BR102021015205A2 - Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola - Google Patents
Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola Download PDFInfo
- Publication number
- BR102021015205A2 BR102021015205A2 BR102021015205-2A BR102021015205A BR102021015205A2 BR 102021015205 A2 BR102021015205 A2 BR 102021015205A2 BR 102021015205 A BR102021015205 A BR 102021015205A BR 102021015205 A2 BR102021015205 A2 BR 102021015205A2
- Authority
- BR
- Brazil
- Prior art keywords
- map
- predictive
- agricultural
- control
- machine
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 35
- 238000011065 in-situ storage Methods 0.000 claims abstract description 152
- 239000000463 material Substances 0.000 claims description 71
- 230000009471 action Effects 0.000 claims description 54
- 238000009826 distribution Methods 0.000 claims description 38
- 238000004891 communication Methods 0.000 claims description 32
- 230000002452 interceptive effect Effects 0.000 claims description 17
- 238000012545 processing Methods 0.000 description 76
- 230000000875 corresponding effect Effects 0.000 description 49
- 230000007246 mechanism Effects 0.000 description 46
- 238000004140 cleaning Methods 0.000 description 38
- 238000003306 harvesting Methods 0.000 description 27
- 230000003993 interaction Effects 0.000 description 24
- 230000008569 process Effects 0.000 description 20
- 230000008859 change Effects 0.000 description 19
- 230000001276 controlling effect Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 16
- 238000003860 storage Methods 0.000 description 16
- 230000000007 visual effect Effects 0.000 description 16
- 241001124569 Lycaenidae Species 0.000 description 14
- 239000002699 waste material Substances 0.000 description 13
- 239000003550 marker Substances 0.000 description 12
- 239000000446 fuel Substances 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 239000002028 Biomass Substances 0.000 description 9
- 241000196324 Embryophyta Species 0.000 description 9
- 238000010801 machine learning Methods 0.000 description 9
- 239000002689 soil Substances 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 241000251169 Alopias vulpinus Species 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000007726 management method Methods 0.000 description 6
- 238000013442 quality metrics Methods 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000012876 topography Methods 0.000 description 5
- 230000001960 triggered effect Effects 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000012773 agricultural material Substances 0.000 description 3
- 238000013475 authorization Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 240000000111 Saccharum officinarum Species 0.000 description 2
- 235000007201 Saccharum officinarum Nutrition 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004459 forage Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 210000003813 thumb Anatomy 0.000 description 2
- 101000822695 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C1 Proteins 0.000 description 1
- 101000655262 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C2 Proteins 0.000 description 1
- 101000655256 Paraclostridium bifermentans Small, acid-soluble spore protein alpha Proteins 0.000 description 1
- 101000655264 Paraclostridium bifermentans Small, acid-soluble spore protein beta Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000013501 data transformation Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000013340 harvest operation Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009342 intercropping Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B69/00—Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
- A01B69/003—Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection
- A01B69/004—Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection automatic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/12—Details of combines
- A01D41/127—Control or measuring arrangements specially adapted for combines
- A01D41/1278—Control or measuring arrangements specially adapted for combines for automatic steering
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/12—Details of combines
- A01D41/14—Mowing tables
- A01D41/141—Automatic header control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0011—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
- G05D1/0044—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with a computer generated representation of the environment of the vehicle, e.g. virtual reality, maps
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B79/00—Methods for working soil
- A01B79/005—Precision agriculture
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Soil Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Um ou mais mapas de informação são obtidos por uma máquina de trabalho agrícola. Um ou mais mapas de informação mapeiam um ou mais valores de características agrícolas em diferentes localizações geográficas de um campo. Um sensor in situ na máquina de trabalho agrícola sensoreia uma característica agrícola à medida que a máquina de trabalho agrícola move através do campo. Um gerador de mapa preditivo gera um mapa preditivo que prediz uma característica agrícola preditiva em diferentes localizações no campo com base em uma relação entre os valores em um ou mais mapas de informação e a característica agrícola sensoreada pelo sensor in situ. O mapa preditivo pode ser produzido e usado no controle de máquina automático.
Description
[001] A presente descrição se refere a máquinas agrícolas, máquinas florestais, máquinas de construção e máquinas de gerenciamento de grama.
[002] Existe uma ampla variedade de diferentes tipos de máquinas agrícolas. Algumas máquinas agrícolas incluem colheitadeiras, tais como colheitadeiras combinadas, colheitadeiras de cana de açúcar, colheitadeiras de algodão, colheitadeiras de forragem autopropelidas e enfardadeiras. Algumas colheitadeiras podem também ser equipadas com diferentes tipos de coletores para colher diferentes tipos de culturas.
[003] Uma variedade de diferentes condições em campos tem inúmeros de efeitos deletérios na operação de colheita. Portanto, um operador pode tentar modificar o controle da colheitadeira, ao encontrar tais condições durante uma operação de colheita.
[004] A discussão apresentada é meramente provida para informação de fundo geral e não deve ser usada como um auxílio na determinação do escopo da matéria reivindicada
[005] Um ou mais mapas de informação são obtidos por uma máquina de trabalho agrícola. Um ou mais mapas de informação mapeiam um ou mais valores de característica agrícola em diferentes localizações geográficas de um campo. Um sensor in situ na máquina de trabalho agrícola sensoreia uma característica agrícola à medida que a máquina de trabalho agrícola move através do campo. Um gerador de mapa preditivo gera um mapa preditivo que prediz uma característica agrícola preditiva em diferentes localizações no campo com base em uma relação entre os valores em um ou mais mapas de informação e a característica agrícola sensoreada pelo sensor in situ. O mapa preditivo pode ser produzido e usado no controle de máquina automático.
[006] Este Sumário é provido para introduzir uma seleção de conceitos em uma forma simplificada que são descritos adicionalmente a seguir na Descrição Detalhada. Este Sumário não visa identificar aspectos chaves ou aspectos essenciais da matéria reivindicada, nem deve ser usado como um auxílio na determinação do escopo da matéria reivindicada. A matéria reivindicada não está limitada a exemplos que solucionam qualquer ou todas as desvantagens notadas nos fundamentos.
[007] A FIG. 1 é uma ilustração pictorial parcial, esquemática parcial de um exemplo de uma colheitadeira agrícola.
[008] A FIG. 2 é um diagrama de blocos mostrando algumas porções de uma colheitadeira agrícola em mais detalhe, de acordo com alguns exemplos da presente descrição.
[009] As FIGS. 3A-3B (coletivamente referidas no presente documento como FIG. 3) mostram um fluxograma que ilustra um exemplo de operação de uma colheitadeira agrícola na geração de um mapa.
[0010] A FIG. 4 é um diagrama de blocos mostrando um exemplo de um gerador de modelo preditivo e um gerador de mapa preditivo.
[0011] A FIG. 5 é um fluxograma mostrando um exemplo de operação de uma colheitadeira agrícola recebendo um mapa, detectando uma característica in situ e gerando um mapa preditivo funcional para apresentação ou uso no controle da colheitadeira agrícola durante uma operação de colheita, ou ambos.
[0012] A FIG. 6A é um diagrama de blocos mostrando um exemplo de um gerador de modelo preditivo e um gerador de mapa preditivo.
[0013] A FIG. 6B é um diagrama de blocos mostrando alguns exemplos de sensores in situ.
[0014] A FIG. 7 mostra um fluxograma que ilustra um exemplo de operação de uma colheitadeira agrícola envolvendo a geração de um mapa preditivo funcional usando um mapa de informação anterior e uma entrada de sensor in situ.
[0015] A FIG. 8 é um diagrama de blocos mostrando um exemplo de um gerador de zona de controle.
[0016] A FIG. 9 é um fluxograma ilustrando um exemplo da operação do gerador de zona de controle mostrado na FIG. 8.
[0017] A FIG. 10 ilustra um fluxograma mostrando um exemplo de operação de um sistema de controle na seleção de um valor de ajustes alvos para controlar uma colheitadeira agrícola.
[0018] A FIG. 11 é um diagrama de blocos mostrando um exemplo de um controlador de interface de operador.
[0019] A FIG. 12 é um fluxograma ilustrando um exemplo de um controlador de interface de operador.
[0020] A FIG. 13 é uma ilustração pictorial mostrando um exemplo de uma exibição de interface de operador.
[0021] A FIG. 14 é um diagrama de blocos mostrando um exemplo de uma colheitadeira agrícola em comunicação com um ambiente de servidor remoto.
[0022] As FIGS. 15-17 mostram exemplos de dispositivos móveis que podem ser usados em uma colheitadeira agrícola.
[0023] A FIG. 18 é um diagrama de blocos mostrando um exemplo de um ambiente de computação que pode ser usado em uma colheitadeira agrícola.
[0024] Para efeitos de promoção de um entendimento dos princípios da presente descrição, será feita agora referência aos exemplos ilustrados nos desenhos, e linguagem específica será usada para descrever os mesmos. No entanto, deve-se entender que nenhuma limitação do escopo da descrição é pretendida. Quaisquer alterações e modificações adicionais nos dispositivos, sistemas, métodos descritos e qualquer aplicação adicional dos princípios da presente descrição são totalmente contemplados tal como ocorreria normalmente a um versado na técnica ao qual a descrição diz respeito. Em particular, é totalmente contemplado que os aspectos, componentes, etapas, ou uma combinação dos mesmos descritos com relação a um exemplo podem ser combinados com os aspectos, componentes, etapas, ou uma combinação dos mesmos descritos com relação a outros exemplos da presente descrição.
[0025] A presente descrição se refere ao uso de dados in situ obtidos simultaneamente com uma operação agrícola, em combinação com dados anteriores, para gerar um mapa preditivo e, mais particularmente, um mapa de características de máquina preditivo. Em alguns exemplos, o mapa de máquina preditivo pode ser usado para controlar uma máquina de trabalho agrícola, tal como uma colheitadeira agrícola. Como aqui discutido, o desempenho de uma colheitadeira agrícola pode ser degradado quando a colheitadeira agrícola engata um aspecto topográfico, tal como um declive. Por exemplo, se a colheitadeira agrícola está subindo uma colina, as demandas de potência aumentam e o desempenho de máquina pode ser diminuído. Este problema pode ser exacerbado quando o solo está molhado (tal como logo após uma chuva) e os pneus ou esteiras deparam com uma maior patinação. Além disso, o desempenho de uma colheitadeira (ou outra máquina agrícola) pode ser deleteriamente afetado com base na topografia de um campo. Por exemplo, a topografia pode fazer com que a máquina role uma certa quantidade ao navegar em um declive lateral. Sem limitação, a arfagem ou rolamento da máquina pode afetar a estabilidade da máquina, a distribuição interna do material, as pressões de aplicação de pulverização em um pulverizador, dentre outros. Por exemplo, a perda de grãos pode ser afetada por uma característica topográfica que faz com que a colheitadeira agrícola 100 passe tanto por arfagem quanto rolamento. A maior arfagem pode fazer com que os grãos saiam para trás mais rapidamente, a menor arfagem pode manter os grãos na máquina e os elementos de rolamento podem sobrecarregar as laterais do sistema de limpeza e aumentar a perda de grãos nesses lados. Similarmente, a qualidade de grão pode ser impactada tanto pela arfagem quanto pelo rolamento e, de maneira semelhante à perda de grãos, as reações do material não grão que permanecem na máquina, ou saem da máquina com base na arfagem ou no rolamento, podem ter influência no resultado da qualidade. Em outro exemplo, uma característica topográfica que influencia a arfagem terá um impacto na quantidade de rejeitos que entram no sistema de rejeitos, impactando assim uma saída do sensor de rejeitos. A consideração da arfagem e do tempo nesse nível pode ter uma relação com até que ponto o volume de rejeitos aumenta, e poderia ser útil para estimar a necessidade de ter controles para predizer esse nível e fazer ajustes.
[0026] Um mapa topográfico ilustrativamente mapeia as elevações do chão através de diferentes localizações geográficas em um campo de interesse. Uma vez que a inclinação do terreno é indicativa de uma mudança na elevação, ter dois ou mais valores de elevação permite o cálculo da inclinação nas áreas com valores de elevação conhecidos. Maior granularidade de inclinação pode ser alcançada tendo mais áreas com valores de elevação conhecidos. À medida que uma colheitadeira agrícola desloca através do terreno em direções conhecidas, a arfagem e rolamento da colheitadeira agrícola podem ser determinadas com base na inclinação do chão (isto é, áreas de elevação variadas). As características topográficas, quando referidas a seguir, podem incluir, mas não estão limitadas a, elevação, inclinação (por exemplo, incluindo a orientação da máquina em relação à inclinação) e perfil do chão (por exemplo, irregularidade).
[0027] A presente discussão dessa forma continua com relação a sistemas que recebem um mapa topográfico de um campo e também usam um sensor in situ para sensorear um valor indicativo de uma ou mais dentre uma distribuição de material interna, característica de potência, velocidade em relação ao chão, perda de grão, rejeitos, qualidade de grão ou outra característica de máquina, durante uma operação de colheita. Os sistemas geram um modelo que modela uma relação entre as características topográficas derivadas do mapa topográfico e os valores de saída dos sensores in situ. O modelo é usado para gerar um mapa de máquina preditivo funcional que prediz, por exemplo, o uso de potência em diferentes localizações no campo. O mapa de máquina preditivo funcional, gerado durante a operação de colheita, pode ser usado no controle automático de uma colheitadeira durante a operação de colheita. Em alguns casos, o mapa de máquina preditivo funcional é usado para gerar um planejamento de missão ou trajeto para a colheitadeira agrícola que opera no campo, por exemplo, para melhorar a utilização de potência, velocidade ou uniformidade de distribuição de material interno em toda a operação. Certamente, a distribuição de material interno, características de potência, velocidade em relação ao chão, perda de grãos, rejeitos e qualidade de grãos são apenas exemplos de características de máquina que podem ser preditas com base nas características topográficas, e outras características de máquina podem ser igualmente preditas e usadas para controlar a máquina.
[0028] A FIG. 1 é uma ilustração pictorial parcial, esquemática parcial, de uma colheitadeira agrícola autopropelida 100. No exemplo ilustrado, a colheitadeira agrícola 100 é uma colheitadeira combinada. Adicionalmente, embora as colheitadeiras sejam providas como exemplos na presente descrição, deve-se perceber que a presente descrição também é aplicável a outros tipos de colheitadeiras, tais como colheitadeiras de algodão, colheitadeiras de cana-de-açúcar, colheitadeiras de forragem autopropelidas, enfardadeiras ou outras máquinas de trabalho. Consequentemente, a presente descrição deve englobar os vários tipos de colheitadeiras descritos e, dessa forma, não está limitada a colheitadeiras combinadas. Adicionalmente, a presente descrição é direcionada a outros tipos de máquinas de trabalho, tais como semeadores e pulverizadores agrícolas, equipamentos de construção, equipamentos florestais e equipamentos de gerenciamento de grama onde a geração de um mapa preditivo pode ser aplicável. Consequentemente, a presente descrição deve englobar esses vários tipos de colheitadeiras e outras máquinas de trabalho e, dessa forma, não está limitada a colheitadeiras combinadas.
[0029] Como mostrado na FIG. 1, a colheitadeira agrícola 100 ilustrativamente inclui um compartimento do operador 101, que pode ter uma variedade de diferentes mecanismos de interface de operador, para controlar a colheitadeira agrícola 100. A colheitadeira agrícola 100 inclui equipamento de extremidade dianteira, tal como um coletor 102, e um cortador indicado no geral por 104. A colheitadeira agrícola 100 também inclui um alimentador 106, um acelerador de alimentação 108, e um trilhador indicado no geral por 110. O alimentador 106 e o acelerador de alimentação 108 formam parte de um subsistema de manipulação de material 125. O coletor 102 é acoplado a pivô a uma armação 103 de colheitadeira agrícola 100 ao longo do eixo geométrico pivô 105. Um ou mais atuadores 107 acionam o movimento do coletor 102 em torno do eixo geométrico 105 na direção indicada no geral pela seta 109. Dessa forma, uma posição vertical do coletor 102 (a altura do coletor) acima do chão 111 no qual o coletor 102 desloca é controlável pela atuação do atuador 107. Embora não mostrado na FIG. 1, a colheitadeira agrícola 100 pode também incluir um ou mais atuadores que operam para aplicar um ângulo de inclinação, um ângulo de rolamento, ou ambos, ao coletor 102 ou porções do coletor 102. Inclinação se refere a um ângulo no qual o cortador 104 engata a cultura. O ângulo de inclinação é aumentado, por exemplo, controlando o coletor 102 para apontar uma aresta distal 113 de cortador 104 mais para o chão. O ângulo de inclinação é diminuído controlando o coletor 102 para pontar a aresta distal 113 de cortador 104 mais para fora do chão. O ângulo de rolamento se refere à orientação do coletor 102 em torno do eixo geométrico longitudinal de frente para trás da colheitadeira agrícola 100.
[0030] O trilhador 110 ilustrativamente inclui um rotor de trilhagem 112 e um conjunto de contrabatedores 114. Adicionalmente, a colheitadeira agrícola 100 também inclui um separador 116. A colheitadeira agrícola 100 também inclui um subsistema de limpeza ou sapata de limpeza (coletivamente referidos como subsistema de limpeza 118) que inclui uma ventoinha de limpeza 120, crivo 122 e peneira 124. O subsistema de manipulação de material 125 também inclui batedor de descarga 126, elevador de rejeitos 128, elevador de grão limpo 130, bem como trado de descarregamento 134 e bico 136. O elevador de grão limpo move grão limpo para o tanque de grão limpo 132. A colheitadeira agrícola 100 também inclui um subsistema de resíduo 138 que pode incluir picador 140 e espalhador 142. A colheitadeira agrícola 100 também inclui um subsistema de propulsão que inclui um motor que aciona componentes de engate no chão 144, tais como rodas ou esteiras. Em alguns exemplos, uma colheitadeira combinada dentro do escopo da presente descrição pode ter mais de um de qualquer dos subsistemas supramencionados. Em alguns exemplos, a colheitadeira agrícola 100 podem ter subsistemas de limpeza esquerdo e direito, separadores, etc., que não são mostrados na FIG. 1.
[0031] Em operação, e a título de revisão, a colheitadeira agrícola 100 ilustrativamente move através de um campo na direção indicada pela seta 147. À medida que a colheitadeira agrícola 100 move, o coletor 102 (e o carretel associado 164) engata a cultura a ser colhida e reúne a cultura em direção ao cortador 104. Um operador da colheitadeira agrícola 100 pode ser um operador humano local, um operador humano remoto, ou um sistema automático. Um comando de operador é um comando por um operador. O operador da colheitadeira agrícola 100 pode determinar um ou mais dentre um ajuste de altura, um ajuste de ângulo de inclinação, ou um ajuste de ângulo de rolamento para o coletor 102. Por exemplo, o operador entra com um ajuste ou ajustes em um sistema de controle, descrito em mais detalhe a seguir, que controla o atuador 107. O sistema de controle pode também receber um ajuste do operador para estabelecer o ângulo de inclinação e ângulo de rolamento do coletor 102 e implementar os ajustes alimentados controlando atuadores associados, não mostrados, que operam para mudar o ângulo de inclinação e ângulo de rolamento do coletor 102. O atuador 107 mantém o coletor 102 a uma altura acima do chão 111 com base em um ajuste de altura e, onde aplicável, em ângulos de inclinação e rolamento desejados. Cada um dos ajustes de altura, rolamento e inclinação pode ser implementado independentemente dos outros. O sistema de controle responde a erro do coletor (por exemplo, a diferença entre o ajuste de altura e a altura medida do coletor 104 acima do chão 111 e, em alguns exemplos, erros do ângulo de inclinação e ângulo de rolamento) com um capacidade de resposta que é determinada com base em um nível de sensibilidade selecionado. Se o nível de sensibilidade for ajustado a um maior nível de sensibilidade, o sistema de controle responde a menores erros de posição do coletor, e tenta reduzir os erros detectados mais rapidamente do que quando a sensibilidade está em um menor nível de sensibilidade.
[0032] De volta à descrição da operação da colheitadeira agrícola 100, após culturas serem cortadas pelo cortador 104, o material de cultura separado é movimentado através de um transportador no alimentador 106 para o acelerador de alimentação 108, que acelera o material de cultura para o trilhador 110. O material de cultura é trilhado pelo rotor 112 que roda a cultura contra os contrabatedores 114. O material de cultura trilhado é movimentado um rotor de separador no separador 116 onde uma porção do resíduo é movimentada pelo batedor de descarga 126 para o subsistema de resíduo 138. A porção de resíduo transferida para o subsistema de resíduo 138 é picada pelo picador de resíduo 140 e espalhada no campo pelo espalhador 142. Em outras configurações, o resíduo é solto da colheitadeira agrícola 100 em um amontoado de feno. Em outros exemplos, o subsistema de resíduo 138 pode incluir eliminadores de sementes de ervas daninhas (não mostrados) tais como ensacadores de semente ou outros coletores de semente, ou trituradores de semente ou outros destruidores de semente.
[0033] Grão cai no subsistema de limpeza 118. O crivo 122 separa alguns pedaços maiores de material do grão, e a peneira 124 separa alguns dos pedaços mais finos de material do grão limpo. Grão limpo cai em um trado que move o grão para uma extremidade de entrada do elevador de grão limpo 130, e o elevador de grão limpo 130 move o grão limpo para cima, depositando o grão limpo no tanque de grão limpo 132. Resíduo é removido do subsistema de limpeza 118 pelo fluxo de ar gerado pela ventoinha de limpeza 120. A ventoinha de limpeza 120 direciona ar ao longo de um trajeto de fluxo de ar para cima através das peneiras e crivos. O fluxo de ar carrega resíduo para trás na colheitadeira agrícola 100 para o subsistema de manuseio de resíduo 138.
[0034] O elevador de rejeitos 128 retorna os rejeitos para o trilhador 110 onde os rejeitos são retrilhados. Alternativamente, os rejeitos também podem ser passados para um mecanismo de retrilhagem separado por um elevador de rejeitos ou outro dispositivo de transporte onde os rejeitos são retrilhados igualmente.
[0035] A FIG. 1 também mostra que, em um exemplo, a colheitadeira agrícola 100 inclui sensor de velocidade em relação ao chão 146, um ou mais sensores de perda no separador 148, um câmera de grão limpo 150, um mecanismo de captura de imagem voltado para a frente 151, que pode ser na forma de um câmera estéreo ou mono, e um ou mais sensores de perda 152 providos no subsistema de limpeza 118.
[0036] O sensor de velocidade em relação ao chão 146 sensoreia a velocidade de deslocamento da colheitadeira agrícola 100 no chão. Sensor de velocidade em relação ao chão 146 pode sensorear a velocidade de deslocamento da colheitadeira agrícola 100 sensoreando a velocidade de rotação dos componentes de engate no chão (tais como rodas ou esteiras), um eixo acionador, um eixo de rodas, ou outros componentes. Em alguns casos, a velocidade de deslocamento pode ser sensoreada usando uma sistema de posicionamento, tais como um sistema de posicionamento global (GPS), um sistema de posicionamento relativo, um sistema de navegação de longo alcance (LORAN) , ou uma ampla variedade de outros sistemas ou sensores que provêm uma indicação de velocidade de deslocamento.
[0037] Os sensores de perda 152 ilustrativamente provêm um sinal de saída indicativo da quantidade de perda de grão que ocorra tanto no lado direito quanto esquerdo do subsistema de limpeza 118. Em alguns exemplos, os sensores 152 são sensores de colisão que contam colisões de grão por unidade de tempo ou por unidade de distância percorrida para prover uma indicação da perda de grão que ocorre no subsistema de limpeza 118. Os sensores de colisão para os lados direito e esquerdo do subsistema de limpeza 118 podem prover sinais individuais ou um sinal combinado ou agregado. Em alguns exemplos, os sensores 152 podem incluir um único sensor ao contrário de sensores separados providos para cada subsistema de limpeza 118.
[0038] Sensor de perda no separador 148 provê um sinal indicativo de perda de grão nos separadores esquerdo e direito, não mostrados separadamente na FIG. 1. Os sensores de perda no separador 148 podem ser associados com os separadores esquerdo e direito e podem prover sinais de perda de grão separados ou um sinal combinado ou agregado. Em alguns casos, o sensoreamento de perda de grão nos separadores pode também ser feito usando uma ampla variedade de diferentes tipos de sensores igualmente.
[0039] A colheitadeira agrícola 100 pode também incluir outros sensores e mecanismos de medição. Por exemplo, a colheitadeira agrícola 100 pode incluir um ou mais dos seguintes sensores: um sensor de altura do coletor que sensoreia uma altura do coletor 102 acima do chão 111; sensores de estabilidade que sensoreiam oscilação ou movimento de salto (e amplitude) da colheitadeira agrícola 100; um sensor de ajuste de resíduo que é configurado para sensorear se a colheitadeira agrícola 100 está configurada para picar o resíduo, produzir uma leira, etc.; um sensor de velocidade da ventoinha da sapata de limpeza para sensorear a velocidade da ventoinha 120; um sensor de folga do contrabatedor que sensoreia folga entre o rotor 112 e os contrabatedores 114; um sensor de velocidade do rotor de trilhagem que sensoreia uma velocidade do rotor do rotor 112; um sensor de folga do crivo que sensoreia o tamanho das aberturas no crivo 122; um sensor de folga de peneira que sensoreia o tamanho das aberturas na peneira 124; um sensor de umidade de material não grão (MOG) que sensoreia um nível de umidade do MOG que passa pela colheitadeira agrícola 100; um ou mais sensores de ajuste da máquina configurados para sensorear vários ajustes da colheitadeira agrícola 100; um sensor de orientação de máquina que sensoreia a orientação da colheitadeira agrícola 100; e sensores de propriedade da cultura que sensoreiam uma variedade de diferentes tipos de propriedades de cultura, tais como tipo de cultura, umidade da cultura e outras propriedades de cultura. Os sensores de propriedade de cultura podem também ser configurados para sensorear características do material de cultura separado como o material de cultura que está sendo processado pela colheitadeira 100. Por exemplo, em alguns casos, os sensores de propriedade de cultura podem sensorear a qualidade de grão, tal como grão quebrado, níveis de MOG; constituintes de grãos tais como amidos e proteínas; e taxa de alimentação de grãos à medida que o grão desloca através do alimentador 106, elevador de grão limpo 130 ou algum outro lugar na colheitadeira agrícola 100. Os sensores de propriedade da cultura podem também sensorear a taxa de alimentação de biomassa através do alimentador 106, através do separador 116 ou em algum outro lugar na colheitadeira agrícola 100. Os sensores de propriedade da cultura podem também sensorear a taxa de alimentação tal como uma vazão em massa de grãos através do elevador 130 ou através de outras porções da colheitadeira agrícola 100 ou prover outros sinais de saída indicativos de outras variáveis sensoreadas.
[0040] Exemplos de sensores usados para detectar ou sensorear características de potência incluem, mas não se limitando a um sensor de tensão, um sensor de corrente, um sensor de torque, um sensor de pressão hidráulica, um sensor de fluxo hidráulico, um sensor de força, um sensor de carga no mancal e um sensor rotacional. As características de potência podem ser medidas em vários níveis de granularidade. Por exemplo, o uso de potência pode ser sensoreado com relação à máquina, com relação a subsistema ou por componentes individuais dos subsistemas.
[0041] Exemplos de sensores usados para sensorear a distribuição de material interno incluem, mas não se limitando a uma ou mais câmeras, sensores capacitivos, sensores reflexivos eletromagnéticos ou ultrassônicos de tempo de voo, sensores de atenuação de sinal, sensores de peso ou massa, sensores de fluxo de material, etc. Esses sensores podem ser colocados em um ou mais locais na colheitadeira agrícola 100 para sensorear a distribuição do material na colheitadeira agrícola 100, durante a operação da colheitadeira agrícola 100.
[0042] Exemplos de sensores usados para detectar ou sensorear um arfagem ou rolamento da colheitadeira agrícola 100 incluem acelerômetros, giroscópios, unidades de medição inercial, sensores gravimétricos, magnetômetros, etc. Esses sensores podem também ser indicativos da inclinação do terreno no qual a colheitadeira agrícola 100 está atualmente.
[0043] Antes de descrever como a colheitadeira agrícola 100 gera um mapa de máquina preditivo funcional e usa o mapa de máquina preditivo funcional para controle, uma breve descrição de alguns dos itens na colheitadeira agrícola 100 e sua operação será primeiramente feita. A descrição da FIG. 2 e 3 descrevem o recebimento de um tipo geral de mapa de informação anterior e a combinação de informações do mapa de informação anterior com um sinal de sensor georreferenciado gerado por um sensor in situ, onde o sinal de sensor é indicativo de uma característica no campo, tal como características de cultura ou ervas daninhas presentes no campo. As características do “campo” podem incluir, mas não se limitando a características de um campo, tais como inclinação, intensidade de erva daninha, tipo de erva daninha, umidade do solo, qualidade da superfície; características das propriedades de cultura, tais como altura da cultura, umidade da cultura, cultura densidade, estado da cultura; características das propriedades do grão, tais como umidade do grão, tamanho do grão, peso de teste do grão; e características de desempenho de máquina, tais como níveis de perda, qualidade do trabalho, consumo de combustível e utilização de potência. Uma relação entre os valores de característica obtidos a partir de sinais do sensor in situ e os valores do mapa de informação anterior é identificada e essa relação é usada para gerar um novo mapa preditivo funcional. Um mapa preditivo funcional prediz valores em diferentes localizações geográficas em um campo, e um ou mais desses valores podem ser usados para controlar uma máquina. Em alguns casos, um mapa preditivo funcional pode ser apresentado a um usuário, tal como um operador de uma máquina de trabalho agrícola, que pode ser uma colheitadeira agrícola. Um mapa preditivo funcional pode ser apresentado a um usuário visualmente, tal como por meio de uma exibição, hapticamente ou audivelmente. O usuário pode interagir com o mapa preditivo funcional para realizar operações de edição e outras operações de interface do usuário. Em alguns casos, um mapa preditivo funcional pode tanto ser usado para controlar uma máquina de trabalho agrícola, tal como uma colheitadeira agrícola, apresentação a um operador ou outro usuário, quanto apresentação a um operador ou usuário para interação pelo operador ou usuário.
[0044] Após a abordagem geral ser descrita em relação às FIGS. 2 e 3, uma abordagem mais específica para gerar um mapa preditivo funcional que pode ser apresentado a um operador ou usuário, ou usado para controlar a colheitadeira agrícola 100, ou ambos, é descrita em relação às FIGS. 4 e 5. Novamente, enquanto a presente discussão se dá com relação à colheitadeira agrícola e, particularmente, uma colheitadeira combinada, o escopo da presente descrição engloba outros tipos de colheitadeiras agrícolas ou outras máquinas de trabalho agrícolas.
[0045] A FIG. 2 é um diagrama de blocos que mostra algumas porções de uma colheitadeira agrícola 100 de exemplo. A FIG. 2 mostra que a colheitadeira agrícola 100 inclui ilustrativamente um ou mais processadores ou servidores 201, armazenamento de dados 202, sensor de posição geográfica 204, sistema de comunicação 206 e um ou mais sensores in situ 208 que sensoreiam uma ou mais características agrícolas de um campo simultaneamente a uma operação de colheita. Uma característica agrícola pode incluir qualquer característica que possa ter um efeito na operação de colheita. Alguns exemplos de características agrícolas incluem características de máquina de colheita, o campo, as plantas no campo e condições climáticas. Outros tipos de características agrícolas também estão incluídos. Os sensores in situ 208 geram valores correspondentes às características sensoreadas. A colheitadeira agrícola 100 também inclui um modelo preditivo ou gerador de relacionamento (coletivamente referidos a seguir como "gerador de modelo preditivo 210"), gerador de mapa preditivo 212, gerador de zona de controle 213, sistema de controle 214, um ou mais subsistemas controláveis 216 e um mecanismo de interface de operador 218. A colheitadeira agrícola 100 pode também incluir uma ampla variedade de outras funcionalidades de colheitadeira agrícola 220. Os sensores in situ 208 incluem, por exemplo, sensores internos 222, sensores remotos 224 e outros sensores 226 que sensoreiam características de um campo durante o curso de uma operação agrícola. O gerador de modelo preditivo 210 ilustrativamente inclui um gerador de modelo variável de informação anterior para variável para in situ 228, e o gerador de modelo preditivo 210 pode incluir outros itens 230. O sistema de controle 214 inclui controlador do sistema de comunicação 229, controlador de interface de operador 231, um controlador de ajustes 232, controlador de planejamento de trajeto 234, controlador de taxa de alimentação 236, controlador de coletor e carretel 238, controlador de correia de lona 240, controlador de posição da placa de convés 242, controlador de sistema de resíduos 244, controlador de limpeza de máquina 245, controlador de zona 247 e sistema 214 podem incluir outros itens 246. Subsistemas controláveis 216 incluem atuadores de máquina e coletor 248, subsistema de propulsão 250, subsistema de direção 252, subsistema de resíduo 138, subsistema de limpeza de máquina 254, e os subsistemas 216 podem incluir uma ampla variedade de outros subsistemas 256.
[0046] A FIG. 2 também mostra que a colheitadeira agrícola 100 pode receber o mapa de informação anterior 258. Como descrito a seguir, o mapa de informação do mapa anterior 258 inclui, por exemplo, um mapa topográfico de uma operação anterior no campo, tal como um veículo aéreo não tripulado que completa uma operação de varredura de alcance a partir de uma altitude conhecida, um mapa topográfico sensoreado por um avião, um mapa topográfico sensoreado por um satélite, um mapa topográfico sensoreado por um veículo terrestre, tal como um plantador equipado com GPS, etc. Entretanto, informação de mapa anterior podem também englobar outros tipos de dados que foram obtidos antes de uma operação de colheita ou um mapa de uma operação anterior. Por exemplo, um mapa topográfico pode ser recuperado de uma fonte remota, tal como o United States Geological Survey (USGS). A FIG. 2 também mostra que um operador 260 pode operar a colheitadeira agrícola 100. O operador 260 interage com mecanismos de interface de operador 218. Em alguns exemplos, os mecanismos de interface de operador 218 podem incluir manches, alavancas, um volante, ligações, pedais, botões, mostradores, teclados, elementos acionáveis pelo usuário (tais como ícones, botões, etc.) em um dispositivo de exibição de interface de usuário, um microfone e alto-falante (onde o reconhecimento de voz e a síntese de voz são providos), dentre uma ampla variedade de outros tipos de dispositivos de controle. Onde um sistema de tela sensível ao toque é provido, o operador 260 pode interagir com os mecanismos de interface de operador 218 usando gestos de toque. Esses exemplos aqui descritos são providos como exemplos ilustrativos e não se visam limitar o escopo da presente descrição. Consequentemente, outros tipos de mecanismos de interface de operador 218 podem ser usados e estão dentro do escopo da presente descrição.
[0047] O mapa de informação anterior 258 pode ser transmitido à colheitadeira agrícola 100 e armazenado no armazenamento de dados 202, usando o sistema de comunicação 206, ou de outras maneiras. Em alguns exemplos, o sistema de comunicação 206 pode ser um sistema de comunicação celular, um sistema para comunicação através de uma rede de longa distância ou uma rede de área local, um sistema para comunicação através de uma rede de comunicação de campo próximo ou um sistema de comunicação configurado para comunicar através de qualquer um dentre uma variedade de outras redes, ou combinações de redes. O sistema de comunicação 206 pode também incluir um sistema que facilita carregamentos ou transferências de informações de e para um cartão digital seguro (SD) ou um cartão de barramento serial universal (USB), ou ambos.
[0048] O sensor de posição geográfica 204 sensoreia ou detecta ilustrativamente a posição ou localização geográfica da colheitadeira agrícola 100. O sensor de posição geográfica 204 pode incluir, mas sem se limitar a um receptor de sistema de navegação global por satélite (GNSS) que recebe sinais de um transmissor de satélite GNSS. O sensor de posição geográfica 204 pode também incluir um componente cinemático em tempo real (RTK) que é configurado para aumentar a precisão dos dados de posição derivados do sinal GNSS. O sensor de posição geográfica 204 pode incluir um sistema de posicionamento relativo, um sistema de triangulação celular ou qualquer um dentre uma variedade de outros sensores de posição geográfica.
[0049] Os sensores in situ 208 podem ser qualquer um dos sensores descritos acima em relação à FIG. 1. Os sensores in situ 208 incluem sensores internos 222 que são montados internamente na colheitadeira agrícola 100. Tais sensores podem incluir, por exemplo, um sensor de velocidade (por exemplo, um GPS, velocímetro ou bússola), sensores de imagem que são interno à colheitadeira agrícola 100 (tal como a câmara de grãos limpos ou câmeras montadas para identificar a distribuição de material na colheitadeira agrícola 100, por exemplo, no subsistema de resíduos ou no sistema de limpeza), sensores de perda de grãos, sensores de características de rejeitos e sensores de qualidade de grãos. Os sensores in situ 208 também incluem sensores remotos in situ 224 que capturam informações in situ. Os dados in situ incluem dados obtidos de um sensor a bordo da colheitadeira ou obtidos por qualquer sensor onde os dados são detectados durante a operação de colheita. O gerador de modelo preditivo 210 gera um modelo que é indicativo de uma relação entre os valores sensoreados pelo sensor in situ 208 e uma característica mapeada no campo pelo mapa de informação anterior 258. Por exemplo, se o mapa de informação anterior 258 mapear uma característica topográfica para diferentes localizações no campo, e o sensor in situ 208 estiver sensoreando um valor indicativo de uso de potência, então o gerador de modelo de variável de informação anterior para variável in situ 228 gera um modelo de máquina preditivo que modela a relação entre as características topográficas e uso de potência. O modelo de máquina preditivo pode também ser gerado com base nas características topográficas a partir do mapa de informação anterior 258 e múltiplos valores de dados in situ gerados por sensores in situ 208. Então, o gerador de mapa preditivo 212 usa o modelo de máquina preditivo gerado pelo gerador de modelo preditivo 210 para gerar um mapa de característica de máquina preditiva funcional que prediz o valor de uma característica de máquina, tal como distribuição de material interna, sensoreada pelos sensores in situ 208 em diferentes localizações no campo com base no mapa de informação anterior 258.
[0050] Em alguns exemplos, o tipo de valores no mapa preditivo funcional 263 pode ser o mesmo que o tipo de dados in situ sensoreado pelos sensores in situ 208. Em alguns casos, o tipo de valores no mapa preditivo funcional 263 pode ter unidades diferentes dos dados sensoreados pelos sensores in situ 208. Em alguns exemplos, o tipo de valores no mapa preditivo funcional 263 pode ser diferente do tipo de dados sensoreado pelos sensores in situ 208, mas têm uma relação com o tipo de tipo de dados sensoreado pelos sensores in situ 208. Por exemplo, em alguns exemplos, o tipo de dados sensoreado pelos sensores in situ 208 pode ser indicativo do tipo de valores no mapa preditivo funcional 263. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 pode ser diferente do tipo de dados no mapa de informação anterior 258. Em alguns casos, o tipo de dados no mapa preditivo funcional 263 pode ter unidades diferentes dos dados no mapa de informação anterior 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 pode ser diferente do tipo de dados no mapa de informação anterior 258, mas tem uma relação com o tipo de dados no mapa de informação anterior 258. Por exemplo, em alguns exemplos, o tipo de dados no mapa de informação anterior 258 pode ser indicativo do tipo de dados no mapa preditivo funcional 263. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é diferente de um ou ambos os tipos de dados in situ sensoreados pelos sensores 208 in situ e os dados tipo no mapa de informação anterior 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é o mesmo que um ou ambos do tipo de dados in situ sensoreados pelos sensores in situ 208 e os tipo de dados no mapa de informação anterior 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é o mesmo que um do tipo de dados in situ sensoreado pelos sensores in situ 208 ou o tipo de dados no mapa de informação anterior 258, e diferentes um do outro.
[0051] O gerador de mapa preditivo 212 pode usar as características topográficas no mapa de informação anterior 258, e o modelo gerado pelo gerador de modelo preditivo 210, para gerar um mapa preditivo funcional 263 que prediz as características de máquina em diferentes localizações no campo. O gerador de mapa preditivo 212, dessa forma, produz o mapa preditivo 264.
[0052] Como mostrado na FIG. 2, o mapa preditivo 264 prediz o valor de uma característica sensoreada (sensoreada por sensores in situ 208), ou uma característica relacionada à característica sensoreada, em vários locais através do campo com base em um valor de informação anterior no mapa de informação anterior 258 naqueles locais e usando o modelo preditivo. Por exemplo, se o gerador de modelo preditivo 210 tiver gerado um modelo preditivo indicativo de uma relação entre uma característica topográfica e o uso de potência, então, dadas as características topográficas em diferentes locais através do campo, o gerador de mapa preditivo 212 gera um mapa preditivo 264 que prediz o valor do uso de potência em diferentes locais através do campo. A característica topográfica, obtida a partir do mapa topográfico, nesses locais e a relação entre a característica topográfica e a característica de máquina, obtida a partir do modelo preditivo, são usadas para gerar o mapa preditivo 264. O uso de potência predito pode ser usado por um sistema de controle para ajustar, por exemplo, aceleração do motor ou alocação de energia através de vários subsistemas para atender aos requisitos de uso de potência preditos.
[0053] Algumas variações nos tipos de dados que são mapeados no mapa de informação anterior 258, os tipos de dados sensoreados por sensores in situ 208 e os tipos de dados preditos no mapa preditivo 264 serão agora descritos.
[0054] Em alguns exemplos, o tipo de dados no mapa de informação anterior 258 é diferente do tipo de dados sensoreado por sensores in situ 208, ainda o tipo de dados no mapa preditivo 264 é o mesmo que o tipo de dados sensoreado pelo em sensores situ 208. Por exemplo, o mapa de informação anterior 258 pode ser um mapa topográfico, e a variável sensoreada pelos sensores in situ 208 pode ser uma característica de máquina. O mapa preditivo 264 pode então ser um mapa de máquina preditivo que mapeia valores de características de máquina preditos para diferentes localizações geográficas no campo.
[0055] Também, em alguns exemplos, o tipo de dados no mapa de informação anterior 258 é diferente do tipo de dados sensoreado por sensores in situ 208 e o tipo de dados no mapa preditivo 264 é diferente de ambos os tipos de dados no mapa de informação anterior 258 e o tipo de dados sensoreado pelos sensores in situ 208. Por exemplo, o mapa de informação anterior 258 pode ser um mapa topográfico e a variável sensoreada pelos sensores in situ 208 pode ser arfagem/rolamento da máquina. O mapa preditivo 264 pode então ser um mapa de distribuição interna preditiva que mapeia valores de distribuição interna preditos para diferentes localizações geográficas no campo.
[0056] Em alguns exemplos, o mapa de informação anterior 258 é de uma operação anterior através do campo e o tipo de dados é diferente do tipo de dados sensoreado por sensores in situ 208, ainda o tipo de dados no mapa preditivo 264 é o mesmo que o tipo de dados sensoreado pelos sensores in situ 208. Por exemplo, o mapa de informação anterior 258 pode ser um mapa de população de sementes gerado durante o plantio e a variável sensoreada pelos sensores in situ 208 pode ser o tamanho do caule. O mapa preditivo 264 pode então ser um mapa preditivo do tamanho do caule que mapeia os valores de tamanho de caule preditos para diferentes localizações geográficas no campo. Em outro exemplo, o mapa de informação anterior 258 pode ser um mapa de semeadura híbrida e a variável sensoreada pelos sensores in situ 208 pode ser o estado da cultura, tal como cultura em pé ou derrubada. O mapa preditivo 264 pode então ser um mapa preditivo do estado da cultura que mapeia os valores preditos do estado da cultura para diferentes localizações geográficas no campo.
[0057] Em alguns exemplos, o mapa de informação anterior 258 é de uma operação anterior através do campo e o tipo de dados é o mesmo que o tipo de dados sensoreado por sensores in situ 208, e o tipo de dados no mapa preditivo 264 é também o mesmo que o tipo de dados sensoreado pelos sensores in situ 208. Por exemplo, o mapa de informação anterior 258 pode ser um mapa de rendimento gerado durante um ano anterior, e a variável sensoreada pelos sensores in situ 208 pode ser rendimento. O mapa preditivo 264 pode então ser um mapa de rendimento preditivo que mapeia valores de rendimento preditos para diferentes localizações geográficas no campo. Em tal exemplo, as diferenças de rendimento relativo no mapa de informação anterior georreferenciado 258 do ano anterior podem ser usadas pelo gerador de modelo preditivo 210 para gerar um modelo preditivo que modela uma relação entre as diferenças de rendimento relativo no mapa de informação anterior 258 e os valores de rendimento sensoreados por sensores in situ 208 durante a operação de colheita atual. O modelo preditivo é então usado pelo gerador de mapa preditivo 210 para gerar um mapa de rendimento preditivo.
[0058] Em alguns exemplos, o mapa preditivo 264 pode ser provido ao gerador de zona de controle 213. O gerador de zona de controle 213 agrupa valores de dados de pontos individuais contíguos no mapa preditivo 264, em zonas de controle. Uma zona de controle pode incluir duas ou mais porções contíguas de uma área, tal como um campo, para o qual um parâmetro de controle correspondente à zona de controle para controlar um subsistema controlável é constante. Por exemplo, um tempo de resposta para alterar um ajuste de subsistemas controláveis 216 pode ser inadequado para responder satisfatoriamente às mudanças nos valores contidos em um mapa, tal como o mapa preditivo 264. Nesse caso, o gerador de zona de controle 213 analisa o mapa e identifica as zonas de controle que têm um tamanho definido para acomodar o tempo de resposta dos subsistemas controláveis 216. Em outro exemplo, as zonas de controle podem ser dimensionadas para reduzir o desgaste proveniente do movimento excessivo do atuador resultante do ajuste contínuo. Em alguns exemplos, pode haver um conjunto diferente de zonas de controle para cada subsistema controlável 216 ou para grupos de subsistemas controláveis 216. As zonas de controle podem ser adicionadas ao mapa preditivo 264 para obter o mapa de zona de controle preditivo 265. O mapa de zona de controle preditivo 265 pode dessa forma ser similar ao mapa preditivo 264, exceto que o mapa de zona de controle preditivo 265 inclui informação de zona de controle que define as zonas de controle. Dessa forma, um mapa preditivo funcional 263, como descrito no presente documento, pode ou não incluir zonas de controle. Tanto o mapa preditivo 264 quanto o mapa de zona de controle preditivo 265 são mapas preditivos funcionais 263. Em um exemplo, um mapa preditivo funcional 263 não inclui zonas de controle, tal como o mapa preditivo 264. Em outro exemplo, um mapa preditivo funcional 263 inclui zonas de controle , tal como mapa de zona de controle preditivo 265. Em alguns exemplos, múltiplas culturas podem estar simultaneamente presentes em um campo se um sistema de produção consorciada for implementado. Nesse caso, o gerador de mapa preditivo 212 e o gerador de zona de controle 213 são capazes de identificar a localização e as características das duas ou mais culturas e então gerar o mapa preditivo 264 e o mapa de zona de controle preditivo 265 correspondentemente.
[0059] Também deve-se perceber que o gerador de zona de controle 213 pode agrupar valores para gerar zonas de controle e as zonas de controle podem ser adicionadas ao mapa de zona de controle preditivo 265, ou um mapa separado, mostrando apenas as zonas de controle que são geradas. Em alguns exemplos, as zonas de controle podem ser usadas apenas para controlar ou calibrar a colheitadeira agrícola 100 ou ambos. Em outros exemplos, as zonas de controle podem ser apresentadas ao operador 260 e usadas para controlar ou calibrar a colheitadeira agrícola 100 e, em outros exemplos, as zonas de controle só podem ser apresentadas ao operador 260 ou outro usuário, ou armazenadas para uso posterior.
[0060] Mapa preditivo 264 ou mapa de zona de controle preditivo 265 ou ambos são providos para o sistema de controle 214, que gera sinais de controle com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos. Em alguns exemplos, o controlador do sistema de comunicação 229 controla o sistema de comunicação 206 para comunicar o mapa preditivo 264 ou mapa de zona de controle preditivo 265 ou sinais de controle com base no mapa de zona de controle preditivo 264 ou mapa de zona de controle preditivo 265 para outras colheitadeiras agrícolas que estão colhendo no mesmo campo . Em alguns exemplos, o controlador do sistema de comunicação 229 controla o sistema de comunicação 206 para enviar o mapa preditivo 264, o mapa de zona de controle preditivo 265, ou ambos, para outros sistemas remotos.
[0061] Em alguns exemplos, o mapa preditivo 264 pode ser provido ao gerador de rota/missão 267. O gerador de rota/missão 267 traça um trajeto de deslocamento para a colheitadeira agrícola 100 deslocar durante a operação de colheita com base no mapa preditivo 264. O trajeto de deslocamento pode também incluir ajustes de controle da máquina correspondentes aos locais ao longo do trajeto de deslocamento igualmente. Por exemplo, se um trajeto de deslocamento subir uma colina, então, em um ponto anterior à ascensão da colina, o trajeto de deslocamento pode incluir um controle indicativo do direcionamento da potência para os sistemas de propulsão para manter uma velocidade ou taxa de alimentação da colheitadeira agrícola 100. Em alguns exemplos, o gerador de rota/missão 267 analisa as diferentes orientações da colheitadeira agrícola 100 e as características de máquina preditas que predizem as orientações geram de acordo com o mapa preditivo 264, para uma pluralidade de diferentes rotas de deslocamento e seleciona uma rota que tem resultados desejáveis (tal como curto tempo colheita ou utilização de potência desejada ou uniformidade de distribuição de material).
[0062] O controlador de interface de operador 231 é operável para gerar sinais de controle para controlar os mecanismos de interface de operador 218. O controlador de interface de operador 231 também é também operável para apresentar o mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou outras informações derivadas ou baseadas no mapa preditivo mapa 264, mapa de zona de controle preditivo 265, ou ambos, ao operador 260. O operador 260 pode ser um operador local ou um operador remoto. Como um exemplo, o controlador 231 gera sinais de controle para controlar um mecanismo de exibição para exibir um ou ambos do mapa preditivo 264 e do mapa de zona de controle preditivo 265 para o operador 260. O controlador 231 pode gerar mecanismos atuáveis pelo operador que são exibidos e podem ser atuados pelo operador para interagir com o mapa exibido. O operador pode editar o mapa, por exemplo, corrigindo uma utilização de potência exibida no mapa, com base na observação do operador. O controlador de ajustes 232 pode gerar sinais de controle para controlar vários ajustes na colheitadeira agrícola 100 com base no mapa preditivo 264, o mapa de zona de controle preditivo 265 ou ambos. Por exemplo, o controlador de ajustes 232 pode gerar sinais de controle para controlar os atuadores do de máquina e coletor 248. Em resposta aos sinais de controle gerados, a atuadores de máquina e coletor 248 operam para controlar, por exemplo, um ou mais dos ajustes ajuste de peneira e do coletor, folga do debulhador, ajuste do rotor, ajuste de velocidade da ventoinha de limpeza, altura do coletor, funcionalidade do coletor, velocidade do carretel, posição do carretel, funcionalidade da correia de lona (onde a colheitadeira agrícola 100 é acoplada a uma espigadeira de lona), funcionalidade do coletor de milho, controle de distribuição interna e outros atuadores 248 que afetam as outras funções da colheitadeira agrícola 100. O controlador de planejamento de trajeto 234 ilustrativamente gera sinais de controle para controlar o subsistema de direção 252 para dirigir a colheitadeira agrícola 100 de acordo com um trajeto desejado. O controlador de planejamento de trajeto 234 pode controlar um sistema de planejamento de trajeto para gerar uma rota para a colheitadeira agrícola 100 e pode controlar o subsistema de propulsão 250 e o subsistema de direção 252 para dirigir a colheitadeira agrícola 100 ao longo dessa rota. O controlador de taxa de alimentação 236 pode controlar vários subsistemas, tais como o subsistema de propulsão 250 e atuadores de máquina 248, para controlar uma taxa de alimentação com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos. Por exemplo, à medida que a colheitadeira agrícola 100 se aproxima de um terreno em declínio com um valor de velocidade estimado acima de um limiar selecionado, o controlador de taxa de alimentação 236 pode reduzir a velocidade de máquina 100 para manter constante a taxa de alimentação de biomassa através da colheitadeira agrícola 100. O controlador de coletor e carretel 238 pode gerar sinais de controle para controlar um coletor ou um carretel, ou outra funcionalidade de coletor. O controlador da correia de lona 240 pode gerar sinais de controle para controlar uma correia de lona ou outra funcionalidade da espigadeira com base no mapa preditivo 264, mapa de zona de controle preditivo 265, ou ambos. Por exemplo, à medida que colheitadeira agrícola 100 se aproxima de um terreno em declive com um valor de velocidade estimado acima de um limiar selecionado, o controlador da correia de lona 240 pode aumentar a velocidade das correias de lona para impedir retrocesso de material nas correias. O controlador de posição da placa de convés 242 pode gerar sinais de controle para controlar uma posição de uma placa de convés incluída em um coletor com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, e o controlador de sistema de resíduo 244 pode gerar sinais de controle para controlar um subsistema de resíduo 138 com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos. O controlador de limpeza de máquina 245 pode gerar sinais de controle para controlar o subsistema de limpeza de máquina 254. Por exemplo, quando a colheitadeira agrícola 100 está prestes a deslocar transversalmente em um declive onde estima-se que a distribuição de material interno ficará desproporcional em um lado do subsistema de limpeza 254, o controlador de limpeza de máquina 245 pode ajustar o subsistema de limpeza 254 para levar em conta, ou corrigir, o material desproporcional. Outros controladores incluídos na colheitadeira agrícola 100 podem controlar outros subsistemas com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, igualmente. Por exemplo, um ou mais subsistemas podem ser controlados para ajustar a distribuição interna de material.
[0063] As FIGS. 3A e 3B (coletivamente referidas no presente documento como FIG. 3) mostram um fluxograma que ilustra um exemplo da operação da colheitadeira agrícola 100 na geração de um mapa preditivo 264 e mapa de zona de controle preditivo 265 com base em mapa de informação anterior 258.
[0064] Em 280, a colheitadeira agrícola 100 recebe mapa de informação anterior 258. Exemplos de mapa de informação anterior 258 ou recebimento de mapa de informação anterior 258 são discutidos com relação aos blocos 282, 284 e 286. Como aqui discutido, o mapa de informação anterior 258 mapeia valores de uma variável, correspondentes a uma primeira característica, para diferentes localizações no campo, como indicado no bloco 282. Por exemplo, um mapa de informação anterior pode ser um mapa gerado durante uma operação anterior ou com base em dados de uma operação anterior no campo, tal como antes da operação de pulverização realizada por um pulverizador. Os dados para o mapa de informação anterior 258 podem ser coletados de outras maneiras igualmente. Por exemplo, os dados podem ser coletados com base em imagens aéreas ou valores medidos obtidos durante um ano anterior, ou anteriormente na época de crescimento atual, ou em outros momentos. A informação pode ser com base em dados detectados ou reunidos de outras maneiras (sem ser como uso de imagens aéreas) igualmente. Por exemplo, os dados para o mapa de informação anterior 258 podem ser transmitidos à colheitadeira agrícola 100 usando o sistema de comunicação 206 e armazenados no armazenamento de dados 202. Os dados para o mapa de informação anterior 258 podem ser providos à colheitadeira agrícola 100 usando o sistema de comunicação 206 de outras maneiras igualmente, e isto é indicado pelo bloco 286 no fluxograma da FIG. 3. Em alguns exemplos, o mapa de informação anterior 258 pode ser recebido pelo sistema de comunicação 206.
[0065] Após o início de uma operação de colheita, os sensores in situ 208 geram sinais de sensor indicativos de um ou mais valores de dados in situ indicativos de uma característica de máquina, por exemplo, uso de potência, velocidade de máquina, distribuição interna de material, perda de grãos, rejeitos ou qualidade de grãos. Exemplos de sensores in situ 288 são discutidos em relação aos blocos 222, 290 e 226. Como aqui explicado, os sensores in situ 208 incluem sensores internos 222; sensores remotos in situ 224, tais tal como sensores baseados em UAV em voo em um momento para coletar dados in situ, mostrados no bloco 290; ou outros tipos de sensores in situ, designados por sensores in situ 226. Em alguns exemplos, os dados dos sensores internos são georreferenciados usando dados de posição, direção ou velocidade do sensor de posição geográfica 204.
[0066] O gerador de modelo preditivo 210 controla a variável de informação anterior para o gerador de modelo variável in situ 228 para gerar um modelo que modela uma relação entre os valores mapeados contidos no mapa de informação anterior 258 e os valores in situ sensoreados pelo sensores in situ 208 como indicado pelo bloco 292. As características ou tipos de dados representados pelos valores mapeados no mapa de informação anterior 258 e os valores in situ sensoreados pelos sensores in situ 208 podem ser as mesmas características ou tipo de dados ou diferentes características ou tipos de dados.
[0067] A relação ou modelo gerado pelo gerador de modelo preditivo 210 é provido ao gerador de mapa preditivo 212. O gerador de mapa preditivo 212 gera um mapa preditivo 264 que prediz um valor da característica sensoreada pelos sensores in situ 208 em diferentes localizações geográficas em um campo que está sendo colhido, ou uma característica diferente que está relacionada à característica sensoreada pelos sensores in situ 208, usando o modelo preditivo e o mapa de informação anterior 258, como indicado pelo bloco 294.
[0068] Deve-se notar que, em alguns exemplos, o mapa de informação anterior 258 pode incluir dois ou mais mapas diferentes ou duas ou mais camadas de mapas diferentes de um único mapa. Cada mapa em dois ou mais mapas diferentes ou cada camada em duas ou mais camadas de mapa diferentes de um único mapa mapeia um tipo diferente de variável para as localizações geográficas no campo. Em tal exemplo, o gerador de modelo preditivo 210 gera um modelo preditivo que modela a relação entre os dados in situ e cada uma das diferentes variáveis mapeadas pelos dois ou mais mapas diferentes ou pelas duas ou mais camadas de mapas diferentes. Similarmente, os sensores in situ 208 podem incluir dois ou mais sensores, cada um sensoreando um tipo diferente de variável. Dessa forma, o gerador de modelo preditivo 210 gera um modelo preditivo que modela as relações entre cada tipo de variável mapeada pelo mapa de informação anterior 258 e cada tipo de variável sensoreada pelos sensores in situ 208. O gerador de mapa preditivo 212 pode gerar um mapa preditivo funcional 263 que prediz um valor para cada característica sensoreada, sensoreada pelos sensores in situ 208 (ou uma característica relacionada à característica sensoreada) em diferentes localizações no campo que está sendo colhidos usando o modelo preditivo e cada um dos mapas ou camadas de mapa no mapa de informação prévia 258.
[0069] Deve-se notar que, em alguns exemplos, o mapa de informação anterior 258 pode incluir dois ou mais diferentes mapas ou duas ou mais diferentes camadas de mapa de um único mapa. Cada camada de mapa pode representar um diferente tipo de dados do tipo de dados de outra camada de mapa ou as camadas de mapa podem ter o mesmo tipo de dados que foram obtidos em diferentes momentos. Cada mapa nos dois ou mais diferentes mapas ou cada camada nas duas ou mais diferentes camadas de mapa de um mapa mapeia um tipo de variável diferente para as localizações geográficas no campo. Em um exemplo como esse, o gerador de modelo preditivo 210 gera um modelo preditivo que modela a relação entre os dados in situ e cada uma das diferentes variáveis mapeadas pelos dois ou mais diferentes mapas ou as duas ou mais diferentes camadas de mapa. Similarmente, os sensores in situ 208 podem incluir dois ou mais sensores, cada um de um tipo de variável diferente. Dessa forma, o gerador de modelo preditivo 210 gera um modelo preditivo que modela as relações entre cada tipo de variável mapeada pelo mapa de informação anterior 258 e cada tipo de variável sensoreada pelos sensores in situ 208. O gerador de mapa preditivo 212 pode gerar um mapa preditivo funcional 263 que prediz um valor para cada característica sensoreada, sensoreada pelos sensores in situ 208 (ou uma característica relacionada à característica sensoreada) em diferentes localizações no campo que está sendo colhido usando o modelo preditivo e cada um dos mapas ou camadas de mapa no mapa de informação anterior 258.
[0070] O gerador de mapa preditivo 212 configura o mapa preditivo 264 de forma que o mapa preditivo 264 seja acionável (ou consumível) pelo sistema de controle 214. O gerador de mapa preditivo 212 pode prover mapa preditivo 264 ao sistema de controle 214 ou ao gerador de zona de controle 213, ou ambos. Alguns exemplos de diferentes maneiras nas quais o mapa preditivo 264 pode ser configurado ou produzido são descritos com relação aos blocos 296, 295, 299 e 297. Por exemplo, o gerador de mapa preditivo 212 configura o mapa preditivo 264 de forma que o preditivo 264 inclua valores que podem ser lidos pelo sistema de controle 214 e usados como a base para gerar sinais de controle para um ou mais dos diferentes subsistemas controláveis da colheitadeira agrícola 100, como indicado pelo bloco 296.
[0071] O gerador de zona de controle 213 pode dividir o mapa preditivo 264 em zonas de controle com base nos valores no mapa preditivo 264. Valores contiguamente geolocalizados que estão dentro de um valor limiar de um outro podem ser agrupados em uma zona de controle. O valor limiar pode ser um valor limiar padrão, ou o valor limiar pode ser ajustado com base em uma entrada de operador, com base em uma entrada de um sistema automático ou com base em outros critérios. Um tamanho das zonas pode ser com base em uma capacidade de resposta do sistema de controle 214, dos subsistemas controláveis 216, ou com base em considerações de desgaste, ou em outros critérios como indicado pelo bloco 295. O gerador de mapa preditivo 212 configura o mapa preditivo 264 para apresentação a um operador ou outro usuário. O gerador de zona de controle 213 pode configurar o mapa de zona de controle preditivo 265 para apresentação a um operador ou outro usuário. Isto é indicado pelo bloco 299. Quando apresentado a um operador ou outro usuário, a apresentação do mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, pode conter um ou mais dos valores preditivos no mapa preditivo 264 correlacionado à localização geográfica, as zonas de controle no mapa de zona de controle preditivo 265 correlacionadas à localização geográfica, e valores de ajustes ou parâmetros de controle que são usados com base nos valores preditos no mapa preditivo 264 ou zonas no mapa de zona de controle preditivo 265. A apresentação pode, em outro exemplo, incluir informação mais abstrata ou informação mais detalhada. A apresentação pode também incluir um nível de confiança que indica uma precisão com a qual os valores preditivos no mapa preditivo 264 ou as zonas no mapa de zona de controle preditivo 265 concordam com os valores medidos que podem ser medidos pelos sensores na colheitadeira agrícola 100 à medida que a colheitadeira agrícola 100 move através do campo. Adicionalmente onde a informação é apresentada a mais de uma localização, um sistema de autenticação/autorização pode ser provido para implementar processos de autenticação e autorização. Por exemplo, pode haver uma hierarquia de indivíduos que são autorizados a ver e mudar mapas e outra informação apresentada. A título de exemplo, um dispositivo de exibição de bordo pode apresentar os mapas em tempo quase real localmente na máquina, apenas, ou os mapas podem também ser gerados em uma ou mais localizações remotas. Em alguns exemplos, cada dispositivo de exibição físico em cada localização pode ser associado com um pessoa ou um nível de permissão de usuário. O nível de permissão de usuário pode ser usado para determinar quais marcadores de exibição são visíveis no dispositivo de exibição físico, e quais valores a pessoa correspondente pode mudar. Como um exemplo, um operador local da colheitadeira agrícola 100 pode ser incapaz de ver a informação correspondente ao mapa preditivo 264 ou fazer qualquer mudança na operação da máquina. Um supervisor, em uma localização remota, entretanto, pode ser capaz de ver o mapa preditivo 264 na exibição, mas sem fazer mudanças. Um gestor, que pode estar em uma localização remota separada, pode ser capaz de ver todos os elementos no mapa preditivo 264 e também mudar o mapa preditivo 264 que é usado no controle de máquina. Isto é um exemplo de uma hierarquia de autorização que pode ser implementada. O mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, pode ser configurado de outras maneiras igualmente, como indicado pelo bloco 297.
[0072] No bloco 298, entrada do sensor de posição geográfica 204 e outros sensores in situ 208 é recebida pelo sistema de controle. O bloco 300 representa o recebimento pelo sistema de controle 214 de uma entrada do sensor de posição geográfica 204 identificando uma localização geográfica da colheitadeira agrícola 100. O bloco 302 representa o recebimento pelo sistema de controle 214 de entradas de sensor indicativa de trajetória ou direção da colheitadeira agrícola 100, e o bloco 304 representa o recebimento pelo sistema de controle 214 de uma velocidade da colheitadeira agrícola 100. O bloco 306 representa o recebimento pelo sistema de controle 214 de outra informação de vários sensores in situ 208.
[0073] No bloco 308, o sistema de controle 214 gera sinais de controle para controlar os subsistemas controláveis 216 com base no mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, e a entrada do sensor de posição geográfica 204 e qualquer outro sensor in situ 208. No bloco 310, o sistema de controle 214 aplica os sinais de controle aos subsistemas controláveis. Percebe-se que os sinais de controle particulares que são gerados, e os subsistemas controláveis particulares 216 que são controlados, podem variar com base em uma ou mais diferentes coisas. Por exemplo, os sinais de controle que são gerados e os subsistemas controláveis 216 que são controlados podem ser com base no tipo de mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos, que está sendo usado. Similarmente, os sinais de controle que são gerados e os subsistemas controláveis 216 que são controlados e o sincronismo dos sinais de controle podem ser com base em várias latências do fluxo de cultura através da colheitadeira agrícola 100 e na capacidade de resposta dos subsistemas controláveis 216.
[0074] A título de exemplo, um mapa preditivo gerado 264 na forma de um mapa de umidade de cultura preditivo pode ser usado para controlar um ou mais subsistemas controláveis 216. Por exemplo, o mapa de umidade de cultura preditivo funcional pode incluir valores preditivos de umidade de cultura georreferenciado nas localizações no campo que está sendo colhido. O mapa de umidade de cultura preditivo funcional pode ser extraído e usado para controlar os subsistemas de direção e propulsão 252 e 250, respectivamente. Pelo controle dos subsistemas de direção e propulsão 252 e 250, uma taxa de alimentação de material ou grão que move através da colheitadeira agrícola 100 pode ser controlada. Similarmente, a altura do coletor pode ser controlada para pegar mais ou menos material e dessa forma a altura do coletor pode também ser controlada para controlar a taxa de alimentação de material através da colheitadeira agrícola 100. Em outros exemplos, se o mapa preditivo 264 mapear um valor de umidade de cultura preditivo à frente da máquina como sendo mais alto em uma porção do coletor do que em outra porção do coletor, o que resulta em uma biomassa diferente entrando em um lado do coletor do que no outro lado, o controle do coletor pode ser implementado. Por exemplo, uma velocidade da espigadeira em um lado do coletor pode ser aumentada ou diminuída em relação à velocidade da espigadeira no outro lado do coletor para levar em conta a biomassa adicional. Dessa forma, o controlador de coletor e carretel 238 pode ser controlado usando valores preditivos georreferenciados presentes no mapa de umidade de cultura preditivo para controlar a velocidade da espigadeira das correias de lona no coletor. O exemplo anterior envolvendo taxa de alimentação e controle de coletor usando um mapa de umidade de cultura preditivo funcional é provido meramente como um exemplo. Consequentemente, uma ampla variedade de outros sinais de controle pode ser gerada usando valores preditivos obtidos de um mapa de umidade de cultura preditivo ou outro tipo de mapa preditivo funcional 263 para controlar um ou mais dos subsistemas controláveis 216.
[0075] No bloco 312, é feita uma determinação se a operação de colheita foi completada. Se a colheita não estiver completada, o processamento avança para o bloco 314 os dados de sensor in situ do sensor de posição geográfica 204 e sensores in situ 208 (e talvez outros sensores) continuam a ser lidos.
[0076] Em alguns exemplos, no bloco 316, colheitadeira agrícola 100 pode também detectar critérios de acionamento de aprendizagem para realizar aprendizagem de máquina em um ou mais dentre o mapa preditivo 264, o mapa de zona de controle preditivo 265, o modelo gerado pelo gerador de modelo preditivo 210, as zonas geradas pelo gerador de zona de controle 213, um ou mais algoritmos de controle implementado pelos controladores no sistema de controle 214, e outra aprendizagem acionada.
[0077] Os critérios de acionamento de aprendizagem podem incluir qualquer de uma ampla variedade de diferentes critérios. Alguns exemplos de detecção de critérios de acionamento são discutidos com relação aos blocos 318, 320, 321, 322 e 324. Por exemplo, em alguns exemplos, aprendizagem acionada pode envolver a recriação de uma relação usada para gerar um modelo preditivo quando uma quantidade limiar de dados de sensor in situ é obtida de sensores in situ 208. Em tais exemplos, o recebimento de uma quantidade de dados de sensor in situ dos sensores in situ 208 que excede um limiar aciona ou faz com que o gerador de modelo preditivo 210 gere um novo modelo preditivo que é usado pelo gerador de mapa preditivo 212. Dessa forma, à medida que a colheitadeira agrícola 100 continua uma operação de colheita, o recebimento da quantidade limiar de dados de sensor in situ dos sensores in situ 208 aciona a criação de uma nova relação representada por um modelo preditivo gerado pelo gerador de modelo preditivo 210. Adicionalmente, o novo mapa preditivo 264, o mapa de zona de controle preditivo 265, ou ambos, podem ser novamente gerados usando o novo modelo preditivo. O bloco 318 representa a detecção de uma quantidade limiar de dados de sensor in situ usados para acionar a criação de um novo modelo preditivo.
[0078] Em outros exemplos, os critérios de acionamento de aprendizagem podem ser com base em até que ponto os dados de sensor in situ dos sensores in situ 208 estão mudando, tal como com o tempo, ou comparados a valores anteriores. Por exemplo, se variações nos dados de sensor in situ (ou a relação entre o dados de sensor in situ e a informação no mapa de informação anterior 258) estiverem dentro de um faixa selecionada, ou forem menores que uma quantidade definida, ou forem abaixo de um valor limiar, então um novo modelo preditivo não é gerado pelo gerador de modelo preditivo 210. Em decorrência disso, o gerador de mapa preditivo 212 não gera um novo mapa preditivo 264, o mapa de zona de controle preditivo 265, ou ambos. Entretanto, se variações nos dados de sensor in situ ficarem fora da faixa selecionada, forem maiores que a quantidade definida, ou forem acima do valor limiar, por exemplo, então o gerador de modelo preditivo 210 gera um novo modelo preditivo usando todos ou uma porção dos dados de sensor in situ recém-recebidos que o gerador de mapa preditivo 212 usa para gerar um novo mapa preditivo 264. No bloco 320, variações no dados de sensor in situ, tal como uma magnitude de uma quantidade pela qual os dados excedem a faixa selecionada ou uma magnitude da variação da relação entre o dados de sensor in situ e a informação no mapa de informação anterior 258, podem ser usadas como um acionador para causar a geração de um novo modelo preditivo e mapa preditivo. De acordo com os exemplos supradescritos, o limiar, a faixa e a quantidade definida podem ser ajustados em valores padrões; ajustados por um operador ou interação de usuário através de uma interface de usuário; ajustados por um sistema automático; ou ajustados de outras maneiras.
[0079] Outros critérios de acionamento de aprendizagem podem também ser usados. Por exemplo, se o gerador de modelo preditivo 210 comutar para um mapa de informação anterior diferente (diferente do mapa de informação anterior originalmente selecionado 258), então a comutação para o mapa de informação anterior diferente pode acionar a reaprendizagem pelo gerador de modelo preditivo 210, gerador de mapa preditivo 212, gerador de zona de controle 213, o sistema de controle 214, ou outros itens. Em outro exemplo, a transição da colheitadeira agrícola 100 para uma topografia diferente ou para uma zona de controle diferente pode ser usada como critérios de acionamento de aprendizagem igualmente.
[0080] Em alguns casos, o operador 260 pode também editar o mapa preditivo 264 ou mapa de zona de controle preditivo 265, ou ambos. As edições podem mudar um valor no mapa preditivo 264; mudar um tamanho, formato, posição, ou existência de uma zona de controle no mapa de zona de controle preditivo 265; ou ambos. O bloco 321 mostra que informação editada pode ser usada como critérios de acionamento de aprendizagem.
[0081] Em alguns casos, pode ser também que o operador 260 observa que o controle automático de um subsistema controlável, não é o que o operador deseja. Em tais casos, o operador 260 pode prover um ajuste manual ao subsistema controlável refletindo que o operador 260 deseja que o subsistema controlável opere de uma maneira diferente da que está sendo comandada pelo sistema de controle 214. Dessa forma, a alteração manual de um ajuste pelo operador 260 pode fazer com que um ou mais dentre o gerador de modelo preditivo 210 reaprenda um modelo, o gerador de mapa preditivo 212 regenere o mapa 264, gerador de zona de controle 213 regenere uma ou mais zonas de controle no mapa de zona de controle preditivo 265, e o sistema de controle 214 reaprenda um algoritmo de controle ou realize aprendizagem de máquina em um ou mais dos componentes do controlador 232 a 246 no sistema de controle 214 com base no ajuste pelo operador 260, como mostrado no bloco 322. O bloco 324 representa o uso de outros critérios de aprendizagem acionados.
[0082] Em outros exemplos, a aprendizagem pode ser feita periodicamente ou intermitentemente com base, por exemplo, em um intervalo de tempo selecionado tal como um intervalo de tempo discreto ou um intervalo de tempo variável, como indicado pelo bloco 326.
[0083] Se a aprendizagem for acionada, quer com base em critérios de acionamento de aprendizagem ou com base na passagem de um intervalo de tempo, como indicado pelo bloco 326, então um ou mais dentre o gerador de modelo preditivo 210, gerador de mapa preditivo 212, gerador de zona de controle 213 e sistema de controle 214 realiza aprendizagem de máquina para gerar um novo modelo preditivo, um novo mapa preditivo, uma nova zona de controle e um novo algoritmo de controle, respectivamente, com base nos critérios de acionamento de aprendizagem. O novo modelo preditivo, o novo mapa preditivo e o novo algoritmo de controle são gerados usando qualquer dado adicional que foi coletado desde que a última operação de aprendizagem foi realizada. A realização da aprendizagem é indicada pelo bloco 328.
[0084] Será notado que, embora alguns exemplos no presente documento descrevam o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 recebendo um mapa de informação anterior na geração de um modelo preditivo e um mapa preditivo funcional, respectivamente, em outros exemplos, o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 pode receber outro, na geração de um modelo preditivo e um mapa preditivo funcional, respectivamente tipos de mapas, incluindo mapas preditivos, tal como um mapa preditivo funcional gerado durante a operação de colheita.
[0085] A FIG. 4 é um diagrama de blocos de uma porção da colheitadeira agrícola 100 mostrada na FIG. 1. Particularmente, a FIG. 4 mostra, dentre outras coisas, exemplos do gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 em mais detalhes. A FIG. 4 também ilustra o fluxo de informações entre os vários componentes mostrados. O gerador de modelo preditivo 210 recebe um mapa topográfico 332 tal como um mapa de informação anterior. O gerador de modelo preditivo 210 também recebe uma localização geográfica 334, ou uma indicação de uma localização geográfica, do sensor de posição geográfica 204. Os sensores in situ 208 incluem ilustrativamente um sensor de máquina, tal como o sensor de máquina 336, bem como um sistema de processamento 338. Em alguns casos, o sensor da máquina 336 pode estar localizado interno na colheitadeira agrícola 100. O sistema de processamento 338 processa dados de sensor gerados a partir do sensor da máquina a bordo 336 para gerar dados processados, alguns exemplos dos quais são descritos abaixo.
[0086] Em alguns exemplos, o sensor de máquina 336 pode gerar sinais eletrônicos indicativos da característica que o sensor 336 da máquina sensoreia. O sistema de processamento 338 processa um ou mais dos sinais de sensor obtidos através do sensor da máquina 336 para gerar dados processados que identificam uma ou mais características de máquina. As características de máquina identificadas pelo sistema de processamento 338 podem incluir uma distribuição de material interna, um uso de potência, uma utilização de potência, uma velocidade de máquina, patinagem da roda, etc.
[0087] O sensor in situ 208 pode ser ou incluir sensores ópticos, tal como uma câmera localizada na colheitadeira agrícola 100 (referida a seguir como "câmera de processo") que visualiza porções internas da colheitadeira agrícola 100 que processa o material agrícola para grãos. Dessa forma, em alguns exemplos, o sistema de processamento 338 é operável para detectar a distribuição interna do material agrícola que passa através da colheitadeira agrícola 100 com base em uma imagem capturada pelo sensor de máquina 208. Por exemplo, se o material agrícola está distribuído de forma desigual através da sistema de limpeza, que pode ser devido ao movimento ou inclinação da máquina.
[0088] Em outros exemplos, o sensor in situ 208 pode ser ou incluir um GPS que sensoreia a posição da máquina. Neste caso, o sistema de processamento 338 pode derivar velocidade e direção dos sinais de sensor igualmente. Em outro exemplo, o sensor in situ 208 pode incluir um ou mais sensores de potência que sensoreiam características de potência individuais ou agregadas de um ou mais subsistemas na colheitadeira agrícola 100. O sistema de processamento 338, neste caso, pode agregar ou separar a característica de potência por componentes de subsistema ou máquina.
[0089] Outras propriedades da máquina e sensores podem também ser usados. Em alguns exemplos, dados brutos ou processados do sensor de máquina 336 podem ser apresentados ao operador 260 por meio do mecanismo de interface de operador 218. O operador 260 pode estar interno na colheitadeira agrícola 100 ou em um local remoto.
[0090] Como mostrado na FIG. 4, o gerador de modelo preditivo exemplar 210 inclui um ou mais dentre um gerador de modelo de característica de potência para característica topográfica 342, gerador de modelo de velocidade de máquina para características topográficas 344, um gerador de modelo de distribuição de material para característica topográfica 345, um gerador de modelo de característica de perda para topográfica 346, um gerador de modelo de rejeito para característica topográfica 347 e um gerador de modelo de característica de qualidade de grão para topográfica 348. Em outros exemplos, o gerador de modelo preditivo 210 pode incluir adicional, menos ou diferente componentes do que aqueles mostrados no exemplo da FIG. 4. Consequentemente, em alguns exemplos, o gerador de modelo preditivo 210 pode incluir outros itens 349 igualmente, que podem incluir outros tipos de geradores de modelo preditivo para gerar outros tipos de modelos de características de máquina.
[0091] A presente discussão prossegue com relação a um exemplo em que o sensor de máquina 336 é um sensor de característica de potência, tal como um sensor de pressão hidráulica, sensor de tensão, etc. Deve-se perceber que estes são apenas alguns exemplos e os sensores supramencionados, como outros exemplos de sensor de máquina 336, são igualmente contemplados no presente documento. O gerador de modelo 342 identifica uma relação entre uma característica de potência, em uma localização geográfica correspondente aos dados processados 340, e o valor da característica topográfica na mesma localização geográfica. O valor de característica topográfica é o valor georreferenciado contido no mapa topográfico 332. Gerador de modelo 342 então gera um modelo de máquina preditivo 350 que é usado pelo gerador de mapa de característica de potência 352 para predizer características de potência em um local no campo com base nas características topográficas para esse local no campo. Por exemplo, o uso de potência é sensoreado pelo sensor in situ 208 e o gerador de mapa preditivo 352 produz as exigência de uso de potência estimados em vários lugares no campo.
[0092] A presente discussão prossegue com relação a um exemplo em que o sensor de máquina 336 é um sensor de velocidade de máquina, tal como um dispositivo de sistema de posicionamento global, velocímetro, bússola, etc. Deve-se perceber que estes são apenas alguns exemplos, e sensores supramencionados, como outros exemplos de sensor de máquina 336, são igualmente contemplados no presente documento. O gerador de modelo 344 identifica uma relação entre a velocidade de máquina, em uma localização geográfica correspondente aos dados de sensor processados 340, e o valor de característica topográfica na mesma localização geográfica. Novamente, o valor da característica topográfica é o valor georreferenciado contido no mapa topográfico 332. O gerador de modelo 344 então gera um modelo de máquina preditivo 350 que é usado pelo gerador de mapa de velocidade de máquina 354 para predizer velocidades de máquina em um local no campo com base no valor de característica topografia para esse local no campo. Por exemplo, a velocidade e direção da máquina são sensoreadas pelo sensor in situ 208 e o gerador de mapa preditivo 354 produz a velocidade estimada da máquina e a direção em vários lugares no campo.
[0093] A presente discussão prossegue com relação a um exemplo em que o sensor de máquina 336 é um sensor de imagem, tal como uma câmera. Deve-se perceber que este é apenas um exemplo, e os sensores supramencionados, como outros exemplos de sensor de máquina 336, são igualmente contemplados no presente documento. O gerador de modelo 345 identifica uma relação entre a distribuição de material detectada nos dados processados 340 (por exemplo, a distribuição de material na colheitadeira agrícola 100 pode ser identificada com base em imagens capturadas por uma câmera), em uma localização geográfica correspondente a onde as imagens foram obtidas, e características topográficas do mapa topográfico 332 correspondente ao mesmo local no campo onde a distribuição do material foi detectada. Com base nesta relação estabelecida pelo gerador de modelo 345, o gerador de modelo 345 gera um modelo de máquina preditivo 350. O modelo de máquina preditivo 350 é usado pelo gerador de mapa de distribuição de material 355 para predizer a distribuição de material em diferentes localizações no campo com base na característica topográfica georreferenciada contida no mapa topográfico 332 nas mesmas localizações no campo.
[0094] A presente discussão prossegue com relação a um exemplo em que o sensor de máquina 336 é um sensor de perda de grãos. Deve-se perceber que este é apenas um exemplo e os sensores supramencionados, como outros exemplos de sensor de máquina 336, são igualmente contemplados no presente documento. O gerador de modelo 346 identifica uma relação entre a perda de grãos detectada nos dados processados 340 em uma localização geográfica correspondente a onde os dados de sensor foram geolocalizados, e as características topográficas do mapa topográfico 332 correspondentes ao mesmo local no campo onde a perda de grãos foi geolocalizada. Com base nesta relação estabelecida pelo gerador de modelo 346, o gerador de modelo 346 gera um modelo de máquina preditivo 350. O modelo de máquina preditivo 350 é usado pelo gerador de mapa de perda de grãos 356 para predizer a perda de grãos em diferentes localizações no campo com base na característica topográfica georreferenciada contida no mapa topográfico 332 nas mesmas localizações no campo.
[0095] A presente discussão prossegue com relação a um exemplo em que o sensor de máquina 336 é um sensor de rejeitos. Deve-se perceber que este é apenas um exemplo e os sensores supramencionados, como outros exemplos de sensor de máquina 336, são igualmente contemplados no presente documento. O gerador de modelo 347 identifica uma relação entre rejeitos detectados nos dados processados 340 em uma localização geográfica correspondentes a onde os dados de sensor foram geolocalizados, e características topográficas do mapa topográfico 332 correspondentes ao mesmo local no campo onde a característica de rejeitos foi geolocalizada. Com base nesta relação estabelecida pelo gerador de modelo 347, o gerador de modelo 347 gera um modelo de máquina preditivo 350. O modelo de máquina preditivo 350 é usado pelo gerador de mapa de rejeitos 357 para predizer as características de rejeitos em diferentes localizações no campo com base na característica topográfica georreferenciada contida em o mapa topográfico 332 nas mesmas localizações no campo.
[0096] A presente discussão prossegue com relação a um exemplo em que o sensor de máquina 336 é um sensor de qualidade de grãos. Deve-se perceber que este é apenas um exemplo e os sensores supramencionados, como outros exemplos de sensor de máquina 336, são igualmente contemplados no presente documento. O gerador de modelo 348 identifica uma relação entre a qualidade de grão sensoreada nos dados processados 340 em uma localização geográfica correspondente a onde os dados de sensor foram geolocalizados, e as características topográficas do mapa topográfico 332 correspondentes ao mesmo local no campo onde a qualidade de grão foi geolocalizada. Com base nesta relação estabelecida pelo gerador de modelo 348, o gerador de modelo 348 gera um modelo de máquina preditivo 350. O modelo de máquina preditivo 350 é usado pelo gerador de mapa de qualidade de grão 358 para predizer a qualidade de grão em diferentes localizações no campo com base na característica topográfica georreferenciada contida no mapa topográfico 332 nas mesmas localizações no campo.
[0097] O gerador de modelo preditivo 210 é operável para produzir uma pluralidade de modelos de máquina preditiva, tal como um ou mais dos modelos de máquina preditivos gerados pelos geradores de modelo 342, 344 e 345. Em outro exemplo, dois ou mais dentre os modelos de máquina preditivos 342, 344 e 345 supradescritos podem ser combinados em um único modelo de máquina preditivo que prediz duas ou mais características de máquina, por exemplo, de distribuição de material, características de potência e velocidade de máquina com base nas características topográficas em diferentes localizações no campo. Qualquer um desses modelos de máquina, ou combinações dos mesmos, são representados coletivamente pelo modelo de máquina 350 na FIG. 4.
[0098] O modelo de máquina preditivo 350 é provido ao gerador de mapa preditivo 212. No exemplo da FIG. 4, o gerador de mapa preditivo 212 inclui um gerador de mapa de característica de potência 352, um gerador de mapa de velocidade de máquina 354, um gerador de mapa de distribuição de material 355, um gerador de mapa de perda de grão 356, um gerador de mapa de rejeito 357 e um gerador de mapa de qualidade de grão 358. Em outros exemplos, o gerador de mapa preditivo 212 pode incluir geradores de mapa adicionais, menos ou diferentes. Dessa forma, em alguns exemplos, o gerador de mapa preditivo 212 pode incluir outros itens 359 que podem incluir outros tipos de geradores de mapa para gerar mapas de características de máquina para outros tipos de características de máquina.
[0099] O gerador de mapa de características de potência 352 recebe o modelo de máquina preditivo 350, que prediz características de potência com base em características topográficas do mapa topográfico 332 e gera um mapa de previsão que prediz as características de potência em diferentes localizações no campo. Por exemplo, a característica de potência predita pode incluir uma potência necessária predita.
[00100] O gerador de mapa de velocidade de máquina 354 gera um mapa preditivo que prediz a velocidade de máquina em diferentes localizações no campo com base no valor de velocidade de máquina nesses localizações no campo e no modelo de máquina preditivo 350.
[00101] O gerador de mapa de distribuição de material 355 gera ilustrativamente um mapa de distribuição de material 360 que prediz a distribuição de material em diferentes localizações no campo com base nas características topográficas nesses localizações no campo e no modelo de máquina preditivo 350.
[00102] O gerador de mapa de perda de grãos 356 gera ilustrativamente um mapa de perda de grãos 360 que prediz a perda de grãos em diferentes localizações no campo com base nas características topográficas nesses localizações no campo e no modelo de máquina preditivo 350.
[00103] O gerador de mapa de rejeitos 357 gera ilustrativamente um mapa de rejeitos 360 que prediz características de rejeitos em diferentes localizações no campo com base nas características topográficas nesses localizações no campo e no modelo de máquina preditivo 350.
[00104] O gerador de mapa de qualidade de grão 358 gera ilustrativamente um mapa de qualidade de grão 360 que prediz uma característica indicativa de qualidade de grão em diferentes localizações no campo com base nas características topográficas nesses localizações no campo e no modelo de máquina preditivo 350.
[00105] O gerador de mapa preditivo 212 emite um ou mais mapas de características de máquina preditivos 360 que são preditivos de uma característica de máquina. Cada um dos mapas de características de máquina preditivos 360 prediz a respectiva característica de máquina em diferentes locais em um campo. Cada um dos mapas de características de máquina preditivos gerados 360 pode ser provido ao gerador de zona de controle 213, o sistema de controle 214, ou ambos. O gerador de zona de controle 213 gera zonas de controle e incorpora essas zonas de controle no mapa preditivo funcional 360. Um ou mais mapas preditivos funcionais podem ser providos para controlar o sistema 214, que gera sinais de controle para controlar um ou mais dos subsistemas controláveis 216 com base em o um ou mais mapas preditivos funcionais.
[00106] A FIG. 5 é um fluxograma de um exemplo de operação do gerador de modelo preditivo 210 e gerador de mapa preditivo 212 na geração de o modelo de máquina preditivo 350 e do mapa de característica de máquina preditiva 360. No bloco 362, o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 recebem um mapa topográfico anterior 332. No bloco 364, o sistema de processamento 338 recebe um ou mais sinais de sensor do sensor de máquina 336. Tal como discutido acima, o sensor de máquina 336 pode ser um sensor de potência 366, um sensor de velocidade 368, um sensor de distribuição de material 370 ou outro tipo de sensor 371.
[00107] No bloco 372, o sistema de processamento 338 processa um ou mais sinais de sensor recebidos para gerar dados indicativos de uma característica de máquina. Em alguns casos, como indicado no bloco 374, os dados de sensor podem ser indicativos de uma característica de potência. Em alguns casos, como indicado no bloco 378, os dados de sensor podem ser indicativos da velocidade da colheitadeira agrícola. Em alguns casos, como indicado no bloco 379, os dados de sensor (por exemplo, uma imagem ou pluralidade de imagens) podem ser indicativos da distribuição de material dentro da colheitadeira agrícola. Os dados de sensor podem incluir igualmente outros dados como indicados pelo bloco 380.
[00108] No bloco 382, o gerador de modelo preditivo 210 também obtém a localização geográfica correspondente aos dados de sensor. Por exemplo, o gerador de modelo preditivo 210 pode obter a posição geográfica do sensor de posição geográfica 204 e determinar, com base em atrasos de máquina, velocidade de máquina, etc., uma localização geográfica precisa onde os dados de sensor 340 foram capturados ou derivados. Adicionalmente, no bloco 382, a orientação da colheitadeira agrícola 100 para a característica topográfica pode ser determinada. A orientação da colheitadeira agrícola 100 é obtida, por exemplo, em virtude de uma máquina em uma posição inclinada poder exibir características de máquina diferentes com base em sua orientação em relação à inclinação.
[00109] No bloco 384, o gerador de modelo preditivo 210 gera um ou mais modelos de máquina preditivos, tal como o modelo de máquina 350, que modelam uma relação entre uma característica topográfica obtida a partir de um mapa de informação anterior, tal como mapa de informação anterior 258, e uma característica de máquina que está sendo sensoreada pelo sensor in situ 208 ou uma característica relacionada. Por exemplo, o gerador de modelo preditivo 210 pode gerar um modelo de máquina preditivo que modela a relação entre uma característica topográfica e uma característica de máquina sensoreada indicada pelos dados de sensor 340 obtidos do sensor in situ 208.
[00110] No bloco 386, o modelo de máquina preditivo, tal como o modelo de máquina preditivo 350, é provido ao gerador de mapa preditivo 212 que gera um mapa de característica de máquina preditiva 360 que mapeia uma característica de máquina predita com base no mapa topográfico e no modelo de máquina preditivo 350. Em alguns exemplos, o mapa de características de máquina preditivo 360 prediz características de potência, como indicado pelo bloco 388. Em alguns exemplos, o mapa de características de máquina preditivo 360 prediz a velocidade de máquina, como indicado pelo bloco 390. Em alguns exemplos, o mapa preditivo característico da máquina 360 prediz distribuição de material na colheitadeira, como indicado pelo bloco 392. Ainda em outros exemplos, o mapa preditivo 360 prediz outros itens, ou uma combinação dos itens acima, como indicado pelo bloco 393.
[00111] O mapa preditivo característico da máquina 360 pode ser gerado durante o curso de uma operação agrícola. Dessa forma, enquanto uma colheitadeira agrícola está movendo através de um campo realizando uma operação agrícola, o mapa de características de máquina preditivo 360 é gerado à medida que a operação agrícola está sendo realizada.
[00112] No bloco 394, o gerador de mapa preditivo 212 produz o mapa de características de máquina preditiva 360. No bloco 391, o gerador de mapa de características de máquina preditivo 212 produz o mapa de características de máquina preditiva para apresentação e possível interação pelo operador 260. No bloco 393, gerador de mapa 212 pode configurar o mapa para consumo pelo sistema de controle 214. No bloco 395, o gerador de mapa preditivo 212 pode também prover o mapa 360 ao gerador de zona de controle 213 para geração de zonas de controle. No bloco 397, o gerador de mapa preditivo 212 configura o mapa 360 igualmente de outras maneiras. O mapa de características de máquina preditivo 360 (com ou sem as zonas de controle) é provido para controlar o sistema 214. No bloco 396, o sistema de controle 214 gera sinais de controle para controlar subsistemas controláveis 216 com base no mapa de características de máquina preditivo 360.
[00113] Pode-se dessa ver que o presente sistema leva um mapa de informação anterior que mapeia uma característica, tal como uma informação de característica topográfica para diferentes locais em um campo. O presente sistema também usa um ou mais sensores in situ que sensoreiam dados de sensor in situ que são indicativos de uma característica de máquina, tais como uso de potência, velocidade de máquina ou distribuição de material, e gera um modelo que modela uma relação entre a máquina característica sensoreada usando o sensor in situ, ou uma característica relacionada, e a característica mapeada no mapa de informação anterior. Dessa forma, o presente sistema gera um mapa preditivo funcional usando um modelo, dados in situ e um mapa de informação anterior e pode configurar o mapa preditivo funcional gerado para consumo por um sistema de controle ou para apresentação a um operador local ou remoto ou outro usuário . Por exemplo, o sistema de controle pode usar o mapa para controlar um ou mais sistemas de uma colheitadeira agrícola.
[00114] A FIG. 6A é um diagrama de blocos de uma porção de exemplo da colheitadeira agrícola 100 mostrada na FIG. 1. Particularmente, a FIG. 6A mostra, dentre outras coisas, exemplos de gerador de modelo preditivo 210 e gerador de mapa preditivo 212. No exemplo ilustrado, o mapa de informação 258 é um ou mais dentre um mapa topográfico 332, um mapa de máquina preditivo 360 ou um mapa de operação anterior diferente 400. Os valores no mapa de operação anterior 400 podem ser valores que foram coletados durante uma operação anterior, tal como uma operação anterior conduzida por um lavrador, pulverizador ou UAV.
[00115] Adicionalmente, no exemplo mostrado na FIG. 6A, o sensor in situ 208 pode incluir um ou mais dentre um sensor de potência 402, sensor de taxa de alimentação 403, um sensor de entrada de operador 404 e um sistema de processamento 406. Os sensores in situ 208 podem incluir outros sensores 408 igualmente. Por exemplo, a FIG. 6B mostra exemplo adicional de sensores in situ 208.
[00116] O sensor de potência 402 sensoreia uma variável indicativa de uma característica de potência da colheitadeira agrícola 100. Exemplos de sensores de energia 402 incluem, mas não se limitando a, um sensor de tensão, um sensor de corrente, um sensor de torque, um sensor de pressão hidráulica, um sensor de fluxo hidráulico, um sensor de força, um sensor de carga de mancal e um sensor rotacional. As características de potência podem ser medidas em níveis variáveis de granularidade. Por exemplo, o uso de potência pode ser sensoreado quanto à máquina, quanto ao subsistema ou por componentes individuais dos subsistemas.
[00117] O sensor de taxa de alimentação 403 sensoreia uma variável indicativa da taxa de alimentação através de uma ou mais porções da colheitadeira agrícola 100. O sensor de taxa de alimentação 403 pode incluir um sensor de força de acionamento do rotor, um sensor óptico frontal que olha para o material que está sendo recolhido pela colheitadeira agrícola , taxa de alimentação de grãos sensoreada por um sensor de placa de força, um sensor de capacitância no alimentador, etc.
[00118] Sensor de entrada de operador 404 ilustrativamente sensoreia várias entradas de operador. As entradas podem ser entradas de ajuste para controlar os ajustes na colheitadeira agrícola 100 ou outras entradas de controle, tal como entradas de direção e outras entradas. Dessa forma, quando o operador 260 altera um ajuste ou provê uma entrada comandada por meio de um mecanismo de interface de operador 218, uma entrada como essa é detectada pelo sensor de entrada de operador 404, que provê um sinal de sensor indicativo dessa entrada de operador sensoreada. O sistema de processamento 406 pode receber os sinais de sensor do sensor de biomassa 402 ou sensor de entrada de operador 404, ou ambos, e gerar uma saída indicativa da variável sensoreada. Por exemplo, o sistema de processamento 406 pode receber uma entrada de sensor do sensor óptico 410 ou sensor de pressão do rotor 412 e gerar uma saída indicativa de biomassa. O sistema de processamento 406 pode também receber uma entrada do sensor de entrada de operador 404 e gerar uma saída indicativa da entrada de operador sensoreada.
[00119] O gerador de modelo preditivo 210 pode incluir gerador de modelo de característica topográfica para potência 410, gerador de modelo de característica topográfica para taxa de alimentação 412, gerador de modelo de característica topográfica para dados de sensor 414, gerador de modelo de característica topográfica para comando de operador 416, gerador de modelo de característica de máquina para potência 418, gerador de modelo de característica de máquina para taxa de alimentação 420, gerador de modelo de característica de máquina para dados de sensor 422 e gerador de modelo de característica de máquina para comando de operador 424. Em outros exemplos, o gerador de modelo preditivo 210 pode incluir geradores de modelo adicionais, em menos quantidade, ou outros 425. O gerador de modelo preditivo 210 pode receber um indicador de localização geográfica 334 do sensor de posição geográfica 204 e gerar um modelo preditivo 426 que modela uma relação entre a informação em um ou mais dos mapas de informação e um ou mais de: a característica de potência sensoreada pelo sensor de potência 402; a taxa de alimentação sensoreada pelo sensor de taxa de alimentação 403; e comandos de entrada de operador sensoreados pelo sensor de entrada de operador 404.
[00120] Por exemplo, o gerador de modelo de característica topográfica para potência 410 gera uma relação entre os valores de característica topográfica (que podem estar no mapa topográfico 332 ou no mapa de operação anterior 400) e os valores de característica de potência sensoreados pelo sensor de potência 402. O gerador de modelo de característica topográfica para taxa de alimentação 412 gera ilustrativamente um modelo que representa uma relação entre a característica topográfica e a variável indicativa de taxa de alimentação sensoreada pelo sensor de taxa de alimentação 403. O gerador de modelo de dados de característica topográfica para dados de sensor 414 ilustrativamente gera um modelo que representa uma relação entre a característica topográfica e uma variável sensoreada por um ou mais sensores in situ 208. O gerador de modelo de comando de característica para operador de topografia 416 gera um modelo que modela a relação entre uma característica topográfica refletida no mapa topográfico 332, mapa de operação anterior 400, ou ambos, e comandos de entrada de operador que são sensoreados pelo sensor de entrada de operador 404.
[00121] O gerador de modelo característica de máquina para potência 418 gera uma relação entre os valores de característica de máquina (que podem estar no mapa de máquina preditivo 360 ou no mapa de operação anterior 400) e os valores de característica de energia sensoreados pelo sensor de potência 402. O gerador de modelo de característica de máquina para taxa de alimentação 420 ilustrativamente gera um modelo que representa uma relação entre a característica de máquina e a variável indicativa da taxa de alimentação sensoreada pelo sensor de taxa de alimentação 403. O gerador de modelo de característica de máquina para dados de sensor 422 ilustrativamente gera um modelo que representa uma relação entre a característica de máquina e uma variável sensoreada por um ou mais sensor (es) in situ 208. O gerador de modelo de característica de máquina para comando de operador 424 gera um modelo que modela a relação entre uma característica de máquina como refletida no mapa de máquina preditivo 360, mapa de operação anterior 400, ou ambos, e comandos de entrada de operador que são sensoreados pelo sensor de entrada de operador 404.
[00122] O modelo preditivo 426 gerado pelo gerador de modelo preditivo 210 pode incluir um ou mais dos modelos preditivos que podem ser gerados pelo gerador de modelo de característica topográfica para potência 410, gerador de modelo de característica topográfica para taxa de alimentação 412, gerador de modelo de característica topográfica para dados de sensor 414, gerador de modelo de característica topográfica para comando de operador 416, gerador de característica de máquina para modelo de potência 418, gerador de modelo de característica de máquina para taxa de alimentação 420, gerador de modelo de característica de máquina para dados de sensor 422 e gerador de modelo de característica de máquina para comando de operador 424 e outros geradores de modelo que podem ser incluídos como parte de outros itens 425.
[00123] No exemplo da FIG. 6A, o gerador de mapa preditivo 212 inclui gerador de mapa de potência preditivo 428, gerador de mapa de taxa de alimentação preditivo 429, gerador de mapa de dados de sensor preditivo 430 e gerador de mapa de comando de operador preditivo 432. Em outros exemplos, o gerador de mapa preditivo 212 pode incluir geradores de mapa adicionais, em menos quantidade ou outros 434.
[00124] O gerador de mapa de potência preditivo 428 recebe um modelo de previsão 426 que modela a relação entre uma característica topográfica ou de máquina e uma característica de potência (tal como um modelo preditivo gerado pelo gerador de modelo de característica topográfica para potência 410 ou característica de máquina para gerador de modelo de energia 418), e um ou mais dos mapas de informação.
[00125] O gerador de mapa de taxa de alimentação preditivo 429 gera um mapa de taxa de alimentação preditivo funcional 437 que prediz taxas de alimentação alvo em diferentes localizações no campo com base em uma ou mais das características topográficas ou de máquina em um ou mais dos mapas de informação nessas localizações no campo e com base no modelo preditivo 426 (tal como um modelo preditivo gerado pelo gerador de modelo de característica topográfica para taxa de alimentação 412 ou gerador de modelo de característica de máquina para taxa de alimentação 420). Uma taxa de alimentação alvo é um volume, massa ou outra quantidade de material que passa por uma parte de uma colheitadeira em um dado tempo que satisfaz restrições e outros critérios. A colheitadeira é controlada para atingir a taxa de alimentação alvo. As taxas de alimentação alvos podem ser restringidas por limites de produção da máquina, níveis mínimos de produtividade (por exemplo, velocidade de máquina através do local de trabalho), custos monetários máximos e outros. Restrições adicionais e critérios podem ser baseados sem limite nas perdas de grãos na parte dianteira ou traseira da colheitadeira, custo operacional total, custo de mão de obra, custo de combustível, danos aos grãos, desgaste da máquina e tempo de colheita.
[00126] O gerador de mapa de dados de sensor preditivo 438 recebe um modelo preditivo 426 que modela a relação entre uma característica topográfica ou de máquina e dados de sensor (tal como um modelo preditivo gerado por gerador de modelo de dados topográficos para sensor 414 ou gerador de modelo de característica de máquina para dados de sensor 422), e um ou mais dos mapas de informação para gerar um mapa de dados de sensor preditivo 438 que mapeia valores preditos da característica sensoreada por sensores in situ 208.
[00127] O gerador de mapa de comando de operador preditivo 432 recebe um modelo preditivo 426 (tal como um modelo preditivo gerado pelo gerador de modelo de característica topográfica para comando 416 ou gerador de modelo de característica de máquina para comando 424), que modela a relação entre as entradas de característica topográfica ou de máquina e comando de operador detectadas pelo sensor de entrada de operador 404 e gera um mapa de comando de operador preditivo funcional 440 que prediz entradas de comando de operador em diferentes localizações no campo com base nos valores topográficos ou de característica de máquina do mapa topográfico 432, ou nos valores de característica de máquina do mapa de máquina preditivo 360 e do modelo preditivo 426.
[00128] O gerador de mapa preditivo 212 produz um ou mais dos mapas preditivos funcionais 436, 437, 438 e 440. Cada um dos mapas preditivos funcionais 436, 437, 438 e 440 pode ser provido ao gerador de zona de controle 213, sistema de controle 214, ou ambos. O gerador de zona de controle 213 gera zonas de controle para prover um mapa de zona de controle preditivo 265 correspondente a cada mapa 436, 437, 438 e 440 que é recebido pelo gerador de zona de controle 213. Qualquer um ou todos os mapas preditivos funcionais 436, 437, 438 ou 440 e os mapas correspondentes 265 podem ser providos ao sistema de controle 214, que gera sinais de controle para controlar um ou mais dos subsistemas controláveis 216 com base em um ou todos os mapas preditivos funcionais 436, 437, 438 e 430 ou mapas correspondentes 265 com zonas de controle incluídas. Qualquer um ou todos os mapas 436, 437, 438 ou 440 ou mapas correspondentes 265 podem ser apresentados ao operador 260 ou outro usuário.
[00129] A FIG. 6B é um diagrama de blocos que mostra alguns exemplos de sensores em tempo real (in situ) 208. Alguns dos sensores mostrados na FIG. 6B, ou diferentes combinações deles, podem ter tanto um sensor 402 quanto um sistema de processamento 406, enquanto outros podem atuar tal como o sensor 402 descrito em relação às FIGS. 6A e 7, onde o sistema de processamento 406 é separado. Alguns dos possíveis sensores in situ 208 mostrados na FIG. 6B são aqui mostrados e descritos em relação às FIGS anteriores e são numerados de forma semelhante. A FIG. 6B mostra que os sensores in situ 208 podem incluir sensores de entrada de operador 480, sensores de máquina 482, sensores de propriedade de material colhido 484, sensores de propriedade de campo e solo 485, sensores de característica ambiental 487, e podem incluir uma ampla variedade de outros sensores 226. Os sensores de entrada de operador 480 podem ser sensores que sensoreiam entradas de operador por meio de mecanismos de interface de operador 218. Portanto, os sensores de entrada de operador 480 podem sensorear o movimento do usuário de articulações, manche, um volante, diais ou pedais.Os sensores de entrada de operador 480 podem também sensorear interações do usuário com outros mecanismos de entrada de operador, tal como uma tela sensível ao toque, com um microfone onde reconhecimento de voz é utilizado, ou qualquer um de uma ampla variedade de outros mecanismos de entrada de operador.
[00130] Sensores de máquina 482 podem sensorear características diferentes da colheitadeira agrícola 100. Por exemplo, como aqui discutido, os sensores de máquina 482 podem incluir sensores de velocidade de máquina 146, sensor de perda no separador 148, câmara de grãos limpos 150, mecanismo de captura de imagem voltada para a frente 151, sensores de perda 152 ou sensor de posição geográfica 204, exemplos dos quais são descritos acima. Os sensores de máquina 482 podem também incluir sensores de ajuste de máquina 491 que sensoreiam os ajustes de máquina. Alguns exemplos de ajustes de máquina foram aqui descritos com relação à FIG. 1. O sensor de posição do equipamento de extremidade dianteira (por exemplo, coletor) 493 pode sensorear a posição do coletor 102, carretel 164, cortador 104 ou outro equipamento da extremidade dianteira em relação à armação da colheitadeira agrícola 100. Por exemplo, os sensores 493 podem sensorear a altura do coletor 102 acima do chão. Os sensores de máquina 482 podem também incluir sensores de orientação 495 de equipamento frontal (por exemplo, coletor). Os sensores 495 podem sensorear a orientação do coletor 102 em relação à colheitadeira agrícola 100 ou em relação ao chão. Os sensores de máquina 482 podem incluir sensores de estabilidade 497. Os sensores de estabilidade 497 sensoreiam oscilação ou movimento de salto (e amplitude) da colheitadeira agrícola 100. Os sensores de máquina 482 podem também incluir sensores de ajuste de resíduo 499 que são configurados para sensorear se a colheitadeira agrícola 100 está configurada para picar o resíduo, produzir uma leira ou lidar com o resíduo de outra forma. Os sensores de máquina 482 podem incluir sensor de velocidade da ventoinha de sapata de limpeza 551 que sensoreia a velocidade da ventoinha de limpeza 120. Os sensores de máquina 482 podem incluir sensores de folga do contrabatedor 553 que sensoreiam a folga entre o rotor 112 e contrabatedores 114 na colheitadeira agrícola 100. Os sensores de máquina 482 podem incluir sensores de folga do crivo 555 que sensoreiam o tamanho das aberturas no crivo 122. Os sensores de máquina 482 podem incluir sensor de velocidade do rotor 557 que sensoreia uma velocidade de rotor do rotor 112. Os sensores de máquina 482 podem incluir sensor de pressão do rotor 559 que sensoreia a pressão usada para conduzir rotor 112. Os sensores de máquina 482 podem incluir o sensor de folga da peneira 561 que sensoreia o tamanho de aberturas na peneira 124. Os sensores de máquina 482 podem incluir o sensor de umidade de MOG 563 que sensoreia um nível de umidade de MOG que passa através da colheitadeira agrícola 100. Os sensores de máquina 482 podem incluir o sensor de orientação da máquina 565 que sensoreia a orientação da colheitadeira agrícola 100. Os sensores da máquina 482 podem ser incluir sensores de taxa de alimentação de material 567 que sensoreiam a taxa de alimentação de material à medida que o material desloca através do alimentador 106, elevador de grão limpo 130 ou em outro lugar na colheitadeira agrícola 100. Os sensores de máquina 482 podem incluir sensores de biomassa 569 que sensoreiam a biomassa que desloca através do alimentador 106, através do separador 116, ou em outro lugar na colheitadeira agrícola 100. Os sensores da máquina 482 podem incluir o sensor de consumo de combustível 571 que sensoreia uma taxa de consumo de combustível ao com o tempo da colheitadeira agrícola 100. Os sensores da máquina 482 podem incluir o sensor de utilização de potência 573 que sensoreia a utilização de potência na colheitadeira agrícola 100, tal como quais subsistemas estão utilizando potência, ou a taxa na qual os subsistemas estão utilizando potência, ou a distribuição de potência entre os subsistemas na colheitadeira agrícola 100. Os sensores de máquina 482 podem incluir sensores de pressão de pneu 577 que sensoreiam a pressão de inflagem nos pneus 144 da colheitadeira agrícola 100. O sensor de máquina 482 pode incluir uma ampla variedade de outros sensores de desempenho de máquina, ou sensores de característica de máquina, indicados pelo bloco 575. Os sensores de desempenho de máquina e sensores de característica de máquina 575 podem sensorear o desempenho de máquina ou características da colheitadeira agrícola 100.
[00131] Sensores de propriedade de material colhido 484 podem sensorear características do material de cultura separado à medida que o material de cultura é processado pela colheitadeira agrícola 100. As propriedades de cultura podem incluir coisas tal como tipo de cultura, umidade da cultura, qualidade de grão (tal como grão quebrado), níveis de MOG, constituintes de grãos, tais como amidos e proteínas, umidade de MOG e outras propriedades do material de cultivo. Outros sensores podem sensorear a "tenacidade" da palha, a adesão do milho às espigas e outras características que podem ser beneficamente usadas para controlar o processamento para melhor captura de grãos, reduzido dano de grão, reduzido consumo de energia, reduzida perda de grãos, etc.
[00132] Os sensores de propriedade de campo e solo 485 podem sensorear características do campo e do solo. As propriedades do campo e solo podem incluir umidade do solo, compactação do chão, a presença e localização de água parada, tipo de solo e outras características do solo e campo.
[00133] Os sensores de característica ambiental 487 podem sensorear uma ou mais características ambientais. As características ambientais podem incluir coisas tal como direção e velocidade do vento, precipitação, neblina, nível de poeira ou outros obscurantes, ou outras características ambientais.
[00134] A FIG. 7 mostra um fluxograma que ilustra um exemplo da operação do gerador de modelo preditivo 210 e gerador de mapa preditivo 212 na geração de um ou mais modelos preditivos 426 e um ou mais mapas preditivos funcionais 436, 437, 438 e 440. No bloco 442, o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 recebem um mapa de informação. O mapa de informação pode ser mapa topográfico 332, mapa de máquina preditivo 360, um mapa de operação anterior 400 criado usando dados obtidos durante uma operação anterior em um campo. No bloco 444, o gerador de modelo preditivo 210 recebe um sinal de sensor contendo dados de sensor de um sensor in situ 208. O sensor in situ pode ser um ou mais dentre um sensor de potência 402, um sensor de taxa de alimentação 403 ou outro sensor 408. O bloco 446 indica que sinal de sensor recebido pelo gerador de modelo preditivo 210 inclui dados de um tipo que é indicativo de uma característica de potência. O bloco 448 indica que os dados de sinal de sensor podem ser indicativos da orientação da colheitadeira agrícola 100, tal coma arfagem, rolamento e direção. O bloco 449 indica que os dados de sinal de sensor podem ser indicativos de uma taxa de alimentação através de uma ou mais porções da colheitadeira agrícola 100. O bloco 450 indica que o sinal de sensor recebido pelo gerador de mapa preditivo 210 pode ser um sinal de sensor tendo dados de um tipo que é indicativo de uma entrada de comando de operador, como sensoreado pelo sensor de entrada de operador 404. O gerador de modelo preditivo 210 pode igualmente receber outras entradas de sensor in situ, como indicado pelo bloco 452.
[00135] No bloco 454, o sistema de processamento 406 processa os dados contidos no sinal de sensor ou sinais recebidos do sensor in situ ou sensores 208 para obter dados processados 409, mostrados na FIG. 6. Os dados contidos no sinal ou sinais de sensor podem estar em um formato bruto que é processado para receber dados processados 409. Por exemplo, um sinal de sensor de temperatura inclui dados de resistência elétrica, esses dados de resistência elétrica podem ser processados em dados de temperatura. Em outros exemplos, o processamento pode compreender digitalização, codificação, formatação, ajuste de escala, filtragem ou classificação de dados. Os dados processados 409 podem ser indicativos de um ou mais dentre potência, taxa de alimentação, um comando de entrada de operador ou outra característica agrícola sensoreada por um sensor in situ 208. Os dados processados 409 são providos ao gerador de modelo preditivo 210.
[00136] De volta à FIG. 7, no bloco 456, o gerador de modelo preditivo 210 também recebe uma localização geográfica 334 do sensor de posição geográfica 204, como mostrado na FIG. 6. A localização geográfica 334 pode ser correlacionada à localização geográfica a partir da qual a variável ou variáveis sensoreadas, sensoreadas por sensores in situ 208, foram tomadas. Por exemplo, o gerador de modelo preditivo 210 pode obter a localização geográfica 334 do sensor de posição geográfica 204 e determinar, com base em atrasos de máquina, velocidade de máquina, etc., uma localização geográfica precisa a partir da qual os dados processados 409 foram derivados.
[00137] No bloco 458, o gerador de modelo preditivo 210 gera um ou mais modelos preditivos 426 que modelam uma relação entre um valor mapeado em um mapa de informação e uma característica representada nos dados processados 409. Por exemplo, em alguns casos, o valor mapeado em um mapa de informação pode ser uma característica topográfica ou de máquina, que pode ser um ou mais dentre um valor de característica topográfica no mapa topográfico 332; um valor de característica de máquina no mapa de máquina preditivo funcional 360; ou um valor diferente no mapa de operação anterior 400 e o gerador de modelo preditivo 210 gera um modelo preditivo usando o valor mapeado de um mapa de informação e uma característica sensoreada por sensores in situ 208, como representado nos dados processados 490, ou uma característica relacionada, tal como uma característica que correlaciona a característica sensoreada por sensores in situ 208.
[00138] Por exemplo, no bloco 460, o gerador de modelo preditivo 210 pode gerar um modelo preditivo 426 que modela uma relação entre um valor topográfico ou de característica de máquina obtido a partir de um ou mais mapas de informação e dados de característica de potência obtidos por um sensor in situ. Em outro exemplo, no bloco 462, o gerador de modelo preditivo 210 pode gerar um modelo preditivo 426 que modela uma relação entre uma característica topográfica ou valor de característica de máquina obtido a partir de um ou mais mapas de informação e a taxa de alimentação da colheitadeira agrícola 100 obtida de um sensor in situ. Em ainda outro exemplo, no bloco 463, o gerador de modelo preditivo 210 gera um modelo preditivo 426 que modela uma relação entre uma característica topográfica ou de máquina e entradas de comando de operador. Em ainda outro exemplo, no bloco 464, o gerador de modelo preditivo 210 gera um modelo preditivo 426 que modela uma relação entre uma característica topográfica ou de máquina e um ou mais sinais de sensor in situ de um ou mais sensores in situ 208.
[00139] Um ou mais modelos preditivos 426 são providos ao gerador de mapa preditivo 212. No bloco 466, o gerador de mapa preditivo 212 gera um ou mais mapas preditivos funcionais. Os mapas preditivos funcionais podem ser mapa de potência preditivo funcional 436, mapa de taxa de alimentação preditivo funcional 437, mapa de dados de sensor preditivo funcional 438, mapa de comando de operador preditivo funcional 440 ou qualquer combinação desses mapas. O mapa de potência preditivo funcional 436 prediz uma característica de potência da colheitadeira agrícola 100 em diferentes localizações no campo. O mapa de taxa de alimentação preditivo funcional 437 prediz uma taxa de alimentação de máquina desejada para a colheitadeira agrícola 100 em diferentes localizações no campo. O mapa de dados de sensor preditivo funcional 438 prediz um valor de dados de sensor que será detectado por um sensor 208 in situ em diferentes localizações no campo. Dessa forma, o mapa de comando de operador preditivo funcional 440 prediz entradas de comando de operador prováveis em diferentes localizações no campo. Adicionalmente, um ou mais dos mapas preditivos funcionais 436, 437, 438 e 440 podem ser gerados durante o curso de uma operação agrícola. Dessa forma, à medida que a colheitadeira agrícola 100 está movendo através de um campo realizando uma operação agrícola, um ou mais mapas preditivos 436, 437, 438 e 440 são gerados à medida que a operação agrícola está sendo realizada.
[00140] No bloco 468, o gerador de mapa preditivo 212 produz um ou mais mapas preditivos funcionais 436, 437, 438 e 440. No bloco 470, o gerador de mapa preditivo 212 pode configurar o mapa para apresentação e possível interação por um operador 260 ou outro usuário. No bloco 472, o gerador de mapa preditivo 212 pode configurar o mapa para consumo pelo sistema de controle 214. No bloco 474, o gerador de mapa preditivo 212 pode prover um ou mais mapas preditivos 436, 437, 438 e 440 ao gerador de zona de controle 213 para geração de zonas de controle. No bloco 476, o gerador de mapa preditivo 212 configura um ou os mapas preditivos 436, 437, 438 e 440 de outras maneiras. Em um exemplo em que um ou mais mapas preditivos funcionais 436, 437, 438 e 440 são providos ao gerador de zona de controle 213, um ou mais mapas preditivos funcionais 436, 437, 438 e 440, com as zonas de controle incluídas nos mesmos , representados pelos mapas correspondentes 265, aqui descritos, podem ser apresentados ao operador 260 ou outro usuário ou providos ao sistema de controle 214 igualmente.
[00141] No bloco 478, o sistema de controle 214 então gera sinais de controle para controlar os subsistemas controláveis com base em um ou mais mapas preditivos funcionais 360, 436, 437, 438 e 440 (ou os mapas preditivos funcionais 360, 436, 437, 438 e 440 tendo zonas de controle), bem como uma entrada do sensor de posição geográfica 204. Por exemplo, quando o mapa 360 é usado como o mapa preditivo funcional, os subsistemas controláveis podem ser controlados para melhorar as características de potência, melhorar a distribuição de material interno, diminuir a perda de grãos, aumentar a qualidade de grão, ou controlado com base em uma característica de rejeito.
[00142] Por exemplo, em que o sistema de controle 214 recebe um mapa preditivo funcional, o controlador de planejamento de trajeto 234 controla o subsistema de direção 252 para dirigir a colheitadeira agrícola 100. Em outro exemplo em que o sistema de controle 214 recebe um mapa preditivo funcional, o controlador de sistema de resíduo 244 controla o subsistema de resíduos 138. Em outro exemplo em que o sistema de controle 214 recebe um mapa preditivo funcional, o controlador de ajustes 232 controla os ajustes do trilhador 110. Em outro exemplo em que o sistema de controle 214 recebe um mapa preditivo funcional, o controlador de ajustes 232 ou outro controlador 246 controla o subsistema de tratamento de material 125. Em outro exemplo em que o sistema de controle 214 recebe um mapa preditivo funcional, o controlador de ajustes 232 controla o subsistema de limpeza da cultura. Em outro exemplo em que o sistema de controle 214 recebe um mapa preditivo funcional, o controlador de limpeza de máquina 245 controla o subsistema de limpeza de máquina 254 na colheitadeira agrícola 100. Em outro exemplo em que o sistema de controle 214 recebe um mapa preditivo funcional, o controlador de sistema de comunicação 229 controla o sistema de comunicação 206. Em outro exemplo em que o sistema de controle 214 recebe um mapa preditivo funcional, o controlador de interface de operador 231 controla os mecanismos de interface de operador 218 na colheitadeira agrícola 100. Em outro exemplo em que o sistema de controle 214 recebe um mapa preditivo funcional, o controlador de posição da placa de convés 242 controla os atuadores de máquina/coletor para controlar uma placa do convés na colheitadeira agrícola 100. Em outro exemplo em que o sistema de controle 214 recebe um mapa preditivo funcional, o controlador da correia da lona 240 controla os atuadores de máquina/coletor para controlar uma correia da lona na colheitadeira agrícola 100. Em outro exemplo em que o sistema de controle 214 recebe um mapa preditivo funcional, os outros controladores 246 controlam outros subsistemas controláveis 256 na colheitadeira agrícola 100.
[00143] Em alguns exemplos, o sistema de controle 214 pode gerar um ou mais sinais de controle para controlar os ajustes (por exemplo, posição, orientação, etc.) dos elementos de engate de material ajustáveis dispostos no trajeto de fluxo de material na colheitadeira agrícola para controlar ou compensar a distribuição interna de material na colheitadeira agrícola 100. Por exemplo, um ou mais sinais de controle podem controlar um atuador para atuar o movimento dos elementos de engate de material ajustáveis para mudar uma posição ou orientação dos elementos de engate de material ajustável para direcionar pelo menos uma porção cada corrente de material direita ou esquerda em relação à direção do fluxo. Em alguns exemplos, a direção pode ser de áreas de maior profundidade de material para áreas de menor profundidade de material lateralmente ou para frente e para trás em relação à direção do fluxo de material.
[00144] A FIG. 8 mostra um diagrama de blocos que ilustra um exemplo de gerador de zona de controle 213. O gerador de zona de controle 213 inclui seletor de atuador de máquina de trabalho (WMA) 486, sistema de geração de zona de controle 488 e sistema de geração de zona de regime 490. O gerador de zona de controle 213 pode também incluir outros itens 492 . O sistema de geração de zona de controle 488 inclui o componente identificador de critérios de zona de controle 494, componente de definição de limite de zona de controle 496, componente de identificador de ajustes alvos 498 e outros itens 520. O sistema de geração de zona de regime 490 inclui o componente de identificação de critérios de zona de regime 522, componente de definição de limite de zona de regime 524, componente identificador de resolução de ajuste 526 e outros itens 528. Antes de descrever a operação geral do gerador de zona de controle 213 em mais detalhes, uma breve descrição de alguns dos itens no gerador de zona de controle 213 e as respectivas operações serão providas primeiro.
[00145] A colheitadeira agrícola 100, ou outras máquinas de trabalho, podem ter uma ampla variedade de diferentes tipos de atuadores controláveis que executam diferentes funções. Os atuadores controláveis na colheitadeira agrícola 100 ou outras máquinas de trabalho são coletivamente referidos como atuadores de máquina de trabalho (WMAs). Cada WMA pode ser controlável de forma independente com base em valores em um mapa preditivo funcional, ou os WMAs podem ser controlados como conjuntos com base em um ou mais valores em um mapa preditivo funcional. Portanto, o gerador de zona de controle 213 pode gerar zonas de controle correspondentes a cada WMA controlável individualmente ou correspondentes aos conjuntos de WMAs que são controlados em coordenação um com o outro.
[00146] O seletor de WMA 486 seleciona um WMA ou um conjunto de WMAs para os quais as zonas de controle correspondentes devem ser geradas. O sistema de geração de zona de controle 488 então gera as zonas de controle para o WMA ou conjunto de WMAs selecionado. Para cada WMA ou conjunto de WMAs, diferentes critérios podem ser usados na identificação de zonas de controle. Por exemplo, para um WMA, o tempo de resposta do WMA pode ser usado como os critérios para definir os limites das zonas de controle. Em outro exemplo, as características de desgaste (por exemplo, quanto um atuador ou mecanismo particular desgasta tal em decorrência do movimento do mesmo) podem ser usadas tal como os critérios para identificar os limites das zonas de controle. O componente identificador de critérios de zona de controle 494 identifica critérios particulares que devem ser usados na definição de zonas de controle para o WMA ou conjunto de WMAs selecionado. O componente de definição de limite de zona de controle 496 processa os valores em um mapa preditivo funcional em análise para definir os limites das zonas de controle nesse mapa preditivo funcional com base nos valores no mapa preditivo funcional em análise e com base nos critérios de zona de controle para o WMA ou conjunto de WMAs selecionado
[00147] O componente identificador de ajuste alvo 498 ajusta um valor do ajuste alvo que será usado para controlar o WMA ou conjunto de WMAs em diferentes zonas de controle. Por exemplo, se o WMA selecionado for o sistema de propulsão 250 e o mapa preditivo funcional em análise for um mapa de velocidade preditiva funcional 438, então o ajustes alvos em cada zona de controle pode ser um ajuste de velocidade alvo baseado nos valores de velocidade contidos no mapa de velocidade preditiva funcional 238 na zona de controle identificada.
[00148] Em alguns exemplos, onde a colheitadeira agrícola 100 deve ser controlada com base em uma localização atual ou futura da colheitadeira agrícola 100, múltiplos ajustes alvos podem ser possíveis para um WMA em uma dada posição. Nesse caso, os ajustes alvos podem ter valores diferentes e podem ser concorrentes. Dessa forma, os ajustes alvos precisam ser resolvidos de forma que apenas um único ajuste alvo seja usado para controlar o WMA. Por exemplo, onde o WMA é um atuador no sistema de propulsão 250 que está sendo controlado a fim de controlar a velocidade da colheitadeira agrícola 100, múltiplos diferentes conjuntos de critérios concorrentes podem existir que são considerados pelo sistema de geração de zona de controle 488 na identificação das zonas de controle e os ajustes alvos para o WMA selecionado nas zonas de controle. Por exemplo, diferentes ajustes alvos para controlar a velocidade de máquina podem ser geradas com base, por exemplo, em um valor de taxa de alimentação detectado ou predito, um valor de eficiência de combustível detectado ou preditivo, um valor de perda de grão detectado ou predito ou uma combinação destes. No entanto, a qualquer dado momento, a colheitadeira agrícola 100 não pode deslocar sobre o chão em várias velocidades simultaneamente. Em vez disso, a qualquer dado momento, a colheitadeira agrícola 100 desloca em uma única velocidade. Dessa forma, um dos ajustes alvos concorrentes é selecionada para controlar a velocidade da colheitadeira agrícola 100.
[00149] Portanto, em alguns exemplos, o sistema de geração de zona de regime 490 gera zonas de regime para resolver múltiplos diferentes ajustes alvos concorrentes. O componente 522 de identificação de critérios de zona de regime identifica os critérios que são usados para estabelecer zonas de regime para o WMA ou conjunto de WMAs selecionado no mapa preditivo funcional em análise. Alguns critérios que pode ser usados para identificar ou definir zonas de regime incluem, por exemplo, declive do terreno, irregularidade do terreno, tipo de solo, tipo de cultura ou variedade de cultura com base em um mapa como plantado ou outra fonte do tipo de cultura ou variedade de cultura, tipo de erva daninha , intensidade de erva daninha ou estado da cultura, tal como se a cultura está derrubada, parcialmente derrubada ou em pé. Dessa forma tal como cada WMA ou conjunto de WMAs pode ter uma zona de controle correspondente, diferentes WMAs ou conjuntos de WMAs podem ter uma zona de regime correspondente. O componente de definição de limite de zona de regime 524 identifica os limites de zonas de regime no mapa preditivo funcional em análise com base nos critérios de zona de regime identificados pelo componente de identificação de critérios de zona de regime 522.
[00150] Em alguns exemplos, as zonas de regime podem se sobrepor. Por exemplo, uma zona de regime de variedade de cultura pode se sobrepor a uma porção ou a totalidade de uma zona de regime de irregularidade do terreno. Nesse exemplo, as diferentes zonas de regime podem ser atribuídas a uma hierarquia de precedência de modo que, onde duas ou mais zonas de regime se sobrepõem, a zona de regime atribuída com uma posição hierárquica maior ou importância na hierarquia de precedência tem precedência sobre as zonas de regime que têm posições hierárquicas menores ou importância na hierarquia de precedência. A hierarquia de precedência das zonas de regime pode ser configurada manualmente ou pode ser configurada automaticamente usando um sistema baseado em regras, um sistema baseado em modelo ou outro sistema. Como um exemplo, onde uma zona de regime de irregularidade do terreno se sobrepõe a uma zona de regime de variedade de cultura, a zona de regime de irregularidade do terreno pode receber uma importância maior na hierarquia de precedência do que a zona de regime de variedade de cultura de forma que a zona de regime de irregularidade do terreno tenha precedência.
[00151] Adicionalmente, cada zona de regime pode ter um resolvedor de ajustes exclusivo para um dado WMA ou conjunto de WMAs. O componente identificador do resolvedor de ajustes 526 identifica um resolvedor de ajustes específico para cada zona de regime identificada no mapa preditivo funcional em análise e um resolvedor de ajustes específico para o WMA ou conjunto de WMAs selecionado.
[00152] Uma vez que o resolvedor de ajustes para uma zona de regime particular é identificado, esse resolvedor de ajustes pode ser usado para resolver ajustes alvos concorrentes, onde mais de um ajuste alvo é identificada com base nas zonas de controle. Os diferentes tipos de resolvedores de ajustes podem ter formas diferentes. Por exemplo, os resolvedores de ajustes que são identificados para cada zona de regime podem incluir um resolvedor de escolha humana no qual os ajustes alvos concorrentes são apresentados a um operador ou outro usuário para resolução. Em outro exemplo, o resolvedor de ajustes pode incluir uma rede neural ou outra inteligência artificial ou sistema de aprendizagem de máquina. Em tais casos, os resolvedores de ajustes podem resolver os ajustes alvos concorrentes com base em uma métrica de qualidade predita ou histórica correspondente a cada um dos diferentes ajustes alvos. Como um exemplo, um ajuste de velocidade elevada do veículo pode reduzir o tempo para colheita de um campo e reduzir os custos de equipamento e trabalho baseados no tempo correspondentes, mas pode aumentar as perdas de grãos. Um reduzido ajuste de velocidade do veículo pode aumentar o tempo para colher um campo e aumentar os custos de equipamento e mão de obra baseados no tempo correspondentes, mas pode diminuir as perdas de grãos. Quando a perda de grãos ou o tempo de colheita é selecionado como uma métrica de qualidade, o valor predito ou histórico para a métrica de qualidade selecionada, dados os dois valores de ajustes de velocidade do veículo concorrentes, pode ser usado para resolver o ajuste de velocidade. Em alguns casos, os resolvedores de ajustes podem ser um conjunto de regras de limite que podem ser usadas em substituição, ou em adição às zonas de regime. Um exemplo de regra de limite pode ser expresso da seguinte forma: se os valores de biomassa preditos dentro de 6,1 metros (20 pés) do coletor da colheitadeira agrícola 100 forem maiores que x quilogramas (onde x é um valor selecionado ou predeterminado), então use o valor de ajuste alvo que é escolhido com base na taxa de alimentação sobre outros ajustes visado concorrentes, caso contrário, use o valor de ajustes alvos com base na perda de grãos em relação a outros valores de ajustes alvos concorrentes.
[00153] Os resolvedores de ajustes podem ser componentes lógicos que executam regras lógicas na identificação de um ajuste alvo. Por exemplo, o resolvedor de ajustes pode resolver os ajustes alvos enquanto tenta minimizar o tempo de cultura ou minimizar o custo de colheita total ou maximizar o grão colhido ou baseado em outras variáveis que são calculadas tal como uma função das diferentes ajustes alvos candidato. Um tempo de cultura pode ser minimizado quando uma quantidade para completar uma cultura é reduzida para um valor igual ou inferior a um limiar selecionado. Um custo total de cultura pode ser minimizado onde o custo total de cultura é reduzido para um valor igual ou inferior a um limiar selecionado. Os grãos colhidos podem ser maximizados quando a quantidade de grãos colhidos é aumentada para um valor igual ou superior a um limiar selecionado.
[00154] FIG. 9 é um fluxograma que ilustra um exemplo da operação do gerador de zona de controle 213 na geração de zonas de controle e zonas de regime para um mapa que o gerador de zona de controle 213 recebe para processamento de zona (por exemplo, para um mapa em análise).
[00155] No bloco 530, o gerador de zona de controle 213 recebe um mapa em análise para processamento. Em um exemplo, como mostrado no bloco 532, o mapa em análise é um mapa preditivo funcional. Por exemplo, o mapa em análise pode ser um dos mapas preditivos funcionais 436, 437, 438 ou 440. O bloco 534 indica que o mapa em análise pode ser igualmente outros mapas.
[00156] No bloco 536, o seletor WMA 486 seleciona um WMA ou um conjunto de WMAs para os quais as zonas de controle devem ser geradas no mapa em análise. No bloco 538, o componente de identificação de critérios de zona de controle 494 obtém critérios de definição de zona de controle para os WMAs ou conjunto de WMAs selecionados. O bloco 540 indica um exemplo em que os critérios da zona de controle são ou incluem características de desgaste do WMA ou conjunto de WMAs selecionado. O bloco 542 indica um exemplo em que os critérios de definição de zona de controle são ou incluem uma magnitude e variação de dados de fonte de entrada, tal como a magnitude e variação dos valores no mapa em análise ou a magnitude e variação de entradas de vários dados in situ sensores 208. O bloco 544 indica um exemplo em que os critérios de definição de zona de controle são ou incluem características físicas de máquina, tais tal como as dimensões físicas da máquina, uma velocidade na qual diferentes subsistemas operam ou outras características físicas da máquina. O bloco 546 indica um exemplo em que os critérios de definição de zona de controle são ou incluem uma capacidade de resposta do WMA ou conjunto de WMAs selecionado de atingir os valores de ajuste recém-comandados. O bloco 548 indica um exemplo em que os critérios de definição de zona de controle são ou incluem métricas de desempenho de máquina. O bloco 550 em indica um exemplo em que os critérios de definição de zona de controle são ou incluem as preferências do operador. O bloco 552 indica um exemplo em que os critérios de definição de zona de controle são ou incluem outros itens igualmente. O bloco 549 indica um exemplo no qual os critérios de definição de zona de controle são baseados no tempo, o que significa que a colheitadeira agrícola 100 não cruzará o limite de uma zona de controle até que uma quantidade de tempo selecionada tenha decorrido desde que a colheitadeira 100 agrícola entrou em uma zona de controle particular. Em alguns casos, a quantidade de tempo selecionada pode ser uma quantidade de tempo mínima. Dessa forma, em alguns casos, os critérios de definição de zona de controle podem impedir que a colheitadeira agrícola 100 cruze um limite de uma zona de controle até que pelo menos a quantidade de tempo selecionada tenha decorrido. O bloco 551 indica um exemplo no qual os critérios de definição de zona de controle são baseados em um valor de tamanho selecionado. Por exemplo, os critérios de definição de zona de controle que são baseados em um valor de tamanho selecionado podem impedir a definição de uma zona de controle que seja menor do que o tamanho selecionado. Em alguns casos, o tamanho selecionado pode ser um tamanho mínimo.
[00157] No bloco 554, o componente de identificação de critérios de zona de regime 522 obtém critérios de definição de zona de regime para o WMA ou conjunto de WMAs selecionado. O bloco 556 indica um exemplo no qual os critérios de definição de zona de regime são baseados em uma entrada manual do operador 260 ou outro usuário. O bloco 558 ilustra um exemplo no qual os critérios de definição de zona de regime são baseados em uma característica topográfica, tal como declive do terreno. O bloco 560 ilustra um exemplo no qual os critérios de definição de zona de regime são baseados em uma característica topográfica, tal como irregularidade do terreno. O bloco 564 indica um exemplo em que os critérios de definição de zona de regime são ou incluem outros critérios igualmente. Por exemplo, os critérios da zona de regime podem ser baseados no tipo de solo, tipo de cultura ou variedade de cultura tipo de erva daninha, intensidade de erva daninha ou estado da cultura.
[00158] No bloco 566, o componente de definição de limite de zona de controle 496 gera os limites de zonas de controle no mapa em análise com base nos critérios de zona de controle. O componente 524 de definição de fronteira de zona de regime gera os limites de zonas de regime no mapa em análise com base nos critérios de zona de regime. O bloco 568 indica um exemplo em que os limites da zona são identificados para as zonas de controle e as zonas de regime. O bloco 570 mostra que o componente identificador de ajustes alvos 498 identifica os ajustes alvos para cada uma das zonas de controle. As zonas de controle e zonas de regime podem ser igualmente geradas de outras maneiras, e isso é indicado pelo bloco 572.
[00159] No bloco 574, o componente identificador de resolvedor de ajustes 526 identifica o resolvedor de ajustes para os WMAs selecionados em cada zona de regime definida pelo componente de definição de limite de zona de regimes 524. Tal como discutido acima, o resolvedor de zona de regime pode ser um resolvedor humano 576, um resolvedor de sistema de inteligência artificial ou aprendizagem de máquina 578, um resolvedor 580 com base na qualidade predita ou histórica para cada ajuste alvo concorrente, um resolvedor baseado em regras 582, um resolvedor baseado em critérios de desempenho 584 ou outros resolvedores 586.
[00160] No bloco 588, o seletor WMA 486 determina se há mais WMAs ou conjuntos de WMAs para processar. Se WMAs ou conjuntos de WMAs adicionais estão restantes para serem processados, o processamento reverte para o bloco 436 onde o próximo WMA ou conjunto de WMAs para os quais zonas de controle e zonas de regime devem ser definidas é selecionado. Quando não existe nenhum WMA ou conjunto de WMAs adicional para o qual zonas de controle ou zonas de regime devem ser geradas, o processamento move para o bloco 590 onde o gerador de zona de controle 213 produz um mapa com zonas de controle, ajustes alvos, zonas de regime e resolvedores de ajustes para cada dos WMAs ou conjuntos de WMAs. Como aqui discutido, o mapa produzido pode ser apresentado ao operador 260 ou a outro usuário; o mapa produzido pode ser provido ao sistema de controle 214; ou o mapa produzido pode ser produzido de outras maneiras.
[00161] A FIG. 10 ilustra um exemplo da operação do sistema de controle 214 no controle da colheitadeira agrícola 100 com base em um mapa que é emitido pelo gerador de zona de controle 213. Dessa forma, no bloco 592, o sistema de controle 214 recebe um mapa do local de trabalho. Em alguns casos, o mapa pode ser um mapa preditivo funcional que pode incluir zonas de controle e zonas de regime, como representado pelo bloco 594. Em alguns casos, o mapa recebido pode ser um mapa preditivo funcional que exclui zonas de controle e zonas de regime. O bloco 596 indica um exemplo em que o mapa recebido do local de trabalho pode ser um mapa de informação com zonas de controle e zonas de regime identificadas nele. O bloco 598 indica um exemplo no qual o mapa recebido pode incluir múltiplos mapas diferentes ou múltiplas camadas de mapas diferentes. O bloco 610 indica um exemplo no qual o mapa recebido pode assumir outras formas igualmente.
[00162] No bloco 612, o sistema de controle 214 recebe um sinal de sensor do sensor de posição geográfica 204. O sinal de sensor do sensor de posição geográfica 204 pode incluir dados que indicam a localização geográfica 614 da colheitadeira agrícola 100, a velocidade 616 da colheitadeira agrícola 100, a direção 618 ou colheitadeira agrícola 100, ou outra informação 620. No bloco 622, o controlador de zona 247 seleciona uma zona de regime, e, no bloco 624, o controlador de zona 247 seleciona geográfica. No bloco 626, o controlador de zona 247 seleciona um WMA ou um conjunto de WMAs a ser controlado. No bloco 628, o controlador de zona 247 obtém um ou mais ajustes alvos para o WMA ou conjunto de WMAs selecionado. Os ajustes alvos que são obtidos para o WMA ou conjunto de WMAs selecionado podem vir de uma variedade de fontes diferentes. Por exemplo, o bloco 630 mostra um exemplo em que uma ou mais dos ajustes alvos para o WMA ou conjunto de WMAs selecionado é baseado em uma entrada das zonas de controle no mapa do local de trabalho. O bloco 632 mostra um exemplo no qual uma ou mais dos ajustes visado são obtidas a partir de entradas humanas do operador 260 ou de outro usuário. O bloco 634 mostra um exemplo em que os ajustes alvos são obtidos a partir de um sensor 208 in situ. O bloco 636 mostra um exemplo em que um ou mais ajustes alvos são obtidos de um ou mais sensores em outras máquinas trabalhando no mesmo campo simultaneamente com colheitadeira agrícola 100 ou de um ou mais sensores em máquinas que trabalharam no mesmo campo no passado. O bloco 638 mostra um exemplo em que os ajustes alvos são igualmente obtidos de outras fontes.
[00163] No bloco 640, o controlador de zona 247 acessa o resolvedor de ajustes para a zona de regime selecionada e controla o resolvedor de ajustes para resolver ajustes alvos concorrentes em um ajuste alvo resolvido. Como discutido acima, em alguns casos, o resolvedor de ajustes pode ser um resolvedor humano, em cujo caso o controlador de zona 247 controla os mecanismos de interface de operador 218 para apresentar os ajustes alvos concorrentes ao operador 260 ou outro usuário para resolução. Em alguns casos, o resolvedor de ajustes pode ser uma rede neural ou outra inteligência artificial ou sistema de aprendizagem de máquina, e o controlador de zona 247 envia os ajustes alvos concorrentes para a rede neural, inteligência artificial ou sistema de aprendizagem de máquina para seleção. Em alguns casos, o resolvedor de ajustes pode ser baseado em uma métrica de qualidade predita ou histórica, em regras de limite ou em componentes lógicos. Em qualquer um destes últimos exemplos, o controlador de zona 247 executa o resolvedor de ajustes para obter um ajuste alvo resolvido com base na métrica de qualidade predita ou histórica, com base nas regras de limite, ou com o uso dos componentes lógicos.
[00164] No bloco 642, com o controlador de zona 247 tendo identificado o ajuste alvo resolvido, o controlador de zona 247 provê o ajuste alvo resolvido a outros controladores no sistema de controle 214, que geram e aplicam sinais de controle ao WMA ou conjunto de WMAs selecionado com base no ajuste alvo resolvido. Por exemplo, onde o WMA selecionado é uma atuador de máquina ou coletor 248, o controlador de zona 247 provê o ajuste alvo resolvido ao controlador de ajuste 232 ou controlador de coletor/real 238, ou ambos, para gerar sinais de controle com base no ajuste alvo resolvido e nos sinais de controle gerados são aplicados à máquina ou aos atuadores de coletor 248. No bloco 644, se WMAs adicionais ou conjuntos de WMAs adicionais tiverem que ser controlados na localização geográfica atual da colheitadeira agrícola 100 (como detectado no bloco 612), então o processamento reverte para o bloco 626 onde o próximo WMA ou conjunto de WMAs é selecionado. Os processos representados pelos blocos 626 a 644 continuam até que todos os WMAs ou conjuntos de WMAs a serem controlados na localização geográfica atual da colheitadeira agrícola 100 tenham sido tratados. Se nenhum WMAs ou conjuntos de WMAs adicionais tiverem que ser controlados na localização geográfica atual da colheitadeira agrícola 100 permanecer, o processamento prossegue para o bloco 646 onde o controlador de zona 247 determina se existem zonas de controle adicionais a serem consideradas na zona de regime selecionada. Se existirem zonas de controle adicionais a serem consideradas, o processamento reverte para o bloco 624, onde uma zona de controle seguinte é selecionada. Se não houver zonas de controle adicionais a serem consideradas, o processamento prossegue para o bloco 648, onde uma é feita uma determinação se existem zonas de regime adicionais restantes a serem consideradas. O controlador de zona 247 determina se ainda restam zonas de regime adicionais a serem consideradas. Se ainda existir zona de regime adicional a ser considerada, o processamento reverte para o bloco 622, onde uma zona de regime seguinte é selecionada.
[00165] No bloco 650, o controlador de zona 247 determina se a operação que a colheitadeira agrícola 100 está realizando está completa. Se não, o controlador de zona 247 determina se um critério de zona de controle foi satisfeito para continuar o processamento, como indicado pelo bloco 652. Por exemplo, como aqui mencionado, os critérios de definição de zona de controle podem incluir critérios que definem quando um limite de zona de controle pode ser cruzado pela colheitadeira agrícola 100. Por exemplo, a definição se um limite de zona de controle pode ser cruzado pela colheitadeira agrícola 100 pode ser feita por um período de tempo selecionado, o que significa que a colheitadeira agrícola 100 é impedida de cruzar um limite de zona até um período determinado de tempo ter expirado. Nesse caso, no bloco 652, o controlador de zona 247 determina se o período de tempo selecionado decorreu. Adicionalmente, o controlador de zona 247 pode realizar o processamento continuamente. Dessa forma, o controlador de zona 247 não espera nenhum período de tempo particular antes de continuar a determinar se uma operação da colheitadeira agrícola 100 foi completada. No bloco 652, o controlador de zona 247 determina que é hora de continuar o processamento, então o processamento continua no bloco 612 onde o controlador de zona 247 recebe novamente uma entrada do sensor de posição geográfica 204. Também deve-se perceber que o controlador de zona 247 pode controlar os WMAs e conjuntos de WMAs simultaneamente usando um controlador de múltiplas entradas e múltiplas saídas em vez de controlar os WMAs e conjuntos de WMAs sequencialmente
[00166] A FIG. 11 é um diagrama de blocos que mostra um exemplo de um controlador de interface de operador 231. Em um exemplo ilustrado, o controlador de interface de operador 231 inclui sistema de processamento de comando de entrada de operador 654, outro sistema de interação de controlador 656, sistema de processamento de voz 658 e gerador de sinal de ação 660. O sistema de processamento de comando de entrada de operador 654 inclui sistema de tratamento de voz 662, sistema de tratamento de gesto de toque 664 e outros itens 666. Outro sistema de interação de controlador 656 inclui sistema de processamento de entrada de controlador 668 e gerador de saída de controlador 670. O sistema de processamento de voz 658 inclui detector de ativação 672, componente de reconhecimento 674, componente de síntese 676, sistema de compreensão de linguagem natural 678, sistema de gerenciamento de diálogo 680 e outros itens 682. Gerador de sinal de ação 660 inclui gerador de sinal de controle visual 684, gerador de sinal de controle de áudio 686, gerador de sinal de controle háptico 688 e outros itens 690. Antes de descrever a operação do exemplo de interface de operador O controlador 231 mostrado na FIG. 11 no manuseio de várias ações de interface de operador, uma breve descrição de alguns dos itens no controlador de interface de operador 231 e a operação associada do mesmo é provida em primeiro lugar.
[00167] O sistema de processamento de comando de entrada de operador 654 detecta entradas de operador nos mecanismos de interface de operador 218 e processa essas entradas para comandos. O sistema de tratamento de voz 662 detecta entradas de voz e lida com as interações com o sistema de processamento de voz 658 para processar as entradas de voz para comandos. O sistema de tratamento de gestos de toque 664 detecta gestos de toque em elementos sensíveis ao toque nos mecanismos de interface de operador 218 e processa essas entradas para comandos.
[00168] Outro sistema de interação de controlador 656 trata interações com outros controladores no sistema de controle 214. O sistema de processamento de entrada do controlador 668 detecta e processa entradas de outros controladores no sistema de controle 214, e o gerador de saída do controlador 670 gera saídas e provê essas saídas a outros controladores em sistema de controle 214. O sistema de processamento de voz 658 reconhece entradas de voz, determina o significado dessas entradas e provê uma saída indicativa do significado das entradas faladas. Por exemplo, o sistema de processamento de voz 658 pode reconhecer uma entrada de voz do operador 260 como um comando de alteração de ajuste no qual o operador 260 está comandando o sistema de controle 214 para alterar um ajuste para um subsistema controlável 216. Em um exemplo como esse, o sistema de processamento de voz 658 reconhece o conteúdo do comando falado, identifica o significado desse comando como um comando de alteração de ajuste e provê o significado dessa entrada de volta ao sistema de tratamento de voz 662. O sistema de tratamento de voz 662, por sua vez, interage com o gerador de saída do controlador 670 para prover a saída comandada ao controlador apropriado no sistema de controle 214 para realizar o comando de alteração de ajuste falado.
[00169] O sistema de processamento de voz 658 pode ser invocado de uma variedade de diferentes maneiras. Por exemplo, em um exemplo, o sistema de tratamento de voz 662 provê continuamente uma entrada de um microfone (sendo um dos mecanismos de interface de operador 218) ao sistema de processamento de voz 658. O microfone detecta voz do operador 260, e o sistema de tratamento de voz 662 provê o voz detecta ao sistema de processamento de voz 658. O detector de gatilho 672 sensoreia uma ativação indicando que o sistema de processamento de voz 658 é invocado. Em alguns casos, quando o sistema de processamento de voz 658 está recebendo entradas de voz contínuas do sistema de tratamento de voz 662, o componente de reconhecimento de voz 674 realiza reconhecimento de voz contínuo em toda a voz falada pelo operador 260. Em alguns casos, o sistema de processamento de voz 658 é configurado para invocação usando uma palavra de despertar. Ou seja, em alguns casos, a operação do sistema de processamento de voz 658 pode ser iniciada com base no reconhecimento de uma palavra falada selecionada, referida como palavra de despertar. Em um exemplo como esse, onde o componente de reconhecimento 674 reconhece a palavra de despertar, o componente de reconhecimento 674 provê uma indicação de que a palavra de despertar foi reconhecida para acionar o detector 672. O detector de acionamento 672 detecta que o sistema de processamento de voz 658 foi invocado ou acionado pela palavra de despertar. Em outro exemplo, o sistema de processamento de voz 658 pode ser invocado por um operador 260 atuando um atuador em um mecanismo de interface de usuário, tal como tocando em um atuador em uma tela de exibição sensível ao toque, pressionando um botão ou provendo outra entrada de acionamento. Em um exemplo como esse, o detector de acionamento 672 pode detectar que o sistema de processamento de voz 658 foi invocado quando uma entrada de acionamento por meio de um mecanismo de interface de usuário é detectada. O detector de gatilho 672 pode sensorear que o sistema de processamento de voz 658 foi invocado igualmente de outras maneiras.
[00170] Uma vez que o sistema de processamento de voz 658 é invocado, a entrada de voz do operador 260 é provida ao componente de reconhecimento de voz 674. O componente de reconhecimento de voz 674 reconhece elementos linguísticos na entrada de voz, tais como palavras, frases ou outras unidades linguísticas. O sistema de compreensão de linguagem natural 678 identifica um significado da voz reconhecida. O significado pode ser uma saída de linguagem natural, uma saída de comando que identifica um comando refletido na voz reconhecida, uma saída de valor que identifica um valor na voz reconhecida ou qualquer uma de uma ampla variedade de outras saídas que refletem o entendimento da voz reconhecida. Por exemplo, o sistema de compreensão de linguagem natural 678 e o sistema de processamento de voz 568, de forma mais geral, podem entender o significado da voz reconhecida no contexto da colheitadeira agrícola 100.
[00171] Em alguns exemplos, o sistema de processamento de voz 658 pode também gerar saídas que navegam o operador 260 através de uma experiência do usuário com base na entrada de voz. Por exemplo, o sistema de gerenciamento de diálogo 680 pode gerar e gerenciar um diálogo com o usuário a fim de identificar o que o usuário deseja fazer. A caixa de diálogo pode eliminar a ambiguidade do comando de um usuário; identificar um ou mais valores específicos que são necessários para realizar o comando do usuário; ou obter outra informação do usuário ou prover outra informação ao usuário, ou ambos. O componente de síntese 676 pode gerar a síntese de voz que pode ser apresentada ao usuário por meio de um mecanismo de interface de operador de áudio, tal como um alto-falante. Dessa forma, o diálogo gerenciado pelo sistema de gerenciamento de diálogo 680 pode ser exclusivamente um diálogo falado ou uma combinação tanto de um diálogo visual quanto um diálogo falado.
[00172] O gerador de sinal de ação 660 gera sinais de ação para controlar os mecanismos de interface de operador 218 com base em saídas de um ou mais do sistema de processamento de comando de entrada de operador 654, outro sistema de interação de controlador 656 e sistema de processamento de voz 658. O gerador de sinal de controle visual 684 gera sinais de controle para controlar itens visuais nos mecanismos de interface de operador 218. Os itens visuais podem ser luzes, uma tela de exibição, indicadores de alerta ou outros itens visuais. O gerador de sinal de controle de áudio 686 gera saídas que controlam elementos de áudio dos mecanismos de interface de operador 218. Os elementos de áudio incluem um alto-falante, mecanismos de alerta audíveis, buzinas ou outros elementos audíveis. O gerador de sinal de controle háptico 688 gera sinais de controle que são produzidos para controlar elementos hápticos dos mecanismos de interface de operador 218. Os elementos hápticos incluem elementos de vibração que podem ser usados para vibrar, por exemplo, o assento do operador, o volante, pedais ou manches usados pelo operador. Os elementos hápticos podem incluir realimentação tátil ou elementos de realimentação de força que provêm realimentação ou realimentação de força ao operador por meio de mecanismos de interface de operador. Os elementos hápticos pode incluir uma ampla variedade de outros elementos hápticos igualmente.
[00173] A FIG. 12 é um fluxograma que ilustra um exemplo da operação do controlador de interface de operador 231 na geração de uma exibição de interface de operador em um mecanismo de interface de operador 218, que pode incluir uma tela de exibição sensível ao toque. FIGO. 12 também ilustra um exemplo de como o controlador de interface de operador 231 pode detectar e processar as interações do operador com a tela de exibição sensível ao toque.
[00174] No bloco 692, o controlador de interface de operador 231 recebe um mapa. O bloco 694 indica um exemplo em que o mapa é um mapa preditivo funcional e o bloco 696 indica um exemplo em que o mapa é outro tipo de mapa. No bloco 698, o controlador de interface de operador 231 recebe uma entrada do sensor de posição geográfica 204 identificando a localização geográfica da colheitadeira agrícola 100. Como indicado no bloco 700, a entrada do sensor de posição geográfica 204 pode incluir a direção, junto com a localização, de colheitadeira agrícola 100. Bloco 702 indica um exemplo em que a entrada do sensor de posição geográfica 204 inclui a velocidade da colheitadeira agrícola 100 e o bloco 704 indica um exemplo no qual a entrada do sensor de posição geográfica 204 inclui outros itens.
[00175] No bloco 706, o gerador de sinal de controle visual 684 no controlador de interface de operador 231 controla a tela de exibição sensível ao toque nos mecanismos de interface de operador 218 para gerar uma exibição mostrando todo ou uma parte de um campo representado pelo mapa recebido. O bloco 708 indica que o campo exibido pode incluir um marcador de posição atual mostrando uma posição atual da colheitadeira agrícola 100 em relação ao campo. O bloco 710 indica um exemplo no qual o campo exibido inclui um marcador de unidade de trabalho seguinte que identifica uma unidade de trabalho seguinte (ou área no campo) na qual a colheitadeira agrícola 100 estará operando. O bloco 712 indica um exemplo no qual o campo exibido inclui uma porção de exibição da área seguinte que exibe áreas que ainda serão processadas pela colheitadeira agrícola 100, e o bloco 714 indica um exemplo no qual o campo exibido inclui porções de exibição previamente visitadas que representam áreas de o campo que a colheitadeira 100 já processou. O bloco 716 indica um exemplo no qual o campo exibido exibe várias características do campo tendo localizações georreferenciadas no mapa. Por exemplo, se o mapa recebido for um mapa de máquina preditivo, o campo exibido pode mostrar as diferentes distribuições de material interno preditas em diferentes localizações no campo. As características mapeadas podem ser mostradas nas áreas previamente visitadas (como mostrado no bloco 714), nas próximas áreas (como mostrado no bloco 712) e na unidade de trabalho seguinte (como mostrado no bloco 710). O bloco 718 indica um exemplo no qual o campo exibido inclui igualmente outros itens.
[00176] A FIG. 13 é uma ilustração pictorial que mostra um exemplo de uma exibição de interface de usuário 720 que pode ser gerada em uma tela de exibição sensível ao toque. Em outras implementações, a exibição de interface de usuário 720 pode ser gerada em outros tipos de exibições. A tela sensível ao toque pode ser montada no compartimento do operador da colheitadeira agrícola 100 ou no dispositivo móvel ou em outro lugar. A exibição de interface de usuário 720 será descrita antes de continuar com a descrição do fluxograma mostrado na FIG. 12.
[00177] No exemplo mostrado na FIG. 13, a exibição de interface de usuário 720 ilustra que a tela de exibição sensível ao toque inclui um recurso de tela para operar um microfone 722 e um alto-falante 724. Dessa forma, a tela sensível ao toque pode ser acoplada comunicativamente ao microfone 722 e ao alto-falante 724. O bloco 726 indica que a tela sensível ao toque pode incluir uma ampla variedade de atuadores de controle de interface de usuário, tal como botões, teclados, teclados virtuais, ligações, ícones, interruptores, etc. O operador 260 pode acionar os atuadores de controle de interface de usuário para executar várias funções.
[00178] No exemplo mostrado na FIG. 13, a exibição de interface de usuário 720 inclui uma porção de exibição de campo 728 que exibe pelo menos uma porção do campo na qual a colheitadeira agrícola 100 está operando. A porção de exibição de campo 728 é mostrada com um marcador de posição atual 708 que corresponde a uma posição atual da colheitadeira agrícola 100 na porção do campo mostrada na porção de exibição de campo 728. Em um exemplo, o operador pode controlar a exibição sensível ao toque a fim de realizam um grande aumento em porções da porção de exibição de campo 728 ou panoramizar ou rolar a tela da porção de exibição de campo 728 para mostrar diferentes porções do campo. Uma unidade de trabalho seguinte 730 é mostrada como uma área do campo diretamente na frente do marcador de posição atual 708 da colheitadeira agrícola 100. O marcador de posição atual 708 pode também ser configurado para identificar a direção de deslocamento da colheitadeira agrícola 100, uma velocidade de deslocamento da colheitadeira agrícola 100, ou ambos. Na FIG. 13, o formato do marcador de posição atual 708 provê uma indicação quanto à orientação da colheitadeira agrícola 100 dentro do campo que pode ser usada como uma indicação de uma direção de deslocamento da colheitadeira agrícola 100.
[00179] O tamanho da unidade de trabalho seguinte 730 marcada na porção de exibição de campo 728 pode variar com base em uma ampla variedade de critérios diferentes. Por exemplo, o tamanho da unidade de trabalho seguinte 730 pode variar com base na velocidade de deslocamento da colheitadeira agrícola 100. Dessa forma, quando a colheitadeira agrícola 100 está deslocando mais rápido, a área da unidade de trabalho seguinte 730 pode ser maior do que a área de unidade de trabalho seguinte 730 se a colheitadeira agrícola 100 estiver deslocando mais lentamente. Em outro exemplo, o tamanho da unidade de trabalho seguinte 730 pode variar com base nas dimensões da colheitadeira agrícola 100, incluindo equipamento na colheitadeira agrícola 100 (tal como o coletor 102). Por exemplo, a largura da unidade de trabalho seguinte 730 pode variar com base na largura do coletor 102. A porção de exibição de campo 728 também é mostrada exibindo a área previamente visitada 714 e as áreas próximas 712. As áreas previamente visitadas 714 representam áreas que já foram colhidas durante as próximas as áreas 712 representam áreas que ainda precisam ser colhidas. O a porção de exibição de campo 728 também é mostrada exibindo diferentes características do campo. No exemplo ilustrado na FIG. 13, o mapa que está sendo exibido é um mapa de perda preditiva, tal como mapa de perda preditiva funcional 420. Portanto, uma pluralidade de diferentes marcadores de nível de perda é exibida na porção de exibição de campo 728. Há um conjunto de marcadores de exibição de nível de perda 732 mostrado nas áreas já visitadas 714. Há também um conjunto de marcadores de exibição de nível de perda 732 mostrado nas áreas próximas 712, e há um conjunto de marcadores de exibição de nível de perda 732 mostrado na unidade de trabalho seguinte 730. FIG. 13 mostra que os marcadores de exibição de nível de perda 732 são compostos de diferentes símbolos que indicam uma área de nível de perda semelhante. No exemplo mostrado na FIG. 3, o símbolo ! representa áreas de alto nível de perda; o símbolo * representa áreas de médio nível de perda; e o símbolo # representa uma área de baixo nível de perda. Dessa forma, a porção de exibição de campo 728 mostra diferentes valores medidos ou preditos (ou características indicadas pelos valores) que estão localizados em diferentes áreas dentro do campo e representam os valores medidos ou preditos (ou características indicadas pelos valores) com uma variedade de exibição marcadores 732. Como mostrado, a porção de exibição de campo 728 inclui marcadores de exibição, particularmente marcadores de exibição de nível de perda 732 no exemplo ilustrado da FIG. 13, em locais particulares associados a locais particulares no campo que está sendo exibido. Em alguns casos, cada localização do campo pode ter um marcador de exibição associado ao mesmo. Dessa forma, em alguns casos, um marcador de exibição pode ser provido em cada local da porção de exibição de campo 728 para identificar a natureza da característica que está sendo mapeada para cada local particular do campo. Consequentemente, a presente descrição engloba o fornecimento de um marcador de exibição, tal como o marcador de exibição de nível de perda 732 (tal como no contexto do presente exemplo da FIG. 13), em um ou mais locais na porção de exibição de campo 728 para identificar a natureza, grau, etc., da característica que está sendo exibida, identificando dessa forma a característica no local correspondente no campo que está sendo exibido. Como descrito anteriormente, os marcadores de exibição 732 podem ser constituídos de diferentes símbolos e, como descrito a seguir, os símbolos podem ser qualquer recurso de exibição, tal como diferentes cores, formatos, padrões, intensidades, texto, ícones ou outros recursos de exibição.
[00180] Em outros exemplos, o mapa que está sendo exibido pode ser um ou mais dos mapas descritos no presente documento, incluindo mapas de informação, mapas de informação, os mapas preditivos funcionais, tais tal como mapas preditivos ou mapas de zona de controle preditivo, ou uma combinação dos mesmos. Dessa forma, os marcadores e características que estão sendo exibidos serão correlacionados às informações, dados, características e valores providos por um ou mais mapas que estão sendo exibidos.
[00181] No exemplo da FIG. 13, a exibição de interface de usuário 720 também tem uma porção de exibição de controle 738. A porção de exibição de controle 738 permite que o operador veja informações e interaja com a exibição de interface de usuário 720 de várias maneiras.
[00182] Os atuadores e marcadores de exibição na porção 738 podem ser exibidos, por exemplo, como itens individuais, listas fixas, listas roláveis, menus suspensos ou listas suspensas. No exemplo mostrado na FIG. 13, a porção de exibição 738 mostra informações para os três diferentes níveis de perda que correspondem aos três símbolos supramencionados. A porção de exibição 738 também inclui um conjunto de atuadores sensíveis ao toque com os quais o operador 260 pode interagir pelo toque. Por exemplo, o operador 260 pode tocar os atuadores sensíveis ao toque com um dedo para ativar o respectivo atuador sensível ao toque.
[00183] Como mostrado na FIG. 13, a porção de exibição 738 inclui uma porção de exibição de sinalizador interativo, indicado no geral em 741. A porção de exibição de sinalizador interativo 741 inclui uma coluna de sinalizador 739 que mostra sinalizadores que foram ajustados automática ou manualmente. O atuador de sinalizador 740 permite que o operador 260 marque um local, tal como o local atual da colheitadeira agrícola, ou outro local no campo designado pelo operador e adicione informações indicando o nível de perda encontrado no local atual. Por exemplo, quando o operador 260 atua o atuador de sinalizador 740 tocando o atuador de sinalizador 740, o sistema de tratamento de gestos de toque 664 no controlador de interface de operador 231 identifica o local atual como aquela na qual a colheitadeira agrícola 100 encontrou alto nível de perda. Quando o operador 260 toca o botão 742, o sistema de tratamento de gestos de toque 664 identifica o local atual tal como um local onde a colheitadeira agrícola 100 encontrou médio nível de perda. Quando o operador 260 toca o botão 744, o sistema de tratamento de gestos de toque 664 identifica o local atual como um local onde a colheitadeira agrícola 100 encontrou baixo nível de perda. Após a atuação de um dos atuadores de sinalização 740, 742 ou 744, o sistema de tratamento de gestos de toque 664 pode controlar o gerador de sinal de controle visual 684 para adicionar um símbolo correspondente ao nível de perda identificado na porção de exibição de campo 728 em um local que o usuário identifica. Dessa maneira, as áreas do campo onde o valor predito não representa com precisão um valor real podem ser marcadas para análise posterior e podem também ser usadas na aprendizagem de máquina. Em outros exemplos, o operador pode designar áreas à frente ou ao redor da colheitadeira agrícola 100 atuando um dos atuadores de sinalização 740, 742 ou 744 de modo que o controle da colheitadeira agrícola 100 possa ser realizado com base no valor designado pelo operador 260.
[00184] A porção de exibição 738 também inclui uma porção de exibição de marcador interativo, indicada no geral em 743. A porção de exibição de marcador interativo 743 inclui uma coluna de símbolos 746 que exibe os símbolos correspondentes a cada categoria de valores ou características (no caso da FIG. 13, nível de perda) que está sendo rastreado na porção de exibição de campo 728. A porção de exibição 738 também inclui uma porção de exibição de designador interativo, indicada no geral em 745. A porção de exibição de designador de interador 745 inclui uma coluna de designador 748 que mostra o designador (que pode ser textual designador ou outro designador) identificando a categoria de valores ou características (no caso da FIG. 13, nível de perda). Sem limitação, os símbolos na coluna de símbolo 746 e os designadores na coluna de designador 748 podem incluir qualquer recurso de exibição, tais como diferentes cores, formas, padrões, intensidades, texto, ícones ou outros recursos de exibição e podem ser personalizáveis pela interação de um operador da colheitadeira agrícola 100.
[00185] A porção de exibição 738 também inclui uma porção de exibição de valor interativo, indicada no geral em 747. A porção de exibição de valor interativo 747 inclui uma coluna de exibição de valor 750 que exibe valores selecionados. Os valores selecionados correspondem às características ou valores que estão sendo rastreados ou exibidos, ou ambos, na porção de exibição de campo 728. Os valores selecionados podem ser selecionados por um operador da colheitadeira agrícola 100. Os valores selecionados na coluna de exibição de valor 750 definem uma faixa de valores ou um valor pelo qual outros valores, tal como valores preditos, devem ser classificados. Dessa forma, no exemplo da FIG. 13, um nível de perda predito ou medido igual ou superior a 1,5 alqueires/acre é classificado tal como "alto nível de perda" e um nível de perda predito ou medido atingindo ou menos de 0,5 alqueire/acre é classificado tal como "baixo nível de perda". Em alguns exemplos, os valores selecionados podem incluir uma faixa, de modo que um valor predito ou medido que está dentro da faixa do valor selecionado seja classificado sob o designador correspondente. Como mostrado na FIG. 13, “médio nível de perda” inclui uma faixa de 0,51 alqueire/acre a 1,49 alqueires / acre, de modo que um nível de perda predito ou medido dentro da faixa de 0,51 a 1,49 alqueires/acre é classificado tal como “médio nível de perda”. Os valores selecionados na coluna de exibição de valor 750 são ajustáveis por um operador da colheitadeira agrícola 100. Em um exemplo, o operador 260 pode selecionar a parte particular da porção de exibição de campo 728 para a qual os valores na coluna 750 devem ser exibidos. Dessa forma, os valores na coluna 750 podem corresponder aos valores nas porções de exibição 712, 714 ou 730.
[00186] A porção de exibição 738 também inclui uma porção de exibição de limiar interativo, indicada no geral em 749. A porção de exibição de limiar interativo 749 inclui uma coluna de exibição de valor de limiar 752 que exibe valores de limiar de ação. Os valores de limiar de ação na coluna 752 podem ser valores de limiar correspondentes aos valores selecionados na coluna de exibição de valor 750. Se os valores preditos ou medidos de características que estão sendo rastreadas ou exibidas, ou ambos, satisfizerem os valores de limiar de ação correspondentes na coluna de exibição de valor de limiar 752, então, o sistema de controle 214 executa a ação identificada na coluna 754. Em alguns casos, um valor medido ou predito pode satisfazer um valor de limiar de ação correspondente ao atingir ou exceder o valor de limiar de ação correspondente. Em um exemplo, o operador 260 pode selecionar um valor de limiar, por exemplo, a fim de alterar o valor de limiar tocando o valor de limiar na coluna de exibição de valor de limiar 752. Uma vez selecionado, o operador 260 pode alterar o valor de limiar. Os valores de limiar na coluna 752 podem ser configurados de modo que a ação designada seja realizada quando o valor medido ou predito da característica excede o valor de limiar, é igual ao valor de limiar ou é menor que o valor de limiar. Em alguns casos, o valor de limiar pode representar uma faixa de valores, ou faixa de desvio dos valores selecionados na coluna de exibição de valor 750, de modo que um valor de característica predito ou medido que atenda ou caia dentro da faixa satisfaça o valor de limiar. Por exemplo, no exemplo da FIG. 13, um valor predito que cai dentro de 10% de 1,5 alqueires/acre irá satisfazer o valor de limiar de ação correspondente (de dentro de 10% de 1,5 alqueires/acre) e uma ação, tal como redução da velocidade da ventoinha de limpeza, será adotada pelo sistema de controle 214. Em outros exemplos, os valores de limiar na coluna de exibição de valor de limiar de coluna 752 são separados dos valores selecionados na coluna de exibição de valor 750, de modo que os valores na coluna de exibição de valor 750 definem a classificação e exibição de valores preditos ou medidos, enquanto os valores de limiar de ação definem quando uma ação deve ser adotada com base nos valores medidos ou preditos. Por exemplo, embora um valor de perda predito ou medido de 1,0 alqueires/acre possa ser designado tal como um "nível de perda médio" para fins de classificação e exibição, o valor de limiar de ação pode ser de 1,2 alqueires/acre, de modo que nenhuma ação será adotada até o valor da perda satisfazer o valor de limiar. Em outros exemplos, os valores de limiar na coluna de exibição de valor de limiar 752 podem incluir distâncias ou tempos. Por exemplo, no exemplo de uma distância, o valor de limiar pode ser uma distância limite da área do campo onde o valor medido ou predito é georreferenciado que a colheitadeira agrícola 100 deve estar antes que uma ação seja tomada. Por exemplo, um valor de distância limite de 10 pés significaria que uma ação será executada quando a colheitadeira agrícola estiver em ou dentro de 10 pés da área do campo onde o valor medido ou predito é georreferenciado. Em um exemplo no qual o valor de limiar é o tempo, o valor de limiar pode ser um tempo limite para a colheitadeira agrícola 100 atingir a área do campo onde o valor medido ou preditivo é georreferenciado. Por exemplo, um valor de limiar de 5 segundos significaria que uma ação será executada quando a colheitadeira agrícola 100 estiver 5 segundos longe da área do campo onde o valor medido ou predito é georreferenciado. Nesse exemplo, a localização atual e a velocidade de deslocamento da colheitadeira agrícola podem ser contabilizadas.
[00187] A porção de exibição 738 também inclui uma porção de exibição de ação interativa, indicada no geral em 751. A porção de exibição de ação interativa 751 inclui uma coluna de exibição de ação 754 que exibe identificadores de ação que indicaram ações a serem adotadas quando um valor predito ou medido satisfaz um limiar de ação valor na coluna de exibição de valor de limiar 752. O operador 260 pode tocar nos identificadores de ação na coluna 754 para alterar a ação que deve ser executada. Quando um limiar é satisfeito, uma ação pode ser executada. Por exemplo, na parte inferior da coluna 754, uma ação de aumento da velocidade da ventoinha de limpeza e uma ação de redução da velocidade da ventoinha de limpeza são identificadas como ações que serão adotadas se o valor medido na coluna 750 atingir o valor de limiar na coluna 752. Em alguns exemplos, então, um limiar é atingido, várias ações podem ser adotadas. Por exemplo, uma velocidade da ventoinha de limpeza pode ser ajustada, uma velocidade de rotor de trilhagem pode ser ajustada e uma folga do contrabatedor pode ser ajustada em resposta a um limiar sendo satisfeito.
[00188] As ações que podem ser definidas na coluna 754 podem ser qualquer uma de uma ampla variedade de diferentes tipos de ações. Por exemplo, as ações podem incluir uma ação de impedimento que, quando executada, inibe a colheitadeira 100 de colheita adicional em uma área. As ações podem incluir uma ação de mudança de velocidade que, quando executada, altera a velocidade de deslocamento da colheitadeira agrícola 100 através do campo. As ações podem incluir uma ação de alteração de ajuste para alterar um ajuste de um atuador interno ou outro WMA ou conjunto de WMAs, ou implementar uma ação de alteração de ajuste que altera um ajuste de velocidade de rotor de trilhagem, velocidade da ventoinha de limpeza, uma posição (por exemplo, inclinação, altura, rolamento, etc.) do coletor, junto com vários outros ajustes. Estes são apenas exemplos, e uma ampla variedade de outras ações são contempladas aqui.
[00189] Os itens mostrados na exibição de interface do usuário 720 podem ser controlados visualmente. O controle visual da interface de exibição 720 pode ser feito para capturar a atenção do operador 260. Por exemplo, os marcadores de exibição podem ser controlados para modificar a intensidade, cor ou padrão com o qual os marcadores de exibição são exibidos. Adicionalmente, os marcadores de exibição podem ser controlados para piscar. As alterações descritas para a aparência visual dos marcadores de exibição são providas como exemplos. Consequentemente, outros aspectos da aparência visual dos marcadores da exibição podem ser alterados. Portanto, os marcadores de exibição podem ser modificados em várias circunstâncias de uma maneira desejada a fim de, por exemplo, capturar a atenção do operador 260. Adicionalmente, embora um número particular de itens seja mostrado no exibição de interface de usuário 720, este não precisa ser o caso. Em outros exemplos, mais ou menos itens, incluindo mais ou menos de um item particular, podem ser incluídos na exibição de interface do usuário 720.
[00190] De volta agora ao fluxograma da FIG. 12, a descrição da operação do controlador de interface de operador 231 continua. No bloco 760, o controlador de interface de operador 231 detectar um ajuste de entrada de um sinalizador e controla a exibição de interface de usuário sensível ao toque 720 para exibir o sinalizador na porção de exibição de campo 728. A entrada detectada pode ser uma entrada de operador, como indicado em 762, ou uma entrada de outro controlador, como indicado em 764. No bloco 766, o controlador de interface de operador 231 detecta uma entrada de sensor in situ indicativa de uma característica medida do campo a partir de um dos sensores in situ 208. No bloco 768, o gerador de sinal de controle visual 684 gera sinais de controle para controlar a exibição de interface de usuário 720 para exibir atuadores para modificar a exibição de interface de usuário 720 e modificar o controle da máquina. Por exemplo, o bloco 770 representa que um ou mais dos atuadores para definir ou modificar os valores nas colunas 739, 746 e 748 podem ser exibidos. Dessa forma, o usuário pode definir sinalizadores e modificar as características desses sinalizadores. Por exemplo, um usuário pode modificar as orientações da máquina e designadores correspondentes aos sinalizadores. O bloco 772 representa que os valores de limiar de ação na coluna 752 são exibidos. O bloco 776 representa que as ações na coluna 754 são exibidas, e o bloco 778 representa que os dados in situ medidos na coluna 750 são exibidos. O bloco 780 indica que uma ampla variedade de outra informação e atuadores pode também ser exibida na exibição de interface do usuário 720.
[00191] No bloco 782, o sistema de processamento de comando de entrada de operador 654 detecta e processa as entradas de operador correspondentes às interações com a exibição de interface de usuário 720 realizada pelo operador 260. Onde o mecanismo de interface de usuário em que a exibição de interface de usuário 720 é exibida é um sensível ao toque tela de exibição, entradas de interação com a tela de exibição sensível ao toque pelo operador 260 podem ser gestos de toque 784. Em alguns casos, as entradas de interação de operador podem ser entradas usando um dispositivo de apontar e clicar 786 ou outras entradas de interação de operador 788.
[00192] No bloco 790, o controlador de interface de operador 231 recebe sinais indicativos de uma condição de alerta. Por exemplo, o bloco 792 indica que os sinais podem ser recebidos pelo sistema de processamento de entrada do controlador 668, indicando que os valores sensoreados na coluna 750 satisfazem as condições de limiar presentes na coluna 752. Como explicado anteriormente, as condições de limiar podem incluir valores abaixo de um limiar, igual a um limiar, ou acima de um limiar. O bloco 794 mostra que o gerador de sinal de ação 660 pode, em resposta ao recebimento de uma condição de alerta, alertar o operador 260 usando o gerador de sinal de controle visual 684 para gerar alertas visuais, usando o gerador de sinal de controle de áudio 686 para gerar alertas de áudio, usando o gerador de sinal de controle hápticos 688 para gerar alertas hápticos, ou usando qualquer combinação destes. Similarmente, como indicado pelo bloco 796, o gerador de saída do controlador 670 pode gerar saídas para outros controladores no sistema de controle 214 de modo que esses controladores executem a ação correspondente identificada na coluna 754. O bloco 798 mostra que o controlador de interface de operador 231 pode detectar e processar condições de alerta igualmente de outras maneiras.
[00193] O bloco 900 mostra que o sistema de tratamento de voz 662 pode sensorear e processar entradas invocando o sistema de processamento de voz 658. O bloco 902 mostra que realizar o processamento de voz pode incluir o uso do sistema de gerenciamento de diálogo 680 para conduzir um diálogo com o operador 260. O bloco 904 mostra que o processamento de voz pode incluir prover sinais ao gerador de saída do controlador 670 de modo que as operações de controle sejam realizadas automaticamente com base nas entradas de voz.
[00194] A Tabela 1, a seguir, mostra um exemplo de um diálogo entre o controlador de interface de operador 231 e o operador 260. Na Tabela 1, o operador 260 usa uma palavra de ativação, ou uma palavra de ativação que é detectada pelo detector de gatilho 672 para invocar o sistema de processamento de voz 658. No exemplo mostrado na Tabela 1, a palavra de despertar é “Johnny”.
tabela 1
Operador: “Johnny, conte-me a respeito da orientação atual da máquina”
Controlador da interface de operador: “A arfagem atual está em 5% para frente com limiar de 10%. O rolamento atual está em 2% a direita com o limite de 8%”.
tabela 1
Operador: “Johnny, conte-me a respeito da orientação atual da máquina”
Controlador da interface de operador: “A arfagem atual está em 5% para frente com limiar de 10%. O rolamento atual está em 2% a direita com o limite de 8%”.
[00195] A Tabela 2 mostra um exemplo no qual o componente de síntese de voz 676 provê uma saída para o gerador de sinal de controle de áudio 686 para prover atualizações audíveis em uma base intermitente ou periódica. O intervalo entre as atualizações pode ser baseado no tempo, tal como a cada cinco minutos, ou na cobertura ou na distância, tal como a cada cinco acres, ou baseado na exceção, tal como quando um valor medido é maior do que um valor de limiar.
tabela 2
Controlador de interface de operador: “Nos últimos 10 minutos, a colheitadeira teve uma elevação de 18,3 metros (60 pés) e um declínio de 4,6 metros (15 pés)”.
Controlador de interface de operador: "Nos próximos 10 minutos, prediz-se que a colheitadeira passará por um declínio de elevação de 24,4 metros (80 pés) e nenhum aumento de elevação".
tabela 2
Controlador de interface de operador: “Nos últimos 10 minutos, a colheitadeira teve uma elevação de 18,3 metros (60 pés) e um declínio de 4,6 metros (15 pés)”.
Controlador de interface de operador: "Nos próximos 10 minutos, prediz-se que a colheitadeira passará por um declínio de elevação de 24,4 metros (80 pés) e nenhum aumento de elevação".
[00196] O exemplo mostrado na Tabela 3 ilustra que alguns atuadores ou mecanismos de entrada do usuário na tela sensível ao toque 720 podem ser complementados com diálogo de voz. O exemplo na Tabela 3 ilustra que o gerador de sinal de ação 660 pode gerar sinais de ação para marcar automaticamente uma área onde a cultura foi cortada muito baixo no campo que que está sendo colhido.
Tabela 3
Humano: “Johnny, marcar corte muito baixo.”
Controlador de interface de operador: "Área de corte baixo marcada".
Tabela 3
Humano: “Johnny, marcar corte muito baixo.”
Controlador de interface de operador: "Área de corte baixo marcada".
[00197] O exemplo mostrado na Tabela 4 ilustra que o gerador de sinal de ação 660 pode conduzir um diálogo com o operador 260 para começar e terminar a marcação de uma área de corte baixo.
Tabela 4
Humano: “Johnny, comece a marcar uma área de corte baixo.”
Controlador de interface de operador: "Marcando uma área de corte baixo".
Humano: “Johnny, pare de marcar uma área de corte baixo.”
Controlador de interface de operador: "Marcação da área de corte baixo interrompida".
Tabela 4
Humano: “Johnny, comece a marcar uma área de corte baixo.”
Controlador de interface de operador: "Marcando uma área de corte baixo".
Humano: “Johnny, pare de marcar uma área de corte baixo.”
Controlador de interface de operador: "Marcação da área de corte baixo interrompida".
[00198] O exemplo mostrado na Tabela 5 ilustra que o gerador de sinal de ação 160 pode gerar sinais para marcar uma área inclinada lateral de uma maneira diferente daquela mostrada nas Tabelas 3 e 4.
Tabela 5
Humano: "Johnny, marque os próximos 30,5 metros (100 pés) tal como área de corte baixo".
Controlador de interface de operador: "Próximos 30,5 metros (100 pés) marcados tal como área de corte baixo".
Tabela 5
Humano: "Johnny, marque os próximos 30,5 metros (100 pés) tal como área de corte baixo".
Controlador de interface de operador: "Próximos 30,5 metros (100 pés) marcados tal como área de corte baixo".
[00199] De volta novamente à FIG. 12, o bloco 906 ilustra que o controlador de interface de operador 231 pode detectar e processar condições para produzir uma mensagem ou outra informação igualmente de outras maneiras. Por exemplo, outro sistema de interação de controlador 656 pode sensorear entradas de outros controladores indicando que alertas ou mensagens de saída devem ser apresentados ao operador 260. O bloco 908 mostra que as saídas podem ser mensagens de áudio. O bloco 910 mostra que as saídas podem ser mensagens visuais, e o bloco 912 mostra que as saídas podem ser mensagens hápticas. Até que o controlador de interface de operador 231 determine que a operação de colheita atual está completada, como indicado pelo bloco 914, o processamento reverte para o bloco 698, onde a localização geográfica da colheitadeira 100 é atualizada e o processamento prossegue como descrito acima para atualizar a exibição de interface de usuário 720.
[00200] Uma vez que a operação está completa, então qualquer valor desejado que é exibido, ou foi exibido na exibição de interface de usuário 720, pode ser salvo. Esses valores podem também ser usados em aprendizagem de máquina para melhorar diferentes porções do gerador de modelo preditivo 210, o gerador de mapa preditivo 212, o gerador de zona de controle 213, algoritmos de controle, ou outros itens. O salvamento dos valores desejados é indicado pelo bloco 916. Os valores podem ser salvos localmente na colheitadeira agrícola 100, ou os valores podem ser salvos em uma localização de servidor remoto ou enviados a outro sistema remoto.
[00201] Pode-se dessa forma perceber que um ou mais mapas são obtidos por uma colheitadeira agrícola que apresentam valores de característica agrícola, tais como valores preditos ou históricos de umidade de cultura, valores de característica topográfica, valores de índice vegetativo, ou valores de propriedade de solo, em diferentes localizações geográficas de um campo que está sendo colhido. Um sensor in situ na colheitadeira sensoreia uma característica que tem valores indicativos de uma característica agrícola à medida que a colheitadeira agrícola move através do campo. Um gerador de mapa preditivo gera um mapa preditivo que prediz valores de controle para diferentes localizações no campo com base nos valores da característica agrícola no mapa e na característica agrícola sensoreada pelo sensor in situ. Um sistema de controle controla o subsistema controlável com base nos valores de controle no mapa preditivo.
[00202] Um valor de controle é um valor no qual uma ação pode ser baseada. Um valor de controle, como descrito no presente documento, pode incluir qualquer valor (ou característica indicada pelo valor ou derivada do mesmo) que pode ser usado no controle da colheitadeira agrícola 100. Um valor de controle pode ser qualquer valor indicativo de uma característica agrícola. Um valor de controle pode ser um valor predito, um valor medido ou um valor detectado. Um valor de controle pode incluir qualquer dos valores providos por um mapa, tal como qualquer dos mapas descritos no presente documento, por exemplo, um valor de controle pode ser um valor provido por um mapa de informação, um valor provido pelo mapa de informação anterior, ou um valor provido pelo mapa preditivo, tal como um mapa preditivo funcional. Um valor de controle pode também incluir qualquer das características indicadas ou derivadas dos valores detectados por qualquer dos sensores descritos no presente documento. Em outros exemplos, um valor de controle pode ser provido por um operador da máquina agrícola, tal como uma entrada de comando por um operador da máquina agrícola.
[00203] A presente discussão mencionou processadores e servidores. Em alguns exemplos, os processadores e servidores incluem computadores processadores de computador com memória e sistema de circuitos de sincronismo associados, não mostrados separadamente. Os processadores e servidores são partes funcionais dos sistemas ou dispositivos aos quais os processadores e servidores pertencem e pelos quais são ativados e facilitam a funcionalidade dos outros componentes ou itens nesses sistemas.
[00204] Também, inúmeras exibições de interface de usuário foram discutidas. As exibições podem assumir uma ampla variedade de diferentes formas e podem ter uma ampla variedade de diferentes mecanismos de interface de operador atuáveis pelo usuário dispostos nas mesmas. Por exemplo, os mecanismos de interface de operador atuáveis pelo usuário podem incluir caixas de texto, caixas de verificação, ícones, ligações, menus pendentes, caixas de busca, etc. Os mecanismos de interface de operador atuáveis pelo usuário podem também ser atuados em uma ampla variedade de diferentes maneiras. Por exemplo, os mecanismos de interface de operador atuáveis pelo usuário podem ser atuados usando mecanismos de interface de operador tal como um dispositivo de apontar e clicar, tal como um mouse de esfera ou mouse comum, botões de hardware, interruptores, um manche ou teclado, interruptores de polegar ou blocos de polegar, etc., um teclado virtual ou outros atuadores virtuais. Além do mais, onde a tela na qual os mecanismos de interface de operador atuáveis pelo usuário são exibidos é uma tela sensível ao toque, os mecanismos de interface de operador atuáveis pelo usuário podem ser atuados usando gestos de toque. Também, mecanismos de interface de operador atuáveis pelo usuário podem ser atuados usando comandos de voz usando funcionalidade de reconhecimento de voz. Reconhecimento de voz pode ser implementado usando um dispositivo de detecção de voz, tal como um microfone, e software que funciona para reconhecer voz detectada e executar comandos com base na voz recebida.
[00205] Inúmeros armazenamentos de dados foram também discutidos. Nota-se que os armazenamentos de dados podem ser desmembrados em múltiplos armazenamentos de dados. Em alguns exemplos, um ou mais dos armazenamentos de dados pode ser local aos sistemas que acessam os armazenamentos de dados, um ou mais dos armazenamentos de dados podem todos ser localizados remotos de um sistema que utiliza os armazenamento de dados, ou um ou mais armazenamentos de dados pode ser local enquanto outros são remotos. Todas essas configurações são contempladas pela presente descrição.
[00206] Também, as figuras mostram inúmeros blocos com funcionalidade atribuída a cada bloco. Nota-se que menos blocos podem ser usados para ilustrar que a funcionalidade atribuída aos múltiplos diferentes blocos é realizada por menos componentes. Também, mais blocos podem ser usados ilustrando que a funcionalidade pode ser distribuída dentre mais componentes. Em diferentes exemplos, alguma funcionalidade pode ser adicionada, e alguma pode ser removida.
[00207] Nota-se que a discussão apresentada descreveu uma variedade de diferentes sistemas, componentes, lógica e interações. Percebe-se que qualquer ou todos tais sistemas, componentes, lógica e interações podem ser implementados por itens hardware, tais como processadores, memória ou outros componentes de processamento, incluindo, mas sem se limitar a componentes de inteligência artificial, tais como redes neurais, alguns dos quais são descritos a seguir, que realizam as funções associadas com esses sistemas, componentes, lógica ou interações. Além do mais, qualquer ou todos os sistemas, componentes, lógica e interações podem ser implementados por software que é carregado em uma memória e é subsequentemente executado por um processador ou servidor ou outro componente de computação, como descrito a seguir. Qualquer ou todos os sistemas, componentes, lógica e interações podem também ser implementados por diferentes combinações de hardware, software, firmware, etc., alguns exemplos dos quais são descritos a seguir. Esses são alguns exemplos de diferentes estruturas que podem ser usadas para implementar qualquer ou todos os sistemas, componentes, lógica e interações aqui descritos. Outras estruturas podem ser igualmente usadas.
[00208] A FIG. 14 é um diagrama de blocos da colheitadeira agrícola 600, que pode ser semelhante à colheitadeira agrícola 100 mostrada na FIG. 2. A colheitadeira agrícola 600 comunica com elementos em uma arquitetura de servidor remoto 500. Em alguns exemplos, a arquitetura de servidor remoto 500 provê serviços de computação, software, acesso a dados de armazenamento que não requerem conhecimento do usuário final da localização física ou ajuste de o sistema que entrega os serviços. Em vários exemplos, os servidores remotos podem entregar os serviços por uma rede de área abrangente, tal como a Internet, usando protocolos apropriados. Por exemplo, os servidores remotos podem entregar aplicações por uma rede de área abrangente e podem ser acessíveis por meio de um navegador da rede ou qualquer outro componente de computação. Software ou componentes mostrados na FIG. 2, bem como os dados associados aos mesmos, podem ser armazenados em servidores em um local remoto. Os recursos de computação em um ambiente de servidor remoto podem ser consolidados em uma localização de centro de dados remoto, ou os recursos de computação podem ser dispersos em uma pluralidade de centros de dados remotos. As infraestruturas de servidores remotos podem entregar serviços por meio de centros de dados compartilhados, mesmo que os serviços apareçam tal como um único ponto de acesso para o usuário. Dessa forma, os componentes e funções descritos no presente documento podem ser providos por um servidor remoto em um local remoto usando uma arquitetura de servidor remoto. Alternativamente, os componentes e funções podem ser providos por um servidor, ou os componentes e funções podem ser instalados em dispositivos clientes diretamente ou de outras maneiras.
[00209] No exemplo mostrado na FIG. 14, alguns itens são semelhantes aos mostrados na FIG. 2 e esses itens são similarmente enumerados. A FIG. 14 mostra especificamente que o gerador de modelo preditivo 210 ou gerador de mapa preditivo 212, ou ambos, podem estar localizados em um local de servidor 502 que é remoto da colheitadeira agrícola 600. Portanto, no exemplo mostrado na FIG. 14, a colheitadeira agrícola 600 acessa os sistemas por meio da localização do servidor remoto 502.
[00210] A FIG. 14 também descreve outro exemplo de arquitetura de servidor remoto. A FIG. 14 mostra que então me elementos da FIG. 2 podem ser dispostos em um local de servidor remoto 502, enquanto outros podem estar localizados em outro lugar. A título de exemplo, o armazenamento de dados 202 pode ser disposto em um local separado do local 502 e acessado por meio do servidor remoto no local 502. Independentemente de onde os elementos estão localizados, os elementos podem ser acessados diretamente pela colheitadeira agrícola 600 através de uma rede tal como uma rede de área ampla ou uma rede de área local; os elementos podem ser hospedados em um site remoto por um serviço; ou os elementos podem ser providos como um serviço ou acessados por um serviço de conexão que reside em um local remoto. Também, os dados podem ser armazenados em qualquer local e os dados armazenados podem ser acessados por, ou encaminhados para, operadores, usuários ou sistemas. Por exemplo, portadores físicos podem ser usados em adição, ou em substituição, a portadoras de ondas eletromagnéticas. Em alguns exemplos, onde a cobertura do serviço de telecomunicações sem fio é pobre ou inexistente, outra máquina, tal como um caminhão de combustível ou outra máquina ou veículo móvel, pode ter um sistema de coleta de informações automático, semiautomático ou manual. À medida que a colheitadeira 600 se aproxima da máquina que contém o sistema de coleta de informações, tal como um caminhão de combustível antes do abastecimento, o sistema de coleta de informações coleta a informação da colheitadeira combinada 600 usando qualquer tipo de conexão sem fio ad hoc. A informação coletada pode então ser encaminhada a outra rede quando a máquina que contém a informação recebidas chega a um local onde a cobertura do serviço de telecomunicações sem fio ou outra cobertura sem fio está disponível. Por exemplo, um caminhão de combustível pode entrar em uma área com cobertura de comunicação sem fio durante deslocamento para um local para abastecer outras máquinas ou quando em um local de armazenamento de combustível principal. Todas essas arquiteturas são contempladas no presente documento. Adicionalmente, a informação pode ser armazenada na colheitadeira agrícola 600 até que a colheitadeira agrícola 600 entre em uma área com cobertura de comunicação sem fio. A própria colheitadeira agrícola 600 pode enviar a informação para outra rede.
[00211] Também será notado que os elementos da FIG. 2, ou porções dos mesmos, podem ser dispostos em uma ampla variedade de dispositivos diferentes. Um ou mais desses dispositivos podem incluir um computador interno, uma unidade de controle eletrônico, uma unidade de exibição, um servidor, um computador desktop, um laptop, um computador tablet ou outro dispositivo móvel, tal como um computador palm top, um telefone celular, um smart phone, um tocador multimídia, um assistente digital pessoal, etc.
[00212] Em alguns exemplos, a arquitetura de servidor remoto 500 pode incluir medidas de segurança cibernética. Sem limitação, essas medidas podem incluir criptografia de dados em dispositivos de armazenamento, criptografia de dados enviados entre nós de rede, autenticação de pessoas ou processos que acessam dados, bem como o uso de registradores para registrar metadados, dados, transferências de dados, acessos de dados e transformações de dados. Em alguns exemplos, os registradores podem ser distribuídos e imutáveis (por exemplo, implementados tal como blockchain).
[00213] A FIG. 15 é um diagrama de blocos simplificado de um exemplo ilustrativo de um dispositivo de computação portátil ou móvel que pode ser usado como um dispositivo portátil de usuário ou cliente 16, no qual o presente sistema (ou partes dele) pode ser desdobrado. Por exemplo, um dispositivo móvel pode ser desdobrado no compartimento do operador da colheitadeira agrícola 100 para uso na geração, processamento ou exibição dos mapas aqui discutidos. As FIGS. 16-17 são exemplos de dispositivos portáteis ou móveis.
[00214] A FIG. 15 provê um diagrama de blocos geral dos componentes de um dispositivo cliente 16 que pode rodar alguns componentes mostrados na FIG. 2, que interage com eles, ou ambos. No dispositivo 16, uma ligação de comunicação 13 é provida que permite que o dispositivo portátil comunique com outros dispositivos de computação e, em alguns exemplos, provê um canal para receber informações automaticamente, tal como por varredura. Exemplos de ligação de comunicação 13 incluem permitir a comunicação por meio de um ou mais protocolos de comunicação, tal como serviços sem fio usados para prover acesso celular a uma rede, bem como protocolos que provêm conexões locais sem fio a redes.
[00215] Em outros exemplos, as aplicações podem ser recebidas em um cartão Digital Seguro (SD) removível que está conectado a uma interface 15. A interface 15 e as ligações de comunicação 13 se comunicam com um processador 17 (que pode também incorporar processadores ou servidores de outras FIGS .) ao longo de um barramento 19 que também está conectado à memória 21 e aos componentes de entrada / saída (I/O) 23, bem como ao relógio 25 e ao sistema de localização 27.
[00216] Os componentes de I/O 23, em um exemplo, são providos para facilitar as operações de entrada e saída. Os componentes de I/O 23 para vários exemplos do dispositivo 16 podem incluir componentes de entrada, tais como botões, sensores de toque, sensores ópticos, microfones, telas de toque, sensores de proximidade, acelerômetros, sensores de orientação e componentes de saída, tal como um dispositivo de exibição, um alto-falante, e ou uma porta de impressora. Outros componentes de I/O 23 podem ser igualmente usados.
[00217] O relógio 25 ilustrativamente compreende um componente de relógio em tempo real que produz uma hora e uma data. Ele pode também, ilustrativamente, prover funções de sincronismo para o processador 17.
[00218] O sistema de localização 27 ilustrativamente inclui um componente que produz uma localização geográfica atual do dispositivo 16. Isso pode incluir, por exemplo, um receptor de sistema de posicionamento global (GPS), um sistema LORAN, um sistema de posicionamento relativo, um sistema de triangulação celular, ou outro sistema de posicionamento. O sistema de localização 27 pode também incluir, por exemplo, software de mapeamento ou software de navegação que gera mapas, rotas de navegação e outras funções geográficas desejados.
[00219] A memória 21 armazena o sistema operacional 29, ajustes de rede 31, aplicações 33, ajustes de aplicações 35, armazenamento de dados 37, unidades de operação de comunicação 39 e ajustes de comunicação 41. A memória 21 pode incluir todos os tipos de dispositivos de memória legíveis por computador tangíveis voláteis e não voláteis. A memória 21 pode também incluir mídia de armazenamento de computador (descrita a seguir). A memória 21 armazena instruções legíveis por computador que, quando executadas pelo processador 17, fazem com que o processador execute etapas ou funções implementadas por computador de acordo com as instruções. O processador 17 pode ser ativado por outros componentes para facilitar sua funcionalidade igualmente.
[00220] A FIG. 16 mostra um exemplo no qual o dispositivo 16 é um computador tablet 600. Na FIG. 16, o computador 601 é mostrado com a tela de exibição de interface de usuário 602. A tela 602 pode ser uma tela de toque ou uma interface ativada por caneta que recebe entradas de uma caneta ou dispositivo tipo caneta. O computador tablet 600 pode também usar um teclado virtual na tela. Certamente, o computador 601 pode também ser conectado a um teclado ou outro dispositivo de entrada do usuário por meio de um mecanismo de conexão adequado, tal como uma ligação sem fio ou porta USB, por exemplo. O computador 601 pode também receber igualmente entradas de voz ilustrativamente.
[00221] A FIG. 17 é semelhante à FIG. 16, exceto que o dispositivo é um smartphone 71. O smartphone 71 tem uma tela sensível ao toque 73 que exibe ícones ou blocos, ou outros mecanismos de entrada do usuário 75. Os mecanismos 75 podem ser usados por um usuário para rodar aplicações, fazer chamadas, realizar operações de transferência de dados, etc. Em geral, o smartphone 71 é construído em um sistema operacional móvel e oferece capacidade de computação e conectividade mais avançadas do que um telefone de recursos.
[00222] Note que outras formas dos dispositivos 16 são possíveis.
[00223] A FIG. 18 é um exemplo de um ambiente de computação no qual os elementos da FIG. 2 podem ser desdobrados. Com referência à FIG. 18, um sistema exemplificativo para implementar algumas modalidades inclui um dispositivo de computação na forma de um computador 810 programado para operar como aqui discutido. Os componentes do computador 810 podem incluir, mas sem se limitar a uma unidade de processamento 820 (que pode compreender processadores ou servidores das FIGS anteriores), uma memória do sistema 830 e um barramento do sistema 821 que acopla diversos componentes do sistema, incluindo a memória do sistema, à unidade de processamento 820. O barramento de sistema 821 pode ser qualquer um dos vários tipos de estruturas de barramento, incluindo um barramento de memória ou controlador de memória, um barramento periférico e um barramento local usando qualquer uma de uma variedade de arquiteturas de barramento. Memória e programas descritos em relação à FIG. 2 podem ser desdobrados em porções correspondentes da FIG. 18.
[00224] O computador 810 tipicamente inclui uma variedade de mídias legíveis por computador. Mídia legível por computador pode ser qualquer mídia disponível que pode ser acessada pelo computador 810 e inclui mídia volátil e não volátil, mídia removível e não removível. A título de exemplo, e não de limitação, a mídia legível por computador pode compreender mídia de armazenamento de computador e mídia de comunicação. Mídia de armazenamento do computador é diferente e não inclui um sinal de dados modulado ou onda portadora. Mídia legível por computador inclui mídia de armazenamento de hardware incluindo mídia volátil e não volátil, removível e não removível implementada em qualquer método ou tecnologia para armazenamento de informações, tais como instruções legíveis por computador, estruturas de dados, módulos de programa ou outros dados. A mídia de armazenamento de computador inclui, mas não está limitada a, RAM, ROM, EEPROM, memória flash ou outra tecnologia de memória, CDROM, discos versáteis digitais (DVD) ou outro armazenamento de disco óptico, cassetes magnéticos, fita magnética, armazenamento de disco magnético ou outros dispositivos de armazenamento magnético, ou qualquer outro meio que pode ser usado para armazenar a informação desejadas e que pode ser acessado pelo computador 810. Os meios de comunicação podem incorporar instruções legíveis por computador, estruturas de dados, módulos de programa ou outros dados em um mecanismo de transporte e inclui qualquer meios de entrega de informação. O termo "sinal de dados modulado" significa um sinal que tem uma ou mais de suas características definidas ou alteradas de forma a codificar informação no sinal.
[00225] A memória do sistema 830 inclui mídia de armazenamento de computador na forma de memória volátil e/ou não volátil, ou ambas, tais como memória apenas de leitura (ROM) 831 e memória de acesso aleatório (RAM) 832. Um sistema de entrada/saída básico 833 (BIOS), contendo as rotinas básicas que ajudam a transferir informações entre os elementos dentro do computador 810, tal como durante a iniciação, são normalmente armazenados em ROM 831. RAM 832 normalmente contém dados ou módulos de programa ou ambos que são imediatamente acessíveis e/ou atualmente sendo operados pela unidade de processamento 820. A título de exemplo, e não de limitação, a FIG. 18 ilustra o sistema operacional 834, programas de aplicação 835, outros módulos de programa 836 e dados de programa 837.
[00226] O computador 810 pode também incluir outras mídias de armazenamento de computador removíveis/não removíveis voláteis/não voláteis. Apenas a título de exemplo, a FIG. 18 ilustra uma unidade de disco rígido 841 que lê ou grava em mídia magnética não removível e não volátil, uma unidade de disco óptico 855 e disco óptico não volátil 856. A unidade de disco rígido 841 é tipicamente conectada ao barramento de sistema 821 por meio de uma interface de memória não removível, tais como a interface 840 e a unidade de disco óptico 855, são tipicamente conectadas ao barramento do sistema 821 por uma interface de memória removível, tal como a interface 850.
[00227] Alternativamente, ou adicionalmente, a funcionalidade descrita no presente documento pode ser realizada, pelo menos em parte, por um ou mais componentes lógicos de hardware. Por exemplo, e sem limitação, os tipos ilustrativos de componentes lógicos de hardware que podem ser usados incluem Arranjos de Porta Programáveis no Campo (FPGAs), circuitos integrados específicos de aplicações (por exemplo, ASICs), produtos padrões específicos de aplicação (por exemplo, ASSPs), sistema – sistema-em-umchip (SOCs), dispositivos lógicos programáveis complexos (CPLDs), etc.
[00228] As unidades e seus meios de armazenamento de computador associados discutidos acima e ilustrados na FIG. 18, provêm armazenamento de instruções legíveis por computador, estruturas de dados, módulos de programa e outros dados para o computador 810. Na FIG. 18, por exemplo, a unidade de disco rígido 841 é ilustrada tal como o sistema operacional de armazenamento 844, programas de aplicação 845, outros módulos de programa 846 e dados de programa 847. Observe que esses componentes podem ser iguais ou diferentes do sistema operacional 834, programas de aplicação 835, outros módulos de programa 836 e dados de programa 837.
[00229] Um usuário pode entrar com comandos e informação no computador 810 por meio de dispositivos de entrada, tais como um teclado 862, um microfone 863 e um dispositivo de apontamento 861, tais como um mouse, mouse de esfera de rolamento ou bloco de toque. Outros dispositivos de entrada (não mostrados) podem incluir um manche, bloco de jogos, disco satélite, escâner ou semelhantes. Estes e outros dispositivos de entrada são frequentemente conectados à unidade de processamento 820 através de uma interface de entrada de usuário 860 que é acoplada ao barramento do sistema, mas pode ser conectada por outra interface e estruturas de barramento. Uma exibição visual 891 ou outro tipo de dispositivo de exibição também está conectado ao barramento de sistema 821 por meio de uma interface, tal como uma interface de vídeo 890. Além do monitor, os computadores podem também incluir outros dispositivos de saída periféricos, tais como altofalantes 897 e impressora 896, que podem ser conectados por meio de uma interface periférica de saída 895.
[00230] O computador 810 é operado em um ambiente ligado em rede usando conexões lógicas (tal como uma rede de área de controlador - CAN, rede de área local - LAN ou WAN de rede de área abrangente) para um ou mais computadores remotos, tal como um computador remoto 880.
[00231] Quando usado em um ambiente de rede LAN, o computador 810 é conectado à LAN 871 por meio de uma interface de rede ou adaptador 870. Quando usado em um ambiente de rede WAN, o computador 810 tipicamente inclui um modem 872 ou outro meio para estabelecer comunicações pela WAN 873, tal como a Internet. Em um ambiente ligado em rede, os módulos do programa podem ser armazenados em um dispositivo de armazenamento de memória remoto. FIGO. 18 ilustra, por exemplo, que os programas de aplicações remotos 885 podem residir em computador remoto 880.
[00232] Deve-se notar também que os diferentes exemplos descritos no presente documento podem ser combinados de maneiras diferentes. Ou seja, partes de um ou mais exemplos podem ser combinadas com partes de um ou mais outros exemplos. Tudo isso é contemplado no presente documento.
[00233] O Exemplo 1 é uma máquina de trabalho agrícola que compreende um sistema de comunicação que recebe um mapa de informação anterior que inclui valores de uma característica topográfica correspondentes a diferentes localizações geográficas em um campo; um sensor de posição geográfica que detecta uma localização geográfica da máquina de trabalho agrícola; um sensor in situ que sensoreia um valor de uma característica agrícola correspondente à localização geográfica; um gerador de mapa preditivo que gera um mapa agrícola preditivo funcional do campo que mapeia valores de controle preditivo para as diferentes localizações geográficas no campo com base nos valores da característica topográfica no mapa de informação anterior e com base no valor da característica agrícola; um subsistema controlável; e um sistema de controle que gera um sinal de controle para controlar o subsistema controlável com base na posição geográfica da máquina de trabalho agrícola e com base nos valores de controle no mapa agrícola preditivo funcional.
[00234] O Exemplo 2 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o gerador de mapa preditivo compreende: um gerador de mapa de característica de potência preditivo que gera um mapa de característica de potência preditivo funcional que mapeia as características de potência preditivas da máquina de trabalho agrícola para as diferentes localizações geográficas no campo.
[00235] O exemplo 3 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o gerador de mapa de característica de potência preditivo gera o mapa de característica de potência preditivo funcional que mapeia as características de potência preditivas do sistema de propulsão da máquina de trabalho agrícola.
[00236] O Exemplo 4 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o gerador de mapa preditivo compreende: um gerador de mapa de características de máquina preditiva que gera um mapa de características de máquina preditiva funcional que mapeia um ou mais dos valores de velocidade de máquina preditiva, valores de distribuição de material interno, valores de perda de grãos, valores de características de rejeitos, valores de qualidade de grãos para as diferentes localizações geográficas no campo.
[00237] O exemplo 5 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sistema de controle compreende: um controlador de ajustes que gera um sinal de controle de ajustes de máquina, com base na localização geográfica detectada e no mapa funcional preditivo de características de máquina, e controla o subsistema controlável com base no sinal de controle de ajustes de máquina.
[00238] O Exemplo 6 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o gerador de mapa preditivo compreende: um gerador de mapa de comando de operador preditivo que gera um mapa de comando de operador preditivo funcional que mapeia comandos do operador preditivo para as diferentes localizações geográficas no campo.
[00239] O Exemplo 7 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sistema de controle compreende: um controlador de ajustes que gera um sinal de controle de comando de operador indicativo de um comando de operador preditivo, com base na localização geográfica detectada e no mapa de comando de operador preditivo funcional, e controla o subsistema controlável com base no sinal de controle de comando de operador para executar o comando de operador.
[00240] O Exemplo 8 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores e compreendendo adicionalmente: um gerador de modelo preditivo que gera um modelo agrícola preditivo que modela uma relação entre a característica topográfica e a característica agrícola com base em um valor da característica topográfica no mapa de informação anterior na localização geográfica e um valor da característica agrícola sensoreada pelo sensor in situ na localização geográfica, em que o gerador de mapa preditivo gera o mapa agrícola preditivo funcional com base nos valores da característica topográfica no mapa de informação anterior e com base no modelo agrícola preditivo.
[00241] O Exemplo 9 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sistema de controle compreende adicionalmente: um controlador de interface de operador que gera uma representação de mapa de interface de usuário do mapa agrícola preditivo funcional, a representação de mapa de interface de usuário compreendendo uma porção de campo com um ou mais marcadores indicando os valores de controle preditivo em uma ou mais localizações geográficas na porção de campo.
[00242] O exemplo 10 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o controlador de interface de operador gera a representação de mapa de interface do usuário para incluir uma porção de exibição interativa que exibe uma porção de exibição de valor indicativa de um valor selecionado, uma porção de exibição de limiar interativa indicativa de um limiar de ação e uma porção de exibição de ação interativa indicativa de uma ação de controle a ser adotada quando um dos valores de controle preditivo satisfaz o limiar de ação em relação ao valor selecionado, o sistema de controle na geração do sinal de controle para controlar o subsistema controlável com base na ação de controle.
[00243] O Exemplo 11 é um método implementado por computador para controlar uma máquina de trabalho agrícola que compreende obter um mapa de informação anterior que inclui valores de uma característica topográfica correspondentes a diferentes localizações geográficas em um campo; detectar uma localização geográfica da máquina de trabalho agrícola; detectar, com um sensor in situ, um valor de uma característica agrícola correspondente a uma localização geográfica; gerar um mapa agrícola preditivo funcional do campo que mapeia valores de controle preditivo para as diferentes localizações geográficas no campo com base nos valores da característica topográfica no mapa de informação anterior e com base no valor da característica agrícola; e controlando um subsistema controlável com base na posição geográfica da máquina de trabalho agrícola e com base nos valores de controle no mapa agrícola preditivo funcional.
[00244] O Exemplo 12 é o método implementado por computador de qualquer ou todos os exemplos anteriores, em que a geração de um mapa preditivo funcional compreende: gerar o mapa agrícola preditivo funcional que mapeia os valores de característica de máquina preditiva tal como os valores de controle para as diferentes localizações geográficas no campo.
[00245] Exemplo 13 é o método implementado por computador de qualquer ou todos os exemplos anteriores, em que controlar um subsistema controlável compreende: gerar um sinal de controle de velocidade com base na localização geográfica detectada e no mapa agrícola preditivo funcional; econtrolar o subsistema controlável com base no sinal de controle de velocidade para controlar a velocidade de máquina de trabalho agrícola.
[00246] O Exemplo 14 é o método implementado por computador de qualquer ou todos os exemplos anteriores, em que gerar um mapa preditivo funcional compreende: gerar um sinal de controle de taxa de alimentação com base na localização geográfica detectada e no mapa agrícola preditivo funcional; e controlar o subsistema controlável com base no sinal de controle de taxa de alimentação para controlar uma taxa de alimentação da máquina de trabalho agrícola.
[00247] O Exemplo 15 é o método implementado por computador de qualquer ou todos os exemplos anteriores, em que controlar um subsistema controlável compreende: gerar um sinal de controle de ajuste com base na localização geográfica detectada e no mapa agrícola preditivo funcional; e controlar um subsistema de limpeza com base no sinal de controle de ajuste para controlar o subsistema de limpeza.
[00248] Exemplo 16 é o método implementado por computador de qualquer ou todos os exemplos anteriores, em que gerar um mapa preditivo funcional compreende: gerar um mapa de comando de operador preditivo funcional que mapeia comandos de operador preditivos para as diferentes localizações geográficas no campo.
[00249] O exemplo 17 é o método implementado por computador de qualquer ou todos os exemplos anteriores, em que controlar o subsistema controlável compreende: gerar um sinal de controle de comando de operador indicativo de um comando de operador preditivo com base na localização geográfica detectada e o mapa de comando de operador preditivo funcional; e controlar o subsistema controlável com base no sinal de controle de comando de operador para executar o comando de operador.
[00250] O Exemplo 18 é o método implementado por computador de qualquer ou todos os exemplos anteriores e compreendendo ainda: gerar um modelo agrícola preditivo que modela uma relação entre a característica topográfica e a característica agrícola com base em um valor da característica topográfica no mapa de informação anterior na localização geográfica e um valor da característica agrícola sensoreada pelo in situ sensor na localização geográfica, em que gerar o mapa agrícola preditivo funcional compreende gerar o mapa agrícola preditivo funcional com base nos valores da característica topográfica no mapa de informação anterior e com base no modelo agrícola preditivo.
[00251] O Exemplo 19 é uma máquina de trabalho agrícola que compreende: um sistema de comunicação que recebe um mapa de informação anterior que inclui valores de uma característica topográfica correspondentes a diferentes localizações geográficas em um campo; um sensor de posição geográfica que detecta uma localização geográfica da máquina de trabalho agrícola; um sensor in situ que detecta um valor de uma característica agrícola correspondente a uma localização geográfica; um gerador de modelo preditivo que gera um modelo agrícola preditivo que modela uma relação entre a característica topográfica e a característica agrícola com base em um valor da característica topográfica no mapa de informação anterior na localização geográfica e um valor da característica agrícola detectada pelo sensor in situ na localização geográfica; um gerador de mapa preditivo que gera um mapa agrícola preditivo funcional do campo que mapeia valores de controle preditivo para as diferentes localizações geográficas no campo com base nos valores da característica topográfica no mapa de informação anterior e com base no modelo agrícola preditivo ; um subsistema controlável; e um sistema de controle que gera um sinal de controle para controlar o subsistema controlável com base na posição geográfica da máquina de trabalho agrícola e com base nos valores de controle no mapa agrícola preditivo funcional.
[00252] O exemplo 20 é a máquina de trabalho agrícola de qualquer ou todos os exemplos anteriores, em que o sistema de controle compreende pelo menos um dentre: um controlador de taxa de alimentação que gera um sinal de controle de taxa de alimentação com base na localização geográfica detectada e no mapa agrícola preditivo funcional e controla o subsistema controlável com base no sinal de controle de taxa de alimentação para controlar uma taxa de alimentação de material através da máquina de trabalho agrícola; um controlador de ajustes que gera um sinal de controle de velocidade com base na localização geográfica detectada e no mapa agrícola preditivo funcional e controla o subsistema controlável com base no sinal de controle de velocidade para controlar a velocidade de máquina de trabalho agrícola; e um controlador de ajustes que gera um sinal de controle de comando de operador indicativo de um comando de operador predito com base na localização geográfica detectada e no mapa agrícola preditivo funcional e controla o subsistema controlável com base no sinal de controle de comando de operador para executar o comando de operador.
[00253] Embora a matéria tenha sido descrita em linguagem específica de características estruturais e/ou atos metodológicos, deve ser entendido que a matéria definido nas reivindicações anexas não é necessariamente limitado às características ou atos específicos descritos acima. Em vez disso, as características e atos específicos supradescritos são descritos como formas exemplificativas das reivindicações.
Claims (15)
- Máquina de trabalho agrícola (100), caracterizada pelo fato de que compreende:
um sistema de comunicação (206) que recebe um mapa que inclui valores de umidade de cultura correspondentes a diferentes localizações geográficas em um campo;
um sensor de posição geográfica (204) que detecta uma localização geográfica da máquina de trabalho agrícola;
um sensor in situ (208) que detecta um valor de uma característica agrícola correspondente à localização geográfica;
um gerador de mapa preditivo (212) que gera um mapa preditivo funcional do campo, que mapeia valores de controle preditivos para as diferentes localizações geográficas no campo com base nos valores de umidade de cultura no mapa e com base no valor da característica agrícola;
um subsistema controlável (216); e
um sistema de controle (214) que gera um sinal de controle para controlar o subsistema controlável (216) com base na localização geográfica da máquina de trabalho agrícola (100) e com base nos valores de controle no mapa agrícola preditivo funcional. - Máquina de trabalho agrícola de acordo com a reivindicação 1, caracterizada pelo fato de que o gerador de mapa preditivo compreende: um gerador de mapa de característica de potência preditivo que gera um mapa de característica de potência preditivo funcional que mapeia características de potência preditivas da máquina de trabalho agrícola para as diferentes localizações geográficas no campo.
- Máquina de trabalho agrícola de acordo com a reivindicação 2, caracterizada pelo fato de que o gerador de mapa de característica de potência preditivo gera o mapa de característica de potência preditivo funcional que mapeia as características de potência preditivas do sistema de propulsão da máquina de trabalho agrícola.
- Máquina de trabalho agrícola de acordo com a reivindicação 1, caracterizada pelo fato de que o gerador de mapa preditivo compreende: um gerador de mapa de características de máquina preditiva que gera um mapa de característica de máquina preditiva funcional que mapeia um ou mais dentre os valores de velocidade de máquina preditiva, valores de distribuição de material interno, valores de perda de grãos, valores de características de rejeitos, valores de qualidade de grãos para as diferentes localizações geográficas no campo.
- Máquina de trabalho agrícola de acordo com a reivindicação 4, caracterizada pelo fato de que o sistema de controle compreende: um controlador de ajustes que gera um sinal de controle de ajustes de máquina, com base na localização geográfica detectada e no mapa de característica de máquina preditiva funcional, e controla o subsistema controlável com base no sinal de controle de ajuste de máquina.
- Máquina de trabalho agrícola de acordo com a reivindicação 1, caracterizada pelo fato de que o gerador de mapa preditivo compreende: um gerador de mapa de comando de operador preditivo que gera um mapa de comando de operador preditivo funcional que mapeia comandos de operador preditivos para as diferentes localizações geográficas no campo.
- Máquina de trabalho agrícola de acordo com a reivindicação 6, caracterizada pelo fato de que o sistema de controle compreende: um controlador de ajustes que gera um sinal de controle de comando de operador indicativo de um comando de operador preditivo, com base na localização geográfica detectada e no mapa de comando de operador preditivo funcional, e controla o subsistema controlável com base no sinal de controle do comando de operador para executar o comando de operador.
- Máquina de trabalho agrícola de acordo com a reivindicação 1, caracterizada pelo fato de que compreende adicionalmente: um gerador de modelo preditivo que gera um modelo agrícola preditivo que modela uma relação entre a característica topográfica e a característica agrícola com base em um valor da característica topográfica no mapa de informação anterior na localização geográfica e um valor da característica agrícola detectada pelo sensor in situ na localização geográfica, em que o gerador de mapa preditivo gera o mapa agrícola preditivo funcional com base nos valores da característica topográfica no mapa de informação anterior e com base no modelo agrícola preditivo.
- Máquina de trabalho agrícola de acordo com a reivindicação 1, caracterizada pelo fato de que o sistema de controle compreende adicionalmente: um controlador de interface de operador que gera uma representação de mapa de interface de usuário do mapa agrícola preditivo funcional, a representação de mapa de interface de usuário compreendendo uma porção de campo com um ou mais marcadores indicando os valores de controle preditivo em uma ou mais localizações geográficas na porção de campo.
- Máquina de trabalho agrícola de acordo com a reivindicação 9, caracterizada pelo fato de que o controlador de interface de operador gera a representação de mapa de interface de usuário para incluir uma porção de exibição interativa que exibe uma porção de exibição de valor indicativa de um valor selecionado, uma porção de exibição de limiar interativo indicativa de um limiar de ação, e uma porção de exibição de ação interativa indicativa de uma ação de controle a ser adotada quando um dos valores de controle preditivo satisfaz o limiar de ação em relação ao valor selecionado, o sistema de controle gerando o sinal de controle para controlar o subsistema controlável com base na ação de controle.
- Método implementado por computador para controlar uma máquina de trabalho agrícola (100), caracterizado pelo fato de que compreende obter um mapa de informação anterior (258) que inclui valores de uma característica topográfica correspondentes a diferentes localizações geográficas em um campo; detectar uma localização geográfica da máquina de trabalho agrícola (100); detectar, com um sensor in situ (208), um valor de uma característica agrícola correspondente a uma localização geográfica; gerar um mapa agrícola preditivo funcional do campo que mapeia valores de controle preditivo para as diferentes localizações geográficas no campo com base nos valores da característica topográfica no mapa de informação anterior (258) e com base no valor da característica agrícola; e controlar um subsistema controlável (216) com base na posição geográfica da máquina de trabalho agrícola (100) e com base nos valores de controle no mapa agrícola preditivo funcional.
- Método implementado por computador de acordo com a reivindicação 11, caracterizado pelo fato de que gerar um mapa preditivo funcional compreende: gerar o mapa agrícola preditivo funcional que mapeia os valores de característica de máquina preditiva tal como os valores de controle para as diferentes localizações geográficas no campo.
- Método implementado por computador de acordo com a reivindicação 12, caracterizado pelo fato de que controlar um subsistema controlável compreende: gerar um sinal de controle de velocidade com base na localização geográfica detectada e no mapa agrícola preditivo funcional; e controlar o subsistema controlável com base no sinal de controle de velocidade para controlar uma velocidade da máquina de trabalho agrícola.
- Método implementado por computador de acordo com a reivindicação 12, caracterizado pelo fato de que gerar um mapa preditivo funcional compreende: gerar um sinal de controle de taxa de alimentação com base na localização geográfica detectada e no mapa agrícola preditivo funcional; e controlar o subsistema controlável com base no sinal de controle de taxa de alimentação para controlar uma taxa de alimentação da máquina de trabalho agrícola.
- Máquina de trabalho agrícola (100), caracterizada pelo fato de que compreende: um sistema de comunicação (206) que recebe um mapa de informação anterior (258) que inclui valores de uma característica topográfica correspondentes a diferentes localizações geográficas em um campo; um sensor de posição geográfica (204) que detecta uma localização geográfica da máquina de trabalho agrícola (100); um sensor in situ (208) que detecta um valor de uma característica agrícola correspondente a uma localização geográfica; um gerador de modelo preditivo (210) que gera um modelo agrícola preditivo que modela uma relação entre a característica topográfica e a característica agrícola com base em um valor da característica topográfica no mapa de informação anterior (258) na localização geográfica e um valor de característica agrícola detectada pelo sensor in situ (208) na localização geográfica; um gerador de mapa preditivo (212) que gera um mapa agrícola preditivo funcional do campo que mapeia valores de controle preditivo para as diferentes localizações geográficas no campo com base nos valores da característica topográfica no mapa de informação anterior (258) e com base no modelo agrícola preditivo; um subsistema controlável (216); e um sistema de controle (214) que gera um sinal de controle para controlar o subsistema controlável (216) com base na posição geográfica da máquina de trabalho agrícola (100) e com base nos valores de controle no mapa agrícola preditivo funcional.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/066,471 US20220110236A1 (en) | 2020-10-08 | 2020-10-08 | Predictive machine characteristic map generation and control system |
US17/066,471 | 2020-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
BR102021015205A2 true BR102021015205A2 (pt) | 2022-04-19 |
Family
ID=77050938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BR102021015205-2A BR102021015205A2 (pt) | 2020-10-08 | 2021-08-02 | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220110236A1 (pt) |
EP (1) | EP3981231B1 (pt) |
CN (1) | CN114287229A (pt) |
BR (1) | BR102021015205A2 (pt) |
CA (1) | CA3131182A1 (pt) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11864483B2 (en) * | 2020-10-09 | 2024-01-09 | Deere & Company | Predictive map generation and control system |
US11845449B2 (en) * | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
US20230320249A1 (en) * | 2022-04-08 | 2023-10-12 | Deere & Company | Systems and methods for predictive tractive characteristics and control |
WO2024035407A1 (en) * | 2022-08-11 | 2024-02-15 | Deere & Company | Systems and methods for predictive harvesting logistics |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5995895A (en) * | 1997-07-15 | 1999-11-30 | Case Corporation | Control of vehicular systems in response to anticipated conditions predicted using predetermined geo-referenced maps |
US6119442A (en) * | 1999-05-14 | 2000-09-19 | Case Corporation | Combine setting autoadjust with machine vision |
DE102009009818A1 (de) * | 2009-02-20 | 2010-08-26 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Erzeugung von Referenzfahrspuren für landwirtschaftliche Fahrzeuge |
BE1019422A3 (nl) * | 2010-07-14 | 2012-07-03 | Cnh Belgium Nv | Werkwijze en toestel voor voorspellende sturing van een landbouwvoertuigsysteem. |
US10115158B2 (en) * | 2010-10-25 | 2018-10-30 | Trimble Inc. | Generating a crop recommendation |
WO2015034876A1 (en) * | 2013-09-03 | 2015-03-12 | Agco Corporation | System and method for automatically changing machine control state |
DE102015108374A1 (de) * | 2015-05-27 | 2016-12-01 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Ansteuerung einer selbstfahrenden Erntemaschine |
CA2990438A1 (en) * | 2015-06-30 | 2017-01-05 | The Climate Corporation | Systems and methods for image capture and analysis of agricultural fields |
US10188037B2 (en) * | 2015-09-24 | 2019-01-29 | Deere & Company | Yield estimation |
DE102016111665A1 (de) * | 2016-06-24 | 2017-12-28 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Arbeitsmaschine und Verfahren zum Betrieb einer landwirtschaftlichen Arbeitsmaschine |
EP3298873B1 (en) * | 2016-09-21 | 2020-03-04 | Exel Industries | Control device for a vehicle, corresponding vehicle and method |
US10980166B2 (en) * | 2018-11-20 | 2021-04-20 | Cnh Industrial America Llc | System and method for pre-emptively adjusting machine parameters based on predicted field conditions |
-
2020
- 2020-10-08 US US17/066,471 patent/US20220110236A1/en active Pending
-
2021
- 2021-07-26 EP EP21187733.7A patent/EP3981231B1/en active Active
- 2021-08-02 BR BR102021015205-2A patent/BR102021015205A2/pt unknown
- 2021-08-20 CN CN202110964843.3A patent/CN114287229A/zh active Pending
- 2021-09-02 CA CA3131182A patent/CA3131182A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3981231A1 (en) | 2022-04-13 |
US20220110236A1 (en) | 2022-04-14 |
EP3981231B1 (en) | 2024-07-24 |
CA3131182A1 (en) | 2022-04-08 |
CN114287229A (zh) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12013698B2 (en) | Machine control using a predictive map | |
US12075724B2 (en) | Machine control using a predictive map | |
US11874669B2 (en) | Map generation and control system | |
BR102021016550A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
US20220113729A1 (en) | Predictive map generation and control system | |
BR102021015205A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021016725A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021016289A2 (pt) | Máquina de trabalho agríola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021016559A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021017139A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021017182A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021017298A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
EP3981234B1 (en) | Predictive map generation and control system | |
EP3981232A1 (en) | Predictive map generation and control system | |
BR102021016578A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funciona | |
BR102021017177A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021017257A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional | |
US20220113733A1 (en) | Predictive power map generation and control system | |
EP3981233B1 (en) | Map generation and control system | |
US11864483B2 (en) | Predictive map generation and control system | |
BR102021023437A2 (pt) | Método para controlar uma máquina de trabalho agrícola, e, máquina de trabalho agrícola campo da descrição | |
BR122021019410A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B03A | Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette] |