TW554388B - Methods of fabricating nanostructures and nanowires and devices fabricated therefrom - Google Patents

Methods of fabricating nanostructures and nanowires and devices fabricated therefrom Download PDF

Info

Publication number
TW554388B
TW554388B TW91106432A TW91106432A TW554388B TW 554388 B TW554388 B TW 554388B TW 91106432 A TW91106432 A TW 91106432A TW 91106432 A TW91106432 A TW 91106432A TW 554388 B TW554388 B TW 554388B
Authority
TW
Taiwan
Prior art keywords
segment
scope
patent application
nano
item
Prior art date
Application number
TW91106432A
Other languages
English (en)
Inventor
Arun Majumdar
Samuel S Mao
Eicke R Weber
Ali Shakouri
Richard E Russo
Original Assignee
Univ California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ California filed Critical Univ California
Application granted granted Critical
Publication of TW554388B publication Critical patent/TW554388B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02653Vapour-liquid-solid growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/068Nanowires or nanotubes comprising a junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/125Quantum wire structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0101Neon [Ne]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0106Neodymium [Nd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01084Polonium [Po]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04955th Group
    • H01L2924/04953TaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12036PN diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13062Junction field-effect transistor [JFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • Y10S977/763Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less formed along or from crystallographic terraces or ridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • Y10S977/764Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less with specified packing density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • Y10S977/765Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less with specified cross-sectional profile, e.g. belt-shaped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy
    • Y10S977/951Laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249949Two or more chemically different fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2916Rod, strand, filament or fiber including boron or compound thereof [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • Y10T428/292In coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2958Metal or metal compound in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Led Devices (AREA)
  • Thin Film Transistor (AREA)
  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)
  • Powder Metallurgy (AREA)
  • Light Receiving Elements (AREA)

Description

乃4388 五、發明說^7 【發明領域】 結晶ί ϊ:係ΐ關於—種奈米結才冓’特別有關於〆種實質 之最夫二只ί、"構,其包含有一沿著線軸之直徑,其直徑 可以制匕量小於10%,且其直徑約為2〇〇nm。此奈米結構 組合纟I構、種同質結構'一種異質結構或是上述兩種之 【發明背景】 第1圖顯示有政轉換不同型式能量(例如:熱力、電 Y機械與光學)的技術,其乃現代經濟之創造基礎,且 二,學與工程之發展最被認可的象徵。舉例而言,光電子 二是用來處理光學與電子之間的轉換,其展現出現代資訊 、'技方面之基礎。熱能與電能之間的轉換是能量經濟之一 種特徵’即使效率與轉換方法僅獲得微小的改善,亦會對 金融儲蓄、能量儲存量以及環境造成巨大的影響。相同 地’電子機械之能量轉換成已經成為現代機械與感應器之 核心技術’可使其廣泛地應用於工業技術上。基於其重要 十生’很自然的會聯想到奈米等級之科技與工程是否能夠在 月匕量轉換中扮演一個角色。無疑的,對元件之小型化以及 高效率的持續要求情況下,奈米等級之元件可以在能量轉 換中發揮作用。因此,以一維無機奈米結構或奈米線為基 礎之高品質的能量轉換元件,確實有其大幅度開發之必要 性。有鑑於此,本發明之技術會滿足上述需求,並克服習 知技術之缺點。
l〇12-4754-PF(N).ptd 第8頁 554388 -------- 五、f明說明(3) •播材料組成。例如有一種縱向的異質社 ,鄰之線段是由Si與SiGe這兩種不同=奈米線,其中兩 、 本發明之奈米線異質結構中,在〜1料所構成的。 一接合面具有相當明顯的輪摩。舉$ ^,晶材料之間產 遞變帶(transition zone),其輪廊與歹一來Ί才料之間的 子層相當。對L0HN而言,其遞變帶合q厚度20nm之原 的-個端點朝向相鄰之第二材口:著第:材料之二 一材料成分會降低,且約為第一材料^立於這個端點的第 99%。特別是,異質結構之成分變化距離由,向9中心處成分的 至第二材料之間1 // m距離内。對c〇HN而古,疋並在1 一材料 端點處是以放射狀方式量測。對任一 -巧/。成分之 帶會自一實質結晶或實質單晶材料變化:::;同巧= 料。不過,由於本發明之異質結構可包 ^刀 故後不7 Μ 4梦貝避變現豕 。 使用前述之本發明結構可以獲得各種表面配置型態, 分已經在先前描述。其他的例子為··單個或多個接合 JHN、單個或多個接合面之c〇HN、LOHN斑ΓΟΗΝ之組 軸向之夕重線段,因此基於特殊應用與需求,显質社構之 二部份的接合面會顯示出非常明顯的輪廓’其他部^則不 s 。,且,不但相鄰線段之材料成分可為急遽或緩和的變 化藉由控制異質結構之線段材料的摻雜,亦可在線段之 間形成急遽或緩和的摻質遞變現象。 7土 CD 、产 . « 一 " 部 面之L0HN、單個或多個接合面之c〇HN、L0HN與COHN之組 合、兩端子配置、N > 2端子配置、異質結構與同質結構之 組合、具有一個或多個電極(可為異質結構)之同質結構、 具有一個或多個電極之異質結構、具有絕緣體之同質結
1012-4754-PF(N).ptd 第10頁 554388 五、發明說明(4) 構、具有絕緣體之異質結構。在一 =面係構成一異質接合面。使用這些^構與配^之間的 束制電子的量子點、熱電寺殊區域中 2元件(如•奈米雷射)、奈米心 制動器與感應器)、纟種形式之能量轉換元牛(如·電機 至機械能、熱能轉換至光)以及其他元件。 如·光轉換 【發明之詳細說明】 為讓本發明之上述和其他目的、特徵 員易懂,下文特舉出較佳實施例,並配 明 細說明如下: 口式’作詳 1·介紹 本發明提供一系列奈米結構(nanostructure), t之為奈米線(nanowires)。本發明之奈米線包含 = 、·口構(heter〇structure),其乃由至少一種實質姓日絲, =另種不相同的材料所構成,則可於這兩種材曰:: 形成一"面(interface)或接合面(juncti〇n)。而且間 發明之奈米線所使用的異質結構,亦可採用材質 晶方向不同的兩種材料。此外,本發明之奈米線(一、、,。 夤結構或異質結構)的表面具有捕獲特殊的化學戋生^ 5 類的功能。實際上,實質結晶材料是用來製作異質結種, 可以使異質結構具有相同的實質結晶效果。在較佳 中,在異質結構中至少包含有一種材料具有實質結晶^例
554388 五、發明說明(5) 就這一點而言,如果材料表現出 r則最佳的選擇為使用實二律=一 直徑線= = 於2°-,… L ^ 不木線之直徑變化量小於1 〇%。因 :’本么明之奈米線具有各種剖面形狀’包含有圓形、方 ,、矩u邊形等,但是不限定為哪—種形狀。舉例來 祝’ ZnO奈米線具有六邊形剖面輪廓,Sn〇2奈米線具有方 形剖面輪廓,Si或Ge奈米線具有圓形剖面輪廓。 、本發明之奈米線異質結構的表面配置中,包含有兩個 或多個實質單晶材肖,其於空間中的排列方式可以開發出 新穎且獨特的量子限制效應。此種方式係期望開啟一條科 學發現之道路,並提供一種能量轉換技術之戲劇性變化的 期望。 本發明係借助熟知之氣—液一固 (vapor - liquid-solid,VLS)化學合成製程,本文中將會 描述此製程,且此製程已詳述於下列之參考刊物中: Wagner, R. S. , UVLS Mechanical of Crystal Growth";
Whisker Technology, ρρ·47-119(1970) ; Wagner, et al·, Vapor-Liquid-Solid Mechanism of Single Crystal Growth’1,Applied Physical Letters,Vol 4·,
No. 5,pp· 89-90(1964) ;Givargizov,E·,n Fundamental
Aspect of VLS Growth", Journal of Crystal Growth, Vol.31, ρρ·2 0-30 ( 1 975 )。在VLS製程中,若是採用廣泛 變化之半導體材料(如:Si、Ge、ZnO等)可以長出單晶奈
1012-4754-PF(N).ptd 第12頁 554388 五、發明說明(6) ' 米,’且其直經可控制在2〇〇nm以下,且最佳情況下可將 直徑控制於5〜5〇nm範圍内,而其長度範圍可為卜2〇 “瓜。 此外,也可利用III-V族、n-IV族、Π—¥1族等材料,以 VLS製程進行單晶奈米線之製作。 除此之外,若是半導體奈米線的直徑縮短至5~50nm, 則電子之量子束制效應會允許更改電子帶結構。此種束制 亦會強烈地影響奈米線之聲子傳送’纟乃因為顯著地修改 聲譜以及使用壽命。在VLS奈米線合成中,其表面能與成 長方向的重要性,乃在於奈米線的合成相(synthesizing phases)可呈現穩定狀態’至於在一個主體或薄膜中的合 成相則會呈現準安定狀態。也因此,具有獨特相態與性1 之材料可以創造出此種作用。 ' 2. 奈米線異質結構 請參閱第2與3圖,其顯示本發明之兩種奈米線異質結 構,.包含有(1)軸向的異質結構奈米線(簡稱為⑶腳)1〇以 及(i i)縱向的異質結構奈米線(簡稱為Lqhn) 1 2,其可用 作其他異質結構與元件之基礎材料。如第2圖所示^樣 品,軸向的異質結構奈米線10包含有一實質結晶之軸心 14,其乃被一不同成分材料之護套16所圍繞,且軸心“與 護套1 6之間形成有一接合面丨8。護套丨6之材質可為實質姓 晶或非晶質、高分子、+導體、氧化物或是其他類似的$ 料。如第3圖所不之樣品,縱向的異質結構奈米線12至少 包含有-實質結晶材料的線段20,其乃與一不同成分 之線段22相鄰,且這兩線段20、22之間會形成一接合面
554388 五、發明說明(7) 24 〇 : 本發明之異質結構可由任一個數 種配置之線段所構成,其乃如下所述 輛向、縱向或各 舉例來說,如第3圖所示之額外添。 (superlattice)線段26、28、30,這-的超晶袼 限定只包含兩個相鄰的線段。不過乂 ^不一個異質結構不 構,至少兩個線段是由不同成分Ϊ料所為—種異質結 成分材料是指(i )材料具有不同的化與、八成。所謂的不同 的或是添加過的材料),或是指(丨丨)=义(不論是本質上 方向(例如:相同的材料但具有不 =具有不同的晶格 向觀察時,奈米線異質結構可包含 θ9袼排列)。當以縱 間隔的或週期的線段是由不同材问f分材料,亦即 多重線段的奈米線,其中至少兩個線i ^者可視為一種 成。例如有一種縱向的異質結構奈米^疋发不同材料組 段是由Si與SiGe這兩種不同的材料^斤構成^ ^兩相鄰之線 第4〜7圖顯不之多種樣品,係為具有添加 的異質結構奈米線。如第4圖所#,一軸显:,軸向 米線32包含有一軸心34、一第一段護套36 '”負 '、、吉構奈 一第一奴軸心42、第二段軸心44以及一護套46。 〇匕各有 所示,一軸向的異質結構奈米線48包含有— =第6圖 50、第二段軸心52、一第〆段護套54以及—心 56。如第7圖所示,一軸向的異質結構奈米線^又^蔓套> 數個超晶格線段6 0、6 2、6 4、6 6、6 8、7 0,甘、έ有複 /、乃被一^護套
1012-4754-PF(N).ptd
第14頁 554388 五、發明說明(11) 度的關注且具有科技上的重要性。可是,因為一維控制的 困難性,使得奈米線合成在材料科學上仍然遇到巨大的挑 戰。碳奈米管(carbon nanotube)之合成中,雖然實際之 成長機制可避免掉’但是於氣相中進行之電弧放電、雷射 剝落(laser ablation)或是化學氣相沉積等卻遭遇到巨大 的挑戰。碳奈米管也可以製作成為模板,用以預製具有不 同成分之奈米棒(nanorod)。目前亦致力於使用薄膜板來 製作金屬奈米棒或半導體奈米棒。然而,大部分的奈米棒 是多晶質,其部份之使用性會受到限制。為了在一維系統 中獲得定義,確之結構性質,則需開發出普遍且可預測之 方法來合成單晶奈米線,以使其尺寸與長寬比達到一致 性。 3. 1 VLS 機^ 相較於上述之合成技術,氣-液—固 (vapor·-liQuid-solid,簡稱VLS)製程是一種更有效的方 ^1 ΐ化予口成單晶—維之奈米材料。VLS製程已廣用 始1 =早期t微米〖寸鬚狀物與近年來之各種成分奈米 方法乃先於奈米尺寸之催化液體中溶解氣體反應 圖之八It 一 ΐ成長方式形成單晶奈米鬚狀物。依據相平衡 圖之/刀析’可以選擇出適當的催化劑。 例一 太平圖,其顯示於一"夕(1 ")基底100上進行石夕 ;=此例中採用Μ氣體物的氣相 源並知用W米團㈣4作^_
554388 五、發明說明(13) 寶石)也可用來製作基底。金屬催化劑亦可使用Au之外的 材質。例如:GaN奈米線之製作,係於藍寶石基底上 使用Ni催化劑以及Ga、NHs氣體,其中最佳之成長^向為 ( 002 )。而且,可使用.〇2與(:的混合物,以於此奈米線中 摻雜Μη。相同地,Ga(c〇)N奈米線之成長,可使用下 ^a+NH3»Co ^Go3 04 +C^ Π =们?雜。GaN奈米線之成長,可使用下列條件: 1 ^ —藍寶石基底、Ga2 03 + C的混合物。 a至G a Ν Ζ η 〇奈米線之成長,可使用 劑、C-藍寶石基底、Ga+NH3 —、211〇+(:的混合物:催化 例二 J用高溫TEM觀察Ge奈米線於同一環境下的成長,會 曰 > 里的Ge粒子以及Au奈米團簇散佈在TEM格子上,此乃 提供作為於真空腔體中進行加熱步驟的Ge氣相源。而且發 ==,當,成Ge〜Au合金之後,Au奈米團簇會開始熔解。 /二^Ge乳相攱結製程中,會使液滴之尺寸增加。當含有
Ge成分之液滴達到過飽和時,^奈米線便會自液滴中喷出 ^開始成長。在第丨2圖顯示中,實際觀察奈米線成長 間可反映出VLS機制。 ^ 依據追些觀察,可明顯得知以下有關於奈米 觀點: 、 (1)具有不同成分(如·· Si、Ge、GaAs、CdSe、GaN、 AIN Bi2Te3 Zn〇等)之無機奈米線的合成,可使用適合之 金屬催化劑、t體預製體與反應溫度。後續則可由檢查二
554388 五、發明說明(14) 元相圖或三元相圖以決定。 (2) 可使用傳統之摻質,如:b、Ph、As、In與A1。 (3) 材料可選擇自二族、三族、四族、五族與六族等 元素,且可包含有quaternaries以及teriaries以及氧化 物。實質上而言,任何一種半導體材料及其合金皆可用來 製作本發明之奈米線異質結構中的相鄰材料。 (4) to the first order approximation,催化劑係 定義奈米線之直徑。較小的奈米團簇會形成較薄的奈米 線。此亦成功地證明於GaP、Si奈米線系統中。 以VLS機制進行合成,其特徵為居間的表面活化劑會 造成蟲晶成長,其中藉由防止半導體成長表面之復原,居 間材料(如:熔解金屬之奈米粒子或單層)會催化磊晶成 長。由於沒有穩定的復原(因為復原需要持續的拆解與再 建^因此相較於傳統了磊晶成長技術,VLS成長技術可以 f t:=以及低溫的條件下進行。在低溫下,▼以提供較 二i ^達新的相態中’可製造明顯的界面輪廓,可 /V 中的奈米線材料產生形態演化(例如··瑞利 分解(Rayleigh breakup))。 3·2,基复平衡 成
二:ΐ::學可使大塊或薄膜中的不穩定相有機會合 性,尤豆:ί ί !一體積比可提高自由能之表面能的重要 三五族7 =二t两度異向表面能的結晶相。舉例而言,在 衡邊界,閃:t之半導體的多型體中,相較於-整塊之平 、 ^ (立方晶系)與纖鋅礦(六方晶系)之間的平
554388 五、發明說明(15) 衡相界會因壓力與溫度而產生偏移。例如,具有相同成分 之奈米線,比較<111>配置之閃鋅礦奈米線以及<〇〇〇1>配 置之纖鋅礦奈米線’圓柱狀的纖鋅礦奈米線會比較相似於 伍耳夫(Wullf)平衡形狀,其暴露出低表面能的菱柱切 面。在先前之奈米線研究中,以OMCVD可觀察到纖鋅礦相 態確實為GaAs之較佳相態。而且,基底與奈米線之間的磊 晶關係可用來捕捉奈米線型式之準穩定相。此種策略已經 成功地運用在薄膜成長中。 3· 3查米線内的異質磊总 半導體異質結構可以限制電子與電洞,可以引導光 線,且可進行選擇性的摻雜,但是如果異質結構是存在於 2 2 ί Ϊ Ϊ區域内’則在介面處不可以產生差排現象。材 二$丨β ^靶圍為,須在基板上長成相干(coherent)磊晶, 達H夠厚度,且會高度受限於晶格錯合(1州— 7差1排之妨對於一個晶格錯合而言,藉由薄膜之彈性、錯 之,能與晶體發生學(如:柏格向量之平面端點 干異&磊曰°镇以眩估汁出相干磊晶之平衡臨界厚度。雖然相 是;專膜會』忐進可2 f虽成長且超越過平衡臨界厚度,但 態。VU太文t峻穩疋恶,則差排機制會使之變成鬆弛狀 ΐ衡臨面產生變化,進而顯著擴增 兩個主要的效應如下所述。 長方向之遝料八 4 第一個效應為,垂直於成 態變成鬆弛。理想的薄膜形態中,應 在於母早位面積之相干薄膜中,且此應變能會隨
554388 五、發明說明(17) "" " 言,此製程允許一維之帶隙工程“⑽仏邛 engineering),則可製作一系列多樣的量子點(quantuffl d = 1:S)。在薄膜成長中,量子點通常是在溶液中成長或是 藉由形成島狀物而成長。由於無法事先知道這些量子點的 =置,所以非常不容易聯繫個別的量子點。藉由準確地在 一奈米線中整合量子點,可以避免聯繫上的困難。這就 是所稱之’’奈米線系統(system 〇n an nan〇wire)n。此種 ^ f之一維奈米結構提供較多的機會去探究低維系統之新 的物理現象。此極有可能應用於主動性奈米電子、奈米光 學之奈米熱電子以及奈米電子機械等等。而且,這可以用 m具有r不同晶格結構之奈米線,如:閃鋅礦、纖鋅 ί;之^等奈米線。其製作方式可於遙晶成長之基 材與奈米線關係中,俊用石^装 土 相 1史用不同的基材來網羅某些準穩定 3·5 米線(簡稱為 使,It作之奈米線作為物理樣板以 於Ge太+ # ΐ 冓。例如:分解線表面之有機分子,可 伸以形成具有強列雷:==的石厌塗佈,如此可立即延 涂佑一麻往不米線,其後續可以低溫化學氣相沉積方弋 成县=/的八^^^層,可有效防止VLS晶格沿著、後^ 成長,且可促佶A〗r〇 Λ 阳物〜者線軸 I,甘#太使八層之表面過度成長。但要、、主立沾 疋,其護套可為晶質或兆θ所 ^ 1罟,主思的 體、氧4卜你+ ' 日日負,且可包含有高分子、丰導 體氧化物或類似的材質。為了形成_,須以此述= 554388 五、發明說明(18) 何一種方式先製作一個單段的奈米線或是一個L〇HN。單段 的奈米線或是一個LOHN將會成為COHN的軸心,然後會被用 作為一個製作護套的樣板。例如··護套的製造,可於單段 的奈米線或是一個L0HN的表面上進行單體聚合。或者是, 以任何的物理氣相沉積(PVD)或化學氣相沉積(CVD)製程於 奈米線或是L0HN表面上進行塗佈。軸心/護套之材質不限 制,可為下列之組合,如:Si/ZnO、Ge/C、Si/Si02、 Sn02/Ti02、GaN/ZnO、GaAlN/GaN 等等。重要的是,軸心/ 護套材質之配置數目亦不受限。即使是氧化物,如:
ZnO,亦可用作為軸心材料。下列為軸心/護套之材質組 合,且軸心與護套之材質均為單晶,例如:Ti〇2/Sn〇2、 M :Ti02/Sn02(M:Mn、Fe、Co、Cr 等)、PbTi03/Sn02、 BaTi03/Sn〇2、LaMn03/Sn02、HTSC(高溫半導體)/Sn02。 此種方式也可用來合成一奈米管。例如:可於一以奈 米線軸心塗佈一層有機分子材料。其後於真空下進行熱 解’此有機材料表面會被碳化。然後,於8 〇 〇〜1 〇 〇 〇它溫度 下,此Ga奈米線軸心會被熔解或蒸發,而成為一碳奈米 管。 為了了解這些奈米線之結構特徵,須倚重TEM以及 XRD。TEM與XRD均可決定出奈米線之結構與相態。而且,籲 TEM更可提供個別奈米線内之缺陷結構、介面處之區域微 結構、成長方向、整體結晶性等等。 4· 奈米線性曾 4· 1 |子結槿斑性皙
1012-4754-PF(N).ptd
554388 五、發明說明(19) 4.1.1 奈米線内的介面粗超度與位 泛地研究於量子線令,此量 ^刼演的角色已經被廣 f是分離式閘極之電子靜態束制方:義:使用電子束黃光 出從彈道傳送至漫射傳送的變,。在低溫下已經關查 :量子化與一般波動。使用 的或負的磁電阻、傳 且,摻雜太半L,准電子材料中電子傳送之變化性。而 機會去研究在各種電子密卢的故可提供額外的 2圖與第15圖,中,X ·政·射機制。請參閱第 雜可以使離子化掺 :^寬廣页隙之材料調整摻 而達到較高之遷移;:與自自由由//^2在 千 將自由載子侷限在本丰始雄太# 土丄 心區域内會降低表面散射 。佔^ '、二 奈米線之異質結構介面子:據了鄰近於 ^^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 心4 k二狀怨會明顯地影響奈米線之電子性質。其中 之叮舍現如同一維共振穿遂效應之庫倫閉鎖現象。 較佳之模型建立於下述之兩階段。首先,使用簡單的 一維帶結構模型以及鬆弛時間近似值,於高溫下沿著奈米 線來ΐ測電子遷移率。然後,使用精製的模型(如:變量 範圍Α跳模型),來說明表面/介面之散射,並計算溫度與 導電性之依存關係。其他的應用,例如:聲子光譜以及散 射時間之修改、電子聲子反應等,可使用波茲曼
第26頁 554388 五、發明說明(20) (B〇ltZmann)方程式之蒙特卡羅(Monte Carl0)模擬。注音 到,異質結構奈米線可包含數種束制之介面聲子模型,= 可自整體半導體中之任一個以不同的方式散射電子。、 4.1.2 為了要描繪塊體的異質結構奈米線的電子特性,量 之摻雜濃度輪廓、電子遷移率、異f介面處之電壓 能障是相當重要的。在提供奈米線材料之前,必、須藉 統之塊體或薄膜的特性描繪方法進行仔細的檢查 米,之電子導電性是一個重要的係數,且須於一個大的^ 度範圍内定義其特性。&外,電磁阻之量測可以提供較; f關於表面散射如何影響電子輸送的訊息。熱電性質之 1測如·賽貝克係數(Seebeck coefficient),可以提 供較多有關於靠近費米表面(Fermi surface)之電子密产 狀態以及散射機制的訊息。&離子發射電流之量測可以又 來決定沿著奈米線方向之異質結構能障。 彈道電子發射顯微鏡(ballistic elec讨⑽emissi⑽ m1Cr〇scopy,BEEM)是一種較理想的技術,可以量測奈米 線結構之區域電子性質,且可描繪出軸向異質結構之特 徵。BEEM是一種有效的低能量之側面影像以及光譜的電子 由其對於埋置於表面3〇nm以下之基材可提供⑽等級 的解析度。BEEM已經應用在成長於GaAs上之自動聚集量子 點結構的研究。 成長於GaAs上之GaSb量子點可藉由STM與⑽]^影像來
1012-4754-PF(N).ptd 第27頁 554388 五、發明說明(21) 觀察。在STM影像中,一個粗糙的圓形外貌(直徑約5〇nm且 高度約5nm)標示出一個埋置點的側面位置。在BEEM影像 中’與STM影像之此點輪廓對齊的區域較周邊暗,這暗示 著由於電子反射偏離此點之電壓能障,因此通過此點之 BEEM電流降低。能障之高度(如:區域帶偏移量)可以自開 啟與關閉之間的BEEM光譜變化中取得。在光譜之許多 點中,開啟點與關閉點是由一修正之貝爾-凱瑟平面穿遂 模型(Bell-Kaiser planar tunneling model)所配置,其 可提供GaAs上之GaSb點一個區域導電帶偏移量約〇· 〇8 土 0.02eV。第17與18圖顯示GaSb/GaAs自動聚合之個別量子 # 點的BEEM光譜特性。 、除了 s測液直接合面帶偏移量的性質之外,此技術亦 已用來研究GaAs^Nx合金材料的電子帶結構、Galnp之帶結 構上的序列效應、以及束制於A丨丨nP能障之間的丨np量子點 的共振穿遂。 由上述可知,BEEM不但可以用來描繪個別奈米線之電 子性質’還可以縱向異質結構之變化性,如第1 9圖所示之 結構1 50。限制效應會使得在BEEM電流所示之結構可藉由 第二推導(second-derivative,SD)之BEEM光譜進行分 析0 4. 2 光學性質 由於表面狀態所扮演的角色以及在表面狀態上的非放 射再結合,因此從奈米線中觀察光放射現象遭遇相當大的 挑戰。在COHN使用中,電子會被束制於奈米線内部之中心
第28頁 554388
奈米線異質結構中的聲子傳輸,會隨著整個半導體中 的聲子傳輸而產生巨大變化,其主要原因為兩個方向上的 強加限制會使分佈關係產生明顯 ,里
之^面存在會誘發多種聲子型式,且這些聲子形 於;I面上。如此一來,除了兩個橫向的聲部分枝與一個直 向的聲部分枝之外,還會在整個半導體中產生多種不同的 耷子極化。聲子溫度之變化源自以下兩個原因:第一,聲 子-聲子之介面會變化,此乃因基於能量不滅以及隨著分 佈關係而變化的波向量關係的選擇規則;第二,相較於整 體半導體而言,5〜50nm直徑之奈米線的邊界散射會變得更 強。最後,由於奈米線束制允許我們進入新的結晶相,所 以能夠徹底地修改聲子散佈關係。
本發明之奈米線的熱與熱電性質,可採用一種微製作 結構來量測,其具有兩個懸掛的加熱器,且此加熱器^含 有電子束微影系統所製作之線圈。在測試中,係將一個多 重牆壁之碳奈米管束橫跨放置於這兩個加熱器上,用以架 出兩個加熱器的橋樑。藉由監控一個加熱器之熱輸入以及 兩個加熱器之溫度,可以獲得奈米管的熱導電值。第2〇圖 顯示於10 κ - 350 κ範圍内,此多重牆壁之碳奈米管的 熱導電性與溫度的函數,其中T2代表在二維材料中聲子束 制之聯想變化。熱導性之單調增加係顯示聲子-聲子散射 的抑制以及非常長的平均自由路徑(約i 。此研究亦可 用於量測本發明之C0HN與⑶㈣的熱導電性。而且,採用分 批製作之原子力顯微鏡(atomic force microscope,
554388 五、發明說明(24) AFM)、頂端設置有溫度感應器的散射熱顯微鏡(scanning thermal microscope,SThM),可以獲得 COHN 與 LOHN 之區 域性的熱性質與熱導特徵。 奈米線的特性計算係集中在以下三個觀點:(丨)聲子 月欠佈關係之计算,(i i)以摻質散射、奈米線尺寸與邊界散 射為基礎之聲子壽命的計算;(iii)聲子輸送之計算。因 為波效應(聲子帶隙)已經考慮在散佈關係中,所以可以用 豕特卡羅模擬(Monte-Carlo simulation)來解出波茲曼輸 送方程式(Boltzmann transport equation),其可簡單算 出奈米線之不同極化分枝的密度狀態、頻率相依群組 以及聲子壽命。 4· 4 i電性質 半導體的熱功率係與以下三種性質產生相依關係: (曰1)罪 費米能階的電子狀態密度;(i i)電子有效質 ΐ走^ 載子散射速率/因為在奈米線中的電子經由量 速率),因可此以:顯地改變電子帶結構(狀態密度以及散射 ί:用以Λ 建造出帶狀結構以及費米能階的位置, > ?熱功率。前述之懸掛的力献 個奈米線,以量測豆、、w碎盥你兰叼力…、兀件可以検越一 。K〜35〇。K ,皿度與位差。例如:第21圖顯示在10 值,豆中顯-视内,多重牆壁之碳奈米管的熱功率量測 支配載正數熱功率係表示在奈米線中以電洞作為 熱電性質,:十兀件可以用來量測奈米線異質結構的 电『玍 > 如·前述之COHN與L0HN。 4.5墨j;性質
554388 五、發明說明(25) 纖鋅礦型結構提供一種自發電偶極矩(sp〇ntane〇us electric dipole moment),因此具有此種結構的材料會 產生熱電性與壓電性,這些性質可容許強大的線性耦合形 成於機械應力與極化之間(直接壓電效應)以及一個溫度變 化與極化變化之間(熱電效應)。纖鋅礦型奈米線(如: GaAs、InAs、GaN、A1N、ZnO等等)以及奈米線異質結構會 因此而可應用在奈米規格之感應器與操縱器上。有潛力之 應用包括冑··、整合原子力顯微鏡探針、具有單分子感應性 之共振負里感應器、奈米規格之熱感應器、可調整電場 GHz之濾波裔、大位移之奈米束操縱器以及奈米規格之流 、>,鋅礦型奈米線中,自發極化的方位係沿 f軸’因此沿著線軸所提供之電場與金屬機械應力會產 t的壓電響應。最簡單的電極配置係 =點上,而經由直接壓電效應 與頂】 = 生大的應力。對於應用在共振感應ί
:線之一端必須不受機械性控制,而且 查接近之導電表面來偵測奈米線頂端之電荷, 穿逐的方式來移除或增加電荷。 二 第22圖顯不一個管输祐很 4+ m來量測放置於—導貫電驗基用,懸… 160的機械運動,而且同日^可之壓電或熱電奈米 橫跨奈米、線之靜電位* J利用—電壓感應器166來量 ^位此。為了達成電性與機械性之量測
554388 五、發明說明(26) AFM懸臂探針164之端點係接觸奈米線上的一個金蓋 168 〇 5· i Ge之區堍掊區塊的成長 對於多種有潛力的半導體奈米線應用,奈米規格光電 子學之異質接合以及超晶袼的形成是相當重要的。有鑑於 此,已經發展出一混成脈衝雷射/化學氣相沉積(hybrid pulsed lased-chemical vapor deposition , HPL-CVD)製 程,用以合成一具有軸向序列異質結構之半導體奈米線。 雷射移蝕製程會產生一可程式化脈衝氣相源,則奈米線成 長可在線軸上以明確的合成物輪廓進行區塊接區塊方式成 型。具有軸向Si/SiGe超晶格結構的單晶奈米線已經被成 功合成,此種獨特的異質一維奈米結構極 光元件與熱電學中。 ^用在^ =導體積體電路之成功大數取決於仔細控制摻 …負、、口構的月匕力。貫際上,二維半導體介面 存在於光電元件中,如 《弁— , τ 戈 心九一極體、雷射二極體、吾; 串集雷射以及電晶體。一飧太半 里子 製作亦對於潛Λ甚I,、准/未、、、。構(奈米線)之異質結構 差器)相告重I二1°. ΐ效光發射源以及較佳之熱溫 ;)可用靖薄膜異質結構以及超晶格乂\刀= 乏一個普遍的合成方案,用以製作具有明確相疋干先心乃缺 維異夤結構的異質接合面盥超曰。 "面之一 或奈米管之研究她e ; p ^ 。早期對半導體奈米線 之異質結構=ί統,其形成有少量例外 包3有·形成於碳奈米管與矽/碳奈米線之
554388 五、發明說明(28) 中’利用二雙頻的Nd-YAG雷射(波長532nm,6Hz,功密度 l〇J/cm2.單位脈衝)可使純Ge靶材182產生脈衝剝蝕,進而 產生一脈衝型式的Ge氣相。H2的流速約為1〇〇sccm,Sicl4 與&的比例約為0.02,系統壓力約為一大氣壓’反應溫度 約為8j0 C〜95(TC。在這個溫度下,Au薄膜186形成一含“ 的液態合金,且自發性地崩離成為奈米尺寸液滴型式的 Si合金188。然後,持續將y種沉積至“_以合金液滴 如^中Si奈米線! 90會開始成長至接近過飽和。當關掉 J射時,只有Sl種會沉積至合金液滴中以及成長一純^區 而丄rU是在成長製程中開啟雷射,會產生Ge氣相, s H 均會沉積至合金液滴中。當開啟雷射時, β二:“ 2會自固/液介面中析出。藉由週期性的開啟盥 :閉【(:順序很容易程式化),便可在各個奈米匕 $ £,接區塊型式的以“丨以超晶格194。 耘類似成塊共聚物的活性聚合合成。 成長t 與乾ί他ίΞΠ的4米:結構成長可以使用不同的氣體 # ^ # . ° PbSe成長可於Ar氣體中對PbSe/Au靶 受= = 的… ;電腦操縱雷射以選擇乾材。因此二個挺材且利 或化學氣相沉積製程均可;供乳相之物理 MBE。例如:ϋ -担^M用且不限制於PLD、CVD、 預定氣體之流動。〃源可裝配有電腦控制閥,用以脈衝
1012-4754-PF(N).ptd 第35頁 554388 發明說明(29) 第25圖顯示一個使用例四描述之製程所合成的奈 陣列200,且可獲得此合成奈米線陣列的掃描式電子「、顯^/線 鏡(scanning electron microscopy,SEM)影像 〇 在例 中,係將厚度為20nm的Au薄膜置於Si(lll)基底2〇2上,、 以黃光製程將A u薄膜的圖案定義成為四個區域,而 ^ > — 叫便母個
薄膜區域係被嫁成四個液滴’每個液滴係用以作為一相 奈米線之觸媒。在成長過程中,係週期性地開啟雷射5§秒_ 鐘、關閉雷射25秒鐘,且此循環須重複進行達丨5 $鐘。^則 如同先前所示,Si奈米線會沿著[:[丨丨]方向成長,進而在 S i (1 11)基底上完成定性磊晶奈米線陣列之成長。當合金 液滴固化之後,在每條奈米線2〇6之頂端204上會顯胃現"成為 :個亮點。對奈米線的嚴密檢查中顯示,頂端係呈現類似 花的形狀,其乃於形成於液態合金液滴的固化過程甲。奈 米線的直徑範圍約為5〇nm〜3〇〇nm。於2〇〇KeV下操作Phi 1 ip CM20 0 TEM,可獲得兩條奈米線的STEM影像,其亮域模式 中可看到沿著線軸且週期性出現的暗條,其乃由s丨Ge合金 與si等線段所週期積疊而成。Ge原子的剖面電子掃描係大 於S 1的剖面電子掃描,因此顯現出的s丨以合金塊體會比純 ~塊體還要暗—些。使用能散χ射線光譜儀
(energy-dispersive X-ray spectroscopy,EDS)可以檢 f出較暗$域内的化學成分,結果如第26圖所示,發現有 、,的Sl大峰以及明顯的以摻雜(〜12%重量百分比的Ge)。 進步對Ge摻雜進行的週期性調整,係沿著奈米線成長軸 以掃描一聚焦的電子束,並追蹤此線中X射線訊號自Si與
554388
Ge原子中的變化,如第27圖所示與以的乂射線訊號顯 示出週期性的調整以及非相關聯的強度。㈣話說,當Ge m ^達到-最大值時’則Si則射線訊號會達到一 最小值,如此證實si/siGe超晶格係沿著線軸而形成。我 們注意到的是,此階段中,奈米線之si/siGe介面的陡峭 性並不理想、’但相信這可藉由準確且快速的氣相配料/開 關系統(如··分子束製程)獲得改善。 必須強調的是,VLS奈米線異質磊晶成長的彈性邊界 狀態,藉著在平坦基底上進行磊晶薄膜成長,可供予超晶 格奈米線創造無差排介面的可能性,此種無差排介面在習 知的二維配置中是不穩定的。雖然相干性異質蟲晶薄膜成 長良好,可超越平衡臨界厚度,但是差排機制會使薄膜由 準穩態變成鬆弛態。VLS奈米線的型態提供顯著延伸平衡 與動力臨界厚度的機會,或相當於,在一個厚度條件下使 邊界條件改變,則可使晶袼不匹配變成互相適應。 利用一選擇面積電子繞射儀(selected area electron diffraction,SAED)以及一高解析度穿透電子 顯微鏡(hig-resolution transmission electron microscopy,HRTEM)可以定義出此超晶格奈米線的高度結 晶性質。將垂直於奈米線軸的^⑽圖索紀錄下來,再^二 圖案編成索引以作為沿結晶Si之[110]區域軸的繞射,、並 建議奈米線成長確實沿著[Π1]方向發生。在HRTEM影像中 可進一步證實,其清楚顯示(111)原子平面(間隔〇.3、u^) 垂直於奈米線軸。若STEM影像中無法馬上看出介面對比,
554388 五、發明說明(32) 同的反應條件下,成 示,由實驗觀察之ώ、具^二與直徑有相關性。如第28圖所 較小的奈米線直徑,^厂與奈米線直徑的關係圖可知, 應(Gibbs-Th〇ms(J 較小。吉布斯-湯瑪斯效 增加Si氣相壓力,則告太:化解釋此種趨勢’例如: 超飽和之降低值與奈;:直徑⑷=時為可降低超飽和。 其中,△ 系為營養(氣或 差分;△…平坦介面上的V同;二位能,間的有效 表面之特別自*能;Ω係為s Γ的;1子差體刀積,V:為奈米線 ΊΓ r Αμ ^ j ^ y 其中’ b為不相關於超飽和车 ι/d之線性相關函數““之係數。可推導成V-正比於 *令夸巧 Φ △凡二丄 打 ~lcr~Tc 其中’dc代表臨界直徑。 在GiVargiZ0v對典型CVD晶格成長研究微 觀察,其同意Si/SiGe奈米線成長資料可符合^η = 2。1 、
第39頁 554388 五、發明說明(34) — __ (或加熱)的現象。相反的,當一、、w疮兰 會產生一電流以通過一電位;,=電材料時, 流氣相壓縮致冷器以及氣基引擎件 ^ =於電 原因為:⑴包含任何移動零件;(二二 允許縮小化。此固態元件現今不被廣泛應用的V因為2 表現(弓丨擎效率以及致冷器的表現係數(coefficient /、 performance ’COP))遠低於運用氣體/氣相的系統。= 而’若:可以改善其表現以比得上或優於氣相系· '、、: 以想像得到,如何使用或轉換 =,·、,、彳可 Γ:ΐΓ不的理由可促使運:電變:, 件。=下述可知’近有使用本發明奈米線可1^成、電兀 應用於固態的熱電致冷器與發電器 : :列之優'點:叫〜^,其中s代表熱功率,km 性,σ代表電導性,τ代表絕對溫 ^表熱導 前最廣為使用的材料,其ζτ=1。理論上。及為當 =致:器與引擎的表現便可以比得上氣相壓二】:二 矛、,右熱電材料為奈米結構,電子與聲子@ # ^由貫 :劇烈地提高其ΖΤ值,如第29圖所示: = : = : 線,如果線的直徑為5〜10nm,則ζτ = 2〜5。 、1丁、米 6· 1 · 1查」Ui設計 佳的Ξ以值:具備高的電子遷移率,所以較 選擇的材料性會反比於原子質量(。,所以 員,、有向Γ值,這就是為什麼Bi或奈米
554388 五、發明說明(35) 線ί是熱電應用之良好候選者。藉由減少奈米線直徑合進 ==其熱導性胃,這是因為可預期地在= 2 仫小於2〇nm之奈米線的邊界散射。除了Bi2Te之 =,亦可使用其他材料’如:SiGe、InGaAs,/ 3 可以降低光子輸送。 。至政射 6· 1 · 2 計 械強产於:f線:艮脆弱’所以須嵌埋至一母體中以提供機 二,或^隨奈米線陣列可以埋入— 電元件2一 10勺a古4中,#第3°圖所示之熱電元件210。熱 牛10匕3有一對上、下絕緣基板212、214,苴内設 224 雜之/求線陣列216以及一“參雜之奈米線陣列 1、中,η払雜之奈米線陣列216係成長於一基底218 不米線220係埋入一聚合物母體222中;ρ摻雜之奈 二聚^i224J系成長於一基底226上,其奈米線228係埋人 妖查:母體230中。利用串聯的電連接方式以及並聯的 Γ式將η摻雜以及13摻雜之奈米線陣列晶圓接合在一 ^,以成為一熱電冷卻器與發電器, 人物母俨η $合物洛液’以使奈米線陣列埋入-聚 觸塾、24〇(位於奈米線之頂端卜應優先將聚 X至暴路出奈米線,然後才沉積該金屬接觸墊。 成物的設計參數為:(a)奈米線的表面密度;(b) 件厗度。這個構想是為了開發出具有超低熱導性之聚合 第42頁 1012-4754-PF(N),ptd 554388 五、發明說明(36) 物(k = 0· lW/m-k)以及高功率因子 高ZT值。元件表現之特徵可經 σ)的奈米線,以達成 的有效電導性元件的有效埶"列量測獲得:(a)元件 (Seebeck)係數;(d)反映出通過、、一性,(c)有效賽貝克 (e)反映出溫度差與熱流率的電功&件。之電流的溫度差; 6. 2 元件設3 ,、 奈米線合成材料具有兩個不 光元件上。一方面,電子之低因;、〖生質’可以應用在發 用來調整吸收與發射波長,沿著=束制與能階之量化可以 許不同材料間之晶格不匹配性具=米,之一維晶格成長允 收與發射光譜的範圍變寬廣。^ 較高的彈性,進而使吸 導體的折射係數(3 4)遠高廣於空^ 創造出-種尺时不匹配性,成為石纖維(1〜1.5),這 連結的其中-個主要難題。這也Ip心t導體之間的光線 量子效率,因為大不分的發射光;:二=2體的外部 收。 丁㈢於材枓中破再度吸 以各種II I-V族與IIVI族奈米線之雷w έ 如第31圖所示,-奈米線聚合物U二 之1作係依照前述方式,將複數條奈米線252整人 合物母體中254,以提供作為-具有低有效係數二有 效材枓。聚合物折射係數之變化高於傳統半導體一子旦 級]結合大的熱-光係數以及半導體奈米線之光電性里, 可以提供一個新的能量轉化元件。 、 554388 5·、發明說明(38) 性質可經修改而超越現八 法所獲得的結果。 本發明之奈米線可以 外,尚包含有但並不限^來製作各種元件,除了前述之 “…子遷下元件: ⑻高電子遷移率線(使用c_); 提供外赠以耗盡/V加 (C)用於紅外線偵測器之奈米線(使用LOHN以及嵌埋 的量子點); (d) 用於1D共鳴穿遂二極體之奈米線(使用L〇HN以及 嵌埋的量子點); (e) 用於單電子電晶體之奈米線(使用L〇HN以及嵌埋 的量子點,亦可以結合COHN); (f) 用於紅外線偵測器之奈米線(使用C0HN以及量子 化耳語廊(quantized whispering gallery)的電子模 式); (g) 用於磁偵測器之奈米線(使用COHN以及一會受磁 場影響的量子化耳s吾廊(Quantized whispering gallery) 電子模式); (h) 聚合物-奈米線合成物之發光元件(高的外加量子 效率、寬廣的光譜、與纖維具有良好的耦合); (i )聚合物-奈米線合成物之光學調節器(由於電子訊 號與光學訊號速度匹配,故可以成為具有非常高速傳導波 的調節器);
1012-4754-PF(N).ptd 第45頁 554388 五、發明說明(40) (d).余米^級61^ :較小的直徑可允許壓電或埶電 =:吏用於原子力或分子力、奈米等級溫度等情二;的 & =針。而且’奈米束單位模型之彎曲物,其具有以投 =^鍍方式製造的縱向電極與彈性層,可提供非常大的撓 二^ ’因為長度與厚度的比例為1〇〇〇 : i,以及具有適度 2 =橫切面電場(對1V而言,有觸仏通過_厚度 <录木束)。 配署參Γi3i〜39圖’其顯示電機轉換器之奈米線元件的 - "中第3 6、3 7圖顯示其縱向配置,第3 8、3 - 其橫向配置。 直弟Μ、39圖顯不 在縱5第3』:丄7圖所示,在〈0 0 0 1 >纖鋅礦中,其自發極化 ϊπ產列。0此,沿著線轴之電場與機械 麴置I带f 的自發極化現象。在軸向配置31〇甲,最 3曰14,而裎^丘配置係在底部與頂部分別使用接觸電極312、 二而二=^ 力即可產生大應力。舉例jn j=小,所以施加小外 言,單軸拉伸應力為對=二:=;:2:“ 此壓電係數5nC/N可產^^ ςΡ/ 26Ar_軸應力 ,因 以债測出纟。用: 的壓電變化’此值通常可 端必須是無機械力:鳴:應=;米線而,,奈米線之-偵測奈米線之端點卢w 而要提供一個導電表面,用來 除或增加電荷。處附近的電荷,並可藉由穿遂方式來移 如第38、39岡01^- 圖所不,由纖辞礦奈米線之<hki〇>排列中
554388 五、發明說明(41) 也就是,自發極化會垂 其成長方式可選用單晶 藍寶石基材之( 00 0 1 )、 可將電極設置於線端 可以獲得完全分隔的感應與致動, 直於線成長方向。如此的奈米線: 基材之適當表面排列處進行,如: (hki〇)排列處。在橫向配置32〇中 ______^ ^ 處以,舌化壓電切變模式dls,或是沿著線長度設置以使用 w。第38圖顯示‘模式,其電極322、324係沿著線長度方 =,置,可以提供大的電崩潰強度(>3〇〇MV/m)以及高破壞 矣f給無缺陷之A1N奈米線,進而用來製作高位移的奈米 ,單位模彎曲物以及外力感應器。假設一個合適的彈性層 疋以投影沉積方式形成於奈米線之一側,相對於另一側i 電巧長條,則奈米線之端點位移占會近似於‘L2V/t2。 :=向電壓IV、厚度10nm、長度5 以及‘為3pm/v,則 ‘點位移約為0 · 7 5 // m。 、 橫向配置之合成與製程所遭遇的挑戰遠超過縱向配 *曰::垆ί :線必須在橫向排列上成核,其成核需要在 二 ,、有矩形剖面之奈米線,對投影沉積而言是相當理 沉ϋΪίί大幅超越縱向奈米線。一旦合成,利用投影 曲物,工^製作複數個金屬層,以成為奈米束單位模之彎 其中一缚的順應金屬層(如Cr/Au)可作為電極,一 可^應質金屬層(如Ti/Pt)可以用作為電極或彈性層, 以利用Ϊ制彎曲模式致動之中心軸的最適位置。或者曰,可 /合液製裎,以兩個表面之不同表面性質來遷擇性地
l〇12-4754-PF(N).ptd 第48頁 554388
沉積金屬。 6· 5复J最紫外線奈米線之争土___ 短波長之半導體雷射的開發是 a 題’已經開發室溫綠-藍二極體雷射 的課 及Ιηχ、Ν為活化層。Zn〇是另—種射寬:構’其使用—以 物半導體,適合於藍色光電的應用種;、(上3.3=化合 丰導辦奸粗二一 Λ ^ , 對於見V隙的 種=: 達到足以產生雷射作用的光線。此
?的二灭於早期的雷射二極體中,基本上需要 = = 界值。對EHP之另一方面而言,半導體中的激 = =、,、„ & ,則玻子性質可以提供低臨界值的激發射。為了 j::下達成有效的激子雷射作用,激子連接能(Ebex)必 ϋ 溫下的熱能(26meV)。此種考量下,Zn〇成為很好 的k擇,這是因為其Ebex相當於6〇meV,明顯大於
ZnSe(22meV)以及GaN(25meV)。
_為了進一步降低臨界值,係製作出低維的化合物半導 體2米結構’其量子尺寸效應可於帶端點處提供實質密度 狀怨’且其載子束制可增加放射的再結合性。使用半導體 里子井結構作為低臨界光學的獲得媒介物,可以在半導體 雷射技術中顯現出明顯的進步性。激發放射以及光學獲取 的現象已經可以由Si與CdSe奈米團及其整體結構中證實。 本發明之另一個觀點,在臨界值4〇kW/cm2之光學激發 下’證實ZnO奈米線中產生第一激子雷射作用。奈米線之
554388 五、發明說明(43) 化學彈性如同其一維特性,可使其雷射光源達到理想的微 小化。這些小波長奈米雷射可以大量地應用在光學計算、 資料儲存以及奈米分析上。 例六
ZnO奈米線之合成係使用氣相傳輸製程,以於一藍寶 石(110)基材上進行催化磊晶成長,其乃使用具有圖案之 A1薄膜作為奈米線成長之催化物。在奈米線成長中,先於 乾淨的藍寶石(Π 〇 )基材上塗佈一層丨〇〜3 5 a厚度之金薄 其可採用或不採用TEM格子作為陰影罩幕(此au圖案的 製作方式也可先用微米接觸列印方式再進行選擇性蝕 刻)。然後將等量的ZnO粉與石墨粉傳送至一鋁船中,再將 塗佈有A u圖案之藍寶石基材放置於距離銘船中心之〇 · $〜〇. 25c=處。接著將其於Ar氣氛中加熱至88〇〜95〇,則會Zn〇 之石厌熱還原會產生Zn氣相並傳送至基材上,便可進行Zn〇 奈米線成長。這成長通常需花費2—丨〇分鐘。 於基材上進行磊晶式成長後,可形成高度陣列之奈米 線。當使用Au圖案薄膜時,可以馬上進行選擇性的奈米線 成長,則ZnO奈米線僅成長於^塗佈的面積丨,這是因為 Au薄膜之催化性質可提供極佳之選擇性,^且奈米線陣列 可以延伸至cm2。一般而言,奈米線的直徑範圍為 八土责扪直仏靶圍為70〜lOOnm,其影響直徑 因子f於成長之退火過程[Au奈米束催化物之尺 寸不均-。糟由調整成長時間,可將奈米線長 2~1〇"m °此種可圖案化的奈米線成長技術可應用於奈米
554388 五、發明說明(45) '~' 奈米線之光學發光的光譜,其發現靠近帶隙端可產生強烈 發光約377nm。為了要知道從排列之奈米線中激發光線的 可能性,對能量依附之發射性做了測試,樣品係採用一在 室溫下為第四諧波的Nd-YAG雷射( 2 66nm,3ns脈衝寬度)。 聚焦於奈米線索吸取的光束,相對於奈米線之對稱軸的入 射角為1 0 ’並於以垂直於奈米線之端面的方向收集發射 的光線(沿著對稱軸),並可使用單色器(ISA)與珀耳冷卻 CCD(EG&G)來收集自奈米線激發的光線。所有的實驗均於 至/孤下元成’可以發現Zn〇奈米線中的雷射反應。 第4 1圖顯示在增加幫浦功率的情況下之發射光譜進 展。在低激發密度下(低於雷射臨界值),光譜包含有單一 且主要的自發射峰(曲線a),其FWHM為17·,其自發性發 射為140meV乃低於帶隙337eV,一般歸因於激子撞擊過x程 =的f,合而產生光子。隨著幫浦功率增加會使發射峰變 窄,這是因為振幅接近光譜之最大值。當激子密度超過雷 射臨界值UOkW/cm2),光譜中會出現尖銳峰(曲線b以及^ 入圖)。這些光谱之幫浦功率分別為2〇、、15〇 kW/cm2。在低於臨界值的情況下,這些峰的線寬均小於 3nm,乃小於自一發射峰之線寬的5〇倍以上。在高於臨界值 的情況下,隨著幫浦功率的增加,整合的發射強度也會快 速增加,如第42圖所示。於此,窄的線寬與快速增加的 射強^意味著,在奈米線中會產生激發發射現象。所觀^ 到的單一或多條尖銳峰(第41圖之曲線1)與插入圖),顯示^ 在370〜40 Onm波長内會顯現不同的雷射模式。而且,相較 I·» 1012-4754-PF(N).ptd 第52頁
554388 ―、發明說明(46) 於先前報導之散I於無序粒子或薄膜的雷射臨 OOOkW/cm2) ’其雷射臨界值相當低。明顯可知i 米線的奈米雷射可於室溫下操作, 可達l.lxl〇iQCm-2。 且/、實際奈未雷射密度 實際上,不需藉由製作鏡子,益山抱由I 作用便可聯想到使用單晶、1有切:由=察奈米線之雷射 第43圖顯示-奈米雷射二V: 豹之Ζη〇奈米線332,注音的ΐΐ:具有多個切邊(如:六 而是同質結構。奈米線適用來作 =^:’ 個六邊形切面3 3 6、3 3 8,適用*二八”、、歼 八g s兩 大的震盈強度效應,此乃發工::=鏡…利用巨 大於激子波耳尺寸但小於光^ : °σ ^米線晶格的尺寸 陣列中產生激發發射現象。波長的情況下’可使奈米線 裂邊緣可用來作為對於U—VI族半導體而言,劈 材334與Zn0之間的一=一對奈米線而言,在藍寶石基 奈米晶格之尖銳面( 0 0 0 1、、)U介面336,❿另-端為“〇 子,此乃有鑒於K寶石 兩者均可用來作為雷射開口鏡 1. δ、2. 45、1 n風ί Zn〇、空氣之反射係數分別為 是,因為非常六二Ϊ對於奈米線的性質非常重要,也就 口 /波導管製作仏#接於一波導管。在奈米線中的天然開 使用裂解與餘則柄使人聯想到一種簡單的化學方法,不需 如第41圖所示Χ,:以形成一奈米線雷射開口。事實上, 約5 // m長户:在這些奈米線中發現到的多種雷射模式, 又、、、、之間距為5nm,其數量相當符合於相鄰共
554388 五、發明說明(48) 另一種製作光學開口的方法為,在線的一端製作介電質。 而且’在奈米線的一部分區域中可包含有一種能量轉換形 式,另一部分可包含有不同的能量轉換形式,如同在一'分 配回饋雷射中。也可以不蓋住光學開口的一端,如同雷射 或光放大器。此外,此開口也可為前述奈米線的一部分, 此開口也可為外加至奈米線的。在本質上,雷射或光放大 器之製作可採用奈米線、幫浦源以及開口,而此開口可為 奈米線之一部分或是與奈米線分離。甚至於,若是使用傳 統的激發發光技術,並不需要此開口。
本發明之奈米線可以用作為的一個量子點雷射的功能 元件’如參考資料中所提及之美國專利第5, 26〇, 957號,
其中里子點可被整合至奈米線中’而幫浦源可被安裝以用 來激發4子點中的居量反轉(population inversi〇n)。不 過’為了產生雷射,奈米線可推拉其自身,以處使奈米線 中的居量反轉。可如同前述方式,將奈米線整合至一聚合 物母體中’而成為一個母體(如:雷射元件)中的一個單 元。幫浦源可為一光學幫浦源(如:幫浦雷射),或是一電 子幫浦源’其陰極與陽極以直接接觸方式或歐姆接觸方式 而與奈米線連接。如果使用幫浦雷射,幫浦的波長最好要 比奈米線的波長多1 eV以上。奈米線可放置於一開口内, 或是其端點處可製作成反射面,以使奈米線用作為一開 口 〇 6·6 由前述可知,使用奈米線及其合成方式可製作出大量
i 554388 五、發明說明(54) — 力,可戲劇性地改變其埶柹晳。& β ^ ^ ,有希望mi:? 奈米線異質結構提 中,進而用以製作奈米電機轉換器。而且, (量子井與異質結構)或薄膜形式下呈現不穩定在 使在塊體或薄膜形式下呈現準穩定的相變成為—穩定 C:HN與LOHN亦提供其自身於能量轉換元件之 包含有熱電致冷氣或發電器、發光元件以及奈米電機轉換 器。在些το件中的有效材料包含有由VLS合成單方向太、 米線陣列的合成物,且埋入一聚合物母不 案定義與整合方式成為奈米系統。 了左由圖 μ i,5^〇17的半導體奈米線可提供獨特的機會,以開 ‘ ^ ί ί電器’其表現優於以氣相為基礎的元 以對環境上之能量使用科技產生巨大 調整尺寸的光電轉㈣。 應 1為有效率且可 甚至於,將奈米線埋入聚合物母體 彈性媒介物’其有效指數低於半導體,可心开纖== 效率的耦合,進而大幅地改善外加的量子效2 土有 電子之後,此量子點奈米線可提供作為單:二、、,。:早 具可成為一高品質因子以及高共振;;矣器 在分子感應/奈米致動器與高頻信號處’可以&供 &王p之間的應用範
554388 五、發明說明(56) 不可少的,因 轉換方式。這 礎。 使用前述 一部分已經在 面之LOHN、單 合、兩端子配 組合、具有一 具有一個或多 構、具 介面係 製作出 束制電 光子元 制動器 至機械 雖 以限定 神和範 護範圍 有絕緣 構成一 各種元 子的量 件(如: 與感應 能、熱 然本發 本發明 圍内, 當視後 為其可以大幅地改善轉換效率或是開啟新的 些簡單的元件也可作為其他更複雜元件的基 之f發明結構可以獲得各種表面配置型態, 先前描述。其他的例子為:單個或多個&合 個或多個接合面之COHN、LOHN與COHN之組 置、N>2端子配置、異質結構與同質結構之 個或多個電極(可為異質結構)之同質結構、 個電極之異質結構、具有絕緣體之同質結 體t異質結構。在一奈米線與一端子之間的 異質接合面。使用這些結構與配 :’包含有:聲子帶隙元件、在特殊以 點…熱電元件(如:固態致冷氣與引擎)、 奈米雷射)、奈米電機(MEM)元件(如:電 器Λ、各種形式之能量轉換元件(如:光轉換 月匕轉換至光)以及其他元件。 、 明已以一較佳實施例揭露如,然其並非用 ,任何熟習此技藝者’在不脫離 二 當可作些許之更動與潤飾,因此本發明之^ 附之申請專利範圍所界定者為準。
1〇12-4754.PF(N).ptd 第63頁

Claims (1)

  1. 554388 六、申請專利範圍 1. 一種奈米結構,包括有: 一第一段,由一實質結晶材料所構'成;α及 一第二段,係與該第一段連接,且由不同於該第一段 材質之材料所構成; 其中,該第一段以及該第二段之中至少一個包含有一 實質均勻的直徑,且該直徑小於2 0 0 n m。 2. 如申請專利範圍第1項所述之奈米結構,其中該奈 米結構變遷自該第一段至該第二段之距離範圍為一原子層 〜2Onm 〇 3. 如申請專利範圍第2項所述之奈米結構,其中自該4 第一段至該第二段之變遷係起始於一朝向該第二段之端 點,該第一段之該端點成份降低成為該第一段中心處成份 的 99%。 4. 如申請專利範圍第1項所述之奈米結構,其中該第 二段包含有一實質結晶材料。 5. 如申請專利範圍第1.項所述之奈米結構,其中該第 一段與該第二段之中至少一個包含有一半導體材料。 6. 如申請專利範圍第1項所述之奈米結構,其中該第 一段與該第二段之中至少一個包含有一摻雜之半導體材 料。 7. 如申請專利範圍第1項所述之奈米結構,其中該第 一段與該第二段之中至少一個表現出一塊體摻雜之半導體 的電性特徵。 8. —種奈米結構,包括有:
    1012-4754-PF(N).ptd 第70頁 554388 六、申請專利範園 由實質結晶材料所構成; ,該第-段連接…〜實ΐ結晶材料 一第—段 一第二段 所構成; 實質均!的ΐ ί 一段以及該第二段之甲至少一個包含有 ”的直徑,且該直徑小於20 0nm。 個㈠有— 米結構變^自請//^/8項所述之奈米結構,其中該奈 〜。…弟-段至該第二段之距離範圍為一原子; 該第二段第9項所述之奈米結構 點,該第一^ 又爻遷係起始於朝向該第二段之端 的9 9 %。 端點成份降低成為該第-段中心處成份 第一 i·盥ί :請:利範圍第8項所述之奈米結構,其中該 12 、Γί 一之中至少—個包含有—半導體材料。 第-段血專利範圍第8項所述之奈求結構,其中該 一 Μ第一段包含有一半導體材料。 第鱼^ ί請專利範圍第8項所述之奈米結構,其中該 料。^ Μ第一段之中至少一個包含有一摻雜之半導體材 14.如申请專利範圍第8項所述之奈米結構,其中該 第一段與該第二段包含有一摻雜之爭導體材料。、 15·如申請專利範圍第8項所述之奈米結構,其中該 第一段與該第二段之中至少一個表現出一塊體摻雜之半導 體的電性特徵。 ΙΗ 1012-4754-PF(N).ptd 第71買 554388
    16·如申請專利範圍第8項所述之奈米結構,其中該 :段與該第二段表現出一塊體摻雜之半導體的電性特/ 構成 一檀奈米結構 _…y 第一段,由一半導體材牲所構成;以及 第二段,係與該第一段連接,且由一半導體材料所 6 其中,該第一段以及該第二段之中至少一個包含右一 貫質均勻的直徑,且該直徑小於2 〇〇 nm。 18.如申請專利範圍第丨7項所述之奈米結構,兑 ^米結構變遷自該第一段至該第二段之距離範圍為二= 層〜20nm。 τ 結構,其中自 該第二段之端 段中心處成份 ^ 1 9 ·如申請專利範圍第1 8項所述之奈米 違第一段至該第二段之變遷係起始於一朝向 點’該第一段之該端點成份降低成為該第一 的 99°/〇。 21·如申請專利範圍第17項所述之奈米結構,其中該船 第一段與该第二段包含有一摻雜之半導體材料。 22· 一種奈米結構,包括有: 一第一段,由一摻雜之半導體材料所構成;以及 第一奴,係與該第一段連接,且由一摻雜之半導體
    1012-4754-PF(N).ptd 第72頁 554388 六、申請專利範圍 材料所構成; 其中,該第一段以及該第二段之中至少一個包含有一 實質均勻的直徑,且該直徑小於2 0 0nm。 23. 如申請專利範圍第22項所述之奈米結構,其中該 奈米結構變遷自該第一段至該第二段之距離範圍為一原子 層〜20nm 〇 24. 如申請專利範圍第23項所述之奈米結構,其中自 該第一段至該第二段之變遷係起始於一朝向該第二段之端 點,該第一段之該端點成份降低成為該第一段中心處成份 的 99%。 2 5. —種奈米結構,包括有: 一第一段,由一實質結晶材料所構成;以及 一第二段,係與該第一段連接,且由不同於該第一段 材質之材料所構成; 其中,該奈米結構變遷自該第一段至該第二段之距離 範圍為一原子層〜20nm ;以及 其中,該第一段以及該第二段之中至少一個包含有一 實質均勻的直徑,且該直徑小於2 0 0 n m。 26. 如申請專利範圍第25項所述之奈米結構,其中自 該第一段至該第二段之變遷係起始於一朝向該第二段之端 點,該第一段之該端點成份降低成為該第一段中心處成份 的 99%。 27. 如申請專利範圍第25項所述之奈米結構,其中該 第二段包含有一實質結晶材料。
    1012-4754-PF(N).ptd 第73頁 第 554388 六、申請專利範圍 28·如申請專利範圍第25項所述之奈 段與該第二段之中至少一個包含有一 2 9 ·如申請專利範圍第2 5項所述之奈 第一段與該第二段之中至少一個包含有— 料。 3 〇 ·如申請專利範圍第2 5項所述之奈 第一段與該第二段之中至少一個表現出一 體的電性特徵。 3 1 · —種奈米結構,包括有: —第一段,由一實質結晶材料所構成 —第二段,係與該第一段連接,且由 所構成; ^ 其中’該奈米結構變遷自該第一段至 範圍為一原子層〜20nm ;以及 — 其中’該第一段以及該第二段之中至 實質均勻的直徑,且該直徑小於2 0 0nm。 3 2.如申請專利範圍第3 1項所述之奈 该第一段至該第二段之變遷係起始於一朝 點’該第一段之該端點成份降低成為該第 的 99〇/〇 〇 33·如申請專利範圍第31項所述之奈 第一段與該第二段之中至少一個包含有一 34·如申請專利範圍第31項所述之奈 第 ^又與該第二段包含有一半導體材料。 米結構,其中該 半導體材料。 米結構,其中該 摻雜之半導體材 米結構,其中該 塊體摻雜之半導 ;以及 一實質結晶材料 該第二段之距離 ^ 一個包含有一 米結構,其中自 向該第二段之端 一段中心處成份 米結構,其中該 半導體材料。 米結構,其中該
    1012-4754-PF(N).ptd 第74頁 554388 申請專利範圍 ___ 35. 如申請專利範圍第31項所述之奈 段與該第二段之中至少一個包含有一摻=本J中該 枓。 滩之半導體材 36. 如申請專利範圍第31項所述之奈米結構, 第一段與該第二段包含有—捧雜之半導體材〃中该 37·如申請專利範圍第31項所述之奈米結構,立 體:Ϊ ΐ:第二段之中至少一個表現出一塊體摻雜:半ΐ 體的電性特徵。 '^干V 38·如申請專利範圍第31項所述之奈米結構,其中該 y 一段與該第二段表現出一塊體摻雜之半導體的電性特 徵0 、 3 9 · —種奈米結構,包括有: 一第一段’由一半導體材料所構成;以及 第一 ,係與該第一段連接,且由一半導體材料所 構成; ^ 其中’該奈米結構變遷自該第一段至該第二段之距離 範圍為一原子層〜2〇ηηι ;以及 — 其中’該第一段以及該第二段之中至少一個包含有一 實質均勻的直徑,且該直徑小於2〇〇nm。 4 0·如申請專利範圍第3 9項所述之奈米結構,其中自你 該第一段至該第二段之變遷係起始於一朝向該第二段之端 點’該第一段之該端點成份降低成為該第一段中心處成份 的 99°/〇。 41.如申請專利範圍第4 〇項所述之奈米結構,其中該
    1012-4754-PF(N).ptd 第75頁 ^4388 六、申請專利範圍 個包含有一摻雜之半導體材 其中該 段與該第二段之中至少 第一 如申請專利範圍第39項所述之奈米結構 該第二段包含有一摻雜之半導體材料。 ·»種奈米結構,包括有: =一段,由一摻雜之半導體材料所 材料段’係與該第-段連接,且由1雜=導體 範圍:構變以遷及自該第-段至該第二段之距離 實皙it,該第一段以及該第二段之中至少一 貫\句的直徑,且該直徑小於2〇_。⑯包含有— 該第—段ΐ43項所述之奈米結構,其中自 點’該第-段之該端點該第二段之端 的99%。 降低成為该第-段中心處成份 4一5.—種严米結構,包括有: 又由貫為結晶材料戶斤構成.以另 材質之材料所構成; 又逑接’且由不同於該第—段 —其申,該奈米結構變遷自該第一段至 範圍為一原子層〜20nm。 第—段之距離 其中,自該第一段至該第二段之 該第二段之端點,該第一段 ’、起始於一朝向 之6亥知點成份降低成為該第— ^_ 第76頁 1012-4754-PF(N).ptd 554388 六、申請專利範圍 段中心處成份的9 9% ;以及 其中,該第一段以及該第二段之中至少一個包含有一 實質均勻的直徑,且該直徑小於2〇〇nm ° 46.如申請專利範圍第45項所述之奈米結構,其中該 第一段包含有一實質結晶材料。 47·如申請專利範圍第45項所述之奈米結構,其中該 第一段與該第二段之中至少一個包含有—半導體材料。 48·如申請專利範圍第45項所述之奈米結構,其中該 第一段與該第二段之中至少一個包含有一摻雜之半導體材 料。 ❿ 4 9·如申請專利範圍第4 5項所述之奈米結構,其中該 第一段與該第二段之中至少一個表現出一塊體摻雜之半導 體的電性特徵。 5 〇 · —種奈米結構,包括有: 一第一段,由一實質結晶材料所構成;以及 一第二段,係與該第一段連接,且由一實質結晶材料 所構成; 7 其中,該奈米結構變遷自該第一段至該第二段之距離 範圍為一原子層〜2〇nm ; 其中’自該第一段至該第二段之變遷係起始於一朝向j 該第二段之端點,該第一段之該端點成份降低成為該第一 段中心處成份的99% ; 其中,該第一段以及該第二段之中至少一個包含有_ 貫負均勻的直徑,且該直徑小於2 〇 〇nm ;以及
    554388 六、申請專利範圍 其中,該直徑小於200nm之線段的直徑變化不會大於 該線段之長度的10°/〇。 51·如申請專利範圍第5 0項所述之奈米結構,其中該 第一段與該第二段之中至少一個包含有一半導體材料。 52·如申請專利範圍第50項所述之奈米結構,其中該 第一段與該第二段包含有一半導體材料。 53·如申請專利範圍第50項所述之奈米結構,其中該 第一段與該第二段之中至少一個包含有一摻雜之半導體材 料0 54·如申請專利範圍第5〇項所述之奈米結構,i 第一段與該第二段包含有一摻雜之半導體材料。 / 55·如申請專利範圍第5〇項所述之 第-段與該第二段之中至少一個表現=雜ί:该 體的電性特徵。 鬼體4雜之半導 56·如申請專利範圍第50項所述之夺乎έ 第-段與該第二段表現出-塊體摻雜之半中該 徵。 〜千導體的電性特 57· —種奈米結構,包括有·· 以及 一半導體材料所儀[ 一第一段,由一半導體材料所構成; 一第二段,係與該第一段連接,且士 構成; φ 其中,忒奈米結構變遷自該第一一 範圍為一原子層〜2〇nm ; 主4第二段之距離 其中。自該第一段至該第 丰又之變遷係起始於一朝向
    1012-4754-PF(N).ptd 第78頁 554388 六、申請專利範圍 該第二段之端點,該第一段之該端點成份降低成為該第一 段中心處成份的99% ; ^ 其中,該第一段以及該第二段之中至少一個包含有一 實質均勻的直徑,且該直徑小於20 Onm ;以及 其中,該直徑小於2〇〇nm之線段的直徑變化不會大於 該線段之長度的10%。 《 ' 58·如申請專利範圍第57項所述之奈米結構,其中該 第一段與該第二段之中至少一個包含有一摻雜之半導體材 59·如申請專利範圍第57項所述之奈米結構,其中該 第一段與該第二段包含有一摻雜之半導體材料。 Λ 6 0. —種奈米結構,包括有:
    一第一段,由一摻雜之半導體材料所 一第二段,係與該第一段連接,且由 材料所構成; 其中,該奈米結構變遷自該第一段至 範圍為一原子層〜2〇nm ; 構成;以及 一摻雜之半導體 該第二段之距離 其中 該第一段至該第二段之變遷係起始於 該第二段之端點,該第一段之該端點成份降低成為該 段中心處成份的99% ; — 其中,該第一段以及該第二段之中至少一個包含 實質均勻的直徑,且該直徑小於20 Onm ;以及 朝向 其中,該直徑小於20 Onm之線段的 該線段之長度的10%。 直變化不會大於
    l〇12.4754-PF(N).ptd 第79頁
    554388 六、申請專利範圍 遵套包含有一非晶質材料。 ^ 78·如申請專利範圍第76項所述 濩套包含有一實質結晶材料。 —☆ 79·如申請專利範圍第78項所述之不/ 實質結晶材料為實質單結晶。 8〇·如申請專利範圍第1、8、17… 該 43、45、50、57或60項所述之奈沭1谈广 〇ι > 39 、22^該奈米1 下列元件的-個功能部件,包含有:聲,水電 點疋件、熱電元件、光子元件、奈米電機 f遂;椏 機感應器、場效電晶體、紅外線偵測器、/、學調整器 體、單電子電晶體、磁感應器、#光元件學開關以及雷 光學偵測器、光學導波管、光學耦合器、尤 射。 25 、 31 、 39 破 22:中该条米结構 4 3、4 5、5 0、5 7 々 β α 4 ,处構’,、 81·如申請專利範圍第i、8、1 7 45、50、57或60項所述之奈米結 是一奈米結構陣列的一個單元。 8 2 · —種奈米結構,包括有: 一第一段,由一材料所構成; 一第二段,係與該第一段連接, 以及 一第三段,係與該第一段與該第 接,且由一材料所構成; 的 其中,至少一個線段包含有〆實質均勾、 直徑小於200nm ; 由 段 之 材料所 中秦少 構成; /個$ 該 Η
    1012-4754-PF(N).ptd 第82頁 554388 六、申請專利範圍 其中,至少兩個線段是由不同材料所構成;以及 其中,至少兩個線段是相鄰的。 83. 如申請專利範圍第82項所述之奈米結構,其中該 直徑小於200nm之線段的直徑變化不會大於該線段之長度 的 10%。 84. 如申請專利範圍第82項所述之奈米結構,其中該 奈米結構變遷自至少一線段至相鄰之線段之距離範圍為一 原子層〜20nm。 8 5·如申請專利範圍第8 2項所述之奈米結構,其中自 至少一線段至一相鄰線段之變遷係起始於一朝向該相鄰線儀| 段之端點,該線段之該端點成份降低成為該線段中心處成 份的99%。 8 6·如申請專利範圍第8 2項所述之奈米結構,其中至 少兩個線段是縱向相鄰的。 8 7·如申請專利範圍第8 2項所述之奈米結構,其中該 第二段係軸向縱向相鄰於該第一段,且該第三段係縱向相 鄰於該第二段。 8 8·如申請專利範圍第8 2項所述之奈米結構,其中至 少兩個線段是軸向相鄰的。 8 9 ·如申請專利範圍第8 2項所述之奈米結構,其中至· 少一線段的材料包含有一實質、结晶材料。 9 0·如申請專利範圍第8 9所述之奈米結構,其中該實 質結晶材料為實質單結晶。 9 1 ·如申請專利範圍第8 2項所述之奈米結構,其中至
    1012-4754-PF(N).ptd 第83頁 554388 六、申請專利範圍 103·如申請專利範圍第82項所述之奈米結構,更包 含有一電極,係與至少一個線段形成電連接。 104·如申請專利範圍第82項所述之奈米結構,其中 至少一個線段的材料是選自於I I族、I Π族、I V族、V族或 V I族元素。 10 5·如申請專利範圍第g 2項戶斤述之奈米結構’其中 至少一個線段係埋入一聚合物母體中。 10 6.如申請專利範圍第§ 2項戶斤述之奈米結構,其中 至少一個線段的至少一部分係被一護套所覆蓋。
    10 7·如申請專利範圍第丨〇 6項所述之奈米結構,其中 該護套包含有一非晶質材料。 )1 0 8 ·如申請專利範圍第1 0 6項所述之奈米結構,其中 该濩套包含有一實質結晶材料。 109·如申請專利範圍第1〇8項所述之奈米結構,豆中 該實質結晶材料為實質單結晶。 〃 110·如申請專利範圍第8 2項所述之奈米結構,豆中 該奈米線是下列元件的-個功能部件,包含有··聲子帶丨 ;件夺= = 熱電元件、光子元件、奈米電機致]
    穿遂二極體^ :裔、场效電晶體、紅外線偵測11、共; ^ 7 早電子電晶體、磁感應器、發光元件、光: 調! 、光學偵測器、光學導波管 1 關以及雷射。 %予祸口态、先學1
    1012-4754-PF(N).ptd 第85頁 554388 六 申請專利範圍 分解媒介一二?:―構巧 段;以及 第一軋體反應物,然後成長一第一 第二段,,亥^ 1 ^ : : : - 2 :氣體反應物,然後成長一 材質之材料所構成’;、/、"第一段連接且由不同於該第一段 實質Ϊ:的該第二段之中至少-個包含有-113 二且違直徑小於20 0nm。 方法’其中V」:專氣利體範/第112項所述之奈米結構的製作 同組成之液體合金:且5應=;:介液體係形成-相 和處。 母—線段係形成自該液體合金之飽 方法,其申二專利乾圍第112項所述之奈米結構的製作 物種成長:應物包含有-氣體…運“ 氣體反應物 ,供的,^該第二段包含有該第— "5.種太/;播氧… 分解—媒/液米體。 段;以及、/ _的—氣體反應物,然後成長一第— 段广该第-段上塗佈—不同成份材料,以形成一第二 八T ,緣乐一杈以及贫繁—i;L +丄 實質均勻的直彳/第一奴之中至少一個包含有 J妁直瓜,且忒直徑小於2〇〇nm。 •如申請專利範圍第11 5項所计、 . 禾 貝所述之奈米結構的製
    554388 六、申請專利範圍 方法’其中該氣體反應物以及該媒介液體係形成一液體合 金,且該第一段係形成自該液體合金之飽和處。 117· 一種奈米結構的製作方法,包含有下列步驟: 長 (a) 分解—媒介液體中的—帛—氣體反應物,然後成 第一材料,以形成一第一段; 長 (b) 分解該媒介液體中的一第二氣體反應物,然後成 第二材料,以形成一與該一段相連接之第二段; 金 處 (c I該氣體反應物以及該媒介液體係形成一液體合 且忒第一&與a亥第一段均形成自一液態合金的飽和 以 形成(一% = 一線段之至少一部份塗佈-第三材料 (e) 該第一材料、該第二材料與該第三材料之中至少 兩個為不同成份;以及 (f) 該第一段、該第二段以及該第三段之中至少一個 包含有一實質均勻的直徑,且該直徑小於2 0 0nm。 118· —種奈米結構的製作方法,包含有下列步驟: 分解一媒介液體中的一第一氣體反應物,然後成長一 第一材料,以形成一第一段; 分解該媒介液體中的一第二氣體反應物,然後成長一❿ 第一材料,以形成一與該第一段相連接之第二段;以及 分解該媒介液體中的一第三氣體反應物,然後成長一 第三材料,以形成一與該第二段相連接之第三段; 其中,該第一段、該第二段以及該第三段係為縱向相
    1012-4754-PF(N).ptd 第87頁 六、申請專利範圍 鄰; 其中, 及 其中, 個包含有一 119. 方法,其 者為相同 少兩者由 120. 方法,其 金,且該 121. 方法,其 用於物種 段包含有 的組合。 122. 步驟: 該第 段位於該第一段以及該第三段之間;以 一‘ =M t、"亥第二段以及該第三段之中至少一 如申貝^直二的直#,且該直#小於2〇〇nm。 0利範圍第118項所述之奈米結構 的了ί;第第;與第三氣體反應物之中至少有兩 相同材質所構成。 又n亥第二奴之中至 中今申/專利犯圍第11 8項所述之奈米結構的製作 夺應物以及該媒介液體係形成-液體合 ^水、二構線段係形成自該液體合金之飽和處。 中;空凊丨專利範®第1 1 8項所述之奈米結構的製作 . ^種氣體反應物包含有一氣體,是由道 =,射移姓所提供的,1至少一奈米結構: 〇Λ 礼體反應物以及該第二氣體反應物之種類 種奈米線異質結構的製作方法,包含有下列 媒介液體中的一第一氣體反應物,然 ^以形成一第一段;以及 交成長〜 :媒介液體中的一第二氣體反應物 材料不同的第二材#,以形成一與該 之第二段; 布仅呈現 分解 第一材料 分解 與該第一 縱向連接
    554388 六、申請專利範圍 其中該第一、第二氣體反應物以及該媒介液體係形 成兩種不同成份的液體合金; ^ ,該第一段與該第二段係分別形成自相關氣體反 應物成伤之該液體合金之飽和處;以及 其中’該第一段與該第二段之中至少一個包含右一 質均勾的直經,且該直徑小於20 0nm。 ^3·—種奈米結構的製作方法,包含有下列步驟: 分解一媒介液體中的一第一氣體反應物, 第-材料,以形成一第一段;以纟 ’,、、後成長- 、 依序雷射移蝕該第一氣體反應物中的成長物種,以 成一=二氣體反應物;以及 乂 >分解該媒介液體中的一第二氣體反應物,然後成長一 與讀第一材料不同的第二材料,以形成一與該第一 縱向相連接之第二段; 兄 其中’該第二段包含有該第一氣體反應物以及該第二 氣體=應物之種類的組合;以及 其中’該第一段與該第二段之中至少一個包含有一實 質均勻的直么; 息k ’且該直徑小於2〇〇nm。 1 2 4 ·如申請專利範圍第1 2 3項所述之奈米結構的製作 方法,其中該第一、第二氣體反應物以及該媒介液體係形 成兩種不同成份的液體合金,且該第一段與該第二段係分 別形j自相關氣體反應物成份之該液體合金之飽和處。 、去,勺八t種摻雜半導體超晶格之奈米結構的製作方 / ,0 3有下列步驟:
    554388 六、申請專利範圍 將一氣體反應物通入一反應爐的 反應搶體包含有一塗佈有反應金屬的 將該反應艙體加熱至一溫度,其 成為至少一個液滴; 將該反應氣體分解至該液滴中直 一段成核與成長;以及 將一摻質與該氣體反應物分解至 其可使一摻雜之第二段在該第一段上 其中’該第一段與該第二段之中 質均勻的直徑,且該直徑小於20Onm ( 1 2 6 ·如申請專利範圍第1 2 5項所 格之奈米結構的製作方法,其中該基 族以及I V族元素。 12 7·如申請專利範圍第丨2 5項所 格之奈米結構的製作方法,其中該金 12 8·如申請專利範圍第丨2 7項所 格之奈米結構的製作方法,其中該金 (colloidal gold) 〇 12 9·如申請專利範圍第丨2 5項所 格之奈米結構的製作方法,其中該基 屬包含有金。 13 0·如申請專利範圍第丨2 5項所 格之奈米結構的製作方法,其中該反 應爐管。 反應搶體中,其中該 基板; 可使該反應金屬液化 至飽和,其可使一第 該液滴中直至飽和, 進形成核與成長; 至少一個包含有一實 述之摻雜半導體超 板中主要包含有111 B曰 述之摻雜半導體超晶 屬包含有金。 述之摻雜半導體超晶 包含有膠態金 述之摻雜半導體超晶 板包含有矽,且該金❿ 述之摻雜半導體超晶 應爐包含有一石英反
    554388 六、申請專利範圍 1 3 1 ·如申請專利範圍第丨2 5項所述之掺雜半導體超晶 格之奈米結構的製作方法,其中該氣體反應物包含有H2與 的混合物。 、132· —種Si/si Ge超晶格之奈米線異質結構的製作方 法’包含有下列步驟: 於一基板上沉積一 Au層; 將該基板放置於一石英反應爐管中; 將一包含有H2與3 i C 14的混合氣體反應物通入該反應爐 管中; 將該反應爐管加熱至一溫度,其可使該Au層液化成為船 至少一個奈米規格的A u - s i合金液滴; 將β亥反應氣體分解至該液滴中直至飽和,其可成核與 成長出一 S i線段; 、 在成長該S i線段的過程中,雷射移蝕一 G e靶材以產生 一 G e氣相;以及 沉積Ge與Si物種於該Au-Si合金液滴中直至飽和,其 可於該Si線段上成核與成長出—SiGe線段; — 其中,忒S丨線段與該s i G e線段之中至少一個包含有, 實質均勻的直徑,且該直徑小於2〇〇nm。 其中該氣體反應物包含有
    格之奈米結構的製作方法, H2與S i C 14的混合物。 133.如申請專利範圍第132項所述之一種s 晶格之奈米線*質結構的製作方*,另&含有一步驟.。 啟關閉該雷射之脈衝’可使該^⑽超晶格形成塊體/
    1012-4754-PF(N).ptd 第91頁 554388 六、申請專利範圍 連接。 134·如申請專利範圍第Η?項所述之一種Si/SiGe超 晶格之奈米線異質結構的製作方法,其中該基板中主要包 含有I I I族以及I V族元素。 13 5·如申請專利範圍第1 3 2項所述之一種S i / S i G e超 晶格之奈米線異質結構的製作方法,其中該A u層包含有膠 態金(colloidal gold)。 136·如申請專利範圍第132項所述之一種Si/Si Ge超 晶格之奈米線異質結構的製作方法,其中該基板金包含有 石夕。 1 3 7 ·如申請專利範圍第11 2、11 5、11 7、11 8、1 2 2、 123、125或132項所述之製作方法,其中直徑小於200nm之 線段的直徑變化不會大於該線段之長度的1 〇 %。 1 3 8 ·如申請專利範圍第11 2、11 5、11 7、11 8、1 2 2、 1 2 3、1 2 5或1 3 2項所述之製作方法,其中該奈米結構變遷 自該第一段至該第二段之距離範圍為一原子層〜20nm。 139.如申請專利範圍第138項所述之製作方法,其中 自該第一段至該第二段之變遷係起始於一朝向該第二段之 端點,該第一段之該端點成份降低成為該線段中心處成份 的 99%。 140·如申請專利範圍第112、115、117、118、122、 123、125或132項所述之製作方法,其中至少一線段包含 有一實質結晶材質。 1 4 1 ·如申請專利範圍第11 2、11 5、11 7、1 1 8、1 2 2、
    l〇12-4754-PF(N).ptd 第92頁 554388 六、申請專利範圍 158·如申請專利範圍第156項所述之製作方法,豆 I護套包含有一實質結晶材料。 ’、 ^159·如申請專利範圍第158項所述之製作方法,其中 这實質結晶材料為實質單結晶。 1 6 0 ·如申請專利範圍第! ! 2、11 5、11 7、1 i 8、! 2 2、 1 2 3、1 2 5或1 3 2項所述之製作方法,其中該奈米線是下列 元件的一個功能部件,包含有:聲子帶隙元件、量子點元 件、熱電元件、光子元件、奈米電機致動器、奈米電機感 應器、場效電晶體、紅外線偵測器、共振穿遂二極體、單 電子電晶體、磁感應器、發光元件、光學調整器、光學偵 測器、光學導波管、光學耦合器、光學開關以及雷射。 161.如申請專利範圍第112, 1 2 3、1 2 5或1 3 2項所述之製作方法 個單元。 雷射,包含有 115 '117 >118 >122 ,其中該奈米結構是一 奈米結構陣列的 162 —種奈# ,其包含有一實質均勻的直徑,且該直徑 一奈米結構 小於2 0 0nm ;以及 一幫浦源。 163.如申請專利範圍第162項 該奈米結構係由不同成伤"且成之複之太乎雷身十士 a I利範圍第1 62項所述之不木雷射, =4.如明發該結構中的居量反轉 該幫浦源之配置是用 ^ Α _ . 所述之奈米雷射 同成份組成之複數個線段所構成 其中 其中 灰木雷射’包含有· 16 5· 種不"皮乃由不同成份組成之複數個縱向相鄰 一奈米結構’ #
    第95頁 l〇12-4754-PF(N).ptd 554388
    六、申請專利範圍 的線段所構成,其中至少一個線段包含有一實質均勻的直 徑’且該直徑小於2〇〇nm ;以及 一幫浦源。 16 6·如申請專利範圍第1 6 5項所述之奈米雷射,其中 該幫浦源之配置是用來激發該奈米結構中的居量反轉。 167· —種奈米雷射,包含有: 一奈米結構,其乃由不同成份組成之複數個縱向相鄰 的線段所構成,其中至少一個線段包含有一貫質岣勻的直 # ’且該直徑小於200nm ;以及 一幫浦源,其配置是用來激發該奈米結構中的居量反‘ 轉。 168. 一種奈米雷射 包含有: 且該直徑 一奈米結構,其包含有一實質均勻的直徑 小於20 0nm ; 複數個量子點,係置於該奈米結構中;以及 一幫浦源。 1 6 9 ·如申請專利範圍第1 6 8項所述之奈米雷射,其中 該奈米結構係由不同成份組成之複數個線段所構成。 17 0.如申請專利範圍第1 6 9項所述之奈米雷射,其中 該幫浦源之配置是用來激發該量子點中的居量反轉。 171·—種奈米雷射,包含有: 一奈米結構,其乃由不同成份組成之複數個縱向相鄰 的線段所構成,其中至少一個線段包含有一實質 徑’且該直徑小於2〇〇nm; 勾的直
    1012-4754-PF(N).ptd 第96頁 554388 六、申請專利範圍 複數個量子點,係置於該奈米結構中;以及 一幫浦源。 二 172·如申請專利範圍第171項所述之奈米雷射,其中 "亥幫浦源之配置是用來激發該量子點中的居量反轉。 173· 一種奈米雷射,包含有: 一奈米結構,其乃由不同成份組成之複數個縱向相鄰 的線段所構成,其中至少一個線段包含有一實質均勻的直 徑’且該直徑小於2〇〇nm ;
    複數個量子點,係置於該奈米結構中;以及 一幫浦源,其配置是用來激發該量子點中的居量反 轉0 174·如申請專利範圍第162、us、167、171或173項 所述之奈米雷射,其中該奈米結構包含有一實質結晶材 質。 175·如申請專利範圍第162、165、167、171或173項 所述之奈米雷射,其中該實質結晶材質為一實質單結晶材 質。 176·如申請專利範圍第162、165、167、171或173項
    所述之奈米雷射,其中該奈米結構之直徑範圍為5〜5〇nm。 177. 如申請專利範圍第162、165、167、171或173項 所述之奈米雷射’其中該奈米結構的直徑變化不會大於該 線段之長度的1 0 %。 178. 如申請專利範圍第162、165、167、171或173項 所述之奈米雷射,其中該奈米結構的材料是選自於丨丨族、
    1012-4754-PF(N).ptd 第97頁 554388 六、申請專利範圍 III族、IV族、v族或^族元素。 17 9·如申請專利範圍第1 6 2 所述之奈米雷射,其中該奈米結 中。 18 0·如申請專利範圍第1 6 2 所述之奈米雷射,其中該奈米結 個單元。 181.如申請專利範圍第1 6 2 所述之奈米雷射,其中該幫浦源 1 8 2 ·如申請專利範圍第1 8 1 忒光學脈衝源包含有一脈衝雷射 1 8 3 ·如申請專利範圍第1 6 2 所述之奈米雷射,其中該幫浦源 1 8 4 ·如申請專利範圍第1 8 3 該導電脈衝源包含有一陰極與一 185·如申請專利範圍第184 該陽極與該奈米結構形成一電連 1 8 6 ·如申請專利範圍第1 8 5 該電連接係為一歐姆接觸。 1 8 7 ·如申請專利範圍第1 8 5 該電連接係為一直接接觸。 188·如申請專利範圍第184 該陰極與該奈米結構形成一電連 18 9·如申請專利範圍第1 8 8 、165 、 167 構係埋入一 、165 、 167 構是一奈米 、165 、 167 包含有一光 項所述之奈 〇 〜165 > 167 包含有一導 項所述之奈 陽極。 項所述之奈 接。 項所述之奈 、171 或173 項 聚合物母體 、171 或173 項 結構陣列的一 、171 或17 3 項 學脈衝源。 米雷射,其中· 、171 或173 項 電脈衝源。 米雷射,其中 米雷射,其中 米雷射,其中 項所述之奈米雷射,其中 米雷射,其中 米雷射,其中 項所述之奈 接。 項所述之奈
    l〇12-4754-PF(N).ptd
    554388 六、申請專利範圍 ' -- 該電連接係為一歐姆接觸。 —兩190·如申請專利範圍第188項所述之奈米雷射,其中 该電連接係為一直接接觸。 1 9 1 ·如申請專利範圍第1 84項所述之奈米雷射,其中 μ陽極與遠陰極皆與該奈米結構形成一電連接。 19 2·如申請專利範圍第丨9 1項所述之奈米雷射,其中 該電連接係為一歐姆接觸。 1 9 3 ·如申請專利範圍第1 9 1項所述之奈米雷射,其中 4電連接係為一直接接觸。 194·如申請專利範圍第162、165、167、168、171或Φ 1^3項所述之奈米雷射,其中該奈米結構包含有一第一端 以及一第二端’且該第一端以及該第二端均包含有反射表 面。 19 5.如申請專利範圍第1 9 4項所述之奈米雷射,其中 該奈米結構包含有一開口。 196· —種奈米雷射,包含有: —一具有多個切面、單結晶之Ζη〇奈米結構,其包含有 一實質均句的直徑,且該直徑小於2〇〇ηπι ; 遠奈米結構包含有一第一端以及一第二端; ^该第一端包含有一磊晶介面,係自該奈米結構延伸而 形成於該奈米結構與一藍寶石基材之間;以及 該第一端與該第二端包含有相對應之反射表面; 其中’該奈米結構之功能是用作為該端點面之間的一 個共振開口。
    554388 六、申請專利範圍 197·如申請專利範圍第196項所述之奈米雷射 該奈米結構係埋入一聚合物母體中。 ^ 198·如申請專利範圍第196項所述之奈米雷射 該奈米結構是一奈米結構陣列的一個單元。 19 9·如申請專利範圍第丨9 6項所述之奈米雷射 含有一幫浦源。 2 0 0 ·如申請專利範圍第1 9 9項所述之奈米雷射 該幫浦源包含有一光學脈衝源。 2 〇 1 ·如申請專利範圍第2 0 0項所述之奈米雷射 該光學脈衝源包含有一脈衝雷射。 202·如申請專利範圍第199項所述之奈米雷射 忒幫浦源包含有一導電脈衝源。 2 0 3 ·如申請專利範圍第2 0 2項所述之奈米雷射 其中該導電脈衝源包含有一陰極與一陽極。 2 0 4 ·如申請專利範圍第2 0 3項所述之奈米雷射 該陽極與該奈米結構形成一電連接。 2 0 5 ·如申請專利範圍第2 0 3項所述之奈米雷射 孩陰極與該奈米結構形成一電連接。 > θ 2 〇 6 ·如申請專利範圍第2 0 3項所述之奈米雷射 S陽極與陰極均與該奈米結構形成一電連接。 2〇7·如申請專利範圍第204、205或20 6項所述 雷射,其中該電連接係為一歐姆接觸。 208.如申請專利範圍第2〇4、205或206項所述 雷射,其中該電連接係為一直接接觸。 ,其中 ,其中 ,另包 ,其中 ,其中 ,其中 ,其中 ,其中 ,其中 ,其中 之奈米 之奈米
    l〇12-4754-PF(N).ptd 第100頁
TW91106432A 2001-03-30 2002-03-29 Methods of fabricating nanostructures and nanowires and devices fabricated therefrom TW554388B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28067601P 2001-03-30 2001-03-30
US34920602P 2002-01-15 2002-01-15

Publications (1)

Publication Number Publication Date
TW554388B true TW554388B (en) 2003-09-21

Family

ID=26960448

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91106432A TW554388B (en) 2001-03-30 2002-03-29 Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

Country Status (10)

Country Link
US (6) US6996147B2 (zh)
EP (2) EP2273552A3 (zh)
JP (4) JP2004532133A (zh)
KR (2) KR101008294B1 (zh)
CN (1) CN1306619C (zh)
AU (1) AU2002307008C1 (zh)
CA (1) CA2442985C (zh)
MX (1) MXPA03008935A (zh)
TW (1) TW554388B (zh)
WO (1) WO2002080280A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412153B (zh) * 2005-11-25 2013-10-11 Eco Spark Ab 發光二極體及其製造方法
TWI416859B (zh) * 2010-07-14 2013-11-21 Nat Univ Tsing Hua 微型發電器、其製備方法、及發電元件
TWI427781B (zh) * 2009-12-08 2014-02-21 Zena Technologies Inc 具有奈米線結構光偵測器之主動像素感測器
TWI482299B (zh) * 2009-12-08 2015-04-21 Zena Technologies Inc 具有一環繞磊晶生長p或n層之奈米線結構光電二極體
TWI768872B (zh) * 2021-05-06 2022-06-21 力晶積成電子製造股份有限公司 單光子發光元件與發光裝置

Families Citing this family (820)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700550B2 (en) 1997-01-16 2004-03-02 Ambit Corporation Optical antenna array for harmonic generation, mixing and signal amplification
AU6531600A (en) 1999-08-27 2001-03-26 Lex Kosowsky Current carrying structure using voltage switchable dielectric material
US20100044079A1 (en) * 1999-08-27 2010-02-25 Lex Kosowsky Metal Deposition
US7825491B2 (en) * 2005-11-22 2010-11-02 Shocking Technologies, Inc. Light-emitting device using voltage switchable dielectric material
US7446030B2 (en) * 1999-08-27 2008-11-04 Shocking Technologies, Inc. Methods for fabricating current-carrying structures using voltage switchable dielectric materials
US20100044080A1 (en) * 1999-08-27 2010-02-25 Lex Kosowsky Metal Deposition
US7695644B2 (en) * 1999-08-27 2010-04-13 Shocking Technologies, Inc. Device applications for voltage switchable dielectric material having high aspect ratio particles
US20080035370A1 (en) * 1999-08-27 2008-02-14 Lex Kosowsky Device applications for voltage switchable dielectric material having conductive or semi-conductive organic material
US6720240B2 (en) * 2000-03-29 2004-04-13 Georgia Tech Research Corporation Silicon based nanospheres and nanowires
US6919119B2 (en) 2000-05-30 2005-07-19 The Penn State Research Foundation Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films
AU2001286649B2 (en) 2000-08-22 2007-04-05 President And Fellows Of Harvard College Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices
US7301199B2 (en) * 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
US20060175601A1 (en) * 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
KR100991573B1 (ko) 2000-12-11 2010-11-04 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 나노센서
EP1368813B1 (en) 2000-12-15 2014-12-03 The Arizona Board of Regents on behalf of the University of Arizona Method for patterning metal using nanoparticle containing precursors
JP2002203757A (ja) * 2000-12-28 2002-07-19 Toshiba Corp 境界条件表示プログラムおよび半導体装置の製造方法
US6782154B2 (en) * 2001-02-12 2004-08-24 Rensselaer Polytechnic Institute Ultrafast all-optical switch using carbon nanotube polymer composites
JP2004527905A (ja) * 2001-03-14 2004-09-09 ユニバーシティー オブ マサチューセッツ ナノ製造
AU2002307008C1 (en) * 2001-03-30 2008-10-30 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
JP2004535066A (ja) * 2001-05-18 2004-11-18 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ ナノスケールワイヤ及び関連デバイス
US7098393B2 (en) * 2001-05-18 2006-08-29 California Institute Of Technology Thermoelectric device with multiple, nanometer scale, elements
DE10127351A1 (de) * 2001-06-06 2002-12-19 Infineon Technologies Ag Elektronischer Chip und elektronische Chip-Anordnung
US6593666B1 (en) * 2001-06-20 2003-07-15 Ambient Systems, Inc. Energy conversion systems using nanometer scale assemblies and methods for using same
US7186381B2 (en) * 2001-07-20 2007-03-06 Regents Of The University Of California Hydrogen gas sensor
US20030015708A1 (en) * 2001-07-23 2003-01-23 Primit Parikh Gallium nitride based diodes with low forward voltage and low reverse current operation
US6921462B2 (en) 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
AU2003215840A1 (en) * 2002-03-28 2003-10-13 Koninklijke Philips Electronics N.V. Nanowire and electronic device
US6559544B1 (en) * 2002-03-28 2003-05-06 Alan Roth Programmable interconnect for semiconductor devices
US6872645B2 (en) 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US20040026684A1 (en) * 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
JP4051988B2 (ja) * 2002-04-09 2008-02-27 富士ゼロックス株式会社 光電変換素子および光電変換装置
US8809867B2 (en) * 2002-04-15 2014-08-19 The Regents Of The University Of California Dislocation reduction in non-polar III-nitride thin films
EP1495169B1 (en) * 2002-04-15 2012-10-10 The Regents of The University of California Dislocation reduction in non-polar gallium nitride thin films
US7179986B2 (en) 2002-05-08 2007-02-20 Massachusetts Institute Of Technology Self-assembled quantum dot superlattice thermoelectric materials and devices
US6979489B2 (en) * 2002-05-15 2005-12-27 Rutgers, The State University Of New Jersey Zinc oxide nanotip and fabricating method thereof
US8294025B2 (en) * 2002-06-08 2012-10-23 Solarity, Llc Lateral collection photovoltaics
EP1520203A4 (en) * 2002-06-18 2005-08-24 Nanoopto Corp OPTICAL COMPONENT WITH ADVANCED FUNCTIONALITY AND METHOD FOR THE PRODUCTION THEREOF
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
WO2004010552A1 (en) * 2002-07-19 2004-01-29 President And Fellows Of Harvard College Nanoscale coherent optical components
AU2003298529A1 (en) * 2002-07-25 2004-07-29 Brown University Stochastic assembly of sublithographic nanoscale interfaces
WO2004053929A2 (en) * 2002-08-13 2004-06-24 Massachusetts Institute Of Technology Semiconductor nanocrystal heterostructures
AU2003301770A1 (en) * 2002-08-16 2004-06-07 The Regents Of The University Of California Functional bimorph composite nanotapes and methods of fabrication
US7287412B2 (en) * 2003-06-03 2007-10-30 Nano-Proprietary, Inc. Method and apparatus for sensing hydrogen gas
US6849911B2 (en) * 2002-08-30 2005-02-01 Nano-Proprietary, Inc. Formation of metal nanowires for use as variable-range hydrogen sensors
US7237429B2 (en) * 2002-08-30 2007-07-03 Nano-Proprietary, Inc. Continuous-range hydrogen sensors
CN100584921C (zh) * 2002-09-05 2010-01-27 奈米系统股份有限公司 促进电荷转移至纳米结构或自纳米结构转移出电荷的有机物
TW200422374A (en) 2002-09-05 2004-11-01 Nanosys Inc Organic species that facilitate charge transfer to or from nanostructures
JP2005538573A (ja) * 2002-09-05 2005-12-15 ナノシス・インク. ナノ構造及びナノ複合材をベースとする組成物
AU2003298998A1 (en) 2002-09-05 2004-04-08 Nanosys, Inc. Oriented nanostructures and methods of preparing
US20050126628A1 (en) * 2002-09-05 2005-06-16 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US7572393B2 (en) 2002-09-05 2009-08-11 Nanosys Inc. Organic species that facilitate charge transfer to or from nanostructures
US7294417B2 (en) * 2002-09-12 2007-11-13 The Trustees Of Boston College Metal oxide nanostructures with hierarchical morphology
US7067867B2 (en) * 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US7619562B2 (en) * 2002-09-30 2009-11-17 Nanosys, Inc. Phased array systems
US7051945B2 (en) * 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
CA2499944A1 (en) * 2002-09-30 2004-04-15 Nanosys, Inc. Integrated displays using nanowire transistors
CA2499965C (en) * 2002-09-30 2013-03-19 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
FR2845519B1 (fr) * 2002-10-03 2005-07-01 Commissariat Energie Atomique Procede de fabrication de nano-structure filaire dans un film semi-conducteur
AU2003282558A1 (en) * 2002-10-11 2004-05-04 Massachusetts Institute Of Technology Nanopellets and method of making nanopellets
US6841235B2 (en) * 2002-10-11 2005-01-11 General Motors Corporation Metallic nanowire and method of making the same
AU2003274418A1 (en) * 2002-11-05 2004-06-07 Koninklijke Philips Electronics N.V. Nanostructure, electronic device having such nanostructure and method of preparing nanostructure
EP1565397A1 (en) * 2002-11-18 2005-08-24 Koninklijke Philips Electronics N.V. Dispersion of nanowires of semiconductor material
US7211143B2 (en) * 2002-12-09 2007-05-01 The Regents Of The University Of California Sacrificial template method of fabricating a nanotube
US7898005B2 (en) * 2002-12-09 2011-03-01 The Regents Of The University Of California Inorganic nanotubes and electro-fluidic devices fabricated therefrom
US7355216B2 (en) * 2002-12-09 2008-04-08 The Regents Of The University Of California Fluidic nanotubes and devices
AU2003304214A1 (en) * 2002-12-09 2005-01-04 The Regents Of The University Of California Sacrificial template method of fabricating a nanotube
US6969897B2 (en) * 2002-12-10 2005-11-29 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
JP4428921B2 (ja) * 2002-12-13 2010-03-10 キヤノン株式会社 ナノ構造体、電子デバイス、及びその製造方法
US7001669B2 (en) 2002-12-23 2006-02-21 The Administration Of The Tulane Educational Fund Process for the preparation of metal-containing nanostructured films
CA2514496C (en) 2003-01-23 2014-07-29 William Marsh Rice University Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices
US7521851B2 (en) * 2003-03-24 2009-04-21 Zhidan L Tolt Electron emitting composite based on regulated nano-structures and a cold electron source using the composite
JP4701161B2 (ja) * 2003-04-04 2011-06-15 キューナノ エービー 正確に位置決めされたナノウィスカおよびナノウィスカアレイ、およびそれらを作成する方法
WO2004088755A1 (en) * 2003-04-04 2004-10-14 Startskottet 22286 Ab Nanowhiskers with pn junctions and methods of fabricating thereof
WO2004099469A2 (en) * 2003-04-09 2004-11-18 The Regents Of The University Of California High resolution electrolytic lithography, apparatus therefor and resulting products
CN1894771B (zh) * 2003-04-15 2012-07-04 加利福尼亚大学董事会 非极性(Al,B,In,Ga)N量子阱
US7135057B2 (en) * 2003-04-16 2006-11-14 Hewlett-Packard Development Company, L.P. Gas storage medium and methods
US7972616B2 (en) 2003-04-17 2011-07-05 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7056409B2 (en) 2003-04-17 2006-06-06 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7074294B2 (en) 2003-04-17 2006-07-11 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US20080213588A1 (en) * 2003-04-21 2008-09-04 Jin-Ming Chen Synthesis of composite nanofibers for applications in lithium batteries
TW200428467A (en) * 2003-04-25 2004-12-16 Hoya Corp Electrode material and semiconductor
US7803574B2 (en) 2003-05-05 2010-09-28 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7302856B2 (en) * 2003-05-07 2007-12-04 California Institute Of Technology Strain sensors based on nanowire piezoresistor wires and arrays
US7552645B2 (en) * 2003-05-07 2009-06-30 California Institute Of Technology Detection of resonator motion using piezoresistive signal downmixing
US7434476B2 (en) * 2003-05-07 2008-10-14 Califronia Institute Of Technology Metallic thin film piezoresistive transduction in micromechanical and nanomechanical devices and its application in self-sensing SPM probes
WO2004102684A2 (en) * 2003-05-19 2004-11-25 Koninklijke Philips Electronics N.V. Tunable radiation emitting semiconductor device
US20070178615A1 (en) * 2003-05-21 2007-08-02 Yissum Research Development Company Of The Hebrew University Of Jerusalem Semiconductor nanocrystal-based optical devices and method of preparing such devices
US20040241507A1 (en) * 2003-05-30 2004-12-02 Schubert Peter J. Method and apparatus for storage of elemental hydrogen
US7148579B2 (en) * 2003-06-02 2006-12-12 Ambient Systems, Inc. Energy conversion systems utilizing parallel array of automatic switches and generators
US7256435B1 (en) * 2003-06-02 2007-08-14 Hewlett-Packard Development Company, L.P. Multilevel imprint lithography
US7199498B2 (en) * 2003-06-02 2007-04-03 Ambient Systems, Inc. Electrical assemblies using molecular-scale electrically conductive and mechanically flexible beams and methods for application of same
US7095645B2 (en) * 2003-06-02 2006-08-22 Ambient Systems, Inc. Nanoelectromechanical memory cells and data storage devices
US20040238907A1 (en) * 2003-06-02 2004-12-02 Pinkerton Joseph F. Nanoelectromechanical transistors and switch systems
US20070240491A1 (en) * 2003-06-03 2007-10-18 Nano-Proprietary, Inc. Hydrogen Sensor
KR100554155B1 (ko) * 2003-06-09 2006-02-22 학교법인 포항공과대학교 금속/반도체 나노막대 이종구조를 이용한 전극 구조물 및그 제조 방법
US7265037B2 (en) * 2003-06-20 2007-09-04 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
KR100593264B1 (ko) * 2003-06-26 2006-06-26 학교법인 포항공과대학교 p-타입 반도체 박막과 n-타입 산화아연(ZnO)계나노막대의 이종접합 구조체, 이의 제법 및 이를 이용한소자
US20050017171A1 (en) * 2003-07-08 2005-01-27 Btg International Limited Probe structures incorporating nanowhiskers, production methods thereof and methods of forming nanowhiskers
US7091120B2 (en) * 2003-08-04 2006-08-15 Nanosys, Inc. System and process for producing nanowire composites and electronic substrates therefrom
DE10335813B4 (de) * 2003-08-05 2009-02-12 Infineon Technologies Ag IC-Chip mit Nanowires
US7241479B2 (en) * 2003-08-22 2007-07-10 Clemson University Thermal CVD synthesis of nanostructures
AU2004317007A1 (en) * 2003-09-03 2005-09-15 Life Patch International, Inc. Personal diagnostic devices and related methods
EP1678741A1 (en) * 2003-09-12 2006-07-12 Kobenhavns Universitet Method of fabrication and device comprising elongated nanosize elements
US8030833B2 (en) * 2003-09-19 2011-10-04 The Board Of Trustees Of The University Of Illinois Electron emission device incorporating free standing monocrystalline nanowires
US7344753B2 (en) * 2003-09-19 2008-03-18 The Board Of Trustees Of The University Of Illinois Nanostructures including a metal
US7067328B2 (en) 2003-09-25 2006-06-27 Nanosys, Inc. Methods, devices and compositions for depositing and orienting nanostructures
DE10345157B4 (de) * 2003-09-29 2009-01-08 Qimonda Ag Wärmeleitende Verpackung von elektronischen Schaltungseinheiten
US7459839B2 (en) * 2003-12-05 2008-12-02 Zhidan Li Tolt Low voltage electron source with self aligned gate apertures, and luminous display using the electron source
KR20050055456A (ko) * 2003-12-08 2005-06-13 학교법인 포항공과대학교 산화아연계 나노막대를 이용한 바이오센서 및 이의 제조방법
WO2005072089A2 (en) * 2003-12-11 2005-08-11 The Penn State Research Foundation Controlled nanowire in permanent integrated nano-templates and method of fabricating sensor and transducer structures
WO2005062347A2 (en) * 2003-12-16 2005-07-07 President And Fellows Of Harvard College Silica nanowires for optical waveguiding and method of their manufacture
WO2005062785A2 (en) * 2003-12-17 2005-07-14 The University Of North Carolina At Chapel Hill Solution-phase synthesis of metal oxide nanostructures
US7112525B1 (en) * 2003-12-22 2006-09-26 University Of South Florida Method for the assembly of nanowire interconnects
US20070120254A1 (en) * 2003-12-23 2007-05-31 Koninklijke Philips Electronics N.C. Semiconductor device comprising a pn-heterojunction
US7018549B2 (en) * 2003-12-29 2006-03-28 Intel Corporation Method of fabricating multiple nanowires of uniform length from a single catalytic nanoparticle
US7456052B2 (en) * 2003-12-30 2008-11-25 Intel Corporation Thermal intermediate apparatus, systems, and methods
US7180174B2 (en) * 2003-12-30 2007-02-20 Intel Corporation Nanotube modified solder thermal intermediate structure, systems, and methods
WO2005110057A2 (en) * 2004-01-06 2005-11-24 The Regents Of The University Of California Crystallographic alignment of high-density nanowire arrays
WO2005067547A2 (en) * 2004-01-14 2005-07-28 The Regents Of The University Of California Diluted magnetic semiconductor nanowires exhibiting magnetoresistance
US20110039690A1 (en) * 2004-02-02 2011-02-17 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US7553371B2 (en) * 2004-02-02 2009-06-30 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US8025960B2 (en) 2004-02-02 2011-09-27 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
DE102004005363A1 (de) * 2004-02-03 2005-09-08 Forschungszentrum Jülich GmbH Halbleiter-Struktur
US20050167646A1 (en) * 2004-02-04 2005-08-04 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nanosubstrate with conductive zone and method for its selective preparation
US7354850B2 (en) 2004-02-06 2008-04-08 Qunano Ab Directionally controlled growth of nanowhiskers
KR100644166B1 (ko) * 2004-02-12 2006-11-10 학교법인 포항공과대학교 질화물 반도체의 이종접합 구조체, 이를 포함하는나노소자 또는 이의 어레이
US7132677B2 (en) * 2004-02-13 2006-11-07 Dongguk University Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same
US20090227107A9 (en) * 2004-02-13 2009-09-10 President And Fellows Of Havard College Nanostructures Containing Metal Semiconductor Compounds
KR100709463B1 (ko) * 2004-02-16 2007-04-18 주식회사 하이닉스반도체 나노 튜브 셀을 이용한 메모리 장치
KR100694426B1 (ko) * 2004-02-16 2007-03-12 주식회사 하이닉스반도체 나노 튜브 셀 및 이를 이용한 메모리 장치
KR100709462B1 (ko) * 2004-02-16 2007-04-18 주식회사 하이닉스반도체 다층 나노 튜브 셀을 이용한 메모리 장치
WO2005079308A2 (en) * 2004-02-17 2005-09-01 New Jersey Institute Of Technology One dimensional nanostructures for vertical heterointegration on a silicon platform and method for making same
US7138697B2 (en) * 2004-02-24 2006-11-21 International Business Machines Corporation Structure for and method of fabricating a high-speed CMOS-compatible Ge-on-insulator photodetector
KR100584188B1 (ko) * 2004-03-08 2006-05-29 한국과학기술연구원 나노선 광센서 및 이를 포함하는 키트
JP2007528294A (ja) * 2004-03-11 2007-10-11 ポステック ファウンデーション 酸化物系ナノ素材を含む光触媒
EP1738378A4 (en) 2004-03-18 2010-05-05 Nanosys Inc NANOFIBRE SURFACE BASED CAPACITORS
US7115971B2 (en) 2004-03-23 2006-10-03 Nanosys, Inc. Nanowire varactor diode and methods of making same
US7407738B2 (en) * 2004-04-02 2008-08-05 Pavel Kornilovich Fabrication and use of superlattice
KR100624419B1 (ko) * 2004-04-07 2006-09-19 삼성전자주식회사 나노와이어 발광소자 및 그 제조방법
KR100552707B1 (ko) * 2004-04-07 2006-02-20 삼성전자주식회사 나노와이어 발광소자 및 그 제조방법
KR100601949B1 (ko) 2004-04-07 2006-07-14 삼성전자주식회사 나노와이어 발광소자
US7235129B2 (en) * 2004-04-13 2007-06-26 Industrial Technology Research Institute Substrate having a zinc oxide nanowire array normal to its surface and fabrication method thereof
US7773404B2 (en) 2005-01-07 2010-08-10 Invisage Technologies, Inc. Quantum dot optical devices with enhanced gain and sensitivity and methods of making same
US7785922B2 (en) 2004-04-30 2010-08-31 Nanosys, Inc. Methods for oriented growth of nanowires on patterned substrates
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
AU2005251089A1 (en) 2004-04-30 2005-12-15 Nanosys, Inc. Systems and methods for nanowire growth and harvesting
CN1268543C (zh) * 2004-05-11 2006-08-09 湖南大学 水热法制备自组生长的硅纳米管及硅纳米线的方法
JP2007538274A (ja) * 2004-05-13 2007-12-27 ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニア サブ波長光導波路としてのナノワイヤ及びナノリボン並びに、これらナノ構造の光学回路及び光学素子の構成要素への利用
US20090263912A1 (en) * 2004-05-13 2009-10-22 The Regents Of The University Of California Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices
US8280214B2 (en) * 2004-05-13 2012-10-02 The Regents Of The University Of California Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices
JP2005326261A (ja) * 2004-05-14 2005-11-24 Japan Synchrotron Radiation Research Inst 超微細構造体のx線迅速構造解析方法
US20050257821A1 (en) * 2004-05-19 2005-11-24 Shriram Ramanathan Thermoelectric nano-wire devices
US7816655B1 (en) * 2004-05-21 2010-10-19 Kla-Tencor Technologies Corporation Reflective electron patterning device and method of using same
US7956360B2 (en) * 2004-06-03 2011-06-07 The Regents Of The University Of California Growth of planar reduced dislocation density M-plane gallium nitride by hydride vapor phase epitaxy
WO2006107312A1 (en) * 2004-06-15 2006-10-12 President And Fellows Of Harvard College Nanosensors
GB0413310D0 (en) * 2004-06-15 2004-07-14 Koninkl Philips Electronics Nv Nanowire semiconductor device
US7771820B2 (en) * 2004-06-17 2010-08-10 Japan Science And Technology Agency Monocrystal, nano wire material, electronic element, and method of producing nano wire material
US20050282307A1 (en) * 2004-06-21 2005-12-22 Daniels John J Particulate for organic and inorganic light active devices and methods for fabricating the same
US20070178658A1 (en) * 2004-06-21 2007-08-02 Kelley Tommie W Patterning and aligning semiconducting nanoparticles
EP1766108A1 (en) 2004-06-25 2007-03-28 Btg International Limited Formation of nanowhiskers on a substrate of dissimilar material
CN101010793B (zh) * 2004-06-30 2011-09-28 Nxp股份有限公司 制造具有通过纳米线接触的导电材料层的电子器件的方法
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US7339184B2 (en) 2004-07-07 2008-03-04 Nanosys, Inc Systems and methods for harvesting and integrating nanowires
GB0415891D0 (en) * 2004-07-16 2004-08-18 Koninkl Philips Electronics Nv Nanoscale fet
WO2006085993A2 (en) * 2004-07-16 2006-08-17 The Trustees Of Boston College Device and method for achieving enhanced field emission utilizing nanostructures grown on a conductive substrate
EP1805869A2 (en) 2004-07-19 2007-07-11 Ambient Systems, Inc. Nanometer-scale electrostatic and electromagnetic motors and generators
WO2006011069A1 (en) * 2004-07-20 2006-02-02 Koninklijke Philips Electronics N.V. Semiconductor device and method of manufacturing the same
FR2873492B1 (fr) * 2004-07-21 2006-11-24 Commissariat Energie Atomique Nanocomposite photoactif et son procede de fabrication
WO2006015105A2 (en) * 2004-07-28 2006-02-09 President And Fellows Of Harvard College Nanowire photonic circuits, components thereof, and related methods
US8309843B2 (en) * 2004-08-19 2012-11-13 Banpil Photonics, Inc. Photovoltaic cells based on nanoscale structures
US7713849B2 (en) * 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
TWI500072B (zh) * 2004-08-31 2015-09-11 Sophia School Corp 發光元件之製造方法
US7438887B2 (en) * 2004-09-03 2008-10-21 The University Of Connecticut Manganese oxide nanowires, films, and membranes and methods of making
US7262066B2 (en) * 2004-09-03 2007-08-28 Picocal, Inc. Systems and methods for thin film thermal diagnostics with scanning thermal microstructures
KR100647288B1 (ko) * 2004-09-13 2006-11-23 삼성전자주식회사 나노와이어 발광소자 및 그 제조방법
US7158219B2 (en) * 2004-09-16 2007-01-02 Hewlett-Packard Development Company, L.P. SERS-active structures including nanowires
US8558311B2 (en) 2004-09-16 2013-10-15 Nanosys, Inc. Dielectrics using substantially longitudinally oriented insulated conductive wires
US7365395B2 (en) 2004-09-16 2008-04-29 Nanosys, Inc. Artificial dielectrics using nanostructures
JP2008515654A (ja) * 2004-10-12 2008-05-15 ナノシス・インク. 導電性ポリマー及び半導体ナノワイヤに基づいてプラスチック電子部品を製造するための完全に集積化された有機層プロセス
US20070240757A1 (en) * 2004-10-15 2007-10-18 The Trustees Of Boston College Solar cells using arrays of optical rectennas
US7473943B2 (en) 2004-10-15 2009-01-06 Nanosys, Inc. Gate configuration for nanowire electronic devices
US8029186B2 (en) * 2004-11-05 2011-10-04 International Business Machines Corporation Method for thermal characterization under non-uniform heat load
US7400665B2 (en) * 2004-11-05 2008-07-15 Hewlett-Packard Developement Company, L.P. Nano-VCSEL device and fabrication thereof using nano-colonnades
US20060112983A1 (en) * 2004-11-17 2006-06-01 Nanosys, Inc. Photoactive devices and components with enhanced efficiency
JP4923477B2 (ja) * 2004-11-24 2012-04-25 株式会社豊田中央研究所 量子ドットアレイ及びその製造方法、並びに量子ドットアレイ素子及びその製造方法
EP1820210A4 (en) 2004-11-24 2014-03-05 Nanosys Inc CONTACT DOPING AND NANOFIL THIN FILM RECOVERY SYSTEMS AND PROCESSES
US7514725B2 (en) * 2004-11-30 2009-04-07 Spire Corporation Nanophotovoltaic devices
US7560366B1 (en) 2004-12-02 2009-07-14 Nanosys, Inc. Nanowire horizontal growth and substrate removal
EP1831973A2 (en) * 2004-12-06 2007-09-12 The President and Fellows of Harvard College Nanoscale wire-based data storage
US7309830B2 (en) 2005-05-03 2007-12-18 Toyota Motor Engineering & Manufacturing North America, Inc. Nanostructured bulk thermoelectric material
EP2432058B8 (en) 2004-12-09 2013-09-11 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
US7939218B2 (en) * 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
US8278011B2 (en) 2004-12-09 2012-10-02 Nanosys, Inc. Nanostructured catalyst supports
US7842432B2 (en) 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
US8120014B2 (en) * 2004-12-15 2012-02-21 Drexel University Nanowire based plasmonics
US20060157684A1 (en) * 2004-12-15 2006-07-20 The Regents Of The University Of California Thin film multilayer with nanolayers addressable from the macroscale
JP4528938B2 (ja) * 2004-12-24 2010-08-25 独立行政法人物質・材料研究機構 マンガンがドープされた窒化ガリウムナノワイヤーの製造方法
KR100653083B1 (ko) * 2004-12-27 2006-12-01 삼성전자주식회사 Rf 스위치
WO2006070670A1 (ja) 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. 半導体ナノワイヤ、および当該ナノワイヤを備えた半導体装置
CA2519608A1 (en) * 2005-01-07 2006-07-07 Edward Sargent Quantum dot-polymer nanocomposite photodetectors and photovoltaics
JP2008531298A (ja) * 2005-01-12 2008-08-14 ニュー・ヨーク・ユニヴァーシティ ホログラフィック光ピンセットによりナノワイヤを処理するためのシステムおよび方法
JP4904696B2 (ja) * 2005-02-16 2012-03-28 日本電気株式会社 電界効果トランジスタおよびその製造方法
KR100661696B1 (ko) * 2005-02-22 2006-12-26 삼성전자주식회사 이종 구조의 반도체 나노 와이어 및 그의 제조방법
EP1696473A3 (en) 2005-02-25 2009-06-10 Samsung Electronics Co.,Ltd. Silicon nano wires, semiconductor device including the same, and method of manufacturing the silicon nano wires
KR100723418B1 (ko) * 2005-02-25 2007-05-30 삼성전자주식회사 실리콘 나노 와이어, 실리콘 나노 와이어를 포함하는반도체 소자 및 실리콘 나노 와이어 제조 방법
US7375012B2 (en) * 2005-02-28 2008-05-20 Pavel Kornilovich Method of forming multilayer film
US20060197436A1 (en) * 2005-03-01 2006-09-07 Sharp Laboratories Of America, Inc. ZnO nanotip electrode electroluminescence device on silicon substrate
US20060207647A1 (en) * 2005-03-16 2006-09-21 General Electric Company High efficiency inorganic nanorod-enhanced photovoltaic devices
US7862793B2 (en) * 2005-04-08 2011-01-04 The Regents Of The University Of California Growth of and defect reduction in nanoscale materials
WO2006113207A2 (en) * 2005-04-13 2006-10-26 Nanosys, Inc. Nanowire dispersion compositions and uses thereof
US8262998B2 (en) * 2005-04-15 2012-09-11 Branislav Vlahovic Detection methods and detection devices based on the quantum confinement effects
CN1854733A (zh) * 2005-04-21 2006-11-01 清华大学 测量碳纳米管生长速度的方法
CN1850580A (zh) * 2005-04-22 2006-10-25 清华大学 超晶格纳米器件及其制作方法
US20060240218A1 (en) * 2005-04-26 2006-10-26 Nanosys, Inc. Paintable nonofiber coatings
US7449776B2 (en) * 2005-05-10 2008-11-11 Hewlett-Packard Development Company, L.P. Cooling devices that use nanowires
US7388201B2 (en) 2005-05-13 2008-06-17 National University Of Singapore Radiation detector having coated nanostructure and method
US9153645B2 (en) 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US20100227382A1 (en) * 2005-05-25 2010-09-09 President And Fellows Of Harvard College Nanoscale sensors
US8039726B2 (en) * 2005-05-26 2011-10-18 General Electric Company Thermal transfer and power generation devices and methods of making the same
FR2886284B1 (fr) * 2005-05-30 2007-06-29 Commissariat Energie Atomique Procede de realisation de nanostructures
AU2006252815A1 (en) * 2005-06-02 2006-12-07 Nanosys, Inc. Light emitting nanowires for macroelectronics
WO2006132659A2 (en) * 2005-06-06 2006-12-14 President And Fellows Of Harvard College Nanowire heterostructures
US7783140B2 (en) * 2005-06-09 2010-08-24 Hewlett-Packard Development Company, L.P. Optically coupled integrated circuit layers
US7492803B2 (en) * 2005-06-10 2009-02-17 Hewlett-Packard Development Company, L.P. Fiber-coupled single photon source
CN100417117C (zh) * 2005-06-15 2008-09-03 华为技术有限公司 自动交换光网络中节点可达性的识别方法
US8344361B2 (en) * 2005-06-16 2013-01-01 Qunano Ab Semiconductor nanowire vertical device architecture
CA2612717A1 (en) * 2005-06-17 2006-12-28 Illuminex Corporation Photovoltaic wire
US20100193768A1 (en) * 2005-06-20 2010-08-05 Illuminex Corporation Semiconducting nanowire arrays for photovoltaic applications
US20090050204A1 (en) * 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material
KR101186683B1 (ko) * 2005-06-25 2012-09-28 서울옵토디바이스주식회사 질화물 양자웰을 갖는 나노 구조체 및 그것을 채택한발광다이오드
WO2007001099A1 (en) * 2005-06-27 2007-01-04 Seoul Opto Device Co., Ltd. Light emitting diode of a nanorod array structure having a nitride-based multi quantum well
US7276424B2 (en) * 2005-06-29 2007-10-02 Hewlett-Packard Development Company, L.P. Fabrication of aligned nanowire lattices
JP2009500275A (ja) * 2005-06-29 2009-01-08 ユニバーシティ オブ ヒューストン イオンビーム照射によって作製されるナノロッドアレイ
JP4894180B2 (ja) * 2005-07-11 2012-03-14 独立行政法人物質・材料研究機構 シリカ膜で被覆されたGaとZnSとの接合を有するナノワイヤー及びその製造方法
WO2007012028A2 (en) * 2005-07-19 2007-01-25 Pinkerton Joseph P Heat activated nanometer-scale pump
JP2007043150A (ja) * 2005-07-29 2007-02-15 Interuniv Micro Electronica Centrum Vzw 細長いナノ構造体を有する波長センシティブ検出器
ATE392013T1 (de) * 2005-07-29 2008-04-15 Imec Inter Uni Micro Electr Wellenlängenempfindlicher photondetektor mit länglichen nanostrukturen
CA2615107A1 (en) * 2005-08-03 2007-02-15 Nano-Proprietary, Inc. Continuous range hydrogen sensor
EP2922099B1 (en) * 2005-08-12 2019-01-02 Cambrios Film Solutions Corporation Nanowires-based transparent conductors
KR20070021671A (ko) * 2005-08-19 2007-02-23 서울옵토디바이스주식회사 나노막대들의 어레이를 채택한 발광 다이오드 및 그것을제조하는 방법
US8344241B1 (en) 2005-08-22 2013-01-01 Q1 Nanosystems Corporation Nanostructure and photovoltaic cell implementing same
US7589880B2 (en) * 2005-08-24 2009-09-15 The Trustees Of Boston College Apparatus and methods for manipulating light using nanoscale cometal structures
US7649665B2 (en) * 2005-08-24 2010-01-19 The Trustees Of Boston College Apparatus and methods for optical switching using nanoscale optics
WO2007120175A2 (en) * 2005-08-24 2007-10-25 The Trustees Of Boston College Apparatus and methods for solar energy conversion using nanoscale cometal structures
WO2007025004A2 (en) * 2005-08-24 2007-03-01 The Trustees Of Boston College Apparatus and methods for nanolithography using nanoscale optics
WO2007086903A2 (en) * 2005-08-24 2007-08-02 The Trustees Of Boston College Apparatus and methods for solar energy conversion using nanocoax structures
US7915973B2 (en) * 2005-08-25 2011-03-29 The Regents Of The University Of California Tunable multiwalled nanotube resonator
JP5452922B2 (ja) * 2005-09-13 2014-03-26 アフィメトリックス・インコーポレーテッド コード化されたマイクロ粒子
WO2007038164A2 (en) * 2005-09-23 2007-04-05 Nanosys, Inc. Methods for nanostructure doping
US7426025B2 (en) * 2005-09-23 2008-09-16 Hewlett-Packard Development Company, L.P. Nanostructures, systems, and methods including nanolasers for enhanced Raman spectroscopy
JP4919146B2 (ja) * 2005-09-27 2012-04-18 独立行政法人産業技術総合研究所 スイッチング素子
WO2007041792A1 (en) * 2005-10-12 2007-04-19 Adelaide Research And Innovation Pty Ltd Fabrication of nanowires
US20070084499A1 (en) * 2005-10-14 2007-04-19 Biprodas Dutta Thermoelectric device produced by quantum confinement in nanostructures
US20070084495A1 (en) * 2005-10-14 2007-04-19 Biprodas Dutta Method for producing practical thermoelectric devices using quantum confinement in nanostructures
JP2007111816A (ja) * 2005-10-19 2007-05-10 National Institute For Materials Science 多機能ナノワイヤとその製造方法、多機能ナノワイヤを用いた濃縮方法
US7528060B1 (en) 2005-10-27 2009-05-05 University Of Puerto Rico Branched nanostructures and method of synthesizing the same
US8314327B2 (en) * 2005-11-06 2012-11-20 Banpil Photonics, Inc. Photovoltaic cells based on nano or micro-scale structures
KR100741243B1 (ko) * 2005-11-07 2007-07-19 삼성전자주식회사 금속 나노닷들을 포함하는 나노 와이어 및 그의 제조방법
US20090045720A1 (en) * 2005-11-10 2009-02-19 Eun Kyung Lee Method for producing nanowires using porous glass template, and multi-probe, field emission tip and devices employing the nanowires
KR101224785B1 (ko) * 2005-11-10 2013-01-21 삼성전자주식회사 다공성 글래스 템플릿을 이용한 나노와이어의 제조방법 및이를 이용한 멀티프로브의 제조방법
JP5049978B2 (ja) * 2005-11-18 2012-10-17 エヌエックスピー ビー ヴィ メタルベースナノワイヤトランジスタ
CN101496167A (zh) * 2005-11-22 2009-07-29 肖克科技有限公司 用于过电压保护的包括电压可变换材料的半导体器件
US20100263200A1 (en) * 2005-11-22 2010-10-21 Lex Kosowsky Wireless communication device using voltage switchable dielectric material
US10873045B2 (en) * 2005-11-29 2020-12-22 Banpil Photonics, Inc. High efficiency photovoltaic cells and manufacturing thereof
US8816191B2 (en) * 2005-11-29 2014-08-26 Banpil Photonics, Inc. High efficiency photovoltaic cells and manufacturing thereof
US20070122313A1 (en) * 2005-11-30 2007-05-31 Zhiyong Li Nanochannel apparatus and method of fabricating
US7906803B2 (en) * 2005-12-06 2011-03-15 Canon Kabushiki Kaisha Nano-wire capacitor and circuit device therewith
US7439560B2 (en) * 2005-12-06 2008-10-21 Canon Kabushiki Kaisha Semiconductor device using semiconductor nanowire and display apparatus and image pick-up apparatus using the same
US20070131269A1 (en) * 2005-12-09 2007-06-14 Biprodas Dutta High density nanowire arrays in glassy matrix
US7559215B2 (en) * 2005-12-09 2009-07-14 Zt3 Technologies, Inc. Methods of drawing high density nanowire arrays in a glassy matrix
US8658880B2 (en) 2005-12-09 2014-02-25 Zt3 Technologies, Inc. Methods of drawing wire arrays
US7767564B2 (en) * 2005-12-09 2010-08-03 Zt3 Technologies, Inc. Nanowire electronic devices and method for producing the same
KR20070061994A (ko) * 2005-12-12 2007-06-15 삼성전자주식회사 표시 장치 및 그 제조 방법
US20070130841A1 (en) * 2005-12-12 2007-06-14 Bays Richard V Construction module system and method
US8330154B2 (en) * 2005-12-20 2012-12-11 Georgia Tech Research Corporation Piezoelectric and semiconducting coupled nanogenerators
KR20070067308A (ko) * 2005-12-23 2007-06-28 삼성전자주식회사 유기 발광 다이오드 및 그 제조 방법, 상기 유기 발광다이오드를 포함하는 유기 발광 표시 장치
EP1804350A1 (en) * 2005-12-27 2007-07-04 Interuniversitair Microelektronica Centrum A semiconductor laser comprising elongate nanostructures
US7741197B1 (en) 2005-12-29 2010-06-22 Nanosys, Inc. Systems and methods for harvesting and reducing contamination in nanowires
KR101287350B1 (ko) 2005-12-29 2013-07-23 나노시스, 인크. 패터닝된 기판 상의 나노와이어의 배향된 성장을 위한 방법
WO2007079411A2 (en) * 2005-12-30 2007-07-12 The Regents Of The University Of California Alignment, transportation and integration of nanowires using optical trapping
US20070155025A1 (en) * 2006-01-04 2007-07-05 Anping Zhang Nanowire structures and devices for use in large-area electronics and methods of making the same
US7349613B2 (en) * 2006-01-24 2008-03-25 Hewlett-Packard Development Company, L.P. Photonic crystal devices including gain material and methods for using the same
US7570355B2 (en) * 2006-01-27 2009-08-04 Hewlett-Packard Development Company, L.P. Nanowire heterostructures and methods of forming the same
US8791359B2 (en) * 2006-01-28 2014-07-29 Banpil Photonics, Inc. High efficiency photovoltaic cells
FR2897204B1 (fr) * 2006-02-07 2008-05-30 Ecole Polytechnique Etablissem Structure de transistor vertical et procede de fabrication
US7357018B2 (en) * 2006-02-10 2008-04-15 Agilent Technologies, Inc. Method for performing a measurement inside a specimen using an insertable nanoscale FET probe
US7826336B2 (en) * 2006-02-23 2010-11-02 Qunano Ab Data storage nanostructures
AU2007222162B2 (en) * 2006-03-08 2013-03-07 Qunano Ab Method for metal-free synthesis of epitaxial semiconductor nanowires on Si
KR101019941B1 (ko) 2006-03-10 2011-03-09 에스티씨. 유엔엠 Gan 나노선의 펄스 성장 및 ⅲ 족 질화물 반도체 기판 물질과 디바이스에서의 어플리케이션
US7968359B2 (en) * 2006-03-10 2011-06-28 Stc.Unm Thin-walled structures
US20070223858A1 (en) * 2006-03-22 2007-09-27 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Electromagnetically responsive element with self resonant bodies
US8642123B1 (en) 2006-03-22 2014-02-04 University Of South Florida Integration of ZnO nanowires with nanocrystalline diamond fibers
US8404313B1 (en) 2006-03-22 2013-03-26 University Of South Florida Synthesis of nanocrystalline diamond fibers
KR101198763B1 (ko) * 2006-03-23 2012-11-12 엘지이노텍 주식회사 기둥 구조와 이를 이용한 발광 소자 및 그 형성방법
WO2007112066A2 (en) 2006-03-24 2007-10-04 Amberwave Systems Corporation Lattice-mismatched semiconductor structures and related methods for device fabrication
US7498215B2 (en) * 2006-04-03 2009-03-03 Canon Kabushiki Kaisha Method of producing product including silicon wires
US8512641B2 (en) * 2006-04-11 2013-08-20 Applied Nanotech Holdings, Inc. Modulation of step function phenomena by varying nanoparticle size
US7924413B2 (en) * 2006-04-28 2011-04-12 Hewlett-Packard Development Company, L.P. Nanowire-based photonic devices
US7465954B2 (en) * 2006-04-28 2008-12-16 Hewlett-Packard Development Company, L.P. Nanowire devices and systems, light-emitting nanowires, and methods of precisely positioning nanoparticles
US20070261730A1 (en) * 2006-05-12 2007-11-15 General Electric Company Low dimensional thermoelectrics fabricated by semiconductor wafer etching
US7544546B2 (en) * 2006-05-15 2009-06-09 International Business Machines Corporation Formation of carbon and semiconductor nanomaterials using molecular assemblies
US7655272B1 (en) * 2006-05-19 2010-02-02 The Board Of Trustees Of The Leland Stanford Junior University Nanoparticles with controlled growth
US20070277866A1 (en) * 2006-05-31 2007-12-06 General Electric Company Thermoelectric nanotube arrays
CN1872660B (zh) * 2006-06-01 2010-06-23 中山大学 多层结构纳米线阵列及其制备方法
JP2007319988A (ja) * 2006-06-01 2007-12-13 National Institute For Materials Science Iv族半導体ナノ細線の製造方法並びに構造制御方法
US7626190B2 (en) * 2006-06-02 2009-12-01 Infineon Technologies Ag Memory device, in particular phase change random access memory device with transistor, and method for fabricating a memory device
WO2008057629A2 (en) * 2006-06-05 2008-05-15 The Board Of Trustees Of The University Of Illinois Photovoltaic and photosensing devices based on arrays of aligned nanostructures
WO2008097321A2 (en) * 2006-06-05 2008-08-14 The Board Of Trustees Of The University Of Illinois Method for growing arrays of aligned nanostructures on surfaces
US20080008844A1 (en) * 2006-06-05 2008-01-10 Martin Bettge Method for growing arrays of aligned nanostructures on surfaces
FR2902237B1 (fr) 2006-06-09 2008-10-10 Commissariat Energie Atomique Procede de realisation d'un dispositif microelectronique emetteur de lumiere a nanofils semi-conducteurs formes sur un substrat metallique
ATE497023T1 (de) 2006-06-12 2011-02-15 Harvard College Nanosensoren und entsprechende technologien
WO2007146769A2 (en) * 2006-06-13 2007-12-21 Georgia Tech Research Corporation Nano-piezoelectronics
KR100723882B1 (ko) * 2006-06-15 2007-05-31 한국전자통신연구원 실리콘 나노점 박막을 이용한 실리콘 나노와이어 제조 방법
US7804157B2 (en) * 2006-06-16 2010-09-28 Hewlett-Packard Development Company, L.P. Device configured to have a nanowire formed laterally between two electrodes and methods for forming the same
US7718995B2 (en) 2006-06-20 2010-05-18 Panasonic Corporation Nanowire, method for fabricating the same, and device having nanowires
WO2007148653A1 (ja) * 2006-06-21 2007-12-27 Panasonic Corporation 電界効果トランジスタ
US20080280085A1 (en) * 2006-06-25 2008-11-13 Oren Livne Dynamically Tunable Fibrillar Structures
US20080006524A1 (en) * 2006-07-05 2008-01-10 Imra America, Inc. Method for producing and depositing nanoparticles
KR20080006735A (ko) * 2006-07-13 2008-01-17 삼성전자주식회사 촉매 담지 탄소나노튜브를 이용한 태양전지 및 그 제조방법
KR100779090B1 (ko) * 2006-07-18 2007-11-27 한국전자통신연구원 아연 산화물을 이용하는 가스 감지기 및 그 제조 방법
FR2904146B1 (fr) * 2006-07-20 2008-10-17 Commissariat Energie Atomique Procede de fabrication d'une nanostructure a base de nanofils interconnectes,nanostructure et utilisation comme convertisseur thermoelectrique
FR2904145B1 (fr) * 2006-07-20 2008-10-17 Commissariat Energie Atomique Composant electronique a transfert de chaleur par ebullition et condensation et procede de fabrication
KR100785347B1 (ko) * 2006-07-27 2007-12-18 한국과학기술연구원 금속전극 위에서의 반도체 나노선의 정렬방법
WO2008013982A1 (en) * 2006-07-28 2008-01-31 California Institute Of Technology Nano electromechanical resonator
US20080029405A1 (en) * 2006-07-29 2008-02-07 Lex Kosowsky Voltage switchable dielectric material having conductive or semi-conductive organic material
US7968010B2 (en) * 2006-07-29 2011-06-28 Shocking Technologies, Inc. Method for electroplating a substrate
US20080032049A1 (en) * 2006-07-29 2008-02-07 Lex Kosowsky Voltage switchable dielectric material having high aspect ratio particles
US7965511B2 (en) * 2006-08-17 2011-06-21 Ati Technologies Ulc Cross-flow thermal management device and method of manufacture thereof
US8173551B2 (en) 2006-09-07 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Defect reduction using aspect ratio trapping
WO2008033303A2 (en) 2006-09-11 2008-03-20 President And Fellows Of Harvard College Branched nanoscale wires
EP1901355B1 (en) * 2006-09-15 2015-11-11 Imec Tunnel effect transistors based on monocrystalline nanowires having a heterostructure
EP1900681B1 (en) * 2006-09-15 2017-03-15 Imec Tunnel Field-Effect Transistors based on silicon nanowires
US7872251B2 (en) * 2006-09-24 2011-01-18 Shocking Technologies, Inc. Formulations for voltage switchable dielectric material having a stepped voltage response and methods for making the same
US7686886B2 (en) * 2006-09-26 2010-03-30 International Business Machines Corporation Controlled shape semiconductor layer by selective epitaxy under seed structure
KR100808202B1 (ko) * 2006-09-26 2008-02-29 엘지전자 주식회사 공명 터널링 다이오드 및 그 제조방법
US20080072961A1 (en) * 2006-09-26 2008-03-27 Yong Liang Nanosized,dye-sensitized photovoltaic cell
WO2008039534A2 (en) 2006-09-27 2008-04-03 Amberwave Systems Corporation Quantum tunneling devices and circuits with lattice- mismatched semiconductor structures
US7442575B2 (en) * 2006-09-29 2008-10-28 Texas Christian University Method of manufacturing semiconductor nanowires
US7405420B1 (en) * 2006-09-29 2008-07-29 The Board Of Trustees Of The Leland Stanford Junior University Method and system for chalcogenide-based nanowire memory
US8044379B2 (en) * 2006-10-05 2011-10-25 Hitachi Chemical Co., Ltd. Well-aligned, high aspect-ratio, high-density silicon nanowires and methods of making the same
GB2442768A (en) * 2006-10-11 2008-04-16 Sharp Kk A method of encapsulating low dimensional structures
US8018568B2 (en) * 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
KR101545219B1 (ko) * 2006-10-12 2015-08-18 캄브리오스 테크놀로지즈 코포레이션 나노와이어 기반의 투명 도전체 및 그의 응용
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US7592679B1 (en) * 2006-10-19 2009-09-22 Hewlett-Packard Development Company, L.P. Sensor and method for making the same
US20080093693A1 (en) * 2006-10-20 2008-04-24 Kamins Theodore I Nanowire sensor with variant selectively interactive segments
US8624108B1 (en) * 2006-11-01 2014-01-07 Banpil Photonics, Inc. Photovoltaic cells based on nano or micro-scale structures
CN101295131B (zh) * 2006-11-03 2011-08-31 中国科学院物理研究所 一种在绝缘衬底上制备纳米结构的方法
WO2008057558A2 (en) * 2006-11-07 2008-05-15 Nanosys, Inc. Systems and methods for nanowire growth
TWI463713B (zh) 2006-11-09 2014-12-01 Nanosys Inc 用於奈米導線對準及沈積的方法
WO2008060282A1 (en) * 2006-11-17 2008-05-22 General Electric Company Thermal transfer and power generation devices and methods of making the same
US20120119168A9 (en) * 2006-11-21 2012-05-17 Robert Fleming Voltage switchable dielectric materials with low band gap polymer binder or composite
WO2008127314A1 (en) 2006-11-22 2008-10-23 President And Fellows Of Harvard College High-sensitivity nanoscale wire sensors
US7786024B2 (en) * 2006-11-29 2010-08-31 Nanosys, Inc. Selective processing of semiconductor nanowires by polarized visible radiation
US8409659B2 (en) 2006-12-01 2013-04-02 GM Global Technology Operations LLC Nanowire supported catalysts for fuel cell electrodes
US20110189101A1 (en) * 2006-12-01 2011-08-04 National University Corporation Shimane University Fluorescent labeling agent and fluorescent labeling method
US8198622B2 (en) 2006-12-13 2012-06-12 Panasonic Corporation Nanowire, device comprising nanowire, and their production methods
US8030664B2 (en) * 2006-12-15 2011-10-04 Samsung Led Co., Ltd. Light emitting device
EP2091862B1 (en) * 2006-12-22 2019-12-11 QuNano AB Elevated led and method of producing such
US8183587B2 (en) * 2006-12-22 2012-05-22 Qunano Ab LED with upstanding nanowire structure and method of producing such
US8049203B2 (en) * 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
WO2008079077A2 (en) * 2006-12-22 2008-07-03 Qunano Ab Nanoelectronic structure and method of producing such
EP2126986B1 (en) 2006-12-22 2019-09-18 QuNano AB Led with upstanding nanowire structure and method of producing such
US20100221894A1 (en) * 2006-12-28 2010-09-02 Industry-Academic Cooperation Foundation, Yonsei University Method for manufacturing nanowires by using a stress-induced growth
US7629532B2 (en) * 2006-12-29 2009-12-08 Sundiode, Inc. Solar cell having active region with nanostructures having energy wells
US8101449B2 (en) 2007-01-03 2012-01-24 Toyota Motor Engineering & Manufacturing North America, Inc. Process for altering thermoelectric properties of a material
US20080157354A1 (en) * 2007-01-03 2008-07-03 Sharp Laboratories Of America, Inc. Multiple stacked nanostructure arrays and methods for making the same
US7781317B2 (en) * 2007-01-03 2010-08-24 Toyota Motor Engineering & Manufacturing North America, Inc. Method of non-catalytic formation and growth of nanowires
US20100160994A1 (en) * 2007-01-04 2010-06-24 Board Of Regents, The University Of Texas System Cardiovascular power source for automatic implantable cardioverter defibrillators
US20110275947A1 (en) * 2007-01-04 2011-11-10 Board Of Regents, The University Of Texas System Cardiovascular power source for automatic implantable cardioverter defibrillators
US7948050B2 (en) 2007-01-11 2011-05-24 International Business Machines Corporation Core-shell nanowire transistor
KR101549270B1 (ko) 2007-01-12 2015-09-01 큐나노 에이비 질화물 나노와이어 및 이의 제조 방법
CN105826345B (zh) 2007-01-17 2018-07-31 伊利诺伊大学评议会 通过基于印刷的组装制造的光学系统
US7544591B2 (en) * 2007-01-18 2009-06-09 Hewlett-Packard Development Company, L.P. Method of creating isolated electrodes in a nanowire-based device
JP4825697B2 (ja) * 2007-01-25 2011-11-30 株式会社ミツトヨ デジタル式変位測定器
US7711213B2 (en) * 2007-01-29 2010-05-04 Hewlett-Packard Development Company, L.P. Nanowire-based modulators
US7720326B2 (en) * 2007-01-29 2010-05-18 Hewlett-Packard Development Company, L.P. Nanowire-based photodetectors
KR20090117881A (ko) * 2007-01-30 2009-11-13 솔라스타, 인코포레이티드 광전지 및 광전지를 제조하는 방법
US20080187684A1 (en) * 2007-02-07 2008-08-07 Imra America, Inc. Method for depositing crystalline titania nanoparticles and films
EP2115784A2 (en) * 2007-02-12 2009-11-11 Solasta, Inc. Photovoltaic cell with reduced hot-carrier cooling
US7851784B2 (en) * 2007-02-13 2010-12-14 Nano-Electronic And Photonic Devices And Circuits, Llc Nanotube array electronic devices
US8183566B2 (en) * 2007-03-01 2012-05-22 Hewlett-Packard Development Company, L.P. Hetero-crystalline semiconductor device and method of making same
US7728333B2 (en) * 2007-03-09 2010-06-01 Nano-Electronic And Photonic Devices And Circuits, Llc Nanotube array ballistic light emitting devices
JP4877806B2 (ja) * 2007-03-14 2012-02-15 独立行政法人日本原子力研究開発機構 高分子多段ナノワイヤー及びスターバースト型ナノ粒子並びにそれらの製造方法
US8385113B2 (en) 2007-04-03 2013-02-26 Cjp Ip Holdings, Ltd. Nanoelectromechanical systems and methods for making the same
US7825328B2 (en) * 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8304805B2 (en) 2009-01-09 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
KR100853200B1 (ko) * 2007-04-11 2008-08-20 한국전자통신연구원 다중 구조의 나노와이어 및 그 제조방법
KR101456838B1 (ko) 2007-04-20 2014-11-04 캄브리오스 테크놀로지즈 코포레이션 복합 투명 도전체 및 그 제조 방법
US8347726B2 (en) * 2007-04-25 2013-01-08 Hewlett-Packard Development Company, L.P. Free-standing nanowire sensor and methods for forming and using the same
US8212235B2 (en) 2007-04-25 2012-07-03 Hewlett-Packard Development Company, L.P. Nanowire-based opto-electronic device
KR100852684B1 (ko) * 2007-04-26 2008-08-19 연세대학교 산학협력단 선택적 산화아연 나노선의 제조방법
US7880318B1 (en) * 2007-04-27 2011-02-01 Hewlett-Packard Development Company, L.P. Sensing system and method of making the same
KR101375833B1 (ko) * 2007-05-03 2014-03-18 삼성전자주식회사 게르마늄 나노로드를 구비한 전계효과 트랜지스터 및 그제조방법
CN101675522B (zh) * 2007-05-07 2012-08-29 Nxp股份有限公司 光敏器件以及制造光敏器件的方法
US7888583B2 (en) * 2007-05-07 2011-02-15 Wisconsin Alumni Research Foundation Semiconductor nanowire thermoelectric materials and devices, and processes for producing same
KR101356694B1 (ko) * 2007-05-10 2014-01-29 삼성전자주식회사 실리콘 나노와이어를 이용한 발광 다이오드 및 그 제조방법
US10096789B2 (en) * 2007-05-23 2018-10-09 University Of Florida Research Foundation, Inc. Method and apparatus for light absorption and charged carrier transport
WO2008150867A2 (en) 2007-05-29 2008-12-11 Innova Materials, Llc Surfaces having particles and related methods
JP5498161B2 (ja) 2007-06-06 2014-05-21 パナソニック株式会社 半導体ナノワイヤの製造方法
US20090179523A1 (en) * 2007-06-08 2009-07-16 Georgia Tech Research Corporation Self-activated nanoscale piezoelectric motion sensor
US7793236B2 (en) * 2007-06-13 2010-09-07 Shocking Technologies, Inc. System and method for including protective voltage switchable dielectric material in the design or simulation of substrate devices
US20080310956A1 (en) * 2007-06-13 2008-12-18 Jain Ashok K Variable geometry gas turbine engine nacelle assembly with nanoelectromechanical system
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US20100186809A1 (en) * 2007-06-19 2010-07-29 Lars Samuelson Nanowire- based solar cell structure
EP2171763A2 (en) * 2007-06-26 2010-04-07 Solarity, Inc. Lateral collection photovoltaics
US7982137B2 (en) * 2007-06-27 2011-07-19 Hamilton Sundstrand Corporation Circuit board with an attached die and intermediate interposer
WO2009005805A2 (en) * 2007-07-03 2009-01-08 Solasta, Inc. Distributed coax photovoltaic device
KR101361129B1 (ko) * 2007-07-03 2014-02-13 삼성전자주식회사 발광소자 및 그 제조방법
DE102007031600B4 (de) * 2007-07-06 2015-10-15 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Array aus vertikalen UV-Leuchtemitterdioden und Verfahren zu seiner Herstellung
WO2009009612A2 (en) * 2007-07-09 2009-01-15 Nanocrystal, Llc Growth of self-assembled gan nanowires and application in nitride semiconductor bulk material
EP2168146A2 (en) * 2007-07-10 2010-03-31 Nxp B.V. Single crystal growth on a mis-matched substrate
US7959969B2 (en) 2007-07-10 2011-06-14 California Institute Of Technology Fabrication of anchored carbon nanotube array devices for integrated light collection and energy conversion
US7701013B2 (en) * 2007-07-10 2010-04-20 International Business Machines Corporation Nanoelectromechanical transistors and methods of forming same
US20100196446A1 (en) * 2007-07-10 2010-08-05 Morteza Gharib Drug delivery and substance transfer facilitated by nano-enhanced device having aligned carbon nanotubes protruding from device surface
US20110143137A1 (en) * 2007-07-10 2011-06-16 The Regents Of The University Of California Composite Nanorods
US7550354B2 (en) * 2007-07-11 2009-06-23 International Business Machines Corporation Nanoelectromechanical transistors and methods of forming same
US7923310B2 (en) 2007-07-17 2011-04-12 Sharp Laboratories Of America, Inc. Core-shell-shell nanowire transistor and fabrication method
AU2008275956A1 (en) * 2007-07-19 2009-01-22 California Institute Of Technology Structures of ordered arrays of semiconductors
CN101779271B (zh) * 2007-07-19 2013-05-22 加利福尼亚技术学院 垂直排列的硅线阵列的结构及其形成方法
WO2009014985A2 (en) * 2007-07-20 2009-01-29 California Institute Of Technology Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires
JP5096824B2 (ja) * 2007-07-24 2012-12-12 日本電信電話株式会社 ナノ構造およびナノ構造の作製方法
EP2019313B1 (en) * 2007-07-25 2015-09-16 Stichting IMEC Nederland Sensor device comprising elongated nanostructures, its use and manufacturing method
FR2919759A1 (fr) * 2007-08-02 2009-02-06 Chambre De Commerce Et D Ind D Procede et generateur thermoelectrique/thermoionique de conversion d'ondes electromagnetiques par des superreseaux
US8945304B2 (en) * 2007-08-13 2015-02-03 The Board of Regents of the Nevada System of Higher Education on behalf of the University of Nevada, Las Vegas University of Nevada Ultrahigh vacuum process for the deposition of nanotubes and nanowires
RU2515969C2 (ru) * 2007-08-21 2014-05-20 Члены Правления Университета Калифорнии Наноструктуры с высокими термоэлектрическими свойствами
US7910461B2 (en) * 2007-08-28 2011-03-22 California Institute Of Technology Method for reuse of wafers for growth of vertically-aligned wire arrays
US7714317B2 (en) * 2007-08-30 2010-05-11 Brookhaven Science Associates, Llc Assembly of ordered carbon shells on semiconducting nanomaterials
CA2697403A1 (en) * 2007-08-31 2009-03-05 Evergreen Solar, Inc. Ribbon crystal string for increasing wafer yield
CN101884117B (zh) * 2007-09-07 2013-10-02 台湾积体电路制造股份有限公司 多结太阳能电池
US8519437B2 (en) * 2007-09-14 2013-08-27 Cree, Inc. Polarization doping in nitride based diodes
US7985394B2 (en) 2007-09-19 2011-07-26 Gideon Duvall System and method for manufacturing carbon nanotubes
US7501636B1 (en) 2007-09-20 2009-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanotunneling junction-based hyperspectal polarimetric photodetector and detection method
US8378333B2 (en) * 2007-09-27 2013-02-19 University Of Maryland Lateral two-terminal nanotube devices and method for their formation
US9012937B2 (en) 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same
US8044294B2 (en) * 2007-10-18 2011-10-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thermoelectric materials and devices
FR2922685B1 (fr) * 2007-10-22 2011-02-25 Commissariat Energie Atomique Dispositif optoelectronique a base de nanofils et procedes correspondants
US7915146B2 (en) * 2007-10-23 2011-03-29 International Business Machines Corporation Controlled doping of semiconductor nanowires
WO2009054804A1 (en) * 2007-10-26 2009-04-30 Qunano Ab Nanowire growth on dissimilar material
FR2923602B1 (fr) 2007-11-12 2009-11-20 Commissariat Energie Atomique Detecteur de rayonnement electromagnetique a thermometre a nanofil et procede de realisation
FR2923601B1 (fr) * 2007-11-12 2010-01-01 Commissariat Energie Atomique Detecteur de rayonnement electromagnetique a connexion par nanofil et procede de realisation
JP2009140975A (ja) * 2007-12-04 2009-06-25 Panasonic Electric Works Co Ltd 半導体発光装置およびそれを用いる照明装置ならびに半導体発光装置の製造方法
US8319002B2 (en) * 2007-12-06 2012-11-27 Nanosys, Inc. Nanostructure-enhanced platelet binding and hemostatic structures
US8304595B2 (en) 2007-12-06 2012-11-06 Nanosys, Inc. Resorbable nanoenhanced hemostatic structures and bandage materials
US20090155963A1 (en) * 2007-12-12 2009-06-18 Hawkins Gilbert A Forming thin film transistors using ablative films
US7927905B2 (en) * 2007-12-21 2011-04-19 Palo Alto Research Center Incorporated Method of producing microsprings having nanowire tip structures
US8273983B2 (en) 2007-12-21 2012-09-25 Hewlett-Packard Development Company, L.P. Photonic device and method of making same using nanowires
US8148800B2 (en) * 2008-01-11 2012-04-03 Hewlett-Packard Development Company, L.P. Nanowire-based semiconductor device and method employing removal of residual carriers
US8206614B2 (en) * 2008-01-18 2012-06-26 Shocking Technologies, Inc. Voltage switchable dielectric material having bonded particle constituents
US8182982B2 (en) * 2008-04-19 2012-05-22 Rolith Inc Method and device for patterning a disk
KR101400238B1 (ko) * 2008-01-23 2014-05-29 고려대학교 산학협력단 와이어를 이용하는 공진 구조체와 공진 터널링 트랜지스터및 공진 구조체 제조 방법
US8440994B2 (en) * 2008-01-24 2013-05-14 Nano-Electronic And Photonic Devices And Circuits, Llc Nanotube array electronic and opto-electronic devices
US8610125B2 (en) * 2008-01-24 2013-12-17 Nano-Electronic And Photonic Devices And Circuits, Llc Nanotube array light emitting diodes
US8492249B2 (en) * 2008-01-24 2013-07-23 Nano-Electronic And Photonic Devices And Circuits, Llc Methods of forming catalytic nanopads
US8610104B2 (en) * 2008-01-24 2013-12-17 Nano-Electronic And Photonic Devices And Circuits, Llc Nanotube array injection lasers
US8624224B2 (en) * 2008-01-24 2014-01-07 Nano-Electronic And Photonic Devices And Circuits, Llc Nanotube array bipolar transistors
CN101933140B (zh) 2008-01-30 2012-02-29 惠普发展公司,有限责任合伙企业 纳米结构及其制造方法
US20090188557A1 (en) * 2008-01-30 2009-07-30 Shih-Yuan Wang Photonic Device And Method Of Making Same Using Nanowire Bramble Layer
US8603246B2 (en) * 2008-01-30 2013-12-10 Palo Alto Research Center Incorporated Growth reactor systems and methods for low-temperature synthesis of nanowires
WO2009099425A2 (en) 2008-02-07 2009-08-13 Qd Vision, Inc. Flexible devices including semiconductor nanocrystals, arrays, and methods
CN101971360A (zh) * 2008-02-08 2011-02-09 清洁电池国际股份有限公司 用于发电的基于纳米棒的复合结构
KR101436000B1 (ko) * 2008-02-22 2014-08-29 삼성전자주식회사 나노 또는 마이크로 크기의 다이오드 및 이의 제조 방법
US20110018065A1 (en) * 2008-02-26 2011-01-27 Nxp B.V. Method for manufacturing semiconductor device and semiconductor device
US8551558B2 (en) 2008-02-29 2013-10-08 International Business Machines Corporation Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
US8592675B2 (en) 2008-02-29 2013-11-26 International Business Machines Corporation Photovoltaic devices with enhanced efficiencies using high-aspect-ratio nanostructures
US8022601B2 (en) * 2008-03-17 2011-09-20 Georgia Tech Research Corporation Piezoelectric-coated carbon nanotube generators
JP5044041B2 (ja) * 2008-03-20 2012-10-10 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. サムネイルに基く画像クオリティ検査
KR20100126541A (ko) * 2008-03-24 2010-12-01 더 리전츠 오브 더 유니버시티 오브 캘리포니아 구별된 영역들을 갖는 복합 나노로드
US8273591B2 (en) 2008-03-25 2012-09-25 International Business Machines Corporation Super lattice/quantum well nanowires
GB2459251A (en) 2008-04-01 2009-10-21 Sharp Kk Semiconductor nanowire devices
US8203421B2 (en) * 2008-04-14 2012-06-19 Shocking Technologies, Inc. Substrate device or package using embedded layer of voltage switchable dielectric material in a vertical switching configuration
KR20090109980A (ko) * 2008-04-17 2009-10-21 한국과학기술연구원 가시광 대역 반도체 나노선 광센서 및 이의 제조 방법
US7960715B2 (en) * 2008-04-24 2011-06-14 University Of Iowa Research Foundation Semiconductor heterostructure nanowire devices
EP2271490B1 (en) 2008-04-30 2019-10-09 Nanosys, Inc. Non-fouling surfaces for reflective spheres
US9287469B2 (en) * 2008-05-02 2016-03-15 Cree, Inc. Encapsulation for phosphor-converted white light emitting diode
US20100326503A1 (en) * 2008-05-08 2010-12-30 Georgia Tech Research Corporation Fiber Optic Solar Nanogenerator Cells
WO2009141472A1 (es) * 2008-05-20 2009-11-26 Antonio Miravete De Marco Sistemay método de monitorización del daño en estructuras
US7902540B2 (en) * 2008-05-21 2011-03-08 International Business Machines Corporation Fast P-I-N photodetector with high responsitivity
US7705523B2 (en) * 2008-05-27 2010-04-27 Georgia Tech Research Corporation Hybrid solar nanogenerator cells
US8183667B2 (en) 2008-06-03 2012-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial growth of crystalline material
JP2011524474A (ja) 2008-06-05 2011-09-01 パフォーマンス インディケーター エルエルシー フォトルミネセンス繊維、組成物、およびそれより製造された布
US8390005B2 (en) 2008-06-30 2013-03-05 Hewlett-Packard Development Company, L.P. Apparatus and method for nanowire optical emission
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8294141B2 (en) * 2008-07-07 2012-10-23 Georgia Tech Research Corporation Super sensitive UV detector using polymer functionalized nanobelts
US20100014251A1 (en) * 2008-07-15 2010-01-21 Advanced Micro Devices, Inc. Multidimensional Thermal Management Device for an Integrated Circuit Chip
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
WO2010007333A1 (en) * 2008-07-18 2010-01-21 Panasonic Corporation Semiconductor material
US8178784B1 (en) 2008-07-20 2012-05-15 Charles Wesley Blackledge Small pins and microscopic applications thereof
US8569848B2 (en) 2008-07-21 2013-10-29 The Regents Of The University Of California Nanotube phonon waveguide
KR101510356B1 (ko) * 2008-07-31 2015-04-06 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 광학 신호들을 증폭, 변조 및 검출하기 위한 나노-와이어 광학 블록 디바이스들
KR101524766B1 (ko) * 2008-08-07 2015-06-02 삼성전자주식회사 전기 에너지 발생 장치 및 그 제조 방법
US10105875B2 (en) 2008-08-21 2018-10-23 Cam Holding Corporation Enhanced surfaces, coatings, and related methods
US20100047535A1 (en) * 2008-08-22 2010-02-25 Lex Kosowsky Core layer structure having voltage switchable dielectric material
US20100051932A1 (en) * 2008-08-28 2010-03-04 Seo-Yong Cho Nanostructure and uses thereof
JP5029542B2 (ja) * 2008-09-02 2012-09-19 ソニー株式会社 一次元ナノ構造体の製造方法及びその装置
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US20110115041A1 (en) * 2009-11-19 2011-05-19 Zena Technologies, Inc. Nanowire core-shell light pipes
KR20100028412A (ko) * 2008-09-04 2010-03-12 삼성전자주식회사 나노 막대를 이용한 발광 다이오드 및 그 제조 방법
US8890271B2 (en) 2010-06-30 2014-11-18 Zena Technologies, Inc. Silicon nitride light pipes for image sensors
US8229255B2 (en) * 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US8546742B2 (en) * 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US20100304061A1 (en) * 2009-05-26 2010-12-02 Zena Technologies, Inc. Fabrication of high aspect ratio features in a glass layer by etching
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US8889455B2 (en) * 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US8507840B2 (en) 2010-12-21 2013-08-13 Zena Technologies, Inc. Vertically structured passive pixel arrays and methods for fabricating the same
US20100148221A1 (en) * 2008-11-13 2010-06-17 Zena Technologies, Inc. Vertical photogate (vpg) pixel structure with nanowires
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US8269985B2 (en) * 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US8384007B2 (en) * 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US8791470B2 (en) * 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
WO2010033635A1 (en) * 2008-09-17 2010-03-25 Shocking Technologies, Inc. Voltage switchable dielectric material containing boron compound
CN102160145B (zh) 2008-09-19 2013-08-21 台湾积体电路制造股份有限公司 通过外延层过成长的元件形成
US20100072515A1 (en) * 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US9208931B2 (en) * 2008-09-30 2015-12-08 Littelfuse, Inc. Voltage switchable dielectric material containing conductor-on-conductor core shelled particles
KR101653426B1 (ko) * 2008-09-30 2016-09-01 쇼킹 테크놀로지스 인코포레이티드 도전 코어 쉘 입자를 포함하는 전압 절환형 유전 물질
KR20110074605A (ko) * 2008-10-20 2011-06-30 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 나노와이어 볼로미터 광 검출기
US20110008568A1 (en) * 2008-11-03 2011-01-13 Bongsoo Kim Oriented noble metal single crystalline nanowire and preparation method thereof
US8362871B2 (en) * 2008-11-05 2013-01-29 Shocking Technologies, Inc. Geometric and electric field considerations for including transient protective material in substrate devices
US20110210480A1 (en) * 2008-11-18 2011-09-01 Rolith, Inc Nanostructures with anti-counterefeiting features and methods of fabricating the same
US8540889B1 (en) 2008-11-19 2013-09-24 Nanosys, Inc. Methods of generating liquidphobic surfaces
US9494615B2 (en) * 2008-11-24 2016-11-15 Massachusetts Institute Of Technology Method of making and assembling capsulated nanostructures
US8354291B2 (en) 2008-11-24 2013-01-15 University Of Southern California Integrated circuits based on aligned nanotubes
KR101249292B1 (ko) * 2008-11-26 2013-04-01 한국전자통신연구원 열전소자, 열전소자 모듈, 및 그 열전 소자의 형성 방법
US7940381B2 (en) * 2008-11-26 2011-05-10 International Business Machines Corporation Semiconductor nanowire electromagnetic radiation sensor
CN101752092B (zh) * 2008-11-27 2013-08-21 鸿富锦精密工业(深圳)有限公司 太阳能电池工作电极、其制造方法及太阳能电池
WO2010065860A2 (en) * 2008-12-04 2010-06-10 The Regents Of The Univerity Of California Electron injection nanostructured semiconductor material anode electroluminescence method and device
US9059397B2 (en) 2008-12-08 2015-06-16 Electronics And Telecommunications Research Institute Nano piezoelectric device having a nanowire and method of forming the same
JP4971393B2 (ja) * 2008-12-08 2012-07-11 韓國電子通信研究院 ナノ圧電素子及びその形成方法
US8093139B2 (en) * 2008-12-11 2012-01-10 Anteos, Inc. Method for fabrication of aligned nanowire structures in semiconductor materials for electronic, optoelectronic, photonic and plasmonic devices
US8890115B2 (en) * 2009-01-06 2014-11-18 Brookhaven Science Associates, Llc Stable and metastable nanowires displaying locally controllable properties
US8389387B2 (en) * 2009-01-06 2013-03-05 Brookhaven Science Associates, Llc Segmented nanowires displaying locally controllable properties
US8441255B1 (en) * 2009-01-22 2013-05-14 Louisiana Tech University Research Foundation, a divison of Louisiana Tech University Foundation, Inc. Thermocooling of GMR sensors
US8272123B2 (en) 2009-01-27 2012-09-25 Shocking Technologies, Inc. Substrates having voltage switchable dielectric materials
US8399773B2 (en) 2009-01-27 2013-03-19 Shocking Technologies, Inc. Substrates having voltage switchable dielectric materials
US9226391B2 (en) 2009-01-27 2015-12-29 Littelfuse, Inc. Substrates having voltage switchable dielectric materials
CN102369610A (zh) * 2009-01-29 2012-03-07 惠普开发有限公司 半导体异质结构热电器件
TWI383055B (zh) * 2009-02-17 2013-01-21 Univ Nat Chunghsing The Method of Making Metal Material Pattern
WO2010099220A2 (en) 2009-02-25 2010-09-02 California Institute Of Technology Methods for fabricating high aspect ratio probes and deforming high aspect ratio nanopillars and micropillars
US20100212727A1 (en) * 2009-02-26 2010-08-26 Ji Ung Lee Apparatus and methods for continuously growing carbon nanotubes and graphene sheets
US8242353B2 (en) * 2009-03-16 2012-08-14 International Business Machines Corporation Nanowire multijunction solar cell
EP2412212A1 (en) 2009-03-26 2012-02-01 Shocking Technologies Inc Components having voltage switchable dielectric materials
CN102379046B (zh) 2009-04-02 2015-06-17 台湾积体电路制造股份有限公司 从晶体材料的非极性平面形成的器件及其制作方法
US8013324B2 (en) * 2009-04-03 2011-09-06 International Business Machines Corporation Structurally stabilized semiconductor nanowire
US7943530B2 (en) * 2009-04-03 2011-05-17 International Business Machines Corporation Semiconductor nanowires having mobility-optimized orientations
US7902541B2 (en) * 2009-04-03 2011-03-08 International Business Machines Corporation Semiconductor nanowire with built-in stress
US8237150B2 (en) * 2009-04-03 2012-08-07 International Business Machines Corporation Nanowire devices for enhancing mobility through stress engineering
WO2010118321A2 (en) * 2009-04-10 2010-10-14 Clean Cell International Inc. Composite nanorod-based structures for generating electricity
WO2010120298A1 (en) * 2009-04-15 2010-10-21 Hewlett-Packard Development Company, L.P Thermoelectric device having a variable cross-section connecting structure
CN102439068B (zh) * 2009-04-16 2015-08-05 默克专利股份有限公司 硅纳米棒的合成
FR2944783B1 (fr) * 2009-04-28 2011-06-03 Commissariat Energie Atomique Procede d'elaboration de nanofils de silicium et/ou de germanium.
US9065253B2 (en) * 2009-05-13 2015-06-23 University Of Washington Through Its Center For Commercialization Strain modulated nanostructures for optoelectronic devices and associated systems and methods
ES2867474T3 (es) 2009-05-19 2021-10-20 Oned Mat Inc Materiales nanoestructurados para aplicaciones de batería
EP2432729B1 (en) 2009-05-19 2021-01-13 Howard University Nanothermocouple detector based on thermoelectric nanowires
JP5674285B2 (ja) * 2009-05-25 2015-02-25 株式会社日立製作所 レーザー誘起表面ナノ配列構造の作製方法及びそれを用いて作製したデバイス構造
JP2012528020A (ja) 2009-05-26 2012-11-12 ナノシス・インク. ナノワイヤおよび他のデバイスの電場沈着のための方法およびシステム
US8623288B1 (en) 2009-06-29 2014-01-07 Nanosys, Inc. Apparatus and methods for high density nanowire growth
US8415692B2 (en) 2009-07-06 2013-04-09 Cree, Inc. LED packages with scattering particle regions
US20110012177A1 (en) * 2009-07-20 2011-01-20 International Business Machines Corporation Nanostructure For Changing Electric Mobility
US8368125B2 (en) * 2009-07-20 2013-02-05 International Business Machines Corporation Multiple orientation nanowires with gate stack stressors
US8569900B2 (en) 2009-07-20 2013-10-29 Hewlett-Packard Development Company, L.P. Nanowire sensor with angled segments that are differently functionalized
EP2457265B1 (en) * 2009-07-23 2014-10-29 Danmarks Tekniske Universitet An Electrically-driven single photon source
JP2011040663A (ja) * 2009-08-18 2011-02-24 Hioki Ee Corp サーモパイル型赤外線検知素子およびその製造方法
US9074296B2 (en) * 2009-08-21 2015-07-07 Cornell University Mesoporous Co3O4 nanoparticles, associated methods and applications
US10032569B2 (en) * 2009-08-26 2018-07-24 University Of Maryland, College Park Nanodevice arrays for electrical energy storage, capture and management and method for their formation
US8568027B2 (en) * 2009-08-26 2013-10-29 Ut-Battelle, Llc Carbon nanotube temperature and pressure sensors
US8912522B2 (en) * 2009-08-26 2014-12-16 University Of Maryland Nanodevice arrays for electrical energy storage, capture and management and method for their formation
US20110049473A1 (en) * 2009-08-28 2011-03-03 International Business Machines Corporation Film Wrapped NFET Nanowire
US9053844B2 (en) * 2009-09-09 2015-06-09 Littelfuse, Inc. Geometric configuration or alignment of protective material in a gap structure for electrical devices
US8208136B2 (en) * 2009-09-11 2012-06-26 Ut-Battelle, Llc Large area substrate for surface enhanced Raman spectroscopy (SERS) using glass-drawing technique
US8461600B2 (en) * 2009-09-11 2013-06-11 Ut-Battelle, Llc Method for morphological control and encapsulation of materials for electronics and energy applications
US8101913B2 (en) * 2009-09-11 2012-01-24 Ut-Battelle, Llc Method of making large area conformable shape structures for detector/sensor applications using glass drawing technique and postprocessing
WO2011038228A1 (en) 2009-09-24 2011-03-31 President And Fellows Of Harvard College Bent nanowires and related probing of species
US8524527B2 (en) * 2009-09-25 2013-09-03 University Of Southern California High-performance single-crystalline N-type dopant-doped metal oxide nanowires for transparent thin film transistors and active matrix organic light-emitting diode displays
US8274138B2 (en) * 2009-09-30 2012-09-25 Eastman Kodak Company II-VI semiconductor nanowires
US20110076841A1 (en) * 2009-09-30 2011-03-31 Kahen Keith B Forming catalyzed ii-vi semiconductor nanowires
KR20110041401A (ko) * 2009-10-15 2011-04-21 샤프 가부시키가이샤 발광 장치 및 그 제조 방법
JP4996660B2 (ja) * 2009-10-15 2012-08-08 シャープ株式会社 発光装置およびその製造方法
US8872214B2 (en) 2009-10-19 2014-10-28 Sharp Kabushiki Kaisha Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device
JP4897034B2 (ja) * 2009-12-03 2012-03-14 シャープ株式会社 棒状構造発光素子、発光装置、発光装置の製造方法、バックライト、照明装置および表示装置
US20110101302A1 (en) * 2009-11-05 2011-05-05 University Of Southern California Wafer-scale fabrication of separated carbon nanotube thin-film transistors
US20110114146A1 (en) * 2009-11-13 2011-05-19 Alphabet Energy, Inc. Uniwafer thermoelectric modules
WO2011063163A2 (en) 2009-11-19 2011-05-26 California Institute Of Technology Methods for fabricating self-aligning arrangements on semiconductors
US9018684B2 (en) 2009-11-23 2015-04-28 California Institute Of Technology Chemical sensing and/or measuring devices and methods
JP5826760B2 (ja) * 2009-11-27 2015-12-02 ハイジトロン, インク.Hysitron, Inc. ミクロ電気機械ヒータ
WO2011066529A2 (en) * 2009-11-30 2011-06-03 California Institute Of Technology Three-dimensional patterning methods and related devices
JP2011135058A (ja) * 2009-11-30 2011-07-07 Honda Motor Co Ltd 太陽電池素子、カラーセンサ、ならびに発光素子及び受光素子の製造方法
US9112085B2 (en) * 2009-11-30 2015-08-18 The Royal Institution For The Advancement Of Learning/Mcgill University High efficiency broadband semiconductor nanowire devices
US8563395B2 (en) * 2009-11-30 2013-10-22 The Royal Institute For The Advancement Of Learning/Mcgill University Method of growing uniform semiconductor nanowires without foreign metal catalyst and devices thereof
US8455334B2 (en) * 2009-12-04 2013-06-04 International Business Machines Corporation Planar and nanowire field effect transistors
US8143113B2 (en) 2009-12-04 2012-03-27 International Business Machines Corporation Omega shaped nanowire tunnel field effect transistors fabrication
US8129247B2 (en) 2009-12-04 2012-03-06 International Business Machines Corporation Omega shaped nanowire field effect transistors
US8173993B2 (en) * 2009-12-04 2012-05-08 International Business Machines Corporation Gate-all-around nanowire tunnel field effect transistors
US8097515B2 (en) * 2009-12-04 2012-01-17 International Business Machines Corporation Self-aligned contacts for nanowire field effect transistors
US8384065B2 (en) * 2009-12-04 2013-02-26 International Business Machines Corporation Gate-all-around nanowire field effect transistors
TWI416746B (zh) * 2009-12-09 2013-11-21 Wintek Corp 太陽能控光模組
FR2953824B1 (fr) * 2009-12-11 2015-04-24 Univ Toulouse 3 Paul Sabatier Materiau solide composite piezoelectrique et/ou pyroelectrique, procede d'obtention et utilisation d'un tel materiau
US20110140071A1 (en) * 2009-12-14 2011-06-16 Olga Kryliouk Nano-spherical group iii-nitride materials
US8536615B1 (en) 2009-12-16 2013-09-17 Cree, Inc. Semiconductor device structures with modulated and delta doping and related methods
US8604461B2 (en) * 2009-12-16 2013-12-10 Cree, Inc. Semiconductor device structures with modulated doping and related methods
KR100974626B1 (ko) * 2009-12-22 2010-08-09 동국대학교 산학협력단 접촉 구조의 나노로드 반도체 소자 및 그 제조 방법
CN105347297B (zh) * 2009-12-22 2018-01-09 昆南诺股份有限公司 用于制备纳米线结构的方法
KR20110080591A (ko) * 2010-01-06 2011-07-13 삼성전자주식회사 나노와이어를 이용한 태양전지 및 그 제조방법
US8722492B2 (en) * 2010-01-08 2014-05-13 International Business Machines Corporation Nanowire pin tunnel field effect devices
WO2011090863A1 (en) * 2010-01-19 2011-07-28 Eastman Kodak Company Ii-vi core-shell semiconductor nanowires
US8377729B2 (en) * 2010-01-19 2013-02-19 Eastman Kodak Company Forming II-VI core-shell semiconductor nanowires
US8212236B2 (en) 2010-01-19 2012-07-03 Eastman Kodak Company II-VI core-shell semiconductor nanowires
WO2011094347A2 (en) 2010-01-26 2011-08-04 Metis Design Corporation Multifunctional cnt-engineered structures
EP2528858A1 (en) * 2010-01-29 2012-12-05 Hewlett Packard Development Company, L.P. Environment sensitive devices
EP2531566B1 (en) * 2010-02-05 2018-09-12 CAM Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
KR101100230B1 (ko) * 2010-02-10 2011-12-30 한국과학기술원 산화아연 나노막대 uv선을 이용한 레이저 소자
US20110198544A1 (en) * 2010-02-18 2011-08-18 Lex Kosowsky EMI Voltage Switchable Dielectric Materials Having Nanophase Materials
US9320135B2 (en) * 2010-02-26 2016-04-19 Littelfuse, Inc. Electric discharge protection for surface mounted and embedded components
US9082622B2 (en) 2010-02-26 2015-07-14 Littelfuse, Inc. Circuit elements comprising ferroic materials
US9224728B2 (en) * 2010-02-26 2015-12-29 Littelfuse, Inc. Embedded protection against spurious electrical events
US9202954B2 (en) * 2010-03-03 2015-12-01 Q1 Nanosystems Corporation Nanostructure and photovoltaic cell implementing same
JP2011211047A (ja) * 2010-03-30 2011-10-20 Sharp Corp 表示装置、表示装置の製造方法および表示装置の駆動方法
US9329433B2 (en) 2010-03-12 2016-05-03 Sharp Kabushiki Kaisha Light-emitting device manufacturing method, light-emitting device, lighting device, backlight, liquid-crystal panel, display device, display device manufacturing method, display device drive method and liquid-crystal display device
US9263612B2 (en) 2010-03-23 2016-02-16 California Institute Of Technology Heterojunction wire array solar cells
US8860006B2 (en) * 2010-03-26 2014-10-14 The Regents Of The University Of California Spin transistor having multiferroic gate dielectric
WO2011123257A1 (en) * 2010-03-30 2011-10-06 Eastman Kodak Company Light emitting nanowire device
US9115424B2 (en) * 2010-04-07 2015-08-25 California Institute Of Technology Simple method for producing superhydrophobic carbon nanotube array
US8324940B2 (en) * 2010-04-13 2012-12-04 International Business Machines Corporation Nanowire circuits in matched devices
US8631687B2 (en) 2010-04-19 2014-01-21 Hysitron, Inc. Indenter assembly
US8614452B2 (en) * 2010-04-26 2013-12-24 Gwangju Institute Of Science And Technology Light-emitting diode having zinc oxide nanorods and method of fabricating the same
WO2011137446A2 (en) * 2010-04-30 2011-11-03 University Of Southern California Fabrication of silicon nanowires
US20110267436A1 (en) * 2010-04-30 2011-11-03 Nauganeedles Llc Nanowire Bonding Method and Apparatus
US8361907B2 (en) 2010-05-10 2013-01-29 International Business Machines Corporation Directionally etched nanowire field effect transistors
US8324030B2 (en) 2010-05-12 2012-12-04 International Business Machines Corporation Nanowire tunnel field effect transistors
KR101324028B1 (ko) * 2010-05-20 2013-11-01 웅진케미칼 주식회사 전기전도도가 개선된 다층형 금속 나노와이어 및 그 제조방법
US8189639B2 (en) 2010-05-28 2012-05-29 Corning Incorporated GaN-based laser diodes with misfit dislocations displaced from the active region
US8476637B2 (en) 2010-06-08 2013-07-02 Sundiode Inc. Nanostructure optoelectronic device having sidewall electrical contact
US8431817B2 (en) * 2010-06-08 2013-04-30 Sundiode Inc. Multi-junction solar cell having sidewall bi-layer electrical interconnect
KR101786765B1 (ko) * 2010-06-08 2017-10-18 선다이오드, 인크. 측벽 전기 콘택을 갖는 나노구조 광전자 디바이스
US8659037B2 (en) 2010-06-08 2014-02-25 Sundiode Inc. Nanostructure optoelectronic device with independently controllable junctions
JP5911856B2 (ja) 2010-06-18 2016-04-27 グロ アーベーGlo Ab ナノワイヤledの構造体およびそれを製作する方法
WO2011162461A1 (ko) * 2010-06-25 2011-12-29 한국과학기술원 투명 전극 및 이의 제조 방법
US8680510B2 (en) * 2010-06-28 2014-03-25 International Business Machines Corporation Method of forming compound semiconductor
US9093818B2 (en) * 2010-07-15 2015-07-28 The Regents Of The University Of California Nanopillar optical resonator
MY157260A (en) * 2010-08-02 2016-05-31 Mimos Berhad A vibrating energy harvester device and methods thereof
CA2829242A1 (en) 2010-08-07 2012-02-16 Arjun Daniel Srinivas Device components with surface-embedded additives and related manufacturing methods
US8835231B2 (en) 2010-08-16 2014-09-16 International Business Machines Corporation Methods of forming contacts for nanowire field effect transistors
US8536563B2 (en) 2010-09-17 2013-09-17 International Business Machines Corporation Nanowire field effect transistors
CA2814584A1 (en) 2010-10-22 2012-04-26 California Institute Of Technology Nanomesh phononic structures for low thermal conductivity and thermoelectric energy conversion materials
US9000660B2 (en) * 2010-11-15 2015-04-07 Laurence H. Cooke Uses of hydrocarbon nanorings
GB2500831B (en) * 2010-11-17 2014-07-02 Ibm Nanowire devices
US9240328B2 (en) 2010-11-19 2016-01-19 Alphabet Energy, Inc. Arrays of long nanostructures in semiconductor materials and methods thereof
CN102024635B (zh) * 2010-11-29 2012-07-18 清华大学 电子发射体及电子发射元件
CN103403871A (zh) * 2010-12-03 2013-11-20 犹他大学研究基金会 量子点和纳米线的合成
US8736011B2 (en) 2010-12-03 2014-05-27 Alphabet Energy, Inc. Low thermal conductivity matrices with embedded nanostructures and methods thereof
GB201021112D0 (en) 2010-12-13 2011-01-26 Ntnu Technology Transfer As Nanowires
US8617412B2 (en) * 2010-12-13 2013-12-31 International Business Machines Corporation Nano-filter and method of forming same, and method of filtration
KR20140012073A (ko) * 2011-02-02 2014-01-29 알파벳 에너지, 인코포레이티드 나노구조 어레이를 위한 전극 구조 및 이의 제조 방법
EP2673800A4 (en) * 2011-02-10 2016-03-16 Univ Mcgill WIDEBAND SEMICONDUCTOR NANOWILE DEVICES AND MANUFACTURING METHODS WITHOUT FOREIGN METAL CATALYSTS
US8692230B2 (en) 2011-03-29 2014-04-08 University Of Southern California High performance field-effect transistors
FR2973936B1 (fr) 2011-04-05 2014-01-31 Commissariat Energie Atomique Procede de croissance selective sur une structure semiconductrice
US8636843B2 (en) * 2011-04-07 2014-01-28 Korea Institute Of Energy Research Single-crystal apatite nanowires sheathed in graphitic shells and synthesis method thereof
WO2012155272A1 (en) * 2011-05-17 2012-11-22 Mcmaster University Light emitting diodes and substrates
US8921256B2 (en) 2011-05-24 2014-12-30 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US8860137B2 (en) 2011-06-08 2014-10-14 University Of Southern California Radio frequency devices based on carbon nanomaterials
AU2012275284B2 (en) 2011-06-28 2015-06-11 Innova Dynamics, Inc. Transparent conductors incorporating additives and related manufacturing methods
US8664583B2 (en) * 2011-07-01 2014-03-04 The Boeing Company Nonlinear optical surface sensing with a single thermo-electric detector
WO2013007798A1 (en) * 2011-07-14 2013-01-17 GEORGE, John T. Electrical light source with thermoelectric energy recovery
US20130019918A1 (en) 2011-07-18 2013-01-24 The Regents Of The University Of Michigan Thermoelectric devices, systems and methods
EP4364849A2 (en) 2011-07-26 2024-05-08 OneD Material, Inc. Nanostructured battery active materials and methods of producing same
US20130050685A1 (en) * 2011-08-23 2013-02-28 The Boeing Company Composite structure having an embedded sensing system
US9170172B2 (en) 2011-08-23 2015-10-27 The Boeing Company Composite structure having an embedded sensing system
CN104040642B (zh) * 2011-08-24 2016-11-16 宸鸿科技控股有限公司 图案化透明导体和相关制备方法
JP5687765B2 (ja) * 2011-08-29 2015-03-18 株式会社日立製作所 太陽電池
US20130058158A1 (en) * 2011-09-01 2013-03-07 Micron Technology, Inc. Method, system, and device for l-shaped memory component
US20140224296A1 (en) * 2011-09-20 2014-08-14 The Regents Of The University Of California Nanowire composite for thermoelectrics
US9059264B2 (en) * 2011-09-26 2015-06-16 Drexel University Tunable hot-electron transfer within a nanostructure
US8350251B1 (en) 2011-09-26 2013-01-08 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
KR101869443B1 (ko) 2011-10-11 2018-06-21 삼성전자 주식회사 빛의 위치 제어 장치 및 그 제조 방법
US20130092222A1 (en) * 2011-10-14 2013-04-18 Nanograss Solar Llc Nanostructured Solar Cells Utilizing Charge Plasma
US9147505B2 (en) 2011-11-02 2015-09-29 Ut-Battelle, Llc Large area controlled assembly of transparent conductive networks
US8477551B1 (en) 2011-11-03 2013-07-02 U.S. Department Of Energy Optical memory
KR102005447B1 (ko) * 2011-11-03 2019-07-31 삼성전자주식회사 나노 구조체 및 이를 포함한 소자
DE102011118273A1 (de) * 2011-11-11 2013-05-16 Forschungsverbund Berlin E.V. Herstellung einer Halbleitereinrichtung mit mindestens einem säulen- oder wandförmigen Halbleiter-Element
RU2478243C1 (ru) * 2011-11-11 2013-03-27 Учреждение Российской академии наук Институт прикладной физики РАН Частотно-перестраиваемый источник когерентного излучения дальнего инфракрасного и терагерцового диапазона на полупроводниковой наногетероструктуре
US9476816B2 (en) 2011-11-14 2016-10-25 Hysitron, Inc. Probe tip heating assembly
WO2013082145A1 (en) 2011-11-28 2013-06-06 Yunje Oh High temperature heating system
WO2013082318A2 (en) 2011-11-29 2013-06-06 Siluria Technologies, Inc. Nanowire catalysts and methods for their use and preparation
KR20130069035A (ko) * 2011-12-16 2013-06-26 삼성전자주식회사 그래핀상의 하이브리드 나노구조체 형성 방법
TWI472069B (zh) 2011-12-19 2015-02-01 Ind Tech Res Inst 熱電複合材料
US8648330B2 (en) * 2012-01-05 2014-02-11 International Business Machines Corporation Nanowire field effect transistors
GB201200355D0 (en) 2012-01-10 2012-02-22 Norwegian Univ Sci & Tech Ntnu Nanowires
US10026560B2 (en) 2012-01-13 2018-07-17 The California Institute Of Technology Solar fuels generator
US9545612B2 (en) 2012-01-13 2017-01-17 California Institute Of Technology Solar fuel generator
US10205080B2 (en) 2012-01-17 2019-02-12 Matrix Industries, Inc. Systems and methods for forming thermoelectric devices
JP6196987B2 (ja) 2012-02-14 2017-09-13 ヘキサジェム アーベー 窒化ガリウムナノワイヤに基づくエレクトロニクス
US10090425B2 (en) 2012-02-21 2018-10-02 California Institute Of Technology Axially-integrated epitaxially-grown tandem wire arrays
US9051175B2 (en) 2012-03-07 2015-06-09 Alphabet Energy, Inc. Bulk nano-ribbon and/or nano-porous structures for thermoelectric devices and methods for making the same
WO2013149205A1 (en) 2012-03-29 2013-10-03 California Institute Of Technology Phononic structures and related devices and methods
WO2013152043A1 (en) 2012-04-02 2013-10-10 California Institute Of Technology Solar fuels generator
WO2013152132A1 (en) 2012-04-03 2013-10-10 The California Institute Of Technology Semiconductor structures for fuel generation
US9425254B1 (en) * 2012-04-04 2016-08-23 Ball Aerospace & Technologies Corp. Hybrid integrated nanotube and nanostructure substrate systems and methods
US10718636B1 (en) 2012-04-11 2020-07-21 Louisiana Tech Research Corporation Magneto-resistive sensors
US9784802B1 (en) * 2012-04-11 2017-10-10 Louisiana Tech Research Corporation GMR nanowire sensors
JP2013239690A (ja) * 2012-04-16 2013-11-28 Sharp Corp 超格子構造、前記超格子構造を備えた半導体装置および半導体発光装置、ならびに前記超格子構造の製造方法
US9267076B2 (en) 2012-04-23 2016-02-23 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Multi-bandgap semiconductor structures and methods for using them
EP2855011A2 (en) 2012-05-24 2015-04-08 Siluria Technologies, Inc. Catalytic forms and formulations
JP5963955B2 (ja) 2012-06-13 2016-08-03 ハイジトロン, インク.Hysitron, Inc. ミクロンまたはナノスケールでの機械的試験用環境コンディショニングアセンブリ
GB201211038D0 (en) * 2012-06-21 2012-08-01 Norwegian Univ Sci & Tech Ntnu Solar cells
DE102012105496A1 (de) * 2012-06-25 2014-01-02 Emitec Gesellschaft Für Emissionstechnologie Mbh Faden mit einem thermoelektrischen Werkstoff und Verfahren zur Herstellung eines Bauelements für ein thermoelektrisches Modul
US9257627B2 (en) 2012-07-23 2016-02-09 Alphabet Energy, Inc. Method and structure for thermoelectric unicouple assembly
JP5886709B2 (ja) * 2012-07-27 2016-03-16 日本電信電話株式会社 フォトニック結晶共振器の作製方法およびフォトニック結晶共振器
US9349543B2 (en) 2012-07-30 2016-05-24 California Institute Of Technology Nano tri-carbon composite systems and manufacture
CN104756268B (zh) 2012-08-17 2017-10-24 美特瑞克斯实业公司 用于形成热电装置的系统和方法
EP2889925A4 (en) * 2012-08-21 2016-04-20 Mabuchi Mahito THERMOELECTRIC CONVERSION ELEMENT HAVING SPACE SECTIONS REDUCING HEAT TRANSMISSION QUANTITY TO THERMOELECTRIC MATERIAL, AND ACTIVE FLUID FLOW EXCEEDING THE THERMOELECTRIC MATERIAL HIMSELF, OR RELATED SPACE SECTIONS
GB201215342D0 (en) 2012-08-29 2012-10-10 Ibm Thermoelectric elementd
JP6036833B2 (ja) * 2012-09-18 2016-11-30 富士通株式会社 太陽電池及びその製造方法
US9082930B1 (en) 2012-10-25 2015-07-14 Alphabet Energy, Inc. Nanostructured thermolectric elements and methods of making the same
US20140116491A1 (en) * 2012-10-29 2014-05-01 Alphabet Energy, Inc. Bulk-size nanostructured materials and methods for making the same by sintering nanowires
WO2014070795A1 (en) 2012-10-31 2014-05-08 Silicium Energy, Inc. Methods for forming thermoelectric elements
US9728662B2 (en) * 2012-11-01 2017-08-08 The Regents Of The University Of California Semiconductor infrared photodetectors
KR20140058892A (ko) * 2012-11-07 2014-05-15 삼성정밀화학 주식회사 코어-쉘 구조를 갖는 나노와이어를 적용한 투명 복합전극 및 그의 제조방법
KR101998339B1 (ko) * 2012-11-16 2019-07-09 삼성전자주식회사 금속 산화물 반도체의 성장 결정면 제어방법 및 제어된 성장 결정면을 가지는 금속 산화물 반도체 구조물
KR102176589B1 (ko) * 2012-11-16 2020-11-10 삼성전자주식회사 열전재료, 이를 포함하는 열전소자 및 열전장치, 및 이의 제조방법
US9224920B2 (en) 2012-11-23 2015-12-29 Lg Display Co., Ltd. Quantum rod and method of fabricating the same
JP6433430B2 (ja) * 2012-12-13 2018-12-05 カリフォルニア インスティチュート オブ テクノロジー 三次元高表面領域電極の製造
US9291297B2 (en) 2012-12-19 2016-03-22 Elwha Llc Multi-layer phononic crystal thermal insulators
CN103915483B (zh) 2012-12-28 2019-06-14 瑞萨电子株式会社 具有被改造以减少漏电流的沟道芯部的场效应晶体管及制作方法
CN103915484B (zh) * 2012-12-28 2018-08-07 瑞萨电子株式会社 具有被改造以用于背栅偏置的沟道芯部的场效应晶体管及制作方法
US9553223B2 (en) 2013-01-24 2017-01-24 California Institute Of Technology Method for alignment of microwires
US9082911B2 (en) 2013-01-28 2015-07-14 Q1 Nanosystems Corporation Three-dimensional metamaterial device with photovoltaic bristles
KR101603207B1 (ko) * 2013-01-29 2016-03-14 삼성전자주식회사 나노구조 반도체 발광소자 제조방법
US20150380583A1 (en) * 2013-01-30 2015-12-31 Advanced Silicon Group, Inc. Necklaces of silicon nanowires
WO2014124184A1 (en) 2013-02-06 2014-08-14 California Institute Of Technology Miniaturized implantable electrochemical sensor devices
US10049871B2 (en) * 2013-02-06 2018-08-14 President And Fellows Of Harvard College Anisotropic deposition in nanoscale wires
US9362443B2 (en) * 2013-03-13 2016-06-07 Wafertech, Llc Solar cell with absorber layer with three dimensional projections for energy harvesting, and method for forming the same
US9614026B2 (en) * 2013-03-13 2017-04-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High mobility transport layer structures for rhombohedral Si/Ge/SiGe devices
US9954126B2 (en) 2013-03-14 2018-04-24 Q1 Nanosystems Corporation Three-dimensional photovoltaic devices including cavity-containing cores and methods of manufacture
US20140264998A1 (en) 2013-03-14 2014-09-18 Q1 Nanosystems Corporation Methods for manufacturing three-dimensional metamaterial devices with photovoltaic bristles
AU2014229796A1 (en) * 2013-03-15 2015-10-01 Bae Systems Plc Directional multiband antenna
WO2014143880A1 (en) 2013-03-15 2014-09-18 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
FR3004000B1 (fr) * 2013-03-28 2016-07-15 Aledia Dispositif electroluminescent avec capteur integre et procede de controle de l'emission du dispositif
US10333044B2 (en) 2013-04-07 2019-06-25 The Regents Of The University Of Colorado, A Body Corporate Phononic metamaterials adapted for reduced thermal transport
WO2014168894A2 (en) * 2013-04-07 2014-10-16 The Regents Of The University Of Colorado, A Body Corporate Nanophononic metamaterials
US10283689B2 (en) 2013-04-07 2019-05-07 The Regents Of The University Of Colorado, A Body Corporate Phononic metamaterials comprising atomically disordered resonators
WO2014179340A2 (en) * 2013-04-29 2014-11-06 The University Of North Carolina At Chapel Hill Methods and systems for chemically encoding high-resolution shapes in silicon nanowires
GB201311101D0 (en) 2013-06-21 2013-08-07 Norwegian Univ Sci & Tech Ntnu Semiconducting Films
US9435896B2 (en) 2013-07-31 2016-09-06 Globalfoundries Inc. Radiation detector based on charged self-assembled monolayers on nanowire devices
KR102149331B1 (ko) 2013-08-30 2020-08-28 삼성전자주식회사 와이어 구조체와 이를 구비하는 반도체 소자 및 와이어 구조체의 제조방법
JP6054834B2 (ja) * 2013-10-01 2016-12-27 日本電信電話株式会社 ナノワイヤの作製方法
US20190018041A1 (en) * 2013-11-06 2019-01-17 Yeda Research And Development Co. Ltd. Nanotube based transistor structure, method of fabrication and uses thereof
US9954125B2 (en) * 2013-11-12 2018-04-24 Forwarding Technology Ltd Light spot position detector with an array of nanorods
RU2569050C2 (ru) * 2013-12-10 2015-11-20 Общество с ограниченной ответственностью "Гарант" (ООО "Гарант") Решетка дипольных нанолазеров
US9725310B2 (en) * 2013-12-20 2017-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Micro electromechanical system sensor and method of forming the same
US20150187889A1 (en) * 2013-12-27 2015-07-02 University Of Rochester Surface-controlled semiconductor nano-devices, methods and applications
US9263662B2 (en) 2014-03-25 2016-02-16 Silicium Energy, Inc. Method for forming thermoelectric element using electrolytic etching
EP3130196A4 (en) 2014-04-10 2017-12-06 Metis Design Corporation Multifunctional assemblies
WO2015157501A1 (en) 2014-04-10 2015-10-15 Alphabet Energy, Inc. Ultra-long silicon nanostructures, and methods of forming and transferring the same
JP2015210348A (ja) * 2014-04-25 2015-11-24 株式会社日立エルジーデータストレージ 光源モジュールおよび映像投射装置
WO2015171699A1 (en) 2014-05-07 2015-11-12 President And Fellows Of Harvard College Controlled growth of nanoscale wires
JP6224829B2 (ja) * 2014-05-27 2017-11-01 富士フイルム株式会社 遮光性組成物
US10067006B2 (en) * 2014-06-19 2018-09-04 Elwha Llc Nanostructure sensors and sensing systems
PL3194070T3 (pl) 2014-09-17 2021-06-14 Lummus Technology Llc Katalizatory do utleniającego sprzęgania metanu i utleniającego odwodornienia etanu
CN104332405B (zh) * 2014-09-19 2017-02-15 中国科学院上海微系统与信息技术研究所 一种锗纳米线场效应晶体管及其制备方法
US10285220B2 (en) 2014-10-24 2019-05-07 Elwha Llc Nanostructure heaters and heating systems and methods of fabricating the same
US10785832B2 (en) 2014-10-31 2020-09-22 Elwha Llc Systems and methods for selective sensing and selective thermal heating using nanostructures
CN107210319B (zh) * 2014-11-13 2021-10-08 丽盟科技有限公司 大规模低成本纳米传感器、纳米针和纳米泵阵列
US20160139069A1 (en) * 2014-11-13 2016-05-19 Neem Scientific, Inc. Large scale, low cost nanosensor, nano-needle, and nanopump arrays
US9379327B1 (en) 2014-12-16 2016-06-28 Carbonics Inc. Photolithography based fabrication of 3D structures
US9263260B1 (en) * 2014-12-16 2016-02-16 International Business Machines Corporation Nanowire field effect transistor with inner and outer gates
DE102014018878B8 (de) * 2014-12-17 2017-11-16 Technische Universität Darmstadt Federsensorelement
CN105810730B (zh) * 2014-12-29 2018-12-07 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法
WO2016109516A1 (en) * 2014-12-29 2016-07-07 Georgia Tech Research Corporation Methods for the continuous, large-scale manufacture of functional nanostructures
KR101682024B1 (ko) * 2015-01-26 2016-12-12 덕산하이메탈(주) 메탈 나노와이어 및 이의 합성방법과 이를 통해 제조된 메탈 나노와이어를 포함하는 투광성 전극 및 유기발광소자
US9954251B2 (en) * 2015-02-17 2018-04-24 Wildcat Discovery Technologies, Inc Electrolyte formulations for electrochemical cells containing a silicon electrode
US10088697B2 (en) * 2015-03-12 2018-10-02 International Business Machines Corporation Dual-use electro-optic and thermo-optic modulator
US10290767B2 (en) * 2015-06-09 2019-05-14 The Royal Institution For The Advancement Of Learning/Mcgill University High efficiency visible and ultraviolet nanowire emitters
EP3323152B1 (en) 2015-07-13 2021-10-27 Crayonano AS Nanowires/nanopyramids shaped light emitting diodes and photodetectors
ES2821019T3 (es) 2015-07-13 2021-04-23 Crayonano As Nanocables o nanopirámides cultivados sobre un sustrato grafítico
US10820844B2 (en) 2015-07-23 2020-11-03 California Institute Of Technology Canary on a chip: embedded sensors with bio-chemical interfaces
KR20180053652A (ko) 2015-07-31 2018-05-23 크래요나노 에이에스 그라파이트 기판 상에 나노와이어 또는 나노피라미드를 성장시키는 방법
US9558942B1 (en) * 2015-09-29 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. High density nanowire array
GB2543790A (en) * 2015-10-28 2017-05-03 Sustainable Engine Systems Ltd Pin fin heat exchanger
US10109477B2 (en) * 2015-12-31 2018-10-23 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
KR102277621B1 (ko) * 2016-03-14 2021-07-15 유니티카 가부시끼가이샤 나노와이어 및 그의 제조 방법, 나노와이어 분산액, 및 투명 도전막
JP7041633B6 (ja) * 2016-03-23 2022-05-31 コーニンクレッカ フィリップス エヌ ヴェ 一体的画素境界を備えるナノ物質撮像検出器
ITUA20162918A1 (it) * 2016-04-27 2017-10-27 Univ Degli Studi Di Milano Bicocca Concentratore solare luminescente ad ampia area a base di nanocristalli semiconduttori a gap energetico indiretto
TW201809931A (zh) 2016-05-03 2018-03-16 麥崔克斯工業股份有限公司 熱電裝置及系統
PL3778471T3 (pl) 2016-07-15 2022-06-13 Oned Material, Inc. Sposób wytwarzania nanodrutów krzemowych na proszkach węglowych do stosowania w bateriach
JP6791249B2 (ja) 2016-08-31 2020-11-25 日産自動車株式会社 光起電力装置
US10782014B2 (en) 2016-11-11 2020-09-22 Habib Technologies LLC Plasmonic energy conversion device for vapor generation
USD819627S1 (en) 2016-11-11 2018-06-05 Matrix Industries, Inc. Thermoelectric smartwatch
FR3061607B1 (fr) * 2016-12-29 2019-05-31 Aledia Dispositif optoelectronique a diodes electroluminescentes
US20180198050A1 (en) * 2017-01-11 2018-07-12 Swansea University Energy harvesting device
GB201705755D0 (en) 2017-04-10 2017-05-24 Norwegian Univ Of Science And Tech (Ntnu) Nanostructure
KR101922112B1 (ko) * 2017-10-30 2018-11-27 주식회사 레신저스 광배선 및 이의 제조방법
US11226162B2 (en) * 2018-04-19 2022-01-18 Intel Corporation Heat dissipation device having anisotropic thermally conductive sections and isotropic thermally conductive sections
TWI692117B (zh) * 2018-05-04 2020-04-21 台灣創界有限公司 微米led磊晶之直立筒柱形反應腔體及線性發光體之製程
CN108711591B (zh) * 2018-05-22 2019-10-01 京东方科技集团股份有限公司 一种显示器件及其制备方法、显示装置
US11331722B2 (en) 2018-09-28 2022-05-17 Western New England University Apparatus and method for production and encapsulation of small particles and thin wires
CN113195106B (zh) * 2018-09-28 2023-10-20 西新英格兰大学 生产多个封装结晶颗粒的方法、设备及形成同轴馈线的方法
US11165007B2 (en) * 2019-01-25 2021-11-02 King Abdulaziz University Thermoelectric module composed of SnO and SnO2 nanostructures
CN110038548A (zh) * 2019-05-10 2019-07-23 上海纳米技术及应用国家工程研究中心有限公司 一种n-p-n型三明治异质结纳米材料的制备方法及其产品和应用
KR102285099B1 (ko) 2020-01-08 2021-08-04 주식회사 에스앤에스텍 극자외선용 반사형 블랭크 마스크 및 포토마스크
US11695100B2 (en) 2020-01-21 2023-07-04 Nanosys, Inc. Light emitting diode containing a grating and methods of making the same
US11600478B2 (en) 2020-02-05 2023-03-07 Uchicago Argonne, Llc Thermionic converter and methods of making and using same
CN111362254B (zh) * 2020-03-17 2022-07-05 广西师范大学 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
CN111613968B (zh) * 2020-04-30 2022-04-08 南京航空航天大学 一种实现ZnO微米线EHP激光的方法
CN112838138B (zh) * 2020-12-31 2023-04-07 杭州电子科技大学 一种柔性触敏元件及制备方法
KR20240047149A (ko) 2022-10-04 2024-04-12 연세대학교 산학협력단 단일 원자 치환을 통한 양자 터널링 기반으로 전자적 또는 광학적으로 동작하는 분자 소자
CN115537916B (zh) * 2022-10-13 2024-07-16 上海理工大学 一种iv族直接带隙半导体超晶格材料及其应用
WO2024077392A1 (en) * 2022-10-13 2024-04-18 École De Technologie Supérieure Composite nanowires as well as transducers and transistors based thereon

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493431A (en) 1966-11-25 1970-02-03 Bell Telephone Labor Inc Vapor-liquid-solid crystal growth technique
US3580732A (en) 1968-01-15 1971-05-25 Ibm Method of growing single crystals
NL6805300A (zh) 1968-04-13 1969-10-15
DE2639841C3 (de) 1976-09-03 1980-10-23 Siemens Ag, 1000 Berlin Und 8000 Muenchen Solarzelle und Verfahren zu ihrer Herstellung
JPH0488628A (ja) * 1990-07-31 1992-03-23 Mitsubishi Electric Corp 半導体装置の作製方法
US5332910A (en) 1991-03-22 1994-07-26 Hitachi, Ltd. Semiconductor optical device with nanowhiskers
JPH0595121A (ja) 1991-10-01 1993-04-16 Nippon Telegr & Teleph Corp <Ntt> 量子細線構造およびその作製方法
JPH0585899A (ja) 1991-10-01 1993-04-06 Nippon Telegr & Teleph Corp <Ntt> 針状単結晶の作製法
JP3243303B2 (ja) * 1991-10-28 2002-01-07 ゼロックス・コーポレーション 量子閉じ込め半導体発光素子及びその製造方法
EP0548905B1 (en) 1991-12-24 1999-03-03 Hitachi, Ltd. Atomic devices and atomic logical circuits
JPH05215509A (ja) 1992-02-03 1993-08-24 Hitachi Ltd 走査型プローブ顕微鏡とその探針製造方法
JP2697474B2 (ja) 1992-04-30 1998-01-14 松下電器産業株式会社 微細構造の製造方法
JP2821061B2 (ja) 1992-05-22 1998-11-05 電気化学工業株式会社 単結晶の製造方法
US5260957A (en) 1992-10-29 1993-11-09 The Charles Stark Draper Laboratory, Inc. Quantum dot Laser
US5357119A (en) * 1993-02-19 1994-10-18 Board Of Regents Of The University Of California Field effect devices having short period superlattice structures using Si and Ge
JPH06271306A (ja) * 1993-03-17 1994-09-27 Nec Corp 数珠状高分子とその構成方法
JPH07109881B2 (ja) * 1993-03-22 1995-11-22 株式会社日立製作所 量子細線導波路
US6462578B2 (en) * 1993-08-03 2002-10-08 Btr, Inc. Architecture and interconnect scheme for programmable logic circuits
US5363394A (en) * 1993-08-06 1994-11-08 At&T Bell Laboratories Quantum wire laser
US6093941A (en) * 1993-09-09 2000-07-25 The United States Of America As Represented By The Secretary Of The Navy Photonic silicon on a transparent substrate
US5962863A (en) * 1993-09-09 1999-10-05 The United States Of America As Represented By The Secretary Of The Navy Laterally disposed nanostructures of silicon on an insulating substrate
JPH07144999A (ja) 1993-11-22 1995-06-06 Denki Kagaku Kogyo Kk 針状単結晶体及びその製法
JPH07183485A (ja) 1993-12-22 1995-07-21 Denki Kagaku Kogyo Kk 量子細線装置及び製造方法
JPH07272651A (ja) 1994-03-31 1995-10-20 Mitsubishi Electric Corp 針状結晶構造とその製造方法
US5881200A (en) * 1994-09-29 1999-03-09 British Telecommunications Public Limited Company Optical fibre with quantum dots
US6231980B1 (en) * 1995-02-14 2001-05-15 The Regents Of The University Of California BX CY NZ nanotubes and nanoparticles
US5709943A (en) 1995-05-04 1998-01-20 Minnesota Mining And Manufacturing Company Biological adsorption supports
WO1997019208A1 (en) * 1995-11-22 1997-05-29 Northwestern University Method of encapsulating a material in a carbon nanotube
US5807876A (en) 1996-04-23 1998-09-15 Vertex Pharmaceuticals Incorporated Inhibitors of IMPDH enzyme
JPH09288115A (ja) 1996-04-24 1997-11-04 Nippon Telegr & Teleph Corp <Ntt> 先鋭探針の製造方法およびその装置
JPH10106960A (ja) * 1996-09-25 1998-04-24 Sony Corp 量子細線の製造方法
JP3858319B2 (ja) * 1996-12-05 2006-12-13 ソニー株式会社 量子細線の製造方法
JP4032264B2 (ja) 1997-03-21 2008-01-16 ソニー株式会社 量子細線を有する素子の製造方法
US5976957A (en) * 1996-10-28 1999-11-02 Sony Corporation Method of making silicon quantum wires on a substrate
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
WO1998048456A1 (en) 1997-04-24 1998-10-29 Massachusetts Institute Of Technology Nanowire arrays
US7112315B2 (en) 1999-04-14 2006-09-26 The Regents Of The University Of California Molecular nanowires from single walled carbon nanotubes
US6361861B2 (en) 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
US6308736B1 (en) 1999-07-01 2001-10-30 Automotive Fluid Systems, Inc. Tube-to-vessel connection using a fastening valve
DE19951207A1 (de) * 1999-10-15 2001-04-19 Twlux Halbleitertechnologien B Halbleiterbauelement
US6741019B1 (en) 1999-10-18 2004-05-25 Agere Systems, Inc. Article comprising aligned nanowires
US6597496B1 (en) * 1999-10-25 2003-07-22 The Board Of Trustees Of The University Of Illinois Silicon nanoparticle stimulated emission devices
US6539156B1 (en) * 1999-11-02 2003-03-25 Georgia Tech Research Corporation Apparatus and method of optical transfer and control in plasmon supporting metal nanostructures
US6248674B1 (en) 2000-02-02 2001-06-19 Hewlett-Packard Company Method of aligning nanowires
US6306736B1 (en) 2000-02-04 2001-10-23 The Regents Of The University Of California Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
US6225198B1 (en) 2000-02-04 2001-05-01 The Regents Of The University Of California Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
AU2001286649B2 (en) 2000-08-22 2007-04-05 President And Fellows Of Harvard College Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices
US20060175601A1 (en) 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
US7301199B2 (en) * 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
KR100991573B1 (ko) 2000-12-11 2010-11-04 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 나노센서
US6423583B1 (en) * 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
AU2002307008C1 (en) * 2001-03-30 2008-10-30 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412153B (zh) * 2005-11-25 2013-10-11 Eco Spark Ab 發光二極體及其製造方法
TWI427781B (zh) * 2009-12-08 2014-02-21 Zena Technologies Inc 具有奈米線結構光偵測器之主動像素感測器
TWI482299B (zh) * 2009-12-08 2015-04-21 Zena Technologies Inc 具有一環繞磊晶生長p或n層之奈米線結構光電二極體
TWI416859B (zh) * 2010-07-14 2013-11-21 Nat Univ Tsing Hua 微型發電器、其製備方法、及發電元件
TWI768872B (zh) * 2021-05-06 2022-06-21 力晶積成電子製造股份有限公司 單光子發光元件與發光裝置

Also Published As

Publication number Publication date
US20050161662A1 (en) 2005-07-28
JP2010167560A (ja) 2010-08-05
JP2011093090A (ja) 2011-05-12
AU2002307008B2 (en) 2008-04-24
US20070164270A1 (en) 2007-07-19
US20020175408A1 (en) 2002-11-28
US7569847B2 (en) 2009-08-04
CN1306619C (zh) 2007-03-21
US20100003516A1 (en) 2010-01-07
KR101008294B1 (ko) 2011-01-13
US20080092938A1 (en) 2008-04-24
KR20090127194A (ko) 2009-12-09
CA2442985C (en) 2016-05-31
EP1374309A1 (en) 2004-01-02
JP2009269170A (ja) 2009-11-19
US7569941B2 (en) 2009-08-04
US6882051B2 (en) 2005-04-19
WO2002080280A1 (en) 2002-10-10
KR20040000418A (ko) 2004-01-03
EP2273552A3 (en) 2013-04-10
MXPA03008935A (es) 2004-06-30
JP2004532133A (ja) 2004-10-21
US7834264B2 (en) 2010-11-16
AU2002307008C1 (en) 2008-10-30
US6996147B2 (en) 2006-02-07
US9881999B2 (en) 2018-01-30
US20020172820A1 (en) 2002-11-21
CN1507661A (zh) 2004-06-23
EP2273552A2 (en) 2011-01-12
CA2442985A1 (en) 2002-10-10

Similar Documents

Publication Publication Date Title
TW554388B (en) Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US7211143B2 (en) Sacrificial template method of fabricating a nanotube
CN101009214B (zh) 纳米结构和纳米线的制造方法及由其制造的器件
AU2002307008A1 (en) Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
CA2509257A1 (en) Sacrificial template method of fabricating a nanotube
Lugstein et al. Growth of branched single-crystalline GaAs whiskers on Si nanowire trunks
AU2008200507B2 (en) Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
Shakouri et al. Majumdar et al.
Banerjee Zinc oxide nanostructures and nanoengineering
Lin et al. Growth and Optical Properties of GaP, GaP@ GaN and GaN@ GaP Core-shell Nanowires
Wu Semiconductor nanowires: Controlled growth and thermal properties
Klang et al. Low Dimensional Nanostructures Grown by Molecular Beam Epitaxy

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees