WO2011108596A1 - リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 - Google Patents

リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 Download PDF

Info

Publication number
WO2011108596A1
WO2011108596A1 PCT/JP2011/054779 JP2011054779W WO2011108596A1 WO 2011108596 A1 WO2011108596 A1 WO 2011108596A1 JP 2011054779 W JP2011054779 W JP 2011054779W WO 2011108596 A1 WO2011108596 A1 WO 2011108596A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium ion
electrode active
ion battery
lithium
Prior art date
Application number
PCT/JP2011/054779
Other languages
English (en)
French (fr)
Inventor
健太郎 岡本
梶谷 芳男
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to EP11750705.3A priority Critical patent/EP2544273A4/en
Priority to US13/582,113 priority patent/US9225020B2/en
Priority to JP2012503218A priority patent/JPWO2011108596A1/ja
Priority to CN201180012094.9A priority patent/CN102782909B/zh
Priority to KR1020127023307A priority patent/KR101450421B1/ko
Publication of WO2011108596A1 publication Critical patent/WO2011108596A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/66Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.
  • Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium-ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those used in conventional mobile phones and personal computers, and high capacity and rate characteristics are especially emphasized. .
  • Patent Document 1 discloses a lithium composed of a composite oxide represented by the general formula Li w Ni x Co y Al z O 2.
  • Patent Document 2 the negative electrode, positive electrode, the reversibly plurality of charging and discharging that can cell comprising the non-aqueous electrolyte containing a lithium salt, as the positive electrode active material, the general formula AwDvNi x Al y N z O 2 (However, A is at least one selected from alkali metals, D is at least one selected from Mg and B, and N is Si, Ca, Cu, P, In, Sn, Mo, Nb, Y, It represents at least one selected from Bi and Ga, and w, v, x, y, and z are 0.05 ⁇ w ⁇ 1.2, 0.001 ⁇ v ⁇ 0.2, and 0.5 ⁇ x ⁇ , respectively.
  • an object of the present invention is to provide a positive electrode active material for a lithium ion battery having high capacity and good rate characteristics.
  • the present inventor has focused on the relationship between the lattice constant a of the positive electrode active material and the composition ratio of the metal (M) other than Li and Li and the characteristics of the battery, and the x-axis is defined as the lattice constant a. If the lattice constant a and the composition ratio (Li / M) are within a predetermined region in the graph in which the y-axis is the composition ratio of Li and M (Li / M), the positive electrode active material is used. It has been found that the characteristics of the battery to be produced are good.
  • the present invention completed on the basis of the above knowledge has a composition formula: Li x (Ni y M 1-y ) O z (In the formula, M is at least one of Mn, Co, Al, Mg, Cr, Ti, Fe, Nb, Cu and Zr, x is 0.9 to 1.2, and y is 0.5.
  • M is Ni, Mn, or Co.
  • the present invention is a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery according to the present invention.
  • the present invention is a lithium ion battery using the positive electrode for a lithium ion battery according to the present invention.
  • lithium cobaltate LiCoO 2
  • lithium-containing transition metal oxides such as lithium nickelate (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ).
  • the positive electrode active material for a lithium ion battery of the present invention produced using such a material has a composition formula: Li x (Ni y M 1-y ) O z (In the formula, M is at least one of Mn, Co, Al, Mg, Cr, Ti, Fe, Nb, Cu and Zr, x is 0.9 to 1.2, and y is 0.5. ⁇ 0.6, and z is 1.9 or more.) It has a layer structure.
  • the ratio of lithium to all metals in the positive electrode active material for a lithium ion battery is 0.9 to 1.2. When the ratio is less than 0.9, it is difficult to maintain a stable crystal structure. This is because the high capacity cannot be secured.
  • the positive electrode active material for a lithium ion battery is composed of primary particles, secondary particles formed by aggregation of primary particles, or a mixture of primary particles and secondary particles.
  • the positive electrode active material for a lithium ion battery preferably has an average particle size of primary particles or secondary particles of 2 to 8 ⁇ m. When the average particle size is less than 2 ⁇ m, it becomes difficult to apply to the current collector. If the average particle size is more than 8 ⁇ m, voids are likely to occur during filling, and the filling property is lowered.
  • the average particle diameter is more preferably 3 to 6 ⁇ m.
  • the positive electrode for a lithium ion battery includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like.
  • the current collector has a structure provided on one side or both sides.
  • the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.
  • a metal salt solution containing an oxidizing agent is prepared.
  • the metal salt is sulfate, chloride, nitrate, acetate, etc., and nitrate is particularly preferable. This is because even if it is mixed as an impurity in the firing raw material, it can be fired as it is, so that the washing step can be omitted, and nitrate functions as an oxidant, and promotes the oxidation of the metal in the firing raw material.
  • the metal contained in the metal salt is at least one of Ni and Mn, Co, Al, Mg, Cr, Ti, Fe, Nb, Cu, and Zr.
  • the metal nitrate for example, nickel nitrate, cobalt nitrate, manganese nitrate, and the like can be used.
  • each metal contained in the metal salt is adjusted to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.
  • lithium carbonate is suspended in pure water, and then the metal salt solution of the metal is added to prepare a lithium salt solution slurry. At this time, fine particles of lithium-containing carbonate precipitate in the slurry. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered off. When the lithium compound reacts as a lithium raw material during heat treatment, such as nitrate or acetate, it can be used as a calcining precursor without being washed, filtered off as it is, and dried. Next, the lithium-containing carbonate separated by filtration is dried to obtain a powder of a lithium salt complex (a precursor for a lithium ion battery positive electrode material).
  • a lithium salt complex a precursor for a lithium ion battery positive electrode material
  • a firing container having a predetermined capacity is prepared, and this firing container is filled with a precursor powder for a lithium ion battery positive electrode material.
  • the firing container filled with the precursor powder for the lithium ion battery positive electrode material is transferred to a firing furnace and fired. Firing is performed by heating and holding in an oxygen atmosphere for a predetermined time. Further, it is preferable to perform baking under a pressure of 101 to 202 KPa because the amount of oxygen in the composition further increases.
  • the firing temperature is 700 to 1100 ° C., preferably the firing temperature is 700 to 950 ° C. when 0 ⁇ y ⁇ 0.5 in the above formula, and 850 to 1100 ° C. when 0.5 ⁇ y ⁇ 0.7.
  • the crystallinity of the positive electrode active material is largely attributed to the relationship between the composition and the firing temperature. At this time, depending on the range of the firing temperature, even a slight difference may affect the crystallinity of the positive electrode active material. Thus, by performing baking at an appropriate baking temperature in an appropriate composition range, the crystallinity of the positive electrode active material is increased, and a high-performance positive electrode active material is obtained. In addition, the crystallinity of the positive electrode active material is also caused by the particle size of the precursor and the amount of lithium carbonate used as a raw material. When the amount of lithium carbonate is large and the positive electrode material precursor contains a large amount of lithium, firing proceeds better.
  • the lattice constant c decreases when the firing temperature is high, and increases when the firing temperature is low due to insufficient firing. Thereafter, the powder is taken out from the firing container and pulverized to obtain a positive electrode active material powder.
  • a positive electrode active material containing excessive oxygen in the composition formula is finally prepared. Further, the positive electrode active material containing excessive oxygen in the composition formula can be finally produced by firing the precursor for the positive electrode material not under atmospheric pressure but under a predetermined pressure. As described above, when the positive electrode active material contains excessive oxygen in the composition formula, various characteristics of the battery using the positive electrode active material are improved.
  • Examples 1 to 29 First, after suspending lithium carbonate of the input amount shown in Table 1 in 3.2 liters of pure water, 4.8 liter of metal salt solution was charged. Here, the nitrate hydrate of each metal was adjusted so that each metal might become the composition ratio of Table 1, and the total metal mole number might be set to 14 mol.
  • the suspended amount of lithium carbonate was such that the product (lithium ion secondary battery positive electrode material, ie, positive electrode active material) was Li x (Ni y M 1-y ) O z and x was the value shown in Table 1. Are respectively calculated by the following equations.
  • W (g) 73.9 ⁇ 14 ⁇ (1 + 0.5X) ⁇ A
  • “A” is a numerical value to be multiplied in order to subtract the amount of lithium from the lithium compound other than lithium carbonate remaining in the raw material after filtration from the amount of suspension in addition to the amount necessary for the precipitation reaction. is there.
  • “A” is 0.9 when lithium salt reacts as a firing raw material such as nitrate or acetate, and “1” when lithium salt does not react as a firing raw material such as sulfate or chloride. 0.
  • fine particles of lithium-containing carbonate were precipitated in the solution, and this precipitate was filtered off using a filter press.
  • the precipitate was dried to obtain a lithium-containing carbonate (a precursor for a lithium ion battery positive electrode material).
  • a firing container was prepared, and this firing container was filled with a lithium-containing carbonate.
  • the baking vessel was put in an air atmosphere furnace, and the temperature was raised to 800 to 940 ° C. over 4 hours, then held at the holding temperature for 12 to 30 hours, and then allowed to cool for 3 hours to obtain an oxide. .
  • the obtained oxide was crushed to obtain a powder of a lithium ion secondary battery positive electrode material.
  • Example 30 Example 30 was carried out except that each raw material had a composition as shown in Table 1, the metal salt was chloride, the lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 29 was performed.
  • Example 31 Example 31 was carried out except that each raw material had a composition as shown in Table 1, the metal salt was sulfate, the lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 29 was performed.
  • Example 32 As Example 32, the same processing as in Examples 1 to 29 was performed, except that each metal of the raw material had a composition as shown in Table 1 and firing was performed under a pressure of 120 KPa instead of atmospheric pressure.
  • Comparative Examples 1 to 22 As Comparative Examples 1 to 22, the raw materials were made of the compositions shown in Table 1, and the same treatment as in Examples 1 to 29 was performed.
  • each positive electrode material, conductive material, and binder are weighed in a ratio of 85: 8: 7, and the positive electrode material and the conductive material are mixed with the binder dissolved in an organic solvent (N-methylpyrrolidone). Then, it was made into a slurry, applied onto an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and 1M-LiPF 6 dissolved in EC-DMC (1: 1) was used as the electrolyte, and the current density was 0.2C. A rate characteristic was obtained by calculating a ratio of the battery capacity at a current density of 1 C with respect to the battery capacity. These results are shown in Table 2.
  • the y-axis is the composition ratio of Li and M (Li / M)
  • the above three straight lines are drawn, and the lattice constant a and the composition ratio (Li / M) are in the region surrounded by them. It is possible to evaluate the characteristics of the battery simply by determining whether it is contained. For this reason, the time required for battery characteristic evaluation is short, and the production efficiency and production cost of the battery are good. Further, when a straight line is drawn so as to surround a battery having better battery capacity and rate characteristics, the three straight lines in FIG.
  • Examples 1 to 29 and 32 nitrate is used as a metal salt to be charged when producing a lithium salt solution slurry, and a positive electrode active material containing excessive oxygen in the composition formula is finally produced. ing. For this reason, when Examples 30 and 31 using chloride and sulfate as the metal salt were compared with those having the same other conditions, the battery characteristics were better (for example, Example 3 and Example 30). And comparison with 31).
  • Example 32 in which the precursor for the positive electrode material was baked not under atmospheric pressure but under a predetermined pressure, the positive electrode active material further containing oxygen in the composition formula was finally produced.
  • the battery characteristics were better (for example, comparison between Example 3 and Example 32).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 高容量で良好なレート特性を有するリチウムイオン電池用正極活物質を提供する。リチウムイオン電池用正極活物質は、組成式:Lix(Niy1-y)Oz (式中、Mは、Mn、Co、Al、Mg、Cr、Ti、Fe、Nb、Cu及びZrの少なくとも1種であり、xは0.9~1.2であり、yは0.5~0.6であり、zは1.9以上である。) で表される層構造を有するリチウムイオン電池用正極活物質であり、x軸を格子定数aとし、y軸をLiとMとの組成比(Li/M)としたグラフにおいて、格子定数a及び組成比(Li/M)が、y=-20.186x+59.079、y=35x-99.393及びy=-32.946x+95.78の3つの直線で囲まれた領域内にあり、格子定数cが14.2~14.25である。

Description

リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
 本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池に関する。
 リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められており、特に高容量、及び、レート特性が重要視されている。
 高容量化及びレート特性の改善には、従来、種々の方法が用いられており、例えば特許文献1には、一般式LiwNixCoyAlz2で示される複合酸化物よりなるリチウム電池正極材(但し、w=0.90~1.10、x=0.80~0.95、y=0.04~0.19、z=0.01~0.16、x+y+z=1.0)が開示され、これによれば、放電量が大きく且つ充電/放電の繰り返しによる電池特性の低下が少なくサイクル特性が優れていると共に、充電後正極材分解によるガス発生が抑えられ、保存性/安全性が向上したリチウム電池正極材を提供することができる、と記載されている。
 また、特許文献2には、負極、正極、リチウム塩を含む非水電解質からなる可逆的に複数回の充放電が可能な電池において、正極活物質として、一般式AwDvNixAlyz2(但しAはアルカリ金属から選ばれた少なくとも一種であり、DはMg、Bから選ばれた少なくとも1種であり、NはSi、Ca、Cu、P、In、Sn、Mo、Nb、Y、Bi、Gaから選ばれた少なくとも1種を表わし、w、v、x、y、zはそれぞれ0.05≦w≦1.2、0.001≦v≦0.2、0.5≦x≦0.9、0.1<y≦0.5、0.001≦z≦0.2の数を表す)で示される複合酸化物が開示されている。そして、これによれば、二次電池用正極材料の高容量化、長寿命化、レート特性や、高温特性、安全性の改善のあらゆる電池特性の面で優れた特性を得ることができる、と記載されている。
特開平10-321224号公報 特開平10-208744号公報
 しかしながら、高容量性及びレート特性は電池に求められる重要な特性であり、高品質のリチウムイオン電池用正極活物質としてはなお改善の余地がある。
 そこで、本発明は、高容量で良好なレート特性を有するリチウムイオン電池用正極活物質を提供することを課題とする。
 本発明者は、鋭意検討した結果、正極活物質の格子定数a及びLiとLi以外の金属(M)との組成比と、電池の特性との関係に着目し、x軸を格子定数aとし、y軸をLiとMとの組成比(Li/M)としたグラフにおいて、格子定数a及び組成比(Li/M)が、所定の領域内にあれば、当該正極活物質を用いて作製される電池の特性が良好となることを見出した。
 上記知見を基礎にして完成した本発明は一側面において、組成式:Lix(Niy1-y)Oz
(式中、Mは、Mn、Co、Al、Mg、Cr、Ti、Fe、Nb、Cu及びZrの少なくとも1種であり、xは0.9~1.2であり、yは0.5~0.6であり、zは1.9以上である。)
で表される層構造を有するリチウムイオン電池用正極活物質であり、
 x軸を格子定数aとし、y軸をLiとMとの組成比(Li/M)としたグラフにおいて、格子定数a及び組成比(Li/M)が、y=-20.186x+59.079、y=35x-99.393及びy=-32.946x+95.78の3つの直線で囲まれた領域内にあるリチウムイオン電池用正極活物質である。
 本発明に係るリチウムイオン電池用正極活物質は一実施形態において、格子定数a及び組成比(Li/M)が、y=-15x+44.18、y=33.33x-94.665、y=-200x+575.92の3つの直線で囲まれた領域内にあり、格子定数cが14.2~14.25である。
 本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、Mが、Ni、Mn、又は、Coである。
 本発明は、別の側面において、本発明に係るリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。
 本発明は、更に別の側面において、本発明に係るリチウムイオン電池用正極を用いたリチウムイオン電池である。
 本発明によれば、高容量で良好なレート特性を有するリチウムイオン電池用正極活物質を提供することができる。
実施例に係る「格子定数a」-「LiとMとの組成比」のグラフである。
(リチウムイオン電池用正極活物質の構成)
 本発明のリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極用の正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を用いるのが好ましい。このような材料を用いて作製される本発明のリチウムイオン電池用正極活物質は、組成式:Lix(Niy1-y)Oz
(式中、Mは、Mn、Co、Al、Mg、Cr、Ti、Fe、Nb、Cu及びZrの少なくとも1種であり、xは0.9~1.2であり、yは0.5~0.6であり、zは1.9以上である。)
で表され、層構造を有している。
 リチウムイオン電池用正極活物質における全金属に対するリチウムの比率が0.9~1.2であるが、これは、0.9未満では、安定した結晶構造を保持し難く、1.2超では電池の高容量が確保できなくなるためである。
 本発明のリチウムイオン電池用正極活物質は、x軸を格子定数aとし、y軸をLiとMとの組成比(Li/M)としたグラフにおいて、その格子定数a及び組成比(Li/M)が、y=-20.186x+59.079、y=35x-99.393及びy=-32.946x+95.78の3つの直線で囲まれた領域内にあり、格子定数cが14.2~14.25である。格子定数cが14.2~14.25であって、且つ、格子定数a及び組成比(Li/M)がこのような領域にあれば、当該正極活物質を用いた電池の容量が大きくなり、レート特性が良好となる。
 また、格子定数a及び組成比(Li/M)は、さらに狭められた領域であるy=-15x+44.18、y=33.33x-94.665、y=-200x+575.92の3つの直線で囲まれた領域内にあるのがより好ましい。さらに、格子定数cは14.22~14.25であるのがより好ましい。
 リチウムイオン電池用正極活物質は、一次粒子、一次粒子が凝集して形成された二次粒子、又は、一次粒子及び二次粒子の混合物で構成されている。リチウムイオン電池用正極活物質は、その一次粒子又は二次粒子の平均粒径が2~8μmであるのが好ましい。
 平均粒径が2μm未満であると集電体への塗布が困難となる。平均粒径が8μm超であると充填時に空隙が生じやすくなり、充填性が低下する。また、平均粒径は、より好ましくは3~6μmである。
(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
 本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(リチウムイオン電池用正極活物質の製造方法)
 次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
 まず、酸化剤を含有する金属塩溶液を作製する。また、金属塩は硫酸塩、塩化物、硝酸塩、酢酸塩等であり、特に硝酸塩が好ましい。これは、焼成原料中に不純物として混入してもそのまま焼成できるため洗浄工程が省けることと、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。金属塩に含まれる金属は、Ni、及び、Mn、Co、Al、Mg、Cr、Ti、Fe、Nb、Cu及びZrの少なくとも1種以上である。金属の硝酸塩としては、例えば、硝酸ニッケル、硝酸コバルト、及び、硝酸マンガン等を用いることができる。また、このとき、金属塩に含まれる各金属を所望のモル比率となるように調整しておく。これにより、正極活物質中の各金属のモル比率が決定する。
 次に、炭酸リチウムを純水に懸濁させ、その後、上記金属の金属塩溶液を投入してリチウム塩溶液スラリーを作製する。このとき、スラリー中に微小粒のリチウム含有炭酸塩が析出する。なお、金属塩として硫酸塩や塩化物等熱処理時にそのリチウム化合物が反応しない場合は飽和炭酸リチウム溶液で洗浄した後、濾別する。硝酸塩や酢酸塩のように、そのリチウム化合物が熱処理中にリチウム原料として反応する場合は洗浄せず、そのまま濾別し、乾燥することにより焼成前駆体として用いることができる。
 次に、濾別したリチウム含有炭酸塩を乾燥することにより、リチウム塩の複合体(リチウムイオン電池正極材用前駆体)の粉末を得る。
 次に、所定の大きさの容量を有する焼成容器を準備し、この焼成容器にリチウムイオン電池正極材用前駆体の粉末を充填する。次に、リチウムイオン電池正極材用前駆体の粉末が充填された焼成容器を、焼成炉へ移設し、焼成を行う。焼成は、酸素雰囲気下で所定時間加熱保持することにより行う。また、101~202KPaでの加圧下で焼成を行うと、さらに組成中の酸素量が増加するため、好ましい。焼成温度は、700~1100℃、好ましくは、前記式で0<y≦0.5では焼成温度が700~950℃であり、0.5<y≦0.7では850~1100℃で行う。また、正極活物質の結晶性は、組成と焼成温度との関係に大きく起因する。このとき、焼成温度の範囲によって、少しの違いであっても正極活物質の結晶性に影響を与えることもある。このように、適正な組成範囲でそれに対応した適切な焼成温度で焼成を行うことにより、正極活物質の結晶性が上がり、高性能の正極活物質となる。また、正極活物質の結晶性は、他にも、前駆体の粒度や原料として用いる炭酸リチウムの量にも起因する。炭酸リチウムの量が多く、正極材用前駆体にリチウムが多く含まれていると、より良好に焼成が進行する。なお、格子定数cは、焼成温度が高いと小さくなり、焼成温度が低いと焼成が不十分となり大きくなる。
 その後、焼成容器から粉末を取り出し、粉砕を行うことにより正極活物質の粉体を得る。
 なお、リチウム塩溶液スラリーの作製の際に、投入する金属塩として硝酸塩を用いると、組成式において酸素を過剰に含んだ正極活物質が最終的に作製される。また、正極材用前駆体の焼成を大気圧下ではなく所定の加圧下で行うことでも、組成式において酸素を過剰に含んだ正極活物質が最終的に作製される。このように、正極活物質が組成式において酸素を過剰に含んでいると、当該正極活物質を用いた電池の各種特性が良好となる。
 以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。
(実施例1~29)
 まず、表1に記載の投入量の炭酸リチウムを純水3.2リットルに懸濁させた後、金属塩溶液を4.8リットル投入した。ここで、金属塩溶液は、各金属の硝酸塩の水和物を、各金属が表1に記載の組成比になるように調整し、また全金属モル数が14モルになるように調整した。
 なお、炭酸リチウムの懸濁量は、製品(リチウムイオン二次電池正極材料、すなわち正極活物質)をLix(Niy1-y)Ozでxが表1の値となる量であって、それぞれ次式で算出されたものである。
 W(g)=73.9×14×(1+0.5X)×A
 上記式において、「A」は、析出反応として必要な量の他に、ろ過後の原料に残留する炭酸リチウム以外のリチウム化合物によるリチウムの量をあらかじめ懸濁量から引いておくために掛ける数値である。「A」は、硝酸塩や酢酸塩のように、リチウム塩が焼成原料として反応する場合は0.9であり、硫酸塩や塩化物のように、リチウム塩が焼成原料として反応しない場合は1.0である。
 この処理により溶液中に微小粒のリチウム含有炭酸塩が析出したが、この析出物を、フィルタープレスを使用して濾別した。
 続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。
 次に、焼成容器を準備し、この焼成容器内にリチウム含有炭酸塩を充填した。次に、焼成容器を空気雰囲気炉に入れて、800~940℃まで4時間で昇温させ、次いで当該保持温度で12~30時間保持した後、3時間で放冷して酸化物を得た。次に、得られた酸化物を解砕し、リチウムイオン二次電池正極材の粉末を得た。
(実施例30)
 実施例30として、原料の各金属を表1に示すような組成とし、金属塩を塩化物とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1~29と同様の処理を行った。
(実施例31)
 実施例31として、原料の各金属を表1に示すような組成とし、金属塩を硫酸塩とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1~29と同様の処理を行った。
(実施例32)
 実施例32として、原料の各金属を表1に示すような組成とし、焼成を大気圧下ではなく120KPaの加圧下で行った以外は、実施例1~29と同様の処理を行った。
(比較例1~22)
 比較例1~22として、原料の各金属を表1に示すような組成とし、実施例1~29と同様の処理を行った。
Figure JPOXMLDOC01-appb-T000001
(評価)
 各正極材中のLi、Ni、Mn及びCo含有量は、誘導結合プラズマ発光分光分析装置(ICP-AES)で測定し、各金属の組成比(モル比)を算出した。また、X線回折により、結晶構造は層状構造であることを確認した。
 さらに、各正極材を粉末XRDにて測定し、回折パターンにより格子定数を求めた。また、このうち、格子定数aをx軸にとり、MS分析から求めたLiとM(Liを除いた全ての金属)との組成比(Li/M)をy軸にとって、図1に示すグラフを描いた。
 また、各正極材と、導電材と、バインダーとを85:8:7の割合で秤量し、バインダーを有機溶媒(N-メチルピロリドン)に溶解したものに、正極材料と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M-LiPF6をEC-DMC(1:1)に溶解したものを用いて、電流密度0.2Cのときの電池容量に対する電流密度1Cのときの、電池容量の比を算出してレート特性を得た。これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果を図1に描き、電池の容量及びレート特性が良好なものを囲むように直線を描くと、図1の3つの直線(1)y=-20.186x+59.079(2)y=35x-99.393及び(3)y=-32.946x+95.78で囲まれる領域内に収まることがわかる。
 一般に、正極活物質を電池に用いた場合の電池特性の評価にはかなりの時間とを要するが、本発明によれば、所定の格子定数cを有する正極活物質において、x軸を格子定数aとし、y軸をLiとMとの組成比(Li/M)としたグラフにおいて、上記の3つの直線を描き、それらに囲まれた領域内に格子定数a及び組成比(Li/M)が入っているかを判定するだけで電池の特性を評価することができる。このため、電池の特性評価に要する時間が短く、電池の製造効率及び製造コストが良好となる。
 さらに、電池の容量及びレート特性がより良好なものを囲むように直線を描くと、図1の3つの直線1:y=-15x+44.18、2:y=33.33x-94.665、3:y=-200x+575.92で囲まれる領域内に収まることがわかる。
 また、実施例1~29及び32は、リチウム塩溶液スラリーの作製の際に、投入する金属塩として硝酸塩を用いており、組成式において酸素を過剰に含んだ正極活物質が最終的に作製されている。このため、金属塩として塩化物及び硫酸塩を用いた実施例30及び31と、その他の条件が同じものを比較すると、電池特性がより良好となった(例えば、実施例3と、実施例30及び31との比較)。
 さらに、正極材用前駆体の焼成を大気圧下ではなく所定の加圧下で行った実施例32では、組成式において酸素をさらに過剰に含んだ正極活物質が最終的に作製されたため、その他の条件が同じものと比較すると、電池特性がより良好となった(例えば、実施例3と実施例32との比較)。
 比較例1~20は、図1の3つの直線(1)y=-20.186x+59.079(2)y=35x-99.393及び(3)y=-32.946x+95.78の範囲外であり、電池特性が不良であった。また、比較例21及び22は、図1の3つの直線(1)y=-20.186x+59.079(2)y=35x-99.393及び(3)y=-32.946x+95.78で囲まれる領域内に収まるものの、格子定数cが14.2~14.25の範囲外であったため、電池特性が不良であった。

Claims (5)

  1.  組成式:Lix(Niy1-y)Oz
    (式中、Mは、Mn、Co、Al、Mg、Cr、Ti、Fe、Nb、Cu及びZrの少なくとも1種であり、xは0.9~1.2であり、yは0.5~0.6であり、zは1.9以上である。)
    で表される層構造を有するリチウムイオン電池用正極活物質であり、
     x軸を格子定数aとし、y軸をLiとMとの組成比(Li/M)としたグラフにおいて、前記格子定数a及び前記組成比(Li/M)が、y=-20.186x+59.079、y=35x-99.393及びy=-32.946x+95.78の3つの直線で囲まれた領域内にあり、
     格子定数cが14.2~14.25であるリチウムイオン電池用正極活物質。
  2.  前記格子定数a及び前記組成比(Li/M)が、y=-15x+44.18、y=33.33x-94.665、y=-200x+575.92の3つの直線で囲まれた領域内にある請求項1に記載のリチウムイオン電池用正極活物質。
  3.  Mが、Ni、Mn、又は、Coである請求項1又は2に記載のリチウムイオン電池用正極活物質。
  4.  請求項1~3のいずれかに記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極。
  5.  請求項4に記載のリチウムイオン電池用正極を用いたリチウムイオン電池。
PCT/JP2011/054779 2010-03-04 2011-03-02 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 WO2011108596A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11750705.3A EP2544273A4 (en) 2010-03-04 2011-03-02 POSITIVE ACTIVE ELECTRODE MATERIAL FOR LITHIUM ION BATTERIES, POSITIVE ELECTRODE FOR LITHIUM ION BATTERIES AND LITHIUM ION BATTERY
US13/582,113 US9225020B2 (en) 2010-03-04 2011-03-02 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP2012503218A JPWO2011108596A1 (ja) 2010-03-04 2011-03-02 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
CN201180012094.9A CN102782909B (zh) 2010-03-04 2011-03-02 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
KR1020127023307A KR101450421B1 (ko) 2010-03-04 2011-03-02 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-048109 2010-03-04
JP2010048109 2010-03-04

Publications (1)

Publication Number Publication Date
WO2011108596A1 true WO2011108596A1 (ja) 2011-09-09

Family

ID=44542243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054779 WO2011108596A1 (ja) 2010-03-04 2011-03-02 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池

Country Status (7)

Country Link
US (1) US9225020B2 (ja)
EP (1) EP2544273A4 (ja)
JP (1) JPWO2011108596A1 (ja)
KR (1) KR101450421B1 (ja)
CN (1) CN102782909B (ja)
TW (1) TWI423507B (ja)
WO (1) WO2011108596A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184472A (ja) * 2015-03-25 2016-10-20 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
EP2515364A1 (en) 2009-12-18 2012-10-24 JX Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
CN102668185B (zh) 2009-12-22 2015-07-08 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及使用其的锂离子电池、及锂离子电池用正极活性物质前驱体
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9216913B2 (en) * 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
CN102754254B (zh) 2010-03-04 2016-01-20 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
KR101445954B1 (ko) 2010-03-04 2014-09-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
TWI423504B (zh) 2010-03-05 2014-01-11 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
CN105514420A (zh) 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
EP2696406B1 (en) 2011-01-21 2018-05-30 JX Nippon Mining & Metals Corporation Method for producing positive-electrode active material for lithium-ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
EP2693536B1 (en) 2011-03-31 2017-05-03 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6292738B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
KR101729824B1 (ko) 2012-09-28 2017-04-24 제이엑스금속주식회사 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극 및 리튬 이온 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208744A (ja) 1997-01-29 1998-08-07 Hitachi Ltd 電 池
JPH10321224A (ja) 1997-05-16 1998-12-04 Nikki Kagaku Kk リチウム電池正極材及びその製造方法
JP2006134852A (ja) * 2004-11-04 2006-05-25 Kyoo-Sun Han 自己混合共融法を利用した高出力リチウム2次電池用の結晶質ナノ微粒子正極活物質の製造方法
JP2006286614A (ja) * 2005-03-09 2006-10-19 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009289726A (ja) * 2008-05-01 2009-12-10 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池

Family Cites Families (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2165128A (en) 1938-04-22 1939-07-04 Traylor Engineering And Mfg Co Rotary kiln
US4469654A (en) 1980-02-06 1984-09-04 Minnesota Mining And Manufacturing Company EDM Electrodes
US4443186A (en) 1982-04-14 1984-04-17 The United States Of America As Represented By The United States Department Of Energy Solar heated rotary kiln
JP3200867B2 (ja) 1991-04-26 2001-08-20 ソニー株式会社 非水電解質二次電池
JP2002289261A (ja) 2001-01-16 2002-10-04 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP3334179B2 (ja) 1992-09-14 2002-10-15 松下電器産業株式会社 非水電解液二次電池用正極活物質の製造法
US5393622A (en) * 1992-02-07 1995-02-28 Matsushita Electric Industrial Co., Ltd. Process for production of positive electrode active material
JP3276183B2 (ja) 1992-12-14 2002-04-22 東芝電池株式会社 非水溶媒二次電池
JP3188026B2 (ja) 1993-03-17 2001-07-16 三洋電機株式会社 非水系電池
JPH0729603A (ja) 1993-07-14 1995-01-31 Fuji Photo Film Co Ltd 非水電解質二次電池
DE69411637T2 (de) 1993-04-28 1998-11-05 Fuji Photo Film Co Ltd Akkumulator mit nicht-wässrigem Elektrolyt
JPH07211311A (ja) 1994-01-18 1995-08-11 Sony Corp 非水電解液二次電池
JPH08138669A (ja) 1994-11-02 1996-05-31 Toray Ind Inc 正極活物質、その製造方法およびそれを用いた非水溶媒系二次電池
JPH08213015A (ja) 1995-01-31 1996-08-20 Sony Corp リチウム二次電池用正極活物質及びリチウム二次電池
JPH0982325A (ja) 1995-09-08 1997-03-28 Sony Corp 正極活物質の製造方法
JPH09120813A (ja) 1995-10-26 1997-05-06 Sony Corp 非水電解液二次電池
JP3756232B2 (ja) 1996-01-17 2006-03-15 宇部興産株式会社 非水電解質二次電池
US5817436A (en) 1996-03-05 1998-10-06 Sharp Kabushiki Kaisha Lithium nickel composite oxide preparation process therefor and application thereof
JP3420425B2 (ja) 1996-04-01 2003-06-23 松下電器産業株式会社 非水電解液二次電池
JPH1083815A (ja) 1996-09-10 1998-03-31 Toshiba Battery Co Ltd リチウム二次電池
JPH10116618A (ja) 1996-10-11 1998-05-06 Sumitomo Metal Mining Co Ltd 非水系電解質電池正極活物質用リチウムコバルト複合酸化物
WO1998029914A1 (fr) 1996-12-25 1998-07-09 Mitsubishi Denki Kabushiki Kaisha Materiau anodique actif, son procede de production, et element d'accumulateur a ion lithium comportant ledit materiau
JPH10188986A (ja) 1996-12-27 1998-07-21 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質の製造方法
JPH10206322A (ja) 1997-01-20 1998-08-07 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質中の炭酸塩の定量方法
US6037095A (en) 1997-03-28 2000-03-14 Fuji Photo Film Co., Ltd. Non-aqueous lithium ion secondary battery
JP3769871B2 (ja) 1997-04-25 2006-04-26 ソニー株式会社 正極活物質の製造方法
JPH1116573A (ja) 1997-06-26 1999-01-22 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用リチウムコバルト複酸化物およびその製造方法
JP3536611B2 (ja) 1997-08-25 2004-06-14 三菱電機株式会社 正極活物質およびその製造方法並びにそれを用いたリチウムイオン二次電池
JP3372204B2 (ja) 1998-02-12 2003-01-27 三井金属鉱業株式会社 Li−Mn複合酸化物の製造方法
JP3677992B2 (ja) 1998-03-24 2005-08-03 三菱化学株式会社 リチウムイオン二次電池
JPH11307094A (ja) 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質とリチウム二次電池
JP4171848B2 (ja) 1998-06-02 2008-10-29 宇部興産株式会社 リチウムイオン非水電解質二次電池
JP3614670B2 (ja) 1998-07-10 2005-01-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
JP4040184B2 (ja) 1998-08-28 2008-01-30 株式会社コンポン研究所 リチウム系金属複合酸化物の製造方法
JP2000149945A (ja) 1998-11-10 2000-05-30 Hitachi Ltd リチウムイオン二次電池
JP3754218B2 (ja) 1999-01-25 2006-03-08 三洋電機株式会社 非水電解質電池用正極及びその製造方法、ならびこの正極を用いた非水電解質電池及びその製造方法
JP3471244B2 (ja) 1999-03-15 2003-12-02 株式会社東芝 非水電解液二次電池の製造方法
JP4314676B2 (ja) 1999-06-03 2009-08-19 パナソニック株式会社 リチウム二次電池
JP2001110420A (ja) 1999-10-13 2001-04-20 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質の製造方法および該方法により得られた非水系電解質二次電池用正極活物質
JP2001266851A (ja) 1999-10-22 2001-09-28 Sanyo Electric Co Ltd リチウム二次電池用電極の製造方法
AU7951000A (en) 1999-10-22 2001-05-08 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
AU7951100A (en) 1999-10-22 2001-04-30 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
JP2001148249A (ja) 1999-11-19 2001-05-29 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質材料とリチウム二次電池
JP2002124261A (ja) 1999-11-29 2002-04-26 Mitsui Chemicals Inc リチウム二次電池用正極活物質および電池
JP2001223008A (ja) 1999-12-02 2001-08-17 Honjo Chemical Corp リチウムイオン二次電池、そのための正極活物質及びその製造方法
JP2002063901A (ja) 2000-08-14 2002-02-28 Mitsui Chemicals Inc リチウム二次電池用正極活物質、その製法およびそれを用いた電池
US6984469B2 (en) 2000-09-25 2006-01-10 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium batteries and method of preparing same
KR100378007B1 (ko) 2000-11-22 2003-03-29 삼성에스디아이 주식회사 리튬-황 전지용 양극 및 그를 포함하는 리튬-황 전지
JP3567131B2 (ja) 2000-12-28 2004-09-22 株式会社東芝 非水電解質電池
JP4878683B2 (ja) 2001-01-23 2012-02-15 三洋電機株式会社 リチウム二次電池
JP2002260655A (ja) 2001-02-28 2002-09-13 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質の製造方法
JP2002298914A (ja) 2001-03-30 2002-10-11 Toshiba Corp 非水電解質二次電池
TW541745B (en) * 2001-04-20 2003-07-11 Yuasa Battery Co Ltd Anode active matter and production method therefor, non-aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
WO2002086993A1 (fr) 2001-04-20 2002-10-31 Yuasa Corporation Matiere active anodique et son procede de production, anode pour pile secondaire a electrolyte non aqueux et pile secondaire a electrolyte non aqueux
JP4175026B2 (ja) 2001-05-31 2008-11-05 三菱化学株式会社 リチウム遷移金属複合酸化物及びリチウム二次電池用正極材料の製造方法、リチウム二次電池用正極、並びにリチウム二次電池
US7135251B2 (en) 2001-06-14 2006-11-14 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
JP4510331B2 (ja) 2001-06-27 2010-07-21 パナソニック株式会社 非水電解質二次電池
JP5079951B2 (ja) 2001-06-27 2012-11-21 株式会社三徳 非水電解液2次電池用正極活物質、その製造方法、非水電解液2次電池、並びに正極の製造方法
JP4253142B2 (ja) 2001-09-05 2009-04-08 日本電工株式会社 二次電池用リチウムマンガン複合酸化物およびその製造方法、ならびに非水電解液二次電池
JP2003151546A (ja) 2001-11-08 2003-05-23 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質及びその製造方法
JP4070585B2 (ja) 2001-11-22 2008-04-02 日立マクセル株式会社 リチウム含有複合酸化物およびそれを用いた非水二次電池
JP3835266B2 (ja) 2001-11-29 2006-10-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
JP4111806B2 (ja) 2001-11-30 2008-07-02 三洋電機株式会社 非水電解質二次電池及びその製造方法
TW565961B (en) 2001-11-30 2003-12-11 Sanyo Electric Co Nonaqueous electrolyte secondary battery and its manufacturing method
JP2004006264A (ja) 2002-04-17 2004-01-08 Shin Kobe Electric Mach Co Ltd リチウム二次電池
KR100437339B1 (ko) 2002-05-13 2004-06-25 삼성에스디아이 주식회사 전지용 활물질의 제조방법 및 그로부터 제조되는 전지용활물질
JP4873830B2 (ja) 2002-10-04 2012-02-08 三菱化学株式会社 リチウム二次電池用負極材料、並びに、このリチウム二次電池用負極材料を用いた負極及びリチウム二次電池
JP4868703B2 (ja) 2002-10-31 2012-02-01 三菱化学株式会社 リチウム二次電池用正極材料の添加剤、リチウム二次電池用正極材料、並びに、このリチウム二次電池用正極材料を用いた正極及びリチウム二次電池
US7316862B2 (en) 2002-11-21 2008-01-08 Hitachi Maxell, Ltd. Active material for electrode and non-aqueous secondary battery using the same
JP2004193115A (ja) 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
DE60312116T2 (de) 2002-12-20 2007-06-28 Toyota Jidosha Kabushiki Kaisha, Toyota Aktives Material für eine positive Elektrode einer nichtwässrigen Sekundärbatterie und Verfahren zu deren Herstellung
JP4427314B2 (ja) 2002-12-20 2010-03-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質及びその製造方法、それを用いた非水系電解質二次電池およびその製造方法
TWI279019B (en) 2003-01-08 2007-04-11 Nikko Materials Co Ltd Material for lithium secondary battery positive electrode and manufacturing method thereof
JP2004227790A (ja) 2003-01-20 2004-08-12 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2004253169A (ja) 2003-02-18 2004-09-09 Ngk Insulators Ltd リチウム二次電池及びそれに用いる正極活物質の製造方法
DE602004017798D1 (de) 2003-02-21 2009-01-02 Toyota Motor Co Ltd Aktives Material für die positive Elektrode einer Sekundärbatterie mit nichtwässrigem Elektrolyt
JP4427351B2 (ja) 2003-02-21 2010-03-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質および非水系電解質二次電池
WO2004082046A1 (ja) 2003-03-14 2004-09-23 Seimi Chemical Co., Ltd. リチウム二次電池用正極活物質粉末
WO2004092073A1 (ja) 2003-04-17 2004-10-28 Seimi Chemical Co. Ltd. リチウム-ニッケル-コバルト-マンガン含有複合酸化物およびリチウム二次電池用正極活物質用原料とそれらの製造方法
JP4742517B2 (ja) 2003-05-08 2011-08-10 三菱化学株式会社 積層体および積層体の製造方法
JP2007214138A (ja) 2003-05-13 2007-08-23 Mitsubishi Chemicals Corp リチウム二次電池正極材料用層状リチウムニッケル系複合酸化物粉体及びその製造方法、リチウム二次電池用正極並びにリチウム二次電池
KR20110104083A (ko) 2003-05-13 2011-09-21 미쓰비시 가가꾸 가부시키가이샤 층형 리튬니켈계 복합 산화물 분체 및 그 제조방법
JP2004355824A (ja) 2003-05-27 2004-12-16 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質および正極
JP4299065B2 (ja) 2003-06-19 2009-07-22 株式会社クレハ リチウム二次電池用正極材およびその製造方法
JP2005044743A (ja) 2003-07-25 2005-02-17 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質および非水電解液二次電池
JP2005056602A (ja) 2003-08-05 2005-03-03 Seimi Chem Co Ltd リチウム二次電池用正極活物質粉末およびその評価方法
JP4216669B2 (ja) 2003-08-07 2009-01-28 日鉱金属株式会社 リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池
JP2005060162A (ja) 2003-08-11 2005-03-10 Sumitomo Metal Mining Co Ltd リチウムマンガンニッケル複合酸化物の製造方法、およびそれを用いた非水系電解質二次電池用正極活物質
JP2005075691A (ja) 2003-09-01 2005-03-24 Mikuni Color Ltd リチウムマンガン複合酸化物粒子、その製造方法並びにそれを用いた二次電池用正極及び二次電池
JP4850405B2 (ja) 2003-11-27 2012-01-11 パナソニック株式会社 リチウムイオン二次電池及びその製造方法
US20050118502A1 (en) 2003-11-27 2005-06-02 Matsushita Electric Industrial Co., Ltd. Energy device and method for producing the same
JP4100341B2 (ja) 2003-12-26 2008-06-11 新神戸電機株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
JP2005225734A (ja) 2004-02-16 2005-08-25 Nippon Chem Ind Co Ltd フッ素含有リチウムコバルト系複合酸化物及びその製造方法
JP2005235624A (ja) 2004-02-20 2005-09-02 Japan Storage Battery Co Ltd 非水電解液二次電池の製造方法
KR100560492B1 (ko) 2004-02-25 2006-03-13 삼성에스디아이 주식회사 리튬 이차 전지용 양극 전류 집전체 및 이를 포함하는리튬 이차 전지
JP4540041B2 (ja) 2004-03-08 2010-09-08 株式会社Gsユアサ 非水電解質二次電池
JP4916094B2 (ja) 2004-03-30 2012-04-11 Jx日鉱日石金属株式会社 リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
JP3983745B2 (ja) 2004-03-31 2007-09-26 三井金属鉱業株式会社 リチウム電池用リチウム遷移金属酸化物
JP4766840B2 (ja) 2004-04-12 2011-09-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP4504074B2 (ja) 2004-04-15 2010-07-14 株式会社東芝 非水電解質電池用正極活物質、正極及び非水電解質電池
CN100440594C (zh) 2004-04-27 2008-12-03 三菱化学株式会社 用于锂二次电池正极材料的层状锂镍锰钴类复合氧化物粉末及其制造方法和使用其的用于锂二次电池的正极以及锂二次电池
JP4617717B2 (ja) 2004-05-12 2011-01-26 三菱化学株式会社 リチウム遷移金属複合酸化物及びその製造方法と、リチウム二次電池用正極並びにリチウム二次電池
JP2005327644A (ja) 2004-05-17 2005-11-24 Shin Kobe Electric Mach Co Ltd リチウム二次電池用正極材の製造方法、正極材及びリチウム二次電池
JP2005332707A (ja) 2004-05-20 2005-12-02 Toshiba Corp 非水電解質電池用正極及び非水電解質電池
JP2005347134A (ja) 2004-06-04 2005-12-15 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質の製造方法
JP5021892B2 (ja) 2004-06-17 2012-09-12 Jx日鉱日石金属株式会社 リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
JP4954451B2 (ja) 2004-07-05 2012-06-13 株式会社クレハ リチウム二次電池用正極材およびその製造方法
JP2006054159A (ja) 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質およびその製造方法
JP4595475B2 (ja) 2004-10-01 2010-12-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびこれを用いた非水系電解質二次電池およびその製造方法
JP4997693B2 (ja) 2004-10-01 2012-08-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびこれを用いた非水系電解質二次電池およびその製造方法
JP2006127955A (ja) 2004-10-29 2006-05-18 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質およびその製造方法
JP2006127923A (ja) 2004-10-29 2006-05-18 Shin Kobe Electric Mach Co Ltd リチウム二次電池用の正極活物質及びリチウム二次電池
JP4752244B2 (ja) 2004-11-09 2011-08-17 三菱化学株式会社 リチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体及びそれを用いたリチウム二次電池正極、並びにリチウム二次電池
JP2006156126A (ja) 2004-11-29 2006-06-15 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質およびその製造方法
JP2006156235A (ja) 2004-11-30 2006-06-15 Sony Corp 負極および電池
JP4582579B2 (ja) 2004-12-07 2010-11-17 Agcセイミケミカル株式会社 リチウム二次電池用正極材料
JP4593488B2 (ja) 2005-02-10 2010-12-08 昭和電工株式会社 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
CN100483808C (zh) * 2005-03-09 2009-04-29 松下电器产业株式会社 非水电解质二次电池
US20070298512A1 (en) 2005-04-13 2007-12-27 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
JP4854982B2 (ja) 2005-04-15 2012-01-18 Agcセイミケミカル株式会社 リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP4824349B2 (ja) 2005-06-16 2011-11-30 パナソニック株式会社 リチウムイオン二次電池
CA2613182C (en) 2005-06-28 2014-04-15 Toda Kogyo Europe Gmbh Method for preparing inorganic compound having a single phase, hexagonal layered crystal structure that is free from cubic-spinel like phases
KR20070009447A (ko) 2005-07-14 2007-01-18 마츠시타 덴끼 산교 가부시키가이샤 리튬 2차 전지용 양극 및 이를 이용한 리튬 2차 전지
JP5032800B2 (ja) 2005-07-14 2012-09-26 パナソニック株式会社 リチウム二次電池用正極およびそれを用いたリチウム二次電池
CN100342569C (zh) 2005-07-15 2007-10-10 广州鸿森材料有限公司 回转炉煅烧合成锂离子电池正极材料的方法
JP2006019310A (ja) 2005-08-26 2006-01-19 Sumitomo Chemical Co Ltd 電池用活物質
JP4785482B2 (ja) 2005-09-28 2011-10-05 三洋電機株式会社 非水電解質二次電池
CN104659414B (zh) 2005-10-20 2019-04-12 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
JP2007194202A (ja) 2005-12-20 2007-08-02 Sony Corp リチウムイオン二次電池
US20090233176A1 (en) * 2005-12-20 2009-09-17 Yosuke Kita Non-aqueous electrolyte secondary battery
KR20070065803A (ko) 2005-12-20 2007-06-25 소니 가부시끼 가이샤 정극 활물질과 리튬 이온 2차 전지
JP5671775B2 (ja) 2006-01-27 2015-02-18 三菱化学株式会社 リチウムイオン二次電池
JP5377981B2 (ja) 2006-02-17 2013-12-25 エルジー・ケム・リミテッド リチウム−金属複合酸化物及びこれを用いた電気化学素子
JP2007257890A (ja) 2006-03-20 2007-10-04 Nissan Motor Co Ltd 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP4996117B2 (ja) 2006-03-23 2012-08-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
JP5007919B2 (ja) 2006-04-05 2012-08-22 日立金属株式会社 リチウム二次電池用の正極活物質の製造方法、リチウム二次電池用の正極活物質及びそれを用いた非水系リチウム二次電池
CN100502106C (zh) 2006-05-12 2009-06-17 盐光科技(嘉兴)有限公司 二次电池正极材料及制备方法
JP5228292B2 (ja) 2006-07-06 2013-07-03 東ソー株式会社 リチウム−ニッケル−マンガン−コバルト複合酸化物の製造方法。
US20080081258A1 (en) 2006-09-28 2008-04-03 Korea Electro Technology Research Institute Carbon-coated composite material, manufacturing method thereof, positive electrode active material, and lithium secondary battery comprising the same
JP2008103132A (ja) 2006-10-18 2008-05-01 Furukawa Sky Kk リチウムイオン電池の集電体用アルミニウム箔及びそれを用いたリチウムイオン電池
JP4287901B2 (ja) 2006-12-26 2009-07-01 株式会社三徳 非水電解質二次電池用正極活物質、正極及び二次電池
JP5112318B2 (ja) 2006-12-28 2013-01-09 Agcセイミケミカル株式会社 リチウム含有複合酸化物及びその製造方法
JP2008181708A (ja) 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd 非水電解質二次電池用電極の製造方法、非水電解質二次電池用電極、および非水電解質二次電池
JP2008192547A (ja) 2007-02-07 2008-08-21 Toyota Motor Corp 正電極板、電池、車両、電池搭載機器、正電極板の製造方法、および電池の製造方法
KR101151931B1 (ko) * 2007-03-30 2012-06-04 파나소닉 주식회사 비수전해질 이차전지용 활물질 및 그 제조법
JP5303857B2 (ja) 2007-04-27 2013-10-02 株式会社Gsユアサ 非水電解質電池及び電池システム
EP2172996A4 (en) 2007-07-19 2013-07-31 Jx Nippon Mining & Metals Corp LITHIUM MANGANE DOUBLE OXIDE FOR LITHIUM-ION BATTERIES AND METHOD FOR THE PRODUCTION OF THE DOUBLE OXIDE
JP5251332B2 (ja) 2007-07-30 2013-07-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法、並びにこれを用いた非水系電解質二次電池
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
JP4883025B2 (ja) 2007-10-31 2012-02-22 ソニー株式会社 二次電池
WO2009057722A1 (ja) 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. リチウムイオン二次電池用正極活物質の製造方法
CN101809788B (zh) 2007-11-06 2014-03-19 松下电器产业株式会社 非水电解质二次电池用正极活性物质以及使用其的非水电解质二次电池
KR101017079B1 (ko) 2007-11-07 2011-02-25 한국과학기술연구원 전극활물질의 제조방법과 이에 의하여 제조된 전극활물질을포함하는 리튬전지
EP2219251B1 (en) 2007-11-12 2014-06-25 GS Yuasa International Ltd. Active material for lithium rechargeable battery and lithium rechargeable battery
JP5213103B2 (ja) 2007-12-19 2013-06-19 日立マクセル株式会社 非水電解質二次電池用正極、非水電解質二次電池および電子機器
JP2009224307A (ja) 2008-02-22 2009-10-01 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
EP2264814A4 (en) 2008-04-17 2016-08-17 Jx Nippon Mining & Metals Corp POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION BATTERY, POSITIVE ELECTRODE FOR RECHARGEABLE BATTERY, AND LITHIUM-ION BATTERY
JP2009277597A (ja) 2008-05-16 2009-11-26 Panasonic Corp 非水電解質二次電池
JP5451228B2 (ja) 2008-07-25 2014-03-26 三井金属鉱業株式会社 層構造を有するリチウム遷移金属酸化物
JP5231171B2 (ja) 2008-10-30 2013-07-10 パナソニック株式会社 非水電解質二次電池用正極活物質およびその製造方法
KR20100060362A (ko) 2008-11-27 2010-06-07 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN101478044B (zh) 2009-01-07 2012-05-30 厦门钨业股份有限公司 锂离子二次电池多元复合正极材料及其制备方法
JP5195499B2 (ja) 2009-02-17 2013-05-08 ソニー株式会社 非水電解質二次電池
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
JPWO2010113512A1 (ja) 2009-04-03 2012-10-04 パナソニック株式会社 リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池
JP5490458B2 (ja) 2009-07-13 2014-05-14 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP5401211B2 (ja) 2009-08-21 2014-01-29 日清エンジニアリング株式会社 二次電池用正極材料の製造方法
JP2011076797A (ja) 2009-09-29 2011-04-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011113792A (ja) 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
EP2515364A1 (en) 2009-12-18 2012-10-24 JX Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
CN102668185B (zh) 2009-12-22 2015-07-08 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及使用其的锂离子电池、及锂离子电池用正极活性物质前驱体
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
KR101445954B1 (ko) * 2010-03-04 2014-09-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
CN102782912A (zh) 2010-03-04 2012-11-14 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
TWI423505B (zh) 2010-03-04 2014-01-11 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
KR101411790B1 (ko) 2010-03-04 2014-06-24 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
US20120319039A1 (en) 2010-03-04 2012-12-20 Jx Nippon Mining & Metals Corporation Positive Electrode Active Material For Lithium Ion Battery, Positive Electrode For Lithium Ion Battery, And Lithium Ion Battery
US20120326101A1 (en) 2010-03-04 2012-12-27 Jx Nippon Mining & Metals Corporation Positive Electrode Active Material For Lithium-Ion Batteries, Positive Electrode For Lithium-Ion Batteries,Lithium-Ion Battery
US9216913B2 (en) * 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
CN102754254B (zh) 2010-03-04 2016-01-20 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
US20120326099A1 (en) 2010-03-04 2012-12-27 Jx Nippon Mining & Metals Corporation Positive Electrode Active Material For Lithium Ion Battery, Positive Electrode For Lithium Ion Battery, And Lithium Ion Battery
TWI423504B (zh) 2010-03-05 2014-01-11 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
KR101679996B1 (ko) 2010-03-29 2016-11-25 스미토모 긴조쿠 고잔 가부시키가이샤 비수계 전해질 이차 전지용 정극 활성 물질과 그의 제조 방법, 및 상기 정극 활성 물질의 전구체, 및 상기 정극 활성 물질을 이용한 비수계 전해질 이차 전지
CN105514420A (zh) 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
EP2696406B1 (en) 2011-01-21 2018-05-30 JX Nippon Mining & Metals Corporation Method for producing positive-electrode active material for lithium-ion battery
JP6016329B2 (ja) 2011-02-16 2016-10-26 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
WO2012132072A1 (ja) 2011-03-29 2012-10-04 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質の製造方法及びリチウムイオン電池用正極活物質
EP2693536B1 (en) 2011-03-31 2017-05-03 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
JP5812682B2 (ja) 2011-05-19 2015-11-17 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質及びその製造方法
JP6292738B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6292739B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6159514B2 (ja) 2012-09-19 2017-07-05 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208744A (ja) 1997-01-29 1998-08-07 Hitachi Ltd 電 池
JPH10321224A (ja) 1997-05-16 1998-12-04 Nikki Kagaku Kk リチウム電池正極材及びその製造方法
JP2006134852A (ja) * 2004-11-04 2006-05-25 Kyoo-Sun Han 自己混合共融法を利用した高出力リチウム2次電池用の結晶質ナノ微粒子正極活物質の製造方法
JP2006286614A (ja) * 2005-03-09 2006-10-19 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009289726A (ja) * 2008-05-01 2009-12-10 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2544273A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184472A (ja) * 2015-03-25 2016-10-20 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池

Also Published As

Publication number Publication date
EP2544273A1 (en) 2013-01-09
US20130001463A1 (en) 2013-01-03
KR101450421B1 (ko) 2014-10-13
CN102782909B (zh) 2015-01-14
TWI423507B (zh) 2014-01-11
EP2544273A4 (en) 2014-06-25
CN102782909A (zh) 2012-11-14
TW201205942A (en) 2012-02-01
JPWO2011108596A1 (ja) 2013-06-27
US9225020B2 (en) 2015-12-29
KR20120125347A (ko) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5923036B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2011108596A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2011108595A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5467144B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及びリチウムイオン電池
WO2011108389A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5985818B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2012073549A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2011096525A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5876739B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP2011187419A (ja) リチウムイオン電池用正極、及び、リチウムイオン電池
JP5985819B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2012073548A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012094.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750705

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012503218

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13582113

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127023307

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011750705

Country of ref document: EP