BR102021016281A2 - Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional - Google Patents
Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional Download PDFInfo
- Publication number
- BR102021016281A2 BR102021016281A2 BR102021016281-3A BR102021016281A BR102021016281A2 BR 102021016281 A2 BR102021016281 A2 BR 102021016281A2 BR 102021016281 A BR102021016281 A BR 102021016281A BR 102021016281 A2 BR102021016281 A2 BR 102021016281A2
- Authority
- BR
- Brazil
- Prior art keywords
- map
- predictive
- agricultural
- characteristic
- velocity
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 18
- 238000011065 in-situ storage Methods 0.000 claims abstract description 142
- 239000002028 Biomass Substances 0.000 claims description 43
- 238000010899 nucleation Methods 0.000 claims description 33
- 239000002689 soil Substances 0.000 claims description 33
- 238000004891 communication Methods 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 15
- 241000196324 Embryophyta Species 0.000 description 37
- 238000005520 cutting process Methods 0.000 description 36
- 230000000875 corresponding effect Effects 0.000 description 25
- 230000007246 mechanism Effects 0.000 description 25
- 238000004140 cleaning Methods 0.000 description 23
- 238000003306 harvesting Methods 0.000 description 23
- 241001124569 Lycaenidae Species 0.000 description 16
- 238000003860 storage Methods 0.000 description 15
- 239000002699 waste material Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 7
- 239000000446 fuel Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000012876 topography Methods 0.000 description 6
- 241000251169 Alopias vulpinus Species 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 238000013475 authorization Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 2
- 240000000111 Saccharum officinarum Species 0.000 description 2
- 235000007201 Saccharum officinarum Nutrition 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004459 forage Substances 0.000 description 2
- 238000013340 harvest operation Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 101000822695 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C1 Proteins 0.000 description 1
- 101000655262 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C2 Proteins 0.000 description 1
- 101000655256 Paraclostridium bifermentans Small, acid-soluble spore protein alpha Proteins 0.000 description 1
- 101000655264 Paraclostridium bifermentans Small, acid-soluble spore protein beta Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000013501 data transformation Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000001559 infrared map Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 238000003971 tillage Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 230000009105 vegetative growth Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/02—Self-propelled combines
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/12—Details of combines
- A01D41/127—Control or measuring arrangements specially adapted for combines
- A01D41/1277—Control or measuring arrangements specially adapted for combines for measuring grain quality
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/12—Details of combines
- A01D41/127—Control or measuring arrangements specially adapted for combines
- A01D41/1278—Control or measuring arrangements specially adapted for combines for automatic steering
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/12—Details of combines
- A01D41/14—Mowing tables
- A01D41/141—Automatic header control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/24—Arrangements for determining position or orientation
- G05D1/243—Means capturing signals occurring naturally from the environment, e.g. ambient optical, acoustic, gravitational or magnetic signals
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/24—Arrangements for determining position or orientation
- G05D1/247—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
- G05D1/248—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons generated by satellites, e.g. GPS
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/65—Following a desired speed profile
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B79/00—Methods for working soil
- A01B79/005—Precision agriculture
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Mechanical Engineering (AREA)
- Soil Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Um ou mais mapas de informação são obtidos por uma máquina de trabalho agrícola. O um ou mais mapas de informação mapeiam um ou mais valores de característica agrícola em diferentes locais geográficos de um campo. Um sensor in-situ na máquina de trabalho agrícola sensoreia uma característica agrícola conforme a máquina de trabalho agrícola se move através do campo. Um gerador de mapa preditivo gera um mapa preditivo que prediz uma característica agrícola preditiva em diferentes locais no campo com base em uma relação entre os valores no um ou mais mapas de informação e a característica agrícola sensoreada pelo sensor in-situ. O mapa preditivo pode ser fornecido e usado no controle de máquina automático.
Description
[001] A presente descrição se refere a máquinas agrícolas, máquinas de exploração florestal, máquinas de construção e máquinas de cultivo de gramados.
[002] Existe uma variedade de diferentes tipos de máquinas agrícolas. Algumas máquinas agrícolas incluem colheitadeiras, tais como colheitadeiras combinadas, colheitadeiras de cana-de-açúcar, colheitadeiras de algodão, colheitadeiras de forragem autopropulsionadas, e ceifadeiras alinhadoras. Algumas colheitadeiras podem também ser providas com diferentes tipos de cabeças para colher diferentes tipos de colheitas.
[003] Uma variedade de diferentes condições em campos tem um número de efeitos prejudiciais sobre a operação de colheita. Por conseguinte, um operador pode tentar modificar o controle da colheitadeira, ao encontrar tais condições durante a operação de colheita.
[004] A discussão acima é meramente provida para informação de fundamentos geral e não é destinada a ser usada como um auxílio na determinação do escopo da matéria reivindicada.
[005] Um ou mais mapas de informação são obtidos por uma máquina de trabalho agrícola. O um ou mais mapas de informação mapeiam um ou mais valores de característica agrícola em diferentes locais geográficos de um campo. Um sensor in-situ na máquina de trabalho agrícola sensoreia uma característica agrícola conforme a máquina de trabalho agrícola se move através do campo. Um gerador de mapa preditivo gera um mapa preditivo que prediz uma característica agrícola preditiva em diferentes locais no campo com base em uma relação entre os valores no um ou mais mapas de informação e a característica agrícola sensoreada pelo sensor in-situ. O mapa preditivo pode ser fornecido e usado no controle de máquina automático.
[006] Este sumário é provido para introduzir uma seleção de conceitos de uma forma simplificada que serão mais detalhadamente descritos abaixo na descrição detalhada. Este sumário não é destinado a identificar as características principais ou características essenciais da matéria reivindicada, nem é destinado a ser usado como um auxílio na determinação do escopo da matéria reivindicada. A matéria reivindicada não é limitada aos exemplos que solucionam qualquer ou todas das desvantagens notadas nos fundamentos.
[007] A figura 1 é uma ilustração parcialmente simbólica, parcialmente esquemática, de um exemplo de uma colheitadeira combinada.
[008] A figura 2 é um diagrama de blocos mostrando algumas porções de uma colheitadeira agrícola em mais detalhe, de acordo com alguns exemplos da presente invenção.
[009] As figuras 3A-3B (coletivamente referidas aqui como a figura 3) mostram um fluxograma ilustrando um exemplo de operação de uma colheitadeira agrícola na geração de um mapa.
[0010] A figura 4 é um diagrama de blocos mostrando um exemplo de um gerador de modelo preditivo e um gerador de mapa preditivo.
[0011] A figura 5 é um fluxograma mostrando um exemplo de operação de uma colheitadeira agrícola em receber um mapa de informação, detectando uma característica de velocidade, e gerando um mapa de velocidade preditivo funcional para uso no controle da colheitadeira agrícola durante uma operação de colheita.
[0012] A figura 6 é um diagrama de blocos mostrando um exemplo de uma colheitadeira agrícola em comunicação com um ambiente de servidor remoto.
[0013] As figuras 7 a 9 mostram exemplos de dispositivos móveis que podem ser usados em uma colheitadeira agrícola.
[0014] A figura 10 é um diagrama de blocos mostrando um exemplo de um ambiente de computação que pode ser usado em uma colheitadeira agrícola e as arquiteturas ilustradas nas figuras anteriores.
[0015] Para as finalidades de promover uma compreensão dos princípios da presente invenção, referência será agora feita aos exemplos ilustrados nos desenhos, e linguagem específica será usada para descrever os mesmos. Será entendido, não obstante, que uma limitação do escopo da invenção não é pretendida. Quaisquer alterações e outras modificações nos dispositivos, o sistemas, métodos, descritos, e quaisquer outras aplicações dos princípios da presente invenção são totalmente contempladas como ocorreriam normalmente a uma pessoa especializada na técnica à qual a invenção se relaciona. Em particular, é totalmente contemplado que as características, componentes, e/ou etapas descritos com relação a um exemplo podem ser combinados com as características, componentes, e/ou etapas, descritos com relação a outros exemplos da presente invenção.
[0016] A presente descrição se refere ao uso de dados in-situ tomados simultaneamente com uma operação agrícola, em combinação com dados anteriores, para gerar um mapa preditivo e, mais particularmente, um mapa de velocidade preditivo. Em alguns exemplos, o mapa de velocidade preditivo pode ser usado para controlar uma máquina de trabalho agrícola, tal como um a colheitadeira agrícola. Conforme discutido acima, ele pode melhorar o desempenho da colheitadeira agrícola para controlar a velocidade da colheitadeira agrícola quando a colheitadeira agrícola engata diferentes condições no campo. Por exemplo, se os cultivos tiverem chegado à maturidade, as ervas daninhas podem ainda estar verdes, aumentando assim o teor de umidade da biomassa que é encontrada pela colheitadeira agrícola. Esse problema pode ser exacerbado quando as manchas de ervas daninhas estão úmidas (tal como brevemente depois de uma queda de chuva ou quando as manchas de ervas daninhas contiverem orvalho) e antes das ervas daninhas tiverem tido uma chance de secar. Assim, quando a colheitadeira agrícola encontra uma área de biomassa aumentada, o operador pode reduzir a velocidade da colheitadeira agrícola para manter uma taxa constante de alimentação de material através da colheitadeira agrícola. A manutenção de uma taxa constante de alimentação pode manter o desempenho da colheitadeira agrícola.
[0017] O desempenho de uma colheitadeira agrícola pode ser prejudicialmente afetado com base em um número de diferentes critérios. Tais diferentes critérios podem incluir alterações na biomassa, no estado de cultivo, topografia, propriedades de solo, e características de semeadura, ou outras condições. Por conseguinte, pode também ser útil controlar a velocidade da colheitadeira agrícola com base em outras condições que podem estar presentes no campo. Por exemplo, o desempenho da colheitadeira agrícola pode ser mantido a um nível aceitável por controle da velocidade da colheitadeira agrícola com base na biomassa encontrada pela colheitadeira agrícola, no estado de cultivo do cultivo sendo colhido, na topografia do campo sendo colhido, propriedades de solo do solo no campo sendo colhido, nas características de semeadura no campo sendo colhido, produção no campo sendo colhido, ou outras condições que estão presentes no campo.
[0018] Alguns sistemas atuais provêm mapas de índice vegetativo. Um mapa de índice vegetativo ilustrativamente mapeia valores de índice vegetativo (que podem ser indicativos do crescimento vegetativo) através de diferentes locais geográficos em um campo de interesse. Um exemplo de um índice vegetativo inclui um índice de vegetação de diferença normalizada (NDIV). Existem muitos outros índices vegetativos que estão dentro do escopo da presente invenção. Em alguns exemplos, um índice vegetativo pode ser derivado de leituras do sensor de uma ou mais bandas de radiação eletromagnética refletida pelas plantas. Sem limitações, essas bandas podem ser nas porções de microondas, infravermelhas, visíveis ou ultravioletas do espectro eletromagnético.
[0019] Um mapa de índice vegetativo pode ser usado para identificar a presença e local de vegetação. Em alguns exemplos, esses mapas permitem que a vegetação seja identificada e geograficamente referenciada na presença de solo nu, resíduo de cultivo, ou outras plantas, incluindo o cultivo ou outras ervas daninhas.
[0020] Em alguns exemplos, um mapa de biomassa é provido. Um mapa de biomassa ilustrativamente mapeia uma medida de biomassa no campo sendo colhido em diferentes locais no campo. Um mapa de biomassa pode ser gerado de valores de índice vegetativo, de níveis de biomassa historicamente medidos ou estimados, de imagens ou outras leituras de sensor tomadas durante uma operação anterior no campo, ou de outras maneiras. Em alguns exemplos, biomassa pode ser ajustada por um fator representando uma porção de biomassa total passando através da colheitadeira agrícola. Para milho, esse fator é tipicamente cerca de 50%. Em alguns exemplos, esse fator pode variar com base em a umidade de cultivo. Em alguns exemplos, o fator pode representar uma porção de material de ervas daninhas ou sementes de ervas daninhas. Em alguns exemplos, o fator pode representar uma porção de um cultivo em uma mistura de intercultivos.
[0021] Em alguns exemplos, um mapa de estado de cultivo é provido. O estado de cultivo pode definir se o cultivo está caído, em pé, parcialmente caído, a orientação do cultivo parcialmente caído ou parcialmente caído com relação à superfície do solo ou a uma direção de bússola, e outros fatores. Um mapa de estado de cultivo ilustrativamente mapeia o estado de cultivo no campo sendo colhido em diferentes locais no campo. Um mapa de estado de cultivo pode ser gerado de imagens aéreas ou outras imagens do campo, de imagens ou outras leituras de sensor tomadas durante uma operação anterior no campo ou de outras maneiras antes da colheita.
[0022] Em alguns exemplos, um mapa de semeadura é provido. Um mapa de semeadura pode mapear as características de semeadura como, locais de semente, variedade de semente, ou população de semente para diferentes locais no campo. O mapa de semeadura pode ser gerado durante uma operação de plantio de semente passada ou anterior no campo. O mapa de semeadura pode ser derivado de sinais de controle usados por uma semeadora quando do plantio de sementes ou dos sensores na semeadora, que confirmam que uma semente foi dosada ou plantada. As semeadoras podem também incluir sensores de posição geográfica que localizam geograficamente as características de semente no campo.
[0023] Em alguns exemplos, um mapa de propriedade de solo é provido. Um mapa de propriedade de solo ilustrativamente mapeia uma medida de uma ou mais propriedades de solo, tais como tipo de solo, constituintes químicos de solo, estrutura de solo, cobertura de resíduo, histórico de lavoura, ou umidade de solo no campo sendo colhido em diferentes locais no campo. Um mapa de propriedades de solo pode ser gerado de valores de índice vegetativo, de propriedades de solo historicamente medidas ou estimadas, de imagens ou outras leituras de sensor tomadas durante uma operação anterior no campo, ou de outras maneiras.
[0024] Em alguns exemplos, outros mapas de informação são providos. Tais mapas de informação podem incluir um mapa topográfico do campo sendo colhido, um mapa de produção preditivo para o campo sendo colhido, ou outros mapas de informação.
[0025] A presente discussão prossegue assim com relação a sistemas que recebem um mapa de informação de um campo ou mapa gerado durante uma operação anterior e também usam um sensor in-situ para detectar uma variável indicativa de uma ou mais de uma velocidade de máquina e uma saída de um sistema de controle de taxa de alimentação. Os sistemas geram um modelo que modela uma relação entre os valores de informação no mapa de informação e os valores de saída do sensor in-situ. O modelo é usado para gerar um mapa de velocidade preditivo funcional que prediz, por exemplo, uma esperada velocidade de máquina em diferentes locais no campo. O mapa de velocidade preditivo funcional, gerado durante a operação de colheita, pode ser apresentado a um operador ou outro usuário ou usado para controlar automaticamente uma colheitadeira agrícola durante a operação de colheita, ou ambos.
[0026] A figura 1 é uma ilustração parcialmente simbólica, parcialmente esquemática de uma colheitadeira agrícola autopropulsionada 100. No exemplo ilustrado, a colheitadeira agrícola 100 é uma colheitadeira combinada. Ainda, embora colheitadeiras combinadas sejam providas como exemplos em toda a presente invenção, será reconhecido que a presente descrição é também aplicável a outros tipos de colheitadeiras, tais como colheitadeiras de algodão, colheitadeiras de cana-de-açúcar, colheitadeiras de forragem autopropulsionadas, ceifadeiras alinhadoras, ou outras máquinas de trabalho agrícola. Consequentemente, a presente invenção é destinada a abranger os vários tipos de colheitadeiras descritas e, assim, não é limitada a colheitadeiras combinadas. Além disso, a presente invenção é dirigida a outros tipos de máquina de trabalhos, como as semeadoras e pulverizadores agrícolas, equipamento de construção, equipamento florestal, e equipamento de cultivo de gramado, onde a geração de um mapa preditivo pode ser aplicável. Consequentemente, a presente invenção é destinada a abranger esses vários tipos de colheitadeiras e outras máquinas de trabalho e, assim, não é limitada a colheitadeiras combinadas.
[0027] Conforme mostrado na figura 1, a colheitadeira agrícola 100 ilustrativamente inclui um compartimento de operador 101, que pode ter uma [0027] Conforme mostrado na figura 1, a colheitadeira agrícola 100 ilustrativamente inclui um compartimento de operador 101, que pode ter uma variedade de diferentes mecanismos de interface de operador, para controlar a colheitadeira agrícola 100. A colheitadeira agrícola 100 inclui equipamento de extremidade dianteira, tal como um a plataforma de corte 102, e um cortador geralmente indicado em 104. A colheitadeira agrícola 100 também inclui um alimentador 106, um acelerador de alimentação 108, e um debulhador geralmente indicado em 110. O alimentador 106 e o acelerador de alimentação 108 fazem parte de um subsistema de manipulação de material 125. A plataforma de corte 102 é acoplada de forma pivotante a um chassi 103 da colheitadeira agrícola 100 ao longo do eixo geométrico de pivô 105. Um ou mais atuadores 107 acionam o movimento da plataforma de corte 102 em torno do eixo geométrico 105 na direção geralmente indicada pela seta 109. Assim, uma posição vertical da plataforma de corte 102 (a altura da plataforma de corte) acima do solo 111 sobre o qual a plataforma de corte 102 se desloca é controlável por meio da atuação do atuador 107. Embora não mostrado na figura 1, a colheitadeira agrícola 100 pode também incluir um ou mais atuadores que operam para aplicar um ângulo de inclinação, um ângulo de rolagem, ou ambos, à plataforma de corte 102 ou porções da plataforma de corte 102. Inclinação se refere a um ângulo no qual o cortador 104 engata o cultivo. O ângulo de inclinação é aumentado, por exemplo, por controle da plataforma de corte 102 para apontar para uma aresta distal 113 do cortador 104 mais na direção para o solo. O ângulo de inclinação é diminuído por controle da plataforma de corte 102 para apontar para a aresta distal 113 do cortador 104 mais para longe do solo. O ângulo de rolagem se refere à orientação da plataforma de corte 102 em torno do eixo geométrico longitudinal da frente para trás da colheitadeira agrícola 100.
[0028] O debulhador 110 ilustrativamente inclui um rotor de debulhe 112 e um conjunto dos côncavos 114. Ainda, ainda, a colheitadeira agrícola 100 também inclui um separador 116. A colheitadeira agrícola 100 também inclui um subsistema de limpeza ou sapata de limpeza (coletivamente referidos como o subsistema de limpeza 118) que inclui uma ventoinha de limpeza 120, o crivo superior 122, e a peneira 124. O subsistema de manipulação de material 125 também inclui o batedor de descarga 126, o elevador de rejeitos 128, o elevador de grão limpo 130, bem como o parafuso sem-fim de descarregamento 134 e boca de descarga 136. O elevador de grão limpo move grão limpo para dentro do tanque de grão limpo132. A colheitadeira agrícola 100 também inclui um subsistema de resíduos 138 que pode incluir o picador 140 e o espalhador 142. A colheitadeira agrícola 100 também inclui um subsistema de propulsão que inclui um motor que aciona os componentes engatando o solo 144, tais como rodas ou esteiras. Invenção pode ter mais que um de qualquer dos subsistemas mencionados acima. Em alguns exemplos, a colheitadeira agrícola 100 pode ter subsistemas de limpeza, esquerdo e direito, etc., que não são mostrados na figura.
[0029] Na operação, e a título de visão geral, a colheitadeira agrícola 100 ilustrativamente se move através de um campo na direção indicada pela seta 147. Conforme a colheitadeira agrícola 100 se move, a plataforma de corte 102 (e o carretel associado 164) engata o cultivo a ser colhido e recolhe o cultivo na direção para o cortador 104. Um operador da colheitadeira agrícola 100 pode ser um operador humano local, um operador humano remoto, ou um sistema automático. O operador da colheitadeira agrícola 100 pode determinar uma ou mais de uma regulagem de altura, uma regulagem de ângulo de inclinação, ou uma regulagem de ângulo de rolagem para a plataforma de corte 102. Por exemplo, o operador alimenta uma regulagem ou ajuste a um sistema de controle, descrito em mais detalhe abaixo, que controla o atuador 107. O sistema de controle pode também receber uma regulagem do operador para estabelecer o ângulo de inclinação e o ângulo de rolagem da plataforma de corte 102 e implementar as regulagens alimentadas por controle dos atuadores associados, não mostrados, que operam para alterar o ângulo de inclinação e o ângulo de rolagem da plataforma de corte 102. O atuador 107 mantém a plataforma de corte 102 a uma altura acima do solo 111 com base em uma regulagem de altura e, onde aplicável, nos ângulos de inclinação e rolagem desejados. Cada uma das regulagens de altura, rolagem, e inclinação, pode ser implementada independentemente uma das outras. O sistema de controle responde a um erro da plataforma de corte (por exemplo, a diferença entre a regulagem de altura e a altura medida da plataforma de corte 104 acima do solo 111 e, em alguns exemplos, os erros de ângulo de inclinação e de ângulo de rolagem) com uma responsividade que é determinada com base em um nível de sensitividade selecionado. Se o nível de sensitividade for ajustado em um nível de sensitividade maior, o sistema de controle responde a menores erros de posição da plataforma de corte, e tenta reduzir os erros detectados mais rapidamente que quando a sensitividade está a um nível de sensitividade mais baixo.
[0030] Retornando para a descrição da operação da colheitadeira agrícola 100, depois do cultivo ser cortado pelo cortador 104, o material de cultivo separado é movido através de um transportador no alimentador 106 na direção para o acelerador de alimentação 108, que acelera o material de cultivo para o debulhador 110. O material de cultivo é debulhado pelo rotor 112 girando o cultivo contra os côncavos 114. O material de cultivo debulhado é movido por um rotor de separador no separador 116, onde uma porção do resíduo é movido pelo batedor de descarga 126 na direção para o subsistema de resíduo 138. A porção de resíduo transferida para o subsistema de resíduo 138 é picada pelo picador de resíduo 140 e espalhada no campo pelo espalhador 142. Em outras configurações, o resíduo é liberado da colheitadeira agrícola 100 em um depósito em fiada. Em outros exemplos, o subsistema de resíduo 138 pode incluir eliminadores de semente de ervas daninhas (não mostrados), tais como ensacadores de ervas daninhas ou outros coletores de semente, ou esmagadores de semente ou outros destruidores de sementes.
[0031] Grão cai ao subsistema de limpeza 118. O crivo superior 122 separa algumas peças maiores de material do grão, e a peneira 124 separa algumas peças mais finas de material do grão limpo. O grão limpo cai em um parafuso sem-fim que move o grão para uma extremidade de entrada do elevador de grão limpo 130, e o elevador de grão limpo 130 move o grão limpo para cima, depositando o grão limpo no tanque de grão limpo 132. O resíduo é removido do subsistema de limpeza 118 por fluxo de ar gerado por uma ventoinha de limpeza 120. Uma ventoinha de limpeza 120 direcionar ar ao longo de um trajeto de fluxo de ar para cima através das peneiras e dos crivos superiores. O fluxo de ar transporta o resíduo para trás da colheitadeira agrícola 100 na direção para o subsistema de manipulação de resíduo 138.
[0032] O elevador de rejeitos 128 retorna os rejeitos para o debulhador 110, onde os rejeitos são re-debulhados. Alternativamente, os rejeitos também podem ser passados para um mecanismo de re-debulhe separado para o elevador de rejeitos ou outro dispositivo de transporte, em que os rejeitos são também re-debulhados.
[0033] A figura 1 também mostra que, em um exemplo, a colheitadeira agrícola 100 inclui o sensor de velocidade de máquina 146, um ou mais sensores de perda de separador 148, a câmera de grão limpo 150, um mecanismo de captura de imagem voltado para frente 151, que pode ser na forma de uma câmera estéreo ou mono, e um ou mais sensores de perda 152 providos no subsistema de limpeza 118.
[0034] O sensor de velocidade de máquina 146 sensoreia a velocidade de deslocamento da colheitadeira agrícola 100 sobre o solo. O sensor de velocidade de máquina 146 pode sensorear a velocidade de deslocamento da colheitadeira agrícola 100 por sensorear a velocidade de rotação dos componentes engatando o solo (tais como rodas ou esteiras), um eixo de acionamento, um eixo, ou outros componentes. Em alguns casos, a velocidade de deslocamento pode ser sensoreada usando um sistema de posicionamento, tal como um sistema de posicionamento global (GPS), um sistema de reconhecimento passivo, um sistema de navegação de longo alcance (LORAN), ou uma ampla variedade de outros sistemas ou sensores que provêm uma indicação da velocidade de deslocamento.
[0035] Os sensores de perda 152 ilustrativamente provêm um sinal de saída indicativo da quantidade de perda de grão que ocorre em ambos os lados direito e esquerdo do subsistema de limpeza 118. Em alguns exemplos, os sensores 152 são sensores de choque que contam choques de grão por unidade de tempo ou por unidade de distância percorrida para prover uma indicação da perda de grão ocorrendo no subsistema de limpeza 118. Os sensores de choque para os lados direito e esquerdo do subsistema de limpeza 118 pode prover sinais individuais ou um sinal combinado ou agregado. Em alguns exemplos, os sensores 152 podem incluir um único sensor, em oposição a sensores separados providos para cada subsistema de limpeza 118.
[0036] O sensor de perda de separador 148 provê um sinal indicativo de perda de grão nos separadores esquerdo e direito, não separadamente mostrados na figura 1. Os sensores de perda de separador 148 podem ser associados com os separadores esquerdo e direito e podem prover sinais separados de perda de grão ou um sinal combinado ou agregado. Em alguns casos, o sensoreamento de perda de grão nos separadores pode também ser também realizado usando uma ampla variedade de diferentes tipos dos sensores.
[0037] A colheitadeira agrícola 100 pode também incluir outros sensores e mecanismos de medição. Por exemplo, a colheitadeira agrícola 100 pode incluir um ou mais dos seguintes sensores: um sensor de altura de plataforma de corte que sensoreia uma altura da plataforma de corte 102 acima do solo 111; os sensores de estabilidade que sensoreiam o movimento (e amplitude) de oscilação ou de saltos da colheitadeira agrícola 100; um sensor de ajuste de resíduo que é configurado para sensorear se a colheitadeira agrícola 100 está configurada para picar o resíduo, produzir um depósito em fiada, etc.; um sensor de velocidade de ventoinha de sapata de limpeza para sensorear a velocidade de ventoinha 120; um sensor de folga de côncavos que sensoreia a folga entre o rotor 112 e os côncavos 114; um sensor de velocidade de rotor de debulhe que sensoreia uma velocidade de rotor do rotor 112; um sensor de folga de crivo superior que sensoreia o tamanho de aberturas no crivo superior 122; um sensor de folga de peneira que sensoreia o tamanho de aberturas na peneira 124; um sensor de umidade de material diferente de grão (MOG), que sensoreia um nível de umidade do MOG passando através da colheitadeira agrícola 100; um ou mais sensores de regulagem de máquina configurados para sensorear vários ajustes configuráveis da colheitadeira agrícola 100; um sensor de orientação de máquina que sensoreia a orientação da colheitadeira agrícola 100; e sensores de propriedade de cultivo que sensoreiam uma variedade de diferentes tipos de propriedades de cultivo, tais como tipo de cultivo, a umidade de cultivo, e outras propriedades de cultivo. Os sensores de propriedade de cultivo podem também ser configurados para sensorear características do material de cultivo separado quando o material de cultivo está sendo processado pela colheitadeira agrícola 100. Por exemplo, em alguns casos, os sensores de propriedade de cultivo podem sensorear a qualidade de grão, tal como grão quebrado, níveis de MOG; constituintes de grão, tais como amidos e proteína; e taxa de alimentação de grão conforme o grão se desloca através do alimentador 106, do elevador de grão limpo 130, ou de outro lugar na colheitadeira agrícola 100. Os sensores de propriedade de cultivo podem também sensorear a taxa de alimentação de biomassa através do alimentador 106, através do separador 116 ou em outro lugar na colheitadeira agrícola 100. Os sensores de propriedade de cultivo podem também sensorear a taxa de alimentação como uma taxa de fluxo em massa de grão através do elevador 130 ou através de outras porções da colheitadeira agrícola 100 ou provêm outros sinais de saída indicativos de outras variáveis sensoreadas.
[0038] Antes de descrever como a colheitadeira agrícola 100 gera um mapa de velocidade preditivo funcional, e usa o mapa de velocidade preditivo funcional para o controle, uma breve descrição de alguns dos itens na colheitadeira agrícola 100, e de sua operação, será primeiramente descrita. A descrição das figuras 2 e 3 descrevem a recepção do tipo geral do mapa de informação e a combinação de informação do mapa de informação com um sinal de sensor geograficamente referenciado, gerado por um sensor in-situ, em que o sinal de sensor é indicativo de uma característica no campo, tal como características do campo propriamente ditas, características de cultivo do cultivo ou grão presente no campo, ou características da colheitadeira agrícola. As características do campo podem incluir, mas não são limitadas a, as características de um campo, como inclinação, a intensidade de erva daninha, tipo de erva daninha, umidade de solo, qualidade de superfície; características de propriedades de cultivo, tais como altura de cultivo, umidade de cultivo, densidade de cultivo, o estado de cultivo; características de propriedades de grão, tais como umidade de grão, tamanho de grão, peso de teste de grão; e características da operação de máquina, tais como a velocidade de máquina, saídas de diferentes controladores, desempenho de máquina, tal como níveis de perda, qualidade de trabalho, consumo de combustível, e utilização de energia. Uma relação entre os valores de característica obtida de sinais do sensor in-situ ou valores derivados dos mesmos e o mapa de valores de informação é identificada, e essa relação é usada para gerar um novo mapa preditivo funcional. Um mapa preditivo funcional prediz valores em diferentes locais geográficos em um campo, e um ou mais daqueles valores podem ser usados para controlar a máquina, tais como um ou mais subsistemas de uma colheitadeira agrícola. Em alguns casos, um mapa preditivo funcional pode ser apresentado a um usuário, tal como um operador de uma máquina de trabalho agrícola, que pode ser uma colheitadeira agrícola. Um mapa preditivo funcional pode ser apresentado a um usuário visualmente, como por intermédio de uma exibição, de forma táctil ou audível. O usuário pode interagir com o mapa preditivo funcional para realizar operações de edição e outras operações de interface de usuário. Em alguns casos, um mapa preditivo funcional pode ser usado para um ou mais de controlar uma máquina de trabalho agrícola, tal como um a colheitadeira agrícola, apresentação para um operador ou outro usuário, e apresentação para um operador ou usuário para interação pelo operador ou usuário.
[0039] Depois de a proposta geral ser descrita com relação às figuras 2 e 3, uma proposta mais específica para gerar um mapa de velocidade preditivo funcional, que pode ser apresentado a um operador ou usuário, ou usado para controlar a colheitadeira agrícola 100, ou ambos, é descrita com relação às figuras 4 e 5. Novamente, embora a presente discussão prossiga com relação à colheitadeira agrícola e, particularmente, uma colheitadeira combinada, o escopo da presente invenção abrange outros tipos de colheitadeiras agrícolas ou outras máquinas de trabalho agrícola.
[0040] A figura 2 é um diagrama de blocos mostrando algumas porções de um exemplo da colheitadeira agrícola 100. A figura 2 mostra que a colheitadeira agrícola 100 ilustrativamente inclui um ou mais processadores ou servidores 201, o banco de dados 202, o sensor de posição geográfica 204, sistema de comunicação 206, e um ou mais sensores in-situ 208 que sensoreiam um ou mais características agrícolas de um campo simultaneamente com uma operação de colheita. Uma característica agrícola pode incluir qualquer característica que pode ter um efeito da operação de colheita. Alguns exemplos de características agrícolas incluem as características da máquina de colheita, do campo, das plantas no campo, e do clima. Outros tipos de características agrícolas são também incluídos. Os sensores in-situ 208 geram valores correspondentes às características sensoreadas. A colheitadeira agrícola 100 também inclui um gerador de modelo preditivo ou de relação (coletivamente referido daqui em diante como “gerador de modelo preditivo 210”), o gerador de mapa preditivo 212, o gerador de zona de controle 213, o sistema de controle 214, um ou mais os subsistemas controláveis 216, e um mecanismo de interface de operador 218. A colheitadeira agrícola 100 pode também incluir uma ampla variedade de outras funcionalidades de colheitadeira agrícola 220. Os sensores in-situ 208 incluem, por exemplo, os sensores a bordo 222, os sensores remotos 224, e outros sensores 226 que sensoreiam características de um campo durante o curso de uma operação agrícola. O gerador de modelo preditivo 210 ilustrativamente inclui um gerador de modelo de variável de informação-para-variável in-situ 228, e o gerador de modelo preditivo 210 pode incluir outros itens 230. O sistema de controle 214 inclui o controlador de sistema de comunicação 229, o controlador de interface de operador 231, o gerador de modelo de variável de informação-para-variável in-situ 232, o controlador de planejamento de trajeto 234, o controlador de taxa de alimentação 236, o controlador de plataforma de corte e carretel 238, o controlador de correia de lona 240, o controlador de posição de placa de cobertura 242, o controlador de sistema de resíduo 244, o controlador de limpeza de máquina 245, o controlador de zona 247, e o sistema 214 pode incluir outros itens 246. Os subsistemas controláveis 216 incluem os atuadores de máquina e de plataforma de corte 248, o subsistema de propulsão 250, o subsistema de direção 252, subsistema de resíduo 138, o subsistema de limpeza de máquina254, e subsistemas 216 pode incluir uma ampla variedade de outros subsistemas 256.
[0041] A figura 2 também mostra que a colheitadeira agrícola 100 pode receber mapa de informação 258. Conforme descrito abaixo, o mapa de informação 258 inclui, por exemplo, um mapa de índice vegetativo, um mapa de biomassa, um mapa de estado de cultivo, um mapa topográfico, um mapa de propriedade de solo, um mapa de semeadura, ou um mapa de uma operação anterior. Todavia, o mapa de informação 258 pode também abranger outros tipos de dados que foram obtidos antes de uma operação de colheita ou um mapa de uma operação anterior. A figura 2 também mostra que um operador 260 pode operar a colheitadeira agrícola 100. O operador 260 interage com mecanismos de interface de operador 218. Em alguns exemplos, os mecanismos de interface de operador 218 podem incluir alavancas de controle, alavancas, um volante, conjuntos de articulação, pedais, botões, mostradores, teclados, elementos atuáveis por usuário (tais como ícones, botões, etc.) em uma interface de dispositivo de exibição de usuário, um microfone e alto-falante (onde reconhecimento de voz e síntese de voz são providos), dentre uma ampla variedade de outros tipos de dispositivos de controle. Quando um sistema de exibição sensível ao toque é provido, o operador 260 pode interagir com mecanismos de interface de operador 218 usando gestos de toque. Esses exemplos descritos acima são providos como exemplos ilustrativos e não são destinados a limitar o escopo da presente invenção. Consequentemente, outros tipos de mecanismos de interface de operador 218 podem ser usados e estão dentro do escopo da presente invenção.
[0042] O mapa de informação 258 pode ser baixado à colheitadeira agrícola 100 e armazenado no banco de dados 202, usando o sistema de comunicação 206 ou de outras maneiras. Em alguns exemplos, sistema de comunicação 206 pode ser um sistema de comunicação celular, um sistema para comunicação sobre uma rede de área larga ou uma rede de área local, um sistema para comunicação sobre uma rede de comunicação de campo próximo, ou um sistema de comunicação configurado para comunicação sobre qualquer de uma variedade de outras redes ou combinações de redes. O sistema de comunicação 206 pode também incluir um sistema que facilita baixamentos ou transferências de informação para, e de, um cartão Secure Digital (SD) ou um cartão de barramento serial universal (USB), ou ambos.
[0043] O sensor de posição geográfica 204 ilustrativamente o sensoreia ou detecta a posição geográfica ou local da colheitadeira agrícola 100. O sensor de posição geográfica 204 pode incluir, mas não é limitado a, um receptor de sistema de navegação global por satélite (GNSS) que recebe sinais de um transmissor de satélite de GNSS. O sensor de posição geográfica 204 pode também incluir um componente cinemático em tempo real (RTK), que é configurado para melhorar a precisão de dados de posição derivados de sinal de GNSS. O sensor de posição geográfica 204 pode incluir um sistema de reconhecimento passivo, um sistema de triangulação celular, ou qualquer de uma variedade de outros sensores de posição geográfica.
[0044] Os sensores in-situ 208 podem ser qualquer dos sensores descritos acima com relação à figura 1. Os sensores in-situ 208 incluem sensores a bordo 222 que são montados a bordo da colheitadeira agrícola 100. Tais sensores podem incluir, por exemplo, qualquer dos sensores discutido acima com relação à figura 1, um sensor de percepção (por exemplo, um sistema de câmera mono ou estéreo voltado para frente e sistema de processamento de imagens), sensores de imagem que são internos à colheitadeira agrícola 100 (tais como a câmera de grão limpo ou câmeras montadas para identificar material que está saindo da colheitadeira agrícola 100 através do subsistema de resíduo ou do subsistema de limpeza). Os sensores in-situ 208 também incluem sensores remotos in-situ 224 que capturam informação in-situ. Os dados in-situ incluem dados tomados de um sensor a bordo da colheitadeira ou tomados por qualquer sensor onde os dados são detectados durante a operação de colheita.
[0045] O gerador de modelo preditivo 210 gera um modelo que é indicativo de uma relação entre os valores sensoreados pelo sensor in-situ 208 e uma métrica mapeada para o campo pelo mapa de informação 258. Por exemplo, se o mapa de informação 258 mapear um valor de índice vegetativo para diferentes locais no campo, e o sensor in-situ 208 está sensoreando um valor indicativo da velocidade de máquina, então o gerador de modelo de variável de informação-para-variável in-situ 228 gera um modelo de velocidade preditivo que modela a relação entre o valor de índice vegetativo e o valor de velocidade de máquina. O modelo de velocidade preditivo pode também ser gerado com base em valores de índice vegetativo do mapa de informação 258 e múltiplos valores de dados in-situ gerados pelos sensores in-situ 208. Então, o gerador de mapa preditivo 212 usa o modelo de velocidade preditivo gerado pelo gerador de modelo preditivo 210 para gerar um mapa de velocidade preditivo funcional que prediz a esperada velocidade de máquina sensoreada pelos sensores in-situ 208 em diferentes locais no campo com base no mapa de informação 258.
[0046] Em alguns exemplos, o tipo de valores no mapa preditivo funcional 263 pode ser o mesmo que o tipo de dados in-situ sensoreados pelos sensores in-situ 208. Em alguns casos, o tipo de valores no mapa preditivo funcional 263 pode ter diferentes unidades dos dados sensoreados pelos sensores in-situ 208. Em alguns exemplos, o tipo de valores no mapa preditivo funcional 263 pode ser diferente do tipo de dados sensoreado pelos sensores in-situ 208, mas ter uma relação ao tipo de dados sensoreado pelos sensores in-situ 208. Por exemplo, em alguns exemplos, o tipo de dados sensoreado pelos sensores in-situ 208 pode ser indicativo do tipo de valores no mapa preditivo funcional 263. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 pode ser diferente do tipo de dados no mapa de informação 258. Em alguns casos, o tipo de dados no mapa preditivo funcional 263 pode ter diferentes unidades dos dados no mapa de informação 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 pode ser diferente do tipo de dados no mapa de informação 258, mas ter uma relação ao tipo de dados no mapa de informação 258. Por exemplo, em alguns exemplos, o tipo de dados no mapa de informação 258 pode ser indicativo do tipo de dados no mapa preditivo funcional 263. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é diferente de um dentre, ou ambos, do tipo de dados in-situ sensoreado pelos sensores in-situ 208 e o tipo de dados no mapa de informação 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é o mesmo que um dentre, ou ambos, de, do tipo de dados in-situ sensoreado pelos sensores in-situ 208 e o tipo de dados no mapa de informação 258. Em alguns exemplos, o tipo de dados no mapa preditivo funcional 263 é o mesmo que um do tipo de dados in-situ sensoreado pelos sensores in-situ 208 ou o tipo de dados no mapa de informação 258, e diferentes um do outro.
[0047] Continuando com o exemplo anterior, em que o mapa de informação 258 é um mapa de índice vegetativo e o sensor in-situ 208 sensoreia um valor indicativo da velocidade de máquina, o gerador de mapa preditivo 212 pode usar os valores de índice vegetativo no mapa de informação 258and o modelo gerado pelo gerador de modelo preditivo 210 para gerar um mapa preditivo funcional 263 que prediz a esperada velocidade de máquina em diferentes locais no campo. O gerador de mapa preditivo 212 fornece assim o mapa preditivo 264.
[0048] Conforme mostrado na figura 2, o mapa preditivo 264 prediz o valor de uma característica sensoreada (sensoreada pelos sensores in-situ 208), ou uma característica relacionada à característica sensoreada, em vários locais através do campo com base em um valor de informação no mapa de informação 258 naqueles locais e usando o modelo preditivo. Por exemplo, se gerador de modelo preditivo 210 tiver gerado um modelo preditivo indicativo de uma relação entre um valor de índice vegetativo e a velocidade de máquina, então, dado o valor de índice vegetativo em diferentes locais através do campo, o gerador de mapa preditivo 212 gera um mapa preditivo 264 que prediz o valor de velocidade de máquina alvo em diferentes locais através do campo. O valor de índice vegetativo, obtido do mapa de índice vegetativo, naqueles locais e a relação entre o valor de índice vegetativo, e a velocidade de máquina, obtida do modelo preditivo, são usados para gerar o mapa preditivo 264.
[0049] Algumas variações nos tipos de dados que são mapeadas no mapa de informação 258, os tipos de dados sensoreados pelos sensores in-situ 208, e os tipos de dados preditos no mapa preditivo 264 serão agora descritos.
[0050] Em alguns exemplos, o tipo de dados no mapa de informação 258 é diferente do tipo de dados sensoreado pelos sensores in-situ 208, ainda o tipo de dados no mapa preditivo 264 é o mesmo que o tipo de dados sensoreado pelos sensores in-situ 208. Por exemplo, o mapa de informação 258 pode ser um mapa de índice vegetativo, e a variável sensoreada pelos sensores in-situ 208 pode ser a produção. O mapa preditivo 264 pode então ser um mapa de produção preditivo, que mapeia os valores de produção preditos para os diferentes locais geográficos no campo. Em outro exemplo, o mapa de informação 258 pode ser um mapa de índice vegetativo, e a variável sensoreada pelos sensores in-situ 208 pode ser a altura de cultivo. O mapa preditivo 264 pode então ser um mapa de altura de cultivo preditivo, que mapeia os valores de altura de cultivo preditos para os diferentes locais geográficos no campo.
[0051] Também, em alguns exemplos, o tipo de dados no mapa de informação 258 é diferente do tipo de dados sensoreado pelos sensores in-situ 208, e o tipo de dados no mapa preditivo 264 é diferente tanto do tipo de dados no mapa de informação 258 quanto do tipo de dados sensoreado pelos sensores in-situ 208. Por exemplo, o mapa de informação 258 pode ser um mapa de índice vegetativo, e a variável sensoreada pelos sensores in-situ 208 pode ser a altura de cultivo. O mapa preditivo 264 pode então ser um mapa de biomassa preditivo, que mapeia a biomassa predita valores para os diferentes locais geográficos no campo. Em outro exemplo, o mapa de informação 258 pode ser um mapa de índice vegetativo, e a variável sensoreada pelos sensores in-situ 208 pode ser a produção. O mapa preditivo 264 pode então ser um mapa de velocidade preditivo, que mapeia os preditos valores de velocidade de colheitadeira para os diferentes locais geográficos no campo.
[0052] Em alguns exemplos, o mapa de informação 258 é de um passe anterior através do campo durante uma operação anterior e o tipo de dados é diferente do tipo de dados sensoreado pelos sensores in-situ 208, ainda o tipo de dados no mapa preditivo 264 é o mesmo que o tipo de dados sensoreado pelos sensores in-situ 208. Por exemplo, o mapa de informação 258 pode ser um mapa de população de sementes gerado durante o plantio, e a variável sensoreada pelos sensores in-situ 208 pode ser o tamanho do caule. O mapa preditivo 264 pode então ser um mapa de tamanho de caule preditivo, que mapeia os valores de tamanho de caule preditos para os diferentes locais geográficos no campo. Em outro exemplo, o mapa de informação 258 pode ser um mapa híbrido de semeadura, e a variável sensoreada pelos sensores in-situ 208 pode ser o estado de cultivo como cultivo em pé ou cultivo caído. O mapa preditivo 264 pode então ser um mapa de estado de cultivo preditivo, que mapeia os valores de estado de cultivo preditos para os diferentes locais geográficos no campo.
[0053] Em alguns exemplos, o mapa de informação 258 é de um passe anterior através do campo durante uma operação anterior e o tipo de dados é o mesmo que o tipo de dados sensoreado pelos sensores in-situ 208, e o tipo de dados no mapa preditivo 264 é também o mesmo que o tipo de dados sensoreado pelos sensores in-situ 208. Por exemplo, o mapa de informação 258 pode ser um mapa de produção gerado durante um ano anterior, e a variável sensoreada pelos sensores in-situ 208 pode ser a produção. O mapa preditivo 264 pode então ser um mapa de produção preditivo, que mapeia os valores de produção preditos para os diferentes locais geográficos no campo. Em um tal exemplo, as diferenças de produção relativas no mapa de informação geograficamente referenciado 258 do ano anterior podem ser usadas pelo gerador de modelo preditivo 210 para gerar um modelo preditivo que modela uma relação entre as diferenças de produção relativas no mapa de informação 258 e os valores de produção sensoreados pelos sensores in-situ 208 durante a operação de colheita atual. O modelo preditivo é então usado pelo gerador de mapa preditivo 210 para gerar um mapa de produção preditivo.
[0054] Em outro exemplo, o mapa de informação 258 pode ser um mapa de intensidade de erva daninha, gerado durante uma operação anterior, como de um pulverizador, e a variável sensoreada pelos sensores in-situ 208 pode ser a intensidade de erva daninha. O mapa preditivo 264 pode então ser um mapa de intensidade de erva daninha preditivo, que mapeia os preditos valores de intensidade de erva daninha para os diferentes locais geográficos no campo. Em um tal exemplo, um mapa das intensidades de ervas daninhas no instante da pulverização é gravado de forma geograficamente referenciada e provido para a colheitadeira agrícola 100 como um mapa de informação 258 da intensidade de erva daninha. Os sensores in-situ 208 podem detectar a intensidade de erva daninha nos locais geográficos no campo e o gerador de modelo preditivo 210 pode então construir um modelo preditivo que modela uma relação entre a intensidade de erva daninha no instante da colheita e a intensidade de erva daninha no instante de pulverização. Isso é porque o pulverizador terá impactado a intensidade de erva daninha no instante de pulverização, mas as ervas daninhas podem ainda são cultivadas em áreas similares novamente pela colheita. Todavia, as áreas de ervas daninhas, na colheita, são prováveis que tenham diferente intensidade com base na temporização da colheita, clima, tipo de erva daninha, dentre outros fatores.
[0055] Em alguns exemplos, o mapa preditivo 264 pode ser provido para o gerador de zona de controle 213. O gerador de zona de controle 213 agrupa porções adjacentes de uma área em uma ou mais zonas de controle com base em valores de dados do mapa preditivo 264, que são associados com aquelas porções adjacentes. Uma zona de controle pode incluir duas ou mais porções contíguas de uma área, tal como um campo, para o qual um parâmetro de controle correspondente à zona de controle para controlar um subsistema controlável é constante. Por exemplo, um tempo de resposta para alterar uma regulagem dos subsistemas controláveis 216 pode ser inadequado para responder satisfatoriamente a alterações em valores contidos em um mapa, tal como o mapa preditivo 264. Nesse caso, o gerador de zona de controle 213 analisa o mapa e identifica zonas de controle que são de um tamanho definido para acomodar o tempo de resposta dos subsistemas controláveis 216. Em outro exemplo, as zonas de controle podem ser dimensionadas para reduzir o desgaste do movimento excessivo de atuador que resulta do ajuste contínuo. Em alguns exemplos, pode existir um diferente conjunto das zonas de controle para cada subsistema controlável 216 ou para grupos dos subsistemas controláveis 216. As zonas de controle podem ser adicionadas ao mapa preditivo 264 para obter o mapa de zona de controle preditivo 265. O mapa de zona de controle preditivo 265 pode assim ser similar ao mapa preditivo 264, exceto que o mapa de zona de controle preditivo 265 inclui informação de zona de controle definindo as zonas de controle. Assim, um mapa preditivo funcional 263, conforme descrito aqui, pode, ou pode não, incluir as zonas de controle. Tanto o mapa preditivo 264 quanto o mapa de zona de controle preditivo 265 são os mapas preditivos funcionais 263. Em um exemplo, um mapa preditivo funcional 263 não inclui as zonas de controle, como o mapa preditivo 264. Em outro exemplo, um mapa preditivo funcional 263 inclui as zonas de controle, como o mapa de zona de controle preditivo 265. Em alguns exemplos, múltiplos cultivos podem estar simultaneamente presentes em um campo, se um sistema de produção de intercultivo for implementado. Nesse caso, o gerador de mapa preditivo 212 e o gerador de zona de controle 213 são capazes de identificar o local e as características dos dois ou mais cultivos e então gerar o mapa preditivo 264 e o mapa de zona de controle preditivo 265, consequentemente.
[0056] Será também reconhecido que o gerador de zona de controle 213 pode agrupar valores para gerar as zonas de controle e as zonas de controle podem ser adicionadas ao mapa de zona de controle preditivo 265, ou um mapa separado, mostrando somente as zonas de controle que são geradas. Em alguns exemplos, as zonas de controle podem ser usadas para controlar ou calibrar a colheitadeira agrícola 100, ou ambos. Em outros exemplos, as zonas de controle podem ser apresentadas ao operador 260 e usadas para controlar ou calibrar a colheitadeira agrícola 100, e, em outros exemplos, as zonas de controle podem ser apresentadas ao operador 260 ou a outro usuário ou armazenadas para o uso posterior.
[0057] O mapa preditivo 264 ou o mapa de zona de controle preditivo 265, ou ambos, são providos para controlar o sistema 214, que gera sinais de controle com base no mapa preditivo 264 ou no mapa de zona de controle preditivo 265 ou ambos. Em alguns exemplos, o controlador de sistema de comunicação 229 controla o sistema de comunicação 206 para comunicar o mapa preditivo 264 ou o mapa de zona de controle preditivo 265 ou sinais de controle com base no mapa preditivo 264 ou o mapa de zona de controle preditivo 265 a outras colheitadeiras agrícolas que estão colhendo no mesmo campo. Em alguns exemplos, o controlador de sistema de comunicação 229 controla o sistema de comunicação 206 para enviar o mapa preditivo 264, o mapa de zona de controle preditivo 265, ou ambos, para outros sistemas remotos.
[0058] O controlador de interface de operador 231 é operável para gerar sinais de controle para controlar os mecanismos de interface de operador 218. O controlador de interface de operador 231 é também operável para apresentar o mapa preditivo 264 ou o mapa de zona de controle preditivo 265 ou outra informação derivada de, ou com base em, o mapa preditivo 264, o mapa de zona de controle preditivo 265, ou ambos, para o operador 260. O operador 260 pode ser um operador local ou um operador remoto. Como um exemplo, o controlador 231 gera sinais de controle para controlar um mecanismo de exibição para exibir um ou ambos, do mapa preditivo 264 e do mapa de zona de controle preditivo 265 para o operador 260. O controlador 231 pode gerar mecanismos atuáveis por operador que são exibidos e podem ser atuados pelo operador para interagir com o mapa exibido. O operador pode editar o mapa por, por exemplo, corrigir um tipo de erva daninha exibido no mapa, com base na observação do operador. O controlador de regulagens 232 pode gerar sinais de controle para controlar várias regulagens na colheitadeira agrícola 100 com base no mapa preditivo 264, no mapa de zona de controle preditivo 265, ou ambos. Por exemplo, o controlador de regulagens 232 pode gerar sinais de controle para controlar os atuadores de máquina e de plataforma de corte 248. Em resposta aos sinais de controle gerados, os atuadores de máquina e de plataforma de corte 248 operam para controlar, por exemplo, um ou mais dos ajustes de peneira e crivo superior, folga de côncavos, regulagens de rotor, regulagens de velocidade duma ventoinha de limpeza, a altura da plataforma de corte, a funcionalidade da plataforma de corte, velocidade de carretel, posição de carretel, funcionalidade de lona (onda colheitadeira agrícola 100 é acoplada a uma plataforma de corte de lona), a funcionalidade de plataforma de corte de grão, controle de distribuição interna e outros atuadores 248 que afetam as outras funções da colheitadeira agrícola 100. O controlador de planejamento de trajeto 234 ilustrativamente gera sinais de controle para controlar o subsistema de direção 252 para direcionar a colheitadeira agrícola 100 de acordo com um trajeto desejado. O controlador de planejamento de trajeto 234 pode controlar um sistema de planejamento de trajeto para gerar uma rota para a colheitadeira agrícola 100 e pode controlar o subsistema de propulsão 250 e o subsistema de direção 252 para direcionar a colheitadeira agrícola 100 ao longo dessa rota. O controlador de taxa de alimentação 236 pode receber uma variedade de diferentes entradas indicativas de uma taxa de alimentação de material através da colheitadeira agrícola 100 e pode controlar vários subsistemas, como o subsistema de propulsão 250 e os atuadores de máquina248, para controlar a taxa de alimentação com base no mapa preditivo 264 ou no mapa de zona de controle preditivo 265 ou ambos. Por exemplo, quando a colheitadeira agrícola 100 se aproxima a um remendo de ervas daninhas tendo um valor de intensidade acima de um limite selecionado, o controlador de taxa de alimentação 236 pode gerar um sinal de controle para controlar o subsistema de propulsão 252 para reduzir a velocidade da colheitadeira agrícola 100 para manter constante a taxa de alimentação de biomassa através da colheitadeira agrícola 100. O controlador de plataforma de corte e carretel 238 pode gerar sinais de controle para controlar uma plataforma de corte ou um carretel ou outra funcionalidade da plataforma de corte. O controlador de correia de lona 240 pode gerar sinais de controle para controlar uma correia de lona ou outra funcionalidade de lona com base no mapa preditivo 264, no mapa de zona de controle preditivo 265, ou ambos. O controlador de posição de placa de cobertura 242 pode gerar sinais de controle para controlar a posição de uma placa de cobertura incluída em uma plataforma de corte com base no mapa preditivo 264 ou no mapa de zona de controle preditivo 265 ou ambos, e o controlador de sistema de resíduo 244 pode gerar sinais de controle para controlar um subsistema de resíduo 138 com base no mapa preditivo 264 ou no mapa de zona de controle preditivo 265, ou ambos. O controlador de limpeza de máquina 245 pode gerar sinais de controle para controlar o subsistema de limpeza de máquina254. Por exemplo, com base nos diferentes tipos de ervas daninhas ou ervas daninhas passadas através da colheitadeira agrícola 100, um tipo particular de operação de limpeza de máquina ou uma frequência com a qual uma operação de limpeza é realizada pode ser controlado. Outros controladores incluídos na colheitadeira agrícola 100 podem controlar outros subsistemas com base no mapa preditivo 264 ou também no mapa de zona de controle preditivo 265 ou ambos.
[0059] As figuras 3A e 3B (coletivamente referidas aqui como a figura 3) mostram um fluxograma ilustrando um exemplo da operação da colheitadeira agrícola 100 na geração de um mapa preditivo 264 e o mapa de zona de controle preditivo 265 com base no mapa de informação 258.
[0060] Em 280, a colheitadeira agrícola 100 recebe o mapa de informação 258. Exemplos de mapa de informação 258 ou de recepção de mapa de informação 258 são discutidos com relação aos blocos 281, 282, 284 e 286. Conforme discutido acima, o mapa de informação 258 mapeia valores de uma variável, correspondente a uma primeira característica, para diferentes locais no campo, como indicado no bloco 282. Como indicado no bloco 281, a recepção do mapa de informação 258 pode envolver a seleção de uma ou mais de uma pluralidade de possíveis mapas de informação que são disponíveis. Por exemplo, um mapa de informação pode ser um mapa de índice vegetativo gerado de formações de imagens aéreas. Outro mapa de informação pode ser um mapa gerado durante um passe anterior através do campo que pode ter sido realizado por uma máquina diferente realizando uma operação anterior no campo, tal como um pulverizador ou uma máquina de plantio ou máquina de semeadura ou veículo aéreo não tripulado (UAV) ou outra máquina. O processo por meio do qual um ou mais mapas de informação são selecionados pode ser manual, semiautomático, ou automático. O mapa de informação 258 é baseado nos dados coletados antes de uma operação de coleta atual. Isso é indicado pelo bloco 284. Por exemplo, os dados podem ser coletados com base em imagens aéreas tomadas durante um ano anterior, ou mais cedo na estação de crescimento atual, ou em outros momentos. Os dados podem ser com base nos dados detectados de maneiras diferentes que o uso de imagens aéreas. Por exemplo, a colheitadeira agrícola 100 pode ser equipada com um sensor, tal como um sensor óptico interno, que identifica sementes de ervas daninhas ou outros tipos de material abandonando a colheitadeira agrícola 100. A semente de erva daninha ou outros dados detectados pelo sensor durante uma colheita do ano anterior podem ser usados como os dados usados para gerar o mapa de informação 258. Os dados sensoreados de erva daninha ou outros dados podem ser combinados com outros dados para gerar o mapa de informação 258. Por exemplo, com base numa magnitude das sementes de ervas daninhas abandonando a colheitadeira agrícola 100 em diferentes locais e com base em outros fatores, tais como clima, as sementes estão sendo espalhadas por um espalhador ou deixadas cair em um depósito em fiada; as condições climáticas, como o vento, quando as sementes estão sendo deixadas cair ou espalhadas; condições de drenagem que podem mover as sementes em torno do campo; ou outra informação, o local daquelas sementes de ervas daninhas pode ser predito de forma que o mapa de informação 258 mapeie os preditos locais de semente no campo. Os dados para o mapa de informação 258 podem ser transmitidos para a colheitadeira agrícola 100 usando o sistema de comunicação 206 e armazenados no banco de dados 202. Os dados para o mapa de informação 258 podem ser providos para a colheitadeira agrícola 100 usando o sistema de comunicação 206 também de outras maneiras, e isso é indicado pelo bloco286 no fluxograma da figura 3. Em alguns exemplos, o mapa de informação 258 pode ser recebido pelo sistema de comunicação 206.
[0061] No começo de uma operação de colheita, os sensores in-situ 208 geram sinais de sensor indicativos de um ou mais valores de dados in-situ, indicativos de uma característica, tal como uma característica de velocidade, conforme indicado pelo bloco 288. Exemplos dos sensores in-situ 288 são discutidos com relação aos blocos 222, 290, e 226. Como explicado acima, os sensores in-situ 208 incluem sensores a bordo 222; sensores in-situ remotos 224, tais como os sensores baseados em veículo aéreo não tripulado (UAV) que voaram em um momento para recolher dados in-situ, mostrados no bloco 290; ou outros tipos dos sensores in-situ, designados por sensores in-situ 226. Em alguns exemplos, os dados dos sensores a bordo são georreferenciados usando os dados de posição, de rumo de posição ou os dados de velocidade do sensor de posição geográfica 204.
[0062] O gerador de modelo preditivo 210 controla o gerador de modelo de variável de informação-para-variável in-situ 228 para gerar um modelo que modela uma relação entre os valores mapeados contidos no mapa de informação 258 e os valores in-situ sensoreados pelos sensores in-situ 208, conforme indicado pelo bloco 292. As características ou os tipos de dados representados pelos valores mapeados no mapa de informação anterior 258 podem ser o mesmo tipo de características ou dados ou tipos diferentes de características ou dados.
[0063] A relação ou modelo gerado pelo gerador de modelo preditivo 210 é provido para o gerador de mapa preditivo 212.. O gerador de mapa preditivo 212 gera um mapa preditivo 264, que prediz um valor da característica sensoreada pelos sensores in-situ 208 em diferentes locais geográficos em um campo sendo colhido, ou uma diferente característica que é relacionada à característica sensoreada pelos sensores in-situ 208, usando o modelo preditivo e o mapa de informação anterior 258, conforme indicado pelo bloco 294.
[0064] Deve ser notado que, em alguns exemplos, o mapa de informação anterior 258 pode incluir dois ou mapas diferentes ou duas ou mais camadas de mapa diferentes de um único mapa. Cada camada de mapa pode representar um tipo de dado diferente do tipo de dados de outra camada de mapa ou a camadas de mapa pode ter o mesmo tipo de dados que foram obtidos em diferentes tempos. Cada mapa nos dois ou mais mapas diferentes ou cada camada nas duas ou mais camadas de mapa diferentes de um mapa mapeia um tipo diferente de variável para os locais geográficos no campo. Em tal exemplo, o gerador de modelo preditivo 210 gera um modelo preditivo que modela a relação entre os dados in-situ e cada uma das diferentes variáveis mapeadas pelos dois ou mais mapas diferentes ou as duas ou mais camadas de mapa diferentes. Similarmente, os sensores in-situ 208 podem incluir dois ou mais sensores, cada um sensoreando um tipo diferente de variável. Assim, o gerador de modelo preditivo 210 gera um modelo preditivo que modela as relações entre cada tipo de variável mapeada pelo mapa de informação anterior 258 e cada tipo de variável sensoreada pelos sensores in-situ 208. O gerador de mapa preditivo 212 pode gerar um mapa preditivo funcional 263, que prediz um valor para cada característica sensoreada pelos sensores in-situ 208 (ou uma característica relacionada à característica sensoreada) em diferentes locais no campo sendo colhido usando o modelo preditivo e cada um dos mapas ou das camadas de mapa no mapa de informação anterior 258.
[0065] O gerador de mapa preditivo 212 configura o mapa preditivo 264 de modo que o mapa preditivo 264 seja acionável (ou consumível) pelo sistema de controle 214. O gerador de mapa preditivo 212 pode prover o mapa preditivo 264 para o sistema de controle 214 ou para o gerador de zona de controle 213, ou ambos. Alguns exemplos de maneiras diferentes em que o mapa preditivo 264 pode ser configurado ou fornecido são descritos com relação aos blocos 296, 295, 299 e 297. Por exemplo, o gerador de mapa preditivo 212 configura o mapa preditivo 264 de modo que o mapa preditivo 264 inclua valores que possam ser lidos pelo sistema de controle 214 e usados como a base para gerar sinais de controle para um ou mais dos diferentes subsistemas controláveis da colheitadeira agrícola 100, conforme indicado pelo bloco 296.
[0066] O gerador de zona de controle 213 pode dividir o mapa preditivo 264 em zonas de controle com base nos valores no mapa preditivo 264.
[0067] O gerador de zona de controle 213 pode dividir o mapa preditivo 264 em zonas de controle com base nos valores no mapa preditivo 264. Valores contiguamente posicionados geograficamente, que estão dentro de um valor de limite uns dos outros podem ser agrupados em uma zona de controle. O valor de limite pode ser um valor de limite padrão, ou o valor de limite pode ser ajustado com base em uma entrada de operador, com base em uma entrada de um sistema automático ou com base em outros critérios. Um tamanho das zonas pode ser baseado em uma responsividade do sistema de controle 214, dos subsistemas controláveis 216, ou com base em considerações de desgaste, ou em outros critérios, conforme indicado pelo bloco 295. O gerador de mapa preditivo 212 configura o mapa preditivo 264 para apresentação para um operador ou outro usuário. O gerador de zona de controle 213 pode configurar o mapa de zona de controle preditivo 265 para apresentação para um operador ou outro usuário. Isso é indicado pelo bloco 299. Quando apresentado a um operador ou outro usuário, a apresentação do mapa preditivo 264 ou o mapa de zona de controle preditivo 265 ou ambos pode conter um ou mais dos valores preditivos no mapa preditivo 264, correlacionados ao local geográfico, as zonas de controle no mapa de zona de controle preditivo 265, correlacionados ao local geográfico, e os valores de regulagens ou parâmetros de controle, que são usados com base nos valores preditos no mapa preditivo 264 ou zonas no mapa de zona de controle preditivo 265. A apresentação pode, em outro exemplo, incluir informação mais abstrata ou informação mais detalhada. A apresentação pode também incluir um nível de confidência que indica uma precisão com a qual os valores preditivos no mapa preditivo 264 ou as zonas no mapa de zona de controle preditivo 265 se conformam aos controles medidos que podem ser medidos pelos sensores na colheitadeira agrícola 100 conforme a colheitadeira agrícola 100 se move através do campo. Ainda, onde informação é apresentada a mais que um local, um sistema de autenticação/autorização pode ser provido para implementar processos de autenticação e autorização. Por exemplo, pode existir uma hierarquia de indivíduos, que são autorizados a visualizar e alterar os mapas e outra informação apresentada. A título de exemplo, um dispositivo de exibição a bordo pode mostrar os mapas em tempo quase real, localmente, na máquina, somente, ou os mapas podem também ser gerados em um ou mais locais remotos. Em alguns exemplos, cada dispositivo de exibição físico em cada local pode ser associado a um nível de permissão de pessoa ou de um usuário. O nível de permissão de usuário pode ser usado para determinar quais marcadores de exibição são visíveis no dispositivo de exibição físico, e quais valores a correspondente pessoa pode alterar. Como um exemplo, um operador local da colheitadeira agrícola 100 pode ser incapaz de ver a informação correspondente ao mapa preditivo 264 ou de fazer quaisquer alterações na operação da máquina. Um supervisor, em um local remoto, Todavia, pode ser capaz de ver o mapa preditivo 264 na exibição, mas não pode fazer alterações. Um gerenciador, que pode estar em um local remoto separado, pode ser capaz de ver todos dos elementos no mapa preditivo 264 e também alterar o mapa preditivo 264 que é usado no controle da máquina. Isso é um exemplo de uma hierarquia de autorização que pode ser implementada. O mapa preditivo 264 ou o mapa de zona de controle preditivo 265, ou ambos, podem ser configurados também de outras maneiras, conforme indicado pelo bloco 297.
[0068] No bloco 298, a entrada do sensor de posição geográfica 204 e outros sensores in-situ 208 são recebidas pelo sistema de controle. Particularmente, no bloco 300, o sistema de controle 214 detecta uma entrada do sensor de posição geográfica 204 identificando um local geográfico da colheitadeira agrícola 100. O bloco 302 representa a recepção pelo sistema de controle 214 de entradas de sensor indicativas de trajetória ou rumo da colheitadeira agrícola 100, e o bloco 304 representa a recepção pelo sistema de controle 214 de uma velocidade da colheitadeira agrícola 100. O bloco 306 representa a recepção pelo sistema de controle 214 de outra informação de vários sensores in-situ 208.
[0069] No bloco 308, o sistema de controle 214 gera sinais de controle para controlar os subsistemas controláveis 216 com base no mapa preditivo 264 ou no mapa de zona de controle preditivo 265 ou ambos e a entrada do sensor de posição geográfica 204 e quaisquer outros sensores in-situ 208. No bloco 310, o sistema de controle 214 aplica os sinais de controle aos subsistemas controláveis. Será reconhecido que os sinais de controle particulares, que são gerados, e os subsistemas controláveis particulares 216, que são controlados, podem variar com base em um ou mais fatores diferentes. Similarmente, os sinais de controle, que são gerados e os subsistemas controláveis 216, que são controlados, e a temporização dos sinais de controle podem ser baseados em várias latências do fluxo de cultivo através da colheitadeira agrícola 100 e da responsividade dos subsistemas controláveis 216.
[0070] A título de exemplo, um mapa preditivo gerado 264 na forma de um mapa de produção preditiva pode ser usado para controlar um ou mais subsistemas controláveis 216. Por exemplo, o mapa de produção preditiva funcional pode incluir valores de produção georreferenciados a locais dentro do campo sendo colhido. O mapa de produção preditiva funcional pode ser extraído e usado para controlar os subsistemas de direção e propulsão 252 e 250. Por meio do controle dos subsistemas de direção e propulsão 252 e 250, uma taxa de alimentação de material ou grão se movendo através da colheitadeira agrícola 100 pode ser controlada. Similarmente, a altura da plataforma de corte pode ser controlada para captar mais ou menos material e, assim, a altura da plataforma de corte pode também ser controlada para controlar a taxa de alimentação de material através da colheitadeira agrícola 100. Em outros exemplos, se o mapa preditivo 264 mapear a produção à frente da máquina sendo mais alta em uma porção da plataforma de corte que outra porção da plataforma de corte, resultando em uma diferente biomassa entrando em um lado da plataforma de corte que o outro lado, o controle da plataforma de corte pode ser implementado. Por exemplo, uma velocidade de lona em um lado da plataforma de corte pode ser aumentada ou diminuída com relação à velocidade de lona no outro lado da plataforma de corte para levar em conta a biomassa adicional. Assim, o controlador do carretel da plataforma de corte 238 pode ser controlado usando valores georreferenciados presentes no mapa de produção preditiva para controlar as velocidades de lona das correias de lona na plataforma de corte. O exemplo precedente envolvendo o controle de taxa de alimentação e plataforma de corte usando um mapa de produção preditiva funcional é provido meramente como um exemplo. Consequentemente, uma extensa variedade de outros sinais de controle pode ser gerado usando os valores obtidos de um mapa de produção preditiva ou outro tipo de mapa preditivo funcional para controlar um ou mais dos subsistemas controláveis 216.
[0071] No bloco 312, uma determinação é feita de se a operação de colheita foi completada. Se a colheita não foi completada, o processamento avança para o bloco 314, onde os dados de sensor in-situ do sensor de posição geográfica 204 e os sensores in-situ 208 (e talvez outros sensores) continuam a ser lidos.
[0072] Em alguns exemplos, no bloco 316, a colheitadeira agrícola 100 pode também detectar critérios de disparo de aprendizagem para realizar a aprendizagem por máquina em um ou mais do mapa preditivo 264, do mapa de zona de controle preditivo 265, do modelo gerado pelo gerador de modelo preditivo 210, das zonas geradas pelo gerador de zona de controle 213, um ou mais algoritmos de controle implementados pelos controladores no sistema de controle 214, e outra aprendizagem disparada.
[0073] Os critérios de disparo de aprendizagem podem incluir qualquer de uma extensa variedade de critérios diferentes. Alguns exemplos de detecção de critérios de disparo são discutidos com relação aos blocos 318, 320, 321, 322 e 324. Por exemplo, em alguns exemplos, a aprendizagem disparada pode envolver a recreação de uma relação usada para gerar um modelo preditivo quando uma quantidade limite de dados de sensor in-situ é obtida dos sensores in-situ 208. Em tais exemplos, a recepção de uma quantidade de dados de sensor in-situ dos sensores in-situ 208 que excede um limite, dispara ou causa com que o gerador de modelo preditivo 210 gere um novo modelo preditivo que é usado pelo gerador de mapa preditivo 212. Assim, conforme a colheitadeira agrícola 100 continua uma operação de colheita, a recepção da quantidade limite de dados de sensor in-situ dos sensores in-situ 208 dispara a criação de uma nova relação representada por um modelo preditivo gerado pelo gerador de modelo preditivo 210. Além disso, o novo mapa preditivo 264, o mapa de zona de controle preditivo 265, ou ambos, podem ser re-gerados usando o novo modelo preditivo. O bloco 318 representa a detecção de uma quantidade limite de dados de sensor in-situ usada para disparar a criação de um novo modelo preditivo.
[0074] Em outros exemplos, os critérios de disparo de aprendizagem podem ser baseados em quanto os dados de sensor in-situ dos sensores in-situ 208 estão se alterando, tal como sobre o tempo ou em comparação com os valores anteriores. Por exemplo, se variações dentro dos dados de sensor in-situ (ou a relação entre os dados de sensor in-situ e a informação no mapa de informação anterior 258) estiverem dentro de uma faixa selecionada ou forem inferiores a uma quantidade definida ou é abaixo de um valor de limite, então um novo modelo preditivo não é gerado pelo gerador de modelo preditivo 210. Como um resultado, o gerador de mapa preditivo 212 não gera um novo mapa preditivo 264, o mapa de zona de controle preditivo 265, ou ambos. Todavia, se variações dentro dos dados de sensor in-situ são fora da faixa selecionada, são maiores que a quantidade definida, ou estiverem acima do valor de limite, por exemplo, então o gerador de modelo preditivo 210 gera um novo modelo preditivo usando todos ou uma porção dos novos dados de sensor recebidos, que o gerador de mapa preditivo 212 usa para gerar um novo mapa preditivo 264. No bloco 320, as variações de dados de sensor in-situ, tal como um uma magnitude de uma quantidade pela qual os dados excedem a faixa selecionada ou uma magnitude da variação da relação entre os dados de sensor in-situ e a informação no mapa de informação anterior 258, podem ser usadas como um gatilho para causar a geração de um novo modelo preditivo e o mapa preditivo. Mantendo os exemplos descritos acima, o limite, a faixa, e a quantidade definidos podem ser ajustados para os valores padrão; ajustados por um operador ou interação de usuário através de uma interface de usuário; ajustados por um sistema automático; ou ajustados de outras maneiras.
[0075] Outros critérios de disparo de aprendizagem podem também ser usados. Por exemplo, se o gerador de modelo preditivo 210 comutar para um diferente mapa de informação anterior (diferente do originalmente selecionado mapa de informação anterior 258), então a comutação para o diferente de informação anterior pode disparar a reaprendizagem pelo gerador de modelo preditivo 210, o gerador de mapa preditivo 212, o gerador de zona de controle 213, o sistema de controle 214, ou outros itens. Em outro exemplo, a transição da colheitadeira agrícola 100 para uma topografia diferente ou para uma zona de controle diferente pode ser usada também como critérios de disparo de aprendizagem.
[0076] Em alguns casos, o operador 260 pode também editar o mapa preditivo 264 ou o mapa de zona de controle preditivo 265, ou ambos. As edições podem alterar um valor no mapa preditivo 264; alterar um tamanho, formato, posição, ou existência de uma zona de controle no mapa de zona de controle preditivo 265; ou ambos. O bloco 321 mostra que informação editada pode ser usada como critérios de disparo de aprendizagem.
[0077] Em alguns casos, pode também ser que o operador 260 observe que o controle automático de um subsistema controlável não é o que o operador deseja. Em tais casos, o operador 260 pode prover um ajuste manual para o subsistema controlável refletindo que o operador 260 deseja que o subsistema controlável opere de uma maneira diferente da que está sendo comandada pelo sistema de controle 214. Assim, a alteração manual de uma regulagem pelo operador 260 pode causar com que um ou mais do gerador de modelo preditivo 210 reaprenda um modelo, o gerador de mapa preditivo 212 para regenerar o mapa 264, o gerador de zona de controle 213 para regenerar uma ou mais zonas de controle no mapa de zona de controle preditivo 265, e o sistema de controle 214 para reaprender um algoritmo de controle ou para realizar a aprendizagem por máquina em um ou mais dos componentes de controlador 232 a 246 no sistema de controle 214 com base no ajuste pelo operador 260, conforme mostrado no bloco 322. O bloco 324 representa o uso de outros critérios de aprendizagem disparados.
[0078] Em outros exemplos, a reaprendizagem pode ser realizada periodicamente ou intermitentemente com base, por exemplo, em um intervalo de tempo selecionado, tal como um intervalo de tempo discreto ou um intervalo de tempo variável, conforme indicado pelo bloco 326.
[0079] Se a reaprendizagem for disparada, se com base em critérios de disparo de aprendizagem ou com base na passagem de um intervalo de tempo, conforme indicado pelo bloco 326, então um ou mais do gerador de modelo preditivo 210, do gerador de mapa preditivo 212, do gerador de zona de controle 213, e do sistema de controle 214 realiza a aprendizagem por máquina para gerar um novo modelo preditivo, um novo mapa preditivo, uma nova zona de controle, e um novo algoritmo de controle, respectivamente, com base nos critérios de disparo de aprendizagem. O novo modelo preditivo, o novo mapa preditivo, e o novo algoritmo de controle são gerados usando qualquer dado adicional que foi coletado desde que a última operação de aprendizagem foi realizada. A realização da reaprendizagem é indicada pelo bloco 328.
[0080] Se a operação de colheita foi completada, a operação se move do bloco 312 para o bloco 330, onde um ou mais do mapa preditivo 264, do mapa de zona de controle preditivo 265, e do modelo preditivo, gerados pelo gerador de modelo preditivo 210 são armazenados. O mapa preditivo 264, o mapa de zona de controle preditivo 265, e o modelo preditivo podem ser armazenados localmente no banco de dados 202 ou enviados para um sistema remoto usando o sistema de comunicação 206 para o futuro uso.
[0081] Será notado que enquanto alguns exemplos descrevem aqui o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 recebendo um mapa de informação anterior na geração de um modelo preditivo e um mapa preditivo funcional, respectivamente, em outros exemplos, o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 podem receber, na geração de um modelo preditivo e um mapa preditivo funcional, respectivamente outros tipos de mapas, incluindo os mapas preditivos, tais como um mapa preditivo funcional gerado durante a operação de colheita.
[0082] A figura 4 é um diagrama de blocos de uma porção da colheitadeira agrícola 100 mostrada na figura 1. Particularmente, a figura 4 mostra, dentre outros fatores, exemplos do gerador de modelo preditivo 210 e do gerador de mapa preditivo 212 em mais detalhe. A figura 4 também ilustra o fluxo de informação entre os vários componentes mostrados aqui. O gerador de modelo preditivo 210 recebe o mapa de informação 258, que pode ser um mapa de índice vegetativo 332, um mapa de produção preditivo 333, um mapa de biomassa 335, um mapa de estado de cultivo 337, um mapa topográfico 339, um mapa de propriedade de solo 341, um mapa de semeadura 343 ou outro mapa 353, tal como um mapa de informação. O gerador de modelo preditivo 210 também recebe um local geográfico 334, ou uma indicação de um local geográfico, do sensor de posição geográfica 204. Os sensores in-situ 208 ilustrativamente incluem o sensor de velocidade de máquina 146, ou um sensor 336 que sensoreia uma saída do controlador de taxa de alimentação 236, bem como um sistema de processamento 338. O sistema de processamento 338 processa dados de sensor gerados do sensor de velocidade de máquina 146 ou do sensor 336, ou ambos, para gerar dados processados, alguns exemplos dos quais são descritos abaixo.
[0083] Em alguns exemplos, o sensor 336 pode ser um sensor, que gera um sinal indicativo das saídas de controlador do controlador de taxa de alimentação 236. Os sinais de controle podem ser sinais de controle de velocidade ou outros sinais de controle que são aplicados aos subsistemas controláveis 216 para controlar a taxa de alimentação de material através da colheitadeira agrícola 100. O sistema de processamento 338 processa os sinais obtidos por intermédio do sensor 336 para gerar os dados processados 340 identificando a velocidade da colheitadeira agrícola 100.
[0084] Em alguns exemplos, os dados brutos ou processados do(s) sensor(es) in-situ 208 podem ser apresentados ao operador 260 por intermédio do mecanismo de interface de operador 218. O operador 260 pode estar a bordo da colheitadeira agrícola 100 ou em um local remoto.
[0085] A presente discussão prossegue com relação a um exemplo no qual sensor in-situ 208 é o sensor de velocidade de máquina 146. Será reconhecido que esse é apenas um exemplo, e os sensores mencionados acima, como outros exemplos do sensor in-situ 208, dos quais a velocidade de máquina pode ser derivada, são também contemplados aqui. Conforme mostrado na figura 4, o gerador de modelo preditivo de exemplo 210 inclui um ou mais de um gerador de modelo de valor de índice vegetativo (IV)-para-velocidade 342, um gerador de modelo de biomassa-para-velocidade 344, o gerador de modelo de topografia-para-velocidade 345, o gerador de modelo de produção-para-velocidade 347, o gerador de modelo de estado de cultivo-para-velocidade 349, o gerador de modelo de propriedade de solo-para-velocidade 351 e um gerador de modelo de característica de semeadura-para-velocidade 346. Em outros exemplos, o gerador de modelo preditivo 210 pode incluir componentes adicionais, menos ou diferentes componentes que aqueles mostrados no exemplo da figura 4. Consequentemente, em alguns exemplos, o gerador de modelo preditivo 210 pode incluir também outros itens 348, que podem incluir outros tipos de geradores de modelos preditivos para gerar outros tipos de modelos.
[0086] O gerador de modelo 342 identifica uma relação entre a velocidade de máquina detectada nos dados processados 340, em um local geográfico correspondente a onde os dados processados 340 foram obtidos, e um valor de índice vegetativo do mapa de índice vegetativo 332 correspondente ao mesmo local no campo onde a característica de velocidade foi detectada. Com base nessa relação estabelecida pelo gerador de modelo 342, o gerador de modelo 342 gera um modelo de velocidade preditivo. O modelo de velocidade preditivo é usado pelo gerador de mapa de velocidade 352 para predizer as velocidades de máquina alvos em diferentes locais no campo com base no valor de índice vegetativo geograficamente referenciado, contido no mapa de índice vegetativo 332 nos mesmos locais no campo.
[0087] O gerador de modelo 344 identifica uma relação entre a velocidade de máquina representada nos dados processados 340, em um local geográfico correspondente aos dados processados 340, e um valor de biomassa no mesmo local geográfico. Novamente, um valor de biomassa é o valor geograficamente referenciado contido no mapa de biomassa 335. O gerador de modelo 344 então gera um modelo de velocidade preditivo que é usado pelo gerador de mapa de velocidade 352 para predizer a velocidade de máquina alvo em um local no campo com base em um valor de biomassa para esse local no campo.
[0088] O gerador de modelo 345 identifica uma relação entre a velocidade de máquina identificada pelos dados processados 340 em um local particular no campo e o modelo de velocidade topográfica que é usado pelo gerador de mapa de velocidade 352 para predizer a esperada velocidade de máquina em um local particular no campo com base no valor de característica topográfica nesse local no campo.
[0089] O gerador de modelo 346 identifica uma relação entre a velocidade de máquina identificada pelos dados processados 340 em um local particular no campo e um valor de característica de semeadura de um mapa de característica de semeadura 343 nesse mesmo local. O gerador de modelo 346 gera um modelo de velocidade preditivo que é usado pelo gerador de mapa de velocidade 352 para predizer a esperada velocidade de máquina em um local particular no campo com base em um valor de característica de semeadura nesse local no campo.
[0090] O gerador de modelo 347 identifica uma relação entre a velocidade de máquina identificada pelos dados processados 340 em um local particular no campo e a produção valor de característica de mapa de produção preditivo 333 nesse mesmo local o gerador de modelo 347 gera um modelo de velocidade preditivo que é usado pelo gerador de mapa de velocidade 352 para predizer a esperada velocidade de máquina em um local particular no campo com base em a produção valor de característica nesse local no campo.
[0091] O gerador de modelo 349 identifica uma relação entre a velocidade de máquina identificada pelos dados processados 340 em um local particular no campo e o estado de cultivo valor de característica do mapa de estado de cultivo 337 no mesmo local. O gerador de modelo 349 gera um modelo de velocidade preditivo que é usado pelo gerador de mapa de velocidade 352 para predizer a esperada velocidade de máquina em um local particular no campo com base em o estado de cultivo valor de característica nesse local no campo.
[0092] O gerador de modelo 351 identifica uma relação entre a velocidade de máquina identificada pelos dados processados 340 em um local particular no campo e a propriedade de solo valor de característica de mapa de propriedade de solo 341 no mesmo local. O gerador de modelo 351 gera um modelo de velocidade preditivo que é usado pelo gerador de mapa de velocidade 352 para predizer a esperada velocidade de máquina em um local particular no campo com base em a propriedade de solo valor de característica nesse local no campo.
[0093] À luz do acima, o gerador de modelo preditivo 210 é operável para produzir uma pluralidade dos modelos de velocidade preditivos, tal como um ou mais dos modelos de velocidade preditivos gerados pelos geradores de modelos 342, 344, 345, 346, 347, 349 e 351. Em outro exemplo, dois ou mais dos modelos de velocidade preditivos descritos acima podem ser combinados em um único modelo de velocidade preditivo que prediz a esperada velocidade de máquina com base em dois ou mais do valor de índice vegetativo, do valor de biomassa, da topografia, da produção, a característica de semeadura, do estado de cultivo, ou da propriedade de solo, em diferentes locais no campo. Qualquer desses modelos de velocidade, ou combinações dos mesmos, são representados coletivamente pelo modelo preditivo 350 na figura 4.
[0094] O modelo preditivo 350 é provido para o gerador de mapa preditivo 212. No exemplo da figura 4, o gerador de mapa preditivo 212 inclui uma velocidade o gerador de mapa 352. Em outros exemplos, o gerador de mapa preditivo 212 pode incluir adicionais, menos, ou diferentes geradores de mapa. Assim, em alguns exemplos, o gerador de mapa preditivo 212 pode incluir outros itens 358 que pode incluir outros tipos de geradores de mapa para gerar mapas de velocidade. O gerador de mapa de velocidade 352 recebe o modelo preditivo 350, que prediz velocidade de máquina alvo com base em um valor de um ou mais mapas de informação 258, juntamente com o um ou mais mapas de informação258, e gera um mapa preditivo que prediz a velocidade de máquina alvo em diferentes locais no campo.
[0095] O gerador de mapa preditivo 212 fornece um ou mais mapas de velocidade preditivos funcionais 360, que são preditivos da esperada velocidade de máquina. O mapa de velocidade preditivo funcional 360 prediz a esperada velocidade de máquina em diferentes locais em um campo. Os mapas de velocidade preditivos funcionais 360 podem ser providos para controlar o gerador de zona 213, o sistema de controle 214, ou ambos. O gerador de zona de controle 213 gera zonas de controle e incorpora aquelas zonas de controle ao mapa preditivo funcional, isto é, o mapa preditivo 360, para produzir o mapa de zona de controle preditivo 265. Um ou ambos do mapa preditivo 264 e do mapa de zona de controle preditivo 265 podem ser providos para controlar o sistema 214, que gera sinais de controle para controlar um ou mais dos subsistemas controláveis 216, como o subsistema de propulsão 250 com base no mapa preditivo 264, no mapa de zona de controle preditivo 265, ou em ambos.
[0096] A figura 5 é um fluxograma de um exemplo de operação de gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 na geração do modelo preditivo 350 e o mapa de velocidade preditivo funcional 360. No bloco 362, o gerador de modelo preditivo 210 e o gerador de mapa preditivo 212 recebem um mapa de informação 258. O mapa de informação 258 pode ser qualquer dos mapas 332, 333, 335, 337, 339, 341 ou 343. Além disso, o bloco 361 indica que o mapa de informação recebido pode ser um único mapa. O bloco 363 indica que o mapa de informação pode ser múltiplos mapas ou múltiplas camadas de mapa. O bloco 365 indica que o mapa de informação 258 pode também assumir outras formas. No bloco 364, o sistema de processamento 338 recebe um ou mais sinais do sensor de velocidade de máquina 146 ou sensor 336 ou ambos.
[0097] No bloco 372, o sistema de processamento 338 processa o um ou mais sinais recebidos para gerar os dados processados 340 indicativos de uma velocidade de máquina da colheitadeira agrícola 100.
[0098] No bloco 382, o gerador de modelo preditivo 210 também obtém o local geográfico 334, correspondente aos dados processados. Por exemplo, o gerador de modelo preditivo 210 pode obter a posição geográfica do sensor de posição geográfica 204 e determinar, com base em retardos de máquina, a velocidade de máquina, etc., um local geográfico preciso onde os dados processados foram tomados ou de quais os dados processados 340 foram derivados.
[0099] No bloco 384, o gerador de modelo preditivo 210 gera um ou mais modelos preditivos, tais como o modelo preditivo 350, que modelam uma relação entre um valor no um ou mais mapa de informação 258, e a velocidade de máquina sendo sensoreada pelo sensor in-situ 208. O gerador de modelo de valor de IV-para-velocidade 342 gera um modelo preditivo que modela uma relação entre os valores de IV no mapa de IV 332 e uma velocidade de máquina sensoreada pelo sensor in-situ 208. O gerador de modelo de biomassa-para-velocidade 344 gera um modelo preditivo que modela uma relação entre os valores de biomassa no mapa de biomassa 335 e uma velocidade de máquina sensoreada pelo sensor in-situ 208. O gerador de modelo de topografia-para-velocidade 345 gera um modelo preditivo que modela uma relação entre um ou mais valores de topografia, tais como balanço, rolagem, ou inclinação no mapa topográfico 339 e uma velocidade de máquina sensoreada pelo sensor in-situ 208. O gerador de modelo de característica de semeadura-para-velocidade 346 gera um modelo preditivo que modela uma relação entre As características de semeadura no mapa de semeadura 343 e uma velocidade de máquina sensoreada pelo sensor in-situ 208. A o gerador de modelo de produção-para-velocidade 347 gera um modelo preditivo que modela uma relação entre produção valores no mapa de produção 333 e uma velocidade de máquina sensoreada pelo sensor in-situ 208. O gerador de modelo de estado de cultivo-para-velocidade 342 gera um modelo preditivo que modela uma relação entre os valores de estado de cultivo no mapa de estado de cultivo 337 e uma velocidade de máquina sensoreada pelo sensor in-situ 208. O gerador de modelo de propriedade de solo-para-velocidade 351 gera um modelo preditivo que modela uma relação entre os valores de propriedade de solo no mapa de propriedade de solo 341 e uma velocidade de máquina sensoreada pelo sensor in-situ 208. No bloco 386, o modelo preditivo 350 é provido para o gerador de mapa preditivo 212 que gera um mapa de velocidade preditivo funcional 360, que mapeia uma predita velocidade de máquina alvo com base no mapa de informação 258 e o modelo de velocidade preditivo 350. O gerador de mapa de velocidade 352 pode gerar o mapa de velocidade preditivo funcional 360 usando um modelo preditivo 350 que modela uma relação entre os valores de IV no mapa de IV 332 e a velocidade de máquina e usando o mapa de IV 332. O gerador de mapa de velocidade 352 pode gerar o mapa de velocidade preditivo funcional 360 usando um modelo preditivo 350 que modela uma relação entre produção valores no mapa de produção 333 e a velocidade de máquina e usando o mapa de produção 333. O gerador de mapa de velocidade 352 pode gerar o mapa de velocidade preditivo funcional 360 usando um modelo preditivo 350 que modela uma relação entre os valores de biomassa no mapa de biomassa 335 e a velocidade de máquina e usando Um mapa de biomassa 335. O gerador de mapa de velocidade 352 pode gerar o mapa de velocidade preditivo funcional 360 usando um modelo preditivo 350 que modela uma relação entre os valores de estado de cultivo no mapa de estado de cultivo 337 e a velocidade de máquina e usando o mapa de estado de cultivo 337. O gerador de mapa de velocidade 352 pode gerar o mapa de velocidade preditivo funcional 360 usando um modelo preditivo 350 que modela uma relação entre valores topográficos no mapa topográfico 339 e a velocidade de máquina e usando o mapa topográfico 332. O gerador de mapa de velocidade 352 pode gerar o mapa de velocidade preditivo funcional 360 usando um modelo preditivo 350 que modela uma relação entre os valores de propriedade de solo no mapa de propriedade de solo 341 e a velocidade de máquina e usando o mapa de propriedade de solo 341. O gerador de mapa de velocidade 352 pode gerar o mapa de velocidade preditivo funcional 360 usando um modelo preditivo 350 que modela uma relação entre valores de característica de semeadura no mapa de semeadura 343 e a velocidade de máquina e usando o mapa de semeadura 343. O gerador de mapa de velocidade 352 pode gerar o mapa de velocidade preditivo funcional 360 usando outro modelo preditivo 350 que modela uma relação entre outros valores de característica em outro mapa 353 e a velocidade de máquina e usando o outro mapa 353.
[00100] Assim, quando uma colheitadeira agrícola está se movendo através de um campo realizando uma operação agrícola, um ou mais mapas de velocidade preditivos funcionais 360 são gerados conforme a operação agrícola está sendo realizada.
[00101] No bloco 394, o gerador de mapa preditivo 212 fornece o mapa de velocidade preditivo funcional 360. No bloco 391 o gerador de mapa de velocidade preditivo funcional 212 fornece o mapa de velocidade preditivo funcional 360 para apresentação para, e possível interação pelo, operador 260. No bloco 393, o gerador de mapa preditivo 212 pode configurar o mapa 360 para consumo pelo sistema de controle 214. No bloco 395, o gerador de mapa preditivo 212 pode também prover o mapa 360 para controlar o gerador de zona 213 para a geração das zonas de controle. No bloco 397, o gerador de mapa preditivo 212 configura o mapa 360 também de outras maneiras. O mapa de velocidade preditivo funcional 360 (com ou sem as zonas de controle ) é provido para controlar o sistema 214. No bloco 396, o sistema de controle 214 gera sinais de controle para controlar os subsistemas controláveis 216 com base em o mapa de velocidade preditivo funcional 360. O sistema de controle 214 pode controlar o subsistema de propulsão 250 ou outros subsistemas 399.
[00102] Pode assim ser visto que o presente sistema toma um mapa de informação, que mapeia uma característica agrícola como um índice vegetativo, o estado de cultivo, característica de semeadura, propriedades de solo, biomassa, predita produção, topografia, ou informação de um passe ou passes de operação anterior para diferentes locais em um campo. O presente sistema também usa um ou mais sensores in-situ que sensoreiam os dados de sensor in-situ que são indicativos de uma característica, indicativos da velocidade de máquina, e gera um modelo que modela uma relação entre a característica sensoreada usando o sensor in-situ, ou uma característica relacionada, e a característica mapeada no mapa de informação. Assim, o presente sistema gera um mapa preditivo funcional usando um modelo, dados in-situ, e um mapa de informação e pode configurar o mapa preditivo funcional gerado para consumo por um sistema de controle, para apresentação a um operador local ou remoto ou outro usuário, ou ambos. Por exemplo, o sistema de controle pode usar o mapa para controlar um ou mais sistemas de uma colheitadeira combinada.
[00103] A presente discussão mencionou processadores e servidores. Em alguns exemplos, os processadores e servidores incluem processadores de computador com memória associada e circuito de temporização, não separadamente mostrados. Os processadores e servidores são partes funcionais dos sistemas ou dispositivos aos quais os processadores e servidores pertencem e pelos quais são ativados e facilitam a funcionalidade dos outros componentes ou itens naqueles sistemas.
[00104] . Também, inúmeras exibições de interface de usuário foram discutidas. As exibições podem assumir uma extensa variedade de diferentes formas e pode ter uma extensa variedade de diferentes mecanismos de interface de operador atuáveis por usuário, dispostos nas mesmas. Por exemplo, os mecanismos de interface de operador atuáveis por usuário podem incluir caixas de texto, caixas de verificação, ícones, conexões, menus pendentes, caixas de pesquisa, etc. Os mecanismos de interface de operador atuáveis por usuário podem também ser atuados em uma extensa variedade de maneiras diferentes. Por exemplo, os mecanismos de interface de operador atuáveis por usuário podem ser atuados usando mecanismos de interface de operador tal como um dispositivo de apontar e clicar, tal como uma esfera rolante ou Mouse, botões de hardware, interruptores, uma alavanca de controle ou teclado, alavancas livres ou painéis para polegar, etc., um teclado virtual ou outros atuadores virtuais. Além disso, quando a tela na qual os mecanismos de interface de operador atuáveis por usuário são exibidos é uma tela sensível ao toque, os mecanismos de interface de operador atuáveis por usuário podem ser atuados usando gestos de toque. Também, os mecanismos de interface de operador atuáveis por usuário podem ser atuados usando comandos de voz usando funcionalidade de reconhecimento de voz. O reconhecimento de voz pode ser implementado usando um dispositivo de detecção de voz, tal como um microfone, e software que funciona para reconhecer a voz detectada e executar comandos com base na voz recebida.
[00105] Um número de banco de dados foi também discutido. Será notado que os bancos de dados podem ser desmembrados em múltiplos banco de dados. Em alguns exemplos, um ou mais dos banco de dados podem ser locais aos sistemas que acessam os banco de dados, um ou mais dos banco de dados podem todos ser posicionados remotos ao sistema que utilizam os bancos de dados, ou um ou mais bancos de dados podem ser locais, enquanto outros são remotos. Todas dessas configurações são contempladas pela presente invenção.
[00106] Também, as figuras mostram um número de blocos com funcionalidade atribuída a cada bloco. Será notado que menos blocos podem ser usados para ilustrar que a funcionalidade atribuída a múltiplos blocos diferentes é realizada por menos componentes. Também, mais blocos podem ser usados, ilustrando que a funcionalidade pode ser distribuída entre mais componentes. Nos diferentes exemplos, alguma funcionalidade pode ser acrescentada, e alguma pode ser removida.
[00107] Será notado que a discussão acima descreveu uma variedade de diferentes sistemas, componentes, lógica, e interações. Será reconhecido que qualquer ou todos de tais sistemas, componentes, lógicas e interações podem ser implementados por itens de hardware, tais como processadores, memória, ou outros componentes de processamento, incluindo, mas não limitados aos componentes de inteligência artificial, tais como redes neuronais, alguns dos quais são descritos abaixo, que realizam as funções associadas àqueles sistemas, componentes, ou lógica, ou interações. Além disso, qualquer ou todos dos sistemas, componentes, lógicas e interações podem ser implementados por software que é carregado à memória e é subsequentemente executado por um processador ou servidor ou outro componente de computação, conforme descrito abaixo. Qualquer ou todos dos sistemas, componentes, lógicas e interações podem também ser implementados por diferentes combinações de hardware, software, firmware, etc., alguns exemplos dos quais são descritos abaixo. Esses são alguns exemplos de diferentes estruturas que podem ser usadas para implementar qualquer ou todos dos sistemas, componentes, lógica e interações descritos acima. Outras estruturas podem ser também usadas.
[00108] A figura 6 é um diagrama de blocos da colheitadeira agrícola 600, que pode ser similar à colheitadeira agrícola 100 mostrada na figura 2. A colheitadeira agrícola 600 se comunica com elementos em uma arquitetura de servidor remoto 500. Em alguns exemplos, a arquitetura de servidor remoto 500 provê computação, software, acesso de dados, e serviços de armazenamento que não requerem o conhecimento pelo usuário final do local físico ou configuração do sistema que fornece os serviços. Em vários exemplos, os servidores remotos podem fornecer os serviços sobre uma rede de área larga, tal como a Internet, usando protocolos apropriados. Por exemplo, os servidores remotos podem fornecer aplicativos sobre uma rede de área larga e podem ser acessíveis através de um navegador da Web ou qualquer outro componente de computação. O software ou componentes mostrados na figura 2 bem como os dados associados aos mesmos, podem ser armazenados nos servidores em um local remoto. Os recursos de computação em um ambiente de servidor remoto podem ser consolidados em um local de centro de dados remoto, ou os recursos de computação podem ser dispersos para uma pluralidade de centros de dados remotos. As infraestruturas de servidor remoto podem fornecer serviços através de centros de dados compartilhados, mesmo se os serviços aparecerem como um único ponto de acesso para o usuário. Assim, os componentes e funções descritos aqui podem ser providos de um servidor remoto em um local remoto usando uma arquitetura de servidor remoto. Alternativamente, os componentes e funções podem ser providos de um servidor, ou os componentes e funções podem ser instalados nos dispositivos de cliente diretamente, ou de outras maneiras.
[00109] No exemplo mostrado na figura 6, alguns itens são similares àqueles mostrados na figura 2 e aqueles itens são similarmente enumerados. A figura 14 especificamente mostra que o gerador de modelo preditivo 210 ou o gerador de mapa preditivo 212, ou ambos, podem ser posicionados em um servidor local 502, que é remoto à colheitadeira agrícola 600. Por conseguinte, no exemplo mostrado na figura 14, a colheitadeira agrícola 600 acessa os sistemas através do local de servidor remoto 502.
[00110] A figura 6 também representa outro exemplo de uma arquitetura de servidor remoto. A figura 14 mostra que alguns elementos da figura 2 podem ser dispostos em um local de servidor remoto 502, enquanto outros podem ser posicionados em outro lugar. A título de exemplo, o banco de dados 202 pode ser disposto em um local separado do local 502 e acessado por intermédio do servidor remoto no local 502. Independentemente de onde os elementos estão localizados, os elementos podem ser acessados diretamente pela colheitadeira agrícola 600 através de uma rede, tal como uma rede de área larga ou uma rede de área local; os elementos podem ser hospedados em um sítio remoto por um serviço; ou os elementos podem ser providos como um serviço ou acessados por um serviço de conexão que reside em um local remoto. Também, dados podem ser armazenados em qualquer local, e os dados armazenados podem ser acessados por, ou transmitidos para, os operadores, usuários, ou sistemas. Por exemplo, portadores físicos podem ser usados em vez de, ou em adição a, portadores de ondas eletromagnéticas. Em alguns exemplos, onde a cobertura de serviço de telecomunicação sem fio é deficiente ou inexistente, outra máquina, tal como um caminhão de combustível ou outro veículo ou máquina móvel, pode ter um sistema de coleta de informação automático, semiautomático, ou manual. Conforme a colheitadeira combinada 600 se aproxima à máquina contendo o sistema de coleta de informação, tal como um caminhão de combustível antes do abastecimento, o sistema de coleta de informação coleta a informação da colheitadeira combinada 600 usando qualquer tipo de conexão sem fio para essa finalidade. A informação coletada pode então ser transmitida para outra rede, quando a máquina contendo a informação recebida chegar a um local, onde a cobertura de serviço de telecomunicação sem fio ou outra cobertura sem fio é disponível. Por exemplo, um caminhão de combustível pode entrar em uma área tendo cobertura de comunicação sem fio quando se desloca para um local para abastecer outras máquinas ou quando em um local de armazenamento de combustível principal. Todas dessas arquiteturas são contempladas aqui. Além disso, a informação pode ser armazenada na colheitadeira agrícola 600 até a colheitadeira agrícola 600 entrar em uma área tendo cobertura de comunicação sem fio. A colheitadeira agrícola 600, propriamente dita, pode enviar a informação para outra rede.
[00111] Será também notado que os elementos da figura 2, ou as porções dos mesmos, podem ser dispostos em uma extensa variedade de diferentes dispositivos. Um ou mais daqueles dispositivos podem incluir um computador a bordo, uma unidade de controle eletrônica, uma unidade de exibição, um servidor, um computador de mesa, um computador portátil, um computador tablet, ou outro dispositivo móvel, tal como um computador de bolso, um telefone celular, um telefone inteligente, um reprodutor de multimídia, um assistente digital pessoal, etc.
[00112] Em alguns exemplos, a arquitetura de servidor remoto 500 pode incluir medidas de segurança cibernética. Sem limitação, essas medidas podem incluir criptografia de dados nos dispositivos de armazenamento, criptografia de dados enviados entre os nós de rede, autenticação de pessoas ou dados de acesso a processos, bem como o uso de registros para gravar metadados, dados, transferências de dados, acessos de dados, e transformações de dados. Em alguns exemplos, os registros podem ser distribuídos e imutáveis (por exemplo, implementados como corrente de blocos).
[00113] A figura 7 é um diagrama de blocos simplificado de um exemplo ilustrativo de um dispositivo de computação portátil ou móvel que pode ser usado como um dispositivo portátil do usuário ou do cliente 16, em que o presente sistema (ou partes do mesmo) pode ser implementado. Por exemplo, um dispositivo móvel pode ser implementado no compartimento de operador da colheitadeira agrícola 100 para uso na geração de, ou o processamento, ou a exibição dos mapas discutidos acima. As figuras 8 e 9 são exemplos de dispositivos portáteis ou móveis.
[00114] A figura 7 provê um diagrama de blocos geral dos componentes de um dispositivo de cliente 16 que pode rodar alguns componentes mostrados na figura 2, que interagem com os mesmos, ou ambos. No dispositivo 16, uma conexão de comunicação 13 é provida, que permite ao dispositivo portátil se comunicar com outros dispositivos de computação e, em alguns exemplos, provê um canal para receber informação automaticamente, tal como por varredura. Exemplos de conexão de comunicações 13 incluem permitir a comunicação através de um ou mais protocolos de comunicação, tais como os serviços sem fio usados para prover o acesso celular a uma rede, bem como protocolos que provêm conexões sem fio locais às redes.
[00115] Em outros exemplos, aplicativos podem ser recebidos em um cartão Secure Digital (SD) removível, que é conectado a uma interface 15. A interface 15 e conexões de comunicação 13 se comunicam com um processador 17 (que pode também incorporar os processadores ou servidores das outras figuras) ao longo de um barramento 19 que é também conectado à memória 21 e componentes de entrada/saída (E/S) 23, bem como o relógio 25 e o sistema local 27.
[00116] Os componentes de E/S 23, em um exemplo, são providos para facilitar as operações de entrada e saída. Os componentes de E/S 23 para vários exemplos do dispositivo 16 pode incluir componentes de entrada, tais como botões, os sensores sensíveis ao toque, os sensores ópticos, microfones, telas sensíveis ao toque, os sensores de proximidade, acelerômetros, os sensores de orientação, e componentes de saída, tais como um dispositivo de exibição, um alto-falante, e ou uma porta de impressora. Outros componentes de E/S 23 podem ser também usados.
[00117] O relógio 25 ilustrativamente compreende um componente de relógio de tempo real, que fornece a hora e a data. Ilustrativamente, ele pode também prover funções de temporização para processador 17.
[00118] O sistema local 27 ilustrativamente inclui um componente que fornece um local geográfico atual do dispositivo 16. Esse pode incluir, por exemplo, um receptor de sistema de posicionamento global (GPS), um sistema LORAN, um sistema de reconhecimento passivo, um sistema de triangulação celular, ou ouro sistema de posicionamento. O sistema local 27 pode também incluem, por exemplo, software de mapeamento ou software de navegação que gera os desejados mapas, as desejadas rotas de navegação e outras funções geográficas.
[00119] A memória 21 armazena o sistema operacional 29, as regulagens de rede 31, aplicativos 33, as regulagens de configuração de aplicativo 35, o banco de dados 37, os controladores de comunicação 39, e as regulagens de configuração de comunicação 41. A memória 21 pode incluir todos os tipos de dispositivos de memória legíveis por computador, voláteis e não voláteis, tangíveis. A memória 21 pode também incluir meios de armazenamento em computador (descritos abaixo). A memória 21 armazena instruções legíveis por computador que, quando executadas pelo processador 17, fazem com que o processador realize as etapas ou funções implementadas por computador de acordo com as instruções. O processador 17 pode ser ativado por outros componentes para facilitar também sua funcionalidade.
[00120] A figura 8 mostra um exemplo, no qual o dispositivo 16 é um computador tablet 600. Na figura 16, o computador 601 é mostrado com a tela de exibição de interface de usuário 602. A tela 602 pode ser uma tela sensível ao toque ou uma interface ativada por caneta, que recebe entradas de uma caneta ou agulha. O computador tablet 600 pode também uso um teclado virtual na tela. Naturalmente, o computador 601 poderia também ser afixado a um teclado ou a outro dispositivo de entrada de usuário através de um mecanismo de afixação apropriado, tal como uma conexão sem fio ou porta USB, por exemplo. O computador 601 pode também ilustrativamente recebem entradas de voz.
[00121] A figura 9 é similar à figura 8, exceto que o dispositivo é um telefone inteligente 71. O telefone inteligente 71 tem uma exibição sensível ao toque 73 que exibe ícones ou azulejos ou outros mecanismos de entrada de usuário 75. Os mecanismos 75 podem ser usados por um usuário para rodar aplicativos, fazer chamadas, realizar operações de transferência de dados, etc. Em geral, o telefone inteligente 71 é construído em um sistema operacional móvel e oferece capacidade de computação e conectividade mais avançadas que um telefone comum.
[00122] Note que outras formas dos dispositivos são possíveis.
[00123] A figura 10 é um exemplo de um ambiente de computação no qual os elementos da figura 2 podem ser implementados. Com referência à figura 18, um sistema de exemplo para implementar algumas modalidades inclui um dispositivo de computação na forma de um computador 810 programado para operar conforme discutido acima. Os componentes de computador 810 podem incluir, mas não são limitados a, uma unidade de processamento 820 (que pode compreender os processadores ou servidores das figuras anteriores), uma memória de sistema 830, e um barramento de sistema 821 que acopla vários componentes do sistema incluindo a memória de sistema à unidade de processamento 820. O barramento de sistema 821 pode ser qualquer de vários tipos de estruturas de barramento incluindo um barramento de memória ou controlador de memória, um barramento periférico, e um barramento local usando qualquer de uma variedade de arquiteturas de barramento. A memória e programas descritos com relação à figura 2 podem ser implementados em porções correspondentes da figura 18.
[00124] O computador 810 tipicamente inclui uma variedade de meios legíveis por computador. Os meios legíveis por computador podem ser quaisquer meios disponíveis que podem ser acessados pelo computador 810 e inclui meios tanto voláteis quanto não voláteis, meios removíveis e não removíveis. A título de exemplo, e não de limitação, o meios legíveis por computador pode compreender meios de armazenamento em computador e meios de comunicação. Os meios de armazenamento em computador são diferentes de, e não incluem, um sinal de dado modulado ou onda portadora. Os meios legíveis por computador incluem meios de armazenamento de hardware incluindo meios removíveis e não removíveis, tanto voláteis quanto não voláteis, implementados em qualquer método ou tecnologia para o armazenamento de informação, tal como instruções legíveis por computador, estruturas de dados, os módulos de programa ou outros dados. Os meios de armazenamento em computador incluem, mas não é limitados a, RAM, ROM, EEPROM, memória flash ou outra tecnologia de memória, CD-ROM, discos versáteis digitais (DVD) ou outro armazenamento de disco óptico, cassetes magnéticos, fita magnética, armazenamento em disco magnético ou outros dispositivos de armazenamento magnéticos, ou qualquer outro meio que pode ser usado para armazenar a informação desejada e que pode ser acessado por computador810. Os meios de comunicação podem incorporar instruções legíveis por computador, estruturas de dados, os módulos de programa ou outros dados em um mecanismo de transporte e incluem quaisquer meios de fornecimento de informação. O termo “sinal de dado modulado” significa um sinal que tem um ou mais de suas características ajustadas ou alteradas de uma tal maneira a codificar informação no sinal.
[00125] A memória de sistema 830 inclui meios de armazenamento em computador na forma de memória volátil e/ou não volátil, ou ambas, tais como memória exclusivamente de leitura (ROM) 831 e memória de acesso aleatório (RAM) 832. Um sistema de entrada/saída básico 833 (BIOS), contendo as rotinas básicas que ajudam a transferir a informação entre os elementos dentro do computador 810, tal como durante a inicialização, é tipicamente armazenado no ROM 831. A RAM 832 tipicamente contém dados ou módulos de programa ou ambos, que são imediatamente acessíveis à, e/ou atualmente sendo operado pela, unidade de processamento 820. A título de exemplo, e não de limitação, a figura 18 ilustra o sistema operacional 834, os programas de aplicativo 835, outros módulos de programa 836, e os dados de programa 837.
[00126] O computador 810 pode também incluir outros meios de armazenamento em computador removíveis/não removíveis, voláteis/não voláteis. Somente a título de exemplo, a figura 18 ilustra uma unidade de disco rígido 841 que lê ou inscreve em meios magnéticos não voláteis, não removíveis, uma unidade de disco óptico 855, e o disco óptico não volátil 856. A unidade de disco rígido 841 é tipicamente conectada ao barramento de sistema 821 através de uma interface de memória não removível, tal como a interface 840, e a unidade de disco óptico 855 é tipicamente conectada ao barramento de sistema 821 por uma interface de memória removível, tal como a interface 850.
[00127] Alternativamente, ou, além disso, a funcionalidade descrita aqui pode ser realizada, pelo menos em parte, por um ou mais componentes lógicos de hardware. Por exemplo, e sem limitação, tipos ilustrativos dos componentes lógicos de hardware que podem ser usados incluem redes de portas lógicas programáveis (FPGAs), circuitos integrados específicos de aplicação (por exemplo, ASICs), circuitos integrados específicos de aplicação (por exemplo, ASSPs), os sistemas de sistema em uma pastilha (SOCs), dispositivos lógicos programáveis complexos (CPLDs), etc.
[00128] Os controladores e seus meios de armazenamento em computador associados discutidos acima e ilustrados na figura 18, provêm o armazenamento de instruções legíveis por computador, estruturas de dados, módulos de programa e outros dados para o computador 810. Na figura 18, por exemplo, a unidade de disco rígido 841 é ilustrada como armazenando o sistema operacional 844, os programas de aplicativo 845, outros módulos de programa 846, e os dados de programa 847. Note que esses componentes podem ser ou os mesmos que, ou diferentes, os do sistema operacional 834, os programas de aplicativo 835, outros módulos de programa 836, e os dados de programa 837.
[00129] Um usuário pode alimentar comandos e informação ao computador 810 através de dispositivos de entrada, tais como um teclado 862, um microfone 863, e um dispositivo de apontar 861, tal como um Mouse, esfera rolante ou painel sensível ao toque. Outros dispositivos de entrada (não mostrados) podem incluir uma alavanca de controle, painéis de jogos, antena parabólica, escâner, ou semelhante. Esses e outros dispositivos de entrada são frequentemente conectados à unidade de processamento 820 através de uma interface de entrada de usuário 860 que é acoplada ao barramento de sistema, mas podem ser conectados por outras estruturas de interface e barramento. Uma exibição visual 891 ou outro tipo de dispositivo de exibição é também conectado ao barramento de sistema 821 por intermédio de uma interface, tal como uma interface de vídeo 890. Em adição ao monitor, os computadores podem também incluir outros dispositivos de saída periféricos, tais como alto-falantes 897 e impressora 896, que podem ser conectados através de uma interface periférica de saída 895.
[00130] O computador 810 é operado em um ambiente conectado em rede usando conexões lógicas (tal como uma rede de área de controlador, -CAN, rede de área local, - LAN, ou rede de área larga WAN) a um ou mais computadores remotos, tais como um computador remoto 880.
[00131] Quando usado em um ambiente conectado em rede LAN, o computador 810 é conectado à LAN 871 através de uma rede, interface ou adaptador 870. Quando usado em um ambiente conectado em rede WAN, o computador 810 tipicamente inclui um Modem 872 ou outros meios para estabelecer comunicações sobre a WAN 873, tal como a Internet. Em um ambiente conectado em rede, os módulos de programa podem ser armazenados no um dispositivo de armazenamento de memória remoto. A figura 18 ilustra, por exemplo, que os programas de aplicativo remotos 885 podem residir no computador remoto 880.
[00132] Deve ser também notado que os diferentes exemplos descritos aqui pode ser combinados de maneiras diferentes. Isto é, partes de um ou mais exemplos pode ser combinadas com partes de um ou mais outros exemplos. Tudo disso é contemplado aqui.
[00133] O exemplo 1 é uma máquina de trabalho agrícola, compreendendo:
um sistema de comunicação que recebe um mapa de informação que inclui valores de uma primeira característica agrícola correspondente a diferentes locais geográficos em um campo;
um sensor de posição geográfica que detecta um local geográfico da máquina de trabalho agrícola;
um sensor in-situ que detecta um valor de uma segunda característica agrícola correspondente ao local geográfico;
um gerador de modelo preditivo que gera um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola baseada em um valor da primeira característica agrícola no mapa de informação no local geográfico e no valor da segunda característica agrícola detectada pelo sensor in-situ no local geográfico; e
um gerador de mapa preditivo que gera um mapa de velocidade de máquina preditivo funcional do campo, que mapeia valores de velocidade de máquina preditivos indicativos de velocidade predita da colheitadeira agrícola nos diferentes locais geográficos no campo, com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo.
um sistema de comunicação que recebe um mapa de informação que inclui valores de uma primeira característica agrícola correspondente a diferentes locais geográficos em um campo;
um sensor de posição geográfica que detecta um local geográfico da máquina de trabalho agrícola;
um sensor in-situ que detecta um valor de uma segunda característica agrícola correspondente ao local geográfico;
um gerador de modelo preditivo que gera um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola baseada em um valor da primeira característica agrícola no mapa de informação no local geográfico e no valor da segunda característica agrícola detectada pelo sensor in-situ no local geográfico; e
um gerador de mapa preditivo que gera um mapa de velocidade de máquina preditivo funcional do campo, que mapeia valores de velocidade de máquina preditivos indicativos de velocidade predita da colheitadeira agrícola nos diferentes locais geográficos no campo, com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo agrícola preditivo.
[00134] exemplo 2 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o gerador de mapa preditivo configura o mapa de velocidade de máquina preditivo funcional para consumo por um sistema de controle que gera sinais de controle para controlar um subsistema na máquina de trabalho agrícola com base nos valores de velocidade de máquina preditivos no mapa de velocidade de máquina preditivo funcional.
[00135] O exemplo 3 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o sensor in-situ na máquina de trabalho agrícola é configurado para detectar, como o valor da segunda característica agrícola, um valor de uma característica de velocidade, indicativo da velocidade da colheitadeira agrícola correspondente ao local geográfico.
[00136] O exemplo 4 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, compreendendo adicionalmente ao controlador de taxa de alimentação configurado para gerar um sinal de controle de taxa de alimentação para controlar um subsistema controlável da colheitadeira agrícola com base em uma taxa de alimentação alvo de material através da colheitadeira agrícola e em que o sensor in-situ compreende:
um sensor configurado para gerar um sinal de senso indicativo de uma saída do controlador de taxa de alimentação; e
um sistema de processamento que recebe o sinal de sensor e gera os dados processados indicativos da velocidade de máquina da colheitadeira agrícola com base no sinal de sensor.
um sensor configurado para gerar um sinal de senso indicativo de uma saída do controlador de taxa de alimentação; e
um sistema de processamento que recebe o sinal de sensor e gera os dados processados indicativos da velocidade de máquina da colheitadeira agrícola com base no sinal de sensor.
[00137] O exemplo 5 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de informação compreende um mapa de índice vegetativo de valores de índice vegetativo (IV) correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
um gerador de modelo de IV-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de IV e a característica de velocidade com base no valor de IV no mapa de IV no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
um gerador de modelo de IV-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de IV e a característica de velocidade com base no valor de IV no mapa de IV no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
[00138] O exemplo 6 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de informação compreende um mapa de biomassa dos valores de biomassa correspondentes aos diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
ao gerador de modelo de biomassa-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de biomassa e a característica de velocidade com base no valor de biomassa no mapa de biomassa no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
ao gerador de modelo de biomassa-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de biomassa e a característica de velocidade com base no valor de biomassa no mapa de biomassa no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
[00139] O exemplo 7 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de informação compreende um mapa topográfico de valores topográficos correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
O gerador de modelo de topografia-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores topográficos e a característica de velocidade com base no valor topográfico no mapa topográfico no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
O gerador de modelo de topografia-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores topográficos e a característica de velocidade com base no valor topográfico no mapa topográfico no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
[00140] O exemplo 8 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de informação compreende um mapa de produção preditivo de valores de produção preditivos correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
O gerador de modelo de produção-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de produção preditivos e a característica de velocidade com base no valor de produção preditivo no mapa de produção preditivo no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
O gerador de modelo de produção-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de produção preditivos e a característica de velocidade com base no valor de produção preditivo no mapa de produção preditivo no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
[00141] O exemplo 9 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de informação compreende um mapa de propriedades de solo de valores de propriedade de solo correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
O gerador de modelo de propriedade de solo-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de propriedade de solo e a característica de velocidade com base no valor de propriedade de solo no mapa de propriedade de solo no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
O gerador de modelo de propriedade de solo-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de propriedade de solo e a característica de velocidade com base no valor de propriedade de solo no mapa de propriedade de solo no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
[00142] O exemplo 10 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de informação compreende um mapa de característica de semeadura de valores de característica de semeadura correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
O gerador de modelo de característica de semeadura-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de característica de semeadura e a característica de velocidade com base em um valor de característica de semeadura no mapa de característica de semeadura no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
O gerador de modelo de característica de semeadura-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de característica de semeadura e a característica de velocidade com base em um valor de característica de semeadura no mapa de característica de semeadura no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
[00143] O exemplo 11 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o mapa de informação compreende um mapa de estado de cultivo de valores de estado de cultivo correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
um gerador de modelo de estado de cultivo-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de estado de cultivo e a característica de velocidade com base no valor de estado de cultivo no mapa de estado de cultivo no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
um gerador de modelo de estado de cultivo-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de estado de cultivo e a característica de velocidade com base no valor de estado de cultivo no mapa de estado de cultivo no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico.
[00144] O exemplo 12 é um método implementado por computador para gerar um mapa agrícola preditivo funcional, compreendendo:
receber um mapa de informação, em uma máquina de trabalho agrícola, que indica valores de uma primeira característica agrícola correspondente a diferentes locais geográficos em um campo;
detectar um local geográfico da máquina de trabalho agrícola;
detectar, com um sensor in-situ, um valor de uma segunda característica agrícola correspondente ao local geográfico;
gerar um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola; e
controlar um gerador de mapa preditivo para gerar um mapa de velocidade de máquina preditivo funcional do campo, que mapeia valores de velocidade de máquina alvo preditivos para os diferentes locais no campo com base nos valores da primeira característica agrícola no mapa de informação e o modelo agrícola preditivo.
receber um mapa de informação, em uma máquina de trabalho agrícola, que indica valores de uma primeira característica agrícola correspondente a diferentes locais geográficos em um campo;
detectar um local geográfico da máquina de trabalho agrícola;
detectar, com um sensor in-situ, um valor de uma segunda característica agrícola correspondente ao local geográfico;
gerar um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola; e
controlar um gerador de mapa preditivo para gerar um mapa de velocidade de máquina preditivo funcional do campo, que mapeia valores de velocidade de máquina alvo preditivos para os diferentes locais no campo com base nos valores da primeira característica agrícola no mapa de informação e o modelo agrícola preditivo.
[00145] O exemplo 13 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, e compreendendo adicionalmente:
configurar o mapa de velocidade de máquina preditivo funcional para um controlador de propulsão que gera sinais de controle para controlar um subsistema de propulsão controlável na máquina de trabalho agrícola com base no mapa de velocidade de máquina preditivo funcional.
configurar o mapa de velocidade de máquina preditivo funcional para um controlador de propulsão que gera sinais de controle para controlar um subsistema de propulsão controlável na máquina de trabalho agrícola com base no mapa de velocidade de máquina preditivo funcional.
[00146] O exemplo 14 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, em que detectar, com um sensor in-situ, um valor da segunda característica agrícola compreende detectar uma característica de velocidade correspondente ao local geográfico, e em que receber o mapa de informação compreende receber um ou mais de um mapa de índice vegetativo, um mapa de biomassa, um mapa de estado de cultivo, um mapa de propriedade de solo, um mapa de produção preditivo, um mapa topográfico e um mapa de semeadura.
[00147] O exemplo 15 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, em que receber o mapa de informação compreende:
receber uma pluralidade de diferentes camadas de mapa de informação, cada camada de mapa de informação, da pluralidade de diferentes camadas de mapa de informação indicando um ou mais de valores de índice vegetativo, de valores de biomassa, de valores de produção preditivos, de valores de estado de cultivo, de valores de propriedade de solo, de valores de característica de semeadura e de valores topográficos no local geográfico.
receber uma pluralidade de diferentes camadas de mapa de informação, cada camada de mapa de informação, da pluralidade de diferentes camadas de mapa de informação indicando um ou mais de valores de índice vegetativo, de valores de biomassa, de valores de produção preditivos, de valores de estado de cultivo, de valores de propriedade de solo, de valores de característica de semeadura e de valores topográficos no local geográfico.
[00148] O exemplo 16 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, em que receber um mapa de informação compreende:
receber um mapa de informação gerado de uma operação anterior realizada no campo.
receber um mapa de informação gerado de uma operação anterior realizada no campo.
[00149] O exemplo 17 é o método implementado por computador de acordo com qualquer ou todos dos exemplos anteriores, compreendendo adicionalmente:
controlar um mecanismo de interface de operador para apresentar o mapa de velocidade de máquina preditivo funcional.
controlar um mecanismo de interface de operador para apresentar o mapa de velocidade de máquina preditivo funcional.
[00150] O exemplo 18 é uma máquina de trabalho agrícola, compreendendo:
um sistema de comunicação que recebe um mapa de informação que indica valores de uma primeira característica agrícola correspondente a diferentes locais geográficos em um campo;
um sensor de posição geográfica que detecta um local geográfico da máquina de trabalho agrícola;
um sensor in-situ que detecta um valor de uma característica de velocidade, indicativa de uma velocidade da máquina de trabalho agrícola correspondente ao local geográfico;
um gerador de modelo preditivo que gera um modelo de velocidade preditivo que modela uma relação entre a primeira característica agrícola e a característica de velocidade com base no valor da primeira característica agrícola no mapa de informação no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico; e
um gerador de mapa preditivo que gera um mapa de velocidade preditivo funcional do campo, que mapeia valores de característica de velocidade preditivos, indicativa de velocidades de máquina alvos, para os diferentes locais no campo, com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo de velocidade preditivo.
um sistema de comunicação que recebe um mapa de informação que indica valores de uma primeira característica agrícola correspondente a diferentes locais geográficos em um campo;
um sensor de posição geográfica que detecta um local geográfico da máquina de trabalho agrícola;
um sensor in-situ que detecta um valor de uma característica de velocidade, indicativa de uma velocidade da máquina de trabalho agrícola correspondente ao local geográfico;
um gerador de modelo preditivo que gera um modelo de velocidade preditivo que modela uma relação entre a primeira característica agrícola e a característica de velocidade com base no valor da primeira característica agrícola no mapa de informação no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico; e
um gerador de mapa preditivo que gera um mapa de velocidade preditivo funcional do campo, que mapeia valores de característica de velocidade preditivos, indicativa de velocidades de máquina alvos, para os diferentes locais no campo, com base nos valores da primeira característica agrícola no mapa de informação e com base no modelo de velocidade preditivo.
[00151] O exemplo 19 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o sensor in-situ compreende:
um sensor de velocidade de máquina configurado para detectar a velocidade da máquina de trabalho agrícola.
um sensor de velocidade de máquina configurado para detectar a velocidade da máquina de trabalho agrícola.
[00152] O exemplo 20 é a máquina de trabalho agrícola de acordo com qualquer ou todos dos exemplos anteriores, em que o gerador de mapa preditivo é configurado para configurar o mapa de velocidade preditivo funcional para consumo por um sistema de controle para controlar ao subsistema de propulsão com base em as velocidades de máquina alvos do mapa de velocidade preditivo funcional.
[00153] Embora a matéria tenha sido descrita em linguagem específica às características estruturais ou atos metodológicos, deve ser entendido que a matéria definida nas reivindicações anexas não é necessariamente limitada às características ou atos específicos acima. Ao contrário, as características e atos específicos descritos acima são expostos como formas de exemplo das reivindicações.
Claims (15)
- Sistema agrícola, caracterizado pelo fato de que compreende:
um sistema de comunicação (206) que recebe um mapa de informação (258) que inclui valores de uma primeira característica agrícola correspondente a diferentes locais geográficos em um campo;
um sensor de posição geográfica (204) que detecta um local geográfico de uma máquina de trabalho agrícola (100);
um sensor in-situ (208) que detecta um valor de uma segunda característica agrícola correspondente ao local geográfico;
um gerador de modelo preditivo (210) que gera um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola baseada em um valor da primeira característica agrícola no mapa de informação (258) no local geográfico e no valor da segunda característica agrícola detectada pelo sensor in-situ (208) no local geográfico; e
um gerador de mapa preditivo (212) que gera um mapa de velocidade de máquina preditivo funcional do campo, que mapeia valores de velocidade de máquina preditivos, indicativos de velocidade predita da colheitadeira agrícola nos diferentes locais geográficos no campo, com base nos valores da primeira característica agrícola no mapa de informação (258) e com base no modelo agrícola preditivo. - Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o gerador de mapa preditivo configura o mapa de velocidade de máquina preditivo funcional para consumo por um sistema de controle que gera sinais de controle para controlar um subsistema na máquina de trabalho agrícola com base nos valores de velocidade de máquina preditivos no mapa de velocidade de máquina preditivo funcional.
- Sistema agrícola de acordo com a reivindicação 1, caracterizado pelo fato de que o sensor in-situ é configurado para detectar, como o valor da segunda característica agrícola, um valor de uma velocidade característica indicativa da velocidade da colheitadeira agrícola correspondente ao local geográfico.
- Sistema agrícola de acordo com a reivindicação 3, caracterizado pelo fato de que compreende adicionalmente um controlador de taxa de alimentação configurado para gerar um sinal de controle de taxa de alimentação para controlar um subsistema controlável da colheitadeira agrícola com base em uma taxa de alimentação alvo de material através da colheitadeira agrícola e em que o sensor in-situ compreende:
um sensor configurado para gerar um sinal de sensor indicativo de uma saída do controlador de taxa de alimentação; e
um sistema de processamento que recebe o sinal de sensor e gera os dados processados indicativos da velocidade de máquina da colheitadeira agrícola com base no sinal de sensor. - Sistema agrícola de acordo com a reivindicação 3, caracterizado pelo fato de que o mapa de informação compreende um mapa de índice vegetativo de valores de índice vegetativo (IV) correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
um gerador de modelo de VI-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de IV e a característica de velocidade com base no valor de IV no mapa de IV no local geográfico e no valor da característica de velocidade detectado pelo sensor in-situ no local geográfico. - Sistema agrícola de acordo com a reivindicação 3, caracterizado pelo fato de que o mapa de informação compreende um mapa de biomassa dos valores de biomassa correspondentes aos diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
um gerador de modelo de biomassa-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de biomassa e a característica de velocidade com base no valor de biomassa no mapa de biomassa no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico. - Sistema agrícola de acordo com a reivindicação 3, caracterizado pelo fato de que o mapa de informação compreende um mapa topográfico de valores topográficos correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
um gerador de modelo de topografia-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores topográficos e a característica de velocidade com base no valor topográfico no mapa topográfico no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico. - Sistema agrícola de acordo com a reivindicação 3, caracterizado pelo fato de que o mapa de informação compreende um mapa de produção preditivo de valores de produção preditivos correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
um gerador de modelo de produção-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de produção preditivos e a característica de velocidade com base no valor de produção preditivo no mapa de produção preditivo no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico. - Sistema agrícola de acordo com a reivindicação 3, caracterizado pelo fato de que o mapa de informação compreende um mapa de propriedades de solo de valores de propriedade de solo correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
um gerador de modelo de propriedade de solo-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de propriedade de solo e a característica de velocidade com base no valor de propriedade de solo no mapa de propriedade de solo no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico. - Sistema agrícola de acordo com a reivindicação 3, caracterizado pelo fato de que o mapa de informação compreende um mapa de característica de semeadura de valores de característica de semeadura correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
um gerador de modelo de característica de semeadura-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de característica de semeadura e a característica de velocidade com base em um valor de característica de semeadura no mapa de característica de semeadura no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico. - Sistema agrícola de acordo com a reivindicação 3, caracterizado pelo fato de que o mapa de informação compreende um mapa de estado de cultivo de valores de estado de cultivo correspondentes a diferentes locais geográficos em um campo, e em que o gerador de modelo preditivo compreende:
um gerador de modelo de estado de cultivo-para-velocidade que gera um modelo de velocidade preditivo que modela uma relação entre os valores de estado de cultivo e a característica de velocidade com base no valor de estado de cultivo no mapa de estado de cultivo no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ no local geográfico. - Método implementado por computador para gerar um mapa agrícola preditivo funcional, caracterizado pelo fato de que compreende:
receber um mapa de informação (258) que indica valores de uma primeira característica agrícola correspondente a diferentes locais geográficos em um campo;
detectar um local geográfico de uma máquina de trabalho agrícola (100);
detectar, com um sensor in-situ (208), um valor de uma segunda característica agrícola correspondente ao local geográfico;
gerar um modelo agrícola preditivo que modela uma relação entre a primeira característica agrícola e a segunda característica agrícola; e
controlar um gerador de mapa preditivo (212) para gerar um mapa de velocidade de máquina preditivo funcional do campo, que mapeia valores de velocidade de máquina alvo preditivos para os diferentes locais no campo com base nos valores da primeira característica agrícola no mapa de informação (258) e no modelo agrícola preditivo. - Método implementado por computador de acordo com a reivindicação 12, caracterizado pelo fato de que compreende adicionalmente:
configurar o mapa de velocidade de máquina preditivo funcional para um controlador de propulsão que gera sinais de controle para controlar um subsistema de propulsão controlável na máquina de trabalho agrícola com base no mapa de velocidade de máquina preditivo funcional. - Método implementado por computador de acordo com a reivindicação 12, caracterizado pelo fato de que detectar, com um sensor in-situ, um valor da segunda característica agrícola compreende detectar uma característica de velocidade correspondente ao local geográfico, e em que receber o mapa de informação compreende receber um ou mais de um mapa de índice vegetativo, um mapa de biomassa, um mapa de estado de cultivo, um mapa de propriedade de solo, um mapa de produção preditivo, um mapa topográfico e um mapa de semeadura.
- Sistema agrícola, caracterizado pelo fato de que compreende:
um sistema de comunicação (206) que recebe um mapa de informação (258) que indica valores de uma primeira característica agrícola correspondente a diferentes locais geográficos em um campo;
um sensor de posição geográfica (204) que detecta um local geográfico de uma máquina de trabalho agrícola;
um sensor in-situ (208) que detecta um valor de uma característica de velocidade, indicativa de uma velocidade da máquina de trabalho agrícola correspondente ao local geográfico;
um gerador de modelo preditivo (210) que gera um modelo de velocidade preditivo que modela uma relação entre a primeira característica agrícola e a característica de velocidade com base no valor da primeira característica agrícola no mapa de informação (258) no local geográfico e no valor da característica de velocidade detectada pelo sensor in-situ (208) no local geográfico; e
um gerador de mapa preditivo (212) que gera um mapa de velocidade preditivo funcional do campo, que mapeia valores de característica de velocidade preditivos, indicativos de velocidades de máquina alvos, para os diferentes locais no campo, com base nos valores da primeira característica agrícola no mapa de informação (258) e com base no modelo de velocidade preditivo.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/067,183 | 2020-10-09 | ||
US17/067,183 US11889787B2 (en) | 2020-10-09 | 2020-10-09 | Predictive speed map generation and control system |
Publications (1)
Publication Number | Publication Date |
---|---|
BR102021016281A2 true BR102021016281A2 (pt) | 2022-04-26 |
Family
ID=80818257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BR102021016281-3A BR102021016281A2 (pt) | 2020-10-09 | 2021-08-17 | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional |
Country Status (4)
Country | Link |
---|---|
US (2) | US11889787B2 (pt) |
CN (1) | CN114303587A (pt) |
BR (1) | BR102021016281A2 (pt) |
DE (1) | DE102021120069A1 (pt) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11727680B2 (en) * | 2020-10-09 | 2023-08-15 | Deere & Company | Predictive map generation based on seeding characteristics and control |
US11980131B2 (en) * | 2020-12-29 | 2024-05-14 | Agco Corporation | Skid plate for sensor integration |
US12082531B2 (en) | 2022-01-26 | 2024-09-10 | Deere & Company | Systems and methods for predicting material dynamics |
US20240008387A1 (en) * | 2022-07-06 | 2024-01-11 | Deere & Company | Machine control based upon estimated operator skill level trend |
DE102023104989A1 (de) * | 2023-03-01 | 2024-09-05 | Claas Saulgau Gmbh | Verfahren zur Bearbeitung einer landwirtschaftlichen Fläche mittels einer landwirtschaftlichen Maschinenanordnung |
Family Cites Families (966)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE441597C (de) | 1927-03-05 | Paul Frenzel | Vorrichtung fuer Grasmaehmaschinen, um diese zum Maehen des Kartoffelkrautes geeignet zu machen | |
DE504035C (de) | 1930-07-31 | Hermann Lindstaedt | Kartoffelerntemaschine mit an das Schar anschliessendem Foerderwerk und hinter diesem angeordnetem Ablegerost | |
FI5533A (fi) | 1913-11-06 | Williamstown Glass Company | Anordningar vid glasbearbetningsmaskiner och sätt att tillverka buteljer med sådana | |
DE152380C (de) | 1897-07-11 | 1904-06-09 | Bauer & Co | Verfahren zur Darstellung von Casein- und anderen Eiweisspräparaten |
GB901081A (en) | 1958-07-31 | 1962-07-11 | Dunn Engineering Associates In | Improvements in apparatus for punching jacquard cards |
US3568157A (en) | 1963-12-31 | 1971-03-02 | Bell Telephone Labor Inc | Program controlled data processing system |
US3599543A (en) | 1964-12-02 | 1971-08-17 | Stothert & Pitt Ltd | Vibratory machines |
FR1451480A (fr) | 1965-07-20 | 1966-01-07 | France Etat | Procédé et appareil de mesure du tassement du sol sous les remblais et ouvrages d'art |
US3580257A (en) | 1969-12-24 | 1971-05-25 | Earl E Teague | Weed seed collector for a thresher combine |
DE2018219C3 (de) | 1970-04-16 | 1979-02-22 | Losenhausen Maschinenbau Ag, 4000 Duesseldorf | Vorrichtung zur Erzeugung eines Anzeige- oder Steuersignals für den Fahrantrieb eines dynamischen Bodenverdichters |
CH569747A5 (pt) | 1972-08-25 | 1975-11-28 | Ciba Geigy Ag | |
DE2354828A1 (de) | 1973-11-02 | 1975-05-15 | Held & Francke Bau Ag | Verfahren zum verdichten des bodens und vorrichtung zur durchfuehrung dieses verfahrens |
CH618682A5 (pt) | 1975-11-07 | 1980-08-15 | Ciba Geigy Ag | |
DE2646143A1 (de) | 1976-10-13 | 1978-04-20 | Bayer Ag | 4,5-dichlor-imidazol-1-carbonsaeure- arylester, verfahren zu ihrer herstellung sowie ihre verwendung als pflanzenschutzmittel |
US4166735A (en) | 1977-01-21 | 1979-09-04 | Shell Oil Company | Cycloalkanecarboxanilide derivative herbicides |
EP0000351A1 (de) | 1977-07-07 | 1979-01-24 | Ciba-Geigy Ag | Phenoxy-phenylthio-alkancarbonsäurederivate, Verfahren zu deren Herstellung und deren Verwendung als Herbizide und als Pflanzenwachstumsregulierungsmittel |
SU834514A1 (ru) | 1978-11-04 | 1981-05-30 | Smolyanitskij Leonid A | Способ контрол качества уплотнени гРуНТА |
SU887717A1 (ru) | 1979-09-18 | 1981-12-07 | Новосибирский филиал Всесоюзного научно-исследовательского института транспортного строительства | Устройство дл контрол качества уплотнени грунта |
US4360677A (en) | 1979-09-20 | 1982-11-23 | Uniroyal, Inc. | Herbicidal 2-(alpha-chloromethylsulfonyl) pyridine-1-oxides |
US4268679A (en) | 1980-02-19 | 1981-05-19 | Ppg Industries, Inc. | 3-[5- or 3-Substituted-5- or 3-isoxazolyl]-1-allyl or alkyl-4-substituted-5-substituted or unsubstituted-2-imidazolidinones |
DE3167425D1 (en) | 1980-06-14 | 1985-01-10 | Claydon Yield O Meter Limited | Crop metering device for combine harvesters |
SU1052940A1 (ru) | 1980-09-02 | 1983-11-07 | Войсковая часть 70170 | Способ измерени фильтрационных характеристик несв занных грунтов |
AU544099B2 (en) | 1980-12-15 | 1985-05-16 | Sumitomo Chemical Company, Limited | Triazolylpentenols |
DOP1981004033A (es) | 1980-12-23 | 1990-12-29 | Ciba Geigy Ag | Procedimiento para proteger plantas de cultivo de la accion fitotoxica de herbicidas. |
FR2509135A1 (fr) | 1981-07-10 | 1983-01-14 | Ugine Kuhlmann | Compositions herbicides a base de derives d'amino-4 chloro-6 alkylthio-5 pyrimidine et de derives de la dinitro-2,6 aniline et procede de traitement des cultures a l'aide desdites compositions |
US4566901A (en) | 1982-05-06 | 1986-01-28 | Ciba-Geigy Corporation | Novel oxime ethers, the preparation thereof, compositions containing them and the use thereof |
US4527241A (en) | 1982-08-30 | 1985-07-02 | Sperry Corporation | Automatic combine harvester adjustment system |
EP0126713B1 (de) | 1983-05-18 | 1989-01-18 | Ciba-Geigy Ag | Cyclohexandion-carbonsäurederivate mit herbizider und das Pflanzenwachstum regulierender Wirkung |
SU1134669A1 (ru) | 1983-09-30 | 1985-01-15 | Всесоюзный научно-исследовательский институт транспортного строительства | Устройство дл непрерывного контрол степени уплотнени грунта |
US4687505A (en) | 1983-11-02 | 1987-08-18 | Sylling Truman V | Method for desalination and rehabilitation of irrigated soil |
EP0158600B1 (de) | 1984-04-11 | 1991-04-03 | Ciba-Geigy Ag | Verfahren zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen |
JPH0243845B2 (ja) | 1984-05-30 | 1990-10-01 | Shimizu Construction Co Ltd | Tsuchinogenbamitsudosokuteihohooyobisonosochi |
CS248318B1 (en) | 1984-12-21 | 1987-02-12 | Josef Hula | Device for soil compactness measuring |
CS247426B1 (cs) | 1984-12-21 | 1986-12-18 | Josef Hula | Zařízení pro mdření ulehlosti půdy |
GB2178934A (en) | 1985-03-22 | 1987-02-25 | Massey Ferguson Mfg | Agricultural husbandry |
US5250690A (en) | 1985-05-02 | 1993-10-05 | Dowelanco | Haloalkoxy anilide derivatives of 2-4(-heterocyclic oxyphenoxy)alkanoic or alkenoic acids and their use as herbicides |
US4857101A (en) | 1985-12-06 | 1989-08-15 | Rohm And Haas Company | Method of selectively controlling weeds in crops of cereals |
US5246915A (en) | 1986-06-20 | 1993-09-21 | Janssen Pharmaceutica N.V. | Method for controlling weeds |
SU1526588A1 (ru) | 1987-05-29 | 1989-12-07 | Всесоюзный научно-исследовательский институт по применению полимерных материалов в мелиорации и водном хозяйстве | Устройство дл измерени степени уплотнени почв |
JP2523324B2 (ja) | 1987-06-09 | 1996-08-07 | 建設省土木研究所長 | 地盤の締固め程度の測定方法 |
SU1540053A1 (ru) | 1987-06-16 | 1991-01-15 | Головное специализированное конструкторское бюро по комплексам зерноуборочных машин Производственного объединения "Ростсельмаш" | Способ управлени технологическим процессом уборочной машины |
DE3728669A1 (de) | 1987-08-27 | 1989-03-16 | Arcus Elektrotech | Messsonde zur messung der bodenverdichtung |
GB8916722D0 (en) | 1988-08-18 | 1989-09-06 | Ici Plc | Heterocyclic compounds |
JP2671143B2 (ja) | 1989-01-25 | 1997-10-29 | 株式会社光電製作所 | 土の締固め測定装置 |
JP2767266B2 (ja) | 1989-02-15 | 1998-06-18 | ヤンマー農機株式会社 | 収穫機 |
US5089043A (en) | 1989-11-09 | 1992-02-18 | Shionogi & Co., Ltd. | Heterocyclic oxy-phenoxyacetic acid derivatives and their use as herbicides |
SU1761864A1 (ru) | 1990-03-27 | 1992-09-15 | Московский Автомобильно-Дорожный Институт | Способ контрол степени уплотнени грунтов |
RU1791767C (ru) | 1990-06-12 | 1993-01-30 | Усть-Каменогорский Строительно-Дорожный Институт | Прибор дл определени физико-механических свойств грунтов при уплотнении |
US5059154A (en) | 1990-10-19 | 1991-10-22 | The Board Of Trustees Of The University Of Arkansas | Grain cleaner and destructor of foreign matter in harvesting crops |
GB9108199D0 (en) | 1991-04-17 | 1991-06-05 | Rhone Poulenc Agriculture | New compositions of matter |
EP0532146B1 (en) | 1991-09-11 | 1998-08-19 | E.I. Du Pont De Nemours And Company | Herbicidal substituted bicyclic triazoles |
US5246164A (en) | 1991-12-16 | 1993-09-21 | Mccann Ian R | Method and apparatus for variable application of irrigation water and chemicals |
US5477459A (en) | 1992-03-06 | 1995-12-19 | Clegg; Philip M. | Real time three-dimensional machine locating system |
PT639050E (pt) | 1992-05-06 | 2001-06-29 | Novartis Ag | Composicao sinergistica e processo para controlo selectivo de ervas daninhas |
US5300477A (en) | 1992-07-17 | 1994-04-05 | Rohm And Haas Company | 2-arylpyrimidines and herbicidal use thereof |
US5585626A (en) | 1992-07-28 | 1996-12-17 | Patchen, Inc. | Apparatus and method for determining a distance to an object in a field for the controlled release of chemicals on plants, weeds, trees or soil and/or guidance of farm vehicles |
US5296702A (en) | 1992-07-28 | 1994-03-22 | Patchen California | Structure and method for differentiating one object from another object |
AU658066B2 (en) | 1992-09-10 | 1995-03-30 | Deere & Company | Neural network based control system |
JP3359702B2 (ja) | 1993-06-28 | 2002-12-24 | 株式会社前川製作所 | 異種植物検出方法と該検出方法を用いた雑草駆除方法 |
EP0631906B2 (en) | 1993-06-28 | 2002-03-20 | New Holland Belgium N.V. | Process for the control of self-propelled agricultural harvesting machines |
US5592606A (en) | 1993-07-30 | 1997-01-07 | Myers; Allen | Method and apparatus for storage and display of hierarchally organized data |
EP0735820B1 (en) | 1993-12-22 | 1999-06-23 | Zeneca Limited | Herbicidal diphenyl ether and nitrogen solution compositions and method |
US5995859A (en) | 1994-02-14 | 1999-11-30 | Nihon Kohden Corporation | Method and apparatus for accurately measuring the saturated oxygen in arterial blood by substantially eliminating noise from the measurement signal |
US5767373A (en) | 1994-06-16 | 1998-06-16 | Novartis Finance Corporation | Manipulation of protoporphyrinogen oxidase enzyme activity in eukaryotic organisms |
US5606821A (en) | 1994-07-25 | 1997-03-04 | Loral Corporation | Smart weed recognition/classification system |
DE4431824C1 (de) | 1994-09-07 | 1996-05-02 | Claas Ohg | Mähdrescherbetrieb mit Betriebsdatenkataster |
US5957304A (en) | 1995-01-25 | 1999-09-28 | Agco Limited | Crop harvester |
GB9504345D0 (en) | 1995-03-03 | 1995-04-19 | Compaction Tech Soil Ltd | Method and apparatus for monitoring soil compaction |
DE19509496C2 (de) | 1995-03-16 | 1998-07-09 | Claas Ohg | Selbstfahrender Mähdrescher |
DE19514223B4 (de) | 1995-04-15 | 2005-06-23 | Claas Kgaa Mbh | Verfahren zur Einsatzoptimierung von Landmaschinen |
DE19528663A1 (de) | 1995-08-04 | 1997-02-06 | Univ Hohenheim | Verfahren zur Einstellung einer mobilen Arbeitsmaschine |
WO1997011858A1 (en) | 1995-09-29 | 1997-04-03 | Ingersoll-Rand Company | A soil compactor and traction control system thereon |
US5991694A (en) | 1995-11-13 | 1999-11-23 | Caterpillar Inc. | Method and apparatus for determining the location of seedlings during agricultural production |
US5721679A (en) | 1995-12-18 | 1998-02-24 | Ag-Chem Equipment Co., Inc. | Heads-up display apparatus for computer-controlled agricultural product application equipment |
WO1997028432A1 (en) | 1996-02-01 | 1997-08-07 | Bolt Beranek And Newman Inc. | Soil compaction measurement |
PL178299B1 (pl) | 1996-02-13 | 2000-04-28 | Jan Liszkowski | Sposób renowacji wałów przeciwpowodziowych |
ES2116215B1 (es) | 1996-02-22 | 1999-02-16 | Zuniga Escobar Orlando | Electrosonda para medir el contenido de humedad del suelo y la compactacion del mismo, metodo de medida correspondiente y utilizacion de dicha electrosonda. |
US7032689B2 (en) | 1996-03-25 | 2006-04-25 | Halliburton Energy Services, Inc. | Method and system for predicting performance of a drilling system of a given formation |
DE29607846U1 (de) | 1996-04-30 | 1996-07-25 | Neuhaus Neotec Maschinen- und Anlagenbau GmbH, 21465 Reinbek | Vorrichtung zum Dosieren von Mahlkaffee in Kaffeeverpackungen |
DE19629618A1 (de) | 1996-07-23 | 1998-01-29 | Claas Ohg | Routenplanungssystem für landwirtschaftliche Arbeitsfahrzeuge |
US5771169A (en) | 1996-08-29 | 1998-06-23 | Case Corporation | Site-specific harvest statistics analyzer |
ATE195157T1 (de) | 1996-10-21 | 2000-08-15 | Ammann Verdichtung Ag | Verfahren zur messung mechanischer daten eines bodens sowie zu dessen verdichtung und mess- bzw. bodenverdichtungsvorrichtung |
US5789741A (en) | 1996-10-31 | 1998-08-04 | Patchen, Inc. | Detecting plants in a field by detecting a change in slope in a reflectance characteristic |
DE19647523A1 (de) | 1996-11-16 | 1998-05-20 | Claas Ohg | Landwirtschaftliches Nutzfahrzeug mit einem in seiner Lage und/oder Ausrichtung gegenüber dem Fahrzeug verstellbar angeordneten Bearbeitungsgerät |
US5902343A (en) | 1996-11-22 | 1999-05-11 | Case Corporation | Automatic scaling of GPS field maps |
US5978723A (en) | 1996-11-22 | 1999-11-02 | Case Corporation | Automatic identification of field boundaries in a site-specific farming system |
US6029106A (en) | 1996-11-22 | 2000-02-22 | Case Corporation | Global position correction for the electronic display of field maps |
US5974348A (en) | 1996-12-13 | 1999-10-26 | Rocks; James K. | System and method for performing mobile robotic work operations |
JPH10191762A (ja) | 1997-01-13 | 1998-07-28 | Yanmar Agricult Equip Co Ltd | コンバインの動力制御装置 |
US5841282A (en) | 1997-02-10 | 1998-11-24 | Christy; Colin | Device for measuring soil conductivity |
DE19705842A1 (de) | 1997-02-15 | 1998-08-20 | Same Deutz Fahr Spa | Ernteverfahren |
DE19706614A1 (de) | 1997-02-20 | 1998-08-27 | Claas Ohg | Situationsbezogene programmgesteuerte elektronische Kartenbilddarstellung in einem Kraftfahrzeug |
US5809440A (en) | 1997-02-27 | 1998-09-15 | Patchen, Inc. | Agricultural implement having multiple agents for mapping fields |
US5995894A (en) | 1997-05-27 | 1999-11-30 | Case Corporation | System for analyzing spatially-variable harvest data by pass |
JP3013036B2 (ja) | 1997-06-04 | 2000-02-28 | ヤンマー農機株式会社 | コンバイン |
US5991687A (en) | 1997-07-02 | 1999-11-23 | Case Corporation | System and method for communicating information related to a geographical area |
US5899950A (en) | 1997-07-07 | 1999-05-04 | Case Corporation | Sequential command repeater system for off-road vehicles |
US5878821A (en) | 1997-07-08 | 1999-03-09 | Flenker; Kevin P. | Tillage implement with on-the-go angle and depth controlled discs |
US5995895A (en) | 1997-07-15 | 1999-11-30 | Case Corporation | Control of vehicular systems in response to anticipated conditions predicted using predetermined geo-referenced maps |
GB9716251D0 (en) | 1997-08-01 | 1997-10-08 | Philips Electronics Nv | Attribute interpolation in 3d graphics |
PT1431463E (pt) | 1997-08-20 | 2007-04-30 | Roxbury Ltd | Tratamento do solo |
DE19740346A1 (de) | 1997-09-13 | 1999-03-18 | Claas Selbstfahr Erntemasch | Selbstfahrende Arbeitsmaschine |
US6178253B1 (en) | 1997-10-10 | 2001-01-23 | Case Corporation | Method of determining and treating the health of a crop |
DE19800238C1 (de) | 1998-01-07 | 1999-08-26 | Claas Selbstfahr Erntemasch | System zur Einstellung einer selbstfahrenden Erntemaschine |
US6041582A (en) | 1998-02-20 | 2000-03-28 | Case Corporation | System for recording soil conditions |
GB9811177D0 (en) | 1998-05-26 | 1998-07-22 | Ford New Holland Nv | Methods for generating field maps |
DE19828355C2 (de) | 1998-06-25 | 2000-09-07 | Lausitzer Und Mitteldeutsche B | Pneumatisch-Dynamische-Sonde und Verfahren zur Erkundung und Beurteilung kollabiler, nichtbindiger Böden |
US6199000B1 (en) | 1998-07-15 | 2001-03-06 | Trimble Navigation Limited | Methods and apparatus for precision agriculture operations utilizing real time kinematic global positioning system systems |
US6141614A (en) | 1998-07-16 | 2000-10-31 | Caterpillar Inc. | Computer-aided farming system and method |
US6016713A (en) | 1998-07-29 | 2000-01-25 | Case Corporation | Soil sampling "on the fly" |
DE19836659A1 (de) | 1998-08-13 | 2000-02-17 | Hoechst Schering Agrevo Gmbh | Herbizide Mittel für tolerante oder resistente Baumwollkulturen |
US6327569B1 (en) | 1998-10-15 | 2001-12-04 | Milestone Technology, Inc. | System and methods for real time linkage between harvest environment and marketplace |
US6272819B1 (en) | 1998-11-17 | 2001-08-14 | Case Corporation | Sugar cane yield monitor |
US6216071B1 (en) | 1998-12-16 | 2001-04-10 | Caterpillar Inc. | Apparatus and method for monitoring and coordinating the harvesting and transporting operations of an agricultural crop by multiple agricultural machines on a field |
US6380745B1 (en) | 1999-03-17 | 2002-04-30 | Dennis M. Anderson | Electrical geophysical apparatus for determining the density of porous materials and establishing geo-electric constants of porous material |
US6205381B1 (en) | 1999-03-26 | 2001-03-20 | Caterpillar Inc. | Method and apparatus for providing autoguidance for multiple agricultural machines |
US6119442A (en) | 1999-05-14 | 2000-09-19 | Case Corporation | Combine setting autoadjust with machine vision |
GB2350275B (en) | 1999-05-25 | 2003-12-24 | Agco Ltd | Improvements in yield mapping |
US6374173B1 (en) | 1999-05-28 | 2002-04-16 | Freightliner Llc | Terrain adaptive cruise control |
US6188942B1 (en) | 1999-06-04 | 2001-02-13 | Caterpillar Inc. | Method and apparatus for determining the performance of a compaction machine based on energy transfer |
JP3460224B2 (ja) | 1999-06-09 | 2003-10-27 | 株式会社大林組 | 盛土転圧管理システム |
US6236924B1 (en) | 1999-06-21 | 2001-05-22 | Caterpillar Inc. | System and method for planning the operations of an agricultural machine in a field |
US6119531A (en) | 1999-08-03 | 2000-09-19 | Case Corporation | Crop sampling system |
JP2001057809A (ja) | 1999-08-20 | 2001-03-06 | Yanmar Agricult Equip Co Ltd | 農作業機におけるエラー信号の記憶制御装置 |
US6505146B1 (en) | 1999-09-24 | 2003-01-07 | Monsanto Company | Method and system for spatial evaluation of field and crop performance |
CA2283767C (en) | 1999-09-27 | 2007-06-19 | Monsanto Company | Method and system for spatial evaluation of field crop perfomance |
EE05542B1 (et) | 1999-10-14 | 2012-06-15 | Basf Aktiengesellschaft | Snergilised herbitsiidsed meetodid ja kompositsioonid |
WO2001052160A1 (en) | 2000-01-14 | 2001-07-19 | Ag-Chem Equipment Company, Inc. | Application report and method for creating the same |
CA2330979A1 (en) | 2000-02-10 | 2001-08-10 | L. Gregory Alster | Method and apparatus for controlling harvesting of trees |
FI114171B (fi) | 2000-05-12 | 2004-08-31 | Antti Paakkinen | Menetelmä ja laite maamassojen ja muiden niiden kaltaisten massojen tiivistysominaisuuksien mittaamiseksi |
DE10023443A1 (de) | 2000-05-12 | 2001-11-15 | Deere & Co | Fördervorrichtung |
GT200100103A (es) | 2000-06-09 | 2002-02-21 | Nuevos herbicidas | |
US6460008B1 (en) | 2000-07-19 | 2002-10-01 | Ivan E. Hardt | Yield monitoring system for grain harvesting combine |
US6735568B1 (en) | 2000-08-10 | 2004-05-11 | Eharmony.Com | Method and system for identifying people who are likely to have a successful relationship |
US6522948B1 (en) | 2000-08-14 | 2003-02-18 | Flexi-Coil Ltd. | Agricultural product application tracking and control |
SE520299C2 (sv) | 2000-08-23 | 2003-06-24 | Bengt Soervik | Förfarande och system för hantering av virkesbitar |
US6539102B1 (en) | 2000-09-01 | 2003-03-25 | Large Scale Proteomics | Reference database |
US6591145B1 (en) | 2000-09-21 | 2003-07-08 | Bechtel Bwxt Idaho, Llc | Systems and methods for autonomously controlling agricultural machinery |
DE10050224A1 (de) | 2000-10-11 | 2002-04-25 | Volkswagen Ag | Verfahren und Einrichtung zum Überwachen und/oder Steuern von beweglichen Objekten |
DE10053446B4 (de) | 2000-10-27 | 2006-03-02 | Wacker Construction Equipment Ag | Lenkbare Vibrationsplatte und fahrbares Vibrationsplattensystem |
CN2451633Y (zh) | 2000-11-23 | 2001-10-03 | 鹤壁市公路管理总段第二工程处 | 公路灰土基层压实度测定取样机 |
FR2817344B1 (fr) | 2000-11-28 | 2003-05-09 | Sol Solution | Penetrometre dynamique a energie variable |
JP2002186348A (ja) | 2000-12-20 | 2002-07-02 | Yanmar Agricult Equip Co Ltd | 穀物貯蔵施設への穀物運搬システム |
DE10064861A1 (de) | 2000-12-23 | 2002-06-27 | Claas Selbstfahr Erntemasch | Vorrichtung und Verfahren zur automatischen Steuerung einer Überladeeinrichtung an landwirtschaftlichen Erntemaschinen |
US6682416B2 (en) | 2000-12-23 | 2004-01-27 | Claas Selbstfahrende Erntemaschinen Gmbh | Automatic adjustment of a transfer device on an agricultural harvesting machine |
DE10064862A1 (de) | 2000-12-23 | 2002-07-11 | Claas Selbstfahr Erntemasch | Vorrichtung und Verfahren zur Koordination und Einstellung von landwirtschaftlichen Fahrzeugen |
GB2372105B (en) | 2001-02-13 | 2004-10-27 | Agco Ltd | Improvements in Mapping Techniques |
EP1238579B1 (en) | 2001-03-08 | 2006-04-05 | Deere & Company | Crop width measuring means |
DE10120173B4 (de) | 2001-04-24 | 2006-02-23 | Gebr. Pöttinger GmbH | Verfahren und Vorrichtung zum Betreiben von Landmaschinen |
DE10129135B4 (de) | 2001-06-16 | 2013-10-24 | Deere & Company | Einrichtung zur Positionsbestimmung eines landwirtschaftlichen Arbeitsfahrzeugs sowie ein landwirtschaftliches Arbeitsfahrzeug mit dieser |
DE10129133A1 (de) | 2001-06-16 | 2002-12-19 | Deere & Co | Einrichtung zur selbsttätigen Lenkung eines landwirtschaftlichen Arbeitsfahrzeugs |
US6549849B2 (en) | 2001-06-25 | 2003-04-15 | Trimble Navigation Ltd. | Guidance pattern allowing for access paths |
DE10130665A1 (de) | 2001-06-28 | 2003-01-23 | Deere & Co | Vorrichtung zur Messung der Menge von auf einem Feld stehenden Pflanzen |
DE10133191A1 (de) | 2001-07-07 | 2003-01-16 | Deere & Co | Landwirtschaftliche Bestellkombination |
DE10134141A1 (de) | 2001-07-13 | 2003-02-06 | Deere & Co | Verteilvorrichtung für aus einer Erntemaschine austretendes Häckselgut |
US6553300B2 (en) | 2001-07-16 | 2003-04-22 | Deere & Company | Harvester with intelligent hybrid control system |
US6591591B2 (en) | 2001-07-30 | 2003-07-15 | Deere & Company | Harvester speed control with header position input |
US6834550B2 (en) | 2001-09-10 | 2004-12-28 | The Regents Of The University Of California | Soil profile force measurement using an instrumented tine |
US6592453B2 (en) | 2001-09-27 | 2003-07-15 | Deere & Company | Harvester feedrate control with tilt compensation |
US6741921B2 (en) | 2001-10-05 | 2004-05-25 | Caterpillar Inc | Multi-stage truck assignment system and method |
US6655351B2 (en) | 2001-10-24 | 2003-12-02 | Deere & Company | Vehicle engine control |
US7034666B2 (en) | 2002-02-20 | 2006-04-25 | Scott William Knutson | Device used to aid in the loading and unloading of vehicles and implements |
US6943824B2 (en) | 2002-03-13 | 2005-09-13 | Deere & Company | Image processing spout control system |
US7761334B2 (en) | 2002-03-20 | 2010-07-20 | Deere & Company | Method and system for automated tracing of an agricultural product |
US6726559B2 (en) | 2002-05-14 | 2004-04-27 | Deere & Company | Harvester with control system considering operator feedback |
NL1020804C2 (nl) | 2002-06-06 | 2003-12-09 | Lely Entpr Ag | Werkwijze en systeem voor het uitvoeren van ten minste twee landbouwbewerkingen op een landbouwperceel. |
NL1020792C2 (nl) | 2002-06-06 | 2003-12-09 | Lely Entpr Ag | Landbouwmachine voor het uitvoeren van een landbouwbewerking. |
US7062368B2 (en) | 2002-06-11 | 2006-06-13 | Cnh America Llc | Combine having a system estimator to automatically estimate and dynamically change a target control parameter in a control algorithm |
DE10230474A1 (de) | 2002-07-06 | 2004-01-15 | Deere & Company, Moline | Einrichtung zur Dokumentierung des Betriebs eines Zusatzgeräts für eine Arbeitsmaschine |
US6681551B1 (en) | 2002-07-11 | 2004-01-27 | Deere & Co. | Programmable function control for combine |
GB0217297D0 (en) | 2002-07-26 | 2002-09-04 | Cnh Belgium Nv | Methods of optimising stochastic processing parameters in crop harvesting machines |
US7103451B2 (en) | 2002-08-19 | 2006-09-05 | Intime, Inc. | Method and system for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data |
DE10240219A1 (de) | 2002-08-28 | 2004-03-11 | Claas Selbstfahrende Erntemaschinen Gmbh | Vorrichtung zur Steuerung einer Überladeeinrichtung |
US6687616B1 (en) | 2002-09-09 | 2004-02-03 | Pioneer Hi-Bred International, Inc. | Post-harvest non-containerized reporting system |
US20040073468A1 (en) | 2002-10-10 | 2004-04-15 | Caterpillar Inc. | System and method of managing a fleet of machines |
EP1410715A1 (en) | 2002-10-19 | 2004-04-21 | Bayer CropScience GmbH | Combinations of aryloxyphenoxypropionates and safeners and their use for increasing weed control |
DE10303516A1 (de) | 2003-01-30 | 2004-08-12 | Amazonen-Werke H. Dreyer Gmbh & Co. Kg | Vorrichtung zum Bearbeiten und/oder Bestellen von landwirtschaftlichen Flächen |
US7047133B1 (en) | 2003-01-31 | 2006-05-16 | Deere & Company | Method and system of evaluating performance of a crop |
US6999877B1 (en) | 2003-01-31 | 2006-02-14 | Deere & Company | Method and system of evaluating performance of a crop |
WO2004083531A2 (en) | 2003-03-13 | 2004-09-30 | Burton James D | Soil sampler apparatus and method |
US6907336B2 (en) | 2003-03-31 | 2005-06-14 | Deere & Company | Method and system for efficiently traversing an area with a work vehicle |
DE10314573A1 (de) | 2003-03-31 | 2004-10-28 | Henkel Kgaa | Verfahren zum rechnergestützten Regeln einer Mehrzahl von in Serie miteinander gekoppelten Maschinen, Regelungseinrichtung und Maschinen-Anordnung |
IL156478A0 (en) | 2003-06-17 | 2004-07-25 | Odf Optronics Ltd | Compact rotating observation assembly with a separate receiving and display unit |
US7073374B2 (en) | 2003-07-30 | 2006-07-11 | Bbnt Solutions Llc | Soil compaction measurement on moving platform |
DE10342922A1 (de) | 2003-09-15 | 2005-05-19 | Claas Selbstfahrende Erntemaschinen Gmbh | Häcksel- und Verteilvorrichtung |
EP1516961B1 (de) | 2003-09-19 | 2013-12-25 | Ammann Aufbereitung AG | Verfahren zur Ermittlung einer Bodensteifigkeit und Bodenverdichtungsvorrichtung |
US7408145B2 (en) | 2003-09-23 | 2008-08-05 | Kyle Holland | Light sensing instrument with modulated polychromatic source |
CN1894202A (zh) | 2003-12-19 | 2007-01-10 | 巴斯福股份公司 | 苯甲酰基取代的苯基丙氨酸酰胺 |
US8407157B2 (en) | 2003-12-22 | 2013-03-26 | Deere & Company | Locating harvested material within a work area |
US7191062B2 (en) | 2003-12-22 | 2007-03-13 | Caterpillar Inc | Method and system of forecasting compaction performance |
US20050150202A1 (en) | 2004-01-08 | 2005-07-14 | Iowa State University Research Foundation, Inc. | Apparatus and method for monitoring and controlling an agricultural harvesting machine to enhance the economic harvesting performance thereof |
JP2005227233A (ja) | 2004-02-16 | 2005-08-25 | Taisei Corp | 地盤密度の測定システム |
DE102004011789A1 (de) | 2004-03-09 | 2005-09-29 | Claas Selbstfahrende Erntemaschinen Gmbh | Vorrichtung zum Erfassen eines Ladewagens |
DE502005006470D1 (de) | 2004-03-27 | 2009-03-05 | Bayer Cropscience Ag | Verwendung von sulfonylharnstoffen |
DE102004025135B4 (de) | 2004-05-17 | 2006-04-20 | Pt-Poly-Tec Gmbh Vertrieb Und Herstellung Von Dichtsystemen | Verfahren und Anordnung zur Leckagevorwarnung und Bauteilpositionierungsanzeige bei Muffenverbindungen |
US20070199903A1 (en) | 2004-05-18 | 2007-08-30 | Denney Larry W | System For Removing Solids From Aqueous Solutions |
US20050283314A1 (en) | 2004-06-10 | 2005-12-22 | Pioneer Hi-Bred International, Inc. | Apparatus, method and system of information gathering and use |
US7261632B2 (en) | 2004-06-21 | 2007-08-28 | Deere & Company | Self-propelled harvesting machine |
DE102004031211A1 (de) | 2004-06-28 | 2006-02-09 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren und Vorrichtung zur Steuerung einer landwirtschaftlichen Arbeitsmaschine |
DE102004034799A1 (de) | 2004-07-19 | 2006-03-16 | Claas Selbstfahrende Erntemaschinen Gmbh | Kommunikationssystem für mobile und stationäre Einrichtungen |
DE102004039460B3 (de) | 2004-08-14 | 2006-04-20 | Deere & Company, Moline | System zur Bestimmung der relativen Position eines zweiten landwirtschaftlichen Fahrzeugs in Bezug auf ein erstes landwirtschaftliches Fahrzeug |
US7703036B2 (en) | 2004-08-16 | 2010-04-20 | Microsoft Corporation | User interface for displaying selectable software functionality controls that are relevant to a selected object |
US7398137B2 (en) | 2004-08-25 | 2008-07-08 | Caterpillar Inc. | System and method for remotely controlling machine operations using mapping information |
DE102004043169A1 (de) | 2004-09-03 | 2006-03-09 | Claas Selbstfahrende Erntemaschinen Gmbh | Elektronisches Datenaustauschsystem |
DE202004015141U1 (de) | 2004-09-27 | 2004-12-09 | Weber Maschinentechnik Gmbh | Bodenverdichter |
DE102004052298A1 (de) | 2004-10-06 | 2006-06-08 | Claas Selbstfahrende Erntemaschinen Gmbh | Überladeassistenzsystem |
US7211994B1 (en) | 2004-10-12 | 2007-05-01 | Federal Network Systems Inc. | Lightning and electro-magnetic pulse location and detection for the discovery of land line location |
US7248968B2 (en) | 2004-10-29 | 2007-07-24 | Deere & Company | Obstacle detection using stereo vision |
DE102004061439A1 (de) | 2004-12-17 | 2006-07-13 | Claas Selbstfahrende Erntemaschinen Gmbh | Datengenerierungs- und -übertragungssystem in landwirtschaftlichen Arbeitsmaschinen |
JP2006166871A (ja) | 2004-12-20 | 2006-06-29 | Iseki & Co Ltd | 収穫作業機制御用のコンバイン制御装置 |
DE102004063104A1 (de) | 2004-12-22 | 2006-07-13 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Arbeitsmaschine |
DE102005000771A1 (de) | 2005-01-05 | 2006-08-24 | Langlott, Jürgen | Verfahren zur Steuerung einer selbstfahrenden Erntemaschine |
DE102005000770B3 (de) | 2005-01-05 | 2006-07-20 | Langlott, Jürgen | Verfahren zur Steuerung der Arbeitsorgane und der Fahrgeschwindigkeit eines Mähdreschers |
US7194965B2 (en) | 2005-01-06 | 2007-03-27 | Deere & Company | Variety locator |
RU2005102554A (ru) | 2005-02-02 | 2006-07-10 | Дальневосточный научно-исследовательский и проектно-технологический институт механизации и электрификации сельского хоз йства (ГНУ ДальНИПТИМЭСХ) (RU) | Способ оценки уплотненности полей |
DE102005008105A1 (de) | 2005-02-21 | 2006-08-31 | Amazonen-Werke H. Dreyer Gmbh & Co. Kg | Elektronisches Maschinen-Management-System |
US20060200334A1 (en) | 2005-03-07 | 2006-09-07 | Deere & Company, A Delaware Corporation | Method of predicting suitability for a soil engaging operation |
US7167797B2 (en) | 2005-03-07 | 2007-01-23 | Deere & Company | Method of predicting suitability for a crop harvesting operation |
US7167800B2 (en) | 2005-04-12 | 2007-01-23 | Deere & Company | Method of optimizing remote sensing operation timing |
HU3056U (en) | 2005-04-29 | 2006-03-28 | G & G Noevenyvedelmi Es Keresk | Construction for making weed map |
DE102005025318A1 (de) | 2005-06-02 | 2006-12-14 | Deere & Company, Moline | Landwirtschaftliche Erntemaschine mit einer Austrageinrichtung und einem Kollisionssensor |
BRPI0502658A (pt) | 2005-06-28 | 2007-02-13 | Unicamp | sistema e processo de monitoramento de peso em esteiras de transporte de produtos com taliscas |
DE102005031426A1 (de) | 2005-07-04 | 2007-01-18 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren und Vorrichtung zur Optimierung von Betriebsparametern einer landwirtschaftlichen Arbeitsmaschine |
US20070021948A1 (en) | 2005-07-21 | 2007-01-25 | Anderson Noel W | Variable rate prescription generation using heterogenous prescription sources with learned weighting factors |
DE102005038553A1 (de) | 2005-08-12 | 2007-02-22 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zum Überladen von Erntegut |
DE102005043991A1 (de) | 2005-09-14 | 2007-08-09 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Einstellung eines Arbeitsaggregats einer Erntemaschine |
CN100416590C (zh) | 2005-09-23 | 2008-09-03 | 中国农业机械化科学研究院 | 利用位置和纹理特征自动识别作物苗期田间杂草的方法 |
US7302837B2 (en) | 2005-09-27 | 2007-12-04 | Cnh America Llc | Tire inflation system for use with an agricultural implement |
US7945364B2 (en) | 2005-09-30 | 2011-05-17 | Caterpillar Inc. | Service for improving haulage efficiency |
US7725233B2 (en) | 2005-10-25 | 2010-05-25 | Deere & Company | Crop attribute map input for vehicle guidance |
US7827042B2 (en) | 2005-11-30 | 2010-11-02 | The Invention Science Fund I, Inc | Methods and systems related to transmission of nutraceutical associated information |
DE102005059003A1 (de) | 2005-12-08 | 2008-03-27 | Claas Selbstfahrende Erntemaschinen Gmbh | Routenplanungssystem für landwirtschaftliche Arbeitsmaschinen |
ES2311322B1 (es) | 2005-12-16 | 2009-11-30 | Consejo Superior Investigaciones Cientificas | Procedimiento para la discriminacion y mapeo de los rodales de malas hierbas gramineas en cultivos de cereales mediante teledeteccion. |
RU2008129627A (ru) | 2005-12-22 | 2010-01-27 | Басф Се (De) | Пестицидные композиции |
US20070185749A1 (en) | 2006-02-07 | 2007-08-09 | Anderson Noel W | Method for tracking hand-harvested orchard crops |
US7318010B2 (en) | 2006-02-07 | 2008-01-08 | Deere & Company | Method of regulating wireless sensor network energy use |
US20080276590A1 (en) | 2006-02-10 | 2008-11-13 | Agco Corporation | Flexible draper and cutter bar with tilt arm for cutterbar drive |
US20070208510A1 (en) | 2006-03-02 | 2007-09-06 | Deere & Company, A Delaware Corporation | Method of identifying and localizing drainage tile problems |
DE102006015203A1 (de) | 2006-03-30 | 2007-11-15 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Steuerung von landwirtschaftlichen Maschinensystemen |
DE102006015204A1 (de) | 2006-03-30 | 2007-10-18 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Erstellung eines Routenplans für landwirtschaftliche Maschinensysteme |
US20070239337A1 (en) | 2006-04-10 | 2007-10-11 | Deere & Company, A Delaware Corporation | System and method of optimizing ground engaging operations in multiple-fields |
US7347168B2 (en) | 2006-05-15 | 2008-03-25 | Freightliner Llc | Predictive auxiliary load management (PALM) control apparatus and method |
DE102006026572A1 (de) | 2006-06-06 | 2007-12-13 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren und Vorrichtung zur Anzeige von Fahrzeugbewegungen |
US7313478B1 (en) | 2006-06-08 | 2007-12-25 | Deere & Company | Method for determining field readiness using soil moisture modeling |
DE102006028909A1 (de) | 2006-06-21 | 2007-12-27 | Claas Selbstfahrende Erntemaschinen Gmbh | Kommunikationsnetz und Betriebsverfahren dafür |
MXGT06000012A (es) | 2006-08-01 | 2008-01-31 | Univ Guanajuato | Dispositivo para medir y mapear la compactacion del suelo, acoplable a tractor agricola. |
US20080030320A1 (en) | 2006-08-03 | 2008-02-07 | Deere & Company, A Delaware Corporation | Agricultural lift with data gathering capability |
DE102006045280A1 (de) | 2006-09-22 | 2008-04-03 | Claas Selbstfahrende Erntemaschinen Gmbh | Vorrichtung und Verfahren zur Koordination eines Maschinenparks |
CZ17266U1 (cs) | 2006-11-09 | 2007-02-15 | Šarec@Ondrej | Zařízení pro měření utužení půdy - penetrometr |
US7628059B1 (en) | 2006-11-22 | 2009-12-08 | The Toro Company | Mobile turf instrument apparatus having driven, periodically insertable, ground penetrating probe assembly |
US20080140431A1 (en) | 2006-12-07 | 2008-06-12 | Noel Wayne Anderson | Method of performing an agricultural work operation using real time prescription adjustment |
EP1938686A1 (de) | 2006-12-29 | 2008-07-02 | Bayer CropScience AG | Substituierte 1-(3-Pyridinyl)pyrazol-4-yl-essigsäuren, Verfahren zu deren Herstellung und deren Verwendung als Herbizide und Pflanzenwachstumsregulatoren |
US9615501B2 (en) | 2007-01-18 | 2017-04-11 | Deere & Company | Controlling the position of an agricultural implement coupled to an agricultural vehicle based upon three-dimensional topography data |
CN101236188B (zh) | 2007-01-31 | 2011-04-13 | 北京林业大学 | 土壤水分无线测量装置 |
DE102007016670A1 (de) | 2007-04-04 | 2008-10-09 | Claas Selbstfahrende Erntemaschinen Gmbh | Selbstfahrende landwirtschaftliche Erntemaschine mit steuerbarer Überladeeinrichtung |
BRPI0808408B1 (pt) | 2007-04-05 | 2018-04-17 | Iowa State University Research Foundation, Inc. | Sistema de colheita de resíduo de cultura para uma máquina de colheita, máquina de colheita e método para colher uma cultura usando uma máquina de colheita |
DE102007018743A1 (de) | 2007-04-22 | 2008-10-23 | Bomag Gmbh | Verfahren und System zur Steuerung von Verdichtungsmaschinen |
US7487024B2 (en) | 2007-04-26 | 2009-02-03 | Cnh America Llc | Apparatus and method for automatically setting operating parameters for a remotely adjustable spreader of an agricultural harvesting machine |
EP1987718A1 (de) | 2007-04-30 | 2008-11-05 | Bayer CropScience AG | Verwendung von Pyridin-2-oxy-3-carbonamiden als Safener |
US8010261B2 (en) | 2007-05-23 | 2011-08-30 | Cnh America Llc | Automatic steering correction of an agricultural harvester using integration of harvester header row sensors and harvester auto guidance system |
TW200904330A (en) | 2007-06-15 | 2009-02-01 | Bayer Cropscience Sa | Pesticidal composition comprising a strigolactone derivative and a fungicide compound |
TW200904331A (en) | 2007-06-15 | 2009-02-01 | Bayer Cropscience Sa | Pesticidal composition comprising a strigolactone derivative and an insecticide compound |
FR2901291B1 (fr) | 2007-07-06 | 2020-10-09 | Soc Du Canal De Provence Et Damenagement De La Region Provencale | Dispositif pour mesurer le tassement du sol soutenant une construction |
DE102007032309A1 (de) | 2007-07-11 | 2009-01-15 | Deere & Company, Moline | Bedienvorrichtung |
ATE546991T1 (de) | 2007-08-03 | 2012-03-15 | Agrocom Gmbh & Co Agrarsystem Kg | Landwirtschaftliche arbeitsmaschine |
CA2694963C (en) | 2007-08-13 | 2015-11-24 | Dow Agrosciences, Llc | 2-(2-fluoro-substituted phenyl)-6-amino-5-chloro-4-pyrimidinecarboxylates and their use as herbicides |
US8073235B2 (en) | 2007-08-13 | 2011-12-06 | Pioneer Hi-Bred International, Inc. | Method and system for digital image analysis of ear traits |
GB0717986D0 (en) | 2007-09-14 | 2007-10-24 | Cnh Belgium Nv | A method and apparatus for detecting errors in electronically processed images |
LT2193352T (lt) | 2007-09-26 | 2017-05-10 | Precision Planting Llc | Reikiamos prispaudimo jėgos sėjamosios lysvės apdorojimo sekcijai nustatymo būdas ir sistema |
US8060283B2 (en) | 2007-10-15 | 2011-11-15 | Deere & Company | Method and system for controlling the loading of a container associated with a vehicle |
EP2052604A1 (de) | 2007-10-24 | 2009-04-29 | Bayer CropScience AG | Salz des 2-lodo-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoyl] benzolsulfonamids,Verfahren zu deren Herstellung, sowie deren Verwendung als Herbizide und Pflanzenwachstumregulatoren |
EP2052616A1 (de) | 2007-10-24 | 2009-04-29 | Bayer CropScience AG | Herbizid-Safener-Kombination |
DE102007053912A1 (de) | 2007-11-09 | 2009-05-14 | Claas Selbstfahrende Erntemaschinen Gmbh | Überladeassistenzsystem |
US8024074B2 (en) | 2007-12-07 | 2011-09-20 | Deere & Company | System and method of managing substances in a plant root zone |
US8924030B2 (en) | 2008-01-24 | 2014-12-30 | Cnh Industrial America Llc | Method and apparatus for optimization of agricultural field operations using weather, product and environmental information |
US8190335B2 (en) | 2008-02-04 | 2012-05-29 | Caterpillar Inc. | Performance management system for multi-machine worksite |
PE20100014A1 (es) | 2008-02-13 | 2010-02-17 | Raymond Brian Harrington | Destruccion de maleza y semillas de poblaciones voluntarias |
US20090216410A1 (en) | 2008-02-26 | 2009-08-27 | William Edward Allen | Automated machine management system with destination selection |
DE102008015277A1 (de) | 2008-03-20 | 2009-09-24 | Deere & Company, Moline | Verfahren und Vorrichtung zur Lenkung einer zweiten landwirtschaftlichen Maschine, die relativ zu einer ersten landwirtschaftlichen Maschine über ein Feld lenkbar ist |
US20090259483A1 (en) | 2008-04-11 | 2009-10-15 | Larry Lee Hendrickson | Method for making a land management decision based on processed elevational data |
US8060269B2 (en) | 2008-04-16 | 2011-11-15 | Cnh America Llc | Swath line creation including slope compensation for an automatic guidance system of a work vehicle |
DE102008020494A1 (de) | 2008-04-23 | 2009-10-29 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zum Koordinieren von fahrbaren landwirtschaftlichen Maschinen |
DE102008021785A1 (de) | 2008-04-30 | 2009-11-05 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren und Vorrichtung zum Koordinieren eines Bearbeitungsvorgangs von landwirtschaftlicher Fläche |
CN201218789Y (zh) | 2008-05-09 | 2009-04-08 | 昆明理工大学 | 一种手持式定压土壤压实度测量装置 |
CA2629555A1 (en) | 2008-05-14 | 2009-11-14 | Gerard Voon | Related/overlapping innovations in health/energy/transport/farming and infrastructure |
DE102008002006A1 (de) | 2008-05-27 | 2009-12-03 | Deere & Company, Moline | Steueranordnung zur Kontrolle des Überladens landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug |
DE102008027282A1 (de) | 2008-06-06 | 2009-12-10 | Claas Industrietechnik Gmbh | Landwirtschaftliches Fahrzeug und Betriebsverfahren dafür |
US8175775B2 (en) | 2008-06-11 | 2012-05-08 | Cnh America Llc | System and method employing short range communications for establishing performance parameters of an exemplar agricultural machine among a plurality of like-purpose agricultural machines |
DE102008027906A1 (de) | 2008-06-12 | 2009-12-17 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Erntemaschine |
US8147176B2 (en) | 2008-06-17 | 2012-04-03 | Deere & Company | Work machine and unloading system for unloading an agricultural product from a work machine |
ES2332567B1 (es) | 2008-06-27 | 2011-02-10 | Consejo Superior Investigacion | Procedimiento automatico para seccionar imagenes remotas y caracterizar indicadores agronomicos y ambientales en las mismas |
US8032255B2 (en) | 2008-06-30 | 2011-10-04 | Deere & Company | Monitoring of bin level for an agricultural product |
CN101303338B (zh) | 2008-07-01 | 2011-10-05 | 中国农业大学 | 一种车载行进式土壤坚实度传感器 |
WO2010003421A1 (en) | 2008-07-08 | 2010-01-14 | Aarhus Universitet | Method for optimizing harvesting of crops |
DE102008032418A1 (de) | 2008-07-10 | 2010-01-14 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftlicher Maschinenverband |
BRPI0802384B1 (pt) | 2008-07-23 | 2019-04-30 | Roberto Shiniti Sako | Penetrômetro portátil para análise de compactação de solo |
KR100974892B1 (ko) | 2008-08-01 | 2010-08-11 | 한국철도기술연구원 | 지반의 다짐 품질 측정 방법 |
US9152938B2 (en) | 2008-08-11 | 2015-10-06 | Farmlink Llc | Agricultural machine and operator performance information systems and related methods |
US8280595B2 (en) | 2008-08-12 | 2012-10-02 | Cnh America Llc | System and method employing short range communications for communicating and exchanging operational and logistical status information among a plurality of agricultural machines |
US9235214B2 (en) | 2008-09-11 | 2016-01-12 | Deere & Company | Distributed knowledge base method for vehicular localization and work-site management |
US8195358B2 (en) | 2008-09-11 | 2012-06-05 | Deere & Company | Multi-vehicle high integrity perception |
US8478493B2 (en) | 2008-09-11 | 2013-07-02 | Deere & Company | High integrity perception program |
US8195342B2 (en) | 2008-09-11 | 2012-06-05 | Deere & Company | Distributed knowledge base for vehicular localization and work-site management |
US8818567B2 (en) | 2008-09-11 | 2014-08-26 | Deere & Company | High integrity perception for machine localization and safeguarding |
US8224500B2 (en) | 2008-09-11 | 2012-07-17 | Deere & Company | Distributed knowledge base program for vehicular localization and work-site management |
US8145393B2 (en) | 2008-09-17 | 2012-03-27 | Cnh America Llc | System and method employing short range communications for interactively coordinating unloading operations between a harvester and a grain transport |
GB0817172D0 (en) | 2008-09-19 | 2008-10-29 | Cnh Belgium Nv | Control system for an agricultural harvesting machine |
CN101363833B (zh) | 2008-09-25 | 2012-02-22 | 中国科学院地质与地球物理研究所 | 一种土体击实排水模型试验装置 |
DE102008050460A1 (de) | 2008-10-08 | 2010-04-15 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Einsatzsteuerung von landwirtschaftlichen Maschinen |
US8639408B2 (en) | 2008-10-15 | 2014-01-28 | Deere & Company | High integrity coordination system for multiple off-road vehicles |
DE102008056557A1 (de) | 2008-11-10 | 2010-05-12 | Claas Selbstfahrende Erntemaschinen Gmbh | Erstellung von Bilddatenbanken für Bildauswertung |
DE102008061252A1 (de) | 2008-11-24 | 2010-05-27 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Unterstützung der Automatisierung landwirtschaftlicher Leistungen |
EP2191719A1 (de) | 2008-11-29 | 2010-06-02 | Bayer CropScience AG | Herbizid-Safener-Kombination |
KR101067576B1 (ko) | 2008-12-03 | 2011-09-27 | 한국수자원공사 | 성토재료의 다짐특성 실내 측정방법 및 장치 |
US8577537B2 (en) | 2008-12-16 | 2013-11-05 | Agco Corporation | Methods and systems for optimizing performance of vehicle guidance systems |
EP2210879A1 (de) | 2008-12-30 | 2010-07-28 | Bayer CropScience AG | Pyrimidinderivate und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwachstums |
DE102009009767A1 (de) | 2009-02-20 | 2010-08-26 | Claas Selbstfahrende Erntemaschinen Gmbh | Fahrerassistenzsystem für landwirtschaftliche Arbeitsmaschine |
DE102009009817A1 (de) | 2009-02-20 | 2010-08-26 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliches Arbeitsfahrzeug und Steuereinheit dafür |
CN101929166B (zh) | 2009-04-14 | 2012-08-08 | 洛阳路为电子科技有限公司 | 便携式土基密实度测量仪 |
US9538714B2 (en) | 2009-04-21 | 2017-01-10 | Deere & Company | Managing resource prescriptions of botanical plants |
US8321365B2 (en) | 2009-04-21 | 2012-11-27 | Deere & Company | Horticultural knowledge base for managing yards and gardens |
US7993188B2 (en) | 2009-06-09 | 2011-08-09 | Deere & Company | Variable rate diverter for a crop residue collecting device carried by a combine harvester |
DE102009025438A1 (de) | 2009-06-16 | 2011-01-05 | Claas Selbstfahrende Erntemaschinen Gmbh | Routenplanungsverfahren und -system |
US20100319941A1 (en) | 2009-06-22 | 2010-12-23 | Agco Corp. | Trenching Device And System |
DE102009027245A1 (de) | 2009-06-26 | 2010-12-30 | Deere & Company, Moline | Steueranordnung zur Kontrolle des Überladens landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug |
KR20110018582A (ko) | 2009-08-18 | 2011-02-24 | 진성기 | 약액형 및 분말형 고화제를 이용한 고화 흙벽돌 및 블록 제작 방법 |
PL2311307T3 (pl) | 2009-09-07 | 2012-09-28 | Claas E Systems Gmbh | Wskaźnik stopnia napełnienia, pojazd rolniczy zawierający taki wskaźnik oraz sposób kontroli napełniania obszaru docelowego |
US20110224873A1 (en) | 2009-09-17 | 2011-09-15 | Reeve David R | Vehicle assembly controller with automaton framework and control method |
DE102009041646A1 (de) | 2009-09-17 | 2011-03-24 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Maschine mit Autopilot |
AU2010224431A1 (en) | 2009-09-29 | 2011-04-14 | Riteway Holdings Australia Pty Ltd | An apparatus to be used in conjunction with a grain harvester for collecting weeds, weed seeds, chaff and so forth |
US9345194B2 (en) | 2009-09-30 | 2016-05-24 | Cnh Industrial America Llc | Automatic display of remote camera image |
CZ20252U1 (cs) | 2009-10-06 | 2009-11-16 | Šarec@Petr | Přístroj pro měření utužení půdy s laserovým snímáním hloubky - laserový penetrometr |
US8082809B2 (en) | 2009-10-08 | 2011-12-27 | Pioneer Hi-Bred International, Inc. | Combine harvester and associated method for selectively gathering grain test data |
US8344897B2 (en) | 2009-10-12 | 2013-01-01 | Agco Corporation | System and method for assisting in the refilling of agricultural vehicles |
KR101134075B1 (ko) | 2009-10-13 | 2012-04-13 | 한국건설기술연구원 | 지반다짐장비의 이동에 따른 지반의 연속 다짐정보 제공장치 및 이를 이용한 지반의 연속 다짐정보 제공방법 |
US8738238B2 (en) | 2009-11-12 | 2014-05-27 | Deere & Company | Coordination of vehicle movement in a field |
WO2011063814A1 (en) | 2009-11-25 | 2011-06-03 | Aarhus Universitet | System for reducing compaction of soil |
US8635903B2 (en) | 2009-12-22 | 2014-01-28 | Caterpillar Paving Products Inc. | Method and system for compaction measurement |
US20110160961A1 (en) | 2009-12-29 | 2011-06-30 | Agco Corporation | Guidance using a worked edge for wayline generation |
DE102010004648A1 (de) | 2010-01-13 | 2011-07-14 | CLAAS Selbstfahrende Erntemaschinen GmbH, 33428 | Erntemaschine, insbesondere Feldhäcksler |
BRPI1012101B1 (pt) | 2010-01-15 | 2020-01-21 | Leica Geosystems Ag | sistema e método de compartilhamento de dados |
CN102138383A (zh) | 2010-01-28 | 2011-08-03 | 中国农业机械化科学研究院 | 一种联合收割机谷物损失空间分布的测量方法及其装置 |
EP2353353A1 (en) | 2010-02-05 | 2011-08-10 | Flander's Mechatronics Technology Centre v.z.w. | In use adaptation of schedule for multi-vehicle ground processing operations |
RU2421744C1 (ru) | 2010-02-15 | 2011-06-20 | Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" | Компактный полигон для измерения характеристик различных антенных систем |
US10537061B2 (en) | 2010-02-26 | 2020-01-21 | Cnh Industrial America Llc | System and method for controlling harvest operations |
JP5522785B2 (ja) | 2010-03-19 | 2014-06-18 | 株式会社日立ソリューションズ | 農作業車両運行管理システム |
JP2011205967A (ja) | 2010-03-30 | 2011-10-20 | Takayuki Nishida | 水田における雑草の発生防止用ロボット |
US20110257850A1 (en) | 2010-04-14 | 2011-10-20 | Reeve David R | Vehicle assembly control system and method for composing or decomposing a task |
US8527157B2 (en) | 2010-04-28 | 2013-09-03 | Deere & Company | Agricultural combine and draper header |
US8463510B2 (en) | 2010-04-30 | 2013-06-11 | Cnh America Llc | GPS controlled residue spread width |
CN101839906B (zh) | 2010-05-10 | 2013-10-09 | 吉林大学 | 一种具有耐磨几何结构表面的锥形触土部件 |
CA135611S (en) | 2010-05-19 | 2011-05-05 | Rhonda Genest | Weed removing and grooming garden hand tool |
WO2011150353A1 (en) | 2010-05-28 | 2011-12-01 | Gvm, Inc. | Remote management system for equipment |
US8380401B2 (en) | 2010-06-09 | 2013-02-19 | Cnh America Llc | Automatic grain transfer control system based on real time modeling of a fill level profile for regions of the receiving container |
DE102010017687A1 (de) | 2010-07-01 | 2012-01-05 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Einstellung zumindest eines Arbeitsorganes einer selbstfahrenden Erntemaschine |
BE1019422A3 (nl) | 2010-07-14 | 2012-07-03 | Cnh Belgium Nv | Werkwijze en toestel voor voorspellende sturing van een landbouwvoertuigsysteem. |
DE102010038661B4 (de) | 2010-07-29 | 2020-07-02 | Deere & Company | Erntemaschine mit einem an einem Fluggerät befestigten Sensor |
US8544397B2 (en) | 2010-09-15 | 2013-10-01 | Dawn Equipment Company | Row unit for agricultural implement |
DE102010053331A1 (de) | 2010-09-28 | 2012-03-29 | Lacos Computerservice Gmbh | Verfahren und Navigationsvorrichtung zur Optimierung des Transportes landwirtschaftlicher Produkte |
US9043129B2 (en) | 2010-10-05 | 2015-05-26 | Deere & Company | Method for governing a speed of an autonomous vehicle |
US9072227B2 (en) | 2010-10-08 | 2015-07-07 | Deere & Company | System and method for improvement of harvest with crop storage in grain bags |
US8789563B2 (en) | 2010-10-12 | 2014-07-29 | Deere & Company | Intelligent grain bag loader |
US8677724B2 (en) | 2010-10-25 | 2014-03-25 | Deere & Company | Round baler for baling crop residue |
US8596194B2 (en) | 2010-10-28 | 2013-12-03 | Deere & Company | Method and apparatus for determining fraction of hay at different moisture levels |
DE102010043854B4 (de) | 2010-11-12 | 2016-01-14 | Deere & Company | Steueranordnung zur Kontrolle des Überladens landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug |
DE102010052713A1 (de) | 2010-11-26 | 2012-05-31 | Bomag Gmbh | Verfahrbare Vorrichtung zur Verdichtung eines Bodenschichtaufbaus und Verfahren zur Ermittlung eines Schicht-E-Moduls einer obersten Schicht dieses Bodenschichtaufbaus |
GB2492954A (en) | 2010-12-06 | 2013-01-23 | Agco Corp | A system for automatic agricultural reporting |
RU2447640C1 (ru) | 2010-12-08 | 2012-04-20 | Василий Васильевич Ефанов | Способ управления технологическим процессом уборочной машины и система для его осуществления |
CN102080373B (zh) | 2010-12-09 | 2012-07-04 | 西安建筑科技大学 | 用ddc桩和桩基础联合处理黄土地基湿陷性的施工方法 |
WO2012094256A1 (en) | 2011-01-04 | 2012-07-12 | Precision Planting, Inc. | Methods for generating soil maps and application prescriptions |
ITTO20110133A1 (it) | 2011-02-16 | 2012-08-17 | Cnh Italia Spa | Sistema di comunicazione senza fili per veicoli agricoli |
US8655505B2 (en) | 2011-02-18 | 2014-02-18 | Caterpillar Inc. | Worksite management system implementing remote machine reconfiguration |
US8463460B2 (en) | 2011-02-18 | 2013-06-11 | Caterpillar Inc. | Worksite management system implementing anticipatory machine control |
EP2675260B1 (en) | 2011-02-18 | 2018-10-03 | CNH Industrial Belgium nv | System and method for trajectory control of a transport vehicle used with a harvester |
US9002591B2 (en) | 2011-02-18 | 2015-04-07 | Cnh Industrial America Llc | Harvester spout control system and method |
BR112013021038B1 (pt) | 2011-02-18 | 2018-06-26 | Cnh Industrial America Llc | Sistema e método de controle de bico de descarga de ceifadeira |
US8606454B2 (en) | 2011-02-18 | 2013-12-10 | Cnh America Llc | System and method for synchronized control of a harvester and transport vehicle |
BRPI1100258A2 (pt) | 2011-02-28 | 2014-03-11 | Apagri Consultoria Agronomica Ltda | Processo para obtenção de mapas de aplicação em taxa variada de herbicidas pré-emergentes |
US8577561B2 (en) | 2011-03-08 | 2013-11-05 | Deere & Company | Control system and method of operating a product distribution machine |
US9631964B2 (en) | 2011-03-11 | 2017-04-25 | Intelligent Agricultural Solutions, Llc | Acoustic material flow sensor |
US10318138B2 (en) | 2011-03-11 | 2019-06-11 | Intelligent Agricultural Solutions Llc | Harvesting machine capable of automatic adjustment |
US9629308B2 (en) | 2011-03-11 | 2017-04-25 | Intelligent Agricultural Solutions, Llc | Harvesting machine capable of automatic adjustment |
DE102011005400B4 (de) | 2011-03-11 | 2015-05-28 | Deere & Company | Anordnung und Verfahren zur Abschätzung des Füllgrades beim Überladen landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug |
US9043096B2 (en) | 2011-03-31 | 2015-05-26 | Ag Leader Technology | Combine bin level monitoring system |
DE102011001858A1 (de) | 2011-04-07 | 2012-10-11 | Claas Selbstfahrende Erntemaschinen Gmbh | Vorrichtung und Verfahren zur Überwachung der Befahrbarkeit eines Bodens |
DE102011016743A1 (de) | 2011-04-12 | 2012-10-18 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliches Transportfahrzeug und Fahrzeugverbund |
DE102011007511A1 (de) | 2011-04-15 | 2012-10-18 | Deere & Company | Verfahren zur Einstellung einer Reinigungseinrichtung eines Mähdreschers und Reinigungseinrichtung |
DE102011002071A1 (de) | 2011-04-15 | 2012-10-18 | Claas Selbstfahrende Erntemaschinen Gmbh | System und Verfahren zur Steuerung der Erntegutüberladung |
CN102277867B (zh) | 2011-05-13 | 2013-10-09 | 西安建筑科技大学 | 一种湿陷性黄土地基的施工方法 |
CN202110103U (zh) | 2011-05-14 | 2012-01-11 | 长沙亚星数控技术有限公司 | 电液伺服车载式混填土压实度快速测定系统 |
DE102011050474A1 (de) | 2011-05-19 | 2012-11-22 | Amazonen-Werke H. Dreyer Gmbh & Co.Kg | Landwirtschaftliches Gerät |
DE102011050629A1 (de) | 2011-05-25 | 2012-11-29 | Claas Selbstfahrende Erntemaschinen Gmbh | Erntevorrichtung |
EP2529610A1 (en) | 2011-05-30 | 2012-12-05 | Agri-Esprit SAS | Method for harvest monitoring |
CN202119772U (zh) | 2011-06-01 | 2012-01-18 | 王新勇 | 一种车载土基密实度在线测量仪 |
US10878141B2 (en) | 2011-06-13 | 2020-12-29 | The Climate Corporation | Systems and methods for placing and analyzing test plots |
US20130022430A1 (en) | 2011-07-20 | 2013-01-24 | Anderson Noel W | Material transfer system |
US20130019580A1 (en) | 2011-07-20 | 2013-01-24 | Anderson Noel W | Bidirectional harvesting system |
DE102011052688B4 (de) | 2011-08-12 | 2021-02-04 | Andreas Reichhardt | Verfahren und System zur Befüllung von Transportfahrzeugen mit Erntegut |
CN103781725A (zh) | 2011-08-12 | 2014-05-07 | 罗地亚运作公司 | 在水性介质中氟化金属卤化物的方法 |
US8843269B2 (en) | 2011-08-17 | 2014-09-23 | Deere & Company | Vehicle soil pressure management based on topography |
US9511633B2 (en) | 2011-08-17 | 2016-12-06 | Deere & Company | Soil compaction management and reporting |
DE102011082052B4 (de) | 2011-09-02 | 2015-05-28 | Deere & Company | Anordnung und Verfahren zur selbsttätigen Überladung von Erntegut von einer Erntemaschine auf ein Transportfahrzeug |
DE102011082908A1 (de) | 2011-09-19 | 2013-03-21 | Deere & Company | Verfahren und Anordnung zur optischen Beurteilung von Erntegut in einer Erntemaschine |
DE102011054630A1 (de) | 2011-10-20 | 2013-04-25 | Claas Agrosystems GmbH | Visualisierungseinrichtung |
UA111237C2 (uk) | 2011-10-21 | 2016-04-11 | Піонір Хай-Бред Інтернешнл, Інк. | Спосіб збирання зерна з використанням комбінованої збиральної машини |
EP2771860A4 (en) | 2011-10-24 | 2015-01-21 | Trimble Navigation Ltd | AGRICULTURAL AND GROUND MANAGEMENT |
DE102011085380A1 (de) | 2011-10-28 | 2013-05-02 | Deere & Company | Anordnung und Verfahren zur vorausschauenden Untersuchung von mit einer Erntemaschine aufzunehmenden Pflanzen |
DE102011085977A1 (de) | 2011-11-09 | 2013-05-16 | Deere & Company | Sieb für eine Reinigungseinrichtung eines Mähdreschers |
US20130124239A1 (en) | 2011-11-15 | 2013-05-16 | Uriel Rosa | Crop yield per location measurer |
WO2013078328A2 (en) | 2011-11-22 | 2013-05-30 | Precision Planting Llc | Stalk sensor apparatus, systems, and methods |
CN202340435U (zh) | 2011-11-28 | 2012-07-25 | 南京工业职业技术学院 | 基于作业路径的玉米产量实时测量系统 |
DE102011120402A1 (de) | 2011-12-03 | 2013-06-06 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Koordinieren einer Transportlogistik sowie Transportlogistiksystem |
BR102012017584B1 (pt) | 2011-12-08 | 2019-03-26 | Agco Do Brasil Máquinas E Equipamentos Agrícolas Ltda. | Sistema e método de auxílio de correção de velocidade |
DE102011121414A1 (de) | 2011-12-17 | 2013-06-20 | Robert Bosch Gmbh | Verfahren und eine Vorrichtung zur Regelung einer Fahrt einer ersten selbstfahrenden Arbeitsmaschine in Bezug zu einer zweiten selbstfahrenden Arbeitsmaschine |
US8801512B2 (en) | 2011-12-19 | 2014-08-12 | Agco Corporation | Method for measuring air efficiency and efficacy in a combine harvester |
US8626406B2 (en) | 2011-12-22 | 2014-01-07 | Deere & Company | Method and system for transferring material between vehicles |
DE102012201333A1 (de) | 2012-01-31 | 2013-08-01 | Deere & Company | Landwirtschaftliche Maschine mit einem System zur selbsttätigen Einstellung eines Bearbeitungsparameters und zugehöriges Verfahren |
US9861040B2 (en) | 2012-02-10 | 2018-01-09 | Deere & Company | Method and stereo vision system for facilitating the unloading of agricultural material from a vehicle |
AU2013235751A1 (en) | 2012-02-10 | 2014-08-21 | Deere & Company | System and method of material handling using one or more imaging devices on the transferring vehicle and on the receiving vehicle to control the material distribution into the storage portion of the receiving vehicle |
US8649940B2 (en) | 2012-02-10 | 2014-02-11 | Deere & Company | Method and stereo vision system for managing the unloading of an agricultural material from a vehicle |
US8868304B2 (en) | 2012-02-10 | 2014-10-21 | Deere & Company | Method and stereo vision system for facilitating the unloading of agricultural material from a vehicle |
US9392746B2 (en) | 2012-02-10 | 2016-07-19 | Deere & Company | Artificial intelligence for detecting and filling void areas of agricultural commodity containers |
DE102012208554A1 (de) | 2012-05-22 | 2013-11-28 | Hamm Ag | Verfahren zur Planung und Durchführung von Bodenverdichtungsvorgängen, insbesondere zurAsphaltverdichtung |
US9288938B2 (en) | 2012-06-01 | 2016-03-22 | Rowbot Systems Llc | Robotic platform and method for performing multiple functions in agricultural systems |
US20130319941A1 (en) | 2012-06-05 | 2013-12-05 | American Water Works Company, Inc. | Simultaneous recovery of coagulant and acid |
US8930039B2 (en) | 2012-06-11 | 2015-01-06 | Cnh Industrial America Llc | Combine performance evaluation tool |
US9117790B2 (en) | 2012-06-25 | 2015-08-25 | Marvell World Trade Ltd. | Methods and arrangements relating to semiconductor packages including multi-memory dies |
DE102012211001A1 (de) | 2012-06-27 | 2014-01-02 | Deere & Company | Anordnung zur Kontrolle einer Austrageinrichtung einer Erntemaschine mit einer selbsttätigen Positionierung in einer Ruhestellung bei nicht möglichen bzw. stattfindendem Überladevorgang |
RU2502047C1 (ru) | 2012-07-13 | 2013-12-20 | Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) | Способ оценки проходимости местности вне дорог |
DE102013106128A1 (de) | 2012-07-16 | 2014-06-12 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Arbeitsmaschine mit zumindest einer Steuerungseinrichtung |
US20140067745A1 (en) | 2012-08-30 | 2014-03-06 | Pioneer Hi-Bred International, Inc. | Targeted agricultural recommendation system |
US9095090B2 (en) | 2012-08-31 | 2015-08-04 | Deere & Company | Pressure-based control system for an agricultural implement |
WO2014046685A1 (en) | 2012-09-24 | 2014-03-27 | Deere & Company | Bidirectional harvesting system |
WO2014050524A1 (ja) | 2012-09-26 | 2014-04-03 | 株式会社クボタ | 農作管理システム及び農作物収穫機 |
CN104737214B (zh) | 2012-09-26 | 2017-09-01 | 株式会社久保田 | 联合收割机、以及联合收割机管理系统 |
DE202012103730U1 (de) | 2012-09-28 | 2012-10-16 | Agco International Gmbh | Erntemaschine mit einer Überladeeinrichtung |
US20140121882A1 (en) | 2012-10-31 | 2014-05-01 | Brian J. Gilmore | System for Coordinating the Relative Movements of an Agricultural Harvester and a Cart |
CN203053961U (zh) | 2012-11-02 | 2013-07-10 | 昆明理工大学 | 一种土壤压实数据监测装置 |
DE102012021469A1 (de) | 2012-11-05 | 2014-05-08 | Claas Selbstfahrende Erntemaschinen Gmbh | Assistenzsystem zur Optimierung des Fahrzeugbetriebes |
DE102012220109A1 (de) | 2012-11-05 | 2014-05-08 | Deere & Company | Einrichtung zur Erfassung des Betriebszustands einer Arbeitsmaschine |
KR101447197B1 (ko) | 2012-11-07 | 2014-10-06 | 최준성 | 다짐 평가용 동적 관입 시험 장치 및 이를 이용한 다짐 평가 방법 |
DE102012220916A1 (de) | 2012-11-15 | 2014-05-15 | K&K Maschinenentwicklungs GmbH & Co. KG | Verfahren zum Neuherstellen, Sanieren oder Rückbauen einer Schienenfahrbahn |
DE102012221344B3 (de) | 2012-11-22 | 2014-05-15 | Hamm Ag | Umkleidungsanordnung, Bodenbearbeitungswalze und Verfahren zum Anbringen einer Umkleidungsanordnung |
WO2014093814A1 (en) | 2012-12-14 | 2014-06-19 | Agco Corporation | Predictive load estimation through forward vision |
DE102012223434B4 (de) | 2012-12-17 | 2021-03-25 | Deere & Company | Verfahren und Anordnung zur Optimierung eines Betriebsparameters eines Mähdreschers |
US20140172222A1 (en) | 2012-12-19 | 2014-06-19 | Agco Corporation | Speed control in agricultural vehicle guidance systems |
US20140172225A1 (en) | 2012-12-19 | 2014-06-19 | Agco Corporation | Speed control in agricultural vehicle guidance systems |
DE102012223768B4 (de) | 2012-12-19 | 2014-07-03 | Deere & Company | Fremdkörpernachweiseinrichtung für eine landwirtschaftliche Erntemaschine |
US20140172224A1 (en) | 2012-12-19 | 2014-06-19 | Agco Corporation | Speed control in agricultural vehicle guidance systems |
JP6059027B2 (ja) | 2013-01-21 | 2017-01-11 | 株式会社クボタ | 農作業機と農作業管理プログラム |
US9497898B2 (en) | 2013-01-24 | 2016-11-22 | Tribine Industries, LLC | Agricultural harvester unloading assist system and method |
DE102013001157A1 (de) | 2013-01-24 | 2014-08-07 | Zind Systementwicklungs Gmbh | Fertigungsanlage zur Fertigung von Gefäßen aus Gefäßrohlingen und Fertigungsverfahren |
US8955402B2 (en) | 2013-01-25 | 2015-02-17 | Trimble Navigation Limited | Sugar cane yield mapping |
CN203206739U (zh) | 2013-01-25 | 2013-09-25 | 蒋行宇 | 打瓜联合收获机 |
CN103088807B (zh) | 2013-01-30 | 2014-12-10 | 青岛市勘察测绘研究院 | 强夯地基加固处理系统及其方法 |
DE102013201996A1 (de) | 2013-02-07 | 2014-08-07 | Deere & Company | Verfahren zur Einstellung von Arbeitsparametern einer Erntemaschine |
WO2014137533A2 (en) | 2013-02-07 | 2014-09-12 | Brown Owen J Jr | Wireless monitor maintenance and control system |
US9326444B2 (en) | 2013-02-08 | 2016-05-03 | Deere & Company | Method and stereo vision system for facilitating the unloading of agricultural material from a vehicle |
GB2510629B (en) | 2013-02-11 | 2015-10-14 | Kverneland Group Les Landes Genusson | Strip tilling system |
GB2510630B (en) | 2013-02-11 | 2015-08-05 | Kverneland Group Les Landes Genusson | Strip tilling system |
UY35335A (es) | 2013-02-19 | 2014-07-31 | Grains Res & Dev Corp | Dispositivo de desvitalización de semillas de malezas |
US9693503B2 (en) | 2013-02-20 | 2017-07-04 | Deere & Company | Crop sensing |
US10178828B2 (en) | 2013-02-20 | 2019-01-15 | Deere & Company | Per plant crop sensing resolution |
US9668420B2 (en) | 2013-02-20 | 2017-06-06 | Deere & Company | Crop sensing display |
US11212962B2 (en) | 2013-02-20 | 2022-01-04 | Deere & Company | Field condition determination |
US9066465B2 (en) | 2013-02-20 | 2015-06-30 | Deere & Company | Soil compaction reduction system and method |
US20140257911A1 (en) | 2013-03-08 | 2014-09-11 | Deere & Company | Methods and apparatus to schedule refueling of a work machine |
CN103181263A (zh) | 2013-03-11 | 2013-07-03 | 西北农林科技大学 | 一种多机器协作的小麦收割系统 |
US9410840B2 (en) | 2013-03-15 | 2016-08-09 | Raven Industries, Inc. | Multi-variable yield monitor and methods for the same |
US20140277960A1 (en) | 2013-03-18 | 2014-09-18 | Deere & Company | Harvester with fuzzy control system for detecting steady crop processing state |
WO2014160589A1 (en) | 2013-03-24 | 2014-10-02 | Bee Robotics Corporation | Aerial farm robot system for crop dusting, planting, fertilizing and other field jobs |
KR102234179B1 (ko) | 2013-03-27 | 2021-03-31 | 가부시끼 가이샤 구보다 | 콤바인 |
US9992932B2 (en) | 2013-04-02 | 2018-06-12 | Deere & Company | Control arrangement and method for controlling a position of a transfer device of a harvesting machine |
US10129528B2 (en) | 2013-04-02 | 2018-11-13 | Deere & Company | Control arrangement and method for controlling a position of a transfer device of a harvesting machine |
EP3020265B1 (en) | 2013-04-02 | 2017-09-20 | Deere & Company | Control arrangement and method for controlling a position of a transfer device of a harvesting machine |
US9119342B2 (en) | 2013-04-22 | 2015-09-01 | Deere & Company, A Delaware Corporation | Methods for improving the robustness of an automated unloading system |
CN203275401U (zh) | 2013-04-24 | 2013-11-06 | 陈金 | 一种新型公路土工击实快速测厚调节仪 |
CN203055121U (zh) | 2013-04-26 | 2013-07-10 | 昆明理工大学 | 一种基于Zigbee技术的土壤压实数据无线传输装置 |
US10740703B2 (en) | 2013-04-29 | 2020-08-11 | Verge Technologies Inc. | Method and system for determining optimized travel path for agricultural implement on land with obstacle |
CA2814599A1 (en) | 2013-04-29 | 2014-10-29 | Fieldstone Land Management Inc. | Method and apparatus for tangible effect calculation and compensation |
EP2798928B1 (en) | 2013-04-29 | 2024-02-07 | CLAAS E-Systems GmbH | Operating system for and method of operating an automatic guidance system of an agricultural vehicle |
DE102013209197A1 (de) | 2013-05-17 | 2014-11-20 | Deere & Company | Erntemaschine mit vorausschauender Vortriebsgeschwindigkeitsregelung |
USD721740S1 (en) | 2013-05-23 | 2015-01-27 | Deere & Company | Display interface or housing thereof |
BE1021150B1 (nl) | 2013-06-03 | 2016-01-13 | Cnh Industrial Belgium Nv | Werkwijze voor het verwerken van belastingssignaal van een balenpers |
DE102013105821A1 (de) | 2013-06-06 | 2014-12-11 | Claas Selbstfahrende Erntemaschinen Gmbh | Erntemaschine zur Aufnahme von Erntegut |
DE102013212151A1 (de) | 2013-06-26 | 2014-12-31 | Robert Bosch Gmbh | Baumaschine mit einer Vibrationseinheit |
DE102013107169A1 (de) | 2013-07-08 | 2015-01-08 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Erntemaschine |
EP3018987B1 (en) | 2013-07-10 | 2020-09-02 | Agco Corporation | Automating distribution of work in a field |
DE102013012027A1 (de) | 2013-07-19 | 2015-01-22 | Claas Selbstfahrende Erntemaschinen Gmbh | Selbstfahrende Erntemaschine und Fahrzeugverbund |
GB2517049B (en) | 2013-07-28 | 2019-09-11 | Deere & Co | Artificial intelligence for detecting and filling void areas of agricultural commodity containers |
US9301466B2 (en) | 2013-07-29 | 2016-04-05 | Syngenta Participations Ag | Variety corn line HID3259 |
US9188518B2 (en) | 2013-08-19 | 2015-11-17 | Bridgestone Americas Tire Operations, Llc | Ground compaction images |
JP6134609B2 (ja) | 2013-08-28 | 2017-05-24 | ヤンマー株式会社 | 遠隔サーバ |
US9767521B2 (en) | 2013-08-30 | 2017-09-19 | The Climate Corporation | Agricultural spatial data processing systems and methods |
US20160360697A1 (en) | 2013-09-03 | 2016-12-15 | Agco Corporation | System and method for automatically changing machine control state |
WO2015038751A1 (en) | 2013-09-13 | 2015-03-19 | Agco Corporation | Method to automatically estimate and classify spatial data for use on real time maps |
US9234317B2 (en) | 2013-09-25 | 2016-01-12 | Caterpillar Inc. | Robust system and method for forecasting soil compaction performance |
US9804756B2 (en) | 2013-09-27 | 2017-10-31 | Iteris, Inc. | Comparative data analytics and visualization tool for analyzing traffic performance data in a traffic management system |
WO2015048499A1 (en) | 2013-09-27 | 2015-04-02 | John Earl Acheson | Yield monitor calibration method and system |
US9188986B2 (en) | 2013-10-01 | 2015-11-17 | Jaybridge Robotics, Inc. | Computer-implemented method and system for dynamically positioning a vehicle relative to another vehicle in motion for on-the-fly offloading operations |
JP2015070812A (ja) | 2013-10-03 | 2015-04-16 | ヤンマー株式会社 | 農作物情報管理システム |
US20160247082A1 (en) | 2013-10-03 | 2016-08-25 | Farmers Business Network, Llc | Crop Model and Prediction Analytics System |
US10104824B2 (en) | 2013-10-14 | 2018-10-23 | Kinze Manufacturing, Inc. | Autonomous systems, methods, and apparatus for AG based operations |
US10362733B2 (en) | 2013-10-15 | 2019-07-30 | Deere & Company | Agricultural harvester configured to control a biomass harvesting rate based upon soil effects |
BE1021164B1 (nl) | 2013-10-28 | 2016-01-18 | Cnh Industrial Belgium Nv | Ontlaadsystemen |
BE1021108B1 (nl) | 2013-10-28 | 2016-01-18 | Cnh Industrial Belgium Nv | Ontlaadsystemen |
JP6087258B2 (ja) | 2013-10-28 | 2017-03-01 | ヤンマー株式会社 | 遠隔配車サーバ |
DE102013222122B4 (de) | 2013-10-30 | 2020-10-15 | Mts Maschinentechnik Schrode Ag | Verfahren zum Betreiben eines Bodenverdichtungs- oder Bodenprüfgeräts, sowie Bodenverdichtungs- oder Verdichtungsprüfgerät |
US10371561B2 (en) | 2013-11-01 | 2019-08-06 | Iowa State University Research Foundation, Inc. | Yield measurement and base cutter height control systems for a harvester |
DE102013019098B3 (de) | 2013-11-11 | 2015-01-08 | Hochschule für Technik und Wirtschaft Dresden | System zum Erfassen von Parametern der Umwelt und Umgebung |
CN203613525U (zh) | 2013-11-25 | 2014-05-28 | 杨振华 | 一种公路灰土基层压实度测定取样机 |
CN203658201U (zh) | 2013-12-09 | 2014-06-18 | 长安大学 | 一种用于测量路基土压实度的装置 |
US9714856B2 (en) | 2013-12-13 | 2017-07-25 | Ag Leader Technology, Inc. | Automatic compensation for the effect of grain properties on mass flow sensor calibration |
JP5986064B2 (ja) | 2013-12-25 | 2016-09-06 | Necプラットフォームズ株式会社 | 冷却システムおよび電子機器 |
DE102014100136A1 (de) | 2014-01-08 | 2015-07-09 | Claas Selbstfahrende Erntemaschinen Gmbh | Erntevorrichtung |
CN203741803U (zh) | 2014-01-10 | 2014-07-30 | 瑞和安惠项目管理集团有限公司 | 工程监理用路基压实度检测取土装置 |
DE102014201203A1 (de) | 2014-01-23 | 2015-07-23 | Deere & Company | Landwirtschaftliches Arbeitsfahrzeug mit einem Fluggerät und zugehöriger Stromversorgung |
US20150211199A1 (en) | 2014-01-24 | 2015-07-30 | Caterpillar Inc. | Device and process to measure ground stiffness from compactors |
WO2015120470A1 (en) | 2014-02-10 | 2015-08-13 | Precision Planting Llc | Methods and systems for generating shared collaborative maps |
JP6298313B2 (ja) | 2014-02-18 | 2018-03-20 | 鹿島建設株式会社 | 地盤剛性測定装置、締固め機械及び地盤剛性測定方法 |
DE102014203005B3 (de) | 2014-02-19 | 2015-05-13 | Deere & Company | Vibrationsdämpfende Ansteuerung eines Aktors einer landwirtschaftlichen Arbeitsmaschine |
US20150254800A1 (en) | 2014-03-06 | 2015-09-10 | F12 Solutions, Llc | Nitrogen status determination in growing crops |
NL2012485B1 (en) | 2014-03-20 | 2016-01-18 | Lely Patent Nv | Method and system for navigating an agricultural vehicle on a land area. |
DE102014205233A1 (de) | 2014-03-20 | 2015-09-24 | Deere & Company | Erntemaschine mit vorausschauender Vortriebsgeschwindigkeitsvorgabe |
US9529364B2 (en) | 2014-03-24 | 2016-12-27 | Cnh Industrial America Llc | System for coordinating agricultural vehicle control for loading a truck |
DE102014205503A1 (de) | 2014-03-25 | 2015-10-01 | Hamm Ag | Verfahren zur Korrektur eines Messwerteverlaufs durch das Eliminieren periodisch auftretender Messartefakte, insbesondere bei einem Bodenverdichter |
BR102014007178B1 (pt) | 2014-03-26 | 2020-12-22 | São Martinho S/A | processo de geração de mapas de aplicação de herbicida em função das espécies de plantas daninhas e teores de argila e matéria orgânica de solo |
US9489576B2 (en) | 2014-03-26 | 2016-11-08 | F12 Solutions, LLC. | Crop stand analysis |
CN103954738B (zh) | 2014-04-01 | 2015-11-04 | 中国科学院力学研究所 | 一种测量土体振动传播特性的室内试验装置 |
AU2015240770B2 (en) | 2014-04-01 | 2018-07-19 | Climate Llc | Agricultural implement and implement operator monitoring apparatus, systems, and methods |
DE102014104619A1 (de) | 2014-04-02 | 2015-10-08 | Claas Agrosystems Kgaa Mbh & Co. Kg | Planungssystem und Verfahren zur Planung einer Feldbearbeitung |
US9810679B2 (en) | 2014-04-02 | 2017-11-07 | Colorado School Of Mines | Intelligent pad foot soil compaction devices and methods of using same |
WO2015160837A2 (en) | 2014-04-15 | 2015-10-22 | Raven Industries, Inc. | Reaping based yield monitoring system and method for the same |
US9974226B2 (en) | 2014-04-21 | 2018-05-22 | The Climate Corporation | Generating an agriculture prescription |
US9405039B2 (en) | 2014-04-22 | 2016-08-02 | Deere & Company | Ground engaging member accumulation determination |
US9523180B2 (en) | 2014-04-28 | 2016-12-20 | Deere & Company | Semi-automatic material loading |
DE102014208070A1 (de) | 2014-04-29 | 2015-12-17 | Deere & Company | Die Fahrzeugdynamik berücksichtigendes Kontrollsystem zur Positionssteuerung eines Geräts für ein landwirtschaftliches Arbeitsfahrzeug |
DE102014208068A1 (de) | 2014-04-29 | 2015-10-29 | Deere & Company | Erntemaschine mit sensorbasierter Einstellung eines Arbeitsparameters |
WO2015171954A2 (en) | 2014-05-09 | 2015-11-12 | Raven Industries, Inc. | Refined row guidance parameterization with hough transform |
FR3021114B1 (fr) | 2014-05-13 | 2017-08-11 | Sol Solution | Penetrometre dynamique, ensemble de mesure, systeme et methode de determination de la compacite et de la capacite portante d'un sol |
JP6410130B2 (ja) | 2014-05-15 | 2018-10-24 | 株式会社Jsol | 農作物の収穫予測装置、収穫予測システム及び収穫予測方法 |
US9578808B2 (en) | 2014-05-16 | 2017-02-28 | Deere & Company | Multi-sensor crop yield determination |
US10104836B2 (en) | 2014-06-11 | 2018-10-23 | John Paul Jamison | Systems and methods for forming graphical and/or textual elements on land for remote viewing |
BR102015013228B1 (pt) | 2014-06-13 | 2020-11-24 | Cnh Industrial America Llc | SISTEMA E METODO DE CONTROLE PARA UM VEfCULO AGRiCOLA |
DE102014009090B4 (de) | 2014-06-19 | 2017-04-06 | Technische Universität Dresden | Landwirtschaftliches Gerät zur konservierenden Bodenbearbeitung |
US20150370935A1 (en) | 2014-06-24 | 2015-12-24 | 360 Yield Center, Llc | Agronomic systems, methods and apparatuses |
CN204000818U (zh) | 2014-07-02 | 2014-12-10 | 四川农业大学 | 一种土壤坚实度测定装置 |
US10126153B2 (en) | 2014-07-22 | 2018-11-13 | Deere & Company | Particulate matter impact sensor |
US10034423B2 (en) | 2014-07-29 | 2018-07-31 | Deere & Company | Biomass sensing |
FR3024772B1 (fr) | 2014-08-07 | 2016-09-02 | Electricite De France | Procede et dispositif pour la determination de la profondeur de l'origine d'un tassement de sol |
US9717178B1 (en) | 2014-08-08 | 2017-08-01 | The Climate Corporation | Systems and method for monitoring, controlling, and displaying field operations |
US10568316B2 (en) | 2014-08-15 | 2020-02-25 | Monsanto Technology Llc | Apparatus and methods for in-field data collection and sampling |
US9131644B2 (en) | 2014-08-19 | 2015-09-15 | Iteris, Inc. | Continual crop development profiling using dynamical extended range weather forecasting with routine remotely-sensed validation imagery |
DE102014216593A1 (de) | 2014-08-21 | 2016-02-25 | Deere & Company | Bedienerassistenzsystem für eine landwirtschaftliche Arbeitsmaschine |
CA2957081C (en) | 2014-08-22 | 2024-06-25 | The Climate Corporation | Methods for agronomic and agricultural monitoring using unmanned aerial systems |
EP3185666B1 (en) | 2014-08-27 | 2019-11-13 | Premier Crop Systems, LLC | System and method for controlling machinery for randomizing and replicating predetermined agronomic input levels |
US9829364B2 (en) | 2014-08-28 | 2017-11-28 | Raven Industries, Inc. | Method of sensing volume of loose material |
US10109024B2 (en) | 2014-09-05 | 2018-10-23 | The Climate Corporation | Collecting data to generate an agricultural prescription |
DE102014113001A1 (de) | 2014-09-10 | 2016-03-10 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Steuerung eines Überladeprozesses |
US11080798B2 (en) | 2014-09-12 | 2021-08-03 | The Climate Corporation | Methods and systems for managing crop harvesting activities |
US10667456B2 (en) | 2014-09-12 | 2020-06-02 | The Climate Corporation | Methods and systems for managing agricultural activities |
US10085379B2 (en) | 2014-09-12 | 2018-10-02 | Appareo Systems, Llc | Grain quality sensor |
US11113649B2 (en) | 2014-09-12 | 2021-09-07 | The Climate Corporation | Methods and systems for recommending agricultural activities |
US10564316B2 (en) | 2014-09-12 | 2020-02-18 | The Climate Corporation | Forecasting national crop yield during the growing season |
DE102014113335A1 (de) | 2014-09-16 | 2016-03-17 | Claas Tractor Sas | Landwirtschaftliche Arbeitsmaschine mit und Verfahren zur vorausschauenden Regelung einer Antriebsleistung und/oder eines Antriebsstranges |
US9903979B2 (en) | 2014-09-23 | 2018-02-27 | Deere & Company | Yield estimation |
US10126282B2 (en) | 2014-09-23 | 2018-11-13 | Deere & Company | Yield estimation |
DE102014113887A1 (de) | 2014-09-25 | 2016-03-31 | Claas Selbstfahrende Erntemaschinen Gmbh | Mähdrescher mit einer Verteilvorrichtung |
DE102014113874A1 (de) | 2014-09-25 | 2016-03-31 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zum Überladen bei Erntemaschinen |
DE102014113965A1 (de) | 2014-09-26 | 2016-03-31 | Claas Selbstfahrende Erntemaschinen Gmbh | Mähdrescher mit Fahrerassistenzsystem |
JP2016071726A (ja) | 2014-09-30 | 2016-05-09 | 井関農機株式会社 | 作業情報記憶装置 |
US9807933B2 (en) | 2014-10-20 | 2017-11-07 | Cnh Industrial America Llc | Sensor equipped agricultural harvester |
US10295998B2 (en) | 2014-11-13 | 2019-05-21 | Yanmar Co., Ltd. | Agricultural work vehicle |
AU2014411244B2 (en) | 2014-11-14 | 2018-11-29 | Bitstrata Systems Inc. | System and method for measuring grain cart weight |
GB201421527D0 (en) | 2014-12-04 | 2015-01-21 | Agco Int Gmbh | Automated agriculture system |
WO2016090212A1 (en) | 2014-12-05 | 2016-06-09 | Board Of Trustees Of Michigan State University | Methods and systems for precision crop management |
DE102014226189B4 (de) | 2014-12-17 | 2017-08-24 | Continental Automotive Gmbh | Verfahren zur Ermittlung eines Unkrautanteils und Landtechnik-Steuereinrichtung |
US9563492B2 (en) | 2015-01-09 | 2017-02-07 | Deere & Company | Service diagnostic trouble code sequencer and method |
US9792557B2 (en) | 2015-01-14 | 2017-10-17 | Accenture Global Services Limited | Precision agriculture system |
CN204435344U (zh) | 2015-01-22 | 2015-07-01 | 中交四公局第二工程有限公司 | 一种用于测定土层压实度的可行走式取样机 |
WO2016118686A1 (en) | 2015-01-23 | 2016-07-28 | Iteris, Inc. | Modeling of crop growth for desired moisture content of targeted livestock feedstuff for determination of harvest windows using field-level diagnosis and forecasting of weather conditions and observations and user input of harvest condition states |
US9009087B1 (en) | 2015-01-23 | 2015-04-14 | Iteris, Inc. | Modeling the impact of time-varying weather conditions on unit costs of post-harvest crop drying techniques using field-level analysis and forecasts of weather conditions, facility metadata, and observations and user input of grain drying data |
US9140824B1 (en) | 2015-01-23 | 2015-09-22 | Iteris, Inc. | Diagnosis and prediction of in-field dry-down of a mature small grain, coarse grain, or oilseed crop using field-level analysis and forecasting of weather conditions, crop characteristics, and observations and user input of harvest condition states |
WO2016127094A1 (en) | 2015-02-06 | 2016-08-11 | The Climate Corporation | Methods and systems for recommending agricultural activities |
US20160247076A1 (en) | 2015-02-20 | 2016-08-25 | Iteris, Inc. | Simulation of soil condition response to expected weather conditions for forecasting temporal opportunity windows for suitability of agricultural and field operations |
JP2016160808A (ja) | 2015-02-27 | 2016-09-05 | 井関農機株式会社 | コンバインのエンジン制御システム |
US20160260021A1 (en) | 2015-03-06 | 2016-09-08 | William Marek | System and method for improved agricultural yield and efficiency using statistical analysis |
CN204475304U (zh) | 2015-03-17 | 2015-07-15 | 攀枝花天誉工程检测有限公司 | 土工压实度检测成孔器 |
CN106998651B (zh) | 2015-03-18 | 2019-10-18 | 株式会社久保田 | 联合收割机 |
RO130713B1 (ro) | 2015-03-19 | 2023-05-30 | Universitatea De Ştiinţe Agronomice Şi Medicină Veterinară Din Bucureşti | Sistem automat gis pentru realizarea hărţilor cu distribuţia speciilor de buruieni |
US20180014452A1 (en) | 2015-03-25 | 2018-01-18 | 360 Yield Center, Llc | Agronomic systems, methods and apparatuses |
US10095200B2 (en) | 2015-03-30 | 2018-10-09 | Uop Llc | System and method for improving performance of a chemical plant with a furnace |
DE102015004343A1 (de) | 2015-04-02 | 2016-10-06 | Claas Selbstfahrende Erntemaschinen Gmbh | Mähdrescher |
DE102015004174A1 (de) | 2015-04-02 | 2016-10-06 | Claas Selbstfahrende Erntemaschinen Gmbh | Mähdrescher |
DE102015004344A1 (de) | 2015-04-02 | 2016-10-06 | Claas Selbstfahrende Erntemaschinen Gmbh | Mähdrescher |
DE102015106302A1 (de) | 2015-04-24 | 2016-10-27 | Claas Selbstfahrende Erntemaschinen Gmbh | Erntesystem mit einer selbstfahrenden Erntemaschine |
US20170270446A1 (en) | 2015-05-01 | 2017-09-21 | 360 Yield Center, Llc | Agronomic systems, methods and apparatuses for determining yield limits |
JP2018523447A (ja) | 2015-05-01 | 2018-08-16 | ハイリーオン インク.Hyliion Inc. | 動力供給を増大させ、燃料要求を低減させるモーター車両の装備 |
US10209235B2 (en) | 2015-05-04 | 2019-02-19 | Deere & Company | Sensing and surfacing of crop loss data |
EP3295344A4 (en) | 2015-05-14 | 2019-01-23 | Board of Trustees of Michigan State University | PROCESSES AND SYSTEMS FOR THE ASSESSMENT OF HARVEST AREAS AND ADMINISTRATION OF THE GROWTH OF ERNTEGUT |
US9872433B2 (en) | 2015-05-14 | 2018-01-23 | Raven Industries, Inc. | System and method for adjusting harvest characteristics |
US10039231B2 (en) | 2015-05-19 | 2018-08-07 | Deere & Company | System for measuring plant attributes using a priori plant maps |
DE102015006398B3 (de) | 2015-05-21 | 2016-05-04 | Helmut Uhrig Strassen- und Tiefbau GmbH | Bodenverdichtung mit einem Baggeranbauverdichter |
EP3095310B1 (en) | 2015-05-21 | 2018-05-16 | Robert Thomas Farms Ltd | Agricultural apparatus |
US20160342915A1 (en) | 2015-05-22 | 2016-11-24 | Caterpillar Inc. | Autonomous Fleet Size Management |
DE102015108374A1 (de) | 2015-05-27 | 2016-12-01 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Ansteuerung einer selbstfahrenden Erntemaschine |
WO2016191825A1 (en) | 2015-06-05 | 2016-12-08 | The University Of Sydney | Automatic target recognition and management system |
US10791666B2 (en) | 2015-06-08 | 2020-10-06 | The Climate Corporation | Agricultural data analysis |
EP3310150B1 (en) | 2015-06-18 | 2021-05-12 | Bail&Burnit Pty Ltd. | Mechanical weed seed management system |
DE102015109799A1 (de) | 2015-06-18 | 2016-12-22 | Claas E-Systems Kgaa Mbh & Co Kg | Verfahren zur Synchronisation zweier unabhängiger, selbstfahrender landwirtschaftlicher Arbeitsmaschinen |
CA2990438A1 (en) | 2015-06-30 | 2017-01-05 | The Climate Corporation | Systems and methods for image capture and analysis of agricultural fields |
US9968027B2 (en) | 2015-07-14 | 2018-05-15 | Clemson University | Automated control systems and methods for underground crop harvesters |
US10492369B2 (en) | 2015-07-14 | 2019-12-03 | Dean Mayerle | Weed seed destruction |
CA2991256C (en) | 2015-07-14 | 2021-12-07 | Dean Mayerle | Weed seed destruction formed as a common unit with straw spreader |
US9740208B2 (en) | 2015-07-30 | 2017-08-22 | Deere & Company | UAV-based sensing for worksite operations |
CN204989174U (zh) | 2015-08-05 | 2016-01-20 | 中国农业大学 | 一种用于测量土壤压实的试验平台 |
US9642305B2 (en) | 2015-08-10 | 2017-05-09 | Deere & Company | Method and stereo vision system for managing the unloading of an agricultural material from a vehicle |
US10015928B2 (en) | 2015-08-10 | 2018-07-10 | Deere & Company | Method and stereo vision system for managing the unloading of an agricultural material from a vehicle |
DE102015113527A1 (de) | 2015-08-17 | 2017-02-23 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Erntemaschine |
EP3341129B1 (en) | 2015-08-28 | 2024-04-03 | Tecfarm PTY Ltd | Apparatus and method for processing a crop residue |
JP6502221B2 (ja) | 2015-09-14 | 2019-04-17 | 株式会社クボタ | 作業車支援システム |
DE102015217496A1 (de) | 2015-09-14 | 2017-03-16 | Deere & Company | Verfahren zum Ausbringen von Saatgutpartikeln oder Pflanzen auf ein Feld und eine entsprechende Maschine |
US10183667B2 (en) | 2015-09-15 | 2019-01-22 | Deere & Company | Human presence detection on a mobile machine |
US9696162B2 (en) | 2015-09-17 | 2017-07-04 | Deere & Company | Mission and path planning using images of crop wind damage |
CN105205248B (zh) | 2015-09-17 | 2017-12-08 | 哈尔滨工业大学 | 一种基于ode物理引擎的车辆地形通过性仿真分析组件的设计方法 |
US10025983B2 (en) | 2015-09-21 | 2018-07-17 | The Climate Corporation | Ponding water detection on satellite imagery |
US10188037B2 (en) | 2015-09-24 | 2019-01-29 | Deere & Company | Yield estimation |
US9699967B2 (en) | 2015-09-25 | 2017-07-11 | Deere & Company | Crosswind compensation for residue processing |
JP6770300B2 (ja) | 2015-09-29 | 2020-10-14 | 株式会社ミツトヨ | 計測機器用の信号処理回路 |
US9807940B2 (en) | 2015-09-30 | 2017-11-07 | Deere & Company | System for prediction and control of drydown for windrowed agricultural products |
EP3150052B1 (en) | 2015-09-30 | 2018-06-13 | CLAAS E-Systems KGaA mbH & Co KG | Crop harvesting machine |
RU2022103711A (ru) | 2015-10-05 | 2022-03-16 | Байер Кропсайенс Аг | Способ эксплуатации уборочной машины с использованием модели роста растений |
KR20170041377A (ko) | 2015-10-07 | 2017-04-17 | 안범주 | 후방에 설치된 토양 경도 측정 센서를 갖는 차량 |
US10342174B2 (en) * | 2015-10-16 | 2019-07-09 | The Climate Corporation | Method for recommending seeding rate for corn seed using seed type and sowing row width |
US9681605B2 (en) | 2015-10-26 | 2017-06-20 | Deere & Company | Harvester feed rate control |
US20170112061A1 (en) | 2015-10-27 | 2017-04-27 | Cnh Industrial America Llc | Graphical yield monitor static (previous) data display on in-cab display |
US10080325B2 (en) | 2015-10-27 | 2018-09-25 | Cnh Industrial America Llc | Predictive overlap control model |
US20170115862A1 (en) | 2015-10-27 | 2017-04-27 | Cnh Industrial America Llc | Graphical yield monitor real-time data display |
US10586158B2 (en) | 2015-10-28 | 2020-03-10 | The Climate Corporation | Computer-implemented calculation of corn harvest recommendations |
DE102015118767A1 (de) | 2015-11-03 | 2017-05-04 | Claas Selbstfahrende Erntemaschinen Gmbh | Umfelddetektionseinrichtung für landwirtschaftliche Arbeitsmaschine |
EP3371756A1 (en) | 2015-11-05 | 2018-09-12 | AGCO International GmbH | Method and system for determining work trajectories for a fleet of working units in a harvest operation |
US20170127606A1 (en) | 2015-11-10 | 2017-05-11 | Digi-Star, Llc | Agricultural Drone for Use in Controlling the Direction of Tillage and Applying Matter to a Field |
DE102016121523A1 (de) | 2015-11-17 | 2017-05-18 | Lacos Computerservice Gmbh | Verfahren zum prädikativen Erzeugen von Daten zur Steuerung eines Fahrweges und eines Betriebsablaufes für landwirtschaftliche Fahrzeuge und Maschinen |
US10890922B2 (en) | 2015-11-19 | 2021-01-12 | Agjunction Llc | Automated multi-vehicle alignment steering |
DK178711B1 (en) | 2015-11-24 | 2016-11-28 | Green Agro And Transp Aps | Flexible wheel track system for in-field trailer |
US11062223B2 (en) | 2015-12-02 | 2021-07-13 | The Climate Corporation | Forecasting field level crop yield during a growing season |
DE102015121210A1 (de) | 2015-12-07 | 2017-06-08 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Arbeitsmaschine |
US9721181B2 (en) | 2015-12-07 | 2017-08-01 | The Climate Corporation | Cloud detection on remote sensing imagery |
WO2017096489A1 (en) | 2015-12-09 | 2017-06-15 | Scanimetrics Inc. | Measuring and monitoring a body of granular material |
US10091925B2 (en) | 2015-12-09 | 2018-10-09 | International Business Machines Corporation | Accurately determining crop yield at a farm level |
WO2017099570A1 (es) | 2015-12-11 | 2017-06-15 | Pacheco Sanchez José Antonio | Sistema y método para agricultura de precisión por análisis multiespectral e hiperespectral de imágenes aéreas utilizando vehículos aéreos no tripulados |
CN105432228A (zh) | 2015-12-16 | 2016-03-30 | 无锡同春新能源科技有限公司 | 一种无人玉米收获机 |
DE102015122269A1 (de) | 2015-12-18 | 2017-06-22 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren für den Betrieb eines Mähdreschers |
US9856612B2 (en) | 2015-12-21 | 2018-01-02 | Caterpillar Paving Products Inc. | Compaction measurement using nearby sensors |
WO2017116913A1 (en) | 2015-12-29 | 2017-07-06 | Agco Corporation | Integrated driveline slip clutch system for large square baler |
BR102016024151B1 (pt) | 2016-01-06 | 2021-10-13 | Cnh Industrial America Llc | Meio legível por computador não transitório tangível, sistema e método para controlar pelo menos um veículo agrícola autônomo |
BR102016024930B1 (pt) | 2016-01-06 | 2021-08-24 | Cnh Industrial America Llc | Sistema de controle para um veículo de reboque e método para controlar um veículo agrícola |
US10019790B2 (en) | 2016-01-15 | 2018-07-10 | Deere & Company | Fill level indicator for an automated unloading system |
EP3195719B1 (en) | 2016-01-20 | 2018-10-24 | CLAAS E-Systems KGaA mbH & Co KG | Agricultural machine |
EP3195720A1 (en) | 2016-01-21 | 2017-07-26 | CLAAS E-Systems KGaA mbH & Co KG | Crop tank system |
US10529036B2 (en) | 2016-01-22 | 2020-01-07 | The Climate Corporation | Forecasting national crop yield during the growing season using weather indices |
BE1023467B1 (nl) | 2016-02-01 | 2017-03-29 | Cnh Industrial Belgium Nv | Beheer van een restantensysteem van een maaidorser door veldgegevens te gebruiken |
US9891629B2 (en) | 2016-02-04 | 2018-02-13 | Deere & Company | Autonomous robotic agricultural machine and system thereof |
JP6688542B2 (ja) | 2016-02-04 | 2020-04-28 | ヤンマー株式会社 | 追従型コンバイン |
JP6567440B2 (ja) | 2016-02-05 | 2019-08-28 | 鹿島建設株式会社 | 地盤の締固め状態測定装置、締固め状態測定方法、及び締固め機械 |
BE1023485B1 (nl) | 2016-02-23 | 2017-04-06 | Cnh Industrial Belgium Nv | Kafstrooier met zaadkneuzing |
US10588258B2 (en) | 2016-02-25 | 2020-03-17 | Deere & Company | Automatic determination of the control unit parameters of an arrangement to control an actuator for the adjustment of an adjustable element of an agricultural machine |
US9675008B1 (en) | 2016-02-29 | 2017-06-13 | Cnh Industrial America Llc | Unloading arrangement for agricultural harvesting vehicles |
US10201121B1 (en) | 2016-03-01 | 2019-02-12 | Ag Leader Technology | Prediction of amount of crop or product remaining for field |
US10028435B2 (en) | 2016-03-04 | 2018-07-24 | Deere & Company | Sensor calibration using field information |
KR101653750B1 (ko) | 2016-03-10 | 2016-09-02 | 한국건설기술연구원 | 식생매트 고정용 앵커핀의 인발 시험 장치 및 방법 |
BE1023982B1 (nl) | 2016-03-23 | 2017-10-03 | Cnh Industrial Belgium Nv | Geautomatiseerd lossysteem voor het lossen van gewas |
EP3435319A4 (en) | 2016-03-25 | 2019-08-21 | Nec Corporation | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND RECORDING MEDIUM WITH INFORMATION PROCESSING APPARATUS RECORDED THEREFOR |
WO2017170507A1 (ja) | 2016-03-29 | 2017-10-05 | ヤンマー株式会社 | コンバイン |
US9903077B2 (en) | 2016-04-04 | 2018-02-27 | Caterpillar Paving Products Inc. | System and method for performing a compaction operation |
RU164128U1 (ru) | 2016-04-05 | 2016-08-20 | Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского" | Установка для испытания на изнашиваемость материалов для рабочих органов почвообрабатывающих машин |
WO2017181127A1 (en) | 2016-04-15 | 2017-10-19 | The Regents Of The University Of California | Robotic plant care systems and methods |
CN105741180B (zh) | 2016-04-21 | 2021-06-18 | 江苏大学 | 一种联合收获机谷物产量图绘制系统 |
JP6755117B2 (ja) | 2016-04-26 | 2020-09-16 | ヤンマーパワーテクノロジー株式会社 | コンバイン |
US10275550B2 (en) | 2016-04-27 | 2019-04-30 | The Climate Corporation | Assimilating a soil sample into a digital nutrient model |
US10152891B2 (en) | 2016-05-02 | 2018-12-11 | Cnh Industrial America Llc | System for avoiding collisions between autonomous vehicles conducting agricultural operations |
DE102016118203A1 (de) | 2016-05-10 | 2017-11-16 | Claas Selbstfahrende Erntemaschinen Gmbh | Zugmaschinen-Geräte-Kombination mit Fahrerassistenzsystem |
CA3024402A1 (en) | 2016-05-12 | 2017-11-16 | Basf Se | Recognition of weed in a natural environment |
DE102016108902A1 (de) | 2016-05-13 | 2017-11-16 | Claas Saulgau Gmbh | Verfahren und Steuerungseinrichtung zum Betreiben eines landwirtschaftlichen Transportwagens sowie Transportwagen |
US10051787B2 (en) | 2016-05-17 | 2018-08-21 | Deere & Company | Harvesting head with yield monitor |
CN106053330B (zh) | 2016-05-23 | 2018-12-18 | 北京林业大学 | 土壤紧实度及水分复合测量方法及装置 |
US11372402B2 (en) | 2016-05-24 | 2022-06-28 | Cnh Industrial America Llc | Autonomous grain cart dimensioned to fit behind header |
WO2017205410A1 (en) | 2016-05-24 | 2017-11-30 | Cnh Industrial America Llc | Grain cart for continuous conveying agricultural product |
US9563852B1 (en) | 2016-06-21 | 2017-02-07 | Iteris, Inc. | Pest occurrence risk assessment and prediction in neighboring fields, crops and soils using crowd-sourced occurrence data |
DE102016111665A1 (de) | 2016-06-24 | 2017-12-28 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Arbeitsmaschine und Verfahren zum Betrieb einer landwirtschaftlichen Arbeitsmaschine |
EP3262934A1 (de) | 2016-06-28 | 2018-01-03 | Bayer CropScience AG | Verfahren zur unkrautbekämpfung |
UY36763A (es) | 2016-07-01 | 2018-01-31 | Carlos Hartwich | Roturador y plantador en plataforma motorizada unitaria con navegador automático |
US9563848B1 (en) | 2016-07-06 | 2017-02-07 | Agrian, Inc. | Weighted multi-year yield analysis for prescription mapping in site-specific variable rate applications in precision agriculture |
US9928584B2 (en) | 2016-07-11 | 2018-03-27 | Harvest Moon Automation Inc. | Inspecting plants for contamination |
US10231371B2 (en) | 2016-07-18 | 2019-03-19 | Tribine Industries Llc | Soil compaction mitigation assembly and method |
US10795351B2 (en) | 2016-07-19 | 2020-10-06 | Raven Industries, Inc. | System and method for autonomous control of agricultural machinery and equipment |
CN106198879B (zh) | 2016-07-22 | 2018-11-16 | 广东双木林科技有限公司 | 一种检测杉树抗风稳定性能的方法 |
CN106198877A (zh) | 2016-07-22 | 2016-12-07 | 陈显桥 | 通过测量设备检验杨树稳定性的方法 |
CN106226470B (zh) | 2016-07-22 | 2019-06-11 | 孙红 | 一种通过测量装置测定槐树的稳固性能的方法 |
CN106248873B (zh) | 2016-07-22 | 2019-04-12 | 黄哲敏 | 一种通过检测设备测定松树坚固程度的方法 |
US20180022559A1 (en) | 2016-07-22 | 2018-01-25 | Scott William Knutson | Loader Positioning System |
DE102016009085A1 (de) | 2016-07-26 | 2018-02-01 | Bomag Gmbh | Bodenverdichtungswalze mit Sensoreinrichtung an der Walzbandage und Verfahren zur Ermittlung der Bodensteifigkeit |
US10351364B2 (en) | 2016-08-05 | 2019-07-16 | Deere & Company | Automatic vehicle and conveyor positioning |
DE102016214554A1 (de) | 2016-08-05 | 2018-02-08 | Deere & Company | Verfahren zur Optimierung eines Arbeitsparameters einer Maschine zur Ausbringung von landwirtschaftlichem Material auf ein Feld und entsprechende Maschine |
US10154624B2 (en) | 2016-08-08 | 2018-12-18 | The Climate Corporation | Estimating nitrogen content using hyperspectral and multispectral images |
US10410299B2 (en) | 2016-08-24 | 2019-09-10 | The Climate Corporation | Optimizing split fertilizer application |
EP3287007A1 (de) | 2016-08-24 | 2018-02-28 | Bayer CropScience AG | Bekämpfung von schadorganismen auf basis der vorhersage von befallsrisiken |
US10609856B2 (en) | 2016-08-29 | 2020-04-07 | Troy Oliver | Agriculture system and method |
DE102016116043A1 (de) | 2016-08-29 | 2018-03-01 | Claas Selbstfahrende Erntemaschinen Gmbh | Transportfahrzeug |
CN106327349A (zh) | 2016-08-30 | 2017-01-11 | 张琦 | 一种基于云计算的园林绿化精细化管理装置 |
JP2018033407A (ja) | 2016-09-01 | 2018-03-08 | ヤンマー株式会社 | 配車システム |
DE102016116461A1 (de) | 2016-09-02 | 2018-03-08 | Claas Saulgau Gmbh | Verfahren und Steuerungseinrichtung zum Betreiben eines landwirtschaftlichen Transportwagens sowie Transportwagen |
DE102016117757A1 (de) | 2016-09-21 | 2018-03-22 | Claas Selbstfahrende Erntemaschinen Gmbh | Feldhäcksler |
PL3298873T3 (pl) | 2016-09-21 | 2020-08-24 | Exel Industries | Urządzenie sterujące do pojazdu, odpowiadający mu pojazd i sposób |
DE102016118283A1 (de) | 2016-09-28 | 2018-03-29 | Claas Tractor Sas | Landwirtschaftliche Arbeitsmaschine |
DE102016118297A1 (de) | 2016-09-28 | 2018-03-29 | Claas Tractor Sas | Verfahren und System zur Bestimmung eines Betriebspunktes |
US10078890B1 (en) | 2016-09-29 | 2018-09-18 | CHS North LLC | Anomaly detection |
PT3518647T (pt) | 2016-09-29 | 2021-03-24 | Agro Intelligence Aps | Um sistema e um método para determinação de uma trajectória a ser seguida por um veículo de trabalho agrícola |
DE102016118651A1 (de) | 2016-09-30 | 2018-04-05 | Claas Selbstfahrende Erntemaschinen Gmbh | Selbstfahrende landwirtschaftliche Arbeitsmaschine |
US10165725B2 (en) | 2016-09-30 | 2019-01-01 | Deere & Company | Controlling ground engaging elements based on images |
CN106290800B (zh) | 2016-09-30 | 2018-10-12 | 长沙理工大学 | 一种土质边坡抗水流侵蚀能力模拟试验方法及装置 |
US20180092301A1 (en) | 2016-10-01 | 2018-04-05 | Deere & Company | Residue spread control using crop deflector commands input by the operator and satnav combine bearing |
US20180092302A1 (en) | 2016-10-01 | 2018-04-05 | Deere & Company | Residue spread control using operator input of wind direction and combine bearing |
ES2883327T3 (es) | 2016-10-18 | 2021-12-07 | Basf Agro Trademarks Gmbh | Planificación e implementación de medidas agrícolas |
EP3528613B1 (en) | 2016-10-24 | 2022-12-07 | Board of Trustees of Michigan State University | Method for mapping temporal and spatial sustainability of a cropping system |
JP6832828B2 (ja) | 2016-10-26 | 2021-02-24 | 株式会社クボタ | 走行経路決定装置 |
US11256999B2 (en) | 2016-10-28 | 2022-02-22 | Deere & Company | Methods and systems of forecasting the drying of an agricultural crop |
EP3315005B1 (en) | 2016-10-28 | 2022-04-06 | Deere & Company | Stereo vision system for managing the unloading of an agricultural material from a vehicle |
WO2018081759A1 (en) | 2016-10-31 | 2018-05-03 | Bayer Cropscience Lp | Method for mapping crop yields |
US10832351B2 (en) | 2016-11-01 | 2020-11-10 | Deere & Company | Correcting bias in agricultural parameter monitoring |
US10408645B2 (en) | 2016-11-01 | 2019-09-10 | Deere & Company | Correcting bias in parameter monitoring |
US10928821B2 (en) | 2016-11-04 | 2021-02-23 | Intel Corporation | Unmanned aerial vehicle-based systems and methods for generating landscape models |
BR112019009308B8 (pt) | 2016-11-07 | 2023-04-04 | Climate Corp | Implemento agrícola |
WO2018085095A1 (en) | 2016-11-07 | 2018-05-11 | The Climate Corporation | Work layer imaging and analysis for implement monitoring, control and operator feedback |
US10028451B2 (en) | 2016-11-16 | 2018-07-24 | The Climate Corporation | Identifying management zones in agricultural fields and generating planting plans for the zones |
US10398096B2 (en) | 2016-11-16 | 2019-09-03 | The Climate Corporation | Identifying management zones in agricultural fields and generating planting plans for the zones |
US20180146624A1 (en) | 2016-11-28 | 2018-05-31 | The Climate Corporation | Determining intra-field yield variation data based on soil characteristics data and satellite images |
US11320279B2 (en) | 2016-12-02 | 2022-05-03 | Kubota Corporation | Travel route management system and travel route determination device |
US10178823B2 (en) | 2016-12-12 | 2019-01-15 | Cnh Industrial Canada, Ltd. | Agricultural implement with automatic shank depth control |
CN106644663B (zh) | 2016-12-12 | 2023-07-21 | 江苏省海洋水产研究所 | 一种紫菜孢子计数用过滤装置及计数方法 |
WO2018116772A1 (ja) | 2016-12-19 | 2018-06-28 | 株式会社クボタ | 作業車自動走行システム |
JP6936356B2 (ja) | 2016-12-19 | 2021-09-15 | 株式会社クボタ | 作業車自動走行システム |
WO2018116770A1 (ja) | 2016-12-19 | 2018-06-28 | 株式会社クボタ | 作業車自動走行システム |
GB201621879D0 (en) | 2016-12-21 | 2017-02-01 | Branston Ltd | A crop monitoring system and method |
JP6615085B2 (ja) | 2016-12-22 | 2019-12-04 | 株式会社クボタ | 収穫機 |
KR101873657B1 (ko) | 2016-12-22 | 2018-08-03 | 현대건설주식회사 | 탄성파 속도를 이용한 성토지반 다짐특성 측정장치와 이를 활용한 다짐관리 방법 |
WO2018112615A1 (en) | 2016-12-22 | 2018-06-28 | Greentronics Ltd. | Systems and methods for automated tracking of harvested materials |
CN206330815U (zh) | 2017-01-06 | 2017-07-14 | 福建九邦环境检测科研有限公司 | 一种土壤检测用土壤快速压实器 |
US10255670B1 (en) | 2017-01-08 | 2019-04-09 | Dolly Y. Wu PLLC | Image sensor and module for agricultural crop improvement |
US10775796B2 (en) | 2017-01-10 | 2020-09-15 | Cnh Industrial America Llc | Aerial vehicle systems and methods |
DE102017200336A1 (de) | 2017-01-11 | 2018-07-12 | Deere & Company | Modellbasierte prädiktive Geschwindigkeitskontrolle einer Erntemaschine |
KR200485051Y1 (ko) | 2017-01-16 | 2017-11-22 | 서울특별시 | 다짐도 평가장치 |
US10699185B2 (en) | 2017-01-26 | 2020-06-30 | The Climate Corporation | Crop yield estimation using agronomic neural network |
JP6767892B2 (ja) | 2017-02-03 | 2020-10-14 | ヤンマーパワーテクノロジー株式会社 | 収穫量管理システム |
DE102017104009A1 (de) | 2017-02-27 | 2018-08-30 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliches Erntesystem |
US10315655B2 (en) | 2017-03-07 | 2019-06-11 | Deere & Company | Vehicle control based on soil compaction |
CN206515119U (zh) | 2017-03-10 | 2017-09-22 | 南京宁曦土壤仪器有限公司 | 电动击实仪 |
CN206515118U (zh) | 2017-03-10 | 2017-09-22 | 南京宁曦土壤仪器有限公司 | 多功能电动击实仪 |
JP6888340B2 (ja) * | 2017-03-13 | 2021-06-16 | 井関農機株式会社 | 農作業車の作業地地図データ作成装置 |
JP7075787B2 (ja) | 2017-03-14 | 2022-05-26 | 株式会社フジタ | トラフィカビリティ推定装置およびプログラム |
DE102017105496A1 (de) | 2017-03-15 | 2018-09-20 | Amazonen-Werke H. Dreyer Gmbh & Co. Kg | Landwirtschaftliches Terminal |
DE102017105490A1 (de) | 2017-03-15 | 2018-09-20 | Amazonen-Werke H. Dreyer Gmbh & Co. Kg | Landwirtschaftliches Terminal |
DE102017204511A1 (de) | 2017-03-17 | 2018-09-20 | Deere & Company | Landwirtschaftliche Erntemaschine zur Bearbeitung und Förderung von Erntegut mit einer Sensoranordnung zur Erkennung von unerwünschten Gefahr- und Inhaltsstoffen im Erntegut |
US20180271015A1 (en) | 2017-03-21 | 2018-09-27 | Blue River Technology Inc. | Combine Harvester Including Machine Feedback Control |
CN206616118U (zh) | 2017-03-21 | 2017-11-07 | 嵊州市晟祥盈净水设备有限公司 | 一种多层次深度净水设备 |
DE102017205293A1 (de) | 2017-03-29 | 2018-10-04 | Deere & Company | Verfahren und Vorrichtung zur Bekämpfung unerwünschter Lebewesen auf einem Feld |
US10152035B2 (en) | 2017-04-12 | 2018-12-11 | Bayer Ag | Value added pest control system with smart learning |
CN206906093U (zh) | 2017-04-21 | 2018-01-19 | 青岛科技大学 | 一种岩土试件压实过程可以测量重量的装置 |
RU2017114139A (ru) | 2017-04-24 | 2018-10-24 | Общество с ограниченной ответственностью "Завод инновационных продуктов "КТЗ" | Способ управления уборочным комбайном |
AU2018260716B2 (en) | 2017-04-26 | 2020-03-19 | The Climate Corporation | Method for leveling sensor readings across an implement |
US10952374B2 (en) | 2017-05-01 | 2021-03-23 | Cnh Industrial America Llc | System and method for monitoring residue output from a harvester |
US10548260B2 (en) | 2017-05-04 | 2020-02-04 | Dawn Equipment Company | System for automatically setting the set point of a planter automatic down pressure control system with a seed furrow sidewall compaction measurement device |
DE102017109849A1 (de) | 2017-05-08 | 2018-11-08 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Abarbeitung eines landwirtschaftlichen Ernteprozesses |
US10531603B2 (en) | 2017-05-09 | 2020-01-14 | Cnh Industrial America Llc | Agricultural system |
BE1024513B1 (nl) | 2017-05-09 | 2018-03-21 | Cnh Industrial Belgium Nv | Landbouwsysteem |
BE1024475B1 (nl) | 2017-05-09 | 2018-03-01 | Cnh Industrial Belgium Nv | Werkwijze voor het oogsten en oogsttoestel |
US10317272B2 (en) | 2017-05-17 | 2019-06-11 | Deere & Company | Automatic wireless wagon detection apparatus and method |
CN206696107U (zh) | 2017-05-18 | 2017-12-01 | 贵州省山地农业机械研究所 | 多用途土壤坚实度测量装置 |
DE102017208442A1 (de) | 2017-05-18 | 2018-11-22 | Deere & Company | Selbstlernende, Korrektureingaben berücksichtigende Anordnung zur selbsttätigen Kontrolle eines Arbeitsparameters einer Erntegutförder- und/oder -bearbeitungseinrichtung |
US10481142B2 (en) | 2017-05-25 | 2019-11-19 | Deere & Company | Sensor system for determining soil characteristics |
US10537062B2 (en) | 2017-05-26 | 2020-01-21 | Cnh Industrial America Llc | Aerial vehicle systems and methods |
CN207079558U (zh) | 2017-05-31 | 2018-03-09 | 中铁二十一局集团第六工程有限公司 | 高速铁路路基沉降监测元件保护装置 |
BE1025282B1 (nl) | 2017-06-02 | 2019-01-11 | Cnh Industrial Belgium Nv | Draagvermogen van de grond |
SE542261C2 (en) | 2017-06-05 | 2020-03-31 | Scania Cv Ab | Method and control arrangement for loading |
US9984455B1 (en) | 2017-06-05 | 2018-05-29 | Hana Resources, Inc. | Organism growth prediction system using drone-captured images |
CN206941558U (zh) | 2017-06-16 | 2018-01-30 | 中石化中原建设工程有限公司 | 一种公路灰土基层压实度测定取样机 |
US10459447B2 (en) | 2017-06-19 | 2019-10-29 | Cnh Industrial America Llc | System and method for generating partitioned swaths |
US10437243B2 (en) | 2017-06-19 | 2019-10-08 | Deere & Company | Combine harvester control interface for operator and/or remote user |
US10310455B2 (en) | 2017-06-19 | 2019-06-04 | Deere & Company | Combine harvester control and communication system |
US11589507B2 (en) | 2017-06-19 | 2023-02-28 | Deere & Company | Combine harvester control interface for operator and/or remote user |
US20180359917A1 (en) | 2017-06-19 | 2018-12-20 | Deere & Company | Remote control of settings on a combine harvester |
US10314232B2 (en) | 2017-06-21 | 2019-06-11 | Cnh Industrial America Llc | System and method for destroying seeds in crop residue prior to discharge from agricultural harvester |
WO2018235486A1 (ja) | 2017-06-23 | 2018-12-27 | 株式会社クボタ | 収穫機 |
JP6887323B2 (ja) | 2017-06-23 | 2021-06-16 | 株式会社クボタ | コンバイン及び圃場営農マップ生成方法 |
US11589508B2 (en) | 2017-06-26 | 2023-02-28 | Kubota Corporation | Field map generating system |
JP6827373B2 (ja) | 2017-06-26 | 2021-02-10 | 株式会社クボタ | コンバイン |
DE102017006844B4 (de) | 2017-07-18 | 2019-04-11 | Bomag Gmbh | Bodenverdichter und Verfahren zur Bestimmung von Untergrundeigenschaften mittels eines Bodenverdichters |
US10757859B2 (en) | 2017-07-20 | 2020-09-01 | Deere & Company | System for optimizing platform settings based on crop state classification |
US11263707B2 (en) | 2017-08-08 | 2022-03-01 | Indigo Ag, Inc. | Machine learning in agricultural planting, growing, and harvesting contexts |
DK179454B1 (en) | 2017-08-17 | 2018-10-19 | Agro Intelligence Aps | A system for controlling soil compaction caused by wheels, and use of such system |
US10512217B2 (en) * | 2017-08-23 | 2019-12-24 | Deere & Company | Metering flow of grain to a cleaning device |
US10438302B2 (en) | 2017-08-28 | 2019-10-08 | The Climate Corporation | Crop disease recognition and yield estimation |
CN107576674A (zh) | 2017-08-30 | 2018-01-12 | 曲阜师范大学 | 一种基于探地雷达测量土壤压实程度的方法 |
US11140807B2 (en) | 2017-09-07 | 2021-10-12 | Deere & Company | System for optimizing agricultural machine settings |
WO2019046967A1 (en) | 2017-09-11 | 2019-03-14 | Farmers Edge Inc. | GENERATING A YIELD CARD FOR AN AGRICULTURAL FIELD USING REGRESSION AND CLASSIFICATION PROCESSES |
US10368488B2 (en) | 2017-09-18 | 2019-08-06 | Cnh Industrial America Llc | System and method for sensing harvested crop levels within an agricultural harvester |
DE102017121654A1 (de) | 2017-09-19 | 2019-03-21 | Claas Tractor Sas | Landwirtschaftliche Arbeitsmaschine |
US10883437B2 (en) | 2017-09-19 | 2021-01-05 | Doug Abolt | Horsepower on demand system |
CN107736088B (zh) | 2017-09-22 | 2020-06-26 | 江苏大学 | 一种用于精整地土壤密实度测量与自动调节系统 |
DE102017122300A1 (de) | 2017-09-26 | 2019-03-28 | Claas Selbstfahrende Erntemaschinen Gmbh | Arbeitsmaschine |
DE102017122710A1 (de) | 2017-09-29 | 2019-04-04 | Claas E-Systems Kgaa Mbh & Co. Kg | Verfahren für den Betrieb einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine |
DE102017122711A1 (de) | 2017-09-29 | 2019-04-04 | Claas E-Systems Kgaa Mbh & Co. Kg | Verfahren für den Betrieb einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine |
DE102017122712A1 (de) | 2017-09-29 | 2019-04-04 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren für den Betrieb einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine |
CN111386031A (zh) | 2017-10-02 | 2020-07-07 | 精密种植有限责任公司 | 用于土壤和种子监测的系统和设备 |
US10423850B2 (en) | 2017-10-05 | 2019-09-24 | The Climate Corporation | Disease recognition from images having a large field of view |
CN107795095A (zh) | 2017-10-10 | 2018-03-13 | 上海科城建设工程有限公司 | 一种预制混凝土地坪的连接工艺 |
US10517215B2 (en) | 2017-10-12 | 2019-12-31 | Deere & Company | Roll center for attachment frame control arms |
US11308735B2 (en) | 2017-10-13 | 2022-04-19 | Deere & Company | Unmanned aerial vehicle (UAV)-assisted worksite data acquisition |
BR112020007356A2 (pt) | 2017-10-17 | 2020-10-06 | Precision Planting Llc | sistema de detecção de solos e implementos para detectar diferentes parâmetros de solo |
US12026944B2 (en) | 2017-10-24 | 2024-07-02 | Basf Agro Trademarks Gmbh | Generation of digital cultivation maps |
CN107957408B (zh) | 2017-10-30 | 2021-01-12 | 汕头大学 | 一种利用光反射理论测量土壤吸力的方法 |
EP3704443A1 (en) | 2017-10-31 | 2020-09-09 | Agjunction LLC | Three-dimensional terrain mapping |
CN108009542B (zh) | 2017-11-01 | 2021-06-15 | 华中农业大学 | 油菜大田环境下杂草图像分割方法 |
US10914054B2 (en) | 2017-11-07 | 2021-02-09 | ModernAg, Inc. | System and method for measurement and abatement of compaction and erosion of soil covering buried pipelines |
US11568340B2 (en) | 2017-11-09 | 2023-01-31 | Climate Llc | Hybrid seed selection and seed portfolio optimization by field |
DK179951B1 (en) | 2017-11-11 | 2019-10-24 | Agro Intelligence Aps | A system and a method for optimizing a harvesting operation |
US10853377B2 (en) | 2017-11-15 | 2020-12-01 | The Climate Corporation | Sequential data assimilation to improve agricultural modeling |
US10521526B2 (en) | 2017-11-20 | 2019-12-31 | Nfl Players, Inc. | Hybrid method of assessing and predicting athletic performance |
US11151500B2 (en) | 2017-11-21 | 2021-10-19 | The Climate Corporation | Digital modeling of disease on crops on agronomic fields |
DE102017221134A1 (de) | 2017-11-27 | 2019-05-29 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Betreiben eines mobilen Systems |
US10412889B2 (en) | 2017-12-05 | 2019-09-17 | Deere & Company | Combine harvester control information for a remote user with visual feed |
US11197405B2 (en) | 2017-12-07 | 2021-12-14 | Kubota Corporation | Harvesting machine and travel mode switching method |
WO2019109191A1 (en) | 2017-12-08 | 2019-06-13 | Camso Inc. | Systems and methods for monitoring off-road vehicles |
CN207567744U (zh) | 2017-12-08 | 2018-07-03 | 山西省交通科学研究院 | 公路灰土基层压实度测定取样机 |
DE102017222403A1 (de) | 2017-12-11 | 2019-06-13 | Deere & Company | Verfahren und Vorrichtung zur Kartierung eventuell in einem Feld vorhandener Fremdkörper |
WO2019117094A1 (ja) | 2017-12-15 | 2019-06-20 | 株式会社クボタ | スリップ判定システム、走行経路生成システム及び圃場作業車 |
US10660268B2 (en) | 2017-12-16 | 2020-05-26 | Deere & Company | Harvester with electromagnetic plane crop material flow sensor |
US11317557B2 (en) | 2017-12-18 | 2022-05-03 | Kubota Corporation | Automatic steering system and automatic steering method |
EP3498074A1 (en) | 2017-12-18 | 2019-06-19 | DINAMICA GENERALE S.p.A | An harvest analysis system intended for use in a machine |
KR20200096496A (ko) | 2017-12-18 | 2020-08-12 | 가부시끼 가이샤 구보다 | 콤바인 제어 시스템, 콤바인 제어 프로그램, 콤바인 제어 프로그램을 기록한 기록 매체, 콤바인 제어 방법, 수확기 제어 시스템, 수확기 제어 프로그램, 수확기 제어 프로그램을 기록한 기록 매체, 수확기 제어 방법 |
WO2019124225A1 (ja) | 2017-12-18 | 2019-06-27 | 株式会社クボタ | 農作業車、作業車衝突警戒システム及び作業車 |
KR20200096497A (ko) | 2017-12-18 | 2020-08-12 | 가부시끼 가이샤 구보다 | 자동 주행 시스템, 자동 주행 관리 프로그램, 자동 주행 관리 프로그램을 기록한 기록 매체, 자동 주행 관리 방법, 영역 결정 시스템, 영역 결정 프로그램, 영역 결정 프로그램을 기록한 기록 매체, 영역 결정 방법, 콤바인 제어 시스템, 콤바인 제어 프로그램, 콤바인 제어 프로그램을 기록한 기록 매체, 콤바인 제어 방법 |
KR20200096489A (ko) | 2017-12-20 | 2020-08-12 | 가부시끼 가이샤 구보다 | 작업차, 작업차를 위한 주행 경로 선택 시스템, 및 주행 경로 산출 시스템 |
CN208047351U (zh) | 2017-12-26 | 2018-11-06 | 南安市振邦家庭农场有限公司 | 一种高效率的玉米脱粒机 |
US10568261B2 (en) | 2017-12-28 | 2020-02-25 | Cnh Industrial America Llc | Dynamic combine fire risk index and display |
DK179768B1 (en) | 2017-12-29 | 2019-05-15 | Agro Intelligence Aps | Apparatus and method for improving the conditioning quality of grass and clover prior to the collecting thereof |
DK179878B1 (en) | 2017-12-29 | 2019-08-16 | Agro Intelligence Aps | Apparatus and method for improving the quality of grass and clover by tedding |
DK179771B1 (en) | 2017-12-29 | 2019-05-15 | Agro Intelligence Aps | Apparatus and method for improving the yield of grass and clover harvested from an agricultural field |
CN107941286A (zh) | 2018-01-09 | 2018-04-20 | 东北农业大学 | 一种便携式田间多参数测量装置 |
US10477756B1 (en) | 2018-01-17 | 2019-11-19 | Cibo Technologies, Inc. | Correcting agronomic data from multiple passes through a farmable region |
US10909368B2 (en) | 2018-01-23 | 2021-02-02 | X Development Llc | Crop type classification in images |
US10687466B2 (en) | 2018-01-29 | 2020-06-23 | Cnh Industrial America Llc | Predictive header height control system |
CN108304796A (zh) | 2018-01-29 | 2018-07-20 | 深圳春沐源控股有限公司 | 一种智能杂草警示方法及系统 |
JP7101488B2 (ja) | 2018-01-30 | 2022-07-15 | 株式会社クボタ | 作業車管理システム |
JP2019146506A (ja) | 2018-02-26 | 2019-09-05 | 井関農機株式会社 | コンバインの自動走行制御装置 |
DE102018104286A1 (de) | 2018-02-26 | 2019-08-29 | Claas Selbstfahrende Erntemaschinen Gmbh | Selbstfahrender Feldhäcksler |
US11006577B2 (en) | 2018-02-26 | 2021-05-18 | Cnh Industrial America Llc | System and method for adjusting operating parameters of an agricultural harvester based on estimated crop volume |
DE102018001551A1 (de) | 2018-02-28 | 2019-08-29 | Class Selbstfahrende Erntemaschinen Gmbh | Selbstfahrende Erntemaschine und Betriebsverfahren dafür |
US10830634B2 (en) | 2018-03-06 | 2020-11-10 | Deere & Company | Fill level detection and control |
CN208013131U (zh) | 2018-03-16 | 2018-10-26 | 云南群林科技有限公司 | 一种基于多传感器的农业信息采集系统 |
CN111868782B (zh) | 2018-04-17 | 2024-01-02 | 赫尔实验室有限公司 | 使用彩色图像的盲源分离确定农作物残茬分数的系统和方法 |
DE102018206507A1 (de) | 2018-04-26 | 2019-10-31 | Deere & Company | Schneidwerk mit selbsttätiger Einstellung der Haspelzinkenorientierung |
US11240959B2 (en) | 2018-04-30 | 2022-02-08 | Deere & Company | Adaptive forward-looking biomass conversion and machine control during crop harvesting operations |
EP3563654B1 (en) | 2018-05-02 | 2022-12-21 | AGCO Corporation | Automatic header control simulation |
BE1025780B1 (nl) | 2018-05-07 | 2019-07-08 | Cnh Industrial Belgium Nv | Systeem en werkwijze voor het lokaliseren van een aanhangwagen ten opzichte van een landbouwmachine |
US10820516B2 (en) | 2018-05-08 | 2020-11-03 | Cnh Industrial America Llc | System and method for monitoring the amount of plant materials entering an agricultural harvester |
DE102018111076A1 (de) | 2018-05-08 | 2019-11-14 | Claas Selbstfahrende Erntemaschinen Gmbh | Mähdrescher |
DE102018111077A1 (de) | 2018-05-08 | 2019-11-14 | Claas Selbstfahrende Erntemaschinen Gmbh | Mähdrescher sowie Verfahren zum Betreiben eines Mähdreschers |
CN108614089A (zh) | 2018-05-09 | 2018-10-02 | 重庆交通大学 | 压实土体冻融和风化环境模拟系统及其试验方法 |
US11641790B2 (en) | 2018-05-09 | 2023-05-09 | Deere & Company | Method of planning a path for a vehicle having a work tool and a vehicle path planning system |
US10782672B2 (en) | 2018-05-15 | 2020-09-22 | Deere & Company | Machine control system using performance score based setting adjustment |
DE102018111746A1 (de) | 2018-05-16 | 2019-11-21 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Arbeitsmaschine |
US20190351765A1 (en) | 2018-05-18 | 2019-11-21 | Cnh Industrial America Llc | System and method for regulating the operating distance between work vehicles |
JP7039026B2 (ja) | 2018-05-28 | 2022-03-22 | ヤンマーパワーテクノロジー株式会社 | 地図情報生成システム、および作業支援システム |
US10813288B2 (en) | 2018-05-31 | 2020-10-27 | Deere & Company | Automated belt speed control |
DE102018113327A1 (de) | 2018-06-05 | 2019-12-05 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Steuerung einer landwirtschaftlichen Erntekampagne |
CN108881825A (zh) | 2018-06-14 | 2018-11-23 | 华南农业大学 | 基于Jetson TK1的水稻杂草无人机监控系统及其监控方法 |
US11064653B2 (en) | 2018-06-18 | 2021-07-20 | Ag Leader Technology | Agricultural systems having stalk sensors and data visualization systems and related devices and methods |
US11419261B2 (en) | 2018-06-25 | 2022-08-23 | Deere & Company | Prescription cover crop seeding with combine |
US11395452B2 (en) | 2018-06-29 | 2022-07-26 | Deere & Company | Method of mitigating compaction and a compaction mitigation system |
DE102018116578A1 (de) | 2018-07-09 | 2020-01-09 | Claas Selbstfahrende Erntemaschinen Gmbh | Erntesystem |
US20200019159A1 (en) | 2018-07-11 | 2020-01-16 | Raven Indudstries, Inc. | Agricultural control and interface system |
DE102018116817A1 (de) | 2018-07-11 | 2020-01-16 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Steuerung einer Datenübertragung zwischen einer landwirtschaftlichen Arbeitsmaschine und einer externen Sende-/Empfangseinheit |
DE102018116990A1 (de) | 2018-07-13 | 2020-01-16 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Arbeitsmaschine |
DE102018212150A1 (de) | 2018-07-20 | 2020-01-23 | Deere & Company | Verfahren zur Energieversorgung eines kabelgebundenen betriebenen Feldhäckslers |
US11277956B2 (en) | 2018-07-26 | 2022-03-22 | Bear Flag Robotics, Inc. | Vehicle controllers for agricultural and industrial applications |
AU2019310030A1 (en) | 2018-07-26 | 2021-02-11 | Climate Llc | Generating agronomic yield maps from field health imagery |
WO2020026578A1 (ja) | 2018-07-31 | 2020-02-06 | 株式会社クボタ | 走行経路生成システム、走行経路生成方法、走行経路生成プログラム、及び走行経路生成プログラムが記録されている記録媒体と、作業管理システム、作業管理方法、作業管理プログラム、及び作業管理プログラムが記録されている記録媒体と、収穫機、走行パターン作成システム、走行パターン作成プログラム、走行パターン作成プログラムが記録されている記録媒体、及び走行パターン作成方法 |
WO2020026651A1 (ja) | 2018-08-01 | 2020-02-06 | 株式会社クボタ | 収穫機、走行システム、走行方法、走行プログラム、及び、記憶媒体 |
WO2020026650A1 (ja) | 2018-08-01 | 2020-02-06 | 株式会社クボタ | 自動走行制御システム、自動走行制御方法、自動走行制御プログラム、及び、記憶媒体 |
JP6958508B2 (ja) | 2018-08-02 | 2021-11-02 | 井関農機株式会社 | 収穫作業システム |
US11234357B2 (en) | 2018-08-02 | 2022-02-01 | Cnh Industrial America Llc | System and method for monitoring field conditions of an adjacent swath within a field |
CN112585424A (zh) | 2018-08-06 | 2021-03-30 | 株式会社久保田 | 外形形状计算系统、外形形状计算方法、外形形状计算程序、以及记录有外形形状计算程序的记录介质、田地地图制作系统、田地地图制作程序、记录有田地地图制作程序的记录介质、以及田地地图制作方法 |
JP7034866B2 (ja) | 2018-08-20 | 2022-03-14 | 株式会社クボタ | 収穫機 |
US11154008B2 (en) | 2018-08-20 | 2021-10-26 | Cnh Industrial America Llc | System and method for steering an agricultural harvester |
WO2020038810A1 (en) | 2018-08-22 | 2020-02-27 | Agco International Gmbh | Harvest logistics |
EP3840560A1 (en) | 2018-08-22 | 2021-06-30 | Precision Planting LLC | Implements and application units having sensors for sensing data to determine agricultural plant characteristics of agricultural fields |
DE102018120741A1 (de) | 2018-08-24 | 2020-02-27 | Claas Selbstfahrende Erntemaschinen Gmbh | Mähdrescher |
KR20210039452A (ko) | 2018-08-29 | 2021-04-09 | 가부시끼 가이샤 구보다 | 자동 조타 시스템 및 수확기, 자동 조타 방법, 자동 조타 프로그램, 기록 매체 |
JP7121598B2 (ja) | 2018-08-31 | 2022-08-18 | 三菱マヒンドラ農機株式会社 | 収穫機 |
CA3108902A1 (en) | 2018-08-31 | 2020-03-05 | The Climate Corporation | Subfield moisture model improvement using overland flow modeling with shallow water computations |
US11197417B2 (en) | 2018-09-18 | 2021-12-14 | Deere & Company | Grain quality control system and method |
US20200090094A1 (en) | 2018-09-19 | 2020-03-19 | Deere & Company | Harvester control system |
US11475359B2 (en) | 2018-09-21 | 2022-10-18 | Climate Llc | Method and system for executing machine learning algorithms on a computer configured on an agricultural machine |
DE102018123478A1 (de) | 2018-09-24 | 2020-03-26 | Claas Tractor Sas | Landwirtschaftliche Arbeitsmaschine |
EP3863394A2 (en) | 2018-10-11 | 2021-08-18 | Mtd Products Inc. | Localized data mapping for indoor and outdoor applications |
US11676244B2 (en) | 2018-10-19 | 2023-06-13 | Mineral Earth Sciences Llc | Crop yield prediction at field-level and pixel-level |
US10729067B2 (en) | 2018-10-20 | 2020-08-04 | Deere & Company | Biomass impact sensor having a conformal encasement enveloping a pressure sensitive film |
AU2019368545A1 (en) | 2018-10-24 | 2021-05-06 | Bitstrata Systems Inc. | Machine operational state and material movement tracking |
US11178818B2 (en) | 2018-10-26 | 2021-11-23 | Deere & Company | Harvesting machine control system with fill level processing based on yield data |
US11467605B2 (en) | 2019-04-10 | 2022-10-11 | Deere & Company | Zonal machine control |
US11240961B2 (en) | 2018-10-26 | 2022-02-08 | Deere & Company | Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity |
US11079725B2 (en) | 2019-04-10 | 2021-08-03 | Deere & Company | Machine control using real-time model |
US11399462B2 (en) | 2018-10-31 | 2022-08-02 | Cnh Industrial America Llc | System and method for calibrating alignment of work vehicles |
US11564349B2 (en) | 2018-10-31 | 2023-01-31 | Deere & Company | Controlling a machine based on cracked kernel detection |
US11206763B2 (en) | 2018-10-31 | 2021-12-28 | Deere & Company | Weed seed based harvester working member control |
US20200128738A1 (en) | 2018-10-31 | 2020-04-30 | Cnh Industrial America Llc | System and method for calibrating alignment of work vehicles |
US10986778B2 (en) | 2018-10-31 | 2021-04-27 | Deere & Company | Weed seed devitalizer control |
US20200133262A1 (en) | 2018-10-31 | 2020-04-30 | Cnh Industrial America Llc | System and method for calibrating alignment of work vehicles |
US11175170B2 (en) | 2018-11-07 | 2021-11-16 | Trimble Inc. | Estimating yield of agricultural crops |
US10996656B2 (en) | 2018-11-08 | 2021-05-04 | Premier Crop Systems, LLC | System and method for aggregating test plot results based on agronomic environments |
US20200146203A1 (en) | 2018-11-13 | 2020-05-14 | Cnh Industrial America Llc | Geographic coordinate based setting adjustment for agricultural implements |
CN109357804B (zh) | 2018-11-13 | 2023-09-19 | 西南交通大学 | 一种压实土水平应力测试装置及测试方法 |
CN112996378B (zh) | 2018-11-15 | 2023-04-18 | 株式会社久保田 | 收割机以及路径设定系统 |
CN111201879B (zh) | 2018-11-21 | 2023-10-03 | 金华中科艾特智能科技研究所有限公司 | 基于图像识别的粮食收割、运输一体化装载装置/方法 |
KR20210093873A (ko) | 2018-11-26 | 2021-07-28 | 가부시끼 가이샤 구보다 | 농작업기, 농작업기 제어 프로그램, 농작업기 제어 프로그램을 기록한 기록 매체, 농작업기 제어 방법, 수확기, 수확기 제어 프로그램, 수확기 제어 프로그램을 기록한 기록 매체, 수확기 제어 방법 |
US11483970B2 (en) | 2018-11-28 | 2022-11-01 | Cnh Industrial America Llc | System and method for adjusting the orientation of an agricultural harvesting implement based on implement height |
US11067994B2 (en) | 2018-12-06 | 2021-07-20 | Deere & Company | Machine control through active ground terrain mapping |
DE102018131142A1 (de) | 2018-12-06 | 2020-06-10 | Claas Selbstfahrende Erntemaschinen Gmbh | Landwirtschaftliche Arbeitsmaschine sowie Verfahren zum Betreiben einer landwirtschaftlichen Arbeitsmaschine |
DE102018132144A1 (de) | 2018-12-13 | 2020-06-18 | Claas E-Systems Gmbh | Landwirtschaftliche Arbeitssystem |
EP3671590A1 (en) | 2018-12-21 | 2020-06-24 | AGCO Corporation | Method of unloading batch grain quantities for harvesting machines |
JP7182471B2 (ja) | 2019-01-11 | 2022-12-02 | 株式会社クボタ | 作業管理システム及び作業機 |
CN109485353A (zh) | 2019-01-18 | 2019-03-19 | 安徽马钢嘉华新型建材有限公司 | 一种新型钢渣混合土道路基层材料及制备方法 |
DE102019200794A1 (de) | 2019-01-23 | 2020-07-23 | Amazonen-Werke H. Dreyer Gmbh & Co. Kg | System und Verfahren zur Identifizierung von Zeitfenstern und Flächenbereichen eines landwirtschaftlich genutzten Feldes mit günstigen Bedingungen für einen wirkungsvollen und umweltgerechten Einsatz und/oder die Befahrbarkeit von Landmaschinen |
CN109633127B (zh) | 2019-01-24 | 2024-06-04 | 山东省农业机械科学研究院 | 一种土壤压实度测定机构、装置及方法 |
US20200265527A1 (en) | 2019-02-15 | 2020-08-20 | Growers Edge Financial, Inc. | Agronomic prescription product |
CN109961024A (zh) | 2019-03-08 | 2019-07-02 | 武汉大学 | 基于深度学习的小麦田间杂草检测方法 |
CN109763476B (zh) | 2019-03-12 | 2024-06-28 | 上海兰德公路工程咨询设计有限公司 | 一种快速检测填土路基的压实度的装置及方法 |
JP7062610B2 (ja) | 2019-03-26 | 2022-05-06 | ヤンマーパワーテクノロジー株式会社 | 作業制御システム |
CN210585958U (zh) | 2019-03-28 | 2020-05-22 | 宁夏大学 | 霉变玉米识别与分拣的辅助装置 |
DE102019108505A1 (de) | 2019-04-02 | 2020-10-08 | Claas E-Systems Gmbh | Landwirtschaftliche Arbeitsmaschine |
US10677637B1 (en) | 2019-04-04 | 2020-06-09 | Scale Tec, Ltd. | Scale controller with dynamic weight measurement |
CN110232494A (zh) | 2019-04-09 | 2019-09-13 | 丰疆智能科技股份有限公司 | 物流车调度系统和方法 |
CN110232493B (zh) | 2019-04-09 | 2021-07-30 | 丰疆智能科技股份有限公司 | 收割机和物流车智能配合系统和方法 |
US11856882B2 (en) | 2019-04-10 | 2024-01-02 | Kansas Stte University Research Foundation | Autonomous robot system for steep terrain farming operations |
US11778945B2 (en) | 2019-04-10 | 2023-10-10 | Deere & Company | Machine control using real-time model |
US11234366B2 (en) | 2019-04-10 | 2022-02-01 | Deere & Company | Image selection for machine control |
US11016049B2 (en) | 2019-04-17 | 2021-05-25 | Deere & Company | Agricultural moisture and test weight sensor with co-planar electrodes |
US20200337232A1 (en) | 2019-04-24 | 2020-10-29 | Deere & Company | Information inference for agronomic data generation in sugarcane applications |
FR3095572B1 (fr) | 2019-05-02 | 2023-03-17 | Agreenculture | Procédé de gestion de flottes de véhicules agricoles autoguidés |
DE102019206734A1 (de) | 2019-05-09 | 2020-11-12 | Deere & Company | Sämaschine mit vorausschauender Ansteuerung |
US10703277B1 (en) | 2019-05-16 | 2020-07-07 | Cnh Industrial America Llc | Heads-up display for an agricultural combine |
US11674288B2 (en) | 2019-05-30 | 2023-06-13 | Deere & Company | System and method for obscurant mitigation |
DE102019114872A1 (de) | 2019-06-03 | 2020-12-03 | Horsch Leeb Application Systems Gmbh | System und Verfahren zur Simulation und/oder Konfiguration eines mittels einer landwirtschaftlichen Arbeitsmaschine durchzuführenden Arbeitsprozesses und landwirtschaftliche Arbeitsmaschine |
US11457563B2 (en) | 2019-06-27 | 2022-10-04 | Deere & Company | Harvester stability monitoring and control |
CN110262287A (zh) | 2019-07-14 | 2019-09-20 | 南京林业大学 | 用于收获机械割台高度自动控制的冠层高度在线探测方法 |
DE102019119110A1 (de) | 2019-07-15 | 2021-01-21 | Claas Selbstfahrende Erntemaschinen Gmbh | Verfahren zur Abarbeitung eines landwirtschaftlichen Arbeitsprozesses auf einem Feld |
JP2019216744A (ja) | 2019-09-03 | 2019-12-26 | ヤンマー株式会社 | コンバイン |
US11904871B2 (en) | 2019-10-30 | 2024-02-20 | Deere & Company | Predictive machine control |
CN110720302A (zh) | 2019-11-29 | 2020-01-24 | 河南瑞创通用机械制造有限公司 | 一种谷物收获机智能调节系统及其控制方法 |
US11800829B2 (en) | 2019-12-17 | 2023-10-31 | Deere & Company | Work machine zone generation and control system with geospatial constraints |
US11540447B2 (en) | 2019-12-17 | 2023-01-03 | Deere & Company | Predictive crop characteristic mapping for product application |
US11641801B2 (en) | 2020-04-21 | 2023-05-09 | Deere & Company | Agricultural harvesting machine control using machine learning for variable delays |
CN111406505A (zh) | 2020-04-30 | 2020-07-14 | 江苏大学 | 一种联合收获机粮箱剩余容量及剩余行走距离监测装置和方法 |
CN111667017B (zh) * | 2020-06-17 | 2023-02-28 | 中国科学院合肥物质科学研究院 | 一种联合收割机喂入量预测系统及其预测方法 |
AU2021296123A1 (en) | 2020-06-25 | 2023-01-19 | The Toro Company | Turf management systems and methods |
-
2020
- 2020-10-09 US US17/067,183 patent/US11889787B2/en active Active
-
2021
- 2021-08-03 DE DE102021120069.5A patent/DE102021120069A1/de active Pending
- 2021-08-17 BR BR102021016281-3A patent/BR102021016281A2/pt unknown
- 2021-08-30 CN CN202111008329.9A patent/CN114303587A/zh active Pending
-
2023
- 2023-12-12 US US18/536,883 patent/US20240122103A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE102021120069A1 (de) | 2022-04-14 |
US20220110246A1 (en) | 2022-04-14 |
US20240122103A1 (en) | 2024-04-18 |
US11889787B2 (en) | 2024-02-06 |
CN114303587A (zh) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12035648B2 (en) | Predictive weed map generation and control system | |
US11653588B2 (en) | Yield map generation and control system | |
BR102021017199A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola | |
BR102021016281A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional | |
BR102021015171A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021016550A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021016552A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional | |
EP3861842B1 (en) | Predictive weed map generation and control system | |
BR102021015207A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
US11845449B2 (en) | Map generation and control system | |
US12080062B2 (en) | Predictive map generation based on seeding characteristics and control | |
US11895948B2 (en) | Predictive map generation and control based on soil properties | |
BR102021017139A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021016289A2 (pt) | Máquina de trabalho agríola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
US20230217857A1 (en) | Predictive map generation and control | |
BR102021015003A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional | |
BR102021017182A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021017308A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para controlar uma máquina de trabalho agrícola | |
BR102021023437A2 (pt) | Método para controlar uma máquina de trabalho agrícola, e, máquina de trabalho agrícola campo da descrição | |
BR102021017201A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional | |
BR102021017151A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola | |
US11650587B2 (en) | Predictive power map generation and control system | |
BR102021017555A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola | |
BR102021001208A2 (pt) | Máquina de trabalho agrícola, e, método implementado por computador para gerar um mapa agrícola preditivo funcional | |
BR102022005631A2 (pt) | Sistema agrícola, e, método implementado por computador para gerar um mapa de característica ambiental preditivo funcional |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B03A | Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette] |