser uma entrada de operador, como indicado em 762, ou uma entrada de outro controlador, como indicado em 764. No bloco 766, o controlador de interface de operador 231 detecta uma entrada de sensor in situ indicativa de uma característica do campo medida de um dos sensores in situ 208. No bloco 768, o gerador de sinal de controle visual 684 gera sinais de controle para controlar a exibição de interface de usuário 720 para exibir atuadores para modificar a exibição de interface de usuário 720 e para modificar o controle de máquina. Por exemplo, o bloco 770 representa que um ou mais dos atuadores para ajustar ou modificar os valores nas colunas 739, 746 e 748 podem ser exibidos. Dessa forma, o usuário pode ajustar sinalizações e modificar características dessas sinalizações. Por exemplo, um usuário pode modificar os níveis de perda e designadores de nível de perda correspondentes às sinalizações. O bloco 772 representa que valores limiares de ação na coluna 752 são exibidos. O bloco 776 representa que as ações na coluna 754 são exibidas, e o bloco 778 representa que o valor selecionado na coluna 750 é exibido. O bloco 780 indica que uma ampla variedade de outra informação e atuadores pode ser exibida na exibição de interface de usuário 720 igualmente.
[00194] No bloco 782, o sistema de processamento de comando de entrada de operador 654 detecta e processa entradas de operador correspondentes às interações com a exibição de interface de usuário 720 realizada pelo operador 260. Onde o mecanismo de interface de usuário no qual a exibição de interface de usuário 720 é exibida é uma tela de exibição sensível ao toque, as entradas de interação com a tela de exibição sensível ao toque pelo operador 260 podem ser gestos de toque 784. Em alguns casos, as entradas de interação do operador podem ser entradas usando um dispositivo de apontar e clicar 786 ou outras entradas de interação do operador 788.
[00195] No bloco 790, o controlador de interface de operador 231 recebe sinais indicativos de uma condição de alerta. Por exemplo, o bloco 792 indica que sinais podem ser recebidos pelo sistema de processamento de entrada do controlador 668 indicando que os valores detectados ou preditos satisfazem as condições limiares presentes na coluna 752. Como explicado anteriormente, as condições limiares podem incluir valores sendo abaixo de um limiar, iguais a um limiar ou acima de um limiar. O bloco 794 mostra que o gerador de sinal de ação 660 pode, em resposta ao recebimento de uma condição de alerta, alertar o operador 260 usando o gerador de sinal de controle visual 684 para gerar alertas visuais, usando o gerador de sinal de controle de áudio 686 para gerar alertas de áudio, usando o gerador de sinal de controle háptico 688 para gerar alertas hápticos, ou usando qualquer combinação desses. Similarmente, como indicado pelo bloco 796, o gerador de saída do controlador 670 pode gerar saídas para outros controladores no sistema de controle 214 de forma que esses controladores realizem a ação correspondente identificada na coluna 754. O bloco 798 mostra que o controlador de interface de operador 231 pode detectar e processar condições de alerta de outras maneiras igualmente.
[00196] O bloco 900 mostra que o sistema de tratamento de voz 662 pode detectar e processar entradas invocando o sistema de processamento de voz 658. O bloco 902 mostra que realizar processamento de voz pode incluir o uso de sistema de gerenciamento de diálogo 680 para conduzir um diálogo com o operador 260. O bloco 904 mostra que o processamento de voz pode incluir prover sinais para o gerador de saída do controlador 670 de forma que operações de controle são automaticamente realizadas com base nas entradas de voz.
[00197] A Tabela 1, a seguir, mostra um exemplo de um diálogo entre o controlador de interface de operador 231 e o operador 260. Na Tabela 1, o operador 260 usa uma palavra de acionamento ou uma palavra de despertar que é detectada pelo detector de acionador 672 para invocar o sistema de processamento de voz 658. No exemplo mostrado na Tabela 1, a palavra de despertar é “Johnny”.
Tabela 1
Operador: “Johnny, diga-me a respeito do nível de perda”
Controlador de interface de operador: “O nível de perda atual é alto”.
[00198] A Tabela 2 mostra um exemplo no qual o componente de síntese de voz 676 provê uma saída ao gerador de sinal de controle de áudio 686 para prover atualizações audíveis de uma forma intermitente ou periódica. O intervalo entre atualizações pode ser baseado no tempo, tal como a cada cinco minutos, ou baseado em cobertura ou distância, tal como a cada cinco acres, ou baseado em expectativa, tal como quando um valor medido é maior que um valor limiar.
Tabela 2
Controlador de interface de operador: “Nos últimos 10 minutos, o nível de perda foi alto”.
Controlador de interface de operador: “1 acre seguinte o nível de perda predito é médio”.
[00199] O exemplo mostrado na Tabela 3 ilustra que alguns atuadores ou mecanismos de entrada de usuário na exibição sensível ao toque 720 podem ser suplementados com diálogo de voz. O exemplo na Tabela 3 ilustra que o gerador de sinal de ação 660 pode gerar sinais de ação para marcar automaticamente uma área de alto nível de perda no campo que está sendo colhido.
Tabela 3
Humano: “Johnny, marcar área de alto nível de perda”.
Controlador de interface de operador: “Área de alto nível de perda marcada”.
[00200] O exemplo mostrado na Tabela 4 ilustra que o gerador de sinal de ação 660 pode conduzir um diálogo com o operador 260 para começar e terminar a marcação de uma área de alto nível de perda.
Tabela 4
Humano: “Johnny, começar a marcação de área de alto nível de perda”.
Controlador de interface de operador: “Marcar área de alto nível de perda”. Humano: “Johnny, para marcação de área de alto nível de perda.”
Controlador de interface de operador: “Marcação de área de alto nível de perda cessada”.
[00201] O exemplo mostrado na Tabela 5 ilustra que o gerador de sinal de ação 160 pode gerar sinais para marcar uma área de baixo nível de perda de uma maneira diferente das mostradas nas Tabelas 3 e 4.
Tabela 5
Humano: “Johnny, marcar os próximos 30,5 metros (100 pés) como área de baixo nível de perda”.
Controlador de interface de operador: “Próximos 30,5 metros (100 pés) marcados como uma área de baixo nível de perda”.
[00202] Retornando novamente à FIG. 10, o bloco 906 ilustra que o controlador de interface de operador 231 pode detectar e processar condições para produzir uma mensagem ou outra informação de outras maneiras igualmente. Por exemplo, outro sistema de interação do controlador 656 pode detectar entradas de outros controladores indicando que alertas ou mensagens de saída devem ser apresentadas ao operador 260. O bloco 908 mostra que as saídas podem ser mensagens de áudio. O bloco 910 mostra que as saídas podem ser mensagens visuais, e o bloco 912 mostra que as saídas podem ser mensagens hápticas. Até o controlador de interface de operador 231 determinar que a operação de colheita atual foi completada, como indicado pelo bloco 914, o processamento reverte para o bloco 698 onde a localização geográfica da colheitadeira 100 é atualizada e o processamento prossegue como aqui descrito para atualizar a exibição de interface de usuário 720.
[00203] Uma vez que a operação é completada, então qualquer valor desejado que é exibido, ou foi exibido na exibição de interface de usuário 720, pode ser salvo. Esses valores podem também ser usados em aprendizagem de máquina para melhorar diferentes porções do gerador de modelo preditivo 210, gerador de mapa preditivo 212, gerador de zona de controle 213, algoritmos de controle, ou outros itens. O salvamento dos valores desejados é indicado pelo bloco 916. Os valores podem ser salvos localmente na colheitadeira agrícola 100, ou os valores podem ser salvos em uma localização de servidor remoto ou enviados a outro sistema remoto.
[00204] Pode-se dessa forma perceber que um mapa de informação é obtido por uma colheitadeira agrícola que mostra valores de característica em diferentes localizações geográficas de um campo que está sendo colhido. Um sensor in situ na colheitadeira sensoreia uma característica à medida que a colheitadeira agrícola move através do campo. Um gerador de mapa preditivo gera um mapa preditivo que inclui valores de controle para diferentes localizações no campo com base nos valores no mapa de informação e a característica sensoreada pelo sensor in situ. Um sistema de controle controla o subsistema controlável com base nos valores de controle no mapa preditivo.
[00205] Um valor de controle é um valor no qual uma ação pode ser baseada. Um valor de controle, como descrito no presente documento, pode incluir qualquer valor (ou característica indicada pelo valor ou derivada do mesmo) que pode ser usado no controle da colheitadeira agrícola 100. Um valor de controle pode ser qualquer valor indicativo de uma característica agrícola. Um valor de controle pode ser um valor predito, um valor medido ou um valor detectado. Um valor de controle pode incluir qualquer dos valores providos por um mapa, tal como qualquer dos mapas descritos no presente documento, por exemplo, um valor de controle pode ser um valor provido por um mapa de informação, um valor provido pelo mapa de informação anterior, ou um valor provido pelo mapa preditivo, tal como um mapa preditivo funcional. Um valor de controle pode também incluir qualquer das características indicadas ou derivadas dos valores detectados por qualquer dos sensores descritos no presente documento. Em outros exemplos, um valor de controle pode ser provido por um operador da máquina agrícola, tal como uma entrada de comando por um operador da máquina agrícola.
[00206] A presente discussão mencionou processadores e servidores. Em alguns exemplos, os processadores e servidores incluem processadores de computador com memória e sistema de circuitos de sincronismo associados, não mostrados separadamente. Os processadores e servidores são partes funcionais dos sistemas ou dispositivos aos quais os processadores e servidores pertencem e pelos quais são ativados e facilitam a funcionalidade dos outros componentes ou itens nesses sistemas.
[00207] Também, inúmeras exibições de interface de usuário foram discutidas. As exibições podem assumir uma ampla variedade de diferentes formas e podem ter uma ampla variedade de diferentes mecanismos de interface de operador atuáveis pelo usuário dispostos nas mesmas. Por exemplo, os mecanismos de interface de operador atuáveis pelo usuário podem incluir caixas de texto, caixas de verificação, ícones, ligações, menus pendentes, caixas de busca, etc. Os mecanismos de interface de operador atuáveis pelo usuário podem também ser atuados em uma ampla variedade de diferentes maneiras. Por exemplo, os mecanismos de interface de operador atuáveis pelo usuário podem ser atuados usando mecanismos de interface de operador tais como um dispositivo de apontar e clicar, tal como um mouse de esfera ou mouse comum, botões de hardware, interruptores, um manche ou teclado, interruptores de polegar ou blocos de polegar, etc., um teclado virtual ou outros atuadores virtuais. Além do mais, onda exibição na qual os mecanismos de interface de operador atuáveis pelo usuário são exibidos é uma exibição sensível ao toque, os mecanismos de interface de operador atuáveis pelo usuário podem ser atuados usando gestos de toque. Também, mecanismos de interface de operador atuáveis pelo usuário podem ser atuados usando comandos de voz usando funcionalidade de reconhecimento de voz. Reconhecimento de voz pode ser implementado usando um dispositivo de detecção de voz, tal como um microfone, e software que funciona para reconhecer voz detectada e executar comandos com base na voz recebida.
[00208] Inúmeros armazenamentos de dados foram também discutidos. Nota-se que os armazenamentos de dados podem ser desmembrados em múltiplos armazenamentos de dados. Em alguns exemplos, um ou mais dos armazenamentos de dados podem ser locais aos sistemas que acessam os armazenamentos de dados, um ou mais dos armazenamentos de dados podem todos ser localizados remotos de um sistema que utiliza os armazenamento de dados, ou um ou mais armazenamentos de dados podem ser locais enquanto outros são remotos. Todas essas configurações são contempladas pela presente descrição.
[00209] Também, as figuras mostram inúmeros blocos com funcionalidade atribuída a cada bloco. Nota-se que menos blocos podem ser usados para ilustrar que a funcionalidade atribuída aos múltiplos diferentes blocos é realizada por menos componentes. Também, mais blocos podem ser usados ilustrando que a funcionalidade pode ser distribuída dentre mais componentes. Em diferentes exemplos, alguma funcionalidade pode ser adicionada, e alguma pode ser removida.
[00210] Nota-se que a discussão apresentada descreveu uma variedade de diferentes sistemas, componentes, lógica e interações. Percebe-se que qualquer ou todos tais sistemas, componentes, lógica e interações podem ser implementados por itens de hardware, tais como processadores, memória ou outros componentes de processamento, incluindo, mas sem se limitar a componentes de inteligência artificial, tais como redes neurais, alguns dos quais são descritos a seguir, que realizam as funções associadas com esses sistemas, componentes, ou lógica, ou interações. Além do mais, qualquer ou todos os sistemas, componentes, lógica e interações podem ser implementados por software que é carregado em uma memória e é subsequentemente executado por um processador ou servidor ou outro componente de computação, como descrito a seguir. Qualquer ou todos os sistemas, componentes, lógica e interações podem também ser implementados por diferentes combinações de hardware, software, firmware, etc., alguns exemplos dos quais são descritos a seguir. Esses são alguns exemplos de diferentes estruturas que podem ser usadas para implementar qualquer ou todos os sistemas, componentes, lógica e interações aqui descritos. Outras estruturas podem ser igualmente usadas.
[00211] A FIG. 12 é um diagrama de blocos da colheitadeira agrícola 600, que pode ser similar à colheitadeira agrícola 100 mostrada na FIG. 2. A colheitadeira agrícola 600 comunica com elementos em uma arquitetura de servidor remoto 500. Em alguns exemplos, a arquitetura de servidor remoto 500 provê serviços de computação, software, acesso de dados e armazenamento que não exigem conhecimento do usuário final da localização física ou configuração do sistema que entrega os serviços. Em vários exemplos, servidores remotos podem entregar os serviços por uma rede de área abrangente, tal como a Internet, usando protocolos apropriados. Por exemplo, servidores remotos podem entregar aplicações por uma rede de área abrangente e podem ser acessíveis por um navegador de rede ou qualquer outro componente de computação. Software ou componentes mostrados na FIG. 2 bem como dados associados aos mesmos, podem ser armazenados em servidores em uma localização remota. Os recursos de computação em um ambiente de servidor remoto podem ser consolidados em uma localização de centro de dados remoto, ou os recursos de computação podem ser dispersos em uma pluralidade de centros de dados remotos. Infraestruturas de servidor remoto podem entregar serviços através de centros de dados compartilhados, mesmo que os serviços pareçam um único ponto de acesso para o usuário. Dessa forma, os componentes e funções descritos no presente documento podem ser providos de um servidor remoto em uma localização remota usando uma arquitetura de servidor remoto. Alternativamente, os componentes e funções podem ser providos de um servidor, ou os componentes e funções podem ser instalados em dispositivos clientes diretamente, ou de outras maneiras.
[00212] No exemplo mostrado na FIG. 12, alguns itens são similares aos mostrados na FIG. 2 e esses itens são similarmente enumerados. A FIG. 12 especificamente mostra que o gerador de modelo preditivo 210 ou o gerador de mapa preditivo 212, ou ambos, pode ser localizado em uma localização de servidor 502 que é remota da colheitadeira agrícola 600. Portanto, no exemplo mostrado na FIG. 12, colheitadeira agrícola 600 acessa sistemas através da localização do servidor remoto 502.
[00213] A FIG. 12 também representa outro exemplo de uma arquitetura de servidor remoto. A FIG. 12 mostra que alguns elementos da FIG. 2 podem ser dispostos em uma localização de servidor remoto 502 enquanto outros podem ser localizados em qualquer lugar. A título de exemplo, o armazenamento de dados 202 pode ser disposto em uma localização separada da localização 502 e acessado por meio do servidor remoto na localização 502. Independentemente de onde os elementos são localizados, os elementos podem ser acessados diretamente pela colheitadeira agrícola 600 através de uma rede tal como uma rede de área abrangente ou uma rede de área local; os elementos podem ser hospedados em um local remoto por um serviço; ou os elementos podem ser providos como um serviço ou acessados por um serviço de conexão que reside em uma localização remota. Também, dados podem ser armazenados em qualquer localização, e os dados armazenados podem ser acessados, ou encaminhados a operadores, usuários ou sistemas. Por exemplo, portadoras físicas podem ser usadas em substituição ou em adição a portadoras de ondas eletromagnéticas. Em alguns exemplos, onda cobertura de serviço de telecomunicação sem fio é fraca ou inexistente, outra máquina, tal como um caminhão de combustível ou outra máquina móvel ou veículo, pode ter um sistema de coleta de informação automatizado, semiautomatizado ou manual. À medida que a colheitadeira combinada 600 se aproxima da máquina contendo o sistema de coleta de informação, tal como um caminhão de combustível, antes do abastecimento, o sistema de coleta de informação coleta a informação da colheitadeira combinada 600 usando qualquer tipo de conexão sem fio ad hoc. A informação coletada pode então ser encaminhada a outra rede quando a máquina contendo a informação recebida chega a uma localização onde cobertura de serviço de telecomunicação sem fio ou outra cobertura por fio é disponível. Por exemplo, um caminhão de combustível pode entrar em uma área com cobertura de comunicação sem fio durante deslocamento para uma localização para abastecer outras máquinas ou quando em uma localização de armazenamento de combustível principal. Todas essas arquiteturas são contempladas no presente documento. Adicionalmente, a informação pode ser armazenada na colheitadeira agrícola 600 até que a colheitadeira agrícola 600 entre em uma área com cobertura de comunicação sem fio. A colheitadeira agrícola 600, por sua vez, pode enviar a informação a outra rede.
[00214] Nota-se também que os elementos da FIG. 2, ou porções dos mesmos, podem ser dispostos em uma ampla variedade de diferentes dispositivos. Um ou mais desses dispositivos podem incluir computadores internos, uma unidade de controle eletrônico, uma unidade de exibição, um servidor, um computador desktop, um computador laptop, um computador tablet, ou outro dispositivo móvel, tal como um computador palmtop, um telefone celular, um smartphone, um tocador multimídia, um assistente pessoal digital, etc.
[00215] Em alguns exemplos, a arquitetura de servidor remoto 500 pode incluir medidas de segurança cibernética. Sem limitação, essas medidas podem incluir encriptação de dados em dispositivos de armazenamento, encriptação de dados enviados entre nós de rede, autenticação de pessoas ou dados de acesso de processo, bem como o uso de livros para registrar metadados, dados, transferências de dados, acesso de dados e transformações de dados. Em alguns exemplos, os livros podem ser distribuídos e imutáveis (por exemplo, implementados como blockchain).
[00216] A FIG. 13 é um diagrama de blocos simplificado de um exemplo ilustrativo de um dispositivo de computação portátil ou móvel que podem ser usados um dispositivo portátil de usuário ou cliente 16, no qual o presente sistema (ou partes dele) pode ser desdobrado. Por exemplo, um dispositivo móvel pode ser desdobrado no compartimento do operador da colheitadeira agrícola 100 para uso na geração, processamento ou exibição dos mapas supradiscutidos. FIGS. 14-15 são exemplos de dispositivos portáteis ou móveis.
[00217] A FIG. 13 provê um diagrama de blocos geral dos componentes de um dispositivo cliente 16 que podem rodar alguns componentes mostrados na FIG. 2, que interage com os mesmos, ou ambos. No dispositivo 16, uma ligação de comunicações 13 é provida que permite que o dispositivo portátil comunique com outros dispositivos de computação e em alguns exemplos provê um canal para receber informação automaticamente, tal como por escaneamento. Exemplos de ligação de comunicações 13 incluem permitir comunicação através de um ou mais protocolos de comunicação, tais como serviços sem fio usados para prover acesso celular a uma rede, bem como protocolos que provêm conexões sem fio locais a redes.
[00218] Em outros exemplos, aplicações podem ser recebidas em um cartão Digital Seguro Removível (SD) que é conectado a uma interface 15. A interface 15 e ligações de comunicação 13 comunicam com um processador 17 (que pode também incorporar processadores ou servidores de outras FIGS.) ao longo de um barramento 19 que é também conectado à memória 21 e componentes de entrada/saída (I/O) 23, bem como relógio 25 e sistema de localização 27.
[00219] Os componentes de I/O 23, em um exemplo, são providos para facilitar operações de entrada e saída. Os componentes de I/O 23 para vários exemplos do dispositivo 16 podem incluir componentes de entrada tais como botões, sensores de toque, sensores ópticos, microfones, telas sensíveis ao toque, sensores de proximidade, acelerômetros, sensores de orientação e componentes de saída tal como um dispositivo de exibição, um alto-falante, e ou uma porta de impressora. Outros componentes de I/O 23 podem ser igualmente usados.
[00220] O relógio 25 ilustrativamente compreende um componente de relógio de tempo real que produz uma hora e data. Ele pode também, ilustrativamente, prover funções de sincronismo para o processador 17.
[00221] O sistema de localização 27 ilustrativamente inclui um componente que produz uma localização geográfica atual do dispositivo 16. Isso pode incluir, por exemplo, um receptor de sistema de posicionamento global (GPS), um sistema LORAN, um sistema de posicionamento relativo, um sistema de triangulação celular, ou outro sistema de posicionamento. O sistema de localização 27 pode também incluir, por exemplo, software de mapeamento ou software de navegação que gero mapas, rotas de navegação e outras funções geográficas desejadas.
[00222] A memória 21 armazena o sistema operacional 29, ajustes de rede 31, aplicações 33, ajustes de configuração de aplicação 35, armazenamento de dados 37, unidades de operação de comunicação 39 e ajustes de configuração de comunicação 41. A memória 21 pode incluir todos os tipos de dispositivos de memória legíveis por computador tangíveis voláteis e não voláteis. A memória 21 pode também incluir mídias de armazenamento por computador (descritas a seguir). A memória 21 armazena instruções legíveis por computador que, quando executadas pelo processador 17, fazem com que o processador realize etapas ou funções implementadas por computador de acordo com as instruções. O processador 17 pode ser ativado por outros componentes para facilitar sua funcionalidade igualmente.
[00223] FIG. 14 mostra um exemplo no qual dispositivo 16 é um computador tablet 600. Na FIG. 14, computadores 601 é mostrado com tela de exibição de interface de usuário 602. A tela 602 pode ser uma tela sensível ao toque ou uma interface habilitada por caneta que recebe entradas de uma caneta ou dispositivo tipo caneta. Computadores tablet 600 podem também usar um teclado virtual na tela. Certamente, computadores 601 também podem ser anexados a um teclado ou outro dispositivo de entrada de usuário por meio de mecanismo de anexação adequado, tal como uma ligação sem fio ou porta USB, por exemplo. Os computadores 601 podem também ilustrativamente receber entradas de voz igualmente.
[00224] FIG. 15 é similar à FIG. 14 exceto que o dispositivo é um smartphone 71. O smartphone 71 tem uma exibição sensível ao toque 73 que exibe ícones ou azulejos ou outros mecanismos de entrada de usuário 75. Os mecanismos 75 podem ser usados por um usuário rodar aplicações, fazer chamadas, realizar operações de transferência de dados, etc. Em geral, o smartphone 71 é construído em um sistema operacional móvel e oferece capacidade de computação e conectividade mais avançadas do que um telefone de recurso.
[00225] Note que outras formas dos dispositivos 16 são possíveis.
[00226] A FIG. 16 é um exemplo de um ambiente de computação no qual elementos da FIG. 2 podem ser desdobrados. Com referência à FIG. 16, um sistema exemplificativo para implementar algumas modalidades inclui um dispositivo de computação na forma de um computador 810 programado para operar como aqui discutido. Os componentes de computador 810 podem incluir, mas sem se limitar a uma unidade de processamento 820 (que pode compreender processadores ou servidores das FIGS. anteriores), um sistema memória 830 e um barramento do sistema 821 que acopla vários componentes de sistema incluindo a memória do sistema à unidade de processamento 820. O barramento do sistema 821 pode ser qualquer de diversos tipos de estruturas de barramento incluindo um barramento de memória ou controlador de memória, um barramento periférico e um barramento local usando qualquer de uma variedade de arquiteturas de barramento. A memória e programas descritos com relação à FIG. 2 podem ser desdobrados em porções correspondentes da FIG. 16.
[00227] O computador 810 tipicamente inclui uma variedade de mídias legíveis por computador. Mídias legíveis por computador podem ser qualquer mídia disponível que pode ser acessada por computador 810 e incluem tanto mídia volátil quanto não volátil, mídia removível quanto não removível. A título de exemplo, e não de limitação, mídias legíveis por computador podem compreender mídias de armazenamento por computador e mídias de comunicação. Mídias de armazenamento por computador são diferentes, e não incluem, um sinal de dados modulado ou onda portadora. Mídias legíveis por computador incluem mídia de armazenamento de hardware incluindo tanto mídia removível quanto não removível, volátil quanto não volátil implementada em qualquer método ou tecnologia para armazenamento de informação tais como instruções legíveis por computador, estruturas de dados, módulos de programa ou outros dados. Mídias de armazenamento por computador incluem, mais sem se limitar a RAM, ROM, EEPROM, memória flash ou outra tecnologia de memória, CD-ROM, discos versáteis digitais (DVD) ou outro armazenamento de disco óptico, cassetes magnéticos, fita magnética, armazenamento de disco magnético ou outros dispositivos de armazenamento magnéticos, ou qualquer outra mídia que pode ser usada para armazenar a informação desejada e que pode ser acessada por computador 810. Mídias de comunicação podem incorporar instruções legíveis por computador, estruturas de dados, módulos de programa ou outros dados em um mecanismo de transporte e inclui qualquer mídia de entrega de informação. A expressão “sinal de dados modulado” significa um sinal que tem uma ou mais de suas características definidas ou alteradas de uma maneira tal a codificar informação no sinal.
[00228] A memória do sistema 830 inclui mídias de armazenamento por computador na forma de memória volátil e/ou não volátil, ou ambas, tais como memória apenas de leitura (ROM) 831 e memória de acesso aleatório (RAM) 832. Um sistema de entrada/saída básico 833 (BIOS), contendo as rotinas básicas que ajudam a transferir informação entre elementos dentro do computador 810, tal como durante iniciação, é tipicamente armazenado em ROM 831. RAM 832 tipicamente contém dados ou módulos de programa, ou ambos, que são imediatamente acessíveis e/ou são atualmente operados pela unidade de processamento 820. A título de exemplo, e não de limitação, FIG. 16 ilustra sistema operacional 834, programas de aplicação 835, outros módulos de programa 836 e dados de programa 837.
[00229] O computador 810 pode também incluir outras mídias de armazenamento por computador removíveis/não removíveis voláteis/não voláteis. Apenas a título de exemplo, FIG. 16 ilustra uma unidade de disco rígido 841 que lê ou grava em mídias magnéticas não removíveis, não magnéticas, uma unidade de disco óptico 855 e disco óptico não volátil 856. A unidade de disco rígido 841 é tipicamente conectada ao barramento do sistema 821 através de uma interface de memória não removível tal como a interface 840, e a unidade de disco óptico 855 é tipicamente conectada ao barramento do sistema 821 por uma interface de memória removível, tal como a interface 850.
[00230] Alternativamente, ou adicionalmente, a funcionalidade descrita no presente documento pode ser realizada, pelo menos em parte, por um ou mais componentes lógicos de hardware. Por exemplo, e sem limitação, tipos ilustrativos de componentes lógicos de hardware que podem ser usados incluem Arranjos de Porta Programáveis no Campo (FPGAs), Circuitos Integrados Específicos da Aplicação (por exemplo, ASICs), Produtos Padrões Específicos da Aplicação (por exemplo, ASSPs), sistemas sistema-em-umchip (SOCs), Dispositivos de Lógica Programável Complexa (CPLDs), etc.
[00231] As unidades de operação e suas mídias de armazenamento por computador associadas aqui discutidas e ilustradas na FIG. 16 provêm armazenamento de instruções legíveis por computador, estruturas de dados, módulos de programa e outros dados para o computador 810. Na FIG. 16, por exemplo, a unidade de disco rígido 841 é ilustrada armazenando sistema operacional 844, programas de aplicação 845, outros módulos de programa 846 e dados de programa 847. Note que esses componentes podem ser tanto os mesmos quanto diferentes do sistema operacional 834, programas de aplicação 835, outros módulos de programa 836 e dados de programa 837.
[00232] Um usuário pode entrar com comandos e informação no computador 810 através de dispositivos de entrada tais como um teclado 862, um microfone 863 e um dispositivo de apontamento 861, tais como um mouse, mouse de esfera ou bloco de toque. Outros dispositivos de entrada (não mostrados) podem incluir um manche, bloco de jogos, disco satélite, escâner ou similares. Esses e outros dispositivos de entrada são frequentemente conectados à unidade de processamento 820 através de uma interface de entrada de usuário 860 que é acoplada ao barramento do sistema, mas pode ser conectada por outra interface e estruturas de barramento. Uma exibição visual 891 ou outro tipo de dispositivo de exibição é também conectada ao barramento do sistema 821 por meio de uma interface, tal como uma interface de vídeo 890. Além do monitor, computadores podem também incluir outros dispositivos de saída periféricos tais como alto-falantes 897 e impressora 896, que podem ser conectados através de uma interface periférica de saída 895.
[00233] O computador 810 é operado em um ambiente ligado em rede usando conexões lógicas (tais como uma rede de área do controlador – CAN, rede de área local – LAN, ou rede de área abrangente WAN) a um ou mais computadores remotos, tal como um computador remoto 880.
[00234] Quando usado em um ambiente de rede LAN, o computador 810 é conectado à LAN 871 através de uma interface de rede ou adaptador 870. Quando usado em um ambiente em rede WAN, o computador 810 tipicamente inclui um modem 872 ou outros meios para estabelecer comunicações pela WAN 873, tal como a Internet. Em um ambiente ligado em rede, módulos de programa podem ser armazenados em um dispositivo de armazenamento de memória remoto. A FIG. 16 ilustra, por exemplo, que programas de aplicação remotos 885 podem residir em computadores remotos 880.
[00235] Deve-se também notar que os diferentes exemplos descritos no presente documento podem ser combinados em diferentes maneiras. Ou seja, partes de um ou mais exemplos podem ser combinadas com partes de um ou mais outros exemplos. Tudo isso é contemplado no presente documento.
[00236] O Exemplo 1 é uma máquina de trabalho agrícola, compreendendo: um sistema de comunicação que recebe um mapa de informação que inclui valores de uma primeira característica agrícola correspondentes a diferentes localizações geográficas em um campo; um sensor de posição geográfica que detecta uma localização geográfica da máquina de trabalho agrícola; um sensor in situ que detecta um valor de uma segunda característica agrícola indicativo de uma característica de material processado correspondente à localização geográfica; um gerador de modelo preditivo que gera um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola com base em um valor da primeira característica agrícola no mapa de informação na localização geográfica e um valor da característica agrícola sensoreada pelo sensor in situ na localização geográfica; e um gerador de mapa preditivo que gera um mapa agrícola preditivo funcional do campo que mapeia valores preditivos da segunda característica agrícola para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo.
[00237] O Exemplo 2 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, e compreendendo adicionalmente: um sistema de controle que gera sinais de controle para controlar um subsistema controlável na máquina de trabalho agrícola com base no mapa agrícola preditivo funcional.
[00238] O Exemplo 3 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sensor in situ compreende: um sensor de característica de rejeitos que sensoreia, como a segunda característica agrícola, uma característica de rejeitos na máquina de trabalho agrícola.
[00239] O Exemplo 4 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sensor in situ compreende: um sensor de perda que sensoreia, como a segunda característica agrícola, uma característica indicativa de perda de cultura pela máquina de trabalho agrícola.
[00240] O Exemplo 5 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sensor in situ compreende: um sensor de qualidade de grão que sensoreia, como a segunda característica agrícola, uma característica indicativa de qualidade de grão na máquina de trabalho agrícola.
[00241] O Exemplo 6 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sensor in situ compreende: um sensor de distribuição interna que sensoreia, como a segunda característica agrícola, uma característica indicativa de uma distribuição de material colhido na máquina de trabalho agrícola.
[00242] O Exemplo 7 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o gerador de mapa preditivo compreende: um gerador de mapa de característica de rejeitos que gera, como o mapa agrícola preditivo funcional, um mapa de característica de rejeitos preditivo que mapeia, como os valores preditivos da segunda característica agrícola, valores preditivos de uma característica de rejeitos para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo.
[00243] O Exemplo 8 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o gerador de mapa preditivo compreende: um gerador de mapa de perda que gera, como o mapa agrícola preditivo funcional, um mapa de perda preditivo que mapeia valores preditivos de uma característica de perda de cultura para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo.
[00244] Exemplo 9 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o gerador de mapa preditivo compreende: um gerador de mapa de qualidade de grão que gera, como o mapa agrícola preditivo funcional, um mapa de qualidade de grão preditivo que mapeia valores preditivos de uma característica de qualidade de grão para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo.
[00245] O Exemplo 10 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o gerador de mapa preditivo compreende: um gerador de mapa de distribuição interna que gera, como o mapa agrícola preditivo funcional, um mapa de distribuição interna preditivo que mapeia valores preditivos de uma característica de distribuição interna, indicativos de uma característica de distribuição de material processado na máquina de trabalho agrícola, para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo.
[00246] Exemplo 11 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sistema de comunicação recebe, como o mapa de informação, um mapa topográfico que inclui, como a primeira característica agrícola, uma característica topográfica, em que o gerador de modelo preditivo gera o modelo agrícola preditivo para modelar uma relação entre a característica topográfica e a segunda característica agrícola.
[00247] Exemplo 12 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sistema de comunicação recebe, como o mapa de informação, um mapa de genótipo de semente que inclui, como a primeira característica agrícola, um genótipo de semente, em que o gerador de modelo preditivo gera o modelo agrícola preditivo para modelar uma relação entre a semente genótipo e a segunda característica agrícola.
[00248] Exemplo 13 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sistema de comunicação recebe, como o mapa de informação, um mapa de índice vegetativo que inclui, como a primeira característica agrícola, uma característica de índice vegetativo, em que o gerador de modelo preditivo gera o modelo agrícola preditivo para modelar uma relação entre a característica de índice vegetativo e a segunda característica agrícola.
[00249] O Exemplo 14 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sistema de comunicação recebe, como o mapa de informação, um mapa de rendimento que inclui, como a primeira característica agrícola, uma característica de rendimento preditiva, em que o gerador de modelo preditivo gera o modelo agrícola preditivo para modelar uma relação entre a característica de rendimento preditiva e a segunda característica agrícola.
[00250] O Exemplo 15 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sistema de comunicação recebe, como o mapa de informação, um mapa de biomassa que inclui, como a primeira característica agrícola, uma característica de biomassa, em que o gerador de modelo preditivo gera o modelo agrícola preditivo para modelar uma relação entre a característica de biomassa e a segunda característica agrícola.
[00251] O Exemplo 16 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sistema de comunicação recebe, como o mapa de informação, um mapa de ervas daninhas que inclui, como a primeira característica agrícola, uma característica de ervas daninhas, em que o gerador de modelo preditivo gera o modelo agrícola preditivo para modelar uma relação entre a característica de ervas daninhas e a segunda característica agrícola.
[00252] O Exemplo 17 é um método implementado por computador para gerar um mapa agrícola preditivo funcional, compreendendo: receber um mapa de informação, em uma máquina de trabalho agrícola, que indica valores de uma primeira característica agrícola correspondentes a diferentes localizações geográficas em um campo; detectar uma localização geográfica da máquina de trabalho agrícola; detectar, com um sensor in situ, uma segunda característica agrícola indicativa de uma característica de material processado correspondente à localização geográfica; gerar um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola; e controlar um gerador de mapa preditivo para gerar o mapa agrícola preditivo funcional do campo que mapeia valores preditivos da segunda característica agrícola para as diferentes localizações no campo com base nos valores da primeira característica agrícola no mapa de informação e no modelo agrícola preditivo.
[00253] O Exemplo 18 é o método implementado por computador de qualquer ou todos os exemplos anteriores, e compreendendo adicionalmente: configurar o mapa agrícola preditivo funcional para um sistema de controle que gera sinais de controle para controlar um subsistema controlável na máquina de trabalho agrícola com base no mapa agrícola preditivo funcional.
[00254] O Exemplo 19 é uma máquina de trabalho agrícola, compreendendo: um sistema de comunicação que recebe um mapa de informação que inclui valores de uma primeira característica agrícola correspondentes a diferentes localizações geográficas em um campo; um sensor de posição geográfica que detecta uma localização geográfica da máquina de trabalho agrícola; um sensor in situ que detecta um valor de uma segunda característica agrícola indicativo de uma característica de material processado correspondente à localização geográfica; um gerador de modelo preditivo que gera um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola com base em um valor da primeira característica agrícola no mapa de informação na localização geográfica e um valor da característica agrícola sensoreada pelo sensor in situ na localização geográfica; e um gerador de mapa preditivo que gera um mapa agrícola preditivo funcional do campo que mapeia valores preditivos da segunda característica agrícola para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo, o gerador de mapa preditivo configurando o mapa agrícola preditivo funcional para um sistema de controle que gera sinais de controle para controlar um subsistema controlável na máquina de trabalho agrícola com base no mapa agrícola preditivo funcional.
[00255] O Exemplo 20 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sensor in situ compreende um ou mais de: um sensor de característica de rejeitos que sensoreia uma característica de rejeitos na máquina de trabalho agrícola como a segunda característica agrícola; um sensor de perda que sensoreia uma característica indicativa de perda de cultura pela máquina de trabalho agrícola como a segunda característica agrícola; um sensor de qualidade de grão que sensoreia uma característica indicativa de qualidade de grão na máquina de trabalho agrícola as a segunda característica agrícola; e um sensor de distribuição interna que sensoreia uma característica indicativa de uma distribuição de material colhido na máquina de trabalho agrícola como a segunda característica agrícola.
[00256] Embora a matéria tenha sido descrita em linguagem específica para recursos estruturais e/ou atos metodológicos, deve-se entender que a matéria definida nas reivindicações anexas não é necessariamente limitada aos recursos ou atos específicos supradescritos. Em vez disso, os recursos e atos específicos supradescritos são descritos como formas exemplificativas das reivindicações.

Claims (15)

  1. Sistema agrícola, caracterizado pelo fato de que compreende: um sistema de comunicação (206) que recebe um mapa de informação (258) que inclui valores de uma primeira característica agrícola correspondentes a diferentes localizações geográficas em um campo; um sensor de posição geográfica (204) que detecta uma localização geográfica de uma máquina de trabalho agrícola (100); um sensor in situ (208) que detecta um valor de uma segunda característica agrícola indicativo de uma característica de material processado correspondente à localização geográfica; um gerador de modelo preditivo (210) que gera um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola com base em um valor da primeira característica agrícola no mapa de informação (258) na localização geográfica e um valor da segunda característica agrícola sensoreada pelo sensor in situ (208) na localização geográfica; e um gerador de mapa preditivo (212) que gera um mapa agrícola preditivo funcional do campo que mapeia valores preditivos da segunda característica agrícola para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação (258) e com base no modelo agrícola preditivo.
  2. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente: um sistema de controle que gera sinais de controle para controlar um subsistema controlável na máquina de trabalho agrícola com base no mapa agrícola preditivo funcional.
  3. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o sensor in situ compreende: um sensor de característica de rejeitos que sensoreia, como a segunda característica agrícola, uma característica de rejeitos na máquina de trabalho agrícola (100).
  4. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o sensor in situ compreende: um sensor de perda que sensoreia, como a segunda característica agrícola, uma característica indicativa de perda de cultura pela máquina de trabalho agrícola (100).
  5. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o sensor in situ compreende: um sensor de qualidade de grão que sensoreia, como a segunda característica agrícola, uma característica indicativa de qualidade de grão na máquina de trabalho agrícola (100).
  6. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o sensor in situ compreende: um sensor de distribuição interna que sensoreia, como a segunda característica agrícola, uma característica indicativa de uma distribuição de material colhido na máquina de trabalho agrícola (100).
  7. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o gerador de mapa preditivo compreende: um gerador de mapa de característica de rejeitos que gera, como o mapa agrícola preditivo funcional, um mapa de característica de rejeitos preditivo que mapeia, como os valores preditivos da segunda característica agrícola, valores preditivos de uma característica de rejeitos para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo.
  8. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o gerador de mapa preditivo compreende:um gerador de mapa de perda que gera, como o mapa agrícola preditivo funcional, um mapa de perda preditivo que mapeia valores preditivos de uma característica de perda de cultura para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo
  9. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o gerador de mapa preditivo compreende: um gerador de mapa de qualidade de grão que gera, como o mapa agrícola preditivo funcional, um mapa de qualidade de grão preditivo que mapeia valores preditivos de uma característica de qualidade de grão para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo.
  10. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o gerador de mapa preditivo compreende: um gerador de mapa de distribuição interna que gera, como o mapa agrícola preditivo funcional, um mapa de distribuição interna preditivo que mapeia valores preditivos de uma característica de distribuição interna, indicativos de uma característica de distribuição de material processado na máquina de trabalho agrícola (100), para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo.
  11. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o sistema de comunicação recebe, como o mapa de informação, um mapa topográfico que inclui, como a primeira característica agrícola, uma característica topográfica, em que o gerador de modelo preditivo gera o modelo agrícola preditivo para modelar uma relação entre a característica topográfica e a segunda característica agrícola.
  12. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o sistema de comunicação recebe, como o mapa de informação, um mapa de genótipo de semente que inclui, como a primeira característica agrícola, um genótipo de semente, em que o gerador de modelo preditivo gera o modelo agrícola preditivo para modelar uma relação entre o genótipo de semente e a segunda característica agrícola.
  13. Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o sistema de comunicação recebe, como o mapa de informação, um mapa de índice vegetativo que inclui, como a primeira característica agrícola, uma característica de índice vegetativo, em que o gerador de modelo preditivo gera o modelo agrícola preditivo para modelar uma relação entre a característica de índice vegetativo e a segunda característica agrícola.
  14. Sistema agrícola, caracterizado pelo fato de que compreende: um sistema de comunicação (206) que recebe um mapa de informação (258) que inclui valores de uma primeira característica agrícola correspondentes a diferentes localizações geográficas em um campo; um sensor de posição geográfica (204) que detecta uma localização geográfica de uma máquina de trabalho agrícola (100); um sensor in situ (208) que detecta um valor de uma segunda característica agrícola indicativo de uma característica de material processado correspondente à localização geográfica; um gerador de modelo preditivo (210) que gera um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola com base em um valor da primeira característica agrícola no mapa de informação (258) na localização geográfica e um valor da segunda característica agrícola sensoreada pelo sensor in situ (208) na localização geográfica; e um gerador de mapa preditivo (212) que gera um mapa agrícola preditivo funcional do campo que mapeia valores preditivos da segunda característica agrícola para as diferentes localizações geográficas no campo com base nos valores da primeira característica agrícola no mapa de informação (258) e com base no modelo agrícola preditivo, em que o gerador de mapa preditivo configura o mapa agrícola preditivo funcional para um sistema de controle (214) que gera sinais de controle para controlar um subsistema controlável (216) na máquina de trabalho agrícola (100) com base no mapa agrícola preditivo funcional.
  15. Método implementado por computador para gerar um mapa agrícola preditivo funcional, caracterizado pelo fato de que compreende: receber um mapa de informação (258) que indica valores de uma primeira característica agrícola correspondentes a diferentes localizações geográficas em um campo; detectar uma localização geográfica de uma máquina de trabalho agrícola (100); detectar, com um sensor in situ (208), uma segunda característica agrícola indicativa de uma característica de material processado correspondente à localização geográfica; gerar um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola; e controlar um gerador de mapa preditivo para gerar o mapa agrícola preditivo funcional do campo que mapeia valores preditivos da segunda característica agrícola para as diferentes localizações no campo com base nos valores da primeira característica agrícola no mapa de informação e no modelo agrícola preditivo.
BR102021016552-9A 2020-10-09 2021-08-20 Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional BR102021016552A2 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/066,521 US11874669B2 (en) 2020-10-09 2020-10-09 Map generation and control system
US17/066,521 2020-10-09

Publications (1)

Publication Number Publication Date
BR102021016552A2 true BR102021016552A2 (pt) 2022-04-26

Family

ID=81045184

Family Applications (1)

Application Number Title Priority Date Filing Date
BR102021016552-9A BR102021016552A2 (pt) 2020-10-09 2021-08-20 Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional

Country Status (4)

Country Link
US (2) US11874669B2 (pt)
CN (1) CN114303610A (pt)
BR (1) BR102021016552A2 (pt)
CA (1) CA3131202A1 (pt)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11589509B2 (en) * 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11727680B2 (en) * 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
CN116171962B (zh) * 2023-03-23 2024-03-08 广东省农业科学院植物保护研究所 一种植保无人机的高效对靶喷雾调控方法及系统

Family Cites Families (978)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE441597C (de) 1927-03-05 Paul Frenzel Vorrichtung fuer Grasmaehmaschinen, um diese zum Maehen des Kartoffelkrautes geeignet zu machen
FI5533A (fi) 1913-11-06 Williamstown Glass Company Anordningar vid glasbearbetningsmaskiner och sätt att tillverka buteljer med sådana
DE504035C (de) 1930-07-31 Hermann Lindstaedt Kartoffelerntemaschine mit an das Schar anschliessendem Foerderwerk und hinter diesem angeordnetem Ablegerost
DE152380C (de) 1897-07-11 1904-06-09 Bauer & Co Verfahren zur Darstellung von Casein- und anderen Eiweisspräparaten
GB901081A (en) 1958-07-31 1962-07-11 Dunn Engineering Associates In Improvements in apparatus for punching jacquard cards
US3568157A (en) 1963-12-31 1971-03-02 Bell Telephone Labor Inc Program controlled data processing system
US3599543A (en) 1964-12-02 1971-08-17 Stothert & Pitt Ltd Vibratory machines
FR1451480A (fr) 1965-07-20 1966-01-07 France Etat Procédé et appareil de mesure du tassement du sol sous les remblais et ouvrages d'art
US3580257A (en) 1969-12-24 1971-05-25 Earl E Teague Weed seed collector for a thresher combine
DE2018219C3 (de) 1970-04-16 1979-02-22 Losenhausen Maschinenbau Ag, 4000 Duesseldorf Vorrichtung zur Erzeugung eines Anzeige- oder Steuersignals für den Fahrantrieb eines dynamischen Bodenverdichters
CH569747A5 (pt) 1972-08-25 1975-11-28 Ciba Geigy Ag
DE2354828A1 (de) 1973-11-02 1975-05-15 Held & Francke Bau Ag Verfahren zum verdichten des bodens und vorrichtung zur durchfuehrung dieses verfahrens
CH618682A5 (pt) 1975-11-07 1980-08-15 Ciba Geigy Ag
DE2646143A1 (de) 1976-10-13 1978-04-20 Bayer Ag 4,5-dichlor-imidazol-1-carbonsaeure- arylester, verfahren zu ihrer herstellung sowie ihre verwendung als pflanzenschutzmittel
US4166735A (en) 1977-01-21 1979-09-04 Shell Oil Company Cycloalkanecarboxanilide derivative herbicides
EP0000351A1 (de) 1977-07-07 1979-01-24 Ciba-Geigy Ag Phenoxy-phenylthio-alkancarbonsäurederivate, Verfahren zu deren Herstellung und deren Verwendung als Herbizide und als Pflanzenwachstumsregulierungsmittel
SU834514A1 (ru) 1978-11-04 1981-05-30 Smolyanitskij Leonid A Способ контрол качества уплотнени гРуНТА
SU887717A1 (ru) 1979-09-18 1981-12-07 Новосибирский филиал Всесоюзного научно-исследовательского института транспортного строительства Устройство дл контрол качества уплотнени грунта
US4360677A (en) 1979-09-20 1982-11-23 Uniroyal, Inc. Herbicidal 2-(alpha-chloromethylsulfonyl) pyridine-1-oxides
US4268679A (en) 1980-02-19 1981-05-19 Ppg Industries, Inc. 3-[5- or 3-Substituted-5- or 3-isoxazolyl]-1-allyl or alkyl-4-substituted-5-substituted or unsubstituted-2-imidazolidinones
EP0042245B1 (en) 1980-06-14 1984-11-28 Claydon Yield-O-Meter Limited Crop metering device for combine harvesters
SU1052940A1 (ru) 1980-09-02 1983-11-07 Войсковая часть 70170 Способ измерени фильтрационных характеристик несв занных грунтов
AU544099B2 (en) 1980-12-15 1985-05-16 Sumitomo Chemical Company, Limited Triazolylpentenols
DOP1981004033A (es) 1980-12-23 1990-12-29 Ciba Geigy Ag Procedimiento para proteger plantas de cultivo de la accion fitotoxica de herbicidas.
FR2509135A1 (fr) 1981-07-10 1983-01-14 Ugine Kuhlmann Compositions herbicides a base de derives d'amino-4 chloro-6 alkylthio-5 pyrimidine et de derives de la dinitro-2,6 aniline et procede de traitement des cultures a l'aide desdites compositions
US4566901A (en) 1982-05-06 1986-01-28 Ciba-Geigy Corporation Novel oxime ethers, the preparation thereof, compositions containing them and the use thereof
US4527241A (en) 1982-08-30 1985-07-02 Sperry Corporation Automatic combine harvester adjustment system
EP0126713B1 (de) 1983-05-18 1989-01-18 Ciba-Geigy Ag Cyclohexandion-carbonsäurederivate mit herbizider und das Pflanzenwachstum regulierender Wirkung
SU1134669A1 (ru) 1983-09-30 1985-01-15 Всесоюзный научно-исследовательский институт транспортного строительства Устройство дл непрерывного контрол степени уплотнени грунта
US4687505A (en) 1983-11-02 1987-08-18 Sylling Truman V Method for desalination and rehabilitation of irrigated soil
ATE62104T1 (de) 1984-04-11 1991-04-15 Ciba Geigy Ag Verfahren zur selektiven unkrautbekaempfung in nutzpflanzenkulturen.
JPH0243845B2 (ja) 1984-05-30 1990-10-01 Shimizu Construction Co Ltd Tsuchinogenbamitsudosokuteihohooyobisonosochi
CS248318B1 (en) 1984-12-21 1987-02-12 Josef Hula Device for soil compactness measuring
CS247426B1 (cs) 1984-12-21 1986-12-18 Josef Hula Zařízení pro mdření ulehlosti půdy
GB2178934A (en) 1985-03-22 1987-02-25 Massey Ferguson Mfg Agricultural husbandry
US5250690A (en) 1985-05-02 1993-10-05 Dowelanco Haloalkoxy anilide derivatives of 2-4(-heterocyclic oxyphenoxy)alkanoic or alkenoic acids and their use as herbicides
US4857101A (en) 1985-12-06 1989-08-15 Rohm And Haas Company Method of selectively controlling weeds in crops of cereals
US5246915A (en) 1986-06-20 1993-09-21 Janssen Pharmaceutica N.V. Method for controlling weeds
SU1526588A1 (ru) 1987-05-29 1989-12-07 Всесоюзный научно-исследовательский институт по применению полимерных материалов в мелиорации и водном хозяйстве Устройство дл измерени степени уплотнени почв
JP2523324B2 (ja) 1987-06-09 1996-08-07 建設省土木研究所長 地盤の締固め程度の測定方法
SU1540053A1 (ru) 1987-06-16 1991-01-15 Головное специализированное конструкторское бюро по комплексам зерноуборочных машин Производственного объединения "Ростсельмаш" Способ управлени технологическим процессом уборочной машины
DE3728669A1 (de) 1987-08-27 1989-03-16 Arcus Elektrotech Messsonde zur messung der bodenverdichtung
BR6800140U (pt) 1988-01-22 1989-09-12 Adalberto Wilke Aplicador de herbicida com protetores para culturas em fase inicial de desenvolvimento
EP0355049A3 (en) 1988-08-18 1990-06-13 Zeneca Limited Heterocyclic compounds
JP2671143B2 (ja) 1989-01-25 1997-10-29 株式会社光電製作所 土の締固め測定装置
JP2767266B2 (ja) 1989-02-15 1998-06-18 ヤンマー農機株式会社 収穫機
US5089043A (en) 1989-11-09 1992-02-18 Shionogi & Co., Ltd. Heterocyclic oxy-phenoxyacetic acid derivatives and their use as herbicides
SU1761864A1 (ru) 1990-03-27 1992-09-15 Московский Автомобильно-Дорожный Институт Способ контрол степени уплотнени грунтов
RU1791767C (ru) 1990-06-12 1993-01-30 Усть-Каменогорский Строительно-Дорожный Институт Прибор дл определени физико-механических свойств грунтов при уплотнении
US5059154A (en) 1990-10-19 1991-10-22 The Board Of Trustees Of The University Of Arkansas Grain cleaner and destructor of foreign matter in harvesting crops
GB9108199D0 (en) 1991-04-17 1991-06-05 Rhone Poulenc Agriculture New compositions of matter
EP0532146B1 (en) 1991-09-11 1998-08-19 E.I. Du Pont De Nemours And Company Herbicidal substituted bicyclic triazoles
US5246164A (en) 1991-12-16 1993-09-21 Mccann Ian R Method and apparatus for variable application of irrigation water and chemicals
US5477459A (en) 1992-03-06 1995-12-19 Clegg; Philip M. Real time three-dimensional machine locating system
PT639050E (pt) 1992-05-06 2001-06-29 Novartis Ag Composicao sinergistica e processo para controlo selectivo de ervas daninhas
US5300477A (en) 1992-07-17 1994-04-05 Rohm And Haas Company 2-arylpyrimidines and herbicidal use thereof
US5296702A (en) 1992-07-28 1994-03-22 Patchen California Structure and method for differentiating one object from another object
US5585626A (en) 1992-07-28 1996-12-17 Patchen, Inc. Apparatus and method for determining a distance to an object in a field for the controlled release of chemicals on plants, weeds, trees or soil and/or guidance of farm vehicles
AU658066B2 (en) 1992-09-10 1995-03-30 Deere & Company Neural network based control system
EP0779201A2 (en) 1993-06-28 1997-06-18 New Holland Belgium N.V. Utility vehicle
JP3359702B2 (ja) 1993-06-28 2002-12-24 株式会社前川製作所 異種植物検出方法と該検出方法を用いた雑草駆除方法
US5592606A (en) 1993-07-30 1997-01-07 Myers; Allen Method and apparatus for storage and display of hierarchally organized data
CA2179648C (en) 1993-12-22 2005-03-22 Clyde James Barnes, Iii Herbicidal diphenyl ether and nitrogen solution compositions and method
US5995859A (en) 1994-02-14 1999-11-30 Nihon Kohden Corporation Method and apparatus for accurately measuring the saturated oxygen in arterial blood by substantially eliminating noise from the measurement signal
US5767373A (en) 1994-06-16 1998-06-16 Novartis Finance Corporation Manipulation of protoporphyrinogen oxidase enzyme activity in eukaryotic organisms
US5606821A (en) 1994-07-25 1997-03-04 Loral Corporation Smart weed recognition/classification system
DE4431824C1 (de) 1994-09-07 1996-05-02 Claas Ohg Mähdrescherbetrieb mit Betriebsdatenkataster
DE69609362T2 (de) 1995-01-25 2000-12-07 Agco Ltd Erntemaschine
GB9504345D0 (en) 1995-03-03 1995-04-19 Compaction Tech Soil Ltd Method and apparatus for monitoring soil compaction
DE19509496C2 (de) 1995-03-16 1998-07-09 Claas Ohg Selbstfahrender Mähdrescher
DE19514223B4 (de) 1995-04-15 2005-06-23 Claas Kgaa Mbh Verfahren zur Einsatzoptimierung von Landmaschinen
DE19528663A1 (de) 1995-08-04 1997-02-06 Univ Hohenheim Verfahren zur Einstellung einer mobilen Arbeitsmaschine
CN1198713A (zh) 1995-09-29 1998-11-11 英格索尔-兰德公司 一种土壤压实机及其牵引控制系统
US5991694A (en) 1995-11-13 1999-11-23 Caterpillar Inc. Method and apparatus for determining the location of seedlings during agricultural production
US5721679A (en) 1995-12-18 1998-02-24 Ag-Chem Equipment Co., Inc. Heads-up display apparatus for computer-controlled agricultural product application equipment
EP0877921B1 (en) 1996-02-01 2005-06-15 BBNT Solutions LLC Measurement of shear modulus of soil
PL178299B1 (pl) 1996-02-13 2000-04-28 Jan Liszkowski Sposób renowacji wałów przeciwpowodziowych
ES2116215B1 (es) 1996-02-22 1999-02-16 Zuniga Escobar Orlando Electrosonda para medir el contenido de humedad del suelo y la compactacion del mismo, metodo de medida correspondiente y utilizacion de dicha electrosonda.
US7032689B2 (en) 1996-03-25 2006-04-25 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system of a given formation
DE29607846U1 (de) 1996-04-30 1996-07-25 Neuhaus Neotec Maschinen Und A Vorrichtung zum Dosieren von Mahlkaffee in Kaffeeverpackungen
DE19629618A1 (de) 1996-07-23 1998-01-29 Claas Ohg Routenplanungssystem für landwirtschaftliche Arbeitsfahrzeuge
US5771169A (en) 1996-08-29 1998-06-23 Case Corporation Site-specific harvest statistics analyzer
DE59702110D1 (de) 1996-10-21 2000-09-07 Ammann Verdichtung Ag Langenth Verfahren zur messung mechanischer daten eines bodens sowie zu dessen verdichtung und mess- bzw. bodenverdichtungsvorrichtung
US5789741A (en) 1996-10-31 1998-08-04 Patchen, Inc. Detecting plants in a field by detecting a change in slope in a reflectance characteristic
DE19647523A1 (de) 1996-11-16 1998-05-20 Claas Ohg Landwirtschaftliches Nutzfahrzeug mit einem in seiner Lage und/oder Ausrichtung gegenüber dem Fahrzeug verstellbar angeordneten Bearbeitungsgerät
US5902343A (en) 1996-11-22 1999-05-11 Case Corporation Automatic scaling of GPS field maps
US5978723A (en) 1996-11-22 1999-11-02 Case Corporation Automatic identification of field boundaries in a site-specific farming system
US6029106A (en) 1996-11-22 2000-02-22 Case Corporation Global position correction for the electronic display of field maps
US5974348A (en) 1996-12-13 1999-10-26 Rocks; James K. System and method for performing mobile robotic work operations
JPH10191762A (ja) 1997-01-13 1998-07-28 Yanmar Agricult Equip Co Ltd コンバインの動力制御装置
US5841282A (en) 1997-02-10 1998-11-24 Christy; Colin Device for measuring soil conductivity
DE19705842A1 (de) 1997-02-15 1998-08-20 Same Deutz Fahr Spa Ernteverfahren
DE19706614A1 (de) 1997-02-20 1998-08-27 Claas Ohg Situationsbezogene programmgesteuerte elektronische Kartenbilddarstellung in einem Kraftfahrzeug
US5809440A (en) 1997-02-27 1998-09-15 Patchen, Inc. Agricultural implement having multiple agents for mapping fields
US5995894A (en) 1997-05-27 1999-11-30 Case Corporation System for analyzing spatially-variable harvest data by pass
JP3013036B2 (ja) 1997-06-04 2000-02-28 ヤンマー農機株式会社 コンバイン
US5991687A (en) 1997-07-02 1999-11-23 Case Corporation System and method for communicating information related to a geographical area
US5899950A (en) 1997-07-07 1999-05-04 Case Corporation Sequential command repeater system for off-road vehicles
US5878821A (en) 1997-07-08 1999-03-09 Flenker; Kevin P. Tillage implement with on-the-go angle and depth controlled discs
US5995895A (en) 1997-07-15 1999-11-30 Case Corporation Control of vehicular systems in response to anticipated conditions predicted using predetermined geo-referenced maps
GB9716251D0 (en) 1997-08-01 1997-10-08 Philips Electronics Nv Attribute interpolation in 3d graphics
PT1005593E (pt) 1997-08-20 2004-12-31 Roxbury Ltd Tratamento do solo
DE19740346A1 (de) 1997-09-13 1999-03-18 Claas Selbstfahr Erntemasch Selbstfahrende Arbeitsmaschine
US6178253B1 (en) 1997-10-10 2001-01-23 Case Corporation Method of determining and treating the health of a crop
DE19800238C1 (de) 1998-01-07 1999-08-26 Claas Selbstfahr Erntemasch System zur Einstellung einer selbstfahrenden Erntemaschine
US6041582A (en) 1998-02-20 2000-03-28 Case Corporation System for recording soil conditions
GB9811177D0 (en) 1998-05-26 1998-07-22 Ford New Holland Nv Methods for generating field maps
DE19828355C2 (de) 1998-06-25 2000-09-07 Lausitzer Und Mitteldeutsche B Pneumatisch-Dynamische-Sonde und Verfahren zur Erkundung und Beurteilung kollabiler, nichtbindiger Böden
US6199000B1 (en) 1998-07-15 2001-03-06 Trimble Navigation Limited Methods and apparatus for precision agriculture operations utilizing real time kinematic global positioning system systems
US6141614A (en) 1998-07-16 2000-10-31 Caterpillar Inc. Computer-aided farming system and method
US6016713A (en) 1998-07-29 2000-01-25 Case Corporation Soil sampling "on the fly"
DE19836659A1 (de) 1998-08-13 2000-02-17 Hoechst Schering Agrevo Gmbh Herbizide Mittel für tolerante oder resistente Baumwollkulturen
US6327569B1 (en) 1998-10-15 2001-12-04 Milestone Technology, Inc. System and methods for real time linkage between harvest environment and marketplace
US6272819B1 (en) 1998-11-17 2001-08-14 Case Corporation Sugar cane yield monitor
US6216071B1 (en) 1998-12-16 2001-04-10 Caterpillar Inc. Apparatus and method for monitoring and coordinating the harvesting and transporting operations of an agricultural crop by multiple agricultural machines on a field
US6380745B1 (en) 1999-03-17 2002-04-30 Dennis M. Anderson Electrical geophysical apparatus for determining the density of porous materials and establishing geo-electric constants of porous material
US6205381B1 (en) 1999-03-26 2001-03-20 Caterpillar Inc. Method and apparatus for providing autoguidance for multiple agricultural machines
US6119442A (en) 1999-05-14 2000-09-19 Case Corporation Combine setting autoadjust with machine vision
GB2350275B (en) 1999-05-25 2003-12-24 Agco Ltd Improvements in yield mapping
US6374173B1 (en) 1999-05-28 2002-04-16 Freightliner Llc Terrain adaptive cruise control
US6188942B1 (en) 1999-06-04 2001-02-13 Caterpillar Inc. Method and apparatus for determining the performance of a compaction machine based on energy transfer
JP3460224B2 (ja) 1999-06-09 2003-10-27 株式会社大林組 盛土転圧管理システム
US6236924B1 (en) 1999-06-21 2001-05-22 Caterpillar Inc. System and method for planning the operations of an agricultural machine in a field
US6119531A (en) 1999-08-03 2000-09-19 Case Corporation Crop sampling system
JP2001057809A (ja) 1999-08-20 2001-03-06 Yanmar Agricult Equip Co Ltd 農作業機におけるエラー信号の記憶制御装置
US6505146B1 (en) 1999-09-24 2003-01-07 Monsanto Company Method and system for spatial evaluation of field and crop performance
CA2283767C (en) 1999-09-27 2007-06-19 Monsanto Company Method and system for spatial evaluation of field crop perfomance
DK1369039T3 (da) 1999-10-14 2005-03-29 Basf Ag Synergistiske herbicide fremgangsmåder
AU2001227586A1 (en) 2000-01-14 2001-07-24 Ag-Chem Equipment Company, Inc. Application report and method for creating the same
CA2330979A1 (en) 2000-02-10 2001-08-10 L. Gregory Alster Method and apparatus for controlling harvesting of trees
DE10023443A1 (de) 2000-05-12 2001-11-15 Deere & Co Fördervorrichtung
FI114171B (fi) 2000-05-12 2004-08-31 Antti Paakkinen Menetelmä ja laite maamassojen ja muiden niiden kaltaisten massojen tiivistysominaisuuksien mittaamiseksi
GT200100103A (es) 2000-06-09 2002-02-21 Nuevos herbicidas
US6460008B1 (en) 2000-07-19 2002-10-01 Ivan E. Hardt Yield monitoring system for grain harvesting combine
US6735568B1 (en) 2000-08-10 2004-05-11 Eharmony.Com Method and system for identifying people who are likely to have a successful relationship
US6522948B1 (en) 2000-08-14 2003-02-18 Flexi-Coil Ltd. Agricultural product application tracking and control
SE520299C2 (sv) 2000-08-23 2003-06-24 Bengt Soervik Förfarande och system för hantering av virkesbitar
US6539102B1 (en) 2000-09-01 2003-03-25 Large Scale Proteomics Reference database
US6591145B1 (en) 2000-09-21 2003-07-08 Bechtel Bwxt Idaho, Llc Systems and methods for autonomously controlling agricultural machinery
DE10050224A1 (de) 2000-10-11 2002-04-25 Volkswagen Ag Verfahren und Einrichtung zum Überwachen und/oder Steuern von beweglichen Objekten
DE10053446B4 (de) 2000-10-27 2006-03-02 Wacker Construction Equipment Ag Lenkbare Vibrationsplatte und fahrbares Vibrationsplattensystem
CN2451633Y (zh) 2000-11-23 2001-10-03 鹤壁市公路管理总段第二工程处 公路灰土基层压实度测定取样机
FR2817344B1 (fr) 2000-11-28 2003-05-09 Sol Solution Penetrometre dynamique a energie variable
JP2002186348A (ja) 2000-12-20 2002-07-02 Yanmar Agricult Equip Co Ltd 穀物貯蔵施設への穀物運搬システム
US6682416B2 (en) 2000-12-23 2004-01-27 Claas Selbstfahrende Erntemaschinen Gmbh Automatic adjustment of a transfer device on an agricultural harvesting machine
DE10064862A1 (de) 2000-12-23 2002-07-11 Claas Selbstfahr Erntemasch Vorrichtung und Verfahren zur Koordination und Einstellung von landwirtschaftlichen Fahrzeugen
DE10064861A1 (de) 2000-12-23 2002-06-27 Claas Selbstfahr Erntemasch Vorrichtung und Verfahren zur automatischen Steuerung einer Überladeeinrichtung an landwirtschaftlichen Erntemaschinen
GB2372105B (en) 2001-02-13 2004-10-27 Agco Ltd Improvements in Mapping Techniques
DE60118518T2 (de) 2001-03-08 2006-12-14 Deere & Company, Moline Mittel zur Messung der Schnittbreite von Erntegut
DE10120173B4 (de) 2001-04-24 2006-02-23 Gebr. Pöttinger GmbH Verfahren und Vorrichtung zum Betreiben von Landmaschinen
DE10129135B4 (de) 2001-06-16 2013-10-24 Deere & Company Einrichtung zur Positionsbestimmung eines landwirtschaftlichen Arbeitsfahrzeugs sowie ein landwirtschaftliches Arbeitsfahrzeug mit dieser
DE10129133A1 (de) 2001-06-16 2002-12-19 Deere & Co Einrichtung zur selbsttätigen Lenkung eines landwirtschaftlichen Arbeitsfahrzeugs
US6549849B2 (en) 2001-06-25 2003-04-15 Trimble Navigation Ltd. Guidance pattern allowing for access paths
DE10130665A1 (de) 2001-06-28 2003-01-23 Deere & Co Vorrichtung zur Messung der Menge von auf einem Feld stehenden Pflanzen
DE10133191A1 (de) 2001-07-07 2003-01-16 Deere & Co Landwirtschaftliche Bestellkombination
DE10134141A1 (de) 2001-07-13 2003-02-06 Deere & Co Verteilvorrichtung für aus einer Erntemaschine austretendes Häckselgut
US6553300B2 (en) 2001-07-16 2003-04-22 Deere & Company Harvester with intelligent hybrid control system
US6591591B2 (en) 2001-07-30 2003-07-15 Deere & Company Harvester speed control with header position input
US6834550B2 (en) 2001-09-10 2004-12-28 The Regents Of The University Of California Soil profile force measurement using an instrumented tine
US6592453B2 (en) 2001-09-27 2003-07-15 Deere & Company Harvester feedrate control with tilt compensation
US6741921B2 (en) 2001-10-05 2004-05-25 Caterpillar Inc Multi-stage truck assignment system and method
US6655351B2 (en) 2001-10-24 2003-12-02 Deere & Company Vehicle engine control
US7034666B2 (en) 2002-02-20 2006-04-25 Scott William Knutson Device used to aid in the loading and unloading of vehicles and implements
US6943824B2 (en) 2002-03-13 2005-09-13 Deere & Company Image processing spout control system
US7761334B2 (en) 2002-03-20 2010-07-20 Deere & Company Method and system for automated tracing of an agricultural product
US6726559B2 (en) 2002-05-14 2004-04-27 Deere & Company Harvester with control system considering operator feedback
NL1020792C2 (nl) 2002-06-06 2003-12-09 Lely Entpr Ag Landbouwmachine voor het uitvoeren van een landbouwbewerking.
NL1020804C2 (nl) 2002-06-06 2003-12-09 Lely Entpr Ag Werkwijze en systeem voor het uitvoeren van ten minste twee landbouwbewerkingen op een landbouwperceel.
US7062368B2 (en) 2002-06-11 2006-06-13 Cnh America Llc Combine having a system estimator to automatically estimate and dynamically change a target control parameter in a control algorithm
DE10230474A1 (de) 2002-07-06 2004-01-15 Deere & Company, Moline Einrichtung zur Dokumentierung des Betriebs eines Zusatzgeräts für eine Arbeitsmaschine
US6681551B1 (en) 2002-07-11 2004-01-27 Deere & Co. Programmable function control for combine
GB0217297D0 (en) 2002-07-26 2002-09-04 Cnh Belgium Nv Methods of optimising stochastic processing parameters in crop harvesting machines
US7103451B2 (en) 2002-08-19 2006-09-05 Intime, Inc. Method and system for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data
DE10240219A1 (de) 2002-08-28 2004-03-11 Claas Selbstfahrende Erntemaschinen Gmbh Vorrichtung zur Steuerung einer Überladeeinrichtung
US6687616B1 (en) 2002-09-09 2004-02-03 Pioneer Hi-Bred International, Inc. Post-harvest non-containerized reporting system
US20040073468A1 (en) 2002-10-10 2004-04-15 Caterpillar Inc. System and method of managing a fleet of machines
EP1410715A1 (en) 2002-10-19 2004-04-21 Bayer CropScience GmbH Combinations of aryloxyphenoxypropionates and safeners and their use for increasing weed control
DE10303516A1 (de) 2003-01-30 2004-08-12 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Vorrichtung zum Bearbeiten und/oder Bestellen von landwirtschaftlichen Flächen
US7047133B1 (en) 2003-01-31 2006-05-16 Deere & Company Method and system of evaluating performance of a crop
US6999877B1 (en) 2003-01-31 2006-02-14 Deere & Company Method and system of evaluating performance of a crop
WO2004083531A2 (en) 2003-03-13 2004-09-30 Burton James D Soil sampler apparatus and method
US6907336B2 (en) 2003-03-31 2005-06-14 Deere & Company Method and system for efficiently traversing an area with a work vehicle
DE10314573A1 (de) 2003-03-31 2004-10-28 Henkel Kgaa Verfahren zum rechnergestützten Regeln einer Mehrzahl von in Serie miteinander gekoppelten Maschinen, Regelungseinrichtung und Maschinen-Anordnung
IL156478A0 (en) 2003-06-17 2004-07-25 Odf Optronics Ltd Compact rotating observation assembly with a separate receiving and display unit
WO2005012866A2 (en) 2003-07-30 2005-02-10 Bbnt Solutions Llc Soil compaction measurement on moving platform
DE10342922A1 (de) 2003-09-15 2005-05-19 Claas Selbstfahrende Erntemaschinen Gmbh Häcksel- und Verteilvorrichtung
EP1516961B1 (de) 2003-09-19 2013-12-25 Ammann Aufbereitung AG Verfahren zur Ermittlung einer Bodensteifigkeit und Bodenverdichtungsvorrichtung
US7408145B2 (en) 2003-09-23 2008-08-05 Kyle Holland Light sensing instrument with modulated polychromatic source
AU2004303492A1 (en) 2003-12-19 2005-07-07 Basf Aktiengesellschaft Benzoyl-substituted phenylalanine amides
US7191062B2 (en) 2003-12-22 2007-03-13 Caterpillar Inc Method and system of forecasting compaction performance
US8407157B2 (en) 2003-12-22 2013-03-26 Deere & Company Locating harvested material within a work area
US20050150202A1 (en) 2004-01-08 2005-07-14 Iowa State University Research Foundation, Inc. Apparatus and method for monitoring and controlling an agricultural harvesting machine to enhance the economic harvesting performance thereof
JP2005227233A (ja) 2004-02-16 2005-08-25 Taisei Corp 地盤密度の測定システム
DE102004011789A1 (de) 2004-03-09 2005-09-29 Claas Selbstfahrende Erntemaschinen Gmbh Vorrichtung zum Erfassen eines Ladewagens
EA010185B1 (ru) 2004-03-27 2008-06-30 Байер Кропсайенс Гмбх Применение сульфонилмочевин в качестве гербицидов
DE102004025135B4 (de) 2004-05-17 2006-04-20 Pt-Poly-Tec Gmbh Vertrieb Und Herstellung Von Dichtsystemen Verfahren und Anordnung zur Leckagevorwarnung und Bauteilpositionierungsanzeige bei Muffenverbindungen
US20070199903A1 (en) 2004-05-18 2007-08-30 Denney Larry W System For Removing Solids From Aqueous Solutions
US20050283314A1 (en) 2004-06-10 2005-12-22 Pioneer Hi-Bred International, Inc. Apparatus, method and system of information gathering and use
US7261632B2 (en) 2004-06-21 2007-08-28 Deere & Company Self-propelled harvesting machine
DE102004031211A1 (de) 2004-06-28 2006-02-09 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zur Steuerung einer landwirtschaftlichen Arbeitsmaschine
DE102004034799A1 (de) 2004-07-19 2006-03-16 Claas Selbstfahrende Erntemaschinen Gmbh Kommunikationssystem für mobile und stationäre Einrichtungen
DE102004039460B3 (de) 2004-08-14 2006-04-20 Deere & Company, Moline System zur Bestimmung der relativen Position eines zweiten landwirtschaftlichen Fahrzeugs in Bezug auf ein erstes landwirtschaftliches Fahrzeug
US7703036B2 (en) 2004-08-16 2010-04-20 Microsoft Corporation User interface for displaying selectable software functionality controls that are relevant to a selected object
US7398137B2 (en) 2004-08-25 2008-07-08 Caterpillar Inc. System and method for remotely controlling machine operations using mapping information
DE102004043169A1 (de) 2004-09-03 2006-03-09 Claas Selbstfahrende Erntemaschinen Gmbh Elektronisches Datenaustauschsystem
DE202004015141U1 (de) 2004-09-27 2004-12-09 Weber Maschinentechnik Gmbh Bodenverdichter
DE102004052298A1 (de) 2004-10-06 2006-06-08 Claas Selbstfahrende Erntemaschinen Gmbh Überladeassistenzsystem
US7211994B1 (en) 2004-10-12 2007-05-01 Federal Network Systems Inc. Lightning and electro-magnetic pulse location and detection for the discovery of land line location
US7248968B2 (en) 2004-10-29 2007-07-24 Deere & Company Obstacle detection using stereo vision
DE102004061439A1 (de) 2004-12-17 2006-07-13 Claas Selbstfahrende Erntemaschinen Gmbh Datengenerierungs- und -übertragungssystem in landwirtschaftlichen Arbeitsmaschinen
JP2006166871A (ja) 2004-12-20 2006-06-29 Iseki & Co Ltd 収穫作業機制御用のコンバイン制御装置
DE102004063104A1 (de) 2004-12-22 2006-07-13 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
DE102005000770B3 (de) 2005-01-05 2006-07-20 Langlott, Jürgen Verfahren zur Steuerung der Arbeitsorgane und der Fahrgeschwindigkeit eines Mähdreschers
DE102005000771A1 (de) 2005-01-05 2006-08-24 Langlott, Jürgen Verfahren zur Steuerung einer selbstfahrenden Erntemaschine
US7194965B2 (en) 2005-01-06 2007-03-27 Deere & Company Variety locator
RU2005102554A (ru) 2005-02-02 2006-07-10 Дальневосточный научно-исследовательский и проектно-технологический институт механизации и электрификации сельского хоз йства (ГНУ ДальНИПТИМЭСХ) (RU) Способ оценки уплотненности полей
DE102005008105A1 (de) 2005-02-21 2006-08-31 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Elektronisches Maschinen-Management-System
US7167797B2 (en) 2005-03-07 2007-01-23 Deere & Company Method of predicting suitability for a crop harvesting operation
US20060200334A1 (en) 2005-03-07 2006-09-07 Deere & Company, A Delaware Corporation Method of predicting suitability for a soil engaging operation
US7167800B2 (en) 2005-04-12 2007-01-23 Deere & Company Method of optimizing remote sensing operation timing
HU3056U (en) 2005-04-29 2006-03-28 G & G Noevenyvedelmi Es Keresk Construction for making weed map
DE102005025318A1 (de) 2005-06-02 2006-12-14 Deere & Company, Moline Landwirtschaftliche Erntemaschine mit einer Austrageinrichtung und einem Kollisionssensor
BRPI0502658A (pt) 2005-06-28 2007-02-13 Unicamp sistema e processo de monitoramento de peso em esteiras de transporte de produtos com taliscas
DE102005031426A1 (de) 2005-07-04 2007-01-18 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zur Optimierung von Betriebsparametern einer landwirtschaftlichen Arbeitsmaschine
US20070021948A1 (en) 2005-07-21 2007-01-25 Anderson Noel W Variable rate prescription generation using heterogenous prescription sources with learned weighting factors
DE102005038553A1 (de) 2005-08-12 2007-02-22 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zum Überladen von Erntegut
DE102005043991A1 (de) 2005-09-14 2007-08-09 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Einstellung eines Arbeitsaggregats einer Erntemaschine
CN100416590C (zh) 2005-09-23 2008-09-03 中国农业机械化科学研究院 利用位置和纹理特征自动识别作物苗期田间杂草的方法
US7302837B2 (en) 2005-09-27 2007-12-04 Cnh America Llc Tire inflation system for use with an agricultural implement
US7945364B2 (en) 2005-09-30 2011-05-17 Caterpillar Inc. Service for improving haulage efficiency
US7725233B2 (en) 2005-10-25 2010-05-25 Deere & Company Crop attribute map input for vehicle guidance
US7827042B2 (en) 2005-11-30 2010-11-02 The Invention Science Fund I, Inc Methods and systems related to transmission of nutraceutical associated information
DE102005059003A1 (de) 2005-12-08 2008-03-27 Claas Selbstfahrende Erntemaschinen Gmbh Routenplanungssystem für landwirtschaftliche Arbeitsmaschinen
ES2311322B1 (es) 2005-12-16 2009-11-30 Consejo Superior Investigaciones Cientificas Procedimiento para la discriminacion y mapeo de los rodales de malas hierbas gramineas en cultivos de cereales mediante teledeteccion.
AU2006328589A1 (en) 2005-12-22 2007-06-28 Basf Se Pestcidal compositions
US20070185749A1 (en) 2006-02-07 2007-08-09 Anderson Noel W Method for tracking hand-harvested orchard crops
US7318010B2 (en) 2006-02-07 2008-01-08 Deere & Company Method of regulating wireless sensor network energy use
US20080276590A1 (en) 2006-02-10 2008-11-13 Agco Corporation Flexible draper and cutter bar with tilt arm for cutterbar drive
US20070208510A1 (en) 2006-03-02 2007-09-06 Deere & Company, A Delaware Corporation Method of identifying and localizing drainage tile problems
DE102006015203A1 (de) 2006-03-30 2007-11-15 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung von landwirtschaftlichen Maschinensystemen
DE102006015204A1 (de) 2006-03-30 2007-10-18 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Erstellung eines Routenplans für landwirtschaftliche Maschinensysteme
US20070239337A1 (en) 2006-04-10 2007-10-11 Deere & Company, A Delaware Corporation System and method of optimizing ground engaging operations in multiple-fields
US7347168B2 (en) 2006-05-15 2008-03-25 Freightliner Llc Predictive auxiliary load management (PALM) control apparatus and method
DE102006026572A1 (de) 2006-06-06 2007-12-13 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zur Anzeige von Fahrzeugbewegungen
US7313478B1 (en) 2006-06-08 2007-12-25 Deere & Company Method for determining field readiness using soil moisture modeling
DE102006028909A1 (de) 2006-06-21 2007-12-27 Claas Selbstfahrende Erntemaschinen Gmbh Kommunikationsnetz und Betriebsverfahren dafür
MXGT06000012A (es) 2006-08-01 2008-01-31 Univ Guanajuato Dispositivo para medir y mapear la compactacion del suelo, acoplable a tractor agricola.
US20080030320A1 (en) 2006-08-03 2008-02-07 Deere & Company, A Delaware Corporation Agricultural lift with data gathering capability
DE102006045280A1 (de) 2006-09-22 2008-04-03 Claas Selbstfahrende Erntemaschinen Gmbh Vorrichtung und Verfahren zur Koordination eines Maschinenparks
CZ17266U1 (cs) 2006-11-09 2007-02-15 Šarec@Ondrej Zařízení pro měření utužení půdy - penetrometr
US7628059B1 (en) 2006-11-22 2009-12-08 The Toro Company Mobile turf instrument apparatus having driven, periodically insertable, ground penetrating probe assembly
US20080140431A1 (en) 2006-12-07 2008-06-12 Noel Wayne Anderson Method of performing an agricultural work operation using real time prescription adjustment
EP1938686A1 (de) 2006-12-29 2008-07-02 Bayer CropScience AG Substituierte 1-(3-Pyridinyl)pyrazol-4-yl-essigsäuren, Verfahren zu deren Herstellung und deren Verwendung als Herbizide und Pflanzenwachstumsregulatoren
US9615501B2 (en) 2007-01-18 2017-04-11 Deere & Company Controlling the position of an agricultural implement coupled to an agricultural vehicle based upon three-dimensional topography data
CN101236188B (zh) 2007-01-31 2011-04-13 北京林业大学 土壤水分无线测量装置
DE102007016670A1 (de) 2007-04-04 2008-10-09 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende landwirtschaftliche Erntemaschine mit steuerbarer Überladeeinrichtung
WO2008124596A1 (en) 2007-04-05 2008-10-16 Iowa State University Research Foundation, Inc. Combination residue spreader and collector for single pass harvesting systems
DE102007018743A1 (de) 2007-04-22 2008-10-23 Bomag Gmbh Verfahren und System zur Steuerung von Verdichtungsmaschinen
US7487024B2 (en) 2007-04-26 2009-02-03 Cnh America Llc Apparatus and method for automatically setting operating parameters for a remotely adjustable spreader of an agricultural harvesting machine
EP1987718A1 (de) 2007-04-30 2008-11-05 Bayer CropScience AG Verwendung von Pyridin-2-oxy-3-carbonamiden als Safener
US8010261B2 (en) 2007-05-23 2011-08-30 Cnh America Llc Automatic steering correction of an agricultural harvester using integration of harvester header row sensors and harvester auto guidance system
TW200904331A (en) 2007-06-15 2009-02-01 Bayer Cropscience Sa Pesticidal composition comprising a strigolactone derivative and an insecticide compound
TW200904330A (en) 2007-06-15 2009-02-01 Bayer Cropscience Sa Pesticidal composition comprising a strigolactone derivative and a fungicide compound
FR2901291B1 (fr) 2007-07-06 2020-10-09 Soc Du Canal De Provence Et Damenagement De La Region Provencale Dispositif pour mesurer le tassement du sol soutenant une construction
DE102007032309A1 (de) 2007-07-11 2009-01-15 Deere & Company, Moline Bedienvorrichtung
EP2020174B1 (en) 2007-08-03 2012-02-29 AGROCOM GmbH & Co. Agrarsystem KG Agricultural working machine
EP2573074B1 (en) 2007-08-13 2014-07-23 Dow AgroSciences LLC 2-(2-fluoro-substituted phenyl)-6-amino-5-chloro-4- pyrimidinecarboxylates and their use as herbicides
US8073235B2 (en) 2007-08-13 2011-12-06 Pioneer Hi-Bred International, Inc. Method and system for digital image analysis of ear traits
GB0717986D0 (en) 2007-09-14 2007-10-24 Cnh Belgium Nv A method and apparatus for detecting errors in electronically processed images
ES2627674T3 (es) 2007-09-26 2017-07-31 Precision Planting Llc Sistema y método para determinar una fuerza hacia abajo apropiada para una unidad de hilera de sembradora
US8060283B2 (en) 2007-10-15 2011-11-15 Deere & Company Method and system for controlling the loading of a container associated with a vehicle
EP2052604A1 (de) 2007-10-24 2009-04-29 Bayer CropScience AG Salz des 2-lodo-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoyl] benzolsulfonamids,Verfahren zu deren Herstellung, sowie deren Verwendung als Herbizide und Pflanzenwachstumregulatoren
EP2052616A1 (de) 2007-10-24 2009-04-29 Bayer CropScience AG Herbizid-Safener-Kombination
DE102007053912A1 (de) 2007-11-09 2009-05-14 Claas Selbstfahrende Erntemaschinen Gmbh Überladeassistenzsystem
US8024074B2 (en) 2007-12-07 2011-09-20 Deere & Company System and method of managing substances in a plant root zone
US8924030B2 (en) 2008-01-24 2014-12-30 Cnh Industrial America Llc Method and apparatus for optimization of agricultural field operations using weather, product and environmental information
US8190335B2 (en) 2008-02-04 2012-05-29 Caterpillar Inc. Performance management system for multi-machine worksite
AU2009214835B2 (en) 2008-02-13 2014-04-10 Grains Research And Development Corporation Weed and volunteer crop seed destruction
US20090216410A1 (en) 2008-02-26 2009-08-27 William Edward Allen Automated machine management system with destination selection
DE102008015277A1 (de) 2008-03-20 2009-09-24 Deere & Company, Moline Verfahren und Vorrichtung zur Lenkung einer zweiten landwirtschaftlichen Maschine, die relativ zu einer ersten landwirtschaftlichen Maschine über ein Feld lenkbar ist
US20090259483A1 (en) 2008-04-11 2009-10-15 Larry Lee Hendrickson Method for making a land management decision based on processed elevational data
US8060269B2 (en) 2008-04-16 2011-11-15 Cnh America Llc Swath line creation including slope compensation for an automatic guidance system of a work vehicle
DE102008020494A1 (de) 2008-04-23 2009-10-29 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zum Koordinieren von fahrbaren landwirtschaftlichen Maschinen
DE102008021785A1 (de) 2008-04-30 2009-11-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zum Koordinieren eines Bearbeitungsvorgangs von landwirtschaftlicher Fläche
CN201218789Y (zh) 2008-05-09 2009-04-08 昆明理工大学 一种手持式定压土壤压实度测量装置
CA2629555A1 (en) 2008-05-14 2009-11-14 Gerard Voon Related/overlapping innovations in health/energy/transport/farming and infrastructure
DE102008002006A1 (de) 2008-05-27 2009-12-03 Deere & Company, Moline Steueranordnung zur Kontrolle des Überladens landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug
DE102008027282A1 (de) 2008-06-06 2009-12-10 Claas Industrietechnik Gmbh Landwirtschaftliches Fahrzeug und Betriebsverfahren dafür
US8175775B2 (en) 2008-06-11 2012-05-08 Cnh America Llc System and method employing short range communications for establishing performance parameters of an exemplar agricultural machine among a plurality of like-purpose agricultural machines
DE102008027906A1 (de) 2008-06-12 2009-12-17 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine
US8147176B2 (en) 2008-06-17 2012-04-03 Deere & Company Work machine and unloading system for unloading an agricultural product from a work machine
ES2332567B1 (es) 2008-06-27 2011-02-10 Consejo Superior Investigacion Procedimiento automatico para seccionar imagenes remotas y caracterizar indicadores agronomicos y ambientales en las mismas
US8032255B2 (en) 2008-06-30 2011-10-04 Deere & Company Monitoring of bin level for an agricultural product
CN101303338B (zh) 2008-07-01 2011-10-05 中国农业大学 一种车载行进式土壤坚实度传感器
WO2010003421A1 (en) 2008-07-08 2010-01-14 Aarhus Universitet Method for optimizing harvesting of crops
DE102008032418A1 (de) 2008-07-10 2010-01-14 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftlicher Maschinenverband
BRPI0802384B1 (pt) 2008-07-23 2019-04-30 Roberto Shiniti Sako Penetrômetro portátil para análise de compactação de solo
KR100974892B1 (ko) 2008-08-01 2010-08-11 한국철도기술연구원 지반의 다짐 품질 측정 방법
US9152938B2 (en) 2008-08-11 2015-10-06 Farmlink Llc Agricultural machine and operator performance information systems and related methods
US8280595B2 (en) 2008-08-12 2012-10-02 Cnh America Llc System and method employing short range communications for communicating and exchanging operational and logistical status information among a plurality of agricultural machines
US9235214B2 (en) 2008-09-11 2016-01-12 Deere & Company Distributed knowledge base method for vehicular localization and work-site management
US8224500B2 (en) 2008-09-11 2012-07-17 Deere & Company Distributed knowledge base program for vehicular localization and work-site management
US8478493B2 (en) 2008-09-11 2013-07-02 Deere & Company High integrity perception program
US8195342B2 (en) 2008-09-11 2012-06-05 Deere & Company Distributed knowledge base for vehicular localization and work-site management
US8818567B2 (en) 2008-09-11 2014-08-26 Deere & Company High integrity perception for machine localization and safeguarding
US8195358B2 (en) 2008-09-11 2012-06-05 Deere & Company Multi-vehicle high integrity perception
US8145393B2 (en) 2008-09-17 2012-03-27 Cnh America Llc System and method employing short range communications for interactively coordinating unloading operations between a harvester and a grain transport
GB0817172D0 (en) 2008-09-19 2008-10-29 Cnh Belgium Nv Control system for an agricultural harvesting machine
CN101363833B (zh) 2008-09-25 2012-02-22 中国科学院地质与地球物理研究所 一种土体击实排水模型试验装置
DE102008050460A1 (de) 2008-10-08 2010-04-15 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Einsatzsteuerung von landwirtschaftlichen Maschinen
US8639408B2 (en) 2008-10-15 2014-01-28 Deere & Company High integrity coordination system for multiple off-road vehicles
DE102008056557A1 (de) 2008-11-10 2010-05-12 Claas Selbstfahrende Erntemaschinen Gmbh Erstellung von Bilddatenbanken für Bildauswertung
DE102008061252A1 (de) 2008-11-24 2010-05-27 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Unterstützung der Automatisierung landwirtschaftlicher Leistungen
EP2191719A1 (de) 2008-11-29 2010-06-02 Bayer CropScience AG Herbizid-Safener-Kombination
KR101067576B1 (ko) 2008-12-03 2011-09-27 한국수자원공사 성토재료의 다짐특성 실내 측정방법 및 장치
US8577537B2 (en) 2008-12-16 2013-11-05 Agco Corporation Methods and systems for optimizing performance of vehicle guidance systems
EP2210879A1 (de) 2008-12-30 2010-07-28 Bayer CropScience AG Pyrimidinderivate und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwachstums
DE102009009767A1 (de) 2009-02-20 2010-08-26 Claas Selbstfahrende Erntemaschinen Gmbh Fahrerassistenzsystem für landwirtschaftliche Arbeitsmaschine
DE102009009817A1 (de) 2009-02-20 2010-08-26 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliches Arbeitsfahrzeug und Steuereinheit dafür
CN101929166B (zh) 2009-04-14 2012-08-08 洛阳路为电子科技有限公司 便携式土基密实度测量仪
US8321365B2 (en) 2009-04-21 2012-11-27 Deere & Company Horticultural knowledge base for managing yards and gardens
US9538714B2 (en) 2009-04-21 2017-01-10 Deere & Company Managing resource prescriptions of botanical plants
US7993188B2 (en) 2009-06-09 2011-08-09 Deere & Company Variable rate diverter for a crop residue collecting device carried by a combine harvester
DE102009025438A1 (de) 2009-06-16 2011-01-05 Claas Selbstfahrende Erntemaschinen Gmbh Routenplanungsverfahren und -system
US20100319941A1 (en) 2009-06-22 2010-12-23 Agco Corp. Trenching Device And System
DE102009027245A1 (de) 2009-06-26 2010-12-30 Deere & Company, Moline Steueranordnung zur Kontrolle des Überladens landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug
KR20110018582A (ko) 2009-08-18 2011-02-24 진성기 약액형 및 분말형 고화제를 이용한 고화 흙벽돌 및 블록 제작 방법
PL2311307T3 (pl) 2009-09-07 2012-09-28 Claas E Systems Gmbh Wskaźnik stopnia napełnienia, pojazd rolniczy zawierający taki wskaźnik oraz sposób kontroli napełniania obszaru docelowego
DE102009041646A1 (de) 2009-09-17 2011-03-24 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Maschine mit Autopilot
US20110224873A1 (en) 2009-09-17 2011-09-15 Reeve David R Vehicle assembly controller with automaton framework and control method
AU2010224431A1 (en) 2009-09-29 2011-04-14 Riteway Holdings Australia Pty Ltd An apparatus to be used in conjunction with a grain harvester for collecting weeds, weed seeds, chaff and so forth
US9345194B2 (en) 2009-09-30 2016-05-24 Cnh Industrial America Llc Automatic display of remote camera image
CZ20252U1 (cs) 2009-10-06 2009-11-16 Šarec@Petr Přístroj pro měření utužení půdy s laserovým snímáním hloubky - laserový penetrometr
US8082809B2 (en) 2009-10-08 2011-12-27 Pioneer Hi-Bred International, Inc. Combine harvester and associated method for selectively gathering grain test data
US8344897B2 (en) 2009-10-12 2013-01-01 Agco Corporation System and method for assisting in the refilling of agricultural vehicles
KR101134075B1 (ko) 2009-10-13 2012-04-13 한국건설기술연구원 지반다짐장비의 이동에 따른 지반의 연속 다짐정보 제공장치 및 이를 이용한 지반의 연속 다짐정보 제공방법
US8521372B2 (en) 2010-05-28 2013-08-27 Agjunction Llc System and method for collecting and processing agricultural field data
US8738238B2 (en) 2009-11-12 2014-05-27 Deere & Company Coordination of vehicle movement in a field
EP2503867B1 (en) 2009-11-25 2018-04-25 Aarhus Universitet System for reducing compaction of soil
US8635903B2 (en) 2009-12-22 2014-01-28 Caterpillar Paving Products Inc. Method and system for compaction measurement
US20110160961A1 (en) 2009-12-29 2011-06-30 Agco Corporation Guidance using a worked edge for wayline generation
DE102010004648A1 (de) 2010-01-13 2011-07-14 CLAAS Selbstfahrende Erntemaschinen GmbH, 33428 Erntemaschine, insbesondere Feldhäcksler
CN102656531A (zh) 2010-01-15 2012-09-05 莱卡地球系统公开股份有限公司 数据共享的系统和方法
CN102138383A (zh) 2010-01-28 2011-08-03 中国农业机械化科学研究院 一种联合收割机谷物损失空间分布的测量方法及其装置
EP2353353A1 (en) 2010-02-05 2011-08-10 Flander's Mechatronics Technology Centre v.z.w. In use adaptation of schedule for multi-vehicle ground processing operations
RU2421744C1 (ru) 2010-02-15 2011-06-20 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" Компактный полигон для измерения характеристик различных антенных систем
US10537061B2 (en) 2010-02-26 2020-01-21 Cnh Industrial America Llc System and method for controlling harvest operations
JP5522785B2 (ja) 2010-03-19 2014-06-18 株式会社日立ソリューションズ 農作業車両運行管理システム
JP2011205967A (ja) 2010-03-30 2011-10-20 Takayuki Nishida 水田における雑草の発生防止用ロボット
US20110257850A1 (en) 2010-04-14 2011-10-20 Reeve David R Vehicle assembly control system and method for composing or decomposing a task
US8527157B2 (en) 2010-04-28 2013-09-03 Deere & Company Agricultural combine and draper header
US8463510B2 (en) 2010-04-30 2013-06-11 Cnh America Llc GPS controlled residue spread width
CN101839906B (zh) 2010-05-10 2013-10-09 吉林大学 一种具有耐磨几何结构表面的锥形触土部件
CA135611S (en) 2010-05-19 2011-05-05 Rhonda Genest Weed removing and grooming garden hand tool
US8380401B2 (en) 2010-06-09 2013-02-19 Cnh America Llc Automatic grain transfer control system based on real time modeling of a fill level profile for regions of the receiving container
DE102010017687A1 (de) 2010-07-01 2012-01-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Einstellung zumindest eines Arbeitsorganes einer selbstfahrenden Erntemaschine
BE1019422A3 (nl) 2010-07-14 2012-07-03 Cnh Belgium Nv Werkwijze en toestel voor voorspellende sturing van een landbouwvoertuigsysteem.
DE102010038661B4 (de) 2010-07-29 2020-07-02 Deere & Company Erntemaschine mit einem an einem Fluggerät befestigten Sensor
US8544397B2 (en) 2010-09-15 2013-10-01 Dawn Equipment Company Row unit for agricultural implement
DE102010053331A1 (de) 2010-09-28 2012-03-29 Lacos Computerservice Gmbh Verfahren und Navigationsvorrichtung zur Optimierung des Transportes landwirtschaftlicher Produkte
US9043129B2 (en) 2010-10-05 2015-05-26 Deere & Company Method for governing a speed of an autonomous vehicle
US9072227B2 (en) 2010-10-08 2015-07-07 Deere & Company System and method for improvement of harvest with crop storage in grain bags
US8789563B2 (en) 2010-10-12 2014-07-29 Deere & Company Intelligent grain bag loader
US8677724B2 (en) 2010-10-25 2014-03-25 Deere & Company Round baler for baling crop residue
US10115158B2 (en) 2010-10-25 2018-10-30 Trimble Inc. Generating a crop recommendation
US8596194B2 (en) 2010-10-28 2013-12-03 Deere & Company Method and apparatus for determining fraction of hay at different moisture levels
DE102010043854B4 (de) 2010-11-12 2016-01-14 Deere & Company Steueranordnung zur Kontrolle des Überladens landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug
DE102010052713A1 (de) 2010-11-26 2012-05-31 Bomag Gmbh Verfahrbare Vorrichtung zur Verdichtung eines Bodenschichtaufbaus und Verfahren zur Ermittlung eines Schicht-E-Moduls einer obersten Schicht dieses Bodenschichtaufbaus
GB2492954A (en) 2010-12-06 2013-01-23 Agco Corp A system for automatic agricultural reporting
RU2447640C1 (ru) 2010-12-08 2012-04-20 Василий Васильевич Ефанов Способ управления технологическим процессом уборочной машины и система для его осуществления
CN102080373B (zh) 2010-12-09 2012-07-04 西安建筑科技大学 用ddc桩和桩基础联合处理黄土地基湿陷性的施工方法
AU2011353515B2 (en) 2011-01-04 2015-11-05 Climate Llc Methods for generating soil maps and application prescriptions
ITTO20110133A1 (it) 2011-02-16 2012-08-17 Cnh Italia Spa Sistema di comunicazione senza fili per veicoli agricoli
US8463460B2 (en) 2011-02-18 2013-06-11 Caterpillar Inc. Worksite management system implementing anticipatory machine control
AU2011359328B2 (en) 2011-02-18 2015-06-11 Cnh Industrial America Llc System and method for trajectory control of a transport vehicle used with a harvester
US8606454B2 (en) 2011-02-18 2013-12-10 Cnh America Llc System and method for synchronized control of a harvester and transport vehicle
US9002591B2 (en) 2011-02-18 2015-04-07 Cnh Industrial America Llc Harvester spout control system and method
WO2012110544A1 (en) 2011-02-18 2012-08-23 Cnh Belgium N.V. Harvester spout control system and method
US8655505B2 (en) 2011-02-18 2014-02-18 Caterpillar Inc. Worksite management system implementing remote machine reconfiguration
BRPI1100258A2 (pt) 2011-02-28 2014-03-11 Apagri Consultoria Agronomica Ltda Processo para obtenção de mapas de aplicação em taxa variada de herbicidas pré-emergentes
US8577561B2 (en) 2011-03-08 2013-11-05 Deere & Company Control system and method of operating a product distribution machine
US9631964B2 (en) 2011-03-11 2017-04-25 Intelligent Agricultural Solutions, Llc Acoustic material flow sensor
US10318138B2 (en) 2011-03-11 2019-06-11 Intelligent Agricultural Solutions Llc Harvesting machine capable of automatic adjustment
US9629308B2 (en) 2011-03-11 2017-04-25 Intelligent Agricultural Solutions, Llc Harvesting machine capable of automatic adjustment
DE102011005400B4 (de) 2011-03-11 2015-05-28 Deere & Company Anordnung und Verfahren zur Abschätzung des Füllgrades beim Überladen landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug
US9043096B2 (en) 2011-03-31 2015-05-26 Ag Leader Technology Combine bin level monitoring system
DE102011001858A1 (de) 2011-04-07 2012-10-11 Claas Selbstfahrende Erntemaschinen Gmbh Vorrichtung und Verfahren zur Überwachung der Befahrbarkeit eines Bodens
DE102011016743A1 (de) 2011-04-12 2012-10-18 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliches Transportfahrzeug und Fahrzeugverbund
DE102011002071A1 (de) 2011-04-15 2012-10-18 Claas Selbstfahrende Erntemaschinen Gmbh System und Verfahren zur Steuerung der Erntegutüberladung
DE102011007511A1 (de) 2011-04-15 2012-10-18 Deere & Company Verfahren zur Einstellung einer Reinigungseinrichtung eines Mähdreschers und Reinigungseinrichtung
CN102277867B (zh) 2011-05-13 2013-10-09 西安建筑科技大学 一种湿陷性黄土地基的施工方法
CN202110103U (zh) 2011-05-14 2012-01-11 长沙亚星数控技术有限公司 电液伺服车载式混填土压实度快速测定系统
DE102011050474A1 (de) 2011-05-19 2012-11-22 Amazonen-Werke H. Dreyer Gmbh & Co.Kg Landwirtschaftliches Gerät
DE102011050629A1 (de) 2011-05-25 2012-11-29 Claas Selbstfahrende Erntemaschinen Gmbh Erntevorrichtung
EP2529610A1 (en) 2011-05-30 2012-12-05 Agri-Esprit SAS Method for harvest monitoring
CN202119772U (zh) 2011-06-01 2012-01-18 王新勇 一种车载土基密实度在线测量仪
EP2718671B1 (en) 2011-06-13 2018-02-21 The Climate Corporation Method for creating prescription maps and plots
US20130022430A1 (en) 2011-07-20 2013-01-24 Anderson Noel W Material transfer system
US20130019580A1 (en) 2011-07-20 2013-01-24 Anderson Noel W Bidirectional harvesting system
DE102011052688B4 (de) 2011-08-12 2021-02-04 Andreas Reichhardt Verfahren und System zur Befüllung von Transportfahrzeugen mit Erntegut
IN2014DN01632A (pt) 2011-08-12 2015-05-15 Rhodia Operations
US8843269B2 (en) 2011-08-17 2014-09-23 Deere & Company Vehicle soil pressure management based on topography
US9511633B2 (en) 2011-08-17 2016-12-06 Deere & Company Soil compaction management and reporting
DE102011082052B4 (de) 2011-09-02 2015-05-28 Deere & Company Anordnung und Verfahren zur selbsttätigen Überladung von Erntegut von einer Erntemaschine auf ein Transportfahrzeug
DE102011082908A1 (de) 2011-09-19 2013-03-21 Deere & Company Verfahren und Anordnung zur optischen Beurteilung von Erntegut in einer Erntemaschine
DE102011054630A1 (de) 2011-10-20 2013-04-25 Claas Agrosystems GmbH Visualisierungseinrichtung
WO2013059602A1 (en) 2011-10-21 2013-04-25 Pioneer Hi-Bred International, Inc. Combine harvester and associated method for gathering grain
EP2771860A4 (en) 2011-10-24 2015-01-21 Trimble Navigation Ltd AGRICULTURAL AND GROUND MANAGEMENT
DE102011085380A1 (de) 2011-10-28 2013-05-02 Deere & Company Anordnung und Verfahren zur vorausschauenden Untersuchung von mit einer Erntemaschine aufzunehmenden Pflanzen
DE102011085977A1 (de) 2011-11-09 2013-05-16 Deere & Company Sieb für eine Reinigungseinrichtung eines Mähdreschers
US8452501B1 (en) 2011-11-09 2013-05-28 Trimble Navigation Limited Sugar cane harvester automatic cutter height control
US20130124239A1 (en) 2011-11-15 2013-05-16 Uriel Rosa Crop yield per location measurer
EP2782438B1 (en) 2011-11-22 2017-06-21 The Climate Corporation Stalk sensor apparatus, systems, and methods
CN202340435U (zh) 2011-11-28 2012-07-25 南京工业职业技术学院 基于作业路径的玉米产量实时测量系统
DE102011120402A1 (de) 2011-12-03 2013-06-06 Robert Bosch Gmbh Verfahren und Vorrichtung zum Koordinieren einer Transportlogistik sowie Transportlogistiksystem
BR102012017584B1 (pt) 2011-12-08 2019-03-26 Agco Do Brasil Máquinas E Equipamentos Agrícolas Ltda. Sistema e método de auxílio de correção de velocidade
DE102011121414A1 (de) 2011-12-17 2013-06-20 Robert Bosch Gmbh Verfahren und eine Vorrichtung zur Regelung einer Fahrt einer ersten selbstfahrenden Arbeitsmaschine in Bezug zu einer zweiten selbstfahrenden Arbeitsmaschine
US8801512B2 (en) 2011-12-19 2014-08-12 Agco Corporation Method for measuring air efficiency and efficacy in a combine harvester
US8626406B2 (en) 2011-12-22 2014-01-07 Deere & Company Method and system for transferring material between vehicles
DE102012201333A1 (de) 2012-01-31 2013-08-01 Deere & Company Landwirtschaftliche Maschine mit einem System zur selbsttätigen Einstellung eines Bearbeitungsparameters und zugehöriges Verfahren
US8649940B2 (en) 2012-02-10 2014-02-11 Deere & Company Method and stereo vision system for managing the unloading of an agricultural material from a vehicle
US9392746B2 (en) 2012-02-10 2016-07-19 Deere & Company Artificial intelligence for detecting and filling void areas of agricultural commodity containers
DE112013000935T5 (de) 2012-02-10 2015-03-12 Darin E. Bartholomew System und Verfahren zum Materialtransport mit einem oder mehreren Bildgebungsgeräten am übergebenden Fahrzeug und am übernehmenden Fahrzeug zur Steuerung der Materialverteilung im Transportanhänger des übernehmenden Fahrzeugs
US8868304B2 (en) 2012-02-10 2014-10-21 Deere & Company Method and stereo vision system for facilitating the unloading of agricultural material from a vehicle
US9861040B2 (en) 2012-02-10 2018-01-09 Deere & Company Method and stereo vision system for facilitating the unloading of agricultural material from a vehicle
DE102012208554A1 (de) 2012-05-22 2013-11-28 Hamm Ag Verfahren zur Planung und Durchführung von Bodenverdichtungsvorgängen, insbesondere zurAsphaltverdichtung
US9288938B2 (en) 2012-06-01 2016-03-22 Rowbot Systems Llc Robotic platform and method for performing multiple functions in agricultural systems
US20130319941A1 (en) 2012-06-05 2013-12-05 American Water Works Company, Inc. Simultaneous recovery of coagulant and acid
US8930039B2 (en) 2012-06-11 2015-01-06 Cnh Industrial America Llc Combine performance evaluation tool
US9117790B2 (en) 2012-06-25 2015-08-25 Marvell World Trade Ltd. Methods and arrangements relating to semiconductor packages including multi-memory dies
DE102012211001A1 (de) 2012-06-27 2014-01-02 Deere & Company Anordnung zur Kontrolle einer Austrageinrichtung einer Erntemaschine mit einer selbsttätigen Positionierung in einer Ruhestellung bei nicht möglichen bzw. stattfindendem Überladevorgang
RU2502047C1 (ru) 2012-07-13 2013-12-20 Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) Способ оценки проходимости местности вне дорог
DE102013106128A1 (de) 2012-07-16 2014-06-12 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine mit zumindest einer Steuerungseinrichtung
US20140067745A1 (en) 2012-08-30 2014-03-06 Pioneer Hi-Bred International, Inc. Targeted agricultural recommendation system
US9095090B2 (en) 2012-08-31 2015-08-04 Deere & Company Pressure-based control system for an agricultural implement
WO2014046685A1 (en) 2012-09-24 2014-03-27 Deere & Company Bidirectional harvesting system
WO2014050524A1 (ja) 2012-09-26 2014-04-03 株式会社クボタ 農作管理システム及び農作物収穫機
KR102113297B1 (ko) 2012-09-26 2020-05-21 가부시끼 가이샤 구보다 대지 작업 차량, 대지 작업 차량 관리 시스템, 대지 작업 정보 표시 방법
DE202012103730U1 (de) 2012-09-28 2012-10-16 Agco International Gmbh Erntemaschine mit einer Überladeeinrichtung
US20140121882A1 (en) 2012-10-31 2014-05-01 Brian J. Gilmore System for Coordinating the Relative Movements of an Agricultural Harvester and a Cart
CN203053961U (zh) 2012-11-02 2013-07-10 昆明理工大学 一种土壤压实数据监测装置
DE102012220109A1 (de) 2012-11-05 2014-05-08 Deere & Company Einrichtung zur Erfassung des Betriebszustands einer Arbeitsmaschine
DE102012021469A1 (de) 2012-11-05 2014-05-08 Claas Selbstfahrende Erntemaschinen Gmbh Assistenzsystem zur Optimierung des Fahrzeugbetriebes
KR101447197B1 (ko) 2012-11-07 2014-10-06 최준성 다짐 평가용 동적 관입 시험 장치 및 이를 이용한 다짐 평가 방법
DE102012220916A1 (de) 2012-11-15 2014-05-15 K&K Maschinenentwicklungs GmbH & Co. KG Verfahren zum Neuherstellen, Sanieren oder Rückbauen einer Schienenfahrbahn
DE102012221344B3 (de) 2012-11-22 2014-05-15 Hamm Ag Umkleidungsanordnung, Bodenbearbeitungswalze und Verfahren zum Anbringen einer Umkleidungsanordnung
WO2014093814A1 (en) 2012-12-14 2014-06-19 Agco Corporation Predictive load estimation through forward vision
DE102012223434B4 (de) 2012-12-17 2021-03-25 Deere & Company Verfahren und Anordnung zur Optimierung eines Betriebsparameters eines Mähdreschers
US20140172225A1 (en) 2012-12-19 2014-06-19 Agco Corporation Speed control in agricultural vehicle guidance systems
DE102012223768B4 (de) 2012-12-19 2014-07-03 Deere & Company Fremdkörpernachweiseinrichtung für eine landwirtschaftliche Erntemaschine
US20140172224A1 (en) 2012-12-19 2014-06-19 Agco Corporation Speed control in agricultural vehicle guidance systems
US20140172222A1 (en) 2012-12-19 2014-06-19 Agco Corporation Speed control in agricultural vehicle guidance systems
JP6059027B2 (ja) 2013-01-21 2017-01-11 株式会社クボタ 農作業機と農作業管理プログラム
US9497898B2 (en) 2013-01-24 2016-11-22 Tribine Industries, LLC Agricultural harvester unloading assist system and method
DE102013001157A1 (de) 2013-01-24 2014-08-07 Zind Systementwicklungs Gmbh Fertigungsanlage zur Fertigung von Gefäßen aus Gefäßrohlingen und Fertigungsverfahren
CN203206739U (zh) 2013-01-25 2013-09-25 蒋行宇 打瓜联合收获机
US8955402B2 (en) 2013-01-25 2015-02-17 Trimble Navigation Limited Sugar cane yield mapping
CN104294810B (zh) 2013-01-30 2016-05-11 青岛市勘察测绘研究院 一种强夯地基加固随夯诊断实时处理方法及强夯实时诊断装置
WO2014137533A2 (en) 2013-02-07 2014-09-12 Brown Owen J Jr Wireless monitor maintenance and control system
DE102013201996A1 (de) 2013-02-07 2014-08-07 Deere & Company Verfahren zur Einstellung von Arbeitsparametern einer Erntemaschine
US9326444B2 (en) 2013-02-08 2016-05-03 Deere & Company Method and stereo vision system for facilitating the unloading of agricultural material from a vehicle
GB2510629B (en) 2013-02-11 2015-10-14 Kverneland Group Les Landes Genusson Strip tilling system
GB2510630B (en) 2013-02-11 2015-08-05 Kverneland Group Les Landes Genusson Strip tilling system
ES2678843T3 (es) 2013-02-19 2018-08-17 Grains Research And Development Corporation Disposición de desvitalización de semillas de maleza
US11212962B2 (en) 2013-02-20 2022-01-04 Deere & Company Field condition determination
US9066465B2 (en) 2013-02-20 2015-06-30 Deere & Company Soil compaction reduction system and method
US9693503B2 (en) 2013-02-20 2017-07-04 Deere & Company Crop sensing
US10178828B2 (en) 2013-02-20 2019-01-15 Deere & Company Per plant crop sensing resolution
US9668420B2 (en) 2013-02-20 2017-06-06 Deere & Company Crop sensing display
US20140257911A1 (en) 2013-03-08 2014-09-11 Deere & Company Methods and apparatus to schedule refueling of a work machine
CN103181263A (zh) 2013-03-11 2013-07-03 西北农林科技大学 一种多机器协作的小麦收割系统
US9410840B2 (en) 2013-03-15 2016-08-09 Raven Industries, Inc. Multi-variable yield monitor and methods for the same
US20140277960A1 (en) 2013-03-18 2014-09-18 Deere & Company Harvester with fuzzy control system for detecting steady crop processing state
EP2978665A4 (en) 2013-03-24 2017-04-26 Bee Robotics Corporation Aerial farm robot system for crop dusting, planting, fertilizing and other field jobs
EP2979537B1 (en) 2013-03-27 2019-08-28 Kubota Corporation Combine
AU2014201885B2 (en) 2013-04-02 2018-03-01 Carnegie Mellon University Control arrangement and method for controlling a position of a transfer device of a harvesting machine
US10129528B2 (en) 2013-04-02 2018-11-13 Deere & Company Control arrangement and method for controlling a position of a transfer device of a harvesting machine
US9992932B2 (en) 2013-04-02 2018-06-12 Deere & Company Control arrangement and method for controlling a position of a transfer device of a harvesting machine
DE102014105643A1 (de) 2013-04-22 2014-10-23 Carnegie Mellon University Verfahren zur Verbesserung der Robostheit eines automatisierten Endladesystems
CN203275401U (zh) 2013-04-24 2013-11-06 陈金 一种新型公路土工击实快速测厚调节仪
CN203055121U (zh) 2013-04-26 2013-07-10 昆明理工大学 一种基于Zigbee技术的土壤压实数据无线传输装置
CA2814599A1 (en) 2013-04-29 2014-10-29 Fieldstone Land Management Inc. Method and apparatus for tangible effect calculation and compensation
EP2798928B1 (en) 2013-04-29 2024-02-07 CLAAS E-Systems GmbH Operating system for and method of operating an automatic guidance system of an agricultural vehicle
US10740703B2 (en) 2013-04-29 2020-08-11 Verge Technologies Inc. Method and system for determining optimized travel path for agricultural implement on land with obstacle
DE102013209197A1 (de) 2013-05-17 2014-11-20 Deere & Company Erntemaschine mit vorausschauender Vortriebsgeschwindigkeitsregelung
USD721740S1 (en) 2013-05-23 2015-01-27 Deere & Company Display interface or housing thereof
BE1021150B1 (nl) 2013-06-03 2016-01-13 Cnh Industrial Belgium Nv Werkwijze voor het verwerken van belastingssignaal van een balenpers
DE102013105821A1 (de) 2013-06-06 2014-12-11 Claas Selbstfahrende Erntemaschinen Gmbh Erntemaschine zur Aufnahme von Erntegut
DE102013212151A1 (de) 2013-06-26 2014-12-31 Robert Bosch Gmbh Baumaschine mit einer Vibrationseinheit
DE102013107169A1 (de) 2013-07-08 2015-01-08 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine
US10180328B2 (en) 2013-07-10 2019-01-15 Agco Coporation Automating distribution of work in a field
DE102013012027A1 (de) 2013-07-19 2015-01-22 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende Erntemaschine und Fahrzeugverbund
GB2517049B (en) 2013-07-28 2019-09-11 Deere & Co Artificial intelligence for detecting and filling void areas of agricultural commodity containers
US9301466B2 (en) 2013-07-29 2016-04-05 Syngenta Participations Ag Variety corn line HID3259
US9188518B2 (en) 2013-08-19 2015-11-17 Bridgestone Americas Tire Operations, Llc Ground compaction images
JP6134609B2 (ja) 2013-08-28 2017-05-24 ヤンマー株式会社 遠隔サーバ
US9767521B2 (en) 2013-08-30 2017-09-19 The Climate Corporation Agricultural spatial data processing systems and methods
US20160360697A1 (en) 2013-09-03 2016-12-15 Agco Corporation System and method for automatically changing machine control state
WO2015038751A1 (en) 2013-09-13 2015-03-19 Agco Corporation Method to automatically estimate and classify spatial data for use on real time maps
US9234317B2 (en) 2013-09-25 2016-01-12 Caterpillar Inc. Robust system and method for forecasting soil compaction performance
US9804756B2 (en) 2013-09-27 2017-10-31 Iteris, Inc. Comparative data analytics and visualization tool for analyzing traffic performance data in a traffic management system
WO2015048499A1 (en) 2013-09-27 2015-04-02 John Earl Acheson Yield monitor calibration method and system
US9188986B2 (en) 2013-10-01 2015-11-17 Jaybridge Robotics, Inc. Computer-implemented method and system for dynamically positioning a vehicle relative to another vehicle in motion for on-the-fly offloading operations
JP2015070812A (ja) 2013-10-03 2015-04-16 ヤンマー株式会社 農作物情報管理システム
WO2015051339A1 (en) 2013-10-03 2015-04-09 Farmers Business Network, Llc Crop model and prediction analytics
WO2015057638A1 (en) 2013-10-14 2015-04-23 Kinze Manufacturing, Inc. Autonomous systems, methods, and apparatus for ag based operations
US10362733B2 (en) 2013-10-15 2019-07-30 Deere & Company Agricultural harvester configured to control a biomass harvesting rate based upon soil effects
BE1021164B1 (nl) 2013-10-28 2016-01-18 Cnh Industrial Belgium Nv Ontlaadsystemen
BE1021108B1 (nl) 2013-10-28 2016-01-18 Cnh Industrial Belgium Nv Ontlaadsystemen
JP6087258B2 (ja) 2013-10-28 2017-03-01 ヤンマー株式会社 遠隔配車サーバ
DE102013222122B4 (de) 2013-10-30 2020-10-15 Mts Maschinentechnik Schrode Ag Verfahren zum Betreiben eines Bodenverdichtungs- oder Bodenprüfgeräts, sowie Bodenverdichtungs- oder Verdichtungsprüfgerät
US10371561B2 (en) 2013-11-01 2019-08-06 Iowa State University Research Foundation, Inc. Yield measurement and base cutter height control systems for a harvester
DE102013019098B3 (de) 2013-11-11 2015-01-08 Hochschule für Technik und Wirtschaft Dresden System zum Erfassen von Parametern der Umwelt und Umgebung
CN203613525U (zh) 2013-11-25 2014-05-28 杨振华 一种公路灰土基层压实度测定取样机
CN203658201U (zh) 2013-12-09 2014-06-18 长安大学 一种用于测量路基土压实度的装置
US9714856B2 (en) 2013-12-13 2017-07-25 Ag Leader Technology, Inc. Automatic compensation for the effect of grain properties on mass flow sensor calibration
JP5986064B2 (ja) 2013-12-25 2016-09-06 Necプラットフォームズ株式会社 冷却システムおよび電子機器
DE102014100136A1 (de) 2014-01-08 2015-07-09 Claas Selbstfahrende Erntemaschinen Gmbh Erntevorrichtung
CN203741803U (zh) 2014-01-10 2014-07-30 瑞和安惠项目管理集团有限公司 工程监理用路基压实度检测取土装置
DE102014201203A1 (de) 2014-01-23 2015-07-23 Deere & Company Landwirtschaftliches Arbeitsfahrzeug mit einem Fluggerät und zugehöriger Stromversorgung
US20150211199A1 (en) 2014-01-24 2015-07-30 Caterpillar Inc. Device and process to measure ground stiffness from compactors
EP3104676A4 (en) 2014-02-10 2017-11-08 The Climate Corporation Methods and systems for generating shared collaborative maps
JP6298313B2 (ja) 2014-02-18 2018-03-20 鹿島建設株式会社 地盤剛性測定装置、締固め機械及び地盤剛性測定方法
DE102014203005B3 (de) 2014-02-19 2015-05-13 Deere & Company Vibrationsdämpfende Ansteuerung eines Aktors einer landwirtschaftlichen Arbeitsmaschine
US20150254800A1 (en) 2014-03-06 2015-09-10 F12 Solutions, Llc Nitrogen status determination in growing crops
DE102014205233A1 (de) 2014-03-20 2015-09-24 Deere & Company Erntemaschine mit vorausschauender Vortriebsgeschwindigkeitsvorgabe
NL2012485B1 (en) 2014-03-20 2016-01-18 Lely Patent Nv Method and system for navigating an agricultural vehicle on a land area.
US9529364B2 (en) 2014-03-24 2016-12-27 Cnh Industrial America Llc System for coordinating agricultural vehicle control for loading a truck
DE102014205503A1 (de) 2014-03-25 2015-10-01 Hamm Ag Verfahren zur Korrektur eines Messwerteverlaufs durch das Eliminieren periodisch auftretender Messartefakte, insbesondere bei einem Bodenverdichter
BR102014007178B1 (pt) 2014-03-26 2020-12-22 São Martinho S/A processo de geração de mapas de aplicação de herbicida em função das espécies de plantas daninhas e teores de argila e matéria orgânica de solo
US9489576B2 (en) 2014-03-26 2016-11-08 F12 Solutions, LLC. Crop stand analysis
CN103954738B (zh) 2014-04-01 2015-11-04 中国科学院力学研究所 一种测量土体振动传播特性的室内试验装置
AU2015240770B2 (en) 2014-04-01 2018-07-19 Climate Llc Agricultural implement and implement operator monitoring apparatus, systems, and methods
DE102014104619A1 (de) 2014-04-02 2015-10-08 Claas Agrosystems Kgaa Mbh & Co. Kg Planungssystem und Verfahren zur Planung einer Feldbearbeitung
US9810679B2 (en) 2014-04-02 2017-11-07 Colorado School Of Mines Intelligent pad foot soil compaction devices and methods of using same
WO2015160837A2 (en) 2014-04-15 2015-10-22 Raven Industries, Inc. Reaping based yield monitoring system and method for the same
US9974226B2 (en) 2014-04-21 2018-05-22 The Climate Corporation Generating an agriculture prescription
US9405039B2 (en) 2014-04-22 2016-08-02 Deere & Company Ground engaging member accumulation determination
US9523180B2 (en) 2014-04-28 2016-12-20 Deere & Company Semi-automatic material loading
DE102014208070A1 (de) 2014-04-29 2015-12-17 Deere & Company Die Fahrzeugdynamik berücksichtigendes Kontrollsystem zur Positionssteuerung eines Geräts für ein landwirtschaftliches Arbeitsfahrzeug
DE102014208068A1 (de) 2014-04-29 2015-10-29 Deere & Company Erntemaschine mit sensorbasierter Einstellung eines Arbeitsparameters
WO2015171954A2 (en) 2014-05-09 2015-11-12 Raven Industries, Inc. Refined row guidance parameterization with hough transform
FR3021114B1 (fr) 2014-05-13 2017-08-11 Sol Solution Penetrometre dynamique, ensemble de mesure, systeme et methode de determination de la compacite et de la capacite portante d'un sol
JP6410130B2 (ja) 2014-05-15 2018-10-24 株式会社Jsol 農作物の収穫予測装置、収穫予測システム及び収穫予測方法
US9578808B2 (en) 2014-05-16 2017-02-28 Deere & Company Multi-sensor crop yield determination
US10104836B2 (en) 2014-06-11 2018-10-23 John Paul Jamison Systems and methods for forming graphical and/or textual elements on land for remote viewing
BR102015013228B1 (pt) 2014-06-13 2020-11-24 Cnh Industrial America Llc SISTEMA E METODO DE CONTROLE PARA UM VEfCULO AGRiCOLA
DE102014009090B4 (de) 2014-06-19 2017-04-06 Technische Universität Dresden Landwirtschaftliches Gerät zur konservierenden Bodenbearbeitung
WO2015200489A1 (en) 2014-06-24 2015-12-30 360 Yield Center, Llc Agronomic system, methods and apparatuses
CN204000818U (zh) 2014-07-02 2014-12-10 四川农业大学 一种土壤坚实度测定装置
US10126153B2 (en) 2014-07-22 2018-11-13 Deere & Company Particulate matter impact sensor
US10034423B2 (en) 2014-07-29 2018-07-31 Deere & Company Biomass sensing
FR3024772B1 (fr) 2014-08-07 2016-09-02 Electricite De France Procede et dispositif pour la determination de la profondeur de l'origine d'un tassement de sol
US9717178B1 (en) 2014-08-08 2017-08-01 The Climate Corporation Systems and method for monitoring, controlling, and displaying field operations
WO2016025848A1 (en) 2014-08-15 2016-02-18 Monsanto Technology Llc Apparatus and methods for in-field data collection and sampling
US9131644B2 (en) 2014-08-19 2015-09-15 Iteris, Inc. Continual crop development profiling using dynamical extended range weather forecasting with routine remotely-sensed validation imagery
DE102014216593A1 (de) 2014-08-21 2016-02-25 Deere & Company Bedienerassistenzsystem für eine landwirtschaftliche Arbeitsmaschine
CN107148633B (zh) 2014-08-22 2020-12-01 克莱米特公司 用于使用无人机系统进行农艺和农业监测的方法
BR112017003725A2 (pt) 2014-08-27 2017-12-26 Premier Crop Systems Llc sistema operável para aplicar uma entrada agrícola e colher uma saída agrícola em uma zona de gestão e método para randomizar e replicar entradas agrícolas
US9829364B2 (en) 2014-08-28 2017-11-28 Raven Industries, Inc. Method of sensing volume of loose material
US10109024B2 (en) 2014-09-05 2018-10-23 The Climate Corporation Collecting data to generate an agricultural prescription
DE102014113001A1 (de) 2014-09-10 2016-03-10 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung eines Überladeprozesses
US10085379B2 (en) 2014-09-12 2018-10-02 Appareo Systems, Llc Grain quality sensor
US11113649B2 (en) 2014-09-12 2021-09-07 The Climate Corporation Methods and systems for recommending agricultural activities
US10564316B2 (en) 2014-09-12 2020-02-18 The Climate Corporation Forecasting national crop yield during the growing season
US11080798B2 (en) 2014-09-12 2021-08-03 The Climate Corporation Methods and systems for managing crop harvesting activities
US10667456B2 (en) 2014-09-12 2020-06-02 The Climate Corporation Methods and systems for managing agricultural activities
DE102014113335A1 (de) 2014-09-16 2016-03-17 Claas Tractor Sas Landwirtschaftliche Arbeitsmaschine mit und Verfahren zur vorausschauenden Regelung einer Antriebsleistung und/oder eines Antriebsstranges
US10126282B2 (en) 2014-09-23 2018-11-13 Deere & Company Yield estimation
US9903979B2 (en) 2014-09-23 2018-02-27 Deere & Company Yield estimation
DE102014113874A1 (de) 2014-09-25 2016-03-31 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zum Überladen bei Erntemaschinen
DE102014113887A1 (de) 2014-09-25 2016-03-31 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher mit einer Verteilvorrichtung
DE102014113965A1 (de) 2014-09-26 2016-03-31 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher mit Fahrerassistenzsystem
JP2016071726A (ja) 2014-09-30 2016-05-09 井関農機株式会社 作業情報記憶装置
US9807933B2 (en) 2014-10-20 2017-11-07 Cnh Industrial America Llc Sensor equipped agricultural harvester
KR102404044B1 (ko) 2014-11-13 2022-05-30 얀마 파워 테크놀로지 가부시키가이샤 병주 작업 시스템
EP3218679A4 (en) 2014-11-14 2018-12-19 Bitsrata Systems Inc. System and method for measuring grain cart weight
GB201421527D0 (en) 2014-12-04 2015-01-21 Agco Int Gmbh Automated agriculture system
WO2016090212A1 (en) 2014-12-05 2016-06-09 Board Of Trustees Of Michigan State University Methods and systems for precision crop management
DE102014226189B4 (de) 2014-12-17 2017-08-24 Continental Automotive Gmbh Verfahren zur Ermittlung eines Unkrautanteils und Landtechnik-Steuereinrichtung
US9563492B2 (en) 2015-01-09 2017-02-07 Deere & Company Service diagnostic trouble code sequencer and method
US9792557B2 (en) 2015-01-14 2017-10-17 Accenture Global Services Limited Precision agriculture system
CN204435344U (zh) 2015-01-22 2015-07-01 中交四公局第二工程有限公司 一种用于测定土层压实度的可行走式取样机
US9009087B1 (en) 2015-01-23 2015-04-14 Iteris, Inc. Modeling the impact of time-varying weather conditions on unit costs of post-harvest crop drying techniques using field-level analysis and forecasts of weather conditions, facility metadata, and observations and user input of grain drying data
US9140824B1 (en) 2015-01-23 2015-09-22 Iteris, Inc. Diagnosis and prediction of in-field dry-down of a mature small grain, coarse grain, or oilseed crop using field-level analysis and forecasting of weather conditions, crop characteristics, and observations and user input of harvest condition states
WO2016118686A1 (en) 2015-01-23 2016-07-28 Iteris, Inc. Modeling of crop growth for desired moisture content of targeted livestock feedstuff for determination of harvest windows using field-level diagnosis and forecasting of weather conditions and observations and user input of harvest condition states
WO2016127094A1 (en) 2015-02-06 2016-08-11 The Climate Corporation Methods and systems for recommending agricultural activities
WO2016134341A1 (en) 2015-02-20 2016-08-25 Iteris, Inc. Modeling of soil compaction and structural capacity for field trafficability by agricultural equipment from diagnosis and prediction of soil and weather conditions associated with user-provided feedback
JP2016160808A (ja) 2015-02-27 2016-09-05 井関農機株式会社 コンバインのエンジン制御システム
US20160260021A1 (en) 2015-03-06 2016-09-08 William Marek System and method for improved agricultural yield and efficiency using statistical analysis
CN204475304U (zh) 2015-03-17 2015-07-15 攀枝花天誉工程检测有限公司 土工压实度检测成孔器
EP3272205B1 (en) 2015-03-18 2022-11-09 Kubota Corporation Combine, and grain-evaluation control device for combine
RO130713B1 (ro) 2015-03-19 2023-05-30 Universitatea De Ştiinţe Agronomice Şi Medicină Veterinară Din Bucureşti Sistem automat gis pentru realizarea hărţilor cu distribuţia speciilor de buruieni
US20180014452A1 (en) 2015-03-25 2018-01-18 360 Yield Center, Llc Agronomic systems, methods and apparatuses
US10095200B2 (en) 2015-03-30 2018-10-09 Uop Llc System and method for improving performance of a chemical plant with a furnace
DE102015004344A1 (de) 2015-04-02 2016-10-06 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
DE102015004174A1 (de) 2015-04-02 2016-10-06 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
DE102015004343A1 (de) 2015-04-02 2016-10-06 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
DE102015106302A1 (de) 2015-04-24 2016-10-27 Claas Selbstfahrende Erntemaschinen Gmbh Erntesystem mit einer selbstfahrenden Erntemaschine
US20170270446A1 (en) 2015-05-01 2017-09-21 360 Yield Center, Llc Agronomic systems, methods and apparatuses for determining yield limits
MX2017014004A (es) 2015-05-01 2018-08-15 Hyliion Inc Accesorio de vehiculo motorizado para aumentar suministro de energia y reducir requisitos de combustible.
US10209235B2 (en) 2015-05-04 2019-02-19 Deere & Company Sensing and surfacing of crop loss data
WO2016183182A1 (en) 2015-05-14 2016-11-17 Board Of Trustees Of Michigan State University Methods and systems for crop land evaluation and crop growth management
US9872433B2 (en) 2015-05-14 2018-01-23 Raven Industries, Inc. System and method for adjusting harvest characteristics
US10039231B2 (en) 2015-05-19 2018-08-07 Deere & Company System for measuring plant attributes using a priori plant maps
DE102015006398B3 (de) 2015-05-21 2016-05-04 Helmut Uhrig Strassen- und Tiefbau GmbH Bodenverdichtung mit einem Baggeranbauverdichter
EP3095310B1 (en) 2015-05-21 2018-05-16 Robert Thomas Farms Ltd Agricultural apparatus
US20160342915A1 (en) 2015-05-22 2016-11-24 Caterpillar Inc. Autonomous Fleet Size Management
DE102015108374A1 (de) 2015-05-27 2016-12-01 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Ansteuerung einer selbstfahrenden Erntemaschine
EP3307047A4 (en) 2015-06-05 2018-11-14 The University of Sydney Automatic target recognition and management system
BR112017026437B1 (pt) 2015-06-08 2022-01-18 The Climate Corporation Sistema de computador e método implantado por computador para monitorar operações de um ou mais campos
DE102015109799A1 (de) 2015-06-18 2016-12-22 Claas E-Systems Kgaa Mbh & Co Kg Verfahren zur Synchronisation zweier unabhängiger, selbstfahrender landwirtschaftlicher Arbeitsmaschinen
US10064331B2 (en) 2015-06-18 2018-09-04 Bail & Burnit Pty Ltd Mechanical weed seed management system
AU2016287397B2 (en) 2015-06-30 2021-05-20 Climate Llc Systems and methods for image capture and analysis of agricultural fields
US10492369B2 (en) 2015-07-14 2019-12-03 Dean Mayerle Weed seed destruction
CA3101755C (en) 2015-07-14 2023-03-28 Dean Mayerle Weed seed destruction with a discharge which combines with a straw spreader
US9968027B2 (en) 2015-07-14 2018-05-15 Clemson University Automated control systems and methods for underground crop harvesters
US9740208B2 (en) 2015-07-30 2017-08-22 Deere & Company UAV-based sensing for worksite operations
CN204989174U (zh) 2015-08-05 2016-01-20 中国农业大学 一种用于测量土壤压实的试验平台
US10015928B2 (en) 2015-08-10 2018-07-10 Deere & Company Method and stereo vision system for managing the unloading of an agricultural material from a vehicle
US9642305B2 (en) 2015-08-10 2017-05-09 Deere & Company Method and stereo vision system for managing the unloading of an agricultural material from a vehicle
DE102015113527A1 (de) 2015-08-17 2017-02-23 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine
EP3341129B1 (en) 2015-08-28 2024-04-03 Tecfarm PTY Ltd Apparatus and method for processing a crop residue
DE102015217496A1 (de) 2015-09-14 2017-03-16 Deere & Company Verfahren zum Ausbringen von Saatgutpartikeln oder Pflanzen auf ein Feld und eine entsprechende Maschine
JP6502221B2 (ja) 2015-09-14 2019-04-17 株式会社クボタ 作業車支援システム
US10183667B2 (en) 2015-09-15 2019-01-22 Deere & Company Human presence detection on a mobile machine
CN105205248B (zh) 2015-09-17 2017-12-08 哈尔滨工业大学 一种基于ode物理引擎的车辆地形通过性仿真分析组件的设计方法
US9696162B2 (en) 2015-09-17 2017-07-04 Deere & Company Mission and path planning using images of crop wind damage
US10025983B2 (en) 2015-09-21 2018-07-17 The Climate Corporation Ponding water detection on satellite imagery
US10188037B2 (en) 2015-09-24 2019-01-29 Deere & Company Yield estimation
US9699967B2 (en) 2015-09-25 2017-07-11 Deere & Company Crosswind compensation for residue processing
JP6770300B2 (ja) 2015-09-29 2020-10-14 株式会社ミツトヨ 計測機器用の信号処理回路
US9807940B2 (en) 2015-09-30 2017-11-07 Deere & Company System for prediction and control of drydown for windrowed agricultural products
EP3150052B1 (en) 2015-09-30 2018-06-13 CLAAS E-Systems KGaA mbH & Co KG Crop harvesting machine
US10856463B2 (en) 2015-10-05 2020-12-08 Basf Agro Trademarks Gmbh Method for operating a harvesting machine with the aid of a plant growth model
KR20170041377A (ko) 2015-10-07 2017-04-17 안범주 후방에 설치된 토양 경도 측정 센서를 갖는 차량
US10342174B2 (en) 2015-10-16 2019-07-09 The Climate Corporation Method for recommending seeding rate for corn seed using seed type and sowing row width
US9681605B2 (en) 2015-10-26 2017-06-20 Deere & Company Harvester feed rate control
US20170112061A1 (en) 2015-10-27 2017-04-27 Cnh Industrial America Llc Graphical yield monitor static (previous) data display on in-cab display
US10080325B2 (en) 2015-10-27 2018-09-25 Cnh Industrial America Llc Predictive overlap control model
US20170115862A1 (en) 2015-10-27 2017-04-27 Cnh Industrial America Llc Graphical yield monitor real-time data display
US10586158B2 (en) 2015-10-28 2020-03-10 The Climate Corporation Computer-implemented calculation of corn harvest recommendations
DE102015118767A1 (de) 2015-11-03 2017-05-04 Claas Selbstfahrende Erntemaschinen Gmbh Umfelddetektionseinrichtung für landwirtschaftliche Arbeitsmaschine
US20180232674A1 (en) 2015-11-05 2018-08-16 Agco International Gmbh Method and system for determining work trajectories for a fleet of working units in a harvest operation
US20170127606A1 (en) 2015-11-10 2017-05-11 Digi-Star, Llc Agricultural Drone for Use in Controlling the Direction of Tillage and Applying Matter to a Field
DE102016121523A1 (de) 2015-11-17 2017-05-18 Lacos Computerservice Gmbh Verfahren zum prädikativen Erzeugen von Daten zur Steuerung eines Fahrweges und eines Betriebsablaufes für landwirtschaftliche Fahrzeuge und Maschinen
US10890922B2 (en) 2015-11-19 2021-01-12 Agjunction Llc Automated multi-vehicle alignment steering
DK178711B1 (en) 2015-11-24 2016-11-28 Green Agro And Transp Aps Flexible wheel track system for in-field trailer
US11062223B2 (en) 2015-12-02 2021-07-13 The Climate Corporation Forecasting field level crop yield during a growing season
DE102015121210A1 (de) 2015-12-07 2017-06-08 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
US9721181B2 (en) 2015-12-07 2017-08-01 The Climate Corporation Cloud detection on remote sensing imagery
US10091925B2 (en) 2015-12-09 2018-10-09 International Business Machines Corporation Accurately determining crop yield at a farm level
WO2017096489A1 (en) 2015-12-09 2017-06-15 Scanimetrics Inc. Measuring and monitoring a body of granular material
WO2017099570A1 (es) 2015-12-11 2017-06-15 Pacheco Sanchez José Antonio Sistema y método para agricultura de precisión por análisis multiespectral e hiperespectral de imágenes aéreas utilizando vehículos aéreos no tripulados
CN105432228A (zh) 2015-12-16 2016-03-30 无锡同春新能源科技有限公司 一种无人玉米收获机
DE102015122269A1 (de) 2015-12-18 2017-06-22 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren für den Betrieb eines Mähdreschers
US9856612B2 (en) 2015-12-21 2018-01-02 Caterpillar Paving Products Inc. Compaction measurement using nearby sensors
EP3397042A1 (en) 2015-12-29 2018-11-07 Agco Corporation Integrated driveline slip clutch system for large square baler
BR102016024151B1 (pt) 2016-01-06 2021-10-13 Cnh Industrial America Llc Meio legível por computador não transitório tangível, sistema e método para controlar pelo menos um veículo agrícola autônomo
BR102016024930B1 (pt) 2016-01-06 2021-08-24 Cnh Industrial America Llc Sistema de controle para um veículo de reboque e método para controlar um veículo agrícola
US10019790B2 (en) 2016-01-15 2018-07-10 Deere & Company Fill level indicator for an automated unloading system
EP3195719B1 (en) 2016-01-20 2018-10-24 CLAAS E-Systems KGaA mbH & Co KG Agricultural machine
EP3195720A1 (en) 2016-01-21 2017-07-26 CLAAS E-Systems KGaA mbH & Co KG Crop tank system
US10529036B2 (en) 2016-01-22 2020-01-07 The Climate Corporation Forecasting national crop yield during the growing season using weather indices
BE1023467B1 (nl) 2016-02-01 2017-03-29 Cnh Industrial Belgium Nv Beheer van een restantensysteem van een maaidorser door veldgegevens te gebruiken
US9891629B2 (en) 2016-02-04 2018-02-13 Deere & Company Autonomous robotic agricultural machine and system thereof
JP6688542B2 (ja) 2016-02-04 2020-04-28 ヤンマー株式会社 追従型コンバイン
JP6567440B2 (ja) 2016-02-05 2019-08-28 鹿島建設株式会社 地盤の締固め状態測定装置、締固め状態測定方法、及び締固め機械
BE1023485B1 (nl) 2016-02-23 2017-04-06 Cnh Industrial Belgium Nv Kafstrooier met zaadkneuzing
US10588258B2 (en) 2016-02-25 2020-03-17 Deere & Company Automatic determination of the control unit parameters of an arrangement to control an actuator for the adjustment of an adjustable element of an agricultural machine
US9675008B1 (en) 2016-02-29 2017-06-13 Cnh Industrial America Llc Unloading arrangement for agricultural harvesting vehicles
US10201121B1 (en) 2016-03-01 2019-02-12 Ag Leader Technology Prediction of amount of crop or product remaining for field
US10028435B2 (en) 2016-03-04 2018-07-24 Deere & Company Sensor calibration using field information
KR101653750B1 (ko) 2016-03-10 2016-09-02 한국건설기술연구원 식생매트 고정용 앵커핀의 인발 시험 장치 및 방법
BE1023982B1 (nl) 2016-03-23 2017-10-03 Cnh Industrial Belgium Nv Geautomatiseerd lossysteem voor het lossen van gewas
WO2017164097A1 (ja) 2016-03-25 2017-09-28 日本電気株式会社 情報処理装置、情報処理装置の制御方法、および、情報処理装置の制御プログラムが記録された記録媒体
KR102394967B1 (ko) 2016-03-29 2022-05-04 얀마 파워 테크놀로지 가부시키가이샤 콤바인
US9903077B2 (en) 2016-04-04 2018-02-27 Caterpillar Paving Products Inc. System and method for performing a compaction operation
RU164128U1 (ru) 2016-04-05 2016-08-20 Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского" Установка для испытания на изнашиваемость материалов для рабочих органов почвообрабатывающих машин
WO2017181127A1 (en) 2016-04-15 2017-10-19 The Regents Of The University Of California Robotic plant care systems and methods
CN105741180B (zh) 2016-04-21 2021-06-18 江苏大学 一种联合收获机谷物产量图绘制系统
JP6755117B2 (ja) 2016-04-26 2020-09-16 ヤンマーパワーテクノロジー株式会社 コンバイン
US10275550B2 (en) 2016-04-27 2019-04-30 The Climate Corporation Assimilating a soil sample into a digital nutrient model
US10152891B2 (en) 2016-05-02 2018-12-11 Cnh Industrial America Llc System for avoiding collisions between autonomous vehicles conducting agricultural operations
DE102016118203A1 (de) 2016-05-10 2017-11-16 Claas Selbstfahrende Erntemaschinen Gmbh Zugmaschinen-Geräte-Kombination mit Fahrerassistenzsystem
JP2019520631A (ja) 2016-05-12 2019-07-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 自然環境における雑草の認識
DE102016108902A1 (de) 2016-05-13 2017-11-16 Claas Saulgau Gmbh Verfahren und Steuerungseinrichtung zum Betreiben eines landwirtschaftlichen Transportwagens sowie Transportwagen
US10051787B2 (en) 2016-05-17 2018-08-21 Deere & Company Harvesting head with yield monitor
CN106053330B (zh) 2016-05-23 2018-12-18 北京林业大学 土壤紧实度及水分复合测量方法及装置
WO2017205410A1 (en) 2016-05-24 2017-11-30 Cnh Industrial America Llc Grain cart for continuous conveying agricultural product
BR112018074180A2 (pt) 2016-05-24 2019-03-06 Cnh Industrial America Llc carrinho de grãos autônomo dimensionado para se encaixar atrás de um cabeçote
US9563852B1 (en) 2016-06-21 2017-02-07 Iteris, Inc. Pest occurrence risk assessment and prediction in neighboring fields, crops and soils using crowd-sourced occurrence data
DE102016111665A1 (de) 2016-06-24 2017-12-28 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine und Verfahren zum Betrieb einer landwirtschaftlichen Arbeitsmaschine
EP3262934A1 (de) 2016-06-28 2018-01-03 Bayer CropScience AG Verfahren zur unkrautbekämpfung
UY36763A (es) 2016-07-01 2018-01-31 Carlos Hartwich Roturador y plantador en plataforma motorizada unitaria con navegador automático
US9563848B1 (en) 2016-07-06 2017-02-07 Agrian, Inc. Weighted multi-year yield analysis for prescription mapping in site-specific variable rate applications in precision agriculture
US9928584B2 (en) 2016-07-11 2018-03-27 Harvest Moon Automation Inc. Inspecting plants for contamination
US10231371B2 (en) 2016-07-18 2019-03-19 Tribine Industries Llc Soil compaction mitigation assembly and method
US10795351B2 (en) 2016-07-19 2020-10-06 Raven Industries, Inc. System and method for autonomous control of agricultural machinery and equipment
CN106248873B (zh) 2016-07-22 2019-04-12 黄哲敏 一种通过检测设备测定松树坚固程度的方法
CN106198877A (zh) 2016-07-22 2016-12-07 陈显桥 通过测量设备检验杨树稳定性的方法
US20180022559A1 (en) 2016-07-22 2018-01-25 Scott William Knutson Loader Positioning System
CN106226470B (zh) 2016-07-22 2019-06-11 孙红 一种通过测量装置测定槐树的稳固性能的方法
CN106198879B (zh) 2016-07-22 2018-11-16 广东双木林科技有限公司 一种检测杉树抗风稳定性能的方法
DE102016009085A1 (de) 2016-07-26 2018-02-01 Bomag Gmbh Bodenverdichtungswalze mit Sensoreinrichtung an der Walzbandage und Verfahren zur Ermittlung der Bodensteifigkeit
US10351364B2 (en) 2016-08-05 2019-07-16 Deere & Company Automatic vehicle and conveyor positioning
DE102016214554A1 (de) 2016-08-05 2018-02-08 Deere & Company Verfahren zur Optimierung eines Arbeitsparameters einer Maschine zur Ausbringung von landwirtschaftlichem Material auf ein Feld und entsprechende Maschine
US10154624B2 (en) 2016-08-08 2018-12-18 The Climate Corporation Estimating nitrogen content using hyperspectral and multispectral images
US10410299B2 (en) 2016-08-24 2019-09-10 The Climate Corporation Optimizing split fertilizer application
EP3287007A1 (de) 2016-08-24 2018-02-28 Bayer CropScience AG Bekämpfung von schadorganismen auf basis der vorhersage von befallsrisiken
DE102016116043A1 (de) 2016-08-29 2018-03-01 Claas Selbstfahrende Erntemaschinen Gmbh Transportfahrzeug
US10609856B2 (en) 2016-08-29 2020-04-07 Troy Oliver Agriculture system and method
CN106327349A (zh) 2016-08-30 2017-01-11 张琦 一种基于云计算的园林绿化精细化管理装置
JP2018033407A (ja) 2016-09-01 2018-03-08 ヤンマー株式会社 配車システム
DE102016116461A1 (de) 2016-09-02 2018-03-08 Claas Saulgau Gmbh Verfahren und Steuerungseinrichtung zum Betreiben eines landwirtschaftlichen Transportwagens sowie Transportwagen
DE102016117757A1 (de) 2016-09-21 2018-03-22 Claas Selbstfahrende Erntemaschinen Gmbh Feldhäcksler
PL3298873T3 (pl) 2016-09-21 2020-08-24 Exel Industries Urządzenie sterujące do pojazdu, odpowiadający mu pojazd i sposób
DE102016118297A1 (de) 2016-09-28 2018-03-29 Claas Tractor Sas Verfahren und System zur Bestimmung eines Betriebspunktes
DE102016118283A1 (de) 2016-09-28 2018-03-29 Claas Tractor Sas Landwirtschaftliche Arbeitsmaschine
DK3518647T3 (da) 2016-09-29 2021-03-22 Agro Intelligence Aps System og fremgangsmåde til bestemmelse af en rute, der skal følges af et landbrugsmæssigt arbejdskøretøj
US10078890B1 (en) 2016-09-29 2018-09-18 CHS North LLC Anomaly detection
DE102016118651A1 (de) 2016-09-30 2018-04-05 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende landwirtschaftliche Arbeitsmaschine
CN106290800B (zh) 2016-09-30 2018-10-12 长沙理工大学 一种土质边坡抗水流侵蚀能力模拟试验方法及装置
US10165725B2 (en) 2016-09-30 2019-01-01 Deere & Company Controlling ground engaging elements based on images
US20180092301A1 (en) 2016-10-01 2018-04-05 Deere & Company Residue spread control using crop deflector commands input by the operator and satnav combine bearing
US20180092302A1 (en) 2016-10-01 2018-04-05 Deere & Company Residue spread control using operator input of wind direction and combine bearing
WO2018073060A1 (de) 2016-10-18 2018-04-26 Bayer Cropscience Aktiengesellschaft PLANUNG UND AUSFÜHRUNG LANDWIRTSCHAFTLICHER MAßNAHMEN
US20190335674A1 (en) 2016-10-24 2019-11-07 Board Of Trustees Of Michigan State University Methods for mapping temporal and spatial stability and sustainability of a cropping system
JP6832828B2 (ja) 2016-10-26 2021-02-24 株式会社クボタ 走行経路決定装置
US11256999B2 (en) 2016-10-28 2022-02-22 Deere & Company Methods and systems of forecasting the drying of an agricultural crop
EP3315005B1 (en) 2016-10-28 2022-04-06 Deere & Company Stereo vision system for managing the unloading of an agricultural material from a vehicle
EP3533008A1 (en) 2016-10-31 2019-09-04 BASF Agro Trademarks GmbH Method for mapping crop yields
US10832351B2 (en) 2016-11-01 2020-11-10 Deere & Company Correcting bias in agricultural parameter monitoring
US10408645B2 (en) 2016-11-01 2019-09-10 Deere & Company Correcting bias in parameter monitoring
US10901420B2 (en) 2016-11-04 2021-01-26 Intel Corporation Unmanned aerial vehicle-based systems and methods for agricultural landscape modeling
CA3043200A1 (en) 2016-11-07 2018-05-11 The Climate Corporation Work layer imaging and analysis for implement monitoring, control and operator feedback
CA3142363C (en) 2016-11-07 2024-03-05 The Climate Corporation Agricultural implements for soil and vegetation analysis
US10398096B2 (en) 2016-11-16 2019-09-03 The Climate Corporation Identifying management zones in agricultural fields and generating planting plans for the zones
US10028451B2 (en) 2016-11-16 2018-07-24 The Climate Corporation Identifying management zones in agricultural fields and generating planting plans for the zones
US20180146624A1 (en) 2016-11-28 2018-05-31 The Climate Corporation Determining intra-field yield variation data based on soil characteristics data and satellite images
US11320279B2 (en) 2016-12-02 2022-05-03 Kubota Corporation Travel route management system and travel route determination device
CN106644663B (zh) 2016-12-12 2023-07-21 江苏省海洋水产研究所 一种紫菜孢子计数用过滤装置及计数方法
US10178823B2 (en) 2016-12-12 2019-01-15 Cnh Industrial Canada, Ltd. Agricultural implement with automatic shank depth control
KR102532963B1 (ko) 2016-12-19 2023-05-16 가부시끼 가이샤 구보다 작업차 자동 주행 시스템
US11300976B2 (en) 2016-12-19 2022-04-12 Kubota Corporation Work vehicle automatic traveling system
JP6936356B2 (ja) 2016-12-19 2021-09-15 株式会社クボタ 作業車自動走行システム
GB201621879D0 (en) 2016-12-21 2017-02-01 Branston Ltd A crop monitoring system and method
WO2018112615A1 (en) 2016-12-22 2018-06-28 Greentronics Ltd. Systems and methods for automated tracking of harvested materials
KR101873657B1 (ko) 2016-12-22 2018-08-03 현대건설주식회사 탄성파 속도를 이용한 성토지반 다짐특성 측정장치와 이를 활용한 다짐관리 방법
JP6615085B2 (ja) 2016-12-22 2019-12-04 株式会社クボタ 収穫機
CN206330815U (zh) 2017-01-06 2017-07-14 福建九邦环境检测科研有限公司 一种土壤检测用土壤快速压实器
US10255670B1 (en) 2017-01-08 2019-04-09 Dolly Y. Wu PLLC Image sensor and module for agricultural crop improvement
US10775796B2 (en) 2017-01-10 2020-09-15 Cnh Industrial America Llc Aerial vehicle systems and methods
DE102017200336A1 (de) 2017-01-11 2018-07-12 Deere & Company Modellbasierte prädiktive Geschwindigkeitskontrolle einer Erntemaschine
KR200485051Y1 (ko) 2017-01-16 2017-11-22 서울특별시 다짐도 평가장치
US10699185B2 (en) 2017-01-26 2020-06-30 The Climate Corporation Crop yield estimation using agronomic neural network
JP6767892B2 (ja) 2017-02-03 2020-10-14 ヤンマーパワーテクノロジー株式会社 収穫量管理システム
DE102017104009A1 (de) 2017-02-27 2018-08-30 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliches Erntesystem
US10315655B2 (en) 2017-03-07 2019-06-11 Deere & Company Vehicle control based on soil compaction
CN206515118U (zh) 2017-03-10 2017-09-22 南京宁曦土壤仪器有限公司 多功能电动击实仪
CN206515119U (zh) 2017-03-10 2017-09-22 南京宁曦土壤仪器有限公司 电动击实仪
JP7075787B2 (ja) 2017-03-14 2022-05-26 株式会社フジタ トラフィカビリティ推定装置およびプログラム
DE102017105490A1 (de) 2017-03-15 2018-09-20 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Landwirtschaftliches Terminal
DE102017105496A1 (de) 2017-03-15 2018-09-20 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Landwirtschaftliches Terminal
DE102017204511A1 (de) 2017-03-17 2018-09-20 Deere & Company Landwirtschaftliche Erntemaschine zur Bearbeitung und Förderung von Erntegut mit einer Sensoranordnung zur Erkennung von unerwünschten Gefahr- und Inhaltsstoffen im Erntegut
CN206616118U (zh) 2017-03-21 2017-11-07 嵊州市晟祥盈净水设备有限公司 一种多层次深度净水设备
EP3582603A4 (en) 2017-03-21 2021-01-06 Blue River Technology Inc. COMBINE WITH MACHINE FEEDBACK
DE102017205293A1 (de) 2017-03-29 2018-10-04 Deere & Company Verfahren und Vorrichtung zur Bekämpfung unerwünschter Lebewesen auf einem Feld
US10152035B2 (en) 2017-04-12 2018-12-11 Bayer Ag Value added pest control system with smart learning
CN206906093U (zh) 2017-04-21 2018-01-19 青岛科技大学 一种岩土试件压实过程可以测量重量的装置
RU2017114139A (ru) 2017-04-24 2018-10-24 Общество с ограниченной ответственностью "Завод инновационных продуктов "КТЗ" Способ управления уборочным комбайном
BR112019022503A2 (pt) 2017-04-26 2020-05-12 The Climate Corporation Método para nivelar leituras de sensores através de um implemento
US10952374B2 (en) 2017-05-01 2021-03-23 Cnh Industrial America Llc System and method for monitoring residue output from a harvester
US10548260B2 (en) 2017-05-04 2020-02-04 Dawn Equipment Company System for automatically setting the set point of a planter automatic down pressure control system with a seed furrow sidewall compaction measurement device
DE102017109849A1 (de) 2017-05-08 2018-11-08 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Abarbeitung eines landwirtschaftlichen Ernteprozesses
US10531603B2 (en) 2017-05-09 2020-01-14 Cnh Industrial America Llc Agricultural system
BE1024475B1 (nl) 2017-05-09 2018-03-01 Cnh Industrial Belgium Nv Werkwijze voor het oogsten en oogsttoestel
BE1024513B1 (nl) 2017-05-09 2018-03-21 Cnh Industrial Belgium Nv Landbouwsysteem
US10317272B2 (en) 2017-05-17 2019-06-11 Deere & Company Automatic wireless wagon detection apparatus and method
DE102017208442A1 (de) 2017-05-18 2018-11-22 Deere & Company Selbstlernende, Korrektureingaben berücksichtigende Anordnung zur selbsttätigen Kontrolle eines Arbeitsparameters einer Erntegutförder- und/oder -bearbeitungseinrichtung
CN206696107U (zh) 2017-05-18 2017-12-01 贵州省山地农业机械研究所 多用途土壤坚实度测量装置
US10481142B2 (en) 2017-05-25 2019-11-19 Deere & Company Sensor system for determining soil characteristics
US10537062B2 (en) 2017-05-26 2020-01-21 Cnh Industrial America Llc Aerial vehicle systems and methods
CN207079558U (zh) 2017-05-31 2018-03-09 中铁二十一局集团第六工程有限公司 高速铁路路基沉降监测元件保护装置
BE1025282B1 (nl) 2017-06-02 2019-01-11 Cnh Industrial Belgium Nv Draagvermogen van de grond
SE542261C2 (en) 2017-06-05 2020-03-31 Scania Cv Ab Method and control arrangement for loading
US9984455B1 (en) 2017-06-05 2018-05-29 Hana Resources, Inc. Organism growth prediction system using drone-captured images
CN206941558U (zh) 2017-06-16 2018-01-30 中石化中原建设工程有限公司 一种公路灰土基层压实度测定取样机
US10459447B2 (en) 2017-06-19 2019-10-29 Cnh Industrial America Llc System and method for generating partitioned swaths
US20180359917A1 (en) 2017-06-19 2018-12-20 Deere & Company Remote control of settings on a combine harvester
US10437243B2 (en) 2017-06-19 2019-10-08 Deere & Company Combine harvester control interface for operator and/or remote user
US10310455B2 (en) 2017-06-19 2019-06-04 Deere & Company Combine harvester control and communication system
US11589507B2 (en) 2017-06-19 2023-02-28 Deere & Company Combine harvester control interface for operator and/or remote user
US10314232B2 (en) 2017-06-21 2019-06-11 Cnh Industrial America Llc System and method for destroying seeds in crop residue prior to discharge from agricultural harvester
CN110582198B (zh) 2017-06-23 2022-08-23 株式会社久保田 收割机
JP6887323B2 (ja) 2017-06-23 2021-06-16 株式会社クボタ コンバイン及び圃場営農マップ生成方法
JP6827373B2 (ja) 2017-06-26 2021-02-10 株式会社クボタ コンバイン
KR102593355B1 (ko) 2017-06-26 2023-10-25 가부시끼 가이샤 구보다 포장 맵 생성 시스템
DE102017006844B4 (de) 2017-07-18 2019-04-11 Bomag Gmbh Bodenverdichter und Verfahren zur Bestimmung von Untergrundeigenschaften mittels eines Bodenverdichters
US10757859B2 (en) 2017-07-20 2020-09-01 Deere & Company System for optimizing platform settings based on crop state classification
US11263707B2 (en) 2017-08-08 2022-03-01 Indigo Ag, Inc. Machine learning in agricultural planting, growing, and harvesting contexts
DK179454B1 (en) 2017-08-17 2018-10-19 Agro Intelligence Aps A system for controlling soil compaction caused by wheels, and use of such system
US10438302B2 (en) 2017-08-28 2019-10-08 The Climate Corporation Crop disease recognition and yield estimation
CN107576674A (zh) 2017-08-30 2018-01-12 曲阜师范大学 一种基于探地雷达测量土壤压实程度的方法
US11140807B2 (en) 2017-09-07 2021-10-12 Deere & Company System for optimizing agricultural machine settings
US11317562B2 (en) 2017-09-11 2022-05-03 Farmers Edge Inc. Generating a yield map for an agricultural field using classification and regression methods
US10368488B2 (en) 2017-09-18 2019-08-06 Cnh Industrial America Llc System and method for sensing harvested crop levels within an agricultural harvester
DE102017121654A1 (de) 2017-09-19 2019-03-21 Claas Tractor Sas Landwirtschaftliche Arbeitsmaschine
US10883437B2 (en) 2017-09-19 2021-01-05 Doug Abolt Horsepower on demand system
CN107736088B (zh) 2017-09-22 2020-06-26 江苏大学 一种用于精整地土壤密实度测量与自动调节系统
DE102017122300A1 (de) 2017-09-26 2019-03-28 Claas Selbstfahrende Erntemaschinen Gmbh Arbeitsmaschine
DE102017122710A1 (de) 2017-09-29 2019-04-04 Claas E-Systems Kgaa Mbh & Co. Kg Verfahren für den Betrieb einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine
DE102017122711A1 (de) 2017-09-29 2019-04-04 Claas E-Systems Kgaa Mbh & Co. Kg Verfahren für den Betrieb einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine
DE102017122712A1 (de) 2017-09-29 2019-04-04 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren für den Betrieb einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine
BR122020026057B1 (pt) 2017-10-02 2024-01-16 Precision Planting Llc Método de calcular uma medida de uniformidade do sulco, método para determinar um percentual de vazios em um sulco e método para corrigir uma leitura de refletância do solo
US10423850B2 (en) 2017-10-05 2019-09-24 The Climate Corporation Disease recognition from images having a large field of view
CN107795095A (zh) 2017-10-10 2018-03-13 上海科城建设工程有限公司 一种预制混凝土地坪的连接工艺
US10517215B2 (en) 2017-10-12 2019-12-31 Deere & Company Roll center for attachment frame control arms
US11308735B2 (en) 2017-10-13 2022-04-19 Deere & Company Unmanned aerial vehicle (UAV)-assisted worksite data acquisition
WO2019079205A1 (en) 2017-10-17 2019-04-25 Precision Planting Llc SOIL DETECTION SYSTEMS AND INSTRUMENTS FOR DETECTING DIFFERENT SOIL PARAMETERS
CA3079773A1 (en) 2017-10-24 2019-05-02 Basf Agro Trademarks Gmbh Generation of digital cultivation maps
CN107957408B (zh) 2017-10-30 2021-01-12 汕头大学 一种利用光反射理论测量土壤吸力的方法
CA3079244A1 (en) 2017-10-31 2019-05-09 Agjunction Llc Three-dimensional terrain mapping
CN108009542B (zh) 2017-11-01 2021-06-15 华中农业大学 油菜大田环境下杂草图像分割方法
US10914054B2 (en) 2017-11-07 2021-02-09 ModernAg, Inc. System and method for measurement and abatement of compaction and erosion of soil covering buried pipelines
US11568340B2 (en) 2017-11-09 2023-01-31 Climate Llc Hybrid seed selection and seed portfolio optimization by field
DK179951B1 (en) 2017-11-11 2019-10-24 Agro Intelligence Aps A system and a method for optimizing a harvesting operation
US10853377B2 (en) 2017-11-15 2020-12-01 The Climate Corporation Sequential data assimilation to improve agricultural modeling
US10521526B2 (en) 2017-11-20 2019-12-31 Nfl Players, Inc. Hybrid method of assessing and predicting athletic performance
US11151500B2 (en) 2017-11-21 2021-10-19 The Climate Corporation Digital modeling of disease on crops on agronomic fields
DE102017221134A1 (de) 2017-11-27 2019-05-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines mobilen Systems
US10412889B2 (en) 2017-12-05 2019-09-17 Deere & Company Combine harvester control information for a remote user with visual feed
US11197405B2 (en) 2017-12-07 2021-12-14 Kubota Corporation Harvesting machine and travel mode switching method
CA3085012A1 (en) 2017-12-08 2018-12-07 Camso Inc. Systems and methods for monitoring off-road vehicles
CN207567744U (zh) 2017-12-08 2018-07-03 山西省交通科学研究院 公路灰土基层压实度测定取样机
DE102017222403A1 (de) 2017-12-11 2019-06-13 Deere & Company Verfahren und Vorrichtung zur Kartierung eventuell in einem Feld vorhandener Fremdkörper
KR102599328B1 (ko) 2017-12-15 2023-11-08 가부시끼 가이샤 구보다 슬립 판정 시스템, 주행 경로 생성 시스템, 및 포장 작업차
US10660268B2 (en) 2017-12-16 2020-05-26 Deere & Company Harvester with electromagnetic plane crop material flow sensor
EP3498074A1 (en) 2017-12-18 2019-06-19 DINAMICA GENERALE S.p.A An harvest analysis system intended for use in a machine
KR20200096497A (ko) 2017-12-18 2020-08-12 가부시끼 가이샤 구보다 자동 주행 시스템, 자동 주행 관리 프로그램, 자동 주행 관리 프로그램을 기록한 기록 매체, 자동 주행 관리 방법, 영역 결정 시스템, 영역 결정 프로그램, 영역 결정 프로그램을 기록한 기록 매체, 영역 결정 방법, 콤바인 제어 시스템, 콤바인 제어 프로그램, 콤바인 제어 프로그램을 기록한 기록 매체, 콤바인 제어 방법
KR20200096500A (ko) 2017-12-18 2020-08-12 가부시끼 가이샤 구보다 자동 조타 시스템 및 자동 조타 방법
KR20200096496A (ko) 2017-12-18 2020-08-12 가부시끼 가이샤 구보다 콤바인 제어 시스템, 콤바인 제어 프로그램, 콤바인 제어 프로그램을 기록한 기록 매체, 콤바인 제어 방법, 수확기 제어 시스템, 수확기 제어 프로그램, 수확기 제어 프로그램을 기록한 기록 매체, 수확기 제어 방법
WO2019124225A1 (ja) 2017-12-18 2019-06-27 株式会社クボタ 農作業車、作業車衝突警戒システム及び作業車
KR20200096489A (ko) 2017-12-20 2020-08-12 가부시끼 가이샤 구보다 작업차, 작업차를 위한 주행 경로 선택 시스템, 및 주행 경로 산출 시스템
CN208047351U (zh) 2017-12-26 2018-11-06 南安市振邦家庭农场有限公司 一种高效率的玉米脱粒机
US10568261B2 (en) 2017-12-28 2020-02-25 Cnh Industrial America Llc Dynamic combine fire risk index and display
DK179768B1 (en) 2017-12-29 2019-05-15 Agro Intelligence Aps Apparatus and method for improving the conditioning quality of grass and clover prior to the collecting thereof
DK179771B1 (en) 2017-12-29 2019-05-15 Agro Intelligence Aps Apparatus and method for improving the yield of grass and clover harvested from an agricultural field
DK179878B1 (en) 2017-12-29 2019-08-16 Agro Intelligence Aps Apparatus and method for improving the quality of grass and clover by tedding
CN107941286A (zh) 2018-01-09 2018-04-20 东北农业大学 一种便携式田间多参数测量装置
US10477756B1 (en) 2018-01-17 2019-11-19 Cibo Technologies, Inc. Correcting agronomic data from multiple passes through a farmable region
US10909368B2 (en) 2018-01-23 2021-02-02 X Development Llc Crop type classification in images
CN108304796A (zh) 2018-01-29 2018-07-20 深圳春沐源控股有限公司 一种智能杂草警示方法及系统
US10687466B2 (en) 2018-01-29 2020-06-23 Cnh Industrial America Llc Predictive header height control system
JP7101488B2 (ja) 2018-01-30 2022-07-15 株式会社クボタ 作業車管理システム
US11006577B2 (en) 2018-02-26 2021-05-18 Cnh Industrial America Llc System and method for adjusting operating parameters of an agricultural harvester based on estimated crop volume
JP2019146506A (ja) 2018-02-26 2019-09-05 井関農機株式会社 コンバインの自動走行制御装置
DE102018104286A1 (de) 2018-02-26 2019-08-29 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrender Feldhäcksler
DE102018001551A1 (de) 2018-02-28 2019-08-29 Class Selbstfahrende Erntemaschinen Gmbh Selbstfahrende Erntemaschine und Betriebsverfahren dafür
US10830634B2 (en) 2018-03-06 2020-11-10 Deere & Company Fill level detection and control
CN208013131U (zh) 2018-03-16 2018-10-26 云南群林科技有限公司 一种基于多传感器的农业信息采集系统
CN111868782B (zh) 2018-04-17 2024-01-02 赫尔实验室有限公司 使用彩色图像的盲源分离确定农作物残茬分数的系统和方法
DE102018206507A1 (de) 2018-04-26 2019-10-31 Deere & Company Schneidwerk mit selbsttätiger Einstellung der Haspelzinkenorientierung
US11240959B2 (en) 2018-04-30 2022-02-08 Deere & Company Adaptive forward-looking biomass conversion and machine control during crop harvesting operations
EP3563654B1 (en) 2018-05-02 2022-12-21 AGCO Corporation Automatic header control simulation
BE1025780B1 (nl) 2018-05-07 2019-07-08 Cnh Industrial Belgium Nv Systeem en werkwijze voor het lokaliseren van een aanhangwagen ten opzichte van een landbouwmachine
DE102018111077A1 (de) 2018-05-08 2019-11-14 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher sowie Verfahren zum Betreiben eines Mähdreschers
DE102018111076A1 (de) 2018-05-08 2019-11-14 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
US10820516B2 (en) 2018-05-08 2020-11-03 Cnh Industrial America Llc System and method for monitoring the amount of plant materials entering an agricultural harvester
US11641790B2 (en) 2018-05-09 2023-05-09 Deere & Company Method of planning a path for a vehicle having a work tool and a vehicle path planning system
CN108614089A (zh) 2018-05-09 2018-10-02 重庆交通大学 压实土体冻融和风化环境模拟系统及其试验方法
US10782672B2 (en) 2018-05-15 2020-09-22 Deere & Company Machine control system using performance score based setting adjustment
DE102018111746A1 (de) 2018-05-16 2019-11-21 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
US20190351765A1 (en) 2018-05-18 2019-11-21 Cnh Industrial America Llc System and method for regulating the operating distance between work vehicles
JP7039026B2 (ja) 2018-05-28 2022-03-22 ヤンマーパワーテクノロジー株式会社 地図情報生成システム、および作業支援システム
US10813288B2 (en) 2018-05-31 2020-10-27 Deere & Company Automated belt speed control
DE102018113327A1 (de) 2018-06-05 2019-12-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung einer landwirtschaftlichen Erntekampagne
CN108881825A (zh) 2018-06-14 2018-11-23 华南农业大学 基于Jetson TK1的水稻杂草无人机监控系统及其监控方法
US11064653B2 (en) 2018-06-18 2021-07-20 Ag Leader Technology Agricultural systems having stalk sensors and data visualization systems and related devices and methods
US11419261B2 (en) 2018-06-25 2022-08-23 Deere & Company Prescription cover crop seeding with combine
US11395452B2 (en) 2018-06-29 2022-07-26 Deere & Company Method of mitigating compaction and a compaction mitigation system
DE102018116578A1 (de) 2018-07-09 2020-01-09 Claas Selbstfahrende Erntemaschinen Gmbh Erntesystem
DE102018116817A1 (de) 2018-07-11 2020-01-16 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung einer Datenübertragung zwischen einer landwirtschaftlichen Arbeitsmaschine und einer externen Sende-/Empfangseinheit
WO2020014533A1 (en) 2018-07-11 2020-01-16 Raven Industries, Inc. Agricultural control and interface system
DE102018116990A1 (de) 2018-07-13 2020-01-16 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
DE102018212150A1 (de) 2018-07-20 2020-01-23 Deere & Company Verfahren zur Energieversorgung eines kabelgebundenen betriebenen Feldhäckslers
CA3106238A1 (en) 2018-07-26 2020-01-30 The Climate Corporation Generating agronomic yield maps from field health imagery
US11277956B2 (en) 2018-07-26 2022-03-22 Bear Flag Robotics, Inc. Vehicle controllers for agricultural and industrial applications
WO2020026578A1 (ja) 2018-07-31 2020-02-06 株式会社クボタ 走行経路生成システム、走行経路生成方法、走行経路生成プログラム、及び走行経路生成プログラムが記録されている記録媒体と、作業管理システム、作業管理方法、作業管理プログラム、及び作業管理プログラムが記録されている記録媒体と、収穫機、走行パターン作成システム、走行パターン作成プログラム、走行パターン作成プログラムが記録されている記録媒体、及び走行パターン作成方法
WO2020026650A1 (ja) 2018-08-01 2020-02-06 株式会社クボタ 自動走行制御システム、自動走行制御方法、自動走行制御プログラム、及び、記憶媒体
WO2020026651A1 (ja) 2018-08-01 2020-02-06 株式会社クボタ 収穫機、走行システム、走行方法、走行プログラム、及び、記憶媒体
US11234357B2 (en) 2018-08-02 2022-02-01 Cnh Industrial America Llc System and method for monitoring field conditions of an adjacent swath within a field
JP6958508B2 (ja) 2018-08-02 2021-11-02 井関農機株式会社 収穫作業システム
WO2020031473A1 (ja) 2018-08-06 2020-02-13 株式会社クボタ 外形形状算出システム、外形形状算出方法、外形形状算出プログラム、及び外形形状算出プログラムが記録されている記録媒体と、圃場マップ作成システム、圃場マップ作成プログラム、圃場マップ作成プログラムが記録されている記録媒体、及び圃場マップ作成方法
JP7034866B2 (ja) 2018-08-20 2022-03-14 株式会社クボタ 収穫機
US11154008B2 (en) 2018-08-20 2021-10-26 Cnh Industrial America Llc System and method for steering an agricultural harvester
WO2020038810A1 (en) 2018-08-22 2020-02-27 Agco International Gmbh Harvest logistics
WO2020039312A1 (en) 2018-08-22 2020-02-27 Precision Planting Llc Implements and application units having sensors for sensing data to determine agricultural plant characteristics of agricultural fields
DE102018120741A1 (de) 2018-08-24 2020-02-27 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
WO2020044726A1 (ja) 2018-08-29 2020-03-05 株式会社クボタ 自動操舵システムおよび収穫機、自動操舵方法、自動操舵プログラム、記録媒体
JP7121598B2 (ja) 2018-08-31 2022-08-18 三菱マヒンドラ農機株式会社 収穫機
MX2021002202A (es) 2018-08-31 2021-05-14 Climate Corp Mejora del modelo de humedad de subcampo utilizando modelado de flujo terrestre con calculos de agua poco profunda.
US11197417B2 (en) 2018-09-18 2021-12-14 Deere & Company Grain quality control system and method
US20200090094A1 (en) 2018-09-19 2020-03-19 Deere & Company Harvester control system
CA3112950A1 (en) 2018-09-21 2020-03-26 The Climate Corporation Method and system for executing machine learning algorithms
DE102018123478A1 (de) 2018-09-24 2020-03-26 Claas Tractor Sas Landwirtschaftliche Arbeitsmaschine
WO2020076510A2 (en) 2018-10-11 2020-04-16 Mtd Products Inc Localized data mapping for indoor and outdoor applications
US11676244B2 (en) 2018-10-19 2023-06-13 Mineral Earth Sciences Llc Crop yield prediction at field-level and pixel-level
US10729067B2 (en) 2018-10-20 2020-08-04 Deere & Company Biomass impact sensor having a conformal encasement enveloping a pressure sensitive film
CA3116429A1 (en) 2018-10-24 2020-04-30 Bitstrata Systems Inc. Machine operational state and material movement tracking
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11653588B2 (en) * 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US20220167547A1 (en) * 2018-10-26 2022-06-02 Deere & Company Predictive environmental characteristic map generation and control system
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11589509B2 (en) * 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US10986778B2 (en) 2018-10-31 2021-04-27 Deere & Company Weed seed devitalizer control
US11206763B2 (en) 2018-10-31 2021-12-28 Deere & Company Weed seed based harvester working member control
US20200128738A1 (en) 2018-10-31 2020-04-30 Cnh Industrial America Llc System and method for calibrating alignment of work vehicles
US20200133262A1 (en) 2018-10-31 2020-04-30 Cnh Industrial America Llc System and method for calibrating alignment of work vehicles
US11399462B2 (en) 2018-10-31 2022-08-02 Cnh Industrial America Llc System and method for calibrating alignment of work vehicles
US11564349B2 (en) 2018-10-31 2023-01-31 Deere & Company Controlling a machine based on cracked kernel detection
US11175170B2 (en) 2018-11-07 2021-11-16 Trimble Inc. Estimating yield of agricultural crops
US10996656B2 (en) 2018-11-08 2021-05-04 Premier Crop Systems, LLC System and method for aggregating test plot results based on agronomic environments
CN109357804B (zh) 2018-11-13 2023-09-19 西南交通大学 一种压实土水平应力测试装置及测试方法
US20200146203A1 (en) 2018-11-13 2020-05-14 Cnh Industrial America Llc Geographic coordinate based setting adjustment for agricultural implements
CN112996378B (zh) 2018-11-15 2023-04-18 株式会社久保田 收割机以及路径设定系统
CN111201879B (zh) 2018-11-21 2023-10-03 金华中科艾特智能科技研究所有限公司 基于图像识别的粮食收割、运输一体化装载装置/方法
CN113079691B (zh) 2018-11-26 2023-06-16 株式会社久保田 农作业机及其控制方法、农作业机控制程序及其记录介质
US11483970B2 (en) 2018-11-28 2022-11-01 Cnh Industrial America Llc System and method for adjusting the orientation of an agricultural harvesting implement based on implement height
US11067994B2 (en) 2018-12-06 2021-07-20 Deere & Company Machine control through active ground terrain mapping
DE102018131142A1 (de) 2018-12-06 2020-06-10 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine sowie Verfahren zum Betreiben einer landwirtschaftlichen Arbeitsmaschine
DE102018132144A1 (de) 2018-12-13 2020-06-18 Claas E-Systems Gmbh Landwirtschaftliche Arbeitssystem
EP3671590A1 (en) 2018-12-21 2020-06-24 AGCO Corporation Method of unloading batch grain quantities for harvesting machines
US20200202458A1 (en) * 2018-12-24 2020-06-25 The Climate Corporation Predictive seed scripting for soybeans
JP7182471B2 (ja) 2019-01-11 2022-12-02 株式会社クボタ 作業管理システム及び作業機
CN109485353A (zh) 2019-01-18 2019-03-19 安徽马钢嘉华新型建材有限公司 一种新型钢渣混合土道路基层材料及制备方法
DE102019200794A1 (de) 2019-01-23 2020-07-23 Amazonen-Werke H. Dreyer Gmbh & Co. Kg System und Verfahren zur Identifizierung von Zeitfenstern und Flächenbereichen eines landwirtschaftlich genutzten Feldes mit günstigen Bedingungen für einen wirkungsvollen und umweltgerechten Einsatz und/oder die Befahrbarkeit von Landmaschinen
US20200265527A1 (en) 2019-02-15 2020-08-20 Growers Edge Financial, Inc. Agronomic prescription product
CN109961024A (zh) 2019-03-08 2019-07-02 武汉大学 基于深度学习的小麦田间杂草检测方法
CN109763476A (zh) 2019-03-12 2019-05-17 上海兰德公路工程咨询设计有限公司 一种快速检测填土路基的压实度的装置及方法
JP7062610B2 (ja) 2019-03-26 2022-05-06 ヤンマーパワーテクノロジー株式会社 作業制御システム
CN210585958U (zh) 2019-03-28 2020-05-22 宁夏大学 霉变玉米识别与分拣的辅助装置
DE102019108505A1 (de) 2019-04-02 2020-10-08 Claas E-Systems Gmbh Landwirtschaftliche Arbeitsmaschine
US10677637B1 (en) 2019-04-04 2020-06-09 Scale Tec, Ltd. Scale controller with dynamic weight measurement
CN110232493B (zh) 2019-04-09 2021-07-30 丰疆智能科技股份有限公司 收割机和物流车智能配合系统和方法
CN110232494A (zh) 2019-04-09 2019-09-13 丰疆智能科技股份有限公司 物流车调度系统和方法
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11856882B2 (en) 2019-04-10 2024-01-02 Kansas Stte University Research Foundation Autonomous robot system for steep terrain farming operations
US11016049B2 (en) 2019-04-17 2021-05-25 Deere & Company Agricultural moisture and test weight sensor with co-planar electrodes
US20200337232A1 (en) 2019-04-24 2020-10-29 Deere & Company Information inference for agronomic data generation in sugarcane applications
FR3095572B1 (fr) 2019-05-02 2023-03-17 Agreenculture Procédé de gestion de flottes de véhicules agricoles autoguidés
DE102019206734A1 (de) 2019-05-09 2020-11-12 Deere & Company Sämaschine mit vorausschauender Ansteuerung
US10703277B1 (en) 2019-05-16 2020-07-07 Cnh Industrial America Llc Heads-up display for an agricultural combine
US11674288B2 (en) 2019-05-30 2023-06-13 Deere & Company System and method for obscurant mitigation
DE102019114872A1 (de) 2019-06-03 2020-12-03 Horsch Leeb Application Systems Gmbh System und Verfahren zur Simulation und/oder Konfiguration eines mittels einer landwirtschaftlichen Arbeitsmaschine durchzuführenden Arbeitsprozesses und landwirtschaftliche Arbeitsmaschine
US11457563B2 (en) 2019-06-27 2022-10-04 Deere & Company Harvester stability monitoring and control
CN110262287A (zh) 2019-07-14 2019-09-20 南京林业大学 用于收获机械割台高度自动控制的冠层高度在线探测方法
DE102019119110A1 (de) 2019-07-15 2021-01-21 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Abarbeitung eines landwirtschaftlichen Arbeitsprozesses auf einem Feld
US11665992B2 (en) * 2019-07-30 2023-06-06 Root Applied Sciences Inc. Predictive agricultural management system and method
JP2019216744A (ja) 2019-09-03 2019-12-26 ヤンマー株式会社 コンバイン
US11904871B2 (en) 2019-10-30 2024-02-20 Deere & Company Predictive machine control
CN110720302A (zh) 2019-11-29 2020-01-24 河南瑞创通用机械制造有限公司 一种谷物收获机智能调节系统及其控制方法
US11540447B2 (en) 2019-12-17 2023-01-03 Deere & Company Predictive crop characteristic mapping for product application
US11800829B2 (en) * 2019-12-17 2023-10-31 Deere & Company Work machine zone generation and control system with geospatial constraints
US11610272B1 (en) * 2020-01-29 2023-03-21 Arva Intelligence Corp. Predicting crop yield with a crop prediction engine
US20220232816A1 (en) * 2020-02-06 2022-07-28 Deere & Company Predictive weed map and material application machine control
AU2021200024A1 (en) * 2020-02-06 2021-08-26 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US20210243951A1 (en) * 2020-02-06 2021-08-12 Deere & Company Machine control using a predictive map
US20210243936A1 (en) * 2020-02-06 2021-08-12 Deere & Company Predictive weed map generation and control system
US11641801B2 (en) 2020-04-21 2023-05-09 Deere & Company Agricultural harvesting machine control using machine learning for variable delays
CN111406505A (zh) 2020-04-30 2020-07-14 江苏大学 一种联合收获机粮箱剩余容量及剩余行走距离监测装置和方法
WO2021262500A1 (en) 2020-06-25 2021-12-30 The Toro Company Turf management systems and methods
US11711995B2 (en) * 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11849672B2 (en) * 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
EP4101288A1 (en) * 2021-06-07 2022-12-14 AGCO Corporation Systems and methods for geolocating and mapping ash contamination in hay production

Also Published As

Publication number Publication date
CA3131202A1 (en) 2022-04-09
US20240103530A1 (en) 2024-03-28
US20220110252A1 (en) 2022-04-14
US11874669B2 (en) 2024-01-16
CN114303610A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
US11592822B2 (en) Machine control using a predictive map
US11849672B2 (en) Machine control using a predictive map
BR102021016552A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional
US20220110258A1 (en) Map generation and control system
US20220113729A1 (en) Predictive map generation and control system
EP3981231A1 (en) Predictive machine characteristic map generation and control system
BR102021017139A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
BR102021017182A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
US20220110238A1 (en) Machine control using a predictive map
US20230315096A1 (en) Machine control using a predictive map
BR102021016559A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
EP3981234A1 (en) Predictive map generation and control system
US11474523B2 (en) Machine control using a predictive speed map
US20220110259A1 (en) Predictive map generation and control system
BR102021017257A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional
BR102021023437A2 (pt) Método para controlar uma máquina de trabalho agrícola, e, máquina de trabalho agrícola campo da descrição
EP3981233A1 (en) Map generation and control system
US20220113733A1 (en) Predictive power map generation and control system
EP3981232A1 (en) Predictive map generation and control system
US20220110262A1 (en) Predictive map generation and control system
BR102021015594A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola
CA3130197A1 (en) Machine control using a predictive map
BR122021019410A2 (pt) Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional

Legal Events

Date Code Title Description
B03A Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette]