WO2007123167A1 - 硬化性組成物 - Google Patents

硬化性組成物 Download PDF

Info

Publication number
WO2007123167A1
WO2007123167A1 PCT/JP2007/058490 JP2007058490W WO2007123167A1 WO 2007123167 A1 WO2007123167 A1 WO 2007123167A1 JP 2007058490 W JP2007058490 W JP 2007058490W WO 2007123167 A1 WO2007123167 A1 WO 2007123167A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
curable composition
weight
compound
Prior art date
Application number
PCT/JP2007/058490
Other languages
English (en)
French (fr)
Inventor
Katsuyu Wakabayashi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to US12/297,783 priority Critical patent/US7772332B2/en
Priority to CN2007800141686A priority patent/CN101426859B/zh
Priority to JP2008512141A priority patent/JP5349959B2/ja
Priority to EP07741926A priority patent/EP2011834B1/en
Publication of WO2007123167A1 publication Critical patent/WO2007123167A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J143/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Adhesives based on derivatives of such polymers
    • C09J143/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/337Polymers modified by chemical after-treatment with organic compounds containing other elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/5406Silicon-containing compounds containing elements other than oxygen or nitrogen

Definitions

  • the present invention has a hydroxyl group or a hydrolyzable group bonded to a silicon atom and can be crosslinked by forming a siloxane bond (hereinafter also referred to as "reactive cage group").
  • the present invention relates to a curable composition containing a polymer having
  • a polymer having at least one reactive group in the molecule is formed by the formation of a siloxane bond accompanied by hydrolysis of the reactive group due to moisture or the like even at room temperature. It is known that it has a property that it can be crosslinked to obtain a rubber-like cured product.
  • Patent Document 1 organic polymers whose main chain skeleton is a polyoxyalkylene polymer or a polyisobutylene polymer are disclosed in (Patent Document 1) and (Patent Document 1). 2), etc., have already been industrially produced, and are widely used in applications such as sealing materials, adhesives and paints. There have also been many reports on a curable composition comprising a polymer whose main chain skeleton is polysiloxane, particularly diorganopolysiloxane (Patent Document 3).
  • Curable compositions used for sealing materials, adhesives, paints, and the like and rubber-like cured products obtained by curing require various properties such as curability, adhesiveness, and mechanical properties.
  • a curable composition containing a polymer having a reactive cation group is cured using a curing catalyst, and usually a carbon-tin bond such as dibutyltin bis (acetylacetate).
  • a carbon-tin bond such as dibutyltin bis (acetylacetate).
  • Patent Document 5 As a catalyst for producing an organopolysiloxane by hydrolysis and condensation of alkoxysilane (Patent Document 5), a compound having a Si_F bond is disclosed. However, as a curing catalyst for a polymer having a reactive silicon group, this compound alone exhibits extremely low reactivity.
  • Patent Document 1 JP-A 52-73998
  • Patent Document 2 JP-A 63-6041
  • Patent Document 3 Japanese Patent Publication No. 32-3742
  • Patent Document 4 JP-A-5-117519
  • Patent Document 5 JP-A-8-104753
  • the present invention provides a curable composition containing a polymer having a reactive cage group as a main component, and having a good curability using a non-organotin catalyst. The purpose.
  • the present invention provides:
  • R 1 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or R 2 SiO- (R 2 is each independently having 1 to 20 carbon atoms) Place of A substituted or unsubstituted hydrocarbon group or a fluorine atom.
  • A is either 1, 2, or 3.
  • R 3 and R 4 are each independently a hydrocarbon group having 1 to 20 carbon atoms, or SiO- (R 5 is each independently a hydrocarbon group having 1 to 20 carbon atoms) )
  • Z is independently a hydroxyl group or a hydrolyzable group.
  • b is 0, 1, 2, or 3
  • c is 0, 1, or 2, and b and c cannot be 0 at the same time.
  • 1 is an integer from 0 or 1 to 19;
  • the main chain skeleton of the polymer of component (A) is selected from the group consisting of polyoxyalkylene polymers, saturated hydrocarbon polymers, and (meth) acrylic acid ester polymers.
  • the present invention relates to an adhesive comprising the curable composition according to any one of (I) to (VI).
  • the curable composition of the present invention has good curability while using a non-organotin catalyst.
  • the curable composition of the present invention includes, as an essential component, a polymer having, as an essential component, (A) a component having an average of one or more reactive cage groups that can be bridged by forming a siloxane bond.
  • the reactive cage group is a cage group having a hydroxyl group or a hydrolyzable group bonded to a cage atom.
  • a polymer having a reactive silicon group has a characteristic that a siloxane bond is formed by a reaction accelerated by a silanol condensation catalyst and is crosslinked.
  • the reactive group is represented by the general formula (2):
  • R 3 and R 4 are each independently a hydrocarbon group having 1 to 20 carbon atoms, or SiO- (R 5 is each independently a hydrocarbon group having 1 to 20 carbon atoms) )
  • Z is independently a hydroxyl group or a hydrolyzable group.
  • b is 0, 1, 2, or 3
  • c is 0, 1, or 2 and b and c cannot be 0 at the same time.
  • 1 is an integer from 0 or 1 to 19; ).
  • main chain skeleton of the polymer as the component (A) those having various main chain skeletons without particular limitation can be used.
  • polyoxyalkylene heavy polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene polyoxypropylene copolymer, polyoxypropylene polyoxybutylene copolymer, etc.
  • Ethylene Propylene copolymer Ethylene Propylene copolymer, polyisobutylene, copolymer of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or a copolymer of butadiene and acrylonitrile and / or styrene, polybutadiene, dibasic acids such as ⁇ adipic acid; a copolymer of isoprene or butadiene and acrylonitrile and styrene or the like, hydrocarbon polymers of hydrogenated polyolefin-based polymer obtained by hydrogenating these polyolefin polymers And Dariko Polyester polymers obtained by condensation with or by ring-opening polymerization of latatones; (meth) acrylic acid obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate Ester polymer; (meth)
  • Polysiloxane polymers such as polydiorganosiloxane can also be used.
  • Saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, (meth) acrylate polymers, and polysiloxane polymers have relatively high glass transition temperatures. Low cured products are preferred because of their excellent cold resistance.
  • the glass transition temperature of the polymer as component (A) is not particularly limited, but it is preferably 20 ° C or lower, more preferably 0 ° C or lower. Particularly preferred is C or less. If the glass transition temperature exceeds 20 ° C, the viscosity in winter or cold regions may increase and workability may deteriorate, and the flexibility of the resulting cured product may decrease and elongation may decrease. .
  • the glass transition temperature can be determined by DSC measurement.
  • a polymer having a polyoxyalkylene polymer and a (meth) acrylic acid ester polymer in the main chain skeleton has high moisture permeability as a base polymer such as a one-pack type adhesive or sealant.
  • a polymer having a main chain skeleton having a polyoxyalkylene polymer which is particularly preferred because it is excellent in deep-part curability and the resulting cured product is excellent in adhesiveness, is most preferable.
  • the hydrolyzable group represented by Z in the general formula (2) is not particularly limited and conventionally known. Any hydrolyzable group may be used. Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. Of these, hydrogen atom, anorecoxy group, asinoleoxy group, ketoximate group, amino group, amide group, aminooxy group, mercapto group and alkenyloxy group are preferred because of their moderate hydrolyzability and handling. In particular, alkoxy groups are particularly preferred.
  • the hydrolyzable group or hydroxyl group can be bonded to one silicon atom in the range of 1 to 3, and indicates the total number of hydrolyzable groups and hydroxyl groups contained in one molecule of the polymer. (b + ⁇ c) is preferably in the range of 1-5. When two or more hydrolyzable groups or hydroxyl groups are bonded to the silicon atom in the reactive silicon group, they may be the same or different.
  • R 3 and Z are the same as those in the general formula (2).
  • D represents 1, 2 or 3. It is preferable because it is easily available.
  • R 3 described in the general formulas (2) and (3) and R 4 described in the general formula (2) are not particularly limited, and specific examples include, for example, a methyl group, An alkyl group such as an ethyl group; a cycloalkyl group such as a cyclohexyl group; an aryl group such as a phenyl group; an aralkyl group such as a benzyl group; or R 5 SiO— in which R 5 is a methyl group, a phenyl group, or the like. Trionoreganoshiro shown
  • methyl group is particularly preferred.
  • the reactive silicon group include a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group, a dimethoxymethylsilyl group, a methoxymethylsilanol group, and a diisopropoxy group.
  • examples thereof include a methylsilyl group, a methoxydimethylsilyl group, and an ethoxydimethylsilyl group.
  • trimethoxysilyl groups, trimethoxysilyl groups, trimethoxysilyl groups, and dimethoxymethylsilyl groups are more preferred because of their high activity and good curability.
  • a dimethymethylsilyl group is particularly preferred because of the good storage stability of the curable composition.
  • a triethoxysilyl group is particularly preferred because of its high alcoholic safety and ethanol, which are produced by the hydrolysis reaction of the reactive silicon group.
  • a curable composition containing as a main component a polymer having a reactive silicon group having three hydrolyzable groups on a key atom provides good curability and also provides a cured product obtained. Preferable because it shows a tendency to have good resilience, durability and creep resistance.
  • the method for introducing the reactive cage group is not particularly limited, and may be a known method, for example, the following method.
  • the method (i) or the method (c) in which the polymer having a hydroxyl group at the terminal is reacted with the compound having an isocyanate group and a reactive group is comparative. It is preferable because a high conversion can be obtained in a short reaction time. Further, the polymer having a reactive group obtained by the method (i) is a curable composition having a lower viscosity and better workability than the polymer obtained by the method (c). The polymer obtained by the (mouth) method is particularly preferable because the odor based on mercaptosilane is strong.
  • the hydrosilane compound used in the method (i) is not particularly limited, and specific examples thereof include halogenated silanes such as trichlorosilane, dichloromethylsilane, chlorodimethylsilane, and dichlorophenylsilane.
  • Alkoxysilanes such as trimethoxysilane, triethoxysilane, dimethoxymethylsilane, diethoxymethylsilane, dimethoxyphenylsilane, ethyldimethoxysilane, methoxydimethylsilane, ethoxydimethylsilane; diacetoxymethylsilane, diacetoxyf
  • acyloxysilanes such as enylsilane; ketoximate silanes such as bis (dimethylketoximate) methylsilane and bis (cyclohexylketoximate) methylsilane. Of these, especially halogen Orchids and alkoxysilanes are preferred.
  • alkoxysilanes are the most preferred because the resulting curable composition has a mild hydrolyzability and is easy to handle.
  • alkoxysilanes it is easy to obtain, and the properties of the curable composition and the cured product based on the resulting polymer (A) (curability, storage stability, elongation properties, tensile strength, etc.) Is excellent
  • the curable composition mainly composed of a polymer obtained by addition reaction of the hydrosilane compound has a curable composition. It is preferable because it is excellent.
  • trialkoxysilanes such as trimethoxysilane, triethoxysilane, and triisopropoxysilane are more preferable.
  • trialkoxysilanes having a alkoxy group having 1 carbon atom (methoxy group) such as trimethoxysilane may cause a disproportionation reaction to proceed rapidly. As the leveling reaction proceeds, highly reactive compounds such as dimethoxysilane may be produced.
  • trialkoxysilane having an alkoxy group having 2 or more carbon atoms represented by the formula (wherein three R 6 are each independently an organic group having 2 to 20 carbon atoms). Les. Of these, triethoxysilane is most preferable because it is easily available and has high safety during handling.
  • (Mouth) can be synthesized, for example, by reacting a compound having a mercapto group and a reactive cage group with a radical addition reaction in the presence of a radical initiator and Z or a radical generating source.
  • a radical addition reaction in the presence of a radical initiator and Z or a radical generating source.
  • the method include introduction to a saturated binding site, but there is no particular limitation.
  • Specific examples of the compound having a mercapto group and a reactive cage group include, for example, ⁇ -mercaptopropyltrimethoxysilane, y-mercaptopropyldimethoxymethylsilane, ⁇ -mercaptopropyltriethoxysilane, and ⁇ -mercapto. Examples include, but are not limited to, propyljetoxymethylsilane, mercaptomethyltriethoxysilane, and the like.
  • a disproportionation reaction may occur in a silane compound in which three hydrolyzable groups are bonded to one silicon atom such as trimethoxysilane.
  • dangerous compounds such as dimethoxysilane may be formed.
  • the polymer having a reactive cage group a polymer having a linear or branched structure can be used, and the number average molecular weight is 3 in terms of polystyrene in GPC. , 000 ⁇ : 100,000 force S preferred ⁇ 3,000 ⁇ 50,000 force S preferred, 3, 00 ⁇ 30,000 force S particularly preferred, 0 number average molecular weight 3,000 ⁇ At 100,000, the hard-curing composition has an appropriate viscosity that is advantageous for workability, and the resulting cured product has excellent elongation characteristics.
  • the average number of reactive cage groups contained in one molecule of the polymer is preferably 1 or more, and more preferably 1.:!-5.
  • the curable composition is excellent in curability and the resulting cured product exhibits good rubber elastic behavior.
  • the reactive group may be at the end of the main chain or at the end of the side chain. Or both.
  • the effective network length of the polymer component contained in the resulting cured product is increased, so that it exhibits high strength, high elongation, and low elastic modulus. A rubber-like cured product is easily obtained.
  • the polyoxyalkylene polymer essentially has the general formula (6):
  • R 7 is a linear or branched alkylene group having 1 to 14 carbon atoms
  • R 7 in the general formula (6) is the number of carbon atoms.
  • the main chain skeleton of the polyoxyalkylene polymer may consist of only one type of repeating unit, or may consist of two or more types of repeating units.
  • a polymer comprising a propylene oxide polymer as a main component is preferable because it is amorphous or has a relatively low viscosity.
  • the production method of the polyoxyalkylene polymer is not particularly limited and may be a known method.
  • a method using an alkali catalyst such as KOH disclosed in JP-A-61-215623.
  • Metal compounds such as complexes obtained by reacting organoaluminum compounds with porphyrins—methods using borphyrin complexes as catalysts, JP-B 46-2725 0, JP-B 59-15336, US Pat. No. 3,278,457, US Patent No. 3278458, US Patent 3278459, US Patent 3427256, US Patent 3427334, US Patent 3427 335, etc.
  • a method using the disclosed polyphosphazene salt as a catalyst examples thereof include a method using a phosphazene compound disclosed in JP-A-11-060722 as a catalyst.
  • the method for producing the polyoxyalkylene polymer having a reactive cage group is not particularly limited, and examples thereof include known methods.
  • the polyoxyalkylene polymer having a reactive cage group may be used alone or in combination of two or more.
  • the saturated hydrocarbon polymer is a polymer that has substantially no carbon-carbon unsaturated bond other than the aromatic ring, and the polymer that forms the skeleton is (1) ethylene, propylene, 1- Polymerize a olefinic compound having 2 to 6 carbon atoms such as tens, isoprene, etc. as a main monomer. (2) Monopolymerize a genic compound such as butadiene, isoprene, or the olefinic compound. Can be obtained by a method such as hydrogenation after isobutylene is polymerized with isobutylene polymer or hydrogenated polybutadiene polymer, the functional group is introduced at the terminal and the molecular weight is immediately controlled. A preferred isobutylene polymer is particularly preferred because the number of terminal functional groups can be increased.
  • isobutylene-based polymer all of the monomer units may be formed from isobutylene units or may be a copolymer with other monomers. However, from the viewpoint of rubber properties, isobutylene-based polymers may be used. Those having a repeating unit of 50% by weight or more are preferred, those having 80% by weight or more are more preferred, those having 90 to 99% by weight are particularly preferred.
  • Examples of the method for producing a saturated hydrocarbon polymer having a reactive silicon group include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-64. — 22 904, JP-A-1-197509, Patent Publication No. 2539445, Patent Publication No. 2873395, JP-A-7-53882, etc. Absent.
  • the saturated hydrocarbon polymer having a reactive cage group may be used alone or in combination of two or more.
  • the (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer is not particularly limited, and various types can be used. Examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, (Meth) acrylic acid isobutyl, (meth) acrylic acid tert-butyl, (meth) acrylic acid n-pentyl, (meth) acrylic acid n xylyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid n- Heptyl, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate,
  • the following bull monomers can be copolymerized together with the (meth) acrylic acid ester monomer.
  • the bur monomers include styrene monomers such as styrene, butanolene, monomethylstyrene, chlorostyrene, styrene sulfonic acid and salts thereof; and fluorine groups such as perfluoroethylene, perfluoropropylene and vinylidene fluoride.
  • Bull monomer Bull monomer having a key group such as vinylenotrimethyoxysilane and butyltriethoxysilane; maleic anhydride, maleic acid, monoalkyl ester and dialkyl ester of maleic acid; fumaric acid, monoalkyl ester and dialkyl ester of fumaric acid Esters: maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenyl Maleimide monomers such as maleimide and cyclohexylmaleimide; Bier monomers having a nitrile group such as acrylonitrile and methacrylonitrile; Vinyl monomers having an amide group such as acrylamide and methacrylamide; Vinyl esters such as vinyl acid, benzoic acid and cinnamate; alkyls such as
  • a polymer (A) having a main chain skeleton of a copolymer composed of a styrene-based compound and a (meth) acrylic acid-based compound is provided.
  • a polymer with a main chain skeleton consisting of a polymer composed of a compound (A ) Is particularly preferred.
  • the curable composition When used for general architectural purposes, the curable composition is required to have low viscosity, and the resulting cured product is required to have low modulus, high elongation, weather resistance, heat resistance, and the like.
  • the main chain skeleton of the polymer (A) is composed of a butyl acrylate compound.
  • the curable composition in which the obtained cured product is excellent in oil resistance is more preferably a polymer (A) whose main chain skeleton is composed of a copolymer mainly composed of ethyl acrylate.
  • the curable composition containing the polymer (A) having the main chain skeleton of a copolymer mainly composed of ethyl acrylate has excellent oil resistance but low temperature characteristics (cold resistance). There is a tendency to be slightly inferior, and in order to improve low temperature characteristics, a part of ethyl acrylate is replaced with butyric acrylate. However, as the ratio of butyl acrylate increases, its good oil resistance tends to be impaired. Therefore, when used in applications that require oil resistance, the ratio is preferably 40% or less. Furthermore, it is more preferable to make it 30% or less.
  • 2-methoxyethyl acrylate or 2-ethoxyethyl acrylate in which oxygen is introduced into the side chain alkyl group is used as a copolymer component in order to improve low temperature characteristics without impairing oil resistance. It is also preferable.
  • the ratio should be 40% when used in applications requiring heat resistance. The following is preferable.
  • a suitable polymer by changing the ratio in consideration of required physical properties such as oil resistance, heat resistance, and low temperature characteristics.
  • required physical properties such as oil resistance, heat resistance, and low temperature characteristics.
  • these preferable monomers may be copolymerized with other monomers or further block-copolymerized, it is preferable that these preferable monomers are contained in an amount of 40% or more by weight.
  • (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
  • the method for synthesizing the (meth) acrylic acid ester polymer is not particularly limited, and may be performed by a known method.
  • a polymer obtained by a normal free radical polymerization method using an azo compound or a peroxide as a polymerization initiator has a problem that the molecular weight distribution value is generally 2 or more and the viscosity becomes high. ing.
  • a living radical polymerization method it is preferable to use a living radical polymerization method.
  • an “atom transfer radical polymerization method” in which a (meth) acrylate monomer is polymerized using an organic halide or a halogenated sulfonyl compound as an initiator and a transition metal complex as a catalyst.
  • a halogen or the like that is relatively advantageous for functional group conversion reaction, and has a large degree of freedom in designing initiators and catalysts.
  • the method for producing a (meth) acrylic acid ester polymer having a functional group is more preferable. Examples of this atom transfer radical polymerization method include Matyjaszewski et al., Journal 'Ob'American' Chemical Society l. Am. Chem. Soc.) 1995, 117, 5614.
  • Examples of the method for producing a (meth) acrylic acid ester-based polymer having a reactive cation group include, for example, Japanese Patent Publication No. 3-14068, Japanese Patent Publication No. 45444, and Japanese Patent Application Laid-Open No. 6-211922. Discloses a production method using a free radical polymerization method using a chain transfer agent. Further, the power disclosed in JP-A-9-272714 and the like using a method using an atom transfer radical polymerization method is not particularly limited thereto.
  • the (meth) acrylic acid ester-based polymer having a reactive cage group may be used alone or in combination of two or more.
  • Polymers having reactive cage groups may be used alone or in combination of two or more. Specifically, a polyoxyalkylene polymer having a reactive cage group, a reactive ketone. A saturated hydrocarbon polymer having a silicon group, a (meth) acrylic acid ester polymer having a reactive silicon group, or a polymer obtained by blending two or more selected from a powerful group can also be used. .
  • a method for producing a polymer obtained by blending a (meth) acrylic acid ester polymer is disclosed in JP-A-59-122541, JP-A-63-112642, JP-A-6-172631, and JP-A-11-116763. Although it is proposed in No. gazettes, etc., it is not particularly limited to these.
  • a preferred example is that the reactive chain group and the molecular chain are substantially the following general formula (7):
  • R 8 represents a hydrogen atom or a methyl group
  • R 9 represents an alkyl group having 1 to 8 carbon atoms
  • a (meth) acrylic acid ester having an alkyl group having 1 to 8 carbon atoms
  • R 8 is the same as above, and R 1Q represents an alkyl group having 10 or more carbon atoms
  • R 1Q represents an alkyl group having 10 or more carbon atoms
  • a polyoxyalkylene polymer having a reactive silicon group is blended with the copolymer.
  • R 9 includes, for example, 1 to 8 carbon atoms such as a methyl group, an ethyl group, a propyl group, an n-propyl group, a t-butyl group, and a 2-ethylhexyl group, Preferred is an alkyl group of 1 to 4, more preferably 1 or 2.
  • the alkyl group for R 9 may be used alone or in combination of two or more.
  • R 1Q in the general formula (8) is, for example, 10 or more carbon atoms such as lauryl group, tridecinole group, cetyl group, stearyl group, behenyl group, etc., usually 10 to 30, preferably 10 To 20 long-chain alkyl groups.
  • the alkyl group of R 1Q may be used alone or in combination of two or more.
  • the molecular chain of the (meth) acrylic acid ester copolymer is substantially composed of monomer units of the formula (7) and the formula (8). Means that the total of the monomer units of formula (7) and formula (8) present in the copolymer exceeds 50% by weight. Equation (7) and Equation ( The total of the monomer units in 8) is preferably 70% by weight or more.
  • the abundance ratio of the monomer unit of the formula (7) and the monomer unit of the formula (8) is preferably 95: 5 to 40:60 force S by weight ratio, 90:10 to 60:40 force. S more preferred.
  • Examples of monomer units other than those represented by formula (7) and formula (8) that may be contained in the copolymer include acrylic acid such as acrylic acid and methacrylic acid; N-methylolacrylamide; N-methylol methacrylamide and other amide groups, glycidyl acrylate, epoxy groups such as glycidyl metatalylate, etc., nitrogen-containing organic groups such as jetylaminoethyl acrylate, jetylaminoethyl methacrylate And other monomer units derived from acrylonitrile, styrene, monomethylstyrene, alkyl vinyl ether, butyl chloride, butyl acetate, vinyl propionate, ethylene, and the like.
  • a polymer obtained by blending a saturated hydrocarbon polymer having a reactive cage group and a (meth) acrylic acid ester copolymer having a reactive cage group is disclosed in JP-A-11-168764, The forces proposed in Japanese Patent Application Laid-Open No. 2000-186176 are not limited to these.
  • a method for producing a polymer obtained by blending a (meth) acrylic acid ester copolymer having a reactive functional group a polymer having a reactive key group can be used.
  • a method of polymerizing a (meth) acrylic acid ester monomer in the presence of can be used. This production method is disclosed in Japanese Patent Laid-Open Nos. 59-78223, 59-168014, 60-228516, 60-228517, etc. It is not limited to.
  • the main chain skeleton of the polymer may contain other components such as a urethane-bonding component as long as the effects of the present invention are not significantly impaired.
  • the urethane bond component is not particularly limited, and examples thereof include a group (hereinafter also referred to as an amide segment) generated by a reaction between an isocyanate group and an active hydrogen group.
  • the amide segment has the general formula (9):
  • R 11 represents a hydrogen atom or a substituted or unsubstituted organic group.
  • the amide segment is specifically a reaction of an isocyanate group and a hydroxyl group.
  • a urethane group formed by reaction of an isocyanate group and an amino group a thiourethane group formed by a reaction of an isocyanate group and a mercapto group.
  • a group formed by further reacting an active hydrogen in the urethane group, urea group and thiourethane group with an isocyanate group is also included in the group of the general formula (9).
  • An example of an industrially easy method for producing a polymer having an amide segment and a reactive silicon group is as follows.
  • the product is reacted to form a polymer having an isocyanate group at the end of the polyurethane main chain, or at the same time, all or part of the isocyanate group is represented by the general formula (10):
  • R 12 is a divalent organic group, more preferably a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • U is a group having an active hydrogen selected from a hydroxyl group, a carboxyl group, a mercapto group, an unsubstituted or monosubstituted amino group.
  • the compounds produced by the method of reacting the U group of the silicon compound represented by Examples of known production methods for polymers related to this production method include Japanese Patent Publication No. 46-12154 (US Pat. No. 3,632,557), Japanese Patent Publication No. 58-109529 (US Pat. No. 4,374,237), Japanese Patent Publication No.
  • polymer having a group containing active hydrogen at the terminal is represented by the general formula (11):
  • R 3 , R 12 , Z, and d are the same as above, and those produced by reacting with an isocyanate compound having a reactive cage group.
  • Examples of known production methods for polymers relating to this production method include JP-A-11-279249 (US Pat. No. 5,990,257), JP-A 2000-119365 (US Pat. No. 6046270), Kaisho 58-29818 (US Pat. No. 4345053), JP-A-3-47825 (US Pat. No. 506 8304), JP-A-11-60724, JP-A-2002-155145, JP-A-2002-249538, WO03 / 018658, WO03 / 059981, etc. Power S
  • Examples of the polymer having a group containing active hydrogen at the terminal include an oxyalkylene polymer having a hydroxyl group at the terminal (polyether polyol), a polyacryl polyol, a polyester polyol, and a saturated hydrocarbon heavy polymer having a hydroxyl group at the terminal.
  • Examples include coalescence (polyolefin polyol), polythiol compound, polyamine compound, polyalkyleneimine, and polysiloxane.
  • polyether polyols, polyacrylic polyols, polyolefin polyols, and polysiloxanes are preferable because a cured product obtained with a relatively low glass transition temperature of the obtained polymer is excellent in cold resistance.
  • polyether polyols are particularly preferred because the resulting polymer has a low viscosity and good workability and good deep-part curability.
  • Polyacryl polyols and saturated hydrocarbon polymers are more preferred because the resulting cured polymer has good weather resistance and heat resistance.
  • polyether polyol those produced by the above-described production method can be used, but those having at least 0.7 hydroxyl groups per molecule average in terms of the total molecular weight are preferable. . Specifically, it is used as an initiator such as an oxyalkylene polymer produced using a conventional alkali metal catalyst or a polyhydroxy compound having at least two hydroxyl groups in the presence of a double metal cyanide complex or cesium. And an oxyalkylene polymer produced by reacting an alkylene oxide.
  • an initiator such as an oxyalkylene polymer produced using a conventional alkali metal catalyst or a polyhydroxy compound having at least two hydroxyl groups in the presence of a double metal cyanide complex or cesium.
  • an oxyalkylene polymer produced by reacting an alkylene oxide.
  • the polymerization method using a double metal cyanide complex has a lower degree of unsaturation, lower viscosity than narrow Mw / Mn, high acid resistance, and high weather resistance. Since an oxyalkylene polymer can be obtained, it is preferable.
  • Examples of the polyacrylic polyol include a polyol having a (meth) acrylic acid alkyl ester (co) polymer as a skeleton and having a hydroxyl group in the molecule.
  • the polymer synthesis method is more preferably an atom transfer radical polymerization method, which is preferred to a living radical polymerization method, because the molecular weight distribution is narrow and low viscosity can be achieved.
  • a polymer obtained by continuous bulk polymerization of an alkyl acrylate monomer described in JP-A-2001-207157 at a high temperature and a high pressure is used, and a polymer by a so-called SGO process is used. Is preferred. Specific examples include UH-2000 manufactured by Toagosei Co., Ltd.
  • polyisocyanate compound examples include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; isophorone diisocyanate, And aliphatic polyisocyanates such as hexamethylene diisocyanate.
  • aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate
  • isophorone diisocyanate examples of the polyisocyanate compound
  • aliphatic polyisocyanates such as hexamethylene diisocyanate.
  • Kei-containing compounds of the general formula (10) specific examples, y - ⁇ amino propyl trimethoxy silane, N-(J3- aminoethyl) Single I - ⁇ amino propyl trimethinecyanine Toxisilane, ⁇ - ( ⁇ -phenyl) aminopropyltrimethoxysilane, ⁇ -ethylaminoisobutyltrimethoxysilane, ⁇ -cyclohexylaminomethyltriethoxysilane, ⁇ -cyclohexylaminomethyljetoxymethylsilane, ⁇ —silanes having amino groups such as phenylaminomethyltrimethoxy silane; ⁇ —silanes having hydroxy groups such as hydroxypropyltrimethoxysilane; ⁇ —silanes having mercapto groups such as mercaptopropyltrimethoxysilane And the like.
  • JP-A-6-211879 (US Pat. No. 5,364,955), JP-A-10-53637 (US Pat. No. 5756751), JP-A-10-204144 (EP0831108), JP-A-2000-169544, JP-A-2000- As described in US Pat. No. 169545, a Mich ael addition reaction product of various ⁇ , ⁇ unsaturated carbonyl compounds and silane having an amino group, or various silanes having a (meth) atalyloyl group and an amino group.
  • the Michael addition reaction product with existing compounds can also be used as a key compound of the general formula (10).
  • isocyanate compound having a reactive group of formula (11) there are no particular limitations on the isocyanate compound having a reactive group of formula (11), but specific examples include ⁇ -trimethoxysilylpropyl isocyanate, ⁇ -tri
  • the amide segment in order to obtain a composition having excellent storage stability and workability, it is preferable that the amide segment is not substantially contained.
  • the amide segment in the main chain skeleton of the component (A) tends to improve the curability of the composition of the present invention. Therefore, when the main chain skeleton of component (A) contains an amide segment, the average amide segment per molecule is 1 to: 10 is preferred. 1.5 to 5 is preferable to force S, 2 to 3 Individual is particularly preferred. If it is less than 1, the curability may not be sufficient, and if it is greater than 10, the polymer may have a high viscosity, resulting in poor workability and a composition. .
  • the curable composition of the present invention has a general formula (1) as a curing catalyst (component (B), component (C)) of a polymer having a reactive cage group:
  • R 1 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or R 2 SiO— (R 2 is each independently a carbon atom of 1 To 20 positions
  • A is either 1, 2 or 3.
  • JP-A-8-104753 and the like have already disclosed a compound having a Si_F bond as a catalyst for producing onoleganopolysiloxane by subjecting alkoxysilane to water decomposition and condensation. It is believed that the hydrolysis' condensation catalyst described in the patent and the like and the curing catalyst for the polymer having the reactive cage group, which is the component (A) of the present invention, act essentially as a catalyst for the same reaction. It is done.
  • the fluorosilanes which are the component (B) of the present invention To date, there has been no specific example used as a curing catalyst for a polymer having a reactive reactive group. In addition, until the present invention, when the present inventor actually used only the fluorosilanes (B) as a curing catalyst for the polymer (A), it became clear that it showed only a very low reactivity. .
  • the amine compound which is the component (C) of the present invention is also known as a curing catalyst for a polymer having a reactive silicon group.
  • a curing catalyst for a polymer having a reactive silicon group in order to obtain a practical curing rate that does not necessarily have sufficient curability, it can be used in combination with carboxylic acid as disclosed in JP-A-5-117519. Ingenuity was necessary.
  • the component (B) fluorosilane used in the present invention may be a commercially available reagent or may be synthesized from a raw material compound.
  • the raw material compound for synthesizing fluorosilanes include alkoxysilanes, siloxanes, halosilanes (excluding fluorosilanes), and hydrosilanes.
  • fluorinating agent used for the fluorination of alkoxysilanes are not particularly limited.
  • NHF, BuNF, HF ⁇ BF, EtNSF, HSOF, SbF, VOF are not particularly limited.
  • CF CHFCF NEt It is also used for fluorination of halosilanes.
  • nitriding agent examples include AgBF, SbF, ZnF, NaF,
  • Examples of body are not particularly limited.
  • Examples include OBF. Also, compounds with siloxane bonds are cleaved by BF etc.
  • Fluorosilanes can be obtained.
  • Silane fluorination method and chlorosilane fluorination method using CuF or ZnF are preferred.
  • BF ether complex BF alcohol complex
  • BF hydrate are highly reactive.
  • the preferred BF ether complex is particularly preferred.
  • fluorosilanes as component (B) include fluorotrimethylsilane, fluorotriethylsilane, fluorotripropylsilane, fluorotributylsilane, fluorodimethylvinylsilane, fluorodimethylsilane.
  • fluorodimethylvinylsilane, fluorodimethylphenylsilane, and fluorodimethylbenzyl have been obtained because of easy availability of raw materials and easy synthesis.
  • the molecular weight of component (i) is preferably 3000 or less. From the viewpoint of ease of handling and safety, those which are liquid at normal temperature and pressure are preferred, and those which are low in volatility are preferred.
  • the component (ii) may be used alone or in combination of two or more.
  • the amount of ( ⁇ ) component used is preferably 0.00 :! to 20 parts by weight and more preferably 0.01 to 10 parts by weight per 100 parts by weight of ( ⁇ ) component. 0.:! To 5 parts by weight are particularly preferred.
  • amount of component used is 0.001 to 20 parts by weight, it is economically feasible, and the curable composition has an appropriate curing speed and pot life and good workability. It will be something. In addition, since the decrease in the curing rate due to storage can be suppressed, the limitation of the shelf life does not become a practical problem.
  • the amine compound as the component (C) includes nitrogen-containing cyclic compounds such as pyridine.
  • amine compound (C) examples include methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, laurylamine, pentadecylamine, cetylamine.
  • Stearylamine aliphatic primary amines such as cyclohexylamine; dimethylamine, jetylamine, dipropylamine, diisopropylamine, dibutinoreamine, diaminoreamine, dihexylamine, dioctylamine, di (2-ethylhexyl) amine , Didecylamine, Dilaurylamine, Dicetylamine, Distearylamine, Methyl Stearylamine, Ethyl Stearylamine, Ptyl Stearylamine, etc.
  • Aromatic amines such as pyridine 2-aminopyridine, 2- (dimethylamino) pyridine, 4- (dimethylaminopyridine), 2-hydroxypyridine, imidazole, 2-ethyl-4-methylimidazole, morpholine, N-methylmorpholine, piperidine, 2-piperidinemethanol , 2- (2-piperidino) ethano monore, piperidone, 1,2-dimethinole 1, 4, 5, 6-tetrahydropyrimidine, 1,8-diazabicyclo (5, 4, 0) undecene _ 7 ( DBU), 6 _ (dibutylamino) _ 1, 8
  • the amine compound has basicity.
  • the amine compound in which the pKa value of the conjugate acid is 11 or more is preferable because of its high catalytic activity with respect to the polymer as the component (A).
  • DBU and DBN are more preferable because the pKa value of the conjugate acid is 12 or more and high catalytic activity is exhibited.
  • a silane coupling having an amino group An agent (hereinafter referred to as aminosilane) can also be used.
  • Aminosilane is a compound having a group containing a silicon atom to which a hydrolyzable group is bonded (hereinafter referred to as hydrolyzable silicon group) and a substituted or unsubstituted amino group.
  • the substituent of the substituted amino group include an alkyl group, an aranolyl group, and an aryl group.
  • the hydrolyzable cage group a group in which Z is a hydrolyzable group among the groups represented by the general formula (2) can be exemplified.
  • Specific examples of the hydrolyzable group include the groups already exemplified, but a methoxy group, an ethoxy group, and the like are preferable from the viewpoint of hydrolysis rate.
  • the number of hydrolyzable groups bonded to the silicon atom in aminosilane is preferably 2 or more, particularly 3 or more.
  • aminosilane examples include ⁇ - aminopropyltrimethoxysilane, y-aminopropyltriethoxysilane, ⁇ -aminopropyltriisopropoxysilane, and ⁇ - aminopropylmethyldimethoxysilane.
  • ⁇ -aminopropyltrimethoxysilane y-aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ — (2-Aminoethyl) aminopropyltrimethoxysilane is preferred.
  • the amine compound as component (C) may be used alone or in combination of two or more.
  • the amount of component (C) used is preferably 0.00 :! to 20 parts by weight, more preferably 0.1 to 10 parts by weight per 100 parts by weight of component (A).
  • the blending amount of component (C) is 0.001 to 20 parts by weight, the curable composition has an appropriate curing rate and pot life, and has good workability. Since the decrease can be suppressed, the limitation of the use period is not a problem in practical characteristics.
  • the amine compound having a fluorosilyl group shown serves as both the component (B) and the component (C). If such a compound is used as a curing catalyst, the ability to obtain sufficient curability even when used alone can be expected.
  • Specific examples include 3-aminopropylfluorodimethylsilane and fluorodimethyl (4-dimethylaminophenyl) silane.
  • a silane coupling agent can be added as an adhesiveness-imparting agent, if necessary.
  • the silane coupling agent is a compound having a hydrolyzable silicon group and other functional group in the molecule, and an inorganic base material such as glass, aluminum, stainless steel, zinc, copper, mortar; Organic base materials such as PVC, acrylic, polyester, polyethylene, polypropylene, polycarbonate, etc .; show the effect of significantly improving the adhesion between various adherends and the resulting cured products under non-primer conditions or primer treatment conditions Is.
  • the silane coupling agent when used under non-primer conditions, the effect of improving the adhesion of the cured product to various adherends is particularly remarkable.
  • the silane coupling agent is a compound that can function as a property modifier, a dispersibility improving agent such as an inorganic filler, and the like.
  • Examples of the hydrolyzable silicon group in the silane coupling agent include those in which Z is a hydrolyzable group among the groups represented by the general formula (2). Specifically, a hydrolyzable group Examples of the group already described in the embodiment of the polymer as the component (A) can be mentioned. Of these, a methoxy group, an ethoxy group, and the like are preferable because they are mildly hydrolyzable and easy to handle.
  • the number of hydrolyzable groups bonded to the silicon atom is preferably 2 or more, more preferably 3 or more.
  • the functional group other than the hydrolyzable silicon group is not particularly limited, and examples thereof include a substituted or unsubstituted amino group, mercapto group, epoxy group, carboxyl group, bur group, isocyanate group, isocyanurate, Halogen etc. are mentioned. Among these, a substituted or unsubstituted amino group, epoxy group, isocyanate group, isocyanurate, and the like are obtained. The effect of improving the adhesiveness of the cured product is high, and the amino group is more preferable.
  • a silane coupling agent having both a hydrolyzable silicon group and an amino group is generally called an aminosilane, and is cured in the present invention. It also has a function as a catalyst.
  • aminosilane when aminosilane is added to the curable composition, it is preferable to add more aminosilane than the necessary amount as a curing catalyst when it is desired to exert more functions as an adhesion-imparting agent.
  • the silane coupling agent other than aminosilane is not particularly limited, and examples thereof include ⁇ -isocyanate propyltrimethoxysilane, ⁇ -isocyanate propyltriethoxysilane, and ⁇ ⁇ isocyanate propinoremethinolegger.
  • Toxisilane ⁇ isocyanatopropinolenole) Isocyanate silanes such as dimethoxymethylsilane; ⁇ — (1,3-Dimethylbutylidene) 3— (triethoxysilyl) 1 Ketimine silanes such as propanamine; ⁇ — Mercaptosilanes such as mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -lan, and mercaptomethyltriethoxysilane; ⁇ -glycidoxypropyl pyrtrimethoxysilane, y-glycidoxypropyltriethoxysilane, y— Glycidoxy Epoxysilanes such as lopinole methinoresin methoxysilane, ⁇ - (3,4-epoxycyclohexenole) ethinoretrimethoxysilane, j3 _ (3,4-e
  • examples of the silane coupling agent include a reaction product of the aminosilane and epoxysilane, a reaction product of aminosilane and isocyanate silane, a reaction product of aminosilane and a silane having a (meth) atalylooxy group; Condensates obtained by partially condensing silanes; modified amino derivatives such as amino modified silyl polymers, silylated amino amino polymers, unsaturated amino silane complexes, phenylamino long chain alkyl silanes, aminosilylated silicones, silylated polyesters; And so on.
  • the silane coupling agent may be added alone or in combination of two or more.
  • the addition amount is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the polymer (ii). About 1 to 7 parts by weight, in which parts are more preferred, is particularly preferred. If the amount added is less than 0.1 part by weight, the resulting cured product tends to have insufficient adhesion. On the other hand, if it exceeds 20 parts by weight, the curable composition tends to be unable to obtain a practical curing rate, and tends to be difficult to sufficiently proceed with the curing reaction.
  • An adhesiveness imparting agent other than the silane coupling agent described above can be added to the curable composition of the present invention, if necessary.
  • the adhesiveness-imparting agent other than the silane coupling agent is not particularly limited, and examples thereof include epoxy resins, phenol resins, sulfur, alkyl titanates, and aromatic polyisocyanates. Only one kind of the above-mentioned adhesiveness-imparting agent may be added or a combination of plural kinds may be added.
  • the amount of the organic tin compound is preferably 5 parts by weight or less with respect to 100 parts by weight of the polymer (A), and 0.5 parts by weight or less. More preferred 0.05 parts by weight or less is particularly preferred.
  • a filler is added to the curable composition of the present invention as necessary.
  • the filler is not particularly limited, and includes, for example, reinforcing fillers such as fume silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous key acid, hydrous key acid, and carbon black; Calcium, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, fine powder, flint powder, zinc oxide, activated zinc white, shirasu balloon, Examples include glass mixture balloons, organic microballoons of phenolic resin and vinyl chloride resin, organic powders such as PVC powder and PMMA powder; and fibrous fillers such as asbestos, glass fibers and filaments.
  • the addition amount is preferably from! To 250 parts by weight, more preferably from 10 to 200 parts by weight, based on 100 parts by weight of the polymer (A).
  • the filler is disclosed in JP-A-2001-181532, etc. in order to obtain good storage stability.
  • a dehydrating agent such as calcium oxide
  • enclosing it in a bag made of an airtight material leaving it for an appropriate period of time, dehydrating and drying in advance.
  • the filler to be added is a polymer such as methyl methacrylate disclosed in JP-A-11-302527.
  • the hydrophobic silica is generally obtained by treating the surface of silicon dioxide fine powder occupied by silanol groups (one SiOH) with an organosilicon halide, alcohols, etc. ).
  • Hydrophobic silica is not particularly limited.
  • silanol groups present on the surface of fine silicon dioxide powder may be dimethylsiloxane, hexamethyldisilazane, dimethyldichlorosilane, trimethoxyoctylsilane, trimethylsilan, etc. What was processed with is mentioned.
  • the untreated silicon dioxide fine powder whose surface is occupied by silanol groups (_SiOH) is called hydrophilic silica fine powder.
  • the filler to be added includes fume silica, precipitated silica, crystalline silica, fused silica, dolomite, Key additions of key compounds such as anhydrous caustic acid and hydrous caustic acid; carbon black, surface-treated fine calcium carbonate, calcined clay, clay, activated zinc white, etc.
  • the amount is preferably:! To 200 parts by weight.
  • the filler to be added is titanium oxide and calcium carbonate such as heavy calcium carbonate
  • the preferred loading of magnesium carbonate, talc, ferric oxide, zinc oxide, shirasu balloon, etc. is 5 to 200 parts by weight with respect to 100 parts by weight of the polymer (A).
  • Examples of adding a plurality of additives are not particularly limited, and the combined use of surface-treated fine calcium carbonate and heavy calcium carbonate such as heavy calcium carbonate may result in a cured product to be obtained. It is preferred because of its excellent physical properties.
  • the surface-treated fine calcium carbonate preferably has a particle size of 0.5 ⁇ m or less and the particle surface is treated with a fatty acid or a fatty acid salt.
  • the particle surface is treated with a particle size of 1 am or more. Being les, na les, stuff is preferred.
  • the added filler is organic balloon, A machine balloon is preferred. These fillers may be added with or without surface treatment, and only one kind may be added, or a plurality may be mixed and added.
  • the particle size of the balloon is preferably 5 to 300 ⁇ for the purpose of improving workability (such as sharpness), and for the purpose of making the surface of the cured product matt, preferably 0.1 mm or less.
  • the curable composition of the present invention is excellent in chemical resistance of the resulting cured product, so that it can be used for sealing boards for ceramic siding boards, joints for exterior walls of houses and exterior tiles, and adhesives. For example, it is preferably used.
  • the resulting cured product is present in the surface portion such as joints, so it is desirable that the design of the outer wall and the design of the cured product be harmonized.
  • high-quality outer walls such as spatter coating and colored aggregates have been used, and the importance of the design of cured products has increased.
  • a scaly or granular substance is added to the curable composition of the present invention.
  • a granular substance is added, a sandy or sandstone-like rough surface is obtained, and when a scaly substance is added, an uneven surface due to the scaly form is obtained.
  • the obtained cured product is characterized by harmony with a high-quality outer wall and excellent chemical resistance, so that a high-quality appearance lasts for a long time.
  • the scale-like or granular substance is not particularly limited, and examples thereof include those disclosed in JP-A-9-53063, and the diameter is appropriately selected according to the material and pattern of the outer wall. Is preferably 0.1 mm or more. 0 :! to 5. Omm is more preferable. In the case of scaly substances, the thickness is preferably 1/10 to 1/5 of the diameter (0.01 to 1.00 mm).
  • the addition amount of the scaly or granular substance is appropriately selected depending on the size of the scaly or granular substance, the material of the outer wall, the pattern, etc., but is 1 for 100 parts by weight of the curable composition. ⁇ 200 parts by weight are preferred.
  • the material of the scale-like or granular substance is not particularly limited. Natural materials such as strength, inorganic materials such as synthetic rubber, synthetic resin, alumina, etc., and these are appropriately colored according to the material and pattern of the outer wall in order to improve the design when filled in joints etc. Also good.
  • a preferable finishing method is disclosed in JP-A-9-53063 and the like.
  • the scaly or granular substance may be mixed in advance with the curable composition or may be mixed with the curable composition at the time of use.
  • a balloon preferably having an average particle size of 0.1 mm or more
  • the obtained curing agent is a sanding tone or a sandstone tone.
  • the surface becomes rough and can be reduced in weight.
  • the balloon is a spherical filler with a hollow inside.
  • the balloon is not particularly limited, and for example, JP-A-10-251618, JP-A-2-129262, JP-A-4-8788, JP-A-4-173867, JP-A-5-1225, JP-A-5-1225. Examples thereof include those disclosed in 7-113073, JP-A-9-53063, JP-A-2000-154368, JP-A-2001-164237, WO97 / 05201, and the like.
  • Examples of the material of the balloon include inorganic materials such as glass, shirasu, and silica; and organic materials such as phenol resin, urea resin, polystyrene, and saran.
  • inorganic materials such as glass, shirasu, and silica
  • organic materials such as phenol resin, urea resin, polystyrene, and saran.
  • a composite material of an inorganic material and an organic material; a laminated material including a plurality of layers can be given. These may be used alone or in combination of two or more.
  • balloons that have been coated on the surface and those that have been treated with various surface treatment agents can be used.
  • Specific examples of balloons include calcium carbonate, talc, and oxidized balloons. Examples include those coated with titanium and the like, and inorganic balloons surface-treated with an adhesion-imparting agent.
  • the particle size of the balloon is preferably 0.1 mm or more, more preferably 0.2 mm to 5.0 mm, and particularly preferably 0.5 mm to 5. Omm. If it is less than 0. lmm, even if it is added in a large amount, the viscosity of the composition is merely increased, and the obtained cured product may not exhibit a rough feeling.
  • the amount added can be appropriately selected depending on the desired design properties, but those having a particle size of 0.1 mm or more have a volume concentration of 5 to 5 in the curable composition. 2 It is more preferable to add so that it may become 5 vol% It is more preferable to add so that it may become 8-22 vol%.
  • the volume concentration of the balloon is less than 5 vol%, the feeling of roughness tends to be lost, and when it exceeds 25 vol%, the viscosity of the curable composition tends to increase and workability tends to deteriorate. Also, the modulus of the cured product obtained is high, and the basic performance of the adhesive tends to be impaired.
  • an anti-slip agent as disclosed in JP-A No. 2000-154368 and a surface of a cured product obtained as disclosed in JP-A No. 2001-164237 are used. It is possible to add a combination of an amine compound or the like that adds unevenness and makes a matte shape.
  • the amine compound is preferably a primary and / or secondary amine having a melting point of 35 ° C. or higher.
  • thermally expandable fine-particle hollow body disclosed in JP-A-2004-51701 or JP-A-2004-66749 can also be used.
  • a thermally expandable fine hollow body is a polymer outer shell material (vinylidene chloride copolymer, acrylonitrile copolymer, or salt vinylidene chloride), such as a hydrocarbon having 1 to 5 carbon atoms. It is a plastic sphere encapsulated in a sphere with one atari mouth and nitrile copolymer.
  • thermally expandable fine hollow body By adding the thermally expandable fine hollow body to the curable composition of the present invention, when it becomes unnecessary, it can be easily peeled off without destroying the adherend, In addition, an adhesive composition that can be removed by heating without using any organic solvent is obtained. This is because heating the adhesive part increases the gas pressure in the shell of the thermally expandable fine hollow body, and the high molecular outer shell material softly expands to dramatically expand and peel off the adhesive interface. It depends on the mechanism.
  • the sealing material cured product particles are included in the curable composition of the present invention, the obtained cured product can form irregularities on the surface and improve the design.
  • the preferable diameter, blending amount, material, etc. of the cured sealant particles are disclosed in JP-A No. 2001-115142, and the diameter is preferably 0.1 mm to 1 mm, more preferably 0.2 mm to 0.5 mm. Masle.
  • the blending amount is 5 to 100 parts by weight of the curable composition: 100 parts by weight is preferred, and 20 to 50 parts by weight is more preferred.
  • the material is not particularly limited as long as it is used for a sealing material, and examples thereof include urethane resin, silicone, modified silicone, and polysulfide rubber.
  • modified silicone type sealant cured particles are preferable.
  • a silicate can be added to the curable composition of the present invention, if necessary.
  • the silicate acts as a crosslinking agent for the polymer as the component (A) and has a function of improving the restorability, durability, and creep resistance of the resulting cured product.
  • silicate improves the resulting cured product in terms of adhesion, water-resistant adhesion, and adhesion durability under high temperature and high humidity.
  • the silicate is not particularly limited, and examples thereof include tetraalkoxysilane or a partial hydrolysis condensate thereof. More specifically, tetramethoxysilane, tetraethoxysilane, ethoxytrimethoxysilane, dimethoxydiethoxysilane.
  • the amount of addition is preferably 0.:! To 20 parts by weight with respect to 100 parts by weight of the polymer as component (A) 0.5 to 10 parts by weight. Is more preferable.
  • the partial hydrolysis-condensation condensate of tetraalkoxysilane is not particularly limited, and examples thereof include a product obtained by adding water to tetraalkoxysilane, followed by partial hydrolysis and condensation.
  • the resulting cured product has an effect of improving the resilience, durability, and creep resistance of the resulting cured product, compared to a curable composition to which tetraalkoxysilane is added. It ’s a big size.
  • Examples of the partially hydrolyzed condensate of tetraalkoxysilane are methyl silicate 51 and ethyl silicate 40 (Le, also available from Colcoat Co., Ltd.), and these can be used as additives. Can do.
  • the silicate is a polymer in which the hydrolyzable group bonded to the silicon atom is the component (A). It is preferable to select the same type as the hydrolyzable group in the reactive silicon group present therein. That is, when the polymer as component (A) has a methoxysilyl group, silicate having a methoxysilyl group is used. When the polymer as component (A) has an ethoxysilyl group, ethoxysilyl group is used. Preferred to select silicates with groups.
  • a plasticizer can be added to the curable composition of the present invention as needed.
  • the plasticizer has a function of adjusting the viscosity and slump property of the curable composition and a function of adjusting mechanical properties such as tensile strength and elongation property of the obtained cured product.
  • the plasticizer is not particularly limited, and examples thereof include phthalic acid esters such as dibutyl phthalate, diheptyl phthalate, bis (2-ethylhexyl) phthalate, and butyl benzyl phthalate; dioctyl adipate, dioctyl seba Non-aromatic dibasic acid esters such as keto, dibutyl sebacate, and isodecinole succinate; Aliphatic esters such as butyl oleate and methyl acetylyl linoleate; Phosphorous such as tricresyl phosphate and tributyl phosphate Acid esters; Trimellitic acid esters; Chlorinated paraffins; Hydrocarbon oils such as alkyl diphenyls and partially hydrogenated terphenyls; Process oils; Epoxys such as epoxidized soybean oil and benzil epoxy stearate Examples include plasticizers.
  • phthalic acid esters such as
  • the initial characteristics of the resulting cured product can be maintained over a long period of time, and the drying property (also referred to as paintability) when an alkyd paint is applied to the obtained cured product can be improved. It is preferable to add a polymer plasticizer contained therein.
  • the polymer plasticizer is not particularly limited, and for example, a Biel polymer obtained by polymerizing a Biel monomer by various methods; diethylene glycol dibenzoate, triethylene glycol dibenzoate, pentaerythritol ester, etc.
  • Polyalkylene glycol esters polyesters obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid, and phthalic acid, and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycolol, and dipropylene glycol Plasticizers: Polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like having a molecular weight of 500 or more, or 1,000 or more, or these polyether polyols Polyether derivatives in which hydroxyl groups in the alcohol are replaced with ester groups or ether groups; polystyrenes such as polystyrene and polymethyl styrene; polybutadiene, polybutene, polyisobutylene, butadiene acrylonitrile, polychloroprene Etc. [0172] Among these polymer plasticizers, those having high compatibility with the polymer as component (A) and
  • a polyether is more preferable.
  • a polypropylene glycol is particularly preferable. preferable.
  • the bulle polymer is preferred because the cured product obtained with high compatibility with the polymer as the component (A) has good weather resistance and heat resistance.
  • acrylic polymer and Particularly preferred are acrylate polymers such as polyacrylic acid alkyl esters, which are more preferred to methacrylic polymers.
  • the production method of the polyacrylic acid alkyl ester is not particularly limited, but the atom transfer radical polymerization method is more preferred because the living radical polymerization method is preferred because the molecular weight distribution is narrow and the viscosity can be reduced. . Further, a method of continuous bulk polymerization of an alkyl acrylate ester compound, which is disclosed in JP 2001-207157, which is called SG0 process, is particularly preferred.
  • the number average molecular weight of the polymer plasticizer is 500 to 15,000, 800 to 10,000 force S, preferably 1,000 to 8,000 force S ⁇ , 1,000 to 5,000 force S particularly preferred ⁇ , 1,000 to 3,000 is most preferred. If the molecular weight of the polymer plasticizer is too low, the plasticizer will flow out from the cured product over time due to heat or rain, and the initial physical properties cannot be maintained over a long period of time, which may cause contamination due to dust adhesion, etc. There is a tendency to be inferior to alkyd paintability. On the other hand, if the molecular weight is too high, the viscosity of the curable composition tends to be high and workability tends to be poor.
  • the molecular weight distribution of the polymeric plasticizer is not particularly limited, but it is preferably narrow 1. Less than 80, 1. 70 or less is preferred 1. 60 or less is more preferred 1. 50 or less is preferred Further preferred is 1.40 or less, particularly preferred 1. 30 or less is most preferred.
  • the number average molecular weight is measured by a terminal group analysis method in the case of a polyether polymer, and by the GPC method in the case of other polymers.
  • the molecular weight distribution (Mw / Mn) is measured by the GPC method (polystyrene conversion).
  • the polymer plasticizer may or may not have a reactive cage group in the molecule, but when a polymer plasticizer having a reactive cage group is added, the polymer plasticizer is incorporated into the curing reaction. And It is preferable because migration of the plasticizer from the obtained cured product can be prevented.
  • the average number of reactive cage groups per molecule is preferably 1 or less, more preferably 0.8 or less.
  • the number average molecular weight is the component (A) in order to obtain a sufficient plasticizing effect. It is preferable that it is lower than the polymer.
  • plasticizer Only one type of plasticizer may be added, or a combination of multiple types may be added. Further, a low molecular plasticizer and a high molecular plasticizer may be added in combination. These plasticizers may be added during the production of the polymer (A).
  • the addition amount is preferably 5 to: 150 parts by weight and more preferably 120 to 120 parts by weight with respect to 100 parts by weight of the polymer (A). 20 to: 100 parts by weight are particularly preferable. If it is less than 5 parts by weight, the effect as a plasticizer tends not to be exhibited, and if it exceeds 150 parts by weight, the mechanical strength of the resulting cured product tends to be insufficient.
  • a tackifier can be added to the curable composition of the present invention as needed.
  • the tackifying resin is not particularly limited as long as it is normally used regardless of whether it is solid or liquid at room temperature.
  • the styrenic block copolymer and its hydrogenated product are not particularly limited.
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEBS Styrene / Ethylene Butylene / Styrene Block Copolymer
  • SEPS Styrene / Ethylene Propylene / Styrene Block Copolymer
  • SIBS styrene isobutylene monostyrene block copolymer
  • the addition amount is preferably 5 to 1,000 parts by weight with respect to 100 parts by weight of the polymer as component (A) 10 to 100 parts by weight. Is more preferable.
  • a solvent or a diluent can be added to the curable composition of the present invention.
  • Solvents and diluents are not particularly limited. For example, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, sterols, ketones, ethers. And the like. These may be added in combination of multiple species, or only one week.
  • the boiling point of the solvent or diluent is preferably 150 ° C or higher in order to prevent volatile components from being released into the air when the curable composition is used indoors. More preferably 200 ° C or higher.
  • a physical property modifier may be added to the curable composition of the present invention, if necessary.
  • the physical property adjuster has a function of adjusting the tensile properties and hardness of the obtained cured product.
  • the physical property adjusting agent is not particularly limited, and examples thereof include alkyl trimethoxysilane, dimethinoresimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane.
  • Alkoxysilanes having functional groups such as y-aminopropyltrimethoxysilane, N- (j3-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, and ⁇ -mercaptopropylmethyldimethoxysilane Silicone varnishes; polysiloxanes; These can be added alone or in combination with multiple types.
  • those that generate a compound having a monovalent silanol group in the molecule by hydrolysis reduce the modulus without deteriorating the stickiness of the surface of the resulting cured product.
  • those that produce trimethylsilanol by hydrolysis are more preferred.
  • the compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis is not particularly limited.
  • the compound disclosed in JP-A-5-117521, hexanol, Derivatives of alkyl alcohols such as octanol, decanol, etc., and organic cationization indicated by R SiOH such as trimethylsilanol by hydrolysis
  • the compound which has is mentioned.
  • the addition amount is preferably from 0.:! To 20 parts by weight with respect to 100 parts by weight of the polymer as component (A) 0.5 to 10 parts by weight. Part is more preferred.
  • a thixotropic agent (anti-sagging agent) may be added if necessary.
  • the thixotropic agent is a agent having a function of preventing the curable composition from sagging and improving workability.
  • the thixotropic agent is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal stalagmites such as calcium stearate, aluminum stearate, and barium stearate. Further, there are rubber particles having a particle diameter of 10 to 500 ⁇ disclosed in JP-A-11-349916 and organic fibers disclosed in JP2003-155389A. . These thixotropic agents (anti-sagging agents) may be added alone or in combination of two or more.
  • the amount added is 100 parts by weight of the polymer ( ⁇ ) Is preferably 0.:! To 20 parts by weight.
  • a compound having an epoxy group in one molecule can be added, if necessary.
  • a compound having an epoxy group By adding a compound having an epoxy group, the restorability of the obtained cured product can be enhanced.
  • the compound having an epoxy group is not particularly limited, and examples thereof include epoxidized unsaturated oils and fats; epoxy-unsaturated fatty acid esters; alicyclic epoxy compounds; compounds such as epichloronohydrin derivatives; And the like. More specifically, epoxidized soybean oil, epoxidized linseed oil, bis (2-ethyl hexyl) -4,5-epoxycyclohexane 1,2-dicarboxylate (E-PS), epoxy Examples include octyl stearate and epoxy butinore stearate. Of these, E-PS is preferred.
  • the amount of addition is preferably 0.5 to 50 parts by weight per 100 parts by weight of the polymer as component (A).
  • a photocurable material can be added to the curable composition of the present invention as needed.
  • a photo-curing substance is a substance that undergoes a chemical change in its molecular structure in a short time due to the action of light, resulting in a change in physical properties such as curing.
  • a photocurable material is added to the curable composition, a film of the photocurable material is formed on the surface of the resulting cured product, and if the cured product is sticky, the weather resistance is improved.
  • the photocurable substance is not particularly limited, and examples thereof include organic monomers, oligomers, resins, and compositions containing them, and examples thereof include unsaturated acrylic compounds, polycacin acid. Examples thereof include vinyls and azidized resins.
  • Examples of unsaturated acrylic compounds include monomers, oligomers or mixtures thereof having one or more acrylic or methacrylic unsaturated groups in one molecule.
  • propylene or Examples thereof include monomers such as butylene, ethylene) glycol di (meth) acrylate and neopentyl dallicol di (meth) acrylate, and oligoesters having a molecular weight of 10,000 or less.
  • Alonix M_210 More specifically, for example, special allyrate (bifunctional) Alonix M_210, Aronix M-215, Aronix M-220, Aronix M-233, Aronix M-240, Aronix M-245; M—30 5, Allonics M-309, Allonics M-310, Allonics M-315, Allonics M-320, Allonics M-325, and many of which are Alonix M-400 (all are manufactured by Toagosei Co., Ltd.) Of these, compounds having an acrylic functional group are preferred, and compounds having an average of 3 or more acrylic functional groups per molecule are more preferred.
  • Examples of the polycay cinnamate burs include a photosensitive resin having a cinnamoyl group as a photosensitive group, a compound obtained by esterifying poly butyl alcohol with cinnamate, and many other polycinate cinnamate derivatives.
  • the azide resin is known as a photosensitive resin having an azide group as a photosensitive group.
  • a photosensitive resin Showa 47. Published on March 17th, published by the Printing Society Press, page 93-, page 106-, page 117-). These are singular or mixed, and sensitizers as necessary. It can be used with the cover.
  • a sensitizer such as a ketone or nitro compound or a promoter such as amine may enhance the effect.
  • the addition amount is preferably from 0.:! To 20 parts by weight with respect to 100 parts by weight of the polymer as component (A). Part is more preferred. Below 0.1 part by weight, the effect of improving the weather resistance of the obtained cured product is almost insufficient. At 20 parts by weight or more, the obtained cured product becomes too hard and tends to crack.
  • An oxygen curable substance can be added to the curable composition of the present invention as needed.
  • An oxygen curable substance can be cured by reacting with oxygen in the air.
  • a cured film is formed near the surface of the resulting cured product, and the surface of the cured product surface is reduced. It can prevent adhesion of dust and dust.
  • the oxygen curable substance is not particularly limited as long as it is a compound having an unsaturated compound capable of reacting with oxygen in the air.
  • a dry oil such as tung oil, linseed oil, or the like may be modified.
  • alkyd resins obtained; acrylic polymers modified with drying oil, epoxy resins, silicone resins; polymerized or co-polymerized with genic compounds such as butadiene, black-opened plain, isoprene, 1,3_pentagen 1, 2 _Polybutadiene obtained by polymerization Liquid polymers such as benzene, 1,4 polybutadiene, and C5 to C8 gen polymers; buronitrile compounds such as acrylonitrile and styrene copolymerizable with these gen compounds, and gen compounds.
  • genic compounds such as butadiene, black-opened plain, isoprene, 1,3_pentagen 1, 2 _Polybutadiene obtained by polymerization
  • Liquid polymers such as benzene, 1,4 polybutadiene, and C5 to C8 gen polymers
  • buronitrile compounds such as acrylonitrile and styrene copolymerizable with these gen compounds, and gen compounds
  • liquid copolymers such as NBR and SBR obtained by copolymerization so that the main compound is the main component, and various modified products thereof (maleinized modified products, boiler oil modified products, etc.) .
  • drill oil and liquid gen-based polymers are preferred.
  • Oxygen curable substances may be added alone or in combination of two or more.
  • the effect of the oxygen curable substance may be enhanced by adding a catalyst or a metal dryer that accelerates the curing reaction.
  • the catalyst or metal dryer that accelerates the curing reaction is not particularly limited, and examples thereof include metal salts such as cobalt naphthenate, lead naphthenate, dinoleco naphthenate, cobalt octylate, and zirconium octylate, and amine compounds. Can be mentioned.
  • the addition amount is preferably 0.:! To 20 parts by weight with respect to 100 parts by weight of the polymer as component (A). 0.5 to 10 parts by weight Part is more preferred. If the amount added is less than 0.1 parts by weight, the resulting cured product will not have sufficient contamination, and if it exceeds 20 parts by weight, the tensile properties of the resulting cured product will tend to be impaired. .
  • the oxygen curable substance is mixed with a photocurable substance as disclosed in JP-A-3-160053.
  • An antioxidant may be added to the curable composition of the present invention as necessary. By adding an antioxidant, the heat resistance of the resulting cured product can be increased.
  • the antioxidant is not particularly limited, and examples thereof include hindered phenol-based, monophenol-based, bisphenol-based, and polyphenol-based antioxidants. This strength, but hindered phenolic antioxidants are preferred.
  • Tinuvin 622LD, Tinuvin 144; CHIMASSORB944LD, CHIMASSORB119FL (more than this, the shift is also from Ciba 'Specialty Chemicals'); ADK STAB LA-57, ADK STAB LA-62, ADK STAB LA-67, ADK STAB LA-63 , ADK STAB LA_ 68 (all manufactured by ADEKA Co., Ltd.); SANOR LS—770, SANNORE LS—765, SANORORE LS—292
  • hindered amine light stabilizers such as Sanonore LS-2626, Sanonore LS-1114, Sanonore LS-744 (the above-mentioned are also manufactured by Sankyo Lifetech Co., Ltd.) are preferable.
  • the addition amount is 0.1 to 10 parts by weight with respect to 100 parts by weight of the polymer as component (A), preferably 0.2 to 5 parts by weight. More preferred.
  • a light stabilizer can be added to the curable composition of the present invention as needed.
  • Addition of the light stabilizer can prevent photooxidation deterioration of the obtained cured product.
  • the light stabilizer is not particularly limited, and examples thereof include benzotriazole compounds, hindered amine compounds, and benzoate compounds. Of these, hindered amine light stabilizers are preferred.
  • the addition amount is preferably 0.:! To 10 parts by weight with respect to 100 parts by weight of the polymer as component (A). 0.2 to 5 parts by weight Is more preferable. Specific examples of the light stabilizer are also disclosed in JP-A-9-194731.
  • the hindered amine light stabilizer having a tertiary amine group is not particularly limited.
  • Tinuvin 622LD, Tinuvin 144, CHIMASSORB119FL (all of which are manufactured by Ciba Specialty Chemicals); ADK STAB LA- 57, LA-62, LA— 67, L A_ 63 (all manufactured by ADEKA Co., Ltd.); Sanoré LS— 765, LS-292, LS-262 6, LS-1114, LS— 744 (all above Sankyo) Life Tech Co., Ltd.)
  • An ultraviolet absorber can be added to the curable composition of the present invention as necessary. By adding the ultraviolet absorber, the surface weather resistance of the obtained cured product is improved.
  • the ultraviolet absorber is not particularly limited, and examples thereof include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based, and metal chelate-based compounds. [0221]
  • benzotriazole ultraviolet absorbers are preferred.
  • the addition amount is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the polymer (A), and 0.2 to 5 parts by weight is preferable. More preferred.
  • the antioxidant, light stabilizer, and ultraviolet absorber are preferably added together in the curable composition.
  • phenol-based hindered phenol-based antioxidants and hindered amine-based light stabilizers are preferable to add a mixture of a benzotriazole UV absorber.
  • An epoxy resin can be added to the curable composition of the present invention as needed. Adhesion of the epoxy resin improves the adhesion of the obtained cured product, and the curable composition to which the epoxy resin is added is preferably used as an adhesive, particularly as an adhesive for exterior wall tiles.
  • the epoxy resin is not particularly limited.
  • flame retardant such as epichlorohydrin bisphenol A type epoxy resin, epichlorohydrin bisphenol F type epoxy resin, glycidyl ether of tetrabromobisphenol A, etc.
  • Type epoxy resin novolac type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol A propylene oxide adduct glycidyl ether type epoxy resin, p-oxybenzoic acid glycidyl ether ester type epoxy resin, m-aminophenol type epoxy Resin, diaminodiphenylmethane epoxy resin, urethane-modified epoxy resin, various cycloaliphatic epoxy resins, N, N diglycidyl dilin, N, N diglycidyl mono o toluidine, triglycidyl diisocyanurate, polyalkylene glyco Le diglycidyl ether, polyhydric glycidioxypropyl Honoré ethers of alcohols, such as glycerol, hydantoin type epoxy resins, such as epoxidized unsaturated polymer such as petroleum resins.
  • those having at least two epoxy groups in one molecule are preferable because they increase the reactivity of the curable composition and the obtained cured product easily forms a three-dimensional network structure.
  • Gubisphenol Nore A type epoxy resin or novolac type epoxy resin is more preferable.
  • the amount of epoxy resin added varies depending on the intended use of the curable composition. When improving the impact resistance, flexibility, toughness, peel strength, etc. of cured Poxy resin
  • component (A) It is preferable to add 1 to 100 parts by weight of the polymer as component (A) with respect to 100 parts by weight of the epoxy resin. 5 to 100 parts by weight is more preferable.
  • 1 to 200 parts by weight of epoxy resin it is preferable to add 1 to 200 parts by weight of epoxy resin to 100 parts by weight of polymer. : It is better to add 100 parts by weight.
  • the curing agent for the epoxy resin is not particularly limited as long as it is a compound capable of curing the epoxy resin.
  • a compound capable of curing the epoxy resin for example, triethylenetetramine, tetraethylenepentamine, jetylaminopropylamine, N-amino.
  • Primary and secondary amines such as ethylpiperidine, m_xylylenediamine, m-phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, isophoronediamine, amine-terminated polyethers; 2, 4, 6-tris ( Tertiary amines such as (dimethylaminomethyl) phenol and tripropylamine, and salts of these tertiary amines; polyamide resins; imidazoles; dicyandiamides; boron trifluoride complex compounds; Hexahydrophthalic anhydride, tetrahydrophthalic anhydride, dodecynyl anhydride They include compounds such as diketone complex compounds of aluminum or zirconium; alcohols; ⁇ , pyromellitic anhydride, carboxylic acids such as anhydrous Kuroren acid phenols; carboxylic acids. These can be added as a single type or
  • the amount of addition is preferably 0.:! To 300 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • a ketimine compound since a one-component curing composition is obtained.
  • the ketimine compound exists stably in the absence of moisture, and is decomposed into primary amines and ketones by moisture, and the resulting primary amines have the property of becoming a room temperature curable curing agent for epoxy resins.
  • Examples of the ketimine compound include a compound obtained by a condensation reaction between an amine compound and a carbonyl Louis compound.
  • amine compounds and carbonyl compounds used in the production of ketimine compounds include
  • amine compounds include ethylene diamine, propylene diamine, trimethylene diamine, tetramethylene diamine, 1,3-diaminobutane, 2, 3—
  • Diamines such as diaminobutane, pentamethylenediamine, 2,4-diaminopentane, hexamethylenediamine, p-phenylenediamine, p, p'-bididiamine, 1, 2, 3-triamino Polyamines such as propane, triaminobenzene, tris (2-aminoethyl) amine, tetrakis (aminomethyl) methane; polyalkylene polyamines such as diethylenetriamine, triethylenetriamine, tetraethylenepentamine; polyoxyalkylene-based polyamines Y-aminopropyltriethoxysilane, N— (j3-aminoethyl
  • Examples of the carbonyl compound include aldehydes such as acetaldehyde, propionaldehyde, ⁇ -butanolenoaldehyde, isobutyraldehyde, jetylacetaldehyde, glyoxal, and benzaldehyde; cyclopentanone, trimethylcyclopentanone, and cyclone.
  • aldehydes such as acetaldehyde, propionaldehyde, ⁇ -butanolenoaldehyde, isobutyraldehyde, jetylacetaldehyde, glyoxal, and benzaldehyde
  • cyclopentanone trimethylcyclopentanone
  • Cyclic ketones such as oral hexanone and trimethylcyclohexanone; Aliphatic ketones such as acetone, methyl ethyl butyl ketone, dipropyl ketone, diisopropyl ketone, dibutyl ketone, diisobutyl ketone; acetyl acetone, methyl acetoacetate, cetyl acetate And ⁇ -dicarbonyl compounds such as dimethyl malonate, jetyl malonate, methylethyl malonate, and dibenzoylmethane.
  • Aliphatic ketones such as acetone, methyl ethyl butyl ketone, dipropyl ketone, diisopropyl ketone, dibutyl ketone, diisobutyl ketone
  • acetyl acetone methyl acetoacetate
  • ⁇ -dicarbonyl compounds such as dimethyl mal
  • Ketimine compounds having an imino group include those obtained by reacting an imino group with styrene oxide; glycidyl ethers such as butyldaricidyl ether and allylic glycidyl ether; glycidyl esters and the like.
  • ketimine compounds may be added alone or in combination of two or more.
  • ketimine compound When a ketimine compound is added, the amount of the additive added varies depending on the type of epoxy resin and ketimine. Usually, 1 to 100 parts by weight is preferable with respect to 100 parts by weight of epoxy resin.
  • a flame retardant can be added to the curable composition of the present invention as needed. Difficulty
  • the flame retardant is not particularly limited.
  • a phosphorus-based flame retardant such as ammonium polyphosphate or tricresyl phosphate
  • a flame retardant such as aluminum hydroxide, magnesium hydroxide, or thermally expandable graphite may be added. it can. Only one type of flame retardant may be added. Multiple types may be added in combination.
  • the addition amount is preferably 5 to 200 parts by weight with respect to 100 parts by weight of the polymer (A), and more preferably 10 to 100 parts by weight.
  • additives other than those described above may be added as necessary for the purpose of adjusting various physical properties of the curable composition or the resulting cured product.
  • Such additives include, for example, curability modifiers, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, anti-anticides, Examples include fungicides. Specific examples of these are disclosed in JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-64-22904, JP-A-2001-72854, and the like. Has been.
  • these additives may be added alone or in combination of two or more.
  • the one-component preparation method refers to a method in which all the ingredients are pre-blended and stored in a sealed state and cured by moisture in the air after construction.
  • the two-component preparation method is a compounding agent for curing. Separately, components such as a curing catalyst, a filler, a plasticizer, and water are blended, and a curing compounding agent and a polymer composition are mixed before construction.
  • the curable composition is a one-component type
  • curing may proceed during storage if moisture is present in the blend. Therefore, it is preferable to dehydrate the moisture-containing blended component by dehydrating and drying in advance, or by depressurization during blending and kneading.
  • the curable composition is a two-component type, it is not necessary to add a curing catalyst to the main agent containing a polymer having a reactive key group, so that the formulation contains some moisture. Although there is little concern about the progress of curing (gelation), it is preferable to dehydrate and dry when long-term storage stability is required.
  • a dehydration and drying method when the composition is a solid substance such as a powder, a heat drying method or a depressurization dehydration method. A dehydration method using magnesium oxide or the like is preferable.
  • Alkoxysilane compounds such as: 3-Ethyl _ 2_Methyl _ 2_ (3-Methylbutyl) -1, 3_Oxazolidine compounds such as oxazolidine; or Isocyanate compounds are added to the curable composition
  • a dehydration method performed by reacting with water contained therein is also preferable.
  • the storage stability of the curable composition is improved by the addition of the alkoxysilane compound, the oxazolidine compound, and the isocyanate compound.
  • the amount of addition of an alkoxysilane compound that can react with water, such as biertrimethoxysilane, for drying purposes is 0.:! To 100 parts by weight of the polymer (A). 20 parts by weight is preferred 0.5 to 10 parts by weight is more preferred.
  • the method for preparing the curable composition of the present invention is not particularly limited.
  • the above-described mixed components are prepared and kneaded using a mixer, roll, kneader, or the like at room temperature or under heating,
  • a known method such as a method in which a small amount of a suitable solvent is used and the compounding components are dissolved and then mixed can be employed.
  • the curable composition of the present invention When exposed to the atmosphere, the curable composition of the present invention forms a three-dimensional network structure by the action of moisture and is cured into a solid having rubbery elasticity.
  • the curable composition of the present invention comprises a pressure-sensitive adhesive; a sealing material for buildings, ships, automobiles, roads, etc .; an adhesive; a mold preparation; a vibration-proofing material; a vibration-damping material; It is suitably used as a spraying material, and among these uses, the cured product obtained is excellent in flexibility and adhesiveness, and therefore, it is more preferably used as a sealing material or an adhesive.
  • the curable composition of the present invention comprises an electrical / electronic component material such as a solar cell backside sealing material; an electrical insulation material such as an electric wire 'cable insulation coating; an elastic adhesive; a contact adhesive; Spray type sealant; Crack repair material; Tiling adhesive; Powder coating; Cast material; Medical rubber materials; Medical adhesives; Medical device sealing materials; Food packaging materials; Sealing materials for joints of exterior materials such as siding boards; Coating materials; Primers; Conductive materials for shielding electromagnetic waves; Thermal conductive materials; Hot-melt materials; Potting agents for electrical and electronic use; Films; Gaskets; Various molding materials; Anti-corrosion for meshed glass and laminated glass end faces (cutting parts)-Waterproof sealing materials; Automobile parts, electrical parts, various machines It can be used for various applications such as liquid sealants used in parts.
  • an electrical / electronic component material such as a solar cell backside sealing material
  • an electrical insulation material such as an electric wire 'cable insulation coating
  • an elastic adhesive such as an electric wire 'cable insulation coating
  • the curable composition of the present invention comprises an adhesive for interior panels, an adhesive for exterior panels, an adhesive for tile tension, an adhesive for stone finishing, an adhesive for ceiling finishing, and an adhesive for floor finishing.
  • trimethoxysilane was prepared by using 150 ppm of an isopropyl alcohol solution having a platinum content of 3 wt% as a catalyst. The mixture was reacted at 90 ° C for 2 hours to obtain a trimethoxysilyl group-terminated polyoxypropylene polymer (A-1).
  • the terminal trimethoxysilyl group is 1 as determined by H-NMR (measured in CDC1 solvent using JEOL NM-LA400).
  • the average was about 1.3 per molecule.
  • a dimethoxysilyl group-terminated polyoxypropylene polymer (A-2) was obtained in the same manner as in Synthesis Example 1 except that the trimethoxysilane in Synthesis Example 1 was changed to 0.9 part by weight of dimethoxymethylsilane. — As a result of NMR measurement, the average number of terminal dimethoxymethylsilyl groups was about 1.3 per molecule.
  • Bil-terminated polydimethylsiloxane (DMSV42: manufactured by Gelest) 100 parts by weight, with a platinum content of 3 wt% of platinum bisiloxane complex as an isopropyl alcohol solution 150ppm as a catalyst,
  • Polyoxypropylene triol with a molecular weight of about 3,000 is used as an initiator, and propylene oxide is polymerized using a zinc hexanocobaltate glyme complex catalyst. Obtained. Subsequently, 1.2 times equivalent of NaOMe in methanol with respect to the hydroxyl group of the hydroxyl group-terminated polypropylene oxide was added to distill off the methanol, and further allyl chloride was added to the terminal hydroxyl group. Converted to the base. Unreacted gallium chloride was removed by devolatilization under reduced pressure.
  • the polymer (A-4), a filler and a thixotropic agent were kneaded to obtain a main agent.
  • 3-methacryloxypropyldimethoxymethylsilane (LS- 33 75: manufactured by Shin-Etsu Chemical Co., Ltd.) 2.3 g, BF jetyl ether complex (Wako Pure Chemical Industries, Ltd.)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Toxicology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Sealing Material Composition (AREA)

Abstract

非有機錫触媒を用いて、優れた硬化性を有する硬化性組成物を提供することを課題とし、(A)シロキサン結合を形成することにより架橋し得るケイ素基を有する重合体、 (B)一般式(1): R1 4-aSiFa    (1) (式中、4-a個のR1はそれぞれ独立に、置換あるいは非置換の炭素原子1から20の炭化水素基、またはR2 3SiO-(R2はそれぞれ独立に、炭素原子数1から20の置換あるいは非置換の炭化水素基、またはフッ素原子である)で示されるシロキシ基からなる群より選択される少なくとも1つである。また、aは1,2,3のいずれかである。)で示されるフルオロシラン類、 (C)アミン系化合物を含むことを特徴とする硬化性組成物により解決する。

Description

明 細 書
硬化性組成物
技術分野
[0001] 本発明は、ケィ素原子に結合した水酸基または加水分解性基を有し、シロキサン 結合を形成することにより架橋し得るケィ素基 (以下、「反応性ケィ素基」ともいう。)を 有する重合体を含む硬化性組成物に関する。
背景技術
[0002] 分子中に少なくとも 1個の反応性ケィ素基を有する重合体は、室温にぉレ、ても湿分 等による反応性ケィ素基の加水分解反応等を伴うシロキサン結合の形成によって架 橋し、ゴム状硬化物が得られるという性質を有することが知られている。
[0003] これらの反応性ケィ素基を有する重合体の中で、主鎖骨格がポリオキシアルキレン 系重合体やポリイソブチレン系重合体である有機重合体は、(特許文献 1)、(特許文 献 2)などに開示されており、既に工業的に生産され、シーリング材、接着剤、塗料な どの用途に広く使用されている。また、主鎖骨格がポリシロキサン、特にジオルガノポ リシロキサンである重合体からなる硬化性組成物に関しても、(特許文献 3)など数多 くの報告がなされている。
[0004] シーリング材、接着剤、塗料などに用いられる硬化性組成物および硬化によって得 られるゴム状硬化物には、硬化性、接着性、機械特性など種々の特性が要求される
[0005] 反応性ケィ素基を有する重合体を含む硬化性組成物は、硬化触媒を用いて硬化さ せており、通常、ジブチル錫ビス(ァセチルァセトナート)などの、炭素—錫結合を有 する有機錫系触媒が広く使用されている。しかしながら、近年、有機錫系化合物はそ の毒性が指摘されており、非有機錫系触媒の開発が求められている。
[0006] 非有機錫系触媒としては、カルボン酸金属塩、金属アルコキシドなど数多くの研究 がなされているが、中でもカルボン酸ゃァミン化合物は金属非含有の触媒系であり、 環境への影響が比較的小さいことが期待される。 (特許文献 4)において、カルボン酸 とァミンを併用することによって良好な硬化性を有する硬化性組成物が得られること が開示されている。し力 ながら、アミンィ匕合物とカルボン酸とを併用したシラノール 触媒を用いた硬化性組成物は、得られる硬化物が十分な接着性を得ることが困難な のでシーリング材ゃ接着剤などの用途に適さない場合があった。ァミン化合物単独で は、(特許文献 4)でも述べられているように、十分な硬化性を得ることは困難であった
[0007] 一方、アルコキシシランを加水分解 '縮合させてオルガノポリシロキサンを製造する ための触媒として、(特許文献 5)に Si_F結合を有する化合物が開示されている。し 力、しながら、反応性ケィ素基を有する重合体の硬化触媒としては、この化合物単独で は、極めて低い反応性しか示さない。
特許文献 1 :特開昭 52— 73998号公報
特許文献 2 :特開昭 63— 6041号公報
特許文献 3:特公昭 32— 3742号公報
特許文献 4 :特開平 5— 117519号公報
特許文献 5:特開平 8— 104753号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、反応性ケィ素基を有する重合体を主成分とする硬化性組成物であって 、非有機錫触媒を用いて、良好な硬化性を有する硬化性組成物を提供することを目 的とする。
課題を解決するための手段
[0009] 本発明者は、このような問題を解決するために鋭意検討した結果、以下の発明を完 成させた。
[0010] すなわち本発明は、
(I). (A)シロキサン結合を形成することにより架橋し得るケィ素基を有する重合体、
(B)—般式 (1) :
R1 SiF (1)
4-a a
(式中、 4_ a個の R1はそれぞれ独立に、置換あるいは非置換の炭素原子数 1から 20 の炭化水素基、または R2 SiO- (R2はそれぞれ独立に、炭素原子数 1から 20の置 換あるいは非置換の炭化水素基またはフッ素原子である。 )で示されるシロキシ基か らなる群より選択される少なくとも 1つである。また、 aは 1, 2, 3のいずれかである。)で 示されるフルォロシラン類、
(C)アミン系化合物、を含むことを特徴とする硬化性組成物、
(Π). (Α)成分力 数平均分子量 3, 000-100, 000の重合体であり、且つ、一般式( 2) :
- (SiR4 Z O) -SiR3 Z (2)
2— c c 1 3-b b
(式中、 R3および R4は、それぞれ独立に、炭素原子数 1から 20の炭化水素基、また は SiO- (R5はそれぞれ独立に、炭素原子数 1から 20の炭化水素基である)で示
3
されるトリオルガノシロキシ基からなる群より選択される少なくとも 1つである。また、 Z は、それぞれ独立に、水酸基または加水分解性基である。さらに、 bは 0、 1、 2、 3の いずれかであり、 cは 0、 1、 2のいずれかであり、 bと cとが同時に 0になることはない。 また、 1は 0または 1〜: 19の整数である。)で示されるケィ素基を、 1分子あたり、平均し て 1個以上有することを特徴とする (I)に記載の硬化性組成物、
(III) . (A)成分の重合体の主鎖骨格が、ポリオキシアルキレン系重合体、飽和炭化水 素系重合体、および (メタ)アクリル酸エステル系重合体からなる群より選択される少 なくとも 1種であることを特徴とする(I)または(II)に記載の硬化性組成物、
(IV) .Zがアルコキシ基であることを特徴とする (Π)または (III)に記載の硬化性組成物、
(V) .アルコキシ基カ トキシ基であることを特徴とする (IV)に記載の硬化性組成物、
(VI) . (B)成分が分子量 3, 000以下のフルォロシラン類であることを特徴とする(I)〜 (V)のいずれかに記載の硬化性組成物、
(VII) . (I)〜(VI)のいずれかに記載の硬化性組成物を用いてなるシーリング材、
(VIII) . (I)〜(VI)のいずれかに記載の硬化性組成物を用いてなる接着剤、 に関する。
発明の効果
本発明の硬化性組成物は、非有機錫触媒を使用しながら、良好な硬化性を有する 発明を実施するための最良の形態 [0012] 以下、本発明について詳しく説明する。
[0013] 本発明の硬化性組成物は、(A)成分としてシロキサン結合を形成することにより架 橋し得る反応性ケィ素基を 1分子あたり平均して 1個以上有する重合体を必須成分と する。ここで、反応性ケィ素基とは、ケィ素原子に結合した水酸基又は加水分解性基 を有するケィ素基である。反応性ケィ素基を有する重合体は、シラノール縮合触媒に よって加速される反応によりシロキサン結合が形成され、架橋する特徴を有する。
[0014] 反応性ケィ素基としては、一般式 (2):
- (SiR4 Z O) -SiR3 Z (2)
2— c c 1 3-b b
(式中、 R3および R4は、それぞれ独立に、炭素原子数 1から 20の炭化水素基、また は SiO- (R5はそれぞれ独立に、炭素原子数 1から 20の炭化水素基である)で示
3
されるトリオルガノシロキシ基からなる群より選択される少なくとも 1つである。また、 Z は、それぞれ独立に、水酸基または加水分解性基である。さらに、 bは 0、 1、 2、 3の いずれかであり、 cは 0、 1、 2のいずれかであり、 bと cとが同時に 0になることはない。 また、 1は 0または 1〜: 19の整数である。)で示される基が挙げられる。
[0015] (A)成分である重合体の主鎖骨格は、特に制限はなぐ各種の主鎖骨格を持つも のを使用することができる。
[0016] 具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオ キシテトラメチレン、ポリオキシエチレン ポリオキシプロピレン共重合体、ポリオキシ プロピレン ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;ェチ レン プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重 合体、ポリクロ口プレン、ポリイソプレン、イソプレンあるいはブタジエンとアタリロニトリ ルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタ ジェンとアクリロニトリル及びスチレン等との共重合体、これらのポリオレフイン系重合 体に水素添加して得られる水添ポリオレフイン系重合体等の炭化水素系重合体;ァ ジピン酸等の 2塩基酸とダリコールとの縮合、または、ラタトン類の開環重合で得られ るポリエステル系重合体;ェチル (メタ)アタリレート、ブチル (メタ)アタリレート等のモノ マーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アタリノレ 酸エステル系モノマー、酢酸ビュル、アタリロニトリノレ、スチレン等のモノマーをラジカ ル重合して得られるビュル系重合体;前記重合体中でのビニルモノマーを重合して 得られるグラフト重合体;ポリサルファイド系重合体; ε—力プロラタタムの開環重合に よるポリアミド 6、 へキサメチレンジァミンとアジピン酸の縮重合によるポリアミド 6 · 6、 へ キサメチレンジァミンとセバシン酸の縮重合によるポリアミド 6 · 10、 ε—アミノウンデカ ン酸の縮重合によるポリアミド 11、 ε—ァミノラウ口ラタタムの開環重合によるポリアミド 12、前記のポリアミドのうち 2成分以上の成分を有する共重合ポリアミド等のポリアミド 系重合体;たとえばビスフエノール Αと塩ィ匕カルボニルより縮重合して製造されるポリ カーボネート系重合体、ジァリルフタレート系重合体などの有機重合体が例示される 。また、ポリジオルガノシロキサンなどのポリシロキサン系重合体も使用できる。ポリイ ソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や 、ポリオキシアルキレン系重合体、 (メタ)アクリル酸エステル系重合体、ポリシロキサン 系重合体は比較的ガラス転移温度が低ぐ得られる硬化物が耐寒性に優れることか ら好ましい。
[0017] (A)成分である重合体のガラス転移温度は、特に限定は無レ、が、 20°C以下である ことが好ましぐ 0°C以下であることがより好ましぐ 20°C以下であることが特に好ま しい。ガラス転移温度が 20°Cを上回ると、冬季または寒冷地での粘度が高くなり作業 性が悪くなる場合があり、また、得られる硬化物の柔軟性が低下し、伸びが低下する 場合がある。前記ガラス転移温度は DSCの測定により求めることができる。
[0018] 飽和炭化水素系重合体、ポリオキシアルキレン系重合体および (メタ)アクリル酸ェ ステル系重合体などを主鎖骨格に持つ重合体を、接着剤やシーリング材のベースポ リマーとして使用した際に、低分子量成分の被接着物への移行などによる汚染が少 なく好ましい。
[0019] また、ポリオキシアルキレン系重合体および(メタ)アクリル酸エステル系重合体を主 鎖骨格に持つ重合体は、透湿性が高ぐ 1液型の接着剤やシーリング材などのベー スポリマーとして使用した際、深部硬化性に優れ、得られる硬化物は接着性に優れる ことなどから特に好ましぐポリオキシアルキレン系重合体を主鎖骨格に持つ重合体 が最も好ましい。
[0020] 一般式(2)中の Zで表わされる加水分解性基としては、特に限定されず、従来公知 の加水分解性基であればよい。具体的には、例えば水素原子、ハロゲン原子、アル コキシ基、ァシルォキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノォ キシ基、メルカプト基、アルケニルォキシ基等が挙げられる。これらの内では、水素原 子、ァノレコキシ基、アシノレオキシ基、ケトキシメート基、アミノ基、アミド基、アミノォキシ 基、メルカプト基およびアルケニルォキシ基が好ましぐ加水分解性が穏やかで取扱 レ、やすいとレ、うことからアルコキシ基が特に好ましレ、。
[0021] 加水分解性基や水酸基は、 1個のケィ素原子に 1〜3個の範囲で結合することがで き、重合体 1分子中に含まれる加水分解性基や水酸基の総数を示す (b+∑c)は 1 〜 5の範囲が好ましレ、。加水分解性基や水酸基が反応性ケィ素基中のケィ素原子に 2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。
[0022] 特に、一般式 (3) :
- SiR3 Z (3)
3-d d
(式中、 R3、 Zは一般式(2)の表記と同じ。 dは 1、 2または 3を示す。)で示される反応 性ケィ素基力 入手が容易であることから好ましい。
[0023] また、一般式(2)、 (3)中に記載の R3、一般式(2)中に記載の R4としては、特に限 定されず、具体例としては、たとえばメチル基、ェチル基等のアルキル基;シクロへキ シル基等のシクロアルキル基;フエニル基等のァリール基;ベンジル基等のァラルキ ル基や、 R5がメチル基、フエニル基等である R5 SiO—で示されるトリオノレガノシロキ
3
シ基;等が挙げられる。これらの中ではメチル基が特に好ましレ、。
[0024] 反応性ケィ素基のより具体的な例示としては、トリメトキシシリル基、トリエトキシシリ ル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジェトキシメチルシリノレ 基、ジイソプロボキシメチルシリル基、メトキシジメチルシリル基、エトキシジメチルシリ ル基が挙げられる。これらのなかでも活性が高く良好な硬化性が得られることから、ト リメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基が好ましぐトリメトキ シシリル基がより好ましい。また、硬化性組成物の貯蔵安定性が良好なことからジメト キシメチルシリル基が特に好ましい。一方、反応性ケィ素基の加水分解反応に伴つ て生成するアルコール力 安全性の高レ、エタノールであることからはトリエトキシシリ ル基が特に好ましい。 [0025] また、ケィ素原子上に 3つの加水分解性基を有する反応性ケィ素基を有する重合 体を主成分とする硬化性組成物は良好な硬化性が得られると共に、得られる硬化物 が良好な復元性、耐久性および耐クリープ性を持つ傾向を示すことから好ましレ、。
[0026] 反応性ケィ素基の導入方法としては、特に限定されず公知の方法が挙げられ、例 えば以下の方法が挙げられる。
[0027] (ィ)分子中に水酸基等の官能基を有する重合体に、この官能基に対して反応性を 示す活性基および不飽和基を有する有機化合物または、不飽和基を有するェポキ シ化合物を反応させ、不飽和基を有する重合体を得る。ついで得られた反応生成物 に反応性ケィ素基を有するヒドロシランを作用させてヒドロシリル化する方法、
(口)(ィ)法と同様にして得られた不飽和基を有する重合体にメルカプト基および反 応性ケィ素基を有する化合物を反応させる方法、
(ハ)分子中に水酸基、エポキシ基やイソシァネート基等の官能基を有する重合体 に、この官能基に対して反応性を示す官能基および反応性ケィ素基を有する化合物 を反応させる方法、などが挙げられる。
[0028] 以上の方法のなかでも、(ィ)の方法、または (ハ)のうち末端に水酸基を有する重合 体とイソシァネート基および反応性ケィ素基を有する化合物を反応させる方法は、比 較的短い反応時間で高い転化率が得られることから好ましい。更に、(ィ)の方法で 得られた反応性ケィ素基を有する重合体は、(ハ)の方法で得られる重合体よりも低 粘度で作業性の良い硬化性組成物となること、また、(口)の方法で得られる重合体は 、メルカプトシランに基づく臭気が強いことから、(ィ)の方法が特に好ましい。
[0029] (ィ)の方法において使用されるヒドロシラン化合物としては、特に限定されず、具体 例としては、たとえば、トリクロロシラン、ジクロロメチルシラン、クロロジメチルシラン、ジ クロ口フエニルシラン等のハロゲン化シラン類;トリメトキシシラン、トリエトキシシラン、 ジメトキシメチルシラン、ジエトキシメチルシラン、ジメトキシフエニルシラン、ェチルジメ トキシシラン、メトキシジメチルシラン、エトキシジメチルシラン等のアルコキシシラン類 ;ジァセトキシメチルシラン、ジァセトキシフエニルシラン等のァシロキシシラン類;ビス (ジメチルケトキシメート)メチルシラン、ビス(シクロへキシルケトキシメート)メチルシラ ン等のケトキシメートシラン類などが挙げられる。これらのうちではとくにハロゲンィ匕シ ラン類、アルコキシシラン類が好ましぐ特にアルコキシシラン類は、得られる硬化性 組成物の加水分解性が穏やかで取り扱レ、やすレ、ことから最も好ましレ、。アルコキシシ ラン類の中でも、入手が容易なこと、得られる重合体 (A)を主成分とする硬化性組成 物および硬化物の諸特性 (硬化性、貯蔵安定性、伸び特性、引張強度など)が優れ
Figure imgf000009_0001
[0030] 前記ヒドロシラン化合物の中で、一般式 (4):
H- SiZ (4)
3
(式中、 Zは一般式(2)中の表記と同じ。)で示されるヒドロシラン化合物は、該ヒドロシ ラン化合物の付加反応により得られる重合体を主成分とする硬化性組成物の硬化性 が優れることから好ましい。一般式 (4)記載のヒドロシランィ匕合物の中でも、トリメトキシ シラン、トリエトキシシラン、および、トリイソプロポキシシラン等のトリアルコキシシラン 類がより好ましい。
[0031] 前記トリアルコキシシラン類の中でも、トリメトキシシランなどの炭素原子数が 1のァ ルコキシ基 (メトキシ基)を有するトリアルコキシシランは、不均化反応が急速に進行 する場合があり、不均化反応が進むと、ジメトキシシランのような反応性の極めて高い 化合物が生じる場合がある。
[0032] そこで、取り扱いの際の安全性を考慮すると、一般式(5):
H- Si (OR6) (5)
3
(式中、 3個の R6は、それぞれ独立に炭素原子数 2から 20の有機基である)で示され る炭素原子数が 2以上のアルコキシ基を有するトリアルコキシシランを用いることが好 ましレ、。これらのなかでも入手が容易なこと、取り扱いの際の安全性が高いことなどか ら、トリエトキシシランが最も好ましい。
[0033] (口)の合成法としては、たとえば、メルカプト基および反応性ケィ素基を有する化合 物を、ラジカル開始剤および Zまたはラジカル発生源存在下でのラジカル付加反応 によって、重合体の不飽和結合部位に導入する方法等が挙げられるが、特に限定さ れるものではない。前記メルカプト基および反応性ケィ素基を有する化合物の具体 例としては、たとえば、 γ—メルカプトプロピルトリメトキシシラン、 y—メルカプトプロピ ルジメトキシメチルシラン、 γ—メルカプトプロピルトリエトキシシラン、 Ί—メルカプト プロピルジェトキシメチルシラン、メルカプトメチルトリエトキシシランなどが挙げられる 、これらに限定されるものではない。
[0034] (ハ)の合成法のうち末端に水酸基を有する重合体とイソシァネート基および反応 性ケィ素基を有する化合物を反応させる方法としては、たとえば、特開平 3— 47825 号公報に示される方法等が挙げられるが、特に限定されるものではない。前記イソシ ァネート基および反応性ケィ素基を有する化合物の具体例としては、たとえば、 Ί - シラン、 γ—イソシァネートプロピルトリエトキシシラン、 Ί—イソシァネートプロピルジ エトキシメチルシラン、イソシァネートメチルトリメトキシシラン、イソシァネートメチルトリ エトキシシラン、イソシァネートメチルジメトキシメチルシラン、イソシァネートメチルジ エトキシメチルシランなどが挙げられる力 これらに限定されるものではない。
[0035] 前述したように、トリメトキシシラン等の一つのケィ素原子に 3個の加水分解性基が 結合してレ、るシラン化合物は不均化反応が進行する場合がある。不均化反応が進む と、ジメトキシシランなど、危険性のある化合物が生じる場合がある。
[0036] しかし、 γ —メルカプトプロピルトリメトキシシランや γ —イソシァネートプロピルトリメ トキシシランでは、このような不均化反応は進行しない。このため、ケィ素基としてトリメ トキシシリル基など、 3個の加水分解性基が 1つのケィ素原子に結合しているケィ素 基を用いる場合には、 (口)または (ハ)の合成法を用いることが好ましい。
[0037] 反応性ケィ素基を有する重合体としては、直鎖状、または分岐状の構造を有するレ、 ずれの重合体の使用も可能であり、その数平均分子量は GPCにおけるポリスチレン 換算において 3, 000〜: 100, 000力 S好まし < 3, 000〜50, 000力 Sより好ましぐ、 3, 0 00〜30, 000力 S特に好ましレ、0数平均分子量カ 3, 000〜100, 000では、硬ィ匕十生 組成物は作業性に有利となる適度な粘度を有し、得られる硬化物は伸び特性に優れ るものとなる。
[0038] 重合体 1分子中に含まれる反応性ケィ素基の数は、平均値として 1個以上が好まし く、 1.:!〜 5個がより好ましい。分子中に存在する反応性ケィ素基の数が平均して 1 個以上の場合、硬化性組成物は硬化性に優れ、得られる硬化物は良好なゴム弾性 挙動を発現する。反応性ケィ素基は、主鎖の末端あるいは側鎖の末端にあってもよく 、また、両方にあってもよい。特に、反応性ケィ素基が主鎖の末端にのみあるときは、 得られる硬化物に含まれる重合体成分の有効網目長が長くなるため、高強度、高伸 びで、低弾性率を示すゴム状硬化物が得られやすくなる。
[0039] 前記ポリオキシアルキレン系重合体は、本質的に一般式 (6):
-R7-0- (6)
(式中、 R7は炭素原子数 1から 14の直鎖状もしくは分岐アルキレン基である。)で示さ れる繰り返し単位を有する重合体であり、一般式(6)における R7は、炭素原子数 1か ら 14の、さらには 2力 4の、直鎖状もしくは分岐状アルキレン基が好ましい。一般式( 6)で示される繰り返し単位の具体例としては、
[0040] [化 1]
CH3 2H5
I I
— CH20 - 一 CH2CH20—— CH2CHO—— CH2CHO——
CH3
— CH2-CO— —— CH2CH2CH2CH2O
CH3
[0041] 等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、 1種類だけの繰り返 し単位からなってもよいし、 2種類以上の繰り返し単位からなってもよレ、。特にシーラ ント等に使用される場合には、プロピレンォキシド重合体を主成分とする重合体から 成るものが非晶質であることや比較的低粘度であることから好ましい。
[0042] ポリオキシアルキレン系重合体の製造方法としては、特に限定されず公知の方法が あげられ、たとえば、 K〇Hのようなアルカリ触媒による方法、特開昭 61— 215623号 に開示されている有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体 のような金属化合物—ボルフイリン錯体を触媒として用いた方法、特公昭 46— 2725 0号、特公昭 59— 15336号、米国特許 3278457号、米国特許 3278458号、米国 特許 3278459号、米国特許 3427256号、米国特許 3427334号、米国特許 3427 335号などに開示されている複合金属シアンィ匕物錯体を触媒として用いた方法、特 開平 10— 273512号に開示されているポリホスファゼン塩を触媒として用いた方法、 特開平 11— 060722号に開示されているホスファゼン化合物を触媒として用いた方 法などが挙げられる。
[0043] 反応性ケィ素基を有するポリオキシアルキレン系重合体の製造方法としては、特に 限定されず公知の方法があげられ、たとえば、特公昭 45— 36319号、同 46— 1215 4号、特開昭 50— 156599号、同 54— 6096号、同 55— 13767号、 ^]55- 13468 号、同 57— 164123号、特公平 3— 2450号、米国特許 3632557号、米国特許 434 5053号、米国特許 4366307号、米国特許 4960844号などに開示されてレヽる方法 、特開昭 61— 197631号、同 61— 215622号、同 61— 215623号、同 61— 21863 2号、特開平 3— 72527号、特開平 3— 47825号、特開平 8— 231707号などに開 示されている高分子量 (数平均分子量 6, 000以上)で分子量分布が狭い(MwZM nl. 6以下)重合体が得られる方法などが挙げられる。
[0044] 前記の反応性ケィ素基を有するポリオキシアルキレン系重合体は、単独で使用して もよいし 2種以上併用してもよい。
[0045] 前記飽和炭化水素系重合体は芳香環以外の炭素 炭素不飽和結合を実質的に 有さない重合体であり、その骨格をなす重合体は、(1)エチレン、プロピレン、 1ーブ テン、イソプチレンなどのような炭素原子数 2から 6のォレフイン系化合物を主モノマ 一として重合させるカ (2)ブタジエン、イソプレンなどのようなジェン系化合物を単 独重合させ、あるいは、前記ォレフィン系化合物とを共重合させた後、水素添加する などの方法により得ることができる力 イソブチレン系重合体や水添ポリブタジエン系 重合体は、末端に官能基を導入しやすぐ分子量を制御しやすぐまた、末端官能基 の数を多くすることができるので好ましぐイソブチレン系重合体が特に好ましい。
[0046] 主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、及び 、湿気遮断性に優れる特徴を有する。
[0047] イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されて いてもよいし、他単量体との共重合体でもよレ、が、ゴム特性の面からイソブチレンに由 来する繰り返し単位を 50重量%以上有するものが好ましぐ 80重量%以上有するも のがより好ましく、 90〜99重量%有するものが特に好ましい。
[0048] 飽和炭化水素系重合体の合成法としては、従来、各種重合方法が報告されてレ、る 、特に近年多くのいわゆるリビング重合が開発されている。飽和炭化水素系重合 体、特にイソブチレン系重合体の場合、 Kennedyらによって見出されたィニファー重 合 J. P. Kennedyら、 J. Polymer Sci. , Polymer Chem. Ed. 1997年、 1 5卷、 2843頁)を用いることにより容易に製造することが可能であり、分子量 500 1 00, 000程度を、分子量分布 1. 5以下で重合でき、分子末端に各種官能基を導入 できることが知られている。
[0049] 反応性ケィ素基を有する飽和炭化水素系重合体の製法としては、たとえば、特公 平 4— 69659号、特公平 7— 108928号、特開昭 63— 254149号、特開昭 64— 22 904号、特開平 1— 197509号、特許公報第 2539445号、特許公報第 2873395号 、特開平 7— 53882号の各明細書などに記載されているが、特にこれらに限定される ものではない。
[0050] 前記の反応性ケィ素基を有する飽和炭化水素系重合体は、単独で使用してもよい し 2種以上併用してもよい。
[0051] 前記 (メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル 系モノマーとしては特に限定されず、各種のものを用いることができる。例示するなら ば、 (メタ)アクリル酸、 (メタ)アクリル酸メチル、 (メタ)アクリル酸ェチル、 (メタ)アクリル 酸 n—プロピル、 (メタ)アクリル酸イソプロピル、 (メタ)アクリル酸 n—ブチル、 (メタ)ァ クリル酸イソブチル、 (メタ)アクリル酸 tert—ブチル、 (メタ)アクリル酸 n—ペンチル、 ( メタ)アクリル酸 n キシル、 (メタ)アクリル酸シクロへキシル、 (メタ)アクリル酸 n— ヘプチル、 (メタ)アクリル酸 n—ォクチル、 (メタ)アクリル酸 2—ェチルへキシル、 (メタ )アクリル酸ノニル、 (メタ)アクリル酸デシル、 (メタ)アクリル酸ドデシル、 (メタ)アクリル 酸フエニル、 (メタ)アクリル酸トルィル、 (メタ)アクリル酸ベンジル、 (メタ)アクリル酸 2 —メトキシェチル、 (メタ)アクリル酸 3—メトキシブチル、 (メタ)アクリル酸 2—ヒドロキシ ェチル、 (メタ)アクリル酸 2—ヒドロキシプロピル、 (メタ)アクリル酸ステアリル、 (メタ)ァ クリル酸グリシジル、 γ _ (メタクリロイルォキシプロピル)トリメトキシシラン、 γ—(メタ クリロイルォキシプロピル)ジメトキシメチルシラン、 (メタ)アクリル酸のエチレンォキサ イド付加物、 (メタ)アクリル酸トリフルォロメチルメチル、 (メタ)アクリル酸 2 _トリフルォ ロメチルェチル、 (メタ)アクリル酸 2_パーフルォロェチルェチル、 (メタ)アクリル酸 2 パーフルォロェチルー 2—パーフルォロブチルェチル、 (メタ)アクリル酸パーフル ォロェチル、 (メタ)アクリル酸トリフルォロメチル、 (メタ)アクリル酸ビス(トリフルォロメ チルメチル)、 (メタ)アクリル酸 2—トリフルォロメチルー 2—パーフルォロェチルェチ ノレ、 (メタ)アクリル酸 2 _パーフルォ口へキシルェチル、 (メタ)アクリル酸 2 _パーフル ォロデシルェチル、 (メタ)アクリル酸 2 _パーフルォ口へキサデシルェチル等の(メタ )アクリル酸系モノマーが挙げられる。
[0052] 前記(メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマー とともに、以下のビュル系モノマーを共重合することもできる。該ビュル系モノマーを 例示すると、スチレン、ビュルトノレェン、 ひ一メチルスチレン、クロルスチレン、スチレ ンスルホン酸及びその塩等のスチレン系モノマー;パーフルォロエチレン、パーフノレ ォロプロピレン、フッ化ビニリデン等のフッ素基を有するビュルモノマー;ビニノレトリメト キシシラン、ビュルトリエトキシシラン等のケィ素基を有するビュル系モノマー;無水マ レイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル; フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メ チルマレイミド、ェチルマレイミド、プロピルマレイミド、ブチルマレイミド、へキシルマレ イミド、ォクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フエニルマレイミ ド、シクロへキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタタリロニトリ ル等の二トリル基を有するビエル系モノマー;アクリルアミド、メタクリルアミド等のアミド 基を有するビニル系モノマー;酢酸ビエル、プロピオン酸ビエル、ビバリン酸ビニル、 安息香酸ビュル、桂皮酸ビュル等のビニルエステル類;エチレン、プロピレン等のァ ルケン類;ブタジエン、イソプレン等の共役ジェン類;塩化ビニル、塩化ビニリデン、塩 化ァリル、ァリルアルコール等が挙げられる。これらは、単独で用いても良いし、複数 を共重合させても構わない。
[0053] 前記化合物から得られる (メタ)アクリル酸エステル系の重合体のなかでも、スチレン 系化合物と (メタ)アクリル酸系化合物からなる共重合体を主鎖骨格に持つ重合体 (A )が、得られる硬化物が物性に優れることから好ましぐアクリル酸エステル系化合物 とメタクリル酸エステル系化合物からなる共重合体を主鎖骨格に持つ重合体 (A)がよ り好ましぐアクリル酸エステル系化合物からなる重合体を主鎖骨格に持つ重合体 (A )が特に好ましい。
[0054] 一般建築用途などに使用される場合、硬化性組成物としては低粘度であること、得 られる硬化物としては低モジュラス、高伸び、耐候、耐熱性であることなどが要求され る。
[0055] これらの要求を満たすものとして重合体 (A)の主鎖骨格がアクリル酸ブチル系化合 物からなるものがより好ましい。
[0056] 一方、 自動車用途などに使用される場合、得られる硬化物としては耐油性に優れる ことなどが要求される。
[0057] 得られる硬化物が耐油性に優れる硬化性組成物としては、重合体 (A)の主鎖骨格 がアクリル酸ェチルを主とした共重合体からなるものがより好ましい。
[0058] このアクリル酸ェチルを主とした共重合体を主鎖骨格とする重合体 (A)を含む硬化 性組成物は、得られる硬化物が耐油性に優れるが低温特性(耐寒性)にやや劣る傾 向があり、低温特性を向上させる目的で、アクリル酸ェチルの一部をアクリル酸ブチ ルに置き換えることが行われる。ただし、アクリル酸ブチルの比率を増やすに伴いそ の良好な耐油性が損なわれる傾向があるため、耐油性を要求される用途に使用する 際は、その比率は 40%以下にするのが好ましぐ更には 30%以下にするのがより好 ましい。
[0059] また、耐油性を損なわずに低温特性などを改善するために側鎖のアルキル基に酸 素が導入されたアクリル酸 2—メトキシェチルゃアクリル酸 2—エトキシェチルなどを 共重合体成分に用いるのも好ましい。
[0060] ただし、側鎖にエーテル結合を持つアルコキシ基の導入により、得られる硬化物は 耐熱性が劣る傾向にあるため、耐熱性が要求される用途に使用する際は、その比率 を 40%以下にするのが好ましい。
[0061] 各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等 の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例え ば、限定はされなレ、が耐油性や耐熱性、低温特性等の物性バランスに優れてレ、る例 としては、アクリル酸ェチル /アクリル酸ブチル Zアクリル酸 2—メトキシェチル(重量 比で 40〜50/20〜30Z30〜20)の共重合体が挙げられる。本発明においては、 これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構 わなぐその際は、これらの好ましいモノマーが重量比で 40%以上含まれていること が好ましい。なお前記表現形式で例えば (メタ)アクリル酸とは、アクリル酸および/あ るいはメタクリル酸を表す。
[0062] (メタ)アクリル酸エステル系重合体の合成法としては、特に限定されず、公知の方 法で行えばよい。但し、重合開始剤としてァゾ系化合物、過酸化物などを用いる通常 のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に 2以上と大 きぐ粘度が高くなるという問題を有している。従って、分子量分布が狭ぐ粘度の低 い (メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官 能基を有する (メタ)アクリル酸エステル系重合体を得るためには、リビングラジカル重 合法を用いることが好ましい。
[0063] 「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホ ニル化合物等を開始剤、遷移金属錯体を触媒として (メタ)アクリル酸エステル系モノ マーを重合する「原子移動ラジカル重合法」は、前記の「リビングラジカル重合法」の 特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤 や触媒の設計の自由度が大きいことから、特定の官能基を有する(メタ)アクリル酸ェ ステル系重合体の製造方法としてはさらに好ましい。この原子移動ラジカル重合法と しては例えば、 Matyjaszewskiら、ジャーナル'ォブ'アメリカン'ケミカルソサエティ 一 l. Am. Chem. Soc. ) 1995年、 117卷、 5614頁など力 S挙げられる。
[0064] 反応性ケィ素基を有する(メタ)アクリル酸エステル系重合体の製法としては、たとえ ば、特公平 3— 14068号公報、特公平 4 55444号公報、特開平 6— 211922号公 報等に、連鎖移動剤を用いたフリーラジカル重合法を用いた製法が開示されている 。また、特開平 9一 272714号公報等に、原子移動ラジカル重合法を用いた製法が 開示されている力 特にこれらに限定されるものではない。
[0065] 前記の反応性ケィ素基を有する(メタ)アクリル酸エステル系重合体は、単独で使用 してもよいし 2種以上併用してもよい。
[0066] 反応性ケィ素基を有する重合体は、単独で使用してもよいし 2種以上併用してもよ レ、。具体的には、反応性ケィ素基を有するポリオキシアルキレン系重合体、反応性ケ ィ素基を有する飽和炭化水素系重合体、反応性ケィ素基を有する (メタ)アクリル酸 エステル系重合体、力 なる群から選択される 2種以上をブレンドしてなる重合体も使 用できる。
[0067] 反応性ケィ素基を有するポリオキシアルキレン系重合体と反応性ケィ素基を有する
(メタ)アクリル酸エステル系重合体をブレンドしてなる重合体の製造方法は、特開昭 59— 122541号、特開昭 63— 112642号、特開平 6— 172631号、特開平 11— 11 6763号公報等に提案されているが、特にこれらに限定されるものではなレ、。好まし い具体例は、反応性ケィ素基を有し分子鎖が実質的に、下記一般式 (7):
-CH -C (R8) (COOR9) - (7)
2
(式中、 R8は水素原子またはメチル基、 R9は炭素原子数 1から 8のアルキル基を示す )で表される炭素原子数 1から 8のアルキル基を有する(メタ)アクリル酸エステル単量 体単位と、下記一般式 (8) :
CH— C (R8) (COOR10) (8)
2
(式中、 R8は前記に同じ、 R1Qは炭素原子数 10以上のアルキル基を示す)で表される 炭素原子数 10以上のアルキル基を有する(メタ)アクリル酸エステル単量体単位から なる共重合体に、反応性ケィ素基を有するポリオキシアルキレン系重合体をブレンド して製造する方法である。
[0068] 前記一般式(7)の R9としては、たとえばメチル基、ェチル基、プロピル基、 n—プチ ル基、 t ブチル基、 2—ェチルへキシル基等の炭素原子数 1から 8、好ましくは 1か ら 4、さらに好ましくは 1または 2のアルキル基が挙げられる。なお、 R9のアルキル基は 単独でもよぐ 2種以上混合していてもよい。
[0069] 前記一般式(8)の R1Qとしては、たとえばラウリル基、トリデシノレ基、セチル基、ステア リル基、ベへニル基等の炭素原子数 10以上、通常は 10から 30、好ましくは 10から 2 0の長鎖のアルキル基が挙げられる。なお、 R1Qのアルキル基は単独でもよぐ 2種以 上混合したものであってもよレ、。
[0070] 該 (メタ)アクリル酸エステル系共重合体の分子鎖は実質的に式(7)及び式 (8)の 単量体単位からなるが、ここでレ、う「実質的に」とは該共重合体中に存在する式(7) 及び式(8)の単量体単位の合計が 50重量%をこえることを意味する。式(7)及び式( 8)の単量体単位の合計は好ましくは 70重量%以上である。
[0071] また式(7)の単量体単位と式(8)の単量体単位の存在比は、重量比で 95 : 5〜40: 60力 S好ましく、 90: 10〜60: 40力 Sさらに好ましレ、。
[0072] 該共重合体に含まれていてもよい式(7)及び式(8)以外の単量体単位としては、た とえばアクリル酸、メタクリル酸等のアクリル酸; N—メチロールアクリルアミド、 N—メチ ロールメタクリルアミド等のアミド基、グリシジルアタリレート、グリシジルメタタリレート等 のエポキシ基、ジェチルアミノエチルアタリレート、ジェチルアミノエチルメタタリレート 、等の窒素を含む有機基を有する単量体;その他アクリロニトリル、スチレン、 ひ一メ チルスチレン、アルキルビニルエーテル、塩化ビュル、酢酸ビュル、プロピオン酸ビ ニル、エチレン等に起因する単量体単位が挙げられる。
[0073] 反応性ケィ素基を有する飽和炭化水素系重合体と反応性ケィ素基を有する (メタ) アクリル酸エステル系共重合体をブレンドしてなる重合体は、特開平 1一 168764号 、特開 2000— 186176号公報等に提案されている力 特にこれらに限定されるもの ではない。
[0074] さらに、反応性ケィ素官能基を有する (メタ)アクリル酸エステル系共重合体をプレン ドしてなる重合体の製造方法としては、他にも、反応性ケィ素基を有する重合体の存 在下で (メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。この製造 方法は、特開昭 59— 78223号、特開昭 59— 168014号、特開昭 60— 228516号、 特開昭 60— 228517号等の各公報に具体的に開示されている力 これらに限定さ れるものではない。
[0075] 一方、重合体の主鎖骨格中には本発明の効果を大きく損なわない範囲でウレタン 結合成分等の他の成分を含んでいてもよい。
[0076] 前記ウレタン結合成分としては特に限定されないが、イソシァネート基と活性水素 基との反応により生成する基(以下、アミドセグメントともいう)を挙げることができる。
[0077] 前記アミドセグメントは一般式(9):
-NRnC ( = 0) - (9)
(R11は水素原子または置換あるいは非置換の有機基を表す)で表される基である。
[0078] 前記アミドセグメントとしては、具体的には、イソシァネート基と水酸基との反応によ り生成するウレタン基;イソシァネート基とアミノ基との反応により生成する尿素基;イソ シァネート基とメルカプト基との反応により生成するチォウレタン基などを挙げることが できる。また、本発明では、前記ウレタン基、尿素基、及び、チォウレタン基中の活性 水素が、更にイソシァネート基と反応して生成する基も、一般式(9)の基に含まれる。
[0079] アミドセグメントと反応性ケィ素基を有する重合体の工業的に容易な製造方法を例 示すると、末端に活性水素を含む基を有する重合体に、過剰のポリイソシァネートイ匕 合物を反応させて、ポリウレタン系主鎖の末端にイソシァネート基を有する重合体とし た後、あるいは同時に、該イソシァネート基の全部または一部に一般式(10):
U-R12- SiR3 Z (10)
d
(ただし、式中、
Figure imgf000019_0001
Z、 dは前記と同じ。 R12は、 2価の有機基であり、より好ましくは炭 素原子数 1から 20の置換あるいは非置換の 2価の炭化水素基である。 Uは水酸基、 カルボキシル基、メルカプト基、非置換または一置換のァミノ基から選ばれた活性水 素を有する基である。 )で表されるケィ素化合物の U基を反応させる方法により製造さ れるものを挙げること力 Sできる。この製造方法に関連した、重合体の公知の製造法を 例示すると、特公昭 46— 12154号(米国特許 3632557号)、特開昭 58— 109529 号(米国特許 4374237号)、特開昭 62— 13430号(米国特許 4645816号)、特開 平 8— 53528号(EP0676403)、特開平 10— 204144号(EP0831108)、特表 20 03— 508561 (米国特許 6197912号)、特開平 6— 211879号(米国特許 536495 5号)、特開平 10— 53637号(米国特許 5756751号)、特開平 11— 100427号、特 開 2000— 169544号、特開 2000— 169545号、特開 2002— 212415号、特許第 3313360号、米国特許 4067844号、米国特許 3711445号、特開 2001— 32304 0号、などが挙げられる。
[0080] また、末端に活性水素を含む基を有する重合体に、一般式(11):
0 = C = N -R12- SiR3 Z (11)
3-d d
(ただし、式中 R3、 R12、 Z、 dは前記に同じ。)で示される反応性ケィ素基を有するイソ シァネートイ匕合物とを反応させることにより製造されるものを挙げることができる。この 製造方法に関連した、重合体の公知の製造法を例示すると、特開平 1 1— 279249 号(米国特許 5990257号)、特開 2000— 119365号(米国特許 6046270号)、特 開昭 58— 29818号(米国特許 4345053号)、特開平 3— 47825号(米国特許 506 8304号)、特開平 11— 60724号、特開 2002— 155145号、特開 2002— 249538 号、 WO03/018658, WO03/059981など力 S挙げられる。
[0081] 末端に活性水素を含む基を有する重合体としては、末端に水酸基を有するォキシ アルキレン重合体(ポリエーテルポリオール)、ポリアクリルポリオール、ポリエステルポ リオール、末端に水酸基を有する飽和炭化水素系重合体 (ポリオレフインポリオール) 、ポリチオール化合物、ポリアミン化合物、ポリアルキレンィミン、ポリシロキサンなどが 挙げられる。これらの中でも、ポリエーテルポリオール、ポリアクリルポリオール、ポリオ レフインポリオール、および、ポリシロキサンは、得られる重合体のガラス転移温度が 比較的低ぐ得られる硬化物が耐寒性に優れることから好ましい。特に、ポリエーテル ポリオールは、得られる重合体の粘度が低く作業性が良好であり、深部硬化性が良 好である為に特に好ましい。また、ポリアクリルポリオールおよび飽和炭化水素系重 合体は、得られる重合体の硬化物の耐候性 ·耐熱性が良好である為により好ましい。
[0082] ポリエーテルポリオールとしては、レ、かなる製造方法において製造されたものでも使 用することが出来るが、全分子平均で分子末端当り少なくとも 0. 7個の水酸基を末端 に有するものが好ましい。具体的には、従来のアルカリ金属触媒を使用して製造した ォキシアルキレン重合体や、複合金属シアン化物錯体ゃセシウムの存在下、少なくと も 2つの水酸基を有するポリヒドロキシ化合物などの開始剤に、アルキレンォキシドを 反応させて製造されるォキシアルキレン重合体などが挙げられる。
[0083] 前記の各重合法の中でも、複合金属シアン化物錯体を使用する重合法は、より低 不飽和度で、 Mw/Mnが狭ぐより低粘度でかつ、高耐酸性、高耐候性のォキシァ ルキレン重合体を得ることが可能であるため好ましい。
[0084] 前記ポリアクリルポリオールとしては、(メタ)アクリル酸アルキルエステル(共)重合体 を骨格とし、かつ、分子内にヒドロキシル基を有するポリオールを挙げることができる。 この重合体の合成法は、分子量分布が狭ぐ低粘度化が可能なことからリビングラジ カル重合法が好ましぐ原子移動ラジカル重合法がさらに好ましい。また、特開 2001 — 207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、 高圧で連続塊状重合によって得た、いわゆる SGOプロセスによる重合体を用いるの が好ましい。具体的には、東亞合成 (株)製の UH— 2000等が挙げられる。
[0085] 前記ポリイソシァネート化合物の具体例としては、トルエン(トリレン)ジイソシァネー ト、ジフエニルメタンジイソシァネート、キシリレンジイソシァネート等の芳香族系ポリイ ソシァネート;イソフォロンジイソシァネート、へキサメチレンジイソシァネート等の脂肪 族系ポリイソシァネートなどを挙げることができる。
[0086] 一般式(10)のケィ素化合物としては特に限定はないが、具体的に例示すると、 y —ァミノプロピルトリメトキシシラン、 N- ( j3—アミノエチル)一 Ί—ァミノプロピルトリメ トキシシラン、 γ—(Ν—フエニル)ァミノプロピルトリメトキシシラン、 Ν—ェチルアミノィ ソブチルトリメトキシシラン、 Ν—シクロへキシルァミノメチルトリエトキシシラン、 Ν—シ クロへキシルアミノメチルジェトキシメチルシラン、 Ν—フエニルアミノメチルトリメトキシ シラン、等のアミノ基を有するシラン類; Ί—ヒドロキシプロピルトリメトキシシラン等のヒ ドロキシ基を有するシラン類; Ύ—メルカプトプロピルトリメトキシシラン等のメルカプト 基を有するシラン類;等が挙げられる。また、特開平 6— 211879号 (米国特許 5364 955号)、特開平 10— 53637号(米国特許 5756751号)、特開平 10— 204144号( EP0831108)、特開 2000— 169544号、特開 2000— 169545号に記載されてレヽ る様に、各種の α , β 不飽和カルボニル化合物とアミノ基を有するシランとの Mich ael付加反応物、または、各種の(メタ)アタリロイル基を有するシランとアミノ基を有す る化合物との Michael付加反応物もまた、一般式(10)のケィ素化合物として用いる こと力 Sできる。
[0087] 一般式(11)の反応性ケィ素基を有するイソシァネートィヒ合物としては特に限定は ないが、具体的に例示すると、 γ—トリメトキシシリルプロピルイソシァネート、 γ—トリ
シァネート、ジメトキシメチルシリルメチルイソシァネート等が挙げられる。また、特開 2 000— 119365号(米国特許 6046270号)(こ記載されてレ、る様 (こ、一般式(10)のケ ィ素化合物と、過剰の前記ポリイソシァネートイヒ合物を反応させて得られる化合物も また、一般式(11)の反応性ケィ素基を有するイソシァネートイ匕合物として用いること ができる。 [0088] 本発明の (A)成分である重合体の主鎖骨格中にアミドセグメントが多いと、重合体 の粘度が高くなる傾向がある。また、貯蔵後に粘度が上昇する場合もあり、得られる 組成物の作業性が低下する場合がある。従って、貯蔵安定性や作業性の優れた組 成物を得るためには、実質的にアミドセグメントを含まないことが好ましい。一方、 (A) 成分の主鎖骨格中のアミドセグメントによって、本発明の組成物の硬化性が向上する 傾向がある。従って、(A)成分の主鎖骨格中にアミドセグメントを含む場合、アミドセ グメントは 1分子あたり平均で、 1〜: 10個が好ましぐ 1. 5〜5個力 Sより好ましく、 2〜3 個が特に好ましい。 1個よりも少ない場合には、硬化性が十分ではない場合があり、 1 0個よりも大きレ、場合には、重合体が高粘度となり作業性の悪レ、組成物となる場合が ある。
[0089] また、前記方法により、一般式(10)または一般式(11)の化合物を用いて製造され る重合体の中で、 R12が— CH—である化合物からなる重合体は、特に優れた硬化
2
性が得られる傾向にある。
[0090] 本発明の硬化性組成物は、反応性ケィ素基を有する重合体の硬化触媒( (B)成分 、(C)成分)として一般式 (1) :
R1 SiF (1)
4— a a
(式中、(4— a)個の R1はそれぞれ独立に、置換あるいは非置換の炭素原子 1から 20 の炭化水素基、または R2 SiO—(R2はそれぞれ独立に、炭素原子数 1から 20の置
3
換あるいは非置換の炭化水素基またはフッ素原子である)で示されるシロキシ基から なる群より選択される少なくとも 1つである。また、 aは 1 , 2, 3のいずれかである。)で 示されるフルォロシラン類 (B)とァミン系化合物(C)を必須成分とする。
[0091] (B)成分および (C)成分はそれぞれ単独で使用しても、硬化触媒として作用し得る 力 充分な硬化性を得るためには併用して使用することが必要である。
[0092] すでに特開平 8— 104753号公報などに、アルコキシシランをカ卩水分解.縮合させ てオノレガノポリシロキサンを製造するための触媒として、 Si_F結合を有する化合物 が開示されている。該特許などに記載の加水分解 '縮合触媒と、本発明の (A)成分 である反応性ケィ素基を有する重合体の硬化触媒は、本質的には同じ反応の触媒と して作用すると考えられる。し力 ながら、本発明の(B)成分であるフルォロシラン類 力 反応性ケィ素基を有する重合体の硬化触媒として使用された具体例はこれまで になかった。また、本発明に至るまでに、本発明者が実際にフルォロシラン類 (B)の みを重合体 (A)の硬化触媒として使用したところ、極めて低い反応性しか示さないこ とが明らかとなった。
[0093] 一方、本発明の(C)成分であるアミン系化合物も反応性ケィ素基を有する重合体 の硬化触媒として既知である。し力、しながら、その硬化性は必ずしも充分でなぐ実用 的な硬化速度を得るためには、特開平 5 - 117519号公報に開示されてレ、るように、 カルボン酸等と併用するなどの工夫が必要であった。
[0094] 本発明では、(B)成分のフルォロシラン類と(C)成分のアミン系化合物を併用する ことで、それぞれ単独成分だけでは得られない高い硬化性が得られることを見出した
[0095] 本発明に使用する(B)成分のフルォロシラン類は、市販の試薬を用いても良いし、 原料化合物から合成してもよい。フルォロシラン類を合成するための原料化合物とし ては、アルコキシシラン類、シロキサン類、ハロシラン類(フルォロシラン類を除く)、ヒ ドロシラン類が挙げられる。それぞれアルコキシシリル基、シロキサン結合、ハロシリル 基、ヒドロシリノレ基を、公知の方法により、各種フッ素化剤を用いてフルォロシリル基 に変換することで目的のフルォロシラン類が得られる。
[0096] アルコキシシラン類のフッ素化に使用されるフッ素化剤の具体例としては、特に限 定されず、例えば、 NH F、 Bu NF、 HFゝ BF、 Et NSF 、 HSO F、 SbF 、 VOF 、
4 4 3 2 3 3 5 3
CF CHFCF NEtなどが挙げられる。また、ハロシラン類のフッ素化に使用されるフ
3 2 2
ッ素化剤の具体例としては、特に限定されず、例えば、 AgBF 、 SbF、 ZnF、 NaF、
4 3 2
KF、 CsF、 NH F、 CuF、 NaSiF、 NaPF、 NaSbF、 NaBF、 Me SnF、 KF (HF
4 2 6 6 6 4 3
) などが挙げられる。更に、ヒドロシラン類のフッ素化に使用されるフッ素化剤の具
1.5〜5
体例としては、特に限定されず、例えば、 AgF、 PF、 Ph CBF、 SbF、 NOBF、 N
5 3 4 3 4
O BFなどが挙げられる。また、シロキサン結合を有する化合物は BFなどにより開裂
2 4 3
し、フルォロシラン類が得られる。
[0097] なお、前記のフッ素化に関しては Organometallics 1996年, 15, 2478頁(Ishi kawaほか)などに紹介されている。 [0098] これらのフッ素化剤を用いたフルォロシラン類の合成方法のなかでも、反応が簡便 であること、反応効率が高いこと、安全性が高いことなどから、 BFを用いたアルコキ
3
シシランのフッ素化法、 CuFまたは ZnFを用いたクロロシランのフッ素化法が好まし
2 2
い。
[0099] BFとしては、 BFガス、 BFエーテル錯体、 BFチォエーテル錯体、 BFアミン錯
3 3 3 3 3 体、 BFアルコール錯体、 BFカルボン酸錯体、 BFリン酸錯体、 BF水和物等が使
3 3 3 3 用できるが、取扱いが容易であることなどから BFエーテル錯体、 BFチォエーテル
3 3
錯体、 BFアミン錯体、 BFアルコール錯体、 BFカルボン酸錯体、 BF水和物が好
3 3 3 3
ましい。中でも BFエーテル錯体、 BFアルコール錯体、 BF水和物は反応性が高く
3 3 3
好ましぐ BFエーテル錯体が特に好ましい。
3
[0100] (B)成分であるフルォロシラン類の具体例としては、フルォロトリメチルシラン、フル ォロトリエチルシラン、フルォロトリプロピルシラン、フルォロトリブチルシラン、フルォロ ジメチルビニルシラン、フルォロジメチルフエニルシラン、フルォロジメチルベンジル シラン、フルォロジメチル(3—メチルフエ二ノレ)シラン、フルォロジメチル(4ーメチルフ ェニル)シラン、フルォロジメチル(4 クロ口フエニル)シラン、フルォロトリフエニルシ ラン、ジフルォロジメチルシラン、ジフルォロジェチルシラン、ジフルォロジブチルシラ ン、ジフルォロメチルフエニルシラン、ジフルォロジフエニルシラン、トリフルォロェチ ノレシラン、トリフルォロプロビルシラン、トリフルォロブチルシラン、トリフルオロフェニル シラン、 γ—メタクリロキシプロピルフルォロジメチルシラン、 γ—メタクリロキシプロピ ノレジフルォロメチルシラン、 γ—メタクリロキシプロピルトリフルォロシラン、 3—メルカ プトプロピルトリフルォロシラン、ォクタデシルフルォロジメチルシラン、ォクタデシルジ フルォロメチルシラン、ォクタデシルトリフルォロシラン、 1, 3—ジフルオロー 1, 1 , 3, 3—テトラメチルジシロキサン、テトラフルォロシラン、ォクタフルォロトリシラン、 1 , 3, 5, 7 テトラフルォ口一 1, 3, 5, 7 テトラシラトリシクロ [3. 3. 1. 1 (3, 7) ]デカン、 1 , 1—ジフルォロ一 1—シラシクロ一 3 ペンテン、フルォロトリス(トリメチルシロキシ) シランなどが挙げられる力 これらに限定されるものではない。
[0101] これらのなかでも、原料の入手が容易なこと、合成が容易なことなどから、フルォロ ジメチルビニルシラン、フルォロジメチルフエニルシラン、フルォロジメチルベンジル シラン、 γ—メタクリロキシプロピルフルォロジメチルシラン、 γ—メタクリロキシプロピ ノレジフルォロメチルシラン、 γ—メタクリロキシプロピルトリフルォロシラン、 3—メルカ プトプロピルトリフルォロシラン、ォクタデシルフルォロジメチルシラン、ォクタデシルジ フルォロメチルシラン、ォクタデシルトリフルォロシラン、 1, 3—ジフルオロー 1, 1 , 3, 3—テトラメチルジシロキサン等が好ましい。
[0102] (Β)成分の分子量が大きくなると、充分な効果を得るために必要な添加量が増える 場合があるため、経済的に不利となりうる。従って(Β)成分の分子量は 3000以下で あることが好ましい。また、取り扱い易さ'安全性の観点から、常温常圧で液状である ものが好ましく、揮発性の低いものが好ましい。 (Β)成分は単独で使用してもよいし、 2種以上を併用してもよい。
[0103] (Β)成分の使用量としては、 (Α)成分 100重量部に対し、 0. 00:!〜 20重量部が好 ましく、 0. 01〜: 10重量部がより好ましぐ 0.:!〜 5重量部が特に好ましい。 (Β)成分 の使用量が 0. 001〜20重量部の場合、経済的に充分実施可能な範囲であり、硬化 性組成物は適度な硬化速度と可使時間を有し、作業性の良好なものとなる。また、貯 蔵による硬化速度の低下を抑制することが出来るため賞味期間の制限も実用上問題 とならないものとなる。
[0104] (C)成分であるアミン系化合物には、ピリジンなどの含窒素環式ィ匕合物も含まれる。
アミン系化合物(C)としては、具体的には、メチルァミン、ェチルァミン、プロピルアミ ン、イソプロピルァミン、ブチルァミン、アミルァミン、へキシルァミン、ォクチルァミン、 2—ェチルへキシルァミン、ノニルァミン、デシルァミン、ラウリルァミン、ペンタデシル ァミン、セチルァミン、ステアリルァミン、シクロへキシルァミン等の脂肪族第一級アミ ン類;ジメチルァミン、ジェチルァミン、ジプロピルァミン、ジイソプロピルァミン、ジブ チノレアミン、ジァミノレアミン、ジへキシルァミン、ジォクチルァミン、ジ(2—ェチルへキ シル)ァミン、ジデシルァミン、ジラウリルァミン、ジセチルァミン、ジステアリルァミン、メ チルステアリルァミン、ェチルステアリルァミン、プチルステアリルアミン等の脂肪族第 二級アミン類;トリアミルァミン、トリへキシルァミン、トリオクチルァミン等の脂肪族第三 級ァミン類;トリアリルァミン、ォレイルァミン、などの脂肪族不飽和アミン類;ァニリン、 ラウリノレア二リン、ステアリルァニリン、トリフエニルァミン等の芳香族ァミン類;ピリジン 、 2—アミノビリジン、 2— (ジメチルァミノ)ピリジン、 4— (ジメチルァミノピリジン)、 2— ヒドロキシピリジン、イミダゾール、 2 ェチルー 4ーメチルイミダゾール、モルホリン、 N メチルモルホリン、ピぺリジン、 2—ピペリジンメタノール、 2—(2—ピペリジノ)ェタノ 一ノレ、ピぺリドン、 1, 2—ジメチノレ一 1, 4, 5, 6—テトラヒドロピリミジン、 1 , 8—ジァザ ビシクロ(5, 4, 0)ゥンデセン _ 7 (DBU)、 6 _ (ジブチルァミノ)_ 1 , 8—ジァザビシ クロ(5, 4, 0)ゥンデセン _ 7 (DBA_DBU)、 1, 5—ジァザビシクロ(4, 3, 0)ノネン _ 5 (DBN)、 1 , 4—ジァザビシクロ(2, 2, 2)オクタン(DABCO)、アジリジン等の複 素環式化合物、および、その他のアミン類として、モノエタノールァミン、ジエタノール ァミン、トリエタノールァミン、 3—ヒドロキシプロピルァミン、エチレンジァミン、プロピレ ンジァミン、へキサメチレンジァミン、 N—メチル一1 , 3 _プロパンジァミン、 N, N' - ジメチノレ一 1 , 3 _プロパンジァミン、ジエチレントリァミン、トリエチレンテトラミン、 2_ (2—アミノエチルァミノ)エタノール、ベンジルァミン、 3—メトキシプロピルァミン、 3 _ ラウリルォキシプロピルァミン、 3—ジメチルァミノプロピルァミン、 3—ジェチルアミノプ 口ピルァミン、 3 ジブチルァミノプロピルァミン、 3 モルホリノプロピルァミン、 2—(1 —ピぺラジュル)ェチルァミン、キシリレンジァミン、 2, 4, 6 トリス(ジメチノレアミノメチ ノレ)フエノールなどのアミン類;グァニジン、フエニルダァニジン、ジフエニルダァニジ ンなどのグァニジン類;ブチルビグアニド、 1—o トリルビグアニドや 1—フエニルビグ アニド等のビグアニド類、等が挙げられる力 これらに限定されるものではない。
[0105] これらの中でも、 1 , 2 ジメチノレー 1 , 4, 5, 6 テトラヒドロピリミジン、 DBU、 DBA — DBU、 DBN等のアミジン類;グァニジン、フエニルダァニジン、ジフエニルダァニジ ンなどのグァニジン類;ブチルビグアニド、 1—o トリルビグアニドや 1—フエニルビグ アニド等のビグアニド類は (A)成分である重合体に対して高い触媒活性を示すことか ら好ましレ、。また、 l _o_トリルビグアニドや 1—フエニルビグアニド等のァリール置換 ビグアニド類は、得られる硬化物が高レ、接着性を示すことから好ましレ、。
[0106] また、アミン系化合物は塩基性を示す力 共役酸の pKa値が 11以上の値を示すァ ミン系化合物は (A)成分である重合体に対して触媒活性が高く好ましい。特に DBU や DBNは共役酸の pKa値が 12以上であり、高い触媒活性を示すためより好ましい。
[0107] 本発明では(C)成分のアミン系化合物として、アミノ基を有するシランカップリング 剤(以下、アミノシランと言う)も使用できる。アミノシランは、加水分解性基が結合した ケィ素原子を含む基(以下加水分解性ケィ素基とレ、う)及び、置換あるいは非置換の アミノ基を有する化合物である。置換アミノ基の置換基としては、アルキル基、ァラノレ キル基、ァリール基が挙げられる。この加水分解性ケィ素基の例としては、一般式(2 )で表される基の内、 Zが加水分解性基である物を挙げることができる。具体的には、 加水分解性基として既に例示した基を挙げることができるが、メトキシ基、エトキシ基 等が加水分解速度の点から好ましレ、。
[0108] なお、アミノシラン中のケィ素原子と結合する加水分解性基の個数は、 2個以上、特 に 3個以上が好ましい。
[0109] アミノシランとしては、具体的には、たとえば、 Ί—ァミノプロピルトリメトキシシラン、 y—ァミノプロピルトリエトキシシラン、 γ—ァミノプロピルトリイソプロポキシシラン、 Ί —ァミノプロピルメチルジメトキシシラン、 γ—ァミノプロピルメチルジェトキシシラン、 γ - (2—アミノエチル)ァミノプロピルトリメトキシシラン、 γ - (2—アミノエチル)ァミノ プロピルメチルジメトキシシラン、 γ— (2—アミノエチル)ァミノプロピルトリエトキシシラ ン、 γ—(2—アミノエチル)ァミノプロピルメチルジェトキシシラン、 γ—(2—アミノエ チル)ァミノプロピルトリイソプロポキシシラン、 γ—(2— (2—アミノエチル)アミノエチ ノレ)ァミノプロピルトリメトキシシラン、 γ—(6—ァミノへキシル)ァミノプロピルトリメトキ シシラン、 3 - (Ν ェチルァミノ) 2 メチルプロピルトリメトキシシラン、 γ—ゥレイ ドプロビルトリメトキシシラン、 γ—ウレイドプロピルトリエトキシシラン、 Ν フエニル一 ラン、 Ν ビニルベンジル一 γ—ァミノプロピルトリエトキシシラン、 Ν シクロへキシ ルァミノメチルトリエトキシシラン、 Ν—シクロへキシルアミノメチルジェトキシメチルシラ ン、 Ν フエニルアミノメチルトリメトキシシラン、 (2—アミノエチル)アミノメチルトリメト キシシラン、 Ν, N'—ビス [3— (トリメトキシシリル)プロピル]エチレンジァミン等が挙 げられる力 これらに限定されるものではない。
[0110] これらのアミノシランのなかでは、硬化性が良好なことからアミノ基(_ΝΗ )を有す
2 るアミノシランが好ましぐ入手が容易なことから γ—アミノプロピルトリメトキシシラン、 y—ァミノプロピルトリエトキシシラン、 γ—ァミノプロピルメチルジメトキシシラン、 Ί — (2—アミノエチル)ァミノプロピルトリメトキシシランが好ましい。
[0111] また、加水分解によって前記のァミン化合物を生成するようなケチミンも本発明の(
C)成分として使用できる。
[0112] (C)成分であるアミン系化合物は単独で使用してもよいし、 2種以上を併用してもよ レ、。
[0113] (C)成分の使用量としては、(A)成分 100重量部に対し、 0. 00:!〜 20重量部が好 ましく、更には 0. 1〜: 10重量部が好ましい。 (C)成分の配合量が 0. 001〜20重量 部の場合、硬化性組成物は適度な硬化速度と可使時間を有し作業性の良好なもの となる、また、貯蔵による硬化速度の低下を抑制することが出来るため使用期間の制 限も実用特性上問題とならない。
[0114] 本発明において、—R1 SiF (式中、 R1は一般式(1)中に記載の表記に同じ)で
3-a a
示されるフルォロシリル基を有するァミン化合物は(B)成分および (C)成分両方の役 割を果たす。このような化合物を硬化触媒として用いれば単独でも充分な硬化性を 得ること力 S期待できる。具体的には、 3—ァミノプロピルフルォロジメチルシラン、フル ォロジメチル(4—ジメチルァミノフエニル)シラン等が挙げられる。
本発明の硬化性組成物中には、必要に応じて、接着性付与剤として、シランカップ リング剤を添カ卩できる。
[0115] ここでシランカップリング剤とは、分子中に加水分解性ケィ素基とそれ以外の官能 基を有する化合物で、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無 機基材;塩ビ、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネート など有機基材;など各種被着体と得られる硬化物の間の接着性を、ノンプライマ一条 件下またはプライマー処理条件下で、著しく改善する効果を示すものである。
[0116] 特に、シランカップリング剤をノンプライマー条件下で使用した場合には、硬化物の 各種被着体に対する接着性改善効果が特に顕著である。これら効果に加えて、シラ ンカップリング剤は物性調整剤、無機充填剤などの分散性改良剤などとして機能し 得る化合物である。
[0117] シランカップリング剤中の加水分解性ケィ素基としては、一般式(2)で示される基の なかで、 Zが加水分解性基であるものが挙げられる。具体的には、加水分解性基とし て (A)成分である重合体の実施形態で既に記載済みの基をあげることができる。この なかでも、加水分解性が穏やかで取り扱いやすいことから、メトキシ基、エトキシ基な どが好ましい。ケィ素原子に結合する加水分解性基の個数は、 2個以上が好ましぐ 3個以上がより好ましい。
[0118] 加水分解性ケィ素基以外の官能基としては、特に限定されず、たとえば、置換また は非置換のアミノ基、メルカプト基、エポキシ基、カルボキシル基、ビュル基、イソシァ ネート基、イソシァヌレート、ハロゲンなどが挙げられる。これらのなかでは、置換また は非置換のアミノ基、エポキシ基、イソシァネート基、イソシァヌレートなどが得られる 硬化物の接着性改善効果が高レ、ことから好ましく、アミノ基がより好ましレ、。
[0119] なお、(C)成分のアミン系化合物の実施形態で既に記載したように加水分解性ケィ 素基とアミノ基の両方を有するシランカップリング剤は一般にアミノシランと呼ばれ、本 発明では硬化触媒としての機能も有する。なお、硬化性組成物にアミノシランを添カロ する際、接着性付与剤としての機能をより発揮させたい場合には、硬化触媒としての 必要量以上のアミノシランを添加するのが好ましい。
[0120] アミノシラン以外のシランカップリング剤としては、特に限定されず、たとえば、 γ - イソシァネートプロピルトリメトキシシラン、 γ—イソシァネートプロピルトリエトキシシラ ン、 Ί イソシァネートプロピノレメチノレジェトキシシラン、 γ イソシァネートプロピノレ ノレ)ジメトキシメチルシランなどのイソシァネートシラン類; Ν— (1, 3—ジメチルブチリ デン) 3—(トリエトキシシリル) 1 プロパンァミンなどのケチミン型シラン類; γ— メルカプトプロピルトリメトキシシラン、 γ メルカプトプロピルトリエトキシシラン、 γ— ラン、メルカプトメチルトリエトキシシランなどのメルカプトシラン類; γ—グリシドキシプ 口ピルトリメトキシシラン、 y—グリシドキシプロピルトリエトキシシラン、 y—グリシドキ シプロピノレメチノレジメトキシシラン、 β—(3, 4 _エポキシシクロへキシノレ)ェチノレトリメ トキシシラン、 j3 _ (3, 4_エポキシシクロへキシノレ)ェチノレトリエトキシシランなどのェ ポキシシラン類; β—カルボキシェチルトリエトキシシラン、 β—カルボキシェチルフ ェニルビス(2—メトキシェトキシ)シラン、 Ν— /3 _ (カルボキシメチル)アミノエチル一 γ—ァミノプロピルトリメトキシシランなどのカルボキシシラン類;ビエルトリメトキシシラ ン、ビュルトリエトキシシラン、 γ—メタクリロイルォキシプロピルメチルジメトキシシラン 、 γ—アタリロイルォキシプロピルトリエトキシシランなどのビニル型不飽和基を有する シラン類; —クロ口プロピルトリメトキシシランなどのハロゲンを有するシラン類;トリス (3—トリメトキシシリルプロピル)イソシァヌレートなどのイソシァヌレートシラン類などが 挙げられる。
[0121] さらに、シランカップリング剤としては、前記アミノシランとエポキシシランの反応物、 アミノシランとイソシァネートシランの反応物、アミノシランと(メタ)アタリロイルォキシ基 を有するシランの反応物など;前記シラン類を部分的に縮合した縮合体;これらを変 性した誘導体である、ァミノ変性シリルポリマー、シリル化ァミノポリマー、不飽和ァミノ シラン錯体、フエニルァミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポ リエステル;なども挙げられる。
[0122] 前記シランカップリング剤は、 1種類のみ添加しても良ぐ複数種を組み合わせて添 加してもよい。
[0123] シランカップリング剤を添加する場合、その添加量としては、 (Α)成分である重合体 100重量部に対し、 0. 01〜20重量部が好ましぐ 0.:!〜 10重量部がより好ましぐ 1 〜7重量部程度が特に好ましい。添加量が 0. 1重量部を下回ると、得られる硬化物 の接着性が十分に得られない傾向がある。一方、 20重量部を上回ると、硬化性組成 物は実用的な硬化速度が得られなくなる傾向があり、また硬化反応が充分に進行し 難くなる ί頃向がある。
[0124] 本発明の硬化性組成物中には、必要に応じて、前記したシランカップリング剤以外 の接着性付与剤を添加できる。シランカップリング剤以外の接着性付与剤としては、 特に限定されず、たとえば、エポキシ樹脂、フエノール樹脂、硫黄、アルキルチタネー ト類、芳香族ポリイソシァネートなどが挙げられる。上記接着性付与剤は 1種類のみ 添加しても良ぐ複数種を組み合わせて添加しても良い。
[0125] 本発明の硬化性組成物中には、必要に応じて、発明の効果を低下させない程度に 他の硬化触媒を添加することもできる。
[0126] 具体的には、酢酸、プロピオン酸、酪酸、 2—ェチルへキサン酸、ラウリン酸、ステア リン酸、ォレイン酸、リノ一 酸、ピバル酸、 2, 2—ジメチル酪酸、 2, 2—ジェチル酪 酸、 2, 2—ジメチルへキサン酸、 2, 2—ジェチルへキサン酸、 2, 2—ジメチルォクタ ン酸、 2—ェチルー 2, 5—ジメチルへキサン酸、ネオデカン酸、バーサチック酸など のカルボン酸;上記したカルボン酸の誘導体(カルボン酸無水物、エステル、アミド、 二トリル、塩化ァシル);カルボン酸錫、カルボン酸鉛、カルボン酸ビスマス、カルボン 酸カリウム、カルボン酸カルシウム、カルボン酸バリウム、カルボン酸チタン、カルボン 酸ジルコニウム、カルボン酸ハフニウム、カルボン酸バナジウム、カルボン酸マンガン 、カルボン酸鉄、カルボン酸コバルト、カルボン酸ニッケル、カルボン酸セリウムなど のカルボン酸金属塩;テトラブチルチタネート、テトラプロピルチタネート、チタンテトラ キス(ァセチルァセトナート)、ビス(ァセチルァセトナート)ジイソプロポキシチタン、ジ イソプロポキシチタンビス(ェチルァセトセテート)などのチタン化合物;ジブチル錫ジ ラウレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジォクタノエ一 ト、ジブチル錫ビス(2—ェチルへキサノエート)、ジブチル錫ビス(メチルマレ ト) 、ジブチノレ錫ビス(ェチルマレ ト)、ジブチノレ錫ビス(ブチルマレ ト)、ジブチ ル錫ビス(ォクチルマレ ト) ジブチル錫ビス(トリデシルマレ ト) ジブチル錫 ビス(ベンジルマレ ト)、ジブチル錫ジアセテート、ジォクチル錫ビス(ェチルマレ ト)、ジォクチル錫ビス(ォクチルマレ ト)、ジブチル錫ジメトキサイド、ジブチ ル錫ビス(ノユルフェノキサイド)、ジブテニル錫オキサイド、ジブチル錫オキサイド、ジ ブチル錫ビス(ァセチルァセトナート)、ジブチル錫ビス(ェチルァセトァセトナート)、 ジブチル錫オキサイドとシリケ一 H匕合物との反応物、ジブチル錫オキサイドとフタル 酸エステルとの反応物などの有機錫化合物;アルミニウムトリス(ァセチルァセトナート )、アルミニウムトリス(ェチルァセトアセテート)、ジイソプロポキシアルミニウムェチル ァセトアセテートなどのアルミニウム化合物類;ジルコニウムテトラキス(ァセチルァセト ナート)などのジルコニウム化合物類;テトラブトキシハフニウムなどの各種金属アルコ キシド類;有機酸性リン酸エステル類;トリフルォロメタンスルホン酸などの有機スルホ ン酸類;塩酸、リン酸、ボロン酸などの無機酸類;塩化アルミニウム、塩化チタン、塩ィ匕 ジ コニゥム、塩化亜鉛、臭化亜鉛、塩化鉄、塩化銅、塩化アンチモン、塩化スズな どの金属ハロゲン化物類、インジウムトリフラート、スズトリフラートなどの金属トリフラー トゃ、トリアルキルシリルトリフラートなどのトリフラート類などのルイス酸類;あるいはそ れらの誘導体類が挙げられる。
[0127] これらの硬化触媒を併用させることにより、触媒活性が高くなり、得られる硬化物の 深部硬化性、薄層硬化性、接着性などの改善が期待される。但し、カルボン酸の添 加量が多いと、得られる硬化物は十分な接着性が得られない傾向がある。
[0128] また、有機錫化合物は添加量の増加とともに、得られる硬化物の復元性、耐久性、 および、耐クリープ性が低下したり、毒性が高くなる場合がある。このため、有機錫化 合物を添加する場合、その添カ卩量は、(A)成分である重合体 100重量部に対して、 5重量部以下が好ましぐ 0. 5重量部以下がより好ましぐ 0. 05重量部以下が更に 好ましぐ含有していないことが特に好ましい。
[0129] 本発明の硬化性組成物中には、必要に応じて充填剤が添加される。充填剤として は、特に限定されず、たとえば、フュームシリカ、沈降性シリカ、結晶性シリカ、溶融シ リカ、ドロマイト、無水ケィ酸、含水ケィ酸、およびカーボンブラックなどの補強性充填 剤;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソゥ土、焼成 クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、ァ ノレミニゥム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、シラスバルーン、ガラスミク 口バルーン、フエノール樹脂や塩ィ匕ビ二リデン樹脂の有機ミクロバルーン、 PVC粉末 、 PMMA粉末などの有機粉末;石綿、ガラス繊維およびフィラメントなどの繊維状充 填剤が挙げられる。
[0130] 充填剤を添加する場合、その添加量は (A)成分である重合体 100重量部に対して :!〜 250重量部が好ましぐ 10〜200重量部がより好ましい。
[0131] 硬化性組成物を一液型の接着剤およびシーリング材などに使用する際は、良好な 貯蔵安定性を得るために、前記充填剤を特開 2001— 181532号などに開示されて いるように、酸化カルシウムなどの脱水剤と均一に混合した後、気密性素材からなる 袋に封入し、適当な時間放置することにより予め脱水乾燥した後、添加することが好 ましい。
[0132] また、得られる硬化物が、透明性を必要とされる用途に使用される場合、添加され る充填材は、特開平 11— 302527号などに開示のメタクリル酸メチルなどの重合体 からなる高分子粉体や、非晶質シリカなどが好ましぐ特開 2000— 38560号などに 開示の疎水性シリカなどがより好ましレ、。
[0133] ここで疎水性シリカとは、一般的にシラノール基(一 SiOH)が占める二酸化珪素微 粉末の表面を、有機珪素ハロゲン化物やアルコール類などで処理することにより、 ( _ SiO_疎水基)としたものをいう。疎水性シリカとしては、特に限定されず、たとえば 、二酸化珪素微粉末の表面に存在するシラノール基を、ジメチルシロキサン、へキサ メチルジシラザン、ジメチルジクロルシラン、トリメトキシォクチルシラン、トリメチルシラ ンなどで処理したものが挙げられる。なお、表面がシラノール基(_Si〇H)で占めら れてレ、る未処理の二酸化珪素微粉末は、親水性シリカ微粉末と呼ばれる。
[0134] また、得られる硬化物が、高強度が必要とされる用途に使用される場合、添加され る充填材としては、ヒュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイ ト、無水ケィ酸、含水ケィ酸などのケィ素化合物;カーボンブラック、表面処理微細炭 酸カルシウム、焼成クレー、クレー、活性亜鉛華などが好ましぐ添加量は、(A)成分 である重合体 100重量部に対し、:!〜 200重量部が好ましい。
[0135] さらに、得られる硬化物が、低強度で高い伸び率を必要とされる用途に使用される 場合、添加される充填材は、酸化チタン、および重質炭酸カルシウムなどの炭酸カル シゥム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、シラスバルーンなどが好 ましぐ添力卩量は (A)成分である重合体 100重量部に対して 5〜200重量部が好まし レ、。
[0136] なお、炭酸カルシウムを添加する場合は、比表面積が大きいものほど得られる硬化 物の破断強度、破断伸び、接着性の改善傾向は大きくなる。これらの充填剤は 1種 類のみを添加してもよレ、し、複数種を組み合わせて添カ卩してもょレ、。
[0137] 複数の添加剤を添加する例としては、特に限定されず、表面処理微細炭酸カルシ ゥムと重質炭酸カルシウムなどの粒径が大きい炭酸カルシウムを併用することが、得 られる硬化物の諸物性が優れてレ、ることから好ましレ、。
[0138] 表面処理微細炭酸カルシウムとしては、粒径は 0. 5 β m以下で粒子表面が脂肪酸 や脂肪酸塩で処理されているものが好ましい。
[0139] また、粒径が大きい炭酸カルシウムとしては、粒径は 1 a m以上で粒子表面が処理 されてレ、なレ、ものが好ましレ、。
[0140] 硬化性組成物として作業性 (キレなど)が求められる場合や、得られる硬化物の表 面が艷消し状であることが求められる場合、添加される充填材は、有機バルーン、無 機バルーンが好ましい。これらの充填剤は表面処理の有無を問わず、また、 1種類の みを添加してもよいし、複数を混合添加してもよい。バルーンの粒子径は、作業性 (キ レなど)を向上させる目的では、 0. 1mm以下が好ましぐ硬化物の表面を艷消し状 にする目的では、 5〜300 μ πιが好ましい。
[0141] 本発明の硬化性組成物は、得られる硬化物が耐薬品性に優れることなどから、窯 業系などのサイディングボード用、住宅の外壁の目地や外壁タイル用のシーリング材 、接着剤などに好適に使用される。
[0142] このような用途に使用される際、 目地部分など表面に現れる部分に、得られる硬化 物が存在するため、外壁の意匠と硬化物の意匠が調和することが望まれる。殊に近 年ではスパッタ塗装や、着色骨材などを添加したものなど高級感のある外壁が用いら れるようになっており、硬化物の意匠性の重要度は増している。
[0143] 高級感のある意匠性を得るため、本発明の硬化性組成物中には、鱗片状または粒 状の物質が添加される。ここで、粒状の物質を添加すると砂まき調あるいは砂岩調の ざらつき感がある表面となり、鱗片状物質を添加すると鱗片状に起因する凹凸状の 表面となる。
[0144] なお、得られた硬化物は、高級感のある外壁と調和するとともに、耐薬品性がすぐ れるため、高級感のある外観は長期にわたって持続する特徴を有する。
[0145] 鱗片状または粒状の物質としては、特に限定されず、たとえば特開平 9— 53063号 に開示されているものがあげられ、 直径としては外壁の材質、模様などに合わせ適 宜選択されるが 0. 1mm以上が好ましぐ 0.:!〜 5. Ommがより好ましい。なお、鱗片 状物質の場合厚さは、直径の 1/10〜1/5 (0. 01〜: 1. 00mm)が好ましい。
[0146] 鱗片状または粒状の物質の添加量は、鱗片状または粒状の物質の大きさ、外壁の 材質、模様などによって、適宜選定されるが、硬化性組成物 100重量部に対して、 1 〜200重量部が好ましい。
[0147] 鱗片状または粒状の物質の材質としては、特に限定されず、たとえば、ケィ砂、マイ 力などの天然物、合成ゴム、合成樹脂、アルミナなどの無機物があげられ、これらは、 目地部などに充填した際の意匠性を高めるため、外壁の材質、模様などに合わせ、 適宜着色されてもよい。
[0148] なお、好ましい仕上げ方法などは特開平 9— 53063号などに開示されている。
[0149] 鱗片状または粒状の物質は、硬化性組成物中に予め混合してもよぐ使用時に硬 化性組成物と混合してもよい。
[0150] また、同様の目的で硬化性組成物中にバルーン(好ましくは平均粒径が 0. lmm 以上のもの)を添加することも可能であり、得られる硬化剤は砂まき調あるいは砂岩調 のざらつき感がある表面となり、かつ軽量化を図ることができる。なお、バルーンとは、 球状の充填剤で内部が中空のものをいう。
[0151] バルーンとしては、特に限定されず、たとえば特開平 10— 251618号、特開平 2_ 129262号、特開平 4— 8788号、特開平 4— 173867号、特開平 5— 1225号、特開 平 7— 113073号、特開平 9— 53063号、特開 2000— 154368号、特開 2001— 1 64237号、 WO97/05201号などに開示されている物が挙げられる。
[0152] バルーンの材質としては、ガラス、シラス、シリカなどの無機系の材料;フエノール榭 脂、尿素樹脂、ポリスチレン、サランなどの有機系の材料;が挙げられる。また、無機 系の材料と有機系の材料との複合材;複数の層からなる積層材が挙げられる。これら は 1種類のみを使用してもよぐ複数種を組み合わせて添加してもよい。
[0153] また、バルーンとしては、その表面をコーティング加工されたもの、各種表面処理剤 で処理されたものなども使用可能であり、具体例としては、有機系のバルーンを炭酸 カルシウム、タルク、酸化チタンなどでコーティングしたもの、無機系のバルーンを接 着性付与剤で表面処理したものなどが挙げられる。
[0154] さらに、バルーンの粒径としては、 0. lmm以上が好ましぐ 0. 2mm〜5. 0mmが より好ましく、 0. 5mm〜5. Ommが特に好ましレ、。 0. lmm未満では、多量に添加し ても組成物の粘度を上昇させるだけで、得られた硬化物はざらつき感が発現されな い場合がある。
[0155] バルーンを添加する場合、その添加量としては、 目的とする意匠性により適宜選択 が可能であるが、粒径が 0. lmm以上のものを硬化性組成物中に容積濃度が 5〜2 5vol%となるよう添加することが好ましぐ 8〜22vol%となるように添加するのがより 好ましい。バルーンの容積濃度が 5vol%未満の場合はざらつき感がなくなる傾向が あり、また 25vol%を超えると、硬化性組成物の粘度が高くなり、作業性が悪くなる傾 向がある。また、得られる硬化物のモジュラスも高くなり、シーリング材ゃ接着剤の基 本性能が損なわれる傾向にある。
[0156] バルーンを添加する際には、特開 2000— 154368号に開示されているようなスリツ プ防止剤、特開 2001— 164237号に開示されているような、得られる硬化物の表面 に凹凸を加え、艷消し状にするアミン化合物などを併用して添加することができる。な お、前記アミン化合物としては、融点が 35°C以上の第 1級および/または第 2級アミ ンが好ましい。
[0157] また、バルーンとしては、特開 2004— 51701号または特開 2004— 66749号など に開示されている熱膨張性微粒中空体を使用することもできる。熱膨張性微粒中空 体とは、炭素原子数 1から 5の炭化水素などの低沸点化合物を高分子外殻材 (塩化 ビニリデン系共重合体、アクリロニトリル系共重合体、または塩ィ匕ビ二リデン一アタリ口 二トリル共重合体)で球状に包み込んだプラスチック球体である。
[0158] 本発明の硬化性組成物中に熱膨張性微粒中空体を添加することにより、不要とな つた際には加熱するだけで簡単に、被着材料の破壊を伴わずに剥離でき、且つ有 機溶剤を一切用いないで加熱剥離可能な接着性組成物が得られる。これは、接着 剤部分を加熱することによって、熱膨張性微粒中空体の殻内のガス圧が増し、高分 子外殻材が軟ィ匕することで劇的に膨張し、接着界面を剥離させる機構による。
[0159] 本発明の硬化性組成物中にシーリング材硬化物粒子を含む場合も、得られる硬化 物は表面に凹凸を形成し意匠性を向上させることができる。シーリング材硬化物粒子 の好ましい直径、配合量、材料などは特開 2001— 1 15142号に開示されており、直 径は 0. lmm〜lmmが好ましぐ 0. 2〜0. 5mmがより好ましレ、。配合量は硬化性 組成物 100重量部に対して 5〜: 100重量部が好ましぐ 20〜50重量部がより好まし レ、。材料としては、シーリング材に用いられるものであれば特に限定されず、たとえば 、ウレタン樹脂、シリコーン、変成シリコーン、多硫化ゴムなどが挙げられる。このなか でも、変成シリコーン系のシーリング材硬化物粒子が好ましい。 [0160] 本発明の硬化性組成物中には、必要に応じて、シリケートを添加することができる。 シリケートは、(A)成分である重合体に対して架橋剤として作用し、得られる硬化物 の復元性、耐久性、および、耐クリープ性を改善する機能を有するものである。
[0161] また、シリケートの添カ卩により、得られる硬化物は接着性および耐水接着性、高温 高湿下での接着耐久性が改善される。
[0162] シリケートとしては、特に限定されず、たとえば、テトラアルコキシシランまたはその 部分加水分解縮合物があげられ、より具体的には、テトラメトキシシラン、テトラエトキ シシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシ ラン、テトラ _n—プロボキシシラン、テトラ _i—プロボキシシラン、テトラ _n—ブトキ シシラン、テトラ _i一ブトキシシラン、テトラ一 t—ブトキシシランなどのテトラアルコキ シシラン (テトラアルキルシリケート)、および、それらの部分加水分解縮合物が挙げら れる。
[0163] シリケート添加する場合、その添カ卩量としては、(A)成分である重合体 100重量部 に対して 0.:!〜 20重量部が好ましぐ 0. 5〜: 10重量部がより好ましい。
[0164] なお、テトラアルコキシシランの部分加水分解縮合物としては、特に限定されず、た とえばテトラアルコキシシランに水を添加し、部分加水分解させ縮合させたものが挙 げられる。
[0165] テトラアルコキシシランの部分加水分解縮合物を添加すると、テトラアルコキシシラ ンを添加した硬化性組成物に比べ、得られる硬化物の復元性、耐久性、および、耐 クリープ性の改善効果が大きレ、ことから好ましレ、。
[0166] テトラアルコキシシランの部分加水分解縮合物は、たとえば、メチルシリケート 51、 ェチルシリケート 40 (レ、ずれもコルコート (株)製)などが市販されており、これらを添加 剤として使用することができる。
[0167] なお、貯蔵により硬化性組成物の表面硬化性が変化するのを防ぐ目的で、シリケ一 トは、ケィ素原子に結合している加水分解性基が (A)成分である重合体中に存在す る反応ケィ素基中の加水分解性基と同種のものを選択することが好ましい。つまり、 ( A)成分である重合体がメトキシシリル基を有する場合は、メトキシシリル基を有するシ リケートを、 (A)成分である重合体がエトキシシリル基を有する場合は、エトキシシリル 基を有するシリケートを選択するのが好ましレ、。
[0168] 本発明の硬化性組成物中には、必要に応じて、可塑剤を添加することができる。可 塑剤は、硬化性組成物の粘度やスランプ性を調整する機能、得られる硬化物の引張 り強度、伸び特性などの機械的な特性を調整する機能を有するものである。
[0169] 可塑剤としては特に限定されず、たとえば、ジブチルフタレート、ジヘプチルフタレ ート、ビス(2—ェチルへキシル)フタレート、ブチルベンジルフタレートなどのフタル酸 エステル類;ジォクチルアジペート、ジォクチルセバケート、ジブチルセバケート、コハ ク酸イソデシノレなどの非芳香族 2塩基酸エステル類;ォレイン酸ブチル、ァセチルリシ リノール酸メチルなどの脂肪族エステル類;トリクレジルホスフヱート、トリブチルホスフ エートなどのリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類;アルキ ルジフヱニル、部分水添ターフェニルなどの炭化水素系油;プロセスオイル類;ェポ キシ化大豆油、エポキシステアリン酸べンジルなどのエポキシ系可塑剤などが挙げら れる。
[0170] また、得られる硬化物の初期特性を長期にわたり維持できること、得られた硬化物 にアルキド塗料を塗布した場合の乾燥性 (塗装性ともいう)を改良できることなどから、 重合体成分を分子中に含む高分子可塑剤を添加することが好ましい。
[0171] 高分子可塑剤としては、特に限定されず、たとえば、ビエル系モノマーを種々の方 法で重合して得られるビエル系重合体;ジエチレングリコールジベンゾエート、トリエ チレングリコールジベンゾエート、ペンタエリスリトールエステルなどのポリアルキレン グリコールのエステル類;セバシン酸、アジピン酸、ァゼライン酸、フタル酸などの 2塩 基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレン グリコーノレ、ジプロピレングリコールなどの 2価アルコールから得られるポリエステル系 可塑剤;分子量 500以上、さらには 1 , 000以上のポリエチレングリコール、ポリプロピ レンダリコール、ポリテトラメチレングリコールなどのポリエーテルポリオール類あるい はこれらポリエーテルポリオール類中の水酸基をエステル基やエーテル基などに置 換したポリエーテル類誘導体;ポリスチレンやポリ一ひ一メチルスチレンなどのポリス チレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン一アクリロニトリル 、ポリクロ口プレンなどが挙げられる。 [0172] これら高分子可塑剤のなかでも (A)成分である重合体と相溶性の高レ、ものが好まし ぐたとえば、ポリエーテル類やビニル系重合体などが挙げられる。
[0173] また、硬化性組成物の表面硬化性および深部硬化性が良好で、貯蔵後の硬化遅 延も起こらないことからポリエーテル類がより好ましぐ具体的にはポリプロピレングリコ ールが特に好ましい。
[0174] さらに、(A)成分である重合体との相溶性が高ぐ得られる硬化物の耐候性、耐熱 性が良好なことからビュル系重合体が好ましぐこの中でもアクリル系重合体および /又はメタクリル系重合体がより好ましぐポリアクリル酸アルキルエステルなどアタリ ル系重合体が特に好ましい。
[0175] ポリアクリル酸アルキルエステルの製造方法としては、特に限定されないが、分子量 分布が狭ぐ低粘度化が可能なことからリビングラジカル重合法が好ましぐ原子移動 ラジカル重合法がより好ましレヽ。また、 SG〇プロセスと呼ばれる特開 2001— 20715 7号などに開示されてレ、るアクリル酸アルキルエステル系化合物を高温、高圧下で連 続塊状重合する方法が特に好ましレ、。
[0176] 高分子可塑剤の数平均分子量は、 500〜15, 000、 800〜10, 000力 S好ましく、 1 , 000〜8, 000力 Sより好まし <、 1 , 000〜5, 000力 S特に好まし <、 1 , 000〜3, 000 が最も好ましい。高分子可塑剤の分子量が低すぎると得られる硬化物から熱や降雨 により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、埃付着な どによる汚染の原因となる可能性が有り、アルキド塗装性に劣る傾向がある。一方、 分子量が高すぎると硬化性組成物の粘度が高くなり、作業性が悪くなる傾向がある。
[0177] 高分子可塑剤の分子量分布は特に限定されないが、狭いことが好ましぐ 1. 80未 満、 1. 70以下が好ましぐ 1. 60以下がより好ましぐ 1. 50以下がさらに好ましぐ 1 . 40以下が特に好ましぐ 1. 30以下が最も好ましい。
[0178] 数平均分子量はポリエーテル系重合体の場合は末端基分析法で、その他の重合 体の場合は GPC法で測定される。また、分子量分布(Mw/Mn)は GPC法(ポリス チレン換算)で測定される。
[0179] 高分子可塑剤は、分子中に反応性ケィ素基の有無を問わないが、反応性ケィ素基 を有する高分子可塑剤を添加した場合は、高分子可塑剤が硬化反応に取り込まれ、 得られた硬化物からの可塑剤の移行を防止できることから好ましい。
[0180] 反応性ケィ素基を有する高分子可塑剤としては、反応性ケィ素基を 1分子あたり平 均して 1個以下の化合物が好ましぐ 0. 8個以下の化合物がより好ましい。反応性ケ ィ素基を有する可塑剤、特に反応性ケィ素基を有するォキシアルキレン重合体を添 加する場合、充分な可塑化効果を得るためには数平均分子量が (A)成分である重 合体よりも低レ、ことが好ましレ、。
[0181] 可塑剤は、 1種類のみを添加してもよぐ複数種を組み合わせて添カ卩してもよレ、。ま た、低分子可塑剤と高分子可塑剤を併用添加してもよい。なおこれらの可塑剤は、 ( A)成分である重合体の製造時に配合してもよレ、。
[0182] 可塑剤を添加する場合、その添加量は、(A)成分である重合体 100重量部に対し て 5〜: 150重量部が好ましぐ 10〜: 120重量部がより好ましぐ 20〜: 100重量部が特 に好ましい。 5重量部未満では可塑剤としての効果が発現しなくなる傾向があり、 15 0重量部を越えると得られる硬化物の機械強度が不足する傾向がある。
[0183] 本発明の硬化性組成物中には、必要に応じて、粘着性付与剤を添加することがで きる。粘着性付与樹脂としては、常温で固体、液体を問わず通常使用されるものであ れば特に限定されず、たとえば、スチレン系ブロック共重合体、その水素添加物、フ エノール系榭脂、変性フエノール系樹脂(例えば、カシュ一オイル変性フエノール系 樹脂、トール油変性フエノール系樹脂など)、テルペンフエノール系樹脂、キシレン フエノール系樹脂、シクロペンタジェンーフヱノール系樹脂、クマロンインデン系樹脂 、ロジン系樹脂、ロジンエステル系樹脂、水添ロジンエステル系樹脂、キシレン系樹 脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、石油樹脂 (例えば、 C5炭 化水素系樹脂、 C9炭化水素系樹脂、 C5C9炭化水素共重合樹脂など)、水添石油 樹脂、テルペン系樹脂、 DCPD樹脂石油樹脂などが挙げられる。これらは 1種類の みを添加してもよぐ複数種を組み合わせて添加しても良い。
[0184] 前記スチレン系ブロック共重合体及びその水素添加物としては、特に限定されず、 たとえばスチレン一ブタジエン一スチレンブロック共重合体(SBS)、スチレン一イソプ レン一スチレンブロック共重合体(SIS)、スチレン一エチレンブチレン一スチレンブロ ック共重合体(SEBS)、スチレン一エチレンプロピレン一スチレンブロック共重合体( SEPS)、スチレン イソブチレン一スチレンブロック共重合体(SIBS)などが挙げら れる。
[0185] 粘着性付与剤を添加する場合、その添加量は、(A)成分である重合体 100重量部 に対して、 5〜: 1, 000重量部が好ましぐ 10〜: 100重量部がより好ましい。
本発明の硬化性組成物中には、必要に応じて、溶剤または希釈剤を添加することが できる。溶剤及び希釈剤としては、特に限定されず、たとえば、脂肪族炭化水素類、 芳香族炭化水素類、脂環族炭化水素類、ハロゲン化炭化水素類、アルコール類、ヱ ステル類、ケトン類、エーテル類などが挙げられる。これらは 1週類のみを添カ卩しても よぐ複数種を組み合わせて添加してもよい。
[0186] 溶剤または希釈剤を添加する場合、硬化性組成物を屋内で使用した時の空気中 への揮発成分の放散を防止するため、溶剤または希釈剤の沸点は、 150°C以上が 好ましぐ 200°C以上がより好ましい。
[0187] 本発明の硬化性組成物中には、必要に応じて、物性調整剤を添加しても良い。物 性調整剤とは、得られる硬化物の引張特性および硬度を調整する機能を有するもの である。
[0188] 物性調整剤としては、特に限定されず、たとえば、メチルトリメトキシシラン、ジメチノレ ジメトキシシラン、トリメチルメトキシシラン、 n—プロピルトリメトキシシランなどのアルキ
y—ァミノプロピルトリメトキシシラン、 N— ( j3—アミノエチル)ァミノプロピルメチルジ メトキシシラン、 γ—メルカプトプロピルトリメトキシシラン、 Ί—メルカプトプロピルメチ ルジメトキシシランなどの官能基を有するアルコキシシラン類;シリコーンワニス類;ポ リシロキサン類などが挙げられる。これらは 1種類のみを添加してもよぐ複数種を組 み合わせて添加しても良レ、。
[0189] 物性調整剤の中でも、加水分解により分子内に 1価のシラノール基を有する化合物 を生成するものは、得られる硬化物の表面のベたつきを悪化させずにモジュラスを低 下させる作用を有することから好ましぐこのなかでも、加水分解によりトリメチルシラノ ールを生成するものがより好ましレ、。
[0190] 加水分解により分子内に 1価のシラノール基を有する化合物を生成する化合物とし ては、特に限定されず、たとえば特開平 5— 117521号に開示されている化合物、ま た、へキサノール、ォクタノール、デカノールなどのアルキルアルコールの誘導体で あって、加水分解によりトリメチルシラノールなどの R SiOHで示される有機ケィ素化
3
合物を生成する化合物、特開平 11— 241029号に開示されているトリメチロールプロ パン、グリセリン、ペンタエリスリトールあるいはソルビトールなどの 1分子中に水酸基 を 3個以上有する多価アルコールの誘導体であって、加水分解によりトリメチルシラノ ールなどの R SiOHで示される有機ケィ素化合物を生成する化合物などが挙げられ
3
る。
[0191] さらに、特開平 7— 258534号に開示されているォキシプロピレン重合体の誘導体 であって加水分解によりトリメチルシラノールなどの R SiOHで示される有機ケィ素化
3
合物を生成する化合物、さらに特開平 6— 279693号に開示されている架橋可能な 加水分解性ケィ素を有する基と加水分解により 1価のシラノール基を有する化合物を 生成しうるケィ素基を持つ化合物が挙げられる。
[0192] 物性調整剤を添加する場合、その添加量は、(A)成分である重合体 100重量部に 対して、 0. :!〜 20重量部が好ましぐ 0. 5〜: 10重量部がより好ましい。
[0193] 本発明の硬化性組成物中には、必要に応じてチクソ性付与剤(垂れ防止剤)を添 カロしても良い。チクソ性付与剤とは、硬化性組成物の垂れを防止し、作業性を良くす る機能を有するものをいう。
[0194] チクソ性付与剤としては特に限定されず、たとえば、ポリアミドワックス類;水添ヒマシ 油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム などの金属石鹼類などが挙げられる。さらに、特開平 11— 349916号などに開示さ れてレ、る粒子径 10〜500 μ πιのゴム f分末や、特開 2003— 155389号など ίこ開示さ れている有機質繊維が挙げられる。これらチクソ性付与剤(垂れ防止剤)は 1種類の みを添カ卩してもよぐ複数種を組み合わせて添カ卩してもよい。
[0195] チクソ性付与剤を添加する場合、その添加量は (Α)成分である重合体 100重量部 に対して、 0.:!〜 20重量部が好ましい。
[0196] 本発明の硬化性組成物中には、必要に応じて、 1分子中にエポキシ基を有するィ匕 合物を添加できる。エポキシ基を有する化合物を添加することにより、得られる硬化 物の復元性を高めることができる。
[0197] エポキシ基を有する化合物としては、特に限定されず、たとえば、エポキシ化不飽 和油脂類;エポキシィ匕不飽和脂肪酸エステル類;脂環族エポキシ化合物類;ェピクロ ノレヒドリン誘導体などの化合物;及びそれらの混合物などが挙げられる。より具体的に は、エポキシ化大豆油、エポキシ化アマ二油、ビス(2—ェチルへキシル) -4, 5—ェ ポキシシクロへキサン一 1 , 2—ジカーボキシレート(E— PS)、エポキシォクチルステ ァレート、エポキシブチノレステアレートなどが挙げられる。これらのなかでは E— PSが 好ましい。
[0198] エポキシィ匕合物を添加する場合、その添カ卩量は、(A)成分である重合体 100重量 部に対して 0. 5〜50重量部が好ましい。
[0199] 本発明の硬化性組成物中には、必要に応じて、光硬化性物質を添加できる。光硬 化性物質とは、光の作用によって短時間に分子構造が化学変化をおこし、硬化など の物性的変化を生ずるものである。硬化性組成物中に光硬化性物資を添加すると、 得られる硬化物の表面に光硬化性物質の皮膜が形成され、硬化物のベたつきゃ耐 候性が改善される。
[0200] 光硬化性物質としては、特に限定されず、有機単量体、オリゴマー、樹脂或いはそ れらを含む組成物など公知のものがあげられ、たとえば、不飽和アクリル系化合物、 ポリケィ皮酸ビニル類あるいはアジド化樹脂などが挙げられる。
[0201] 不飽和アクリル系化合物としては、アクリル系又はメタクリル系の不飽和基を 1分子 中に 1ないし複数個有するモノマー、オリゴマー或いはそれなどの混合物があげられ 、具体的には、プロピレン(又はブチレン、エチレン)グリコールジ (メタ)アタリレート、 ネオペンチルダリコールジ(メタ)アタリレートなどの単量体又は分子量 10, 000以下 のオリゴエステルが挙げられる。より具体的には、例えば特殊アタリレート(2官能)の ァロニックス M_ 210,ァロニックス M— 215,ァロニックス M— 220,ァロニックス M - 233,ァロニックス M— 240,ァロニックス M— 245 ; (3官肯 のァロニックス M— 30 5,ァロニックス M— 309,ァロニックス M— 310, ァロニックス M— 315,ァロニックス M— 320,ァロニックス M— 325,及び(多官肯 のァロニックス M— 400 (ァロニック スはいずれも東亜合成 (株)製)などが挙げられる。このなかでも、アクリル官能基を有 する化合物が好ましぐまた 1分子中に平均して 3個以上のアクリル官能基を有する 化合物がより好ましい。
[0202] 前記ポリケィ皮酸ビュル類としては、シンナモイル基を感光基とする感光性樹脂で ありポリビュルアルコールをケィ皮酸でエステル化した化合物、その他多くのポリケィ 皮酸ビニル誘導体が挙げられる。
[0203] 前記アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通 常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性樹脂」(昭和 47 年 3月 17日出版、印刷学会出版部発行、第 93頁〜、第 106頁〜、第 117頁〜)に詳 細な例示があり、これらを単独又は混合し、必要に応じて増感剤をカ卩えて使用するこ とができる。
[0204] なお、ケトン類、ニトロ化合物などの増感剤ゃァミン類などの促進剤を添加すると、 効果が高められる場合がある。
[0205] 光硬化性物質を添加する場合、その添加量は、(A)成分である重合体 100重量部 に対して 0.:!〜 20重量部が好ましぐ 0. 5〜: 10重量部がより好ましい。 0. 1重量部 以下では得られる硬化物の耐候性を高める効果はほとんどなぐ 20重量部以上では 得られる硬化物が硬くなりすぎ、ヒビ割れなどを生じる傾向がある。
[0206] 本発明の硬化性組成物中には、必要に応じて、酸素硬化性物質を添加することが できる。酸素硬化性物質とは、空気中の酸素と反応して硬化しうるもので、酸素硬化 性物質を添加することにより、得られる硬化物の表面付近に硬化皮膜が形成され、硬 化物表面のベたつきやゴミゃホコリの付着を防止できる。
[0207] 酸素硬化性物質としては、空気中の酸素と反応し得る不飽和化合物有する化合物 であれば特に限定されず、たとえば、キリ油、アマ二油などの乾性油や、該化合物を 変性して得られる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、ェ ポキシ系樹脂、シリコーン系樹脂;ブタジエン、クロ口プレン、イソプレン、 1, 3 _ペン タジェンなどのジェン系化合物を重合または共重合させてえられる 1 , 2 _ポリブタジ ェン、 1, 4 ポリブタジエン、 C5〜C8ジェンの重合体などの液状重合体;これらジ ェン系化合物と共重合可能なアクリロニトリル、スチレンなどのビュル系化合物と、ジ ェン系化合物を、ジェン系化合物が主成分となるように共重合させて得られる NBR、 SBRなどの液状共重合体や、さらにはそれらの各種変性物(マレイン化変性物、ボイ ル油変性物など)などが挙げられる。これらのなかでは、キリ油や液状ジェン系重合 体が好ましい。酸素硬化性物質は 1種類のみを添加してもよぐ複数種を組み合わせ て添加してもよい。
[0208] なお、酸素硬化性物質は硬化反応を促進する触媒や金属ドライヤーを混合添加す ると効果が高められる場合がある。硬化反応を促進する触媒や金属ドライヤーとして は、特に限定されず、たとえば、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジノレ コユウム、ォクチル酸コバルト、ォクチル酸ジルコニウムなどの金属塩や、ァミン化合 物などが挙げられる。
[0209] 酸素硬化性物質を添加する場合、その添加量は、(A)成分である重合体 100重量 部に対して 0.:!〜 20重量部が好ましぐ 0. 5〜: 10重量部がより好ましい。添加量が 0 . 1重量部未満になると得られる硬化物の汚染性の改善硬化が充分でなくなる傾向 があり、 20重量部をこえると得られる硬化物の引張り特性などが損なわれる傾向があ る。
[0210] さらに、酸素硬化性物質は、特開平 3— 160053号に開示されているように、光硬 化性物質と混合添加するのが好ましレヽ。
[0211] 本発明の硬化性組成物中には必要に応じて、酸化防止剤を添加することができる 。酸化防止剤を添加することにより、得られる硬化物の耐熱性を高めることができる。
[0212] 酸化防止剤としては、特に限定されず、たとえば、ヒンダードフエノール系、モノフエ ノーノレ系、ビスフエノール系、ポリフエノール系の酸化防止剤が挙げられる。このな力、 でもヒンダードフエノール系酸化防止剤が好ましレ、。また、チヌビン 622LD,チヌビン 144; CHIMASSORB944LD, CHIMASSORB119FL (以上レ、ずれもチバ 'スぺ シャルティ'ケミカルズ (株)製);アデカスタブ LA— 57,アデカスタブ LA— 62,ァ デカスタブ LA-67,アデカスタブ LA-63,アデカスタブ LA_ 68 (以上いず れも(株) ADEKA製);サノール LS— 770,サノーノレ LS— 765,サノーノレ LS— 292 ,サノーノレ LS— 2626,サノーノレ LS— 1114,サノーノレ LS— 744 (以上レヽずれも三 共ライフテック (株)製)などのヒンダードアミン系光安定剤も好ましい。なお、酸化防 止剤の具体例は特開平 4 283259号ゃ特開平 9 194731号にも開示されている
[0213] 酸化防止剤を添加する場合、その添加量は、(A)成分である重合体 100重量部に 対して 0. 1〜: 10重量部が好ましぐ 0. 2〜5重量部がより好ましい。
[0214] 本発明の硬化性組成物中には、必要に応じて、光安定剤を添加することができる。
光安定剤の添カ卩により、得られる硬化物の光酸化劣化が防止できる。
[0215] 光安定剤としては、特に限定されず、たとえば、ベンゾトリアゾール系、ヒンダードァ ミン系、ベンゾエート系化合物などが挙げられる。このなかでもヒンダードアミン系光 安定剤が好ましい。
[0216] 光安定剤を添加する場合、その添加量は、(A)成分である重合体 100重量部に対 して 0.:!〜 10重量部が好ましぐ 0. 2〜5重量部がより好ましい。なお、光安定剤の 具体例は特開平 9— 194731号にも開示されている。
[0217] 本発明の硬化性組成物中に不飽和アクリル系化合物などの光硬化性物質を添カロ する場合、特開平 5— 70531号に開示されているように 3級アミン基を有するヒンダ一 ドアミン系光安定剤を添加するのが、硬化性組成物の保存安定性が改良されることよ り好ましい。
[0218] 3級アミン基を有するヒンダードアミン系光安定剤としては、特に限定されず、たとえ ば、チヌビン 622LD,チヌビン 144, CHIMASSORB119FL (以上いずれもチバ · スペシャルティ.ケミカルズ(株)製);アデカスタブ LA- 57, LA-62, LA— 67, L A_ 63 (以上いずれも(株) ADEKA製);サノーノレ LS— 765, LS - 292, LS - 262 6, LS- 1114, LS— 744 (以上いずれも三共ライフテック (株)製)などが挙げられる
[0219] 本発明の硬化性組成物中には、必要に応じて紫外線吸収剤を添加することができ る。紫外線吸収剤の添加により、得られた硬化物の表面耐候性が向上する。
[0220] 紫外線吸収剤としては、特に限定されず、たとえば、ベンゾフエノン系、ベンゾトリア ゾール系、サリシレート系、置換トリル系及び金属キレート系化合物などが挙げられる [0221]
このなかでもべンゾトリアゾール系紫外線吸収剤が好ましい。
[0222] 紫外線吸収剤を添加する場合、その添加量は、(A)成分である重合体 100重量部 に対して 0. 1〜: 10重量部が好ましぐ 0. 2〜5重量部がより好ましい。
[0223] 前記酸化防止剤、光安定剤、紫外線吸収剤は、硬化性組成物中に併用添加する のが好ましぐたとえば、フエノール系ゃヒンダードフエノール系酸化防止剤とヒンダ一 ドアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を混合添加するのが好まし レ、。
[0224] 本発明の硬化性組成物中には、必要に応じて、エポキシ樹脂を添加することができ る。エポキシ樹脂の添カ卩により、得られた硬化物の接着性が改善され、エポキシ樹脂 を添加した硬化性組成物は、接着剤として、特に外壁タイル用接着剤として好ましく 使用される。
[0225] エポキシ樹脂としては、特に限定されず、たとえばェピクロルヒドリン ビスフエノー ノレ A型エポキシ樹脂、ェピクロルヒドリン ビスフエノール F型エポキシ樹脂、テトラブ ロモビスフエノール Aのグリシジルエーテルなどの難燃型エポキシ樹脂、ノボラック型 エポキシ樹脂、水添ビスフエノール A型エポキシ樹脂、ビスフエノーノレ Aプロピレンォ キシド付加物のグリシジルエーテル型エポキシ樹脂、 p ォキシ安息香酸グリシジル エーテルエステル型エポキシ樹脂、 m—ァミノフエノール系エポキシ樹脂、ジアミノジ フエニルメタン系エポキシ樹脂、ウレタン変性エポキシ樹脂、各種脂環式エポキシ樹 脂、 N, N ジグリシジルァ二リン、 N, N ジグリシジル一 o トルイジン、トリグリシジ ノレイソシァヌレート、ポリアルキレングリコールジグリシジルエーテル、グリセリンなどの 多価アルコールのグリシジノレエーテル、ヒダントイン型エポキシ樹脂、石油樹脂など の不飽和重合体のエポキシ化物などが挙げられる。これらのなかでも、 1分子中にェ ポキシ基を少なくとも 2個以上有するものが、硬化性組成物の反応性を高めること、 得られた硬化物が 3次元網目構造をつくりやすいことなどから好ましぐビスフエノー ノレ A型エポキシ樹脂またはノボラック型エポキシ樹脂などがより好ましい。
[0226] エポキシ樹脂の添カ卩量は、硬化性組成物の使用用途などにより異なり、たとえばェ ポキシ樹脂硬化物の耐衝撃性、可撓性、強靱性、剥離強度などを改善する場合には
、エポキシ樹脂 100重量部に対して (A)成分である重合体を 1〜: 100重量部添加す るのが好ましぐ 5〜: 100重量部添加するのがより好ましい。一方、 (A)成分である重 合体の硬化物の強度を改善する場合には、重合体 100重量部に対してエポキシ樹 脂を 1〜200重量部添カ卩するのが好ましぐ 5〜: 100重量部添カ卩するのがより好まし レ、。
[0227] 本発明の硬化性組成物中にエポキシ樹脂を添加する場合、エポキシ樹脂用の硬 化剤を併用添加するのが好ましい。
[0228] エポキシ樹脂用の硬化剤としては、エポキシ樹脂を硬化させる働きを有する化合物 であれば特に制限はなぐたとえば、トリエチレンテトラミン、テトラエチレンペンタミン、 ジェチルァミノプロピルァミン、 N—アミノエチルピペリジン、 m_キシリレンジァミン、 m—フエ二レンジァミン、ジアミノジフエニルメタン、ジアミノジフエニルスルホン、イソホ ロンジァミン、ァミン末端ポリエーテルなどの一級、二級アミン類; 2, 4, 6—トリス(ジメ チルアミノメチル)フエノール、トリプロピルァミンなどの三級アミン類、及び、これら三 級ァミン類の塩類;ポリアミド樹脂類;イミダゾール類;ジシアンジアミド類;三弗化硼素 錯化合物類;無水フタル酸、へキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ド デシニル無水琥珀酸、無水ピロメリット酸、無水クロレン酸などの無水カルボン酸類; アルコール類;フエノール類;カルボン酸類;アルミニウム又はジルコニウムのジケトン 錯化合物などの化合物が挙げられる。これらは一種類のみを添加してもよぐ複数種 を組み合わせて添カ卩してもょレ、。
[0229] エポキシ樹脂硬化剤を添加する場合、その添カ卩量としては、エポキシ樹脂 100重 量部に対し、 0.:!〜 300重量部が好ましい。
[0230] エポキシ樹脂用の硬化剤のなかでも、 1液型の硬化組成物が得られることより、ケチ ミンィ匕合物を用いることが好ましい。ケチミンィ匕合物は、水分のない状態では安定に 存在し、水分によって一級アミンとケトンに分解され、生じた一級ァミンがエポキシ樹 脂の室温硬化性の硬化剤となる性質を有する。ケチミン化合物としては、ァミン化合 物とカルボ二ルイヒ合物との縮合反応により得られる化合物が挙げられる。
[0231] ケチミン化合物の製造に使用されるァミン化合物、カルボニル化合物としては、特 に限定されず、公知の化合物があげられ、たとえばアミンィ匕合物としてはエチレンジ ァミン、プロピレンジァミン、トリメチレンジァミン、テトラメチレンジァミン、 1 , 3—ジアミ ノブタン、 2, 3—ジアミノブタン、ペンタメチレンジァミン、 2, 4—ジァミノペンタン、へ キサメチレンジァミン、 p—フエ二レンジァミン、 p, p'—ビフエ二レンジァミンなどのジ アミン類; 1 , 2, 3—トリァミノプロパン、トリァミノベンゼン、トリス(2—アミノエチル)アミ ン、テトラキス(アミノメチル)メタンなどの多価アミン類;ジエチレントリァミン、トリエチレ ントリアミン、テトラエチレンペンタミンなどのポリアルキレンポリアミン;ポリオキシアル キレン系ポリアミン; y—ァミノプロピルトリエトキシシラン、 N— ( j3—アミノエチル)一 y—ァミノプロピルトリメトキシシラン、 N— ( j3—アミノエチル)一 γ—ァミノプロピルメ チルジメトキシシランなどのアミノシラン類;などが挙げられる。
[0232] また、カルボニル化合物としてはァセトアルデヒド、プロピオンアルデヒド、 η—ブチ ノレアノレデヒド、イソブチルアルデヒド、ジェチルァセトアルデヒド、グリオキサール、ベ ンズアルデヒドなどのアルデヒド類;シクロペンタノン、トリメチルシクロペンタノン、シク 口へキサノン、トリメチルシクロへキサノンなどの環状ケトン類;アセトン、メチルェチル チルケトン、ジプロピルケトン、ジイソプロピルケトン、ジブチルケトン、ジイソプチルケト ンなどの脂肪族ケトン類;ァセチルアセトン、ァセト酢酸メチル、ァセト酢酸ェチル、マ ロン酸ジメチル、マロン酸ジェチル、マロン酸メチルェチル、ジベンゾィルメタンなど の βージカルボニル化合物;などが挙げられる。
[0233] イミノ基を有するケチミンィ匕合物は、イミノ基をスチレンオキサイド;ブチルダリシジル エーテル、ァリルグリシジルエーテルなどのグリシジルエーテル;グリシジルエステル などと反応させたものを含む。
[0234] これらのケチミンィ匕合物は、一種類のみを添加してもよぐ複数種を組み合わせて 添加してもよい。
[0235] ケチミン化合物を添加する場合、その添カ卩量としては、エポキシ樹脂およびケチミン の種類によって異なる力 通常、エポキシ樹脂 100重量部に対し、 1〜: 100重量部が 好ましい。
[0236] 本発明の硬化性組成物中には、必要に応じて、難燃剤を添加することができる。難 燃剤としては特に限定されず、たとえばポリリン酸アンモニゥム、トリクレジルホスフヱ ートなどのリン系難燃剤;水酸化アルミニウム、水酸化マグネシウム、および、熱膨張 性黒鉛などの難燃剤を添加することができる。難燃剤は 1種類のみを添加してもよぐ 複数種を組み合わせて添加してもよレ、。
[0237] 難燃剤を添加する場合、その添加量としては、 (A)成分である重合体 100重量部 に対して、 5〜200重量部が好ましぐ 10〜: 100重量部がより好ましい。
[0238] 本発明の硬化性組成物中には、硬化性組成物又は得られる硬化物の諸物性を調 整することを目的に、必要に応じて前記以外の各種添加剤を添加してもよい。このよ うな添加剤としては、たとえば、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、 オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、防蟻剤、防かび 剤などが挙げられる。これらの具体例としては、特公平 4— 69659号、特公平 7— 10 8928号、特開昭 63— 254149号、特開昭 64— 22904号、特開 2001— 72854号 の各公報などに開示されている。また、これらの添加剤は、 1種類のみを添カ卩してもよ ぐ複数種を組み合わせて添加してもよい。
[0239] 本発明の硬化性組成物の調製方法としては、 1液型、 2液型のいずれをも採用可 能であるが、作業性が良好なことから、 1液型の調製方法が好ましい。なお、 1液型の 調製方法とは、すべての配合成分を予め配合したのち密封保存し、施工後空気中の 湿気により硬化するものをいい、 2液型の調製方法とは、硬化用配合剤として別途硬 化触媒、充填材、可塑剤、水などの成分を配合しておき、硬化用配合剤と重合体組 成物を施工前に混合するものをいう。
[0240] 硬化性組成物が 1液型の場合、すべての配合成分が予め配合されているため、配 合物中に水分が存在すると貯蔵中に硬化が進行することがある。そこで、水分を含有 する配合成分を予め脱水乾燥してから添加する力、、また配合混練中に減圧などによ り脱水するのが好ましい。
[0241] 硬化性組成物が 2液型の場合、反応性ケィ素基を有する重合体を含む主剤に硬化 触媒を配合する必要がなレ、ので配合物中には若干の水分が含有されてレ、ても硬化 の進行 (ゲル化)の心配は少ないが、長期間の貯蔵安定性が必要とされる場合は、 脱水乾燥するのが好ましい。 [0242] 脱水、乾燥方法としては配合物が粉体などの固体物の場合は加熱乾燥法または減 圧脱水法、液体物の場合は減圧脱水法または合成ゼォライト、活性アルミナ、シリカ ゲル、生石灰、酸化マグネシウムなどを使用した脱水法が好ましく。さらに、 n—プロ ピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、メチル
などのアルコキシシラン化合物;3—ェチル _ 2_メチル _ 2_ (3—メチルブチル) - 1 , 3_ォキサゾリジンなどのォキサゾリジン化合物;または、イソシァネートイ匕合物を 硬化性組成物中に添加して、配合物中に含まれる水と反応させることによってなされ る脱水方法も好ましい。このように、アルコキシシラン化合物やォキサゾリジンィ匕合物 、および、イソシァネートィヒ合物の添カ卩により、硬化性組成物の貯蔵安定性が向上す る。
[0243] ビエルトリメトキシシランなど水と反応し得るアルコキシシラン化合物を、乾燥目的に 使用する際の添加量としては、(A)成分である重合体 100重量部に対して、 0.:!〜 2 0重量部が好ましぐ 0. 5〜: 10重量部がより好ましい。
[0244] 本発明の硬化性組成物の調製法としては、特に限定はなぐたとえば、前記した配 合成分を調合し、ミキサーやロールやニーダーなどを用いて常温または加熱下で混 練する方法、適した溶剤を少量使用して配合成分を溶解させたのち混合する方法な ど公知の方法が採用されうる。
[0245] 本発明の硬化性組成物は、大気中に暴露されると水分の作用により、三次元的に 網状組織を形成し、ゴム状弾性を有する固体へと硬化する。
[0246] 本発明の硬化性組成物は、粘着剤;建造物、船舶、 自動車、道路などのシーリング 材;接着剤;型取剤;防振材;制振材;防音材;発泡材料;塗料;吹付材などに好適に 使用され、これらの用途のなかでも、得られる硬化物が柔軟性および接着性に優れ ていることから、シーリング材または接着剤として使用されることがより好ましい。
[0247] また、本発明の硬化性組成物は、太陽電池裏面封止材などの電気 ·電子部品材料 ;電線'ケーブル用絶縁被覆材などの電気絶縁材料;弾性接着剤;コンタクト型接着 剤;スプレー型シール材;クラック補修材;タイル張り用接着剤;粉体塗料;注型材料; 医療用ゴム材料;医療用粘着剤;医療機器シール材;食品包装材;サイディングボー ドなどの外装材の目地用シーリング材;コーティング材;プライマー;電磁波遮蔽用導 電性材料、熱伝導性材料;ホットメルト材料;電気電子用ポッティング剤;フィルム;ガ スケット;各種成形材料;および、網入りガラスや合わせガラス端面 (切断部)の防鲭- 防水用封止材;自動車部品、電機部品、各種機械部品などにおいて使用される液状 シール剤など様々な用途に利用可能である。
[0248] 更に、単独あるいはプライマーの助けを力、りてガラス、磁器、木材、金属、樹脂成形 物などの如き広範囲の基質に密着しうるので、種々のタイプの密封用組成物および 接着用組成物としても使用可能である。
[0249] また、本発明の硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タ ィル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、 壁仕上げ用接着剤、車両パネル用接着剤、電気 ·電子 ·精密機器組立用接着剤、ダ ィレクトグレージング用シーリング材、複層ガラス用シーリング材、 SSG工法用シーリ ング材、または、建築物のワーキングジョイント用シーリング材、としても使用可能であ る。
実施例
[0250] つぎに実施例および比較例によって本発明を具体的に説明するが、本発明はこれ に限定されるものではない。
[0251] (合成例 1)
分子量約 2, 000のポリオキシプロピレンジオールを開始剤とし、亜鉛へキサシァノ コバルテートグライム錯体触媒にてプロピレンォキシドの重合を行レ、、末端が水酸基 である数平均分子量約 25, 500 (送液システムとして東ソー製 HLC— 8120GPCを 用レ、、カラムは東ソー製 TSK— GEL Hタイプを用レ、、溶媒は THFを用いて測定し たポリスチレン換算分子量)のポリプロピレンォキシドを得た。続いて、この水酸基末 端ポリプロピレンォキシドの水酸基に対して 1. 2倍当量の NaOMeのメタノール溶液 を添加してメタノールを留去し、更に塩化ァリルを添加して末端の水酸基をァリル基 に変換した。未反応の塩化ァリルを減圧脱揮により除去した。得られた未精製のァリ ル基末端ポリプロピレンォキシド 100重量部に対し、 n—へキサン 300重量部と、水 3 00重量部を混合攪拌した後、遠心分離により水を除去し、得られたへキサン溶液に 更に水 300重量部を混合攪拌し、再度遠心分離により水を除去した後、へキサンを 減圧脱揮により除去した。以上により、末端がァリル基である数平均分子量約 25, 50 0の 2官能ポリプロピレンォキシド(P_ 1)を得た。
[0252] 得られたァリル末端ポリプロピレンォキシド(P_ 1) 100重量部に対し、白金ビニノレ シロキサン錯体の白金含量 3wt%のイソプロピルアルコール溶液 150ppmを触媒と して、トリメトキシシラン 1. 1重量部と 90°Cで 2時間反応させ、トリメトキシシリル基末端 ポリオキシプロピレン系重合体 (A—1)を得た。 H— NMR (日本電子衡 NM— LA4 00を用いて、 CDC1溶媒中で測定)による測定により、末端のトリメトキシシリル基は 1
3
分子あたり平均して約 1. 3個であった。
[0253] (合成例 2)
合成例 1のトリメトキシシランをジメトキシメチルシラン 0. 9重量部とした以外は合成 例 1と同様の操作を行い、ジメトキシシリル基末端ポリオキシプロピレン系重合体 (A —2)を得た。 — NMRによる測定により、末端のジメトキシメチルシリル基は 1分子 あたり平均して約 1. 3個であった。
[0254] (実施例:!〜 5、比較例:!〜 6)
ミニカップに計り取った重合体 (A— 1, A— 2)に、表 1の処方に従って、先ずフルォ ロシラン (B)を添加し、すばやくスパチュラで 1分間よく混鍊し、次いでアミン系化合 物(C)を添加し、さらに 1分間混鍊した。混鍊後、カップを 23°C50%の恒温恒湿室に 静置し、この時間を硬化開始時間とした。始めの 30分は 1分毎、 1時間までは 10分 毎、以降は 1時間ごとにスパチュラの先で組成物表面に触り、スパチュラに組成物が 付着しなくなるまでの時間を皮張り時間として、硬化時間を測定した。結果を表 1に示 す。
[0255] [表 1] 組成 (重量部) 実施例
1 2 3 4 5 重合体 (A) A- 1 100 100 100 100
A- 2 100 フルォロシラン (B) フルォロシ 'メチルビニルシラン (1) 0.5 0.5 0.5 0.5 0.5 アミン系化合物 (C) DBU(2) 1 1
DEAPA(3) 2
0—トリルビク "アニ (4) 2
A1110® 2
Figure imgf000054_0001
[0256] 実施例のように、フルォロシラン (Β)とァミン系化合物(C)を併用した系では、優れ た硬化性を示した。一方、比較例 1〜5のようにアミン系化合物(C)のみを硬化触媒と した場合や比較例 6のようにフルォロシラン (Β)だけを用いた場合には、硬化性は不 十分であった。
[0257] (合成例 3)
ビエル末端ポリジメチルシロキサン(DMSV42: Gelest社製) 100重量部に対し、 白金ビエルシロキサン錯体の白金含量 3wt %のイソプロピルアルコール溶液 150pp mを触媒として、下記化学式、
HSi(CH ) OSi(CH ) C H Si(OCH )
3 2 3 2 2 4 3 3
で表されるヒドロシラン化合物 0.66重量部と 90°Cで 2時間反応させ、トリメトキシシリ ル基末端ポリジメチルシロキサン (A— 3)を得た。 ^— NMRによる測定により、末端 のトリメトキシシリル基は 1分子あたり平均して約 1.2個であつた。
[0258] (実施例 6、比較例 7, 8)
重合体 (A— 3)を用いて、表 2に示す処方に従い、前記と同様の方法で硬化時間 を測定した。結果を表 2に示す。
[0259] [表 2] 組成 (重量部) 実施例 i l K例
6 7 8 重合体 (A ) A— 3 100 100 100 フルォロシラン (巳) フルォロシ"メチルビニルシラン 0. 5 1 アミン系化合物 (C ) DBU 2 2 硬化性 皮張り時間 く 1分 〉4時間 〉4時間
[0260] ポリジメチルシロキサン系重合体 (A— 3)に関しても、フルォロシラン (B)とァミン系 化合物(C)の添カ卩による顕著な硬化性向上効果が得られた。
[0261] (合成例 4)
分子量約 3, 000のポリオキシプロピレントリオールを開始剤とし、亜鉛へキサシァノ コバルテートグライム錯体触媒にてプロピレンォキシドの重合を行い、末端が水酸基 である数平均分子量約 26, 000のポリプロピレンォキシドを得た。続いて、この水酸 基末端ポリプロピレンォキシドの水酸基に対して 1. 2倍当量の NaOMeのメタノール 溶液を添加してメタノールを留去し、更に塩化ァリルを添加して末端の水酸基をァリ ル基に変換した。未反応の塩化ァリルを減圧脱揮により除去した。得られた未精製の ァリル基末端ポリプロピレンォキシド 100重量部に対し、 n—へキサン 300重量部と、 水 300重量部を混合攪拌した後、遠心分離により水を除去し、得られたへキサン溶 液に更に水 300重量部を混合攪拌し、再度遠心分離により水を除去した後、へキサ ンを減圧脱揮により除去した。以上により、末端がァリル基である数平均分子量約 26 , 000の 3官能ポリプロピレンォキシド(P— 2)を得た。
[0262] 得られたァリル末端ポリプロピレンォキシド(P— 2) 100重量部に対し、白金ビニノレ シロキサン錯体の白金含量 3wt%のイソプロピルアルコール溶液 150ppmを触媒と して、トリメトキシシラン 1. 2重量部と 90°Cで 2時間反応させ、トリメトキシシリル基末端 ポリオキシプロピレン系重合体 (A— 4)を得た。 ¾— NMRによる測定により、末端の トリメトキシシリル基は 1分子あたり平均して約 1. 8個であった。
[0263] (実施例 7、比較例 9)
表 3に示す処方に従って、重合体 (A— 4)と充填剤、チクソ性付与剤を混練し主剤 とした。
[0264] 23°C50%の恒温恒湿条件下で、主剤に対し、先ずフルォロシラン(B)を添加し、 均一に分散するようにスパチュラで 1分間よく混練した。次いで、アミン系化合物(C) を混合し、さらに 2分間混練した後、配合物中の気泡をよく脱泡し、表面を平滑に整 えた。この時間を硬化開始時間として硬化時間を測定した。 1分毎にスパチュラの先 で配合物表面を触り、スパチュラに配合物が付着しなくなるまでの時間を皮張り時間 とした。結果を表 3に示す。
[表 3]
Figure imgf000056_0001
白石工業 (株) 膠質炭酸カルシウム
白石カルシウム (株) 重質炭酸カルシウム
楠本化成 (株) 脂肪酸 ワックス
[0266] 表 3に示すように、フルォロシラン (B)とァミン系化合物(C)を併用することによって 、硬化性が顕著に向上した。
[0267] (合成例 5)
分子量約 2, 000のポリオキシプロピレンジオールを開始剤とし、亜鉛へキサシァノ コバルテートグライム錯体触媒にてプロピレンォキシドの重合を行い、末端が水酸基 である数平均分子量約 14, 500のポリプロピレンォキシドを得た。続いて、この水酸 基末端ポリプロピレンォキシドの水酸基に対して 1. 2倍当量の NaOMeのメタノール 溶液を添加してメタノールを留去し、更に塩化ァリルを添加して末端の水酸基をァリ ル基に変換した。未反応の塩化ァリルを減圧脱揮により除去した。得られた未精製の ァリル基末端ポリプロピレンォキシド 100重量部に対し、 n—へキサン 300重量部と、 水 300重量部を混合攪拌した後、遠心分離により水を除去し、得られたへキサン溶 液に更に水 300重量部を混合攪拌し、再度遠心分離により水を除去した後、へキサ ンを減圧脱揮により除去した。以上により、末端がァリル基である数平均分子量約 14 , 500の 2官能ポリプロピレンォキシド(P— 3)を得た。 [0268] 得られたァリル末端ポリプロピレンォキシド(P— 3) 100重量部に対し、白金ビニノレ シロキサン錯体の白金含量 3wt%のイソプロピルアルコール溶液 150ppmを触媒と して、ジメトキシメチルシラン 1.8重量部と 90°Cで 2時間反応させ、ジメトキシメチルシ リル基末端ポリオキシプロピレン系重合体 (A— 5)を得た。 ^— NMRによる測定に より、末端のジメトキシメチルシリル基は 1分子あたり平均して約 1.6個であった。
[0269] (合成例 6)
窒素雰囲気下、室温で、 3—メタクリロキシプロピルジメトキシメチルシラン(LS— 33 75:信越化学工業 (株)製) 2.3gに、 BFジェチルエーテル錯体 (和光純薬工業 (株
3
)製)1.4gをゆっくりと滴下した。室温で 2時間撹拌した後、真空脱揮により過剰の B Fエーテル錯体および反応副生成物を除去した。減圧蒸留により、 3—メタクリロキシ
3
プロピルジフルォロメチルシラン(B— 1 )を得た。 (B— 1 )の1 H— NMRスぺクトノレ(C DC1 ) :0.36ppm(3H)、 0.85ppm(2H)、 1.82ppm(2H)、 1.95ppm(3H)、 4
3
• 14ppm(2H)、 5.57ppm(lH)、 6. llppm(lH)
(合成例 7)
窒素雰囲気下、室温で、 3—メタクリロキシプロピルトリメトキシシラン (LS— 3380: 信越化学工業 (株)製) 2.5gに、 BFジェチルエーテル錯体 2. lgをゆっくりと滴下し
3
た。室温で 3時間撹拌した後、真空脱揮により過剰の BFエーテル錯体および反応
3
副生成物を除去した。減圧蒸留により、 3—メタクリロキシプロピルトリフルォロシラン( B— 2)を得た。 (B— 2)の1 H— NMRスぺクトノレ(CDC1 ):1· 09ppm(2H)、 1.94p
3
pm(5H)、4.17ppm(2H)、 5.60ppm(lH)、 6.12ppm(lH)
(合成例 8)
窒素雰囲気下、室温で、ォクタデシルメトキシジメチルシラン(SI〇6618.0:Geles t, Inc製) 3.4gに、 BFジェチルエーテル錯体 1.4gをゆっくりと滴下した。室温で 1
3
時間撹拌した後、真空脱揮により過剰の BFエーテル錯体および反応副生成物を除
3
去した。濾過により、ォクタデシノレフルォロジメチルシラン(B— 3)を得た。 (B— 3)の1 H— NMRスぺク卜ノレ(CDC1 ) :0.21ppm(6H)、 0.65ppm(2H)、 0.88ppm(3
3
H)、 1.26ppm(32H)
(合成例 9) 窒素雰囲気下、室温で、ジフエ二ルジメトキシシラン (AY43— 047 :東レ'ダウコー ニング 'シリコーン(株)製) 2· 4gに、 BFジェチルエーテル錯体 1 · 4gをゆっくりと滴
3
下した。室温で 12時間撹拌した後、真空脱揮により過剰の BFエーテル錯体および
3
反応副生成物を除去し、ジフヱニルジフルォロシラン(B— 4)を得た。 (B— 4)の1 H — NMRスぺクトノレ(CDC1 ) : 7. 47ppm (4H)、 7. 58ppm (2H)、 7. 73ppm (4H)
3
(合成例 10)
窒素雰囲気下、室温で、ペンジノレエトキシジメチルシラン (LS3950 :信越化学工業 (株)製) 2. 3gに、 BFジェチルエーテル錯体 1. 4gをゆっくりと滴下した。室温で 1時
3
間撹拌した後、減圧脱揮により過剰の BFエーテル錯体および反応副生成物を除去
3
した。減圧蒸留によりべンジルフルォロジメチルシラン(B— 5)を得た。 — の1!! — NMRスぺク卜ノレ(CDC1 ) : 0. 22ppm (6H)、 2. 26ppm (2H)、 7. 07ppm (2H)
3
、 7. 13ppm (lH)、 7. 25ppm (2H)
(実施例 8〜: 12、比較例 10〜: 12)
ミニカップに計り取った重合体 (A— 5)に、表 4の処方に従って、先ずフルォロシラ ン類(B)を添加し、すばやくスパチュラで 1分間よく混鍊し、次いでアミン系化合物(C )を添加し、さらに 1分間混鍊した。混鍊後、カップを 23°C50%の恒温恒湿室に静置 し、前記と同様にして、硬化時間を測定した。結果を表 4に示す。
[表 4]
Figure imgf000058_0001
実施例のように、合成した各種フルォロシラン類 (B)とァミン系化合物(C)を併用す ることで、優れた硬化性が得られた。一方、比較例 10のようにアミン系化合物(C)の みや、比較例 11のようにフルォロシラン (B)のみでは十分な硬化性は得られず、また 、フルォロシラン(B— 4)の原料であるジフヱ二ルジメトキシシランを用いても速硬化 性は示されなかった。

Claims

請求の範囲
[1] (A)シロキサン結合を形成することにより架橋し得るケィ素基を有する重合体、
(B)—般式 (1) :
R1 SiF (1)
4-a a
(式中、 4_a個の R1はそれぞれ独立に、置換あるいは非置換の炭素原子数 1から 20 の炭化水素基、または R2 SiO- (R2はそれぞれ独立に、炭素原子数 1から 20の置
3
換あるいは非置換の炭化水素基またはフッ素原子である。 )で示されるシロキシ基か らなる群より選択される少なくとも 1つである。また、 aは 1, 2, 3のいずれかである。)で 示されるフルォロシラン類、
(C)アミン系化合物、を含むことを特徴とする硬化性組成物。
[2] (A)成分が、数平均分子量 3, 000〜100, 000の重合体であり、且つ、一般式(2): - (SiR4 Z O) -SiR3 Z (2)
2-c c 1 3-b b
(式中、 R3および R4は、それぞれ独立に、炭素原子数 1から 20の炭化水素基、また は SiO- (R5はそれぞれ独立に、炭素原子数 1から 20の炭化水素基である)で示
3
されるトリオルガノシロキシ基からなる群より選択される少なくとも 1つである。また、 Z は、それぞれ独立に、水酸基または加水分解性基である。さらに、 bは 0、 1、 2、 3の いずれかであり、 cは 0、 1、 2のいずれかであり、 bと cとが同時に 0になることはない。 また、 1は 0または 1〜: 19の整数である。)で示されるケィ素基を、 1分子あたり、平均し て 1個以上有することを特徴とする請求項 1に記載の硬化性組成物。
[3] (A)成分の重合体の主鎖骨格が、ポリオキシアルキレン系重合体、飽和炭化水素 系重合体、および (メタ)アクリル酸エステル系重合体からなる群より選択される少なく とも 1種であることを特徴とする請求項 1または 2に記載の硬化性組成物。
[4] Zがアルコキシ基であることを特徴とする請求項 2または 3に記載の硬化性組成物。
[5] アルコキシ基力 Sメトキシ基であることを特徴とする請求項 4に記載の硬化性組成物。
[6] (B)成分が分子量 3, 000以下のフルォロシラン類であることを特徴とする請求項 1
〜5のいずれかに記載の硬化性組成物。
[7] 請求項 1〜6のいずれかに記載の硬化性組成物を用いてなるシーリング材。
[8] 請求項 1〜6のいずれかに記載の硬化性組成物を用いてなる接着剤。
PCT/JP2007/058490 2006-04-20 2007-04-19 硬化性組成物 WO2007123167A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/297,783 US7772332B2 (en) 2006-04-20 2007-04-19 Curable composition
CN2007800141686A CN101426859B (zh) 2006-04-20 2007-04-19 固化性组合物
JP2008512141A JP5349959B2 (ja) 2006-04-20 2007-04-19 硬化性組成物
EP07741926A EP2011834B1 (en) 2006-04-20 2007-04-19 Curable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-116301 2006-04-20
JP2006116301 2006-04-20

Publications (1)

Publication Number Publication Date
WO2007123167A1 true WO2007123167A1 (ja) 2007-11-01

Family

ID=38625068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058490 WO2007123167A1 (ja) 2006-04-20 2007-04-19 硬化性組成物

Country Status (5)

Country Link
US (1) US7772332B2 (ja)
EP (1) EP2011834B1 (ja)
JP (1) JP5349959B2 (ja)
CN (1) CN101426859B (ja)
WO (1) WO2007123167A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195824A (ja) * 2007-02-13 2008-08-28 Kaneka Corp 硬化性組成物
US20110040033A1 (en) * 2007-12-20 2011-02-17 Bluestar Silicones France Room temperature vulcanisable organopolysiloxane compound to give an elastomer and novel organopolysiloxane polycondensation catalysts
US8461283B2 (en) 2007-12-20 2013-06-11 Bluestar Silicones France Sas Room-temperature vulcanizable organopolysiloxane compound to give an elastomer and novel organopolysiloxane polycondensation catalysts
WO2015008709A1 (ja) * 2013-07-18 2015-01-22 セメダイン株式会社 光硬化性組成物
WO2015088021A1 (ja) * 2013-12-13 2015-06-18 セメダイン株式会社 接着性を有する光硬化性組成物
JP2016132705A (ja) * 2015-01-16 2016-07-25 セメダイン株式会社 光硬化性組成物
JP2016132703A (ja) * 2015-01-16 2016-07-25 セメダイン株式会社 光硬化性組成物
JP2016135852A (ja) * 2015-01-16 2016-07-28 セメダイン株式会社 光硬化性組成物
JP2017008186A (ja) * 2015-06-22 2017-01-12 パナソニックIpマネジメント株式会社 樹脂組成物およびその製造方法、それを用いた製品
JPWO2016063978A1 (ja) * 2014-10-24 2017-08-10 セメダイン株式会社 光硬化性組成物
KR20170099840A (ko) * 2014-12-26 2017-09-01 세메다인 가부시키 가이샤 광경화성 조성물

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2925510A1 (fr) * 2007-12-20 2009-06-26 Bluestar Silicones France Soc Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.
DE102008063636A1 (de) * 2008-12-18 2010-06-24 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines organischen optoelektronischen Bauelements und organisches optoelektronisches Bauelement
US8658738B2 (en) * 2009-06-24 2014-02-25 Kaneka Corporation Curable resin composition
CN102010689B (zh) * 2010-11-18 2013-01-23 北京天山新材料技术股份有限公司 异氰酸酯改性双组份硅橡胶胶粘剂及制备方法
JP5780147B2 (ja) * 2011-01-06 2015-09-16 スリーボンドファインケミカル株式会社 導電性塗料
JP5972990B2 (ja) 2011-11-10 2016-08-17 モーメンティブ・パフォーマンス・マテリアルズ・インク 湿気硬化性オルガノポリシロキサン組成物
JP6267128B2 (ja) 2011-12-15 2018-01-24 モーメンティブ・パフォーマンス・マテリアルズ・インク 湿気硬化性オルガノポリシロキサン組成物
JP6297498B2 (ja) 2011-12-15 2018-03-20 モーメンティブ・パフォーマンス・マテリアルズ・インク 湿気硬化性オルガノポリシロキサン組成物
WO2013101755A1 (en) 2011-12-29 2013-07-04 Momentive Performance Materials, Inc. Moisture curable organopolysiloxane composition
TW201434882A (zh) 2013-03-13 2014-09-16 Momentive Performance Mat Inc 可濕氣固化之有機聚矽氧烷組成物
JP2016521309A (ja) 2013-05-10 2016-07-21 モーメンティブ・パフォーマンス・マテリアルズ・インク 非金属触媒室温湿気硬化性オルガノポリシロキサン組成物
EP3063256A1 (en) * 2013-10-29 2016-09-07 Dow Brasil Sudeste Industiral Ltda. A lubricant composition and a method to lubricate a mechanical device
CN103981506B (zh) * 2014-05-29 2015-12-30 武汉大学 一种碳-锡复合导电膜的制备方法
WO2017162811A1 (de) 2016-03-23 2017-09-28 Covestro Deutschland Ag Härtbare zusammensetzungen auf basis von alkoxysilangruppen-haltigen prepolymeren
CN107558292A (zh) * 2017-07-28 2018-01-09 安徽安大华泰新材料有限公司 一种用于造纸加工的防水耐污改性胶粘剂及其制备方法
WO2019127338A1 (en) * 2017-12-29 2019-07-04 Henkel Ag & Co. Kgaa Acid resistant adhesive composition
MY197947A (en) * 2018-01-31 2023-07-25 Dainippon Printing Co Ltd Thermal transfer sheet, coating liquid for release layer, and method for producing thermal transfer sheet
JP7067229B2 (ja) * 2018-04-17 2022-05-16 信越化学工業株式会社 反応性ケイ素含有基を有するポリマーおよびその製造方法
CN109735113B (zh) * 2018-12-30 2021-09-28 苏州桐力光电股份有限公司 一种液晶屏贴合用透明硅凝胶
CN110240888A (zh) * 2019-06-20 2019-09-17 浙江励德有机硅材料有限公司 一种双组份缩合型导热硅凝胶及其制备方法
CN110776871B (zh) * 2019-10-22 2021-12-03 深圳市美信检测技术股份有限公司 室温脱醇硅酮胶粘剂及其制备方法
EP4053205A4 (en) * 2019-10-30 2023-11-08 ThreeBond Co., Ltd. RESIN COMPOSITION
WO2021206026A1 (ja) * 2020-04-09 2021-10-14 株式会社カネカ 硬化性組成物
EP4056652A1 (de) 2021-03-11 2022-09-14 Covestro Deutschland AG Alterungsbeständige feuchtigkeitshärtende zusammensetzungen

Citations (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278459A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278457A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278458A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3427334A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity
US3427256A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanide complex compounds
US3427335A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same
JPS4627250B1 (ja) 1965-10-15 1971-08-07
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
US3711445A (en) 1970-10-08 1973-01-16 Du Pont Self-priming polyurethane compositions
JPS50156599A (ja) 1974-06-07 1975-12-17
JPS5273998A (en) 1975-12-16 1977-06-21 Kanegafuchi Chem Ind Co Ltd Room temperature curing compositions
US4067844A (en) 1976-12-22 1978-01-10 Tremco Incorporated Urethane polymers and sealant compositions containing the same
JPS546096A (en) 1977-06-15 1979-01-17 Kanegafuchi Chem Ind Co Ltd Preparation of silyl-terminated polymer
JPS5513468A (en) 1978-07-17 1980-01-30 Toshiba Corp Display unit
JPS5513767A (en) 1978-07-18 1980-01-30 Kanegafuchi Chem Ind Co Ltd Production of polymer terminated with silyl groups
US4345053A (en) 1981-07-17 1982-08-17 Essex Chemical Corp. Silicon-terminated polyurethane polymer
JPS57164123A (en) 1981-04-02 1982-10-08 Toshiba Silicone Co Ltd Production of silicon-containing polyoxyalkylene
US4366307A (en) 1980-12-04 1982-12-28 Products Research & Chemical Corp. Liquid polythioethers
US4374237A (en) 1981-12-21 1983-02-15 Union Carbide Corporation Silane-containing isocyanate-terminated polyurethane polymers
JPS5915336B2 (ja) 1980-10-16 1984-04-09 ザ ゼネラル タイヤ アンド ラバ− カンパニ− ポリプロピレンエ−テル及びポリ−1,2−ブチレンエ−テルポリオ−ル類の処理法
JPS5978223A (ja) 1982-10-27 1984-05-07 Kanegafuchi Chem Ind Co Ltd 重合体の製造方法
JPS59122541A (ja) 1982-12-28 1984-07-16 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPS59168014A (ja) 1983-03-15 1984-09-21 Kanegafuchi Chem Ind Co Ltd 硬化性弾性組成物
JPS60228516A (ja) 1984-04-26 1985-11-13 Kanegafuchi Chem Ind Co Ltd 新規重合体の製造法
JPS60228517A (ja) 1984-04-26 1985-11-13 Kanegafuchi Chem Ind Co Ltd 新規重合体の製造法
JPS61197631A (ja) 1985-02-28 1986-09-01 Kanegafuchi Chem Ind Co Ltd 分子量分布の狭いポリアルキレンオキシドの製造方法
JPS61215623A (ja) 1985-03-22 1986-09-25 Kanegafuchi Chem Ind Co Ltd 分子末端に不飽和基を含有するポリアルキレンオキシドの製造法
JPS61215622A (ja) 1985-03-22 1986-09-25 Kanegafuchi Chem Ind Co Ltd 分子末端に不飽和基を含有するポリアルキレンオキシドの製造方法
JPS61218632A (ja) 1985-03-25 1986-09-29 Kanegafuchi Chem Ind Co Ltd 分子末端に不飽和基を含有する分子量分布の狭いポリアルキレンオキシド
JPS6213430A (ja) 1985-06-28 1987-01-22 ユニオン・カ−バイド・コ−ポレ−シヨン 加硫可能なシラン末端ポリウレタンポリマ−
JPS636041A (ja) 1986-06-25 1988-01-12 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPS63112642A (ja) 1986-10-29 1988-05-17 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPS63254149A (ja) 1987-04-13 1988-10-20 Kanegafuchi Chem Ind Co Ltd 硬化性樹脂組成物
JPS6422904A (en) 1987-07-17 1989-01-25 Kanegafuchi Chemical Ind Isobutylene polymer
JPH01168764A (ja) 1987-12-24 1989-07-04 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH01197509A (ja) 1987-12-11 1989-08-09 Dow Corning Corp 湿分硬化性フィルム形成剤
JPH02129262A (ja) 1988-11-10 1990-05-17 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
US4960844A (en) 1988-08-03 1990-10-02 Products Research & Chemical Corporation Silane terminated liquid polymers
JPH032450B2 (ja) 1986-05-30 1991-01-16 Toshiba Silicone
JPH0347825A (ja) 1988-12-09 1991-02-28 Asahi Glass Co Ltd 湿気硬化性樹脂組成物
JPH0372527A (ja) 1989-05-09 1991-03-27 Asahi Glass Co Ltd ポリアルキレンオキシド誘導体の製造法
JPH03160053A (ja) 1989-11-16 1991-07-10 Kanegafuchi Chem Ind Co Ltd 室温硬化性組成物
US5068304A (en) 1988-12-09 1991-11-26 Asahi Glass Company, Ltd. Moisture-curable resin composition
JPH048788A (ja) 1990-04-26 1992-01-13 Shin Etsu Chem Co Ltd ハードディスク装置用カバー・スポンジパッキン組立体
JPH04173867A (ja) 1990-11-07 1992-06-22 Natl Space Dev Agency Japan<Nasda> 軽量断熱性ゴム組成物
JPH0455444B2 (ja) 1984-11-30 1992-09-03 Sunstar Engineering Inc
JPH04283259A (ja) 1991-03-11 1992-10-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH051225A (ja) 1991-06-25 1993-01-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH0570531A (ja) 1991-09-12 1993-03-23 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH05117521A (ja) 1991-10-31 1993-05-14 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH05117519A (ja) 1991-10-24 1993-05-14 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH06172631A (ja) 1992-12-04 1994-06-21 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH06211879A (ja) 1992-11-06 1994-08-02 Bayer Ag アルコキシシラン基とアミノ基とを含有する化合物
JPH06211922A (ja) 1993-01-20 1994-08-02 Nippon Shokubai Co Ltd 硬化性組成物
JPH06279693A (ja) 1993-03-26 1994-10-04 Asahi Glass Co Ltd 新規なポリマーおよびその組成物
JPH0753882A (ja) 1993-08-18 1995-02-28 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH07113073A (ja) 1993-10-18 1995-05-02 Toray Chiokoole Kk 艶消しシーリング組成物
JPH07258534A (ja) 1994-03-25 1995-10-09 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
EP0676403A1 (en) 1994-04-08 1995-10-11 Osi Specialties, Inc. Arylaminosilane end-capped urethane sealants
JPH07108928B2 (ja) 1986-06-26 1995-11-22 鐘淵化学工業株式会社 硬化性組成物
JPH08104753A (ja) 1994-10-06 1996-04-23 Shin Etsu Chem Co Ltd オルガノポリシロキサンの製造方法
JPH08231707A (ja) 1994-07-18 1996-09-10 Asahi Glass Co Ltd ポリエーテルの精製方法
JP2539445B2 (ja) 1987-08-04 1996-10-02 鐘淵化学工業株式会社 イソブチレン系重合体
WO1997005201A1 (fr) 1995-08-01 1997-02-13 The Yokohama Rubber Co., Ltd. Composition adhesive et son procede de fabrication
JPH0953063A (ja) 1995-08-11 1997-02-25 Sekisui House Ltd シーリング材およびその表面仕上げ方法
JPH09194731A (ja) 1996-01-23 1997-07-29 Asahi Glass Co Ltd 硬化性組成物
JPH09272714A (ja) 1996-02-08 1997-10-21 Kanegafuchi Chem Ind Co Ltd 末端に官能基を有する(メタ)アクリル系重合体の 製造方法
JPH1053637A (ja) 1996-05-15 1998-02-24 Bayer Ag アルコキシシラン基およびヒダントイン基を有するポリウレタンプレポリマーおよびシーラント製造へのその使用
EP0831108A1 (en) 1996-09-23 1998-03-25 OSi Specialties, Inc. Curable silane-endcapped compositions having improved performance
JPH10251618A (ja) 1997-03-17 1998-09-22 Auto Kagaku Kogyo Kk ざらつき感が付与されたシーリング材組成物
JPH10273512A (ja) 1997-03-31 1998-10-13 Mitsui Chem Inc ポリアルキレンオキシドの製造方法
JPH1160724A (ja) 1997-08-19 1999-03-05 Mitsui Chem Inc ケイ素基含有ポリアルキレンオキサイド重合体の製造方法及び湿気硬化性組成物
JPH1160722A (ja) 1997-08-19 1999-03-05 Mitsui Chem Inc ポリオキシアルキレンポリオールの製造方法
JP2873395B2 (ja) 1990-08-22 1999-03-24 鐘淵化学工業株式会社 反応性ケイ素基を有するイソブチレン系重合体、その製造方法及びその硬化性組成物
JPH11100427A (ja) 1997-07-30 1999-04-13 Konishi Co Ltd ウレタン系樹脂組成物及びウレタン系樹脂の製造方法
JPH11116763A (ja) 1997-07-28 1999-04-27 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH11241029A (ja) 1998-02-26 1999-09-07 Asahi Glass Co Ltd 硬化性組成物
JPH11279249A (ja) 1998-01-22 1999-10-12 Witco Corp 硬化して改良シ―ラントとなるプレポリマ―の製法およびそれからなる生成物
JPH11302527A (ja) 1998-04-27 1999-11-02 Cemedine Co Ltd 湿気硬化型組成物
JPH11349916A (ja) 1998-06-05 1999-12-21 Sunstar Eng Inc 高揺変性変成シリコーン系接着剤
JP2000038560A (ja) 1998-07-22 2000-02-08 Konishi Co Ltd 透明性に優れた湿気硬化型接着剤組成物
US6046270A (en) 1998-10-14 2000-04-04 Bayer Corporation Silane-modified polyurethane resins, a process for their preparation and their use as moisture-curable resins
JP2000154368A (ja) 1998-11-18 2000-06-06 Hitachi Kasei Polymer Co Ltd 建築用変成シリコーン系シーリング材
JP2000169544A (ja) 1998-12-10 2000-06-20 Konishi Co Ltd ウレタン系樹脂及びその製造方法
JP2000169545A (ja) 1998-12-10 2000-06-20 Konishi Co Ltd ウレタン系樹脂の製造方法
JP2000186176A (ja) 1998-12-24 2000-07-04 Sunstar Eng Inc アルコキシシリル基含有硬化性組成物
US6197912B1 (en) 1999-08-20 2001-03-06 Ck Witco Corporation Silane endcapped moisture curable compositions
JP2001072854A (ja) 1999-09-01 2001-03-21 Asahi Glass Co Ltd 室温硬化性組成物
JP2001115142A (ja) 1999-10-19 2001-04-24 Yokohama Rubber Co Ltd:The シーリング材組成物
JP2001164237A (ja) 1999-12-09 2001-06-19 Auto Kagaku Kogyo Kk シーリング材組成物
JP2001181532A (ja) 1999-12-28 2001-07-03 Konishi Co Ltd 表面処理炭酸カルシウム製品及びその製造方法
JP2001207157A (ja) 2000-01-28 2001-07-31 Toagosei Co Ltd シーリング材組成物
JP2001323040A (ja) 2000-05-15 2001-11-20 Auto Kagaku Kogyo Kk 架橋性シリル基含有ウレタン系樹脂混合物、及びこれを含有する硬化性組成物
JP2002155145A (ja) 2000-11-21 2002-05-28 Auto Kagaku Kogyo Kk 硬化性組成物
JP2002212415A (ja) 2001-01-18 2002-07-31 Konishi Co Ltd ウレタン樹脂系硬化性樹脂組成物及びその製造方法
JP2002249538A (ja) 2001-02-22 2002-09-06 Auto Kagaku Kogyo Kk 硬化性組成物
WO2003018658A1 (de) 2001-08-28 2003-03-06 Consortium für elektrochemische Industrie GmbH Einkomponentige alkoxysilanterminierte polymere enthaltende schnell härtende abmischungen
JP2003155389A (ja) 2001-11-22 2003-05-27 Sunstar Eng Inc 加水分解性シリル基含有硬化性組成物
WO2003059981A1 (de) 2002-01-17 2003-07-24 Consortium für elektrochemische Industrie GmbH Aloxysilanterminierte polymere enthaltende vernetzbare polymerabmischungen
JP2004051701A (ja) 2002-07-17 2004-02-19 Konishi Co Ltd 加熱剥離型1液湿気硬化型弾性接着剤組成物
JP2004066749A (ja) 2002-08-09 2004-03-04 Matsushita Electric Works Ltd 加熱剥離可能な積層体
WO2006051799A1 (ja) * 2004-11-11 2006-05-18 Kaneka Corporation 硬化性組成物
WO2007040124A1 (ja) * 2005-09-30 2007-04-12 Kaneka Corporation 硬化性と接着性の改善された硬化性組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2436777A (en) * 1945-05-30 1948-02-24 Dow Chemical Co Organofluorosilanes and method of making same
DE3003893A1 (de) * 1980-02-02 1981-10-15 Chemische Werke Hüls AG, 4370 Marl Reaktive silylgruppen tragende homo- oder copolymere von 1,3-dienen, verfahren zu ihrer herstellung sowie deren verwendung
CA1274647C (en) * 1986-06-25 1990-09-25 CURING ISOBUTYLENE POLYMER
JP3389338B2 (ja) * 1994-07-06 2003-03-24 信越化学工業株式会社 加水分解性官能基含有オルガノポリシロキサンの製造方法及び硬化性樹脂組成物
EP1153982B1 (en) * 1999-01-05 2004-08-04 Kaneka Corporation Curable resin composition
EP1688423B1 (en) * 2002-01-21 2010-09-08 Shin-Etsu Chemical Co., Ltd. Silylation of hydroxyl group-containing compounds
DK1507751T3 (da) * 2002-05-29 2006-05-15 Erlus Ag Keramisk formlegeme emd fotokatalytisk belægning og fremgangsmåde til fremstilling deraf
JP2004250581A (ja) * 2003-02-20 2004-09-09 Mitsubishi Gas Chem Co Inc コーティング組成物及び樹脂積層体
JP4518419B2 (ja) * 2003-02-25 2010-08-04 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング 少なくとも2個のシランを含有する混合物を用いての金属表面の被覆方法
DE10320779A1 (de) * 2003-05-09 2004-11-18 Degussa Ag Korrosionsschutz auf Metallen
JP2006044171A (ja) * 2004-08-06 2006-02-16 Mitsubishi Engineering Plastics Corp 合成樹脂製積層体及びその製造方法
JP4469244B2 (ja) * 2004-08-09 2010-05-26 三菱エンジニアリングプラスチックス株式会社 合成樹脂製積層体及びその製造方法
JP4426924B2 (ja) * 2004-08-11 2010-03-03 三菱エンジニアリングプラスチックス株式会社 合成樹脂製積層体及びその製造方法
JP4913129B2 (ja) * 2005-06-02 2012-04-11 エルジー・ケム・リミテッド 低屈折率膜形成用コーティング組成物及びこれから製造された膜

Patent Citations (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278459A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278457A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278458A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3427334A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity
US3427256A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanide complex compounds
US3427335A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same
JPS4627250B1 (ja) 1965-10-15 1971-08-07
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
US3711445A (en) 1970-10-08 1973-01-16 Du Pont Self-priming polyurethane compositions
JPS50156599A (ja) 1974-06-07 1975-12-17
JPS5273998A (en) 1975-12-16 1977-06-21 Kanegafuchi Chem Ind Co Ltd Room temperature curing compositions
US4067844A (en) 1976-12-22 1978-01-10 Tremco Incorporated Urethane polymers and sealant compositions containing the same
JPS546096A (en) 1977-06-15 1979-01-17 Kanegafuchi Chem Ind Co Ltd Preparation of silyl-terminated polymer
JPS5513468A (en) 1978-07-17 1980-01-30 Toshiba Corp Display unit
JPS5513767A (en) 1978-07-18 1980-01-30 Kanegafuchi Chem Ind Co Ltd Production of polymer terminated with silyl groups
JPS5915336B2 (ja) 1980-10-16 1984-04-09 ザ ゼネラル タイヤ アンド ラバ− カンパニ− ポリプロピレンエ−テル及びポリ−1,2−ブチレンエ−テルポリオ−ル類の処理法
US4366307A (en) 1980-12-04 1982-12-28 Products Research & Chemical Corp. Liquid polythioethers
JPS57164123A (en) 1981-04-02 1982-10-08 Toshiba Silicone Co Ltd Production of silicon-containing polyoxyalkylene
US4345053A (en) 1981-07-17 1982-08-17 Essex Chemical Corp. Silicon-terminated polyurethane polymer
JPS5829818A (ja) 1981-07-17 1983-02-22 エセツクス・ケミカル・コ−ポレ−シヨン ケイ素末端ポリウレタン重合体
US4374237A (en) 1981-12-21 1983-02-15 Union Carbide Corporation Silane-containing isocyanate-terminated polyurethane polymers
JPS58109529A (ja) 1981-12-21 1983-06-29 ユニオン・カ−バイド・コ−ポレ−シヨン シラン含有イソシアネ−ト末端のポリウレタンポリマ−硬化性組成物
JPS5978223A (ja) 1982-10-27 1984-05-07 Kanegafuchi Chem Ind Co Ltd 重合体の製造方法
JPS59122541A (ja) 1982-12-28 1984-07-16 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPS59168014A (ja) 1983-03-15 1984-09-21 Kanegafuchi Chem Ind Co Ltd 硬化性弾性組成物
JPH0314068B2 (ja) 1983-03-15 1991-02-25 Kanegafuchi Chemical Ind
JPS60228516A (ja) 1984-04-26 1985-11-13 Kanegafuchi Chem Ind Co Ltd 新規重合体の製造法
JPS60228517A (ja) 1984-04-26 1985-11-13 Kanegafuchi Chem Ind Co Ltd 新規重合体の製造法
JPH0455444B2 (ja) 1984-11-30 1992-09-03 Sunstar Engineering Inc
JPS61197631A (ja) 1985-02-28 1986-09-01 Kanegafuchi Chem Ind Co Ltd 分子量分布の狭いポリアルキレンオキシドの製造方法
JPS61215623A (ja) 1985-03-22 1986-09-25 Kanegafuchi Chem Ind Co Ltd 分子末端に不飽和基を含有するポリアルキレンオキシドの製造法
JPS61215622A (ja) 1985-03-22 1986-09-25 Kanegafuchi Chem Ind Co Ltd 分子末端に不飽和基を含有するポリアルキレンオキシドの製造方法
JPS61218632A (ja) 1985-03-25 1986-09-29 Kanegafuchi Chem Ind Co Ltd 分子末端に不飽和基を含有する分子量分布の狭いポリアルキレンオキシド
US4645816A (en) 1985-06-28 1987-02-24 Union Carbide Corporation Novel vulcanizable silane-terminated polyurethane polymers
JPS6213430A (ja) 1985-06-28 1987-01-22 ユニオン・カ−バイド・コ−ポレ−シヨン 加硫可能なシラン末端ポリウレタンポリマ−
JPH032450B2 (ja) 1986-05-30 1991-01-16 Toshiba Silicone
JPH0469659B2 (ja) 1986-06-25 1992-11-06 Kanegafuchi Chemical Ind
JPS636041A (ja) 1986-06-25 1988-01-12 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH07108928B2 (ja) 1986-06-26 1995-11-22 鐘淵化学工業株式会社 硬化性組成物
JPS63112642A (ja) 1986-10-29 1988-05-17 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPS63254149A (ja) 1987-04-13 1988-10-20 Kanegafuchi Chem Ind Co Ltd 硬化性樹脂組成物
JPS6422904A (en) 1987-07-17 1989-01-25 Kanegafuchi Chemical Ind Isobutylene polymer
JP2539445B2 (ja) 1987-08-04 1996-10-02 鐘淵化学工業株式会社 イソブチレン系重合体
JPH01197509A (ja) 1987-12-11 1989-08-09 Dow Corning Corp 湿分硬化性フィルム形成剤
JPH01168764A (ja) 1987-12-24 1989-07-04 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
US4960844A (en) 1988-08-03 1990-10-02 Products Research & Chemical Corporation Silane terminated liquid polymers
JPH02129262A (ja) 1988-11-10 1990-05-17 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
US5068304A (en) 1988-12-09 1991-11-26 Asahi Glass Company, Ltd. Moisture-curable resin composition
JPH0347825A (ja) 1988-12-09 1991-02-28 Asahi Glass Co Ltd 湿気硬化性樹脂組成物
JPH0372527A (ja) 1989-05-09 1991-03-27 Asahi Glass Co Ltd ポリアルキレンオキシド誘導体の製造法
JPH03160053A (ja) 1989-11-16 1991-07-10 Kanegafuchi Chem Ind Co Ltd 室温硬化性組成物
JPH048788A (ja) 1990-04-26 1992-01-13 Shin Etsu Chem Co Ltd ハードディスク装置用カバー・スポンジパッキン組立体
JP2873395B2 (ja) 1990-08-22 1999-03-24 鐘淵化学工業株式会社 反応性ケイ素基を有するイソブチレン系重合体、その製造方法及びその硬化性組成物
JPH04173867A (ja) 1990-11-07 1992-06-22 Natl Space Dev Agency Japan<Nasda> 軽量断熱性ゴム組成物
JPH04283259A (ja) 1991-03-11 1992-10-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH051225A (ja) 1991-06-25 1993-01-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH0570531A (ja) 1991-09-12 1993-03-23 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH05117519A (ja) 1991-10-24 1993-05-14 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH05117521A (ja) 1991-10-31 1993-05-14 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH06211879A (ja) 1992-11-06 1994-08-02 Bayer Ag アルコキシシラン基とアミノ基とを含有する化合物
US5364955A (en) 1992-11-06 1994-11-15 Bayer Aktiengesellschaft Compounds containing alkoxysilane and amino groups
JPH06172631A (ja) 1992-12-04 1994-06-21 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH06211922A (ja) 1993-01-20 1994-08-02 Nippon Shokubai Co Ltd 硬化性組成物
JPH06279693A (ja) 1993-03-26 1994-10-04 Asahi Glass Co Ltd 新規なポリマーおよびその組成物
JPH0753882A (ja) 1993-08-18 1995-02-28 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH07113073A (ja) 1993-10-18 1995-05-02 Toray Chiokoole Kk 艶消しシーリング組成物
JPH07258534A (ja) 1994-03-25 1995-10-09 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH0853528A (ja) 1994-04-08 1996-02-27 Osi Specialties Inc アリールアミノシラン末端キヤツプドウレタンのシーラント
EP0676403A1 (en) 1994-04-08 1995-10-11 Osi Specialties, Inc. Arylaminosilane end-capped urethane sealants
JPH08231707A (ja) 1994-07-18 1996-09-10 Asahi Glass Co Ltd ポリエーテルの精製方法
JPH08104753A (ja) 1994-10-06 1996-04-23 Shin Etsu Chem Co Ltd オルガノポリシロキサンの製造方法
WO1997005201A1 (fr) 1995-08-01 1997-02-13 The Yokohama Rubber Co., Ltd. Composition adhesive et son procede de fabrication
JPH0953063A (ja) 1995-08-11 1997-02-25 Sekisui House Ltd シーリング材およびその表面仕上げ方法
JPH09194731A (ja) 1996-01-23 1997-07-29 Asahi Glass Co Ltd 硬化性組成物
JPH09272714A (ja) 1996-02-08 1997-10-21 Kanegafuchi Chem Ind Co Ltd 末端に官能基を有する(メタ)アクリル系重合体の 製造方法
US5756751A (en) 1996-05-15 1998-05-26 Bayer Aktiengesellschaft Compounds containing alkoxysilane groups and hydantoin groups
JPH1053637A (ja) 1996-05-15 1998-02-24 Bayer Ag アルコキシシラン基およびヒダントイン基を有するポリウレタンプレポリマーおよびシーラント製造へのその使用
EP0831108A1 (en) 1996-09-23 1998-03-25 OSi Specialties, Inc. Curable silane-endcapped compositions having improved performance
JPH10204144A (ja) 1996-09-23 1998-08-04 Osi Specialties Inc 改良された性能をもつ硬化性シラン−末端封鎖組成物
JPH10251618A (ja) 1997-03-17 1998-09-22 Auto Kagaku Kogyo Kk ざらつき感が付与されたシーリング材組成物
JPH10273512A (ja) 1997-03-31 1998-10-13 Mitsui Chem Inc ポリアルキレンオキシドの製造方法
JPH11116763A (ja) 1997-07-28 1999-04-27 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH11100427A (ja) 1997-07-30 1999-04-13 Konishi Co Ltd ウレタン系樹脂組成物及びウレタン系樹脂の製造方法
JPH1160722A (ja) 1997-08-19 1999-03-05 Mitsui Chem Inc ポリオキシアルキレンポリオールの製造方法
JPH1160724A (ja) 1997-08-19 1999-03-05 Mitsui Chem Inc ケイ素基含有ポリアルキレンオキサイド重合体の製造方法及び湿気硬化性組成物
US5990257A (en) 1998-01-22 1999-11-23 Witco Corporation Process for producing prepolymers which cure to improved sealants, and products formed thereby
JPH11279249A (ja) 1998-01-22 1999-10-12 Witco Corp 硬化して改良シ―ラントとなるプレポリマ―の製法およびそれからなる生成物
JPH11241029A (ja) 1998-02-26 1999-09-07 Asahi Glass Co Ltd 硬化性組成物
JPH11302527A (ja) 1998-04-27 1999-11-02 Cemedine Co Ltd 湿気硬化型組成物
JPH11349916A (ja) 1998-06-05 1999-12-21 Sunstar Eng Inc 高揺変性変成シリコーン系接着剤
JP2000038560A (ja) 1998-07-22 2000-02-08 Konishi Co Ltd 透明性に優れた湿気硬化型接着剤組成物
US6046270A (en) 1998-10-14 2000-04-04 Bayer Corporation Silane-modified polyurethane resins, a process for their preparation and their use as moisture-curable resins
JP2000119365A (ja) 1998-10-14 2000-04-25 Bayer Corp シラン改変ポリウレタン樹脂、その製造方法および湿分硬化性樹脂としてのその使用
JP2000154368A (ja) 1998-11-18 2000-06-06 Hitachi Kasei Polymer Co Ltd 建築用変成シリコーン系シーリング材
JP2000169544A (ja) 1998-12-10 2000-06-20 Konishi Co Ltd ウレタン系樹脂及びその製造方法
JP2000169545A (ja) 1998-12-10 2000-06-20 Konishi Co Ltd ウレタン系樹脂の製造方法
JP2000186176A (ja) 1998-12-24 2000-07-04 Sunstar Eng Inc アルコキシシリル基含有硬化性組成物
US6197912B1 (en) 1999-08-20 2001-03-06 Ck Witco Corporation Silane endcapped moisture curable compositions
JP2003508561A (ja) 1999-08-20 2003-03-04 クロムプトン コーポレイション シランを末端キャップした湿分硬化性組成物
JP2001072854A (ja) 1999-09-01 2001-03-21 Asahi Glass Co Ltd 室温硬化性組成物
JP2001115142A (ja) 1999-10-19 2001-04-24 Yokohama Rubber Co Ltd:The シーリング材組成物
JP2001164237A (ja) 1999-12-09 2001-06-19 Auto Kagaku Kogyo Kk シーリング材組成物
JP2001181532A (ja) 1999-12-28 2001-07-03 Konishi Co Ltd 表面処理炭酸カルシウム製品及びその製造方法
JP2001207157A (ja) 2000-01-28 2001-07-31 Toagosei Co Ltd シーリング材組成物
JP2001323040A (ja) 2000-05-15 2001-11-20 Auto Kagaku Kogyo Kk 架橋性シリル基含有ウレタン系樹脂混合物、及びこれを含有する硬化性組成物
JP2002155145A (ja) 2000-11-21 2002-05-28 Auto Kagaku Kogyo Kk 硬化性組成物
JP2002212415A (ja) 2001-01-18 2002-07-31 Konishi Co Ltd ウレタン樹脂系硬化性樹脂組成物及びその製造方法
JP2002249538A (ja) 2001-02-22 2002-09-06 Auto Kagaku Kogyo Kk 硬化性組成物
WO2003018658A1 (de) 2001-08-28 2003-03-06 Consortium für elektrochemische Industrie GmbH Einkomponentige alkoxysilanterminierte polymere enthaltende schnell härtende abmischungen
JP2003155389A (ja) 2001-11-22 2003-05-27 Sunstar Eng Inc 加水分解性シリル基含有硬化性組成物
WO2003059981A1 (de) 2002-01-17 2003-07-24 Consortium für elektrochemische Industrie GmbH Aloxysilanterminierte polymere enthaltende vernetzbare polymerabmischungen
JP2004051701A (ja) 2002-07-17 2004-02-19 Konishi Co Ltd 加熱剥離型1液湿気硬化型弾性接着剤組成物
JP2004066749A (ja) 2002-08-09 2004-03-04 Matsushita Electric Works Ltd 加熱剥離可能な積層体
WO2006051799A1 (ja) * 2004-11-11 2006-05-18 Kaneka Corporation 硬化性組成物
WO2007040124A1 (ja) * 2005-09-30 2007-04-12 Kaneka Corporation 硬化性と接着性の改善された硬化性組成物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Photosensitive Resin", 17 March 1972, INSATSU GAKKAI SHUPPANBU LTD., pages: 93
ISHIKAWA, ORGANOMETALLICS, vol. 15, 1996, pages 2478
J. P. KENNEDY ET AL., J. POLYMER SCI., POLYMER CHEM. ED., vol. 15, 1997, pages 2843
MATYJASZEWSKI ET AL., J. AM. CHEM. SOC., vol. 117, 1995, pages 5614
See also references of EP2011834A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195824A (ja) * 2007-02-13 2008-08-28 Kaneka Corp 硬化性組成物
US20110040033A1 (en) * 2007-12-20 2011-02-17 Bluestar Silicones France Room temperature vulcanisable organopolysiloxane compound to give an elastomer and novel organopolysiloxane polycondensation catalysts
US8426546B2 (en) * 2007-12-20 2013-04-23 Bluestar Silicones France Sas Room temperature vulcanizable organopolysiloxane compound to give an elastomer and novel organopolysiloxane polycondensation catalysts
US8461283B2 (en) 2007-12-20 2013-06-11 Bluestar Silicones France Sas Room-temperature vulcanizable organopolysiloxane compound to give an elastomer and novel organopolysiloxane polycondensation catalysts
JPWO2015008709A1 (ja) * 2013-07-18 2017-03-02 セメダイン株式会社 光硬化性組成物
WO2015008709A1 (ja) * 2013-07-18 2015-01-22 セメダイン株式会社 光硬化性組成物
KR102305831B1 (ko) 2013-07-18 2021-09-27 세메다인 가부시키 가이샤 광경화성 조성물, 경화물 및 그의 제조 방법, 그리고 관련 제품 및 그의 제조 방법
KR20160055779A (ko) * 2013-07-18 2016-05-18 세메다인 가부시키 가이샤 광경화성 조성물, 경화물 및 그의 제조 방법, 그리고 관련 제품 및 그의 제조 방법
JP5927750B2 (ja) * 2013-07-18 2016-06-01 セメダイン株式会社 光硬化性組成物
US9718999B2 (en) 2013-12-13 2017-08-01 Cemedine Co., Ltd Photocurable composition having adhesive properties
KR20160096615A (ko) * 2013-12-13 2016-08-16 세메다인 가부시키 가이샤 접착성을 갖는 광경화성 조성물
JPWO2015088021A1 (ja) * 2013-12-13 2017-03-16 セメダイン株式会社 接着性を有する光硬化性組成物
WO2015088021A1 (ja) * 2013-12-13 2015-06-18 セメダイン株式会社 接着性を有する光硬化性組成物
KR102330121B1 (ko) 2013-12-13 2021-11-23 세메다인 가부시키 가이샤 접착성을 갖는 광경화성 조성물
JPWO2016063978A1 (ja) * 2014-10-24 2017-08-10 セメダイン株式会社 光硬化性組成物
KR20170099840A (ko) * 2014-12-26 2017-09-01 세메다인 가부시키 가이샤 광경화성 조성물
KR102494910B1 (ko) * 2014-12-26 2023-02-01 세메다인 가부시키 가이샤 광경화성 조성물
JP2016135852A (ja) * 2015-01-16 2016-07-28 セメダイン株式会社 光硬化性組成物
JP2016132703A (ja) * 2015-01-16 2016-07-25 セメダイン株式会社 光硬化性組成物
JP2016132705A (ja) * 2015-01-16 2016-07-25 セメダイン株式会社 光硬化性組成物
JP2017008186A (ja) * 2015-06-22 2017-01-12 パナソニックIpマネジメント株式会社 樹脂組成物およびその製造方法、それを用いた製品

Also Published As

Publication number Publication date
EP2011834A4 (en) 2010-07-14
EP2011834B1 (en) 2012-07-25
CN101426859A (zh) 2009-05-06
JPWO2007123167A1 (ja) 2009-09-03
US20090069505A1 (en) 2009-03-12
JP5349959B2 (ja) 2013-11-20
CN101426859B (zh) 2012-03-21
US7772332B2 (en) 2010-08-10
EP2011834A1 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
JP5349959B2 (ja) 硬化性組成物
JP4819675B2 (ja) 硬化性組成物
JP5226218B2 (ja) 硬化性組成物
JP5449508B2 (ja) 硬化性組成物
JP5744759B2 (ja) 硬化性組成物
JP5284797B2 (ja) 硬化性組成物
WO2008053875A1 (fr) Polymère organique durcissable, procédé de fabrication de celui-ci, et composition durcissable contenant le polymère
WO2006051798A1 (ja) 硬化性組成物
WO2004031299A1 (ja) 1液型硬化性組成物
WO2007037484A1 (ja) 硬化性組成物
WO2008032539A1 (fr) POLYMÈRE DURCISSABLE À L&#39;HUMIDITÉ COMPORTANT UN GROUPE SiF ET COMPOSITION DURCISSABLE CONTENANT UN TEL POLYMÈRE
JP5284583B2 (ja) 硬化性有機重合体とその製造方法、および、これを含有する硬化性組成物
JP4480457B2 (ja) 硬化性組成物
JP2014234396A (ja) 室温硬化性組成物およびその硬化物
JP2008156482A (ja) 硬化性組成物
JP5210685B2 (ja) 反応性ケイ素基含有有機重合体組成物の製造方法および流動性調整方法および該有機重合体組成物を用いた目地構造体
JP2008195824A (ja) 硬化性組成物
JP2007131798A (ja) 硬化性組成物
JP2009215331A (ja) SiF基を有する重合体を含有する硬化性組成物
JP4777732B2 (ja) オルガノシロキサン変性ポリオキシアルキレン系重合体および/または(メタ)アクリル酸エステル系重合体、および、該重合体を含有する硬化性組成物
JP2009215330A (ja) SiF基を有する重合体を含有する1液型硬化性組成物
JP2010024369A (ja) トリイソプロペノキシシリル基含有有機重合体を含有する硬化性組成物
JP2009035607A (ja) 硬化性有機重合体とこれを含有する硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008512141

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780014168.6

Country of ref document: CN

Ref document number: 12297783

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007741926

Country of ref document: EP