JP2016132703A - 光硬化性組成物 - Google Patents

光硬化性組成物 Download PDF

Info

Publication number
JP2016132703A
JP2016132703A JP2015007293A JP2015007293A JP2016132703A JP 2016132703 A JP2016132703 A JP 2016132703A JP 2015007293 A JP2015007293 A JP 2015007293A JP 2015007293 A JP2015007293 A JP 2015007293A JP 2016132703 A JP2016132703 A JP 2016132703A
Authority
JP
Japan
Prior art keywords
group
polymer
meth
compound
crosslinkable silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015007293A
Other languages
English (en)
Other versions
JP6520134B2 (ja
Inventor
翔馬 河野
Shoma Kono
翔馬 河野
尚孝 河村
Naotaka Kawamura
尚孝 河村
智洋 緑川
Tomohiro Midorikawa
智洋 緑川
岡村 直実
Naomi Okamura
直実 岡村
宏士 山家
Hiroshi Yamaya
宏士 山家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cemedine Co Ltd
Original Assignee
Cemedine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cemedine Co Ltd filed Critical Cemedine Co Ltd
Priority to JP2015007293A priority Critical patent/JP6520134B2/ja
Publication of JP2016132703A publication Critical patent/JP2016132703A/ja
Application granted granted Critical
Publication of JP6520134B2 publication Critical patent/JP6520134B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】本発明が解決しようとする課題は、架橋性珪素基を有する化合物を含有する硬化性組成物であってサビを引き起こすことがなく、光照射前は優れた貯蔵安定性を有し、光照射後は短時間で硬化し、接着性に優れる硬化物を与える光硬化性組成物を提供することである。【解決手段】(A)架橋性珪素基を有する有機重合体、(B)光塩基発生剤および、(C)塩基増殖型アミノシラン、を含有することを特徴とする光硬化性組成物【選択図】なし

Description

本発明は、光硬化性組成物に関し、特に、接着性に優れた光硬化性組成物に関する。
珪素原子に結合した水酸基または加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素含有基(以下、「架橋性珪素基」ともいう。)を有する有機重合体は、室温においても湿分等による架橋性珪素基の加水分解反応等を伴うシロキサン結合の形成によって架橋し、ゴム状硬化物が得られるという性質を有することが知られている。これらの架橋性珪素基を有する重合体中、主鎖骨格がポリオキシアルキレン系重合体または(メタ)アクリル酸エステル系重合体である有機重合体は、シーリング材、接着剤、塗料などの用途に広く使用されている。
シーリング材、接着剤、塗料などに用いられる硬化性組成物および硬化によって得られるゴム状硬化物には、硬化性、接着性、貯蔵安定性、モジュラス・強度・伸び等の機械特性等の種々の特性が要求されており、架橋性珪素基を含有する有機重合体に関しても、これまでに多くの検討がなされている。近年、電子部品・電子機器組立分野等の種々の分野において、速硬化性が求められているが、湿気硬化型接着剤の場合、塗布後の貼り合わせ可能時間が短くなるという問題がある。
一方、架橋性珪素基を有する有機重合体を用いた光架橋性組成物として、特許文献1は、一分子中に2個以上の加水分解性シリル基を有するポリマー、及び光照射により該ポリマーを架橋させる化合物、を含有してなる光架橋性組成物を開示しており、光照射によりポリマーを架橋させる化合物として、光を照射されることにより酸、あるいは塩基を発生させる化合物を含有する光架橋性組成物を例示している(特許文献1、請求項1〜3)。
しかしながら、特許文献1記載の組成物において、光照射によりポリマーを架橋させる化合物として光酸発生剤を用いた場合、サビを生じるという問題があり、また、光照射によりポリマーを架橋させる化合物として光塩基発生剤を用いた場合、効率が悪く、硬化に長時間を要するといった問題があった。また、接着性等の接着性能についてもさらなる向上が望まれていた。
特開2001−172514号公報 特開2004−099579号公報
本発明が解決しようとする課題は、サビを引き起こすことがなく、短時間で硬化し、接着性に優れる光硬化性組成物を提供することである。
本発明者等は特許文献2に記載されている塩基増殖性シリコン化合物を利用するとサビを引き起こすことがなく、短時間で硬化し、接着性に優れる光硬化性組成物が得られることを見出した。すなわち本発明は次の光硬化性組成物に関する。
(1)(A)架橋性珪素基を有する有機重合体と、(B)光塩基発生剤および、(C)塩基増殖型アミノシラン、を含有することを特徴とする光硬化性組成物
(2)さらに、(D)(D1)Si−F結合を有する珪素化合物、及び/又は(D2)三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物を含有することを特徴とする(1)に記載の光硬化性組成物。
(3)前記(B)光塩基発生剤が、光潜在性第3級アミンであることを特徴とする(1)又は(2)に記載の光硬化性組成物。
(4)前記(A)架橋性珪素基を有する有機重合体が、架橋性珪素基含有ポリオキシアルキレン系重合体及び架橋性珪素基含有(メタ)アクリル系重合体からなる群から選択される1種以上であることを特徴とする(1)〜(3)のいずれか1項に記載の光硬化性組成物。
本発明の光硬化性組成物は光照射時に酸を発生しないのでサビを引き起こすことがなく、短時間で硬化し、接着性に優れるという効果を有する。
前記(A)架橋性珪素基含有有機重合体としては、架橋性珪素基を有する有機重合体であれば特に制限はないが、主鎖がポリシロキサンでない有機重合体であり、ポリシロキサンを除く各種の主鎖骨格を持つものは、接点障害の要因となる低分子環状シロキサンを含有もしくは発生させない点で好適である。
具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン−ポリオキシプロピレン共重合体、ポリオキシプロピレン−ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン−プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリル及びスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;前記有機重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ε−カプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合によるナイロン6・6、ヘキサメチレンジアミンとセバシン酸の縮重合によるナイロン6・10、ε−アミノウンデカン酸の縮重合によるナイロン11、ε−アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体;たとえばビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体等が例示される。
さらに、ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることから好ましい。また、ポリオキシアルキレン系重合体および(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れることから特に好ましい。
本発明に用いる(A)有機重合体の架橋性珪素基は、珪素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成することにより架橋しうる基である。前記架橋性珪素基としては、例えば、下記一般式(1)で示される基が好適である。
Figure 2016132703
前記式(1)中、R1は、 炭素数1〜20の炭化水素基、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、R1 3SiO−(R1は、前記と同じ)で示されるトリオルガノシロキシ基、又は1位から3位の炭素原子上の少なくとも1個の水素原子が、ハロゲン、−OR41、−NR4243、−N=R44、−SR45(R41、R42、R43、R45はそれぞれ水素原子または炭素原子数1から20の置換あるいは非置換の炭化水素基、R44は炭素原子数1から20の2価の置換あるいは非置換の炭化水素基である。)、炭素原子数1から20のペルフルオロアルキル基、若しくはシアノ基で置換された炭素数1〜20の炭化水素基を示し、R1が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Xは水酸基または加水分解性基を示し、Xが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは0、1、2または3を、bは0、1または2を、それぞれ示す。またp個の下記一般式(2)におけるbは同一である必要はない。pは0〜19の整数を示す。但し、a+(bの和)≧1を満足するものとする。
Figure 2016132703
該加水分解性基や水酸基は1個の珪素原子に1〜3個の範囲で結合することができ、a+(bの和)は1〜5の範囲が好ましい。加水分解性基や水酸基が架橋性珪素基中に2個以上結合する場合には、それらは同一であってもよく、異なっていてもよい。架橋性珪素基を形成する珪素原子は1個でもよく、2個以上であってもよいが、シロキサン結合等により連結された珪素原子の場合には、20個程度あってもよい。
前記架橋性珪素基としては、下記一般式(3)で示される架橋性珪素基が、入手が容易である点から好ましい。
Figure 2016132703
前記式(3)中、R1、Xは前記におなじ、aは1、2又は3の整数である。硬化性を考慮し、十分な硬化速度を有する硬化性組成物を得るには、前記式(3)においてaは2以上が好ましく、3がより好ましい。
上記R1の具体例としては、たとえばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R1 3SiO−で示されるトリオルガノシロキシ基等があげられる。これらの中ではメチル基が好ましい。
上記Xで示される加水分解性基としては、F原子以外であれば特に限定されず、従来公知の加水分解性基であればよい。具体的には、たとえば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等があげられる。これらの中では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基およびアルケニルオキシ基が好ましく、アルコキシ基、アミド基、アミノオキシ基がさらに好ましい。加水分解性が穏やかで取扱やすいという観点からアルコキシ基が特に好ましい。アルコキシ基の中では炭素数の少ないものの方が反応性が高く、メトキシ基>エトキシ基>プロポキシ基の順のように炭素数が多くなるほどに反応性が低くなる。目的や用途に応じて選択できるが通常メトキシ基やエトキシ基が使用される。
架橋性珪素基の具体的な構造としては、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基[−Si(OR)3]、メチルジメトキシシリル基、メチルジエトキシシリル基等のジアルコキシシリル基[−SiR1(OR)2]が挙げられ、反応性が高いことにより、トリアルコキシシリル基[−Si(OR)3]が好適であり、トリメトキシシリル基がより好適である。ここでRはメチル基やエチル基のようなアルキル基である。
また、架橋性珪素基は1種で使用しても良く、2種以上併用してもかまわない。架橋性珪素基は、主鎖または側鎖あるいはいずれにも存在しうる。
架橋性珪素基を形成する珪素原子は1個以上であるが、シロキサン結合などにより連結された珪素原子の場合には、20個以下であることが好ましい。
架橋性珪素基を有する有機重合体は直鎖状、または分岐を有してもよく、その数平均分子量はGPCにおけるポリスチレン換算において500〜100,000程度、より好ましくは1,000〜50,000であり、特に好ましくは3,000〜30,000である。数平均分子量が500未満では、硬化物の伸び特性の点で不都合な傾向があり、100,000を越えると、高粘度となる為に作業性の点で不都合な傾向がある。
高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、有機重合体に含有される架橋性珪素基は重合体1分子中に平均して0.8個以上、好ましくは1.0個以上、より好ましくは1.1〜5個存在するのがよい。分子中に含まれる架橋性珪素基の数が平均して0.8個未満になると、硬化性が不充分になり、良好なゴム弾性挙動を発現しにくくなる。架橋性珪素基は、有機重合体分子鎖の主鎖の末端あるいは側鎖の末端にあってもよいし、また、両方にあってもよい。特に、架橋性珪素基が分子鎖の主鎖の末端にのみあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなる。
前記ポリオキシアルキレン系重合体は、本質的に下記一般式(4)で示される繰り返し単位を有する重合体である。
−R2−O−・・・(4)
前記一般式(4)中、R2は炭素数1〜14の直鎖状もしくは分岐アルキレン基であり、炭素数1〜14の、さらには2〜4の、直鎖状もしくは分岐アルキレン基が好ましい。
一般式(4)で示される繰り返し単位の具体例としては、
−CH2O−、−CH2CH2O−、−CH2CH(CH3)O−、−CH2CH(C25)O−、−CH2C(CH32O−、−CH2CH2CH2CH2O−
等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。
ポリオキシアルキレン系重合体の合成法としては、たとえばKOHのようなアルカリ触媒による重合法、たとえば特開昭61−197631号、同61−215622号、同61−215623号に示されるような有機アルミニウム化合物とポルフィリンとを反応させて得られる、有機アルミ−ポルフィリン錯体触媒による重合法、たとえば特公昭46−27250号および特公昭59−15336号などに示される複金属シアン化物錯体触媒による重合法等があげられるが、特に限定されるものではない。有機アルミ−ポルフィリン錯体触媒による重合法や複金属シアン化物錯体触媒による重合法によれば数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体を得ることができる。
上記ポリオキシアルキレン系重合体の主鎖骨格中にはウレタン結合成分等の他の成分を含んでいてもよい。ウレタン結合成分としては、たとえばトルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートと水酸基を有するポリオキシアルキレン系重合体との反応から得られるものをあげることができる。
ポリオキシアルキレン系重合体への架橋性珪素基の導入は、分子中に不飽和基、水酸基、エポキシ基やイソシアネート基等の官能基を有するポリオキシアルキレン系重合体に、この官能基に対して反応性を示す官能基および架橋性珪素基を有する化合物を反応させることにより行うことができる(以下、高分子反応法という)。
高分子反応法の具体例として、不飽和基含有ポリオキシアルキレン系重合体に架橋性珪素基を有するヒドロシランや架橋性珪素基を有するメルカプト化合物を作用させてヒドロシリル化やメルカプト化し、架橋性珪素基を有するポリオキシアルキレン系重合体を得る方法をあげることができる。不飽和基含有ポリオキシアルキレン系重合体は水酸基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基および不飽和基を有する有機化合物を反応させ、不飽和基を含有するポリオキシアルキレン系重合体を得ることができる。
また、高分子反応法の他の具体例として、末端に水酸基を有するポリオキシアルキレン系重合体とイソシアネート基および架橋性珪素基を有する化合物を反応させる方法や末端にイソシアネート基を有するポリオキシアルキレン系重合体と水酸基やアミノ基等の活性水素基および架橋性珪素基を有する化合物を反応させる方法をあげることができる。イソシアネート化合物を使用すると、容易に架橋性珪素基を有するポリオキシアルキレン系重合体を得ることができる。
架橋性珪素基を有するポリオキシアルキレン系重合体の具体例としては、特公昭45−36319号、同46−12154号、特開昭50−156599号、同54−6096号、同55−13767号、同57−164123号、特公平3−2450号、特開2005−213446号、同2005−306891号、国際公開特許WO2007−040143号、米国特許3,632,557、同4,345,053、同4,960,844等の各公報に提案されているものをあげることができる。
上記の架橋性珪素基を有するポリオキシアルキレン系重合体は、単独で使用してもよく、2種以上併用してもよい。
前記飽和炭化水素系重合体は芳香環以外の炭素−炭素不飽和結合を実質的に含有しない重合体であり、その骨格をなす重合体は、(1)エチレン、プロピレン、1−ブテン、イソブチレンなどのような炭素数2〜6のオレフィン系化合物を主モノマーとして重合させるか、(2)ブタジエン、イソプレンなどのようなジエン系化合物を単独重合させ、あるいは、上記オレフィン系化合物とを共重合させた後、水素添加するなどの方法により得ることができるが、イソブチレン系重合体や水添ポリブタジエン系重合体は、末端に官能基を導入しやすく、分子量を制御しやすく、また、末端官能基の数を多くすることができるので好ましく、イソブチレン系重合体が特に好ましい。
主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、及び湿気遮断性に優れる特徴を有する。
イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されていてもよいし、他単量体との共重合体でもよいが、ゴム特性の面からイソブチレンに由来する繰り返し単位を50質量%以上含有するものが好ましく、80質量%以上含有するものがより好ましく、90〜99質量%含有するものが特に好ましい。
飽和炭化水素系重合体の合成法としては、従来、各種重合方法が報告されているが、特に近年多くのいわゆるリビング重合が開発されている。飽和炭化水素系重合体、特にイソブチレン系重合体の場合、Kennedyらによって見出されたイニファー重合(J.P.Kennedyら、J.PolymerSci.,PolymerChem.Ed.1997年、15巻、2843頁)を用いることにより容易に製造することが可能であり、分子量500〜100,000程度を、分子量分布1.5以下で重合でき、分子末端に各種官能基を導入できることが知られている。
架橋性珪素基を有する飽和炭化水素系重合体の製法としては、たとえば、特公平4−69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号、特開平1−197509号、特許公報第2539445号、特許公報第2873395号、特開平7−53882号の各明細書などに記載されているが、特にこれらに限定されるものではない。
上記の架橋性珪素基を有する飽和炭化水素系重合体は、単独で使用してもよいし2種以上併用してもよい。
前記(メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては特に限定されず、各種のものを用いることができる。例えば、(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸アルキルエステル系モノマー;(メタ)アクリル酸シクロヘキシル、イソボルニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、ペンタメチルピペリジニル(メタ)アクリレート等の脂環式(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、フェノキシエチル(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、ヒドロキシエチル化o−フェニルフェノール(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェニルチオエチル(メタ)アクリレート等の芳香族(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸3−メトキシブチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル等の(メタ)アクリル酸エステル系モノマー;γ−(メタクリロイルオキシプロピル)トリメトキシシラン、γ−(メタクリロイルオキシプロピル)ジメトキシメチルシラン、メタクリロイルオキシメチルトリメトキシシラン、メタクリロイルオキシメチルトリエトキシシラン、メタクリロイルオキシメチルジメトキシメチルシラン、メタクリロイルオキシメチルジエトキシメチルシラン等のシリル基含有(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸のエチレンオキサイド付加物等の(メタ)アクリル酸の誘導体;(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸ビス(トリフルオロメチル)メチル、(メタ)アクリル酸2−トリフルオロメチル−2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等のフッ素含有(メタ)アクリル酸エステル系モノマー等が挙げられる。
前記(メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーとともに、以下のビニル系モノマーを共重合することもできる。該ビニル系モノマーを例示すると、スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等のスチレン系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニルモノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等の珪素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。
これらは、単独で用いても良いし、複数を共重合させても構わない。なかでも、生成物の物性等から、(メタ)アクリル酸系モノマーからなる重合体が好ましい。より好ましくは、1種又は2種以上の(メタ)アクリル酸アルキルエステルモノマーを用い、必要に応じて他の(メタ)アクリル酸モノマーを併用した(メタ)アクリル酸エステル系重合体であり、シリル基含有(メタ)アクリル酸エステル系モノマーを併用することにより、(メタ)アクリル酸エステル系重合体(A)中の珪素基の数を制御することができる。接着性が良いことから特に好ましくはメタクリル酸エステルモノマーからなるメタクリル酸エステル系重合体である。また、低粘度化、柔軟性付与、粘着性付与を行う場合には、アクリル酸エステルモノマーを適時使用することが好適である。なお、本願明細書において、(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。
本発明において、(メタ)アクリル酸エステル系重合体を得る方法は、特に限定されず、公知の重合法(例えば、特開昭63−112642号、特開2007−230947号、特開2001−40037号、特開2003−313397号等の記載の合成法)を利用することができ、ラジカル重合反応を用いたラジカル重合法が好ましい。ラジカル重合法としては、重合開始剤を用いて所定の単量体単位を共重合させるラジカル重合法(フリーラジカル重合法)や、末端などの制御された位置に反応性シリル基を導入することが可能な制御ラジカル重合法が挙げられる。但し、重合開始剤としてアゾ系化合物、過酸化物などを用いる通常のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなるという問題を有している。従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、制御ラジカル重合法を用いることが好適である。
制御ラジカル重合法としては、特定の官能基を有する連鎖移動剤を用いたフリーラジカル重合法やリビングラジカル重合法が挙げられ、付加−開裂移動反応(ReversibleAddition-FragmentationchainTransfer;RAFT)重合法、遷移金属錯体を用いたラジカル重合法(Transition-Metal-MediatedLivingRadicalPolymerization)等のリビングラジカル重合法がより好ましい。また、反応性シリル基を有するチオール化合物を用いた反応や、反応性シリル基を有するチオール化合物及びメタロセン化合物を用いた反応(特開2001−40037号公報)も好適である。
上記の架橋性珪素基を有する(メタ)アクリル酸エステル系重合体は、単独で使用してもよいし2種以上併用してもよい。
これらの架橋性珪素基を有する有機重合体は、単独で使用してもよいし2種以上併用してもよい。具体的には、架橋性珪素基を有するポリオキシアルキレン系重合体、架橋性珪素基を有する飽和炭化水素系重合体、及び架橋性珪素基を有する(メタ)アクリル酸エステル系重合体、からなる群から選択される2種以上をブレンドしてなる有機重合体も使用できる。
架橋性珪素基を有するポリオキシアルキレン系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法は、特開昭59−122541号、特開昭63−112642号、特開平6−172631号、特開平11−116763号公報等に提案されているが、特にこれらに限定されるものではない。好ましい具体例は、架橋性珪素基を有し分子鎖が実質的に、下記一般式(5):
−CH2−C(R3)(COOR4)−・・・(5)
(式中、R3は水素原子またはメチル基、R4は炭素数1〜5のアルキル基を示す)で表される(メタ)アクリル酸エステル単量体単位と、下記一般式(6):
−CH2−C(R3)(COOR5)−・・・(6)
(式中、R3は前記に同じ、R5は炭素数6以上のアルキル基を示す)で表される(メタ)アクリル酸エステル単量体単位からなる共重合体に、架橋性珪素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法である。
前記一般式(5)のR4としては、たとえばメチル基、エチル基、プロピル基、n−ブチル基、t−ブチル基等の炭素数1〜5、好ましくは1〜4、さらに好ましくは1〜2のアルキル基があげられる。なお、R4のアルキル基は単独でもよく、2種以上混合していてもよい。
前記一般式(6)のR5としては、たとえば2−エチルヘキシル基、ラウリル基、トリデシル基、セチル基、ステアリル基、ベヘニル基等の炭素数6以上、通常は7〜30、好ましくは8〜20の長鎖のアルキル基があげられる。なお、R5のアルキル基はR4の場合と同様、単独でもよく、2種以上混合したものであってもよい。
該(メタ)アクリル酸エステル系共重合体の分子鎖は実質的に式(5)及び式(6)の単量体単位からなるが、ここでいう「実質的に」とは該共重合体中に存在する式(5)及び式(6)の単量体単位の合計が50質量%をこえることを意味する。式(5)及び式(6)の単量体単位の合計は好ましくは70質量%以上である。また式(5)の単量体単位と式(6)の単量体単位の存在比は、質量比で95:5〜40:60が好ましく、90:10〜60:40がさらに好ましい。
該共重合体に含有されていてもよい式(5)及び式(6)以外の単量体単位(以下、他の単量体単位とも称する)としては、たとえばアクリル酸、メタクリル酸等のα,β−不飽和カルボン酸;アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド等のアミド基、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、アミノエチルビニルエーテル等のアミノ基を含む単量体;その他アクリロニトリル、スチレン、α−メチルスチレン、アルキルビニルエーテル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル、エチレン等に起因する単量体単位があげられる。
架橋性珪素基を有するポリオキシアルキレン系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法に用いられる架橋性珪素基を有する(メタ)アクリル酸エステル系重合体として、例えば、特開昭63−112642号公報記載の架橋性珪素基を有し、分子鎖が実質的に(1)炭素数1〜8のアルキル基を有する(メタ)アクリル酸アルキルエステル単量体単位と、(2)炭素数10以上のアルキル基を有する(メタ)アクリル酸アルキルエステル単量体単位を含有する(メタ)アクリル酸エステル系共重合体等の公知の(メタ)アクリル酸エステル系共重合体も使用可能である。
前記(メタ)アクリル酸エステル系重合体の数平均分子量は、600〜10,000が好ましく、600〜5,000がより好ましく、1,000〜4,500がさらに好ましい。数平均分子量を該範囲とすることにより、架橋性珪素基を有するポリオキシアルキレン系重合体との相溶性を向上させることができる。前記(メタ)アクリル酸エステル系重合体は、単独で使用しても良く、2種以上併用しても良い。前記架橋性珪素基を有するポリオキシアルキレン系重合体と前記架橋性珪素基を有する(メタ)アクリル酸エステル系重合体との配合比には特に制限はないが、前記(メタ)アクリル酸エステル系重合体と前記ポリオキシアルキレン系重合体との合計100質量部に対して、前記(メタ)アクリル酸エステル系重合体を10〜60質量部の範囲内であることが好ましく、より好ましくは20〜50質量部の範囲内であり、さらに好ましくは25〜45質量部の範囲内である。前記(メタ)アクリル酸エステル系重合体が60質量部より多いと粘度が高くなり、作業性が悪化するため好ましくない。
架橋性珪素基を有する飽和炭化水素系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系共重合体をブレンドしてなる有機重合体は、特開平1−168764号、特開2000−186176号公報等に提案されているが、特にこれらに限定されるものではない。
さらに、架橋性珪素基を有する(メタ)アクリル酸エステル系共重合体をブレンドしてなる有機重合体の製造方法としては、他にも、架橋性珪素基を有する有機重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。この製造方法は、特開昭59−78223号、特開昭59−168014号、特開昭60−228516号、特開昭60−228517号等の各公報に具体的に開示されているが、これらに限定されるものではない。
2種以上の重合体をブレンドして使用するときは、架橋性珪素基を有するポリオキシアルキレン系重合体100質量部に対し、架橋性珪素基を有する飽和炭化水素系重合体、及び/又は架橋性珪素基を有する(メタ)アクリル酸エステル系重合体を10〜200質量部使用することが好ましく、20〜80質量部使用することがさらに好ましい。
本発明において、(B)光塩基発生剤は、光を照射すると塩基を発生し、この塩基は(A)架橋性珪素基を有する有機重合体の硬化触媒として作用する。前記(B)光塩基発生剤とは、紫外線、電子線、X線、赤外線および可視光線などの活性エネルギー線の作用により塩基を発生する物質であれば特に限定されず、(1)紫外線・可視光・赤外線等の活性エネルギー線の照射により脱炭酸して分解する有機酸と塩基の塩、(2)分子内求核置換反応や転位反応などにより分解してアミン類を放出する化合物、あるいは(3)紫外線・可視光・赤外線等のエネルギー線の照射により何らかの化学反応を起こして塩基を放出するもの、等の公知の光塩基発生剤を用いることができる。なお、光の作用により架橋性珪素基を有する有機重合体の硬化触媒を発生する化合物として光酸発生剤が知られているが、本発明の(B)光塩基発生剤に代えて光酸発生剤を使用しても、(D)塩基増殖型アミノシランの増殖反応が進行しないため硬化物の接着強さが劣ったものになる。
光塩基発生剤(B)から発生する塩基としては特に限定されないが、アミン化合物等の有機塩基が好ましく、例えば、エチルアミン、プロピルアミン、オクチルアミン、シクロヘキシルアミン、1,5−ジアミノペンタン等の第1級アルキルアミン類;N−メチルベンジルアミン、4,4’−メチレンジアニリン等の第1級芳香族アミン類;ジエチルアミンなどの第2級アルキルアミン類;イミダゾール等の2級アミノ基及び3級アミノ基を有するアミン類;トリメチルアミン、トリエチルアミン、トリブチルアミン、1,8−ジアザビシクロ[2.2.2]オクタン(DABCO)などの第3級アルキルアミン類;4−イソプロピルモルホリン等の第3級複素環式アミン;4−ジメチルアミノピリジン、N,N−ジメチル(3−フェノキシ−2−ヒドロキシプロピル)アミンなどの第3級芳香族アミン類;1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)等のアミジン類;特開2011−80032号公報記載のトリス(ジメチルアミノ)(メチルイミノ)ホスホラン等のホスファゼン誘導体が挙げられ、第3級アミノ基を有するアミン化合物が好ましく、強塩基であるアミジン類、ホスファゼン誘導体がより好ましい。アミジン類は非環状アミジン類及び環式アミジン類のいずれも使用可能であるが、環式アミジン類がより好ましい。これら塩基は単独で用いてもよく、2種以上組み合わせて用いてもよい。
前記非環状アミジン類としては、例えば、グアニジン系化合物、ビグアニド系化合物等が挙げられる。グアニジン系化合物としては、グアニジン、1,1,3,3−テトラメチルグアニジン、1−ブチルグアニジン、1−フェニルグアニジン、1−o−トリルグアニジン、1,3−ジフェニルグアニジンなどを挙げることができる。ビグアニド系化合物としては、ブチルビグアニド、1−o−トリルビグアニドや1−フェニルビグアニドを挙げることができる。
また、非環状アミジン化合物の中でも、フェニルグアニジン、1−o−トリルビグアニドや1−フェニルビグアニドなどのアリール置換グアニジン系化合物あるいはアリール置換ビグアニド系化合物を発生する光塩基発生剤を用いた場合は、化合物(A)の触媒として用いた場合、表面の硬化性が良好となる傾向を示すこと、得られる硬化物の接着性が良好となる傾向を示すこと、などから好ましい。
前記環式アミジン類としては、環式グアニジン系化合物、イミダゾリン系化合物、イミダゾール系化合物、テトラヒドロピリミジン系化合物、トリアザビシクロアルケン系化合物、ジアザビシクロアルケン系化合物が挙げられる。
前記環式グアニジン系化合物としては、例えば、特開2011−80032号公報記載の1,5,7−トリアザ−ビシクロ[4.4.0]デシ−5−エン、7−メチル−1,5,7−トリアザ−ビシクロ[4.4.0]デシ−5−エン、7−エチル−1,5,7−トリアザ−ビシクロ[4.4.0]デシ−5−エン、7−イソプロピル−1,5,7−トリアザ−ビシクロ[4.4.0]デシ−5−エン等が挙げられる。
前記イミダゾリン系化合物としては、例えば、1−メチルイミダゾリン、1,2−ジメチルイミダゾリン、1−メチル−2−エチルイミダゾリン、1−メチル−2−オクチルイミダゾリン等が挙げられる。
前記イミダゾール系化合物としては、例えば、イミダゾール、2−エチル−4−メチルイミダゾールなどを挙げることができる。
前記テトラヒドロピリミジン系化合物としては、例えば、1−メチル−1,4,5,6−テトラヒドロピリミジン、1,2−ジメチル−1,4,5,6−テトラヒドロピリミジン、1−メチル−2−エチル−1,4,5,6−テトラヒドロピリミジン、1−メチル−2−ブチル−1,4,5,6−テトラヒドロピリミジン、1−エチル−2−オクチル−1,4,5,6−テトラヒドロピリミジン等が挙げられる。
前記トリアザビシクロアルケン系化合物としては、例えば、7−メチル−1,5,7−トリアザビシクロ[4.4.0]デセン−5、7−エチル−1,5,7−トリアザビシクロ[4.4.0]デセン−5等が挙げられる。
ジアザビシクロアルケン系化合物としては、例えば、1,5−ジアザビシクロ[4.2.0]オクテン−5、1,8−ジアザビシクロ[7.2.0]ウンデセン−8、1,4−ジアザビシクロ[3.3.0]オクテン−4、3−メチル−1,4−ジアザビシクロ[3.3.0]オクテン−4、3,6,7,7−テトラメチル−1,4−ジアザビシクロ[3.3.0]オクテン−4、7,8,8−トリメチル−1,5−ジアザビシクロ[4.3.0]ノネン−5、1,8−ジアザビシクロ[7.3.0]ドデセン−8、1,7−ジアザビシクロ[4.3.0]ノネン−6、8−フェニル−1,7−ジアザビシクロ[4.3.0]ノネン−6、1,5−ジアザビシクロ[4.3.0]ノネン−5、1,5−ジアザビシクロ[4.4.0]デセン−5、4−フェニル−1,5−ジアザビシクロ[4.4.0]デセン−5、1,8−ジアザビシクロ[5.3.0]デセン−7、1,8−ジアザビシクロ[7.4.0]トリデセン−8、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、6−メチルブチルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデセン−7、6−メチルオクチルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデセン−7、6−ジブチルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデセン−7、6−ブチルベンジルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデセン−7、6−ジヘキシルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデセン−7、9−メチル−1,8−ジアザビシクロ[5.4.0]ウンデセン−7、9−メチル−1,8−ジアザビシクロ[5.3.0]デセン−7、1,6−ジアザビシクロ[5.5.0]ドデセン−6、1,7−ジアザビシクロ[6.5.0]トリデセン−7、1,8−ジアザビシクロ[7.5.0]テトラデセン−8、1,10−ジアザビシクロ[7.3.0]ドデセン−9、1,10−ジアザビシクロ[7.4.0]トリデセン−9、1,14−ジアザビシクロ[11.3.0]ヘキサデセン−13、1,14−ジアザビシクロ[11.4.0]ヘプタデセン−13等が挙げられる。
前記環式アミジン類のうち、工業的に入手が容易であるという点や、共役酸のpKa値が12以上であることから高い触媒活性を示す点から、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)が特に好適である。
本発明に用いられる(B)光塩基発生剤としては、公知の光塩基発生剤を用いることができるが、活性エネルギー線の作用によりアミン化合物を発生する光潜在性アミン化合物が好ましい。該光潜在性アミン化合物としては、活性エネルギー線の作用により第1級アミノ基を有するアミン化合物を発生する光潜在性第1級アミン、活性エネルギー線の作用により第2級アミノ基を有するアミン化合物を発生する光潜在性第2級アミン、及び活性エネルギー線の作用により第3級アミノ基を有するアミン化合物を発生する光潜在性第3級アミンのいずれも使用可能であるが、発生塩基が高い触媒活性を示す点から光潜在性第3級アミンがより好適である。
前記光潜在性第1級アミン及び光潜在性第2級アミンとしては、例えば、1,3−ビス〔N−(2−ニトロベンジルオキシカルボニル)−4−ピペリジル〕プロパン、N−{[(3−ニトロ−2−ナフタレンメチル)オキシ]カルボニル}−2,6−ジメチルピペリジン、N−{[(6,7−ジメトキシ−3−ニトロ−2−ナフタレンメチル)オキシ]カルボニル}−2,6−ジメチルピペリジン、N−(2−ニトロベンジルオキシカルボニル)ピペリジン、[[(2,6−ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、N,N’−ビス(2−ニトロベンジルオキシカルボニル)ヘキシルジアミン、o−ニトロベンジルN−カルバミン酸シクロヘキシル、2−ニトロベンジルシクロヘキシルカーバメート、1−(2−ニトロフェニル)エチルシクロヘキシルカーバメート、2,6−ジニトロベンジルシクロヘキシルカーバメート、1−(2,6−ジニトロフェニル)エチルシクロヘキシルカーバメート、1−(3,5−ジメトキシフェニル)−1−メチルエチルシクロヘキシルカーバメート、ビス[[(2−ニトロベンジル)オキシ]カルボニル]ヘキサン1,6−ジアミン、N−(2−ニトロベンジルオキシカルボニル)ピロリジン等のオルトニトロベンジルウレタン系化合物;α,α−ジメチル−3,5−ジメトキシベンジルシクロヘキシルカルバメート、3,5−ジメトキシベンジルシクロヘキシルカルバメート等のジメトキシベンジルウレタン系化合物;1−(3,5−ジメトキシベンゾイル)−1−(3,5−ジメトキシフェニル)メチルシクロヘキシルカルバメート、2−ヒドロキシ−2−フェニルアセトフェノンシクロヘキシルカルバメート、ジベンゾインイソホロンジカルバメート、1−ベンゾイル−1−フェニルメチルシクロヘキシルカーバメート、2−ベンゾイル−2−ヒドロキシ−2−フェニルエチルシクロヘキシルカーバメート等のカルバミン酸ベンゾイン類;o−ベンジルカルボニル−N−(1−フェニルエチリデン)ヒドロキシルアミン等のo−アシルオキシム類;[(ペンタン−1,5−ジイル)ビスカルバモイル]ビス(ジフェニルメチリデンヒドロキシルアミン)、α−(シクロヘキシルカルバモイルオキシイミノ)−α−(4−メトキシフェニル)アセトニトリル等のo−カルバモイルオキシム類;N−(オクチルカルバモイルオキシ)フタルイミド、N−(シクロヘキシルカルバモイルオキシ)スクシンイミド等のN−ヒドロキシイミドカルバマート類;4,4’−メチレンビス(ホルムアリニド)等のホルムアニリド誘導体;N−シクロヘキシル−2−ナフタレンスルホンアミド、N−シクロヘキシル−p−トルエンスルホンアミド等の芳香族スルホンアミド類;Co(NH)Br+ClO 等のコバルトアミン錯体等が挙げられる。
前記光潜在性第3級アミンとしては、例えば、α−アミノケトン誘導体、α−アンモニウムケトン誘導体、ベンジルアミン誘導体、ベンジルアンモニウム塩誘導体、α−アミノアルケン誘導体、α−アンモニウムアルケン誘導体、アミンイミド類、光によりアミジンを発生するベンジルオキシカルボニルアミン誘導体、及びカルボン酸と3級アミンとの塩等が挙げられる。
α−アミノケトン誘導体として、例えば、下記式(i)〜(iv)で示されるα−アミノケトン化合物が好適な例として挙げられる。
Figure 2016132703
前記式(i)中、式中、R51は、芳香族又は複素芳香族基であり、R51が、芳香族基(これは、非置換であるか、又はC1−18アルキル、C3−18アルケニル、C3−18アルキニル、C1−18ハロアルキル、NO、NR5859、N、OH、CN、OR60、SR60、C(O)R61、C(O)OR62若しくはハロゲンにより1回以上置換されている。R58、R59、R60、R61及びR62は、水素又はC1−18アルキルである)であることが好ましく、フェニル、ナフチル、フェナントリル、アントラシル、ピレニル、5,6,7,8−テトラヒドロ−2−ナフチル、5,6,7,8−テトラヒドロ−1−ナフチル、チエニル、ベンゾ[b]チエニル、ナフト[2,3−b]チエニル、チアトレニル、ジベンゾフリル、クロメニル、キサンテニル、チオキサンチル、フェノキサチイニル、ピロリル、イミダゾリル、ピラゾリル、ピラジニル、ピリミジニル、ピリダジニル、インドリジニル、イソインドリル、インドリル、インダゾリル、プリニル、キノリジニル、イソキノリル、キノリル、フタラジニル、ナフチリジニル、キノキサリニル、キナゾリニル、シンノリニル、プテリジニル、カルバゾリル、β−カルボリニル、フェナントリジニル、アクリジニル、ペリミジニル、フェナントロリニル、フェナジニル、イソチアゾリル、フェノチアジニル、イソキサゾリル、フラザニル、テルフェニル、スチルベニル、フルオレニル若しくはフェノキサジニルからなる群から選択されることがより好ましい。
52及びR53は、互いに独立して、水素、C1−18アルキル、C3−18アルケニル、C3−18アルキニル又はフェニルであり、そしてもしR52が水素又はC1−18アルキルであれば、R53は、更に、基−CO−R64(式中、R64は、C1−18アルキル又はフェニルである)であるか;或いは、R51とR53は、カルボニル基及びR53が結合しているC原子と一緒になって、ベンゾシクロペンタノン基を形成する。
54およびR56は、一緒になって、非置換であるか、または1個以上のC〜Cアルキル基によって置換されているC〜C12アルキレンブリッジを形成する。R55およびR57は、一緒になって、R54およびR56とは独立して、非置換であるか、または1個以上のC〜Cアルキル基によって置換されているC〜C12アルキレンブリッジを形成する。R54とR56が、一緒になって、Cアルキレン橋を形成し、R55とR57が、一緒になって、プロピレン又はペンチレンであることが好ましい。
Figure 2016132703
Figure 2016132703
Figure 2016132703
前記式(ii)〜(iv)において、R51〜R53はそれぞれ前記式(i)のR51〜R53と同様である。
66は炭素原子数1〜12のアルキル基;−OH、−炭素原子数1〜4のアルコキシ、−CNもしくは−COO(炭素原子数1〜4のアルキル)で置換された炭素原子数2〜4のアルキル基を表すか、または、R66は炭素原子数3〜5のアルケニル基、炭素原子数5〜12のシクロアルキル基またはフェニル−炭素原子数1〜3のアルキル基を表す。R67は炭素原子数1〜12のアルキル基;または−OH、−炭素原子数1〜4のアルコキシ基、−CNもしくは−COO(炭素原子数1〜4のアルキル)で置換された炭素原子数2〜4のアルキル基を表すかまたはR67は炭素原子数3〜5のアルケニル基、炭素原子数5〜12のシクロアルキル基、フェニル−炭素原子数1〜3のアルキル基、または、未置換であるかまたは炭素原子数1〜12のアルキル基、炭素原子数1〜4のアルコキシ基もしくは−COO(炭素原子数1〜4のアルキル)によって置換されたフェニル基を表すか、あるいはR67はRR66と一緒になって炭素原子数1〜7のアルキレン基、フェニル−炭素原子数1〜4のアルキレン基、o−キシリレン基、2−ブテニレン基または炭素原子数2もしくは3のオキサアルキレン基を表すか、あるいはR66およびR67は一緒になって−O−、−S−もしくは−CO−で中断され得る炭素原子数4〜7のアルキレン基を表すか、またはR66およびR67は一緒になってOH、炭素原子数1〜4のアルコキシ基もしくは−COO(炭素原子数1〜4のアルキル)で置換され得る炭素原子数3〜7のアルキレン基を表す。R66およびR67が複数存在する場合それらは同じであっても異なっていてもよい。
は下記式(v)で示される2価の基、−N(R68)−又は−N(R68)−R69−N(R68)−で示される2価の基を表し、R68は炭素原子数1〜8のアルキル基、炭素原子数3〜5のアルケニル基、フェニル−炭素原子数1〜3のアルキル基、炭素原子数1〜4のヒドロキシアルキル基もしくはフェニル基を表し、R69は1もしくはそれ以上の−O−または−S−により中断され得る枝分かれしていないまたは枝分かれした炭素原子数2〜16のアルキレン基を表す。Yは炭素原子数1〜6のアルキレン基、シクロヘキシレン基もしくは直接結合を表す。
Figure 2016132703
前記式(i)で示されるα−アミノケトン化合物としては、例えば、特開2001−512421号公報記載の5−(4’−フェニル)フェナシル−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−フェナシル−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−ナフトイルメチル−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(1’−ピレニルカルボニルメチル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(4’−ニトロ)フェナシル−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(2’、4’−ジメトキシ)フェナシル−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(9’−アンスロイルメチル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、8−(4’−フェニル)フェナシル−(1,8−ジアザビシクロ〔5.4.0〕−7−ウンデセン)等が挙げられる。
前記式(ii)で示されるα−アミノケトン化合物としては、例えば、特開平11−71450号公報記載の4−(メチルチオベンゾイル)−1−メチル−1−モルホリノエタン(イルガキュア907)、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン(イルガキュア369)、2−(4−メチルベンジル)−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン(イルガキュア379EG)等が挙げられる。
α−アンモニウムケトン誘導体として、例えば、下記式(vi)で示されるα−アンモニウムケトン化合物が挙げられる。
Figure 2016132703
前記式(vi)において、kは1又は2であって、カチオンの正電荷数に相当する。Vはカウンターアニオンであり、ボレートアニオン(テトラフェニルボレート、メチルトリフェニルボレート、エチルトリフェニルボレート、プロピルトリフェニルボレート及びブチルトリフェニルボレート等)、フェノラートアニオン(フェノラート、4−tert−ブチルフェノラート、2,5−ジ−tert−ブチルフェノラート、4−ニトロフェノラート、2,5−ジニトロフェノラート及び2,4,6−トリニトロフェノラート等)及びカルボキシレートアニオン(安息香酸アニオン、トルイル酸アニオン及びフェニルグリオキシル酸アニオン等)等が挙げられる。これらのうち、光分解性の観点から、ボレートアニオン及びカルボキシレートアニオンが好ましく、さらに好ましくはブチルトリフェニルボレートアニオン、テトラフェニルボレートアニオン、安息香酸アニオン及びフェニルグリオキシル酸アニオン、光分解性及び熱安定性の観点から特に好ましくはテトラフェニルボレートアニオン及びフェニルグリオキシル酸アニオンである。
前記式(vi)において、R51〜R53はそれぞれ前記式(i)のR51〜R53と同様である。R70〜R72は、それぞれ互いに独立に、水素、C〜C18アルキル、C〜C18アルケニル、C〜C18アルキニルもしくはフェニルであり;またはR70とR71および/もしくはR72とR71が、互いに独立にC〜C12アルキレン架橋を形成しているか;あるいはR70〜R72が、結合している窒素原子とともに、P、P、P<t/4>型のホスファゼン塩基を、または、下記構造式(a)、(b)、(c)、(d)、(e)、(f)もしくは(g)の基を形成している。
Figure 2016132703
Figure 2016132703
Figure 2016132703
Figure 2016132703
Figure 2016132703
Figure 2016132703
Figure 2016132703
前記式(a)〜(g)中、R51及びR52は前記式(i)のR51及びR52と同様であり、l及びqはそれぞれ互いに独立に2〜12の数である。
α−アンモニウムケトン誘導体の具体例としては、例えば、特表2001−513765号公報、WO2005/014696号公報記載のフェナシルトリエチルアンモニウムテトラフェニルボレート、(4−メトキシフェナシル)トリエチルアンモニウムテトラフェニルボレート、1−フェナシル−(1−アゾニア−4−アザビシクロ[2,2,2]−オクタン)テトラフェニルボレート、(1,4−フェナシル−1,4−ジアゾニアビシクロ[2.2.2]オクタン)ビス(テトラフェニルボレート)、1−ナフトイルメチル−(1−アゾニア−4−アザビシクロ[2,2,2]−オクタン)テトラフェニルボレート、1−(4’−フェニル)フェナシル−(1−アゾニア−4−アザビシクロ[2.2.2]オクタン)テトラフェニルボレート、5−(4’−フェニル)フェナシル−(5−アゾニア−1−アザビシクロ[4.3.0]−5−ノネン)テトラフェニルボレート、5−(4’−メトキシ)フェナシル−(5−アゾニア−1−アザビシクロ[4.3.0]−5−ノネン)テトラフェニルボレート、5−(4’−ニトロ)フェナシル−(5−アゾニア−1−アザビシクロ[4.3.0]−5−ノネン)テトラフェニルボレート、5−(4’−フェニル)フェナシル−(8−アゾニア−1−アザビシクロ〔5.4.0〕−7−ウンデセン)テトラフェニルボレート等が挙げられる。
ベンジルアミン誘導体として、例えば、下記式(vii)で示されるベンジルアミン化合物が挙げられる。
Figure 2016132703
前記式(vii)において、R51、R54〜R57はそれぞれ前記式(i)のR51、R54〜R57と同様である。
73およびR74は、それぞれ独立に、水素原子、炭素数1〜20のアルキル基又はハロゲン原子、炭素数1〜20のアルコキシ基、ニトロ基、カルボキシル基、水酸基、メルカプト基、炭素数1〜20のアルキルチオ基、炭素数1〜20のアルキルシリル基、炭素数1〜20のアシル基、アミノ基、シアノ基、炭素数1〜20のアルキル基、フェニル基、ナフチル基、フェノキシ基及びフェ二ルチオ基の群から選ばれる基で置換されていてもよいフェニル基を表し、R73及びR74は互いに結合して環構造を形成していてもよい。
ベンジルアミン誘導体の具体例としては、例えば、特表2005−511536号公報記載の5−ベンジル−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(アントラセン−9−イル−メチル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(4’−シアノベンジル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(3’−シアノベンジル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(2’−クロロベンジル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(2’,4’,6’−トリメチルベンジル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(4’−エテニルベンジル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(3’−メトキシベンジル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(ナフト−2−イル−メチル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、1,4−ビス(1,5−ジアザビシクロ〔4.3.0〕ノナニルメチル)ベンゼン、8−(2’,6’−ジクロロベンジル)−1,8−ジアザビシクロ〔5.4.0〕ウンデカン等のベンジルアミン誘導体等が挙げられる。
ベンジルアンモニウム塩誘導体として、例えば、下記式(viii)で示されるベンジルアンモニウム塩が挙げられる。
Figure 2016132703
前記式(viii)において、V及びkは前記式(vi)のV及びkと同様である。R51は前記式(i)のR51と同様である。R70〜R72はそれぞれ前記式(vi)のR70〜R72と同様である。R73及びR74は前記式(vii)のR73及びR74と同様である。
ベンジルアンモニウム塩誘導体の具体例としては、例えば、WO2010/095390号公報及びWO2009/122664号公報記載の光塩基発生剤、例えば、(9−アントリル)メチルトリエチルアンモニウムテトラフェニルボレート、(9−オキソ−9H−チオキサンテン−2−イル)メチルトリエチルアンモニウムテトラフェニルボレート、(9−アントリル)メチル1−アザビシクロ〔2.2.2〕オクタニウムテトラフェニルボレート、(9−オキソ−9H−チオキサンテン−2−イル)メチル1−アザビシクロ〔2.2.2〕オクタニウムテトラフェニルボレート、9−アントリルメチル−1−アザビシクロ〔2.2.2〕オクタニウムテトラフェニルボレート、5−(9−アントリルメチル)−1,5−ジアザビシクロ〔4.3.0〕−5−ノネニウムテトラフェニルボレート、8−(9−アントリルメチル)−1,8−ジアザビシクロ〔5.4.0〕−7−ウンデセニウムフェニルグリオキシラート、N−(9−アントリルメチル)−N,N,N−トリオクチルアンモニウムテトラフェニルボレート、8−(9−オキソ−9H−チオキサンテン−2−イル)メチル−1,5−ジアザビシクロ[4.3.0]−5−ノネニウムテトラフェニルボレート、8−(4−ベンゾイルフェニル)メチル−1,8−ジアザビシクロ〔5.4.0〕−7−ウンデセニウムテトラフェニルボレート、{8−(t−ブチル−2−ナフタリルメチル)−1,8−ジアザビシクロ〔5.4.0〕−7−ウンデセニウムテトラフェニルボレート、8−(9−オキソ−9H−チオキサンテン−2−イル)メチル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムテトラフェニルボレート、N−ベンゾフェノンメチルトリ−N−メチルアンモニウムテトラフェニルボレート等が挙げられる。
α−アミノアルケン誘導体としては、例えば、特表2001−515500号公報記載の5−(2’−(4”−ビフェニル)アリル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(2’−(2”−ナフチル)アリル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(2’−(4”−ジエチルアミノフェニル)アリル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(1’−メチル、2’−(4”−ビフェニル)アリル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(1’−メチル、2’−(2”−チオキサンチル)アリル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、5−(1’−メチル、2’−(2”−フルオレニル)アリル)−1,5−ジアザビシクロ〔4.3.0〕ノナン、8−(2’−(4”−ビフェニル)アリル)−(1,8−ジアザビシクロ〔5.4.0〕−7−ウンデセン)等が挙げられる。
α−アンモニウムアルケン誘導体としては、例えば、特表2002−523393号公報記載のN−(2’−フェニルアリル)−トリエチルアンモニウムテトラフェニルボレート、1−(2’−フェニルアリル)−(1−アゾニア−4−アザビシクロ[2,2,2]−オクタン)テトラフェニルボレート、1−(2’−フェニルアリル)−(1−アゾニア−4−アザビシクロ[2,2,2]−オクタン)テトラフェニルボレート、1−(2’−フェニルアリル)−(1−アゾニア−4−アザビシクロ[2,2,2]−オクタン)トリス(3−フルオロフェニル)ヘキシルボレート等が挙げられる。
アミンイミド類としては、例えば、WO2002/051905号公報記載の[(2−ヒドロキシ−3−フェノキシプロピル)ジメチルアミニオ](4−ニトロベンゾイル)アミンアニオン、[(2−ヒドロキシ−3−フェノキシプロピル)ジメチルアミニオ](4−シアノベンゾイル)アミンアニオン、[(2−ヒドロキシ−3−フェノキシプロピル)ジメチルアミニオ](4−メトキシベンゾイル)アミンアニオン、[(2−ヒドロキシ−3−フェノキシプロピル)ジメチルアミニオ]ベンゾイルアミンアニオン、[(2−ヒドロキシ−3−フェノキシプロピル)ジメチルアミニオ][4−(ジメチルアミノ)ベンゾイル]アミンアニオン等が挙げられる。
前記光によりアミジンを発生するベンジルオキシカルボニルアミン誘導体としては、ベンジルオキシカルボニルイミダゾール類、ベンジルオキシカルボニルグアニジン類、ジアミン誘導体等が挙げられる。
ベンジルオキシカルボニルイミダゾール類としては、例えば、特開平9−40750号公報記載のN−(2−ニトロベンジルオキシカルボニル)イミダゾール、N−(3−ニトロベンジルオキシカルボニル)イミダゾール、N−(4−クロロ−2−ニトロベンジルオキシカルボニル)イミダゾール、N−(4−ニトロベンジルオキシカルボニル)イミダゾール、N−(5−メチル−2−ニトロベンジルオキシカルボニル)イミダゾール、N−(4,5−ジメチル−2−ニトロベンジルオキシカルボニル)イミダゾール等が挙げられる。
ベンジルオキシカルボニルグアニジン類としては、例えば、WO97/31033号公報記載のベンジルオキシカルボニルテトラメチルグアニジン等が挙げられる。
ジアミン誘導体としては、例えば、特開2011−116869号公報記載のN−(N’−((1−(4,5−ジメトキシ−2−ニトロフェニル)エトキシ)カルボニル)アミノプロピル)−N−メチルアセトアミド、N−(N’−(4,5−ジメトキシ−2−ニトロベンジルオキシカルボニル)アミノプロピル)−6−ヘプタンラクタム等が挙げられる。
前記カルボン酸と3級アミンとの塩としては、α−ケトカルボン酸アンモニウム塩、及びカルボン酸アンモニウム塩等が挙げられる。
α−ケトカルボン酸アンモニウム塩としては、例えば、特開昭55−22669号公報記載のフェニルグリオキシル酸のジメチル・ベンジル・アンモニウム塩、フェニルグリオキシル酸のトリ−n−ブチル・アンモニウム塩等が挙げられる。
カルボン酸アンモニウム塩としては、例えば、特開2009−280785号公報記載のジアザビシクロウンデセン(DBU)のケトプロフェン塩、2−メチルイミダゾールのケトプロフェン塩、特開2011−80032号公報記載のジアザビシクロウンデセン(DBU)のキサントン酢酸塩、ジアザビシクロウンデセン(DBU)のチオキサントン酢酸塩、特開2007−262276号公報記載の2−(カルボキシメチルチオ)チオキサントンの3−キヌクリジノール塩、2−(カルボキシメトキシ)チオキサントンの3−キヌクリジノール塩、並びに特開2010−254982号公報及び特開2011−213783号公報記載のtrans−o−クマル酸の3−キヌクリジノール塩が挙げられる。
前述した(B)光塩基発生剤の中でも、発生塩基が高い触媒活性を示す点から光潜在性第3級アミンが好ましく、塩基の発生効率が良いこと及び組成物としての貯蔵安定性が良いことなどから、ベンジルアンモニウム塩誘導体、ベンジル置換アミン誘導体、α−アミノケトン誘導体、α−アンモニウムケトン誘導体が好ましく、特に、より塩基の発生効率が良いことから、α−アミノケトン誘導体、α−アンモニウムケトン誘導体がより好ましく、配合物に対する溶解性よりα−アミノケトン誘導体がより好ましい。α−アミノケトン誘導体の中でも発生塩基の塩基性の強さより前記式(i)で示されるα−アミノケトン化合物が良く、入手のしやすさより前記式(ii)で示されるα−アミノケトン化合物が良い。
これら(B)光塩基発生剤は単独で用いてもよく、2種以上組み合わせて用いてもよい。前記(B)光塩基発生剤の配合割合は特に制限はないが、(A)分子内に架橋性珪素基と光ラジカル重合性のビニル基を有する有機重合体100質量部に対して、0.01〜50質量部が好ましく、0.1〜40質量部がより好ましく、0.5〜30質量部がさらに好ましい。
本発明で使用する(C)塩基増殖型アミノシランとしては塩基増殖型アミン化合物であってアミン残基に架橋性珪素基を有する化合物(分解した際に架橋性珪素基を有するアミン化合物を生成する化合物)を例示することができる。このような化合物として、架橋性珪素基を有するカルバミン酸の9−フルオレニルメチルエステル(C13H9CH2OCONR10R11、式中R10、R11は水素原子あるいは炭化水素基等の有機基であり、R10、R11の少なくとも1つは架橋性珪素基を有する炭化水素基などの有機基である)、架橋性珪素基を有するカルバミン酸の2−アリールスルフォニルエチルエステル(ArSO2CH2CH2OCONR10R11、式中Arは置換基を有してもよい芳香族基、R10、R11は上記と同じ)、架橋性珪素基を有するカルバミン酸の3−ニトロペンタンー2ーイルエステル(CH3CH2CH(NO2)CH(CH3)OCONR10R11、式中、R10、R11は上記と同じ)などをあげることができる。
架橋性珪素基を有するカルバミン酸における架橋性珪素基は(A)における架橋性珪素基と同じである。架橋性珪素基を有するカルバミン酸の具体例は3−トリメトキシシリルプロピルカルバミン酸((CH3O)3SiCH2CH2CH2NHCOOH)や3−トリエトキシシリルプロピルカルバミン酸((C2H5O)3SiCH2CH2CH2NHCOOH)を挙げることができる。
架橋性珪素基を有するカルバミン酸の9−フルオレニルメチルエステルの具体例やその製法は特許文献2に記載されており、(3−アミノプロピル)メチルジアルコキシシランあるいは(3−アミノプロピル)トリアルコキシシランとクロロ蟻酸9−フルオレニルメチルエステルとの縮合反応によって製造される化合物、あるいはまた、(3−イソシアネートプロピル)メチルジアルコキシシランあるいは(3−イソシアネートプロピル)トリアルコキシシランと9−フルオレニルメチルアルコールとの付加反応によっても製造される化合物をあげることができる。 また、架橋性珪素基を有するカルバミン酸の2−アリールスルフォニルエチルエステルや架橋性珪素基を有するカルバミン酸の3−ニトロペンタンー2ーイルエステルも架橋性珪素基を有するカルバミン酸の9−フルオレニルメチルエステルの場合と類似の方法により得ることができる。
本発明の光硬化性組成物は、(D)(D1)Si−F結合を有するケイ素化合物、及び/又は(D2)三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物を使用するのが好ましい。本発明の光硬化性組成物において、(D)成分を含むことで硬化がより促進される。
本発明において、(D1)Si−F結合を有する珪素化合物は(A)架橋性珪素基を有する化合物の硬化触媒として作用する。前記(D1)Si−F結合を有する珪素化合物としては、Si−F結合を有する珪素基(以下、フルオロシリル基と称することがある)を含む公知の化合物を広く使用することができ、特に制限はなく、低分子化合物及び高分子化合物のいずれも使用可能であるが、フルオロシリル基を有する有機珪素化合物が好ましく、フルオロシリル基を有する有機重合体が、安全性が高くより好適である。また、配合物が低粘度となる点からフルオロシリル基を有する低分子有機珪素化合物が好ましい。
前記(D1)Si−F結合を有する珪素化合物としては、具体的には、下記式(7)で示されるフルオロシラン類等の下記式(8)で示されるフルオロシリル基を有する化合物(本明細書では、フッ素化化合物とも称する)、フルオロシリル基を有する有機重合体(本明細書では、フッ素化ポリマーとも称する)等が好適な例として挙げられる。
80 4−dSiF・・・(7)
(式(7)において、R80はそれぞれ独立して、置換あるいは非置換の炭素原子数1〜20の炭化水素基、またはR90SiO−(R90はそれぞれ独立に、炭素原子数1〜20の置換あるいは非置換の炭化水素基、又はフッ素原子である)で示されるオルガノシロキシ基のいずれかを示す。dは1〜3のいずれかであり、dが3であることが好ましい。R80及びR90が複数存在する場合、それらは同じであっても異なっていてもよい。)
−SiF80 X’・・・(8)
(式(8)中、R80及びdはそれぞれ式(7)と同じであり、X’はそれぞれ独立して水酸基又はフッ素以外の加水分解性基であり、eは0〜2のいずれかであり、fは0〜2のいずれかであり、d+e+fは3である。R80及びX’が複数存在する場合、それらは同じであっても異なっていてもよい。)
前記式(7)で示されるフルオロシラン類としては、式(7)で示される公知のフルオロシラン類が挙げられ、特に制限はないが、例えば、フルオロトリメチルシラン、フルオロトリエチルシラン、フルオロトリプロピルシラン、フルオロトリブチルシラン、フルオロジメチルビニルシラン、フルオロジメチルフェニルシラン、フルオロジメチルベンジルシラン、フルオロジメチル(3−メチルフェニル)シラン、フルオロジメチル(4−メチルフェニル)シラン、フルオロジメチル(4−クロロフェニル)シラン、フルオロトリフェニルシラン、ジフルオロジメチルシラン、ジフルオロジエチルシラン、ジフルオロジブチルシラン、ジフルオロメチルフェニルシラン、ジフルオロジフェニルシラン、トリフルオロエチルシラン、トリフルオロプロピルシラン、トリフルオロブチルシラン、トリフルオロフェニルシラン、γ−グリシドキシプロピルトリフルオロシラン、γ−グリシドキシプロピルジフルオロメチルシラン、ビニルトリフルオロシラン、ビニルジフルオロメチルシラン、γ−メタクリロキシプロピルフルオロジメチルシラン、γ−メタクリロキシプロピルジフルオロメチルシラン、γ−メタクリロキシプロピルトリフルオロシラン、3−メルカプトプロピルトリフルオロシラン、オクタデシルフルオロジメチルシラン、オクタデシルジフルオロメチルシラン、オクタデシルトリフルオロシラン、1,3−ジフルオロ−1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラフルオロ−1,3,5,7−テトラシラトリシクロ[3.3.1.1(3,7)]デカン、1,1−ジフルオロ−1−シラシクロ−3−ペンテン、フルオロトリス(トリメチルシロキシ)シランなどが挙げられる。
これらのなかでも、原料の入手が容易なこと、合成が容易なことなどから、フルオロジメチルビニルシラン、フルオロジメチルフェニルシラン、フルオロジメチルベンジルシラン、ビニルトリフルオロシラン、ビニルジフルオロメチルシラン、γ−メタクリロキシプロピルフルオロジメチルシラン、γ−メタクリロキシプロピルジフルオロメチルシラン、γ−メタクリロキシプロピルトリフルオロシラン、3−メルカプトプロピルトリフルオロシラン、オクタデシルフルオロジメチルシラン、オクタデシルジフルオロメチルシラン、オクタデシルトリフルオロシラン、1,3−ジフルオロ−1,1,3,3−テトラメチルジシロキサン等が好ましい。
前記式(8)で示されるフルオロシリル基を有する化合物において、式(8)中のX’で示される加水分解性基としては、例えば、式(1)のXの加水分解性基と同様の基を挙げることができるが、具体的には、水素原子、フッ素以外のハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基およびアルケニルオキシ基が好ましく、加水分解性が穏やかで取扱いやすいという観点からアルコキシ基が特に好ましい。
また、前記式(8)中のR80としては、例えば、メチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R90がメチル基、フェニル基等であるR90SiO−で示されるトリオルガノシロキシ基等が挙げられる。これらの中ではメチル基が特に好ましい。
前記式(8)で表されるフルオロシリル基を具体的に例示すると、フッ素以外に加水分解性基を持たない珪素基として、フルオロジメチルシリル基、フルオロジエチルシリル基、フルオロジプロピルシリル基、フルオロジフェニルシリル基、フルオロジベンジルシリル基等の珪素基上に1個のフッ素が置換した珪素基;ジフルオロメチルシリル基、ジフルオロエチルシリル基、ジフルオロフェニルシリル基、ジフルオロベンジルシリル基等の珪素基上に2個のフッ素が置換した珪素基;トリフルオロシリル基である珪素基上に3個のフッ素が置換した珪素基;が挙げられ、フッ素とその他の加水分解性基を両方有する珪素基として、フルオロメトキシメチルシリル基、フルオロエトキシメチルシリル基、フルオロメトキシエチルシリル基、フルオロメトキシフェニルシリル基、フルオロジメトキシシリル基、フルオロジエトキシシリル基、フルオロジプロポキシシリル基、フルオロジフェノキシシリル基、フルオロビス(2−プロペノキシ)シリル基、ジフルオロメトキシシリル基、ジフルオロエトキシシリル基、ジフルオロフェノキシシリル基、フルオロジクロロシリル基、ジフルオロクロロシリル基などが挙げられ、フッ素以外に加水分解性基を持たない珪素基やR80がメチル基であるフルオロシリル基が好ましく、トリフルオロシリル基がより好ましい。
また、合成の容易さからフルオロジメチルシリル基、ジフルオロメチルシリル基、トリフルオロシリル基、フルオロメトキシメチルシリル基、フルオロエトキシメチルシリル基、フルオロメトキシエチルシリル基、フルオロジメトキシシリル基、フルオロジエトキシシリル基、ジフルオロメトキシシリル基、ジフルオロエトキシシリル基がより好ましく、安定性の観点からフルオロジメチルシリル基、ジフルオロメチルシリル基、トリフルオロシリル基などのフッ素以外に加水分解性基を持たない珪素基がさらに好ましく、硬化性の高さからは、ジフルオロメチルシリル基、ジフルオロメトキシシリル基、ジフルオロエトキシシリル基、トリフルオロシリル基など、珪素基上に2個ないし3個のフッ素が置換した珪素基が好ましく、トリフルオロシリル基が最も好ましい。
前記式(8)で示されるフルオロシリル基を有する化合物としては、特に限定されず、単分子化合物、高分子化合物のいずれも使用可能であり、例えば、テトラフルオロシラン、オクタフルオロトリシラン等の無機珪素化合物;上記式(7)で示されるフルオロシラン類、フルオロトリメトキシシラン、ジフルオロジメトキシシラン、トリフルオロメトキシシラン、フルオロトリエトキシシラン、ジフルオロジエトキシシラン、トリフルオロエトキシシラン、メチルフルオロジメトキシシラン、メチルジフルオロメトキシシラン、メチルトリフルオロシラン、メチルフルオロジエトキシシラン、メチルジフルオロエトキシシラン、ビニルフルオロジメトキシシラン、ビニルジフルオロメトキシシラン、ビニルトリフルオロシラン、ビニルフルオロジエトキシシラン、ビニルジフルオロエトキシシラン、フェニルフルオロジメトキシシラン、フェニルジフルオロメトキシシラン、フェニルトリフルオロシラン、フェニルフルオロジエトキシシラン、フェニルジフルオロエトキシシラン、フルオロトリメチルシラン等の低分子有機珪素化合物;末端に式(8)で示されるフルオロシリル基を有するフッ素化ポリシロキサンなどの高分子化合物が挙げられ、前記式(7)で示されるフルオロシラン類や、主鎖又は側鎖の末端に式(8)で示されるフルオロシリル基を有する重合体が好適である。
前記式(7)で示されるフルオロシラン類及び前記式(8)で示されるフルオロシリル基を有する化合物は、市販の試薬を用いても良いし、原料化合物から合成してもよい。合成方法としても特に制限はないが、下記式(9)で示される架橋性珪素基を有する化合物と、フッ素化剤とを公知の方法(例えば、Organometallics1996年,15,2478頁(Ishikawaほか)等)を用いて反応させることにより得られる化合物が好適に用いられる。
−SiR80 3−qX’・・・(9)
(式(9)中、R80及びX’はそれぞれ式(8)と同じであり、qは1〜3のいずれかである。)
上記式(9)で示される架橋性珪素基としては、例えば、アルコキシシリル基、シロキサン結合、クロロシリル基等のハロシリル基、ヒドロシリル基等が挙げられる。
アルコキシシリル基のフッ素化に使用されるフッ素化剤の具体例としては、特に限定されず、例えば、NHF、BuNF、HF、BF、EtNSF、HSOF、SbF、VOF、CFCHFCFNEtなどが挙げられる。
ハロシリル基のフッ素化に使用されるフッ素化剤の具体例としては、特に限定されず、例えば、AgBF、SbF、ZnF、NaF、KF、CsF、NHF、CuF、NaSiF、NaPF、NaSbF、NaBF、MeSnF、KF(HF)1.5〜5などが挙げられる。
ヒドロシリル基のフッ素化に使用されるフッ素化剤の具体例としては、特に限定されず、例えば、AgF、PF、PhCBF、SbF、NOBF、NOBFなどが挙げられる。
シロキサン結合を有する化合物はBFなどにより開裂し、フルオロシリル基が得られる。
これらのフッ素化剤を用いたフルオロシリル基の合成方法のなかでも、反応が簡便であること、反応効率が高いこと、安全性が高いことなどから、BFを用いたアルコキシシランのフッ素化法、CuFまたはZnFを用いたクロロシランのフッ素化法が好ましい。
BFとしては、BFガス、BFエーテル錯体、BFチオエーテル錯体、BFアミン錯体、BFアルコール錯体、BFカルボン酸錯体、BFリン酸錯体、BF水和物、BFピペリジン錯体、BFフェノール錯体等が使用できるが、取扱いが容易であることなどからBFエーテル錯体、BFチオエーテル錯体、BFアミン錯体、BFアルコール錯体、BFカルボン酸錯体、BF水和物が好ましい。中でもBFエーテル錯体、BFアルコール錯体、BF水和物は反応性が高く好ましく、BFエーテル錯体が特に好ましい。
前記フルオロシリル基を有する有機重合体(本明細書では、フッ素化ポリマーとも称する)としては、Si−F結合を有する有機重合体であれば特に制限はなく、公知のSi−F結合を有する有機重合体を広く使用可能である。
有機重合体中のSiF結合の位置も特に制限はなく、重合体分子内のいずれの部位にあっても効果を発揮し、主鎖または側鎖の末端であれば−SiR F、重合体の主鎖に組み込まれていれば、−SiRF−または≡SiF(Rはそれぞれ独立に、任意の基)の形で表される。
主鎖又は側鎖の末端にSi−F結合を有する有機重合体としては、前述した式(8)で示されるフルオロシリル基を有する重合体が好適である。フルオロシリル基が重合体の主鎖中に組み込まれたものの例としては、−Si(CH)F−、−Si(C)F−、−SiF−、≡SiFなどが挙げられる。
前記フッ素化ポリマーは、フルオロシリル基および主鎖骨格が同種である単一の重合体、すなわち、1分子あたりのフルオロシリル基の数、その結合位置、および該フルオロシリル基が有するFの数、ならびに主鎖骨格が同種である単一の重合体であってもよく、これらのいずれか、またはすべてが異なる、複数の重合体の混合物であってもよい。フッ素化ポリマーが単一の重合体、複数の重合体の混合物のいずれの場合においても、フッ素化ポリマーは、速硬化性を示す硬化性組成物の樹脂成分として好適に用いることができるが、高い硬化性を発揮し、かつ高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、フッ素化ポリマーに含有されるフルオロシリル基は、重合体1分子あたり平均して少なくとも1個、好ましくは1.1〜5個、さらに好ましくは1.2〜3個存在するのがよい。1分子中に含まれるフルオロシリル基の数が平均して1個未満になると、硬化性が不十分になり、良好なゴム弾性挙動を発現しにくくなる可能性がある。
また、フッ素化ポリマーは、フルオロシリル基とともに、加水分解性基としてフッ素以外の加水分解性基のみを有する珪素基(たとえば、メチルジメトキシシリル基等)などのフルオロシリル基以外の置換基を含有していてもよい。このようなフッ素化ポリマーとしては、たとえば一方の主鎖末端がフルオロシリル基であり、他方の主鎖末端が、加水分解性基としてフッ素以外の加水分解性基のみを有する珪素基である重合体を挙げることができる。フッ素化ポリマーの例は国際公開特許WO2008/032539号公報に記載されている。
フッ素化ポリマーにおいて、フルオロシリル基の導入は、いかなる方法を用いてもよいが、フルオロシリル基を有する低分子珪素化合物と重合体との反応による導入方法(方法(i))と、フッ素以外の加水分解性基を有する架橋性珪素基を含有する重合体(以下、「重合体(X)」と称することがある。)の珪素基をフルオロシリル基に変性する方法(方法(ii))が挙げられる。
方法(i)の具体例として、以下の方法が挙げられる。
(イ)分子中に水酸基、エポキシ基やイソシアネート基等の官能基を有する重合体に、この官能基に対して反応性を示す官能基およびフルオロシリル基を有する化合物を反応させる方法。たとえば、末端に水酸基を有する重合体とイソシアネートプロピルジフルオロメチルシランを反応させる方法や、末端にSiOH基を有する重合体とジフルオロジエトキシシランを反応させる方法が挙げられる。
(ロ)分子中に不飽和基を含有する重合体に、フルオロシリル基を有するヒドロシランを作用させてヒドロシリル化する方法。たとえば、末端にアリル基を有する重合体に、ジフルオロメチルヒドロシランを反応させる方法が挙げられる。
(ハ)不飽和基を含有する重合体に、メルカプト基およびフルオロシリル基を有する化合物を反応させる方法。たとえば、末端にアリル基を有する重合体に、メルカプトプロピルジフルオロメチルシランを反応させる方法が挙げられる。
上記方法(ii)で用いる、フッ素以外の加水分解性基を有する架橋性珪素基を含有する重合体(重合体(X))としては、フッ素以外の加水分解性基を有する架橋性珪素基を含有するポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体、ポリシロキサン系重合体が好ましい重合体として挙げることができる。
また、方法(ii)において、フッ素以外の加水分解性基を有する架橋性珪素基をフルオロシリル基に変換する方法としては、公知の方法が使用でき、例えば、前述した前記式(9)で示される加水分解性珪素基を、フッ素化剤でフルオロシリル基に変換する方法が挙げられる。
フッ素化剤としては、例えば、前述したフッ素化剤が挙げられ、中でも、BFエーテル錯体、BFアルコール錯体、BF二水和物は活性が高く、効率よくフッ素化が進行し、さらに副生成物に塩等が生じず、後処理が容易であるためにより好ましく、BFエーテル錯体が特に好ましい。
さらに、BFエーテル錯体によるフッ素化は、加熱しなくても反応が進行するが、より効率よくフッ素化を行なうためには、加熱することが好ましい。加熱温度としては50℃以上150℃以下が好ましく、60℃以上130℃がより好ましい。50℃以下であると反応が効率よく進行せず、フッ素化に時間がかかる場合がある。150℃以上であるとフッ素化ポリマーが分解する虞がある。BF錯体によるフッ素化において、用いる重合体(X)の種類によっては着色が起こる場合があるが、着色の抑制の点から、BFアルコール錯体、BF二水和物を用いることが好ましい。
フッ素化ポリマーの製造に使用されるフッ素化剤は、フッ素化ポリマーの硬化触媒としても作用する可能性があり、上記(ii)の方法を用いてフッ素化ポリマーを製造するときに水分が存在すると、シラノール縮合反応が進行し、得られるフッ素化ポリマーの粘度が上昇してしまう虞がある。このため、フッ素化ポリマーの製造は、できるだけ水分が存在しない環境下で行なわれることが望ましく、フッ素化前に、フッ素化する重合体(X)をトルエンやヘキサン等を利用して共沸脱水に供するなどの脱水操作を行なうことが好ましい。但し、BFアミン錯体を用いる場合には、脱水操作後にはフッ素化が進行し難く、微量の水分を添加することで反応性が向上する傾向があるため、粘度上昇が許容される範囲で水分を添加することが好ましい。また、フッ素化ポリマーの安定性の点で、フッ素化後にフッ素化剤および副生したフッ素化剤由来成分を、濾過、デカンテーション、分液、減圧脱揮などで除去することが好ましい。上記したBF系のフッ素化剤を用いてフッ素化ポリマーを製造する場合には、製造されたフッ素化ポリマー中に残存するBFおよび反応によって生成したBF由来成分が、B量で500ppm未満であることが好ましく、100ppm未満であることがより好ましく、50ppm未満であることが特に好ましい。BFおよびBF由来成分を除去することで、得られたフッ素化ポリマー自身およびフッ素化ポリマーと重合体(X)との混合物の粘度上昇などが抑制できる。この点を考慮すると、BFエーテル錯体、BFアルコール錯体を用いたフッ素化法は、ホウ素成分を真空脱揮により比較的簡便に除去できるため好ましく、BFエーテル錯体を用いた方法が特に好ましい。
ここで、重合体(X)が、フッ素以外の加水分解性基を2個以上有する場合は、全ての加水分解性基をフッ素化してもよいし、フッ素化剤の量を減量するなどの方法によって、フッ素化の条件を調整することにより、部分的にフッ素化してもよい。たとえば、上記(ii)の方法において、重合体(X)を用いてフッ素化ポリマーを製造する場合、フッ素化剤の使用量は特に制限されるものではなく、フッ素化剤中のフッ素原子のモル量が、重合体(X)のモル量に対して等モル以上になる量であればよい。(ii)の方法により、重合体(X)が含有する加水分解性基のすべてをフッ素化しようとする場合には、フッ素化剤中のフッ素原子のモル量が、重合体(X)が含有する架橋性珪素基中の加水分解性基の総モル量に対して等モル以上となるような量のフッ素化剤を使用することが好ましい。ここで、「フッ素化剤中のフッ素原子」とは、フッ素化剤中のフッ素化に有効なフッ素原子、具体的には、重合体(X)の架橋性珪素基中の加水分解性基を置換できるフッ素原子をいう。
上記方法(i)におけるフルオロシリル基を有する低分子化合物も、上記フッ素化方法を利用して、汎用な架橋性珪素基含有低分子化合物から合成することができる。
方法(i)では、フルオロシリル基とともに、重合体と珪素含有低分子化合物を反応させるための反応性基があるため、反応が複雑になる場合には、方法(ii)によってフッ素化ポリマーを得ることが好ましい。
フッ素化ポリマーのガラス転移温度は、特に限定は無いが、20℃以下であることが好ましく、0℃以下であることがより好ましく、−20℃以下であることが特に好ましい。ガラス転移温度が20℃を上回ると、冬季または寒冷地での粘度が高くなり取り扱い難くなる場合があり、また、硬化性組成物として使用した場合に得られる硬化物の柔軟性が低下し、伸びが低下する場合がある。ガラス転移温度はDSC測定により求めることができる。
フッ素化ポリマーは直鎖状であってもよく、または分岐を有してもよい。フッ素化ポリマーの数平均分子量は、GPCにおけるポリスチレン換算において3,000〜100,000が好ましく、より好ましくは3,000〜50,000であり、特に好ましくは3,000〜30,000である。
前記(D1)Si−F結合を有する珪素化合物の配合割合は特に制限はないが、フッ素化ポリマー等の数平均分子量3000以上の高分子化合物を用いる場合は、(A)架橋性珪素基を有する化合物100質量部に対して、0.01〜80質量部が好ましく、0.01〜30質量部がより好ましく、0.05〜20質量部がさらに好ましい。数平均分子量3000未満のフルオロシリル基を有する低分子化合物(例えば、前記式(7)で示されるフルオロシラン類や式(8)で示されるフルオロシリル基を有する低分子有機珪素化合物、フルオロシリル基を有する無機珪素化合物等)を用いる場合は、(A)分子内に架橋性珪素基と光ラジカル重合性のビニル基を有する有機重合体100質量部に対して、0.01〜50質量部が好ましく、0.05〜20質量部がより好ましく、0.1〜15質量部が特に好ましい。
本発明において、(D2)三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物は架橋性珪素基の加水分解縮合反応を促進させる化合物となり、(A)分子内に架橋性珪素基と光ラジカル重合性のビニル基を有する有機重合体の硬化触媒として作用する。
前記三フッ化ホウ素の錯体としては、例えば、三フッ化ホウ素のアミン錯体、アルコール錯体、エーテル錯体、チオール錯体、スルフィド錯体、カルボン酸錯体、水錯体等が例示される。上記三フッ化ホウ素の錯体の中では、安定性と触媒活性を兼ね備えたアミン錯体が特に好ましい。
前記三フッ化ホウ素のアミン錯体に用いられるアミン化合物としては、例えば、アンモニア、モノエチルアミン、トリエチルアミン、ピペリジン、アニリン、モルホリン、シクロヘキシルアミン、n−ブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、グアニジン、2,2,6,6−テトラメチルピペリジン、1,2,2,6,6−ペンタメチルピペリジン、N−メチル−3,3′−イミノビス(プロピルアミン)、エチレンジアミン、ジエチレントリアミン、トリエチレンジアミン、ペンタエチレンジアミン、1,2−ジアミノプロパン、1,3−ジアミノプロパン、1,2−ジアミノブタン、1,4−ジアミノブタン、1,9−ジアミノノナン、ATU(3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン)、CTUグアナミン、ドデカン酸ジヒドラジド、ヘキサメチレンジアミン、m−キシリレンジアミン、ジアニシジン、4,4′−ジアミノ−3,3′−ジエチルジフェニルメタン、ジアミノジフェニルエーテル、3,3′−ジメチル−4,4′−ジアミノジフェニルメタン、トリジンベース、m−トルイレンジアミン、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、メラミン、1,3−ジフェニルグアニジン、ジ−o−トリルグアニジン、1,1,3,3−テトラメチルグアニジン、ビス(アミノプロピル)ピペラジン、N−(3−アミノプロピル)−1,3−プロパンジアミン、ビス(3−アミノプロピル)エーテル、サンテクノケミカル社製ジェファーミン等の複数の第一級アミノ基を有する化合物、ピペラジン、シス−2,6−ジメチルピペラジン、シス−2,5−ジメチルピペラジン、2−メチルピペラジン、N,N′−ジ−t−ブチルエチレンジアミン、2−アミノメチルピペリジン、4−アミノメチルピペリジン、1,3−ジ−(4−ピペリジル)−プロパン、4−アミノプロピルアニリン、ホモピペラジン、N,N′−ジフェニルチオ尿素、N,N′−ジエチルチオ尿素、N−メチル−1,3−プロパンジアミン等の複数の第二級アミノ基を有する化合物、更に、メチルアミノプロピルアミン、エチルアミノプロピルアミン、エチルアミノエチルアミン、ラウリルアミノプロピルアミン、2−ヒドロキシエチルアミノプロピルアミン、1−(2−アミノエチル)ピペラジン、N−アミノプロピルピペラジン、3−アミノピロリジン、1−o−トリルビグアニド、2−アミノメチルピペラジン、N−アミノプロピルアニリン、エチルアミンエチルアミン、2−ヒドロキシエチルアミノプロピルアミン、ラウリルアミノプロピルアミン、2−アミノメチルピペリジン、4−アミノメチルピペリジン、式H2N(C2H4NH)nH(n≒5)で表わされる化合物(商品名:ポリエイト、東ソー社製)、N−アルキルモルホリン、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、6−ジブチルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデセン−7、1,5−ジアザビシクロ[4.3.0]ノネン−5、1,4−ジアザビシクロ[2.2.2]オクタン、ピリジン、N−アルキルピペリジン、1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン、7−メチル−1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン等の複環状第三級アミン化合物等の他、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジエトキシシラン、4−アミノ−3−ジメチルブチルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジエトキシシラン、N−3−[アミノ(ジプロピレンオキシ)]アミノプロピルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリエトキシシラン、N−(6−アミノヘキシル)アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−11−アミノウンデシルトリエトキシシラン等のアミノシラン化合物が挙げられる。
前記三フッ化ホウ素のアミン錯体の市販品としては、例えば、エアプロダクツジャパン株式会社製のアンカー1040、アンカー1115、アンカー1170、アンカー1222、BAK1171等が挙げられる。
前記フッ素化剤には、フッ素アニオンを活性種とする求核的フッ素化剤と、電子欠乏性のフッ素原子を活性種とする求電子的フッ素化剤が含まれる。
前記求核的フッ素化剤としては、例えば、1,1,2,3,3,3−ヘキサフルオロ−1−ジエチルアミノプロパン等の1,1,2,3,3,3−ヘキサフルオロ−1−ジアルキルアミノプロパン系化合物、トリエチルアミントリスヒドロフルオライド等のトリアルキルアミントリスヒドロフルオライド系化合物、ジエチルアミノサルファートリフルオライド等のジアルキルアミノサルファートリフルオライド系化合物等が挙げられる。
前記求電子的フッ素化剤としては、例えば、ビス(テトラフルオロホウ酸)N,N’−ジフルオロ−2,2’−ビピリジニウム塩化合物,トリフルオロメタンスルホン酸N−フルオロピリジニウム塩化合物等のN−フルオロピリジニウム塩系化合物、ビス(テトラフルオロホウ酸)4−フルオロ−1,4−ジアゾニアビシクロ[2.2.2]オクタン塩等の4−フルオロ−1,4−ジアゾニアビシクロ[2.2.2]オクタン系化合物、N−フルオロビス(フェニルスルホニル)アミン等のN−フルオロビス(スルホニル)アミン系化合物等が挙げられる。これらの中では、1,1,2,3,3,3−ヘキサフルオロ−1−ジエチルアミノプロパン系化合物が液状化合物である上、入手が容易なため特に好ましい。
前記多価フルオロ化合物のアルカリ金属塩としては、例えば、ヘキサフルオロアンチモン酸ナトリウム、ヘキサフルオロアンチモン酸カリウム、ヘキサフルオロヒ酸ナトリウム、ヘキサフルオロヒ酸カリウム、ヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸ナトリウム、ヘキサフルオロリン酸カリウム、ペンタフルオロヒドロキソアンチモン酸ナトリウム、ペンタフルオロヒドロキソアンチモン酸カリウム、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸ナトリウム、テトラフルオロホウ酸カリウム、テトラキス(トリフルオロメチルフェニル)ホウ酸ナトリウム、トリフルオロ(ペンタフルオロフェニル)ホウ酸ナトリウム、トリフルオロ(ペンタフルオロフェニル)ホウ酸カリウム、ジフルオロビス(ペンタフルオロフェニル)ホウ酸ナトリウム、ジフルオロビス(ペンタフルオロフェニル)ホウ酸カリウム等が挙げられる。
これらの中でも、多価フルオロ化合物のアルカリ金属塩における多価フルオロ化合物成分としては、テトラフルオロホウ酸又はヘキサフルオロリン酸が好ましい。また、多価フルオロ化合物のアルカリ金属塩におけるアルカリ金属としては、リチウム、ナトリウム及びカリウムからなる群から選ばれる一種以上のアルカリ金属であることが好ましい。
前記(D2)フッ素系化合物の配合割合は特に制限はないが、(A)分子内に架橋性珪素基と光ラジカル重合性のビニル基を有する有機重合体100質量部に対して、0.001〜10質量部が好ましく、0.001〜5質量部がより好ましく、0.001〜2質量部がさらに好ましい。これらフッ素系化合物は単独で用いてもよく、2種以上を併用してもよい。
本発明の光硬化性組成物において(D)成分である前記(D1)Si−F結合を有する珪素化合物及び前記(D2)フッ素系化合物からなる群から選択される1種以上を使用する場合、(D1)及び(D2)のいずれかのみでもよく、両者を併用してもよい。これらの中では、特に、(D1)Si−F結合を有するケイ素化合物を使用することが好ましい。
本発明の光硬化性組成物は、シランカップリング剤をさらに含むことができ、特に、エポキシ基含有シラン類が好ましい。
前記シランカップリング剤としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類;γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、1,3−ジアミノイソプロピルトリメトキシシラン等のアミノ基含有シラン類;N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(1,3−ジメチルブチリデン)−3−(トリメトキシシリル)−1−プロパンアミン等のケチミン型シラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン等のビニル型不飽和基含有シラン類;γ−クロロプロピルトリメトキシシラン等の塩素原子含有シラン類;γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン等のイソシアネート含有シラン類;ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン等のアルキルシラン類;フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等のフェニル基含有シラン類等が挙げられるが、これらに限定されるものではない。また、前記アミノ基含有シラン類と前記のシラン類を含むエポキシ基含有化合物、イソシアネート基含有化合物、(メタ)アクリロイル基含有化合物とを反応させて、アミノ基を変性した変性アミノ基含有シラン類を用いてもよい。
アミノ基含有シラン類はシラノール縮合触媒として作用し、ケチミン型シラン類は水分の存在下でアミノ基含有シラン類を生成しこれはシラノール縮合触媒として作用する。従って、アミノ基含有シラン類やケチミン型シラン類以外のシランカップリング剤を使用することが好ましい。また、アミノ基含有シラン類やケチミン型シラン類を使用する場合、本発明の目的・効果が達成される範囲で種類や使用量に注意して使用すべきである。
前記シランカップリング剤の配合割合は特に制限はないが、(A)成分の重合体100質量部に対して、0.2〜20質量部が好ましく、0.3〜10質量部がより好ましく、0.5〜5質量部がさらに好ましい。これらシランカップリング剤は単独で用いてもよく、2種以上を併用してもよい。
本発明の硬化性組成物には、前記(B)光塩基発生剤に加え、光により、第一級アミノ基および第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性珪素基含有化合物をさらに含有していても良い。該光により、第一級アミノ基および第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性珪素基含有化合物は、接着性能を向上させることができる。
該光により、第一級アミノ基および第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性珪素基含有化合物としては、光照射により、第一級アミノ基および第二級アミノ基からなる群から選択される1種以上のアミノ基と、架橋性珪素基とを有するアミノシラン化合物を発生する化合物であればいかなるものでも使用可能である。本明細書において、前記光により、第一級アミノ基および第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性珪素基含有化合物を光アミノシラン発生化合物とも称する。
前記光照射により発生する、前記アミノシラン化合物としては、架橋性珪素基、及び置換あるいは非置換のアミノ基を有する化合物が用いられる。置換アミノ基の置換基としては、特に限定されず、例えば、アルキル基、アラルキル基、アリール基などが挙げられる。また、架橋性珪素基としては、特に限定されず、前記(A)有機重合体の項で記載した架橋性珪素基を挙げることでき、加水分解性基が結合した珪素含有基が好ましい。このなかでも、メトキシ基、エトキシ基などのアルコキシ基が、加水分解性が穏やかで取扱いやすいことから好ましい。前記アミノシラン化合物中、加水分解性基や水酸基は1個の珪素原子に1〜3個の範囲で結合することができ、2個以上が好ましく、特に3個が好ましい。
本発明の光硬化性組成物には、必要に応じて、光増感剤、増量剤、可塑剤、水分吸収剤、硬化触媒、引張特性等を改善する物性調整剤、補強剤、着色剤、難燃剤、タレ防止剤、酸化防止剤、老化防止剤、紫外線吸収剤、溶剤、香料、顔料、染料等の各種添加剤を加えてもよい。
前記光増感剤としては、225−310kJ/molの三重項エネルギーをもつカルボニル化合物が好ましく、例えば、キサントン、チオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン、イソプロピルチオキサントン、フタルイミド、アントラキノン、9,10−ジブトキシアントラセン、アセトフェノン、プロピオフェノン、ベンゾフェノン、アシルナフタレン、2(アシルメチレン)チアゾリン、3−アシルクマリンおよび3,3′−カルボニルビスクマリン、ペリレン、コロネン、テトラセン、ベンズアントラセン、フェノチアジン、フラビン、アクリジン、ケトクマリン等が挙げられ、チオキサントン、3−アシルクマリンおよび2(アロイルメチレン)−チアゾリンが好ましく、チオキサントンおび3−アシルクマリンがより好ましい。これら増感剤は組成物の保存寿命を短くすることなく発生したアミン塩基の反応性を増強する。
また、光増感剤として、活性エネルギー線を照射することで開裂し、ラジカルを発生するタイプの活性エネルギー線開裂型ラジカル発生剤がより好ましい。該活性エネルギー線開裂型ラジカル発生剤を使用すると、光塩基開始剤の増感剤として知られていたベンゾフェノン類やチオキサントン類等の光増感剤を使用した場合と比較して、格段に速い硬化速度を示し、エネルギー線照射後本発明の光硬化性組成物をさらに短時間で硬化することが可能となる。
該エネルギー線開裂型ラジカル発生剤としては、例えば、ベンゾインエーテル誘導体、アセトフェノン誘導体等のアリールアルキルケトン類、オキシムケトン類、アシルホスフィンオキシド類、チオ安息香酸S−フェニル類、チタノセン類、およびそれらを高分子量化した誘導体が挙げられる。市販されている開裂型ラジカル発生剤としては、例えば、1−(4−ドデシルベンゾイル)−1−ヒドロキシ−1−メチルエタン、1−(4−イソプロピルベンゾイル)−1−ヒドロキシ−1−メチルエタン、1−ベンゾイル−1−ヒドロキシ−1−メチルエタン、1−[4−(2−ヒドロキシエトキシ)−ベンゾイル]−1−ヒドロキシ−1−メチルエタン、1−[4−(アクリロイルオキシエトキシ)−ベンゾイル]−1−ヒドロキシ−1−メチルエタン、ジフェニルケトン、フェニル−1−ヒドロキシ−シクロヘキシルケトン、ベンジルジメチルケタール、ビス(シクロペンタジエニル)−ビス(2,6−ジフルオロ−3−ピリル−フェニル)チタン、(η6−イソプロピルベンゼン)−(η5−シクロペンタジエニル)−鉄(II)ヘキサフルオロホスフェート、トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,6−ジメトキシ−ベンゾイル)−(2,4,4−トリメチル−ペンチル)−ホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)−2,4−ジペントキシフェニルホスフィンオキシドまたはビス(2,4,6−トリメチルベンゾイル)フェニル−ホスフィンオキシド等が挙げられる。
光増感剤の配合割合は特に制限はないが、組成物中に0.01〜5質量%が好ましく、0.025〜2質量%がより好ましい。これら光増感剤は単独で用いてもよく、2種以上を併用してもよい。
前記増量剤としては、例えば、タルク、クレー、炭酸カルシウム、炭酸マグネシウム、無水珪素、含水珪素、ケイ酸カルシウム、二酸化チタン、カーボンブラック等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
前記可塑剤としては、例えば、リン酸トリブチル、リン酸トリクレジル等のリン酸エステル類、フタル酸ジオクチル等のフタル酸エステル類、グリセリンモノオレイル酸エステル等の脂肪族一塩基酸エステル類、アジピン酸ジオクチル等の脂肪族二塩基酸エステル類、ポリプロピレングリコール類等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
前記水分吸収剤としては、前述したシランカップリング剤やシリケートが好適である。前記シリケートとしては、特に限定されず、例えば、テトラアルコキシシランまたはその部分加水分解縮合物があげられ、より具体的には、テトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−i−ブトキシシラン、テトラ−t−ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート)、および、それらの部分加水分解縮合物が挙げられる。
前記硬化触媒としては、公知の硬化触媒を広く用いることができ、特に制限はないが、例えば、有機金属化合物やアミン類等が挙げられ、特にシラノール縮合触媒を用いることが好ましい。前記シラノール縮合触媒としては、例えば、スタナスオクトエート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫ジアセテート、ジブチル錫ジアセチルアセトナート、ジブチル錫オキサイド、ジブチル錫ビストリエトキシシリケート、ジブチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジバーサテート、オクチル酸錫及びナフテン酸錫等の有機錫化合物;ジメチルスズオキサイド、ジブチルスズオキサイド、ジオクチルスズオキサイド等のジアルキルスズオキサイド;ジブチル錫オキサイドとフタル酸エステルとの反応物等;テトラブチルチタネート、テトラプロピルチタネート等のチタン酸エステル類;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジイソプロポキシアルミニウムエチルアセトアセテート等の有機アルミニウム化合物類;ジルコニウムテトラアセチルアセトナート、チタンテトラアセチルアセトナート等のキレート化合物類;オクチル酸鉛及びナフテン酸鉛等の有機酸鉛;オクチル酸ビスマス、ネオデカン酸ビスマス及びロジン酸ビスマス等の有機酸ビスマス;シラノール縮合触媒として公知のその他の酸性触媒及び塩基性触媒等が挙げられる。しかしながら、有機錫化合物は添加量に応じて、得られる光硬化性組成物の毒性が強くなる場合がある。本発明には(B)成分の光塩基や(D)成分のフッ素化合物が硬化触媒として作用するので(B)成分や(D)成分以外の硬化触媒を使用する場合は本発明の目的や効果を達成できる範囲で使用するのが好ましい。
本発明の光硬化性組成物を製造する方法は特に制限はなく、例えば、前記成分(A)、(B)、並びに(C)を所定量配合し、また必要に応じて他の配合物質を配合し、脱気攪拌することにより製造することができる。各成分及び他の配合物質の配合順は特に制限はなく、適宜決定すればよい。
本発明の光硬化性組成物は、必要に応じて1液型とすることもできるし、2液型とすることもできるが、特に1液型として好適に用いることができる。本発明の光硬化性組成物は光照射により硬化する光硬化性組成物であって、常温(例えば、23℃)で硬化することが可能であり、常温光硬化型硬化性組成物として好適に用いられるが、必要に応じて、適宜、加熱により硬化を促進させてもよい。
本発明の硬化物の製造方法は、本発明の光硬化性組成物に対し、光を照射することにより硬化物を形成することができる。本発明の硬化物は、該方法により形成されてなる硬化物である。また、本発明の製品の製造方法は、本発明の光硬化性組成物を用いて製造することを特徴とする。本発明の製品は、該方法を用いて製造されてなる製品であり、電子回路、電子部品、建材、自動車等に好適に利用可能である。
本発明の光硬化性組成物に対し、光を照射する条件としては特に制限はないが、硬化時に活性エネルギー線を照射する場合、活性エネルギー線としては、紫外線、可視光線、赤外線等の光線、X線、γ線等の電磁波の他、電子線、プロトン線、中性子線等が利用できるが、硬化速度、照射装置の入手のしやすさ及び価格、太陽光や一般照明下での取扱の容易性等から紫外線または電子線照射による硬化が好ましく、紫外線照射による硬化がより好ましい。なお、紫外線には、g線(波長436nm)、h線(波長405nm)、i線(波長365nm)等も含まれるものである。活性エネルギー線源としては、特に限定されないが、使用する光塩基発生剤の性質に応じて、例えば、高圧水銀灯、低圧水銀灯、電子線照射装置、ハロゲンランプ、発光ダイオード、半導体レーザー、メタルハライド等があげられる。
照射エネルギーとしては例えば紫外線の場合、10〜20,000mJ/cmが好ましく、50〜10,000mJ/cmがより好ましい。10mJ/cm未満では硬化性が不十分となる場合があり、20,000mJ/cmより大きいと、必要以上に光を当てても時間とコストの無駄となるばかりか、基材を傷めてしまう場合がある。
本発明の光硬化性組成物を接着剤として使用する場合、被着体への塗布方法は特に制限はないが、スクリーン印刷、ステンシル印刷、ロール印刷、スピンコート、ディスペンサーによる塗布等の塗布方法が好適に用いられる。光硬化性組成物の被着体への塗布厚さは薄いほうが本発明の効果を発現しやすく、500μm以下、好ましくは200μm以下、さらに好ましくは100μm以下、特に好ましくは50μm以下である。
また、本発明において、光硬化性組成物の被着体への塗布及び光照射の時期に制限はなく、光硬化性組成物に光を照射させた後、被着体と接合し、製品を製造してもよく、また光硬化性組成物を被着体に塗布し、光を照射することにより組成物を硬化させ、製品を製造してもよい。
本発明の光硬化性組成物は、作業性に優れた速硬化型の光硬化性組成物であり、特に、粘・接着性組成物として有用であり、接着剤、シーリング材、粘着材、コーティング材、ポッティング材、塗料、パテ材及びプライマー等として好適に用いることができる。本発明の光硬化性組成物は、例えば、実装回路基板等の防湿や絶縁を目的とするコーティング、ソーラー発電のパネルやパネルの外周部分のコーティング等に用いられるコーティング剤;複層ガラス用シーリング剤、車両用シーリング剤等、建築用および工業用のシーリング剤;太陽電池裏面封止剤などの電気・電子部品材料;電線・ケーブル用絶縁被覆材などの電気絶縁材料;光造形法による立体造形物形成用の材料;粘着剤;接着剤;弾性接着剤;コンタクト接着剤などの用途に好適に利用可能である。
以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。
1)数平均分子量の測定
数平均分子量は、特に指定がない限りゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定した。本発明において、該測定条件でGPCにより測定し、標準ポリエチレングリコールで換算した最大頻度の分子量を数平均分子量と称する。
・分析装置:Alliance(Waters社製)、2410型示差屈折検出器(Waters社製)、996型多波長検出器(Waters社製)、Milleniamデータ処理装置(Waters社製)
・カラム:PlgelGUARD+5μmMixed−C×3本(50×7.5mm,300×7.5mm:PolymerLab社製)
・流速:1mL/分
・換算したポリマー:ポリエチレングリコール
・測定温度:40℃
・GPC測定時の溶媒:THF
2)NMRの測定
NMRの測定は、下記測定装置を用いて行った。
FT−NMR測定装置:日本電子(株)製JNM−ECA500(500MHz)
(合成例1)末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1の合成
攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、エチレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテート−グライム錯体触媒の存在下、プロピレンオキシドを反応させ、ポリオキシプロピレントリオールを得た。得られたポリオキシプロピレントリオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレントリオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体M1を得た。
次に、ポリオキシアルキレン系重合体M1に塩化アリルを反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化珪素化合物であるトリメトキシシランを白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1を得た。
得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1の分子量をGPCにより測定した結果、ピークトップ分子量は25000、分子量分布1.3であった。H1−NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。
(合成例2)末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2の合成
攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、エチレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテート−グライム錯体触媒の存在下、プロピレンオキシドを反応させ、ポリオキシプロピレントリオールを得た。得られたポリオキシプロピレントリオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレントリオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体M2を得た。
次に、ポリオキシアルキレン系重合体M2に塩化アリルを反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化珪素化合物であるトリメトキシシランを白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2を得た。
得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2の分子量をGPCにより測定した結果、ピークトップ分子量は12000、分子量分布1.3であった。H1−NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。
(合成例3)トリメトキシシリル基を有する(メタ)アクリル系重合体A3の合成
撹拌装置、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに、酢酸エチルを40.00g、メチルメタクリレート70.00g、2−エチルヘキシルメタクリレート(東京化成工業(株)製)30.00g、3−メタクリロキシプロピルトリメトキシシラン(商品名:KBM503、信越化学工業(株)製)12.00g、及び金属触媒としてチタノセンジクライド0.10gを仕込みフラスコ内に窒素ガスを導入しながらフラスコの内容物を80℃に加熱した。ついで、充分に窒素ガス置換した3−メルカプトプロピルトリメトキシシラン4.30gを撹拌下にフラスコ内に一気に添加した。3−メルカプトプロピルトリメトキシシラン4.30gを添加後、撹拌中のフラスコ内の内容物の温度が80℃に維持できるように、加熱及び冷却を4時間行った。さらに、充分に窒素ガス置換した3−メルカプトプロピルトリメトキシシラン4.30gを撹拌下に5分かけてフラスコ内に追加添加した。3−メルカプトプロピルトリメトキシシラン4.30g全量を追加添加後、撹拌中のフラスコ内の内容物の温度が90℃に維持できるように、さらに冷却及び加温を行いながら、反応を4時間行った。合計で8時間5分間の反応後、反応物の温度を室温に戻し、反応物にベンゾキノン溶液(95%THF溶液)を20.00g添加して重合を停止し、トリメトキシシリル基を有する(メタ)アクリル系重合体A3を得た。ピークトップ分子量は4000、分子量分布は2.4であった。H1−NMR測定により含有されるトリメトキシシリル基は1分子あたり2.00個であった。
(合成例4)塩基増殖型アミノシランの合成
特許文献2の実施例3に従い、9−フルオレニルメチルアルコール(C13H9CH2OH)と3−イソシアネートプロピルトリエトキシシラン(OCNCH2CH2CH2Si(OC2H5)3)を反応させ塩基増殖性アミノシラン化合物としてN−(3−トリエトキシシリルプロピル)カルバミン酸9−フルオレニルメチルエステル(C13H9CH2OCONHCH2CH2CH2Si(OC2H5)3)を得た。
(合成例5)フッ素化ポリマーの合成
攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えた新しいフラスコに、分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテート−グライム錯体触媒の存在下、プロピレンオキシドを反応させて得られた水酸基価換算分子量14500、かつ分子量分布1.3のポリオキシプロピレンジオールを得た。得られたポリオキシプロピレンジオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレンジオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体を得た。
次に、ポリオキシアルキレン系重合体に塩化アリルを反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化ケイ素化合物であるメチルジメトキシシランを白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して反応させ、末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体を得た。
得られた末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体の分子量をGPCにより測定した結果、ピークトップ分子量は15000、分子量分布1.3であった。H1−NMR測定により末端のメチルジメトキシシリル基は1分子あたり1.7個であった。
攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、減圧脱気後、窒素ガス置換して、窒素気流下にてBFジエチルエーテル錯体2.4g入れ、50℃に加温した。続いて脱水メタノール1.6gの混合物をゆっくりと滴下し混合させた。撹拌装置、窒素ガス導入管、温度計および還流冷却管を備えた新たなフラスコに、前記得られた重合体A4を100g、トルエン5g入れた。23℃にて30分間撹拌後、110℃に加温し減圧撹拌を2時間行い、トルエンを除去した。この容器に先ほど得られた混合物を窒素気流下にて4.0gゆっくりと滴下し、滴下終了後、反応温度を120℃に昇温し、30分間反応させた。反応終了後、減圧脱気を行い未反応物の除去を行った。末端にフルオロシリル基を有するポリオキシアルキレン系重合体(以下、フッ素化ポリマーと称する)を得た。得られたフッ素化ポリマーの1HNMRスペクトル(Shimazu社製のNMR400を用いて、CDCl溶媒中で測定)を測定したところ、原料である重合体のシリルメチレン(−CH−Si)に対応するピーク(m,0.63ppm)が消失し、低磁場側(0.7ppm〜)にブロードピークが現れた。
(実施例1、実施例2)
表1に示す配合割合にて、攪拌機、温度計、窒素導入口および水冷コンデンサーを装着した300mLのフラスコに、(A)分子内に架橋性珪素基を有する有機重合体、(D)フッ素系化合物、錫系硬化触媒及びアミノシラン化合物を入れ、撹拌した。また別の100mLのナスフラスコに(B)光塩基発生剤、(C)塩基増殖型アミノシラン、プロピレンカーボネート溶媒5質量部を入れ、撹拌し、溶解させ、この溶液の全量を先ほど量り取った300mLのフラスコに投入し、減圧撹拌を行い、光硬化性組成物を得た。この光硬化性組成物の接着強さ、光未照射時のタックフリータイム及び光照射後のタックフリータイムを測定した。光未照射時のタックフリータイムは組成物の貯蔵安定性を評価するためであり、光照射後のタックフリータイムは硬化速度を評価するためである。測定方法の詳細は下記に示す。
Figure 2016132703
表1において、各配合物質の配合量はgで示され、その他の配合物質の詳細は下記の通りである。
*1)2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルホリニル)フェニル]−1−ブタノン、BASF社製、商品名「IRGACURE379EG」。
*2)錫系触媒、日東化成(株)製、商品名「ネオスタンU830」。
1)接着性評価
被着材[アルミニウム(硫酸アルマイト処理)]に、ガラス棒を用いて光硬化性組成物を厚さ100μmになるように塗布し、UV照射(照射条件:LED365nmランプ、照度:1000mW/cm、積算光量:1000mJ/cm)を行った。照射後直ちに、25mm×25mmの面積で被着材[アルミニウム(硫酸アルマイト処理)]を張り合わせ、目玉クリップにより圧締し23℃50%RHの環境下において、7日間養生した。前記養生後、JISK6850剛性被着材の引張りせん断接着強さ試験方法に準拠し、試験速度50mm/分で接着強さを測定した。結果を表1に示した。
2)光硬化性組成物の光未照射時の安定性の評価
直径20mm、高さ7mmの円筒形容器(ポリプロピレン)に厚みが7mmになるように光硬化性組成物を注ぎ、暗室下23℃50%RHの環境下において指触にて表面がべたつかなくなるまでの時間を測定した。硬化してべたつかなくなる時間が長いものほどは安定性がよいことになる。
3)光照射後の可使時間の評価
直径20mm、高さ7mmの円筒形容器(ポリプロピレン)に厚みが7mmになるように光硬化性組成物を注ぎ、UV照射(照射条件:LED365nmランプ、照度:1000mW/cm、積算光量:1000mJ/cm)を行った。その後、暗室下23℃50%RHの環境下において、30秒ごとに指触にて表面がべたつかなくなるまでの時間(タックフリータイム)を測定した。タックフリータイムが長いほど光照射後の可使時間を長くとれる。しかしあまり長いと組成物の硬化時間が長くなるので目的に応じて触媒量や光照射時間を変えて可使時間を調整することができる。
(比較例1−3)
表1に示す如く配合を変更した以外は実施例1と同様の方法により組成物を調製し、測定を行った。結果を表1に示した。
表1に示した如く、本発明の光硬化性組成物は、優れた接着性能を示すと共に、光未照射時のタックフリータイム及び光照射後のタックフリータイムを十分に有しており、作業性に優れることが明らかである。

Claims (4)

  1. (A)架橋性珪素基を有する有機重合体と、
    (B)光塩基発生剤および、
    (C)塩基増殖型アミノシラン、
    を含有することを特徴とする光硬化性組成物
  2. さらに、(D)(D1)Si−F結合を有する珪素化合物、及び/又は(D2)三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物を含有することを特徴とする請求項1に記載の光硬化性組成物。
  3. 前記(B)光塩基発生剤が、光潜在性第3級アミンであることを特徴とする請求項1又は2に記載の光硬化性組成物。
  4. 前記(A)架橋性珪素基を有する有機重合体が、架橋性珪素基含有ポリオキシアルキレン系重合体及び架橋性珪素基含有(メタ)アクリル系重合体からなる群から選択される1種以上であることを特徴とする請求項1〜3のいずれか1項に記載の光硬化性組成物。
JP2015007293A 2015-01-16 2015-01-16 光硬化性組成物 Active JP6520134B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015007293A JP6520134B2 (ja) 2015-01-16 2015-01-16 光硬化性組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015007293A JP6520134B2 (ja) 2015-01-16 2015-01-16 光硬化性組成物

Publications (2)

Publication Number Publication Date
JP2016132703A true JP2016132703A (ja) 2016-07-25
JP6520134B2 JP6520134B2 (ja) 2019-05-29

Family

ID=56425968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015007293A Active JP6520134B2 (ja) 2015-01-16 2015-01-16 光硬化性組成物

Country Status (1)

Country Link
JP (1) JP6520134B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002267A (ja) * 2015-06-11 2017-01-05 セメダイン株式会社 光硬化性組成物、導電性構造体、及び電子部品

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171450A (ja) * 1997-08-22 1999-03-16 Ciba Specialty Chem Holding Inc α−アミノアセトフェノンからのアミンの光発生
JP2001172514A (ja) * 1999-12-21 2001-06-26 Sekisui Chem Co Ltd 光架橋性組成物
JP2004099579A (ja) * 2002-09-09 2004-04-02 Kunihiro Ichimura 塩基増殖性シリコン化合物、塩基増殖剤シロキサン樹脂及び感光性樹脂組成物
JP2004250650A (ja) * 2003-02-19 2004-09-09 Kunihiro Ichimura 塩基増殖性シロキサン樹脂及び感光性樹脂組成物
WO2006051799A1 (ja) * 2004-11-11 2006-05-18 Kaneka Corporation 硬化性組成物
JP2007231235A (ja) * 2006-03-03 2007-09-13 Tokyo Univ Of Science 光硬化性樹脂組成物
WO2007123167A1 (ja) * 2006-04-20 2007-11-01 Kaneka Corporation 硬化性組成物
WO2008032539A1 (fr) * 2006-09-13 2008-03-20 Kaneka Corporation POLYMÈRE DURCISSABLE À L'HUMIDITÉ COMPORTANT UN GROUPE SiF ET COMPOSITION DURCISSABLE CONTENANT UN TEL POLYMÈRE
JP2012250969A (ja) * 2011-05-09 2012-12-20 Tokyo Univ Of Science カルボン酸化合物、塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物
WO2014155960A1 (ja) * 2013-03-28 2014-10-02 サンアプロ株式会社 光塩基発生剤

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171450A (ja) * 1997-08-22 1999-03-16 Ciba Specialty Chem Holding Inc α−アミノアセトフェノンからのアミンの光発生
JP2001172514A (ja) * 1999-12-21 2001-06-26 Sekisui Chem Co Ltd 光架橋性組成物
JP2004099579A (ja) * 2002-09-09 2004-04-02 Kunihiro Ichimura 塩基増殖性シリコン化合物、塩基増殖剤シロキサン樹脂及び感光性樹脂組成物
JP2004250650A (ja) * 2003-02-19 2004-09-09 Kunihiro Ichimura 塩基増殖性シロキサン樹脂及び感光性樹脂組成物
WO2006051799A1 (ja) * 2004-11-11 2006-05-18 Kaneka Corporation 硬化性組成物
JP2007231235A (ja) * 2006-03-03 2007-09-13 Tokyo Univ Of Science 光硬化性樹脂組成物
WO2007123167A1 (ja) * 2006-04-20 2007-11-01 Kaneka Corporation 硬化性組成物
WO2008032539A1 (fr) * 2006-09-13 2008-03-20 Kaneka Corporation POLYMÈRE DURCISSABLE À L'HUMIDITÉ COMPORTANT UN GROUPE SiF ET COMPOSITION DURCISSABLE CONTENANT UN TEL POLYMÈRE
JP2012250969A (ja) * 2011-05-09 2012-12-20 Tokyo Univ Of Science カルボン酸化合物、塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物
WO2014155960A1 (ja) * 2013-03-28 2014-10-02 サンアプロ株式会社 光塩基発生剤

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002267A (ja) * 2015-06-11 2017-01-05 セメダイン株式会社 光硬化性組成物、導電性構造体、及び電子部品

Also Published As

Publication number Publication date
JP6520134B2 (ja) 2019-05-29

Similar Documents

Publication Publication Date Title
JP5927750B2 (ja) 光硬化性組成物
JP6409784B2 (ja) 接着性を有する光硬化性組成物
JP6524669B2 (ja) 光硬化性組成物
US10844251B2 (en) Pressure-sensitive adhesive
JP2021143338A (ja) 硬化性組成物
CN107148453B (zh) 光固化性组合物
JP2016094530A (ja) 表示パネル積層体の製造方法
TWI507449B (zh) Method for producing solvent - soluble reactive polysiloxane
JP6672789B2 (ja) 光硬化性組成物
JP6520134B2 (ja) 光硬化性組成物
JP2017002267A (ja) 光硬化性組成物、導電性構造体、及び電子部品
JP6562378B2 (ja) 電子機器用液状ガスケット
JP6500449B2 (ja) 光硬化性組成物
JP2017048289A (ja) 硬化性組成物、硬化物、及びモジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250