WO2010087222A1 - 有機エレクトロルミネッセンス素子、表示装置及び照明装置 - Google Patents
有機エレクトロルミネッセンス素子、表示装置及び照明装置 Download PDFInfo
- Publication number
- WO2010087222A1 WO2010087222A1 PCT/JP2010/050203 JP2010050203W WO2010087222A1 WO 2010087222 A1 WO2010087222 A1 WO 2010087222A1 JP 2010050203 W JP2010050203 W JP 2010050203W WO 2010087222 A1 WO2010087222 A1 WO 2010087222A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- layer
- ring
- organic
- light emitting
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1022—Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1033—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1074—Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1096—Heterocyclic compounds characterised by ligands containing other heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
Definitions
- the present invention relates to an organic electroluminescence element, a display device, and a lighting device.
- an electroluminescence display (hereinafter abbreviated as ELD).
- ELD electroluminescence display
- an inorganic electroluminescence element hereinafter also referred to as an inorganic EL element
- an organic electroluminescence element hereinafter also referred to as an organic EL element
- Inorganic EL elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
- the organic EL element has a configuration in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode.
- Excitons are generated by injecting electrons and holes into the light emitting layer and recombining them. It is an element that emits light by using the emission of light (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Further, since it is a self-luminous type, it has a wide viewing angle, high visibility, and since it is a thin-film type complete solid-state device, it has attracted attention from the viewpoints of space saving and portability.
- the organic EL element is a major feature that it is a surface light source, unlike the main light sources that have been used in the past, such as light-emitting diodes and cold-cathode tubes.
- Applications that can effectively utilize this characteristic include illumination light sources and various display backlights.
- it is also suitable to be used as a backlight of a liquid crystal full color display whose demand has been increasing in recent years.
- organic EL elements can be roughly divided into high-molecular organic EL elements and low-molecular organic EL elements depending on the material of the light emitting layer.
- organic EL device manufacturing methods include a vacuum deposition method, a wet process (coating method), etc., but in recent years a wet process is not required because a vacuum process is not required, continuous production is simple, and production speed can be increased.
- a manufacturing method in spin coating method, casting method, ink jet method, spray method, printing method, slot type coater method
- spin coating method spin coating method, casting method, ink jet method, spray method, printing method, slot type coater method
- a polymer material is used for a light emitting layer in the case of a coating type organic EL element (for example, see Patent Document 1).
- a coating type organic EL element for example, see Patent Document 1.
- the coating type polymer organic EL there are concerns in terms of performance and production stability because it is difficult to purify the material and it is difficult to control the molecular weight distribution. Yes. Therefore, in recent years, attention has been focused on coating-type low-molecular organic EL.
- a low-molecular organic EL element formed by coating is disclosed (for example, see Patent Document 2), and a low-molecular organic EL element having good color purity, excellent luminous efficiency, luminance, and half-life is provided.
- the present invention has been made in view of the above problems, and an object thereof is an organic EL element having excellent storage stability and little change in luminance and life after long-term storage, and a display device and an illumination device using the organic EL element Is to provide.
- an organic electroluminescence device having at least one light emitting layer as a constituent layer between an anode and a cathode, The light emitting layer has a dopant and a host, and there are crystal grains due to any of the host, the dopant, or a mixture of the host and the dopant, and X-ray diffraction lines due to the crystal grains are observed.
- An organic electroluminescence device characterized by comprising:
- X represents NR ′, O, S, CR′R ′′ or SiR′R ′′.
- R ′ and R ′′ each represent a hydrogen atom or a substituent.
- Ar represents an atomic group necessary for forming an aromatic ring.
- N represents an integer of 0 to 8.
- Z represents a hydrocarbon ring group, an aromatic heterocyclic group or a heterocyclic group.
- R 81 to R 86 each represent a hydrogen atom or a substituent.
- P 1 -L1-P 2 is a bidentate coordination.
- P 1 and P 2 each independently represents a carbon atom, a nitrogen atom or an oxygen atom
- L 1 represents an atomic group which forms a bidentate ligand together with P 1 and P 2
- j 1 represents 1 to 3 represents an integer of 3 and j2 represents an integer of 0 to 2
- j1 + j2 is 2 or 3.
- M 1 represents a metal element of Group 8 to 10 in the periodic table.
- a display device comprising the organic electroluminescence element as described in any one of 1 to 13 above.
- an organic EL element having excellent storage stability and little change in luminance and life after long-term storage, and to provide a display device and a lighting device including the organic EL element.
- crystal grains when crystal grains are present in the light-emitting layer during long-term storage, it is expected that disturbance and deterioration at the interface with the adjacent layer due to material mixing are unlikely to occur.
- the reason is that, for example, if there are crystal grains in the layer, the crystal grains in the layer have a certain size, so that the fluidity of the molecules is low, and the disturbance at the interface between adjacent layers is suppressed, so that deterioration is reduced. It is done.
- FIG. 1 It is a schematic diagram of the coating device used for this invention. It is a side surface enlarged view of the coating device shown in FIG. It is a schematic plan view which shows an example of the installation arrangement
- Constituent layers of organic EL elements Examples of the constituent layer of the organic EL device of the present invention include a hole injection layer, an electron injection layer, a hole blocking layer, an electron blocking layer, a hole transport layer, an electron transport layer, an intermediate layer, and a light emitting layer. Among them, specific examples of preferred layer structures are shown below, but the present invention is not limited thereto.
- the light-emitting layer according to the present invention is a layer that emits light by recombination of injected electrons and holes, and the light-emitting portion is the interface between the light-emitting layer and the adjacent layer even in the layer of the light-emitting layer. May be.
- the structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
- the thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film to be formed, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the driving current. It is preferable to adjust to a range of 2 nm to 200 nm, and more preferably to a range of 5 nm to 100 nm.
- the light emitting layer of the organic electroluminescence device of the present invention can be formed by either a vacuum deposition method or a wet process, but is preferably formed by a wet process.
- a wet process in the present invention there are a spin coat method, a cast method, an ink jet method, a spray method, a printing method, a slot type coater method, etc., but a homogeneous film is easily obtained and pinholes are not easily generated.
- film formation by a coating method such as an ink jet method, a printing method, or a slot coater method is particularly preferable.
- the light emitting layer has a dopant and a host.
- a host also referred to as a host compound
- a dopant also referred to as a dopant compound
- the host in the present invention is a compound having a phosphorescence quantum yield of phosphorescence emission of less than 0.1 at room temperature (25 ° C.) among the compounds contained in the light emitting layer, preferably phosphorescence quantum yield. Is a compound of less than 0.01.
- the mass ratio in the layer is preferably 20% or more.
- the compound conventionally used with an organic electroluminescent element has a hole transport ability and an electron transport ability, and is a big excitation triplet energy.
- a compound having a high Tg (glass transition temperature) is preferable.
- multiple types of hosts may be used in combination.
- a plurality of types of host compounds it is possible to adjust the movement of charges, and the efficiency of the organic EL element can be further increased.
- the host used in the present invention may be a high molecular compound or a low molecular compound.
- a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emitting host).
- a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emitting host).
- molecular weight is 1500 or less, More preferably, molecular weight is 800 or less.
- a part of the host used in the light emitting layer according to the present invention is preferably crystallized in the light emitting layer, and X-ray diffraction lines are observed by the crystal grains.
- the host compound according to the present invention is preferably a host compound having at least three partial structures represented by the general formula (a). Three or more connections may be connected at the X portion or at other portions.
- the substituents represented by R ′ and R ′′ may be alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl).
- X is preferably NR ′ or O
- R ′ is an aromatic hydrocarbon group (also referred to as an aromatic carbocyclic group or an aryl group, such as a phenyl group, p-chlorophenyl group, mesityl group, tolyl group).
- aromatic hydrocarbon group and aromatic heterocyclic group each may have a substituent represented by R ′ or R ′′ in X of the partial structure represented by the general formula (a). .
- examples of the aromatic ring represented by Ar include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
- the aromatic ring may be a single ring or a condensed ring, and may be unsubstituted, or may have a substituent represented by each of R ′ and R ′′ in X of the partial structure represented by the general formula (a). May be.
- the aromatic hydrocarbon ring represented by Ar includes a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, Examples include a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring. These rings may further have
- examples of the aromatic heterocycle represented by Ar include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, and a pyrimidine ring.
- These rings may further have substituents each represented by R ′ and R ′′ in X of the partial structure represented by the general formula (a).
- the aromatic ring represented by Ar is preferably a carbazole ring, a carboline ring, a dibenzofuran ring, or a benzene ring, and more preferably a carbazole ring, A carboline ring and a benzene ring, more preferably a benzene ring having a substituent, and particularly preferably a benzene ring having a carbazolyl group.
- the aromatic ring represented by Ar is preferably a condensed ring having 3 or more rings, and the aromatic hydrocarbon condensed ring in which 3 or more rings are condensed is a specific example.
- aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzod
- n represents an integer of 0 to 8, preferably 0 to 2, particularly preferably 1 to 2 when X is O or S.
- Host compound represented by general formula (a-1), (a-2) or (a-3) has at least three partial structures represented by the above general formula (a).
- Preferred embodiments include the following general formulas (a-1), (a-2) or (a The compound represented by -3) is preferable.
- Ar ′ and Ar ′′ represent an aromatic ring, and the aromatic ring has the same meaning as the aromatic ring represented by Ar in the general formula (a).
- N represents an integer of 1 or more, and m represents 0 or more. Represents an integer.
- the crystal grains present in the light emitting layer of the organic EL device of the present invention are formed by any of a host, a dopant or a mixture of the host and the dopant, and X-ray diffraction lines by the crystal grains are observed. Is done.
- the crystal grains according to the present invention are preferably formed by a host.
- the method of generating crystal grains in the light emitting layer includes the characteristics of the host or dopant used, the material purity, the characteristics of the adjacent layer material, and in the case of vapor deposition, the partial pressures of various gases during vapor deposition, and the material sublimation temperature. Furthermore, in the case of the wet process method, the crystal grains can be generated by adjusting various conditions such as the characteristics of the solvent used, but the production method and production conditions cannot be generally defined.
- the generation of crystal grains in the light emitting layer is, of course, that a part of the material used for the light emitting layer is crystallized at the time of film formation or after the film formation until the device fabrication is completed.
- Various methods based on a known crystal growth theory can be applied to the manufacturing method itself.
- crystal grains according to the present invention by applying a so-called epitaxial growth method using the orientation of the underlayer, applying a film heat treatment method above the glass transition temperature of the material used, etc. it can.
- a low-speed film formation method or a combination thereof with the above-mentioned means can be appropriately used.
- the saturability in a coating film can be controlled and crystallization can also be controlled.
- a thin film structure evaluation apparatus ATX-G manufactured by Rigaku Corporation can be used for the X-ray diffraction measurement.
- the measurement conditions are shown below.
- X-rays were generated with a target of copper and an output of 15 kW. Measurement was performed using a slit collimation optical system. The parallel X-rays were made incident at a low angle near the total reflection critical angle, and the penetration depth of the X-rays was made equal to the film thickness.
- the incident angle ⁇ is 0.23 °.
- the crystallinity is preferably in the range of 1% to 15%, and if the crystallinity is in this range, the effect of the present invention appears well, and the voltage applied to cause the light emitting layer to emit light may be kept low. The deterioration of the light emitting performance can be prevented and the storage stability of the organic EL element is good.
- the crystallinity is defined as the crystallinity peak ratio of the total X-ray scattering intensity.
- the dopant-host type There are two possible light emission principles of the dopant-host type. One is that the recombination of carriers occurs on the host to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the dopant. It is an energy transfer type that obtains light emission from a dopant. The other is a carrier trap type in which the dopant becomes a carrier trap, and carrier recombination occurs on the dopant compound, and light emission from the dopant is obtained.
- the carrier trap type needs to have an energy relationship that facilitates carrier trapping.
- the electron carrier trap needs to have a dopant electron affinity (LUMO) greater than the host electron affinity (LUMO level).
- the hole carrier trap needs to have a dopant ionization potential (HOMO) smaller than the dopant ionization potential (HOMO).
- the dopant can be selected from the emission color including the color purity and the emission efficiency, and the host compound is selected from those having good carrier transportability and satisfying the above energy relationship.
- the dopant of the light emitting layer can be selected from known ones used as dopants for organic EL elements, but is preferably an organic compound or complex that emits fluorescence or phosphorescence.
- fluorescent dopants include compounds with high fluorescence quantum yields such as laser dyes, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes. Fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
- the dopant that emits phosphorescence is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield of 25 ° C.
- a preferable phosphorescence quantum yield is 0.1 or more.
- the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
- the phosphorescent dopant according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, a europium complex, or a platinum compound (platinum complex system). Compound) and rare earth complexes, and most preferred is an iridium compound.
- a compound represented by the general formula (1) is more preferable. Specific examples include compounds described in the following patent publications.
- WO 00/70655 pamphlet JP 2002-280178, JP 2001-181616, JP 2002-280179, JP 2001-181617, JP 2002-280180, JP 2001-247859, JP 2002-299060, JP 2001-313178, JP 2002-302671, JP 2001-345183, JP 2002-324679, International Publication No. 02/15645 pamphlet, JP 2002-332291 A, JP 2002-50484 A, JP 2002-332292 A, JP 2002-83684 A, JP 2002-540572 A, JP 2002-2002 A. No.
- phosphorescent dopants are given below, but are not limited thereto.
- the triplet energy of the host is preferably larger than the triplet energy of the dopant.
- a compound represented by the above general formula (1) is preferably used.
- examples of the bidentate ligand represented by P 1 -L1-P 2 include substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, and pyrazabole. Acetylacetone, picolinic acid and the like.
- M 1 is a transition metal element belonging to Group 8 to 10 in the periodic table of elements. Among them, iridium and platinum are preferable, and iridium is particularly preferable.
- Examples of the hydrocarbon ring group represented by Z include a non-aromatic hydrocarbon ring group and an aromatic hydrocarbon ring group.
- Examples of the non-aromatic hydrocarbon ring group include a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group. And may be substituted or unsubstituted.
- aromatic hydrocarbon ring group examples include, for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl. Group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group and the like. These groups may be substituted or unsubstituted.
- R 81 to R 86 each represents a hydrogen atom or a substituent.
- substituents include R ′, R ′′ in X of the partial structure represented by the general formula (a) described above. And the same as the substituents represented by each.
- substituents may be further substituted with the above substituents.
- a plurality of these substituents may be bonded to each other to form a ring.
- Injection layer electron injection layer, hole injection layer
- the injection layer can be provided as necessary, and may be present between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer.
- An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
- Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
- anode buffer layer hole injection layer
- copper phthalocyanine is used.
- examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
- ferrocene compounds described in JP-A-6-025658 star-bust type compounds described in JP-A-10-233287, JP-A 2000-068058, JP-A 2004-6321 Triarylamine type compounds described in the publication, sulfur-containing ring-containing compounds described in JP-A No. 2002-1171979, US Patent Application Publication No. 2002/158242, US Patent Application Publication No. 2006 / Examples of the hole injection layer include hexaazatriphenylene compounds described in Japanese Patent No. 251922, Japanese Patent Application Laid-Open No. 2006-49393, and the like.
- cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
- Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. .
- the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, depending on the material.
- Blocking layer hole blocking layer, electron blocking layer>
- the blocking layer is provided as necessary as a constituent layer of the organic compound thin film.
- the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
- the hole blocking layer of the organic EL device of the present invention is provided adjacent to the light emitting layer, it is preferably formed by a wet process. Furthermore, it is particularly preferably formed by a coating method such as an ink jet method, a printing method, or a slot type coater method.
- the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer concerning this invention as needed.
- the film thickness of the hole blocking layer and the electron blocking layer according to the present invention is preferably 3 nm to 100 nm, more preferably 5 nm to 30 nm.
- the hole transport layer is made of a hole transport material having a function of transporting holes.
- the hole injection layer and the electron blocking layer also have the function of a hole transport layer.
- the hole transport layer can be provided as a single layer or a plurality of layers.
- the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
- triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives,
- stilbene derivatives silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
- the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
- aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminoph
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
- JP-A-11-251067 J. Org. Huang et. al.
- a so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
- these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
- the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, a spray method, or a slot coater method.
- a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, a spray method, or a slot coater method.
- a coating method such as an ink jet method, a printing method, or a slot type coater method.
- the film thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
- the hole transport layer may have a single layer structure composed of two or more of the above materials.
- a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
- a hole transport layer having such a high p property because a device with lower power consumption can be produced.
- the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, the electron injection layer and the hole blocking layer also have a function of the electron transport layer.
- the electron transport layer can be provided as a single layer or a plurality of layers.
- an electron transport material also serving as a hole blocking material
- it has a function of transmitting electrons injected from the cathode to the light emitting layer.
- any one of conventionally known compounds can be selected and used. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives , Anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
- a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.
- metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
- the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
- the electron transport layer is formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, a spray method, a slot type coater method, or the like.
- a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, a spray method, a slot type coater method, or the like.
- a coating method such as an ink jet method, a printing method, or a slot type coater method.
- the film thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
- the electron transport layer may have a single layer structure composed of two or more of the above materials.
- an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
- electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
- conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
- an amorphous material such as In 2 O 3 —ZnO capable of forming a transparent conductive film may be used.
- these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
- a wet film forming method such as a printing method or a coating method can be used.
- the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
- the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
- cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
- electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
- a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
- the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the sheet resistance as a cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
- the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
- a transparent transparent or semi-transparent cathode can be prepared by forming the conductive transparent material mentioned in the description of the anode thereon, By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
- the anode, cathode and constituent layers according to the present invention are formed on a support substrate.
- the support substrate (hereinafter also referred to as substrate, base material, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent or opaque. It may be.
- the support substrate When extracting light from the support substrate side, the support substrate is preferably transparent.
- the transparent support substrate preferably used include glass, quartz, and a transparent resin film.
- a particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
- polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone S, polyetherimide, polyether ketone imide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (manufactured by J
- an inorganic film, an organic film, or a hybrid film of both may be formed on the surface of the resin film.
- a high barrier property film having a degree of 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ MPa) or less and a water vapor permeability of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
- the material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
- silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
- the method for forming the barrier film is not particularly limited.
- the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
- the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
- ⁇ Sealing> As a sealing means used for this invention, the method of adhere
- the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
- Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
- the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
- the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
- the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
- a polymer film and a metal film can be preferably used because the element can be thinned.
- the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ MPa) or less, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured in (1) is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
- sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
- the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
- hot-melt type polyamide, polyester, and polyolefin can be mentioned.
- a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
- an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
- a desiccant may be dispersed in the adhesive.
- coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
- the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
- the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
- silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
- the method for forming these films is not particularly limited.
- vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster-ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
- an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
- an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil
- a vacuum is also possible.
- a hygroscopic compound can also be enclosed inside.
- the hygroscopic compound examples include metal oxides (sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.).
- Metal halides eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.
- perchloric acids eg, barium perchlorate,
- anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.
- a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
- the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
- the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used. It is preferable to use a film.
- the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally known. This is because the light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the element, or between the transparent electrode or the light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
- a method of improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
- these methods can be used in combination with the organic EL device of the present invention.
- a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitting layer, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
- the medium as the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
- the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
- the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
- This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
- Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.
- the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
- the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
- the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
- the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
- the organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the light emitting surface By condensing in the front direction, the luminance in a specific direction can be increased.
- quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
- One side is preferably 10 to 100 ⁇ m. If it is smaller than this, the effect of diffraction is generated and colored.
- the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
- a sheet for example, Sumitomo 3M brightness enhancement film (BEF) can be used.
- BEF Sumitomo 3M brightness enhancement film
- the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
- a light diffusion plate / film may be used in combination with the light collecting sheet.
- a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
- a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm.
- a cleaning surface modification treatment step and a charge removal treatment step may be performed.
- a low-pressure mercury lamp, an excimer lamp, a plasma cleaning device, etc. can be used as the cleaning surface modification treatment.
- surface modification for removing organic contaminants and improving wettability is performed.
- the charge removal treatment is roughly classified into a light irradiation method and a corona discharge method, and the light irradiation method generates weak ions and the corona discharge method generates air ions by corona discharge.
- the air ions are attracted to the charged object to compensate for the opposite polarity charge and neutralize static electricity.
- ⁇ Corona dischargers and soft X-ray dischargers can be used.
- the substrate is de-charged, so that dust adhesion and dielectric breakdown are prevented, so that the yield of the elements can be improved.
- the organic layer of the organic EL device of the present invention is formed by a vacuum deposition method and a wet process (spin coating method, casting method, ink jet method, spray method, printing method, slot type coater method). From the point that a film is easily obtained and pinholes are difficult to be generated, in the present invention, a part or all of the organic layer is subjected to a spin coating method, an ink jet method, a spray method, a printing method, a slot type coater method, etc. Film formation by a wet process is preferable.
- the light emitting layer and the organic layer adjacent to the light emitting layer are formed by a coating method such as an ink jet method, a printing method, or a slot coater method.
- liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
- ketones such as methyl ethyl ketone and cyclohexanone
- fatty acid esters such as ethyl acetate
- halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
- Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane
- organic solvents such as DMF and DMSO
- a dispersion method it can be dispersed by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion.
- the solvent may be removed in a drying process.
- a drying furnace can be used. In the drying furnace, it is possible to change the temperature condition, change the wind speed, etc. by appropriately setting several zones according to the material of the organic compound layer.
- heat treatment may be performed.
- the heat treatment is not limited to any form as long as heat is transferred from the back surface, but the heat treatment is preferably performed at a glass transition temperature of ⁇ 50 ° C. and at a temperature not exceeding the decomposition temperature and heat transfer from the back surface.
- the smoothness of the film, the removal of the residual solvent, and the curing of the coating film can be achieved, thereby improving the element characteristics during lamination.
- the substrate may be stored under reduced pressure (10 ⁇ 6 Pa to 10 ⁇ 2 Pa). You may apply temperature suitably.
- the storage period is preferably 1 hour to 200 hours, the longer the better. As a result, oxygen and trace moisture due to device deterioration are removed.
- a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm, and a cathode is provided.
- a desired organic EL element can be obtained.
- a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
- An alternating voltage may be applied.
- the alternating current waveform to be applied may be arbitrary.
- a slot type coater coating method or an inkjet coating method is used as an effective method for forming a very thin and highly smooth single layer coating film required for the organic layer of the organic electroluminescence device. Is preferred. The slot type coater coating method or the ink jet coating method will be described in detail below.
- the uniformity of coating is further improved by installing a decompression chamber upstream of the coater and maintaining the bead portion in a decompressed state. This is because, by reducing the pressure at the lower part of the bead, even if the surface property and wettability of the support are changed, the liquid contact position of the coating liquid hardly fluctuates and a coating film having a uniform film thickness can be obtained.
- the coating solution supplied from the coating solution supply device spreads across the coater die pocket, flows out from the slit at a uniform flow rate, and is spread evenly on the support. It is applied with a uniform coating thickness.
- the ink jet head is not particularly limited.
- it may be a thermal type head that has a heating element and discharges the coating liquid from the nozzle by a rapid volume change due to film boiling of the coating liquid by the heat energy from the heating element.
- a shear mode type (piezo type) head that has a vibration plate including a piezoelectric element in the ink pressure chamber and discharges the coating liquid by a pressure change of the ink pressure chamber by the vibration plate may be used.
- FIG. 1 is a schematic diagram of a coating apparatus using a coating method according to the present invention.
- FIG. 1 shows an example in which three types of coating solutions are applied in layers to form a three-layer coating film.
- a two-layer coating is performed using a slot coater (hereinafter also abbreviated as a coater), and one layer is an inkjet. It is an example.
- FIG. 2 is an enlarged side view of the coating apparatus shown in FIG. 1 viewed from the direction of arrow Z1.
- the coaters 11 and 21 are sectional views.
- the long support 1 wound in a roll shape is fed and conveyed in the direction of arrow B from a winding roll (not shown) by a driving means (not shown).
- An elongate support 1 is conveyed while being supported by a backup roll 2, and an inkjet head disposed in a coater 11 of a coating unit 10, a coater 21 of a coating unit 20, and an inkjet unit 31 of a coating unit 30 as coating means.
- the coating solution is applied one layer at a time to form a three-layer multilayer coating film.
- the formed multilayer coating film is dried in a drying section (not shown) and wound on a winding roll (not shown).
- the coating unit 10 includes a coater 11, a liquid feed pump 12, a coating liquid tank 13, and a coating liquid supply pipe 14.
- the liquid feed pump 12 supplies the coating liquid stored in the coating liquid tank 13 to the coater 11 via the coating liquid supply pipe 14.
- the coater 11 has a slit 111 corresponding to the coating width in the support width direction, and is disposed at a position facing the backup roll 2 with the support 1 interposed therebetween.
- the coater 11 performs coating by discharging a coating solution from the slit 111 onto the support 1.
- the coating unit 10 also has a function of uniformly discharging the coating liquid from the slit 111 across the width direction of the support 1.
- the coating unit 20 includes a coater 21, a liquid feed pump 22, a coating liquid tank 23, and a coating liquid supply pipe 24.
- the function is the same as that of the coating unit 10.
- the coating unit 30 includes an inkjet unit 31, an inkjet head 311 disposed in the inkjet unit 31, a coating solution tank 33, and a coating solution supply pipe 34.
- the inkjet head 311 is disposed at a position facing the backup roll 2 with the support 1 interposed therebetween.
- the coating liquid stored in the coating liquid tank 33 is supplied to the inkjet head 311 through the coating liquid supply pipe 34 and is ejected from the nozzles of the inkjet head 311 to the support 1. As a result, the coating liquid is applied to the support 1.
- the coating liquid is ejected from the nozzles of the ink jet head 311 toward the rotation center of the backup roll 2.
- the inkjet unit 31 is provided with an arbitrary number and arrangement of inkjet heads 311.
- the number and arrangement are appropriately set according to the coating liquid to be used and the coating conditions, such as the ejection width of the inkjet head 311 and the coating width of the support 1.
- the coating unit 30 supplies a coating liquid to the inkjet head 311 and also has a function of keeping the coating liquid pressure in the inkjet head 311 constant.
- the inkjet head 311 is not particularly limited.
- a thermal type head that has a heating element and discharges the coating liquid from the nozzle by a rapid volume change due to film boiling of the coating liquid by the heat energy from the heating element may be used.
- a shear mode type (piezo type) head that has a vibration plate including a piezoelectric element in the ink pressure chamber and discharges the coating liquid by a pressure change of the ink pressure chamber by the vibration plate may be used.
- FIG. 3 is a schematic plan view showing an example of the arrangement of the inkjet heads 311.
- reference numerals 311-1 to 311-5 denote ink jet heads arranged.
- Ink-jet heads 311-1 to 311-5 are parallel to the surface of each of the heads 311-1 to 311-5 having the nozzle discharge ports and the coating film surface of the support 1, and the support 1 is moved.
- the angle formed by the line connecting the centers of the nozzle outlets arranged in the width direction orthogonal to the direction and the moving direction of the support 1 is 90 °.
- the end portions of the heads 311-1 to 311-5 are arranged in a staggered manner so as to overlap each other.
- the coaters 11 and 21 and the ink jet head 311 are arranged at predetermined intervals along the circumference of the backup roll 2.
- the coating liquid of the organic EL material used for the organic EL layer has a property of being easily dried. For this reason, depending on the progress of the drying of the first coating liquid applied by the coater 11, even if the second coating liquid is applied by the coater 21, mixing does not occur. Accordingly, when coating is performed at a predetermined interval, the coating film can be laminated without causing mixing of the coating solution.
- the time during which the coating liquids do not mix with each other can be measured and set in advance for each coating liquid by an experiment or the like.
- the predetermined interval can be set based on the time during which the measured coating solutions are not mixed with each other and the moving speed of the support 1.
- the diameter of the backup roll 2 can be set from the predetermined interval and the number of coating units to be arranged.
- the diameter of the backup roll is preferably in the range of 0.5 m to 5 m. If the length is less than 0.5 m, the number of coating units to be disposed is small, and the number of layers that can be coated in one pass is small, resulting in a reduction in production efficiency. Further, when the number of layers that can be applied in one pass is reduced, the number of windings increases, and the coating film surface is easily damaged during the winding. If it exceeds 5 m, the production of the backup roll 2 becomes difficult and the maintainability is also reduced.
- the coating film thickness after drying of one coating layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, more preferably 5 nm to 200 nm.
- the coating speed by this method is preferably 1 m / min to 10 m / min, and more preferably 1 m / min to 5 m / min from the viewpoint of stably applying a thin film after coating and drying to prevent the occurrence of quality defects. preferable.
- a combination of a coater and an ink jet is used, such as two coaters and one ink jet.
- all coaters may be used, or all may be configured as an ink jet.
- the organic EL element according to the present invention may be used as a projection device for projecting an image, a display device (display) for directly viewing a still image or a moving image, or as an illumination or exposure light source. It may be used as a kind of lamp.
- Example 1 Production of Organic EL Element 101 >> After patterning a substrate with a 120 nm ITO (Indium Tin Oxide) film formed on a 30 mm ⁇ 30 mm ⁇ 0.7 mm glass substrate as an anode, the substrate provided with this ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
- ITO Indium Tin Oxide
- a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water is spin-coated at 3000 rpm for 30 seconds. After forming into a film by the method, it was dried at 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 30 nm.
- This substrate was transferred to a glove box under a nitrogen atmosphere according to JIS B9920, with a measured cleanliness of class 100, a dew point temperature of ⁇ 80 ° C. or lower, and an oxygen concentration of 0.8 ppm.
- a coating solution for a hole transport layer was prepared in a glove box as follows, and applied with a spin coater under conditions of 1500 rpm and 30 seconds.
- This substrate was heated at 150 ° C. for 10 seconds, and irradiated with 30 mW / cm 2 of ultraviolet light for 20 seconds using a high pressure mercury lamp (OHD-110M-ST, manufactured by Oak Manufacturing Co., Ltd.).
- the film thickness was 20 nm when it apply
- the light emitting layer coating liquid was prepared as follows, and it apply
- the film thickness was 40 nm when it applied and measured on the board
- the coating liquid for electron carrying layers was prepared as follows, and it apply
- a resistance heating boat containing cesium fluoride was energized and heated to provide a 3 nm electron injection layer made of cesium fluoride on the substrate.
- a resistance heating boat containing aluminum was energized and heated to provide a cathode having a film thickness of 100 nm made of aluminum at a deposition rate of 1 nm / second to 2 nm / second.
- the substrate provided up to the cathode is moved to a glove box with a cleanliness class 100 measured according to JIS B9920, a dew point temperature of -80 ° C or less, and an oxygen concentration of 0.8 ppm without being exposed to the atmosphere in a nitrogen atmosphere.
- the element 101 was obtained by sealing with a glass sealing can attached with barium oxide as a water-absorbing agent.
- Barium oxide a water-absorbing agent
- Barium oxide is a high-purity barium oxide powder made by Aldrich, which is attached to a glass can with a fluorine-based semi-permeable membrane (Microtex S-NTF8031Q, manufactured by Nitto Denko) with an adhesive.
- a fluorine-based semi-permeable membrane Mocrotex S-NTF8031Q, manufactured by Nitto Denko
- An ultraviolet curable adhesive was used for bonding the sealing can and the organic EL element, and both were bonded to each other by irradiating ultraviolet rays to produce a sealing element.
- a light emitting layer coating solution was prepared as follows, and applied with a spin coater under the conditions of 1000 rpm and 30 seconds. Furthermore, it heated at 150 degreeC for 30 minutes, and provided the light emitting layer. X-ray diffraction measurement of the light emitting layer revealed X-ray diffraction lines, and the presence of crystal grains was confirmed. When the coating was performed under the same conditions on a separately prepared substrate and measured, the film thickness was 40 nm.
- the substrate provided with the light emitting layer is set in a substrate holder of a vacuum deposition apparatus, and after reducing the pressure to a vacuum degree of 1 ⁇ 10 ⁇ 4 Pa, the deposition crucible containing ET-A is energized and heated. Co-evaporation was performed at 1 nm / second, and a 30 nm electron transport layer was provided.
- a light emitting layer coating solution was prepared as follows, and applied with a spin coater under the conditions of 1000 rpm and 30 seconds. Furthermore, it heated at 150 degreeC for 30 minutes, and provided the light emitting layer. X-ray diffraction measurement of the light emitting layer revealed X-ray diffraction lines, and the presence of crystal grains was confirmed. When the coating was performed under the same conditions on a separately prepared substrate and measured, the film thickness was 40 nm.
- the front luminance of each organic EL element was measured using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing).
- CS-1000 manufactured by Konica Minolta Sensing
- the luminance fluctuation during continuous driving was measured with the front luminance of 2000 cd / m 2 as the initial luminance, and the luminance half time was determined as the driving lifetime.
- Example 1 The evaluation results of Example 1 are shown in Table 1.
- the organic electroluminescence device of the present invention showed high luminance and driving life even after high temperature storage.
- crystal grains are present in the light emitting layer, the light emitting layer, the hole transport layer, and the electron transport layer are formed by a coating method, and the organic EL element 102 having a host molecular weight of 800 or less has high brightness and driving life even after high temperature storage. showed that.
- Example 2 Production of Organic EL Element 106 >> A transparent gas barrier film was prepared on a polyethersulfone (Sumitomo Bakelite film, hereinafter abbreviated as PES) having a thickness of 200 ⁇ m as an anode using an atmospheric pressure plasma polymerization method. Subsequently, 120 nm of ITO (indium tin oxide) was formed on this gas barrier film substrate. The roll-shaped strip-shaped flexible sheet on which the anode was formed was fed out and wound into a roll through a cleaning surface modification treatment step and a charge removal treatment step.
- PES Polyethersulfone
- ITO indium tin oxide
- the dry cleaning surface modification treatment apparatus was carried out at a low pressure mercury lamp wavelength of 184.9 nm, irradiation intensity of 15 mW / cm 2 , and irradiation distance of 10 mm.
- Example 2 As the charge removal process, in Example 2, a static eliminator using weak X-rays was used.
- poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate PEDOT / PSS, Bayer, Baytron P Al 4083
- PEDOT / PSS polystyrene sulfonate
- the film was dried at 200 ° C. for 1 hour to provide a hole injection layer having a film thickness of 30 nm.
- a coating solution for the hole transport layer is prepared as follows, using a backup roll having a diameter of 3 m, using a slot type coater, a coating speed of 4 m / min, and the film thickness after drying becomes a hole transport layer of 20 nm. It was applied as follows.
- This substrate was heated at 150 ° C. for 10 seconds, and irradiated with 30 mW / cm 2 of ultraviolet light for 20 seconds using a high pressure mercury lamp (OHD-110M-ST, manufactured by Oak Manufacturing Co., Ltd.). Furthermore, it heated at 120 degreeC for 30 minute (s), and provided the positive hole transport layer.
- a high pressure mercury lamp OLED-110M-ST, manufactured by Oak Manufacturing Co., Ltd.
- a coating solution for a hole transport layer was prepared by dissolving HT-A in toluene at 0.45 mass% and HT-B at 0.05 mass%.
- the light emitting layer coating solution and the electron transport layer coating solution were prepared as follows, using a backup roll having a diameter of 3 m, using a slot type coater, coating speed of 4 m / min, and film thickness after drying. Two solutions were applied so that the light emitting layer was 40 nm and the electron transport layer was 30 nm.
- a light emitting layer was applied to a separately prepared substrate under the same conditions, and X-ray diffraction measurement was performed. As a result, X-ray diffraction lines were observed, and the presence of crystal grains was confirmed.
- Light emitting layer coating solution A light emitting layer coating solution was prepared by dissolving H-27 in toluene at 1% by mass and D-1 at 0.1% by mass.
- the solvent was removed in a drying process using a heated air stream. It was carried out at a height of 100 mm from the slit nozzle type ejection port toward the film formation surface, an ejection air speed of 1 m / s, a width distribution of 5%, and a drying temperature of 100 ° C.
- the substrate was adsorbed and transported by sucking between heat rolls having a temperature of 150 ° C. arranged closely, and heat treatment was performed by heating by backside heat transfer.
- the wound roll was stored in a storage box and stored under reduced pressure (10 ⁇ 6 Pa to 10 ⁇ 2 Pa).
- the obtained roll-shaped film was transferred to a vapor deposition machine, and the pressure of the substrate provided up to the electron transport layer was reduced to 4 ⁇ 10 ⁇ 4 Pa.
- an aluminum layer having a thickness of 100 nm was also vapor-deposited in a region including the organic EL layer region and the electrode lead region, and a cathode was provided.
- a substrate provided up to the cathode is formed by winding an inorganic film such as SiOx, SiNx or a composite film as a 300 nm sealing film using a sputtering method, a plasma CVD method, an ion plating method, etc. in a region other than an electrode region, An EL element 106 was obtained.
- an inorganic film such as SiOx, SiNx or a composite film as a 300 nm sealing film using a sputtering method, a plasma CVD method, an ion plating method, etc.
- a coating solution for the hole transport layer is prepared in the same manner as the solution used in the production of the organic EL element 106, a 3 m diameter backup roll is used, an inkjet coating apparatus is used, and the coating speed is 4 m / min, after drying.
- the film thickness was applied so that the hole transport layer was 20 nm.
- This substrate was heated at 150 ° C. for 10 seconds, and irradiated with ultraviolet light of 30 mW / cm 2 for 20 seconds using a high pressure mercury lamp (OHD-110M-ST, manufactured by Oak Manufacturing Co., Ltd.) while heated. Furthermore, it heated at 120 degreeC for 30 minute (s), and provided the positive hole transport layer.
- the coating solution for the light emitting layer and the coating solution for the electron transport layer were prepared in the same manner as the solution used in the production of the organic EL element 106, and the coating speed was applied using a backup roll having a diameter of 3 m and using an inkjet coating apparatus. Two solutions were applied so that the film thickness after drying was 4 m / min, and the film thickness was 40 nm for the light emitting layer and 30 nm for the electron transporting layer, respectively.
- a light emitting layer was applied to a separately prepared substrate under the same conditions and measured by X-ray diffraction, X-ray diffraction lines were observed, and the presence of crystal grains was confirmed.
- Example 2 The evaluation results of Example 2 are shown in Table 2.
- the organic EL elements 102 to 107 of the present invention are excellent in luminance and life after storage at high temperature and can be preferably used as a display device and a lighting device.
- the layer adjacent to the light emitting layer is produced by a coating method instead of a vacuum vapor deposition method, which is excellent in high temperature storage and useful as a display device and a lighting device. Further, it was found that when the coating method is a slot type coater coating method and an ink jet coating method, it has further useful performance as a display device and a lighting device.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Description
該発光層は、ドーパント及びホストを有し、且つ、該ホスト、該ドーパント、または、前記ホスト及び前記ドーパントの混合物のいずれかによる結晶粒が存在し、該結晶粒によるX線回折線が観察されることを特徴とする有機エレクトロルミネッセンス素子。
13.前記一般式(1)のM1がイリジウムであることを特徴とする前記12に記載の有機エレクトロルミネッセンス素子。
本発明の有機EL素子の構成層としては、例えば、正孔注入層、電子注入層、正孔阻止層、電子阻止層、正孔輸送層、電子輸送層、中間層、発光層等がある。その中でも好ましい層構成の具体例を以下に示すが、本発明はこれらに限定されない。
(ii)陽極/正孔輸送層/中間層/発光層/正孔阻止層/電子輸送層/陰極
(iii)陽極/正孔輸送層/中間層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
(iv)陽極/正孔注入層/正孔輸送層/中間層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極。
本発明に係る発光層は、注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
ここで、本発明においてホストとは、発光層に含有される化合物の内で室温(25℃)においてリン光発光のリン光量子収率が0.1未満の化合物であり、好ましくはリン光量子収率が0.01未満の化合物である。
一般式(a)で表される部分構造について説明する。
本発明に係るホスト化合物は、上記一般式(a)で表される部分構造を少なくとも3個有するが、好ましい態様としては、下記の一般式(a-1)、(a-2)または(a-3)で表される化合物が好ましい。
本発明に係る結晶粒について説明する。
次にドーパントについて説明する。
注入層は必要に応じて設けることができ、陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
阻止層は、有機化合物薄膜の構成層として必要に応じて設けられるものである。
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層の機能を有する。正孔輸送層は単層または複数層設けることができる。
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層の機能を有する。電子輸送層は単層または複数層設けることができる。
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、In2O3-ZnO等非晶質で透明導電膜を作製可能な材料を用いてもよい。
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
本発明に係る陽極、陰極及び構成層は支持基板上に形成される。本発明の有機EL素子に用いることのできる支持基板(以下、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量、且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に知られている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明する。
本発明においては、有機エレクトロルミネッセンス素子の有機層に要求される非常に薄く、且つ高平滑性の単層塗布膜を形成するために効果的な方法として、スロット型コータ塗布方法、またはインクジェット塗布方法が好ましい。下記に、スロット型コータ塗布方法、またはインクジェット塗布方法について詳細に説明する。
本発明に係る有機EL素子を適用した表示装置、照明装置について説明する。本発明に係る有機EL素子は、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよいし、照明用や露光光源のような一種のランプとして使用してもよい。
《有機EL素子101の作製》
陽極として30mm×30mm×0.7mmのガラス基板上に、ITO(インジウムチンオキシド)を120nm製膜した基板にパターニングを行った後、このITO透明電極を設けた基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
トルエン 100g
HT-A 0.45g
HT-B 0.05g
次いで、発光層塗布液を下記のように調製し、スピンコーターにて、30秒間に500rpmから5000rpmまで上げる条件で塗布した。更に150℃で30分加熱し発光層を設けた。
トルエン 100g
H-27 1g
D-1 0.11g
次いで、電子輸送層用塗布液を下記のように調製し、スピンコーターにて、1500rpm、30秒の条件で塗布した。更に120℃で30分加熱し電子輸送層を設けた。別途用意した基板にて、同条件で塗布を行い測定したところ、膜厚は30nmであった。
2,2,3,3-テトラフルオロ-1-プロパノール 100g
ET-A 0.75g
次いで、電子輸送層まで設けた基板を、大気曝露せずに、蒸着機に移動し、4×10-4Paまで減圧した。なお、フッ化セシウム及びアルミニウムをそれぞれタンタル製抵抗加熱ボートに入れ、蒸着機に取り付けておいた。
前記有機EL素子101の作製において、以下の手順で発光層を設けること以外は同様にして、有機EL素子102を作製した。
発光層塗布液を下記のように調製し、スピンコーターにて、1000rpm、30秒の条件で塗布した。更に150℃で30分加熱し発光層を設けた。該発光層をX線回折測定したところX線回折線がみられ、結晶粒の存在が確認された。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は40nmであった。
トルエン 100g
H-27 1g
D-1 0.11g
《有機EL素子103の作製》
前記有機EL素子102の作製において、以下の手順で正孔輸送層を設けること以外は同様にして、有機EL素子103を作製した。
ITO透明電極を設けた基板を市販の真空蒸着装置の基板ホルダーにセットし、真空度1×10-4Paまで減圧した後、α-NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で共蒸着し、30nmの正孔輸送層を設けた。
前記有機EL素子102の作製において、以下の手順で電子輸送層を設けること以外は同様にして、有機EL素子104を作製した。
発光層を設けた基板を真空蒸着装置の基板ホルダーにセットし、真空度1×10-4Paまで減圧した後、ET-Aの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で共蒸着し、30nmの電子輸送層を設けた。
前記有機EL素子102の作製において、以下の手順で発光層を設けること以外は同様にして、有機EL素子105を作製した。
発光層塗布液を下記のように調製し、スピンコーターにて、1000rpm、30秒の条件で塗布した。更に150℃で30分加熱し発光層を設けた。該発光層をX線回折測定したところX線回折線がみられ、結晶粒の存在が確認された。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は40nmであった。
トルエン 100g
H-31 1g
D-1 0.11g
《有機EL素子101~105の評価》
《保存安定性の評価》
70℃環境下で各有機EL素子を200時間保存した後、2.5mA/cm2の一定電流値で駆動した際の輝度変化率(未処理時の輝度を100%とした時の70℃で200時間保存した後における輝度比)、駆動寿命変化率(未処理時の寿命を100%とした時の70℃で200時間保存した後における寿命比)を測定し、これを有機EL素子の保存安定性の尺度とした。
《有機EL素子106の作製》
陽極として厚さ200μmのポリエーテルサルフォン(住友ベークライト製フィルム、以下、PESと略記する)上に、大気圧プラズマ重合法を用い透明ガスバリア性フィルムを作製した。次いで、このガスバリア性フィルム基板上にITO(インジウムチンオキシド)を120nm製膜した。陽極が形成されているロール状帯状可撓性シートを繰り出し、洗浄表面改質処理工程、帯電除去処理工程を経て、ロール状に巻き取った。
トルエン中に、HT-Aを0.45質量%、HT-Bを0.05質量%になるように溶解させ正孔輸送層用塗布液を調製した。
トルエン中に、H-27を1質量%、D-1を0.1質量%になるように溶解させ、発光層用塗布液を調製した。
2,2,3,3-テトラフルオロ-1-プロパノール中に、ET-Aを0.75質量%になるように溶解させ、電子輸送層用塗布液を調製した。
前記スロット型コータ塗布方法での有機EL素子106の作製において、以下の手順で正孔輸送層、発光層、電子輸送層を設けること以外は同様にして、有機EL素子107を作製した。
正孔輸送層用塗布液を有機EL素子106の作製で用いた溶液と同じように調製し、直径3mのバックアップロールを利用し、インクジェット塗布装置を利用して、塗布速度4m/min、乾燥後膜厚を正孔輸送層20nmになるように塗布した。この基板を150℃で10秒加熱し、加熱したまま高圧水銀ランプ(株式会社オーク製作所製OHD-110M-ST)を用い、30mW/cm2の紫外光を20秒間照射した。更に120℃で30分間加熱し正孔輸送層を設けた。
実施例1と同様に、有機EL素子106及び107の保存安定性を各々評価した。
2 バックアップロール
10、20、30 塗布ユニット
11、12 コータ
12、22 送液ポンプ
13、23、33 塗布液タンク
111、211 スリット
31 インクジェットユニット
311 インクジェットヘッド
Claims (15)
- 陽極、陰極間に構成層として少なくとも1層の発光層を有する有機エレクトロルミネッセンス素子において、
該発光層は、ドーパント及びホストを有し、且つ、該ホスト、該ドーパント、または、前記ホスト及び前記ドーパントの混合物のいずれかによる結晶粒が存在し、該結晶粒によるX線回折線が観察されることを特徴とする有機エレクトロルミネッセンス素子。 - 前記結晶粒が前記ホストによるものであることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
- 前記ホストの分子量が1500以下であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
- 前記ホストの分子量が800以下であることを特徴とする請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記発光層がウェットプロセスにより形成されることを特徴とする請求項1~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記構成層として前記発光層に隣接する少なくとも1層がウェットプロセスにより形成された層であることを特徴とする請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記構成層として前記発光層に隣接する両側の層がウェットプロセスにより形成された層であることを特徴とする請求項1~7のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記ウェットプロセスがインクジェット塗布方法であることを特徴とする請求項6~8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記ウェットプロセスがスロット型コータ塗布方法であることを特徴とする請求項6~8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記発光層に含有されるドーパントがリン光発光することを特徴とする請求項1~10のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記一般式(1)のM1がイリジウムであることを特徴とする請求項12に記載の有機エレクトロルミネッセンス素子。
- 請求項1~13のいずれか1項に記載の有機エレクトロルミネッセンス素子を用いたことを特徴とする表示装置。
- 請求項1~13のいずれか1項に記載の有機エレクトロルミネッセンス素子を用いたことを特徴とする照明装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/143,939 US20110260152A1 (en) | 2009-01-28 | 2010-01-12 | Organic electroluminescent element, display device, and illumination device |
JP2010548456A JP5472121B2 (ja) | 2009-01-28 | 2010-01-12 | 有機エレクトロルミネッセンス素子、表示装置および照明装置、ならびに有機エレクトロルミネッセンス素子の製造方法 |
EP10735692.5A EP2383815B1 (en) | 2009-01-28 | 2010-01-12 | Organic electroluminescent element, display device, and illumination device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-016571 | 2009-01-28 | ||
JP2009016571 | 2009-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010087222A1 true WO2010087222A1 (ja) | 2010-08-05 |
Family
ID=42395484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050203 WO2010087222A1 (ja) | 2009-01-28 | 2010-01-12 | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110260152A1 (ja) |
EP (1) | EP2383815B1 (ja) |
JP (1) | JP5472121B2 (ja) |
WO (1) | WO2010087222A1 (ja) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010278287A (ja) * | 2009-05-29 | 2010-12-09 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、該素子を用いた表示装置、照明装置及び有機エレクトロルミネッセンス素子の製造方法 |
JP4598137B1 (ja) * | 2009-07-31 | 2010-12-15 | 富士フイルム株式会社 | 有機電界発光素子の製造方法 |
WO2011051404A1 (de) | 2009-10-28 | 2011-05-05 | Basf Se | Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik |
WO2011073149A1 (de) | 2009-12-14 | 2011-06-23 | Basf Se | Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds |
WO2012115034A1 (ja) * | 2011-02-22 | 2012-08-30 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
WO2014012972A1 (en) | 2012-07-19 | 2014-01-23 | Basf Se | Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds |
US8691401B2 (en) | 2010-04-16 | 2014-04-08 | Basf Se | Bridged benzimidazole-carbene complexes and use thereof in OLEDS |
JP2014072175A (ja) * | 2012-10-02 | 2014-04-21 | Konica Minolta Inc | 有機エレクトロルミネッセンス素子の製造方法 |
WO2014147134A1 (en) | 2013-03-20 | 2014-09-25 | Basf Se | Azabenzimidazole carbene complexes as efficiency booster in oleds |
WO2014177518A1 (en) | 2013-04-29 | 2014-11-06 | Basf Se | Transition metal complexes with carbene ligands and the use thereof in oleds |
WO2015000955A1 (en) | 2013-07-02 | 2015-01-08 | Basf Se | Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes |
US9142792B2 (en) | 2010-06-18 | 2015-09-22 | Basf Se | Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide |
WO2016016791A1 (en) | 2014-07-28 | 2016-02-04 | Idemitsu Kosan Co., Ltd (Ikc) | 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds) |
EP2982676A1 (en) | 2014-08-07 | 2016-02-10 | Idemitsu Kosan Co., Ltd. | Benzimidazo[2,1-B]benzoxazoles for electronic applications |
EP2993215A1 (en) | 2014-09-04 | 2016-03-09 | Idemitsu Kosan Co., Ltd. | Azabenzimidazo[2,1-a]benzimidazoles for electronic applications |
US9315724B2 (en) | 2011-06-14 | 2016-04-19 | Basf Se | Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs |
EP3015469A1 (en) | 2014-10-30 | 2016-05-04 | Idemitsu Kosan Co., Ltd. | 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications |
WO2016079169A1 (en) | 2014-11-18 | 2016-05-26 | Basf Se | Pt- or pd-carbene complexes for use in organic light emitting diodes |
WO2016079667A1 (en) | 2014-11-17 | 2016-05-26 | Idemitsu Kosan Co., Ltd. | Indole derivatives for electronic applications |
EP3034506A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 4-functionalized carbazole derivatives for electronic applications |
EP3034507A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs) |
EP3053918A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd | 2-carbazole substituted benzimidazoles for electronic applications |
EP3054498A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd. | Bisimidazodiazocines |
EP3061759A1 (en) | 2015-02-24 | 2016-08-31 | Idemitsu Kosan Co., Ltd | Nitrile substituted dibenzofurans |
EP3070144A1 (en) | 2015-03-17 | 2016-09-21 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
EP3072943A1 (en) | 2015-03-26 | 2016-09-28 | Idemitsu Kosan Co., Ltd. | Dibenzofuran/carbazole-substituted benzonitriles |
EP3075737A1 (en) | 2015-03-31 | 2016-10-05 | Idemitsu Kosan Co., Ltd | Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes |
WO2016193243A1 (en) | 2015-06-03 | 2016-12-08 | Udc Ireland Limited | Highly efficient oled devices with very short decay times |
EP3150604A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
EP3150606A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes |
WO2017056055A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes |
WO2017056053A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
WO2017078182A1 (en) | 2015-11-04 | 2017-05-11 | Idemitsu Kosan Co., Ltd. | Benzimidazole fused heteroaryls |
WO2017093958A1 (en) | 2015-12-04 | 2017-06-08 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes |
WO2017109722A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them |
WO2017178864A1 (en) | 2016-04-12 | 2017-10-19 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
EP3239161A1 (en) | 2013-07-31 | 2017-11-01 | UDC Ireland Limited | Luminescent diazabenzimidazole carbene metal complexes |
US9862739B2 (en) | 2014-03-31 | 2018-01-09 | Udc Ireland Limited | Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes |
EP3415521A1 (en) | 2011-06-14 | 2018-12-19 | UDC Ireland Limited | Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds |
US10347851B2 (en) | 2013-12-20 | 2019-07-09 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012108389A1 (ja) | 2011-02-07 | 2012-08-16 | 出光興産株式会社 | ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
KR101434658B1 (ko) * | 2011-12-28 | 2014-08-29 | 코오롱인더스트리 주식회사 | 유기 태양전지의 제조 방법 |
JP6028794B2 (ja) * | 2012-04-27 | 2016-11-16 | コニカミノルタ株式会社 | 電子デバイスの製造装置 |
GB2535795A (en) * | 2015-02-27 | 2016-08-31 | Cambridge Display Tech Ltd | Ink |
Citations (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62172691A (ja) | 1986-01-24 | 1987-07-29 | 株式会社小松製作所 | 薄膜el素子 |
US4774435A (en) | 1987-12-22 | 1988-09-27 | Gte Laboratories Incorporated | Thin film electroluminescent device |
JPS63314795A (ja) | 1987-06-18 | 1988-12-22 | Komatsu Ltd | 薄膜el素子 |
JPH01220394A (ja) | 1988-02-29 | 1989-09-04 | Hitachi Ltd | 高輝度el素子 |
JPH03173095A (ja) * | 1989-11-30 | 1991-07-26 | Pioneer Electron Corp | 電界発光素子 |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
JPH04297076A (ja) | 1991-01-31 | 1992-10-21 | Toshiba Corp | 有機el素子 |
JPH04308688A (ja) | 1991-04-08 | 1992-10-30 | Pioneer Electron Corp | 有機エレクトロルミネッセンス素子 |
JPH05182763A (ja) * | 1992-01-07 | 1993-07-23 | Sekisui Chem Co Ltd | 有機結晶を用いた電界発光素子の製造方法 |
JPH0625658A (ja) | 1992-07-07 | 1994-02-01 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス素子 |
JPH0633048A (ja) | 1992-07-15 | 1994-02-08 | Showa Denko Kk | 有機薄膜エレクトロルミネッセント素子 |
JPH06325871A (ja) | 1993-05-18 | 1994-11-25 | Mitsubishi Kasei Corp | 有機電界発光素子 |
JPH08288069A (ja) | 1995-04-07 | 1996-11-01 | Sanyo Electric Co Ltd | 有機エレクトロルミネッセンス素子 |
JPH0917574A (ja) | 1995-04-27 | 1997-01-17 | Pioneer Electron Corp | 有機エレクトロルミネッセンス素子 |
JPH0945479A (ja) | 1995-07-27 | 1997-02-14 | Hewlett Packard Co <Hp> | 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法 |
JPH09260062A (ja) | 1996-03-25 | 1997-10-03 | Tdk Corp | 有機エレクトロルミネセンス素子 |
JPH1041070A (ja) * | 1996-07-25 | 1998-02-13 | Sanyo Electric Co Ltd | 結晶性有機薄膜の製造方法及び有機エレクトロルミネッセンス素子 |
JPH1074586A (ja) | 1996-07-29 | 1998-03-17 | Eastman Kodak Co | エレクトロルミネセンスデバイスで用いられる二層電子注入電極 |
JPH10144473A (ja) * | 1996-11-12 | 1998-05-29 | Sanyo Electric Co Ltd | 有機エレクトロルミネッセンス素子 |
JPH10233287A (ja) | 1996-12-16 | 1998-09-02 | Toyo Ink Mfg Co Ltd | 有機エレクトロルミネッセンス素子材料およびそれを用いた有機エレクトロルミネッセンス素子 |
JPH11204258A (ja) | 1998-01-09 | 1999-07-30 | Sony Corp | 電界発光素子及びその製造方法 |
JPH11204359A (ja) | 1998-01-14 | 1999-07-30 | Tokin Corp | 圧粉磁芯の製造方法と製造装置 |
JPH11251067A (ja) | 1998-03-02 | 1999-09-17 | Junji Kido | 有機エレクトロルミネッセント素子 |
JPH11283751A (ja) | 1998-03-27 | 1999-10-15 | Nec Corp | 有機エレクトロルミネッセンス素子 |
JP2000068058A (ja) | 1998-08-24 | 2000-03-03 | Toyo Ink Mfg Co Ltd | 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子 |
JP2000196140A (ja) | 1998-12-28 | 2000-07-14 | Sharp Corp | 有機エレクトロルミネッセンス素子とその製造法 |
WO2000070655A2 (en) | 1999-05-13 | 2000-11-23 | The Trustees Of Princeton University | Very high efficiency organic light emitting devices based on electrophosphorescence |
JP2001102175A (ja) | 1999-09-29 | 2001-04-13 | Junji Kido | 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法 |
JP2001181617A (ja) | 1999-12-27 | 2001-07-03 | Fuji Photo Film Co Ltd | オルトメタル化白金錯体からなる発光素子材料および発光素子 |
JP2001181616A (ja) | 1999-12-27 | 2001-07-03 | Fuji Photo Film Co Ltd | オルトメタル化パラジウム錯体からなる発光素子材料および発光素子 |
JP2001202827A (ja) | 1999-11-10 | 2001-07-27 | Matsushita Electric Works Ltd | 透明導電性基板、発光素子、平面発光板、平面発光板の製造方法、平面蛍光ランプ、プラズマディスプレイ |
JP2001247859A (ja) | 1999-12-27 | 2001-09-14 | Fuji Photo Film Co Ltd | オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体 |
JP2001257076A (ja) | 2000-03-13 | 2001-09-21 | Tdk Corp | 有機el素子 |
JP2001313178A (ja) | 2000-04-28 | 2001-11-09 | Pioneer Electronic Corp | 有機エレクトロルミネッセンス素子 |
JP2001313179A (ja) | 2000-05-01 | 2001-11-09 | Mitsubishi Chemicals Corp | 有機電界発光素子 |
JP2001319780A (ja) | 2000-05-02 | 2001-11-16 | Fuji Photo Film Co Ltd | 発光素子 |
JP2001319779A (ja) | 2000-05-02 | 2001-11-16 | Fuji Photo Film Co Ltd | 発光素子 |
WO2001093642A1 (en) | 2000-05-30 | 2001-12-06 | The Trustees Of Princeton University | Phosphorescent organic light emitting devices |
JP2001345183A (ja) | 2000-03-28 | 2001-12-14 | Fuji Photo Film Co Ltd | 高効率赤色発光素子、イリジウム錯体から成る発光素子材料及び新規イリジウム錯体 |
JP2001357977A (ja) | 2000-06-12 | 2001-12-26 | Fuji Photo Film Co Ltd | 有機電界発光素子 |
JP2002008860A (ja) | 2000-04-18 | 2002-01-11 | Mitsubishi Chemicals Corp | 有機電界発光素子 |
JP2002015871A (ja) | 2000-04-27 | 2002-01-18 | Toray Ind Inc | 発光素子 |
JP2002043056A (ja) | 2000-07-19 | 2002-02-08 | Canon Inc | 発光素子 |
JP2002050484A (ja) | 2000-05-22 | 2002-02-15 | Semiconductor Energy Lab Co Ltd | 発光装置および電気器具 |
JP2002050483A (ja) | 2000-05-22 | 2002-02-15 | Showa Denko Kk | 有機エレクトロルミネッセンス素子および発光材料 |
WO2002015645A1 (en) | 2000-08-11 | 2002-02-21 | The Trustees Of Princeton University | Organometallic compounds and emission-shifting organic electrophosphorescence |
JP2002062824A (ja) | 2000-06-05 | 2002-02-28 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2002075645A (ja) | 2000-08-29 | 2002-03-15 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2002083684A (ja) | 2000-06-23 | 2002-03-22 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2002100476A (ja) | 2000-07-17 | 2002-04-05 | Fuji Photo Film Co Ltd | 発光素子及びアゾール化合物 |
JP2002100474A (ja) | 2000-09-25 | 2002-04-05 | Kyocera Corp | 有機エレクトロルミネッセンス素子 |
JP2002105445A (ja) | 2000-09-29 | 2002-04-10 | Fuji Photo Film Co Ltd | 有機発光素子材料及びそれを用いた有機発光素子 |
JP2002117978A (ja) | 2000-07-17 | 2002-04-19 | Fuji Photo Film Co Ltd | 発光素子及びイリジウム錯体 |
JP2002117979A (ja) | 2000-08-04 | 2002-04-19 | Chisso Corp | ジチアフルベン誘導体を含有する有機電界発光素子 |
JP2002141173A (ja) | 2000-08-22 | 2002-05-17 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2002170684A (ja) | 2000-09-21 | 2002-06-14 | Fuji Photo Film Co Ltd | 発光素子及びイリジウム錯体 |
JP2002173674A (ja) | 2000-09-21 | 2002-06-21 | Fuji Photo Film Co Ltd | 発光素子および新規レニウム錯体 |
JP2002175884A (ja) | 2000-09-26 | 2002-06-21 | Canon Inc | 発光素子及び発光素子用金属配位化合物 |
JP2002184582A (ja) | 2000-09-28 | 2002-06-28 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2002203679A (ja) | 2000-12-27 | 2002-07-19 | Fuji Photo Film Co Ltd | 発光素子 |
JP2002203678A (ja) | 2000-12-27 | 2002-07-19 | Fuji Photo Film Co Ltd | 発光素子 |
JP2002203683A (ja) | 2000-10-30 | 2002-07-19 | Toyota Central Res & Dev Lab Inc | 有機電界発光素子 |
JP2002525833A (ja) | 1998-09-25 | 2002-08-13 | アイシス イノヴェイション リミテッド | 二価ランタノイド金属錯体 |
JP2002525808A (ja) | 1998-09-14 | 2002-08-13 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | 高効率の電界発光デバイスのための構造 |
JP2002226495A (ja) | 2000-11-29 | 2002-08-14 | Canon Inc | 金属配位化合物、発光素子及び表示装置 |
JP2002231453A (ja) | 2000-11-30 | 2002-08-16 | Mitsubishi Chemicals Corp | 有機電界発光素子 |
JP2002234888A (ja) | 2001-02-09 | 2002-08-23 | Mitsui Chemicals Inc | アミン化合物および該化合物を含有する有機電界発光素子 |
JP2002235076A (ja) | 2001-02-09 | 2002-08-23 | Fuji Photo Film Co Ltd | 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子 |
JP2002234894A (ja) | 2000-11-29 | 2002-08-23 | Canon Inc | 金属配位化合物、発光素子及び表示装置 |
JP2002241751A (ja) | 2001-02-21 | 2002-08-28 | Fuji Photo Film Co Ltd | 発光素子用材料及び発光素子 |
JP2002255914A (ja) | 2001-02-27 | 2002-09-11 | Kuraray Co Ltd | シス−4−アミノ−2−シクロペンテンカルボン酸鉱酸塩の製造方法 |
JP2002260861A (ja) | 2001-01-02 | 2002-09-13 | Eastman Kodak Co | 有機発光デバイス |
JP2002280180A (ja) | 2001-03-16 | 2002-09-27 | Canon Inc | 有機発光素子 |
JP2002280178A (ja) | 2001-03-16 | 2002-09-27 | Canon Inc | 有機発光素子 |
JP2002280183A (ja) | 2000-12-28 | 2002-09-27 | Toshiba Corp | 有機el素子および表示装置 |
JP2002280179A (ja) | 2001-03-16 | 2002-09-27 | Canon Inc | 有機発光素子 |
JP2002299060A (ja) | 2001-03-30 | 2002-10-11 | Fuji Photo Film Co Ltd | 有機発光素子 |
JP2002305084A (ja) | 2000-12-25 | 2002-10-18 | Fuji Photo Film Co Ltd | 新規インドール誘導体およびそれを利用した発光素子 |
JP2002305083A (ja) | 2001-04-04 | 2002-10-18 | Mitsubishi Chemicals Corp | 有機電界発光素子 |
JP2002302516A (ja) | 2001-04-03 | 2002-10-18 | Fuji Photo Film Co Ltd | 新規ポリマーおよびそれを用いた発光素子 |
JP2002302671A (ja) | 2000-02-10 | 2002-10-18 | Fuji Photo Film Co Ltd | イリジウム錯体からなる発光素子材料及び発光素子 |
JP2002308837A (ja) | 2001-04-05 | 2002-10-23 | Fuji Photo Film Co Ltd | 新規化合物、およびそれを用いた発光素子 |
JP2002308855A (ja) | 2001-04-05 | 2002-10-23 | Fuji Photo Film Co Ltd | 新規化合物、およびそれを用いた発光素子 |
JP2002319491A (ja) | 2000-08-24 | 2002-10-31 | Fuji Photo Film Co Ltd | 発光素子及び新規重合体子 |
JP2002322292A (ja) | 2001-04-23 | 2002-11-08 | Nitto Denko Corp | 熱融着性ポリイミド樹脂フィルムとこれを用いた多層配線板 |
JP2002324679A (ja) | 2001-04-26 | 2002-11-08 | Honda Motor Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2002332291A (ja) | 2001-03-08 | 2002-11-22 | Canon Inc | 金属配位化合物、電界発光素子及び表示装置 |
JP2002334788A (ja) | 2001-03-09 | 2002-11-22 | Sony Corp | 有機電界発光素子 |
JP2002334786A (ja) | 2001-03-09 | 2002-11-22 | Sony Corp | 有機電界発光素子 |
JP2002334789A (ja) | 2001-03-09 | 2002-11-22 | Sony Corp | 有機電界発光素子 |
JP2002334787A (ja) | 2001-03-09 | 2002-11-22 | Sony Corp | 有機電界発光素子 |
JP2002540572A (ja) | 1999-03-23 | 2002-11-26 | ザ ユニバーシティー オブ サザン カリフォルニア | 有機ledの燐光性ドーパントとしてのシクロメタル化金属錯体 |
JP2002338588A (ja) | 2001-03-14 | 2002-11-27 | Canon Inc | 金属配位化合物、電界発光素子及び表示装置 |
JP2002338579A (ja) | 2001-03-16 | 2002-11-27 | Fuji Photo Film Co Ltd | ヘテロ環化合物及びそれを用いた発光素子 |
JP2002343572A (ja) | 2001-03-14 | 2002-11-29 | Canon Inc | ポルフィリン誘導体化合物を用いた発光素子および表示装置 |
JP2002343138A (ja) | 2001-05-16 | 2002-11-29 | Yazaki Corp | 耐摩耗性電線及びその製造方法 |
JP2002352957A (ja) | 2001-05-23 | 2002-12-06 | Honda Motor Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2002352960A (ja) | 2001-05-29 | 2002-12-06 | Hitachi Ltd | 薄膜電界発光素子 |
US20020185242A1 (en) | 2001-06-11 | 2002-12-12 | Newcomb Thomas P. | Casting of engine blocks |
JP2002359082A (ja) | 2001-03-28 | 2002-12-13 | Semiconductor Energy Lab Co Ltd | 有機発光素子および前記素子を用いた発光装置 |
JP2002363552A (ja) | 2001-03-08 | 2002-12-18 | Univ Of Hong Kong | 有機金属発光材料 |
JP2002363227A (ja) | 2001-04-03 | 2002-12-18 | Fuji Photo Film Co Ltd | 新規ポリマーおよびそれを用いた発光素子 |
JP2003003165A (ja) | 2001-06-25 | 2003-01-08 | Showa Denko Kk | 有機発光素子および発光材料 |
JP2003007471A (ja) | 2001-04-13 | 2003-01-10 | Semiconductor Energy Lab Co Ltd | 有機発光素子および前記素子を用いた発光装置 |
JP2003007469A (ja) | 2001-06-25 | 2003-01-10 | Canon Inc | 発光素子及び表示装置 |
JP2003027048A (ja) | 2001-07-11 | 2003-01-29 | Fuji Photo Film Co Ltd | 発光素子 |
JP2003031366A (ja) | 2001-07-11 | 2003-01-31 | Semiconductor Energy Lab Co Ltd | ドーパントを用いた有機発光素子および発光装置 |
JP2003123967A (ja) * | 2001-10-10 | 2003-04-25 | Matsushita Electric Ind Co Ltd | 発光素子の製造方法 |
JP2004006321A (ja) | 2002-04-18 | 2004-01-08 | Canon Inc | 有機発光素子の半導体正孔注入材料 |
JP2004068143A (ja) | 2002-06-10 | 2004-03-04 | Konica Minolta Holdings Inc | 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材 |
JP2005100897A (ja) * | 2003-09-26 | 2005-04-14 | Seiko Epson Corp | 有機el素子の製造方法、有機el素子、及び電子機器 |
JP2006049393A (ja) | 2004-07-30 | 2006-02-16 | Sanyo Electric Co Ltd | 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置 |
JP2006190759A (ja) | 2005-01-05 | 2006-07-20 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2006228861A (ja) * | 2005-02-16 | 2006-08-31 | Kyoto Univ | 有機エレクトロルミネッセンス素子及びその製造方法 |
US20060251922A1 (en) | 2005-05-06 | 2006-11-09 | Eastman Kodak Company | OLED electron-injecting layer |
WO2008140115A1 (ja) * | 2007-05-16 | 2008-11-20 | Konica Minolta Holdings, Inc. | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6806639B2 (en) * | 2002-04-04 | 2004-10-19 | Luxell Technologies, Inc. | Thin film electroluminescent device |
JP3864413B2 (ja) * | 2002-04-22 | 2006-12-27 | セイコーエプソン株式会社 | トランジスタの製造方法 |
JP4337475B2 (ja) * | 2003-08-27 | 2009-09-30 | 三菱化学株式会社 | 有機金属錯体、発光材料、および有機電界発光素子 |
EP1722603B2 (en) * | 2004-03-02 | 2021-02-17 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
JP5157442B2 (ja) * | 2005-04-18 | 2013-03-06 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
US20070126347A1 (en) * | 2005-12-01 | 2007-06-07 | Eastman Kodak Company | OLEDS with improved efficiency |
JP2008066569A (ja) * | 2006-09-08 | 2008-03-21 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
-
2010
- 2010-01-12 JP JP2010548456A patent/JP5472121B2/ja active Active
- 2010-01-12 EP EP10735692.5A patent/EP2383815B1/en active Active
- 2010-01-12 WO PCT/JP2010/050203 patent/WO2010087222A1/ja active Application Filing
- 2010-01-12 US US13/143,939 patent/US20110260152A1/en not_active Abandoned
Patent Citations (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62172691A (ja) | 1986-01-24 | 1987-07-29 | 株式会社小松製作所 | 薄膜el素子 |
JPS63314795A (ja) | 1987-06-18 | 1988-12-22 | Komatsu Ltd | 薄膜el素子 |
US4774435A (en) | 1987-12-22 | 1988-09-27 | Gte Laboratories Incorporated | Thin film electroluminescent device |
JPH01220394A (ja) | 1988-02-29 | 1989-09-04 | Hitachi Ltd | 高輝度el素子 |
JPH03173095A (ja) * | 1989-11-30 | 1991-07-26 | Pioneer Electron Corp | 電界発光素子 |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
JPH04297076A (ja) | 1991-01-31 | 1992-10-21 | Toshiba Corp | 有機el素子 |
JPH04308688A (ja) | 1991-04-08 | 1992-10-30 | Pioneer Electron Corp | 有機エレクトロルミネッセンス素子 |
JPH05182763A (ja) * | 1992-01-07 | 1993-07-23 | Sekisui Chem Co Ltd | 有機結晶を用いた電界発光素子の製造方法 |
JPH0625658A (ja) | 1992-07-07 | 1994-02-01 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス素子 |
JPH0633048A (ja) | 1992-07-15 | 1994-02-08 | Showa Denko Kk | 有機薄膜エレクトロルミネッセント素子 |
JPH06325871A (ja) | 1993-05-18 | 1994-11-25 | Mitsubishi Kasei Corp | 有機電界発光素子 |
JPH08288069A (ja) | 1995-04-07 | 1996-11-01 | Sanyo Electric Co Ltd | 有機エレクトロルミネッセンス素子 |
JPH0917574A (ja) | 1995-04-27 | 1997-01-17 | Pioneer Electron Corp | 有機エレクトロルミネッセンス素子 |
JPH0945479A (ja) | 1995-07-27 | 1997-02-14 | Hewlett Packard Co <Hp> | 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法 |
JPH09260062A (ja) | 1996-03-25 | 1997-10-03 | Tdk Corp | 有機エレクトロルミネセンス素子 |
JPH1041070A (ja) * | 1996-07-25 | 1998-02-13 | Sanyo Electric Co Ltd | 結晶性有機薄膜の製造方法及び有機エレクトロルミネッセンス素子 |
JPH1074586A (ja) | 1996-07-29 | 1998-03-17 | Eastman Kodak Co | エレクトロルミネセンスデバイスで用いられる二層電子注入電極 |
JPH10144473A (ja) * | 1996-11-12 | 1998-05-29 | Sanyo Electric Co Ltd | 有機エレクトロルミネッセンス素子 |
JPH10233287A (ja) | 1996-12-16 | 1998-09-02 | Toyo Ink Mfg Co Ltd | 有機エレクトロルミネッセンス素子材料およびそれを用いた有機エレクトロルミネッセンス素子 |
JPH11204258A (ja) | 1998-01-09 | 1999-07-30 | Sony Corp | 電界発光素子及びその製造方法 |
JPH11204359A (ja) | 1998-01-14 | 1999-07-30 | Tokin Corp | 圧粉磁芯の製造方法と製造装置 |
JPH11251067A (ja) | 1998-03-02 | 1999-09-17 | Junji Kido | 有機エレクトロルミネッセント素子 |
JPH11283751A (ja) | 1998-03-27 | 1999-10-15 | Nec Corp | 有機エレクトロルミネッセンス素子 |
JP2000068058A (ja) | 1998-08-24 | 2000-03-03 | Toyo Ink Mfg Co Ltd | 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子 |
JP2002525808A (ja) | 1998-09-14 | 2002-08-13 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | 高効率の電界発光デバイスのための構造 |
JP2002525833A (ja) | 1998-09-25 | 2002-08-13 | アイシス イノヴェイション リミテッド | 二価ランタノイド金属錯体 |
JP2000196140A (ja) | 1998-12-28 | 2000-07-14 | Sharp Corp | 有機エレクトロルミネッセンス素子とその製造法 |
JP2002540572A (ja) | 1999-03-23 | 2002-11-26 | ザ ユニバーシティー オブ サザン カリフォルニア | 有機ledの燐光性ドーパントとしてのシクロメタル化金属錯体 |
WO2000070655A2 (en) | 1999-05-13 | 2000-11-23 | The Trustees Of Princeton University | Very high efficiency organic light emitting devices based on electrophosphorescence |
JP2001102175A (ja) | 1999-09-29 | 2001-04-13 | Junji Kido | 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法 |
JP2001202827A (ja) | 1999-11-10 | 2001-07-27 | Matsushita Electric Works Ltd | 透明導電性基板、発光素子、平面発光板、平面発光板の製造方法、平面蛍光ランプ、プラズマディスプレイ |
JP2001181616A (ja) | 1999-12-27 | 2001-07-03 | Fuji Photo Film Co Ltd | オルトメタル化パラジウム錯体からなる発光素子材料および発光素子 |
JP2001181617A (ja) | 1999-12-27 | 2001-07-03 | Fuji Photo Film Co Ltd | オルトメタル化白金錯体からなる発光素子材料および発光素子 |
JP2001247859A (ja) | 1999-12-27 | 2001-09-14 | Fuji Photo Film Co Ltd | オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体 |
JP2002302671A (ja) | 2000-02-10 | 2002-10-18 | Fuji Photo Film Co Ltd | イリジウム錯体からなる発光素子材料及び発光素子 |
JP2001257076A (ja) | 2000-03-13 | 2001-09-21 | Tdk Corp | 有機el素子 |
JP2001345183A (ja) | 2000-03-28 | 2001-12-14 | Fuji Photo Film Co Ltd | 高効率赤色発光素子、イリジウム錯体から成る発光素子材料及び新規イリジウム錯体 |
JP2002008860A (ja) | 2000-04-18 | 2002-01-11 | Mitsubishi Chemicals Corp | 有機電界発光素子 |
JP2002015871A (ja) | 2000-04-27 | 2002-01-18 | Toray Ind Inc | 発光素子 |
JP2001313178A (ja) | 2000-04-28 | 2001-11-09 | Pioneer Electronic Corp | 有機エレクトロルミネッセンス素子 |
JP2001313179A (ja) | 2000-05-01 | 2001-11-09 | Mitsubishi Chemicals Corp | 有機電界発光素子 |
JP2001319780A (ja) | 2000-05-02 | 2001-11-16 | Fuji Photo Film Co Ltd | 発光素子 |
JP2001319779A (ja) | 2000-05-02 | 2001-11-16 | Fuji Photo Film Co Ltd | 発光素子 |
JP2002050484A (ja) | 2000-05-22 | 2002-02-15 | Semiconductor Energy Lab Co Ltd | 発光装置および電気器具 |
JP2002050483A (ja) | 2000-05-22 | 2002-02-15 | Showa Denko Kk | 有機エレクトロルミネッセンス素子および発光材料 |
WO2001093642A1 (en) | 2000-05-30 | 2001-12-06 | The Trustees Of Princeton University | Phosphorescent organic light emitting devices |
JP2002062824A (ja) | 2000-06-05 | 2002-02-28 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2001357977A (ja) | 2000-06-12 | 2001-12-26 | Fuji Photo Film Co Ltd | 有機電界発光素子 |
JP2002083684A (ja) | 2000-06-23 | 2002-03-22 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2002100476A (ja) | 2000-07-17 | 2002-04-05 | Fuji Photo Film Co Ltd | 発光素子及びアゾール化合物 |
JP2002117978A (ja) | 2000-07-17 | 2002-04-19 | Fuji Photo Film Co Ltd | 発光素子及びイリジウム錯体 |
JP2002043056A (ja) | 2000-07-19 | 2002-02-08 | Canon Inc | 発光素子 |
JP2002117979A (ja) | 2000-08-04 | 2002-04-19 | Chisso Corp | ジチアフルベン誘導体を含有する有機電界発光素子 |
WO2002015645A1 (en) | 2000-08-11 | 2002-02-21 | The Trustees Of Princeton University | Organometallic compounds and emission-shifting organic electrophosphorescence |
JP2002141173A (ja) | 2000-08-22 | 2002-05-17 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2002319491A (ja) | 2000-08-24 | 2002-10-31 | Fuji Photo Film Co Ltd | 発光素子及び新規重合体子 |
JP2002075645A (ja) | 2000-08-29 | 2002-03-15 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2002173674A (ja) | 2000-09-21 | 2002-06-21 | Fuji Photo Film Co Ltd | 発光素子および新規レニウム錯体 |
JP2002170684A (ja) | 2000-09-21 | 2002-06-14 | Fuji Photo Film Co Ltd | 発光素子及びイリジウム錯体 |
JP2002100474A (ja) | 2000-09-25 | 2002-04-05 | Kyocera Corp | 有機エレクトロルミネッセンス素子 |
JP2002175884A (ja) | 2000-09-26 | 2002-06-21 | Canon Inc | 発光素子及び発光素子用金属配位化合物 |
JP2002184582A (ja) | 2000-09-28 | 2002-06-28 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2002105445A (ja) | 2000-09-29 | 2002-04-10 | Fuji Photo Film Co Ltd | 有機発光素子材料及びそれを用いた有機発光素子 |
JP2002203683A (ja) | 2000-10-30 | 2002-07-19 | Toyota Central Res & Dev Lab Inc | 有機電界発光素子 |
JP2002234894A (ja) | 2000-11-29 | 2002-08-23 | Canon Inc | 金属配位化合物、発光素子及び表示装置 |
JP2002226495A (ja) | 2000-11-29 | 2002-08-14 | Canon Inc | 金属配位化合物、発光素子及び表示装置 |
JP2002231453A (ja) | 2000-11-30 | 2002-08-16 | Mitsubishi Chemicals Corp | 有機電界発光素子 |
JP2002305084A (ja) | 2000-12-25 | 2002-10-18 | Fuji Photo Film Co Ltd | 新規インドール誘導体およびそれを利用した発光素子 |
JP2002203679A (ja) | 2000-12-27 | 2002-07-19 | Fuji Photo Film Co Ltd | 発光素子 |
JP2002203678A (ja) | 2000-12-27 | 2002-07-19 | Fuji Photo Film Co Ltd | 発光素子 |
JP2002280183A (ja) | 2000-12-28 | 2002-09-27 | Toshiba Corp | 有機el素子および表示装置 |
JP2002260861A (ja) | 2001-01-02 | 2002-09-13 | Eastman Kodak Co | 有機発光デバイス |
JP2002235076A (ja) | 2001-02-09 | 2002-08-23 | Fuji Photo Film Co Ltd | 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子 |
JP2002234888A (ja) | 2001-02-09 | 2002-08-23 | Mitsui Chemicals Inc | アミン化合物および該化合物を含有する有機電界発光素子 |
JP2002241751A (ja) | 2001-02-21 | 2002-08-28 | Fuji Photo Film Co Ltd | 発光素子用材料及び発光素子 |
JP2002255914A (ja) | 2001-02-27 | 2002-09-11 | Kuraray Co Ltd | シス−4−アミノ−2−シクロペンテンカルボン酸鉱酸塩の製造方法 |
JP2002363552A (ja) | 2001-03-08 | 2002-12-18 | Univ Of Hong Kong | 有機金属発光材料 |
JP2002332291A (ja) | 2001-03-08 | 2002-11-22 | Canon Inc | 金属配位化合物、電界発光素子及び表示装置 |
JP2002334787A (ja) | 2001-03-09 | 2002-11-22 | Sony Corp | 有機電界発光素子 |
JP2002334789A (ja) | 2001-03-09 | 2002-11-22 | Sony Corp | 有機電界発光素子 |
JP2002334786A (ja) | 2001-03-09 | 2002-11-22 | Sony Corp | 有機電界発光素子 |
JP2002334788A (ja) | 2001-03-09 | 2002-11-22 | Sony Corp | 有機電界発光素子 |
JP2002338588A (ja) | 2001-03-14 | 2002-11-27 | Canon Inc | 金属配位化合物、電界発光素子及び表示装置 |
JP2002343572A (ja) | 2001-03-14 | 2002-11-29 | Canon Inc | ポルフィリン誘導体化合物を用いた発光素子および表示装置 |
JP2002280179A (ja) | 2001-03-16 | 2002-09-27 | Canon Inc | 有機発光素子 |
JP2002280180A (ja) | 2001-03-16 | 2002-09-27 | Canon Inc | 有機発光素子 |
JP2002280178A (ja) | 2001-03-16 | 2002-09-27 | Canon Inc | 有機発光素子 |
JP2002338579A (ja) | 2001-03-16 | 2002-11-27 | Fuji Photo Film Co Ltd | ヘテロ環化合物及びそれを用いた発光素子 |
JP2002359082A (ja) | 2001-03-28 | 2002-12-13 | Semiconductor Energy Lab Co Ltd | 有機発光素子および前記素子を用いた発光装置 |
JP2002299060A (ja) | 2001-03-30 | 2002-10-11 | Fuji Photo Film Co Ltd | 有機発光素子 |
JP2002302516A (ja) | 2001-04-03 | 2002-10-18 | Fuji Photo Film Co Ltd | 新規ポリマーおよびそれを用いた発光素子 |
JP2002363227A (ja) | 2001-04-03 | 2002-12-18 | Fuji Photo Film Co Ltd | 新規ポリマーおよびそれを用いた発光素子 |
JP2002305083A (ja) | 2001-04-04 | 2002-10-18 | Mitsubishi Chemicals Corp | 有機電界発光素子 |
JP2002308855A (ja) | 2001-04-05 | 2002-10-23 | Fuji Photo Film Co Ltd | 新規化合物、およびそれを用いた発光素子 |
JP2002308837A (ja) | 2001-04-05 | 2002-10-23 | Fuji Photo Film Co Ltd | 新規化合物、およびそれを用いた発光素子 |
JP2003007471A (ja) | 2001-04-13 | 2003-01-10 | Semiconductor Energy Lab Co Ltd | 有機発光素子および前記素子を用いた発光装置 |
JP2002322292A (ja) | 2001-04-23 | 2002-11-08 | Nitto Denko Corp | 熱融着性ポリイミド樹脂フィルムとこれを用いた多層配線板 |
JP2002324679A (ja) | 2001-04-26 | 2002-11-08 | Honda Motor Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2002343138A (ja) | 2001-05-16 | 2002-11-29 | Yazaki Corp | 耐摩耗性電線及びその製造方法 |
JP2002352957A (ja) | 2001-05-23 | 2002-12-06 | Honda Motor Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2002352960A (ja) | 2001-05-29 | 2002-12-06 | Hitachi Ltd | 薄膜電界発光素子 |
US20020185242A1 (en) | 2001-06-11 | 2002-12-12 | Newcomb Thomas P. | Casting of engine blocks |
JP2003003165A (ja) | 2001-06-25 | 2003-01-08 | Showa Denko Kk | 有機発光素子および発光材料 |
JP2003007469A (ja) | 2001-06-25 | 2003-01-10 | Canon Inc | 発光素子及び表示装置 |
JP2003027048A (ja) | 2001-07-11 | 2003-01-29 | Fuji Photo Film Co Ltd | 発光素子 |
JP2003031366A (ja) | 2001-07-11 | 2003-01-31 | Semiconductor Energy Lab Co Ltd | ドーパントを用いた有機発光素子および発光装置 |
JP2003123967A (ja) * | 2001-10-10 | 2003-04-25 | Matsushita Electric Ind Co Ltd | 発光素子の製造方法 |
JP2004006321A (ja) | 2002-04-18 | 2004-01-08 | Canon Inc | 有機発光素子の半導体正孔注入材料 |
JP2004068143A (ja) | 2002-06-10 | 2004-03-04 | Konica Minolta Holdings Inc | 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材 |
JP2005100897A (ja) * | 2003-09-26 | 2005-04-14 | Seiko Epson Corp | 有機el素子の製造方法、有機el素子、及び電子機器 |
JP2006049393A (ja) | 2004-07-30 | 2006-02-16 | Sanyo Electric Co Ltd | 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置 |
JP2006190759A (ja) | 2005-01-05 | 2006-07-20 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2006228861A (ja) * | 2005-02-16 | 2006-08-31 | Kyoto Univ | 有機エレクトロルミネッセンス素子及びその製造方法 |
US20060251922A1 (en) | 2005-05-06 | 2006-11-09 | Eastman Kodak Company | OLED electron-injecting layer |
WO2008140115A1 (ja) * | 2007-05-16 | 2008-11-20 | Konica Minolta Holdings, Inc. | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
Non-Patent Citations (5)
Title |
---|
"Organic EL Elements and Industrialization Front Thereof", 30 November 1998, N. T. S CORP., pages: 273 |
"Organic EL Elements and Industrialization Front thereof", vol. 2, 30 November 1998, N. T. S CORP., pages: 123 - 166 |
J. APPL. PHYS., vol. 95, 2004, pages 5773 |
J. HUANG ET AL., APPLIED PHYSICS LETTERS, vol. 80, 2002, pages 139 |
See also references of EP2383815A4 |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010278287A (ja) * | 2009-05-29 | 2010-12-09 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、該素子を用いた表示装置、照明装置及び有機エレクトロルミネッセンス素子の製造方法 |
JP4598137B1 (ja) * | 2009-07-31 | 2010-12-15 | 富士フイルム株式会社 | 有機電界発光素子の製造方法 |
JP2011035172A (ja) * | 2009-07-31 | 2011-02-17 | Fujifilm Corp | 有機電界発光素子の製造方法 |
US11871654B2 (en) | 2009-10-28 | 2024-01-09 | Udc Ireland Limited | Heteroleptic carbene complexes and the use thereof in organic electronics |
WO2011051404A1 (de) | 2009-10-28 | 2011-05-05 | Basf Se | Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik |
US11189806B2 (en) | 2009-10-28 | 2021-11-30 | Udc Ireland Limited | Heteroleptic carbene complexes and the use thereof in organic electronics |
US10916716B2 (en) | 2009-12-14 | 2021-02-09 | Udc Ireland Limited | Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS |
US11444254B2 (en) | 2009-12-14 | 2022-09-13 | Udc Ireland Limited | Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs |
US11839140B2 (en) | 2009-12-14 | 2023-12-05 | Udc Ireland Limited | Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS |
US10090476B2 (en) | 2009-12-14 | 2018-10-02 | Udc Ireland Limited | Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs |
US9487548B2 (en) | 2009-12-14 | 2016-11-08 | Udc Ireland Limited | Metal complexes comprising diazabenzimidazolocarbene ligands and the use thereof in OLEDs |
WO2011073149A1 (de) | 2009-12-14 | 2011-06-23 | Basf Se | Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds |
US8691401B2 (en) | 2010-04-16 | 2014-04-08 | Basf Se | Bridged benzimidazole-carbene complexes and use thereof in OLEDS |
US9142792B2 (en) | 2010-06-18 | 2015-09-22 | Basf Se | Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide |
WO2012115034A1 (ja) * | 2011-02-22 | 2012-08-30 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
JP5839027B2 (ja) * | 2011-02-22 | 2016-01-06 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子、その製造方法、照明装置及び表示装置 |
US9315724B2 (en) | 2011-06-14 | 2016-04-19 | Basf Se | Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs |
EP3415521A1 (en) | 2011-06-14 | 2018-12-19 | UDC Ireland Limited | Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds |
EP3133079A1 (en) | 2012-07-19 | 2017-02-22 | UDC Ireland Limited | Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds |
US9590196B2 (en) | 2012-07-19 | 2017-03-07 | Udc Ireland Limited | Dinuclear metal complexes comprising carbene ligands and the use thereof in OLEDs |
WO2014012972A1 (en) | 2012-07-19 | 2014-01-23 | Basf Se | Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds |
JP2014072175A (ja) * | 2012-10-02 | 2014-04-21 | Konica Minolta Inc | 有機エレクトロルミネッセンス素子の製造方法 |
WO2014147134A1 (en) | 2013-03-20 | 2014-09-25 | Basf Se | Azabenzimidazole carbene complexes as efficiency booster in oleds |
WO2014177518A1 (en) | 2013-04-29 | 2014-11-06 | Basf Se | Transition metal complexes with carbene ligands and the use thereof in oleds |
WO2015000955A1 (en) | 2013-07-02 | 2015-01-08 | Basf Se | Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes |
EP3608329A1 (en) | 2013-07-02 | 2020-02-12 | UDC Ireland Limited | Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes |
EP3266789A1 (en) | 2013-07-02 | 2018-01-10 | UDC Ireland Limited | Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes |
EP3239161A1 (en) | 2013-07-31 | 2017-11-01 | UDC Ireland Limited | Luminescent diazabenzimidazole carbene metal complexes |
EP3916822A1 (en) | 2013-12-20 | 2021-12-01 | UDC Ireland Limited | Highly efficient oled devices with very short decay times |
US10347851B2 (en) | 2013-12-20 | 2019-07-09 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
US11765967B2 (en) | 2013-12-20 | 2023-09-19 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
US11075346B2 (en) | 2013-12-20 | 2021-07-27 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
US10118939B2 (en) | 2014-03-31 | 2018-11-06 | Udc Ireland Limited | Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes |
US9862739B2 (en) | 2014-03-31 | 2018-01-09 | Udc Ireland Limited | Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes |
US10370396B2 (en) | 2014-03-31 | 2019-08-06 | Udc Ireland Limited | Metal complexes, comprising carbene ligands having an O-substituted non-cyclometallated aryl group and their use in organic light emitting diodes |
WO2016016791A1 (en) | 2014-07-28 | 2016-02-04 | Idemitsu Kosan Co., Ltd (Ikc) | 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds) |
EP2982676A1 (en) | 2014-08-07 | 2016-02-10 | Idemitsu Kosan Co., Ltd. | Benzimidazo[2,1-B]benzoxazoles for electronic applications |
EP2993215A1 (en) | 2014-09-04 | 2016-03-09 | Idemitsu Kosan Co., Ltd. | Azabenzimidazo[2,1-a]benzimidazoles for electronic applications |
EP3015469A1 (en) | 2014-10-30 | 2016-05-04 | Idemitsu Kosan Co., Ltd. | 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications |
WO2016067261A1 (en) | 2014-10-30 | 2016-05-06 | Idemitsu Kosan Co., Ltd. | 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications |
WO2016079667A1 (en) | 2014-11-17 | 2016-05-26 | Idemitsu Kosan Co., Ltd. | Indole derivatives for electronic applications |
WO2016079169A1 (en) | 2014-11-18 | 2016-05-26 | Basf Se | Pt- or pd-carbene complexes for use in organic light emitting diodes |
EP3034506A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 4-functionalized carbazole derivatives for electronic applications |
EP3034507A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs) |
WO2016097983A1 (en) | 2014-12-15 | 2016-06-23 | Idemitsu Kosan Co., Ltd. | 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (oleds) |
EP3053918A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd | 2-carbazole substituted benzimidazoles for electronic applications |
EP3054498A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd. | Bisimidazodiazocines |
WO2016125110A1 (en) | 2015-02-06 | 2016-08-11 | Idemitsu Kosan Co., Ltd. | Bisimidazolodiazocines |
EP3061759A1 (en) | 2015-02-24 | 2016-08-31 | Idemitsu Kosan Co., Ltd | Nitrile substituted dibenzofurans |
EP3070144A1 (en) | 2015-03-17 | 2016-09-21 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
EP3072943A1 (en) | 2015-03-26 | 2016-09-28 | Idemitsu Kosan Co., Ltd. | Dibenzofuran/carbazole-substituted benzonitriles |
EP3075737A1 (en) | 2015-03-31 | 2016-10-05 | Idemitsu Kosan Co., Ltd | Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes |
WO2016157113A1 (en) | 2015-03-31 | 2016-10-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes |
WO2016193243A1 (en) | 2015-06-03 | 2016-12-08 | Udc Ireland Limited | Highly efficient oled devices with very short decay times |
EP4060757A1 (en) | 2015-06-03 | 2022-09-21 | UDC Ireland Limited | Highly efficient oled devices with very short decay times |
WO2017056053A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
EP3150604A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
EP3150606A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes |
WO2017056055A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes |
WO2017056052A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
WO2017078182A1 (en) | 2015-11-04 | 2017-05-11 | Idemitsu Kosan Co., Ltd. | Benzimidazole fused heteroaryls |
WO2017093958A1 (en) | 2015-12-04 | 2017-06-08 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes |
WO2017109722A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them |
WO2017109727A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Hetero-condensed phenylquinazolines and their use in electronic devices |
WO2017178864A1 (en) | 2016-04-12 | 2017-10-19 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
Also Published As
Publication number | Publication date |
---|---|
JP5472121B2 (ja) | 2014-04-16 |
US20110260152A1 (en) | 2011-10-27 |
EP2383815A1 (en) | 2011-11-02 |
JPWO2010087222A1 (ja) | 2012-08-02 |
EP2383815A4 (en) | 2012-07-18 |
EP2383815B1 (en) | 2014-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5472121B2 (ja) | 有機エレクトロルミネッセンス素子、表示装置および照明装置、ならびに有機エレクトロルミネッセンス素子の製造方法 | |
JP5359869B2 (ja) | 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置 | |
JP5765223B2 (ja) | 有機エレクトロルミネッセンス素子の製造方法、並びに有機エレクトロルミネッセンス素子を備えた照明装置及び表示装置 | |
JP5839027B2 (ja) | 有機エレクトロルミネッセンス素子、その製造方法、照明装置及び表示装置 | |
JP5458890B2 (ja) | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 | |
JP5381719B2 (ja) | 白色発光有機エレクトロルミネッセンス素子 | |
JP5387563B2 (ja) | 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、照明装置及び表示装置 | |
JP5600894B2 (ja) | 白色有機エレクトロルミネッセンス素子、表示装置及び照明装置 | |
WO2009084413A1 (ja) | 有機エレクトロルミネッセンス素子、及び有機エレクトロルミネッセンス素子の製造方法 | |
JP2008207520A (ja) | 有機薄膜、有機薄膜の製造方法、電子デバイス、有機エレクトロルミネッセンス素子、表示装置及び照明装置 | |
WO2012121101A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP6094480B2 (ja) | 有機エレクトロルミネッセンス素子、照明装置、表示装置及び有機エレクトロルミネッセンス素子の製造方法 | |
WO2009133753A1 (ja) | 有機エレクトロルミネッセンス素子、照明装置及び表示装置 | |
JP5569531B2 (ja) | 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置 | |
JP5182225B2 (ja) | 有機エレクトロルミネッセンス素子の製造方法 | |
WO2013031345A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP2011009517A (ja) | 有機エレクトロルミネッセンス素子 | |
JP2013074085A (ja) | 有機エレクトロルミネッセンス素子 | |
JP5655616B2 (ja) | 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法 | |
JP5867189B2 (ja) | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 | |
JP5660129B2 (ja) | 有機エレクトロルミネッセンス素子の製造方法 | |
WO2013042446A1 (ja) | 有機エレクトロルミネッセンス素子、表示装置および照明装置 | |
JP2008047428A (ja) | 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置 | |
JP2007059189A (ja) | 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスディスプレイ | |
WO2010109937A1 (ja) | 薄膜の形成方法、当該薄膜の積層薄膜の形成方法、電子デバイスおよび有機エレクトロルミネッセンス素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10735692 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010548456 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010735692 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13143939 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |