WO2011024797A1 - 水系スラリー組成物、蓄電装置用電極板及び蓄電装置 - Google Patents

水系スラリー組成物、蓄電装置用電極板及び蓄電装置 Download PDF

Info

Publication number
WO2011024797A1
WO2011024797A1 PCT/JP2010/064262 JP2010064262W WO2011024797A1 WO 2011024797 A1 WO2011024797 A1 WO 2011024797A1 JP 2010064262 W JP2010064262 W JP 2010064262W WO 2011024797 A1 WO2011024797 A1 WO 2011024797A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
electrode plate
storage device
slurry composition
coating film
Prior art date
Application number
PCT/JP2010/064262
Other languages
English (en)
French (fr)
Inventor
小林 誠幸
山南 隆徳
土田 真也
義彦 飯島
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Priority to US13/392,034 priority Critical patent/US9359508B2/en
Priority to EP10811847.2A priority patent/EP2471869B1/en
Priority to JP2011528793A priority patent/JP5499040B2/ja
Priority to CN201080038131.9A priority patent/CN102498175B/zh
Priority to KR1020127007752A priority patent/KR101489042B1/ko
Publication of WO2011024797A1 publication Critical patent/WO2011024797A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/284Alkyl ethers with hydroxylated hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09D103/04Starch derivatives
    • C09D103/08Ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer

Definitions

  • the present invention relates to an aqueous slurry composition in which a hydrophobic filler is uniformly dispersed, including a polysaccharide polymer having a low environmental load and an aqueous medium containing water. Furthermore, regarding the utilization technology of the aqueous slurry composition, in a power storage device such as a secondary battery or a capacitor, a coating having excellent solvent resistance between a current collector and an electrode active material layer (hereinafter referred to as an electrode layer). By disposing the film, it is possible to increase the adhesion between the current collector and the electrode layer, reduce the internal resistance, and improve the cycle characteristics, and the power storage device including the electrode plate The present invention relates to a technology capable of providing a device.
  • the aqueous slurry composition of the present invention is not limited to the above, and can be applied to various coating liquids used in various industrial fields, and can be widely used.
  • slurry a slurry or paste containing a functional material
  • slurry a slurry or paste containing a functional material
  • a paste-like conductive coating liquid composed of a conductive filler, a binder resin, a curing agent, a solvent, and the like is used as a conductive adhesive, a conductive paint, a conductive ink, and the like depending on applications (Non-patent Documents). 1).
  • a magnetic paint in which submicron-sized magnetic particles are uniformly dispersed in a polymer solution is applied to a base film such as polyester. It is made by.
  • the electrode structure of the lithium ion secondary battery is realized by mixing an active material and a conductive additive with a binder (binder) to prepare a slurry, applying the slurry to a current collector foil, and drying it ( Non-patent document 2).
  • the common attribute that the above-mentioned various coating liquids can sufficiently exhibit their functionality is that the dispersoid is uniformly dispersed in the dispersion medium and that the formed coating film achieves high adhesion.
  • the state of the slurry is appropriate for the expression of the functionality, that is, the filler is uniform and stable.
  • the slurry solvent (dispersion medium) is excellent in uniform dispersibility of the filler, exhibits high adhesion, and is easy to dry.
  • Nonaqueous (organic solvent) solvents (dispersion media) are overwhelmingly advantageous and have been widely used in practice.
  • organic solvents are not only volatile and have a large impact on the environment, but also have to consider genotoxicity, leaving problems in safety and workability.
  • awareness of environmental protection and health damage prevention has been increasing in many industrial fields, and there is an increasing demand for VOC reduction and solvent-free use of organic solvents with the above-mentioned problems.
  • VOC reduction and solvent-free use of organic solvents with the above-mentioned problems.
  • Patent Document 3 various proposals such as an attempt to form a surface treatment layer by reacting the metal oxide on the surface of the metal oxide fine particle filler with a hydrophilic silane coupling agent have been proposed (Patent Document 3).
  • Other proposals such as applying ultrasonic vibration to paste containing inorganic oxide filler to disperse the filler, or forming insulating resin on the surface of conductive filler to make microcapsule type conductive filler There is also.
  • the dispersion medium used in these proposals is mainly used for organic solvents, and there are very few examples using an aqueous system.
  • the emergence of a method that uses environmentally friendly, inexpensive, highly safe water-based slurry and that uniformly disperses fillers is strongly desired. Yes.
  • Dispersants used in water-based slurries include polycarboxylates and phosphate amine salts (Non-Patent Document 3) used in the paint field, polyacrylamides (Non-Patent Document 4) as polymer dispersants, etc.
  • Non-Patent Document 3 polycarboxylates and phosphate amine salts
  • Non-Patent Document 4 polyacrylamides
  • the substance is an environmentally friendly natural product.
  • a coating solution for an electrode plate of a power storage device such as a secondary battery or a capacitor, which has been growing remarkably in recent years, can be considered.
  • the electrode plate has a great influence on the performance of the power storage device, and is an electrode member in which unit members such as an electrode layer and a current collector are integrated. It has been proposed to increase the area of the thin film in order to increase the energy density.
  • a positive electrode active material powder such as a metal oxide, sulfide, or halide, a conductive material and a binder in an appropriate solvent. Disperse and dissolve to prepare a paste-like coating liquid, and use a current collector made of a metal foil such as aluminum as a base, and apply the coating liquid on the surface of the base to form a coating film layer.
  • a positive electrode plate is disclosed.
  • Capacitors that use an electric double layer formed at the interface between a polarizable electrode plate and an electrolyte are used as memory backup power supplies, and can also be applied to applications that require high output such as power supplies for electric vehicles. Attention has been focused on achieving both high capacitance and low internal resistance for high output.
  • the electrode plate for the capacitor is manufactured by applying and drying a coating liquid made of an aqueous slurry composition in which a binder and a conductive material are generally mixed, on the current collector, like the negative electrode plate of the battery. .
  • the resin binder used for the electrode plate coating liquid for power storage devices such as lithium ion batteries and capacitors
  • fluorine-based resins such as polyvinylidene fluoride or silicone / acrylic copolymers are used.
  • the negative electrode plate (battery) and the polarizable electrode plate (capacitor) are prepared by adding a binder dissolved in an appropriate solvent to an active material such as a carbonaceous material to prepare a paste-like coating solution. This is obtained by applying it to a current collector.
  • the binder used for the preparation of the coating solution is electrochemically stable with respect to the non-aqueous electrolyte and does not elute into the electrolyte of the battery or capacitor. Since it does not swell and is applied, it must be soluble in some solvent.
  • a protective film on the surface of a metal material such as aluminum which is a material metal of the current collector is formed by applying various resin solutions, but the adhesion of the formed film to the metal surface is Although excellent, the film has a problem that the durability against organic solvents is insufficient.
  • the coating formed by being applied and dried in the electrode plate of the battery and capacitor obtained by applying the coating liquid applied to the surface of the current collector such as aluminum foil or copper foil to the current collector, the coating formed by being applied and dried.
  • the film layer has insufficient adhesion and flexibility to the current collector, has a large contact resistance to the current collector, and the coating film layer has a high resistance during battery and capacitor assembly and charge / discharge. There was a problem that peeling, dropping, cracking, etc. occurred.
  • the object of the present invention is to solve the above-mentioned problems, and a useful aqueous system capable of simultaneously exhibiting a binding function and a dispersing function for a hydrophobic filler while being mainly composed of a material having a low environmental load. It is providing the slurry composition of this. Another object of the present invention is to provide an inexpensive water-based slurry that is highly dispersible because the dispersion medium contains water but maintains an appropriate viscosity even when stored for a long period of time, and the hydrophobic filler is less likely to settle and separate. It is to provide a composition.
  • an aqueous slurry composition it becomes possible to form a coating film having excellent adhesion obtained by uniformly dispersing a hydrophobic filler. It can be expected to be used in various fields such as rubber, plastic, ceramic, magnetic material, adhesive, and liquid crystal color filter. That is, another object of the present invention is to provide a technology that can be used in many industrial fields that can contribute to environmental protection and health damage prevention, which are social problems.
  • the object of the present invention is, in particular, excellent adhesion and electrolytic solution resistance to the interface between a current collector made of aluminum foil or copper foil and an electrode layer, and improved contact resistance with the current collector.
  • Another object of the present invention is to provide an aqueous slurry composition of a hydrophobic filler that can be used in a coating solution that can form a coated film. That is, if an aqueous slurry composition capable of forming such a coating film layer is provided, it is extremely useful for an electrode plate for a power storage device that is expected to be widely used in the future and a power storage device including the electrode plate.
  • the present invention comprises (1) an aqueous medium containing at least water as a polar solvent, and (2) a cellulose derivative, an alginic acid derivative, a starch derivative, a chitin derivative and a chitosan derivative, polyallylamine, and polyvinylamine. At least one polymer selected, (3) a hydrophobic filler, and (4) a polybasic acid or a derivative thereof, and the water content in the composition is 30% by mass or more.
  • An aqueous slurry composition is provided.
  • aqueous slurry composition of the present invention include the following.
  • the above polymer is hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, cationized cellulose, hydroxyethyl starch, propylene glycol alginate, carboxymethyl chitin, polyallylamine, polyvinylamine, glycerylated chitosan, hydroxyethyl chitosan, hydroxypropyl chitosan, hydroxy It contains at least one selected from the group consisting of butyl chitosan and hydroxybutylhydroxypropyl chitosan.
  • the polybasic acid or derivative thereof is 1,2,3,4-butanetetracarboxylic acid, pyromellitic acid, pyromellitic anhydride, trimellitic acid, trimellitic anhydride, adipic acid, citric acid, tartaric acid, 1, 2,4-cyclohexanetricarboxylic acid, 1,2,3-propanetricarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid and 1,2,3 It is at least one selected from the group consisting of 4,5,6-cyclohexanehexacarboxylic acid.
  • the B-type rotational viscometer viscosity at 25 ° C. measured at 30 rpm is 100 to 20,000 mPa ⁇ s, and measured at 25 ° C. after diluting the slurry composition with the same amount of distilled water The measured pH is 6 or less.
  • the aqueous medium contains an organic solvent, and the organic solvent has water solubility and is selected from the group consisting of isopropyl alcohol, methyl alcohol, ethyl alcohol, t-butyl alcohol, and N-methyl-2-pyrrolidone. Must be at least one.
  • the hydrophobic filler is a conductive carbon filler and / or silica.
  • the hydrophobic filler is a conductive carbon filler and is used for forming a coating film on a power storage device electrode plate.
  • an electrode plate for a power storage device wherein the aqueous slurry composition is applied between a current collector and an electrode layer, and a coating film is disposed.
  • the thickness of the coating film is 0.1 to 2 ⁇ m.
  • the surface resistivity of the coating film is 3,000 ⁇ / ⁇ or less.
  • the coating film is formed by heat treatment at 100 to 250 ° C.
  • the current collector is an aluminum foil, and the electrode layer is made of a positive electrode active material.
  • the current collector is a copper foil, and the electrode layer is made of a negative electrode active material.
  • the current collector is an aluminum foil, and the electrode layer is a polarizable electrode.
  • a power storage device comprising any one of the electrode plates described above.
  • the power storage device includes secondary batteries such as lithium ion batteries, and capacitors such as electric double layer capacitors and lithium ion capacitors.
  • the useful aqueous slurry composition which can exhibit the binding function and dispersion function with respect to a hydrophobic filler simultaneously is provided, although it has as a main component the polysaccharide polymer etc. with little load with respect to an environment.
  • the dispersion medium contains water, an appropriate viscosity is maintained even when stored for a long period of time, and the hydrophobic filler is less likely to settle and separate, and is an inexpensive aqueous slurry having high dispersibility.
  • a composition is provided.
  • the water-based slurry provided by the present invention it is possible to form a coating film having excellent adhesion obtained by uniformly dispersing the hydrophobic filler.
  • Expected to be used in various fields such as toners, rubber / plastics, ceramics, magnetic materials, adhesives, liquid crystal color filters, etc. In many industrial fields, useful technologies that can contribute to environmental protection and health damage prevention are provided.
  • the present invention in particular, with respect to the interface between the current collector made of aluminum foil or copper foil and the electrode layer, it has excellent adhesion, solvent resistance, and electrolytic solution resistance, and is in contact with the current collector.
  • An aqueous slurry composition of a hydrophobic filler that can be formed into a coating solution capable of forming a coating film with improved resistance is provided, so that it is expected to be widely used in battery electrode plates and capacitor applications.
  • the present invention can be applied to a power storage device electrode plate such as a polar electrode plate and a power storage device including them, and is extremely useful.
  • ADVANTAGE OF THE INVENTION According to this invention, the technique which can be utilized in many industrial fields which can contribute to environmental protection and health damage prevention which are social problems is provided.
  • the present invention suppresses sedimentation and separation of hydrophobic fillers by incorporating a specific polysaccharide polymer or the like and a polybasic acid or a derivative thereof into an aqueous medium containing water.
  • the aqueous slurry provided by the present invention maintains the functionality such as the binding property and dispersibility for the filler by including a polysaccharide polymer having a binding function and a dispersing function for the hydrophobic filler at the same time.
  • precipitation of the polysaccharide polymer and the like is effective by using as a dispersion medium a water with a specific range of content, more preferably a mixed medium of water and an organic solvent such as an alcohol having solubility in water. Since the slurry can be imparted with an appropriate viscosity while being suppressed, the sedimentation separation of the hydrophobic filler in the aqueous medium is suppressed, and higher dispersibility and dispersion stability can be realized.
  • the aqueous slurry composition as used in the present invention is a state in which raw material powder such as hydrophobic filler powder is dispersed in a high concentration in an aqueous medium, or solid particles such as fine hydrophobic filler particles are in the aqueous medium. It means something that is mixed and muddy.
  • the aqueous slurry composition of the present invention comprises at least one polymer selected from polysaccharide polymers such as cellulose derivatives, alginic acid derivatives, starch derivatives, chitin derivatives and chitosan derivatives, polyallylamine and polyvinylamine (hereinafter, These may be referred to as polysaccharide polymers).
  • polysaccharide polymers such as cellulose derivatives, alginic acid derivatives, starch derivatives, chitin derivatives and chitosan derivatives, polyallylamine and polyvinylamine (hereinafter, These may be referred to as polysaccharide polymers).
  • Polysaccharides such as chitosan, chitin, cellulose, starch and alginic acid, which are polysaccharide polymers, can be obtained from the market and used as they are. From the viewpoint of solubility in water and an organic solvent added as necessary, a polysaccharide derivative is preferable.
  • Preferred polysaccharide polymers include chitosan and glycerylated chitosan, hydroxyethyl chitosan, hydroxypropyl chitosan, hydroxybutyl chitosan, hydroxybutylhydroxypropyl chitosan, carboxymethyl chitosan, succinyl chitosan and other chitosan derivatives, chitin and carboxymethyl chitin, etc.
  • Chitin derivatives of cellulose cellulose derivatives such as methyl cellulose, ethyl cellulose, butyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, cellulose acetate, alkali cellulose, viscose, cellulose sulfate, fatty acid cellulose, cationized cellulose, starch And hydroxyethyl starch, Mud carboxymethyl starch, carboxymethyl starch, starch derivatives such as cationic starch, alginic acid derivatives such as alginic acid and alginic acid propylene glycol ester, plant-derived polysaccharides such as soybean polysaccharides and the like.
  • the water-based slurry composition of the present invention contains 30% by mass or more of water, but is preferably a mixed medium with water containing an organic solvent having solubility in water.
  • the content of the organic solvent in the mixed medium depends on the kind of the organic solvent, it is arbitrary in the range of less than 70% by mass, and more preferably in the range of 5 to 60% by mass.
  • the IPA content in the mixed medium is preferably 1 to 40% by mass, and particularly preferably 5 to 40% by mass. If the content of the organic solvent is 1% by mass or less, the thickening effect of the slurry is poor, and it is difficult to suppress sedimentation of the filler, which is not preferable.
  • the content of the organic solvent is 70% by mass or more, the polysaccharide polymer is precipitated, which is not preferable.
  • Examples of the organic solvent used in the aqueous slurry composition of the present invention include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol (IPA), n-butyl alcohol, s-butyl alcohol, isobutyl alcohol, t-butyl alcohol ( Esters such as methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, methyl lactate, ethyl lactate, butyl lactate , Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, amides such as N-methyl-2-pyrrolidone, N, N-dimethyl
  • Alcohols are particularly preferably used. More specifically, alcohols such as isopropyl alcohol, methyl alcohol, ethyl alcohol, and t-butyl alcohol, and N-methyl-2-pyrrolidone, particularly isopropyl alcohol and t-butyl alcohol are preferable. These alcohols may be used alone or in combination.
  • hydrophobic filler used in the aqueous slurry composition of the present invention examples include carbon black, natural graphite, quiche graphite, artificial graphite, acetylene black, ketjen black, furnace black, carbon nanotube, carbon nanofiber, silica, Talc, calcium carbonate, nickel powder, copper powder, silver powder, copper alloy powder, zinc oxide powder, tin oxide powder, indium oxide powder, silver coated glass beads, nickel coated glass beads, nickel coated phenol resin powder, aluminum flakes, copper flakes Nickel flakes, aluminum fibers, stainless fibers, glass fibers, aluminum coated glass fibers, nickel coated mica, ceramics, pigments, magnetic particles, conductive particles, active materials, and the like are used.
  • carbon black, acetylene black, ketjen black, furnace black, natural graphite, carbon nanofibers, conductive carbon fillers such as carbon nanotubes, silica, and the like are preferably used.
  • the aqueous slurry composition of the present invention has an appropriate viscosity of 25 to 100 ° C. when the viscosity is 100 to 20,000 mPa ⁇ s when measured with a B-type rotational viscometer, rotation speed 30 rpm, and rotor numbers 1 to 4. Those having the following are preferred. Furthermore, in addition to this, after diluting the slurry composition with the same amount of distilled water, the pH measured at 25 ° C. is preferably 6 or less.
  • the slurry viscosity is 100 mPa ⁇ s or less, the effect of suppressing the sedimentation of the filler is poor, and when the slurry viscosity is 20,000 mPa ⁇ s or more, the slurry viscosity is too high to be difficult to handle.
  • the viscosity improvement of the water / organic solvent used as a solvent suitable for maintaining dispersibility in the aqueous slurry composition of the present invention will be considered.
  • the increase in viscosity of the water / IPA solvent is related to the fact that IPA has a hydrophobic group called isopropyl group and a hydrophilic group called hydroxyl group at the same time, so that it forms a hydrated structure in an aqueous solution.
  • IPA has a hydrophobic group called isopropyl group and a hydrophilic group called hydroxyl group at the same time, so that it forms a hydrated structure in an aqueous solution.
  • the degree of hydrogen bonding varies depending on the size and conformation of the hydrophobic group, but in such a state, the free volume in which water single molecules and alcohol molecules can move freely is reduced by the alcohol-water molecule interaction described above. It is considered a thing. As a result, the freedom of molecular motion is constrained, and this is considered to be one of the main causes of the viscosity increase of the water-alcohol solution.
  • the water-based slurry composition containing the hydrophobic filler of the present invention has a low environmental burden and a coating with excellent filler dispersibility by selecting a filler having an appropriate function according to the field of use.
  • a working solution it can be expected to be used in various fields such as paints, inks, magnetic materials, ceramics, power storage devices, adhesives, electronic materials, liquid crystal color filters, pharmaceuticals, cosmetics, and fragrances.
  • conductive fillers such as carbon black
  • it is effective as a coating liquid for current collector coat layer formation, electrode layer formation, separator layer formation in power storage devices such as lithium ion secondary batteries and capacitors. Used for.
  • the aqueous slurry composition of the present invention contains a polybasic acid or a derivative thereof in addition to the above-described components, and may further contain a resin having a hydroxyl group and / or an amino group.
  • a resin having a hydroxyl group and / or an amino group It is known that polysaccharide polymers having a hydroxyl group in the molecule such as cellulose, alginic acid, starch, chitosan and chitin used in the present invention give a film having excellent adhesion to metal materials such as aluminum. Yes. However, the film swells with a polar solvent such as water and peels easily from the surface of the metal material.
  • polybasic acids a polybasic acid or a derivative thereof (hereinafter referred to as polybasic acids) to a coating solution for producing an electrode plate using polysaccharide polymers as a binder.
  • polybasic acids a polybasic acid or a derivative thereof
  • the aqueous slurry composition of the present invention containing a polysaccharide polymer and a polybasic acid is used as a coating liquid to form a coating film layer
  • the polybasic acid is converted into a polysaccharide polymer during heat drying.
  • a cross-linking agent a film made of polysaccharide polymers loses solubility and swelling in organic solvents and electrolytes, and has excellent adhesion and solvent resistance to the surface of metal materials and current collectors.
  • the coating film layer which has. Therefore, in particular, for the aqueous slurry composition of the present invention that has become a coating solution for a power storage device electrode plate, it is preferable to use a tribasic or higher polybasic acid from the viewpoint of crosslinkability to the resin.
  • Polybasic acids also have a function of increasing the solubility when polysaccharide polymers are dissolved in an aqueous medium, and divalent polybasic acids can be used for that purpose.
  • polybasic acids used in the present invention conventionally known polybasic acids can be used.
  • the polybasic acids themselves, their acid anhydrides, salts of some or all of the polybasic acids, particularly ammonium salts and amine salts, some or all of the carboxyl groups of the polybasic acids Alkyl esters, amides, imides, amideimides, derivatives of these compounds modified with one or more of N-hydroxysuccinimide, N-hydroxysulfosuccinimide, or derivatives thereof can be used.
  • These polybasic acid derivatives are preferably compounds that regenerate the polybasic acid when the coating film layer to be formed later is heated.
  • At least one polybasic acid selected from the group consisting of the following, or a derivative thereof, particularly an acid anhydride thereof.
  • ⁇ Dibasic acid> Oxalic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, methyl glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, methyl maleic acid, fumaric acid, methyl fumaric acid Acid, itaconic acid, muconic acid, citraconic acid, glutaconic acid, acetylenedicarboxylic acid, tartaric acid, malic acid, spicrispolic acid, glutamic acid, glutathione, aspartic acid, cystine, acetylcystine, diglycolic acid, iminodiacetic acid, hydroxyethyliminodi Acetic acid, thiodiglycolic acid, thionyl diglycoli
  • ⁇ Tribasic acid Citric acid, 1,2,3-propanetricarboxylic acid, 1,2,4-butanetricarboxylic acid, 2-phosphono-1,2,4-butanetricarboxylic acid, trimellitic acid, 1,2, 4-cyclohexanetricarboxylic acid, ⁇ 4 basic acids> ethylenediaminetetraacetic acid, 1,2,3,4-butanetetracarboxylic acid, pyromellitic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic Acid ⁇ 6 basic acids> 1,2,3,4,5,6-cyclohexanehexacarboxylic acid
  • polybasic acids as listed below may be used in combination.
  • tribasic acids such as isocitric acid, aconitic acid, nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, carboxyethylthiosuccinic acid, trimesic acid, ethylenediamine N, N′-succinic acid, 1,4,5,8-naphthalene Tetracarboxylic acid, pentenetetracarboxylic acid, hexenetetracarboxylic acid, glutamic acid diacetic acid, maleated methylcyclohexenetetracarboxylic acid, furantetracarboxylic acid, benzophenonetetracarboxylic acid, phthalocyaninetetracarboxylic acid, 1,2,3,4-cyclobutane Monocyclic tetracarboxylic acids such as tetracarboxylic acid and cyclopentanetetrac
  • the amount of the polybasic acids used in the aqueous slurry composition of the present invention is 10 to 300 parts by mass, preferably 20 to 200 parts by mass, per 100 parts by mass of the polysaccharide polymers.
  • the amount of polybasic acid used per 100 parts by mass of the coating liquid is 0.01 to 20 parts by mass, preferably 0.02 to 10 parts by mass.
  • the amount of polybasic acids used per 100 parts by mass of the coating liquid is less than 0.01 parts by mass, the crosslinking density of the polysaccharide polymers is low, and the adhesion of the formed coating film layer to the current collector and This is not preferable because it is insufficient in terms of insolubility, non-swelling property, and electrochemical stability of polymers in an electrolytic solution.
  • the amount of use per 100 parts by mass of the coating liquid exceeds 20 parts by mass, the flexibility of the formed film or coating film layer is lowered and it is uneconomical.
  • the water-based slurry composition containing the hydrophobic filler of the present invention is useful as a material for forming a coating film layer provided on a power storage device electrode plate such as a secondary battery or a capacitor if a conductive filler is used as the hydrophobic filler.
  • the aqueous slurry composition containing the conductive filler of the present invention is used as a coating liquid for forming a coating film, and this coating liquid is applied to the current collector surface of the power storage device in terms of solid content.
  • the coating film layer is preferably formed by coating to a thickness of 0.1 to 10 ⁇ m, preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 2 ⁇ m. And, on the coating film layer thus formed, by forming a battery positive electrode layer, a battery negative electrode layer, or a capacitor positive electrode layer, a capacitor negative electrode layer, and a polarizable electrode layer In addition, it is possible to construct an electrode plate for a power storage device having a low resistance between the electrode layer and the current collector and a low environmental load.
  • This function expression is more preferably achieved by using a polysaccharide polymer that simultaneously exhibits a binder effect and a dispersibility improving effect in the slurry for the coating liquid, and more preferably exhibits a filler dispersibility improving effect due to an increase in viscosity.
  • This is achieved by using a mixed medium of water and an organic solvent, particularly a mixed medium of water and alcohol.
  • the coating film layer is formed and arranged between the current collector and the electrode layer by the coating liquid using the aqueous slurry composition containing the conductive filler having the configuration described above.
  • the aqueous slurry composition containing the conductive filler having the configuration described above.
  • the binder for forming the electrode layer is a polysaccharide polymer solution that functions as a binder for a coating film layer when the aqueous slurry composition of the present invention is used as a coating liquid.
  • a conventionally known binder can also be used.
  • known binders that can be used in this case include polyvinylidene fluoride, polytetrafluoroethylene, acrylic resin, polyimide resin, polyamideimide resin, silicone acrylic resin, and styrene-butadiene copolymer rubber.
  • the coating film layer preferably has a surface resistivity of 3,000 ⁇ / ⁇ or less. That is, when a coating film having a surface resistivity exceeding 3,000 ⁇ / ⁇ is applied to the electrode plate, the internal resistance increases, making it difficult to obtain a battery and a capacitor with high efficiency and long life. For this reason, in the present invention, the surface resistivity of the coating film layer is preferably 3,000 ⁇ / ⁇ or less, more preferably 2,000 ⁇ / ⁇ or less.
  • the surface resistivity specifying the coating film is measured by the following method.
  • a coating liquid for forming a coating film is applied on a glass plate and then dried at 200 ° C. for 1 minute to form a coating film (dry film thickness 4 ⁇ m).
  • the surface resistivity of a coating film is calculated
  • the measurement was performed using a Lorester GP, MCP-T610 manufactured by Mitsubishi Chemical Analytech, at 25 ° C. and a relative humidity of 60%.
  • Polysaccharides such as chitosan derivatives, chitin derivatives, cellulose derivatives, starch derivatives, alginic acid derivatives, which are polysaccharide polymers used as resin binders in the aqueous slurry composition that is the coating solution for the electricity storage device electrode plate of the present invention, are marketed. From the viewpoint of solubility in water and organic solvents, it is more preferable to use the polysaccharide polymer derivatives listed above.
  • the amount of the polysaccharide polymer that is a resin binder in the coating solution for an electrode plate of the electricity storage device described above is 0.1 to 40 parts by mass in terms of solid content per 100 parts by mass of the coating solution from the viewpoints of application suitability and transportation cost. And more preferably 1 to 20 parts by mass. If the amount of the polymer is too small, the strength and adhesiveness of the coating film are insufficient, and the coating film component tends to fall off from the coating film layer, which is not preferable. On the other hand, if the amount of the polymer is too large, it becomes difficult to obtain a uniform solution, and the conductive filler (hydrophobic filler) may be covered with the polymer to increase the internal resistance of the electrode plate.
  • the conductive filler hydrophobic filler
  • conductive hydrophobic filler used in the aqueous slurry composition that has become the coating solution for an electricity storage device electrode plate of the present invention
  • granular, flaky, short fiber, and Any of those obtained by coating a substrate with a conductor can be used.
  • the granular material include carbon black, acetylene black, ketjen black, nickel powder, copper powder, silver powder, copper alloy powder, zinc oxide powder, tin oxide powder, and indium oxide powder.
  • flakes include natural graphite, quiche graphite, artificial (artificial) graphite, aluminum flakes, copper flakes, and nickel flakes.
  • Examples of short fibers include PAN-based carbon fibers, pitch-based carbon fibers, carbon nanotubes, stainless steel fibers, and aluminum fibers.
  • Examples of the substrate coated with a conductor include silver-coated glass beads, nickel-coated glass beads, nickel-coated phenolic resin, nickel-coated mica, and aluminum-coated glass fibers.
  • the conductive fillers listed above are used in a state of being mixed and dispersed in the coating liquid.
  • the amount of the conductive filler used is usually 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the coating liquid.
  • the usage-amount of an electroconductive filler is less than 0.1 mass part, the electroconductivity of the coating film layer formed may be insufficient.
  • the usage-amount of an electroconductive filler exceeds 30 mass parts, the performance of the coating film layer formed by lacking another component may fall.
  • polybasic acids and organic solvents used for the coating solution for the electricity storage device electrode plate general commercial products can be used as they are, but they may be used after being purified as necessary.
  • the order in which the polymers and polybasic acids are dissolved in water / organic solvent is as follows: polymer or polybasic acid Whichever comes first may be simultaneous. As the dissolution method, stirring at room temperature is sufficient, but heating may be performed as necessary.
  • a coating solution for a power storage device electrode plate using the aqueous slurry composition of the present invention is obtained by adding and kneading a polysaccharide polymer, a conductive filler and a polybasic acid to a water / organic solvent. It is done.
  • the ratio of each component in the case of the coating liquid is 0.5 to 10 parts by mass of the polymer, 0.02 to 10 parts by mass of the polybasic acid, and the conductivity when the coating liquid is 100 parts by mass. It is particularly preferable that the filler is 1 to 20 parts by mass.
  • the solid content of the coating liquid is preferably 0.1 to 40% by mass, more preferably 1 to 35% by mass.
  • the coating liquid for an electricity storage device electrode plate used in the present invention may contain any component other than the above components, for example, other crosslinking agents.
  • crosslinking agents include, for example, epoxy compounds such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and glycerol polyglycidyl ether; toluylene diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, phenyl diisocyanate.
  • Isocyanate compounds such as phenols, alcohols, active methylenes, mercaptans, acid amides, imides, amines, imidazoles, ureas, carbamic acids, imines, oximes, sulfites, etc.
  • blocked isocyanate compounds blocked with a blocking agent aldehyde compounds such as glyoxal, glutaraldehyde, and dialdehyde starch.
  • (meth) acrylate compounds such as polyethylene glycol diacrylate, polyethylene glycol dimethacrylate and hexanediol diacrylate; methylol compounds such as methylol melamine and dimethylol urea; organic acid metal salts such as zirconyl acetate, zirconyl carbonate and titanium lactate; aluminum Such as trimethoxide, aluminum tributoxide, titanium tetraethoxide, titanium tetrabutoxide, zirconium tetrabutoxide, aluminum dipropoxide acetylacetonate, titanium dimethoxide bis (acetylacetonate), titanium dibutoxide bis (ethylacetoacetate) A metal alkoxide compound is mentioned.
  • vinylmethoxysilane, vinylethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-amino Examples include silane coupling agents such as propyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, and imidazolesilane; silane compounds such as methyltrimethoxysilane, tetraethoxysilane, and methyltriethoxysilane; carbodiimide compounds.
  • Use of these crosslinking agents is not essential, but when used, the amount of the crosslinking agent is preferably 1 to 100% by mass of the polysaccharide polymers used as the resin binder.
  • a specific method for preparing the coating solution for the power storage device electrode plate used in the present invention will be described.
  • a polysaccharide polymer, a conductive filler, and a polybasic acid, which are resin binders appropriately selected from the materials listed above are added to a water / organic solvent so that the water content is 30% by mass or more.
  • the coating liquid is prepared by adding to and dispersing by using a conventionally known mixer.
  • a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer, or the like can be used.
  • the conductive filler is first mixed using a mixer such as a crusher, a planetary mixer, a Henschel mixer, an omni mixer, etc., and then a polysaccharide polymer and a polybasic acid as a resin binder are added thereto.
  • a mixer such as a crusher, a planetary mixer, a Henschel mixer, an omni mixer, etc.
  • a polysaccharide polymer and a polybasic acid as a resin binder are added thereto.
  • a method of adding and mixing uniformly is also preferable. By adopting these methods, a uniform coating solution can be easily obtained.
  • the viscosity of the coating solution prepared as described above varies depending on the type of coating machine and the shape of the coating line, but is usually 10 to 100,000 mPa ⁇ s, preferably 50 to 50,000 mPa ⁇ s. s, more preferably 100 to 20,000 mPa ⁇ s.
  • the amount of the coating solution to be applied is not particularly limited, but is generally an amount such that the thickness of the coating film layer formed after drying is usually 0.05 to 100 ⁇ m, preferably 0.1 to 10 ⁇ m. is there.
  • said value is a viscosity in 25 degreeC when it measures with a B-type rotational viscometer and rotation speed 30rpm.
  • the method for producing an electrode plate according to the present invention is characterized in that a coating film is formed and disposed between a current collector and an electrode using the coating liquid having the above-described configuration.
  • the current collector used for manufacturing the electrode plate is made of an electrically conductive and electrochemically durable material.
  • metal materials such as aluminum, tantalum, niobium, titanium, nickel, hafnium, zirconium, zinc, tungsten, bismuth, antimony, stainless steel, copper, gold, and platinum are preferable, and they have excellent corrosion resistance to electrolytes and are lightweight.
  • Particularly preferred is aluminum which is easy to machine.
  • the shape of the current collector is not particularly limited, but usually a sheet (metal foil) having a thickness of about 5 to 30 ⁇ m is used.
  • the surface of these current collectors can be previously treated with a coupling agent such as silane, titanate, or aluminum.
  • the coating liquid is applied to the surface of the current collector on the surface of the current collector, gravure coat, gravure reverse coat, roll coat, Meyer bar coat, blade coat, knife coat, air knife coat, comma coat, slot die coat, slide die coat, dip coat, ext
  • 0.1 to 10 ⁇ m preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 2 ⁇ m in dry thickness
  • various coating methods such as a rouge coating, spray coating, brush coating
  • a coating film layer is obtained by heating and drying. If the coating film thickness is less than 0.1 ⁇ m, it is difficult to apply uniformly, and if it exceeds 10 ⁇ m, the flexibility of the coating film may be lowered.
  • the polysaccharide polymers that are resin binders are sufficiently crosslinked to improve the adhesion of the formed coating film layer to the current collector and the electrochemical stability of the resin binder to the electrolyte.
  • heating at 100 ° C. or higher for 1 second or longer, more preferably 100 to 250 ° C. for 1 second to 60 minutes is preferable. If the heat treatment condition is less than 100 ° C. or less than 1 second, the adhesion of the coating film layer to the current collector of the coating film layer and the electrochemical stability of the resin binder to the electrolyte solution may not be satisfied, which is not preferable. .
  • an electrode layer is applied on the coating film layer formed by coating and drying as described above to form an electrode plate.
  • the electrode layer is also preferable that the electrode layer is subjected to a press treatment using a metal roll, a heating roll, a sheet press machine or the like to form the electrode plate of the present invention.
  • the pressing condition at this time if it is less than 500 kgf / cm 2, it is difficult to obtain the uniformity of the electrode layer, and if it exceeds 7,500 kgf / cm 2 , the electrode plate itself including the current collector is damaged. Therefore, the pressing conditions are preferably in the range of 500 to 7,500 kgf / cm 2 .
  • a coating film layer comprising a conductive filler and a polysaccharide polymer which is a resin binder cross-linked with a polybasic acid is formed between the current collector and the electrode layer.
  • the coating film layer has the characteristics as described above.
  • a solute lithium salt is used as the electrolyte.
  • a nonaqueous electrolytic solution in which is dissolved in an organic solvent or ionic liquid is used.
  • solute lithium salt forming the non-aqueous electrolyte examples include inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, and LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2 C 2 F 5 , LiOSO 2 C 3 F 7 , LiOSO 2 C 4 F 9 , LiOSO 2 C 5 F 11 , LiOSO 2 Organic lithium salts such as C 6 F 13 and LiOSO 2 C 7 F 15 are used.
  • inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, and LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , Li
  • organic solvent examples include cyclic esters, chain esters, cyclic ethers, chain ethers, and the like.
  • cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, vinylene carbonate, 2-methyl- ⁇ -butyrolactone, acetyl- ⁇ -butyrolactone, and ⁇ -valerolactone.
  • chain esters examples include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl propyl carbonate, and propionic acid alkyl ester. , Malonic acid dialkyl ester, acetic acid alkyl ester and the like.
  • cyclic ethers examples include tetrahydrofuran, alkyltetrahydrofuran, dialkylalkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane and the like.
  • chain ethers include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether.
  • An ionic liquid that dissolves a lithium salt is a liquid consisting only of ions formed by a combination of an organic cation and an anion.
  • organic cations include dialkylimidazolium cations such as 1-ethyl-3-methylimidazolium ion, trialkylimidazolium cations such as 1,2-dimethyl-3-propylimidazolium ion, and dimethylethylmethoxyammonium ion.
  • dialkylpiperidinium ion such as methylpropylpiperidinium ion, alkylpyridinium ion such as methylpropylpyrrolidinium ion, and dialkylpyrrolidinium ion such as methylpropylpyrrolidinium ion.
  • anion which is a pair of these organic cations include AlCl 4 ⁇ , PF 6 ⁇ , PF 3 (C 2 F 5 ) 3 ⁇ , PF 3 (CF 3 ) 3 ⁇ , BF 4 ⁇ and BF 2 (CF 3 ).
  • the other structure of a battery is the same as that of the case of a prior art.
  • ⁇ Capacitor> The case where the coating film formed by the coating liquid using the aqueous slurry composition of the present invention is applied to the production of capacitor electrode plates and capacitors will be described below.
  • the coating liquid for capacitor electrode plates in this case also contains the polysaccharide polymers, polybasic acids, and conductive filler.
  • the amount of the polysaccharide polymer that is a resin binder in the coating solution used for forming the coating film is preferably 0.1 to 20 parts by mass, more preferably 0 in terms of solid content per 100 parts by mass of the coating solution. .5 to 10 parts by mass. If the amount of the polymer is too small, the coating film component tends to fall off from the coating film layer, which is not preferable. On the other hand, if the amount is too large, the conductive filler is covered with the polymers and the internal resistance of the electrode plate may increase, which is not preferable.
  • polybasic acids in this case, conventionally known free acids or derivatives thereof can be used.
  • 1,2,3-propanetricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid which are tribasic or more polybasic acids, 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid, trimellitic acid, pyromellitic acid, 1,4,5,8-naphthalenetetracarboxylic acid and 1,2 3,3,4,5,6-cyclohexanehexacarboxylic acid and their acid anhydrides are preferred.
  • These polybasic acids are used by mixing with the coating solution.
  • the amount of polybasic acids used in the coating solution used for forming the coating film is 1 to 150 parts by weight, preferably 2 to 100 parts by weight, per 100 parts by weight of the polysaccharide polymers.
  • the polybasic acid is used in an amount of less than 1 part by mass, the cross-linking density of the cross-linked polymer is low, the adhesion of the formed coating film layer to the current collector and the insolubility of the cross-linked polymer in the electrolyte solution, non- This is not preferable because of insufficient swelling and electrochemical stability.
  • the amount used exceeds 150 parts by mass, the flexibility of the formed film or coating film layer is lowered, which is not preferable and uneconomical.
  • conductive carbon such as acetylene black, ketjen black and carbon black can be used, and these are used by mixing with the above coating liquid.
  • a conductive material By using a conductive material, the electrical contact of the coating film is further improved, the internal resistance of the capacitor is lowered, and the capacitance density can be increased.
  • the amount of the conductive filler used is usually 0.01 to 20 parts by mass, preferably 1 to 15 parts by mass with respect to 100 parts by mass of the coating liquid.
  • the coating solution can be produced by mixing a polysaccharide polymer solution, a polybasic acid, and a conductive filler using a mixer.
  • a mixer a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer, or the like can be used.
  • the conductive filler is first mixed using a mixer such as a crusher, a planetary mixer, a Henschel mixer, an omni mixer, etc., and then a polysaccharide polymer solution as a resin binder is added and mixed uniformly. Is also preferable. By adopting this method, a uniform coating solution can be easily obtained.
  • the electrode plate for a capacitor according to the present invention is formed by applying a coating solution containing a polysaccharide polymer solution, a polybasic acid, and a conductive filler, which are resin binders, between a current collector and an electrode layer and drying the coating film layer. Formed.
  • a coating solution containing a polysaccharide polymer solution, a polybasic acid, and a conductive filler, which are resin binders between a current collector and an electrode layer and drying the coating film layer.
  • a coating solution containing a polysaccharide polymer solution, a polybasic acid, and a conductive filler, which are resin binders which are resin binders
  • a coating solution containing a polysaccharide polymer solution, a polybasic acid, and a conductive filler, which are resin binders
  • the current collector a material having conductivity and electrochemical durability is used. Among these, from the viewpoint of having heat resistance, metal materials such as aluminum, titanium,
  • the method for forming the coating film layer is not particularly limited.
  • the capacitor electrode coating liquid is applied between the current collector and the electrode layer, and dried to form the coating film layer between the current collector and the electrode layer. It is a method of forming.
  • the application method of the coating liquid include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, and a spray coating method.
  • the viscosity of the coating liquid varies depending on the type of coating machine and the shape of the coating line, but is usually 10 to 100,000 mPa ⁇ s, preferably 50 to 50,000 mPa ⁇ s, more preferably 100 to 20, 000 mPa ⁇ s.
  • the amount of the coating liquid to be applied is not particularly limited, but the thickness of the coating film layer formed after drying and removing the solvent is usually 0.05 to 100 ⁇ m, preferably 0.1 to 10 ⁇ m, more An amount of 0.1 to 2 ⁇ m is preferable.
  • the drying method and drying conditions of the coating film layer are the same as those in the battery electrode plate.
  • the capacitor of the present invention having the above electrode plate can be manufactured according to a conventional method using the above electrode plate, electrolytic solution, separator and other parts. Specifically, for example, it can be manufactured by stacking electrode plates through a separator, winding the plate according to the shape of the capacitor, folding the plate into a container, injecting the electrolyte into the container, and sealing.
  • the electrolytic solution is not particularly limited, but a nonaqueous electrolytic solution in which an electrolyte is dissolved in an organic solvent is preferable.
  • a nonaqueous electrolytic solution in which an electrolyte is dissolved in an organic solvent is preferable.
  • any conventionally known electrolyte can be used, and examples thereof include tetraethylammonium tetrafluoroborate, triethylmonomethylammonium tetrafluoroborate, and tetraethylammonium hexafluorophosphate.
  • the electrolyte for the lithium ion capacitor include lithium salts such as LiI, LiClO 4 , LiAsF 6 , LiBF 4 , and LiPF 6 .
  • the solvent for dissolving these electrolytes is not particularly limited as long as it is generally used as an electrolytic solution solvent.
  • Specific examples include carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate; lactones such as ⁇ -butyrolactone; sulfolanes; and nitriles such as acetonitrile. These are used alone or as a mixed solvent of two or more. can do. Of these, carbonates are preferred because of their high withstand voltage.
  • the concentration of the electrolytic solution is usually 0.5 mol / L or more, preferably 0.8 mol / L or more.
  • separator a known material such as a microporous film or non-woven fabric made of polyolefin such as polyethylene or polypropylene; a porous film generally made of pulp called electrolytic capacitor paper; Alternatively, an inorganic ceramic powder and a resin binder may be dispersed in a solvent, applied onto the electrode layer, and dried to form a separator. A solid electrolyte or gel electrolyte may be used in place of the separator. Moreover, as for other materials such as a container, any of those used for ordinary capacitors can be used.
  • Table 1 shows the compositions of various polymer solutions used in Examples and Comparative Examples.
  • Polybasic acids used in various polymer solutions are PTC for 1,2,3-propanetricarboxylic acid, CHTC for 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid.
  • BTC 1,4,5,8-naphthalenetetracarboxylic acid
  • CHHC 1,2,3,4,5,6-cyclohexanehexacarboxylic acid
  • the organic solvents used in the various polymer solutions were abbreviated as MeOH for methyl alcohol, EtOH for ethyl alcohol, IPA for isopropyl alcohol, TBA for t-butyl alcohol, and NMP for N-methyl-2-pyrrolidone.
  • Example 1-1 10 parts of glycerylated chitosan was dispersed in 75 parts of ion-exchanged water, and 10 parts of BTC was added to the dispersion, followed by stirring and dissolution at room temperature for 4 hours. Next, with stirring, 5 parts of IPA was mixed to prepare 100 parts of a glycerylated chitosan water / IPA solution.
  • Examples 1-2 to 1-20> As shown in Table 1, the type and amount of use (mass) of the polymer, the type and amount of polybasic acids, the type and amount of organic solvent, and the mixing ratio of water and organic solvent were changed, and the same as in Example 1-1 By this method, aqueous polymer solutions applicable to the coating liquid of the present invention were prepared.
  • Example 1-21 2 parts of glycerylated chitosan was dispersed in 20 parts of ion-exchanged water, 2 parts of BTC was added to the dispersion, and then dissolved by stirring at room temperature for 4 hours. Next, when 76 parts of IPA were mixed with stirring, precipitation of glycerylated chitosan occurred, and a good polymer solution usable for the slurry of the present invention for the purpose of forming a good coating film layer. could not get.
  • Example 1 A slurry composition containing the hydrophobic filler used in this example was prepared by the following method. A slurry composition was obtained by mixing with 10 parts of acetylene black as a hydrophobic filler and 90 parts of the polymer solution of Example 1-1 in Table 1 with stirring at 120 rpm with a planetary mixer for 120 minutes.
  • the slurry viscosity of the slurry composition obtained above was measured with a B-type rotational viscometer (25 ° C., 30 rpm, rotor No. 3), the slurry viscosity was 0.9 Pa ⁇ s.
  • the resulting slurry composition was prepared using a bar coater No. 6 was applied and spread on a glass plate, the appearance of the coating film was visually confirmed, and the dispersibility of the hydrophobic filler was evaluated. Dispersibility was evaluated as “good” when the coating film was uniform and no spots, streaks, or irregularities were observed, and dispersibility was evaluated as “bad” when irregularities, stripes, or irregularities were observed in the coating film.
  • the slurry composition was put in a 500 ml glass container, stored at room temperature for 1 month, and evaluated by observing the state after storage. did.
  • A where there is no supernatant and no filler sedimentation, there is a supernatant, and there is filler sedimentation, but if the container is shaken lightly, B refills the filler.
  • the filler was not redispersed to a certain extent, and C was evaluated as having to be redispersed by a disperser.
  • a current collector made of an aluminum foil having a thickness of 20 ⁇ m was used as a base, and the slurry composition was coated on one side of the base with a comma roll coater. After that, it is dried in an oven at 110 ° C. for 2 minutes, and further dried in an oven at 180 ° C. for 2 minutes to remove the solvent and crosslink the polymer component, thereby coating the current collector with a dry film thickness of 1 ⁇ m. A film (coating film layer) was formed.
  • the coating film layer obtained above 11 parallel lines of 11 vertical and horizontal directions perpendicular to each other were drawn using a cutter at intervals of 1 mm to form 100 squares in 1 cm 2 .
  • a mending tape was affixed to this surface, and then the tape was peeled off. The number of squares that were not peeled off was determined and used as a measure of adhesion to the current collector. The average value of 10 times was 99.0.
  • the coating film layer in which the above mesh is formed is mixed with a mixed solvent in which EC (ethylene carbonate): PC (propylene carbonate): DME (dimethoxyethane) is mixed at a volume ratio of 1: 1: 2, respectively, as a supporting salt at 1 mol.
  • Examples 2 to 19, Comparative Examples 1 to 3 In the same manner as in Example 1 except that the polymer solution and conductive filler described in Table 2 were used instead of the polymer solution and conductive filler in Example 1-1 in Example 1, the slurry composition and coating A membrane was prepared. And the viscosity of the slurry composition (25 ° C., 30 rpm, the rotor at the time of measurement is appropriately selected and used according to the viscosity), dispersibility, storage stability, adhesion of the formed coating film, solubility / swellability and surface The resistivity was examined and the results are shown in Table 2.
  • Comparative Example 2 a 5% NMP solution of polyvinylidene fluoride (hereinafter referred to as PVDF solution) was used as the binder resin, and in Comparative Example 3, styrene butadiene copolymer latex (carboxymethylcellulose sodium as a thickener was used). Use).
  • PVDF solution polyvinylidene fluoride
  • Comparative Example 3 styrene butadiene copolymer latex (carboxymethylcellulose sodium as a thickener was used).
  • Example 20 positive electrode plate, negative electrode plate, battery
  • Example 20 Positive electrode plate, negative electrode plate, battery
  • a current collector made of an aluminum foil having a thickness of 20 ⁇ m was used as a base, and the slurry composition was coated on one side of the base with a comma roll coater. After that, it is dried in an oven at 110 ° C. for 2 minutes, and further dried in an oven at 180 ° C. for 2 minutes to remove the solvent and crosslink the polymer component, thereby coating the current collector with a dry film thickness of 1 ⁇ m. A film was formed.
  • a positive electrode solution containing a positive electrode active material was prepared by the following method.
  • a material for the cathode solution 90 parts of LiCoO 2 powder having a particle diameter of 1 to 100 ⁇ m, 5 parts of acetylene black as a conductive assistant, and 50 parts of PVDF solution as a binder are mixed at a rotation speed of 60 rpm with a planetary mixer. The mixture was stirred and mixed for 120 minutes to obtain a positive electrode solution containing a slurry-like positive electrode active material.
  • the surface of the positive electrode current collector coating film layer was coated with a comma roll coater, then dried in an oven at 110 ° C. for 2 minutes, and further in an oven at 180 ° C. for 2 minutes.
  • the solvent was removed by drying to obtain a positive electrode composite layer in which an active material layer having a dry film thickness of 100 ⁇ m was formed on the coating film layer.
  • the positive electrode composite layer obtained by the above method was pressed under the condition of 5,000 kgf / cm 2 to make the film uniform. Next, aging was performed in a vacuum oven at 80 ° C. for 48 hours to sufficiently remove volatile components (water, solvent, etc.) to obtain a positive electrode plate.
  • Example 2 (Negative electrode plate) Using the slurry composition of Example 1, using the copper foil current collector as a base, the slurry composition was coated on one side of the base with a comma roll coater, and then dried in an oven at 110 ° C. for 2 minutes. It dried for 2 minutes in 180 degreeC oven, the solvent was removed, and the polymer component was bridge
  • a negative electrode solution containing a negative electrode active material was prepared by the following method.
  • the negative electrode material is composed of 90 parts of carbon powder obtained by pyrolyzing coal coke at 1200 ° C, 5 parts of acetylene black as a conductive additive, and 50 parts of PVDF solution as a binder. The mixture was stirred and mixed at a rotational speed of 60 rpm for 120 minutes to obtain a negative electrode solution containing a slurry-like negative electrode active material.
  • the surface of the coating film layer was further coated with a comma roll coater, dried in an oven at 110 ° C. for 2 minutes, and further dried in an oven at 180 ° C. for 2 minutes.
  • the solvent was removed to obtain a negative electrode composite layer in which an active material layer having a dry film thickness of 100 ⁇ m was formed on the coating film layer.
  • the negative electrode composite layer obtained by the above method was pressed under the condition of 5,000 kgf / cm 2 to make the film uniform. Next, aging was performed in a vacuum oven at 80 ° C. for 48 hours to sufficiently remove volatile components (water, solvent, etc.) to obtain a negative electrode plate.
  • the battery From the polyolefin film (polypropylene, polyethylene or copolymer thereof) having a three-dimensional pore structure (sponge-like) wider than the positive electrode plate, using the positive electrode plate and the negative electrode plate obtained above.
  • the electrode body was first constructed by winding it in a spiral through a separator. Next, this electrode body was inserted into a bottomed cylindrical stainless steel container also serving as a negative electrode terminal, and a battery with an AA size and a rated capacity of 500 mAh was assembled.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DME dimethyl methoxyethane
  • charge / discharge characteristics were measured as follows using a charge / discharge measuring device under a temperature condition of 25 ° C. Each of the 20 cells is charged with a charging current of 0.2 CA and charged from the charging direction until the battery voltage reaches 4.1 V. After 10 minutes of rest, the battery is discharged to 2.75 V at the same current. After a pause of minutes, the charge / discharge characteristics were measured by repeating 100 cycles of charge / discharge under the same conditions. When the charge / discharge capacity value at the first cycle was 100, the charge / discharge capacity value at the 100th time (hereinafter abbreviated as charge / discharge capacity retention rate) was 98%.
  • Example 21 to 25 Comparative Example 4 (positive electrode plate, negative electrode plate, battery)
  • Example 1 used for preparation of the positive electrode plate and negative electrode plate which were used in Example 20, and it carried out similarly to Example 20 except having used the slurry composition described in Table 3.
  • An electrode plate and a battery were produced.
  • charge / discharge characteristics were measured in the same manner as in Example 20. The results are shown in Table 3.
  • Example 26 [Application to capacitors] [Example 26 (capacitor)] Using the slurry composition of Example 1 and using a current collector made of an aluminum foil having a thickness of 20 ⁇ m as a base, the slurry composition was coated on one side of the base with a comma roll coater, and then applied in an oven at 110 ° C. Dried for a minute. Further, this was dried in an oven at 180 ° C. for 2 minutes to remove the solvent, and the polymer component was crosslinked to form a coating film layer having a dry film thickness of 0.5 ⁇ m on the current collector.
  • an electrode solution containing an active material was produced by the following method.
  • a material for the electrode solution 100 parts of high-purity activated carbon powder having a specific surface area of 1,500 m 2 / g and an average particle size of 10 ⁇ m, and 8 parts of acetylene black as a conductive material were charged into a planetary mixer, and all solids The PVDF solution was added and mixed for 60 minutes so that the concentration of the minute was 45%. Then, it diluted with NMP so that solid content concentration might be 42%, and also mixed for 10 minutes, and obtained the electrode solution.
  • This electrode solution was applied onto the coating film layer using a doctor blade, and dried at 80 ° C. for 30 minutes with a blow dryer. Thereafter, pressing was performed using a roll press machine to obtain a polarizable electrode plate for a capacitor having a thickness of 80 ⁇ m and a density of 0.6 g / cm 3 .
  • Two sheets of capacitor polarizable electrode plates manufactured as described above were cut out into a circle having a diameter of 15 mm, and dried at 200 ° C. for 20 hours.
  • the electrode layer surfaces of the two electrode plates were opposed to each other, and a circular cellulose separator having a diameter of 18 mm and a thickness of 40 ⁇ m was sandwiched between them.
  • This was stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with polypropylene packing.
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the container is sealed, and the diameter is 20 mm.
  • a coin-type capacitor having a thickness of about 2 mm was manufactured.
  • As the electrolytic solution a solution in which tetraethylammonium tetrafluoroborate was dissolved in propylene carbonate at a concentration of 1 mol / liter was used. Table 4 shows the results of measuring the capacitance and internal resistance of the capacitor thus obtained.
  • Examples 27 to 30 (capacitor)
  • Example 1 used in Example 26
  • Example 2 an electrode plate and a capacitor were prepared in the same manner as in Example 26 except that the slurry composition shown in Table 4 was used. evaluated. The results are shown in Table 4.
  • Example 5 An electrode plate and a capacitor were prepared in the same manner as in Example 26 except that the slurry composition of Comparative Example 2 was used instead of the slurry composition of Example 1 used in Example 26. And internal resistance and an electrostatic capacitance were measured and it was set as the reference
  • the internal resistance and capacitance in Table 4 were measured as follows and evaluated according to the following criteria. For each capacitor, the capacitance and internal resistance were measured at a current density of 20 mA / cm 2 . Then, using the capacitor of Comparative Example 5 as a reference, the performance of the capacitor of each Example was evaluated according to the following criteria. The larger the capacitance and the smaller the internal resistance, the better the performance as a capacitor.
  • Capacitance evaluation criteria A: The capacitance is 20% or more larger than that of Comparative Example 5. B: Capacitance larger by 10% or more and less than 20% than Comparative Example 5. C: The capacitance is equal to or less than that of Comparative Example 5. (Evaluation criteria for internal resistance) A: The internal resistance is 20% or more smaller than that of Comparative Example 5. B: Internal resistance is 10% or more and less than 20% smaller than Comparative Example 5. C: The internal resistance is equal to or less than that of Comparative Example 5.
  • Table 5 shows the compositions of various polymer solutions used in Examples, Reference Examples and Comparative Examples. Abbreviations other than those shown below for the components shown in Table 5 are the same as those in Table 1.
  • the polar solvent used in various polymer solutions was abbreviated as DMSO for dimethyl sulfoxide.
  • Example 2-1 In 92 parts of NMP, 5 parts of hydroxyethyl cellulose (manufactured by Daicel Chemical Industries, Ltd., HEC Daicel SP400) is dispersed, 3 parts of PTC is added to the dispersion, and then stirred and dissolved at 50 ° C. for 2 hours. A hydroxyethyl cellulose solution was prepared.
  • Examples 2-2 to 2-14> As shown in Table 5, in the same manner as in Example 2-1, except that the type of polymer and the amount used (mass), the type and amount of polybasic acid, the type and amount of polar solvent were changed, Examples, Various polymer solutions used in Reference Examples and Comparative Examples were prepared.
  • a coating solution comprising an aqueous slurry composition containing the hydrophobic filler used in this reference example was prepared by the following method. Slurry coating was carried out by stirring and mixing for 120 minutes with a planetary mixer at a rotational speed of 60 rpm in a blending ratio of 5 parts of acetylene black as a hydrophobic filler and 95 parts of the polymer solution of Example 2-1 in Table 5. A liquid was obtained.
  • the coating film layer in which the above mesh is formed is mixed with a mixed solvent in which EC (ethylene carbonate): PC (propylene carbonate): DME (dimethoxyethane) is mixed at a volume ratio of 1: 1: 2, respectively, as a supporting salt at 1 mol.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DME diimethoxyethane
  • the coating liquid was applied on the glass plate with a comma roll coater and then dried in an oven at 200 ° C. for 1 minute. A film (dry film thickness 4 ⁇ m) was formed.
  • the surface resistivity of the obtained coating film was determined by the four-probe method according to JIS K 7194. The measurement was performed under the conditions of 25 ° C. and 60% relative humidity using a Lorester GP, MCP-T610 manufactured by Mitsubishi Chemical Analytech.
  • Examples 31 to 34, Comparative Examples 6 and 7, Reference Examples 2 to 6 A coating film was prepared in the same manner as in Reference Example 1 except that each polymer solution shown in Table 6 was used instead of the polymer solution in Example 2-1 used in Reference Example 1, and the adhesion, dissolution, Swellability and surface resistance values were examined, and the results are shown in Table 6.
  • a PVDF solution was used
  • Comparative Example 7 a styrene butadiene copolymer latex (using sodium carboxymethyl cellulose as a thickener) was used.
  • a positive electrode solution containing a positive electrode active material was prepared by the following method.
  • As a material for the positive electrode solution 90 parts of LiCoO 2 powder having a particle diameter of 1 to 100 ⁇ m, 5 parts of acetylene black as a conductive assistant, and 50 parts of PVDF solution as a binder were used. And this was stirred and mixed with a planetary mixer at a rotational speed of 60 rpm for 120 minutes to obtain a positive electrode solution containing a slurry-like positive electrode active material.
  • the surface of the coating film layer obtained in Reference Example 1 was coated with a comma roll coater and then dried in an oven at 110 ° C. for 2 minutes. Then, the solvent was removed by drying for 2 minutes to obtain a positive electrode composite layer in which an active material layer having a dry film thickness of 100 ⁇ m was formed on the coating film layer.
  • the positive electrode composite layer obtained by the above method was pressed under the condition of 5,000 kgf / cm 2 to make the film uniform. Next, aging was performed in a vacuum oven at 80 ° C. for 48 hours to sufficiently remove volatile components (such as solvent and unreacted polybasic acid) to obtain a positive electrode plate.
  • a negative electrode solution containing a negative electrode active material was prepared by the following method.
  • a material for the negative electrode solution a blending ratio of 90 parts of carbon powder obtained by pyrolyzing coal coke at 1,200 ° C., 5 parts of acetylene black as a conductive assistant, and 50 parts of PVDF solution as a binder was used.
  • a negative electrode liquid containing a slurry-like negative electrode active material was obtained by stirring and mixing with a planetary mixer at a rotational speed of 60 rpm for 120 minutes.
  • the surface of the coating film layer was coated with a comma roll coater, then dried in an oven at 110 ° C. for 2 minutes, and further dried in an oven at 180 ° C. for 2 minutes. And a negative electrode composite layer in which an active material layer having a dry film thickness of 100 ⁇ m was formed on the coating film layer was obtained.
  • the negative electrode composite layer obtained by the above method was pressed under the condition of 5,000 kgf / cm 2 to make the film uniform. Next, aging was performed in a vacuum oven at 80 ° C. for 48 hours to sufficiently remove volatile components (such as a solvent and unreacted polybasic acid) to obtain a negative electrode plate.
  • the battery From the polyolefin film (polypropylene, polyethylene or copolymer thereof) having a three-dimensional pore structure (sponge-like) wider than the positive electrode plate, using the positive electrode plate and the negative electrode plate obtained above.
  • the electrode body was first constructed by winding it in a spiral through a separator. Next, this electrode body was inserted into a bottomed cylindrical stainless steel container also serving as a negative electrode terminal, and a battery with an AA size and a rated capacity of 500 mAh was assembled.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DME dimethyl methoxyethane
  • a charge / discharge measuring device For the measurement of battery characteristics, a charge / discharge measuring device was used, and each cell was charged at a temperature of 25 ° C. with a current value of a charging current of 0.2 CA, and charged from the charging direction to a battery voltage of 4.1 V. After 10 minutes of rest, the battery was discharged at the same current until it reached 2.75 V. After 10 minutes of rest, 100 cycles of charge / discharge were repeated under the same conditions to measure charge / discharge characteristics. When the charge / discharge capacity value at the first cycle was set to 100, the charge / discharge capacity value at the 100th time (charge / discharge capacity retention rate) was 97%.
  • an electrode solution containing an active material was produced by the following method.
  • a material for the electrode solution 100 parts of high-purity activated carbon powder having a specific surface area of 1500 m 2 / g and an average particle diameter of 10 ⁇ m and 8 parts of acetylene black as a conductive material are charged into a planetary mixer, and the total solid content is 45%.
  • Polyvinylidene fluoride NMP solution was added and mixed for 60 minutes. Then, it diluted with NMP so that solid content concentration might be 42%, and also mixed for 10 minutes, and obtained the electrode solution.
  • This electrode solution was applied onto the coating film layer using a doctor blade, and dried at 80 ° C. for 30 minutes with a blow dryer. Thereafter, pressing was performed using a roll press machine to obtain a polarizable electrode plate for a capacitor having a thickness of 80 ⁇ m and a density of 0.6 g / cm 3 .
  • Two sheets of capacitor polarizable electrode plates manufactured as described above were cut out into a circle having a diameter of 15 mm, and dried at 200 ° C. for 20 hours.
  • the electrode layer surfaces of the two electrode plates were opposed to each other, and a circular cellulose separator having a diameter of 18 mm and a thickness of 40 ⁇ m was sandwiched between them.
  • This was stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with polypropylene packing.
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the container is sealed, and the diameter is 20 mm.
  • a coin-type capacitor having a thickness of about 2 mm was manufactured.
  • As the electrolytic solution a solution in which tetraethylammonium tetrafluoroborate was dissolved in propylene carbonate at a concentration of 1 mol / liter was used. Table 8 shows the results of measuring the capacitance and internal resistance of the capacitor thus obtained.
  • the internal resistance and capacitance in Table 8 below were measured and evaluated as follows.
  • the obtained capacitor was measured for capacitance and internal resistance at a current density of 20 mA / cm 2 , and evaluated according to the following evaluation criteria based on Comparative Example 9. The larger the capacitance and the smaller the internal resistance, the better the performance as a capacitor.
  • Capacitance evaluation criteria A: The capacitance is 20% or more larger than that of Comparative Example 9. B: Capacitance greater by 10% or more and less than 20% than Comparative Example 9. C: The capacitance is equal to or less than that of Comparative Example 9. (Evaluation criteria for internal resistance) A: The internal resistance is 20% or more smaller than that of Comparative Example 9. B: Internal resistance is 10% or more and less than 20% smaller than Comparative Example 9. C: The internal resistance is equal to or less than that of Comparative Example 9.
  • a useful aqueous system that can exhibit a binding function and a dispersing function for a hydrophobic filler at the same time, although it is mainly composed of a polysaccharide polymer having a low environmental load.
  • a slurry composition is provided.
  • the dispersion medium contains water, an appropriate viscosity is maintained even when stored for a long period of time, and the hydrophobic filler is less likely to settle and separate, and is an inexpensive aqueous slurry having high dispersibility.
  • a composition is provided.
  • the water-based slurry provided by the present invention it is possible to form a coating film having excellent adhesion obtained by uniformly dispersing the hydrophobic filler.
  • Expected to be used in various fields such as toners, rubber / plastics, ceramics, magnetic materials, adhesives, liquid crystal color filters, etc. In many industrial fields, useful technologies that can contribute to environmental protection and health damage prevention are provided.
  • the present invention in particular, with respect to the interface between the current collector made of aluminum foil or copper foil and the electrode layer, it has excellent adhesion, solvent resistance, and electrolytic solution resistance, and is in contact with the current collector.
  • An aqueous slurry composition of a hydrophobic filler that can be formed into a coating solution capable of forming a coating film with improved resistance is provided, so that it is expected to be widely used in battery electrode plates and capacitor applications.
  • the present invention can be applied to a power storage device electrode plate such as a polar electrode plate and a power storage device including them, and is extremely useful.
  • ADVANTAGE OF THE INVENTION According to this invention, the technique which can be utilized in many industrial fields which can contribute to environmental protection and health damage prevention which are social problems is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Paints Or Removers (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

 本発明は、(1)少なくとも極性溶媒である水を含む水系媒体と、(2)セルロースの誘導体、アルギン酸の誘導体、澱粉の誘導体、キチンの誘導体およびキトサンの誘導体、ポリアリルアミンおよびポリビニルアミンから選ばれる少なくとも1種のポリマーと、(3)疎水性フィラーと、(4)多塩基酸またはその誘導体と、を含んでなり、且つ、組成物中における水の含有量が30質量%以上であることを特徴とする水系スラリー組成物、蓄電装置用電極板及び蓄電装置である。

Description

水系スラリー組成物、蓄電装置用電極板及び蓄電装置
 本発明は、環境負荷の少ない多糖系ポリマーおよび水を含む水系媒体を含む、疎水性フィラーが均一に分散してなる水系スラリー組成物に関する。さらに、該水系スラリー組成物の利用技術に関し、二次電池やキャパシタなどの蓄電装置において、集電体と電極活物質層(以下、電極層と呼ぶ)との間に耐溶剤性に優れた塗工膜を配置することにより、集電体と電極層の密着性を高めるとともに、内部抵抗を低減し、サイクル特性を向上するのにも有効な、蓄電装置用電極板および該電極板を含む蓄電装置の提供を可能とできる技術に関する。本発明の水系スラリー組成物は、上記に限らず、種々の産業分野において使用される各種塗工液に適用可能であり、広範な利用が可能である。
 近年、機能性材料を含有させたスラリーまたはペーストなど(以下「スラリー」と記載)を塗工液となし、この塗工液を塗布することにより形成させた塗工膜の機能性を利用する試みが様々な分野で検討されている。
 例えば、導電性フィラー、バインダー樹脂、硬化剤、溶媒などからなるペースト状の導電性塗工液は、用途により導電性接着剤、導電性塗料、導電性インキなどとして用いられている(非特許文献1)。また、オーディオテープ、ビデオテープ、フロッピィディスクなどの塗布型の磁気記録媒体は、サブミクロンサイズの磁性粒子を高分子溶液中に均一に分散させた磁性塗料を、ポリエステルなどのベースフィルムに塗布することにより作られている。また、リチウムイオン二次電池の電極構造は、活物質と導電助材にバインダー(結着材)を混合してスラリーを調整し、集電体箔に塗布し、乾燥して現実化される(非特許文献2)。
 上記の各種塗工液がその機能性を十分発揮できる共通の属性は、分散質が分散媒に均一に分散しており、しかも形成される塗工膜が高い密着性を実現するということである。換言すれば、機能性フィラーを含有させたスラリーを使用し、該フィラーの機能性を十分に発現させるためには、スラリーの状態が機能性発現に適正であること、即ち、フィラーが均一かつ安定的に分散されており、しかも密着性の高い塗工膜を形成できることが必須条件になる。このような目的から、フィラーの分散性を中心にして適正な溶媒を考えると、スラリーの溶媒(分散媒)としては、フィラーの均一分散性に優れ、高い密着力を示し、乾燥が容易である非水系(有機溶媒系)の溶媒(分散媒)が圧倒的に有利であり、実際広く用いられてきた。
 しかしながら、有機溶剤は、揮発性で環境への負荷が大きいばかりでなく、遺伝毒性も考慮しなければならず、安全性、作業性においても課題を残している。近年、多くの産業分野で環境保護や健康被害防止に対する意識が高まってきており、上記のような課題を持つ有機溶剤の使用に対して、VOC低減、無溶剤化などへの要求が高まりつつあり、環境や人に優しい製品への転換が求められている。
 そこで、環境や人に優しい製品として最も注目されるのが、水系製品或いは生物由来の原料からなる製品であり、無溶剤化或いは脱石油製品の一翼を担うものとして期待されている。しかしながら、疎水性フィラーを含有してなるスラリーにおいて、有機溶媒の代わりに水を溶媒として用いる場合、様々な問題点が生じてくる。例えば、水系スラリーにおいては、フィラー粒子が荷電状態にあるとスラリー中で粒子が凝集しやすく、さらに、溶媒と溶質の比重差が大きいために沈降し易く、均一な分散が非常に難しいという問題がある。さらに、従来の石油由来の原料に代わり得る機能性に優れた生物由来の原料を見出すことは容易なことではない。
 ここで、一般的な分散不良対策としては、分散剤の添加、フィラーの表面処理、マイクロカプセル化、超音波処理、ポリマーへの極性基の導入などが考えられる。実際に、分散剤添加では、塗料、インキ、ゴム・プラスチック、電子材料などに使用される微粒子化された黒色無機酸化物を含むスラリー組成物に対して、水溶性の両性系分散剤を用いる試み(特許文献1)や、導電助剤を含む電池用組成物において、塩基性官能基を有する化合物を使用する試み(特許文献2)がある。また、フィラー表面処理では、金属酸化物微粒子フィラー表面の金属酸化物と親水性シランカップリング剤とを反応させて表面処理層を形成させる試み(特許文献3)など種々提案されている。その他、無機酸化物フィラーを含むペーストに超音波振動を加えて該フィラーを分散させることや、導電性フィラーの表面に絶縁性樹脂を形成させてマイクロカプセル型導電性フィラーとすることなどについての提案もある。
 しかしながら、これらの提案で用いられる分散媒は有機溶剤を中心として使用されており、水系を使用する例は非常に少ない。これに対し、近年の環境保護や健康被害防止に対する意識の高まりから、環境に優しく、安価で、安全性も高い水系スラリーを用い、なおかつフィラーが均一に分散される手法の登場が強く望まれている。
 水系スラリーのフィラー分散安定化を試みる場合も、上記の各手法が考えられるが、製造プロセスや塗工系の簡素化、さらにはコストの点を考慮すると、分散剤の使用が有利である。水系スラリーで使用される分散剤は、塗料分野で使用されるポリカルボン酸塩やリン酸系アミン塩(非特許文献3)、高分子分散剤としてのポリアクリル酸アミド(非特許文献4)などが考えられるが、環境負荷低減化を考慮すると、環境に優しい天然物系の物質であることが好ましい。これに対し、非水電解質二次電池電極製造時に、カルボキシメチルセルロースを水系分散剤として用いることについての提案(特許文献4)がなされている。しかし、本発明者らの検討によれば、その分散効果において改良の余地を残している。また、強固な塗工膜を形成するためには、石油系のバインダー樹脂を用いる必要があり、生物由来の物質である天然系ポリマーでありながら、石油系のバインダー樹脂を使用した場合と遜色のない密着性を発現し得る天然系ポリマーの利用技術が望まれる。
 また、疎水性フィラーの水系媒体への分散不良対策としては、手間のかかるスラリー組成物中のフィラーに対する加工処理や、組成物への高価な分散剤の添加などをせずに、比較的、簡便で安価な対応が可能であると考えられる分散媒体に対する工夫も必要と考えられる。しかし、疎水性フィラーを含有する水系スラリー組成物に関して分散媒体の改善を試みた例は少ない。また、水系スラリー組成物を塗工液として用いる場合、該スラリー組成物中のバインダーに、疎水系フィラーの結着効果と同時にフィラー分散効果が具備されていれば、特別に分散剤を添加することなく、より簡単な組成で、しかも安価に塗工液が製造可能となるが、そのような例も少ない。
 上記したような状況から、結着効果と分散効果を併せ持つ天然系ポリマーを含み、しかも分散媒の改善手法が施されており、環境に優しく、安価で、安全性が高い汎用性のある水系スラリー組成物の開発が待望されている。
 上記の水系スラリー組成物の期待される用途としては、特に近年その成長が著しい、二次電池やキャパシタなどの蓄電装置電極板用塗工液が考えられる。電極板は、蓄電装置の性能に大きく影響を及ぼし、電極層や集電体などの単位部材を一体化した電極部材であるが、電極板に関しては、充放電サイクル寿命を延長させ、かつ、高エネルギー密度化のために薄膜大面積化を図ることが提案されている。例えば、リチウムイオン電池について、特許文献5や特許文献6などに記載されているように、金属酸化物、硫化物、ハロゲン化物などの正極活物質粉末に、導電性材料およびバインダーを適当な溶媒に分散溶解させて、ペースト状の塗工液を調製し、アルミニウムなどの金属箔からなる集電体を基体とし、該基体表面に上記塗工液を塗布して塗工膜層を形成して得られる正極電極板が開示されている。
 また、分極性電極板と電解質との界面で形成される電気二重層を利用したキャパシタは、メモリバックアップ電源として使用され、また、電気自動車用電源などの大出力を必要とする用途への適用も注目され、大出力のために高い静電容量と低い内部抵抗の両立が求められている。上記キャパシタ用の電極板は、上記電池の負極板と同様に、一般にバインダーと導電性材料などを混合した水系スラリー組成物からなる塗工液を集電体に塗布および乾燥して製造されている。
 上記リチウムイオン電池およびキャパシタなどの蓄電装置の電極板用塗工液に使用する樹脂バインダーとしては、例えば、ポリフッ化ビニリデンなどのフッ素系樹脂、またはシリコーン・アクリル共重合体が用いられている。また、負極電極板(電池)および分極性電極板(キャパシタ)は、炭素質材料などの活物質に、バインダーを適当な溶媒に溶解させたものを加えて、ペースト状の塗工液を調製し、これを集電体に塗布して得られる。上記塗布型の電極板において、塗工液の調製に用いられるバインダーは、非水電解液に対して電気化学的に安定であって、電池またはキャパシタの電解液へ溶出しないこと、電解液によって大きく膨潤しないこと、さらには塗布することから何らかの溶媒に可溶であることが必要である。
 一方、集電体の素材金属であるアルミニウムなどの金属材料表面の保護皮膜を、各種樹脂の溶液を塗布して形成することが行われているが、形成される皮膜の金属表面に対する密着性は優れているが、該皮膜は有機溶剤に対する耐久性が不十分であるという問題がある。
 さらに、集電体であるアルミニウム箔や銅箔などの表面に塗布する前記の塗工液を集電体に塗布して得られる電池およびキャパシタの電極板において、塗布および乾燥されて形成される塗工膜層は、集電体に対する密着性および可撓性が不十分であり、集電体に対する接触抵抗が大であり、また、電池やキャパシタの組立工程および充放電時に、塗工膜層の剥離、脱落、ひび割れなどが生じるという問題があった。
 従来の電池およびキャパシタにおいては、上記のように電極層と集電体(基板)との密着性不良、電極層と基板との界面の高抵抗という問題があった。これらの課題を解決するために種々の塗工液が提案されているが、これらの塗工液により形成された塗工膜層により、上記密着性の問題は改善されるものの、電極層と集電体との間の抵抗がより一層高くなり、課題の解決には至っていない。また、近年、上記のリチウムイオン電池や電気二重層キャパシタといった蓄電装置並びにそれらの関連製品に対しても、環境に配慮した製品作りが求められるようになってきている。このため、前記したように、環境に対して負荷の少ない成分、材料、製造方法を用いた塗工液が求められている。
特開2009-148681号公報 特開2009-26744号公報 特開2008-184485号公報 特開2009-238720号公報 特開昭63-10456号公報 特開平3-285262号公報
藤山光美:「第一章、導電性フィラーの混練・分散不良要因とその対策」、「導電性フィラーの新しい混練・分散技術とその不良対策」技術情報協会、第20頁、2004年 立花和宏:「リチウムイオン二次電池用正極スラリーの調整と塗布・乾燥と電極動作の理解」、Material stage、技術情報協会、第8巻、第12号、第72頁~第75頁、2009年 城清和:「水系塗料用分散剤の技術開発」、JETI、第44巻、第10号、第110頁~第112頁、1996年 神谷秀博:「水系における微粒子凝集・分散挙動の評価と制御」、Material stage、第2巻、第1号、第54頁~第60頁、2002年
 したがって、本発明の目的は、上記の問題を解決し、環境に対する負荷が少ない素材を主成分とするものでありながら、疎水性フィラーに対する結着機能と分散機能とを同時に発揮できる、有用な水系のスラリー組成物を提供することにある。本発明の目的は、さらに、分散媒体が水を含むものでありながら、長期間保存しても適度な粘度が維持され、疎水性フィラーの沈降分離が起こりにくく、分散性の高い安価な水系スラリー組成物を提供することにある。このような水系スラリー組成物が提供されれば、疎水性フィラーが均一に分散されてなる密着性に優れる塗工膜の形成が可能になるため、電池に限らず、電子材料塗料、インキ、トナー、ゴム・プラスチック、セラミック、磁性体、接着剤、液晶カラーフィルターなど、多方面での利用が期待できる。すなわち、本発明の別の目的は、社会問題になっている環境保護や健康被害防止に寄与することができる多くの産業分野での利用が可能な技術を提供することにある。本発明の目的は、特に、アルミニウム箔や銅箔などからなる集電体と電極層の界面に対して、密着性と耐電解液性が優れ、かつ、集電体との接触抵抗も改良されている塗工膜の形成を可能とできる塗工液に利用可能な疎水性フィラーの水系スラリー組成物を提供することにある。すなわち、このような塗工膜層を形成できる水系スラリー組成物が提供されれば、今後、広範な利用が期待される蓄電装置用電極板および該電極板を含む蓄電装置にとって極めて有用である。
 上記の目的は、下記の本発明によって達成される。すなわち、本発明は、(1)少なくとも極性溶媒である水を含む水系媒体と、(2)セルロースの誘導体、アルギン酸の誘導体、澱粉の誘導体、キチンの誘導体およびキトサンの誘導体、ポリアリルアミン、ポリビニルアミンから選ばれる少なくとも1種のポリマーと、(3)疎水性フィラーと、(4)多塩基酸またはその誘導体と、を含んでなり、且つ、組成物中における水の含有量が30質量%以上であることを特徴とする水系スラリー組成物を提供する。
 本発明の水系スラリー組成物の好ましい形態としては、下記のものが挙げられる。上記ポリマーが、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カチオン化セルロース、ヒドロキシエチル澱粉、アルギン酸プロピレングリコールエステル、カルボキシメチルキチン、ポリアリルアミン、ポリビニルアミン、グリセリル化キトサン、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシブチルキトサン、及びヒドロキシブチルヒドロキシプロピルキトサンからなる群から選ばれる少なくとも1種を含むこと。上記多塩基酸またはその誘導体が、1,2,3,4-ブタンテトラカルボン酸、ピロメリット酸、無水ピロメリット酸、トリメリット酸、無水トリメリット酸、アジピン酸、クエン酸、酒石酸、1,2,4-シクロヘキサントリカルボン酸、1,2,3-プロパントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸および1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸からなる群から選ばれる少なくとも1種であること。
 B型回転粘度計、回転数30rpmで測定した時の25℃における粘度が、100~20,000mPa・sであり、且つ、スラリー組成物を同質量の蒸留水で希釈した後、25℃で測定したpHが6以下であること。上記水系媒体が有機溶媒を含み、該有機溶媒が、水への溶解度を持ち、且つ、イソプロピルアルコール、メチルアルコール、エチルアルコール、t-ブチルアルコールおよびN-メチル-2-ピロリドンからなる群から選ばれる少なくともいずれかであること。上記疎水性フィラーが、導電性炭素フィラー及び/又はシリカであること。上記疎水性フィラーが導電性炭素フィラーであり、かつ、蓄電装置電極板の塗工膜形成用であること。
 本発明の別の実施形態では、上記水系スラリー組成物を集電体と電極層との間に塗布して塗工膜を配置してなることを特徴とする蓄電装置用電極板を提供する。
 本発明の蓄電装置用電極板の好ましい形態としては、下記のものが挙げられる。上記塗工膜の膜厚が、0.1~2μmであること。上記塗工膜の表面抵抗率が、3,000Ω/□以下であること。上記塗工膜が、100~250℃の熱処理により形成されていること。上記集電体が、アルミニウム箔であり、且つ、電極層が、正極活物質よりなること。上記集電体が、銅箔であり、電極層が、負極活物質よりなること。前記集電体が、アルミニウム箔であり、且つ、電極層が、分極性電極であること。
 本発明の別の実施形態では、上記いずれかに記載の電極板を有してなることを特徴とする蓄電装置を提供する。該蓄電装置には、リチウムイオン電池などの二次電池や、電気二重層キャパシタ、リチウムイオンキャバシタなどのキャパシタが包含される。
 本発明によれば、環境に対する負荷が少ない多糖系ポリマー等を主成分とするものでありながら、疎水性フィラーに対する結着機能と分散機能を同時に発揮できる、有用な水系のスラリー組成物が提供される。また、本発明によれば、分散媒体が水を含むものでありながら、長期間保存しても適度な粘度が維持され、疎水性フィラーの沈降分離が起こりにくく、分散性の高い安価な水系スラリー組成物が提供される。このため、本発明が提供する水系スラリーによれば、疎水性フィラーが均一に分散されてなる密着性に優れる塗工膜の形成が可能になるので、電池に限らず、電子材料塗料、インキ、トナー、ゴム・プラスチック、セラミック、磁性体、接着剤、液晶カラーフィルターなど、多方面での利用が期待でき、多くの産業分野で、環境保護や健康被害防止に寄与できる有用な技術が提供される。本発明によれば、特に、アルミニウム箔や銅箔などからなる集電体と電極層の界面に対して、密着性と耐溶剤性や耐電解液性に優れ、かつ、集電体との接触抵抗も改良されている塗工膜の形成が可能な塗工液とできる疎水性フィラーの水系スラリー組成物が提供されるので、広範な利用が期待されている、電池用電極板やキャパシタ用分極性電極板などの蓄電装置用電極板、およびそれらを含む蓄電装置に適用可能であり、極めて有用である。本発明によれば、社会問題になっている環境保護や健康被害防止に寄与することができる多くの産業分野での利用が可能な技術が提供される。
 次に、発明を実施するための最良の形態を挙げて本発明を更に詳しく説明する。本発明は、上記の目的を達成すべく鋭意研究の結果、水を含む水系媒体に、特定多糖系ポリマー等と多塩基酸またはその誘導体とを含有させることで、疎水性フィラーの沈降分離を抑制することが可能になり、上記の如き従来技術の問題が解決されることを見出して、本発明を完成するに至った。すなわち、本発明が提供する水系スラリーは、疎水性フィラーに対する結着機能と分散機能とを同時に具備する多糖系ポリマー等を含有させることで、フィラーに対する結着性や分散性などの機能性を維持しつつ環境性能を向上させることができる。加えて特定範囲の含有量の水、さらに好ましくは、水と、水への溶解度を持つアルコール類等の有機溶媒との混合媒体を分散媒として用いることにより、上記多糖系ポリマー等の析出を有効に抑えながらスラリーに適度な粘性を与えることができるため、水系媒体中における疎水性フィラーの沈降分離が抑制され、より高い分散性と分散安定性の実現が可能になる。
 本発明でいう水系スラリー組成物とは、水系媒体中に疎水性フィラー粉体などの原料粉体を高濃度に分散させた状態、または、微小な疎水性フィラー粒子などの固体粒子が該水系媒体中に混ざって泥状になっているものを意味する。
 本発明の水系スラリー組成物は、セルロースの誘導体、アルギン酸の誘導体、澱粉の誘導体、キチンの誘導体及びキトサンの誘導体などの多糖系ポリマー、ポリアリルアミンおよびポリビニルアミンから選ばれる少なくとも1種のポリマー(以下、これらを多糖類系ポリマー類と呼ぶこともある)を含有してなる。多糖系ポリマー類であるキトサン、キチン、セルロース、澱粉、アルギン酸などの多糖類は、市場から入手してそのまま使用できる。水と、必要に応じて添加される有機溶媒に対する溶解性の点から、多糖類の誘導体であることが好ましい。
 好ましく用いられる多糖系ポリマーとしては、キトサンおよびグリセリル化キトサン、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシブチルキトサン、ヒドロキシブチルヒドロキシプロピルキトサン、カルボキシメチルキトサン、サクシニルキトサンなどのキトサン誘導体、キチンおよびカルボキシメチルキチンなどのキチン誘導体、セルロースおよびメチルセルロース、エチルセルロース、ブチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、酢酸セルロース、アルカリセルロース、ビスコース、硫酸セルロース、脂肪酸セルロース、カチオン化セルロースなどのセルロース誘導体、澱粉およびヒドロキシエチル澱粉、ヒドロキシプロピル澱粉、カルボキシメチル澱粉、カチオン化澱粉などの澱粉誘導体、アルギン酸およびアルギン酸プロピレングリコールエステルなどのアルギン酸誘導体、大豆多糖などの植物由来多糖などが挙げられる。
 これらの中でも特に、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カチオン化セルロース、ヒドロキシエチル澱粉、アルギン酸プロピレングリコールエステル、カルボキシメチルキチン、ポリアリルアミン、ポリビニルアミン、グリセリル化キトサン、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシブチルキトサン、及びヒドロキシブチルヒドロキシプロピルキトサンからなる群から選ばれる少なくとも1種を用いることが好ましい。
 本発明の水系スラリー組成物中には、水が30質量%以上含有されているが、さらに、水への溶解度を有する有機溶媒を含有してなる水との混合媒体であることが好ましい。混合媒体中における有機溶媒の含有量は、有機溶媒の種類にもよるが、70質量%未満の範囲で任意であり、5~60質量%の範囲で用いることがより好適である。例えば、水/IPAの混合媒体を用いる場合、混合媒体中におけるIPA含有量は1~40質量%が好ましいが、特に、5~40質量%の範囲で含有させることが好ましい。有機溶媒の含有量が1質量%以下ではスラリーの増粘効果が乏しく、フィラーの沈降を抑制することが難しいので好ましくない。一方、有機溶媒の含有量が70質量%以上であると多糖系ポリマーが析出してしまうため、好ましくない。
 本発明の水系スラリー組成物に用いられる有機溶媒には、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール(IPA)、n-ブチルアルコール、s-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール(TBA)などのアルコール類、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸メトキシブチル、酢酸セロソルブ、酢酸アミル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノンなどのケトン類、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなどのアミド類などが挙げられるが、アルコール類が特に好適に用いられる。より具体的には、イソプロピルアルコール、メチルアルコール、エチルアルコール、t-ブチルアルコール等のアルコール類やN-メチル-2-ピロリドン、特にイソプロピルアルコールやt-ブチルアルコールが好ましい。これらのアルコール類は単独で用いても混合して用いてもよい。
 本発明の水系スラリー組成物に用いられる疎水性フィラーには、例えば、カーボンブラック、天然黒鉛、キッシュ黒鉛、人工黒鉛、アセチレンブラック、ケッチェンブラック、ファーネストブラック、カーボンナノチューブ、カーボンナノファイバー、シリカ、タルク、炭酸カルシウム、ニッケル粉、銅粉、銀粉、銅合金粉、酸化亜鉛粉、酸化スズ粉、酸化インジウム粉、銀コートガラスビーズ、ニッケルコートガラスビーズ、ニッケルコートフェノール樹脂粉、アルミフレーク、銅フレーク、ニッケルフレーク、アルミファイバー、ステンレスファイバー、ガラスファイバー、アルミコートガラスファイバー、ニッケルコートマイカ、セラミックス、顔料、磁性粒子、導電性粒子、活物質等が用いられる。このうち、特にカーボンブラック、アセチレンブラック、ケッチェンブラック、ファーネストブラック、天然黒鉛、カーボンナノファイバー、カーボンナノチューブ等の導電性炭素フィラー、シリカなどが好適に用いられる。
 本発明の水系スラリー組成物は、25℃における粘度を、B型回転粘度計、回転数30rpm、ローターナンバー1~4で測定した時の粘度が100~20,000mPa・sである、適度な粘性を有するものが好ましい。さらには、これに加えて、スラリー組成物を同質量の蒸留水で希釈した後、25℃で測定したpHが6以下であることが好ましい。スラリー粘度が100mPa・s以下ではフィラーの沈降を抑制する効果が乏しく、スラリー粘度が20,000mPa・s以上ではスラリー粘度が高過ぎて取扱いが困難となるため好ましくない。
(水・有機溶媒系の粘度の説明)
 本発明の水系スラリー組成物に分散性保持に好適な溶媒として用いられる水/有機溶媒の粘性向上について考察する。例えば、水/IPA溶媒の粘度増加は、IPAが、イソプロピル基という疎水性基と水酸基という親水性基を同時に持っているために水溶液中で水和構造を形成していることに関係していると思われる。すなわち、水にアルコールを加えていくと、アルコール分子はその周辺に水素結合による水会合体を形成していき、水分子同士が水素結合により会合した構造をもつより大きな水クラスターと複雑な複合体を形成するようになる。水素結合の度合は疎水基の大きさや立体構造により異なるが、このような状態では、水の単分子およびアルコール分子が自由に動き得る自由容積は、上記のアルコール-水分子間相互作用によって減少するものと考えられる。そして、結果的に、分子運動の自由が拘束されることになり、このことが、水-アルコール系の溶液の粘度上昇の主な原因の一つであると考えられる。
 疎水性フィラーとして、例えば、カーボンブラックなどの導電性フィラーを分散する場合、特に、ストラクチャーの発達したアセチレンブラックや、アスペクト比の大きいカーボンファイバー等を分散する場合、分散を激しくかけ過ぎると導電ネットワークを破壊し導電性が低下する恐れがある。このため、マイルドな条件での分散が望まれるが、その際、適度なスラリー粘度(100mPa・s~20,000mPa・s)を有することが、分散時に凝集フィラーへの適度な剪断力を与え、マイルドな条件での分散性向上をもたらすものと思われる。
 本発明の疎水性フィラーを含有してなる水系スラリー組成物は、使用分野に応じて適切な機能を有するフィラーを選択することによって、環境負荷が少なく、且つ、優れたフィラー分散性を具備した塗工液として、塗料、インク、磁性体、セラミックス、蓄電装置、接着剤、電子材料、液晶カラーフィルター、医薬品、化粧品、香料など様々な分野での利用が期待できる。特に、カーボンブラックなどの導電性フィラーを用いた場合には、リチウムイオン二次電池やキャパシタなどの蓄電装置における集電体コート層形成、電極層形成、セパレータ層形成時などの塗工液として有効に使用される。
 本発明の水系スラリー組成物は、上記した成分に加えて多塩基酸またはその誘導体を含んでなり、さらには、水酸基および/またはアミノ基を持つ樹脂などを含んでもよい。本発明で用いる、セルロース、アルギン酸、澱粉、キトサン、キチンなどの、その分子中に水酸基を有する多糖系ポリマー類は、アルミニウムなどの金属材料に優れた密着性を有する皮膜を与えることが知られている。しかし、該皮膜は、例えば、水などの極性溶媒により膨潤し、金属材料表面から容易に剥離する。また、上記の多糖系ポリマー類を、電極板を製造するための塗工液のバインダーとして使用すると、形成される塗工膜層の集電体に対する密着性は優れているものの、エチレンカーボネートやプロピレンカーボネートなどの電池の電解液に対する耐久性(耐電解液性)が低いという課題がある。
 これに対し、多糖系ポリマー類をバインダーとして用いた、電極板を製造するための塗工液に、多塩基酸またはその誘導体(以下、多塩基酸類と呼ぶ)を添加することが有効であることを見出した。すなわち、多糖系ポリマー類と多塩基酸類とを含有してなる本発明の水系スラリー組成物を塗工液として使用して塗工膜層を形成すると、加熱乾燥時に、多塩基酸類が多糖系ポリマー類の架橋剤として作用し、多糖系ポリマー類からなる皮膜が、有機溶剤や電解液に対する溶解性・膨潤性がなくなり、金属材料表面や集電体に対して優れた密着性および耐溶剤性を有する塗工膜層を形成することが可能なものとなる。したがって、特に、蓄電装置電極板用塗工液となした本発明の水系スラリー組成物については、樹脂に対する架橋性の面から、3価以上の多塩基酸類を用いることが好ましい。また、多塩基酸類は、多糖系ポリマー類を水系媒体に溶解する際の溶解性を高める機能もあり、その目的では2価の多塩基酸類を用いることができる。
 本発明で使用する多塩基酸類としては、従来公知のものが使用できる。具体的には、多塩基酸自体、それらの酸無水物、それらの多塩基酸の一部または全部のカルボキシル基の塩、特にアンモニウム塩やアミン塩、多塩基酸の一部または全部のカルボキシル基のアルキルエステル、アミド、イミド、アミドイミド、これらの化合物のカルボキシル基をN-ヒドロキシスクシンイミド、N-ヒドロキシスルホスクシンイミド、またはこれらの誘導体によって1つ以上修飾した誘導体などを用いることができる。これらの多塩基酸の誘導体としては、後に形成される塗工膜層の加熱時に多塩基酸を再生する化合物であることが好ましい。
 具体的には、下記のものからなる群から選ばれる少なくとも1種の多塩基酸またはその誘導体、特にその酸無水物を用いることが好ましい。
<2塩基酸>シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタル酸、メチルグルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、メチルマレイン酸、フマル酸、メチルフマル酸、イタコン酸、ムコン酸、シトラコン酸、グルタコン酸、アセチレンジカルボン酸、酒石酸、リンゴ酸、スピクリスポール酸、グルタミン酸、グルタチオン、アスパラギン酸、シスチン、アセチルシスチン、ジグリコール酸、イミノジ酢酸、ヒドロキシエチルイミノジ酢酸、チオジグリコール酸、チオニルジグリコール酸、スルホニルジグリコール酸、ポリエチレンオキシドジグリコール酸(PEG酸)、ピリジンジカルボン酸、ピラジンジカルボン酸、エポキシコハク酸、フタル酸、イソフタル酸、テレフタル酸、テトラクロルフタル酸、ナフタレンジカルボン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、シクロヘキサンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルメタンジカルボン酸
<3塩基酸>クエン酸、1,2,3-プロパントリカルボン酸、1,2,4-ブタントリカルボン酸、2-ホスホノ-1,2,4-ブタントリカルボン酸、トリメリット酸、1,2,4-シクロヘキサントリカルボン酸、
<4塩基酸>エチレンジアミンテトラ酢酸、1,2,3,4-ブタンテトラカルボン酸、ピロメリット酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸
<6塩基酸>1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸
 なお、本発明においては、上記以外でも、下記に挙げるようなその他の多塩基酸を併用してもよい。例えば、イソクエン酸、アコニット酸、ニトリロ三酢酸、ヒドロキシエチルエチレンジアミン三酢酸、カルボキシエチルチオコハク酸、トリメシン酸等の3塩基酸、エチレンジアミンN,N’-コハク酸、1,4,5,8-ナフタレンテトラカルボン酸、ペンテンテトラカルボン酸、ヘキセンテトラカルボン酸、グルタミン酸二酢酸、マレイン化メチルシクロヘキセンテトラカルボン酸、フランテトラカルボン酸、ベンゾフェノンテトラカルボン酸、フタロシアニンテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、シクロペンタンテトラカルボン酸などの単環式テトラカルボン酸類、ビシクロ[2,2,1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸などに代表されるビシクロ環、或いはノルボルナン環、テトラシクロ環構造を持つ多環式テトラカルボン酸類等の4塩基酸、ジエチレントリアミン五酢酸等の5塩基酸、フタロシアニンポリカルボン酸、フィチン酸、ヘキサメタリン酸、ポリリン酸、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリマレイン酸およびそれらの共重合体、スチレン・マレイン酸共重合体、イソブチレン・マレイン酸共重合体、ビニルエーテル・マレイン酸共重合体、ペクチン酸、ポリグルタミン酸、ポリリンゴ酸、ポリアスパラギン酸、アクリル酸・マレイン酸・ビニルアルコール共重合体などが挙げられる。
 これらの中でも、架橋性などの点で、1,2,3-プロパントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、ピロメリット酸、無水ピロメリット酸、トリメリット酸、無水トリメリット酸、アジピン酸、クエン酸、酒石酸、1,4,5,8-ナフタレンテトラカルボン酸および1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸が好ましい。
 本発明の水系スラリー組成物中における多塩基酸類の使用量は、多糖系ポリマー類100質量部当たり10~300質量部であり、20~200質量部が好ましい。また、塗工液100質量部当たりの多塩基酸類の使用量は0.01~20質量部であり、0.02~10質量部が好ましい。塗工液100質量部当たりの多塩基酸類の使用量が0.01質量部未満であると、多糖類ポリマー類の架橋密度が低く、形成される塗工膜層の集電体に対する密着性およびポリマー類の電解液に対する不溶解性、非膨潤性、電気化学的安定性の点で不十分であるので好ましくない。一方、塗工液100質量部当たりの使用量が20質量部を超えると、形成される皮膜或いは塗工膜層の可撓性が低下するとともに不経済であるので好ましくない。
〔スラリー組成物の利用〕
<蓄電装置用電極板>
 本発明の疎水性フィラーを含む水系スラリー組成物は、疎水性フィラーに導電性フィラーを用いれば、二次電池やキャパシタなどの蓄電装置電極板に設ける塗工膜層の形成材料として有用である。この場合には、本発明の導電性フィラーを含有した水系スラリー組成物を、塗工膜を形成する塗工液とし、この塗工液を蓄電装置の集電体表面に、固形分換算にて、0.1~10μm、好ましくは0.1~5μm、更に好ましくは0.1~2μmの厚みに塗布して塗工膜層を形成することが好ましい。そして、このようにして形成した塗工膜層の上に、電池用正極電極層、電池用負極電極層、或いはキャパシタ用正極電極層、キャパシタ用負極電極層、分極性電極層を形成することによって、電極層-集電体間の抵抗が小さく、且つ、環境負荷の少ない蓄電装置用電極板を構築することができる。この機能発現は、塗工液用のスラリーに、バインダー効果と分散性向上効果を同時に発揮する多糖系ポリマー類を用いることで、さらに好ましくは、粘度上昇によるフィラー分散性向上効果を発揮させる、水と有機溶媒との混合媒体、特に水とアルコールとの混合媒体を用いることで達成される。
 本発明では、上記で説明した構成を有する、導電性フィラーを含有してなる水系スラリー組成物を利用した塗工液によって、塗工膜層を、集電体と電極層の間に形成・配置してなる電池用電極板またはキャパシタ用電極板、および、該電極板が装備されてなる電池またはキャパシタ等、種々のものを提供する。
 上記した電極板において、電極層を形成するためのバインダーは、本発明の水系スラリー組成物を塗工液として用いた場合に、塗工膜層用バインダーとして機能する多糖系ポリマー類溶液であってもよいが、さらに従来公知のバインダーを用いることもできる。この際に使用できる公知のバインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、アクリル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーンアクリル樹脂、スチレン-ブタジエン共重合体ゴムなどが挙げられる。これらの公知のバインダーを用いる場合には、従来は、電極層と集電体との密着性を向上させるために、例えば、アルミニウム箔の表面を化成処理することが必須であった。これに対し、本発明の水系スラリー組成物を塗工液として用いると、このような煩雑かつ高コストの化成処理は不要となり、一層の塗工膜で、優れた密着性と低抵抗化とを実現することができる。このような塗工膜層を形成できる本発明によれば、高効率かつ長寿命の電池およびキャパシタの提供が可能になる。
 上記塗工膜層は、その表面抵抗率が3,000Ω/□以下であることが好ましい。すなわち、表面抵抗率が3,000Ω/□を超える塗工膜を電極板に適用した場合には、内部抵抗が高くなるため、高効率かつ長寿命の電池およびキャパシタを得ることが困難となる。このため、本発明では、上記塗工膜層の表面抵抗率を3,000Ω/□以下、より望ましくは2,000Ω/□以下にすることが好ましい。
(表面抵抗率の測定)
 本発明において、塗工膜を特定する表面抵抗率は、次のような方法によって測定したものである。塗工膜を形成させる塗工液を、硝子板上に塗布した後、200℃で1分間乾燥し、塗工膜(乾燥膜厚4μm)を形成する。そして、塗工膜の表面抵抗率をJIS K 7194に従い、四探針法により求める。本発明では、その測定を、三菱化学アナリテック製ロレスターGP、MCP-T610を用い、25℃、相対湿度60%の条件下で測定した。
 本発明の蓄電装置電極板用塗工液となした水系スラリー組成物で樹脂バインダーとして使用する多糖系ポリマーであるキトサン誘導体、キチン誘導体、セルロース誘導体、澱粉誘導体、アルギン酸誘導体などの多糖類は、市場から入手してそのまま使用できるが、水や有機溶媒に対する溶解性の点から、前記に挙げたような多糖系ポリマーの誘導体を用いることがより好ましい。
 上記の蓄電装置電極板用塗工液における樹脂バインダーである多糖系ポリマー類の量は、塗布適正や運搬コストなどの観点から、塗工液100質量部あたり固形分量で0.1~40質量部が好ましく、より好ましくは1~20質量部である。ポリマー類の量が少な過ぎると、塗工膜の強度や密着性が不足し、塗工膜層から塗工膜成分が脱落しやすくなるので好ましくない。逆にポリマー類の量が多すぎると、均一な溶液を得にくくなると共に、導電性フィラー(疎水性フィラー)がポリマー類に覆い隠されて電極板の内部抵抗が増大する畏れがある。
 本発明の蓄電装置電極板用塗工液となした水系スラリー組成物で使用する、導電性の疎水性フィラー(以下、導電性フィラーとも呼ぶ)としては、粒状、フレーク状、短繊維状、及び基材に導電体をコーティングしたものなど、いずれも使用できる。具体的には、粒状のものとしては、カーボンブラック、アセチレンブラック、ケッチェンブラック、ニッケル粉、銅粉、銀粉、銅合金粉、酸化亜鉛粉、酸化スズ粉、酸化インジウム粉などが挙げられる。また、フレーク状のものとしては、天然黒鉛、キッシュ黒鉛、人工(人造)黒鉛、アルミフレーク、銅フレーク、ニッケルフレークなどが挙げられる。また、短繊維状として、PAN系炭素繊維、ピッチ系炭素繊維、カーボンナノチューブ、ステンレスファイバー、アルミファイバーなどが挙げられる。また、基材に導電体をコーティングしたものとしては、銀コートガラスビーズ、ニッケルコートガラスビーズ、ニッケルコートフェノール樹脂、ニッケルコートマイカ、アルミコートガラスファイバーなどが挙げられる。
 上記に挙げた導電性フィラーは、塗工液に混合、分散された状態で使用される。導電性フィラーを含有することにより、塗工膜の電気的接触が一段と向上し、内部抵抗が低くなり、且つ、容量密度を高くすることができる。導電性フィラーの使用量は、塗工液100質量部に対して通常0.1~30質量部、好ましくは1~20質量部である。導電性フィラーの使用量が0.1質量部未満であると、形成される塗工膜層の導電性が不足する場合がある。一方、導電性フィラーの使用量が30質量部を超えると、他の成分が不足し形成される塗工膜層の性能が低下する場合がある。
 本発明において、蓄電装置電極板用塗工液に使用する多塩基酸類や有機溶媒類は、一般市販品をそのまま用いることができるが、必要に応じて精製してから使用してもよい。また、樹脂バインダーとして用いる多糖系ポリマー類を含むポリマー溶液の製造において、ポリマー類および多塩基酸類を、水/有機溶媒に溶解するにあたり、溶媒に添加する順番は、ポリマー類または多塩基酸類のうちどちらを先にしても、同時としてもよい。溶解方法は室温攪拌で十分であるが、必要に応じて加熱してもよい。
 本発明の水系スラリー組成物を利用してなる蓄電装置電極板用の塗工液は、水/有機溶媒に、多糖系ポリマー類と導電性フィラーおよび多塩基酸類を添加して混練することによって得られる。塗工液とした場合における各成分の割合は、塗工液を100質量部とした場合、ポリマー類が0.5~10質量部、多塩基酸類が0.02~10質量部、および導電性フィラーが1~20質量部であることが特に好ましい。また、塗工液の固形分は0.1~40質量%、より好ましくは、1~35質量%であることが好ましい。
 さらに、本発明で使用する蓄電装置電極板用塗工液は、上記成分以外の任意の成分、例えば、他の架橋剤などを含み得る。その他の架橋剤としては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテルの如きエポキシ化合物;トルイレンジイソシアナート、キシリレンジイソシアナート、ヘキサメチレンジイソシアナート、フェニルジイソシアナートの如きイソシアナート化合物やそれらをフェノール類、アルコール類、活性メチレン類、メルカプタン類、酸アミド類、イミド類、アミン類、イミダゾール類、尿素類、カルバミン酸類、イミン類、オキシム類、亜硫酸類などのブロック剤でブロックしたブロックイソシアナート化合物;グリオキサール、グルタルアルデヒド、ジアルデヒド澱粉の如きアルデヒド化合物が挙げられる。
 また、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ヘキサンジオールジアクリレートの如き(メタ)アクリレート化合物;メチロールメラミン、ジメチロール尿素の如きメチロール化合物;酢酸ジルコニル、炭酸ジルコニル、乳酸チタンの如き有機酸金属塩;アルミニウムトリメトキシド、アルミニウムトリブトキシド、チタニウムテトラエトキシド、チタニウムテトラブトキシド、ジルコニウムテトラブトキシド、アルミニウムジプロポキシドアセチルアセトネート、チタニウムジメトキシドビス(アセチルアセトネート)、チタニウムジブトキシドビス(エチルアセトアセテート)の如き金属アルコキシド化合物が挙げられる。
 また、ビニルメトキシシラン、ビニルエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、イミダゾールシランの如きシランカップリング剤;メチルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシランの如きシラン化合物;カルボジイミド化合物などが挙げられる。これらの架橋剤の使用は必須ではないが、使用する場合には、架橋剤の量は、樹脂バインダーとして用いられる多糖系ポリマー類の1~100質量%が好適である。
 本発明で使用する蓄電装置電極板用塗工液の具体的な調製方法について説明する。先ず、上記に挙げたような材料から適宜に選択された樹脂バインダーである多糖系ポリマー類、導電性フィラー、多塩基酸類を、水の含有量が30質量%以上となるように水/有機溶媒に添加し、従来公知の混合機を用いて混合分散することによって塗工液が調製される。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いることができる。また、導電性フィラーを、擂潰機、プラネタリーミキサー、ヘンシェルミキサー、オムニミキサーなどの混合機を用いて先ず混合し、次いで、これに、樹脂バインダーである多糖系ポリマー類、および多塩基酸類を添加して均一に混合する方法も好ましい。これらの方法を採ることにより、容易に均一な塗工液を得ることができる。
 上記のようにして調製される塗工液の粘度は、塗工機の種類や塗工ラインの形状によっても異なるが、通常、10~100,000mPa・s、好ましくは、50~50,000mPa・s、より好ましくは100~20,000mPa・sである。塗布する塗工液の量は特に制限されないが、乾燥した後に形成される塗工膜層の厚さが、通常、0.05~100μm、好ましくは0.1~10μmになる量が一般的である。なお、上記の値は、B型回転粘度計、回転数30rpmで測定した時の25℃における粘度である。
 本発明における電極板の製造方法は、上記した構成の塗工液を用いて、集電体と電極の間に塗工膜を形成、配置することを特徴とする。電極板の製造に用いる集電体は、導電性を有し、かつ電気化学的に耐久性のある材料が用いられる。中でも、アルミニウム、タンタル、ニオブ、チタン、ニッケル、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、ステンレス鋼、銅、金、白金などの金属材料が好ましく、電解液に優れた耐食性を有し、軽量で機械加工が容易なアルミニウムが特に好ましい。集電体の形状は特に制限されないが、通常、厚さ5~30μm程度のシート状のもの(金属箔)を用いる。これらの集電体の表面は予め、シラン系、チタネート系、アルミニウム系などのカップリング剤により処理しておくことができる。
 上記塗工液を前記集電体の表面に、グラビアコート、グラビアリバースコート、ロールコート、マイヤーバーコート、ブレードコート、ナイフコート、エアーナイフコート、コンマコート、スロットダイコート、スライドダイコート、ディップコート、エクストルージョンコート、スプレーコート、ハケ塗りなどの各種塗工方法を用いて、乾燥厚みで0.1~10μm、好ましくは0.1~5μm、より好ましくは0.1~2μmの範囲で塗布した後、加熱乾燥して塗工膜層が得られる。塗工膜の膜厚が0.1μm未満では均一に塗工するのが難しく、10μmを超えると塗膜の可撓性が低下する場合がある。
 加熱乾燥に際しては、樹脂バインダーである多糖系ポリマー類を十分に架橋させて、形成される塗工膜層の集電体に対する密着性および電解液に対する樹脂バインダーの電気化学的安定性を向上させるために、100℃以上で1秒間以上、より好ましくは、100~250℃で1秒から60分間加熱するとよい。加熱処理条件が100℃未満または1秒未満では、塗工膜層の集電体に対する塗工膜層の密着性および電解液に対する樹脂バインダーの電気化学的安定性が満足できない場合があるので好ましくない。
 さらに、上記のようにして塗工および乾燥処理して形成された塗工膜層の上に電極層を塗工し、電極板を形成する。均質性をより向上させるために、該電極層に金属ロール、加熱ロール、シートプレス機などを用いてプレス処理を施し、本発明の電極板を形成することも好ましい。この際のプレス条件としては、500kgf/cm2未満では電極層の均一性が得られにくく、また、7,500kgf/cm2を超えると、集電体を含めた電極板自体が破損してしまうため、プレス条件は500~7,500kgf/cm2の範囲が好ましい。
 以上の如くして得られる電極板は、集電体と電極層の間に、導電性フィラーと、多塩基酸類で架橋された樹脂バインダーである多糖系ポリマー類とからなる塗工膜層が形成、配置されており、該塗工膜層は前記の通りの特性を有している。
 以上のようにして作製した本発明の正極および負極の電極板を用いて、非水電解液二次電池、例えば、リチウム系二次電池を作製する場合には、電解液として、溶質のリチウム塩を有機溶剤やイオン液体に溶かした非水電解液が用いられる。非水電解液を形成する溶質のリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAsF6、LiCl、LiBrなどの無機リチウム塩、およびLiB(C65)4、LiN(SO2CF3)2、LiC(SO2CF3)3、LiOSO2CF3、LiOSO225、LiOSO237、LiOSO249、LiOSO2511、LiOSO2613、LiOSO2715などの有機リチウム塩などが用いられる。
 上記有機溶剤としては、環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類などが挙げられる。環状エステル類としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、ビニレンカーボネート、2-メチル-γ-ブチロラクトン、アセチル-γ-ブチロラクトン、γ-バレロラクトンなどが挙げられる。
 鎖状エステル類としては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート、メチルプロピルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルなどが挙げられる。
 環状エーテル類としては、例えば、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3-ジオキソラン、アルキル-1,3-ジオキソラン、1,4-ジオキソランなどが挙げられる。鎖状エーテル類としては、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテルなどが挙げられる。
 リチウム塩を溶かすイオン液体は、有機カチオンとアニオンの組み合わせによるイオンのみからなる液体である。有機カチオンとしては、例えば、1-エチル-3-メチルイミダゾリウムイオンなどのジアルキルイミダゾリウムカチオン、1,2-ジメチル-3-プロピルイミダゾリウムイオンなどのトリアルキルイミダゾリウムカチオン、ジメチルエチルメトキシアンモニウムイオンなどのテトラアルキルアンモニウムイオン、1-ブチルピリジニウムイオンなどのアルキルピリジニウムイオン、メチルプロピルピロリジニウムイオンなどのジアルキルピロリジニウムイオン、メチルプロピルピペリジニウムイオンなどのジアルキルピペリジニウムイオンの少なくとも一種が挙げられる。
 これらの有機カチオンの対となるアニオンとしては、AlCl4 -、PF6 -、PF3(C25)3 -、PF3(CF3)3 -、BF4 -、BF2(CF3)2 -、BF3(CF3-、CF3SO3 -(TfO;トリフレートアニオン)、(CF3SO2)2-(TFSI;トリフルオロメタンスルフォニル)、(FSO2)2-(FSI;フルオロスルフォニル)、(CF3SO2)3-(TFSM)などを用いることができる。なお、電池の他の構成は従来技術の場合と同様である。
<キャパシタ>
 本発明の水系スラリー組成物を利用してなる塗工液によって形成される塗工膜を、キャパシタ用電極板およびキャパシタの製造に応用する場合を以下に説明する。この場合のキャパシタ用電極板用の塗工液も、前記多糖系ポリマー類、多塩基酸類および導電性フィラーを含有してなる。
 上記塗工膜を形成する際に用いる塗工液における樹脂バインダーである多糖系ポリマー類の量は、塗工液100質量部あたり固形分量で好ましくは0.1~20質量部、より好ましくは0.5~10質量部である。ポリマー類の量が少なすぎると塗工膜層から塗工膜成分が脱落しやすくなるので好ましくない。また、逆に多すぎると、導電性フィラーがポリマー類に覆い隠されて電極板の内部抵抗が増大する畏れがあるので好ましくない。
 この場合の多塩基酸類としては、従来公知のフリーな酸またはその誘導体を使用することができる。中でも、樹脂バインダーとして使用される多糖系ポリマー類の架橋性の面から、特に3価以上の多塩基酸類である、1,2,3-プロパントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、トリメリット酸、ピロメリット酸、1,4,5,8-ナフタレンテトラカルボン酸および1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸およびそれらの酸無水物が好ましい。これらの多塩基酸類は上記塗工液に混合して使用する。
 上記塗工膜を形成する際に用いる塗工液における多塩基酸類の使用量は、上記多糖系ポリマー類100質量部当たり1~150質量部であり、2~100質量部が好ましい。上記多塩基酸類の使用量が1質量部未満であると、架橋ポリマーの架橋密度が低く、形成される塗工膜層の集電体に対する密着性および架橋ポリマーの電解液に対する不溶解性、非膨潤性、電気的化学安定性の点で不十分であるので好ましくない。一方、上記使用量が150質量部を超えると、形成される皮膜或いは塗工膜層の可撓性が低下するので好ましくなく、不経済でもある。
 導電性フィラーとしては、アセチレンブラック、ケッチェンブラック、カーボンブラックなどの導電性カーボンを使用することができ、これらは上記塗工液に混合して使用する。導電性材料を使用することにより、塗工膜の電気的接触が一段と向上し、キャパシタの内部抵抗が低くなり、かつ容量密度を高くすることができる。導電性フィラーの使用量は、塗工液100質量部に対して通常0.01~20質量部、好ましくは1~15質量部である。
 前記の塗工液は、多糖系ポリマー類溶液、多塩基酸類、導電性フィラーを、混合機を用いて混合して製造できる。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いることができる。また、導電性フィラーを、擂潰機、プラネタリーミキサー、ヘンシェルミキサー、オムニミキサーなどの混合機を用いて先ず混合し、次いで樹脂バインダーである多糖系ポリマー類溶液を添加して均一に混合する方法も好ましい。この方法を採ることにより、容易に均一な塗工液を得ることができる。
 本発明のキャパシタ用電極板は、樹脂バインダーである多糖系ポリマー類溶液、多塩基酸類および導電性フィラーを含む塗工液を、集電体と電極層間に塗布および乾燥して塗工膜層を形成してなる。集電体は、導電性を有しかつ電気化学的に耐久性のある材料が用いられる。中でも、耐熱性を有するとの観点から、アルミニウム、チタン、タンタル、ステンレス鋼、金、白金などの金属材料が好ましく、アルミニウムおよび白金が特に好ましい。集電体の形状は特に制限されないが、通常、厚さ0.001~0.5mm程度のシート状のものを用いる。
 塗工膜層の形成方法は特に限定されないが、好ましくは、前記のキャパシタ電極用塗工液を集電体-電極層間に塗布し、乾燥して集電体-電極層間に塗工膜層を形成する方法である。上記塗工液の塗布方法としては、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法、スプレーコート法などの方法が挙げられる。
 塗工液の粘度は、塗工機の種類や塗工ラインの形状によっても異なるが、通常10~100,000mPa・s、好ましくは、50~50,000mPa・s、より好ましくは100~20,000mPa・sである。塗布する塗工液の量は特に制限されないが、乾燥して溶剤を除去した後に形成される塗工膜層の厚さが、通常、0.05~100μm、好ましくは0.1~10μm、より好ましくは0.1~2μmになる量が一般的である。上記塗工膜層の乾燥方法および乾燥条件などは、前記電池用電極板における場合と同様である。
 上記の電極板を有する本発明のキャパシタは、上記の電極板、電解液、セパレーターなどの部品を用いて、常法に従って製造することができる。具体的には、例えば、セパレーターを介して電極板を重ね合わせ、これをキャパシタ形状に応じて巻く、折るなどして容器に入れ、容器に電解液を注入して封口して製造できる。
 電解液は、特に限定されないが、電解質を有機溶媒に溶解した非水電解液が好ましい。例えば、電気二重層キャパシタ用の電解質としては、従来より公知のものがいずれも使用でき、テトラエチルアンモニウムテトラフルオロボレート、トリエチルモノメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロフォスフェートなどが挙げられる。また、リチウムイオンキャパシタ用の電解質としては、例えば、LiI、LiClO4、LiAsF6、LiBF4、LiPF6などのリチウム塩が挙げられる。
 これらの電解質を溶解させる溶媒(電解液溶媒)も、一般的に電解液溶媒として用いられるものであれば特に限定されない。具体的には、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネートなどのカーボネート類;γ-ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類が挙げられ、これらは単独または二種以上の混合溶媒として使用することができる。中でも、耐電圧が高いのでカーボネート類が好ましい。電解液の濃度は通常0.5モル/L以上、好ましくは0.8モル/L以上である。
 セパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔膜または不織布;一般に電解コンデンサ紙と呼ばれるパルプを主原料とする多孔質膜;など公知のものを用いることができる。また、無機セラミック粉末と樹脂バインダーとを溶剤に分散させ、電極層上に塗布、乾燥してセパレーターを形成してもよい。セパレーターに代えて固体電解質或いはゲル電解質を用いてもよい。また、容器などの他の材料については通常のキャパシタに用いられるものをいずれも使用できる。
 次に、実施例および比較例を挙げて本発明をさらに具体的に説明する。なお、文中の「部」または「%」は質量基準である。また、本発明はこれら実施例によって限定されるものではない。
<各種ポリマー溶液の作製>
 表1に、実施例および比較例で用いた各種ポリマー溶液の組成を示した。各種ポリマー溶液に使用した多塩基酸類は、1,2,3-プロパントリカルボン酸をPTC、1,2,4,5-シクロヘキサンテトラカルボン酸をCHTC、1,2,3,4-ブタンテトラカルボン酸をBTC、1,4,5,8-ナフタレンテトラカルボン酸をNTC、および1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸をCHHCと、それぞれ略した。また、各種ポリマー溶液に使用した有機溶媒は、メチルアルコールをMeOH、エチルアルコールをEtOH、イソプロピルアルコールをIPA、t-ブチルアルコールをTBA、N-メチル-2-ピロリドンをNMPと略した。
<例1-1>
 イオン交換水75部に、グリセリル化キトサン10部を分散し、該分散液にBTCを10部加えた後、室温で4時間撹拌溶解した。次に、これに、撹拌下、IPAを5部混合し100部のグリセリル化キトサン水/IPA溶液を調製した。
<例1-2~1-20>
 表1に示すように、ポリマーの種類および使用量(質量)、多塩基酸類の種類および使用量、有機溶媒の種類および使用量、水と有機溶媒の配合比を変え、例1-1と同様の方法によって、本発明の塗工液用に適用できる水系の各ポリマー溶液を調製した。
<例1-21>
 イオン交換水20部にグリセリル化キトサン2部を分散し、該分散液にBTC2部を加えた後、室温で4時間撹拌して溶解した。次に、撹拌下、IPAを76部混合したところ、グリセリル化キトサンの析出を生じてしまい、良好な塗工膜層の形成を一つの目的とする本発明のスラリーに使用可能な良好なポリマー溶液を得ることができなかった。
Figure JPOXMLDOC01-appb-I000001
<スラリー組成物、塗工膜の作製および評価>
[実施例1]
(スラリー組成物)
 本実施例で用いた疎水性フィラーを含むスラリー組成物を、以下の方法により作製した。疎水性フィラーとしてのアセチレンブラック10部と、表1の例1-1のポリマー溶液90部の配合比で、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させてスラリー組成物を得た。
 上記で得られたスラリー組成物の粘度をB型回転粘度計(25℃、30rpm、ローターNo.3)で測定したところ、スラリー粘度は0.9Pa・sであった。
 得られたスラリー組成物をバーコーターNo.6を用いてガラス板に塗布展色し、塗膜の外観を目視にて確認し、疎水性フィラーの分散性を評価した。塗膜が均一で、ブツ、スジ、ムラが見られない場合を分散性「良」とし、塗膜にブツやスジ、ムラが見られる場合を分散性「不良」と評価した。
 さらに、上記で得られたスラリー組成物の保存安定性を確認するため、スラリー組成物を500mlガラス容器に入れ、1ヶ月間、室温に静置して保存し、保存後の状態観察を行い評価した。上澄み液の発生並びにフィラー沈降がないものをA、上澄み液発生とフィラー沈降があるも、容器を軽く振ればフィラーが再分散するものをB、上澄み液発生とフィラー沈降があり、容器を軽く振った程度ではフィラーは再分散せず、分散機による再分散が必要なものをCと評価した。
(塗工膜)
 上記で得られたスラリー組成物を用い、厚さ20μmのアルミニウム箔からなる集電体を基体として、該基体上の片面にコンマロールコーターにてスラリー組成物を塗工した。その後、110℃のオーブンで2分間乾燥処理し、さらに、180℃のオーブンで2分間乾燥して溶媒を除去するとともにポリマー成分を架橋させて、集電体上に乾燥膜厚が1μmの塗工膜(塗工膜層)を形成した。
 上記で得た塗工膜層に、カッターを用いて直交する縦横11本ずつの平行線を1mmの間隔で引いて、1cm2の中に100個の升目を形成した。この面にメンディングテープを貼り付け、その後、テープ剥離を行い、剥離しなかった升目の個数を求め、集電体との密着性の尺度とした。10回の平均値は、99.0個であった。また、上記升目を形成した塗工膜層をEC(エチレンカーボネート):PC(プロピレンカーボネート):DME(ジメトキシエタン)をそれぞれ体積比1:1:2で配合した混合溶媒に、支持塩として1モルのLiPF6を溶解した溶液に、70℃で72時間浸漬した後の塗工膜層の状態を観察し、変化のないものを溶解・膨潤性「なし」とし、塗工膜層が剥離または膨潤したものを溶解・膨潤性「あり」として表示した。
 さらに、上記の塗工膜層の導電性を評価するため、コンマロールコーターにてスラリー組成物を硝子板上に塗工した後、200℃のオーブンで1分間乾燥処理し、導電性塗工膜(乾燥膜厚4μm)を形成した。得られた塗工膜の表面抵抗率をJIS K 7194に従い、四探針法により求めた。測定は三菱化学製ロレスターGP、MCP-T600を用い、25℃、相対湿度60%の条件下で測定した。
[実施例2~19、比較例1~3]
 実施例1における例1-1のポリマー溶液及び導電性フィラーに代えて、表2に記載のポリマー溶液及び導電性フィラーを使用した以外は、実施例1と同様にして、スラリー組成物並びに塗工膜を作製した。そして、スラリー組成物の粘度(25℃、30rpm、測定時のローターは粘度に合わせ適宜選択して使用)、分散性、保存安定性、形成した塗工膜の密着性、溶解・膨潤性および表面抵抗率を調べ、表2に結果を示した。なお、比較例2では、バインダー樹脂に、ポリビニリデンフルオライドの5%NMP溶液(以下、PVDF溶液と記載)を用い、比較例3ではスチレンブタジエン共重合体ラテックス(増粘剤としてカルボキシメチルセルロースナトリウムを使用)を用いた。
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
〔電池への応用〕
[実施例20(正極電極板、負極電極板、電池)]
(正極電極板)
 実施例1のスラリー組成物を用い、厚さ20μmのアルミニウム箔からなる集電体を基体として、該基体上の片面にコンマロールコーターにてスラリー組成物を塗工した。その後、110℃のオーブンで2分間乾燥処理し、さらに、180℃のオーブンで2分間乾燥して溶媒を除去するとともにポリマー成分を架橋させて、集電体上に乾燥膜厚が1μmの塗工膜を形成した。
 次に、正極活物質を含む正極液を以下の方法により作製した。正極液の材料として、1~100μmの粒径を有するLiCoO2粉末を90部、導電助剤としてアセチレンブラックを5部、バインダーとしてPVDF溶液50部の配合比で、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合することにより、スラリー状の正極活物質を含む正極液を得た。
 上記で得られた正極液を用い、上記正極集電体塗工膜層の表面にコンマロールコーターにて塗布後、110℃のオーブンで2分間乾燥処理し、さらに、180℃のオーブンで2分間乾燥して溶媒を除去して塗工膜層上に乾燥膜厚が100μmの活物質層を形成した正極複合層を得た。以上の方法で得られた正極複合層を、5,000kgf/cm2の条件でプレスを行って膜を均一にした。次に、80℃の真空オーブン中で48時間エージングして揮発分(水や溶剤など)を十分に除去して正極電極板を得た。
(負極電極板)
 実施例1のスラリー組成物を用い、銅箔集電体を基体として、該基体上の片面にコンマロールコーターにてスラリー組成物を塗工後、110℃のオーブンで2分間乾燥処理し、さらに180℃のオーブンで2分間乾燥して溶媒を除去するとともにポリマー成分を架橋させて、集電体上に乾燥膜厚が1μmの塗工膜層を形成した。
 次に、負極活物質を含む負極液を以下の方法により作製した。負極液の材料としては、石炭コークスを1200℃で熱分解して得られるカーボン粉末を90部、導電助剤としてアセチレンブラックを5部、バインダーとしてPVDF溶液50部の配合比で、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合することによりスラリー状の負極活物質を含む負極液を得た。
 上記で得られた負極液を用い、前記の塗工膜層の表面に更にコンマロールコーターにて塗布後、110℃のオーブンで2分間乾燥処理し、さらに180℃のオーブンで2分間乾燥して溶媒を除去して塗工膜層上に乾燥膜厚が100μmの活物質層を形成した負極複合層を得た。以上の方法で得られた負極複合層を、5,000kgf/cm2の条件でプレスを行って膜を均一にした。次に、80℃の真空オーブン中で48時間エージングして揮発分(水や溶剤など)を十分に除去して負極電極板を得た。
(電池)
 以上で得られた正極電極板および負極電極板を用い、正極電極板より幅広の三次元空孔構造(海綿状)を有するポリオレフィン系(ポリプロピレン、ポリエチレンまたはそれらの共重合体)の多孔性フィルムからなるセパレータを介して、渦巻き状に捲回して、先ず電極体を構成した。次に、この電極体を、負極端子を兼ねる有底円筒状のステンレス容器内に挿入し、AAサイズで定格容量500mAhの電池を組み立てた。この電池にEC(エチレンカーボネート):PC(プロピレンカーボネート):DME(ジメトキシエタン)をそれぞれ体積比1:1:2で全量1リットルになるように調製した混合溶媒に、支持塩として1モルのLiPF6を溶解したものを電解液として注液した。
 電池特性の測定には、充放電測定装置を用い、25℃の温度条件で下記のようにして充放電特性を測定した。各20セルずつ、充電電流0.2CAの電流値で、先ず充電方向から電池電圧4.1Vになるまで充電し、10分間の休止の後、同一電流で2.75Vになるまで放電し、10分間の休止の後、以下同一条件で100サイクルの充放電を繰り返して充放電特性を測定した。1サイクル目の充放電容量値を100とした場合、100回目の充放電容量値(以下、充放電容量維持率と略記)は98%であった。
[実施例21~25、比較例4(正極電極板、負極電極板、電池)]
 実施例20で用いた正極電極板および負極電極板の作製に使用した実施例1のスラリー組成物に代えて、表3に記載したスラリー組成物を使用した以外は、実施例20と同様にして、電極板および電池を作製した。得られた電池について、実施例20と同様にして充放電特性を測定した。結果を表3に示した。
Figure JPOXMLDOC01-appb-I000004
〔キャパシタへの応用〕
[実施例26(キャパシタ)]
 実施例1のスラリー組成物を用い、厚さ20μmのアルミニウム箔からなる集電体を基体として、該基体上の片面にコンマロールコーターにてスラリー組成物を塗工後、110℃のオーブンで2分間乾燥処理した。そして、さらに、これを180℃のオーブンで2分間乾燥して溶媒を除去するとともに、ポリマー成分を架橋させて、集電体上に乾燥膜厚が0.5μmの塗工膜層を形成した。
 次に、活物質を含む電極液を以下の方法により作製した。電極液の材料としては、比表面積1,500m2/g、平均粒径10μmの高純度活性炭粉末を100部と、導電性材料としてアセチレンブラックを8部とを、プラネタリーミキサーに仕込み、全固形分の濃度が45%となるように、PVDF溶液を加えて60分間混合した。その後、固形分濃度が42%になるようにNMPで希釈してさらに10分間混合し、電極液を得た。この電極液を前記塗工膜層上にドクターブレードを用いて塗布し、80℃で30分、送風乾燥機で乾燥した。その後、ロールプレス機を用いてプレスを行い厚さ80μm、密度0.6g/cm3のキャパシタ用分極性電極板を得た。
 上記により製造したキャパシタ用分極性電極板を直径15mmの円形に切り抜いたものを2枚作成し、200℃で20時間乾燥させた。この2枚の電極板の電極層面を対向させ、直径18mm、厚さ40μmの円形セルロース製セパレータを挟んだ。これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、容器を封止して、直径20mm、厚さ約2mmのコイン型キャパシタを製造した。なお、電解液としては、テトラエチルアンモニウムテトラフルオロボレートをプロピレンカーボネートに1モル/リットルの濃度で溶解させた溶液を用いた。こうして得たキャパシタについて、静電容量および内部抵抗を測定した結果を表4に示した。
[実施例27~30(キャパシタ)]
 実施例26で用いた実施例1のスラリー組成物に代えて、表4に記載のスラリー組成物を使用した以外は、実施例26と同様にして、電極板およびキャパシタを作成し、各特性を評価した。結果を表4に示した。
[比較例5]
 実施例26で用いた実施例1のスラリー組成物に代えて、比較例2のスラリー組成物を使用した以外は実施例26と同様にして、電極板およびキャパシタを作成した。そして、内部抵抗および静電容量を測定し、実施例の分極性電極板およびキャパシタを評価する基準とした。
 表4における内部抵抗および静電容量については、次のようにして測定を行い、下記の基準で評価した。それぞれのキャパシタについて、電流密度20mA/cm2で静電容量および内部抵抗を測定した。そして、比較例5のキャパシタを基準として、各実施例のキャパシタの性能を以下の基準で評価した。静電容量は大きいほど、また、内部抵抗は小さいほど、キャパシタとしての性能が良好であることを示す。
(静電容量の評価基準)
  A:比較例5よりも静電容量が20%以上大きい。
  B:比較例5よりも静電容量が10%以上20%未満大きい。
  C:比較例5と静電容量が同等以下である。
(内部抵抗の評価基準)
  A:比較例5よりも内部抵抗が20%以上小さい。
  B:比較例5よりも内部抵抗が10%以上20%未満小さい。
  C:比較例5と内部抵抗が同等以下である。
Figure JPOXMLDOC01-appb-I000005
 上記の実施例および比較例より明らかなように、本発明のスラリー組成物からなる塗工膜を有してなる電極板を作成し、該電極板を用いてキャパシタを製造すると、静電容量が大きく、内部抵抗の小さいキャパシタを得ることができる。
<各種ポリマー溶液の作製>
 表5に、実施例、参考例および比較例で用いた各種ポリマー溶液の組成を示した。表5に示した成分についての下記に示した以外の略記は、表1と同様である。各種ポリマー溶液に使用した極性溶媒は、ジメチルスルホキシドはDMSOと略した。
<例2-1>
 NMP92部中に、ヒドロキシエチルセルロース〔ダイセル化学工業(株)製、HECダイセルSP400〕5部を分散し、該分散液にPTCを3部加えた後、50℃で2時間撹拌溶解し、100部のヒドロキシエチルセルロース溶液を調製した。
<例2-2~2-14>
 表5に示すように、ポリマーの種類および使用量(質量)、多塩基酸類の種類および使用量、極性溶媒の種類および使用量を変えて、例2-1と同様の方法で、実施例、参考例および比較例で用いる各種ポリマー溶液を調製した。
Figure JPOXMLDOC01-appb-I000006
<塗工液および塗工膜の作製並びに塗工膜の評価>
[参考例1]
 本参考例で用いた疎水性フィラーを含む水系スラリー組成物からなる塗工液を以下の方法により作製した。疎水性フィラーであるアセチレンブラックを5部と、表5の例2-1のポリマー溶液を95部の配合比で、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させてスラリー状の塗工液を得た。
 上記で得られた塗工液を用い、厚さ20μmのアルミニウム箔からなる集電体を基体として、該基体上の片面にコンマロールコーターにて塗工液を塗工後、110℃のオーブンで2分間乾燥処理した。そして、これをさらに180℃のオーブンで2分間乾燥して溶媒を除去するとともにポリマー成分を架橋させて、集電体上に乾燥膜厚が1μmの塗工膜を形成した。
 上記の塗工膜層にカッターを用いて直交する縦横11本ずつの平行線を1mmの間隔で引いて、1cm2の中に100個の升目を形成した。この面にメンディングテープを貼り付け、その後、テープ剥離を行い、剥離しなかった升目の個数を求め、集電体との密着性の尺度とした。10回の平均値は99.0個であった。また、上記升目を形成した塗工膜層をEC(エチレンカーボネート):PC(プロピレンカーボネート):DME(ジメトキシエタン)をそれぞれ体積比1:1:2で配合した混合溶媒に、支持塩として1モルのLiPF6を溶解した溶液に、70℃で72時間浸漬した後の塗工膜層の状態を観察し、変化のないものを溶解・膨潤性「なし」とし、塗工膜層が剥離または膨潤したものを溶解・膨潤性「あり」として表示した。
 さらに、上記で得た塗工膜層の導電性を評価するため、コンマロールコーターにて塗工液を硝子板上に塗工した後、200℃のオーブンで1分間乾燥処理し、導電性塗工膜(乾燥膜厚4μm)を形成した。
 得られた塗工膜の表面抵抗率をJIS K 7194に従い、四探針法により求めた。測定は三菱化学アナリテック製ロレスターGP、MCP-T610を用い、25℃、相対湿度60%の条件下で測定した。
[実施例31~34、比較例6、7、参考例2~6]
 参考例1において使用した例2-1のポリマー溶液に代えて表6に記載の各ポリマー溶液を使用した以外は、参考例1と同様にして塗工膜を作製し、その密着性、溶解・膨潤性、表面抵抗値を調べ、表6に結果を得た。なお、比較例6ではPVDF溶液を、比較例7ではスチレンブタジエン共重合体ラテックス(増粘剤としてカルボキシメチルセルロースナトリウムを使用)を用いた。
Figure JPOXMLDOC01-appb-I000007
<正極電極板、負極電極板、電池の作製と評価>
[参考例7(正極電極板、負極電極板、電池)]
(正極電極板)
 正極活物質を含む正極液を以下の方法により作製した。正極液の材料としては、1~100μmの粒径を有するLiCoO2粉末を90部、導電助剤としてアセチレンブラックを5部、バインダーとしてPVDF溶液50部の配合比で用いた。そして、これをプラネタリーミキサーにて回転数60rpmで120分間撹拌混合することにより、スラリー状の正極活物質を含む正極液を得た。
 上記で得られた正極液を用い、参考例1で得た塗工膜層の表面にコンマロールコーターにて塗布後、110℃のオーブンで2分間乾燥処理し、さらに、これを180℃のオーブンで2分間乾燥して溶媒を除去して、塗工膜層上に乾燥膜厚が100μmの活物質層を形成した正極複合層を得た。以上の方法で得られた正極複合層を、5,000kgf/cm2の条件でプレスを行って膜を均一にした。次に、80℃の真空オーブン中で48時間エージングして揮発分(溶剤や未反応の多塩基酸など)を十分に除去して正極電極板を得た。
(負極電極板)
 参考例1の塗工液を用い、銅箔集電体を基体として、該基体上の片面にコンマロールコーターにて塗工液を塗工後、110℃のオーブンで2分間乾燥処理した。さらに、180℃のオーブンで2分間乾燥して溶媒を除去するとともに樹脂バインダーを架橋させて、集電体上に乾燥膜厚が1μmの塗工膜層を形成した。
 次に、負極活物質を含む負極液を以下の方法により作製した。負極液の材料としては、石炭コークスを1,200℃で熱分解して得られるカーボン粉末を90部、導電助剤としてアセチレンブラックを5部、バインダーとしてPVDF溶液50部の配合比を用いた。具体的には、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合することによりスラリー状の負極活物質を含む負極液を得た。
 上記で得られた負極液を用い、前記の塗工膜層の表面にコンマロールコーターにて塗布後、110℃のオーブンで2分間乾燥処理し、さらに180℃のオーブンで2分間乾燥して溶媒を除去して塗工膜層上に乾燥膜厚が100μmの活物質層を形成した負極複合層を得た。以上の方法で得られた負極複合層を5,000kgf/cm2の条件でプレスを行って膜を均一にした。次に、80℃の真空オーブン中で48時間エージングして揮発分(溶剤や未反応の多塩基酸など)を十分に除去して負極電極板を得た。
(電池)
 以上で得られた正極電極板および負極電極板を用い、正極電極板より幅広の三次元空孔構造(海綿状)を有するポリオレフィン系(ポリプロピレン、ポリエチレンまたはそれらの共重合体)の多孔性フィルムからなるセパレータを介して、渦巻き状に捲回して、先ず電極体を構成した。次に、この電極体を、負極端子を兼ねる有底円筒状のステンレス容器内に挿入し、AAサイズで定格容量500mAhの電池を組み立てた。この電池にEC(エチレンカーボネート):PC(プロピレンカーボネート):DME(ジメトキシエタン)をそれぞれ体積比1:1:2で全量1リットルになるように調製した混合溶媒に、支持塩として1モルのLiPF6を溶解したものを電解液として注液した。
 電池特性の測定には、充放電測定装置を用い、25℃の温度条件で各20セルずつ、充電電流0.2CAの電流値で、先ず充電方向から電池電圧4.1Vになるまで充電し、10分間の休止の後、同一電流で2.75Vになるまで放電し、10分間の休止の後、以下同一条件で100サイクルの充放電を繰り返し、充放電特性を測定した。1サイクル目の充放電容量値を100とした場合、100回目の充放電容量値(充放電容量維持率)は97%であった。
[実施例35~37、参考例8~9、比較例8(正極電極板、負極電極板、電池)]
 参考例7で用いた正極電極板および負極電極板の作製に使用した参考例1の塗工液および塗工膜に代えて、表7に記載の塗工液および塗工膜を使用した以外は、参考例7と同様にして、電極板および電池を作製し、充放電特性を測定した。結果を表7に示す。
Figure JPOXMLDOC01-appb-I000008
〔キャパシタへの応用〕
[参考例10(キャパシタ)]
 参考例1の塗工液を用い、厚さ20μmのアルミニウム箔からなる集電体を基体として、該基体上の片面にコンマロールコーターにて塗工液を塗工後、110℃のオーブンで2分間乾燥処理し、さらに180℃のオーブンで2分間乾燥して溶媒を除去するとともに樹脂バインダーを架橋させて、集電体上に乾燥膜厚が0.5μmの塗工膜層を形成した。
 次に、活物質を含む電極液を以下の方法により作製した。電極液の材料としては、比表面積1500m2/g、平均粒径10μmの高純度活性炭粉末を100部、導電性材料としてアセチレンブラック8部をプラネタリーミキサーに仕込み、全固形分の濃度が45%となるようにポリビニリデンフルオライドNMP溶液を加えて60分間混合した。その後、固形分濃度が42%になるようにNMPで希釈してさらに10分間混合し、電極液を得た。この電極液を前記塗工膜層上にドクターブレードを用いて塗布し、80℃で30分送風乾燥機で乾燥した。その後、ロールプレス機を用いてプレスを行い厚さ80μm、密度0.6g/cm3のキャパシタ用分極性電極板を得た。
 上記により製造したキャパシタ用分極性電極板を直径15mmの円形に切り抜いたものを2枚作成し、200℃で20時間乾燥させた。この2枚の電極板の電極層面を対向させ、直径18mm、厚さ40μmの円形セルロース製セパレータを挟んだ。これを、ポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、容器を封止して、直径20mm、厚さ約2mmのコイン型キャパシタを製造した。なお、電解液としては、テトラエチルアンモニウムテトラフルオロボレートをプロピレンカーボネートに1モル/リットルの濃度で溶解させた溶液を用いた。こうして得たキャパシタについて、静電容量および内部抵抗を測定した結果を表8に示す。
[実施例38、39、参考例11、12(キャパシタ)]
 参考例10で用いた参考例1の塗工液に代えて、下記表8に記載の塗工液を使用した以外は、参考例10と同様にして、電極板およびキャパシタを作成し、各特性を評価した。結果を表8に示す。
[比較例9]
 参考例10で用いた参考例1の塗工液に代えて、比較例6の塗工液を使用した以外は参考例10と同様にして、電極板およびキャパシタを作成し、これを特性評価の基準とした。結果を表8に示す。
 下記表8における内部抵抗および静電容量は次のように測定および評価した。得られたキャパシタについて電流密度20mA/cm2で静電容量および内部抵抗を測定し、比較例9を基準として以下の評価基準で評価した。静電容量は大きいほど、また、内部抵抗は小さいほど、キャパシタとしての性能が良好であることを示す。
(静電容量の評価基準)
  A:比較例9よりも静電容量が20%以上大きい。
  B:比較例9よりも静電容量が10%以上20%未満大きい。
  C:比較例9と静電容量が同等以下である。
(内部抵抗の評価基準)
  A:比較例9よりも内部抵抗が20%以上小さい。
  B:比較例9よりも内部抵抗が10%以上20%未満小さい。
  C:比較例9と内部抵抗が同等以下である。
Figure JPOXMLDOC01-appb-I000009
 上記の実施例および比較例より明らかなように、本発明の塗工膜を含む電極板を作成し、該電極板を用いてキャパシタを製造すると、静電容量が大きく、内部抵抗の小さいキャパシタを得ることができる。
 以上説明したように、本発明によれば、環境に対する負荷が少ない多糖系ポリマー等を主成分とするものでありながら、疎水性フィラーに対する結着機能と分散機能を同時に発揮できる、有用な水系のスラリー組成物が提供される。また、本発明によれば、分散媒体が水を含むものでありながら、長期間保存しても適度な粘度が維持され、疎水性フィラーの沈降分離が起こりにくく、分散性の高い安価な水系スラリー組成物が提供される。このため、本発明が提供する水系スラリーによれば、疎水性フィラーが均一に分散されてなる密着性に優れる塗工膜の形成が可能になるので、電池に限らず、電子材料塗料、インキ、トナー、ゴム・プラスチック、セラミック、磁性体、接着剤、液晶カラーフィルターなど、多方面での利用が期待でき、多くの産業分野で、環境保護や健康被害防止に寄与できる有用な技術が提供される。本発明によれば、特に、アルミニウム箔や銅箔などからなる集電体と電極層の界面に対して、密着性と耐溶剤性や耐電解液性に優れ、かつ、集電体との接触抵抗も改良されている塗工膜の形成が可能な塗工液とできる疎水性フィラーの水系スラリー組成物が提供されるので、広範な利用が期待されている、電池用電極板やキャパシタ用分極性電極板などの蓄電装置用電極板、およびそれらを含む蓄電装置に適用可能であり、極めて有用である。本発明によれば、社会問題になっている環境保護や健康被害防止に寄与することができる多くの産業分野での利用が可能な技術が提供される。

Claims (16)

  1. (1)少なくとも極性溶媒である水を含む水系媒体と、
    (2)セルロースの誘導体、アルギン酸の誘導体、澱粉の誘導体、キチンの誘導体およびキトサンの誘導体、ポリアリルアミンおよびポリビニルアミンから選ばれる少なくとも1種のポリマーと、
    (3)疎水性フィラーと、
    (4)多塩基酸またはその誘導体と、を含んでなり、且つ、
    組成物中における水の含有量が30質量%以上であることを特徴とする水系スラリー組成物。
  2.  前記ポリマーが、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カチオン化セルロース、ヒドロキシエチル澱粉、アルギン酸プロピレングリコールエステル、カルボキシメチルキチン、ポリアリルアミン、ポリビニルアミン、グリセリル化キトサン、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシブチルキトサン、及びヒドロキシブチルヒドロキシプロピルキトサン、からなる群から選ばれる少なくとも1種を含む請求項1に記載の水系スラリー組成物。
  3.  前記多塩基酸またはその誘導体が、1,2,3,4-ブタンテトラカルボン酸、ピロメリット酸、無水ピロメリット酸、トリメリット酸、無水トリメリット酸、アジピン酸、クエン酸、酒石酸、1,2,4-シクロヘキサントリカルボン酸、1,2,3-プロパントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸および1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸からなる群から選ばれる少なくとも1種である請求項1又は2に記載の水系スラリー組成物。
  4.  B型回転粘度計、回転数30rpmで測定した時の25℃における粘度が、100~20,000mPa・sであり、且つ、スラリー組成物を同質量の蒸留水で希釈した後、25℃で測定したpHが6以下である請求項1~3の何れか1項に記載の水系スラリー組成物。
  5.  前記水系媒体が有機溶媒を含み、該有機溶媒が、水への溶解度を持ち、且つ、イソプロピルアルコール、メチルアルコール、エチルアルコール、t-ブチルアルコールおよびN-メチル-2-ピロリドンからなる群から選ばれる少なくともいずれかである請求項1~4のいずれか1項に記載の水系スラリー組成物。
  6.  前記疎水性フィラーが、導電性炭素フィラー及び/又はシリカである請求項1~5のいずれか1項に記載の水系スラリー組成物。
  7.  前記疎水性フィラーが導電性炭素フィラーであり、かつ、蓄電装置電極板の塗工膜形成用である請求項1~6のいずれか1項に記載の水系スラリー組成物。
  8.  請求項7に記載の水系スラリー組成物を集電体と電極層との間に塗布して塗工膜を配置してなることを特徴とする蓄電装置用電極板。
  9.  前記塗工膜の膜厚が、0.1~2μmである請求項8に記載の蓄電装置用電極板。
  10.  前記塗工膜の表面抵抗率が、3,000Ω/□以下である請求項8又は9に記載の蓄電装置用電極板。
  11.  前記塗工膜が、100~250℃の熱処理により形成されている請求項8~10のいずれか1項に記載の蓄電装置用電極板。
  12.  前記集電体が、アルミニウム箔であり、且つ、電極層が、正極活物質よりなる請求項8~11のいずれか1項に記載の蓄電装置用正極電極板。
  13.  前記集電体が、銅箔であり、電極層が、負極活物質よりなる請求項8~11のいずれか1項に記載の蓄電装置用負極電極板。
  14.  前記集電体が、アルミニウム箔であり、且つ、電極層が、分極性電極である請求項8~11のいずれか1項に記載の蓄電装置用電極板。
  15.  請求項8~14のいずれか1項に記載の電極板を有してなることを特徴とする蓄電装置。
  16.  二次電池又はキャパシタである請求項15に記載の蓄電装置。
PCT/JP2010/064262 2009-08-27 2010-08-24 水系スラリー組成物、蓄電装置用電極板及び蓄電装置 WO2011024797A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/392,034 US9359508B2 (en) 2009-08-27 2010-08-24 Water-based slurry composition, electrode plate for electricity storage device, and electricity storage device
EP10811847.2A EP2471869B1 (en) 2009-08-27 2010-08-24 Water-based slurry composition, electrode plate for electricity storage device, and electricity storage device
JP2011528793A JP5499040B2 (ja) 2009-08-27 2010-08-24 水系スラリー組成物、蓄電装置用電極板及び蓄電装置
CN201080038131.9A CN102498175B (zh) 2009-08-27 2010-08-24 水系浆料组合物、蓄电装置用电极板及蓄电装置
KR1020127007752A KR101489042B1 (ko) 2009-08-27 2010-08-24 수계 슬러리 조성물, 축전 장치용 전극판 및 축전 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-197036 2009-08-27
JP2009197036 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011024797A1 true WO2011024797A1 (ja) 2011-03-03

Family

ID=43627901

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2010/064265 WO2011024800A1 (ja) 2009-08-27 2010-08-24 炭素フィラー用分散剤
PCT/JP2010/064264 WO2011024799A1 (ja) 2009-08-27 2010-08-24 電極板用の水系塗工液、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置
PCT/JP2010/064262 WO2011024797A1 (ja) 2009-08-27 2010-08-24 水系スラリー組成物、蓄電装置用電極板及び蓄電装置
PCT/JP2010/064263 WO2011024798A1 (ja) 2009-08-27 2010-08-24 水系の炭素フィラー分散塗工液、導電性付与材料、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/064265 WO2011024800A1 (ja) 2009-08-27 2010-08-24 炭素フィラー用分散剤
PCT/JP2010/064264 WO2011024799A1 (ja) 2009-08-27 2010-08-24 電極板用の水系塗工液、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064263 WO2011024798A1 (ja) 2009-08-27 2010-08-24 水系の炭素フィラー分散塗工液、導電性付与材料、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置

Country Status (7)

Country Link
US (5) US8628610B2 (ja)
EP (4) EP2472528B1 (ja)
JP (5) JP5367826B2 (ja)
KR (4) KR101420028B1 (ja)
CN (4) CN102483977B (ja)
TW (4) TWI500058B (ja)
WO (4) WO2011024800A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447497A (en) * 1987-08-12 1989-02-21 Ngk Insulators Ltd Device for detecting clogging degree of diffuser
JP2011187320A (ja) * 2010-03-09 2011-09-22 Kansai Univ 電解質及び該電解質を備えた電気化学デバイス
WO2012043501A1 (ja) * 2010-09-27 2012-04-05 住友化学株式会社 スラリー及び該スラリーを使用したセパレータの製造方法
US20120088155A1 (en) * 2010-05-03 2012-04-12 Gleb Yushin Alginate-containing compositions for use in battery applications
JP2012074369A (ja) * 2010-09-02 2012-04-12 Showa Denko Kk 集電体および集電体の製造方法
JP2013041697A (ja) * 2011-08-12 2013-02-28 National Institute Of Advanced Industrial & Technology リチウムイオン二次電池用電極
WO2013153916A1 (ja) * 2012-04-09 2013-10-17 昭和電工株式会社 電気化学素子用集電体の製造方法、電気化学素子用電極の製造方法、電気化学素子用集電体、電気化学素子、及び、電気化学素子用集電体を作製するための塗工液
WO2013161748A1 (ja) 2012-04-27 2013-10-31 昭和電工株式会社 二次電池用負極活物質の製造方法および二次電池用負極活物質、二次電池用負極の製造方法および二次電池用負極、ならびに二次電池
WO2013161749A1 (ja) 2012-04-27 2013-10-31 昭和電工株式会社 二次電池用負極およびその製造方法、ならびに二次電池
EP2679625A1 (en) * 2011-02-23 2014-01-01 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous liquid composition, aqueous coating, functional coating film, and composite material
CN103733399A (zh) * 2011-07-29 2014-04-16 株式会社Uacj 集电体以及使用该集电体的电极结构体、非水电解质电池、双电层电容器、锂离子电容器或蓄电部件
JP2014107191A (ja) * 2012-11-29 2014-06-09 Mikuni Color Ltd カーボンナノチューブを用いた分散スラリー及びリチウムイオン二次電池
WO2014133067A1 (ja) * 2013-02-27 2014-09-04 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
US20140255788A1 (en) * 2011-07-29 2014-09-11 Uacj Foil Corporation Collector, electrode structure, non-aqueous electrolyte battery, and electrical storage device
JP2014211995A (ja) * 2013-04-18 2014-11-13 日立マクセル株式会社 非水二次電池
JP2015092463A (ja) * 2013-09-30 2015-05-14 株式会社Gsユアサ 蓄電素子
US20150255788A1 (en) * 2012-09-26 2015-09-10 Showa Denko K.K. Negative electrode for secondary battery and secondary battery
WO2015141464A1 (ja) * 2014-03-19 2015-09-24 日本ゼオン株式会社 電気化学素子電極用複合粒子
JP2015170392A (ja) * 2014-03-04 2015-09-28 三菱レイヨン株式会社 非水二次電池電極用バインダ樹脂、非水二次電池電極用バインダ樹脂組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極、および非水二次電池
WO2016021405A1 (ja) * 2014-08-08 2016-02-11 住友電気工業株式会社 ナトリウムイオン二次電池用正極およびナトリウムイオン二次電池
WO2016031562A1 (ja) * 2014-08-26 2016-03-03 大日精化工業株式会社 塗工液、塗工膜、及び複合材料
KR101680466B1 (ko) * 2014-04-29 2016-11-28 주식회사 엘지화학 음극 활물질 슬러리, 이의 제조방법 및 이를 포함하는 음극

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070316C (zh) * 1999-03-22 2001-08-29 沈阳市光明涤纶排管厂 机织排管生产工艺
JP5367826B2 (ja) 2009-08-27 2013-12-11 大日精化工業株式会社 炭素フィラー用分散剤
JP5748193B2 (ja) * 2009-09-29 2015-07-15 Necエナジーデバイス株式会社 二次電池
US20110303881A1 (en) * 2010-06-11 2011-12-15 Samsung Electro-Mechanics Co., Ltd. Carboxy methyl cellulose and slurry composition with the same
CN103097472A (zh) * 2010-09-02 2013-05-08 昭和电工株式会社 涂布液、集电体和集电体的生产方法
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US9583757B2 (en) 2010-12-22 2017-02-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
KR101521036B1 (ko) 2011-02-23 2015-05-15 다이니치 세이카 고교 가부시키가이샤 수성 액상 조성물, 수성 도공액, 기능성 도공막 및 복합재료
FR2977364B1 (fr) * 2011-07-01 2015-02-06 Hutchinson Collecteur de courant et procede de fabrication correspondant
JP5825894B2 (ja) * 2011-07-15 2015-12-02 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 二次電池用電極、二次電池用電極の製造方法並びに二次電池
JP6031223B2 (ja) * 2011-07-29 2016-11-24 株式会社Uacj 集電体、電極構造体、非水電解質電池及び蓄電部品
WO2013018688A1 (ja) * 2011-07-29 2013-02-07 古河スカイ株式会社 集電体、電極構造体、非水電解質電池及び蓄電部品
US20140162122A1 (en) * 2011-07-29 2014-06-12 Uacj Foil Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same
JP5596641B2 (ja) * 2011-08-29 2014-09-24 大日精化工業株式会社 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置
JP4957932B1 (ja) * 2011-08-30 2012-06-20 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP5884376B2 (ja) * 2011-09-30 2016-03-15 三菱マテリアル株式会社 カーボンナノファイバー、およびカーボンナノファイバー分散液
JP2012148970A (ja) * 2012-03-09 2012-08-09 Asahi Kasei Chemicals Corp 分散剤組成物
JP6028390B2 (ja) * 2012-05-24 2016-11-16 住友化学株式会社 非水電解液二次電池セパレーターの製造方法
CN102760883B (zh) * 2012-07-13 2015-03-18 中国科学院广州能源研究所 锂离子电池用新型壳聚糖及其衍生物水系粘结剂
KR101647266B1 (ko) 2012-08-21 2016-08-09 다이니치 세이카 고교 가부시키가이샤 수성 액상 조성물, 수성 도공액, 기능성 도공막, 및 복합 재료
KR101535199B1 (ko) 2012-11-30 2015-07-09 주식회사 엘지화학 개선된 분산성을 갖는 슬러리 및 그의 용도
CN103088332A (zh) * 2012-12-13 2013-05-08 苏州新区化工节能设备厂 水电解极板表面涂覆液
CN103102512B (zh) * 2013-02-18 2015-04-22 深圳市通产丽星股份有限公司 一种壳聚糖-富勒烯复合物及其制备方法
JP5454725B1 (ja) * 2013-02-27 2014-03-26 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
CN105073915B (zh) * 2013-02-27 2017-09-26 东洋油墨Sc控股株式会社 炭黑分散液及其利用
WO2014132809A1 (ja) * 2013-02-27 2014-09-04 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
JP5601416B1 (ja) * 2013-11-22 2014-10-08 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
JP2014167849A (ja) * 2013-02-28 2014-09-11 Nitto Denko Corp 導電性積層シート、および、集電体
WO2014185365A1 (ja) * 2013-05-13 2014-11-20 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
WO2015005116A1 (ja) 2013-07-08 2015-01-15 三洋化成工業株式会社 樹脂集電体用分散剤、樹脂集電体用材料及び樹脂集電体
JP6142415B2 (ja) * 2013-08-01 2017-06-07 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
CN103400991B (zh) * 2013-08-13 2015-09-23 天奈(镇江)材料科技有限公司 水性碳纳米管浆料及其制备方法
US9394421B2 (en) * 2013-10-02 2016-07-19 Xerox Corporation Method of manufacture for graphene fluoropolymer dispersion
JP6485359B2 (ja) * 2013-12-26 2019-03-20 日本ゼオン株式会社 電気化学素子電極用複合粒子
KR101709672B1 (ko) 2014-02-13 2017-03-08 주식회사 엘지화학 이차 전지 양극 슬러리용 카본 블랙 분산액 및 이의 제조방법
US10944101B2 (en) * 2014-02-28 2021-03-09 University Of South Carolina Superior lithium ion battery electrode and methods for fabricating such
US20180287129A1 (en) * 2017-03-28 2018-10-04 Enevate Corporation Methods of forming carbon-silicon composite material on a current collector
EP2962996B8 (en) 2014-07-02 2020-12-30 Voltea Limited Method to prepare a coated current collector electrode for a flow through capacitor using two solvents with different boiling points
EP3178879B1 (en) * 2014-09-08 2023-10-11 Sumitomo Rubber Industries, Ltd. Pneumatic tire
KR102272718B1 (ko) * 2014-09-08 2021-07-05 닛산 가가쿠 가부시키가이샤 리튬 이차전지용 전극형성재료 및 전극의 제조방법
PL409373A1 (pl) * 2014-09-09 2016-03-14 Politechnika Poznańska Elektroda węglowa kondensatora elektrochemicznego stanowiąca element elektrochemicznego układu do magazynowania energii
FR3028088B1 (fr) * 2014-11-03 2016-12-23 Hutchinson Electrodes conductrices et leur procede de fabrication
CN104371041B (zh) * 2014-11-14 2017-06-09 东华大学 高效壳聚糖基碱性阴离子交换复合膜及其制备和应用
CN104538576B (zh) * 2014-12-17 2017-07-28 毛赢超 一种锂离子电池用改性陶瓷隔膜及制备方法
JP6428244B2 (ja) * 2014-12-19 2018-11-28 トヨタ自動車株式会社 非水電解質二次電池の製造方法および非水電解質二次電池
JP6851711B2 (ja) * 2015-03-26 2021-03-31 株式会社Gsユアサ 蓄電素子
JP2016219197A (ja) * 2015-05-19 2016-12-22 協立化学産業株式会社 集電体用コート剤組成物、蓄電デバイス用電極板及び蓄電デバイス
DE102015212226A1 (de) * 2015-06-30 2017-01-05 Robert Bosch Gmbh Komponente für eine Batteriezelle und Batteriezelle
KR101762900B1 (ko) * 2015-09-25 2017-07-28 롯데케미칼 주식회사 레독스 흐름 전지의 전극 제조용 슬러리 조성물 및 이를 포함하는 레독스 흐름 전지의 전극
CA2999235A1 (en) 2015-09-29 2017-04-06 Kuraray Co., Ltd. Dispersant for carbon fibers, carbon fiber dispersion composition, and method for manufacturing carbon fiber sheet
JP6613102B2 (ja) * 2015-10-28 2019-11-27 旭化成株式会社 ポリオキシメチレン樹脂組成物
CN105244507B (zh) * 2015-10-30 2017-12-08 山东理工职业学院 锂电池材料及其制备方法和锂电池
KR102482030B1 (ko) * 2015-11-20 2022-12-27 주식회사 동진쎄미켐 탄소 소재 분산용 잉크 조성물 및 그 제조방법
JP6356164B2 (ja) * 2016-01-15 2018-07-11 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト
JP6716942B2 (ja) 2016-02-18 2020-07-01 住友ゴム工業株式会社 空気入りタイヤ及び空気入りタイヤの製造方法
JP6184552B2 (ja) * 2016-05-11 2017-08-23 株式会社Uacj 集電体、電極構造体、非水電解質電池及び蓄電部品
CN106025290A (zh) * 2016-05-29 2016-10-12 合肥国轩高科动力能源有限公司 一种碳-陶瓷涂覆铝箔集流体及制备方法
JP7055589B2 (ja) * 2016-06-13 2022-04-18 東洋インキScホールディングス株式会社 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池
WO2018068267A1 (zh) * 2016-10-13 2018-04-19 宁德新能源科技有限公司 负极添加剂及含有该添加剂的极片和电化学储能装置
JP6972534B2 (ja) 2016-10-31 2021-11-24 住友ゴム工業株式会社 混練機投入用ポリマー
JP6862787B2 (ja) 2016-11-22 2021-04-21 住友ゴム工業株式会社 空気入りタイヤ
CN107785583B (zh) * 2016-11-28 2020-07-31 万向一二三股份公司 一种水系正极及其制备方法
CN108250647B (zh) * 2016-12-29 2020-06-26 深圳光启空间技术有限公司 阻隔材料、具有其的聚氨酯胶黏剂、蒙皮和飞行器
CN107331868A (zh) * 2017-07-04 2017-11-07 佛山市中技烯米新材料有限公司 一种涂布液、其使用方法及电池极片
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11005101B2 (en) * 2018-01-19 2021-05-11 Ut-Battelle, Llc Block graft copolymer binders and their use in silicon-containing anodes of lithium-ion batteries
CN108411650B (zh) * 2018-03-02 2020-06-23 苏州棠华纳米科技有限公司 一种匀染剂及其制备方法和应用
CN108649228B (zh) * 2018-03-23 2021-10-01 合肥国轩高科动力能源有限公司 一种锂离子电池硅基负极用粘结剂、负极及制备方法
US20190372186A1 (en) * 2018-05-30 2019-12-05 GM Global Technology Operations LLC Sulfone electrolytes for capacitor-assisted batteries
JP7024640B2 (ja) 2018-07-17 2022-02-24 トヨタ自動車株式会社 粒子集合体の製造方法、電極板の製造方法及び粒子集合体
JP6529700B1 (ja) * 2018-09-10 2019-06-12 昭和電工株式会社 蓄電デバイス用集電体、その製造方法、およびその製造に用いる塗工液
CN111200159B (zh) * 2018-11-16 2021-03-23 宁德时代新能源科技股份有限公司 一种电池
CN111200104B (zh) * 2018-11-16 2021-03-19 宁德时代新能源科技股份有限公司 一种电池
CN109768278A (zh) * 2018-12-15 2019-05-17 华南理工大学 一种锂离子电池
JP7145096B2 (ja) * 2019-02-12 2022-09-30 信越化学工業株式会社 微小構造体移載装置、スタンプヘッドユニット、微小構造体移載用スタンプ部品及び微小構造体集積部品の移載方法
CN110003773A (zh) * 2019-04-09 2019-07-12 刘�东 一种用于化工泵的抗静电涂料及其制备方法
JP6941637B2 (ja) * 2019-04-22 2021-09-29 第一工業製薬株式会社 電極用結着剤組成物、電極用塗料組成物、蓄電デバイス用電極、および蓄電デバイス
CN110429278A (zh) * 2019-07-10 2019-11-08 中盐安徽红四方锂电有限公司 一种用于低温型锂离子电池的负极浆料及其制备方法
JP7439428B2 (ja) 2019-09-24 2024-02-28 artience株式会社 カーボンナノチューブ分散液およびその利用
KR102317345B1 (ko) * 2020-01-03 2021-10-25 세종대학교산학협력단 전지용 전해질 및 그 제조방법.
CN111393929A (zh) * 2020-04-01 2020-07-10 郑州熙虎科技有限公司 一种古建筑用环保水性漆
CN111668490B (zh) * 2020-06-18 2021-11-23 江苏卓高新材料科技有限公司 一种水性粘结剂、其制备方法、及应用
CN115916695A (zh) * 2020-07-09 2023-04-04 大日精化工业株式会社 碳材料分散液
KR20220096781A (ko) * 2020-12-31 2022-07-07 삼성전기주식회사 적층 세라믹 전자부품
CN113409987B (zh) * 2021-08-19 2021-11-16 西安宏星电子浆料科技股份有限公司 结合剂、有机载体、正面导电银浆及其制备方法和太阳能电池
CN113793936B (zh) * 2021-08-24 2023-04-11 广州市乐基智能科技有限公司 一种用于固态锂电池的复合粘结剂及其制备方法和应用
KR102626081B1 (ko) 2021-09-17 2024-01-18 나노캡 주식회사 전기에너지 저장장치용 무용제 전극의 제조방법
JP7098077B1 (ja) * 2021-10-04 2022-07-08 大日精化工業株式会社 カーボン材料分散液の製造方法
WO2023095771A1 (ja) * 2021-11-26 2023-06-01 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成組成物
JP7089127B1 (ja) * 2022-02-17 2022-06-21 大日精化工業株式会社 水性塗工液、蓄電装置用電極、及び蓄電装置
KR102558449B1 (ko) * 2022-10-14 2023-07-24 주식회사 한솔케미칼 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
CN115895356B (zh) * 2022-11-23 2023-12-26 昆山汉品电子有限公司 一种用于硅晶圆切割的保护材料及其制备方法
CN116333545A (zh) * 2023-03-22 2023-06-27 江苏铭丰电子材料科技有限公司 一种锂离子电池电解铜箔防氧化液及其制备方法
CN116396643A (zh) * 2023-04-03 2023-07-07 嘉兴纳科新材料有限公司 一种耐酸碱导电涂料复合金属电极板及制备方法
CN117954231A (zh) * 2024-03-25 2024-04-30 深圳新宙邦科技股份有限公司 一种电容器密封板及电容器

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310456A (ja) 1986-07-02 1988-01-18 Mitsubishi Electric Corp メタルハライドランプ
JPH03285262A (ja) 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池の正極の製造法
JPH05194912A (ja) * 1991-11-15 1993-08-03 Asahi Chem Ind Co Ltd 水性コーティング剤
JP2001006436A (ja) * 1999-06-25 2001-01-12 Murata Mfg Co Ltd 導電性厚膜ペーストおよびその製造方法ならびにこれを用いた積層セラミックコンデンサ
JP2002042817A (ja) * 2000-05-15 2002-02-08 Denso Corp リチウム二次電池およびその正極の製造方法
JP2003272619A (ja) * 2002-03-13 2003-09-26 Hitachi Powdered Metals Co Ltd 非水系二次電池の負極塗膜形成用スラリーおよび該スラリーの調整方法
JP2006134777A (ja) * 2004-11-08 2006-05-25 Erekuseru Kk リチウム電池用正極及びこれを用いたリチウム電池
JP2007224263A (ja) * 2006-01-25 2007-09-06 Dainichiseika Color & Chem Mfg Co Ltd ヒドロキシアルキル化キトサン溶液
JP2008060060A (ja) * 2006-08-04 2008-03-13 Kyoritsu Kagaku Sangyo Kk 電極板製造用塗工液、アンダーコート剤およびその使用
JP2008184485A (ja) 2007-01-26 2008-08-14 Admatechs Co Ltd フィラー含有水スラリー組成物
WO2008123143A1 (ja) * 2007-03-23 2008-10-16 Zeon Corporation リチウムイオン二次電池電極用スラリーの製造方法
JP2009026744A (ja) 2007-06-18 2009-02-05 Toyo Ink Mfg Co Ltd 電池用組成物
JP2009064564A (ja) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法、それに用いられるスラリー及び非水電解質電池
JP2009148681A (ja) 2007-12-19 2009-07-09 Taiyo Ink Mfg Ltd スラリー組成物
JP2009170287A (ja) * 2008-01-17 2009-07-30 Mitsubishi Chemicals Corp 非水系電解液二次電池用電極及びそれを用いた非水系電解液二次電池
JP2009238720A (ja) 2008-01-10 2009-10-15 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683821B1 (fr) 1991-11-15 1998-11-20 Asahi Chemical Ind Polysaccharide, polysaccharide neutralise et composition comprenant ce dernier.
JP3285262B2 (ja) 1993-10-14 2002-05-27 株式会社リコー 画像支持体の再生方法および該再生方法に使用する装置
JPH09227633A (ja) 1996-02-23 1997-09-02 Dai Ichi Kogyo Seiyaku Co Ltd エチレン−ビニルアルコール共重合体変性物、その製造方法、前記変性物を含有する水溶性フィルム、水溶性包装材料及び水溶性ホットメルト接着剤
JP3973003B2 (ja) 1998-04-13 2007-09-05 Tdk株式会社 シート型電気化学素子
JPH11323175A (ja) 1998-05-12 1999-11-26 Tokai Carbon Co Ltd 易水分散性カーボンブラックとその製造方法
TW513472B (en) 2000-07-12 2002-12-11 Dainichiseika Color & Amp Chem Aqueous compositions and process for the surface modification of articles by use of the aqueous compositions
US6869710B2 (en) 2001-02-09 2005-03-22 Evionyx, Inc. Metal air cell system
US6790561B2 (en) * 2001-03-15 2004-09-14 Wilson Greatbatch Ltd. Process for fabricating continuously coated electrodes on a porous current collector and cell designs incorporating said electrodes
US6709788B2 (en) 2001-05-11 2004-03-23 Denso Corporation Lithium secondary cell and method of producing lithium nickel metal oxide positive electrode therefor
JP2003206409A (ja) * 2002-01-11 2003-07-22 Nippon Parkerizing Co Ltd 加熱架橋性組成物、水性溶液組成物および複合材
JP2004186218A (ja) * 2002-11-29 2004-07-02 Honda Motor Co Ltd 電気二重層コンデンサ用電極体
US6917094B2 (en) 2002-11-29 2005-07-12 Honda Motor Co., Ltd Electrode for electric double layer capacitor
JP3789427B2 (ja) 2002-11-29 2006-06-21 本田技研工業株式会社 電気二重層コンデンサ用電極体
JP2004210980A (ja) 2003-01-06 2004-07-29 Hitachi Chem Co Ltd バインダー樹脂組成物、合剤スラリー、電極及びこれらを用いて作製した非水電解液系二次電池
JP2005129437A (ja) * 2003-10-27 2005-05-19 Canon Inc 非水電解質二次電池用電極構造体及びその製造方法、前記電極構造体を備えた非水電解質二次電池及びその製造方法
JP5010097B2 (ja) 2004-07-23 2012-08-29 昭和電工パッケージング株式会社 電子部品ケース用包材及び電子部品用ケース並びに電子部品
WO2006085691A1 (en) * 2005-02-10 2006-08-17 Showa Denko K.K Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
KR101357464B1 (ko) 2005-02-10 2014-02-03 쇼와 덴코 가부시키가이샤 이차전지용 집전기, 이차전지 양극, 이차전지 음극, 이차전지 및 그들의 제조 방법
CN103730262A (zh) * 2005-03-30 2014-04-16 日本瑞翁株式会社 双电层电容器用电极、其材料及制造方法、双电层电容器
JP2006286344A (ja) * 2005-03-31 2006-10-19 Kyoritsu Kagaku Sangyo Kk リチウム非水電解質電池、およびその製造方法
JP2006310010A (ja) 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2007095641A (ja) 2005-09-26 2007-04-12 Masaru Sugita 電池構成材料
JP4499795B2 (ja) * 2005-10-11 2010-07-07 昭和電工株式会社 電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、及び電気二重層キャパシタ、並びにそれらの製造方法
WO2008004430A1 (en) * 2006-07-06 2008-01-10 Panasonic Corporation Method for production of member for secondary battery, apparatus for production of the member, and secondary battery using the member
TWI332284B (en) 2006-12-29 2010-10-21 Ind Tech Res Inst A battery electrode paste composition containing modified maleimides
KR101422071B1 (ko) 2007-09-21 2014-08-13 주식회사 동진쎄미켐 플라즈마 디스플레이 패널 전극 형성용 슬러리 조성물
JP5194912B2 (ja) 2008-03-17 2013-05-08 信越半導体株式会社 スーパージャンクション構造を有する半導体素子の製造方法
JP2009277783A (ja) 2008-05-13 2009-11-26 Japan Gore Tex Inc 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ
JP5320394B2 (ja) * 2008-06-02 2013-10-23 大日精化工業株式会社 塗工液、電極板製造用塗工液、アンダーコート剤およびその使用
DE102008034109B4 (de) 2008-07-21 2016-10-13 Dspace Digital Signal Processing And Control Engineering Gmbh Schaltung zur Nachbildung einer elektrischen Last
JP5367826B2 (ja) 2009-08-27 2013-12-11 大日精化工業株式会社 炭素フィラー用分散剤
CN101806766B (zh) 2010-04-09 2013-01-02 济南大学 一种羟丙基壳聚糖/碳纳米管修饰的电化学传感器及其制备方法和应用
WO2011155959A1 (en) 2010-06-11 2011-12-15 The Ohio State University Research Foundation Chemically linked hydrogel materials and uses thereof in electrodes and/or electrolytes in electrochemical energy devices

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310456A (ja) 1986-07-02 1988-01-18 Mitsubishi Electric Corp メタルハライドランプ
JPH03285262A (ja) 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池の正極の製造法
JPH05194912A (ja) * 1991-11-15 1993-08-03 Asahi Chem Ind Co Ltd 水性コーティング剤
JP2001006436A (ja) * 1999-06-25 2001-01-12 Murata Mfg Co Ltd 導電性厚膜ペーストおよびその製造方法ならびにこれを用いた積層セラミックコンデンサ
JP2002042817A (ja) * 2000-05-15 2002-02-08 Denso Corp リチウム二次電池およびその正極の製造方法
JP2003272619A (ja) * 2002-03-13 2003-09-26 Hitachi Powdered Metals Co Ltd 非水系二次電池の負極塗膜形成用スラリーおよび該スラリーの調整方法
JP2006134777A (ja) * 2004-11-08 2006-05-25 Erekuseru Kk リチウム電池用正極及びこれを用いたリチウム電池
JP2007224263A (ja) * 2006-01-25 2007-09-06 Dainichiseika Color & Chem Mfg Co Ltd ヒドロキシアルキル化キトサン溶液
JP2008060060A (ja) * 2006-08-04 2008-03-13 Kyoritsu Kagaku Sangyo Kk 電極板製造用塗工液、アンダーコート剤およびその使用
JP2008184485A (ja) 2007-01-26 2008-08-14 Admatechs Co Ltd フィラー含有水スラリー組成物
WO2008123143A1 (ja) * 2007-03-23 2008-10-16 Zeon Corporation リチウムイオン二次電池電極用スラリーの製造方法
JP2009026744A (ja) 2007-06-18 2009-02-05 Toyo Ink Mfg Co Ltd 電池用組成物
JP2009064564A (ja) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法、それに用いられるスラリー及び非水電解質電池
JP2009148681A (ja) 2007-12-19 2009-07-09 Taiyo Ink Mfg Ltd スラリー組成物
JP2009238720A (ja) 2008-01-10 2009-10-15 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP2009170287A (ja) * 2008-01-17 2009-07-30 Mitsubishi Chemicals Corp 非水系電解液二次電池用電極及びそれを用いた非水系電解液二次電池

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"New Mixing and Dispersion Technology for Conductive Fillers and Measures for Mixing and Dispersion Failures", 2004, TECHNICAL INFORMATION INSTITUTE CO., LTD, article "Causes of Mixing and Dispersion Failures for Conductive Fillers", pages: 20
JOE, KIYOKAZU: "Technological Development of Dispersing Agents for Water Borne Coating Materials", JETI, vol. 44, no. 10, 1996, pages 110 - 112
KAMIYA, HIROHIDE: "Evaluation and Control of Agglomeration/Dispersion Behavior of Microparticles in Water System", MATERIAL STAGE, vol. 2, no. 1, 2002, pages 54 - 60
See also references of EP2471869A4
TACHIBANA, HIROKAZU: "Material Stage", vol. 8, 2009, TECHNICAL INFORMATION INSTITUTE CO., LTD., article "Preparation, Coating and Drying of Positive Electrode Slurry for Lithium Ion Secondary Cells, and Understanding of Electrode Operations", pages: 72 - 75

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447497A (en) * 1987-08-12 1989-02-21 Ngk Insulators Ltd Device for detecting clogging degree of diffuser
JP2011187320A (ja) * 2010-03-09 2011-09-22 Kansai Univ 電解質及び該電解質を備えた電気化学デバイス
US10026962B2 (en) 2010-05-03 2018-07-17 Georgia Tech Research Corporation Alginate-containing compositions for use in battery applications
US20120088155A1 (en) * 2010-05-03 2012-04-12 Gleb Yushin Alginate-containing compositions for use in battery applications
US8652688B2 (en) * 2010-05-03 2014-02-18 Clemson University Alginate-containing compositions for use in battery applications
JP2012074369A (ja) * 2010-09-02 2012-04-12 Showa Denko Kk 集電体および集電体の製造方法
WO2012043501A1 (ja) * 2010-09-27 2012-04-05 住友化学株式会社 スラリー及び該スラリーを使用したセパレータの製造方法
EP2679625A4 (en) * 2011-02-23 2015-01-14 Dainichiseika Color Chem AQUEOUS LIQUID COMPOSITION, AQUEOUS COATING, FUNCTIONAL COATING FILM, AND COMPOSITE MATERIAL
EP2679625A1 (en) * 2011-02-23 2014-01-01 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous liquid composition, aqueous coating, functional coating film, and composite material
US9725606B2 (en) 2011-02-23 2017-08-08 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous liquid composition, aqueous coating, functional coating film, and composite material
KR101907449B1 (ko) * 2011-07-29 2018-10-12 가부시키가이샤 유에이씨제이 집전체, 전극 구조체, 비수전해질 전지, 축전 부품
US20140255788A1 (en) * 2011-07-29 2014-09-11 Uacj Foil Corporation Collector, electrode structure, non-aqueous electrolyte battery, and electrical storage device
CN103733399A (zh) * 2011-07-29 2014-04-16 株式会社Uacj 集电体以及使用该集电体的电极结构体、非水电解质电池、双电层电容器、锂离子电容器或蓄电部件
CN103733399B (zh) * 2011-07-29 2016-03-02 株式会社Uacj 集电体以及使用该集电体的电极结构体、非水电解质电池、双电层电容器、锂离子电容器或蓄电部件
JP2013041697A (ja) * 2011-08-12 2013-02-28 National Institute Of Advanced Industrial & Technology リチウムイオン二次電池用電極
JP2016192409A (ja) * 2012-04-09 2016-11-10 昭和電工株式会社 電気化学素子用集電体の製造方法、電気化学素子用電極の製造方法、及び、電気化学素子用集電体を作製するための塗工液
KR20140137395A (ko) * 2012-04-09 2014-12-02 쇼와 덴코 가부시키가이샤 전기 화학 소자용 집전체의 제조 방법, 전기 화학 소자용 전극의 제조 방법, 전기 화학 소자용 집전체, 전기 화학 소자 및 전기 화학 소자용 집전체를 제작하기 위한 도공액
CN104247111A (zh) * 2012-04-09 2014-12-24 昭和电工株式会社 电化学元件用集电体的制造方法、电化学元件用电极的制造方法、电化学元件用集电体、电化学元件、以及用于制作电化学元件用集电体的涂布液
WO2013153916A1 (ja) * 2012-04-09 2013-10-17 昭和電工株式会社 電気化学素子用集電体の製造方法、電気化学素子用電極の製造方法、電気化学素子用集電体、電気化学素子、及び、電気化学素子用集電体を作製するための塗工液
KR101658297B1 (ko) * 2012-04-09 2016-09-22 쇼와 덴코 가부시키가이샤 전기 화학 소자용 집전체의 제조 방법, 전기 화학 소자용 전극의 제조 방법, 전기 화학 소자용 집전체, 전기 화학 소자 및 전기 화학 소자용 집전체를 제작하기 위한 도공액
JPWO2013153916A1 (ja) * 2012-04-09 2015-12-17 昭和電工株式会社 電気化学素子用集電体の製造方法、電気化学素子用電極の製造方法、電気化学素子用集電体、電気化学素子、及び、電気化学素子用集電体を作製するための塗工液
US9515316B2 (en) 2012-04-27 2016-12-06 Showa Denko K.K. Method for producing anode active material for secondary battery, anode active material for secondary battery, method for producing anode for secondary battery, anode for secondary battery, and secondary battery
WO2013161748A1 (ja) 2012-04-27 2013-10-31 昭和電工株式会社 二次電池用負極活物質の製造方法および二次電池用負極活物質、二次電池用負極の製造方法および二次電池用負極、ならびに二次電池
WO2013161749A1 (ja) 2012-04-27 2013-10-31 昭和電工株式会社 二次電池用負極およびその製造方法、ならびに二次電池
US9774029B2 (en) 2012-04-27 2017-09-26 Showa Denko K.K. Anode for secondary battery, method for producing same, and secondary battery
US20150255788A1 (en) * 2012-09-26 2015-09-10 Showa Denko K.K. Negative electrode for secondary battery and secondary battery
JP2014107191A (ja) * 2012-11-29 2014-06-09 Mikuni Color Ltd カーボンナノチューブを用いた分散スラリー及びリチウムイオン二次電池
WO2014133067A1 (ja) * 2013-02-27 2014-09-04 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
JPWO2014133067A1 (ja) * 2013-02-27 2017-02-02 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
JP2014211995A (ja) * 2013-04-18 2014-11-13 日立マクセル株式会社 非水二次電池
JP2015092463A (ja) * 2013-09-30 2015-05-14 株式会社Gsユアサ 蓄電素子
JP2015170392A (ja) * 2014-03-04 2015-09-28 三菱レイヨン株式会社 非水二次電池電極用バインダ樹脂、非水二次電池電極用バインダ樹脂組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極、および非水二次電池
JPWO2015141464A1 (ja) * 2014-03-19 2017-04-06 日本ゼオン株式会社 電気化学素子電極用複合粒子
WO2015141464A1 (ja) * 2014-03-19 2015-09-24 日本ゼオン株式会社 電気化学素子電極用複合粒子
KR101680466B1 (ko) * 2014-04-29 2016-11-28 주식회사 엘지화학 음극 활물질 슬러리, 이의 제조방법 및 이를 포함하는 음극
JPWO2016021405A1 (ja) * 2014-08-08 2017-05-25 住友電気工業株式会社 ナトリウムイオン二次電池用正極およびナトリウムイオン二次電池
WO2016021405A1 (ja) * 2014-08-08 2016-02-11 住友電気工業株式会社 ナトリウムイオン二次電池用正極およびナトリウムイオン二次電池
US10270104B2 (en) 2014-08-08 2019-04-23 Sumitomo Electric Industries, Ltd. Positive electrode for sodium ion secondary battery and sodium ion secondary battery
WO2016031562A1 (ja) * 2014-08-26 2016-03-03 大日精化工業株式会社 塗工液、塗工膜、及び複合材料
US10619070B2 (en) 2014-08-26 2020-04-14 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Coating liquid, coating film, and composite material

Also Published As

Publication number Publication date
JP5367826B2 (ja) 2013-12-11
TW201126796A (en) 2011-08-01
US9834688B2 (en) 2017-12-05
EP2472646A4 (en) 2014-11-26
EP2472528B1 (en) 2023-04-19
EP2472528A1 (en) 2012-07-04
EP2471869A4 (en) 2016-11-09
TWI457170B (zh) 2014-10-21
TW201128838A (en) 2011-08-16
KR101489042B1 (ko) 2015-02-02
JP5499040B2 (ja) 2014-05-21
TWI500058B (zh) 2015-09-11
EP2472646A1 (en) 2012-07-04
US8945767B2 (en) 2015-02-03
KR20120061927A (ko) 2012-06-13
TWI451615B (zh) 2014-09-01
CN102483977A (zh) 2012-05-30
TW201128667A (en) 2011-08-16
CN102483976A (zh) 2012-05-30
TWI451616B (zh) 2014-09-01
KR20120061925A (ko) 2012-06-13
CN102483977B (zh) 2013-09-11
US9359509B2 (en) 2016-06-07
JP5318215B2 (ja) 2013-10-16
EP2472527A4 (en) 2014-11-05
CN102576854B (zh) 2015-03-11
US9359508B2 (en) 2016-06-07
KR101420029B1 (ko) 2014-08-01
JP2014095081A (ja) 2014-05-22
WO2011024799A1 (ja) 2011-03-03
CN102483976B (zh) 2015-12-02
KR101489043B1 (ko) 2015-02-02
JPWO2011024799A1 (ja) 2013-01-31
EP2472528A4 (en) 2014-11-19
EP2472527B1 (en) 2022-07-27
EP2471869A1 (en) 2012-07-04
CN102498175A (zh) 2012-06-13
US20120156563A1 (en) 2012-06-21
JP5499041B2 (ja) 2014-05-21
JP5695170B2 (ja) 2015-04-01
TW201113082A (en) 2011-04-16
US8628610B2 (en) 2014-01-14
KR101420028B1 (ko) 2014-07-15
WO2011024798A1 (ja) 2011-03-03
US20160244620A1 (en) 2016-08-25
KR20120061929A (ko) 2012-06-13
JPWO2011024798A1 (ja) 2013-01-31
US20120156562A1 (en) 2012-06-21
JPWO2011024800A1 (ja) 2013-01-31
US20120148917A1 (en) 2012-06-14
EP2472646B1 (en) 2022-07-06
KR20120061926A (ko) 2012-06-13
CN102576854A (zh) 2012-07-11
US20120160128A1 (en) 2012-06-28
WO2011024800A1 (ja) 2011-03-03
JPWO2011024797A1 (ja) 2013-01-31
CN102498175B (zh) 2015-03-11
EP2472527A1 (en) 2012-07-04
EP2471869B1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
JP5695170B2 (ja) 水系スラリー組成物、蓄電装置用電極板及び蓄電装置
JP5038751B2 (ja) 電極板製造用塗工液、アンダーコート剤およびその使用
KR101521036B1 (ko) 수성 액상 조성물, 수성 도공액, 기능성 도공막 및 복합재료
EP2679625B1 (en) Aqueous liquid composition, aqueous coating, functional coating film, and composite material
JP7089127B1 (ja) 水性塗工液、蓄電装置用電極、及び蓄電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038131.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011528793

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 223/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010811847

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13392034

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127007752

Country of ref document: KR

Kind code of ref document: A