WO2013018684A1 - 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品 - Google Patents

集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品 Download PDF

Info

Publication number
WO2013018684A1
WO2013018684A1 PCT/JP2012/069118 JP2012069118W WO2013018684A1 WO 2013018684 A1 WO2013018684 A1 WO 2013018684A1 JP 2012069118 W JP2012069118 W JP 2012069118W WO 2013018684 A1 WO2013018684 A1 WO 2013018684A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
conductive
resin layer
current collector
lithium ion
Prior art date
Application number
PCT/JP2012/069118
Other languages
English (en)
French (fr)
Inventor
加藤 治
聡平 斉藤
幸翁 本川
和佐本 充幸
角脇 賢一
郷史 山部
Original Assignee
古河スカイ株式会社
日本製箔株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河スカイ株式会社, 日本製箔株式会社 filed Critical 古河スカイ株式会社
Priority to KR1020147004360A priority Critical patent/KR101947565B1/ko
Priority to US14/235,785 priority patent/US9659716B2/en
Priority to CN201280036480.6A priority patent/CN103733399B/zh
Priority to JP2013526876A priority patent/JP6153468B2/ja
Priority to EP12819839.7A priority patent/EP2738854B1/en
Publication of WO2013018684A1 publication Critical patent/WO2013018684A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a current collector and an electrode structure using the same, a nonaqueous electrolyte battery, an electric double layer capacitor, a lithium ion capacitor, or a power storage component.
  • Lithium ion secondary batteries are expected to have high-speed charge / discharge and longer life. Therefore, it is known that by providing a conductive resin layer on a conductive substrate for a lithium ion secondary battery, adhesion with an active material is improved, and both high-speed charge / discharge and adhesion are improved. .
  • Patent Document 1 discloses an undercoat layer using chitosan.
  • Patent Document 2 discloses that nitrocellulose, polymethyl methacrylate, or the like is used for the binder of the negative electrode active material layer.
  • Patent Document 3 discloses using polyvinyl butyral for the conductive resin layer.
  • the color tone of a negative electrode active material paste is evaluated by the absorption spectrum of a visible region.
  • the particle size of carbon fine particles is prescribed
  • the performance of the conductive resin layer used in a lithium ion secondary battery and the like is based on the microscopic covering condition of the conductive base material, the dispersion state of the conductive material in the conductive resin layer, the resin It depends on the oxidation state, etc., and the effects of each of these factors are intertwined in a complex way. For this reason, it has been difficult to predict the performance of the conductive resin layer by a simple method.
  • the present invention has been made in view of the above circumstances, and the performance of the conductive resin layer of the current collector is actually changed to an electrode structure, a non-aqueous electrolyte battery, an electric double layer capacitor, a lithium ion capacitor, or a power storage component.
  • An object is to provide a technique for easily and accurately confirming by non-destructive inspection without manufacturing.
  • a current collector in which a conductive resin layer is formed on at least one surface of a conductive substrate, the conductive resin layer is made of a conductive material mainly composed of a resin and carbon.
  • the color tone of the surface of the resin layer having conductivity is defined by the L * a * b * color system, L * is 60 or less, a * is ⁇ 1.0 to 1.0, and b * is ⁇
  • a current collector is provided that is 1.0 to 3.0.
  • a current collector satisfying such color tone conditions is used, as shown in the examples described later, when a lithium ion battery or an electric double layer capacitor produced using this current collector is produced, It has been confirmed that excellent high rate characteristics or product life can be achieved. Therefore, a current collector having excellent performance can be obtained simply by non-destructive inspection of the color condition of the conductive resin layer without actually producing a lithium ion battery or an electric double layer capacitor. Can be selected accurately.
  • an electrode structure comprising the above-described current collector and an active material layer or an electrode material layer formed on the conductive resin layer.
  • a current collector having excellent performance by checking the color tone of a conductive resin layer in advance is selected after being accurately and easily selected by nondestructive inspection. Therefore, if this electrode structure is used, a lithium ion battery or an electric double layer capacitor having excellent high-rate characteristics or product life can be manufactured at a low cost and with a high manufacturing yield.
  • a nonaqueous electrolyte battery, an electric double layer capacitor, a lithium ion capacitor, or a power storage component using the above electrode structure is provided.
  • a current collector having excellent performance by checking the color tone of the conductive resin layer in advance is selected after being accurately and easily selected by nondestructive inspection. Therefore, it is possible to manufacture a product having an excellent high rate characteristic or product life at a low cost and a high manufacturing yield.
  • a current collector having excellent performance can be easily and accurately selected by nondestructive inspection by confirming the color tone of the conductive resin layer in advance.
  • a to B mean A or more and B or less.
  • a number average molecular weight or a weight average molecular weight means what was measured by GPC (gel exclusion chromatograph).
  • a current collector in which a conductive resin layer is formed on at least one surface of a conductive substrate.
  • the resin layer having conductivity includes a resin and a conductive material mainly composed of carbon.
  • the metal foil known metal foils used as electrodes for electrode structures, non-aqueous electrolyte batteries, electric double layer capacitors, lithium ion capacitors, and power storage components can be used, and particularly limited. Rather, for example, aluminum foil, aluminum alloy foil, copper foil for negative electrode, stainless steel foil, nickel foil, and when the negative electrode active material is a high potential type such as lithium titanate, aluminum foil or aluminum alloy foil can be used is there.
  • aluminum foil, aluminum alloy foil, and copper foil are preferable from the viewpoint of balance between high conductivity and cost.
  • the thickness of the foil can be appropriately adjusted according to the application, but is preferably 7 to 100 ⁇ m, particularly preferably 10 to 50 ⁇ m. If the thickness is too thin, the strength of the foil may be insufficient and it may be difficult to apply the active material layer. On the other hand, if it is too thick, other components such as the active material layer or the electrode material layer have to be thinned, and a sufficient capacity may not be obtained.
  • the conductive resin layer (hereinafter also simply referred to as “resin layer”) used in the present embodiment is provided on one or both surfaces of the conductive base material, and includes a resin and a conductive material mainly composed of carbon. .
  • the resin is not particularly limited, and any conventionally known resin may be used.
  • the method for forming the conductive resin layer used in this embodiment is not particularly limited, but it is preferable to apply a solution or dispersion containing a binder resin and conductive particles on the conductive substrate.
  • a coating method a roll coater, a gravure coater, a slit die coater or the like can be used.
  • resin used for this embodiment contains any of nitrification cotton-type resin, acrylic resin, or chitosan-type resin.
  • a conductive material mainly composed of carbon (conductive particles) is added, but the characteristics of the conductive resin layer are microscopic covering conditions of the conductive base material.
  • the present inventor includes any of nitrified cotton-based resin, acrylic resin, or chitosan-based resin. Has found that it has excellent adhesion to conductive substrates and active materials.
  • the baking temperature of the conductive resin layer is preferably 100 to 250 ° C. as the temperature reached by the conductive substrate, and the baking time is preferably 10 to 60 seconds. If it is less than 100 degreeC, nitrified cotton-type resin will not fully harden
  • the nitrified cotton-based resin is a resin containing nitrified cotton as a resin component, and may be composed only of nitrified cotton, or may contain nitrified cotton and another resin.
  • Nitrified cotton is a kind of cellulose which is a polysaccharide, but is characterized by having a nitro group.
  • Nitrified cotton is a cellulose having a nitro group, but it is not known as a use for an electrode as compared with other celluloses such as CMC, and is conventionally used as a raw material for resin films and paints.
  • the present inventors obtain a nitrified cotton-based resin composition by dispersing a conductive material in the nitrified cotton, and by forming a resin layer containing the nitrified cotton-based resin and the conductive material on the conductive substrate, It has been found that the high rate characteristics of the nonaqueous electrolyte battery can be dramatically improved.
  • the nitrogen concentration of the nitrified cotton used in the present invention is preferably 10 to 13%, particularly preferably 10.5 to 12.5%. If the nitrogen concentration is too low, it may not be sufficiently dispersed depending on the type of the conductive material. If the nitrogen concentration is too high, the nitrified cotton becomes chemically unstable and is dangerous for use in a battery.
  • the nitrogen concentration depends on the number of nitro groups, the nitrogen concentration can be adjusted by adjusting the number of nitro groups.
  • the viscosity of the above nitrified cotton is usually 1 to 6.5 seconds, particularly 1.0 to 6 seconds, and the acid content is 0.006% or less, particularly 0.005% or less, as measured according to JIS K-6703. It is recommended that When deviating from these ranges, the dispersibility of the conductive material and the battery characteristics may deteriorate.
  • the nitrified cotton-based resin of the present embodiment can be used with 100 parts by mass of nitrified cotton, but it can also be used in combination with other resin components. It is preferable to contain 20 parts by mass or more, particularly 25 parts by mass or more with respect to the resin component. As a result of investigating the resistance of the resin layer by adding a conductive material to various resins, the resistance of the resin layer can be drastically reduced and sufficient high-rate characteristics can be obtained when 20 parts by mass or more of nitrified cotton-based resin is included. I understood.
  • nitrified cotton If the amount of nitrified cotton is too small, the improvement effect of nitrified cotton blending on the dispersion of the conductive material cannot be obtained, and the resistance of the resin layer cannot be lowered sufficiently by adding 20 parts by mass or more of nitrified cotton-based resin. It is estimated that it is possible.
  • the nitrified cotton-based resin of the present embodiment can be added with various resins in combination with the above-described nitrified cotton.
  • 100% nitrified cotton is added as a resin component by adding melamine resin, acrylic resin, polyacetal resin, and epoxy resin. It has been found that the battery performance can be improved as well as or more than when it is used. Each addition will be described below.
  • the nitrified cotton-based resin preferably contains a melamine-based resin. Since melamine resin causes a crosslinking reaction with nitrified cotton, it is presumed that the battery performance is improved by improving the curability of the resin and improving the adhesion to the conductive substrate.
  • the added amount is 5 to 200% by mass, more preferably 10 to 150% by mass, based on 100% by mass of nitrified cotton. If it is less than 5% by mass, the effect of addition is low, and if it exceeds 200% by mass, the resin layer becomes too hard, and it may be easily peeled off at the time of cutting or winding, and the discharge rate characteristics may be deteriorated.
  • melamine resin butylated melamine, isobutylated melamine, methylated melamine and the like can be used.
  • the number average molecular weight of the melamine resin is, for example, 500 to 50,000, specifically, for example, 500, 1000, 2000, 2500, 3000, 4000, 5000, 10,000, 20,000, 50,000, It may be within a range between any two of the exemplified numerical values.
  • the nitrified cotton-based resin preferably contains an acrylic resin. Since the acrylic resin is excellent in adhesion to a conductive substrate, particularly aluminum and copper, the addition to the conductive substrate further improves the adhesion to the conductive substrate.
  • the amount added is preferably 5 to 200% by mass, particularly 10 to 150% by mass, based on 100% by mass of nitrified cotton.
  • the weight of nitrified cotton is the weight excluding the wetting agent. If it is less than 5% by mass, the effect of addition is low, and if it exceeds 200% by mass, the dispersion of the conductive material may be adversely affected and the discharge rate characteristics may deteriorate.
  • acrylic resin resins having acrylic acid or methacrylic acid and derivatives thereof as main components, and acrylic copolymers containing these monomers can be used. Specifically, methyl acrylate, ethyl acrylate, methyl methacrylate, isopropyl methacrylate and the like and copolymers thereof. In addition, polar group-containing acrylic compounds such as acrylonitrile, methacrylonitrile, acrylamide, and methacrylamide and copolymers thereof can also be used.
  • the weight average molecular weight of the acrylic resin is, for example, 30,000 to 1,000,000, specifically, for example, 30,000, 40,000, 50,000, 60,000, 80,000, 90,000, 100,000, 150,000. , 200,000, 300,000, 400,000, 500,000, 700,000, 800,000, 900,000, 1 million, and may be in the range between any two of the numerical values exemplified here.
  • the nitrified cotton-based resin preferably contains a polyacetal-based resin. Since polyacetal resin is excellent in flexibility and compatibility with nitrified cotton, it is presumed that it gives moderate flexibility to the resin layer and improves adhesion with the mixture layer after winding. .
  • the added amount is preferably 5 to 200% by mass, particularly 20 to 150% by mass, based on 100% by mass of nitrified cotton. If it is less than 5% by mass, the effect of addition is low, and if it exceeds 200% by mass, the dispersion of the conductive material may be adversely affected and the discharge rate characteristics may deteriorate.
  • polyvinyl butyral, polyacetoacetal, polyvinyl acetoacetal and the like can be used as the polyacetal resin.
  • the weight average molecular weight of the polyacetal resin is, for example, 10,000 to 500,000. Specifically, for example, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000, 90,000 , 100,000, 150,000, 200,000, 500,000, and may be within a range between any two of the numerical values exemplified here.
  • the nitrified cotton-based resin preferably contains an epoxy-based resin. Since the epoxy resin is excellent in adhesion to a metal, the addition to the conductive substrate further improves the adhesion.
  • the amount added is preferably 5 to 200% by mass, particularly 10 to 150% by mass, based on 100% by mass of nitrified cotton. If it is less than 5% by mass, the effect of addition is low, and if it exceeds 200% by mass, the dispersion of the conductive material may be adversely affected and the discharge rate characteristics may deteriorate.
  • the epoxy resin is preferably a glycidyl ether type such as bisphenol A type epoxy, bisphenol F type epoxy, or tetramethylbiphenyl type.
  • the weight average molecular weight of the epoxy resin is, for example, 300 to 50,000, specifically, for example, 300,500,1000,2000,3000,4000,5000,10,000,20,000,50,000, It may be within a range between any two of the exemplified numerical values.
  • the nitrified cotton-based resin preferably includes at least one of melamine-based resin, acrylic resin, polyacetal-based resin, and epoxy-based resin, and nitrified cotton.
  • the nitrified cotton-based resin further preferably includes at least one of an acrylic resin and a polyacetal-based resin, a melamine-based resin, and nitrified cotton. This is because in such a combination, the discharge rate characteristics are particularly good.
  • melamine resin is 10 to 40% by mass and nitrified cotton is 50 to 70% by mass. Is more preferable. This is because the discharge rate characteristics are further improved in this case.
  • the acrylic resin used in the present embodiment is a resin formed from a monomer mainly composed of acrylic acid or methacrylic acid, or a derivative thereof.
  • the ratio of the acrylic component in the monomer of the acrylic resin is, for example, 50% by mass or more, and preferably 80% by mass or more.
  • the upper limit is not particularly defined, and the monomer of the acrylic resin may be substantially composed of only the acrylic component.
  • the acrylic resin monomer may contain one or more acrylic components alone.
  • an acrylic copolymer containing at least one of methacrylic acid or a derivative thereof and a polar group-containing acrylic compound as a monomer is preferable. This is because the high rate characteristics are further improved by using an acrylic copolymer containing these monomers.
  • methacrylic acid or derivatives thereof include methacrylic acid, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate and the like.
  • the polar group-containing acrylic compound include acrylonitrile, methacrylonitrile, acrylamide, and methacrylamide.
  • an acrylic compound having an amide group is preferable. Examples of the acrylic compound having an amide group include acrylamide, N-methylol acrylamide, and diacetone acrylamide.
  • the weight average molecular weight of the acrylic resin used in the present embodiment is, for example, 30,000 to 1,000,000, specifically, for example, 30,000, 40,000, 50,000, 60,000, 70,000, 90,000, 100,000, 150,000, 200,000, 300,000, 400,000, 500,000, 700,000, 800,000, 900,000, 1 million, and within the range between any two of the numerical values exemplified here There may be. If the molecular weight is too small, the flexibility of the resin layer is low, and if the current collector is wound with a small radius of curvature, the resin layer may crack and the capacity of the battery may decrease, and if the molecular weight is too large, This is because the adhesion tends to be low.
  • the weight average molecular weight can be measured using GPC (gel exclusion chromatography) in a resin solution before addition of a conductive material. In addition, said weight average molecular weight means what was measured by GPC (gel exclusion chromatograph).
  • the chitosan resin is a resin containing a chitosan derivative as a resin component.
  • a chitosan derivative as a resin component.
  • the chitosan-based resin one having a chitosan derivative of 100% by mass can be used, but it can also be used in combination with other resin components.
  • at least the chitosan derivative is 50% by mass with respect to the total resin components. % Or more, and particularly preferably 80% by mass or more.
  • the chitosan derivative is, for example, hydroxyalkyl chitosan, and specific examples include hydroxyethyl chitosan, hydroxypropyl chitosan, hydroxybutyl chitosan, glycerylated chitosan, glycerylated chitosan and the like.
  • the chitosan resin preferably contains an organic acid.
  • organic acids include pyromellitic acid and terephthalic acid.
  • the addition amount of the organic acid is preferably 20 to 300% by mass, more preferably 50 to 150% by mass with respect to 100% by mass of the chitosan derivative. This is because if the addition amount of the organic acid is too small, the chitosan derivative is not sufficiently cured, and if the addition amount of the organic acid is too large, the flexibility of the resin layer is lowered.
  • the weight average molecular weight of the chitosan derivative is, for example, 30,000 to 500,000, specifically, for example, 30,000, 40,000, 50,000, 60,000, 80,000, 90,000, 100,000, 150,000, It may be 200,000 or 500,000, and may be within a range between any two of the numerical values exemplified here.
  • the weight average molecular weight means that measured by GPC (gel exclusion chromatograph).
  • carbon fibers and carbon nanotubes can be used as long as they are conductive.
  • acetylene black which has a relatively long aggregate and can easily improve conductivity with a relatively small addition amount.
  • the addition amount of the conductive particles is preferably 20 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the resin in the resin layer. If the amount is less than 20 parts by mass, the resistance of the resin layer increases. If the amount exceeds 80 parts by mass, the adhesion between the active material layer or the electrode material layer on the surface of the resin layer may decrease.
  • the conductive material can be dispersed in the resin liquid by using a planetary mixer, a ball mill, a homogenizer, or the like.
  • color tone of resin layer surface> when the color tone of the surface of the resin layer having conductivity is defined by the L * a * b * color system, L * is 60 or less, and a * is ⁇ 1.0 to 1. 0, b * is -1.0 to 3.0.
  • the surface of this resin layer which has electroconductivity is not coat
  • a current collector satisfying such color tone conditions is used, as shown in the examples described later, when a lithium ion battery or an electric double layer capacitor produced using this current collector is produced, It has been confirmed that excellent high rate characteristics or product life can be achieved. Therefore, a current collector having excellent performance can be obtained simply by non-destructive inspection of the color condition of the conductive resin layer without actually producing a lithium ion battery or an electric double layer capacitor. Can be selected accurately.
  • the L * a * b * color system is a color system generally used for representing the color of an object. It was standardized by the International Commission on Illumination (CIE) in 1976 and adopted in Japan by JIS (JISZ8729). In the L * a * b * color system, lightness is represented by L * , and chromaticity indicating hue and saturation is represented by a * and b * .
  • a * and b * indicate the color direction, a * indicates the red direction, -a * indicates the green direction, b * indicates the yellow direction, and -b * indicates the blue direction.
  • the measurement method of the L * a * b * color system is not particularly limited, and can be measured according to JIS (JISZ8729) using an arbitrary measuring device.
  • a color meter (SM-3-MCH manufactured by Suga Test Instruments) is used. It is possible to measure L * , a * , and b * in the measurement mode d / 8 and the aperture 30 mm ⁇ .
  • L * is 60 or less
  • a microscopic conductive group It is manufactured using this current collector that achieves an extraordinar balance even though the influence of each element such as the covering condition of the material, the dispersion state of the conductive material in the conductive resin layer, and the oxidation state of the resin is intricately intertwined.
  • L * is 8, 9, 10, 11, 12, 23, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55, 56, 57, 58, 59, 60. May be within a range of any two numerical values.
  • the other L * and b * values are also within a predetermined range.
  • a fine balance is achieved even though the influences of each element such as the microscopic covering condition of the conductive base material, the dispersion state of the conductive material in the conductive resin layer, and the oxidation state of the resin are intertwined.
  • a lithium ion battery or an electric double layer capacitor manufactured using a current collector it is preferable because excellent high rate characteristics or product life can be realized.
  • the a * values are -1.00, -0.90, -0.80, -0.70, -0.60, -0.50, -0.40, -0.30,- 0.20, -0.10, 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1 It may be in the range of any two numerical values of .00.
  • the a * values are -1.00, -0.90, -0.80, -0.70, -0.60, -0.50, -0.40, -0.30,- 0.20, -0.10, 0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 2.60, 2.70, 2.80, 2.90, 3 It may be in the range of any two numerical values of .00.
  • the color tone is -5t + 25 ⁇ L * ⁇ ⁇ 5t + 70 with respect to the thickness t ( ⁇ m) of the conductive resin layer. ⁇ 0.01t ⁇ 0.3 ⁇ a * ⁇ ⁇ 0.01t + 0.7 0.01t ⁇ b * ⁇ 0.01t + 1 It is preferable to satisfy the following condition.
  • the thickness t ( ⁇ m) of the conductive resin layer is also the dispersion of the conductive material in the other conductive resin layers in order to realize further excellent high rate characteristics or product life.
  • the thickness t ( ⁇ m) of the conductive resin layer may be preferably taken into account in order to influence the influence of each element such as the state and the oxidation state of the resin in a complicated manner. Thought.
  • the thickness of the resin layer can be calculated from the difference in thickness between the resin layer forming part and the non-formed part (aluminum foil only part) using a film thickness measuring instrument Keitaro G (manufactured by Seiko em).
  • the present inventor can achieve further excellent high rate characteristics or product life by changing the condition of L * a * b * when the thickness t ( ⁇ m) of the conductive resin layer is changed.
  • L * a * b * satisfies the above conditions for the thickness t ( ⁇ m) of this conductive resin layer.
  • L * is within the range of any two values among -5t + 25, -5t + 30, -5t + 35, -5t + 40, -5t + 45, -5t + 50, -5t + 55, -5t + 60, -5t + 65, and -5t + 70. May be.
  • the values of a * are -0.01t-0.3, -0.01t-0.4, -0.01t-0.5, -0.01t-0.6, -0.01t + 0. It may be within a range of any two of 7 values.
  • b * is 0.01t, 0.01t + 0.1, 0.01t + 0.2, 0.01t + 0.3, 0.01t + 0.4, 0.01t + 0.5, 0.01t + 0.6, 0 It may be within a range of two arbitrary values among .01t + 0.7, 0.01t + 0.8, 0.01t + 0.9, and 0.01t + 1.
  • Electrode structure> By forming an active material layer or an electrode material layer on at least one surface of the current collector of the present embodiment, the electrode structure of the present embodiment can be obtained.
  • the electrode structure for an electrical storage component in which the electrode material layer is formed will be described later.
  • a nonaqueous electrolyte battery can be manufactured using this electrode structure, a separator, a nonaqueous electrolyte, and the like.
  • a member other than the current collector can be a known nonaqueous battery member.
  • the active material layer formed in the present embodiment may have been conventionally proposed for non-aqueous electrolyte batteries.
  • the current collector of the present invention using an aluminum foil as a positive electrode, LiCoO 2 , LiMnO 2 , LiNiO 2 or the like as an active material, carbon black such as acetylene black as a conductive material, and these are binders
  • the positive electrode structure of the present embodiment can be obtained.
  • the negative electrode for example, graphite, graphite, mesocarbon microbeads or the like are used as the active material for the current collector of the present invention using copper foil as the conductive base material, and these are dispersed in CMC as a thickener, and then the binder.
  • the negative electrode structure of the present invention can be obtained by applying a paste mixed with SBR.
  • the nonaqueous electrolyte battery according to this embodiment can be configured by sandwiching the positive electrode structure and the negative electrode structure with a separator impregnated with an electrolyte for a nonaqueous electrolyte battery having a nonaqueous electrolyte.
  • the nonaqueous electrolyte and the separator those used for known nonaqueous electrolyte batteries can be used.
  • the electrolytic solution carbonates or lactones can be used as a solvent.
  • a solution obtained by dissolving LiPF 6 or LiBF 4 as an electrolyte in a mixed solution of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) is used.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the separator for example, a film having a microporous made of polyolefin can be used.
  • the current collector of this embodiment can also be applied to power storage components such as an electric double layer capacitor and a lithium ion capacitor that require discharging at a large current density.
  • the electrode structure for a power storage component of the present embodiment is obtained by forming an electrode material layer on the current collector of the present embodiment.
  • An electric double layer capacitor or a lithium ion capacitor is obtained by using the electrode structure, a separator, an electrolytic solution, and the like. And the like.
  • members other than the current collector can be members for known electric double layer capacitors or lithium ion capacitors.
  • the electrode material layer is composed of an electrode material, a conductive material, and a binder for both the positive electrode and the negative electrode.
  • an electrode structure can be obtained by forming the electrode material layer on at least one side of the current collector of the present embodiment.
  • the electrode material those conventionally used as electrode materials for electric double layer capacitors and lithium ion capacitors can be used.
  • carbon powder or carbon fiber such as activated carbon or graphite can be used.
  • carbon black such as acetylene black can be used.
  • the binder for example, PVDF (polyvinylidene fluoride) or SBR (styrene butadiene rubber) can be used.
  • the electric storage component of the present invention can constitute an electric double layer capacitor or a lithium ion capacitor by fixing the electrode structure of the present invention with a separator interposed therebetween and allowing the electrolyte to penetrate into the separator.
  • a separator for example, a polyolefin microporous film, an electric double layer capacitor nonwoven fabric, or the like can be used.
  • carbonates and lactones can be used as the solvent in the electrolyte, and the electrolyte includes tetraethylammonium salt and triethylmethylammonium salt as the cation, and hexafluorophosphate and tetrafluoroborate as the anion. Can be used.
  • a lithium ion capacitor is a combination of a negative electrode of a lithium ion battery and a positive electrode of an electric double layer capacitor.
  • Examples 9 to 10, Comparative Example 3 A conductive material shown in Table 1 is added to a resin liquid in which a monomer-containing acrylic copolymer (weight average molecular weight 110000) is dispersed in water using a surfactant, and the resulting mixture is mixed with a ball mill for 8 hours. The paint was dispersed. This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a bar coater and baked under the conditions shown in Table 1 to produce a current collector. The temperatures in Table 1 are all substrate arrival temperatures.
  • Nitrified cotton (JIS K6703L1 / 4) and the resin shown in Table 1 were dissolved in methyl ethyl ketone (MEK), and the conductive material shown in Table 1 was dispersed in a ball mill for 8 hours to obtain a paint.
  • the weight of nitrified cotton is the weight of solid content.
  • This paint was applied to one side of an aluminum foil (JIS A1085) having a thickness of 20 ⁇ m with a bar coater and baked under the conditions shown in Table 1.
  • the temperatures in Table 1 are all substrate arrival temperatures.
  • the thickness of the resin layer is determined from the difference in thickness between the resin layer forming part and the non-formed part (aluminum foil only part) using a film thickness measuring instrument Keitaro G (manufactured by Seiko em). The thickness of was calculated.
  • a coin battery was produced by placing a polypropylene microporous separator between these electrode structures in a battery case.
  • an electrolytic solution obtained by adding 1M LiPF 6 to a mixed solution of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) was used.
  • acetylene black is used as the conductive material, but other conductive agents may be used as long as the conductive material is mainly composed of carbon. Also in this case, as long as the conductive material is mainly composed of carbon, if a current collector having a conductive resin layer that satisfies the predetermined color tone condition is used, both of the lithium ion battery and the electric double layer capacitor are used. Both show excellent high-rate characteristics and battery life.

Abstract

集電体の導電性樹脂層の性能を、実際に電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品などを作製することなく、非破壊検査によって精度よく簡便に確認する技術を提供する。導電性基材の少なくとも片面に導電性を有する樹脂層を形成した集電体であって、その導電性を有する樹脂層は、樹脂と炭素を主成分とする導電材を含み、その導電性を有する樹脂層の表面の色調が、L表色系で規定すると、Lが60以下、aが-1.0~1.0、bが-1.0~3.0である、集電体が提供される。

Description

集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
 本発明は、集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品に関する。
 リチウムイオン2次電池には高速充放電や長寿命化が望まれている。そのためにリチウムイオン2次電池用の導電性基材上に導電性樹脂層を設けることで活物質などとの密着性が改善し、高速充放電、密着性が共に向上することが知られている。
 例えば、特許文献1には、キトサンを用いたアンダーコート層が開示されている。また、特許文献2には、負極活物質層のバインダにニトロセルロース、ポリメチルメタクリレートなどを用いることが開示されている。さらに、特許文献3には、導電性樹脂層にポリビニルブチラールを用いることが開示されている。そして、特許文献4では、負極活物質ペーストの色調を可視領域の吸収スペクトルで評価している。また、特許文献5では、炭素微粒子の粒径を規定している。
特開2008-60060号公報 特開2011-23341号公報 特開平2-109256号公報 特開2010-272287号公報 特開平6-163030号公報
 しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。
 第一に、リチウムイオン2次電池などに用いられる上記の導電性樹脂層の性能は、微視的な導電性基材の被覆状況、導電性樹脂層内での導電材の分散状態、樹脂の酸化状態などによって決まり、これらの各要素による影響が複雑に絡み合っている。そのため、上記の導電性樹脂層の性能を簡便な方法で予測することは難しかった。
 第二に、リチウムイオン2次電池などに用いられる上記の導電性樹脂層の性能を確認しようとすると、実際にリチウムイオン2次電池などを作製した上で性能を確認する必要があった。そのため、実際にリチウムイオン2次電池などを作製した上で性能が不良とされた場合には、せっかく作製したリチウムイオン2次電池などを廃棄する必要があり、リチウムイオン2次電池などの製造歩留まりの悪化につながっていた。特に、リチウムイオン2次電池などの製品寿命などの耐久試験については、非破壊検査が困難であるために、一部のサンプルを抜き出して破壊検査をする必要があり、検査負荷の増大および製造コストの上昇につながっていた。
 本発明は上記事情に鑑みてなされたものであり、集電体の導電性樹脂層の性能を、実際に電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品などを作製することなく、非破壊検査によって精度よく簡便に確認する技術を提供することを目的とする。
 本発明によれば、導電性基材の少なくとも片面に導電性を有する樹脂層を形成した集電体であって、その導電性を有する樹脂層は、樹脂と炭素を主成分とする導電材を含み、その導電性を有する樹脂層の表面の色調が、L表色系で規定すると、Lが60以下、aが-1.0~1.0、bが-1.0~3.0である、集電体が提供される。 
 このような色調の条件を満足する集電体を用いれば、後述する実施例で示すように、この集電体を用いて作製されたリチウムイオン電池又は電気二重層キャパシタなどを作製した場合に、優れたハイレート特性又は製品寿命が実現できることが確認されている。そのため、実際にリチウムイオン電池又は電気二重層キャパシタなどを作製しなくても、導電性を有する樹脂層の色調の条件を非破壊検査によって簡便に確認するだけで、優れた性能を有する集電体を精度よく選び出すことができる。
 また、本発明によれば、上記の集電体と、その導電性を有する樹脂層上に形成されている活物質層または電極材層と、を備える、電極構造体が提供される。
 この電極構造体では、あらかじめ導電性を有する樹脂層の色調を確認することによって優れた性能を有する集電体を非破壊検査によって精度よく簡便に選び出した上で用いている。そのため、この電極構造体を用いれば、優れたハイレート特性又は製品寿命を有するリチウムイオン電池又は電気二重層キャパシタなどを低コストかつ高い製造歩留まりで製造可能である。
 また、本発明によれば、上記の電極構造体を用いた、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品が提供される。
 これらの製品では、あらかじめ導電性を有する樹脂層の色調を確認することによって優れた性能を有する集電体を非破壊検査によって精度よく簡便に選び出した上で用いている。そのため、低コストかつ高い製造歩留まりで優れたハイレート特性又は製品寿命を有する製品を製造可能である。
 本発明によれば、あらかじめ導電性を有する樹脂層の色調を確認することによって優れた性能を有する集電体を非破壊検査によって精度よく簡便に選び出すことができる。
 以下、本発明の実施の形態について、詳細に説明する。尚、本明細書においてA~BとはA以上B以下を意味するものとする。また、以下の説明において、数平均分子量又は重量平均分子量は、GPC(ゲル排除クロマトグラフ)によって測定したものを意味する。
 本実施形態によれば、導電性基材の少なくとも片面に導電性を有する樹脂層を形成した集電体が提供される。ここで、その導電性を有する樹脂層は、樹脂と炭素を主成分とする導電材とを含む。以下、各構成について詳しく説明する。
 <1.導電性基材>
 本実施形態で用いる導電性基材としては、各種金属箔が使用可能である。金属箔としては電極構造体用、非水電解質電池用、電気二重層キャパシタ用、リチウムイオンキャパシタ用、及び蓄電部品用電極として用いられる公知の金属箔を使用することができ、特に制限されるものではなく、例えば、アルミニウム箔、アルミニウム合金箔、負極用として銅箔、ステンレス箔、ニッケル箔、負極活物質がチタン酸リチウム等の高電位タイプの場合はアルミニウム箔やアルミニウム合金箔などが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム箔、アルミニウム合金箔、銅箔が好ましい。箔の厚さとしては用途に応じて適宜調整できるが、7~100μm、特に10~50μmが好ましい。厚さが薄すぎると箔の強度が不足して活物質層の塗工が困難になる場合がある。一方、厚すぎるとその分活物質層あるいは電極材層等の他の構成を薄くせざるを得ず、十分な容量が得られなくなる場合がある。
 <2.導電性を有する樹脂層>
 本実施形態で用いる導電性を有する樹脂層(以下、単に「樹脂層」とも称する)は、上記導電性基材の片面又は両面に設けられ、樹脂と炭素を主成分とする導電材とを含む。なお、この樹脂は、特に限定せず任意の従来公知の樹脂を用いてもよいが、例えば、導電性基材および活物質などに対する密着性の面からは、硝化綿系樹脂、アクリル系樹脂又はキトサン系樹脂のいずれかを含むことが好ましい。
 本実施形態で用いる導電性を有する樹脂層の形成方法は特に限定されないが、バインダ樹脂と導電性粒子とを含む溶液や分散液を導電性基材上に塗工することが好ましい。塗工方法としてはロールコーター、グラビアコーター、スリットダイコーター等が使用可能である。また、本実施形態に用いる樹脂は硝化綿系樹脂、アクリル系樹脂又はキトサン系樹脂のいずれかを含むことが好ましい。導電性樹脂層には導電性を持たせるために炭素を主成分とする導電材(導電性粒子)を添加するが、その導電性樹脂層の特性は微視的な導電性基材の被覆状況、導電性樹脂層内での導電材の分散状態、樹脂の酸化状態などによって決まり、これらの各要素による影響が複雑に絡み合っている。本発明者は、種々の樹脂に炭素を主成分とする導電材を添加して樹脂層の体積固有抵抗を調査した結果、硝化綿系樹脂、アクリル系樹脂又はキトサン系樹脂のいずれかを含む場合には、導電性基材および活物質などに対する密着性が優れているということを見出している。また、導電性を有する樹脂層の焼付温度は導電性基材の到達温度として100~250℃、焼付時間は10~60秒が好ましい。100℃未満では硝化綿系樹脂が十分に硬化せず、250℃を超えると活物質層との密着性が低下する場合がある。
 <2-1.硝化綿系樹脂>
 本実施形態において、硝化綿系樹脂は、樹脂成分として硝化綿を含む樹脂であり、硝化綿のみからなるものであってもよく、硝化綿と別の樹脂とを含有するものであってもよい。硝化綿は多糖類であるセルロースの1種であるが、ニトロ基を有する点に特徴がある。硝化綿はニトロ基を有するセルロースであるが、CMC等の他のセルロースと比較して、電極に使用する用途としては知られておらず、従来、樹脂フィルムや塗料の原料として用いられている。
 本発明者らは、この硝化綿に導電材を分散して硝化綿系樹脂組成物を得て、導電性基材上に硝化綿系樹脂と導電材を含有する樹脂層を形成することにより、非水電解質電池のハイレート特性を飛躍的に向上させることができることを知見した。本発明に用いる硝化綿の窒素濃度は10~13%、特に10.5~12.5%が好ましい。窒素濃度が低すぎると、導電材の種類によっては十分分散できない場合があり、窒素濃度が高すぎると、硝化綿が化学的に不安定になり、電池に用いるには危険だからである。窒素濃度はニトロ基の数に依存するため、窒素濃度の調整はニトロ基数を調整することによって行うことができる。また、上記硝化綿の粘度は、JIS K-6703に基づく測定値が、通常1~6.5秒、特に1.0~6秒、酸分は0.006%以下、特に0.005%以下であることが推奨される。これらの範囲を逸脱すると、導電材の分散性、電池特性が低下する場合がある。
 本実施形態の硝化綿系樹脂は、硝化綿を100質量部であるものを使用できるが、他の樹脂成分と併用して使用することもでき、併用する場合には少なくとも硝化綿系樹脂を全樹脂成分に対して20質量部以上、特に25質量部以上含むことが好ましい。種々の樹脂に導電材を添加して樹脂層の抵抗を調査した結果、硝化綿系樹脂を20質量部以上含むと樹脂層の抵抗が飛躍的に低減化でき、十分なハイレート特性が得られることがわかった。これは硝化綿の配合量が少なすぎると導電材の分散に対する硝化綿配合による改善効果が得られず、20質量部以上の硝化綿系樹脂を添加することにより、樹脂層の抵抗を十分低くできないできるためと推定される。
 本実施形態の硝化綿系樹脂は、上述した硝化綿と併用して種々の樹脂を添加することが可能である。本発明においては、電池性能(キャパシタ性能を含む。以下同じ)を調査した結果、メラミン系樹脂、アクリル系樹脂、ポリアセタール系樹脂、エポキシ系樹脂を添加することにより、樹脂成分として硝化綿を100%使用した場合と同様かそれ以上に電池性能を向上させることができることがわかった。以下にそれぞれの添加について説明する。
 硝化綿系樹脂は、メラミン系樹脂を含有することが好ましい。メラミン系樹脂は硝化綿と架橋反応を起こすため、樹脂の硬化性が向上し、導電性基材との密着性も向上することにより、電池性能が向上するものと推定される。添加量は、硝化綿を100質量%としたときの割合が5~200質量%、より好ましくは10~150質量%である。5質量%未満では添加する効果が低く、200質量%を超えると樹脂層が硬くなりすぎ、切断時や捲回時にかえって剥離しやすくなり、放電レート特性が低下する場合がある。メラミン系樹脂としてはブチル化メラミン、イソブチル化メラミン、メチル化メラミンなどを用いることができる。メラミン系樹脂の数平均分子量は、例えば、500~5万であり、具体的には例えば500,1000,2000,2500,3000,4000,5000,1万,2万,5万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 硝化綿系樹脂は、アクリル系樹脂を含有することが好ましい。アクリル系樹脂は導電性基材、特にアルミニウム、銅との密着性に優れることから、添加することによりさらに導電性基材との密着性が向上する。添加量は、硝化綿を100質量%としたときの割合が5~200質量%、特に10~150質量%が好ましい。なお、硝化綿の重量はいずれも湿潤剤を除いた重量である。5質量%未満では添加する効果が低く、200質量%を超えると導電材の分散に悪影響を及ぼして放電レート特性が低下する場合がある。アクリル系樹脂としてはアクリル酸あるいはメタクリル酸およびそれらの誘導体を主成分とする樹脂、また、これらのモノマを含むアクリル共重合体を用いることができる。具体的にはアクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸イソプロピルなどやその共重合体である。また、アクリロニトリル、メタアクリロニトリル、アクリルアミド、メタクリルアミドなどの極性基含有アクリル系化合物やその共重合体を用いることもできる。アクリル系樹脂の重量平均分子量は、例えば、3万~100万であり、具体的には例えば3万,4万,5万,6万,7万,8万,9万,10万,15万,20万,30万,40万,50万,60万,70万,80万,90万,100万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 硝化綿系樹脂は、ポリアセタール系樹脂を含有することが好ましい。ポリアセタール系樹脂は可撓性、硝化綿との相溶性に優れていることから、樹脂層に適度な柔軟性を与え、捲回後における合剤層との密着性が向上するものと推定される。添加量は、硝化綿を100質量%としたときの割合が5~200質量%、特に20~150質量%が好ましい。5質量%未満では添加する効果が低く、200質量%を超えると導電材の分散に悪影響を及ぼして放電レート特性が低下する場合がある。ポリアセタール系樹脂としては、ポリビニルブチラール、ポリアセトアセタール、ポリビニルアセトアセタールなどが使用可能である。ポリアセタール系樹脂の重量平均分子量は、例えば、1万~50万であり、具体的には例えば1万,2万,3万,4万,5万,6万,7万,8万,9万,10万,15万,20万,50万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 硝化綿系樹脂は、エポキシ系樹脂を含有することが好ましい。エポキシ系樹脂は金属との密着性に優れることから、添加することによりさらに導電性基材との密着性が向上する。添加量は、硝化綿を100質量%としたときの割合が5~200質量%、特に10~150質量%が好ましい。5質量%未満では添加する効果が低く、200質量%を超えると導電材の分散に悪影響を及ぼして放電レート特性が低下する場合がある。エポキシ系樹脂としてはビスフェノールA型エポキシ、ビスフェノールF型エポキシ、テトラメチルビフェニル型といったグリシジルエーテル型が好ましい。エポキシ系樹脂の重量平均分子量は、例えば、300~5万であり、具体的には例えば300,500,1000,2000,3000,4000,5000,1万,2万,5万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 このように、硝化綿系樹脂は、メラミン系樹脂、アクリル系樹脂、ポリアセタール系樹脂、エポキシ系樹脂のうちの少なくとも一種と、硝化綿とを含むことが好ましい。
 また、硝化綿系樹脂は、アクリル系樹脂とポリアセタール系樹脂のうちの少なくとも一種と、メラミン系樹脂と、硝化綿とを含むことがさらに好ましい。このような組み合わせの場合に、放電レート特性が特に良好になるからである。また、アクリル系樹脂、ポリアセタール系樹脂、メラミン系樹脂、及び硝化綿の合計を100質量%としたとき、メラミン系樹脂が10~40質量%であり、硝化綿が50~70質量%であることがさらに好ましい。この場合に、放電レート特性がさらに良好になるからである。
 <2-2.アクリル系樹脂>
 本実施形態で用いるアクリル系樹脂は、アクリル酸若しくはメタクリル酸、又はこれらの誘導体を主成分とするモノマから形成された樹脂である。アクリル系樹脂のモノマ中のアクリル成分の割合は、例えば50質量%以上であり、好ましくは、80質量%以上である。上限は、特に規定されず、アクリル系樹脂のモノマが実質的にアクリル成分のみで構成されてもよい。また、アクリル系樹脂のモノマは、アクリル成分一種を単独で又は二種以上含んでいてもよい。
 アクリル系樹脂の中でもメタクリル酸又はその誘導体と極性基含有アクリル系化合物の中から少なくともひとつをモノマとして含むアクリル共重合体が好ましい。これらのモノマを含むアクリル共重合体を用いることにより、ハイレート特性がさらに向上するからである。メタクリル酸又はその誘導体としては、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピルなどが挙げられる。極性基含有アクリル系化合物としてはアクリロニトリル、メタアクリロニトリル、アクリルアミド、メタクリルアミドなどがある。さらに極性基含有アクリル系化合物の中でもアミド基を有するアクリル化合物が好ましい。アミド基を有するアクリル化合物としてアクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミドなどがある。
 本実施形態で用いるアクリル系樹脂の重量平均分子量は、例えば、3万~100万であり、具体的には例えば3万,4万,5万,6万,7万,8万,9万,10万,15万,20万,30万,40万,50万,60万,70万,80万,90万,100万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。分子量が小さすぎると、樹脂層の柔軟性が低く、小さい曲率半径で集電体を捲回すると樹脂層にクラックが発生して電池等の容量が低下する場合があり、分子量が大きすぎると、密着性が低くなる傾向があるからである。重量平均分子量は、導電材添加前の樹脂液にてGPC(ゲル排除クロマトグラフィー)を用いて測定することができる。なお、上記の重量平均分子量は、GPC(ゲル排除クロマトグラフ)によって測定したものを意味する。
 <2-3.キトサン系樹脂>
 本実施形態において、キトサン系樹脂は、樹脂成分としてキトサン誘導体を含む樹脂である。キトサン系樹脂は、キトサン誘導体が100質量%であるものを使用できるが、他の樹脂成分と併用して使用することもでき、併用する場合には少なくともキトサン誘導体を全樹脂成分に対して50質量%以上、特に80質量%以上含むことが好ましい。キトサン誘導体は、例えばヒドロキシアルキルキトサンであり、具体的には、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシブチルキトサン、グリセリル化キトサン、グリセリル化キトサン等が挙げられる。
 キトサン系樹脂は、好ましくは、有機酸を含む。有機酸としては、ピロメリット酸、テレフタル酸などが挙げられる。有機酸の添加量は、キトサン誘導体100質量%に対して20~300質量%が好ましく、50~150質量%がさらに好ましい。有機酸の添加量が少なすぎるとキトサン誘導体の硬化が不十分になり、有機酸の添加量が多すぎると樹脂層の可撓性が低下するからである。
 キトサン誘導体の重量平均分子量は、例えば、3万~50万であり、具体的には例えば3万,4万,5万,6万,7万,8万,9万,10万,15万,20万,50万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重量平均分子量は、GPC(ゲル排除クロマトグラフ)によって測定したものを意味する。
 <2-4.炭素を主成分とする導電材>
 集電体は電極から対極に移動する電子の通路となるので、その表面にも電子導電性が必要である。硝化綿系樹脂、アクリル系樹脂又はキトサン誘導体は、いずれも絶縁体であるので、電子伝導性を付与するために炭素を主成分とする導電材を添加しなければならない。本実施形態で用いる導電性粒子としては炭素を主成分とする導電材であれば任意の導電材が使用可能であるが、その中でも炭素粉末(炭素微粒子)が好ましい。炭素粉末としてはアセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブなどが使用可能である。また、導電性があれば炭素繊維やカーボンナノチューブなども使用可能である。これらの中でも、比較的アグリゲートが長く比較的少ない添加量で導電性を向上させやすいアセチレンブラックを用いることが好ましい。添加量を少なくすることで活物質層あるいは電極材層との密着性の低下を抑えることができる。導電性粒子の添加量は、樹脂層の樹脂100質量部に対して20質量部以上、80質量部以下が好ましい。20質量部未満では樹脂層の抵抗が高くなり、80質量部を超えると樹脂層表面の活物質層あるいは電極材層との密着性が低下する場合があるからである。導電材を樹脂液に分散するにはプラネタリミキサ、ボールミル、ホモジナイザ等を用いることによって分散することが可能である。
 <3.樹脂層表面の色調>
 本実施形態の集電体では、導電性を有する樹脂層の表面の色調が、L表色系で規定すると、Lが60以下、aが-1.0~1.0、bが-1.0~3.0である。なお、この導電性を有する樹脂層の表面は、他の材料からなる別の層に被覆されておらず外部に露出していることが好ましい。この導電性を有する樹脂層の表面が外部に露出していれば、特に何ら手を加えることなくそのまま導電性を有する樹脂層の表面の色調を測定することができるからである。すなわち、導電性を有する樹脂層の表面には何も被覆されていない状態で色調を測定することが正確な色調の測定のためには好ましい。 
 このような色調の条件を満足する集電体を用いれば、後述する実施例で示すように、この集電体を用いて作製されたリチウムイオン電池又は電気二重層キャパシタなどを作製した場合に、優れたハイレート特性又は製品寿命が実現できることが確認されている。そのため、実際にリチウムイオン電池又は電気二重層キャパシタなどを作製しなくても、導電性を有する樹脂層の色調の条件を非破壊検査によって簡便に確認するだけで、優れた性能を有する集電体を精度よく選び出すことができる。
 L表色系は、物体の色を表わすのに、一般的に使用されている表色系である。1976年に国際照明委員会(CIE)で規格化され、日本でもJIS(JISZ8729)において採用されている。L表色系では、明度をL、色相と彩度を示す色度をa、bで表す。a、bは、色の方向を示しており、aは赤方向、-aは緑方向、そしてbは黄方向、-bは青方向を示す。
 このL表色系の測定方法は、特に限定せず任意の測定装置を用いてJIS(JISZ8729)に従って測定できるが、例えば、カラーメーター(スガ試験機製SM-3-MCH)を用いて、測定モードd/8、アパーチャ30mmφにてL、a、bを測定することができる。
 上記の導電性を有する樹脂層の表面の色調のうち、Lが60以下の場合には、他のaおよびbの値も所定の範囲内であれば、微視的な導電性基材の被覆状況、導電性樹脂層内での導電材の分散状態、樹脂の酸化状態などの各要素による影響が複雑に絡み合いながらも絶妙なバランスが実現され、この集電体を用いて作製されたリチウムイオン電池又は電気二重層キャパシタなどを作製した場合に、優れたハイレート特性又は製品寿命が実現できるため好ましい。なお、このLの値は、8、9、10、11、12、23、14、15、20、25、30、35、40、45、50、55、56、57、58、59、60のうち任意の2つの数値の範囲内であってもよい。
 また、上記の導電性を有する樹脂層の表面の色調のうち、aが-1.0~1.0の場合には、他のLおよびbの値も所定の範囲内であれば、微視的な導電性基材の被覆状況、導電性樹脂層内での導電材の分散状態、樹脂の酸化状態などの各要素による影響が複雑に絡み合いながらも絶妙なバランスが実現され、この集電体を用いて作製されたリチウムイオン電池又は電気二重層キャパシタなどを作製した場合に、優れたハイレート特性又は製品寿命が実現できるため好ましい。なお、このaの値は、-1.00、-0.90、-0.80、-0.70、-0.60、-0.50、-0.40、-0.30、-0.20、-0.10、0.00、0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.80、0.90、1.00のうち任意の2つの数値の範囲内であってもよい。
 また、上記の導電性を有する樹脂層の表面の色調のうち、bが-1.0~3.0の場合には、他のLおよびbの値も所定の範囲内であれば、微視的な導電性基材の被覆状況、導電性樹脂層内での導電材の分散状態、樹脂の酸化状態などの各要素による影響が複雑に絡み合いながらも絶妙なバランスが実現され、この集電体を用いて作製されたリチウムイオン電池又は電気二重層キャパシタなどを作製した場合に、優れたハイレート特性又は製品寿命が実現できるため好ましい。なお、このaの値は、-1.00、-0.90、-0.80、-0.70、-0.60、-0.50、-0.40、-0.30、-0.20、-0.10、0.00、0.50、1.00、1.50、2.00、2.50、2.60、2.70、2.80、2.90、3.00のうち任意の2つの数値の範囲内であってもよい。
 また、この導電性を有する樹脂層の厚さt(μm)に対して、上記の色調が
 -5t+25≦L≦-5t+70
 -0.01t-0.3≦a≦-0.01t+0.7
 0.01t≦b≦0.01t+1
 の条件を満たすことが好ましい。
 上記のとおり、Lが60以下、aが-1.0~1.0、bが-1.0~3.0という条件を満たす場合には、この集電体を用いて作製されたリチウムイオン電池又は電気二重層キャパシタなどを作製した場合に、実用に耐える水準の優れたハイレート特性又は製品寿命が実現できる。しかしながら、本発明者は、さらに優れたハイレート特性又は製品寿命を実現するためには、導電性を有する樹脂層の厚さt(μm)も、他の導電性樹脂層内での導電材の分散状態、樹脂の酸化状態などの各要素による影響に対して複雑に絡み合いながらも影響を与えるため、この導電性を有する樹脂層の厚さt(μm)も考慮に入れることが好ましいのでは無いかと考えた。なお、樹脂層の厚さは、フィルム厚み測定機 計太郎G(セイコーem製)を用いて、樹脂層形成部と未形成部(アルミ箔のみの部分)の厚みの差から算出可能である。
 そこで、本発明者は、この導電性を有する樹脂層の厚さt(μm)を変えた場合に、Lの条件をどのようにすればさらに優れたハイレート特性又は製品寿命を実現できるかを検討したところ、この導電性を有する樹脂層の厚さt(μm)に対して、Lが上記のような条件を満たす場合には、さらに優れたハイレート特性又は製品寿命を実現できることを見出した。
 すなわち、上記の導電性を有する樹脂層の表面の色調のうち、Lが-5t+25≦L≦-5t+70という条件を満たす場合には、他のaおよびbの値も導電性を有する樹脂層の厚さt(μm)との関係で所定の範囲内であれば、導電性を有する樹脂層の厚さ、微視的な導電性基材の被覆状況、導電性樹脂層内での導電材の分散状態、樹脂の酸化状態などの各要素による影響が複雑に絡み合いながらも絶妙なバランスが実現され、この集電体を用いて作製されたリチウムイオン電池又は電気二重層キャパシタなどを作製した場合に、さらに優れたハイレート特性又は製品寿命が実現できるため好ましい。なお、このLの値は、-5t+25、-5t+30、-5t+35、-5t+40、-5t+45、-5t+50、-5t+55、-5t+60、-5t+65、-5t+70のうち任意の2つの数値の範囲内であってもよい。
 また、上記の導電性を有する樹脂層の表面の色調のうち、aが-0.01t-0.3≦a≦-0.01t+0.7という条件を満たす場合には、他のLおよびbの値も導電性を有する樹脂層の厚さt(μm)との関係で所定の範囲内であれば、導電性を有する樹脂層の厚さ、微視的な導電性基材の被覆状況、導電性樹脂層内での導電材の分散状態、樹脂の酸化状態などの各要素による影響が複雑に絡み合いながらも絶妙なバランスが実現され、この集電体を用いて作製されたリチウムイオン電池又は電気二重層キャパシタなどを作製した場合に、さらに優れたハイレート特性又は製品寿命が実現できるため好ましい。なお、このaの値は、-0.01t-0.3、-0.01t-0.4、-0.01t-0.5、-0.01t-0.6、-0.01t+0.7のうち任意の2つの数値の範囲内であってもよい。
 また、上記の導電性を有する樹脂層の表面の色調のうち、bが0.01t≦b≦0.01t+1という条件を満たす場合には、他のLおよびaの値も導電性を有する樹脂層の厚さt(μm)との関係で所定の範囲内であれば、導電性を有する樹脂層の厚さ、微視的な導電性基材の被覆状況、導電性樹脂層内での導電材の分散状態、樹脂の酸化状態などの各要素による影響が複雑に絡み合いながらも絶妙なバランスが実現され、この集電体を用いて作製されたリチウムイオン電池又は電気二重層キャパシタなどを作製した場合に、さらに優れたハイレート特性又は製品寿命が実現できるため好ましい。なお、このbの値は、0.01t、0.01t+0.1、0.01t+0.2、0.01t+0.3、0.01t+0.4、0.01t+0.5、0.01t+0.6、0.01t+0.7、0.01t+0.8、0.01t+0.9、0.01t+1のうち任意の2つの数値の範囲内であってもよい。
 <4.電極構造体>
 本実施形態の集電体の少なくとも片面に活物質層又は電極材層を形成することによって、本実施形態の電極構造体を得ることができる。電極材層を形成した蓄電部品用の電極構造体については後述する。まず、活物質層を形成した電極構造体の場合、この電極構造体とセパレータ、非水電解質等を用いて非水電解質電池を製造することができる。本発明の非水電解質電池用電極構造体および非水電解質電池において集電体以外の部材は、公知の非水電池用部材を用いることが可能である。
 本実施形態において形成される活物質層は、従来、非水電解質電池用として提案されているものでよい。例えば、正極としてはアルミニウム箔を用いた本発明の集電体に、活物質としてLiCoO、LiMnO、LiNiO等を用い、導電材としてアセチレンブラック等のカーボンブラックを用い、これらをバインダであるPVDFに分散したペーストを塗工することにより、本実施形態の正極構造体を得ることができる。
 負極としては、導電性基材として銅箔を用いた本発明の集電体に活物質として例えば黒鉛、グラファイト、メソカーボンマイクロビーズ等を用い、これらを増粘剤であるCMCに分散後、バインダであるSBRと混合したペーストを塗工することにより、本発明の負極構造体を得ることができる。
 <5.非水電解質電池>
 上記の正極構造体と負極構造体の間に非水電解質を有する非水電解質電池用電解液を含浸させたセパレータで挟むことにより、本実施形態の非水電解質電池を構成することができる。非水電解質およびセパレータは公知の非水電解質電池用として用いられているものを使用可能である。電解液は溶媒として、カーボネート類やラクトン類等を用いることができ、例えば、EC(エチレンカーボネイト)とEMC(エチルメチルカーボネイト)の混合液に電解質としてLiPFやLiBFを溶解したものを用いることができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜を用いることができる。
 <6.蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)>
 本実施形態の集電体は大電流密度での放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品にも適応可能である。本実施形態の蓄電部品用電極構造体は本実施形態の集電体に電極材層を形成することによって得られ、この電極構造体とセパレータ、電解液等によって、電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品を製造することができる。本実施形態の電極構造体および蓄電部品において集電体以外の部材は、公知の電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
 電極材層は正極、負極共、電極材、導電材、バインダよりなる。本発明においては、本実施形態の集電体の少なくとも片側に前記電極材層を形成することによって電極構造体を得ることができる。ここで、電極材には従来、電気二重層キャパシタ用、リチウムイオンキャパシタ用電極材料として用いられているものが使用可能である。例えば、活性炭、黒鉛などの炭素粉末や炭素繊維を用いることができる。導電材としてはアセチレンブラック等のカーボンブラックを用いることができる。バインダとしては、例えば、PVDF(ポリフッ化ビニリデン)やSBR(スチレンブタジエンゴム)を用いることができる。また、本発明の蓄電部品は、本発明の電極構造体にセパレータを挟んで固定し、セパレータに電解液を浸透させることによって、電気二重層キャパシタやリチウムイオンキャパシタを構成することができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜や電気二重層キャパシタ用不織布等を用いることができる。電解液は溶媒として例えばカーボネート類やラクトン類を用いることができ、電解質は陽イオンとしてはテトラエチルアンモニウム塩、トリエチルメチルアンモニウム塩等、陰イオンとしては六フッ化りん酸塩、四フッ化ほう酸塩等を用いることができる。リチウムイオンキャパシタはリチウムイオン電池の負極、電気二重層キャパシタの正極を組み合わせたものである。これらの製造方法は本実施形態の集電体を用いる以外は、公知の方法に従って行うことができ、特に制限されるものではない。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。
 (1)集電体の作製
 [実施例1~8、比較例1~2]
 ノルマルメチル2ピロリドン(NMP)にヒドロキシアルキルキトサン(重量平均分子量80000)と表1に示す各種有機酸を溶解し、表1に示す導電材をボールミルにて8時間分散して塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にバーコータで塗布し、表1に示す条件にて焼き付けた。表1の温度はいずれも基材到達温度である。
 [実施例9~10、比較例3]
 モノマを含むアクリル共重合体(重量平均分子量110000)を界面活性剤を用いて水に分散した樹脂液に、樹脂の固形分に対して表1に示す導電材を添加し、ボールミルにて8時間分散して塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にバーコータで塗布し、表1に示す条件にて焼き付けて集電体を作製した。表1の温度はいずれも基材到達温度である。
 [実施例11]
 メチルエチルケトン(MEK)に硝化綿(JIS K6703L1/4)と表1に示す樹脂を溶解し、表1に示す導電材をボールミルにて8時間分散して塗料とした。硝化綿の重量はいずれも固形分の重量である。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にバーコータで塗布し、表1に示す条件にて焼き付けた。表1の温度はいずれも基材到達温度である。
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、樹脂層の厚さはフィルム厚み測定機 計太郎G(セイコーem製)を用いて、樹脂層形成部と未形成部(アルミ箔のみの部分)の厚みの差から樹脂層の厚さを算出した。
 (2)評価方法
 (2-1)色調
 カラーメーター(スガ試験機製SM-3-MCH)を用いて、測定モードd/8、アパーチャ30mmφにてL、a、bを測定した。測定結果を表2に示す。
 (2-2)リチウムイオン電池の放電レート特性評価、電極寿命評価
 (リチウムイオン電池の製造方法)
 正極には、活物質のLiCoOと導電材のアセチレンブラックをバインダであるPVDF(ポリフッ化ビニリデン)に分散したペーストを厚さ70μmにて前記各集電体電極に塗工したものを用いた。負極には、活物質の黒鉛をCMC(カルボキシメチルセルロース)に分散後、バインダであるSBR(スチレンブタジエンゴム)と混合したペーストを厚さ20μmの銅箔に厚さ70μmにて塗工したものを用いた。これらの電極構造体にポリプロピレン製マイクロポーラスセパレータを挟んで電池ケースに収め、コイン電池を作製した。電解液としてはEC(エチレンカーボネート)とEMC(エチルメチルカーボネート)の混合液に1MのLiPFを添加した電解液を用いた。
 (放電レート特性評価方法)
 充電上限電圧4.2V、充電電流0.2C、放電終了電圧2.8V、温度25℃において、放電電流レート1C、5C、10C、20Cの条件で、これらのリチウムイオン電池の放電容量(0.2C基準、単位%)を測定した。(1Cはその電池の電流容量(Ah)を1時間(h)で取り出すときの電流値(A)である。20Cでは1/20h=3minでその電池の電流容量を取り出すことができる。あるいは充電することができる。)測定結果を表2に示す。
 (電極寿命評価の方法)
 電解液温度40℃にて、上限電圧4.2 V、充電電流20Cで充電した後、終了電圧2.8V、放電電流20Cで放電して、1サイクル目の放電容量に対して、放電容量が60%未満になる回数(最大500回)を測定し、以下の基準で評価した。測定結果を表2に示す。
A:500回以上
B:450回以上500回未満
C:400回以上450回未満
D:400回未満
 (2-3)電気二重層キャパシタの放電レート特性評価、電極寿命評価
 (電気二重層キャパシタの製造方法)
 電極材の活性炭、導電材のケッチェンブラックをバインダのPVDFに分散したペーストを厚さ80μmにて前記集電体電極に塗工し、正極、負極共同じ電極構造体とした。この電極構造体2枚に電解液を含浸した電気二重層キャパシタ用不織布を挟んで固定し、電気二重層キャパシタを構成した。電解液は溶媒であるプロピレンカーボネートに1.5MのTEMA(トリエチルメチルアンモニウム)と四フッ化ほう酸を添加したものを用いた。
 (放電レート特性評価方法)
 充電上限電圧2.8V、充電電流1C、充電終了条件2h、放電終了電圧0V、温度25℃、放電電流レート100C、300C、500Cの条件で、これらの電気二重層キャパシタの放電容量(1C基準、単位%)を測定した。測定結果を表2に示す。
 (電極寿命評価の方法)
 電解液温度40℃にて、上限電圧2.8V、充電電流500Cで充電した後、放電電流500Cで終了電圧0Vまで放電して、1サイクル目の放電容量に対して、放電容量が80%未満になる回数(最大5000回)を測定し、以下の基準で評価した。測定結果を表2に示す。
A :5000回以上
B :4500回以上5000回未満
C :4000回以上4500回未満
D :4000回未満
Figure JPOXMLDOC01-appb-T000002
 <結果の考察>
 上記の実施例・比較例の実験結果から、所定の色調の条件を満足する導電性樹脂層を有する集電体を用いれば、いずれもリチウムイオン電池および電気二重層キャパシタの両方で、優れたハイレート特性、電池寿命を示すことがわかる。そのため、実際にリチウムイオン電池又は電気二重層キャパシタを作製しなくても、導電性を有する樹脂層の色調の条件を非破壊検査によって簡便に確認するだけで、優れた性能を有する集電体を精度よく選び出すことができることがわかる。
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 たとえば、上記実施例では、導電材としてアセチレンブラックを用いたが、炭素を主成分とする導電材であれば他の導電剤を用いてもよい。この場合にも炭素を主成分とする導電材であれば、同様に所定の色調の条件を満足する導電性樹脂層を有する集電体を用いれば、いずれもリチウムイオン電池および電気二重層キャパシタの両方で、優れたハイレート特性、電池寿命を示す。

Claims (7)

  1.  導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、
     前記導電性を有する樹脂層の表面の色調が、L表色系で規定すると、Lが60以下、aが-1.0~1.0、bが-1.0~3.0である、集電体。
  2.  前記導電性を有する樹脂層の厚さt(μm)に対して、前記色調が
     -5t+25≦L≦-5t+70
     -0.01t-0.3≦a≦-0.01t+0.7
     0.01t≦b≦0.01t+1
     の条件を満たす、請求項1に記載の集電体。
  3.  前記導電性を有する樹脂層は、樹脂と炭素を主成分とする導電材とを含む、
     請求項1に記載の集電体。
  4.  前記樹脂が、アクリル系樹脂、硝化綿系樹脂又はキトサン系樹脂のいずれかを含む、
     請求項1に記載の集電体。
  5.  前記導電性を有する樹脂層の表面が露出している、
     請求項1に記載の集電体。
  6.  請求項1に記載の集電体と、
     前記導電性を有する樹脂層上に形成されている活物質層または電極材層と、
     を備える、電極構造体。
  7.  請求項6に記載の電極構造体を用いた、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品。
PCT/JP2012/069118 2011-07-29 2012-07-27 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品 WO2013018684A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147004360A KR101947565B1 (ko) 2011-07-29 2012-07-27 집전체 및 그것을 이용한 전극 구조체, 비수전해질 전지, 전기 이중층 커패시터, 리튬이온 커패시터 또는 축전 부품
US14/235,785 US9659716B2 (en) 2011-07-29 2012-07-27 Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electrical storage device using same
CN201280036480.6A CN103733399B (zh) 2011-07-29 2012-07-27 集电体以及使用该集电体的电极结构体、非水电解质电池、双电层电容器、锂离子电容器或蓄电部件
JP2013526876A JP6153468B2 (ja) 2011-07-29 2012-07-27 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
EP12819839.7A EP2738854B1 (en) 2011-07-29 2012-07-27 Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-166390 2011-07-29
JP2011166390 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018684A1 true WO2013018684A1 (ja) 2013-02-07

Family

ID=47629208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069118 WO2013018684A1 (ja) 2011-07-29 2012-07-27 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品

Country Status (7)

Country Link
US (1) US9659716B2 (ja)
EP (1) EP2738854B1 (ja)
JP (1) JP6153468B2 (ja)
KR (1) KR101947565B1 (ja)
CN (1) CN103733399B (ja)
TW (1) TWI587563B (ja)
WO (1) WO2013018684A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186882A (ja) * 2015-03-27 2016-10-27 株式会社Gsユアサ 電極、及び、該電極を備えた蓄電素子
WO2018101306A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 薄膜およびエネルギー貯蔵デバイス電極用アンダーコート箔

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998278B2 (ja) * 2018-06-13 2022-02-10 三洋化成工業株式会社 樹脂集電体、積層型樹脂集電体、及び、リチウムイオン電池
JP7234664B2 (ja) 2019-02-04 2023-03-08 日本電気株式会社 検知システム
US20230152214A1 (en) * 2020-04-13 2023-05-18 Lg Energy Solution, Ltd. Electrode quality evaluation method and electrode manufacturing method
CN115336031A (zh) * 2020-04-13 2022-11-11 株式会社Lg新能源 电极质量评估方法以及电极制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010320A (ja) * 2006-06-29 2008-01-17 Sony Corp 電極集電体及びその検査方法、電池用電極及びその製造方法、並びに二次電池及びその製造方法
JP2010135338A (ja) * 2005-02-10 2010-06-17 Showa Denko Kk 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160656A (ja) 1986-01-08 1987-07-16 Nippon Telegr & Teleph Corp <Ntt> 非水電解液電池用正極の製造方法
JP2878289B2 (ja) 1988-10-18 1999-04-05 富士電気化学株式会社 ペーパー電池
JP3309449B2 (ja) 1992-11-16 2002-07-29 ソニー株式会社 非水電解液二次電池
US5824120A (en) * 1996-04-10 1998-10-20 Valence Technology, Inc. Electrically conductive adhesion promoters for current collectors
JP4593488B2 (ja) * 2005-02-10 2010-12-08 昭和電工株式会社 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
WO2006085691A1 (en) * 2005-02-10 2006-08-17 Showa Denko K.K Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP4499795B2 (ja) * 2005-10-11 2010-07-07 昭和電工株式会社 電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、及び電気二重層キャパシタ、並びにそれらの製造方法
JP5038751B2 (ja) 2006-08-04 2012-10-03 協立化学産業株式会社 電極板製造用塗工液、アンダーコート剤およびその使用
JP5315665B2 (ja) * 2007-10-31 2013-10-16 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR101677101B1 (ko) * 2009-03-23 2016-11-17 도요 알루미늄 가부시키가이샤 전극 구조체, 콘덴서, 전지 및 전극 구조체의 제조 방법
JP2010272287A (ja) 2009-05-20 2010-12-02 Toyota Motor Corp 負極ペーストの検査方法
JP2011023341A (ja) 2009-06-16 2011-02-03 Sumitomo Chemical Co Ltd 非水電解液二次電池用負極材料およびそれを備える非水電解液二次電池
KR101489042B1 (ko) 2009-08-27 2015-02-02 다이니치 세이카 고교 가부시키가이샤 수계 슬러리 조성물, 축전 장치용 전극판 및 축전 장치
JP5532475B2 (ja) * 2009-11-12 2014-06-25 福田金属箔粉工業株式会社 処理銅箔及び未処理銅箔の粗化処理方法並びに銅張積層板
TW201137906A (en) 2009-12-18 2011-11-01 Showa Denko Kk Coating solution
WO2012114835A1 (ja) 2011-02-23 2012-08-30 大日精化工業株式会社 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135338A (ja) * 2005-02-10 2010-06-17 Showa Denko Kk 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
JP2011086636A (ja) * 2005-02-10 2011-04-28 Showa Denko Kk 二次電池用集電体形成用のペースト、二次電池用集電体およびその製造方法、二次電池用電極、二次電池
JP2008010320A (ja) * 2006-06-29 2008-01-17 Sony Corp 電極集電体及びその検査方法、電池用電極及びその製造方法、並びに二次電池及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738854A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186882A (ja) * 2015-03-27 2016-10-27 株式会社Gsユアサ 電極、及び、該電極を備えた蓄電素子
WO2018101306A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 薄膜およびエネルギー貯蔵デバイス電極用アンダーコート箔

Also Published As

Publication number Publication date
TWI587563B (zh) 2017-06-11
JPWO2013018684A1 (ja) 2015-03-05
EP2738854B1 (en) 2017-08-30
KR101947565B1 (ko) 2019-02-13
US20140178766A1 (en) 2014-06-26
TW201316599A (zh) 2013-04-16
CN103733399A (zh) 2014-04-16
US9659716B2 (en) 2017-05-23
CN103733399B (zh) 2016-03-02
KR20140051323A (ko) 2014-04-30
JP6153468B2 (ja) 2017-06-28
EP2738854A4 (en) 2015-01-07
EP2738854A1 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
KR101907449B1 (ko) 집전체, 전극 구조체, 비수전해질 전지, 축전 부품
JP6121325B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6153468B2 (ja) 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
KR20150135434A (ko) 집전체, 전극 구조체, 비수전해질전지 또는 축전부품
JP5985161B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6184552B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6140073B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP2016054277A (ja) 集電体、当該集電体を備えた電極構造体、ならびに、当該電極構造体を備えた非水電解質電池、電気二重層キャパシタ及びリチウムイオンキャパシタから選択される蓄電部品
JP5780871B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP5788985B2 (ja) 集電体、電極構造体、非水電解質電池、蓄電部品、硝化綿系樹脂材料
JP5788730B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6130018B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6031223B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526876

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14235785

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147004360

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012819839

Country of ref document: EP