TW541745B - Anode active matter and production method therefor, non-aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery - Google Patents

Anode active matter and production method therefor, non-aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
TW541745B
TW541745B TW091108148A TW91108148A TW541745B TW 541745 B TW541745 B TW 541745B TW 091108148 A TW091108148 A TW 091108148A TW 91108148 A TW91108148 A TW 91108148A TW 541745 B TW541745 B TW 541745B
Authority
TW
Taiwan
Prior art keywords
composite oxide
aqueous electrolyte
secondary battery
electrolyte secondary
positive electrode
Prior art date
Application number
TW091108148A
Other languages
Chinese (zh)
Inventor
Ryuji Shiozaki
Kazuya Okabe
Toshiyuki Nukuda
Akihiro Fujii
Tokuo Inamasu
Original Assignee
Yuasa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Co Ltd filed Critical Yuasa Battery Co Ltd
Application granted granted Critical
Publication of TW541745B publication Critical patent/TW541745B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention provides an anode active matter capable of producing a non-aqueous electrolyte secondary battery having a high energy density and being excellent in charge/discharge cycle characteristics, and a non-aqueous electrolyte secondary battery-use anode and non-aqueous electrolyte secondary battery using it. The anode active matter contains a composite oxide represented by a composition formula LiaMn0.5-xNi0.5-yMx+yO2 (0 < a &lt 1.3, -0.1 <= x-y <= 0.1, M is an element other than Li, Mn, Ni). Alternatively, the anode active matter contains a composite oxide represented by a composition formula iwMnx'Niy'Coz'O2 (in the tertiary state diagram, (x', y', z') is the value on the line or in the interior of the rectangle ABCD using A(0.51, 0.49, 0), B(0.45, 0.55, 0), C(0.25, 0.35, 0.4), D(0.31, 0.29, 0.4) as vertexes. 0 <= w/(x'+y'+z') <= 1.30).

Description

⑻年*1月13日參(更)正替觀 Α7 五、發明説明(y (請先閱讀背面之注意事項再填寫本頁) X于形成多孔質,鋰-錳-鎳複合氧化物之密度降低。此 日寺雖顯示高效率放電性能,但是構成元素產生溶解,導致 Λ @ J:電阻增加,或電解液產生氧化分解使保存性能低, 或充電時之熱安定性有降低的傾向。 @ &amp;上得知,複合氧化物之全細孔容積在0 · 0〇1 111 1 / g 〜0 · 〇 0 6 m 1 / g (比表面積:〇 · 3 〇 111 u / g〜1 . 6 m 2 / g )之範圍內,可得到兼具優異 之商效率放電性能與高充放電循環性能之電池。 對於電池要求低溫高效率放電性能所代表之高效率放 電性能時’如前述,即使電池之能量密度有若干降低,複 合氧化物也需要增加全細孔容積,但是增加太多全細孔容 積(比表面積)之電池,有充放電循環性能降低的問題。 全細孔容積(比表面積)較大之材料一般爲晶間或微細龜 裂較多的材料。 本發明之實施形態之正極活性物質,其複合氧化物如 前述’理想爲使用C u Κ α線之粉末X光繞射圖之2 β : 4 4 。1 ± 1 °之繞射波峰對2 0 : 1 8 · 6 ± 1。之繞射 經濟部智慧財產局員工消費合作社印製 波峰之相對強度比爲0 · 6 5以上1 · 〇 5以下之複合氧 化物,藉此可得到結晶結構安定,且充放電循環性能優異 之電池。 此作用效果雖不明確,但是前述粉末X光繞射圖中, 2 β : 4 4 . 1 ±1 ° 之繞射波峰對 2 0 : 1 8 · 6 ± 1。 之繞射波峰之相對強度比爲結晶性指標,燒結溫度越高, 燒結時間越長,多全細孔容積越小,則相對強度越大的傾 本纸張尺度適用中國國家標準(CNS ) Α4規格(210x 297公釐) -33- 541745tern 月ΐί ί月13曰渗(更)正替換頁 Α7 Β7 五、發明説明(3』 (請先閱讀背面之注意事項再填寫本頁) 很難得到目標組成之複合氧化物等之製作上的問題,或粒 子之高密度化造成電池之性能降低的問題。此可能是因爲 超過1 1 0 o°c時,一次粒子成長速度增加,複合氧化物 之結晶粒子太大所產生的,此外局部之L i之缺損量增加 ’形成不安定結構也是原因。溫度越高時,L i元素所佔 有的面與Mn、N i 、C 〇元素所佔有之面之間極易產生 元素取代,抑制L i傳導造成放電容量降低。 燒結溫度爲9 5 0 t以上1 0 2 5 °C以下,可製作高 能量密度(放電容量),充放電循環性能優異之電池。 燒結時間理想爲3小時〜5 0小時。燒結時間超過 5 0小時,但是因L i之揮發實質上會使電池性能變差。 又燒結時間低於3小時,則結晶成長不良,電池性能變差 〇 經濟部智慧財產局員工消費合作社印製 「至少含有L 1成分、Μη成分及N i成分之1^1一 Μ η - N i複合氧化物前驅物」其Μ η及N i爲均勻混合 之化合物爲佳。又「至少含有L i成分、Μη成分、N i 成分及Μ成分之L i 一 Μη - N i - Μ複合氧化物前驅物 」其]\/[11、N i及Μ爲均句混合之化合物爲佳。只要是滿 足這種條件之製造方法即無特別限定,在本發明之構成範 圍內,吸留、釋放鋰離子之結晶結構之安定性必須高,因 此,以「氫氧化鈉水溶液等之鹼水溶液使Μ η、Ν 1及Μ 之酸性水溶液沉澱之共沉澱製法」可製造特別是具有高電 池性能之正極活性物質。如曰本特開平1 〇 -丨2 5 3 1 9號公報 所述,反應系中含有對於金屬而言爲過量之銨離子的條件下 本紙張尺度適用中國國家標準(CNS ) Α4規格(2丨0X 297公釐) -37- 繼 更)正替換頁 A7 B7 五、發明説明(36) (請先閱讀背面之注意事項再填寫本頁) 本說明書中’ Μ化合物係指具有l i ,Μ η,N i以 外之元素的化合物。M之具體例如前述者。M爲a 1之化 合物時’爲硝酸鋁等’ Μ爲M g之化合物時,爲硫酸鎂等 ,Μ爲C 〇之化合物時,爲氫氧化鈷、碳酸鈷、硫酸鈷、 硝酸鈷等。 以下說明製造可成爲L i 一 Μη - N i複合氧化物前 驅物之構成成分之Μ η與N i之共沉澱物(M ^ — N i複 合共丨几灑物)及成爲L i — Μη - N i — Μ複合氧化物前 驅物έ構成成分之Μ η與N i與Μ之共沉澱物(μ η — Ni— Μ複合共沉澱物)。 Μ η - N i複合共沉澱物之製作係μ η與N i均勻混 合之共ί几Μ爲佳,Μη - N i - Μ複合共沉潑物之製作係 Mn、N i與Μ均勻混合之共沉澱爲佳。Μη - N i共沉 澱物之製作例,例如以氫氧化鈉使Μ η、N i之酸性水溶 液沉澱來製作。 Μη - N i - Μ複合共沉澱物之製作係將含有Μη元 素、N i元素及Μ元素之酸性水溶液以氫氧化鈉沉澱來製 經濟部智慧財產局員工消費合作社印製 作。 此時對於反應系中之金屬而言含有過量之鏡離子的條 件下;可製作均勻球狀,且高密度之前驅物粒子。 .Μ η - N i複合共沉澱物、Μ η — N i — Μ複合共沉 澱物之製作可使用分批式或連續沉澱法,爲了得到均勻球 狀,且高密度之前驅物粒子時,使用連續沉澱法較佳。 藉由具有特定共沉澱步驟之本發明之正極活性物質之 本纸張尺度適用中國國家標準(CNS ) A4規格(210X29?公釐) -39-Leap year * January 13th (more) Zhengguanguan A7 V. Description of the invention (y (please read the precautions on the back before filling this page) X to form a porous, lithium-manganese-nickel composite oxide density Decreased. Although this temple exhibits high-efficiency discharge performance, the constituent elements are dissolved, which results in an increase in Λ @ J: the resistance increases, or the electrolytic solution undergoes oxidative decomposition to reduce storage performance, or the thermal stability during charging tends to decrease. &amp; It is learned that the total pore volume of the composite oxide is in the range of 0 · 0〇1 111 1 / g to 0 · 0 0 6 m 1 / g (specific surface area: 0.3 · 〇111 u / g ~ 1.6 m 2 / g), a battery with excellent quotient discharge performance and high charge-discharge cycle performance can be obtained. When the battery requires high-efficiency discharge performance represented by low-temperature high-efficiency discharge performance, as described above, even the battery The energy density has decreased, and the composite oxide also needs to increase the full pore volume, but batteries with too much full pore volume (specific surface area) have a problem of reduced charge and discharge cycle performance. Full pore volume (specific surface area) Larger materials are generally crystalline Or a material with a lot of fine cracks. The positive electrode active material according to the embodiment of the present invention has a composite oxide as described above. 'It is ideally a powder X-ray diffraction pattern using Cu κ α 2 2 β: 4 4. 1 ± Diffraction peaks at 1 ° to 20: 1 8 · 6 ± 1. Diffraction composite oxides whose relative intensity ratio of the peaks printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs are 0 · 6 5 or more and 1 · 0 or less In this way, a battery with stable crystal structure and excellent charge-discharge cycle performance can be obtained. Although this effect is not clear, the diffraction peak pair of 2 β: 4 4. 1 ± 1 ° 2 0: 1 8 · 6 ± 1. The relative intensity ratio of diffraction peaks is an index of crystallinity. The higher the sintering temperature, the longer the sintering time, and the smaller the total pore volume, the greater the relative strength. Zhang scale is applicable to Chinese National Standard (CNS) Α4 specification (210x 297 mm) -33- 541745tern Yue ΐ ί 13 曰 13 month (see) Correction replacement page A7 Β7 V. Description of the invention (3 "(Please read the note on the back Please fill in this page again) It is difficult to obtain the target compound oxide Production problems, or the problem of battery performance degradation caused by the high density of particles. This may be caused by the increase in the growth rate of primary particles when the temperature exceeds 110 ° C, and the crystalline particles of the composite oxide are too large. In addition, the increase in the local defect amount of L i is also the cause of the formation of a unstable structure. At higher temperatures, element substitution between the surface occupied by the Li element and the surface occupied by the Mn, Ni, and C elements is extremely easy. Suppressing Li conduction causes a decrease in discharge capacity. The sintering temperature is more than 950 ton and 10 to 5 ° C, which can produce batteries with high energy density (discharge capacity) and excellent charge-discharge cycle performance. The sintering time is preferably 3 hours to 50 hours. The sintering time exceeds 50 hours, but the battery performance is substantially deteriorated due to the volatilization of Li. If the sintering time is less than 3 hours, the crystal growth is poor, and the battery performance is deteriorated. 0 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, "contains at least 1 ^ 1 Μ η-N The "i complex oxide precursor" is preferably a compound in which η and Ni are uniformly mixed. Also "L i-Mη-N i-Μ complex oxide precursor containing at least Li component, Mn component, N i component and M component" which] \ / [11, Ni and M are homogeneous compounds Better. There is no particular limitation as long as it is a manufacturing method that satisfies such conditions. Within the constitutional scope of the present invention, the stability of the crystalline structure that occludes and releases lithium ions must be high. Therefore, an alkali aqueous solution such as an aqueous sodium hydroxide solution is used. The co-precipitation method for precipitation of acidic aqueous solutions of η, Ν, and Μ "can produce a positive electrode active material having particularly high battery performance. As stated in Japanese Patent Application Publication No. 10- 丨 2 5 3 1 9, under the condition that the reaction system contains excessive ammonium ions for the metal, the Chinese paper standard (CNS) A4 specification (2 丨0X 297mm) -37- Continued) Replacement page A7 B7 V. Description of the invention (36) (Please read the notes on the back before filling out this page) In this description, 'M compound means li, M η, Compounds of elements other than Ni. Specific examples of M are the aforementioned ones. When M is a compound of a 1 'is a compound of aluminum nitrate' When M is a compound of M g, it is magnesium sulfate or the like, and when M is a compound of C 0, it is cobalt hydroxide, cobalt carbonate, cobalt sulfate, cobalt nitrate, or the like. The following is a description of manufacturing a co-precipitated product of M η and Ni that can be a constituent of a precursor of Li-Mη-Ni complex oxide (M ^ —Ni complex total spray) and the formation of Li-Mη- The co-precipitates of M i and Ni and M (μη-Ni-M composite co-precipitate) of the constituent components of the Ni-M composite oxide precursor. The production of Μ η-Ni complex co-precipitate is preferably a mixture of μ η and Ni uniformly, and the production of Μη-Ni-Μ complex co-precipitate is uniformly mixed with Mn, Ni and Μ. Co-precipitation is preferred. An example of the preparation of the Mn-Ni co-precipitated product is prepared by, for example, precipitating an acidic aqueous solution of Mn and Ni with sodium hydroxide. The production of Mn-Ni-M composite coprecipitate is made by the precipitation of sodium hydroxide in an acidic aqueous solution containing Mn, Ni and M elements and printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. In this case, the metal in the reaction system contains excessive mirror ions; a uniform spherical shape and high-density precursor particles can be produced. .M η-N i composite co-precipitate, Μ η — N i-Μ composite co-precipitate can be prepared by batch or continuous precipitation method, in order to obtain uniform spherical and high-density precursor particles, use Continuous precipitation is preferred. The paper size of the positive electrode active material of the present invention with a specific co-precipitation step is applicable to the Chinese National Standard (CNS) A4 specification (210X29? Mm) -39-

A7 B7 — 1 ·_- ~ — &quot; &quot; 丨Ι·丨丨 — 五、發明説明(38) 一般,依據公知之粉體混合法,將起始原料微粉碎成 次微米或微米粒子,添加L i〇Η等之鋰源進行燒結,在 技術上也可得到鋰-猛-鎳複合氧化物中各元素均勻固相 混合之複合氧化物,但是粉體必須微粉碎,或燒結時粉體 須壓製成型等,步驟繁雜。又即使可得到,但是複合氧化 物被微細化而無法得到滿足之電池性能。N i - Μ η之均 勻混合狀態會影響充電時之熱安定性及充放電循環性能, 而N i — Μ η之不均勻混合狀態可能會產生以往LiNl〇2 所引起之熱安定性不良的缺點及L i 2 Μ η〇3等之L 1 - Μ η氧化物所引起之充放電循環性能不良之粒子局部存 在的狀態。 將Μ η化合物、N i化合物及銘化合物一同燒結可得 到L 1?411。1^丨3(:〇,.〇2型之複合氧化物,但是1^11 、N i 、C 〇個元素之固溶取代慢,無法充分得到複合氧 化物,即使爲了得到充分之複合氧化物而延長燒結時間時 ,複合氧化物之結晶成長過度,比表面積減少,因此電池 之放電容量有降低的傾向。 但是依據本發明之正極活性物質之製造方法所具有之 共沉澱步驟時,將N i化合物、Μ η化合物及Μ /化合物 溶解於水中,可使N i元素、Μ η元素及Μ /元素均勻混 合,因此接著添加鹼化合物,可得到各元素均勻混合狀態 之複合共沉澱物。依此方法所得之正極活性物質,其中至 少Ν 1元素與Μ η元素比以往更均勻混合,因此可推測可 製得放電容量優異之電池。上述複合共沉澱物爲Ν 1 一 本纸張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -41 - 月1妒修(更)正替換頁 1 A7 B7 五、發明説明(67) 1 · 0 2。將此混合物塡充於鋁製缽內,使用電爐以A7 B7 — 1 · _- ~ — &quot; &quot; 丨 Ι · 丨 丨 — V. Description of the invention (38) Generally, according to the well-known powder mixing method, the starting materials are finely pulverized into submicron or micron particles, and added Li iodide and other lithium sources are sintered. It is also technically possible to obtain a composite oxide in which the elements in the lithium-manganese-nickel composite oxide are uniformly and solidly mixed, but the powder must be finely pulverized, or the powder must be sintered Complicated steps such as press molding. Even if it is available, the composite oxide is miniaturized and cannot satisfy the battery performance. The uniformly mixed state of Ni-Μ η will affect the thermal stability and charge-discharge cycle performance during charging, and the unevenly mixed state of Ni-Μ η may produce the disadvantage of poor thermal stability caused by LiNl02 in the past. And L 1-M η oxide such as L i 2 Μ 〇 3 and the like, a state in which particles with poor charge-discharge cycle performance exist locally. Sintering the M η compound, the Ni compound, and the ming compound together can obtain a L 1? 411. 1 ^ 3 (: 〇, .〇2 type complex oxide, but 1 ^ 11, Ni, C0 element The solid solution substitution is slow, and the composite oxide cannot be obtained sufficiently. Even if the sintering time is prolonged in order to obtain a sufficient composite oxide, the crystal growth of the composite oxide is excessive, and the specific surface area is reduced. Therefore, the discharge capacity of the battery tends to decrease. In the co-precipitation step of the method for producing a positive electrode active material of the present invention, the N i compound, the M n compound, and the M / compound are dissolved in water to uniformly mix the N i element, the M n element, and the M / element. Next, an alkaline compound is added to obtain a composite coprecipitate in a uniformly mixed state of each element. In the positive electrode active material obtained by this method, at least the N 1 element and the M η element are more uniformly mixed than in the past, so it can be estimated that a discharge capacity can be obtained Excellent battery. The above-mentioned composite co-precipitate is Ν 1 a paper size applicable to China National Standard (CNS) Α4 specification (210X 297 mm) (Please read the back first Please pay attention to this page and fill in this page) Order printed by the Intellectual Property Bureau Employee Consumer Cooperative of the Ministry of Economic Affairs -41-Month 1 Jealousy (correction) Replacement page 1 A7 B7 V. Description of the invention (67) 1 · 0 2. This mixture塡 Fill in an aluminum bowl and use an electric furnace to

1 〇 0 C /小時的速度升溫至1 〇 3 〇 °c ,在1 0 3 0 °C (請先閱讀背面之注意事項再填寫本頁) 下保持1 5小時,以1 〇 〇 °c /小時的速度冷卻至6 〇 〇 °c,然後放置冷卻。將製得之燒結體粉碎後,使用7 5 # m的篩分級得到D 5 〇 = 1 〇 · 2 // m之鋰一鎳〜錳複 合氧化物(複合氧化物A5)。比表面積爲1 · 8 m /g。全細扎谷積爲〇 · 〇〇7ml/g。 該粉末使用C u Κ α線之X光繞射測定的結果與複合 氧化物A 1相同的繞射波峰,得知已合成屬於空間群 R 3 / m之層狀結構之結晶性高之單相。晶格常數a =The temperature is raised to 1000 ° C / hour to 10.0 ° C, and maintained at 1030 ° C (please read the precautions on the back before filling in this page) for 15 hours at 100 ° C / Cool down to 600 ° C per hour, then leave to cool. The obtained sintered body was pulverized and classified using a 7 5 # m sieve to obtain a lithium-nickel-manganese composite oxide (composite oxide A5) having D 5 0 = 1 0 · 2 // m. The specific surface area is 1.8 m / g. The total finely divided trough volume was 0.07 ml / g. As a result of X-ray diffraction measurement of this powder using Cu κ α rays, the diffraction peaks were the same as those of the composite oxide A 1, and it was found that a single phase having a high crystallinity having a layered structure belonging to the space group R 3 / m was synthesized. Lattice constant a =

2 · 8 8 9、晶格常數c = 1 4 . 3 0、結晶晶格體積V =〇 · 1 〇 3 4 n m 3。 26 = 44 · 12° 之波峰對 20 = 18 · 60。之 波峰之相對強度比爲〇 · 7 7,各波峰之半寬度分別爲 〇· 2 1 2 °及0 · 2 8 2 ° 。元素分析的結果,該粉末 之不且成爲 L i 1.02M110.5N i〇.5〇2。 經濟部智慈財產局員工消費合作社印製 (複合氧化物A 6 ;以往之粉體混合法) 將電解二氧化錳粉末(r — Μ η〇2、純度9 2 % ) 以濕式粉碎機粉碎成平均粒徑2 . 0 // m。將氫氧化鎳粉 末以濕式粉碎機粉碎成平均粒徑2 . 0 // m。使鎳與錳之 元素比成爲1 : 1的狀態混合二氧化錳粉末與氫氧化鎳粉 末。 秤取製得之鎳-锰混合粉末及氫氧化鋰一水鹽粉末, 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -70- ,殂3曰修(更)正替換頁 ^ 五、發明説明(68) 然後充分混合,使Li / (Ni+Mn)成爲1 · 02的 狀態。將此混合物塡充於鋁製缽內,使用電爐以1 〇 〇 t /小時的速度升溫至1 0 0 0 °C,在1 〇 〇 〇 t:下保持 1 5小時,以1 〇 〇 °C /小時的速度冷卻至6 0 0 °C,然 後放置冷卻。將製得之燒結體粉碎後,使用7 5 // m的篩 分級得到D 5。= 9 · 5 // m之鋰一鎳—錳複合氧化物( 複合氧化物A 6 )。比表面積爲1 · 8 m 2 / g。全細孔 容積爲0.006423ml/g。 該粉末使用C u Κ α線之X光繞射測定的結果與複合 氧化物A 1相同的繞射波峰,得知已合成屬於空間群 R 3 /m之層狀結構之結晶性高之單相。晶格常數a二 2 · 8 9 1 、晶格常數c = 1 4 · 3〇、結晶晶格體積V =0 · 1035n m3。 2Θ = 4 4 · 12° 之波峰對 20 = 18 . 56。之 波峰之相對強度比爲0 · 7 7,各波峰之半寬度分別爲 0·188°及0.259° 。元素分析的結果,該粉末 之不且成爲L i l.osMno.sN i〇.5〇2。 (複合氧化物A 7 ;以往之粉體混合法) 將電解二氧化錳粉末(r — Μ η〇2、純度9 2 % ) 以濕式粉碎機粉碎成平均粒徑2 · 0 # m。將氫氧化鎳粉 末以濕式粉碎機粉碎成平均粒徑2 . 〇 // m。使鎳與錳之 元素比成爲1 : 1的狀態混合二氧化錳粉末與氫氧化鎳粉 末0 本纸張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 % -71 - 經濟部智慧財產局員工消費合作社印製 獅五、發明説明(Μ) 〇〇 斷續使用加熱器使反應槽內溶液溫度固定爲5 0 t。 原料溶液投入開始5小時後,採取可能爲反應晶析物 之氫氧化物或氧化物之鈷沉澱物覆蓋表面之鎳一錳複合共 沉澱物之漿料。將採取之漿料以水洗、過濾。然後以1〇 〇°C乾燥2 0小時,得到鈷沉澱物覆蓋表面之鎳一錳複合 共沉澱物之D 5。= 1 1 · 2 # m之乾燥粉末。使用 YUASAIONIX公司製4 S U - 8 U 2在氮之脫離側測定 此粉末之比表面積。結果爲1 5 · 6 m 2 / g。 坪取製侍之鏡-猛一姑複〇共沉潑物粉末及氮氧化鍵 一水鹽粉末,然後充分混合,使L i / (N i + Μη + C ο )成爲1 · 〇 2。將此混合物塡充於鋁製鉢內,使用 電爐以1 0 0 °C /小時的速度升溫至1 〇 〇 〇。(:,在 1 0 0 0 °C下保持1 5小時,以1 0 〇 °C /小時的速度冷 卻至6 0 0 t,然後放置冷卻。將製得之燒結體粉碎後, 使用7 5 # m的篩分級得到D 5 ◦ = 1 2 · 6 /z m之鋰— 鎳一猛一銘複合氧化物(複合氧化物C 7 )。 比表面積爲0 · 3 m 2 / g。全細孔容積爲 〇· 00 1285 ml/g。 該粉末使用C u Κ α線之X光繞射測定的結果與複合 氧化物A 1相同的繞射波峰,得知已合成屬於空間群 R 3 / m之層狀結構之結晶性高之單相。晶格常數a二 2 · 8 7 7、晶格常數c· = 1 4 · 2 8、結晶晶格體積v =〇· 1 ◦ 2 3 n m 3。 2Θ = 44 · 20°之波峰對20 = 18 . 6〇。之 A7 B7 (請先閱讀背面之注意事項再填寫本頁) ·· 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇X:297公釐) -86- A7 B7 (更)正頁 五、發明説明(Q/l ) 84 波峰之相對強度比爲0 · 6 6,各波峰之半寬度分別爲 0.059°及0.1 18° 。元素分析的結果,該粉末 之組成爲 L i l.〇2Mni/3N i 1/3C 〇2/12〇2。 (複合氧化物C 8 ) 將(複合氧化物C 1 )所得之高密度鎳-錳複合共沉 澱物5 0 g投入添加3 2 %氫氧化鈉水溶液使P Η = 1 1 · 6之氫氧化鈉水溶液1公升中。使用具備7 0 mm0葉片型之攪拌葉片之攪拌機,以1 3 5 0 r pm攪 拌,使用加熱器將反應槽內溶液溫度保持5 0 °C。 將1 · 5莫耳/公升硫酸鈷水溶液及6莫耳/公升硫 酸銨水溶液分別以體積比5 · 0 : 1 · 4 0 (公升)的比 例混合,作爲塗佈共沉澱用之原料溶液。 對於高密度鎳-錳複合共沉澱物5 0 g時,秤量塗佈 共沉澱用之原料溶液使(N i + Mn) /Co二2 0/1 (莫耳比)。 將此原料溶液滴入反應槽內。又,以斷續投入3 2 % 氫氧化鈉水溶液使反應槽內溶液P Η固定爲1 1 · 3。以 斷續使用加熱器使反應槽內溶液溫度固定爲5 0 °C。 原料溶液投入開始5小時後,採取可能爲反應晶析物 之氫氧化物或氧化物之鈷沉澱物覆蓋表面之鎳一錳複合 共沉澱物之漿料。將採取之漿料以水洗、過濾。然後以 1 〇 〇 °C乾燥2 0小時,得到鈷沉澱物覆蓋表面之鎳一 鍤複合共沉澱物之Dso二1 1 · 〇#m之乾燥粉末 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)2 · 8 8 9, lattice constant c = 14.3 0, crystal lattice volume V = 0 · 1 0 3 4 n m 3. A peak pair of 26 = 44 · 12 ° 20 = 18 · 60. The relative intensity ratio of the peaks is 0.77, and the half-widths of the peaks are 0.22 ° and 0.28 °, respectively. As a result of elemental analysis, this powder was not less than L i 1.02M110.5N i0.50. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs (composite oxide A 6; conventional powder mixing method) Electrolytic manganese dioxide powder (r — M η〇2, purity 9 2%) is pulverized by a wet pulverizer Into an average particle diameter of 2. 0 // m. The nickel hydroxide powder was pulverized with a wet pulverizer to an average particle diameter of 2.0 m. Manganese dioxide powder and nickel hydroxide powder were mixed in a state where the element ratio of nickel to manganese was 1: 1. The nickel-manganese mixed powder and lithium hydroxide monohydrate powder obtained by weighing are used. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) -70-, and it is replaced by 3 (revised) Page ^ V. Description of the invention (68) Then mix thoroughly to make Li / (Ni + Mn) into a state of 1.02. This mixture was filled in an aluminum bowl, and the temperature was raised to 1000 ° C at a rate of 1000 t / hour using an electric furnace, and maintained at 1000 t: 15 hours at 1000 ° C. Cool down to 600 ° C per hour and let cool. The obtained sintered body was pulverized and classified using a 7 5 // m sieve to obtain D 5. = 9 · 5 // m of lithium-nickel-manganese composite oxide (composite oxide A 6). The specific surface area is 1.8 m2 / g. Full pore volume is 0.006423ml / g. As a result of X-ray diffraction measurement of this powder using CuKα rays, the diffraction peaks were the same as those of the composite oxide A1, and it was found that a single phase having a high crystallinity having a layered structure belonging to the space group R 3 / m was synthesized. The lattice constant a is 2 · 8 9 1, the lattice constant is c = 1 · 4 · 30, and the crystal lattice volume is V = · 1035 n m3. 2Θ = 4 4 · 12 ° peak pair 20 = 18. 56. The relative intensity ratio of the peaks is 0 · 7 7 and the half-widths of the peaks are 0 · 188 ° and 0.259 °, respectively. As a result of elemental analysis, this powder became Li i.osMno.sN i0.52. (Composite oxide A 7; conventional powder mixing method) The electrolytic manganese dioxide powder (r-M η02, purity 92%) was pulverized with a wet pulverizer to an average particle diameter of 2.0 m. The nickel hydroxide powder was pulverized with a wet pulverizer to an average particle diameter of 2. 0 // m. Mix the manganese dioxide powder and nickel hydroxide powder with the ratio of nickel to manganese to 1: 1. The paper size is applicable to China National Standard (CNS) A4 specification (210X 297 mm) (Please read the note on the back first) Please fill in this page again) Order% -71-Lion Co., Ltd. Printed on the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the Invention (Μ) 〇〇 Use the heater intermittently to fix the temperature of the solution in the reaction tank to 50 t. Five hours after the start of the feeding of the raw material solution, a slurry of nickel-manganese composite co-precipitate, which may cover the surface with a hydroxide precipitate or a cobalt precipitate of an oxide, was taken. The collected slurry was washed with water and filtered. It was then dried at 100 ° C. for 20 hours to obtain D 5 of a nickel-manganese composite co-precipitate whose surface was covered by a cobalt precipitate. = 1 1 · 2 # m of dry powder. The specific surface area of this powder was measured on the nitrogen release side using 4 S U-8 U 2 manufactured by YUASAIONIX. The result was 1 5 · 6 m 2 / g. Ping take the mirror of the mirror-Meng Yiguo 0 coprecipitate powder and nitrogen oxide bond monohydrate salt powder, and then thoroughly mixed to make Li / (N i + Μη + C) to 1 · 02. This mixture was poured into an aluminum bowl, and the temperature was raised to 100 ° C at a rate of 100 ° C / hour using an electric furnace. (: Hold at 1000 ° C for 15 hours, cool to 600 t at 100 ° C / hour, and leave to cool. After crushing the sintered body, use 7 5 # The sieve classification of m yields D 5 ◦ = 1 2 · 6 / zm of lithium-nickel monolithic composite oxide (complex oxide C 7). The specific surface area is 0 · 3 m 2 / g. The total pore volume is 〇 · 00 1285 ml / g. The results of X-ray diffraction measurement of Cu powder with Cu κ α were the same as those of the complex oxide A 1, and it was found that a layered structure belonging to the space group R 3 / m was synthesized. Single phase with high crystallinity. Lattice constant a 2 · 8 7 7; Lattice constant c · = 1 4 · 2 8; Crystal lattice volume v = 0 · 1 ◦ 2 3 nm 3. 2Θ = 44 · The peak pair at 20 ° is 20 = 18.60. A7 B7 (please read the notes on the back before filling this page) ·· The size of the paper is applicable to the Chinese National Standard (CNS) A4 specification (21〇X: 297) (Centimeters) -86- A7 B7 (revised) Page V. Description of the Invention (Q / l) The relative intensity ratio of 84 peaks is 0 · 6 6 and the half-widths of each peak are 0.059 ° and 0.1 18 ° respectively. As a result, the The final composition is L i 1.02Mni / 3N i 1 / 3C 〇2 / 12〇2. (Composite oxide C 8) The high-density nickel-manganese composite coprecipitate obtained by (complex oxide C 1) 5 0 g is added to 1 liter of a sodium hydroxide aqueous solution of 3 2% sodium hydroxide aqueous solution so that P Η = 1 1 · 6. Using a mixer equipped with a 70 mm0 blade type stirring blade, stir at 1 350 0 pm, Use a heater to maintain the temperature of the solution in the reaction tank at 50 ° C. The 1.5 mol / liter aqueous solution of cobalt sulfate and the 6 mol / liter aqueous solution of ammonium sulfate were used in a volume ratio of 5 · 0: 1 · 4 0 (liters), respectively. As a raw material solution for coating co-precipitation. For a high-density nickel-manganese composite co-precipitate at 50 g, the raw material solution for coating co-precipitation is weighed so that (N i + Mn) / Co 2 2 0 / 1 (Molar ratio). This raw material solution was dropped into the reaction tank. In addition, a 3 2% sodium hydroxide aqueous solution was intermittently injected to fix the solution P Η in the reaction tank to 1 1 · 3. It was heated intermittently. The temperature of the solution in the reaction tank is fixed to 50 ° C. Five hours after the start of the feedstock solution, a hydroxide or The nickel-manganese composite co-precipitate slurry covered by the cobalt precipitate on the surface of the compound. The collected slurry was washed with water, filtered, and then dried at 100 ° C for 20 hours to obtain the nickel-coated nickel-manganese coated surface.锸 Dso II 1 1 · 〇 # m dry powder of composite coprecipitate The paper size is applicable to Chinese National Standard (CNS) Α4 specification (210X297 mm) (Please read the precautions on the back before filling this page)

、1T 經濟部智慧財產局員工消費合作社印製 -87- 541745 ,Printed by 1T Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -87- 541745,

95身1!月13LV_突)土智翁貝I 五、發明説明(87) C 0 )成爲1 · 〇 2。將此混合物塡充於鋁製缽內’使用 電爐以1 0 〇 °c /小時的速度升溫至1 0 0 0 °c ’在 1〇0 0 °C下保持1 5小時,以1 〇 〇 t: /小時的速度冷 卻至6 0 〇 °C,然後放置冷卻。將製得之燒結體粉碎後, 使用7 5 V m的篩分級得到D 5 G = 1 〇 · 6 // m之鋰— 鎳-錳-鈷複合氧化物(複合氧化物C 9)。 比表面積爲0 · 6 m 2 / g。全細孔容積爲 〇· 00 1979 ml/g。 該粉末使用C u Κ α線之X光繞射測定的結果與複合 氧化物A 1相同的繞射波峰,得知已合成屬於空間群 R 3 / m之層狀結構之結晶性高之單相。 2^ = 44 · 40 之波峰對 26 = 18 . 60。之 波峰之相對強度比爲0 · 8 5 ’各波峰之半寬度分別爲 0.172° 及〇.142° 。 複合氧化物C 9係使用C u Κ α線之X光繞射測定的 結果,在 2 0 = 1 8 · 5 8 ° 、3 5 . 5 6。、 37.72° 、38.20〇 、44.28。、 48.44° 、58.40° 、64.12° 、 6 3.7 6 ° 、6 8 . 0 2。發現繞射波峰,由結晶性高 之六方晶之單相所構成之α — N a F e〇2型層狀結構,晶 格常數3=2 · 881 、晶格常數C = Ο η 牡曰 • d J 、$口曰曰 晶格體積V = ◦· 1 0 3 0 Π m 3。元素分析的結果,該粉 末之組成爲 L i i.uMno.esNici.HCo n 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -90- 五 、發明説明(id (請先閲讀背面之注意事項再填寫本頁} 爲1 · 3 M m。粉體分佈之計測使用日本堀場製作所雷射 繞射/散射式粒度分佈測定裝置(HORIBA LA〜9 1 〇 ) 。此時之B E 丁比表面積爲〇 · 8 m 2 / g。 (複合氧化物C 1 8 ) 除了篩選製得之粉體使D 5 0 %爲7 # m,d 1 〇 % 爲3 · 4 /z m外,其餘與(複合氧化物c 1 7 )相同得到 粉體(複合氧化物C 18)。此時之BET比表面積爲\ 0 · 9 m 2 / g。 (複合氧化物C 1 9 ) 除了篩選製得之粉體使D5 0%爲1 0 //m,D 1 〇 %爲6 // m外,其餘與(複合氧化物C 1 7 )相同得到粉 體(複合氧化物C 19)。此時之BE 丁比表面積爲 1 · 2 m 2 / g。 (複合氧化物C 2〇) 經濟部智慧財產局員工消費合作社印製 除了篩選製得之粉體使D 5 0 %爲0 . 8 // m, D 1 0 %爲〇 · 4 // m外,其餘與(複合氧化物C 1 7 ) 相同得到粉體(複合氧化物C 2 0 )。此時之B E T比表 面積爲9 · 0m2/g。 (複合氧化物C 2 1 ) j , V ^1^0 J \ £.IKJ Λ. 1.7 / -104 - B7 各年lim妒暴(吏)正保V買: 五、發明説明(1(^ 除了篩選製得之粉體使D 5 0 %爲2 // m,D 1 〇 % (請先閱讀背面之注意事項再填寫本頁) 爲0 · 4 // m外,其餘與(複合氧化物c 1 7 )相同得到 粉體(複合氧化物C 2 1 )。此時之B E T比表面積爲 7 . 0 m 2 / g。 (複合氧化物C22) 除了篩選製得之粉體使D 5 0 %爲1 2 · 5 # m, D 1 〇 %爲7 // m外,其餘與(複合氧化物C 1 7 )相同 得到粉體(複合氧化物C 2 2 )。此時之B E T比表面積 爲 0 · 3 m 2 / g。 對於複合氧化物C 1 7〜C 2 2之粉體進行測定之粒 度分佈曲線之重要部分如圖1 8所示。 (複合氧化物C 2 3 ) 使用(複合氧化物A 1 )所使用之反應槽1 1 ,此反 應槽1 1內裝入1 3公升的水。再添加3 2%氫氧化鈉水 溶液使P Η = 1 1 · 6。使用具備7 0 m m 0葉片型之攪 經濟部智慧財產局員工消費合作社印製 拌葉片1 2 a之攪拌機1 2 ,以1 3 5〇r p m攪拌,使 用加熱器將反應槽內溶液溫度保持5 0 °C (參照圖1 ) ° 將0 · 7 0 1莫耳/公升硫酸鎳水溶液、〇 . 7 〇 1 莫耳/公升硫酸錳水溶液、0 · 3 5 1莫耳/公升硫酸鈷 溶液、1 · 〇莫耳/公升硫酸銨溶液及0 · 0 1 0莫耳/ 公升肼水溶液分別以體積比1 : 1 : 1 ·· 1 : 1 (公升) 的比例混合,作爲N i / Μ n / C 〇 = 〇 · 4 / 0 . 4 / 本紙張尺度適用中國國家標準(CNS ) Α4規格(21〇Χ29*7公釐) -105-95 Body 1! Month 13 LV_ Sudden) Tochi Ombe I 5. Description of the invention (87) C 0) becomes 1 · 02. This mixture was filled in an aluminum bowl. 'The temperature was raised to 100 ° C using an electric furnace at a rate of 100 ° C / hour.' The temperature was maintained at 1,000 ° C for 15 hours at 100 t. : Cool down to 600 ° C per hour, then leave to cool. The sintered body thus obtained was pulverized and classified using a sieve of 75 V m to obtain a lithium-nickel-manganese-cobalt composite oxide (composite oxide C 9) having D 5 G = 1 0 · 6 // m. The specific surface area is 0 · 6 m 2 / g. The total pore volume was 0.0000 1979 ml / g. As a result of X-ray diffraction measurement of this powder using Cu κ α rays, the diffraction peaks were the same as those of the composite oxide A 1, and it was found that a single phase having a high crystallinity having a layered structure belonging to the space group R 3 / m was synthesized. 2 ^ = 44 · 40 peak pair 26 = 18. 60. The relative intensity ratio of the peaks is 0. 8 5 ′, and the half-widths of the peaks are 0.172 ° and 0.142 °, respectively. The composite oxide C 9 is a result of X-ray diffraction measurement using Cu κ α rays, at 20 = 1 8 · 5 8 °, 3 5. 5 6. , 37.72 °, 38.20 °, 44.28. , 48.44 °, 58.40 °, 64.12 °, 6 3.7 6 °, 68.02. It was found that the diffraction peak, an α-N a F e〇2 layered structure composed of a single phase of a highly crystalline hexagonal crystal, has a lattice constant of 3 = 2 · 881 and a lattice constant of C = Ο η. d J, $ 口 said lattice volume V = ◦ · 1 0 3 0 Π m 3. Elemental analysis results, the composition of the powder is Li i.uMno.esNici.HCo n This paper size is applicable to China National Standard (CNS) A4 specification (210X 297 mm) (Please read the precautions on the back before filling this page ) Order printed by the Intellectual Property Bureau's Consumer Cooperatives of the Ministry of Economic Affairs-90- V. Description of the invention (id (please read the precautions on the back before filling out this page) is 1 · 3 M m. The measurement of powder distribution uses Japan Horiba Laser diffraction / scattering type particle size distribution measuring device (HORIBA LA ~ 9 1 〇). At this time, the specific surface area of BE but is 0.8 m 2 / g. (Composite oxide C 1 8) In addition to the powder obtained by screening The powder was made to have D 5 0% of 7 # m and d 1 〇% to 3.4 · zm, and the rest was the same as (composite oxide c 1 7) to obtain a powder (composite oxide C 18). The BET ratio at this time The surface area is \ 0 · 9 m 2 / g. (Composite oxide C 1 9) Except for the powder obtained by screening, D5 0% is 1 0 // m, D 1 〇% is 6 // m, the rest is the same as (Composite oxide C 1 7) The same powder was obtained (composite oxide C 19). At this time, the specific surface area of BE butane was 1.2 m 2 / g. (Composite oxide C 2〇 ) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, except that the powder obtained was screened so that D 50% was 0.8 // m and D 1 0% was 0.4 · m. C 1 7) The same powder was obtained (composite oxide C 2 0). The BET specific surface area at this time was 9 · 0m2 / g. (Composite oxide C 2 1) j, V ^ 1 ^ 0 J \ £ .IKJ Λ. 1.7 / -104-B7 In each year, the jealousy of the jealousy (officials) is guaranteed to be bought by V. V. Description of the invention (1 (^ Except for the powder obtained by screening, D 5 0% is 2 // m, D 1 〇% (Please read the precautions on the back before filling this page) Except for 0 · 4 // m, the rest is the same as (composite oxide c 1 7) to obtain a powder (composite oxide C 2 1). The BET ratio at this time The surface area is 7.0 m 2 / g. (Composite oxide C22) Except for the powder obtained by screening so that D 50 0% is 1 2 · 5 # m and D 1 〇% is 7 // m, the rest are the same as ( The composite oxide C 1 7) was obtained in the same manner (composite oxide C 2 2). At this time, the BET specific surface area was 0 · 3 m 2 / g. For the powders of the composite oxide C 1 7 to C 2 2 The important part of the measured particle size distribution curve is shown in Figure 18. (Composite oxide C 2 3) A reaction tank 1 1 used in (Composite oxide A 1) was used. This reaction tank 11 was filled with 13 liters of water. Add 3 2% aqueous sodium hydroxide solution to make P Η = 1 1 · 6. Use a blender with a blade type of 70 mm 0 to print the blender blades 1 2 a of the Ministry of Economic Affairs Intellectual Property Bureau's Consumer Cooperatives, and stir at 1 350 rpm. Use a heater to keep the temperature of the solution in the reaction tank 5 0 ° C (refer to Figure 1) ° 0. 701 mol / liter of nickel sulfate aqueous solution, 0.7 mol / liter of manganese sulfate aqueous solution, 0 · 351 1 mol / liter of cobalt sulfate solution, 1 · 〇Mole / liter ammonium sulfate solution and 0. 0 1 0 mol / liter hydrazine aqueous solution were mixed at a volume ratio of 1: 1: 1: 1.1: 1 (liter), respectively, as Ni / Mn / C. = 〇 · 4/0. 4 / This paper size applies to China National Standard (CNS) Α4 specification (21〇 × 29 * 7mm) -105-

五、發明説明(12g 經濟部智慧財產局員工消費合作社印焚 Ζ0 結晶結構 結晶晶格體 f-% ε c &gt; S5 0.1033 0.1039 0.1034 0.1036 0.1034 0.1035 0.1029 泰 0.1030 0.1029 晶格常數 O 14.29 14.33 14.30 14.28 14.30 14.30 14.30 1 14.29 14.27 CC 2.889 2.894 2.889 2.895 2.889 2.891 2.883 1 2.885 2.886 半寬度 44.1±l〇 0.141 0.141 0.118 | 0.176 0.282 0.259 扁 0.094 0.090 半寬度 18.6 + 1° 0.141 0.188 0.118 oo ,一 o 0.212 -1 0.188 0.188 1 0.141 0.107 波峰 強度比 0.86 0.98 0.72 0.63 i Ή wn o -1 0.60 0.76 0.70 0.88 i r—H 空間群 R3/m R3/m R3/m R3/m R3/m R3/m R 3 / m R3/m + C2/m R3/m R3/m 複合氧 化物 » 4 &lt; cs &lt; cn &lt; 寸 &lt; &lt; &lt; r- &lt; oo &lt; ON &lt; A 1 0 G«^s^4&lt;liAeco〜CNI,e抝•盤赵Itf戥_領迄菡迭(ε日G ) Λ»鹦逡蜡崦浪:〇,巾鎵紲逡啞 (請先閱讀背面之注意事項再填寫本頁) 訂 線▲ 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -123- 修(更)正替換貧 1、 --—= 五、發明説明(12i 經濟部智慧財產局員工消費合作社印製 9漱 燒結後複合氧化物 /^S ? 曰 Q ^ un ο r—Η i 10.9 On 9.4 9.9 10.4 全細孔容積 (m 1 / g) 0.001945 0.002285 0.001945 0.001605 0.001945 0.001605 比表面積 (m2 / g ) 0.6 o v〇 〇 υη 〇 o 0.5 燒結前前驅物 塗佈共 沈澱 璀 鹿 壤 壊 s 摧 Ξ £ 10.8 寸 r m&lt; r 1 Ί ON On 9.6 寸 o f Ή 产·Η 比表面積 (nr/o) cn CNJ cn H vn CO 1 28.8 m cn 26.9 組成 L ΐ Μ n 〇 . 4 9 5 N 1 〇 4 9 5 M g 〇 〇 1 0 2 L ί Μ n 〇 . S 9 4 N 1 〇 . 3 9 6 M g 〇 . 〇 ! 0 2 1 L L Μ n 〇 3 9 6 N 1 〇 5 9 4 M g 〇 . 〇 1 0 2 LiMn〇 495Ni〇 49 5 Al〇.〇i 〇2 LiMn〇.5 94Ni〇.396Al〇.〇i〇2 LiMn〇.396Ni〇.5 94Al〇.〇i〇2 複合氧 化物 r—i CN Q cn Q CN va cn (請先閱讀背面之注意事項再填寫本頁) 訂 k··. 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇X 297公釐) -127- A7 B7 (更)正替換頁 五、發明説明(d n m、c軸方向之結晶之尺寸(L c ) 5 5 n m )及粘者 劑之聚偏氟乙烯(Ρ d F ),添加溶劑之N —甲基—2 〜吡咯烷酮(Ν Μ P ),充分混練後得到負極膏°將前述 負極膏塗佈於厚度1 5 // m之銅箔集電體之單面後’壓製 加工裁斷成1 c m 2之圓盤狀。 (非水電解質之調製) 將含氟系電解質鹽之L i P F 6以1 m ο 1 / 1溶解 於碳酸乙烯酯與碳酸二乙酯之體積比1 : 1之混合溶劑’ 製作非水電解質。非水電解質中之水份量爲2 0 P P m以 下。 (硬幣型電池之製作) 使用上述之構件,在露點爲- 5 0 °C以下之乾燥氣氛 下,與硬幣型電池(I型)相同製作硬幣型電池(ΠΙ型 )° (充放電循環性能試驗)^ 分別製作2個硬幣型電池(ΙΠ型),進行5循環之 初期充放電。此時之充放電條件爲電流0 · 1 I t A ( 1 〇小時率)、4 · 2 V之定電流定電壓充電,而放電條件 爲電流0 . 1 I t A ( 1 〇小時率)、終止電壓3 ·〇V 之定電流放電。接著充放電循環試驗之充電係電流0 · 5 I t A、4 . 2 λ/ ' 3小時之定電流定電壓充電,而放電 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇X29:7公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -132-V. Description of the Invention (12g Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, Z0 Crystal structure, crystal lattice f-% ε c &gt; S5 0.1033 0.1039 0.1034 0.1036 0.1034 0.1035 0.1029 Thai 0.1030 0.1029 Lattice constant O 14.29 14.33 14.30 14.28 14.30 14.30 14.30 1 14.29 14.27 CC 2.889 2.894 2.889 2.895 2.889 2.891 2.883 1 2.885 2.886 Half width 44.1 ± 10.41 0.141 0.141 | 0.176 0.282 0.259 Flat 0.094 0.090 Half width 18.6 + 1 ° 0.141 0.188 0.118 oo, one o 0.212 -1 0.188 0.188 1 0.141 0.107 Peak intensity ratio 0.86 0.98 0.72 0.63 i Ή wn o -1 0.60 0.76 0.70 0.88 ir-H space group R3 / m R3 / m R3 / m R3 / m R3 / m R3 / m R 3 / m R3 / m + C2 / m R3 / m R3 / m composite oxide »4 &lt; cs &lt; cn &lt; inch &lt; &lt; &lt; r- &lt; oo &lt; ON &lt; A 1 0 G« ^ s ^ 4 &lt; liAeco ~ CNI, e 拗 • Pan Zhao Itf 戥 _Leading (菡 日 G) Λ »Parrot Wax Waves: 〇, towels are dumb (please read the precautions on the back before filling this page) Order Line ▲ This paper size applies to China National Standard (CNS) A4 (210X297 mm) -123- Repair (more) Replace the poor 1, --- = V. Description of the invention (12i Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 9 sintered composite oxide / ^ S? Q ^ un ο r—Η i 10.9 On 9.4 9.9 10.4 All Pore volume (m 1 / g) 0.001945 0.002285 0.001945 0.001605 0.001945 0.001605 Specific surface area (m2 / g) 0.6 ov〇〇υη 〇o 0.5 Pre-sintering precursor coating and co-precipitation 鹿 Deer soil £ 10.8 inch r m &lt; r 1 Ί ON On 9.6 inches of Ή production · Η specific surface area (nr / o) cn CNJ cn H vn CO 1 28.8 m cn 26.9 Composition L ΐ Μ n 〇. 4 9 5 N 1 〇 4 9 5 M g 〇 〇1 0 2 L Μ n 〇. S 9 4 N 1 〇 3 9 6 M g 〇. 〇! 0 2 1 LL Μ n 〇 3 9 6 N 1 〇 5 9 4 M g 〇. 〇1 0 2 LiMn〇495Ni〇49 5 Al〇.〇i 〇2 LiMn〇.5 94Ni〇.396Al〇.〇i〇2 LiMn〇.396Ni〇. 5 94Al〇.〇i〇2 composite oxide r-i CN Q cn Q CN va cn (Please read the notes on the back before filling in this page) Order k ··. This paper size applies to China National Standard (CNS) A4 (21〇X 297 mm) -127- A7 B7 (more) Page 5 is being replaced Description of the invention (the size of crystals in the dnm and c-axis directions (L c) 5 5 nm) and the polyvinylidene fluoride (P d F) of the adhesive, N-methyl-2 ~ pyrrolidone (NM P ) To obtain a negative electrode paste after thorough kneading °. The foregoing negative electrode paste was coated on one side of a copper foil current collector with a thickness of 15 // m and was' pressed and cut into a disc shape of 1 cm 2. (Preparation of non-aqueous electrolyte) Li P F 6 containing a fluorine-containing electrolyte salt was dissolved in a mixed solvent of a volume ratio of 1: 1 of ethylene carbonate and diethyl carbonate of 1: 1 at a ratio of 1 m ο to prepare a non-aqueous electrolyte. The amount of water in the non-aqueous electrolyte is 20 P P m or less. (Manufacturing of coin-type batteries) Using the above-mentioned components, in a dry atmosphere with a dew point of -50 ° C or lower, the same as coin-type batteries (type I) was used to produce coin-type batteries (type ΙΙ) ° (Charge-discharge cycle performance test ) ^ Two coin-type batteries (type ΙΠ) were produced, and initial charge and discharge were performed for 5 cycles. The charging and discharging conditions at this time are the current 0 · 1 I t A (10 hr rate), 4 · 2 V constant current and constant voltage charging, and the discharge conditions are current 0.1 I t A (10 hr rate), Discharge at a constant current with a termination voltage of 3.0V. The charging current for the subsequent charge-discharge cycle test is 0 · 5 I t A, 4.2 λ / 'constant current and constant voltage for 3 hours, and the paper is discharged according to the Chinese National Standard (CNS) A4 specification (21〇X29: 7mm) (Please read the precautions on the back before filling out this page) Order Printed by the Intellectual Property Bureau Staff Consumer Cooperatives of the Ministry of Economy -132-

3:¾勢:更)正替換I: A7 B7 五、發明説明(13l 燒結時間等所製造之鋰-錳-鎳複合氧化物,但是上述製 得者爲高密度之鋰-錳-鎳複合氧化物。 (請先閱讀背面之注意事項再填寫本頁) (比表面積與全細孔容積之關係) 由氮吸附等溫線之脫離側計算依據以往方法之鋰-錳 -鎳複合氧化物與依據本發明之製造方法所限定之共沉澱 法之高密度活性物質(鋰-錳-鎳複合氧化物)之全細孔 容積與比表面積。 結果因共沉澱步驟時之水溶液之P Η、燒結時間或燒 結溫度及添加不同元素,改變製得之複合氧化物之全細孔 容積及比表面積。 (對於燒結條件之全細孔容積與比表面積之關係) 燒結溫度爲8 5 0 °C之複合氧化物A 4,其比表面積 爲3 · 5 m 2 / g。全細孔容積爲〇 · 〇 1 2 2 m 1 / g ’粒子容積(〇·22〇ml/g)之5·5% 。 部智慧財產局員工消費合作钍印製 燒結溫度爲1 0 3 0 t之複合氧化物A 1 ,其比表面 積爲0 . 8 9 m 2 / g ,全細孔容積爲〇 .〇〇 3 3 m 1 / g ,可降低至粒子容積(0 · 2 2 0 m 1 / g )之 1 · 5 % 〇 (對於燒結溫度之比表面積與充放電循環性能之關係) 如製作L 1 Μ η 〇 . 5 N i 〇 . 5〇2時比表面積與充放電 循環性能對於燒結溫度之關係圖(參照圖8 )所示,提高 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 29*7公釐) -138- A7 B7 五、發明説明(13&amp; (請先閱讀背面之注意事項再填寫本頁) 以M g進行1 %固溶取代時,可維持與未取代體相同之層 狀結構,得到高密度之粒子。M g之固溶取代顯示增加充 放電循環性能之傾向。又如比較例3 - 1所示’ Μ η量遠 大於N i量時,因生成具有空間群C 2 / m之結構之 L 1 2 Μ η〇3之雜質,使放電容量降低。又如比較例3 - 2所示,N i量遠大於Μη量時,初期之放電容量雖高 於未固溶取代體,但是充放電循環性能反而降低。 如實施例4 一 1所示,對於L i Μ η 〇 . 5 N i 〇 · 5〇 2以A 1進行1 %固溶取代時,也顯示與實施例3 — 1相 同之傾向。 這些元素之取代效果係藉由取代元素促進結晶化,可 抑制充放電之結晶結構之變化。 (放電容量與充放電循環性能對於X光繞射圖之相對強度 比之關係) 圖1 0係表不L i Μη〇·5Ν i 〇.5〇2使用C uK α線之粉末X光繞射圖之2 0二4 4 . 1 土 1 °之繞射波 經濟部智慧財產局員工消費合作社印製 峰對2 β = 1 8 · 6 ± 1 °之繞射波峰之相對強度比與放 電容量之關係圖。 如圖1 0所示,相對強度比超過1 · 0 5時,放電容 量大幅降低。 此乃是依據使用粉末X光繞射圖之* *分析時,前@ 相對強度比係與各構成元素所佔有之面間之元素取代有》_ 。燒結溫度高、燒結時間長等使例如鎳、錳或鈷元素與§里 本纸張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -141 -3: ¾ potential: more) positive replacement I: A7 B7 5. Description of the invention (13l lithium-manganese-nickel composite oxide manufactured by sintering time, etc., but the above-mentioned one is a high-density lithium-manganese-nickel composite oxide (Please read the notes on the back before filling this page) (Relationship between specific surface area and total pore volume) Calculated from the release side of the nitrogen adsorption isotherm based on the lithium-manganese-nickel composite oxide based on the previous method and basis The full pore volume and specific surface area of the high-density active material (lithium-manganese-nickel composite oxide) of the co-precipitation method defined in the manufacturing method of the present invention. The results are due to PΗ, sintering time or The sintering temperature and the addition of different elements change the total pore volume and specific surface area of the prepared composite oxide. (Relationship between the total pore volume and specific surface area for sintering conditions) The composite oxide with a sintering temperature of 8 50 ° C A 4, with a specific surface area of 3.5 m 2 / g. The total pore volume is 0.5% of the particle volume (0.222 ml / g). Consumption cooperation between employees of the Property Bureau, printing compound with sintering temperature of 1 0 3 0 t Compound A 1 has a specific surface area of 0.89 m 2 / g and a total pore volume of 0.003 3 m 1 / g, which can be reduced to a volume of particles (0 · 2 2 0 m 1 / g). 1 · 5% 〇 (Relationship between specific surface area for sintering temperature and charge-discharge cycle performance) For example, the relationship between specific surface area and charge-discharge cycle performance versus sintering temperature when producing L 1 Μ η 〇 0.5 N i 〇 0.52 (Refer to Figure 8) As shown in the figure, to increase the size of this paper, the Chinese National Standard (CNS) A4 specification (210 X 29 * 7 mm) -138- A7 B7 V. Description of the invention (13 &amp; (Please read the precautions on the back first) Fill out this page again) When 1% solid solution substitution with Mg, the same layered structure as the unsubstituted body can be maintained to obtain high-density particles. The solid solution substitution of Mg shows a tendency to increase the charge-discharge cycle performance. As shown in Comparative Example 3-1, when the amount of 'M η is much larger than the amount of Ni, the discharge capacity is reduced due to the formation of impurities of L 1 2 Μ η03 with the structure of the space group C 2 / m. Another example is the comparative example. As shown in 3-2, when the amount of Ni is much larger than the amount of Mη, although the initial discharge capacity is higher than that of the non-solid-solution substitute, the charge and discharge Instead, the ring performance is reduced. As shown in Example 4-1, when 1% solid solution substitution is performed for Li i η 0.5 0.5 N i 0.52 with A 1, it is also shown to be the same as in Example 3-1. Tendency. The substitution effect of these elements is to promote the crystallization by the substituted elements, which can suppress the change in the crystalline structure of the charge and discharge. (Relationship between the discharge capacity and the relative intensity ratio of the charge and discharge cycle performance to the X-ray diffraction pattern) The table shows the powder X-ray diffraction pattern of Li i Μη〇 · 5Ν i 〇0.52 using the CuK α line. 203 4 4.1 Relation diagram of the relative intensity ratio of the diffraction peaks to the diffraction peaks of 2 β = 1 8 · 6 ± 1 ° and the discharge capacity. As shown in Figure 10, when the relative intensity ratio exceeds 1.05, the amount of discharge capacity decreases significantly. This is based on the use of a powder X-ray diffraction pattern. * When analyzing, the former @relative intensity ratio is replaced by the element "_" in the face occupied by each constituent element. High sintering temperature, long sintering time, etc., such as nickel, manganese or cobalt elements and the paper size in accordance with Chinese National Standard (CNS) A4 specifications (210X 297 mm) -141-

Α7 Β7 五、發明説明(14g 之半寬度之關係) 圖1 2係表示L iMn〇.5Ni〇.5〇2使用CuK α線之粉末X光繞射圖之2 0 = 18 · 6 土1。之半寬度 與放電容量之關係圖。18 · 6土1。之半寬度在0.050 以上0·200以下之範圍內,與放電容量無關。 圖1 3係表示L iMn〇.5Ni0.5〇2使用CuK α線之粉末X光繞射圖之2 0 = 18 · 6 土1。之半寬度 與充放電循環性能之關係圖。霣施例之電池中,2 0 = 1 8 · 6 ± 1 °之半寬度與充放電循環性能無關。 但是依據習知之中和法或粉體混合法所製造之 1^1]^11〇.5]^1〇.5〇2,其2(9 = 18 · 6±1。之 半寬度約爲0 · 2 0 0附近,充放電循環性能有降低的傾 向。 此乃是因爲依據習知之中和法與粉體混合法混合燒結 之L iMn〇.5N i 〇.5〇2,其N i與Μη未均句混合 ,半寬度變寬的緣故。因有一部分之組成比之Μ η材料較 多或N i材料較多,因此可發現L i Μ η〇2之低充放電 循環性能低及L 1 Ν 1〇2之充電時之熱安定性低。 (放電容量與充放電循環性能對於2 β = 4 4 · 1 ± 1 ° 之半寬度之關係) 圖 14 係表示 L 11\/[11〇.5^1。.5〇2使用(:1^1&lt;: α線之粉末X光繞射圖之2 β二4 4 · 1 土 1 °之半寬度 與放電容量之關係圖。 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本頁}Α7 Β7 V. Description of the invention (the relationship between the half-width of 14g) Figure 12 shows the powder X-ray diffraction pattern of L iMn0.5.5Ni2. 50 using CuK α. 2 0 = 18 · 6 Soil 1. Relationship between half width and discharge capacity. 18 · 6 soil 1. The half-width is in the range of 0.050 to 0 · 200, regardless of the discharge capacity. Fig. 13 shows the powder X-ray diffraction pattern of L iMn0.5Ni0.5〇2 using CuK α rays, 2 0 = 18 · 6 11. Relationship between half width and charge-discharge cycle performance. In the battery of this example, the half width of 20 = 1 8 · 6 ± 1 ° has nothing to do with the charge-discharge cycle performance. However, 1 ^ 1] ^ 11〇.5] ^ 10.5.02 manufactured according to the conventional neutralization method or powder mixing method, which has 2 (9 = 18 · 6 ± 1. The half width is about 0. · Near 2000, the charge-discharge cycle performance tends to decrease. This is because according to the conventional neutralization method and the powder mixing method, the sintered L iMn〇.5N i 〇0.52, whose N i and Mη The reason why the uniform sentence is mixed and the half width is widened. Because there is a part of the composition ratio with more M η materials or more Ni materials, it can be found that the low charge and discharge cycle performance of Li M η〇2 is low and L 1 Ν 1〇2 has low thermal stability during charging. (Relationship between discharge capacity and charge-discharge cycle performance for 2 β = 4 4 · 1 ± 1 ° half width) Figure 14 shows L 11 \ / [11〇. 5 ^ 1..5〇2 use (: 1 ^ 1 &lt;: powder X-ray diffraction pattern of α 2 2 β 2 4 4 · 1 soil 1 ° half-width and discharge capacity relationship chart. This paper scale applies China National Standard (CNS) Α4 specification (210 × 297 mm) (Please read the precautions on the back before filling this page}

J1T Φ. 經濟部智慧財產局員工消費合作社印製 ----- -143- A7 B7 參{史.)正督換頁 五、發明説明(14;| L i Μ η 〇 · ·5 N i 〇 5〇2組成之實施例之電池中, 放電容量在2 0 = 4 4 . 1 土 1 °之半寬度約爲 (請先閲讀背面之注意事項再填寫本頁) 〇· 1 〇 0 °附近,有降低的傾向。 圖1 5係袠示L i Μ 11 〇 . 5 N i 〇 . 5〇2使用 C u Κ α線之粉末χ光繞射圖之2 θ = 4 4 · 1 ± 1。之 半寬度與充放電循環性能之關係圖。 L i Μ η 〇 . ·5 N i 〇 . 5〇2組成之實施例之電池中, 充放電循環性能在2 Θ = 4 4 · 1 ± 1。之半寬度爲 〇· 1 7 0附近,有降低的傾向。又依據習知之中和法或 粉體混合法所製造之電池,因20 = 44 · 1±1。之半 寬度超過0 · 2 5 0 ,結晶不均勻,因此充放電循環性能 有降低的傾向。 由以上得知20 = 44 · 1±1。之半寬度在 0 · 100°以上〇 · 200°以下時,可維持優異之充 放電循環性能與高放電量。 (晶格間距離與結晶晶格體積對於充電量之關係) 經濟部智慈財產局員工消費合作社印製J1T Φ. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ----- -143- A7 B7 See {History.) Zhengdu page change V. Invention description (14; | L i Μ η 〇 ·· 5 N i 〇 In the battery of the embodiment composed of 502, the discharge capacity is 20 = 44.1. The half-width of 1 ° is about (please read the precautions on the back before filling this page) 〇 · 1 〇0 °, Fig. 15 shows a series of powder X-ray diffraction diagrams using Cu κ α rays, which are shown in Fig. 15 as Li Μ 11 〇 0.5 N Ni 〇 0.5 2 θ = 4 4 · 1 ± 1. The relationship between the half-width and the charge-discharge cycle performance. In the battery of the embodiment consisting of L i Μ η 〇. 5 N i 〇 0.52, the charge-discharge cycle performance is 2 Θ = 4 4 · 1 ± 1. The half width is around 0.170, and there is a tendency to decrease. The battery manufactured according to the conventional neutralization method or powder mixing method, because 20 = 44 · 1 ± 1. The half width exceeds 0 · 2 5 0 As the crystal is not uniform, the charge-discharge cycle performance tends to decrease. From the above, it is known that 20 = 44 · 1 ± 1. When the half-width is 0 · 100 ° or more and 0 · 200 ° or less, excellent charge and discharge can be maintained. Ring performance and high discharge capacity. (Distance from the crystal lattice volume of the relationship between the lattice charge amount) Ci-chi Economic Co-op Property Office employee printed

如圖1 6所示,以不同元素Μ固溶取代以 L i aMn〇.5-xN i 0.5-7]\/[乂 + 7〇2表示之複合氧化 物,特別是^1爲(:〇之1^31^。.51化。.5”(:〇^〇2(實施例2 - 1之電池之正極活性物質之複合氧化物C 1 ),其充電 前之a軸、c軸之晶格間距離皆比L 1 Μ η 〇 . 5 N i 〇 . 5〇2 、(實施例1 - 1之電池之正極活性物質之複合氧化物A 1 )縮小,且結晶晶格體積降低。又充電狀態之c軸之晶格 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -144- A7 B7 五、發明説明(141 間距離方面,複合氧化物c 1略高於複合氧化物A 1 ,但 是充電狀態之c軸之晶格間距離方面’大致維持充電前之 縮小差距,如圖1 7所示,以不同元素Μ固溶取代時之結 晶晶格體積(複合氧化物C 1 )小於未以不同元素Μ固溶 取代時之結晶晶格體積(複合氧化物A 1 )。 因此,藉由不同元素Μ,即使全細孔容積小也容易確 保放電容量,其原因並非結晶晶格體積增加,使L i離子 之活動之自由度增加所造成的,而是影響不同元素Μ所鍵 結之氧的電子狀態,使L i離子之活動自由度增加的緣故 〇 塗佈共沉澱法所製造之高密度之鋰-鎳-錳-鈷複合 氧化物係利用燒結之單相複合氧化物, 其充放電循環性能稍微優於由共沉澱法所成之複合氧 化物,因此,C 〇之添加效果具有降低表面之收縮變形的 效果。As shown in FIG. 16, the complex oxide represented by L i aMn 0.5-xN i 0.5-7] // [乂 + 7〇2] is replaced by solid solution of different elements M, and especially ^ 1 is (: 〇 1 ^ 31 ^ .. 51..5 "(: 〇 ^ 〇2 (the composite oxide C1 of the positive electrode active material of the battery of Example 2-1), the a-axis and c-axis crystals before charging The distances between the cells are all smaller than L 1 Μ η 0.5 Ni 0.52, (the composite oxide A 1 of the positive electrode active material of the battery of Examples 1-1), and the crystal lattice volume is reduced. Charge again The state of the c-axis lattice This paper scale applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -144- A7 B7 V. Description of the invention (in terms of distance between 141, the composite oxide c 1 is slightly higher than the composite oxide In the charged state, the inter-lattice distance of the c-axis in the charged state roughly maintains the narrowing gap before charging, as shown in Figure 17, the crystal lattice volume (composite oxide C) when different elements M are solid-solution replaced. 1) It is smaller than the crystal lattice volume (composite oxide A 1) when it is not solid-solution replaced with a different element M. Therefore, even with a small total pore volume, it is easy to use a different element M The reason for ensuring the discharge capacity is not caused by the increase of the crystal lattice volume and the increase of the freedom degree of the Li ion ions, but the influence of the electronic states of the oxygen bound by different elements M and the freedom degree of the Li ion ions. Increasing sake. The high-density lithium-nickel-manganese-cobalt composite oxide produced by the coating co-precipitation method is a sintered single-phase composite oxide. Its charge-discharge cycle performance is slightly better than that of the co-precipitation method. The composite oxide has the effect of reducing the shrinkage and deformation of the surface due to the addition effect of C0.

由以上貫施例的結果得知以c 〇多於取代量爲1 〇 % 以上之 L i a Μ η 5 / 1 2 N i 5/12C 02/12 〇2 之 L iMn〇.5-xN i 〇.5-71\/1‘\ + 7〇2作爲正極活性物質 使用時,可得到與以往之鋰電池之互換性優異之4 · 3 V 〜3 · Ο V之工作電壓及可得到1 6 0 m A h / g之高放 電容量。 正極活性物質使用L i較多之以組成式 L i a Μ η 0 . 5 - X N 1 0 . 5 - y Μ X + y〇2表示之複合氧化 物時,也進行相同的評價。a超過1 · 1時,初期放電容 量有降低的傾向。此乃是因爲未反應之鋰變成L 1 2 C〇3, 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) (讀先閱讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -145- 5 經濟部智慧財產局員工消費合作社印製 顧更)止替換頁 Α7 Β 7 五、發明説明(14^ 由表1 1之結果得知,將粒度分佈之5 0 %粒徑爲 0 · 8 // m以上1〇// m以下,且1 〇 %粒徑爲〇 · 4 // m以上7 // m以下之複合氧化物用於正極活性物質之實 施例5 _ 1〜5 - 3之電池,其放電容量高(參照第5〇 循環之放電容量)、充放電循環性能(參照容量維持率) 優於實施例5 - 4〜5 - 6之電池。 (實施例6 — 1 ) (正極之製作) 正極活性物質爲複合氧化物C 1 6,如下述製作圖 1 9之方形非水電解質電池。 以重量比8 5 : 1 0 ·· 5混合複合氧化物C 1 6、導 電劑之乙炔黑及粘著劑之聚偏氟乙烯(p V d F ),添加 溶劑之N -甲基吡咯烷酮,混練分散調製正極塗佈液。前 述聚偏氟乙烯係使用固形份溶解分散後之溶解液,固形份 以重量換算。將前述正極塗佈液塗佈於厚度2 0 // m之鋁 箔集電體之兩面,調整整體之厚度成爲2 3 0 ,製作 正極板。將前述正極板裁斷成寬6 1 m m、高1 0 7 m m 之形狀,板末端安裝厚度2 Ο // m、寬1 0 m m之銘導板 ,作爲正極板7。 改變該正極活性物質]^1〃1^。.45化。.45(:〇。.1〇2之乂値進 行X光繞射測定。由所得之a軸及c軸之結晶子之大小所 計算之結晶晶格體積變動如圖2 0所不。X値爲0 . 6時 之結晶晶格體積係對於X値爲〇時之結晶晶格體積時,約 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -151 -From the results of the previous examples, it is known that L ia Mn η 5/1 2 N i 5 / 12C 02/12 〇 2 is more than c 0 than L Mn 0.5-xN i 〇 .5-71 \ / 1 '\ + 7〇2 When used as a positive electrode active material, an operating voltage of 4 · 3 V ~ 3 · Ο V with excellent interchangeability with conventional lithium batteries can be obtained and 160 m can be obtained High discharge capacity of A h / g. The same evaluation was performed when a large amount of Li was used as the positive electrode active material, and a composite oxide represented by the composition formula L i a M η 0.5-X N 1 0.5-y M X + y02 was used. When a exceeds 1 · 1, the initial discharge capacity tends to decrease. This is because the unreacted lithium becomes L 1 2 C03. This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (read the precautions on the back before filling in this page). Printed by the Employees ’Cooperatives of the Ministry of Intellectual Property Bureau -145- 5 Printed by the Employees’ Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs and printed by Gu Geng) Replacement page A7 Β 7 V. Description of the invention (14 ^ From the results in Table 1 1 50% of the distribution has a particle size of 0 · 8 // m or more and 10 // m or less, and 10% particle size of 0.4 / m or more and 7 // or less composite oxide is used for the positive electrode active material The battery of Example 5 _ 1 to 5-3 has a high discharge capacity (refer to the discharge capacity at the 50th cycle), and the charge-discharge cycle performance (refer to the capacity maintenance rate) is better than that of Examples 5-4 to 5-6 Battery (Example 6-1) (Production of the positive electrode) The positive electrode active material was a composite oxide C 1 6 and a square nonaqueous electrolyte battery as shown in FIG. 19 was produced as follows. Mix at a weight ratio of 8 5: 1 0 ·· 5 Composite oxide C 1 6, conductive agent acetylene black and adhesive agent polyvinylidene fluoride (p V d F), add solvent N-methylpyrrolidone of the agent is kneaded and dispersed to prepare a positive electrode coating liquid. The polyvinylidene fluoride system uses a solid content to dissolve the dispersed solution, and the solid content is converted by weight. The positive electrode coating liquid is applied to a thickness of 20 // m two sides of the aluminum foil current collector, adjust the overall thickness to 2 3 0 to make a positive electrode plate. The positive electrode plate is cut into a shape with a width of 61 mm and a height of 107 mm, and the thickness at the end of the plate is 2 0 / / m, 10 mm wide guide plate, as the positive plate 7. Change the positive electrode active material] ^ 1〃1 ^ .. 45 化 ..45 (: 〇..102。 2 X-ray winding The measurement of the crystal lattice volume calculated from the obtained crystal sizes of the a-axis and c-axis is shown in Fig. 20. The crystal lattice volume when X 値 is 0.6 is 0 when X 値 is 0. For the crystal lattice volume, about this paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page) -151-

五、發明説明(15j 粒徑之尺寸L c·爲約6 0〜1 0 0 n m '真比重爲 2 · 24g/ c c 、比表面積爲1 . 7m2/g之碳質材 料’但是只要式正極活性物質與結晶晶格體積變動率之關 係在前述範圍內之材料時,即無特別限制。 前述(電池性能評價)係針對方形電池來作說明,但 是如上述之特性並不限於此構造,圓筒型、扁平型、硬幣 型等形狀之電池也可得到相同的效果。 (實施例7 — 1 ) 如下述試作如圖2 7所示之8 0 0 m A h之非水電解 質二次電池。 以重量比4 5 : 4 5 ·· 5 : 5混合鋰鈷氧化物(曰本 化學工業(股)製商品名cellseet C-10 )、複合氧化物 C9、乙炔黑及粘著劑之聚偏氟乙烯(PVdF),添加 溶劑之N -甲基吡咯烷酮,混練分散調製塗佈液。前述聚 偏氟乙烯係使用固形份溶解分散後之溶解液,固形份以重 量換算。將前述塗佈液塗佈於厚度1 0 # m之鋁箔集電體 之兩面,調整整體之厚度成爲1 0 0 //m,製作具有2〇 m g / c m 2之正極活性物質之正極板。將前述正極板裁 斷成寬6 1 m m、長4 4 5 m m之形狀,除去板末端之正 極,以超音波焊接安裝厚度1 0 0 // m、寬3 m m之鋁製 正極端子3 2 ,作爲正極板。 以人造石墨(粒徑6 // m )作爲負極碳材料使用,混 合粘著劑之苯乙烯丁二烯橡膠2重量%及增粘劑之羧甲基 本纸張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -157-V. Description of the invention (15j particle size L c · is about 60 ~ 100 nm. 'Carbon material with true specific gravity of 2.24g / cc and specific surface area of 1.7m2 / g.' There is no particular restriction on the relationship between the substance and the volume change rate of the crystal lattice within the foregoing range. The foregoing (battery performance evaluation) is described with respect to a square battery, but the characteristics described above are not limited to this structure, and the cylinder The same effect can also be obtained with batteries of the shape, flat type, coin type, etc. (Example 7-1) A non-aqueous electrolyte secondary battery of 800 m Ah as shown in FIG. Weight ratio 4 5: 4 5 ·· 5: 5 mixed lithium-cobalt oxide (called Cellseet C-10 by Ben Chemical Industry Co., Ltd.), composite oxide C9, acetylene black and polyvinylidene fluoride as adhesive (PVdF), adding N-methylpyrrolidone as a solvent, and kneading and dispersing the coating solution. The polyvinylidene fluoride is a solid solution that dissolves and disperses the dissolved solution, and the solid content is converted by weight. The coating solution is coated on Adjust both sides of the aluminum foil current collector with a thickness of 10 # m The thickness is 100 0 // m, and a positive electrode plate having a positive electrode active material of 20 mg / cm 2 is produced. The foregoing positive electrode plate is cut into a shape having a width of 61 mm and a length of 4 4 5 mm, and the positive electrode at the end of the plate is removed. Ultrasonic welding is used to install aluminum positive terminal 3 2 with a thickness of 1 0 // // m and a width of 3 mm as the positive electrode plate. Artificial graphite (particle size 6 // m) is used as the negative electrode carbon material, mixed with an adhesive 2% by weight of styrene butadiene rubber and carboxymethyl of tackifier The paper size is applicable to China National Standard (CNS) A4 (210X 297 mm) (Please read the precautions on the back before filling this page) Order Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -157-

ABCD 六、申請專利範圍1 第9 1 1 0 8 1 4 8號專利申請案 中文申請專利範圍更正本 I 1 - - - ! -I pv : -1 1 —I i— n (請先閲讀背面之注意事項再填寫本頁) 中華民國95年11月13日更正 1 · 一種正極活性物質,其特徵係具有以組成式 LiaMn〇.5- xNi〇.5- yMx + y〇2 ( 〇&lt; a&lt; 1.3、— O.lS X — 0.1、 M爲Li、Mn、Ni以外之元素)表示之複合氧化物。 2 ·如申請專利範圍第1項之正極活性物質,其中該μ 爲至少一種選自由Al,Mg及Co所成群之元素,且前述 組成式中之係數含有滿足下述關係式之複合氧化物, 0.05S x&lt; 0.3 0.05^ y &lt; 0.3 -〇.l^x-yg〇〇2 0 &lt; a &lt; 1 .3 x + y &lt; 0 · 5 〇 3.如申請專利範圍第1或2項之正極活性物質,其中 該Μ爲Co 。 經濟部智慧財產局員工消費合作社印製 4. 一種正極活性物質,其特徵係含有以 LiwMn&quot; Ni” Co&quot;〇2 ( ^、y,、z'係在三元狀態圖中,(x' 、y'、z')存在於以點 a ( 0·51、0.49、0 )、點 Β ( 0.45、 0‘55、0 )、點 C ( 〇·25、0.35、0.4 )、點 D ( 0·3 1、0·2 9 、0.4 )爲頂點之四角形 ABCD之線上或內部之數値, 〇Sw/ (x'+,+z') ^丨.30)表示之複合氧化物。 5. 如申請專利範圍第1、2、4項中任一項之正極 本纸張尺度適用中國國家標準(CNS ) A4規格(210 X 297公瘦)ABCD VI. Patent application scope 1 No. 9 1 1 0 8 1 4 8 Chinese patent application scope correction I 1---! -I pv: -1 1 —I i— n (Please read the Note: Please fill in this page again.) Correction on November 13, 1995 1 · A positive electrode active material characterized by the composition formula LiaMn〇.5- xNi〇.5- yMx + y〇2 (〇 &lt; a & lt 1.3, — O.lS X — 0.1, M is a compound oxide represented by elements other than Li, Mn, and Ni). 2. The positive electrode active material according to item 1 of the patent application range, wherein the μ is at least one element selected from the group consisting of Al, Mg, and Co, and the coefficient in the aforementioned composition formula contains a composite oxide satisfying the following relational formula , 0.05S x &lt; 0.3 0.05 ^ y &lt; 0.3 -〇.l ^ x-yg〇〇2 0 &lt; a &lt; 1.3 x + y &lt; 0 · 5 〇3. The positive electrode active material of 2 wherein M is Co. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 4. A positive electrode active material, which is characterized by LiwMn &quot; Ni &quot; Co &quot; 〇2 (^, y ,, z 'is in the ternary state diagram, (x', y ', z') exist at point a (0.51, 0.49, 0), point B (0.45, 0'55, 0), point C (0.25, 0.35, 0.4), and point D (0 · 3 1, 0 · 2 9, 0.4) are the numbers on the line or inside of the quadrilateral ABCD with apex, 値 Sw / (x '+, + z') ^ 丨 .30). 5. If applied The paper size of the positive electrode in any one of the patent scope 1, 2, and 4 is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 male thin)

ABCD 541745 六、申請專利範圍2 活性物質’其中該複合氧化物係全細孔容積爲〇 · 00丨m l/g 以上’ 0.006ml/g以下,且使用CUK α線之粉末X光繞射 圖之2Θ : 44·1±Γ之繞射波峰對20 : 18.6±1。之繞射 波峰之相對強度比爲0.6 5以上1. 〇 5以下。 6.如申請專利範圍第1 ' 2、4項中任一項之正極活性 物質’其中該複合氧化物係比表面積爲〇.3m2/g以上’ i.6m2/g以下,且使用CuK α線之粉末X光繞射圖之2 0 I 44」11 1°之繞射波峰對2 Θ : 18.6 士 Γ之繞射波峰之相 對強度比爲〇. 6 5以上1. 〇 5以下。 7 ·如申請專利範圍第5項之正極活性物質,其中2 0 :18.6±1。之繞射波峰之半寬度爲〇〇5。以上〇.20。以下 ,且該2 Θ : 44.1 ± 1。之繞射波峰之半寬度爲0.10°以上 0.20°以下。 8 ·如申請專利範圍第丨、2、4項中任一項之正極活性 物質,其中該複合氧化物之構成爲a -NaFe〇2型層狀結構 ,同時結晶單位晶格爲六方晶,對於金屬鋰之電位時’ 3.2 V〜3.3V之狀態之前述六方晶之晶格常數a與晶格常數 c與結晶晶格體積V滿足下述式, 2.860$ 2.89 0 14.20 ^ c ^ 14.33 0. 1 0 0 7 n m3 ^ V ^ 0 . 1 0 3 4 n m3 式中a,c爲晶格常數,分別等於單位結晶晶格之a 軸方向之長度及c軸方向之長度,以埃(A)單位表示者 本纸張尺度適用中國國家標準(CNS ) A4規格(2IOX297公釐) n I n LI I— LI I n n I (請先閲讀背面之注意事項真填寫本頁) -聲 經濟部智慧財產局員工消費合作社印製ABCD 541745 VI. Patent application scope 2 Active substance 'wherein the composite oxide system has a total pore volume of 0.0000 ml / g or more' 0.006 ml / g or less and uses a powder X-ray diffraction pattern of CUK α rays 2Θ: diffraction peak pair of 44 · 1 ± Γ 20: 18.6 ± 1. The relative intensity ratio of the diffraction peaks is 0.6 5 or more and 1.0 5 or less. 6. The positive electrode active material according to any one of the claims 1 '2, 4', wherein the specific surface area of the composite oxide is 0.3 m2 / g or more and i. 6 m2 / g or less, and CuK α wire is used The relative intensity ratio of the diffraction peaks of the powder X-ray diffraction pattern of 2 0 I 44 ″ 11 1 ° to 2 Θ: 18.6 ± Γ is 0.6 5 or more and 1.0 5 or less. 7 · The positive electrode active material according to item 5 of the patent application scope, in which 20: 18.6 ± 1. The half-width of the diffraction peak is 0.05. Above 0.2. Below, and this 2 Θ: 44.1 ± 1. The half-width of the diffraction peak is 0.10 ° or more and 0.20 ° or less. 8 · The positive electrode active material according to any one of claims 1, 2, and 4, wherein the composition of the composite oxide is an a-NaFe0 2 layered structure, and the crystal unit lattice is hexagonal. At the potential of metallic lithium, the lattice constant a, lattice constant c, and crystal lattice volume V of the aforementioned hexagonal crystal in a state of 3.2 V to 3.3 V satisfy the following formula, 2.860 $ 2.89 0 14.20 ^ c ^ 14.33 0.1 0 0 7 n m3 ^ V ^ 0. 1 0 3 4 n m3 where a and c are lattice constants, respectively equal to the length in the a-axis direction and the length in the c-axis direction of the unit crystal lattice, in Angstroms (A) The paper size of the unit applies to the Chinese National Standard (CNS) A4 specification (2IOX297 mm) n I n LI I— LI I nn I (Please read the notes on the back first and fill in this page)-Intellectual Property of Ministry of Sound Economy Printed by Bureau Consumers Cooperative

ABCD 541745 六、申請專利範圍3 9.如申請專利範圍第i、2、4項中任一項之正極活性 %質’其中該複合氧化物以9Q〇t以上丨10〇°C以下之溫度 燒結3小時以上所得者。 1 0·如申請專利範圍第1、2、4項中任一項之正極活 性物質,其中該複合氧化物之粒度分佈係5 0 %粒徑爲 0·8 &quot; πι以上10 μ m以下,且10%粒徑爲 0.4 μ m以上 7以m以下。 1 1 ·如申請專利範圍第1、2、4項中任一項之正極活 I生物質’其中進一步含有鋰鈷氧化物。 1 2·如申請專利範圍第1、2、4項中任一項之正極活 性物質,其中進一步含有「具有尖晶石結構,以Li 1+ SMη 2 —S”M …t〇4 (但是 〇$s$〇.3、〇StS0.2、M…爲選自 Mg ’ A1 ’ Ti,V,Cr,Fe,Co及Ni中之至少一種以上的元 素)表示之鋰錳化合物」。 1 3 · —種正極活性物質之製造方法,其特徵係含有以 不且成式 LiaMn〇.5-xNi〇.5-y]Vrx+y〇2 (但 〇.98$a&lt; 1.1、一 ySO」、爲選自Al,Mg及Co之至少一種的元 素)表示之複合氧化物之正極活性物質的製造方法,經由 在鎳(N i )化合物與錳(Μ η )化合物溶解於水之水溶 液中’或在N i化合物、Μ η化合物及Μ,化合物(Μ,與前 述相同)溶解於水之水溶液中,添加鹼化合物、還原劑及 錯合劑’同時控制前述水溶液之ΡΗ爲1 〇〜丨3,使Ni -Μ η複合共沉澱物或N丨—μ n - μ ’複合共沉澱物沉澱於前述 水溶液中之共沉澱步驟」,製作前述複合氧化物。 本纸張尺度適用中國國家標準(CNS ) Α4規格(210X297公瘦) (請先閲讀背面之注意事項再填寫本頁) ♦Τ 經濟部智慧財產局員工消費合作社印製 541745 Α8 Β8 C8 D8 六、申請專利範圍4 (請先閱却背面之注意事項再填寫本頁) 1 4 .如申請專利範圍第1 3項之正極活性物質之製造方 法,其中共沉澱步驟中,將鎳(Ni )化合物水溶液、錳( Μ η )化合物水溶液、Μ 1匕合物水溶液(1VT爲選自 A 1,M g 及Co中之至少一種的元素)、錯合劑水溶液及還原劑水 溶液作爲前述各水溶液,或前述各水溶液中之至少兩種以 上混合之混合水溶液,連續供給反應槽內,同時將鹼化合 物水溶液連續供給前述反應槽內,然後連續取出生成之 Ni- Μη - M'複合共沉澱物。 1 5 ·如申請專利範圍第1 3或1 4項之正極活性物質之 製造方法,其中該還原劑使用胼。 繾濟部智慧財產局員工消費合作社印製 1 6 ·如申請專利範圍第1 3或1 4項之正極活性物質之 製造方法,其特徵係經由「以前述共沉澱步驟所得之Ν} -Μ η複合共沉澱物或N i - Μ η — Μ'複合共沉澱物被分散, 同時IVT化合物(Μ'爲選自Al,Mg及Co中之至少一種的 元素)被溶解之水溶解分散液中,添加鹼化合物及錯合劑 ’控制前述水溶解分散液之pH爲1 0〜1 3,然後使元素 與前述相同)之複合共沉澱物沉澱於以前述共沉 潑步驟所得之Ni— Μη複合共沉澱物之表面或Ni-M η-Μ'複合共沉澱物之化合物的表面之塗覆共沉澱步驟」, 製作前述複合氧化物。 1 7 ·如申請專利範圍第π或I 4項之正極活性物質之 製造方法,其中錯合劑爲在水溶液中可解離銨離子之化合 物。 1 8 .如申請專利範圍第1 3或1 4項之正極活性物質之 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) -4- 541745 A8 B8 C8 D8 六、申請專利範圍5 製造方法,其中「在水溶液中可解離銨離子之化合物J爲 選自由硝酸銨、硫酸銨、鹽酸銨及氨水所成群之一種以上 之化合物。 19·如申請專利範圍第13或14項之正極活性物質之 製造方法,其中前述NT爲Co。 20.如申請專利範圍第Π或14項之正極活性物質之 製造方法,其中經由「將前述共沉澱步驟或塗覆共沉澱步 驟所得之Ni- Μη複合共沉澱物或Ni- Μη— M'複合共沉 澱物與鋰化合物一同以900°C以上1100°C以下之溫度,燒 結3小時以上之燒結步驟」,製作前述複合氧化物。 2 1. —種非水電解質二次電池用正極,其特徵係含有 如申請專利範圍第1〜1 2項中任一項之正極活性物質。 22. —種非水電解質二次電池用正極,其特徵係含有 如申請專利範圍第1〜1 2項中任一項之正極活性物質;對 於前述正極活性物質時爲1重量%以上之導電性碳材料; 因含有電解液而具有離子傳導性之粘著劑。 23. —種非水電解質二次電池,其特徵係具備如申 專利範圍第2 1或2 2項之非水電解質二次電池用正極,非 水電解質二次電池用負極,非水電解質。 24. 如申請專利範圍第23項之非水電解質二次電池, 其中前述非水電解質二次電池用負極爲含有可吸留、釋方女 鋰離子之負極材料。 25 ·如申請專利範圍第23或24項之非水電解質二; 電池,其中該正極活性物質係隨著非水電解質二次電池&amp; (請先閱讀背面之注意事項再填寫本頁) 、言 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家榇準(CNS ) A4規格(210X297公楚) -5- 541745 A8 B8 C8 D8 六、申請專利範圍6 充電釋放鋰離子’使結晶晶格體積產生收縮者,前述結晶 晶格體積收縮率係對於非水電解質二次電池之放電末了狀 態之前述正極活性物質之結晶晶格體積時爲4 %以下,負 極材料係隨著前述非水電解質二次電池之充電吸留鋰離子 ,使結晶晶格體積產生膨脹,結晶晶格體積膨脹率係對於 非水電解質二次電池之放電末了狀態之負極材料之結晶晶 格體積時爲6 %以下,在非水電解質二次電池之一般之充 放電範圍內,負極材料之前述膨脹率之値大於或等於前述 正極活性物質之前述收縮率之値,在非水電解質二次電池 之一般之充放電範圍內,負極材料之前述膨脹率之値與前 述正極活性物質之收縮率之値之差爲0%以上3 %以下。 1 511 I ------ I T - - - I m ill n (請先閲讀背面之注意事項再填寫本頁) 訂 4 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4洗格(210 X 297公釐) -6-ABCD 541745 6. Scope of patent application 3 9. If the positive electrode active% of any of the items i, 2, and 4 of the scope of patent application is' wherein the composite oxide is sintered at a temperature of more than 9Q0t and less than 10 ° C Those who earn more than 3 hours. 1 · If the positive electrode active material according to any one of claims 1, 2, and 4, the particle size distribution of the composite oxide is 50%, and the particle size is 0.8 or more; πm or more and 10 μm or less, The 10% particle size is 0.4 μm or more and 7 or less m. 1 1 · The cathode active I biomass according to any one of claims 1, 2, and 4, which further contains lithium cobalt oxide. 1 2 · The positive electrode active material according to any one of claims 1, 2, and 4, which further contains "having a spinel structure with Li 1+ SMη 2 —S" M… t〇4 (but 〇 $ s $ 0.3, 〇StS0.2, M ... are lithium manganese compounds represented by at least one element selected from the group consisting of Mg'A1'Ti, V, Cr, Fe, Co, and Ni "." 1 3 · A method for manufacturing a positive electrode active material, which is characterized by containing LiaMn0.5-xNi〇.5-y] Vrx + y〇2 (but 0.98 $ a &lt; 1.1, ySO "Is a method for producing a positive electrode active material of a composite oxide represented by at least one element selected from Al, Mg and Co) by dissolving a nickel (N i) compound and a manganese (M η) compound in an aqueous solution of water 'Or in an N i compound, M n compound, and M, compound (M, same as above) dissolved in an aqueous solution of water, adding an alkali compound, a reducing agent, and a complexing agent' while controlling the pH of the aforementioned aqueous solution to be 10 to 3 The co-precipitation step of causing the Ni-M η composite co-precipitate or N 丨 -μ n-μ 'composite co-precipitate to precipitate in the aforementioned aqueous solution "to produce the aforementioned composite oxide. This paper size applies Chinese National Standard (CNS) Α4 specification (210X297 male thin) (Please read the precautions on the back before filling this page) ♦ Τ Printed by the Intellectual Property Bureau Staff Consumer Cooperatives of the Ministry of Economic Affairs 541745 Α8 Β8 C8 D8 Scope of patent application 4 (please read the precautions on the back before filling out this page) 1 4. For the method of manufacturing the positive electrode active material in the scope of patent application No. 13 in which the nickel (Ni) compound aqueous solution is used in the co-precipitation step , An aqueous solution of a manganese (Mn) compound, an aqueous solution of an M1 compound (1VT is an element selected from at least one of A1, Mg, and Co), an aqueous solution of a complexing agent, and an aqueous solution of a reducing agent, as the foregoing aqueous solutions, or the foregoing At least two or more mixed mixed aqueous solutions in the aqueous solution are continuously supplied into the reaction tank, while the alkaline compound aqueous solution is continuously supplied into the aforementioned reaction tank, and then the generated Ni-Mn-M 'composite coprecipitate is continuously taken out. 1 5 · The method for manufacturing a positive electrode active material according to item 13 or 14 of the scope of patent application, wherein the reducing agent uses rhenium. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 16 · If the method of manufacturing a positive electrode active material in the scope of patent applications No. 13 or 14 is characterized by "N} obtained by the aforementioned co-precipitation step -M η The composite coprecipitate or Ni-Mη-M 'composite coprecipitate is dispersed, and the IVT compound (M' is an element selected from at least one of Al, Mg, and Co) is dissolved in the dispersion to dissolve the water, Add an alkali compound and a complexing agent 'to control the pH of the water-soluble dispersing liquid to be 10 ~ 13, and then make the composite coprecipitate of the same element as above) precipitate on the Ni-Mn composite coprecipitation obtained in the aforementioned co-precipitation step. Co-precipitation step of coating the surface of a compound or the surface of a compound of a Ni-M η-M 'composite co-precipitate "to produce the aforementioned composite oxide. 1 7 · A method for manufacturing a positive electrode active material such as π or I 4 in the scope of patent application, wherein the complexing agent is a compound capable of dissociating ammonium ions in an aqueous solution. 1 8. If the paper size of the positive electrode active material in item 13 or 14 of the scope of patent application is applicable to the Chinese national standard (CNS) A4 specification (210 × 297 mm) -4- 541745 A8 B8 C8 D8 6. Application scope 5 A manufacturing method in which "the compound J capable of dissociating ammonium ions in an aqueous solution is one or more compounds selected from the group consisting of ammonium nitrate, ammonium sulfate, ammonium chloride, and ammonia water. 19. The positive electrode according to item 13 or 14 of the scope of patent application The method for manufacturing an active material, wherein the aforementioned NT is Co. 20. The method for manufacturing a positive electrode active material according to the scope of application patent No. Π or 14, wherein the Ni-Mn obtained through the aforementioned co-precipitation step or the co-precipitation step is applied. The composite coprecipitate or the Ni-Mn-M 'composite coprecipitate is sintered together with the lithium compound at a temperature of 900 ° C or higher and 1100 ° C or lower for more than 3 hours to produce the aforementioned composite oxide. 2 1. A positive electrode for a non-aqueous electrolyte secondary battery, characterized in that it contains a positive electrode active material according to any one of claims 1 to 12 of the scope of patent application. 22. —A positive electrode for a non-aqueous electrolyte secondary battery, characterized in that it contains a positive electrode active material such as any of items 1 to 12 of the scope of application for a patent; and the aforementioned positive electrode active material has a conductivity of 1% by weight or more. Carbon material; Adhesive with ion conductivity due to electrolyte solution. 23. A non-aqueous electrolyte secondary battery, which is characterized by including a positive electrode for a non-aqueous electrolyte secondary battery, a negative electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte as described in the patent application No. 21 or 22. 24. If the non-aqueous electrolyte secondary battery of item 23 of the patent application scope, wherein the aforementioned negative electrode for a non-aqueous electrolyte secondary battery is a negative electrode material containing a lithium ion which can be occluded and released. 25. If the non-aqueous electrolyte 2 of the scope of application for the patent No. 23 or 24; battery, the positive electrode active material is with the non-aqueous electrolyte secondary battery &amp; (Please read the precautions on the back before filling this page) Printed by the Consumers' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, the paper size is applicable to China National Standards (CNS) A4 specifications (210X297). -5- 745 745 A8 B8 C8 D8 6. Application for patent scope 6 Lithium ions are released upon charging to make crystals For the cell volume shrinkage, the above-mentioned crystalline lattice volume shrinkage ratio is 4% or less of the crystalline lattice volume of the positive electrode active material at the end of the discharge state of the non-aqueous electrolyte secondary battery. The negative electrode material follows the non-aqueous electrolyte. Lithium ions are charged and charged in the secondary battery, which causes the crystalline lattice volume to expand. The crystalline lattice volume expansion rate is less than 6% when the crystalline lattice volume of the negative electrode material in the end state of the non-aqueous electrolyte secondary battery is discharged. Within the general charge and discharge range of non-aqueous electrolyte secondary batteries, the 値 of the aforementioned expansion coefficient of the negative electrode material is greater than or equal to that of the aforementioned positive electrode active material The difference between the aforementioned shrinkage ratio and the shrinkage ratio of the anode active material within the general charge / discharge range of the non-aqueous electrolyte secondary battery is 0% or more and 3% or less. 1 511 I ------ IT---I m ill n (Please read the notes on the back before filling out this page) Order 4 Printed on paper standards of the Ministry of Economic Affairs, Intellectual Property Bureau, Employees' Cooperatives, Chinese paper standards ( CNS) A4 grid (210 X 297 mm) -6-

TW091108148A 2001-04-20 2002-04-19 Anode active matter and production method therefor, non-aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery TW541745B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001121901 2001-04-20
JP2001124842 2001-04-23
JP2001237084 2001-08-03
JP2001249578 2001-08-20
JP2001288831 2001-09-21

Publications (1)

Publication Number Publication Date
TW541745B true TW541745B (en) 2003-07-11

Family

ID=29716332

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091108148A TW541745B (en) 2001-04-20 2002-04-19 Anode active matter and production method therefor, non-aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
TW (1) TW541745B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782910A (en) * 2010-03-04 2012-11-14 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
TWI423504B (en) * 2010-03-05 2014-01-11 Jx Nippon Mining & Metals Corp A positive electrode for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
TWI423507B (en) * 2010-03-04 2014-01-11 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI458166B (en) * 2010-06-25 2014-10-21 Evonik Degussa Gmbh Mixed oxide powder containing the elements lithium, manganese, nickel and cobalt and process for preparing it
CN104701525A (en) * 2010-03-19 2015-06-10 丰田自动车株式会社 Lithium secondary battery and positive electrode active substance for lithium secondary battery
TWI549343B (en) * 2010-03-04 2016-09-11 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
CN111918841A (en) * 2018-03-30 2020-11-10 住友化学株式会社 Lithium composite metal compound, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and method for producing lithium composite metal compound

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782910A (en) * 2010-03-04 2012-11-14 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
TWI423507B (en) * 2010-03-04 2014-01-11 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
CN102782910B (en) * 2010-03-04 2015-06-24 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
TWI549343B (en) * 2010-03-04 2016-09-11 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI423504B (en) * 2010-03-05 2014-01-11 Jx Nippon Mining & Metals Corp A positive electrode for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
CN104701525A (en) * 2010-03-19 2015-06-10 丰田自动车株式会社 Lithium secondary battery and positive electrode active substance for lithium secondary battery
TWI458166B (en) * 2010-06-25 2014-10-21 Evonik Degussa Gmbh Mixed oxide powder containing the elements lithium, manganese, nickel and cobalt and process for preparing it
CN111918841A (en) * 2018-03-30 2020-11-10 住友化学株式会社 Lithium composite metal compound, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and method for producing lithium composite metal compound
CN111918841B (en) * 2018-03-30 2022-10-28 住友化学株式会社 Lithium composite metal compound, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and method for producing lithium composite metal compound
US11949101B2 (en) 2018-03-30 2024-04-02 Sumitomo Chemical Company, Limited Lithium composite metal compound, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for manufacturing lithium composite metal compound

Similar Documents

Publication Publication Date Title
JP7001081B2 (en) A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery.
TW488107B (en) Positive electrode material for lithium secondary battery and method for making the same
JP5044467B2 (en) Lithium transition metal composite oxide
JP5672442B2 (en) Nickel / cobalt / manganese compound particle powder and method for producing the same, lithium composite oxide particle powder and method for producing the same, and nonaqueous electrolyte secondary battery
EP1837936B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery using same
TWI568068B (en) A nickel-nickel composite oxide particle powder and a method for producing the same, a positive electrode active material particle powder for a nonaqueous electrolyte battery, a method for producing the same, and a nonaqueous electrolyte battery
TW565531B (en) Lithium manganate, method for producing the same, and lithium by the method cell produced
TWI526398B (en) A manganese oxide, a method for producing the same, and a method for producing the lithium manganese composite oxide using the same
WO2012111766A1 (en) Electrolytic manganese dioxide and method for producing same, and method for producing lithium-manganese complex oxide
JP2021520333A (en) O3 / P2 mixed phase sodium-containing dope layered oxide material
KR20120136381A (en) Positive-electrode active material for lithium ion battery, positive electrode for lithium battery, and lithium ion battery
JP2008251390A (en) Nonaqueous electrolyte secondary battery, manganate lithium therefor, and manufacturing method thereof
KR20120093928A (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US20140349188A1 (en) Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
TW201020215A (en) Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
KR20120136382A (en) Positive electrode active material for lithium-ion batteries, positive electrode for lithion-ion batteries, lithium-ion battery
JP2006089364A (en) Nickel hydroxide particle containing aluminum and its manufacturing method
JP2004002141A (en) Lithium nickel manganese oxide, its manufacturing method and lithium-ion secondary cell using the same
JP6343951B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JPWO2008023622A1 (en) Method for producing lithium manganese composite oxide
TW541745B (en) Anode active matter and production method therefor, non-aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP4457213B2 (en) Method for producing lithium ferrite composite oxide
KR102533325B1 (en) Lithium transition metal composite oxide and manufacturing method
JP4993888B2 (en) Manganese oxide powder for cathode active material
JP2004059417A (en) Layered rock salt-type lithium nickelate powder and its manufacturing method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent