WO2013018688A1 - 集電体、電極構造体、非水電解質電池及び蓄電部品 - Google Patents

集電体、電極構造体、非水電解質電池及び蓄電部品 Download PDF

Info

Publication number
WO2013018688A1
WO2013018688A1 PCT/JP2012/069123 JP2012069123W WO2013018688A1 WO 2013018688 A1 WO2013018688 A1 WO 2013018688A1 JP 2012069123 W JP2012069123 W JP 2012069123W WO 2013018688 A1 WO2013018688 A1 WO 2013018688A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
resin layer
contact angle
resin
water contact
Prior art date
Application number
PCT/JP2012/069123
Other languages
English (en)
French (fr)
Inventor
加藤 治
聡平 斉藤
幸翁 本川
和佐本 充幸
角脇 賢一
郷史 山部
Original Assignee
古河スカイ株式会社
日本製箔株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河スカイ株式会社, 日本製箔株式会社 filed Critical 古河スカイ株式会社
Priority to EP12819513.8A priority Critical patent/EP2738853B1/en
Priority to US14/235,782 priority patent/US9336959B2/en
Priority to JP2013526879A priority patent/JP6140073B2/ja
Priority to CN201280036492.9A priority patent/CN103733401B/zh
Priority to KR1020147004366A priority patent/KR20140051328A/ko
Publication of WO2013018688A1 publication Critical patent/WO2013018688A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a current collector, an electrode structure, a nonaqueous electrolyte battery, and a power storage component (such as an electric double layer capacitor and a lithium ion capacitor) suitable for charging and discharging at a large current density.
  • a power storage component such as an electric double layer capacitor and a lithium ion capacitor
  • non-aqueous electrolyte batteries typified by lithium ion batteries have been required to shorten the charging time, and for this purpose, they must be charged at a large current density.
  • non-aqueous electrolyte batteries for automobiles are required to be able to discharge at a high current density in order to obtain sufficient acceleration performance.
  • the internal resistance includes interfacial resistance between constituent elements and resistance to movement of ions as charged particles in the electrolyte, and these must be reduced.
  • one of the important internal resistances is the interface resistance, and it is known that improving the adhesion between the components is effective as one of the methods for reducing the interface resistance.
  • Patent Document 1 discloses a metal foil made of hydroxyalkyl chitosan. Techniques for coating are disclosed.
  • Patent Document 1 when the present inventors conducted experiments, the technique described in Patent Document 1 may not always provide a sufficient high rate characteristic.
  • the present invention has been made in view of such circumstances, and can reduce the internal resistance of a nonaqueous electrolyte battery, such as a nonaqueous electrolyte battery such as a lithium ion secondary battery, a capacitor for an electric double layer, a lithium ion capacitor, etc. It is an object of the present invention to provide a current collector that can be suitably used for such power storage components and can improve high-rate characteristics.
  • a nonaqueous electrolyte battery such as a lithium ion secondary battery, a capacitor for an electric double layer, a lithium ion capacitor, etc.
  • a current collector as described below, it is possible to obtain a non-aqueous electrolyte battery excellent in high-rate characteristics, a charged component such as an electric double layer capacitor or a lithium ion capacitor.
  • a current collector having a conductive resin layer on at least one surface of a conductive substrate, the resin layer including a chitosan-based resin and a conductive material, A current collector having a water contact angle of 5 degrees or more and 60 degrees or less measured in a constant temperature room at 0 ° C., and an electrode structure including the current collector, a non-aqueous electrolyte battery
  • a power storage component eg, an electric double layer capacitor or a lithium ion capacitor
  • the present inventors have intensively studied to improve the high rate characteristics of nonaqueous electrolyte batteries and the like, and found that the water contact angle on the surface of the resin layer is strongly correlated with the high rate characteristics. And when the water contact angle was 5 degrees or more and 60 degrees or less, it discovered that the high rate characteristic was very excellent and came to completion of this invention.
  • the present invention is based on two findings.
  • the first finding is that the high rate characteristic is good when the water contact angle is 60 degrees or less.
  • the contact angle is one of indexes indicating whether different materials are likely to adhere to each other. The smaller the contact angle, the higher the adhesion between different materials. Therefore, when the contact angle is 60 degrees or less, the adhesiveness between the conductive substrate and the resin layer, and between the resin layer and the active material layer is increased, and the high rate characteristic is improved.
  • the high rate characteristics are good when the water contact angle is 5 degrees or more.
  • the contact angle is one of the indexes indicating whether different materials are likely to adhere to each other. Therefore, the smaller the contact angle, the higher the adhesion between different materials.
  • the inventors initially thought that there is no lower limit to the range of preferred water contact angles, and that the smaller the water contact angle, the better the adhesion between different materials and the higher the high rate characteristics.
  • the high rate characteristics deteriorate when the water contact angle is less than 5 degrees. The reason why such a result was obtained is currently under investigation and is not necessarily clear, but if the water contact angle is too small, the adhesion between the conductive substrate and the resin layer is deteriorated. I guess that.
  • the water contact angle of the resin layer is not uniquely determined by the material composition of the resin layer, and changes greatly when the method of forming the resin layer changes.
  • the present inventors actually conducted an experiment, even when the resin material has the same composition, the water contact angle of the resin layer is greatly changed by changing the drying temperature, the drying time, and the drying method. Even if the composition and the drying temperature are known, the water contact angle changes only by changing the production conditions such as the drying time. Therefore, it has been found that the determination of the water contact angle is extremely important in the present invention.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a current collector according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a configuration of an electrode structure formed using the current collector of one embodiment of the present invention.
  • a current collector 1 of the present invention is a current collector 1 having a conductive resin layer (current collector resin layer) 5 on at least one surface of a conductive base material 3.
  • the layer 5 includes a chitosan-based resin and a conductive material, and has a water contact angle of 5 degrees or more and 60 degrees or less measured by the ⁇ / 2 method in a constant temperature room at 23 ° C. on the surface of the resin layer 5. Further, as shown in FIG.
  • Conductive base material As the conductive base material of the present invention, various metal foils for non-aqueous electrolyte batteries, electric double layer capacitors, or lithium ion capacitors can be used. Specifically, aluminum, aluminum alloy, copper, stainless steel, nickel, etc. can be used. Among these, aluminum, an aluminum alloy, and copper are preferable from the balance between high conductivity and cost. When aluminum foil is used as the positive electrode, 1000 and 3000 series materials can be widely used. However, since the present invention aims to improve the high-rate characteristics, a pure aluminum system such as JIS A1085 having high conductivity is used. It is preferable to use it.
  • the thickness of the conductive substrate is not particularly limited, but is preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the thickness is less than 0.5 ⁇ m, the strength of the foil is insufficient and it may be difficult to form a resin layer or the like.
  • it exceeds 50 ⁇ m other components, particularly the active material layer or the electrode material layer, must be thinned. Especially, non-aqueous electrolyte batteries, electric double layer capacitors, lithium ion capacitors and other power storage components In such a case, a sufficient capacity may not be obtained.
  • the resin layer which added the electrically conductive material on the conductive base material is formed.
  • the method for forming the conductive resin layer is not particularly limited, but it is preferable to apply a resin solution, dispersion, paste, or the like onto the conductive substrate.
  • a coating method a roll coater, a gravure coater, a slit die coater or the like can be used.
  • the resin used in the present invention must be a chitosan resin.
  • the chitosan resin is a resin containing a chitosan derivative as a resin component.
  • a chitosan derivative as a resin component.
  • the chitosan-based resin one having a chitosan derivative of 100% by mass can be used, but it can also be used in combination with other resin components.
  • at least the chitosan derivative is 50% by mass with respect to the total resin components. % Or more, and particularly preferably 80% by mass or more.
  • the chitosan derivative is, for example, hydroxyalkyl chitosan.
  • hydroxyethyl chitosan, hydroxypropyl chitosan, hydroxybutyl chitosan, glycerylated chitosan is preferable, and glycerylated chitosan is particularly preferable.
  • the chitosan resin preferably contains an organic acid. Examples of organic acids include pyromellitic acid and terephthalic acid. The addition amount of the organic acid is preferably 20 to 300 parts by mass, more preferably 50 to 150 parts by mass with respect to 100 parts by mass of the chitosan derivative.
  • the weight average molecular weight of the chitosan derivative is, for example, 30,000 to 500,000, specifically, for example, 30,000, 40,000, 50,000, 60,000, 80,000, 90,000, 100,000, 150,000, It may be 200,000 or 500,000, and may be within a range between any two of the numerical values exemplified here.
  • the weight average molecular weight means that measured by GPC (gel exclusion chromatograph).
  • the conductive resin layer of the present invention is provided between the conductive substrate and the active material layer or the electrode material layer, and serves as a passage for electrons moving between them, so that this electron conductivity is necessary. Since the nitrified cotton-based resin itself has high insulation, a conductive material must be blended in order to impart electron conductivity.
  • the conductive material used in the present invention known carbon powder, metal powder, and the like can be used. Among them, carbon powder is preferable.
  • As the carbon powder acetylene black, ketjen black, furnace black, carbon nanotubes and the like can be used.
  • the addition amount of the conductive material is preferably 30 to 100 parts by mass, and preferably 50 to 80 parts by mass with respect to 100 parts by mass of the resin component of the resin layer. This is because if the amount is less than 50 parts by mass, the volume resistivity of the resin layer becomes high, and if it exceeds 80 parts by mass, the adhesion to the conductive substrate decreases.
  • a known method can be used to disperse the conductive material in the resin component liquid of the nitrified cotton-based resin.
  • the conductive material can be dispersed by using a planetary mixer, a ball mill, a homogenizer, or the like.
  • the water contact angle on the surface of the resin layer of the present invention needs to be 5 degrees or more and 60 degrees or less. Even if a resin layer is formed simply by adding a conductive material to the resin, sufficient adhesion is obtained at the interface between the conductive base material and the resin layer, the interface between the resin layer and the active material layer, or the interface between the resin layer and the electrode material layer. It may not be obtained. This is because even if it is a chitosan resin, the state of the resin layer changes depending on the type and forming conditions of the resin.
  • the water contact angle means a value obtained by measurement by the ⁇ / 2 method in a constant temperature room of 23 ° C.
  • the water contact angle can be measured using a contact angle meter.
  • a contact angle is measured by adhering several ⁇ l of pure water to pure water on the surface. Since the surface tension of water changes with temperature, the water contact angle is measured in a thermostatic chamber at 23 ° C.
  • the water contact angle is particularly preferably 15 degrees or more and 40 degrees or less.
  • the regulation of the water contact angle of the present invention is not only about the adhesion between the resin and the active material layer or the electrode material layer, but also considering the adhesion between the conductive substrate and the resin layer, As described above, the current collector of the present invention having a defined water contact angle can impart high rate characteristics satisfactorily when used in a battery or a charged part as an electrode structure.
  • a resin layer can be formed by a known method on at least one surface of the conductive base material such as the aluminum foil described above, but the water contact angle is as described above. It is necessary to.
  • the baking temperature and baking time affect the water contact angle.
  • the baking temperature is preferably 120 to 250 ° C. as the temperature reached by the conductive substrate, and the baking time is preferably 15 to 180 seconds. This is because when the resin layer is formed under such conditions, the water contact angle on the surface contributes to adjustment within the range of 5 degrees or more and 60 degrees or less.
  • the baking temperature and baking time are within the above range. Even within, the water contact angle may be less than 5 degrees or may exceed 60 degrees. Conversely, even if the baking temperature and baking time are outside the above ranges, the water contact angle may be within the range of 5 to 60 degrees.
  • the higher the baking temperature and the longer the baking time the greater the water contact angle. Therefore, in order to set the water contact angle to 5 degrees or more and 60 degrees or less, first, a resin layer is formed under certain conditions, the water contact angle is measured in the formed resin layer, and the measured water contact angle is 5 degrees. If the temperature is smaller, the baking temperature is increased or the baking time is lengthened, and if the measured water contact angle is larger than 60 degrees, the baking temperature is lowered or the baking time is shortened. Therefore, the value of the water contact angle is not determined only by the resin composition and the baking temperature, but if the above method is used, the water contact angle can be set to a desired value with only a few trials and errors. It is.
  • the current collector of the present invention when used, even when an active material layer or an electrode material layer is formed and the electrolyte solution is infiltrated, sufficient adhesion is provided at the interface between the resin layer and the active material layer or the resin layer and the electrode material layer. In addition to ensuring, sufficient adhesion can also be secured at the interface with the conductive substrate. Further, even after repeated charge and discharge, no large peeling is observed, and sufficient adhesion and excellent discharge rate characteristics can be obtained.
  • the thickness of the conductive resin layer is not particularly limited, but is usually preferably 0.1 ⁇ m or more and 5 ⁇ m or less, more preferably 0.3 ⁇ m or more and 3 ⁇ m or less. If the thickness is less than 0.1 ⁇ m, the formation of the conductive resin layer may be uneven, and a portion that cannot be coated on the conductive substrate may be generated, and sufficient battery characteristics may not be obtained. On the other hand, when the thickness exceeds 5 ⁇ m, when applied to a nonaqueous electrolyte battery or a power storage component described later, the active material layer or the electrode material layer may have to be thinned accordingly, so that a sufficient capacity density cannot be obtained. There is a case.
  • the manufacturing method of the current collector of the present invention is not particularly limited, the conductive base material itself is used so that the adhesion of the surface of the conductive base material is improved when the resin layer is formed on the conductive base material. It is also effective to perform a known pretreatment. In particular, when a conductive base material such as aluminum produced by rolling is used, rolling oil or wear powder may remain, and adhesion can be improved by removing it by degreasing. The adhesion can also be improved by a dry activation treatment such as a corona discharge treatment.
  • Electrode Structure The electrode structure of the present invention can be obtained by forming an active material layer or an electrode material layer on at least one surface of the current collector of the present invention.
  • the electrode structure for an electrical storage component in which the electrode material layer is formed will be described later.
  • an electrode structure (battery component) for a non-aqueous electrolyte battery for example, a lithium ion secondary battery, using the electrode structure, a separator, a non-aqueous electrolyte solution, etc.
  • a battery component for a non-aqueous electrolyte battery, for example, a lithium ion secondary battery
  • a member other than the current collector can be a known nonaqueous battery member.
  • the active material layer formed as an electrode structure in the present invention may be conventionally proposed for non-aqueous electrolyte batteries.
  • the current collector of the present invention using aluminum as the positive electrode, LiCoO 2 , LiMnO 2 , LiNiO 2 or the like as the active material, carbon black such as acetylene black as the conductive material, and PVDF as a binder
  • the positive electrode structure of the present invention can be obtained by applying and drying the paste dispersed in the powder.
  • the negative electrode structure of the present invention for example, graphite, graphite, mesocarbon microbeads or the like are used as the active material for the current collector of the present invention using copper as the conductive substrate, and these are thickeners.
  • the negative electrode structure of the present invention can be obtained by applying and drying a paste mixed with SBR as a binder as an active material layer forming material.
  • Nonaqueous electrolyte battery The present invention may be a nonaqueous electrolyte battery.
  • the non-aqueous electrolyte battery of the present invention is sandwiched between separators impregnated with an electrolyte for a non-aqueous electrolyte battery having a non-aqueous electrolyte between the positive electrode structure and the negative electrode structure having the current collector of the present invention as a constituent element.
  • a water electrolyte battery can be constructed.
  • the nonaqueous electrolyte and the separator those used for known nonaqueous electrolyte batteries can be used.
  • carbonates or lactones can be used as a solvent.
  • a solution obtained by dissolving LiPF 6 or LiBF 4 as an electrolyte in a mixed solution of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) is used.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the separator for example, a film having a microporous made of polyolefin can be used.
  • Power storage components (electric double layer capacitors, lithium ion capacitors, etc.)
  • the electric double layer capacitor, lithium ion capacitor, etc. of the present invention can also be applied to power storage components such as electric double layer capacitors and lithium ion capacitors that require high-speed charge / discharge at a large current density. is there.
  • the electrode structure for a power storage component of the present invention is obtained by forming an electrode material layer on the current collector of the present invention. By using this electrode structure and a separator, an electrolytic solution, etc., an electric double layer capacitor, a lithium ion capacitor, etc.
  • a power storage component can be manufactured.
  • members other than the current collector can be members for known electric double layer capacitors or lithium ion capacitors.
  • the electrode material layer can be made of an electrode material, a conductive material, and a binder for both the positive electrode and the negative electrode.
  • an electricity storage component can be obtained after forming the electrode material layer on at least one side of the current collector of the present invention to form an electrode structure.
  • the electrode material those conventionally used as electrode materials for electric double layer capacitors and lithium ion capacitors can be used.
  • carbon powder or carbon fiber such as activated carbon or graphite can be used.
  • the conductive material carbon black such as acetylene black can be used.
  • the binder for example, PVDF (polyvinylidene fluoride) or SBR (styrene butadiene rubber) can be used.
  • the electric storage component of the present invention can constitute an electric double layer capacitor or a lithium ion capacitor by fixing the electrode structure of the present invention with a separator interposed therebetween and allowing the electrolyte to penetrate into the separator.
  • a separator for example, a polyolefin microporous film, an electric double layer capacitor nonwoven fabric, or the like can be used.
  • carbonates and lactones can be used as the solvent in the electrolyte, and the electrolyte includes tetraethylammonium salt and triethylmethylammonium salt as the cation, and hexafluorophosphate and tetrafluoroborate as the anion. Can be used.
  • a lithium ion capacitor is a combination of a negative electrode of a lithium ion battery and a positive electrode of an electric double layer capacitor.
  • the thickness of the resin layer was calculated from the difference in thickness between the resin layer formed part and the non-formed part (aluminum foil only part) using a film thickness measuring instrument Keitaro G (manufactured by Seiko em). .
  • ⁇ Electric resistance of resin layer> A cubic copper block having a side of 20 mm was placed on the resin layer (the surface in contact with the resin was mirror-finished), and a load of 700 gf was applied to measure the electrical resistance between the aluminum foil and the copper block.
  • Water contact angle measurement> Water contact angle was measured using a contact angle meter (Dropmaster DM-500, manufactured by Kyowa Interface Science Co., Ltd.), 2 ⁇ l of pure water was attached to the resin layer surface in a constant temperature room at 23 ° C., and the contact angle after 2 seconds was ⁇ Measured by the / 2 method.
  • a contact angle meter Dropmaster DM-500, manufactured by Kyowa Interface Science Co., Ltd.
  • Lithium-ion battery discharge rate characteristics evaluation, electrode life evaluation> ⁇ Method for producing lithium ion battery>
  • a paste prepared by dispersing an active material LiCoO 2 and a conductive material acetylene black in a binder PVDF (polyvinylidene fluoride) to a thickness of 70 ⁇ m was applied to each of the current collectors.
  • an active material graphite dispersed in CMC (carboxymethylcellulose) and then a paste mixed with a binder SBR (styrene butadiene rubber) was applied to a 20 ⁇ m thick copper foil at a thickness of 70 ⁇ m. It was.
  • a coin battery was produced by placing a polypropylene microporous separator between these electrode structures in a battery case.
  • an electrolytic solution obtained by adding 1M LiPF 6 to a mixed solution of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) was used.
  • ⁇ Discharge rate characteristics evaluation method> The discharge capacities of these lithium ion batteries (0,0,5, 10 and 20 C) at a charge upper limit voltage of 4.2 V, a charge current of 0.2 C, a discharge end voltage of 2.8 V and a temperature of 25 ° C. 2C standard, unit%).
  • Example 1 to 5 it can be seen that particularly excellent high-rate characteristics were exhibited when the water contact angle was 15 degrees or more and 40 degrees or less. Further, referring to Examples 6 to 9, it can be seen that particularly high-rate characteristics were exhibited when the content of the conductive material was 50 to 80 parts by mass with respect to 100 parts by mass of the resin.
  • Electrode structure 9 Active material layer or electrode material layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の目的は非水電解質電池の内部抵抗を低減でき、リチウムイオン二次電池等の非水電解質電池や電気二重層用キャパシタやリチウムイオンキャパシタ等の蓄電部品に好適に用いることができ、ハイレート特性を向上させることができる集電体を提供することである。本発明によれば、導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層はキトサン系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した水接触角が5度以上60度以下であることを特徴とする集電体、および、この集電体を具備した電極構造体、非水電解質電池、蓄電部品が提供される。

Description

集電体、電極構造体、非水電解質電池及び蓄電部品
 本発明は、大電流密度での充放電に適した集電体、電極構造体、非水電解質電池、及び蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)に関する。
 従来、リチウムイオン電池に代表される非水電解質電池は充電時間の短縮に対する要求があり、そのためには大電流密度で充電させる必要がある。特に、自動車用の非水電解質電池は十分な加速性能を得るために、大電流密度で放電できることも要求されている。このように大電流密度で充放電する場合において電池容量が低下しない特性(ハイレート特性)を向上させるには電池の内部抵抗の低減が重要である。内部抵抗には構成要素間の界面抵抗と電解液中の荷電粒子であるイオンの移動抵抗等があり、これらを低減する必要がある。この中で重要な内部抵抗のひとつが界面抵抗であり、この界面抵抗を低減させる方法のひとつとして構成要素間の密着性向上が効果的であることが知られている。
 例えば、集電体と活物質層の密着性を向上させる方法として、集電体として導電性樹脂で金属箔を被覆するものが従来提案されており、特許文献1にはヒドロキシアルキルキトサンで金属箔を被覆する技術が開示されている。
特開2008-60060号公報
 しかしながら、本発明者らが実験を行ったところ、特許文献1に記載の技術では、必ずしも十分なハイレート特性が得られない場合があった。
 本発明は、このような事情に鑑みてなされてものであり、非水電解質電池の内部抵抗を低減でき、リチウムイオン二次電池等の非水電解質電池や電気二重層用キャパシタやリチウムイオンキャパシタ等の蓄電部品に好適に用いることができ、ハイレート特性を向上させることができる集電体を提供することである。
 以下のような集電体を用いることにより、ハイレート特性に優れる非水電解質電池や、電気二重層キャパシタやリチウムイオンキャパシタ等の帯電部品を得ることができる。
 すなわち、本発明によれば、導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層はキトサン系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した水接触角が5度以上60度以下であることを特徴とする集電体、および、この集電体を具備した電極構造体、非水電解質電池、蓄電部品(例:電気二重層キャパシタ又はリチウムイオンキャパシタ)が提供される。
 本発明者らが非水電解質電池等のハイレート特性を向上させるべく鋭意検討を行ったところ、樹脂層表面の水接触角がハイレート特性に強く相関していることを見出した。そして、水接触角が5度以上60度以下である場合に、ハイレート特性が非常に優れていることを見出し、本発明の完成に至った。
 本発明は2つの知見によって成立している。1つ目の知見は、水接触角が60度以下である場合にハイレート特性が良好であるということである。接触角は異なる材料が互いに密着しやすいかどうかを示す指標の一つであり、接触角が小さいほど異なる材料間の密着性が高くなる傾向がある。従って、接触角が60度以下の場合に、導電性基材と樹脂層、及び樹脂層と活物質層との密着性が高くなり、ハイレート特性が良好になる。
 もう一つの知見は水接触角が5度以上である場合にハイレート特性が良好であるということである。上記のように、接触角は異なる材料が互いに密着しやすいかどうかを示す指標の一つであるので、接触角が小さいほど異なる材料間の密着性が高くなる傾向がある。本発明者らは、当初、好ましい水接触角の範囲には下限が無く、水接触角が小さければ小さいほど、異なる材料間での密着性が向上してハイレート特性が向上するものと考えていたが、意外にも水接触角が5度未満の場合に、ハイレート特性が悪化することを知見した。このような結果が得られた理由にはついては現在検討中であり必ずしも明らかではないが、水接触角が小さすぎると、導電性基材と樹脂層との間の密着性が悪化することが原因ではないかと推測している。
 ところで、樹脂層の水接触角は、樹脂層の材料組成によって一意的に定まるものではなく、樹脂層の形成方法が変わると大きく変化するものである。本発明者らが実際に実験を行ったところ、同じ組成の樹脂材であっても、乾燥温度・乾燥時間・乾燥方法を変化させることによって、樹脂層の水接触角が大きく変化し、例えば樹脂組成と乾燥温度が分かっていても、乾燥時間等の製造条件を変えるだけで水接触角は変化するので、本発明においては水接触角を定めることが極めて重要であることを知見した。
図1は、本発明の一実施形態の集電体の構成を示す断面図である。 図2は、本発明の一実施形態の集電体を用いて形成された電極構造体の構成を示す断面図である。
 以下、図1を用いて、本発明の一実施形態の集電体について説明する。
 図1に示すように、本発明の集電体1は、導電性基材3の少なくとも片面に導電性を有する樹脂層(集電体用樹脂層)5を有する集電体1であり、樹脂層5は、キトサン系樹脂と導電材を含み、樹脂層5表面の23℃の恒温室内でθ/2法によって測定した水接触角が5度以上60度以下である。
 また、図2に示すように、集電体1の樹脂層5上に活物質層又は電極材層9を形成することによって、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用として好適な電極構造体7を形成することができる。
 以下、各構成要素について詳細に説明する。
(1)導電性基材
 本発明の導電性基材としては、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用の各種金属箔が使用可能である。具体的には、アルミニウム、アルミニウム合金、銅、ステンレス、ニッケルなどが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム、アルミニウム合金、銅が好ましい。正極としてアルミニウム箔を用いる場合、1000系や3000系のものを広く使用することができるが、本発明はハイレート特性の向上を目的としていることから、導電性の高いJIS A1085などの純アルミニウム系を用いることが好ましい。導電性基材の厚さとしては、特に制限されるものではないが、0.5μm以上、50μm以下であることが好ましい。厚さが0.5μmより薄いと箔の強度が不足して樹脂層等の形成が困難になる場合がある。一方、50μmを超えるとその分、その他の構成要素、特に活物質層あるいは電極材層を薄くせざるを得ず、特に非水電解質電池や、電気二重層キャパシタ又はリチウムイオンキャパシタ等の蓄電部品とした場合、十分な容量が得られなくなる場合がある。
(2)導電性樹脂層
 本発明では導電性基材の上に導電材を添加した樹脂層を形成する。導電性樹脂層の形成方法は特に限定されないが、樹脂の溶液や分散液、ペースト等を上記導電性基材上に塗工することが好ましい。塗工方法としてはロールコーター、グラビアコーター、スリットダイコーター等が使用可能である。本発明に用いる樹脂は、キトサン系樹脂でなければならない。種々の樹脂に導電材を添加して樹脂層の体積固有抵抗を調査した結果、水接触角を規定したこれらの樹脂を用いると十分に低い抵抗が得られるという本発明者の知見に基づくものである。なお、この抵抗の違いは、同じ導電材を添加しても樹脂によって樹脂層中での分布状態が異なり、後述する水接触角の規定と相まって抵抗に差が出るためと推定される。
<キトサン系樹脂>
 本発明において、キトサン系樹脂は、樹脂成分としてキトサン誘導体を含む樹脂である。キトサン系樹脂は、キトサン誘導体が100質量%であるものを使用できるが、他の樹脂成分と併用して使用することもでき、併用する場合には少なくともキトサン誘導体を全樹脂成分に対して50質量%以上、特に80質量%以上含むことが好ましい。キトサン誘導体は、例えばヒドロキシアルキルキトサンであり、具体的には、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシブチルキトサン、グリセリル化キトサンが好ましく、特にグリセリル化キトサンである。
 キトサン系樹脂は、好ましくは、有機酸を含む。有機酸としては、ピロメリット酸、テレフタル酸などが挙げられる。有機酸の添加量は、キトサン誘導体100質量部に対して20~300質量部が好ましく、50~150質量部がさらに好ましい。有機酸の添加量が少なすぎるとキトサン誘導体の硬化が不十分になり、有機酸の添加量が多すぎると樹脂層の可撓性が低下するからである。
 キトサン誘導体の重量平均分子量は、例えば、3万~50万であり、具体的には例えば3万,4万,5万,6万,7万,8万,9万,10万,15万,20万,50万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重量平均分子量は、GPC(ゲル排除クロマトグラフ)によって測定したものを意味する。
<導電材>
 本発明の導電性樹脂層は、導電性基材と活物質層又は電極材層との間に設けられ、この間を移動する電子の通路となるので、この電子伝導性が必要である。硝化綿系樹脂自体は絶縁性が高いので、電子伝導性を付与するために導電材を配合しなければならない。本発明に用いる導電材としては公知の炭素粉末、金属粉末などが使用可能であるが、その中でも炭素粉末が好ましい。炭素粉末としてはアセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブなどが使用可能である。導電材の添加量は、樹脂層の樹脂成分100質量部に対して30~100質量部が好ましく、50~80質量部が好ましい。50質量部未満では樹脂層の体積固有抵抗が高くなり、80質量部を超えると導電性基材との密着性が低下するからである。導電材を硝化綿系樹脂の樹脂成分液に分散するには公知の方法を用いることができ、例えば、プラネタリミキサ、ボールミル、ホモジナイザ等を用いることによって分散することが可能である。
 本発明の樹脂層表面の水接触角は、5度以上60度以下であることが必要である。単に樹脂に導電材を添加して樹脂層を形成しても、導電性基材と樹脂層の界面および樹脂層と活物質層の界面あるいは樹脂層と電極材層の界面に十分な密着性が得られない場合がある。これはキトサン系樹脂であっても樹脂の種類や形成条件によって、樹脂層の状態が変化するためである。特に密着性に影響が大きい表面性状として液体の濡れ性を示す接触角があり、比較的表面張力の大きい水の接触角を測定することにより、集電体とその上に形成する活物質層や電極材層の密着性を評価することができる。この場合、樹脂層と水接触角について一見、水接触角が小さいほど密着性が向上し、放電レートの向上が図れるように見えるが、接触角が小さすぎると、導電性基材との密着性や放電レート特性に悪影響を及ぼす可能性がでてくるため、本発明においては水接触角を規定することが必要になる。なお、この点については後にも述べる。
 本明細書において、水接触角は、23℃の恒温室内でθ/2法によって測定して得られた値を意味する。水接触角は接触角計を用いて測定することができる。集電体に樹脂層を形成した後、その表面に純水を数μリットルの水滴を付着させて接触角を測定する。温度によって水の表面張力が変化するので、水接触角は、23℃の恒温室内で測定する。
 種々の条件にて樹脂層を形成して水接触角を測定した結果、60度以下であれば、活物質層や電極材層と十分な密着性が得られることがわかった。また、水接触角の異なる樹脂層を形成して、導電性基材と樹脂層の密着性の関係を調査した結果、樹脂層の表面の水接触角が5度未満であるとハイレート特性が劣ることがわかった。原因は明らかではないが、導電性基材と樹脂層の微妙な密着状態の差を検出しているものと推定される。従って、水接触角は、5度以上であることが必要である。また、水接触角が15度以上40度以下の場合に、意外にもハイレート特性が特に良好なので、水接触角は15度以上40度以下が特に好ましい。
 このように、本発明の水接触角の規定は、樹脂と活物質層又は電極材層との密着性だけでなく、導電性基材と樹脂層との密着性についても考慮したものであり、このように水接触角の規定された本発明の集電体は、特に電極構造体として電池や帯電部品に用いるとハイレート特性を良好に付与できる。
 本発明の集電体を得るには、先に述べたアルミニウム箔等の導電性基材の少なくとも片面に樹脂層を公知の方法で形成して得ることができるが、上記水接触角を有するものにする必要がある。例えば、塗工にて樹脂層を形成する場合、焼付温度と焼付時間が水接触角に影響する。焼付温度は導電性基材の到達温度として120~250℃、焼付時間は15~180秒が好ましい。このような条件で樹脂層を形成した場合に、その表面での水接触角が5度以上60度以下の範囲内の調整に寄与するからである。但し、水接触角は、樹脂組成、樹脂液中の樹脂濃度、焼付温度、焼付時間、焼付方法などの種々の因子によって総合的に決定されるものであるので、焼付温度と焼付時間が上記範囲内であっても、水接触角は5度未満になったり、60度を超えたりする場合がある。また、逆に焼付温度と焼付時間が上記範囲外であっても、水接触角が5度~60度の範囲内になる場合がある。
 一般に焼付温度が高いほど、焼付時間が長いほど、水接触角が大きくなる傾向がある。従って、水接触角を5度以上60度以下にするには、最初に、ある条件で樹脂層を形成し、形成した樹脂層において水接触角を測定し、測定された水接触角が5度より小さければ、焼付温度を高くするか焼付時間を長くし、測定された水接触角が60度よりも大きければ焼付温度を低くするか焼付時間を短くする等の調整が必要である。従って、樹脂の組成や焼付温度のみでは水接触角の値は決定されないが、上記の方法を用いれば、数回の試行錯誤を行うだけで、水接触角を所望の値に設定することが可能である。
 本発明の集電体を用いれば、活物質層又は電極材層を形成し電解液が浸潤した状態においても、樹脂層と活物質層あるいは樹脂層と電極材層の界面に十分な密着性が確保できるだけでなく、導電性基材との界面にも十分な密着性の確保を兼ね備えることができる。また、充放電を繰り返した後においても大きな剥離は認められず、十分な密着性と優れた放電レート特性が得られる。
 本発明において、導電性樹脂層の厚さは特に制限されるものではないが、通常0.1μm以上、5μm以下が好ましく、さらに好ましくは0.3μm以上、3μm以下である。0.1μm未満では導電性樹脂層の形成にムラができ、導電性基材上を被覆できない部分が発生して、十分な電池特性が得られない場合がある。一方、5μmを超えると後述する非水電解質電池や蓄電部品に適用する際、その分、活物質層や電極材層を薄くせざるを得ない場合があることから十分な容量密度が得られない場合がある。また、リチウムイオン二次電池等に用いる場合、セパレータと組み合わせて巻回した際、曲率半径が非常に小さい内側の巻き部において、樹脂層に亀裂が入り、剥離部分が発生、非水電解質電池や蓄電部品の性能を劣化させる場合がある。
 本発明の集電体の製造方法は、特に制限されるものではないが、導電性基材に樹脂層を形成する際、導電性基材表面の密着性が向上するように導電性基材自体に公知の前処理を実施することも効果的である。特に圧延にて製造したアルミニウム等の導電性基材を用いる場合、圧延油や磨耗粉が残留している場合があり、脱脂などによって除去することにより、密着性を向上させることができる。また、コロナ放電処理のような乾式活性化処理によっても密着性を向上させることができる。
電極構造体
 本発明の集電体の少なくとも片面に活物質層又は電極材層を形成することによって、本発明の電極構造体を得ることができる。電極材層を形成した蓄電部品用の電極構造体については後述する。まず、活物質層を形成した電極構造体の場合、この電極構造体とセパレータ、非水電解質溶液等を用いて非水電解質電池用、例えばリチウムイオン二次電池用の電極構造体(電池用部品を含む)を製造することができる。本発明の非水電解質電池用電極構造体および非水電解質電池において集電体以外の部材は、公知の非水電池用部材を用いることが可能である。ここで、本発明において電極構造体として形成される活物質層は、従来、非水電解質電池用として提案されているものでよい。例えば、正極としてはアルミニウムを用いた本発明の集電体に、活物質としてLiCoO、LiMnO、LiNiO等を用い、導電材としてアセチレンブラック等のカーボンブラックを用い、これらをバインダであるPVDFに分散したペーストを塗工・乾燥させることにより、本発明の正極構造体を得ることができる。負極の電極構造体とする場合には、導電性基材として銅を用いた本発明の集電体に活物質として例えば黒鉛、グラファイト、メソカーボンマイクロビーズ等を用い、これらを増粘剤であるCMCに分散後、バインダであるSBRと混合したペーストを活物質層形成用材料として塗工・乾燥させることにより、本発明の負極構造体を得ることができる。
非水電解質電池
 本発明は非水電解質電池であってもよい。この場合、本発明の集電体を使用する以外には特に制限されるものではない。例えば、本発明の集電体を構成要素とする前記正極構造体と負極構造体の間に非水電解質を有する非水電解質電池用電解液を含浸させたセパレータで挟むことにより、本発明の非水電解質電池を構成することができる。非水電解質およびセパレータは公知の非水電解質電池用として用いられているものを使用可能である。電解液は溶媒として、カーボネート類やラクトン類等を用いることができ、例えば、EC(エチレンカーボネイト)とEMC(エチルメチルカーボネイト)の混合液に電解質としてLiPFやLiBFを溶解したものを用いることができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜を用いることができる。
蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)
 本発明の電気二重層キャパシタ、リチウムイオンキャパシタ等は、本発明の集電体を大電流密度での高速の充放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品にも適応可能である。本発明の蓄電部品用電極構造体は本発明の集電体に電極材層を形成することによって得られ、この電極構造体とセパレータ、電解液等によって、電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品を製造することができる。本発明の電極構造体および蓄電部品において集電体以外の部材は、公知の電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
 電極材層は正極、負極共、電極材、導電材、バインダよりなるものとすることができる。本発明においては、本発明の集電体の少なくとも片側に前記電極材層を形成することによって電極構造体とした後、蓄電部品を得ることができる。ここで、電極材には従来、電気二重層キャパシタ用、リチウムイオンキャパシタ用電極材料として用いられているものが使用可能である。例えば、活性炭、黒鉛などの炭素粉末や炭素繊維を用いることができる。導電材としてはアセチレンブラック等のカーボンブラックを用いることができる。バインダとしては、例えば、PVDF(ポリフッ化ビニリデン)やSBR(スチレンブタジエンゴム)を用いることができる。また、本発明の蓄電部品は、本発明の電極構造体にセパレータを挟んで固定し、セパレータに電解液を浸透させることによって、電気二重層キャパシタやリチウムイオンキャパシタを構成することができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜や電気二重層キャパシタ用不織布等を用いることができる。電解液は溶媒として例えばカーボネート類やラクトン類を用いることができ、電解質は陽イオンとしてはテトラエチルアンモニウム塩、トリエチルメチルアンモニウム塩等、陰イオンとしては六フッ化りん酸塩、四フッ化ほう酸塩等を用いることができる。リチウムイオンキャパシタはリチウムイオン電池の負極、電気二重層キャパシタの正極を組み合わせたものである。これらの製造方法は本発明の集電体を用いる以外は、公知の方法に従って行うことができ、特に制限されるものではない。
<1.集電体の評価>
<集電体の作製>
 表1に示す樹脂と有機酸を表1に示す配合量でノルマルメチル2ピロリドン(NMP)に溶解し、アセチレンブラックを表1に示す配合量で混合し、ボールミルにて8時間分散して塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にバーコータで塗布し、表1に示す条件にて焼き付けた。表1の温度はいずれも基材到達温度である。
<樹脂層の厚さ>
 樹脂層の厚さはフィルム厚み測定機 計太郎G(セイコーem製)を用いて、樹脂層形成部と未形成部(アルミ箔のみの部分)の厚みの差から樹脂層の厚さを算出した。
<樹脂層の電気抵抗>
 樹脂層の上に1辺が20mmの立方体の銅製ブロック(樹脂に接触する面は鏡面仕上げ)を載せ、700gfの荷重をかけて、アルミ箔と銅製ブロックの間の電気抵抗を測定した。
<水接触角測定>
 水接触角は接触角計(協和界面科学社製ドロップマスターDM-500)を用い、23℃の恒温室内にて2μリットルの純水を樹脂層表面に付着させ、2秒後の接触角をθ/2法にて測定した。
<2.リチウムイオン電池の放電レート特性評価、電極寿命評価>
<リチウムイオン電池の製造方法>
 正極には、活物質のLiCoOと導電材のアセチレンブラックをバインダであるPVDF(ポリフッ化ビニリデン)に分散したペーストを厚さ70μmにて前記各集電体に塗工したものを用いた。負極には、活物質の黒鉛をCMC(カルボキシメチルセルロース)に分散後、バインダであるSBR(スチレンブタジエンゴム)と混合したペーストを厚さ20μmの銅箔に厚さ70μmにて塗工したものを用いた。これらの電極構造体にポリプロピレン製マイクロポーラスセパレータを挟んで電池ケースに収め、コイン電池を作製した。電解液としてはEC(エチレンカーボネート)とEMC(エチルメチルカーボネート)の混合液に1MのLiPFを添加した電解液を用いた。
<放電レート特性評価方法>
 充電上限電圧4.2V、充電電流0.2C、放電終了電圧2.8V、温度25℃において、放電電流レート1C、5C、10C、20Cの条件で、これらのリチウムイオン電池の放電容量(0.2C基準、単位%)を測定した。(1Cはその電池の電流容量(Ah)を1時間(h)で取り出すときの電流値(A)である。20Cでは1/20h=3minでその電池の電流容量を取り出すことができる。あるいは充電することができる。)
<電極寿命の評価方法>
 電解液温度40℃にて、上限電圧4.2V、充電電流20Cで充電した後、終了電圧2.8V、放電電流20Cで放電して、1サイクル目の放電容量に対して、放電容量が60%未満になる回数(最大500回)を測定し、以下の基準で評価した。
A:500回以上
B:450回以上500回未満
C:400回以上450回未満
D:400回未満
<3.電気二重層キャパシタの放電レート特性評価、電極寿命評価>
<電気二重層キャパシタの製造方法>
 電極材の活性炭、導電材のケッチェンブラックをバインダのPVDFに分散したペーストを厚さ80μmにて前記集電体電極に塗工し、正極、負極共同じ電極構造体とした。この電極構造体2枚に電解液を含浸した電気二重層キャパシタ用不織布を挟んで固定し、電気二重層キャパシタを構成した。電解液は溶媒であるプロピレンカーボネートに1.5MのTEMA(トリエチルメチルアンモニウム)と四フッ化ほう酸を添加したものを用いた。
<放電レート特性評価方法>
 充電上限電圧2.8V、充電電流1C、充電終了条件2h、放電終了電圧0V、温度25℃、放電電流レート100C、300C、500Cの条件で、これらの電気二重層キャパシタの放電容量(1C基準、単位%)を測定した。
<電極寿命の評価方法>
 電解液温度40℃にて、上限電圧2.8V、充電電流500Cで充電した後、放電電流500Cで終了電圧0Vまで放電して、1サイクル目の放電容量に対して、放電容量が80%未満になる回数(最大5000回)を測定し、以下の基準で評価した。
A:5000回以上
B:4500回以上5000回未満
C:4000回以上4500回未満
D:4000回未満
 評価結果を表1に示す。表1によれば、樹脂層の樹脂がキトサン誘導体(ヒドロキシアルキルキトサン)であり且つ樹脂層表面の水接触角が5度以上60度以下である全ての実施例では、リチウムイオン電池、電気二重層キャパシタの両方で、優れたハイレート特性、電池寿命を示した。これに対し、水接触角が小さすぎる比較例1や大きすぎる比較例2では、ハイレート特性が良好でなかった。また、樹脂層の樹脂としてエチルセルロースを用いた比較例3でもハイレート特性が良好でなかった。
 また、実施例1~5を参照すると、水接触角が15度以上40度以下の場合に特に優れたハイレート特性を示したことが分かる。さらに、実施例6~9を参照すると、導電材の含有量は樹脂100質量部に対して50~80質量部にした場合に特に優れたハイレート特性を示したことが分かる。
Figure JPOXMLDOC01-appb-T000001
1:集電体
3:導電性基材
5:樹脂層(集電体用樹脂層)
7:電極構造体
9:活物質層又は電極材層

Claims (9)

  1. 導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層はキトサン系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した水接触角が5度以上60度以下であることを特徴とする集電体。
  2. 前記水接触角は、15度以上40度以下である、請求項1に記載の集電体。
  3. 前記導電剤の含有量は、前記キトサン系樹脂100質量部に対して30~100質量部である、請求項1又は2に記載の集電体。
  4. 前記導電剤の含有量は、前記キトサン系樹脂100質量部に対して50~80質量部である、請求項3に記載の集電体。
  5. 前記キトサン系樹脂は、キトサン誘導体と有機酸を含み、前記有機酸の含有量は、前記キトサン誘導体100質量部に対して20~300質量部である、請求項1~4の何れか1つに記載の集電体。
  6. 前記有機酸の含有量は、前記キトサン誘導体100質量部に対して50~150質量部である、請求項5に記載の集電体。
  7. 前記キトサン誘導体の重量平均分子量は、3万~50万である、請求項1~6の何れか1つに記載の集電体。
  8. 請求項1~7に記載の集電体の前記樹脂層上に活物質層又は電極材層を備える、電極構造体。
  9. 請求項8に記載の電極構造体を備える、非水電解質電池又は蓄電部品。
PCT/JP2012/069123 2011-07-29 2012-07-27 集電体、電極構造体、非水電解質電池及び蓄電部品 WO2013018688A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12819513.8A EP2738853B1 (en) 2011-07-29 2012-07-27 Collector, electrode structure, non-aqueous electrolyte cell, and electricity storage component
US14/235,782 US9336959B2 (en) 2011-07-29 2012-07-27 Collector, electrode structure, non-aqueous electrolyte cell, and electrical storage device
JP2013526879A JP6140073B2 (ja) 2011-07-29 2012-07-27 集電体、電極構造体、非水電解質電池及び蓄電部品
CN201280036492.9A CN103733401B (zh) 2011-07-29 2012-07-27 集电体,电极结构体,非水电解质电池及蓄电部件
KR1020147004366A KR20140051328A (ko) 2011-07-29 2012-07-27 집전체, 전극 구조체, 비수전해질 전지 및 축전 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011166732 2011-07-29
JP2011-166732 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018688A1 true WO2013018688A1 (ja) 2013-02-07

Family

ID=47629212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069123 WO2013018688A1 (ja) 2011-07-29 2012-07-27 集電体、電極構造体、非水電解質電池及び蓄電部品

Country Status (7)

Country Link
US (1) US9336959B2 (ja)
EP (1) EP2738853B1 (ja)
JP (1) JP6140073B2 (ja)
KR (1) KR20140051328A (ja)
CN (1) CN103733401B (ja)
TW (1) TWI553951B (ja)
WO (1) WO2013018688A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074979A (zh) * 2013-03-29 2015-11-18 株式会社Uacj 集电体、电极结构体、非水电解质电池及蓄电部件
JP7524572B2 (ja) 2020-03-25 2024-07-30 株式会社Gsユアサ 電池用基材及び電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170331115A1 (en) * 2014-10-29 2017-11-16 Showa Denko K.K. Electrode current collector, method of manufacturing the same, electrode, lithium ion secondary battery, redox flow battery, and electric double layer capacitor
CN106128796A (zh) * 2016-06-08 2016-11-16 湖南耐普恩科技有限公司 一种超级电容器、超级电容器集流体及其处理方法
CN110504409B (zh) * 2019-08-15 2023-01-17 天津市捷威动力工业有限公司 一种提高渗透能力的正极片及锂离子电池
WO2023132640A1 (ko) * 2022-01-07 2023-07-13 주식회사 릴엠 이차전지용 집전체 및 그의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226969A (ja) * 2005-02-10 2007-09-06 Showa Denko Kk 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
JP2009277660A (ja) * 2009-07-13 2009-11-26 Kyoritsu Kagaku Sangyo Kk リチウム非水電解質電池用電極、及びリチウム非水電解質電池用正極集電体及びその製造方法
JP2011034891A (ja) * 2009-08-04 2011-02-17 Nissan Motor Co Ltd 非水電解質二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3958536B2 (ja) * 2000-07-12 2007-08-15 大日精化工業株式会社 水性溶液組成物および物品の表面改質方法
JP4081276B2 (ja) * 2002-01-11 2008-04-23 日本パーカライジング株式会社 水性下地処理剤、下地処理方法および下地処理された材料
KR101179378B1 (ko) 2005-02-10 2012-09-03 쇼와 덴코 가부시키가이샤 이차전지용 집전기, 이차전지 양극, 이차전지 음극, 이차전지 및 그들의 제조 방법
JP4499795B2 (ja) * 2005-10-11 2010-07-07 昭和電工株式会社 電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、及び電気二重層キャパシタ、並びにそれらの製造方法
JP5038751B2 (ja) * 2006-08-04 2012-10-03 協立化学産業株式会社 電極板製造用塗工液、アンダーコート剤およびその使用
JP5087466B2 (ja) * 2008-05-08 2012-12-05 昭和電工株式会社 電気二重層キャパシタ
CN102576854B (zh) * 2009-08-27 2015-03-11 大日精化工业株式会社 电极板用水系涂装液、蓄电装置用电极板、蓄电装置用电极板的制造方法及蓄电装置
JP2011086455A (ja) 2009-10-14 2011-04-28 Hitachi Maxell Ltd リチウム二次電池用負極材料、その製造方法およびリチウム二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226969A (ja) * 2005-02-10 2007-09-06 Showa Denko Kk 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
JP2009277660A (ja) * 2009-07-13 2009-11-26 Kyoritsu Kagaku Sangyo Kk リチウム非水電解質電池用電極、及びリチウム非水電解質電池用正極集電体及びその製造方法
JP2011034891A (ja) * 2009-08-04 2011-02-17 Nissan Motor Co Ltd 非水電解質二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074979A (zh) * 2013-03-29 2015-11-18 株式会社Uacj 集电体、电极结构体、非水电解质电池及蓄电部件
JP7524572B2 (ja) 2020-03-25 2024-07-30 株式会社Gsユアサ 電池用基材及び電池

Also Published As

Publication number Publication date
JPWO2013018688A1 (ja) 2015-03-05
CN103733401B (zh) 2016-10-05
US20140170488A1 (en) 2014-06-19
EP2738853B1 (en) 2017-11-08
CN103733401A (zh) 2014-04-16
EP2738853A4 (en) 2014-09-10
EP2738853A1 (en) 2014-06-04
TWI553951B (zh) 2016-10-11
US9336959B2 (en) 2016-05-10
TW201316600A (zh) 2013-04-16
KR20140051328A (ko) 2014-04-30
JP6140073B2 (ja) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6121325B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6140073B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
KR20070100353A (ko) 이차전지용 집전기, 이차전지 양극, 이차전지 음극,이차전지 및 그들의 제조 방법
JP5600576B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP5985161B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6184552B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
WO2013018684A1 (ja) 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
WO2013154176A1 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP5780871B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6130018B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP5788985B2 (ja) 集電体、電極構造体、非水電解質電池、蓄電部品、硝化綿系樹脂材料
JP5788730B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6031223B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
WO2017199798A1 (ja) 蓄電デバイス用集電体およびその製造方法、蓄電デバイス用電極およびその製造方法、保護層形成用スラリー、ならびに蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526879

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14235782

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147004366

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012819513

Country of ref document: EP