DE202015009694U1 - Gläser und Glaskeramiken mit einem Metalloxidkonzentrationsgradienten - Google Patents

Gläser und Glaskeramiken mit einem Metalloxidkonzentrationsgradienten Download PDF

Info

Publication number
DE202015009694U1
DE202015009694U1 DE202015009694.8U DE202015009694U DE202015009694U1 DE 202015009694 U1 DE202015009694 U1 DE 202015009694U1 DE 202015009694 U DE202015009694 U DE 202015009694U DE 202015009694 U1 DE202015009694 U1 DE 202015009694U1
Authority
DE
Germany
Prior art keywords
glass
based article
mpa
mole
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE202015009694.8U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54345604&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE202015009694(U1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Corning Inc filed Critical Corning Inc
Publication of DE202015009694U1 publication Critical patent/DE202015009694U1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/005Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to introduce in the glass such metals or metallic ions as Ag, Cu
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

Auf Glas basierender Gegenstand, umfassend:
eine erste Fläche und eine der ersten Fläche gegenüberliegende zweite Fläche, die eine Dicke (t) definieren, wobei t 1 mm oder weniger beträgt, und
eine Konzentration eines Metalloxids, die sowohl von null verschieden ist als auch entlang eines Dickenbereichs von ungefähr 0*t bis ungefähr 0,3 *t variiert, wie mit einer Mikrosonde gemessen,
ein Spannungsprofil, wie durch eine Kombination eines Streulicht-Polariskops und eines Oberflächenspannungsmessgeräts gemessen, das sich von der ersten Fläche zu einem Wert zwischen der ersten Fläche und der zweiten Fläche verringert und von dem Wert zu der zweiten Fläche ansteigt, und
einen CT-Bereich des Spannungsprofils, wobei der CT-Bereich durch die Gleichung Spannung(x) = MaxCT - (((MaxCT • (n+1))/0,5n)•|(x/t)-0,5|n) definiert ist,
wobei MaxCT ein maximaler CT-Wert ist und als ein positiver Wert in Einheiten von MPa bereitgestellt wird, x eine Position entlang der Dicke (t) in Mikrometer ist, und n zwischen 1,5 und 5 beträgt.

Description

  • Querverweis auf Verwandte Anmeldungen
  • Diese Anmeldung beansprucht gemäß 35 USC § 119 den Nutzen der Priorität der vorläufigen US-Anmeldung Serien-Nr. 62/194967, die am 21. Juli 2015 eingereicht wurde, der vorläufigen US-Anmeldung Serien-Nr. 62/171110, die am 4. Juni 2015 eingereicht wurde, der vorläufigen US-Anmeldung Serien-Nr. 62/117585, die am 18. Februar 2015 eingereicht wurde, der vorläufigen US-Anmeldung Serien-Nr. 62/061372, die am 8. Oktober 2014 eingereicht wurde, auf deren Inhalte hier Bezug genommen wird und die hier durch Rückbezug in ihrer Gänze aufgenommen sind.
  • Hintergrund
  • Die Offenbarung betrifft auf Glas basierende Gegenstände, die eine verbesserte Beständigkeit gegen Beschädigungen aufweisen, einschließlich einer verbesserten Bruchfestigkeit, und insbesondere Glas- und Glaskeramikgegenstände, die einen von null verschiedenen Metalloxidkonzentrationsgradienten oder eine Konzentration, die entlang eines wesentlichen Abschnitts der Dicke variiert, aufweisen.
  • Auf Glas basierende Gegenstände sind häufig Aufprallen ausgesetzt, die große Defekte in einer Oberfläche solcher Gegenstände entstehen lassen können. Solche Defekte können sich bis zu Tiefen von bis zu ungefähr 200 Mikrometern von der Oberfläche erstrecken. Traditionell wurde thermisch temperiertes Glas verwendet, um Fehler zu vermeiden, wobei derartige Defekte in das Glas eingebracht werden können, da thermisch temperiertes Glas häufig große Druckspannungsschichten (CS-Schichten) (z.B. ungefähr 21 % der Gesamtdicke des Glases) aufweist, die eine Ausbreitung von Defekten, und daher Ausfälle, verhindern können. Ein Beispiel eines durch thermisches Vorspannen erzeugten Spannungsprofils ist in 1 dargestellt. In 1 umfasst der thermisch behandelte, auf Glas basierende Gegenstand 100 eine erste Fläche 101, eine Dicke t1 und eine Oberflächen-CS 110. Der auf Glas basierende Gegenstand 100 weist eine CS auf, die sich von der ersten Fläche 101 bis zu einer Schichttiefe (Depth of layer, DOL) 130, wie hier definiert, verringert, wobei bei dieser Tiefe die Spannung von Druckspannung zu Zugspannung wechselt und eine maximale Zentralspannung (CT) 120 erreicht.
  • Thermisches Vorspannen beschränkt sich derzeit auf Glas-basierte dicke Gegenstände (d.h. auf Glas basierende Gegenstände, die eine Dicke t1 von ungefähr 3 Millimeter oder mehr aufweisen), da ein hinreichender Wärmegradient zwischen dem Kern solcher Gegenstände und der Oberfläche gebildet werden muss, um die thermische Vorspannung und die gewünschten Restspannungen zu erzielen. Solche dicke Gegenstände sind in vielen Anwendungen, wie z.B. Displays (z.B. Unterhaltungselektronik, einschließlich von Mobiltelefonen, Tablets, Computern, Navigationssystemen und dergleichen), Architektur (z.B. Fenstern , Duschpaneelen, Arbeitsplatten usw.), Transport (z.B. Kraftfahrzeugen, Zügen, Flugzeugen, Wasserfahrzeugen usw.), Geräten oder jeder Anwendung, die überlegene Bruchfestigkeit, aber dünne und leichte Gegenstände erfordert, unerwünscht oder unpraktisch.
  • An sich bekannte chemisch vorgespannte, auf Glas basierende Gegenstände weisen nicht das Spannungsprofil von thermisch temperierten auf Glas basierenden Gegenständen auf, obwohl eine chemische Vorspannung nicht auf dieselbe Weise wie thermisches Tempern durch die Dicke des auf Glas basierenden Gegenstands beschränkt ist. Ein Beispiel eines durch chemische Vorspannung erzeugten Spannungsprofils (z.B. durch einen Ionenaustauschprozess) ist in 2 dargestellt. In 2 umfasst der chemisch vorgespannte, auf Glas basierende Gegenstand 200 eine erste Fläche 201, eine Dicke t2 und eine Oberflächen-CS 210. Der auf Glas basierende Gegenstand 200 weist eine CS auf, die sich von der ersten Fläche 201 bis zu einer DOC 230, wie hier definiert, verringert, wobei bei dieser Tiefe die Spannung von Druckspannung zu Zugspannung wechselt und eine maximale CT 220 erreicht. Wie in 2 dargestellt, weisen solche Profile einen flachen CT-Bereich oder einen CT-Bereich mit einer konstanten oder beinahe konstanten Zugspannung und häufig einen, im Vergleich mit dem in 1 gezeigten maximalen Zentralwert, niedrigeren maximalen CT-Wert auf.
  • Dementsprechend besteht ein Bedarf nach dünnen auf Glas basierenden Gegenständen, die verbesserte Bruchbeständigkeit aufweisen.
  • Kurzdarstellung
  • Ein erster Aspekt dieser Offenbarung betrifft einen auf Glas basierenden Gegenstand, der eine erste Fläche und eine der ersten Fläche gegenüberliegende zweite Fläche, die eine Dicke (t) definieren (z.B. ungefähr 3 Millimeter oder weniger, 1 Millimeter oder weniger, oder ungefähr 0,5 Millimeter oder weniger), und ein Spannungsprofil, das sich entlang der Dicke erstreckt, umfasst. In einer oder mehreren Ausführungsformen, wobei alle Punkte des Spannungsprofils zwischen einem Dickenbereich von ungefähr 0•t bis zu ungefähr 0,3•t und mehr als 0,7•t umfassen eine Tangente, die kleiner als ungefähr -0,1 MPa/Mikrometer oder größer als ungefähr 0,1 MPa/Mikrometer ist.
  • In einigen Ausführungsformen umfasst der auf Glas basierende Gegenstand eine von null verschiedene Metalloxidkonzentration, die entlang eines wesentlichen Abschnitts der Dicke oder der gesamten Dicke variiert. Die Variation der Metalloxidkonzentration kann hier als ein Gradient bezeichnet werden. In einigen Ausführungsformen ist die Konzentration eines Metalloxids von null verschieden und variiert sowohl entlang eines Dickenbereichs von ungefähr 0•t bis ungefähr 0,3•t. In einigen Ausführungsformen ist die Konzentration des Metalloxids von null verschieden und variiert entlang eines Dickenbereichs von ungefähr 0•t bis ungefähr 0,35•t, von ungefähr 0t bis ungefähr 0,4•t, von ungefähr 0•t bis ungefähr 0,45•t oder von ungefähr 0•t bis ungefähr 0,48•t. Das Metalloxid kann derart beschrieben werden, dass es eine Spannung in dem auf Glas basierenden Gegenstand erzeugt. Eine Variation der Metalloxidkonzentration kann eine Änderung von ungefähr 0,2 Mol-% entlang eines Dickensegments von ungefähr 100 Mikrometer umfassen. Die Variation der Konzentration kann entlang der vorstehend genannten Dickenbereiche kontinuierlich sein. In einigen Ausführungsformen kann die Variation der Konzentration entlang von Dickensegmenten im Bereich von ungefähr 10 Mikrometer bis ungefähr 30 Mikrometer kontinuierlich sein.
  • In einigen Ausführungsformen verringert sich die Konzentration des Metalloxids von der ersten Fläche zu einem Punkt zwischen der ersten Fläche und der zweiten Fläche und steigt von dem Punkt zu der zweiten Fläche an.
  • Wie hier verwendet umfasst das Metalloxid Vorspannungsionen oder Ionen, die in einem auf Glas basierenden Gegenstand CS erzeugen. In einigen Ausführungsformen weist das Metalloxid den größten Ionendurchmesser von allen der Gesamtmetalloxiden in dem auf Glas basierenden Substrat auf. In einer oder mehreren Ausführungsformen kann (können) Metalloxid(e) Alkalimetalloxid(e) oder Kombinationen verschiedener Metalloxide oder Alkalimetalloxide umfassen. Ein Beispiel für Metalloxide umfasst Ag2O. Beispiele für Alkalimetalloxide umfassen ein beliebiges oder mehrere von Li2O, Na2O, K2O, Rb2O und Cs2O. Das (Die) Metalloxid(e) können in einer von null verschiedenen Konzentration jenes bestimmten Metalloxids (Metalloxide) vorhanden sein, die entlang eines wesentlichen Abschnitts oder der gesamten Dicke des auf Glas basierenden Gegenstands variiert. In einigen Ausführungsformen verringert sich die Konzentration des Metalloxids (der Metalloxide) von der ersten Fläche zu einem Punkt zwischen der ersten Fläche und der zweiten Fläche und steigt von dem Punkt zu der zweiten Fläche an. Die Konzentration des Metalloxids (der Metalloxide) kann an dem Punkt von null verschieden sein.
  • Die Konzentration des Metalloxids (der Metalloxide) kann ungefähr 0,05 Mol-% oder mehr oder ungefähr 1 Mol-% oder mehr durch die Dicke betragen. Zum Beispiel kann die Konzentration von Na2O ungefähr 0,05 Mol-% oder mehr durch die Dicke des auf Glas basierenden Gegenstands betragen, aber eine solche Konzentration von Na2O verringert sich von der ersten Fläche zu einem Punkt zwischen der ersten Fläche und der zweiten Fläche und steigt von dem Punkt zu der zweiten Fläche an. In einigen Beispielen liegt die Gesamtkonzentration des Metalloxids (der Metalloxide) entlang der gesamten Dicke des auf Glas basierenden Gegenstands im Bereich von ungefähr 1 Mol-% bis ungefähr 20 Mol-%. In einigen Ausführungsformen kann die Konzentration des Metalloxids (der Metalloxide) in der Näher der Oberfläche größer sein als das 1-Fache oder 1,5-Fache (z.B. das 5-Fache, das 10-Fache, das 15-Fache oder sogar das 20-Fache) der Konzentration desselben Metalloxids (derselben Metalloxide) in einer Tiefe im Bereich von ungefähr 0,4•t bis ungefähr 0,6•t. Die Konzentration des Metalloxids (der Metalloxide) kann aus einer Baseline-Menge der Konzentration jenes Metalloxids (jener Metalloxide) in dem auf Glas basierenden Gegenstand bestimmt werden, bevor er modifiziert wird, um das Konzentrationsprofil (d.h. einen Gradienten oder eine Variation, wie hier beschrieben) aufzuweisen.
  • In einer oder mehreren Ausführungsformen umfasst der auf Glas basierende Gegenstand eine Konzentration eines ersten Metalloxids und eine Konzentration eines zweiten Metalloxids, so dass die Konzentration des erstes Metalloxids im Bereich von ungefähr 0 Mol-% bis ungefähr 15 Mol-% entlang eines ersten Dickenbereichs von ungefähr 0t bis ungefähr 0,5t liegt, und die Konzentration des zweiten Metalloxids im Bereich von ungefähr 0 Mol-% bis ungefähr 10 Mol-% von einem zweiten Dickenbereich von ungefähr 0 Mikrometer bis ungefähr 25 Mikrometer liegt. Der auf Glas basierende Gegenstand kann eine Konzentration eines fakultativen dritten Metalloxids umfassen. Das erste Metalloxid kann Na2O und das zweite Metalloxid kann K2O sein.
  • In einer oder mehreren Ausführungsformen umfasst der auf Glas basierende Gegenstand eine Oberflächen-CS von ungefähr 150 MPa oder mehr oder ungefähr 200 MPa oder mehr. In einer oder mehreren Ausführungsformen kann der auf Glas basierende Gegenstand eine Oberflächen-CS von mehr als ungefähr 300 MPa, mehr als ungefähr 600 MPa oder mehr als ungefähr 700 MPa aufweisen. Der auf Glas basierende Gegenstand kann eine chemische Tiefe von ungefähr 0,4•t oder mehr aufweisen.
  • In einigen Ausführungsformen kann der auf Glas basierende Gegenstand eine CS-Schicht umfassen, die sich von der ersten Fläche zu einer DOC von ungefähr 0,1•t oder mehr erstreckt. In manchen Fällen umfasst der auf Glas basierende Gegenstand eine Schicht von CT, die die von null verschiedene Metalloxidkonzentration umfasst, die entlang eines wesentlichen Abschnitts der Dicke t variiert. Die Schicht von CT kann eine maximale CT aufweisen, so dass das Verhältnis der maximalen CT zur Oberflächen-CS im Bereich von ungefähr 0,01 bis ungefähr 0,5 liegt. Die maximale CT kann ungefähr 25 MPa oder mehr betragen.
  • In einer oder mehreren Ausführungsformen kann der auf Glas basierende Gegenstand eine Bruchbeständigkeit aufweisen, so dass der auf Glas basierende Gegenstand, wenn der auf Glas basierende Gegenstand einen Bruch erleidet, in zumindest 2 Bruchstücke/Zoll2 (oder pro 6,4516 Quadratzentimeter) zerbricht. In manchen Fällen kann der auf Glas basierende Gegenstand in 3 Bruchstücke/Zoll2 (oder pro 6,4516 Quadratzentimeter) oder mehr, 5 Bruchstücke/Zoll2 (oder pro 6,4516 Quadratzentimeter) oder mehr, oder 10 Bruchstücke/Zoll2 (oder pro 6,4516 Quadratzentimeter) oder mehr zerfallen.
  • In manchen Fällen kann der auf Glas basierende Gegenstand eine gespeicherte Zugenergie von ungefähr mehr als 0 J/m2 bis weniger als 20 J/m2 aufweisen.
  • Der CT-Bereich der einen oder der mehreren Ausführungsformen des auf Glas basierenden Gegenstands kann ein Spannungsprofil aufweisen, das durch die folgende Gleichung definiert ist:
    Spannung(x) = MaxCT - (((MaxCT • (n+1))/0,5n)•|(x/t)-0,5|n), wobei MaxCT ein maximaler CT-Wert ist und als ein positiver Wert in Einheiten von MPa bereitstellet wird, x die Position entlang der Dicke (t) in Mikrometern ist und n zwischen 1,5 und 5 (oder zwischen 1,8 bis ungefähr 2) beträgt.
  • Der auf Glas basierende Gegenstand kann eine amorphe Struktur, eine kristalline Struktur oder eine Kombination davon umfassen. Der auf Glas basierende Gegenstand kann lichtdurchlässig oder opak sein. In einigen Ausführungsformen weist der auf Glas basierende Gegenstand eine im Wesentlichen weiße Farbe oder eine im Wesentlichen schwarze Farbe auf. Zusätzlich oder alternativ kann der auf Glas basierende Gegenstand ein Farbmittel umfassen, das eine bestimmte Farbe bereitstellt.
  • Ein zweiter Aspekt dieser Offenbarung betrifft ein amorphes Glassubstrat, das eine Zusammensetzung umfasst, die Folgendes in Mol-% umfasst: SiO2 in einer Menge im Bereich von ungefähr 68 bis ungefähr 75, Al2O3 in einer Menge im Bereich von ungefähr 12 bis ungefähr 15, B2O3 in einer Menge im Bereich von ungefähr 0,5 bis ungefähr 5, Li2O in einer Menge im Bereich von ungefähr 2 bis ungefähr 8, Na2O in einer Menge im Bereich von ungefähr 0 bis ungefähr 6, MgO in einer Menge im Bereich von ungefähr 1 bis ungefähr 4, ZnO in einer Menge im Bereich von ungefähr 0 bis ungefähr 3, und CaO in einer Menge im Bereich von ungefähr 0 bis ungefähr 5. In einigen Ausführungsformen weist das Glassubstrat eines oder mehrere von den Folgenden auf: ein Verhältnis von Li2O zu R2O im Bereich von ungefähr 0,5 bis ungefähr 1, eine Differenz einer Gesamtmenge von R2O zur Menge von Al2O3 im Bereich von ungefähr -5 bis ungefähr 0, eine Differenz zwischen einer Gesamtmenge von RxO (in Mol-%) und der Menge von Al2O3 im Bereich von ungefähr 0 bis ungefähr 3, und ein Verhältnis der Menge von MgO (in Mol-%) zu einer Gesamtmenge von RO (in Mol-%) im Bereich von ungefähr 0 bis ungefähr 2.
  • In einer oder mehreren Ausführungsformen ist das Glassubstrat ionenaustauschbar. In anderen Ausführungsformen wird das Glassubstrat durch einen Ionenaustauschprozess vorgespannt.
  • Ein dritter Aspekt dieser Offenbarung betrifft ein Verfahren zum Ausbilden eines bruchbeständigen, auf Glas basierenden Gegenstands, wie hier beschrieben. Ausführungsformen des Verfahrens umfassen: Bereitstellen eines auf Glas basierenden Substrats, das eine erste Fläche und eine zweite Fläche umfasst, die eine Dicke von ungefähr 3 Millimeter oder weniger definieren, aufweist, Erzeugen eines Spannungsprofils in dem auf Glas basierenden Substrat, das eine CT-Schicht und eine CS-Schicht umfasst, wobei die CS-Schicht eine Oberflächen-CS, eine chemische Tiefe von ungefähr 0,4t oder mehr und eine DOC von ungefähr 0,1•t oder mehr aufweist, und wobei die CT-Schicht eine maximale CT umfasst und das Verhältnis der maximalen CT zur Oberflächen-CS von ungefähr 0,01 bis ungefähr 0,5 beträgt.
  • Zusätzliche Merkmale und Vorteile werden in der nachfolgenden ausführlichen Beschreibung dargelegt, und werden teilweise für einen Fachmann aus der Beschreibung leicht offensichtlich sein oder durch Praktizieren der hier beschriebenen Ausführungsformen erkennbar, einschließlich der nachstehenden ausführlichen Beschreibung, der Ansprüche sowie der beigefügten Zeichnungen.
  • Es versteht sich, dass sowohl die vorstehende allgemeine Beschreibung als auch die nachfolgende ausführliche Beschreibung lediglich Beispiele sind und dazu gedacht sind, einen Überblick oder einen Rahmen bereitzustellen, um die Art und den Charakter der Ansprüche zu verstehen. Die begleitenden Zeichnungen sind beigefügt, um ein weiteres Verständnis bereitzustellen, und sind in dieser Beschreibung aufgenommen und bilden einen Teil von ihr. Die Zeichnungen zeigen eine oder mehrere Ausführungsformen und zusammen mit der Beschreibung dienen sie dazu, Prinzipien und den Betrieb der verschiedenen Ausführungsformen zu erläutern.
  • Figurenliste
    • 1 ist eine Querschnittsansicht quer über eine Dicke eines an sich bekannten thermisch temperierten, auf Glas basierenden Gegenstands;
    • 2 ist eine Querschnittsansicht quer über eine Dicke eines an sich bekannten chemisch vorgespannten, auf Glas basierenden Gegenstands;
    • 3 ist eine Querschnittsansicht quer über eine Dicke eines chemisch vorgespannten, auf Glas basierenden Gegenstands gemäß einer oder mehreren Ausführungsformen dieser Offenbarung;
    • 4 ist eine schematische Querschnittsansicht einer Doppelringvorrichtung;
    • 5 ist ein Diagramm, das die Konzentration von Na2O in an sich bekannten chemisch vorgespannten, auf Glas basierenden Gegenständen und auf Glas basierenden Gegenständen gemäß einer oder mehreren Ausführungsformen dieser Offenbarung zeigt;
    • 6 ist ein Diagramm, das CT-Werte und DOC-Werte als eine Funktion der Ionenaustauschzeit zeigt, gemäß einer oder mehreren Ausführungsformen dieser Offenbarung;
    • 7 ist ein Diagramm, das die Spannungsprofile als eine Funktion der Tiefe von an sich bekannten chemisch vorgespannten, auf Glas basierenden Gegenständen und auf Glas basierenden Gegenständen gemäß einer oder mehreren Ausführungsformen dieser Offenbarung zeigt;
    • 8 zeigt ein Diagramm der Spannungsprofile eines an sich bekannten chemisch vorgespannten Glases und einer Glaskeramik;
    • 9 zeigt ein Diagramm der Spannungsprofile eines Glases und einer Glaskeramik gemäß einer oder mehreren Ausführungsformen dieser Offenbarung;
    • 9A zeigt ein Diagramm der Ausfallhöhe bei Falltests von Beispiel 3D;
    • 10 ist ein Diagramm, das ein an sich bekanntes Spannungsprofil eines chemisch vorgespannten, auf Glas basierenden Gegenstands und eines auf Glas basierenden Gegenstands gemäß einer oder mehreren Ausführungsformen dieser Offenbarung vergleicht;
    • 11 ist ein Diagramm, das die Spannungsprofile von Beispielen 4A bis 4D als Funktion der Dicke zeigt;
    • 12 ist ein Diagramm, das diskrete gespeicherte Zugenergie-Datenpunkte für Beispiele 4B bis 4D zeigt;
    • 13 ist ein Diagramm, das die Konzentration von K2O und Na2O als eine Funktion der Tiefe in Beispielen 4A bis 4D zeigt;
    • 14 ist ein Diagramm, das dieselben Daten wie 12 zeigt, aber mit einem anderen Maßstab, um die Konzentration von Na2O als eine Funktion der Tiefe klarer darzustellen;
    • 15 ist ein Diagramm, das die Spannungsprofile von Beispielen 4A und 4C bis 4F als Funktion der Tiefe zeigt;
    • 16 ist ein Diagramm, das einen anderen Maßstab von 14 zeigt;
    • 17 ist ein Diagramm, das die Spannungsprofile von Beispielen 5A bis 5G als Funktion der Tiefe zeigt;
    • 18 ist ein Diagramm, das die DOC-Werte für Beispiele 5A bis 5G als eine Funktion der Dauer des zweiten und/oder des dritten Ionenaustauschschritts zeigt;
    • 19 ist ein Diagramm, das die CT-Werte für Beispiele 5A bis 5G als eine Funktion der Dauer des zweiten und/oder des dritten Ionenaustauschschritts zeigt;
    • 20 ist ein Diagramm, das die Spannungsprofile von Beispielen 6A-1 bis 6A-6 als eine Funktion der Tiefe zeigt;
    • 21 ist ein Diagramm, das die CT- und DOC-Werte von Beispielen 6A-1 bis 6A-6 als eine Funktion der Ionenaustauschzeit zeigt;
    • 22 ist ein Diagramm, das die Spannungsprofile von Beispielen 6B-1 bis 6B-6 als eine Funktion der Tiefe zeigt;
    • 23 ist ein Diagramm, das die CT- und DOC-Werte von Beispielen 6B-1 bis 6B-6 als eine Funktion der Ionenaustauschzeit zeigt;
    • 24 ist ein Diagramm, das die Spannungsprofile von Beispielen 6C-1 bis 6C-6 als eine Funktion der Tiefe zeigt;
    • 25 ist ein Diagramm, das die CT- und DOC-Werte von Beispielen 6C-1 bis 6C-6 als Funktion der Ionenaustauschzeit zeigt;
    • 26 ist ein Diagramm, das die Spannungsprofile von Beispielen 6D-1 bis 6D-6 als eine Funktion der Tiefe zeigt;
    • 27 ist ein Diagramm, das die CT- und DOC-Werte von Beispielen 6D-1 bis 6D-6 als eine Funktion der Ionenaustauschzeit zeigt;
    • 28 ist ein Diagramm, das die CT als eine Funktion der Ionenaustauschzeit für Beispiele 7A bis 7G zeigt;
    • 29 ist ein Diagramm, das die Änderung der Zentralspannungswerte und der gespeicherten Zugenergie zeigt, beides als eine Funktion der Ionenaustauschzeit für Beispiele 7A bis 7G;
    • 30 ist ein Diagramm, das die Spannungsprofile von Vergleichsbeispiel 8A und Beispiel 8B als eine Funktion der Tiefe zeigt;
    • 31 ist ein Diagramm, das die gespeicherte Zugenergie von Vergleichsbeispiel 8A und Beispiel 8B als eine Funktion von CT zeigt; und
    • 32 ist ein Diagramm, das die gespeicherte Zugenergie von Vergleichsbeispiel 8C und Beispiel 8D als eine Funktion von CT zeigt;
    • 33 ist ein Diagramm, das den Fallhöhenausfall für Beispiele 2, 6 und 9B und das Vergleichsbeispiel 91 zeigt;
    • 34 ist ein Diagramm, das die Abschliff-Doppelringergebnisse für Beispiele 2, 6 und 9B und das Vergleichsbeispiel 9J zeigt;
    • 35 zeigt eine Weibull-Verteilungskurve, die die Vierpunkt-Biegeergebnisse für Beispiele 2 und 9B zeigt;
    • 36 ist eine schematische Querschnittsansicht einer Ausführungsform der Vorrichtung, die zum Durchführen des in der vorliegenden Offenbarung beschriebenen IBoS-Tests (inverted ball on sandpaper) verwendet wird;
    • 37 ist eine schematische Querschnittsdarstellung des vorherrschenden Mechanismus für einen Ausfall aufgrund von Einführung von Beschädigungen sowie Biegung, die typischerweise bei auf Glas basierenden Gegenständen, die in mobilen oder in der Hand gehaltenen elektronischen Vorrichtungen verwendet werden, auftritt;
    • 38 ist ein Ablaufdiagramm für ein Verfahren zum Durchführen des IBoS-Tests in der hier beschriebenen Vorrichtung; und
    • 39 ist ein Diagramm, das verschiedene Spannungsprofile gemäß einer oder mehreren Ausführungsformen dieser Offenbarung zeigt.
  • AUSFÜHRLICHE BESCHREIBUNG
  • Nun wird ausführlicher Bezug auf verschiedene Ausführungsformen genommen, deren Beispiele in den begleitenden Beispielen und Zeichnungen veranschaulicht sind.
  • In der nachstehenden Beschreibung kennzeichnen gleiche Bezugszeichen gleiche oder entsprechende Teile in den mehreren, in den Figuren dargestellten Ansichten. Es versteht sich außerdem, dass Begriffe, wie z.B. „oberer“, „unterer“, „äußerer“ , „innerer“ und dergleichen Wörter der Zweckmäßigkeit sind und nicht als beschränkende Begriffe ausgelegt werden sollten, solange nicht anders angegeben. Wenn außerdem eine Gruppe derart beschrieben wird, dass sie zumindest eines von Elementen einer Gruppe und Kombinationen davon umfasst, versteht es sich, dass die Gruppe eine beliebige Anzahl jener genannter Elemente, entweder einzeln oder in Kombination miteinander, umfassen, im Wesentlichen daraus bestehen oder daraus bestehen kann. Wenn gleichermaßen eine Gruppe derart beschrieben wird, dass sie zumindest eines von Elementen einer Gruppe oder Kombinationen davon umfasst, versteht es sich, dass die Gruppe aus einer beliebigen Anzahl jener genannter Elemente, entweder einzeln oder in Kombination miteinander, bestehen kann. Wenn nicht anders angegeben, umfasst ein Bereich von Werten, wenn genannt, sowohl die obere als auch die untere Grenze des Bereichs sowie beliebige Bereiche dazwischen. Wie hier verwendet, bedeuten die unbestimmten Artikel „ein“, „eine“, und der entsprechende bestimmte Artikel „die“ „zumindest ein/eine“ oder „ein(e) oder mehrere“, wenn nicht anders angegeben. Es versteht sich außerdem, dass die verschiedenen, in der Beschreibung und den Zeichnungen offenbarten Merkmale in einer beliebigen und allen Kombinationen verwendet werden können.
  • Wie hier verwendet, werden die Begriffe „auf Glas basierender Gegenstand“ und „auf Glas basierende Substrate“ in ihrem breitesten Sinn verwendet, so dass sie ein beliebiges Objekt umfassen, dass gänzlich oder teilweise aus Glas gefertigt ist. Auf Glas basierende Gegenstände umfassen Laminate aus Glas und Nichtglasmaterialien, Laminate aus Glas und kristallinen Materialien und Glaskeramiken (die eine amorphe Phase und eine kristalline Phase umfassen). Wenn nicht anders angegeben, werden alle Zusammensetzungen in Molprozent (Mol-%) ausgedrückt.
  • Es ist zu beachten, dass die Begriffe „im Wesentlichen“ und „ungefähr“ hier verwendet werden können, um den inhärenten Grad an Unsicherheit zu repräsentieren, der jedem quantitativen Vergleich, Wert, jeder quantitativen Messung oder einer anderen Darstellung zugeschrieben werden kann. Diese Begriffe werden hier außerdem verwendet, um den Grad zu repräsentieren, um welchen eine quantitative Darstellung von einer angegebenen Referenz abweichen kann, ohne zu einer Änderung der Grundfunktion des besprochenen Gegenstands zu führen. Daher ist zum Beispiel ein auf Glas basierender Gegenstand, der „im Wesentlichen frei von MgO“ ist, einer, in dem MgO nicht aktiv dem auf Glas basierende Gegenstand hinzugefügt oder beigegeben wird, aber in sehr kleinen Mengen als eine Verunreinigung vorhanden sein kann.
  • Unter allgemeiner Bezugnahme auf die Zeichnungen und insbesondere auf 1 bis 3 versteht es sich, dass die Darstellungen zum Zwecke der Beschreibung bestimmter Ausführungsformen gedacht sind und die Offenbarung oder beigefügten Ansprüche nicht beschränken sollen. Die Zeichnungen sind nicht notwendigerweise maßstabgetreu, und bestimmte Merkmale und bestimmte Ansichten der Zeichnungen können im Interesse der Klarheit und der Kürze übertrieben in Bezug auf den Maßstab dargestellt sein.
  • Wie hier verwendet, bezieht sich DOC auf die Tiefe, bei der die Spannung innerhalb des auf Glas basierenden Gegenstands von einer Druckspannung zu einer Zugspannung wechselt. Bei der DOC übergeht die Spannung von einer positiven (Druck-)Spannung zu einer negativen (Zug-) Spannung (z.B. 130 in 1), und weist daher einen Spannungswert von null auf.
  • Wie hier verwendet, können die Begriffe „chemische Tiefe“, „chemische Tiefe einer Schicht“ und „Tiefe einer chemischen Schicht“ austauschbar verwendet werden und beziehen auch auf die Tiefe, bei der ein Ion des Metalloxids oder des Alkalimetalloxids (z.B. das Metallion oder das Alkalimetallion) in den auf Glas basierenden Gegenstand diffundiert, und die Tiefe, bei der die Konzentration des Ions einen minimalen Wert erreicht, wie durch Elektronensonden-Mikroanalyse (EPMA) oder optische Glimmentladung-Emissionsspektroskopie (GD-OES) bestimmt. Insbesondere kann, um die Tiefe einer Na2O-Diffusion oder Na+ zu schätzen, eine Ionenkonzentration unter Verwendung von EPMA und FSM (nachstehend ausführlicher beschrieben) bestimmt werden.
  • Gemäß der in der Technik üblicherweise verwendeten Konvention wird die Stauchung als eine negative (<0) Spannung ausgedrückt und die Zugspannung wird als eine positive (>0) Spannung ausgedrückt. In der gesamten Beschreibung wird jedoch CS als ein positiver oder absoluter Wert ausgedrückt -d.h. wie hier vorgetragen, CS = | CS |.
  • Es werden hier dünne, chemisch vorgespannte, auf Glas basierende Gegenstände beschrieben, die Gläser, wie z.B. Quarzgläser einschließlich von Alkali-haltigem Glas, und Glaskeramiken umfassen, die als ein Abdeckglas für mobile elektronische Vorrichtungen und berührungsfähige Displays verwendet werden können. Die auf Glas basierenden Gegenstände können auch in Displays (oder als Display-Gegenstände) (z.B. in Werbetafeln, Verkaufsstellensystemen, Computern, Navigationssystemen und dergleichen), architektonischen Gegenständen (Wänden, Vorrichtungen, Tafeln, Fenstern usw.), Transportartikeln (z.B. in Automobilanwendungen, Zügen, Flugzeugen, Wasserfahrzeugen usw.), Geräten (z.B. Waschmaschinen, Trocknern, Geschirrspülmaschinen, Kühlschränken und dergleichen) oder einem beliebigen Gegenstand, der eine gewisse Bruchbeständigkeit erfordert, verwendet werden.
  • Insbesondere sind die hier beschriebenen, auf Glas basierenden Gegenstände dünn und weisen Spannungsprofile auf, die typischerweise nur durch Tempern dicker Glasgegenstände (die z.B. eine Dicke von ungefähr 2 mm oder 3 mm oder mehr aufweisen) erzielbar sind. Die auf Glas basierenden Gegenstände weisen einzigartige Spannungsprofile entlang deren Dicke auf. In manchen Fällen weisen die auf Glas basierenden Gegenstände eine größere Oberflächen-CS auf als temperierte Glasgegenstände. In einer oder mehreren Ausführungsformen weisen die auf Glas basierenden Gegenstände eine größere Tiefe der Druckschicht (in der sich die CS allmählicher verringert und steigt als bei an sich bekannten chemisch vorgespannten, auf Glas basierenden Gegenständen), so dass der auf Glas basierende Gegenstand eine wesentlich verbesserte Bruchbeständigkeit aufweist, auch wenn der auf Glas basierende Gegenstand oder eine Vorrichtung, die den umfasst, auf eine harte, raue Fläche fallengelassen wird. Die auf Glas basierenden Gegenstände einer oder mehrerer Ausführungsformen weisen einen größeren maximalen CT-Wert auf als manche an sich bekannte chemisch vorgespannte Glassubstrate.
  • CS und Tiefe einer Druckspannungsschicht („DOL“) werden unter Verwendung jener in der Technik an sich bekannten Mittel gemessen. DOL wird von DOC durch die Messtechnik dahingehend unterschieden, dass DOL durch ein Oberflächenspannungsmessgerät (FSM) unter Verwendung von im Handel erhältlichen Instrumenten, wie z.B. dem FSM-6000, hergestellt durch Luceo Co., Ltd (Tokyo, Japan) oder dergleichen, bestimmt wird, und Verfahren zum Messen von CS und der Tiefe einer Schicht sind in ASTM 1422C-99 mit dem Titel „Standard Specification for Chemically Strengthened Flat Glass“ und ASTM 1279.19779 mit dem Titel „Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully-Tempered Flat Glass“ beschrieben, deren Inhalte hier durch Rückbezug in ihrer Gänze aufgenommen sind. Oberflächenspannungsmessungen basieren auf der genauen Messung des spannungsoptischen Koeffizienten (SOC), der mit der Doppelbrechung des Glases im Zusammenhang steht. Der SOC wird wiederum mithilfe jener in der Technik an sich bekannten Verfahren, wie z.B. Faser- und Vierpunkt-Biegeverfahren, von denen beide in ASTM Standard C770-98 (2008) mit dem Titel „Standard Test Method for Measurement of Glass Stress- Optical Coefficient“, beschrieben sind, dessen Inhalte hier durch Rückbezug in ihrer Gänze aufgenommen sind, und mithilfe eines Bulkzylinderverfahrens gemessen.
  • Bei vorgespannten, auf Glas basierenden Gegenständen, in denen sich die CS-Schichten in tiefere Tiefen innerhalb des auf Glas basierenden Gegenstands erstrecken, kann die FSM-Technik unter Kontrastproblemen leiden, die den aufgezeichneten DOL-Wert beeinflussen. Bei tieferen DOL-Werten kann ein ungeeigneter Kontrast zwischen dem TE-TM-Spektrum vorliegen, was die Berechnung der Differenz zwischen dem TE- und dem TM-Spektrum - und das Bestimmen der DOL- schwieriger gestaltet. Des Weiteren ist die FSM-Technik nicht in der Lage, das Spannungsprofil (d.h. die Variation der CS als eine Funktion der Tiefe innerhalb des auf Glas basierenden Gegenstands) zu bestimmen. Außerdem ist die FSM-Technik nicht in der Lage, die DOL, die aus dem Ionenaustausch bestimmter Elemente, wie zum Beispiel Lithium gegen Natrium, resultiert, zu bestimmen.
  • Die nachstehend beschriebenen Techniken wurden entwickelt, um den DOC und die Spannungsprofile für vorgespannte, auf Glas basierende Gegenstände genauer zu bestimmen.
  • In der US-Patentanmeldung Nr. 13/463,322 mit dem Titel „ Systems And Methods for Measuringthe Stress Profile of Ion-Exchanged Glass“ (nachstehend als „Roussev I“ bezeichnet), die durch Rostislav Y. Roussev et al. am 3. Mai 2012 eingereicht wurde, und die die Priorität der vorläufigen US-Patentanmeldung Nr. 61/489,800 , die denselben Titel aufweist und am 25. Mai 2011 eingereicht wurde, beansprucht, werden zwei Verfahren zum Extrahieren detaillierter und genauer Spannungsprofile (Spannung als eine Funktion der Tiefe) von temperiertem oder chemisch vorgespanntem Glas offenbart. Die Spektren von gebundenen optischen Moden für TM- und TE-Polarisation werden mithilfe von Prismenkopplungstechniken gesammelt und in ihrer Gesamtheit verwendet, um detaillierte und genaue TM- und TE-Brechungsindexprofile nTM(z) und nTE(z) zu erhalten. Die Inhalte der vorstehenden Anmeldungen sind hier durch Rückbezug in ihrer Gänze aufgenommen.
  • In einer Ausführungsform werden die detaillierten Indexprofile von den Modenspektren unter Verwendung des IWKB-Verfahrens (Inverse Wentzel-Kramers-Brillouin) erlangt.
  • In einer anderen Ausführungsform werden die detaillierten Indexprofile durch Anpassen der gemessen Modenspektren an nummerisch berechnete Spektren von vordefinierten Funktionsformen, die die Formen der Indexprofile beschreiben, und Erlangen der Parameter der Funktionsformen aus der besten Anpassung (best fit) erlangt. Das detaillierte Spannungsprofil S(z) wird aus der Differenz der gewonnenen TM- und TE-Indexprofile unter Verwendung eines bekannten Wertes des spannungsoptischen Koeffizienten (SOC) berechnet: S ( z ) = [ n TM ( z ) n TE ( z ) ] / SOC
    Figure DE202015009694U1_0001
  • Aufgrund des geringen Wertes des SOC ist die Doppelbrechung nTM(z) - nTE(z) bei jeder Tiefe z ein kleiner Bruchteil (typischerweise in der Größenordnung von 1 %) eines der Indizes nTM(z) und nTE(z). Ein Erlangen von Spannungsprofilen, die nicht wesentlich wegen Rauschen in den gemessenen Modenspektren verzerrt sind, erfordert eine Bestimmung der effektiven Modenindizien mit einer Genauigkeit in der Größenordnung von 0,00001 RIU. Die in Roussev I offenbarten Verfahren umfassen ferner Techniken, die auf die Rohdaten angewendet werden, um eine hohe Genauigkeit für die gemessenen Modenindizes trotz Rauschen und/oder mangelhaften Kontrastes in den gesammelten TE- und TM-Modenspektren oder Bildern der Modenspektren sicherzustellen. Zu diesen Techniken gehören Rauschmittelung, Filterung und Kurvenanpassung, um die Positionen der Extremwerte zu finden, die den Modi mit Subpixelauflösung entsprechen.
  • Gleichermaßen offenbart die US-Patentanmeldung Nr. 14/033,954 mit dem „Titel Systems and Methods for Measuring Bireffingence in Glass and Glass-Ceramics“ (nachstehend „Roussev II“ genannt),“ die durch Rostislav Y. Roussev et al. am 23. September 2013 eingereicht wurde und die die Priorität der vorläufigen US-Patentanmeldung Serien-Nr. 61/706,891 beansprucht, die denselben Titel aufweist und am 28. September 2012 eingereicht wurde, eine Vorrichtung und Verfahren zum optischen Messen von Doppelbrechung auf der Oberfläche von Glas und Glaskeramiken, einschließlich von opakem Glas und opaken Glaskeramiken. Im Gegensatz zu Roussev I, wo diskrete Spektren von Moden identifiziert werden, basieren die in Roussev II offenbarten Verfahren auf einer sorgfältigen Analyse der Winkelintensitätsverteilung für TM- und TE-Licht, das von einer Prismen-Probe-Grenzfläche in einer Prismenkopplungskonfiguration von Messungen reflektiert wird. Die Inhalte der vorstehenden Anmeldungen sind hier durch Rückbezug in ihrer Gänze aufgenommen.
  • Daher ist eine korrekte Verteilung der reflektierten optischen Intensität gegenüber dem Winkel viel wichtiger als bei herkömmlichen Prismenkopplungsspannungsmessungen, bei denen lediglich die Positionen der diskreten Moden gesucht werden. Zu diesem Zweck umfassen die in Roussev I und Roussev II offenbarten Verfahren Techniken zum Normieren der Intensitätsspektren, einschließlich Normieren auf ein Referenzbild oder -signal, Korrektur auf Nichtlinearität des Detektors, Mittelwertbildung mehrerer Bilder, um Bildrauschen und Fleckenbildung zu reduzieren, und Anwendung digitaler Filterung, um die Intensitätswinkelspektren weiter zu glätten. Außerdem umfasst ein Verfahren eine Bildung eines Kontrastsignals, das zusätzlich normiert wird, um grundlegende Formunterschiede zwischen TM- und TE-Signalen zu korrigieren. Das vorstehend erwähnte Verfahren basiert darauf, zwei nahezu identische Signale zu erhalten und deren gegenseitige Verschiebung mit einer Subpixel-Auflösung durch Vergleichen von Abschnitten der Signale, die die steilsten Bereiche enthalten, zu ermitteln. Die Doppelbrechung ist proportional zu der gegenseitigen Verschiebung, wobei ein Koeffizient durch das Vorrichtungsdesign bestimmt wird, einschließlich von Prismengeometrie und -index, Brennweite der Linse und eines Pixelabstands auf dem Sensor. Die Spannung wird durch Multiplizieren der gemessenen Doppelbrechung mit einem bekannten spannungsoptischen Koeffizienten bestimmt.
  • In einem anderen offenbarten Verfahren werden Ableitungen der TM- und TE-Signale nach Anwendung einer Kombination der vorstehend erwähnten Signalaufbereitungstechniken bestimmt. Die Positionen der maximalen Ableitungen der TM- und TE-Signale werden mit einer Subpixelauflösung erhalten, und die Doppelbrechung ist proportional zum Abstand der vorstehenden zwei Maxima, wobei ein Koeffizient wie zuvor durch die Geräteparameter bestimmt wird.
  • In Verbindung mit der Anforderung einer korrekten Intensitätsextraktion umfasst die Vorrichtung mehrere Verbesserungen, wie z.B. die Verwendung einer lichtstreuenden Oberfläche (statischer Diffusor) in unmittelbarer Nähe oder auf der Prismeneintrittsoberfläche, um die Winkelgleichförmigkeit der Beleuchtung zu verbessern, einen beweglichen Diffusor für Fleckenreduktion, wenn die Lichtquelle kohärent oder teilweise kohärent ist, und lichtabsorbierende Beschichtungen auf Abschnitten der Eingangs- und Ausgangsflächen des Prismas und auf den Seitenflächen des Prismas, um den parasitären Hintergrund zu reduzieren, der das Intensitätssignal tendenziell verzerrt. Außerdem kann die Vorrichtung eine Infrarotlichtquelle umfassen, um eine Messung von opaken Materialien zu ermöglichen.
  • Weiterhin offenbart Roussev II einen Bereich von Wellenlängen und Dämpfungskoeffizienten der untersuchten Probe, wobei Messungen durch die beschriebenen Verfahren und Vorrichtungsverbesserungen ermöglicht werden. Der Bereich ist durch αsλ < 250πσs definiert wobei αs der optische Dämpfungskoeffizient bei der Messwellenlänge λ ist, und σs der erwartete Wert der zu messenden Spannung mit typischerweise für praktische Anwendungen erforderlicher Genauigkeit ist. Dieser breite Bereich ermöglicht es, dass Messungen von praktischer Bedeutung bei Wellenlängen erlangt werden, bei denen die große optische Dämpfung bewirkt, dass bisher vorhandene Messverfahren nicht anwendbar sind. Zum Beispiel offenbart Roussev II erfolgreiche Messungen einer durch Spannung induzierten Doppelbrechung von opaker weißer Glaskeramik bei einer Wellenlänge von 1550 nm, wobei die Dämpfung größer als etwa 30 dB/mm ist.
  • Obwohl vorstehend erwähnt wurde, dass bei der FSM-Technik einige Probleme bei tieferen DOL-Werten auftreten, ist FSM weiterhin eine vorteilhafte herkömmliche Technik, die mit dem Verständnis verwendet werden kann, dass bei tieferen DOL-Werten ein Fehlerbereich von bis zu +/- 20 % möglich ist. Wie hier verwendet, bezieht sich DOL auf Tiefen der Druckspannungsschichtwerte, die unter Verwendung der FSM-Technik berechnet werden, während sich DOC auf Tiefen der Druckspannungsschicht bezieht, die durch die in Roussev I und II beschriebenen Verfahren bestimmt werden.
  • Wie vorstehend erwähnt, können die hier beschriebenen auf Glas basierenden Gegenstände durch einen Ionenaustausch chemisch vorgespannt werden und Spannungsprofile aufweisen, die sich von jenen unterscheiden, die an sich bekanntes vorgespanntes Glas aufweist. Bei diesem Prozess werden Ionen an oder in der Nähe der Oberfläche des auf Glas basierenden Gegenstands durch größere Ionen, die die gleiche Wertigkeit oder den gleichen Oxidationszustand aufweisen, ersetzt oder durch diese ausgetauscht. In jenen Ausführungsformen, in denen der auf Glas basierender Gegenstand ein Alkalialuminosilikatglas umfasst, sind Ionen in der Oberflächenschicht des Glases und die größeren Ionen einwertige Alkalimetallkationen, wie z.B. Li+ (falls in dem auf Glas basierenden Gegenstand vorhanden), Na+, K+, Rb+ und Cs+. Alternativ können einwertige Kationen in der Oberflächenschicht durch andere einwertige Kationen als Alkalimetallkationen, wie z.B. Ag+ oder dergleichen, ersetzt werden.
  • Ionenaustauschprozesse werden typischerweise durchgeführt, indem ein auf Glas basierender Gegenstand in ein Salzschmelzbad (oder zwei oder mehr Salzschmelzbäder) eingetaucht wird, die die größeren Ionen enthalten, die die kleineren Ionen in dem auf Glas basierenden Gegenstand ersetzten sollen. Es ist zu beachten, dass wässrige Salzbäder ebenfalls verwendet werden können. Außerdem kann die Zusammensetzung des Bads (der Bäder) mehr als einen Typ größer Ionen (z.B. Na+ und K+) oder ein einzelnes größeres Ion umfassen. Ein Fachmann wird erkennen, dass Parameter für den Ionenaustauschprozess, einschließlich, aber nicht beschränkt auf Badzusammensetzung und -temperatur, Eintauchzeit, die Anzahl der Eintauchvorgängen des auf Glas basierenden Gegenstands in ein Salzbad (oder Bäder), die Verwendung mehrerer Salzbäder, zusätzliche Schritte, wie z.B. Glühen, Waschen und dergleichen, im Allgemeinen durch die Zusammensetzung des auf Glas basierenden Gegenstands (einschließlich der Struktur des Gegenstands und gegebenenfalls vorhandener kristalliner Phasen) und der gewünschten DOL oder DOC und CS des auf Glas basierenden Gegenstands, die aus dem Vorspannungsvorgang resultieren, bestimmt werden. Zum Beispiel kann ein Ionenaustausch von auf Glas basierenden Gegenständen durch Eintauchen der auf Glas basierenden Gegenstände in zumindest ein Schmelzbad, das ein Salz enthält, wie z.B. Nitrate, Sulfate und Chloride des größeren Alkalimetalions, ohne darauf beschränkt zu sein, erzielt werden. Typische Nitrate umfassen KNO3, NaNO3, LiNO3, NaSO4 und Kombinationen davon. Die Temperatur des Salzschmelzbades liegt typischerweise in einem Bereich von ungefähr 380°C bis ungefähr 450°C, während die Eintauchzeiten in Abhängigkeit von der Glasdicke, der Badtemperatur und der Glasdiffusionsfähigkeit zwischen ungefähr 15 Minuten bis zu ungefähr 100 Stunden liegen. Jedoch können Temperatur und Eintauchzeiten verwendet werden, die von jenen vorstehend beschriebenen verschieden sind.
  • In einer oder mehreren Ausführungsformen können die auf Glas basierenden Gegenstände in ein Salzschmelzbad aus 100% NaNO3 mit einer Temperatur von ungefähr 370°C bis ungefähr 480°C eingetaucht werden. In einigen Ausführungsformen kann das auf Glas basierende Substrat in ein gemischtes Salzschmelzbad eingetaucht werden, das von ungefähr 5 % bis ungefähr 90 % KNO3 und von ungefähr 10 % bis ungefähr 95 % NaNO3 umfasst. In einigen Ausführungsformen kann das auf Glas basierende Substrat in ein geschmolzenes gemischtes Salzbad eingetaucht werden, das Na2SO4 und NaNO3 umfasst und einen breiteren Temperaturbereich (z.B. bis zu etwa 500°C) aufweist.
    In einer oder mehreren Ausführungsformen kann der auf Glas basierende Gegenstand nach dem Eintauchen in ein erstes Bad in ein zweites Bad eingetaucht werden. Das Eintauchen in ein zweites Bad kann ein Eintauchen in ein Salzschmelzbad mit 100 % KNO3 für 15 Minuten bis 8 Stunden umfassen.
  • Ionenaustauschbedingungen können derart maßgeschneidert werden, dass sie eine „Spitze“ bereitstellen oder die Steigung des Spannungsprofils an oder in der Nähe der Oberfläche erhöhen. Diese Spitze kann aufgrund der einzigartigen Eigenschaften der Glaszusammensetzungen, die in den hierin beschriebenen auf Glas basierenden Gegenständen verwendet werden, durch ein einzelnes Bad oder mehrere Bäder erreicht werden, wobei das Bad (die Bäder) eine einzelne Zusammensetzung oder eine gemischte Zusammensetzung aufweisen.
  • Wie in 3 dargestellt, umfasst der auf Glas basierende Gegenstand 300 einer oder mehrerer Ausführungsformen eine erste Fläche 302 und eine gegenüber der ersten Fläche liegende zweite Fläche 304, die eine Dicke t definieren. In einer oder mehreren Ausführungsformen kann die Dicke t ungefähr 3 Millimeter oder weniger betragen (z.B. in einem Bereich von ungefähr 0,01 Millimeter bis ungefähr 3 Millimeter, von ungefähr 0,1 Millimeter bis ungefähr 3 Millimeter, von ungefähr 0,2 Millimeter bis ungefähr 3 Millimeter, von ungefähr 0,3 Millimeter bis ungefähr 3 Millimeter, von ungefähr 0,4 Millimeter bis ungefähr 3 Millimeter, von ungefähr 0,01 Millimeter bis ungefähr 2,5 Millimeter, von ungefähr 0,01 Millimeter bis ungefähr 2 Millimeter, von ungefähr 0,01 Millimeter bis ungefähr 1,5 Millimeter, von ungefähr 0,01 Millimeter bis ungefähr 1 Millimeter, von ungefähr 0,01 Millimeter bis ungefähr 0,9 Millimeter, von ungefähr 0,01 Millimeter bis ungefähr 0,8 Millimeter, von ungefähr 0,01 Millimeter bis ungefähr 0,7 Millimeter, von ungefähr 0,01 Millimeter bis ungefähr 0,6 Millimeter, von ungefähr 0,01 Millimeter bis ungefähr 0,5 Millimeter, von ungefähr 0,1 Millimeter bis ungefähr 0,5 Millimeter, oder von ungefähr 0,3 Millimeter bis ungefähr 0,5 Millimeter.)
  • Der auf Glas basierende Gegenstand umfasst ein Spannungsprofil, das sich von der ersten Fläche 302 zu der zweiten Fläche 304 (oder entlang der gesamten Länge der Dicke t) erstreckt. In der in 3 dargestellten Ausführungsform ist das durch Roussev I und II gemessene Spannungsprofil 312, wie hier beschrieben, zusammen mit dem Spannungsprofil 340 gezeigt, das durch FSM-Messtechniken, wie hier beschrieben, geschätzt wird. Die x-Achse repräsentiert den Spannungswert und die y-Achse repräsentiert die Dicke oder Tiefe innerhalb des auf Glas basierenden Gegenstands.
  • Wie in 3 dargestellt, weist das Spannungsprofil 312 eine CS-Schicht 315 (mit einer Oberflächen-CS 310), eine CT-Schicht 325 (mit einem maximalen CT 320) und eine DOC 317, bei der das Spannungsprofil 312 von einer Druckspannung zu Zugspannung bei 330 wechselt. Die CT-Schicht 325 weist auch eine assoziierte Tiefe oder Länge 327 (CT-Bereich oder Schicht) auf. Das geschätzte Spannungsprofil 340 weist eine DOL auf, die größer ist als die DOC. Wie hier verwendet, wird auf die DOC oder DOL in Bezug auf jede Tiefe von einer Oberfläche (entweder der ersten Fläche 302 oder der zweiten Fläche 304) verwiesen, wobei es sich versteht, dass solche DOC oder DOL auch von der anderen Fläche vorhanden sein können.
  • Die Oberflächen-CS 310 kann ungefähr 150 MPa oder mehr oder ungefähr 200 MPa oder mehr (z.B. ungefähr 250 MPa oder mehr, ungefähr 300 MPa oder mehr, ungefähr 400 MPa oder mehr, ungefähr 450 MPa oder mehr, ungefähr 500 MPA oder mehr oder ungefähr 550 MPa oder mehr) betragen. Die Oberflächen-CS 310 kann bis zu ungefähr 900 MPa, bis zu ungefähr 1000 MPa, bis zu ungefähr 1100 MPa oder bis zu ungefähr 1200 MPA betragen. Die maximale CT 320 kann ungefähr 25 MPa oder mehr, ungefähr 50 MPa oder mehr oder ungefähr 100 MPa oder mehr betragen (z.B. ungefähr 150 MPa oder mehr, ungefähr 200 MPa oder mehr, 250 MPa oder mehr oder ungefähr 300 MPa oder mehr. In einigen Ausführungsformen kann die maximale CT 320 im Bereich von ungefähr 50 MPa bis ungefähr 250 MPa (z.B. von ungefähr 75 MPa bis ungefähr 250 MPa, von ungefähr 100 MPa bis ungefähr 250 MPa, von ungefähr 150 MPa bis ungefähr 250 MPa, von ungefähr 50 MPa bis ungefähr 175 MPa, von ungefähr 50 MPa bis ungefähr 150 MPa, oder von ungefähr 50 MPa bis ungefähr 100 MP) liegen. Die maximale CT 320 kann in einem Bereich von ungefähr 0,3•t bis ungefähr 0,7•t, von ungefähr 0,4•t bis ungefähr 0,6•t ungefähr oder von ungefähr 0,45•t bis ungefähr 0,55•t positioniert sein. Es ist zu beachten, dass eine oder mehrere von der Oberflächen-CS 310 und der maximalen CT 320 von der Dicke des auf Glas basierenden Gegenstands abhängig sein können. Zum Beispiel können auf Glas basierende Gegenstände, die eine Dicke von ungefähr 0,8 mm aufweisen, eine maximale CT von ungefähr 100 MPa oder mehr aufweisen. Wenn sich die Dicke des auf Glas basierenden Gegenstands verringert, steigt die maximale CT. Mit anderen Worten steigt die maximale CT mit sich verringernder Dicke (oder wenn der auf Glas basierende Gegenstand dünner wird).
  • In einigen Ausführungsformen liegt das Verhältnis der maximalen CT 320 zur Oberflächen-CS 310 im Bereich von ungefähr 0,05 bis ungefähr 1 (z.B. im Bereich von ungefähr 0,05 bis ungefähr 0,5, von ungefähr 0,05 bis ungefähr 0,3, von ungefähr 0,05 bis ungefähr 0,2, von ungefähr 0,05 bis ungefähr 0,1, von ungefähr 0,5 bis ungefähr 0,8, von ungefähr 0,0,5 bis ungefähr 1, von ungefähr 0,2 bis ungefähr 0,5, von ungefähr 0,3 bis ungefähr 0,5). In an sich bekannten chemisch vorgespannten, auf Glas basierenden Gegenständen beträgt das Verhältnis der maximalen CT 320 zur Oberflächen-CS 310 0,1 oder weniger. In einigen Ausführungsformen kann die Oberflächen-CS das 1,5-Fache (oder 2-Fache oder 2,5-Fache) der maximalen CT oder mehr betragen. In einigen Ausführungsformen kann die Oberflächen-CS bis zu ungefähr dem 20-Fachen der maximalen CT betragen.
  • In einer oder mehreren Ausführungsformen umfasst das Spannungsprofil 312 eine maximale CS, die typischerweise die Oberflächen-CS 310 ist, welche an einer oder beiden von der ersten Fläche 302 und der zweiten Fläche 304 vorgefunden werden kann. In einer oder mehreren Ausführungsformen erstreckt sich die CS-Schicht oder der Bereich 315 entlang eines Abschnitts der Dicke zu der DOC 317 und einer maximalen CT 320. In einer oder mehreren Ausführungsformen kann die DOC 317 ungefähr 0,1•t oder mehr betragen. Zum Beispiel kann die DOC 317 ungefähr 0,12•t oder mehr, ungefähr 0,14•t oder mehr, ungefähr 0,15•t oder mehr, ungefähr 0,16•t oder mehr, 0,17•t oder mehr, 0,18•t oder mehr, 0,19•t oder mehr, 0,20•t oder mehr, ungefähr 0,21•t oder mehr, oder bis zu ungefähr 0,25•t betragen. In einigen Ausführungsformen ist die DOC 317 kleiner als die chemische Tiefe 342. Die chemische Tiefe 342 kann ungefähr 0,4•t oder mehr, 0,5•t oder mehr, ungefähr 55•t oder mehr oder ungefähr 0,6•t oder mehr sein. In einer oder mehreren Ausführungsformen kann das Spannungsprofil 312 als parabelähnlich im Hinsicht auf die Form beschrieben werden. In einigen Ausführungsformen weist das Spannungsprofil entlang des Bereichs oder der Tiefe des auf Glas basierenden Gegenstands, der/die Zugspannung aufweist, eine parabelähnliche Form auf. In einer oder mehreren konkreten Ausführungsformen ist das Spannungsprofil 312 frei von einem Abschnitt mit einer flachen Spannung (d.h. Stauchung oder Zugspannung) oder einem Abschnitt, der eine im Wesentlichen konstante Spannung (d.h. Druckspannung oder Zugspannung) aufweist. In einigen Ausführungsformen weist der CT-Bereich ein Spannungsprofil auf, das im Wesentlichen frei von einer flachen Spannung oder frei von einer im Wesentlichen konstanten Spannung ist. In einer oder mehreren Ausführungsformen umfassen alle Punkte des Spannungsprofils 312 zwischen einem Dickenbereich von ungefähr 0t bis ungefähr 0,2•t und mehr als 0,8•t (oder von ungefähr 0•t bis zu ungefähr 0,3•t und mehr als 0,7•t) eine Tangente, die kleiner als ungefähr -0,1 MPa/Mikrometer oder größer als ungefähr 0,1 MPa/Mikrometer ist. In einigen Ausführungsformen kann die Tangente kleiner als ungefähr -0,2 MPa/Mikrometer oder größer als ungefähr 0,2 MPa/Mikrometer sein. In einigen spezifischeren Ausführungsformen kann die Tangente kleiner als ungefähr -0,3 MPa/Mikrometer oder größer als ungefähr 0,3 MPa/Mikrometer sein. In einer noch spezifischeren Ausführungsform kann die Tangente kleiner als ungefähr -0,5 MPa/Mikrometer oder größer als ungefähr 0,5 MPa/Mikrometer sein. Mit anderen Worten schließt das Spannungsprofil der einen oder der mehreren Ausführungsformen entlang diesen Dickenbereichen (d.h. 0•t bis ungefähr 2•t und mehr als 0,8•t, oder von ungefähr 0t bis ungefähr 0,3•t und 0,7•t oder mehr) Punkte aus, die eine Tangente aufweisen, wie hier beschrieben. Ohne durch eine Theorie beschränkt zu sein, weisen die bekannten Fehlerfunktion- oder quasi-lineare Spannungsprofile Punkte entlang dieser Dickenbereiche auf (d.h. 0•t bis ungefähr 2•t und größer als 0,8•t, oder von ungefähr 0•t bis ungefähr 0,3•t und 0,7•t oder mehr), die eine Tangente aufweisen, die von ungefähr -0,1 MPa/Mikrometer bis ungefähr 0,1 MPa/Mikrometer, von ungefähr -0,2 MPa/Mikrometer bis ungefähr 0,2 MPa/Mikrometer, von ungefähr -0,3 MPa/Mikrometer bis ungefähr 0,3 MPa/Mikrometer, oder von ungefähr -0,5 MPa/Mikrometer bis ungefähr 0,5 MPa/Mikrometer beträgt (was ein Spannungsprofil mit einer flachen oder Nullsteigung entlang solcher Dickenbereiche anzeigt, wie in 2, 220 dargestellt). Die Spannungsprofile der einen oder der mehreren Ausführungsformen dieser Offenbarung weisen kein solches Spannungsprofil auf, das ein flaches Spannungsprofil oder ein Spannungsprofil mit einer Nullsteigung entlang dieser Dickenbereiche aufweist, wie in 3 dargestellt.
  • In einer oder mehreren Ausführungsformen weist der auf Glas basierende Gegenstand ein Spannungsprofil entlang eines Dickenbereichs von ungefähr 0,1•t bis 0,3•t und von ungefähr 0,7•t bis 0,9•t, das eine maximale Tangente und eine minimale Tangente umfasst. In manchen Fällen beträgt die Differenz zwischen der maximalen Tangente und der minimalen Tangente ungefähr 3,5 MPa/Mikrometer oder weniger, ungefähr 3 MPa/Mikrometer oder weniger, ungefähr 2,5 MPa/-Mikrometer oder weniger oder ungefähr 2 MPa/Mikrometer oder weniger.
  • In einer oder mehreren Ausführungsformen ist das Spannungsprofil 312 im Wesentlichen frei von jeglichen linearen Segmenten, die sich in eine Tiefenrichtung oder entlang von zumindest einem Abschnitt der Dicke t des auf Glas basierenden Gegenstands erstrecken. Mit anderen Worten steigt das Spannungsprofil 312 im Wesentlichen kontinuierlich oder es verringert sich kontinuierlich entlang der Dicke t. In einigen Ausführungsformen ist das Spannungsprofil im Wesentlichen frei von jeglichen linearen Segmenten in Tiefenrichtung, die eine Länge von ungefähr 10 Mikrometer oder mehr, ungefähr 50 Mikrometer oder mehr, oder ungefähr 100 Mikrometer oder mehr oder ungefähr 200 oder mehr aufweisen. Wie hier verwendet bezieht sich der Begriff „linear“ auf eine Steigung, die eine Größe von weniger als ungefähr 5 MPa/Mikrometer oder weniger als 2 MPa/Mikrometer entlang des linearen Segments aufweist. In einigen Ausführungsformen sind ein oder mehrere Abschnitte des Spannungsprofils, die im Wesentlichen frei von jeglichen linearen Segmenten in Tiefenrichtung sind, in Tiefen innerhalb des auf Glas basierenden Gegenstands von ungefähr 5 Mikrometer oder mehr (z.B. 10 Mikrometer oder mehr, oder 15 Mikrometer oder mehr) entweder von einer oder beiden von der ersten Fläche oder der zweiten Fläche vorhanden. Zum Beispiel kann entlang einer Tiefe von ungefähr 0 Mikrometer bis weniger als ungefähr 5 Mikrometer von der ersten Fläche das Spannungsprofil lineare Segmente umfassen, aber von einer Tiefe von ungefähr 5 Mikrometer oder mehr von der ersten Fläche kann das Spannungsprofil im Wesentlichen frei von linearen Segmenten sein.
  • In einigen Ausführungsformen kann das Spannungsprofil lineare Segmente in Tiefen von ungefähr 0t bis ungefähr 0,1t umfassen und kann im Wesentlichen frei von linearen Segmenten in Tiefen von ungefähr 0,1t bis ungefähr 0,4t sein. In einigen Ausführungsformen kann das Spannungsprofil von einer Dicke im Bereich von ungefähr 0t bis ungefähr 0,1t eine Steigung im Bereich von ungefähr 20 MPa/Mikrometer bis ungefähr 200 MPa/Mikrometer aufweisen. Wie hier beschrieben sein wird, können solche Ausführungsformen unter Verwendung eines einzelnen Ionenaustauschprozesses ausgebildet werden, durch den das Bad zwei oder mehr Alkalisalze oder ein gemischtes Alkalisalzbad umfasst, oder mehrerer (z.B. 2 oder mehr) Ionenaustauschprozesses ausgebildet werden.
  • In einer oder mehreren Ausführungsformen kann der auf Glas basierende Gegenstand hinsichtlich der Form des Spannungsprofils entlang des CT-Bereichs (327 in 3) beschrieben werden. Zum Beispiel kann in einigen Ausführungsformen das Spannungsprofil entlang des CT-Bereichs (wo eine Zugspannung herrscht) durch eine Gleichung angenähert werden. In einigen Ausführungsformen kann das Spannungsprofil entlang des CT-Bereichs durch Gleichung (1) angenähert werden: Spannung ( x ) = MaxCT- ( ( ( MaxCT · ( n + 1 ) ) / 0,5 n ) · | ( x / t ) 0,5 | n )
    Figure DE202015009694U1_0002
  • In Gleichung (1) stellt die Spannung(x) den Spannungswert an Position x dar. Hier ist die Spannung positiv (Zugspannung). MaxCT ist die maximale Zentralspannung als ein positiver Wert in MPa. Der Wert x stellt eine Position entlang der Dicke (t) in Mikrometern dar, mit einem Bereich von 0 bis t; x=0 ist eine Oberfläche (302 in 3), x=0,5t ist die Mitte des auf Glas basierenden Gegenstands, Spannung(x)=MaxCt, und x=t ist die gegenüberliegende Fläche (304 in 3). MaxCT, das in Gleichung (1) verwendet wird, kann im Bereich von 50 MPa bis ungefähr 350 MPa (z.B. 60 MPa bis ungefähr 300 MPa, oder von ungefähr 70 MPa bis ungefähr 270 MPa) liegen, und n ist ein Anpassungsparameter von 1,5 bis 5 (z.B. 2 bis 4, 2 bis 3 oder 1,8 bis 2,2), wobei n=2 ein parabolisches Spannungsprofil bereitstellen kann, Exponenten, die von n=2 abweichen, Spannungsprofile mit beinahe parabolischen Spannungsprofilen bereitstellen. 39 zeigt Spannungsprofile für verschiedene Kombinationen von MaxCT und n (von 1,5 bis 5, wie in der Legende angezeigt) für einen auf Glas basierenden Gegenstand, der eine Dicke von 0,8 mm aufweist.
  • In einigen Ausführungsformen kann das Spannungsprofil durch Wärmebehandlung modifiziert werden. In solchen Ausführungsformen kann die Wärmebehandlung vor jeglichen Ionenaustauschprozessen, zwischen Ionenaustauschprozessen oder nach allen Ionenaustauschprozessen stattfinden. In einigen Ausführungsformen kann die Wärmebehandlung die Steigung des Spannungsprofils an oder in der Näher der Oberfläche reduzieren. In einigen Ausführungsformen, in denen eine steilere oder größere Steigung an der Oberfläche gewünscht wird, kann ein Ionenaustauschprozess nach der Wärmebehandlung verwendet werden, um eine „Spitze“ bereitzustellen oder die Steigung des Spannungsprofils an oder in der Nähe der Oberfläche zu erhöhen.
  • In einer oder mehreren Ausführungsformen wird das Spannungsprofil 312 (und/oder das geschätzte Spannungsprofil 340) aufgrund einer von null verschiedenen Konzentration eines Metalloxids (Metalloxiden) erzeugt, die entlang eines Abschnitts der Dicke variiert. Die Variation der Konzentration kann hier als ein Gradient bezeichnet werden. In einigen Ausführungsformen ist die Konzentration eines Metalloxids von null verschieden und variiert sowohl entlang eines Dickenbereichs von ungefähr 0•t bis ungefähr 0,3•t. In einigen Ausführungsformen ist die Konzentration des Metalloxids von null verschieden und variiert entlang eines Dickenbereichs von ungefähr 0•t bis ungefähr 0,35•t, von ungefähr 0•t bis ungefähr 0,4•t, von ungefähr 0•t bis ungefähr 0,45•t oder von ungefähr 0•t bis ungefähr 0,48•t. Das Metalloxid kann derart beschrieben werden, dass es eine Spannung in dem auf Glas basierenden Gegenstand erzeugt. Die Variation der Konzentration kann entlang der vorstehend genannten Dickenbereiche kontinuierlich sein. Eine Variation der Konzentration kann eine Änderung einer Metalloxidkonzentration von ungefähr 0,2 Mol-% entlang eines Dickensegments von ungefähr 100 Mikrometern umfassen. Diese Änderung kann mithilfe von an sich in der Technik bekannten Verfahren gemessen werden, einschließlich einer Mikrosonde, wie in Beispiel 1 gezeigt. Das Metalloxid, dessen Konzentration von null verschieden ist und entlang eines Abschnitts der Dicke variiert, kann derart beschrieben werden, dass es eine Spannung in dem auf Glas basierenden Gegenstand erzeugt.
  • Die Variation der Konzentration kann entlang der vorstehend genannten Dickenbereiche kontinuierlich sein. In einigen Ausführungsformen kann die Variation der Konzentration entlang von Dickensegmente im Bereich von ungefähr 10 Mikrometer bis ungefähr 30 Mikrometer kontinuierlich sein.
    In einigen Ausführungsformen verringert sich die Konzentration des Metalloxids von der ersten Fläche zu einem Punkt zwischen der ersten Fläche und der zweiten Fläche und steigt von dem Punkt zu der zweiten Fläche an.
  • Die Konzentration des Metalloxids kann mehr als ein Metalloxid umfassen (z.B. eine Kombination von Na2O und K2O). In einigen Ausführungsformen, in denen zwei Metalloxide verwendet werden und der Radius der Ionen sich voneinander unterscheidet, ist die Konzentration von Ionen, die einen größeren Radius aufweisen, größer als die Konzentration von Ionen, die einen kleineren Radius aufweisen, in flachen Tiefen, während in tieferen Tiefen die Konzentration von Ionen, die einen kleineren Radius aufweisen, größer ist als die Konzentration von Ionen, die einen größeren Radius aufweisen. Wenn zum Beispiel ein einzelnes Na- und K-haltiges Bad in dem Ionenaustauschprozess verwendet wird, ist die Konzentration von K+-Ionen in dem auf Glas basierenden Gegenstand größer als die Konzentration von Na+ -Ionen in flacheren Tiefen, während die Konzentration von Na+ größer ist als die Konzentration von K+ -Ionen in tieferen Tiefen. Das liegt teilweise an der Größe der Ionen. In solchen auf Glas basierenden Gegenständen umfasst der Bereich an oder in der Nähe der Oberfläche aufgrund der größeren Menge größerer Ionen an oder in der Nähe der Oberfläche eine größere CS. Ein Spannungsprofil, das eine steilere Steigung an oder in der Nähe der Oberfläche (d.h. eine Spitze in dem Spannungsprofil an der Oberfläche) aufweist, kann diese größere CS aufweisen.
  • Der Konzentrationsgradient oder die Variation von einem oder mehreren Metalloxiden wird durch chemisches Vorspannen des auf Glas basierenden Gegenstands erzeugt, zum Beispiel durch die zuvor hier beschriebenen Ionenaustauschprozesse, bei denen eine Vielzahl von ersten Metallionen in dem auf Glas basierenden Gegenstand durch mehrere zweite Metallionen ersetzt wird. Die ersten Ionen können Ionen von Lithium, Natrium, Kalium und Rubidium sein. Die zweiten Metallionen können Ionen von einem von Natrium, Kalium, Rubidium und Cäsium sein, mit der Maßgabe, dass das zweite Alkalimetallion einen Ionenradius aufweist, der größer ist als der Ionenradius als das erste Alkalimetallion. Das zweite Metallion ist in dem auf Glas basierenden Substrat als ein Oxid davon vorhanden (z.B. Na2O, K2O, Rb2O, Cs2O oder eine Kombination davon).
  • In einer oder mehreren Ausführungsformen erstreckt sich der Metalloxidkonzentrationsgradient durch einen wesentlichen Abschnitt der Dicke t oder die gesamte Dicke t des auf Glas basierenden Gegenstands, einschließlich der CT-Schicht 325. In einer oder mehreren Ausführungsformen beträgt die Konzentration des Metalloxids ungefähr 0,5 Mol-% oder mehr in der CT-Schicht 325. In einigen Ausführungsformen kann die Konzentration des Metalloxids ungefähr 0,5 Mol-% oder mehr (z.B. ungefähr 1 Mol-% oder mehr) entlang der gesamten Dicke des auf Glas basierenden Gegenstands sein, und ist am größten an der ersten Fläche 302 und/oder der zweiten Fläche 304 und verringert sich allmählich konstant zu einem Punkt zwischen der ersten Fläche 302 und der zweiten Fläche 304. An jenem Punkt liegt die geringste Konzentration des Metalloxids entlang der gesamten Dicke t vor; jedoch ist die Konzentration auch an jenem Punkt von null verschieden. Mit anderen Worten erstreckt sich die von null verschiedene Konzentration jenes bestimmten Metalloxids entlang eines wesentlichen Abschnitts der Dicke t (wie hier beschrieben) oder der gesamten Dicke t. In einigen Ausführungsformen liegt die niedrigste Konzentration des bestimmten Metalloxids in der CT-Schicht 327 vor. Die Gesamtkonzentration des bestimmten Metalloxids in dem auf Glas basierenden Gegenstand kann im Bereich von ungefähr 1 Mol-% bis ungefähr 20 Mol-% liegen.
  • In einer oder mehreren Ausführungsformen umfasst der auf Glas basierende Gegenstand eine Konzentration eines ersten Metalloxids und eine Konzentration eines zweiten Metalloxids, so dass die Konzentration des ersten Metalloxids im Bereich von ungefähr 0 Mol-% bis ungefähr 15 Mol-% entlang eines ersten Dickenbereichs von ungefähr 0t bis ungefähr 0,5t liegt, und die Konzentration des zweiten Metalloxids im Bereich von ungefähr 0 Mol-% bis ungefähr 10 Mol-% von einem zweiten Dickenbereich von ungefähr 0 Mikrometer bis ungefähr 25 Mikrometer (oder von ungefähr 0 Mikrometer bis ungefähr 12 Mikrometer) liegt. Der auf Glas basierende Gegenstand kann eine Konzentration eines fakultativen dritten Metalloxids umfassen. Das erste Metalloxid kann Na2O umfassen, während das zweite Metalloxid K2O umfassen kann.
  • Die Konzentration des Metalloxids kann aus einer Baseline-Menge des Metalloxids in dem auf Glas basierenden Gegenstand bestimmt werden, bevor er modifiziert wird, um den Konzentrationsgradienten eines solchen Metalloxids zu umfassen.
  • In einer oder mehreren Ausführungsformen können die auf Glas basierenden Gegenstände bezüglich dessen, wie sie zerbrechen, und der aus einem solchen Bruch resultierenden Bruchstücke beschrieben werden. In einer oder mehreren Ausführungsformen zerbrechen bei einem Bruch die auf Glas basierenden Gegenstände in 2 oder mehr Bruchstücke pro Quadratzoll (oder pro 6,4516 Quadratzentimeter) des auf Glas basierenden Gegenstands (vor dem Bruch). In manchen Fällen zerbrechen die auf Glas basierenden Gegenstände in 3 oder mehr, 4 oder mehr, 5 oder mehr oder 10 oder mehr Bruchstücke pro Quadratzoll (oder pro 6,4516 Quadratzentimeter) des auf Glas basierenden Gegenstands (vor dem Bruch). In manchen Fällen zerbrechen bei einem Bruch die auf Glas basierenden Gegenstände in Bruchstücke, so dass 50 % oder mehr der Bruchstücke einen Oberflächeninhalt von weniger als 5 %, weniger als 2 % oder weniger als 1 % des Oberflächeninhalts des auf Glas basierenden Gegenstands (vor dem Bruch) aufweisen. In manchen Ausführungsformen zerbrechen bei einem Bruch die auf Glas basierenden Gegenstände in Bruchstücke, so dass 90 % oder mehr oder sogar 100 % der Bruchstücke einen Oberflächeninhalt von weniger als 5 %, weniger als 2 % oder weniger als 1 % des Oberflächeninhalts des auf Glas basierenden Gegenstands (vor dem Bruch) aufweisen.
  • In einer oder mehreren Ausführungsformen stellt nach einem chemischen Vorspannen des auf Glas basierenden Gegenstands das resultierende Spannungsprofil 317 (und das geschätzte Spannungsprofil 340) des auf Glas basierenden Gegenstands eine verbesserte Bruchbeständigkeit bereit. Zum Beispiel umfasst in einigen Ausführungsformen bei einem Bruch der auf Glas basierende Gegenstand Bruchstücke, die eine durchschnittliche längste Querschnittsabmessung aufweisen, die kleiner gleich ungefähr 2•t ist (z.B. 1,8•t, 1,6•t, 1,5•t, 1,4•t, 1,2•t oder 1,•t oder kleiner).
  • In einer oder mehreren Ausführungsformen können die auf Glas basierenden Gegenstände eine Bruchzähigkeit (KIC) von ungefähr 0,7 MPa•m½ oder mehr aufweisen. In manchen Fällen kann die Bruchzähigkeit ungefähr 0,8 MPa•m½ oder mehr, oder ungefähr 0,9 MPa•m½ oder mehr betragen. In einigen Ausführungsformen kann die Bruchzähigkeit im Bereich von ungefähr 0,7 MPa•m½ bis ungefähr 1 MPa•m½ liegen.
  • In einigen Ausführungsformen kann das Substrat auch derart charakterisiert werden, dass es eine Härte von ungefähr 500 HVN bis ungefähr 800 HVN aufweist, wie durch einen Vikershärtetest bei einer Last von 200 g gemessen.
  • Die hier beschriebenen auf Glas basierenden Gegenstände können eine gespeicherte Zugenergie im Bereich von mehr als 0 J/m2 bis ungefähr 20 J/m2 aufweisen. In manchen Fällen kann die gespeicherte Zugenergie im Bereich von ungefähr 1 J/m2 bis ungefähr 20 J/m2, von ungefähr 2 J/m2 bis ungefähr 20 J/m2, von ungefähr 3 J/m2 bis ungefähr 20 J/m2 , von ungefähr 4 J/m2 bis ungefähr 20 J/m2 , von ungefähr 1 J/m2 bis ungefähr 19 J/m2 , von ungefähr 1 J/m2 bis ungefähr 18 J/m2 , von ungefähr 1 J/m2 bis ungefähr 16 J/m2 , von ungefähr 4 J/m2 bis ungefähr 20 J/m2, oder von ungefähr 4 J/m2 bis ungefähr 18 J/m2 liegen. Die gespeicherte Zugenergie wird durch Integrieren, im Zugbereich, der gespeicherten elastischen Energie Σ pro Flächeneinheit einer Probe einer Dicke t unter Verwendung von Gleichung (2) berechnet: Σ = 0,5 σ 2 t / E
    Figure DE202015009694U1_0003
    wobei σ Spannung darstellt und E der Elastizitätsmodul ist.
  • Insbesondere wird gespeicherte Zugenergie unter Verwendung der folgenden Gleichung (3) berechnet: gespeicherte Zugenergie ( J / m 2 ) = 1 ν / 2 E σ 2 dt
    Figure DE202015009694U1_0004
    wobei n Querdehnzahl ist, E der Elastizitätsmodul ist und die Integration nur für den Zugbereich berechnet wird.
  • In einer oder mehreren Ausführungsformen weisen die auf Glas basierenden Gegenstände verbesserte Oberflächenfestigkeit, wenn sie einem AROR-Test (Abraded Ringon-Ring) unterzogen werden. Die Festigkeit eines Materials wird als die Spannung definiert, bei der ein Bruch auftritt. Der A-ROR-Test ist eine Oberflächenfestigkeitsmessung zum Testen von flachen Glasproben, und ASTM C1499-09(2013) mit dem Titel „Standard Test Method for Monotonie Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature“ dient als die Grundlage für die hier beschriebene abgeschliffene Doppelring-ROR-Testmethodologie. Die Inhalte von ASTM C1499-09 sind hier durch Rückbezug in ihrer Gänze aufgenommen. In einer Ausführungsform wird der Glasprüfkörper vor einem Doppelringtest mit Siliziumkarbid-(SiC)-Partikeln mit Körnung 90 abgeschliffen, die an die Glasprobe unter Verwendung des Verfahrens und der Vorrichtung, die in Anhang A2 mit dem Titel „abrasion Procedure“ von ASTM CI58-02(2012) mit dem Titel „Standard Test Methods for Strength of Glass by Flexure (Determination of Modulus of Rupture)“ beschrieben sind, an die Glasprobe zugeführt werden. Die Inhalte von ASTM C158-02 und insbesondere die Inhalte von Anhang 2 sind hier durch Rückbezug in ihrer Gänze aufgenommen.
  • Vor einem Doppelringtest wird eine Oberfläche des auf Glas basierenden Gegenstands abgeschliffen, wie in ASTM C158-02, Anhang 2 beschrieben, um den Oberflächendefektzustand der Probe unter Verwendung der in Fig. A2.1 von ASTM C158-02 gezeigten Vorrichtung zu normieren und/oder zu kontrollieren. Das Schleifmaterial wird typischerweise auf die Oberfläche 110 des auf Glas basierenden Gegenstands bei einer Last von 15 psi unter Verwendung eines Luftdrucks von 304 kPa (44 psi) sandgestrahlt; obwohl in den nachstehenden Beispielen das Schleifmaterial mit einer Last von 25 psi und 45 psi auf die Oberfläche 110 sandgestrahlt wurde. Nachdem sich der Luftstrom eingestellt hat, werden 5 cm3 Schleifmaterial in einen Trichter abgelassen, und die Probe wird nach dem Zuführen des Schleifmaterials 5 Sekunden lang sandgestrahlt.
  • Für den Doppelringtest wird ein auf Glas basierender Gegenstand, der zumindest eine abgeschliffene Oberfläche 410 aufweist, wie in 4 gezeigt, zwischen zwei konzentrischen Ringen unterschiedlicher Größe angeordnet, um gleichachsige Biegefestigkeit zu bestimmen (d.h. die maximale Beanspruchung, die ein Material ertragen kann, wenn es einer Biegung zwischen zwei konzentrischen Ringen unterzogen wird), wie auch in 4 gezeigt. In der Doppelring-Schleifkonfiguration 400 wird der abgeschliffene auf Glas basierende Gegenstand 410 durch einen Stützring 420 getragen, der einen Durchmesser D2 aufweist. Eine Kraft F wird durch eine Lastzelle (nicht dargestellt) auf die Oberfläche des auf Glas basierenden Gegenstands angewendet, indem ein Ring 430, der einen Durchmesser D1 aufweist, geladen wird.
  • Das Verhältnis der Durchmesser des Laderings und des Stützrings D1/D2 kann in einem Bereich von ungefähr 0,2 bis ungefähr 0,5 liegen. In einigen Ausführungsformen beträgt D1/D2 ungefähr 0,5. Der Lade- und Stützring 130, 120 sollten konzentrisch auf innerhalb von 0,5 % des Durchmessers D2 des Stützrings ausgerichtet werden. Die zum Testen verwendete Ladezelle sollte auf innerhalb ±1 % bei jeglicher Last innerhalb eines gewählten Bereichs genau sein. In einigen Ausführungsformen wird der Test bei einer Temperatur von 23 ± 2°C und einer relativen Luftfeuchtigkeit von 40 ± 10 % durchgeführt.
  • Für das Halterungsdesign beträgt der Radius r der vorstehenden Oberfläche des Laderings 430 h/2 ≤r ≤ 3h/2, wobei h die Dicke des auf Glas basierenden Gegenstands 410 ist. Der Lade- und der Stützring 430, 420 sind typischerweise aus gehärtetem Stahl mit einer Härte HRc>40 gefertigt. ROR-Halterungen sind im Handel erhältlich.
  • Der beabsichtigte Versagensmechanismus für den ROR-Test besteht darin, einen Bruch des auf Glas basierenden Gegenstands 410 zu beobachten, der von der Oberfläche 430a innerhalb des Laderings 430 ausgeht. Fehler, die außerhalb dieses Bereichs - d.h. zwischen den Laderingen 430 und den Stützringen 420 - auftreten, werden bei der Datenanalyse nicht berücksichtigt. Aufgrund der geringen Dicke und der hohen Festigkeit des auf Glas basierenden Gegenstands 410 werden jedoch manchmal große Auslenkungen beobachtet, die 1/2 der Probendicke h übersteigen. Es ist daher nicht ungewöhnlich, einen hohen Prozentsatz von Fehlern zu beobachten, die unterhalb des Laderings 430 entstehen. Die Spannung kann ohne die Kenntnis der Spannungsentwicklung sowohl innerhalb als auch unterhalb des Rings (erfasst durch Dehnmessanalyse) und des Ursprungs des Versagens in jedem Prüfkörper nicht genau berechnet werden. Ein AROR-Test konzentriert sich daher auf eine Höchstbelastung bei Ausfall als die gemessene Antwort.
  • Die Festigkeit eines auf Glas basierenden Gegenstands hängt von der Anwesenheit von Oberflächendefekten ab. Die Wahrscheinlichkeit, dass ein Defekt einer bestimmten Größe vorhanden ist, kann jedoch nicht genau vorhergesagt werden, da die Festigkeit von Glas statistischen Charakter aufweist. Eine Wahrscheinlichkeitsverteilung kann daher im Allgemeinen als eine statistische Repräsentation der erlangten Daten verwendet werden.
  • In einigen Ausführungsformen weisen die hier beschriebenen vorgespannten, auf Glas basierenden Gegenstände eine Oberflächen- oder äquibiaxiale Biegefestigkeit von zumindest 20 kgf und bis zu ungefähr 30 kgf auf, wie durch einen Doppelringschleiftest unter Verwendung einer Last von 25 psi oder sogar 45 psi zum Abreiben der Oberfläche bestimmt. In anderen Ausführungsformen beträgt die Oberflächenfestigkeit zumindest 25 kgf, und in noch anderen Ausführungsformen zumindest 30 kgf.
  • In einigen Ausführungsformen können die hier beschriebenen auf Glas basierenden Gegenstände bezüglich einer Leistungsfähigkeit in einem IBoS-Test (Inverted Ball on Sandpaper) beschrieben werden. Der IBoS-Test ist ein dynamischer Test auf komponentenebene, der den vorherrschenden Mechanismus für einen Fehler aufgrund von Einführung von Beschädigungen sowie Biegung imitiert, die typischerweise bei auf Glas basierenden Gegenständen, die in mobilen oder in der Hand gehaltenen elektronischen Vorrichtungen verwendet werden, auftritt, wie schematisch in 36 gezeigt. Auf dem Gebiet findet eine Einbringung von Schäden (a in 37) auf der oberen Fläche des auf Glas basierenden Gegenstands statt. Ein Bruch beginnt auf der oberen Oberfläche des auf Glas basierenden Gegenstands und die Beschädigung dringt entweder durch den auf Glas basierenden Gegenstand hindurch (b in 37) oder der Bruch breitet sich von einer Biegung auf der oberen Fläche oder von den inneren Abschnitten des auf Glas basierenden Gegenstands aus (c in 37). Der IBoS-Test ist ausgelegt, um gleichzeitig eine Beschädigung der Oberfläche des Glases einzubringen und ein Biegen unter dynamischer Last anzuwenden. In manchen Fällen weist der auf Glas basierende Gegenstand eine verbesserte Fallleistungsfähigkeit, wenn es eine Druckspannung umfasst, als wenn derselbe auf Glas basierende Gegenstand keine Druckspannung umfasst.
  • Eine IBoS-Testvorrichtung ist schematisch in 36 dargestellt. Die Vorrichtung 500 umfasst einen Teststand 510 und eine Kugel 530. Die Kugel 530 ist eine steife oder massive Kugel, wie zum Beispiel eine Kugel aus Edelstahl oder dergleichen. In einer Ausführungsform ist die Kugel 530 eine 4,2-g-Edelstahlkugel, die einen Durchmesser von 10 mm aufweist. Die Kugel 530 wird direkt auf die Probe 518 des auf Glas basierenden Gegenstands von einer vorgegebenen Höhe h fallengelassen. Der Stand 510 umfasst eine massive Basis 512, die ein hartes, steifes Material, wie z.B. Granit oder dergleichen, umfasst. Eine Platte 514, auf deren Fläche ein Schleifmaterial angeordnet ist, wird auf der oberen Fläche der massiven Basis 512 angeordnet, so dass die Fläche mit dem Schleifmaterial nach oben weist. In einigen Ausführungsformen ist die Platte 514 ein Sandpapier, mit einer 30-Körnungsfläche und in anderen Ausführungsformen einer 180-Kömungsfläche. Die Probe 518 des auf Glas basierenden Gegenstands wird über der Platte 514 mithilfe eines Probenhalters 515 gehalten, so dass ein Luftspalt 516 zwischen der Probe 518 des auf Glas basierenden Gegenstands und der Platte 514 vorhanden ist. Der Luftspalt 516 zwischen der Platte 514 und der Probe 518 des auf Glas basierenden Gegenstands ermöglicht es, dass sich die Probe 518 des auf Glas basierenden Gegenstands beim Auftreffen der Kugel 530 und auf die Schleiffläche der Platte 514 biegt. In einer Ausführungsform wird die Probe 218 des auf Glas basierenden Gegenstands über alle Ecken geklemmt, um die Biegung nur auf den Punkt des Auftreffens der Kugel zu beschränken und eine Wiederholbarkeit sicherzustellen. In einigen Ausführungsformen sind der Probenhalter 514 und der Teststand 510 dazu ausgelegt, Probendicken von bis zu ungefähr 2 mm aufzunehmen. Der Luftspalt 516 liegt in einem Bereich von ungefähr 50 µm bis ungefähr 100 µm. Der Luftspalt 516 ist angepasst, um den Unterschied der Materialsteifigkeit (Elastizitätsmodul, Emod) einzustellen, umfasst jedoch auch den Elastizitätsmodul und die Dicke der Probe. Ein Klebeband 520 kann verwendet werden, um die obere Fläche der Probe des auf Glas basierenden Gegenstands zu bedecken, um Bruchstücke im Falle eines Bruchs der Probe 518 des auf Glas basierenden Gegenstands beim Aufprall der Kugel 530 zu sammeln.
  • Es können verschiedene Materialien als die Schleifoberfläche verwendet werden. In einer bestimmten Ausführungsform ist die Schleiffläche ein Sandpapier, wie z.B. Siliziumkarbid- oder Aluminiumoxid-Sandpapier, konstruiertes Sandpapier oder ein beliebiges Schleifmaterial, von dem einem Fachmann bekannt ist, dass es eine vergleichbare Härte und/oder Schärfe aufweist. In einigen Ausführungsformen kann ein Sandpapier, das eine 30-Körnung aufweist, verwendet werden, da es eine Flächentopografie, die konsistenter ist als entweder Beton oder Asphalt, und eine Partikelgröße und -schärfe, die den gewünschten Grad an Beschädigungen der Probenoberfläche erzeugen, aufweist.
  • In einem Aspekt ist ein Verfahren 600 zum Durchführen des IBoS-Tests unter Verwendung der vorstehend beschriebenen Vorrichtung 500 in 38 dargestellt. In Schritt 610 wird eine Probe eines auf Glas basierenden Gegenstands (218 in 36) in dem vorstehend beschriebenen Teststand 510 angeordnet und in dem Probenhalter 515 befestigt, so dass ein Luftspalt 516 zwischen der Probe 518 des auf Glas basierenden Gegenstands und der Platte 514 mit einer Schleiffläche gebildet wird. Das Verfahren 600 nimmt an, dass die Platte 514 mit einer Schleiffläche bereits in dem Taststand 510 angeordnet wurde. In einigen Ausführungsformen kann jedoch das Verfahren ein derartiges Anordnen der Platte 514 im Teststand 510 umfassen, dass die Fläche mit einem Schleifmaterial nach oben weist. In einigen Ausführungsformen (Schritt 610a) wird ein Klebeband 520 auf die obere Fläche der Probe 518 des auf Glas basierenden Gegenstands vor dem Befestigen der Probe 518 des auf Glas basierenden Gegenstands im Probenhalter 510 angewendet.
  • In Schritt 520 wird eine massive Kugel 530 einer vorgegebenen Masse und Größe von einer vorgegebenen Höhe h auf die obere Fläche der Probe 518 des auf Glas basierenden Gegenstands fallengelassen, so dass die Kugel 530 auf die obere Fläche (oder das an der oberen Fläche befestigte Klebeband 520) ungefähr in der Mitte (d.h. innerhalb von 1 mm, oder innerhalb von 3 mm, oder innerhalb von 5 mm, oder innerhalb von 10 mm der Mitte) der oberen Fläche auftrifft. Nach dem Auftreffen in Schritt 520 wird das Ausmaß der Beschädigung an der Probe 518 des auf Glas basierenden Gegenstands bestimmt (Schritt 630). Wie vorstehend hier beschrieben, bedeutet der Begriff „Bruch“, dass sich ein Riss quer über die gesamte Dicke und/oder gesamte Fläche eines Substrats ausbreitet, wenn das Substrat fallengelassen wird oder ein Objekt dagegen stößt.
  • Im Verfahren 600 kann die Platte 518 mit der Schleiffläche nach jedem Fall ersetzt werden, um „Alterungs-“Effekte zu vermeiden, die bei einer wiederholten Verwendung anderer Typen (z.B. Beton oder Asphalt) von Falltestflächen beobachtet wurden.
  • Verschiedene vorgegebene Fallhöhen h und Schrittgrößen werden typischerweise im Verfahren 600 verwendet. Der Test kann zum Beispiel zu Beginn eine minimale Fallhöhe (z.B. ungefähr 10 bis 20 cm) verwenden. Die Höhe kann dann für nachfolgende Fallvorgänge entweder um eine eingestellte Schrittgröße oder variierende Schrittgrößen erhöht werden. Der im Verfahren 600 beschriebene Test wird angehalten, nachdem die Probe 518 des auf Glas basierenden Gegenstands zerbricht oder einen Bruch aufweist (Schritt 631). Wenn die Fallhöhe h alternativ die maximale Fallhöhe (z.B. ungefähr 100 cm) ohne Bruch erreicht, kann der Falltest des Verfahrens 300 ebenfalls angehalten werden, oder Schritt 520 kann bei der maximalen Höhe wiederholt werden, bis ein Bruch auftritt.
  • In einigen Ausführungsformen wird ein IBoS-Test des Verfahrens 600 lediglich einmal an jeder Probe 518 eines auf Glas basierenden Gegenstands bei jeder vorgegebenen Höhe h durchgeführt. In anderen Ausführungsformen kann jedoch jede Probe mehreren Tests bei jeder Höhe unterzogen werden.
  • Wenn ein Bruch der Probe 518 des auf Glas basierenden Gegenstands aufgetreten ist (Schritt 631 in 38) wird der IBoS-Test gemäß dem Verfahren 600 beendet (Schritt 640). Wenn kein aus dem Kugelfall bei einer vorgegebenen Fallhöhe resultierender Bruch beobachtet wird (Schritt 632), wird die Fallhöhe um einen vorgegebenen Schritt vergrößert (Schritt 634) - wie zum Beispiel 5, 10 oder 20 cm - und Schritte 620 und 630 werden wiederholt, entweder bis ein Probenbruch beobachtet wird (631) oder die maximale Testhöhe (636) ohne einen Probenbruch erreicht wird. Wenn entweder Schritt 631 oder 636 erreicht wird, wird der Test gemäß Verfahren 600 beendet.
  • Bei einer Unterziehung dem vorstehend beschriebenen IBoS-Test (Inverted Ball on Sandpaper) weisen Ausführungsformen des hier beschriebenen, auf Glas basierenden Gegenstands zumindest eine 60-%-Überlebensrate, wenn die Kugel auf die Fläche des Glases von einer Höhe von 100 cm fallengelassen wird. Zum Beispiel wird ein auf Glas basierender Gegenstand derart beschrieben, dass er eine 60-%-Überlebensrate bei einem Fall von einer gegebenen Höhe aufweist, wenn drei von fünf identischen (oder beinahe identischen) Proben (d.h. eine ungefähr gleiche Zusammensetzung aufweisend und, falls vorgespannt, ungefähr die gleiche Druckspannung und Tiefe der Druck- oder Druckspannungsschicht aufweisend, wie hier beschrieben) den IBos-Falltest ohne einen Bruch bei einem Fall von der vorgeschriebenen Höhe (hier 100 cm) überstehen. In anderen Ausführungsformen beträgt die Überlebensrate bei dem 100-cm-IBoS-Test der vorgespannten, auf Glas basierenden Gegenstände zumindest ungefähr 70 %, in anderen Ausführungsformen zumindest ungefähr 80 %, und in noch weiteren Ausführungsformen zumindest ungefähr 90 %. In anderen Ausführungsformen beträgt die Überlebensrate der vorgespannten auf Glas basierenden Gegenstände, die von einer Höhe von 100 cm in dem IBoS-Test fallengelassen werden, zumindest ungefähr 60 %, in anderen Ausführungsformen zumindest ungefähr 70 %, in noch weiteren Ausführungsformen zumindest ungefähr 80 % und in anderen Ausführungsformen zumindest ungefähr 90 %. In einer oder mehreren Ausführungsformen beträgt die Überlebensrate der vorgespannten, auf Glas basierenden Gegenstände, die von einer Höhe von 150 cm in dem IBoS-Test fallengelassen werden, zumindest ungefähr 60 %, in anderen Ausführungsformen zumindest ungefähr 70 %, in noch weiteren Ausführungsformen zumindest ungefähr 80 % und in anderen Ausführungsformen zumindest ungefähr 90 %.
  • Um die Überlebensrate der auf Glas basierenden Gegenstände bei einem Fall von einer vorgegebenen Höhe unter Verwendung des IBoS-Testverfahrens und Vorrichtung, die vorstehend beschrieben wurden, zu bestimmen, werden zumindest fünf identische (oder beinahe identische) Proben (d.h. Proben, die ungefähr die gleiche Zusammensetzung aufweisen und, falls vorgespannt, ungefähr die gleiche Druckspannung und Tiefe der Druckschicht aufweisen) der auf Glas basierenden Gegenstände getestet, obwohl größere Anzahlen (z.B. 10, 20, 30 usw.) von Proben dem Test unterzogen werden können, um das Vertrauensniveau der Testergebnisse zu erhöhen. Jede Probe wird ein einziges Mal von der vorgegebenen Höhe (z.B. 100 cm oder 150 cm) fallengelassen oder alternativ von schrittweise höheren Höhen ohne Bruch fallengelassen, bis die vorgegebene Höhe erreicht ist, und visuell (d.h. mit bloßem Auge) auf Anzeichen von Brüchen untersucht (Rissbildung und -ausbreitung über die gesamte Dicke und/oder die gesamte Oberfläche einer Probe). Es wird geurteilt, dass eine Probe den Falltest „überlebt“ hat, wenn kein Bruch nach einem Fall von der vorgegebenen Höhe festgestellt wird, und es wird geurteilt, dass eine Probe „durchgefallen“ ist (oder „nicht überlebt“ hat), falls ein Bruch festgestellt wird, wenn die Probe von einer Höhe heruntergefallen wird, die kleiner gleich der vorgegebenen Höhe ist. Die Überlebensrate wird als der Prozentsatz der Probenpopulation bestimmt, der den Falltest überlebt hat. Wenn zum Beispiel 7 Proben von einer Gruppe von 10 keinen Bruch bei einem Fall von der vorgegebenen Höhe aufweisen, würde die Überlebensrate des Glases 70 % betragen.
  • Die hier beschriebenen auf Glas basierenden Gegenstände können lichtdurchlässig oder opak sein. In einer oder mehreren kann der auf Glas basierende Gegenstand eine Dicke von ungefähr 1 Millimeter oder weniger aufweisen und eine Lichtdurchlässigkeit von ungefähr 88 % oder mehr über eine Wellenlänge im Bereich von ungefähr 380 nm bis ungefähr 780 nm aufweisen. In einer anderen Ausführungsform mehreren kann der auf Glas basierende Gegenstandeine Dicke von ungefähr 1 Millimeter oder weniger aufweisen und eine Lichtdurchlässigkeit von ungefähr 10 % oder weniger über eine Wellenlänge im Bereich von ungefähr 380 nm bis ungefähr 780 nm aufweisen.
  • Der auf Glas basierende Gegenstand kann auch eine im Wesentlichen weiße Farbe aufweisen. Zum Beispiel kann der auf Glas basierende Gegenstand CIELAB-Farbraumkoordinaten, unter einer CIE-Lichtart F02, von L*-Werten von ungefähr 88 und mehr, a*-Werten im Bereich von ungefähr -3 bis ungefähr +3 und b*-Werten im Bereich von ungefähr -6 bis ungefähr +6 aufweisen. Alternativ kann der auf Glas basierende Gegenstand CIELAB-Farbraumkoordinaten, unter einer CIE-Lichtart F02, von L*-Werten von ungefähr 40 und weniger, a*-Werten im Bereich von ungefähr -3 bis ungefähr +3 und b*-Werten im Bereich von ungefähr -6 bis ungefähr +6 aufweisen. Solche Farbraumkoordinaten können unter anderen CIE-Lichtarten (z.B. D65) vorhanden sein.
  • Die Wahl von Substraten ist nicht besonders begrenzt. In einigen Beispielen kann der auf Glas basierende Gegenstand derart beschrieben werden, dass er ein hohes Kationendiffusionsvermögen für einen Ionenaustausch aufweist. In einer oder mehreren Ausführungsformen weist das Glas oder die Glaskeramik eine Fähigkeit zum schnellen Ionenaustausch, d.h. wo ein Diffusionsvermögen größer ist als 500 µm2/h oder als größer als 450 µm2/h bei 460 °C charakterisiert werden kann.
  • Bei einer bestimmten Temperatur wird das Diffusionsvermögen unter Verwendung der Gleichung (4) berechnet: Diffusionsvermögen = DOL 2 / 5.6 * T
    Figure DE202015009694U1_0005
    wobei DOL eine Tiefe der Ionenaustauschschicht ist und T die IOX-Zeit darstellt, die zum erreichen jener DOL benötigt wird.
  • Der auf Glas basierende Gegenstand kann ein amorphes Substrat, ein kristallines Substrat oder eine Kombination davon (z.B. ein Glaskeramiksubstrat) umfassen. In einer oder mehreren Ausführungsformen kann das auf Glas basierende Gegenstandsubstrat (bevor es chemisch vorgespannt wird, wie hier beschrieben) ein Glas umfassen, dass eine Zusammensetzung aufweist, welche Folgendes in Molprozent (Mol-%) umfasst:
  • SiO2 im Bereich von ungefähr 40 bis ungefähr 80, Al2O3 im Bereich von ungefähr 10 bis ungefähr 30, B2O3 im Bereich von ungefähr 0 bis ungefähr 10, R2O im Bereich von ungefähr 0 bis ungefähr 20, und RO im Bereich von ungefähr 0 bis ungefähr 15. In manchen Fällen kann die Zusammensetzung entweder eines oder beides von ZrO2 im Bereich von ungefähr 0 Mol-% bis ungefähr 5 Mol-% und P2O5 im Bereich von ungefähr 0 bis ungefähr 15 Mol-% umfassen. TiO2 kann von ungefähr 0 Mol% bis ungefähr 2 Mol-% vorhanden sein.
  • In einigen Ausführungsformen kann die Glaszusammensetzung SiO2 in einer Menge in Mol-% im Bereich von ungefähr 45 bis ungefähr 80, von ungefähr 45 bis ungefähr 75, von ungefähr 45 bis ungefähr 70, von ungefähr 45 bis ungefähr 65, von ungefähr 45 bis ungefähr 60, von ungefähr 45 bis ungefähr 65, von ungefähr 45 bis ungefähr 65, von ungefähr 50 bis ungefähr 70, von ungefähr 55 bis ungefähr 70, von ungefähr 60 bis ungefähr 70, von ungefähr 70 bis ungefähr 75, von ungefähr 70 bis ungefähr 72, oder von ungefähr 50 bis ungefähr 65 umfassen.
  • In einigen Ausführungsformen kann die Glaszusammensetzung Al2O3 in einer Menge in Mol-% im Bereich von ungefähr 5 bis ungefähr 28, von ungefähr 5 bis ungefähr 26, von ungefähr 5 bis ungefähr 25, von ungefähr 5 bis ungefähr 24, von ungefähr 5 bis ungefähr 22, von ungefähr 5 bis ungefähr 20, von ungefähr 6 bis ungefähr 30, von ungefähr 8 bis ungefähr 30, von ungefähr 10 bis ungefähr 30, von ungefähr 12 bis ungefähr 30, von ungefähr 14 bis ungefähr 30, von ungefähr 16 bis ungefähr 30, von ungefähr 18 bis ungefähr 30, von ungefähr 18 bis ungefähr 28, oder von ungefähr 12 bis ungefähr 15 umfassen.
  • In einer oder mehreren Ausführungsformen kann die Glaszusammensetzung B2O3 in einer Menge in Mol-% im Bereich von ungefähr 0 bis ungefähr 8, von ungefähr 0 bis ungefähr 6, von ungefähr 0 bis ungefähr 4, von ungefähr 0,1 bis ungefähr 8, von ungefähr 0,1 bis ungefähr 6, von ungefähr 0,1 bis ungefähr 4, von ungefähr 1 bis ungefähr 10, von ungefähr 2 bis ungefähr 10, von ungefähr 4 bis ungefähr 10, von ungefähr 2 bis ungefähr 8, von ungefähr 0,1 bis ungefähr 5, oder von ungefähr 1 bis ungefähr 3 umfassen. In manchen Fällen kann die Glaszusammensetzung im Wesentlichen frei von B2O3 sein. Wie hier verwendet, bedeutet der Ausdruck „im Wesentlichen frei“ in Bezug auf die Komponenten der Glaszusammensetzung, dass die Komponente nicht aktiv oder mit Absicht den Glaszusammensetzungen während der anfänglichen Dosierung oder dem anschließenden Ionenaustausch hinzugefügt wird, aber als eine Verunreinigung vorhanden sein kann. Zum Beispiel kann ein Glas derart beschrieben werden, dass es im Wesentlichen frei von einer Komponente ist, wenn die Komponente in einer Menge von weniger als ungefähr 0,1001 Mol-% vorhanden ist.
  • In einigen Ausführungsformen kann die Glaszusammensetzung ein oder mehrere Erdalkalimetalloxide, wie z.B. MgO, CaO und ZnO umfassen. In einigen Ausführungsformen kann die Gesamtmenge des einen oder der mehreren Erdalkalimetalloxide eine von null verschiedene Menge bis zu ungefähr 15 Mol-% sein. In einer oder mehreren konkreten Ausführungsformen kann die Gesamtmenge eines beliebigen der Erdalkalimetalloxide eine von null verschiedene Menge bis zu ungefähr 14 Mol-%, bis zu ungefähr 12 Mol-%, bis zu ungefähr 10 Mol-%, bis zu ungefähr 8 Mol-%, bis zu ungefähr 6 Mol-%, bis zu ungefähr 4 Mol-%, bis zu ungefähr 2 Mol-% oder bis zu ungefähr 1,5 Mol-% sein. In einigen Ausführungsformen kann die Gesamtmenge in Mol-% des einen oder der mehreren Erdalakalimetalloxide im Bereich von ungefähr 0,1 bis 10, von ungefähr 0,1 bis 8, von ungefähr 0,1 bis 6, von ungefähr 0,1 bi 5, von ungefähr 1 bis 10, von ungefähr 2 bis 10 oder von ungefähr 2,5 bis 8 sein. Die Menge von MgO kann im Bereich von ungefähr 0 Mol-% bis ungefähr 5 Mol-% (z.B. von ungefähr 2 Mol-% bis ungefähr 4 Mol-%) sein. Die Menge von ZnO kann im Bereich von ungefähr 0 bis ungefähr 2 Mol-% liegen. Die Menge von CaO kann von ungefähr 0 bis ungefähr 2 Mol-% betragen. In einer oder mehreren Ausführungsformen kann die Glaszusammensetzung MgO umfassen und kann im Wesentlichen frei von CaO und ZnO sein. In einer Abwandlung kann die Glaszusammensetzung ein beliebiges von CaO oder ZnO umfassen und kann im Wesentlichen frei von den anderen von MgO, CaO und ZnO sein. In einer oder mehreren konkreten Ausführungsformen kann die Glaszusammensetzung lediglich zwei der Erdalkalimetalloxide von MgO, CaO und ZnO umfassen und kann im Wesentlichen frei von dem dritten der Erdalkalinealloxide sein.
  • Die Gesamtmenge, in Mol-%, von Alkalimetalloxiden R2O in der Glaszusammensetzung kann im Bereich von ungefähr 5 bis ungefähr 20, von ungefähr 5 bis ungefähr 18, von ungefähr 5 bis ungefähr 16, von ungefähr 5 bis ungefähr 15, von ungefähr 5 bis ungefähr 14, von ungefähr 5 bis ungefähr 12, von ungefähr 5 bis ungefähr 10, von ungefähr 5 bis ungefähr 8, von ungefähr 5 bis ungefähr 20, von ungefähr 6 bis ungefähr 20, von ungefähr 7 bis ungefähr 20, von ungefähr 8 bis ungefähr 20, von ungefähr 9 bis ungefähr 20, von ungefähr 10 bis ungefähr 20, von ungefähr 6 bis ungefähr 13, oder von ungefähr 8 bis ungefähr 12 liegen.
  • In einer oder mehreren Ausführungsformen umfasst die Glaszusammensetzung Na2O in einer Menge im Bereich von ungefähr 0 Mol-% bis ungefähr 18 Mol-%, von ungefähr 0 Mol-% bis ungefähr 16 Mol-% oder von ungefähr 0 Mol-% bis ungefähr 14 Mol-%, von ungefähr 0 Mol-% bis ungefähr 10 Mol-%, von ungefähr 0 Mol-% bis ungefähr 5 Mol-%, von ungefähr 0 Mol-% bis ungefähr 2 Mol-%, von ungefähr 0,1 Mol-% bis ungefähr 6 Mol-%, von ungefähr 0,1 Mol-% bis ungefähr 5 Mol-%, von ungefähr 1 Mol-% bis ungefähr 5 Mol-%, von ungefähr 2 Mol-% bis ungefähr 5 Mol-%, oder von ungefähr 10 Mol-% bis ungefähr 20 Mol-%.
  • In einigen Ausführungsformen wird die Menge von Li2O und Na2O auf eine bestimmte Menge oder ein bestimmtes Verhältnis gesteuert, um Formbarkeit und Ionenaustauschbarkeit abzuwägen. Wenn zum Beispiel die Menge von Li2O steigt, kann die Liquidusviskisität reduziert werden, was verhindert, dass manche Ausbildungsverfahren verwendet werden; in solchen Glaszusammensetzungen werden jedoch zu tieferen DOC-Niveaus Ionen ausgetauscht, wie hier beschrieben. Die Menge von Na2O kann die Liquidusviskosität modifizieren, aber sie kann einen Ionenaustausch bis zu tieferen DOC-Ebenen verhindern.
  • In einer oder mehreren Ausführungsformen kann die Glaszusammensetzung K2O in einer Menge umfassen, die kleiner als ungefähr 5 Mol-%, kleiner als ungefähr 4 Mol-%, kleiner als ungefähr 3 Mol-%, kleiner als ungefähr 2 Mol-%, oder kleiner als ungefähr 1 Mol-% ist. In einer oder mehreren alternativen Ausführungsformen kann die Glaszusammensetzung im Wesentlichen frei, wie hier definiert, von K2O sein.
  • In einer oder mehreren Ausführungsformen kann die Glaszusammensetzung Li2O in einer Menge von ungefähr 0 Mol-% bis ungefähr 18 Mol-%, von ungefähr 0 Mol-% bis ungefähr 15 Mol-% oder von ungefähr 0 Mol-% bis ungefähr 10 Mol-%, von ungefähr 0 Mol-% bis ungefähr 8 Mol-%, von ungefähr 0 Mol-% bis ungefähr 6 Mol-%, von ungefähr 0 Mol-% bis ungefähr 4 Mol-% oder von ungefähr 0 Mol-% bis ungefähr 2 Mol-% umfassen. In einigen Ausführungsformen kann die Glaszusammensetzung Li2O in einer Menge ungefähr 2 Mol% bis ungefähr 10 Mol-%, von ungefähr 4 Mol-% bis ungefähr 10 Mol-%, von ungefähr 6 Mol-% bis ungefähr 10 Mol, oder von ungefähr 5 Mol-% bis ungefähr 8 Mol-% umfassen. In einer oder mehreren alternativen Ausführungsformen kann die Glaszusammensetzung im Wesentlichen frei, wie hier definiert, von Li2O sein.
  • In einer oder mehreren Ausführungsformen kann die Glaszusammensetzung Fe2O3 umfassen. In solchen Ausführungsformen kann Fe2O3 in einer Menge von weniger als ungefähr 1 Mol-%, weniger als ungefähr 0,9 Mol-%, weniger als ungefähr 0,8 Mol-%, weniger als ungefähr 0,7 Mol-%, weniger als ungefähr 0,6 Mol-%, weniger als ungefähr 0,5 Mol-%, weniger als ungefähr 0,4 Mol-%, weniger als ungefähr 0,3 Mol-%, weniger als ungefähr 0,2 Mol-%, weniger als ungefähr 0,1 Mol-% und allen Bereichen und Teilbereichen dazwischen vorhanden sein. In einer oder mehreren alternativen Ausführungsformen kann die Glaszusammensetzung im Wesentlichen frei, wie hier definiert, von Fe2O3 sein.
  • In einer oder mehreren Ausführungsformen kann die Glaszusammensetzung ZrO2 umfassen. In solchen Ausführungsformen kann ZrO2 in einer Menge von weniger als ungefähr 1 Mol-%, weniger als ungefähr 0,9 Mol-%, weniger als ungefähr 0,8 Mol-%, weniger als ungefähr 0,7 Mol-%, weniger als ungefähr 0,6 Mol-%, weniger als ungefähr 0,5 Mol-%, weniger als ungefähr 0,4 Mol-%, weniger als ungefähr 0,3 Mol-%, weniger als ungefähr 0,2 Mol-%, weniger als ungefähr 0,1 Mol-% und allen Bereichen und Teilbereichen dazwischen vorhanden sein. In einer oder mehreren alternativen Ausführungsformen kann die Glaszusammensetzung im Wesentlichen frei, wie hier definiert, von ZrO2 sein.
  • In einer oder mehreren Ausführungsformen kann die Glaszusammensetzung P2O5 in einem Bereich von ungefähr 0 Mol-% bis ungefähr 10 Mol-%, von ungefähr 0 Mol-% bis ungefähr 8 Mol-%, von ungefähr 0 Mol-% bis ungefähr 6 Mol-%, von ungefähr 0 Mol-% bis ungefähr 4 Mol-%, von ungefähr 0,1 Mol-% bis ungefähr 10 Mol-%, von ungefähr 0,1 Mol-% bis ungefähr 8 Mol-%, von ungefähr 4 Mol-% bis ungefähr 8 Mol-%, oder von ungefähr 5 Mol-% bis ungefähr 8 Mol-% umfassen. In manchen Fällen kann die Glaszusammensetzung im Wesentlichen frei von P2O5 sein.
  • In einer oder mehreren Ausführungsformen kann die Glaszusammensetzung TiO2 umfassen. In solchen Ausführungsformen kann TiO2 in einer Menge von weniger als ungefähr 6 Mol-%, weniger als ungefähr 4 Mol-%, weniger als ungefähr 2 Mol-%, oder weniger als ungefähr 1 Mol-% vorhanden sein. In einer oder mehreren alternativen Ausführungsformen kann die Glaszusammensetzung im Wesentlichen frei, wie hier definiert, von TiO2 sein. In einer oder mehreren Ausführungsformen ist TiO2 in einer Menge im Bereich von ungefähr 0,1 Mol-% bis ungefähr 6 Mol-% oder von ungefähr 0,1 Mol-% bis ungefähr 4 Mol-% vorhanden.
  • In einigen Ausführungsformen kann die Glaszusammensetzung verschiedene Zusammensetzungsbeziehungen umfassen. Zum Beispiel kann die Glaszusammensetzung ein Verhältnis der Menge von Li2O (in Mol-%) zu der Gesamtmenge von R2O (in Mol-%) im Bereich von ungefähr 0,5 bis ungefähr 1 umfassen. In einigen Ausführungsformen kann die Glaszusammensetzung eine Differenz zwischen der Gesamtmenge von R2O (in Mol-%) und der Menge von Al2O3 (in Mol-%) im Bereich von ungefähr -5 bis ungefähr 0 umfassen. In manchen Fällen kann die Glaszusammensetzung eine Differenz zwischen der Gesamtmenge von RxO (in Mol-%) und der Menge von Al2O3 im Bereich von ungefähr 0 bis ungefähr 3 umfassen. Die Glaszusammensetzung einer oder mehrerer Ausführungsformen kann ein Verhältnis der Menge von MgO (in Mol-%) zur Gesamtmenge von RO (in Mol-%) im Bereich von ungefähr 0 bis ungefähr 2 aufweisen.
  • In manchen Ausführungsformen kann die Glaszusammensetzung im Wesentlichen frei von Keimbildnern sein. Beispiele für typische Keimbildner umfassen TiO2 und ZrO2 und dergleichen. Keimbildner können bezüglich der Funktion dahingehend beschrieben werden, dass Keimbildner Bestandteile im Glas sind, welche das Ausbilden von Kristalliten im Glas initiieren können.
  • In einigen Ausführungsformen können die für das Glassubstrat verwendeten Zusammensetzungen mit 0 bis 2 Mol-% von zumindest einem Keimbildner dosiert werden, die aus einer Gruppe ausgewählt werden, die Na2SO4, NaCl, NaF, NaBr, K2SO4, KCl, KF, KBr und SnO2 umfasst. Die Glaszusammensetzung gemäß einer oder mehreren Ausführungsformen kann ferner SnO2 im Bereich von ungefähr 0 bis ungefähr 2, von ungefähr 0 bis ungefähr 1, von ungefähr 0,1 bis ungefähr 2, von ungefähr 0,1 bis ungefähr 1 oder von ungefähr 1 bis ungefähr 2 umfassen. Die hier offenbarten Glaszusammensetzungen können im Wesentlichen frei von As2O3 und/oder Sb2O3 sein.
  • In einer oder mehreren Ausführungsformen kann die Zusammensetzung insbesondere 62 Mol-% bis 75 Mol-% SiO2; 10,5 Mol-% bis ungefähr 17 Mol-% Al2O3; 5 Mol-% bis ungefähr 13 Mol-% Li2O; 0 Mol-% bis ungefähr 4 Mol-% ZnO; 0 Mol-% bis ungefähr 8 Mol-% MgO; 2 Mol-% bis ungefähr 5 Mol-% TiO2; 0 Mol-% bis ungefähr 4 Mol-% B2O3; 0 Mol-% bis ungefähr 5 Mol-% Na2O; 0 Mol-% bis ungefähr 4 Mol-% K2O; 0 Mol-% bis ungefähr 2 Mol-% ZrO2; 0 Mol-% bis ungefähr 7 Mol-% P2O5; 0 Mol-% bis ungefähr 0,3 Mol-% Fe2O3; 0 Mol-% bis ungefähr 2 Mol-% MnOx; und 0,05 Mol-% bis ungefähr 0,2 Mol-% SnO2 umfassen. In einer oder mehreren Ausführungsformen kann die Zusammensetzung 67 Mol-% bis 74 Mol-% SiO2; 11 Mol-% bis ungefähr 15 Mol-% Al2O3; 5,5 Mol-% bis ungefähr 9 Mol-% Li2O; 0,5 Mol-% bis ungefähr 2 Mol-% ZnO; 2 Mol-% bis ungefähr 4,5 Mol-% MgO; 3 Mol-% bis ungefähr 4,5 Mol-% TiO2; 0 Mol-% bis ungefähr 2,2 Mol-% B2O3; 0 Mol-% bis ungefähr 1 Mol-% Na2O; 0 Mol-% bis ungefähr 1 Mol-% K2O; 0 Mol-% bis ungefähr 1 Mol-% ZrO2; 0 Mol-% bis ungefähr 4 Mol-% P2O5; 0 Mol-% bis ungefähr 0,1 Mol-% Fe2O3; 0 Mol-% bis ungefähr 1,5 Mol-% MnOx; und 0,08 Mol-% bis ungefähr 0,16 Mol-% SnO2 umfassen. In einer oder mehreren Ausführungsformen kann die Zusammensetzung 70 Mol-% bis 75 Mol-% SiO2; 10 Mol-% bis ungefähr 15 Mol-% Al2O3; 5 Mol-% bis ungefähr 13 Mol-% Li2O; 0 Mol-% bis ungefähr 4 Mol-% ZnO; 0,1 Mol-% bis ungefähr 8 Mol-% MgO; 0 Mol-% bis ungefähr 5 Mol-% TiO2; 0,1 Mol-% bis ungefähr 4 Mol-% B2O3; 0,1 Mol-% bis ungefähr 5 Mol-% Na2O; 0 Mol-% bis ungefähr 4 Mol-% K2O; 0 Mol-% bis ungefähr 2 Mol-% ZrO2; 0 Mol-% bis ungefähr 7 Mol-% P2O3; 0 Mol-% bis ungefähr 0,3 Mol-% Fe2O3; 0 Mol-% bis ungefähr 2 Mol-% MnOx; und 0,05 Mol-% bis ungefähr 0,2 Mol-% SnO2 umfassen.
  • In einer oder mehreren Ausführungsformen kann die Zusammensetzung 52 Mol-% bis 63 Mol-% SiO2; 11 Mol-% bis ungefähr 15 Mol-% Al2O3; 5,5 Mol-% bis ungefähr 9 Mol-% Li2O; 0,5 Mol-% bis ungefähr 2 Mol-% ZnO; 2 Mol-% bis ungefähr 4,5 Mol-% MgO; 3 Mol-% bis ungefähr 4,5 Mol-% TiO2; 0 Mol-% bis ungefähr 2,2 Mol-% B2O3; 0 Mol-% bis ungefähr 1 Mol-% Na2O; 0 Mol-% bis ungefähr 1 Mol-% K2O; 0 Mol-% bis ungefähr 1 Mol-% ZrO2; 0 Mol-% bis ungefähr 4 Mol-% P2O5; 0 Mol-% bis ungefähr 0,1 Mol-% Fe2O3; 0 Mol-% bis ungefähr 1,5 Mol-% MnOx; und 0,08 Mol-% bis ungefähr 0,16 Mol-% SnO2 umfassen.
  • Andere Beispielzusammensetzungen von auf Glas basierenden Gegenständen, bevor sie chemisch vorgespannt werden, wie hier beschrieben, sind in Tabelle 1 dargestellt.
  • Tabelle 1 Beispielzusammensetzungen vor chemischer Vorspannung.
    Mol% Bsp. A Bsp. B Bsp. C Bsp. D Bsp. E Bsp. F
    SiO2 71,8 69,8 69,8 69,8 69,8 69,8
    Al2O3 13,1 13 13 13 13 13
    B2O3 2 2,5 4 2,5 2,5 4
    Li2O 8 8,5 8 8,5 8,5 8
    MgO 3 3,5 3 3,5 1,5 1,5
    ZnO 1,8 2,3 1,8 2,3 2,3 1,8
    Na2O 0,4 0,4 0,4 0,4 0,4 0,4
    TiO2 0 0 0 1 1 1
    Fe2O3 0 0 0 0,8 0,8 0,8
    SnO2 0,1 0,1 0,1 0,1 0,1 0,1
    Mol-% Bsp. G Bsp. H Bsp. I Bsp. J Bsp. K Bsp. L Bsp. M Bsp. N
    SiO2 70,18 70,91 71,28 71,65 71,65 71,65 74,77 72,00
    Al2O3 12,50 12,78 12,93 13,07 13,07 13,07 10,00 12,50
    B2O3 1,91 1,95 1,98 2,00 2,00 2,00 1,99 2,00
    Li2O 7,91 7,95 7,96 7,98 6,98 5,00 6,13 6,00
    Na2O 4,43 2,43 1,42 0,41 1,41 3,40 3,97 0,50
    MgO 2,97 2,98 2,99 3,00 3,00 3,00 2,94 2,10
    ZnO 0,00 0,89 1,34 1,80 1,80 1,80 0,00 0,00
    CaO 0,00 0,00 0,00 0,00 0,00 0,00 0,05 4,90
    SnO2 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10
    Li2O/R2O 0,64 0,77 0,85 0,95 0,83 0,60 0,61 0,92
    R2O-Al2O3 -0,16 -2,41 -3,54 -4,68 -4,68 -4,67 0,10 -6,00
    RxO-Al2O3 2,81 1,47 0,79 0,12 0,12 0,13 3,09 1,00
    MgO/RO 1,00 0,77 0,69 0,63 0,63 0,63 1,00 1,00
    R2O 12,34 10,38 9,39 8,39 8,39 8,40 10,10 6,50
    RO 2,97 3,88 4,34 4,79 4,79 4,79 2,99 7,00
  • Wobei der auf Glas basierende Gegenstand eine Glaskeramik umfasst, die Kristallphasen β-Spodumen, Rutil, Gahnit oder andere bekannte Kristallphasen und Kombinationen davon umfassen können.
  • Der auf Glas basierende Gegenstand kann im Wesentlichen plan sein, obwohl andere Ausführungsformen ein gekrümmtes oder auf eine andere Weise geformtes oder gebildetes Substrat verwenden können. In manchen Fällen kann der auf Glas basierende Gegenstand eine 3D- oder eine 2,5D-Form aufweisen. Der auf Glas basierende Gegenstand kann im Wesentlichen optisch klar, durchsichtig und frei von Lichtstreuung sein. Der auf Glas basierende Gegenstand kann einen Brechungsindex im Bereich von ungefähr 1,45 bis ungefähr 1,55 aufweisen. Wie hier verwendet, beziehen sich die Brechungsindexwerte auf eine Wellenlänge von 550 nm.
  • Zusätzlich oder alternativ kann die Dicke des auf Glas basierenden Gegenstands entlang einer oder mehrerer Abmessungen konstant sind oder entlang einer oder mehrerer seiner Abmessungen aus ästhetischen und/oder Funktionsgründen variieren. Zum Beispiel können die Ränder des auf Glas basierenden Gegenstands im Vergleich zu zentraleren Bereichen des auf Glas basierenden Gegenstands dicker sein. Die Längen-, Breiten- und Dickenabmessung des auf Glas basierenden Gegenstands können auch gemäß der Anwendung oder dem Gebrauch des Gegenstands variieren.
  • Der auf Glas basierende Gegenstand kann durch die Weise charakterisiert werden, auf die er ausgebildet wird. Wo der auf Glas basierende Gegenstand zum Beispiel als Floatformbar (d.h. durch einen Float-Prozess gebildet), Downdraw-formbar und insbesondere Fusions-formbar oder Slot-Draw-formbar (d.h. durch einen Downdraw-Prozess gebildet, wie z.B. einen Fusionsdraw-Prozess oder einen Slot-Draw-Prozess) charakterisiert werden kann.
  • Ein Float-formbarer, auf Glas basierender Gegenstand kann durch glatte Flächen charakterisiert werden und eine gleichmäßige Dicke wird durch floaten eines geschmolzenen Glases auf einem Bett aus geschmolzenen Metall, typischerweise Zinn, gefertigt. In einem Beispielprozess bildet geschmolzenes Glas, das auf die Fläche des geschmolzenen Zinnbettes zugeführt wird, ein schwimmendes Glasband. Wenn das Glasband entlang des Zinnbades fließt, wird die Temperatur allmählich verringert, bis sich das Glasband zu einem auf Glas basierenden Festkörpergegenstand verfestigt, der vom Zinn auf Rollen angehoben werden kann. Nach dem Bad kann der auf Glas basierende Gegenstand weiter abgekühlt und geglüht werden, um innere Spannungen zu reduzieren. Wenn der auf Glas basierende Gegenstand eine Glaskeramik ist, kann der in dem Float-Verfahren gebildete, auf Glas basierende Gegenstand einem Keramisierungsprozess unterzogen werden, durch den eine oder mehrere kristalline Phasen erzeugt werden.
  • Downdraw-Prozesse erzeugen auf Glas basierende Gegenstände, die eine gleichmäßige Dicke aufweisen und die vergleichsweise unberührte Oberflächen besitzen. Da die durchschnittliche Biegefestigkeit des auf Glas basierenden Gegenstands durch die Menge und Größe von Oberflächendefekten gesteuert wird, weist eine unberührte Fläche, die einen minimalen Kontakt aufweist, eine höhere Anfangsfestigkeit auf. Wenn dieser auf Glas basierende Gegenstand mit hoher Festigkeit dann weiter (z.B. chemisch) vorgespannt wird, kann die resultierende Festigkeit höher sein als jene eines auf Glas basierenden Gegenstands mit einer Oberfläche, die geschliffen und poliert wurde. Auf Glas basierende Downdraw-Gegenstände können zu einer Dicke von weniger als ungefähr 2 mm gestreckt werden. Außerdem weisen auf Glas basierende Downdraw-Gegenstände eine sehr flache, glatte Fläche auf, die ohne ein kostspieliges Schleifen und Polieren in Endanwendungen verwendet werden kann. Wenn der auf Glas basierende Gegenstand eine Glaskeramik ist, kann der im Downdraw-Verfahren gebildete auf Glas basierende Gegenstand einem Keramisierungsprozess unterzogen werden, durch den eine oder mehrere kristalline Phasen erzeugt werden.
  • Der Fusionsdraw-Prozess verwendet zum Beispiel einen Ziehbehälter, der einen Kanal zur Aufnahme von geschmolzenem Glasrohmaterial aufweist. Der Kanal weist Wehre auf, die auf beiden Seiten des Kanals oben entlang der Länge des Kanals offen sind. Wenn der Kanal mit geschmolzenem Material gefüllt wird, läuft das geschmolzene Glas über die Wehre über. Aufgrund der Schwerkraft fließt das geschmolzene Glas als zwei fließende Glasfilme an den Außenflächen des Ziehbehälters herunter. Diese Außenflächen des Ziehbehälters erstrecken sich nach unten und nach innen, so dass sie sich an einem Rand unterhalb des Ziehbehälters verbinden. Die beiden fließenden Glasfilme verbinden sich an dieser Kante, um zu verschmelzen und einen einzigen fließenden auf Glas basierenden Gegenstand zu bilden. Das Fusionsdraw-Verfahren bietet den Vorteil, dass keine der Außenflächen des resultierenden auf Glas basierenden Gegenstands mit irgendeinem Teil der Vorrichtung in Kontakt kommt, weil die zwei Glasfilme, die über den Kanal fließen, miteinander verschmelzen. Daher sind die Oberflächeneigenschaften des auf Glas basierenden Fusionsdraw-Gegenstands durch einen solchen Kontakt nicht beeinflusst. Wenn der auf Glas basierende Gegenstand eine Glaskeramik ist, kann der in dem Fusionsverfahren gebildete auf Glas basierende Gegenstand einem Keramisierungsprozess unterzogen werden, durch den eine oder mehrere kristalline Phasen erzeugt werden.
  • Der Slot-Draw-Prozess unterscheidet sich von dem Fusions-Draw-Verfahren. Bei Slot-Draw-Prozessen wird das geschmolzene Rohglasmaterial an einen Ziehbehälter bereitgestellt. Die Unterseite des Ziehbehälters weist einen offenen Schlitz mit einer Düse auf, die sich über die Länge des Schlitzes erstreckt. Das geschmolzene Glas fließt durch den Schlitz/die Düse und wird nach unten als ein kontinuierlicher, auf Glas basierender Gegenstand in einen Glühbereich gezogen. Wenn der auf Glas basierende Gegenstand eine Glaskeramik ist, kann der in dem Slot-Draw-Verfahren gebildete, auf Glas basierende Gegenstand einem Keramisierungsprozess unterzogen werden, durch den eine oder mehrere kristalline Phasen erzeugt werden.
  • In einigen Ausführungsformen kann der auf Glas basierende Gegenstand unter Verwendung eines Dünnrollprozesses ausgebildet werden, wie in US-Patent Nr. 8,713,972 mit dem Titel „Precision Glass Roll Forming Process and Apparatus“, US-Patent Nr. 9,003,835 mit dem Titel „Precision Roll Forming of Textured Sheet Glass“, US-Patentveröffentlichung Nr. 20150027169 mit dem Titel „Methods And Apparatus For Forming A Glass Ribbon“, und US-Patentveröffentlichung Nr. 20050099618 mit dem Titel „Apparatus and Method for Forming Thin Glass Articles“ beschrieben, deren Inhalte hier durch Rückbezug in ihrer Gänze aufgenommen sind. Insbesondere kann der auf Glas basierende Gegenstand durch Folgendes ausgebildet werden: Zuführen eines vertikalen Stroms aus geschmolzenem Glas, Ausbilden des zugeführten Stroms aus geschmolzenem Glas oder Glaskeramik mit einem Paar Formwalzen, die auf einer Oberflächentemperatur von ungefähr 500°C oder höher oder ungefähr 600°C oder höher gehalten werden, um ein Glasband zu bilden, das eine gebildete Dicke aufweist, Dimensionieren des ausgebildeten Glasbandes mit einem Paar Größenbemessungswalzen, die auf einer Oberflächentemperatur von ungefähr 400°C oder darunter gehalten werden, um ein bemessenes Glasband, das eine gewünschte Dicke, die geringer ist als die ausgebildete Dicke, und eine gewünschte Dickengleichmäßigkeit aufweist, herzustellen. Die zum Ausbilden des Glasbandes verwendete Vorrichtung kann umfassen: eine Glaszufuhrvorrichtung zum Zuführen eines zugeführten Stroms von geschmolzenem Glas; ein Paar Formwalzen, die auf einer Oberflächentemperatur von ungefähr 500°C oder höher gehalten werden, wobei die Formwalzen eng nebeneinander beabstandet sind und einen Glasformspalt zwischen den Formwalzen definieren, wobei der Glasformspalt vertikal unter der Glaszuführvorrichtung zur Aufnahme des zugeführten Stroms aus geschmolzenem Glas und Dünnen des zugeführten Stroms aus geschmolzenem Glas zwischen den Formwalzen angeordnet ist, um ein geformtes Glasband mit einer ausgebildeten Dicke zu bilden; und ein Paar von Größenbemessungswalzen, die auf einer Oberflächentemperatur von ungefähr 400°C oder niedriger gehalten werden, wobei die Größenbemessungswalzen eng nebeneinander angeordnet sind und einen Glasgrößenspalt zwischen den Größenbemessungswalzen definieren, wobei der Glasgrößenspalt senkrecht unter den Formwalzen zur Aufnahme des gebildeten Glasbands und Verdünnen des gebildeten Glasbandes angeordnet ist, um ein bemessenes Glasband, das eine gewünschte Dicke und eine gewünschte Dickengleichmäßigkeit aufweist, herzustellen.
  • In manchen Fällen kann der Dünnrollprozess verwendet werden, wo die Viskosität des Glases eine Verwendung von Fusions- oder Slot-Draw-Verfahren nicht erlaubt. Zum Beispiel kann das Dünnrollen verwendet werden, um die auf Glas basierenden Gegenstände zu bilden, wenn das Glas eine Liquidusviskosität von weniger als 100 kP aufweist.
  • Der auf Glas basierende Gegenstand kann mit Säure poliert oder auf eine andere Weise behandelt werden, um die Auswirkung von Oberflächendefekten zu entfernen oder reduzieren.
  • Ein anderer Aspekt dieser Offenbarung betrifft ein Verfahren zum Ausbilden eines Bruchbeständigen auf Glas basierenden Gegenstands. Das Verfahren umfasst ein Bereitstellen eines auf Glas basierenden Substrats, das eine erste Fläche und eine zweite Fläche aufweist, die eine Dicke von ungefähr 1 Millimeter oder weniger definieren, und Erzeugen eines Spannungsprofils in dem auf Glas basierenden Substrat, wie hier beschrieben, um den bruchbeständigen, auf Glas basierenden Gegenstand bereitzustellen. In einer oder mehreren Ausführungsformen umfasst das Erzeugen des Spannungsprofils einen Ionenaustausch einer Vielzahl von Alkaliionen in das auf Glas basierende Substrat, um eine von null verschiedene Alkalimetalloxidkonzentration auszubilden, die entlang eines wesentlichen Abschnitts der Dicke (wie hier beschrieben) oder entlang der gesamten Dicke variiert. In einem Beispiel umfasst das Erzeugen des Spannungsprofils ein Eintauchen des auf Glas basierenden Substrats in ein Salzschmelzbad, das Nitrate von Na+, K+, Rb+, Cs+ oder eine Kombination davon umfasst und eine Temperatur von ungefähr 350°C oder mehr (z.B. ungefähr 350°C bis ungefähr 500°C) aufweist. In einem Beispiel kann das Schmelzbad NaNO3 umfassen und kann eine Temperatur von ungefähr 485 °C aufweisen. In einem Beispiel kann das Bad NaNO3 umfassen und eine Temperatur von ungefähr 430 °C aufweisen. Das auf Glas basierende Substrat kann in das Bad für ungefähr 2 Stunden oder mehr, bis zu ungefähr 48 Sunden (z.B. von ungefähr 12 Stunden bis ungefähr 48 Stunden, von ungefähr 12 Stunden bis ungefähr 32 Stunden, von ungefähr 16 Stunden bis ungefähr 32 Stunden, von ungefähr 16 Stunden bis ungefähr 24 Stunden, oder von ungefähr 24 Stunden bis ungefähr 32 Stunden) eingetaucht werden.
  • In einigen Ausführungsformen kann das Verfahren eine chemische Vorspannung oder einen Ionenaustausch des auf Glas basierenden Substrats in mehr als einem Schritt unter Verwendung aufeinander folgenden Eintauchschritte in mehr als ein Bad umfassen. Zum Beispiel können zwei oder mehr Bäder sukzessive verwendet werden. Die Zusammensetzung des einen oder der mehreren Bäder kann ein einzelnes Metall (z.B. Ag+, Na+, K+, Rb+ oder Cs+) oder eine Kombination von Metallen in demselben Bad umfassen. Wenn mehr als ein Bad verwendet wird, können die Bäder die gleiche oder verschiedene Zusammensetzung und/oder Temperatur aufweisen. Die Eintauschzeiten in jedes solche Bad können gleich sein oder sie können variieren, um das gewünschte Spannungsprofil bereitzustellen.
  • In einer oder mehreren Ausführungsformen kann ein zweites Bad oder anschließende Bäder verwendet werden, um eine größere Oberflächen-CS zu erzeugen. In manchen Fällen umfasst das Verfahren ein Eintauschen des auf Glas basierenden Substrats in das zweite oder anschließende Bäder, um eine größere Oberflächen-CS zu erzeugen, ohne dass die chemische Tiefe von Schicht und/oder die DOC wesentlich beeinflusst werden. In solchen Ausführungsformen kann das zweite oder ein anschließendes Bad ein einzelnes Metall (z.B. KNO3 oder NaNO3) oder eine Mischung von Metallen (KNO3 und NaNO3) umfassen. Die Temperatur des zweiten oder eines anschließenden Bads kann maßgeschneidert werden, um die größere Flächen-CS zu erzeugen. In einigen Ausführungsformen kann die Eintauschzeit des auf Glas basierenden Substrats in das zweite oder ein anschließendes Bad ebenfalls maßgeschneidert sein, um eine größere Oberflächen-CS zu erzeugen, ohne dass die chemische Tiefe von Schicht und/oder die DOC beeinflusst werden. Zum Beispiel kann die Eintauschzeit in das zweite oder anschließende Bäder kleiner sein als 10 Stunden (z.B. ungefähr 8 Stunden oder weniger, ungefähr 5 Stunden oder weniger, ungefähr 4 Stunden oder weniger, ungefähr 2 Stunden oder weniger, ungefähr 1 Stunde oder weniger, ungefähr 30 Minuten oder weniger, ungefähr 15 Minuten oder weniger oder ungefähr 10 Minuten oder weniger).
  • In einer oder mehreren alternativen Ausführungsformen kann das Verfahren einen oder mehrere Wärmebehandlungsschritte umfassen, die in Kombination mit den hier beschriebenen Ionenaustauschprozessen verwendet werden können. Die Wärmebehandlung umfasst eine Wärmebehandlung des auf Glas basierenden Gegenstands, um ein gewünschtes Spannungsprofil zu erlangen. In einigen Ausführungsformen umfasst die Wärmebehandlung ein Ausglühen, Tempern oder Erhitzen des auf Glas basierenden Substrats auf eine Temperatur im Bereich von ungefähr 300 °C bis ungefähr 600 °C. Die Wärmebehandlung kann 1 Minute bis zu ungefähr 18 Stunden dauern. In einigen Ausführungsformen kann die Wärmebehandlung nach einem oder mehreren Ionenaustauschprozessen oder zwischen Ionenaustauschprozessen verwendet werden.
  • BEISPIELE
  • Verschiedene Ausführungsformen werden ferner anhand der folgenden Beispiele erläutert. In den Beispielen werden Beispiele, bevor sie vorgespannt werden, als „Substrate“ bezeichnet. Nachdem sie einer Vorspannung unterzogen wurden, werden die Beispiele als „Gegenstände“ oder „auf Glas basierende Gegenstände“ bezeichnet.
  • BEISPIEL 1
  • Glaskeramiksubstrate, die eine Nennzusammensetzung, wie in nachstehender Tabelle 2 gezeigt, aufweisen, wurden bereitgestellt. Die Glaskeramiksubstrate wiesen eine Dicke von 0,8 Millimeter und umfassten eine Kristallphasenanordnung, die eine feste β-Spodumen-Lösung als vorherrschende kristalline Phase und eine oder mehrere Nebenphasen, einschließlich Rutil, umfasst. Die Glaskeramiksubstrate wurden in ein Salzschmelzbad, das NaNO3 umfasst und eine Temperatur von 485 °C aufweist, für 10 Stunden (Bedingung A), 13 Stunden (Bedingung B) oder 24 (Stunden (Bedingung C), oder ein Salzschmelzbad, das NaNO3 umfasst und eine Temperatur von 430 °C aufweist, für die 2 Stunden (Vergleichsbedingung D) eingetauscht, um Glaskeramikgegenstände zu bilden. Tabelle 2 Zusammensetzung des Glaskeramiksubstrats von Beispiel 1 vor einer chemischen Vorspannung.
    Beispiel =► 1
    Oxid [Mol-%]
    SiO2 69,2
    Al2O3 12,6
    B2O3 1,8
    Li2O 7,7
    Na2O 0,4
    MgO 2,9
    ZnO 1,7
    TiO2 3,5
    SnO2 0,1
    [Li2O+Na2O+MgO+ZnO+K2O] [Al2O3+B2O3] 12,7 14,4 = 0,88
    Figure DE202015009694U1_0006
    [TiO2+SnO2] [SiO2+B2O3] 3,6 71 = 0,051
    Figure DE202015009694U1_0007
  • Die Spannungsprofile der Glaskeramikgegenstände wurden mithilfe einer Mikrosonde gemessen und sind in 5 gezeigt. Wie in 5 dargestellt, werden die Na+-Ionen beinahe in der gesamten Dicke der Gegenstände Ionen-ausgetauscht, wenn ein Bad mit einer höheren Temperatur verwendet wird (d.h. Bedingungen A bis C). In solchen Glaskeramiken ist Na2O in dem CT-Bereich in einer Menge von ungefähr 1,2 Mol-% oder mehr vorhanden. Der Glaskeramikgegenstand, der in einem Bad mit einer niedrigeren Temperatur (Vergleichsbedingung D) Ionen-ausgetauscht wurde, wies ein Spannungsprofil auf, das an bekannte Spannungsprofil erinnert.
  • BEISPIEL 2
  • Glassubstrate, die die gleiche Zusammensetzung, wie in Tabelle 2 gezeigt, und eine Dicke von 0,8 mm aufweisen, die aber eine amorphe Struktur (und keine Kristallphasen) aufwiesen, wurden chemisch vorgespannt, indem sie in ein Salzschmelzbad, das 100 % NaNO3 umfasst und eine Temperatur von ungefähr 430 °C aufweist, für unterschiedliche Zeitdauern eingetauscht wurden, um Glasgegenstände bereitzustellen. Die DoC) und der maximale CT-Wert der Glasgegenstände wurden unter Verwendung eines Streulicht-Polariskops (SCALP) gemessen. Wie in 6 dargestellt, steigt die DOC und die maximale CT mit steigender Länge des Eintauchens oder Ionenaustausches. Die größten CT-Werte wurden nach einem Eintauchen der Gläser für ungefähr 16 Stunden beobachtet.
  • Die Spannungsprofile der Glasgegenstände von Beispiel 2 wurden unter Verwendung von SCALP gemessen und sind in 7 gezeigt. Der obere Abschnitt der x-Achse, der einen positiven Spannungswert anzeigt, stellt die CT-Schicht dar, und der untere Abschnitt der x-Achse, der einen negativen Spannungswert anzeigt, stellt die CS-Werte dar. Das Spannungsprofil des Glasgegenstands, das 16 Stunden lang chemisch vorgespannt wurde, wies den größten CT-Wert (d.h. 175 MPa) und eine Form, das parabelförmig war, die im Wesentlichen keine linearen Abschnitte, in Tiefenrichtung, von 100 Mikrometern umfasste, auf. Die durch SCALP gemessene Oberflächen-CS betrug ungefähr 410 MPa. Dementsprechend beträgt das Verhältnis der maximalen CT zur Oberflächen-CS von Beispiel 2 ungefähr 0,4375.
  • BEISPIEL 3
  • Zum Vergleich wurden das Glaskeramiksubstrat von Beispiel 1 und das Glassubstrat von Beispiel 2, die jeweils eine Dicke von ungefähr 0,8 mm aufwiesen, einem chemischen Vorspannen unterzogen, indem sie in ein Salzschmelzbad von NaNO3, das eine Temperatur von 350 °C aufwies, für 3,5 Stunden (Beispiel 3A bzw. 3B) eingetauscht wurden. Die in 8 dargestellten resultierenden Spannungsprofile des Glaskeramikgegenstands und des Glasgegenstands erinnern an eine Fehlerfunktion (Erfc) oder eine quasilineare Form. Des Weiteren ist die CS-Schichttiefe kleiner als die Tiefe des Alkaliions, das in das Glas oder die Glaskeramik eingetauscht wurde (oder die chemische Ionenaustauschtiefe).
  • Als das Glaskeramiksubstrat von Beispiel 1 und das Glassubstrat von Beispiel 2, die jeweils eine Dicke von ungefähr 0,8 mm aufwiesen, dem hier beschriebenen chemischen Vorspannen unterzogen wurden, in dem sie in Salzschmelzbad von NaNO3, das eine Temperatur von 430 °C aufwies, 24 Stunden lang (Beispiel 3C bzw. 3D) angetaucht wurden, wiesen die resultierenden auf Glas basierenden Gegenstände Metalloxidkonzentrationsprofile (durch EPMA erlangt), wie in 9 dargestellt. Die Metalloxidkonzentrationsprofile sind parabelförmig und zeigen einen Ionenaustausch von Na+-Ionen in der gesamten Dicke. Die chemischen Profile wurden unter Verwendung von EMPA gemessen und die chemische Tiefe von Na2O-Diffusion ist derart gezeigt, dass sie größer gleich 400 Mikrometer ist. Des Weiteren ist Na2O in einer Konzentration von ungefähr 1 Mol-% oder mehr in der gesamten Dicke, einschließlich in der CT-Schicht, vorhanden. Die resultierenden Glaskeramikgegenstände von Beispiel 3D zeigten eine überlegene Bruchbeständigkeit in einem Falltest, in dem die Glaskeramiksubstrate in ein identisches Mobiltelefongehäuse eingebaut wurden. Insbesondere wurden fünf Proben von Beispiel 3D in einer mobilen Telefonvorrichtung eingebaut und auf ein Sandpapier für nacheinanderfolgende Fallvorgänge, beginnend bei einer Höhe von 50 cm, fallengelassen. Nachdem jede Probe den Fall von einer Höhe überlebt hat, wurde sie erneut von einer erhöhten Höhe fallengelassen, bis sie einen Bruch aufwies, wobei zu dem Zeitpunkt die Fehlerhöhe jener Probe in 9A aufgezeichnet wurde. Beispiel 3D wies eine durchschnittliche Ausfallhöhe von 172,5 cm.
  • 10 zeigt Spannungsprofile eines auf Glas basierenden Substrats, das gemäß an sich bekannten Prozessen chemisch vorgespannt wurde und eines auf Glas basierenden Substrats, das gemäß den hier beschriebenen Verfahren chemisch vorgespannt wurde. Wie in 10 dargestellt, weist das Spannungsprofil der auf Glas basierenden Gegenstände der hier beschriebenen Ausführungsformen eine Form auf, die im Wesentlichen frei von linearen Segmenten (die eine Länge oder eine absolute Tiefe aufweisen, die größer ist als 50 Mikrometer) sind, und weist eine DOC von ungefähr 0,2•t auf, während das an sich bekannte Spannungsprofil einen im Wesentlichen linearen Abschnitt von einer Tiefe von ungefähr 0,1 Millimeter bis ungefähr 0,7 Millimeter (für eine Gesamtlänge von ungefähr 0,6 Millimeter oder 600 Mikrometer) aufweist. Das an sich bekannte Spannungsprofil weist einen niedrigeren CT-Wert und eine niedrigere DOC auf.
  • BEISPIEL 4
  • Glassubstrate (von denen jedes eine Dicke von ungefähr 1 mm aufwies), die die Zusammensetzung von Tabelle 2 aufwiesen, wurden einer chemischen Vorspannung unterzogen, indem sie in ein erste Salzschmelzbad von NaNO3, das eine Temperatur von 430 °C aufwies, für 24 Stunden eingetaucht wurden. Ein auf Glas basierender Gegenstand wurde keinen zusätzlichen Vorspannungsschritten unterzogen (Beispiel 4A). Drei auf Glas basierende Gegenstände wurden einem zweiten Vorspannungsschritt unterzogen, indem sie in ein zweites Salzschmelzbad von KNO3, das eine Temperatur von ungefähr 430 °C aufwies, entweder für 0,75 Stunden, 4 Stunden oder 8 Stunden (jeweils Beispiele 4B, 4C bzw. 4D) eingetaucht wurden. Die Spannungsprofile, wie durch SCALP gemessen, der resultierenden auf Glas basierenden Gegenstände sind in 11 dargestellt, wobei die Tiefe der Dicke der auf Glas basierenden Gegenstände auf der x-Achse dargestellt ist und Spannung auf der y-Achse dargestellt ist. Die positiven Spannungswerte sind CT-Werte und die negativen Spannungswerte sind CS-Werte. Räumliche Auflösung des Instruments verhindert eine Messung der CS, die mit dem zweiten KNO3-Ionenaustauschschritt assoziiert ist. Die auf Glas basierenden Gegenstände von Beispielen 4A und 4B wiesen ähnliche Profile auf. Die auf Glas basierenden Gegenstände von Beispielen 4C und 4D wiesen eine sich verringernde CT (im Vergleich mit Beispielen 4A und 4B) und eine sich verringernde CS (im Vergleich mit Beispielen 4A und 4B) im Laufe der Zeit und nach dem Eintauschen beim zweiten Vorspannungsschritt auf. Die auf Glas basierenden Gegenstände von Beispielen 4C und 4D wiesen auch eine vergrößerte DOC im Vergleich mit Beispielen 4A und 4B auf, und solche DOC-Werte waren größer als 0,2•t.
  • 12 zeigt die gespeicherte Zugenergie in J/m2 für jedes der Beispiele 4B bis 4D, die größer sind als 15 J/m2 in Abhängigkeit von der Eintauchzeit in dem zweiten Salzschmelzbad von KNO3. Die gespeicherte Zugenergie kann aus den gemessenen SCALP-Spannungsprofildaten und unter Verwendung von der vorstehenden Gleichung (3) berechnet werden.
  • 13 und 14 zeigen die Konzentrationsprofile von jedem von K2O und Na2O als eine Funktion der Tiefe (in Mikrometern) für jedes der Beispiele 4B bis 4D. Wie in 13 dargestellt, beträgt die chemische Tiefe von K2O 3 Mikrometer (Bsp. 4B, Eintauchen für 0,75 Stunden in ein KNO3-Bad),
    6 Mikrometer (Bsp. 4C, Eintauchen für 4 Stunden in ein KNO3-BAd) und 5 Mikrometer (Bsp. 4D, Eintauchen für 8 Stunden in ein KNO3-Bad). Wie in 14 dargestellt, durchdringt Na2O die gesamte Tiefe und weist eine Konzentration von ungefähr 1 Mol-% oder mehr für jedes der Beispiele 4B bis 4D entlang der gesamten Tiefe des auf Glas basierenden Gegenstands.
  • Beispiele 4E und 4F umfassten Glassubstrate (jeweils eine Dicke von ungefähr 1 mm aufweisend), die die Zusammensetzung von Tabelle 2 aufwiesen, die einem chemischen Vorspannen unterzogen wurden, indem sie in ein erstes Salzschmelzbad von NaNO3, das eine Temperatur von 430 °C aufwies, für 24 Stunden eingetaucht wurden, worauf eine Wärmebehandlung auf eine Temperatur von 430 °C in Luft für 4 Stunden bzw. 8.25 Stunden folgte. Die Spannungsprofile der auf Glas basierenden Gegenstände von Beispielen 4E, 4F sind in 15 dargestellt, wobei die Spannungsprofile für Beispiele 4A, 4C und 4D zum Vergleich gezeigt sind. 16 zeigt dasselbe Diagramm wie 15 mit einem kleineren Maßstab, um die Unterschiede der Spannungsprofile an oder in der Nähe einer Tiefe von 0,5•t zu veranschaulichen.
  • BEISPIEL 5
  • Glassubstrate (von denen jedes eine Dicke von ungefähr 1 mm aufwies), die die Zusammensetzung von Tabelle 2 aufwiesen, wurden einer chemischen Vorspannung unterzogen, indem sie in ein erste Salzschmelzbad von NaNO3, das eine Temperatur von 430 °C aufwies, für 24 Stunden eingetaucht wurden. Ein auf Glas basierender Gegenstand wurde keinen zusätzlichen Vorspannungsschritten unterzogen (Beispiel 5A). Zwei auf Glas basierende Gegenstände wurden einem zweiten Vorspannungsschritt unterzogen, indem die auf Glas basierende Gegenstände in einem Ofen bei 390 °C platziert wurden und die auf Glas basierenden Gegenstände im Ofen für ungefähr 8 Stunden oder 28 Stunden (jeweils Beispiele 5B-5C) gehalten wurden. Vier auf Glas basierende Gegenstände wurden einem dritten Vorspannungsschritt (nach dem ersten Vorspannungsschritt und einem der verschiedenen zweiten Vorspannungsschritte) unterzogen, indem sie in ein zweites Salzschmelzbad von KNO3, das eine Temperatur von 430 °C aufwies, für 4 Stunden oder 8 Stunden (Beispiele 5D bis 5G) eingetaucht wurden. Die Vorspannungsschritte für jedes der Beispiele 5A bis 5G sind in Tabelle 3 gezeigt. Die gemessenen CT-Werte sind auch in Tabelle 3 gezeigt. Tabelle 3 Vorspannungsschritte für Beispiele 5A bis 5G.
    Schritt Bsp. 5A Bsp. 5B BSp. 5C Bsp. 5D Bsp. 5E Bsp. 5F Bsp. 5G
    1.Schritt NaNO3, NaNO3, NaNO3, NaNO3, NaNO3, NaNO3, NaNO3,
    430 °C, 430 °C, 430 °C, 430 °C, 430 °C, 430 °C, 430 °C,
    24 24 24 24 24 24 24
    Stunden Stunden Stunden Stunden Stunden Stunden Stunden
    2. Schritt Luft, Luft, Luft, Luft, Luft, Luft,
    390 °C, 8 Stunden 390 °C, 28 Stunden 390 °C, 8 Stunden 390 °C, 28 Stunden 390 °C, 8 Stunden 390 °C, 28 Stunden
    3. Schritt KNO3, 430 °C, 4 Stunden KNO3, 430 °C, 4 Stunden KNO3, 430 °C, 8 Stunden KNO3, 430 °C, 8 Stunden
    CT 174 MPa 148 MPa 96 MPa 129 MPa 82 MPa 103 MPa 72 MPa
  • Die Spannungsprofile der resultierenden auf Glas basierenden Gegenstände sind in 17 dargestellt, wobei die Tiefe der Dicke der auf Glas basierenden Gegenstände auf der x-Achse dargestellt ist und Spannung auf der y-Achse dargestellt ist. Die positiven Spannungswerte sind CT-Werte und die negativen Spannungswerte sind CS-Werte. Wie in 17 dargestellt, stieg die DOC und die CT verringerte sich mit steigender Dauer der zweiten und/oder dritten Wärmebehandlung. Die Verringerung der DOC und CT ist jeweils in 18 bzw. 19 klarer dargestellt.
  • Die auf Glas basierenden Gegenstände von Beispielen 5A bis 5G wurden dann einem Stichtest unterzogen, in dem eine Seite des auf Glas basierenden Gegenstands an ein Band geklebt wird und die gegenüber liegende bloße Seite mit einem scharfen Werkzeug beaufschlagt und gebrochen wird. Die resultierende Anzahl von Bruchstücken kann mit der gespeicherten Zugenergie des auf Glas basierenden Gegenstands in Beziehung gebracht werden. Beispiele 5A, 5B und 5D wiesen zahlreiche Bruchstücke (d.h. mehr als 50 und sogar 100) auf, während Beispiel 5F 10 Bruchstücke aufwies, Beispiel 5C 3 Bruchstücke aufwies und Beispiel 5E und 5G 4 Bruchstücke aufwiesen. Beispiele 5A, 5B und 5D, die in zahlreiche Bruchstücke brachen, wiesen höhere CT (größer als ungefähr 100 MPa) als Beispiele 5C, 5E, 5F und 5G auf, die alle CT-Werte von ungefähr 100 MPa oder weniger aufweisen.
  • BEISPIEL 6
  • Glassubstrate, die eine Nennzusammensetzung von 57,5 Mol-% SiO2, 16,5 Mol-% Al2O3, 16,7 Mol-% Na2O, 2,5 Mol-% MgO, und 6,5 Mol-% P2O5 aufwiesen und eine Dicke von ungefähr 0,4 mm, 0,55 mm oder 1 mm aufwiesen, wurden einem chemischen Vorspannen unterzogen. Die Dicken und Bedingungen des chemischen Vorspannens sind in Tabelle 4 gezeigt.
  • Tabelle 4 Dicke und Bedingungen des chemischen Vorspannens für Beispiele 6A bis 6D.
    Bsp. Dicke Badzusammensetzung Badtemperatur
    6A 0,4 mm 80% KNO3, 20% NaNO3 430 °C
    6B 0,55 mm 80% KNO3, 20% NaNO3 430 °C
    6C 0,55 mm 90% KNO3, 10% NaNO3 430 °C
    6D 1,0 mm 70% KNO3, 30% NaNO3 430 °C
  • Beispiel 6A wurde in ein Salzschmelzbad, wie in Tabelle 4 angezeigt, für 4 Stunden, 8 Stunden, 16 Stunden, 32 Stunden, 64 Stunden und 128 Stunden (Beispiele 6A-1 bis 6A-6) eingetaucht.
    Beispiel 6B wurde in ein Salzschmelzbad, wie in Tabelle 4 angezeigt, für 4 Stunden, 8 Stunden, 16 Stunden, 32 Stunden, 64 Stunden und 128 Stunden (Beispiele 6B-1 bis 6B-6) eingetaucht. Beispiel 6C wurde in ein Salzschmelzbad, wie in Tabelle 4 angezeigt, für 1 Stunden, 2 Stunden, 4 Stunden, 8 Stunden, 16 Stunden und 32 Stunden (Beispiele 6C-1 bis 6C-6) eingetaucht. Beispiel 6D wurde in ein Salzschmelzbad, wie in Tabelle 4 angezeigt, für 4 Stunden, 8 Stunden, 16 Stunden, 32 Stunden, 64 Stunden und 128 Stunden (Beispiele 6D-1 bis 6D-6) eingetaucht. Die Spannungsprofile von Beispielen 6A-1 bis 6A-6, 6B-1 bis 6B-6, 6C-1 bis 6C-6 und 6D-1 bis 6D-6 sind jeweils in 20, 22, 24 bzw. 26 gezeigt. In 20, 22, 24 und 26 ist die Tiefe der Dicke der Glasgegenstände auf der x-Achse dargestellt und Spannung ist auf der y-Achse dargestellt. Die positiven Spannungswerte sind CT-Werte und die negativen Spannungswerte sind CS-Werte.
  • Die CT-und DOC-Werte als eine Funktion der Eintauchzeit in das Salzschmelzbad sind für Beispiele 6A-1 bis 6A-6,Beispiele 6B-1 bis 6B-6, Beispiele 6C-1 bis 6C-6 und 6D-1bis 6D-6 jeweils in 21, 23, 25 bzw. 27 gezeigt.
  • BEISPIEL 7
  • Glassubstrate, die eine Nennzusammensetzung, wie in Tabelle 2 gezeigt, aufwiesen und eine Dicke von ungefähr 1 mm aufwiesen, wurden einem chemischen Vorspannen in einem Salzschmelzbad unterzogen, das 100 % NaNO3 und eine Temperatur von 430 °C umfasste. Die Dauer, für die die Glassubstrate in das Salzschmelzbad eingetaucht wurden, sind in Tabelle 5 gezeigt. Tabelle 4 Dauer des chemischen Vorspannens (oder Ionenaustauschzeiten) für Beispiele 7A bis 7G.
    Bsp. IOX-Zeit (Stunden)
    7A 2
    7B 4
    7C 8
    7D 16
    7E 24
    7F 32.5
    7G 48
  • Die Spannungsprofile der auf Glas basierenden Gegenstände von Beispielen 7A bis 7G sind in 28 gezeigt. Die Spannungsprofile wurden unter Verwendung von SCALP gemessen. Wie in 28 dargestellt, führt ein Eintauchen der Glassubstrate in das Salzschmelzbad für 16 Stunden und 24 Stunden zu auf Glas basierenden Gegenständen, die die größten Oberflächen-CS-Werte und die größten CT-Werte als absolute Werte aufweisen. Ein Diagramm, das die Änderung der CT-Werte und der gespeicherten Zugenergie zeigt, beides als eine Funktion der Ionenaustauschzeit, ist in 29 dargestellt.
  • BEISPIEL 8
  • Glassubstrate, die eine Nennzusammensetzung, wie in Tabelle 2 gezeigt, aufwiesen und eine Dicke von ungefähr 0,8 mm aufweisen, wurden jeweils einem chemischen Vorspannen in einem Salzschmelzbad unterzogen, dass eine Mischung von NaNO3 und NaSO4 und eine Temperatur von 500 °C umfasste, für 15 Minuten (Vergleichsbeispiel 8A) und für 16 Stunden (Beispiel 8B) eingetaucht. Die Spannungsprofile der auf Glas basierenden Gegenstände von Beispielen 8A und 8B sind in 30 gezeigt. Wie in 30 dargestellt, wies das Vergleichsbeispiel 8A ein an sich bekanntes Spannungsprofil auf, während Beispiel 8B ein Spannungsprofil gemäß einer oder mehreren Ausführungsformen dieser Offenbarung zeigte. Die gespeicherte Zugenergie der auf Glas basierenden Gegenstände von Beispielen 8A und 8B wurden auf dieselbe Weise wie Beispiele 4B bis 4D berechnet. Die berechnete gespeicherte Zugenergie ist eine Funktion von gemessenen CT (MPa) dargestellt, wie in 31 gezeigt.
  • Wie in 31 dargestellt, wies Vergleichsbeispiel 8A viel größere gespeicherte Zugenergiewerte für einen gegebenen CT-Wert als Beispiel 8B (für denselben CT-Wert) auf. Insbesondere wies bei einer CT von ungefähr 55 MPa das Vergleichsbeispiel 8A eine gespeicherte Zugenergie von ungefähr 8 J/m2, während Beispiel 8B eine gespeicherte Zugenergie von ungefähr 3,5 J/m2 aufwies.
    Vergleichsbeispiel 8A und Beispiel 8B wurden zum Bruch gebracht und Beispiel 8B zerbrach in weniger Stücke als Vergleichsbeispiel 8A, das in eine wesentlich größere Anzahl von Stücken zerbrach. Dementsprechend wird, ohne durch die Theorie gebunden zu sein, angenommen, dass ein Steuern der gespeicherten Zugenergie einen Weg zum Steuern oder Voraussagen von Fragmentierungsmustern oder der Anzahl von Bruchstücken, die sich aus einem Bruch ergeben, bereitstellen kann.
  • Glassubstrate, die eine Nennzusammensetzung, wie in Tabelle 2 gezeigt, aufwiesen und eine Dicke von ungefähr 1 mm aufweisen, wurden jeweils einem chemischen Vorspannen in einem Salzschmelzbad unterzogen, dass NaNO3 und eine Temperatur von 430 °C umfasste, für 4 Stunden (Vergleichsbeispiel 8C) und für 61,5 Stunden (Beispiel 8D) eingetaucht. Das Vergleichsbeispiel 8C wies ein an sich bekanntes Spannungsprofil auf, während Beispiel 8C ein Spannungsprofil gemäß einer oder mehreren Ausführungsformen dieser Offenbarung zeigte. Die gespeicherte Zugenergie von Beispielen 8C und 8D wurde unter Verwendung desselben Verfahrens, das bei Beispielen 4B bis 4D verwendet wurde, berechnet und als eine Funktion von gemessenen CT (MPa) dargestellt, wie in 32 gezeigt.
  • Wie in 32 dargestellt, wies Vergleichsbeispiel 8D viel größere gespeicherte Zugenergiewerte für einen gegebenen CT-Wert als Beispiel 8D (für denselben CT-Wert) auf. Vergleichsbeispiel 8C und Beispiel 8D wurden zum Bruch gebracht und Beispiel 8D zerbrach in weniger Bruchstücke als Vergleichsbeispiel 8C, das in eine wesentlich größere Anzahl von Bruchstücken brach.
  • BEISPIEL 9
  • Glassubstrate, die eine Nennzusammensetzung von 70,9 Mol-% SiO2, 12,8 Mol-% Al2O3, 1,95 Mol-% B2O3, 7,95 Mol-% Li2O, 2,43 Mol-% Na2O, 2,98 Mol-% MgO, 0,89 Mol-% ZnO, and 0,1 Mol-% SnO2 aufwiesen und eine Dicke von ungefähr 0,8 mm aufwiesen, wurden den Ionenaustauschbedingungen von Tabelle 5 unterzogen. Verschiedene Eigenschaften von Beispiel 9 sind in Tabelle 6 mit Beispiel 2 verglichen. Tabelle 5 Ionenaustauschbedingungen für Beispiel 9
    Bedingung Badzusammensetzung Badtemperatur (°C) Eintauchzeit
    1 100% NaNO3 430 °C 16 Stunden
    2 20% NaNO3, 80% KNO3 430 °C 11 Stunden
    3 100% NaNO3 430 °C 24 Stunden
    4 20% NaNO3, 80% KNO3 430 °C 12,5 Stunden
    Tabelle 6 Vergleich von Eigenschaften für Beispiel 9B und Beispiel 2.
    Eigenschaft Einheiten Bsp. 9B Bsp. 2
    Dehnungspunkt °C 592 615
    Glühpunkt °C 642 663
    Elastizitätsmodul GPa 81,4 83,8
    Schermodul GPa 33,8 34,3
    Querdehnungszahl 0,211 0,222
    CTE (RT-300°C) ppm/°C 4,58 3,84
    Wärmeleitfähigkeit W/cm*K
    SOC nm/cm/MPa 30,94 32,65
    Brechungsindex (bei 550 nm) 1,5087 1,532
  • Die Spannungsprofile der Glasgegenstände von Beispiel 9 wurden gemessen und wiesen die hier beschriebenen Formen auf.
  • Glassubstrate gemäß Beispiel 2, Beispiel 6 und Vergleichsbeispiel 9A wurden derart bereitgestellt, dass sie die gleiche Dicke wie Beispiel 9 aufwiesen. Die Glassubstrate nach Beispiel 2 wurden in einem Schmelzbad von 100 % NaNO3, das eine Temperatur von 430 °C aufwies, einem Ionenaustausch für 33 Stunden unterzogen. Die Glassubstrate nach Beispiel 6 wurden einem Ionenaustauch unterzogen, um ein an sich bekanntes Fehlerfunktions-Spannungsprofil aufzuweisen. Vergleichsbeispiel 9A wurde in einem Schmelzbad von 100 % NaNO3, das eine Temperatur von 390 °C aufwies, einem Ionenaustausch für 16 Stunden unterzogen und wies auch ein an sich bekanntes Fehlerfunktions-Spannungsprofil auf. Wie hier verwendet, bezieht sich der Begriff „Fehlerfunktions-Spannungsprofil“ auf ein Spannungsprofil, das an 1 erinnert.
  • Die auf Glas basierenden Gegenstände von Beispiel 2, Vergleichsbeispiel 6, Beispiel 9 und Vergleichsbeispiel 9A wurden dann in identische mobile Telefonvorrichtungen eingebaut. Die Telefonvorrichtungen wurden von inkrementellen Höhen, beginnend mit 20 Zentimetern, auf ein 30-Körnungssandpapier fallengelassen. Wenn ein auf Glas basierender Gegenstand den Fall von einer Höhe (z.B. 20 cm) überlebte, wurde das mobile Telefon erneut von einer größeren Höhe (z.B. 30 cm, 40 cm, 50 cm usw.) fallengelassen. Die Höhe, bei der der auf Glas basierende Gegenstand versagte, ist in Beispiel 32 dargestellt, das auch die durchschnittliche Versagenshöhe für die Proben von Beispielen 2, 6 und 9 und das Vergleichsbeispiel 9A zeigt. Wie in 33 dargestellt, wiesen Beispiele 2 und 9 Ausfälle bei wesentlich größeren Fallhöhen als Beispiel 6 und Vergleichsbeispiel 9A auf. Insbesondere wiesen Beispiel 6 und Vergleichsbeispiel 9A Ausfälle jeweils bei Fallhöhen von ungefähr 38 cm bzw. 55 cm auf, während Beispiel 2 und 9 jeweils Ausfälle bei Fallhöhen von ungefähr 147 cm bzw. 132 cm aufwiesen.
  • Derselbe Test wurde mit neuen Proben unter Verwendung derselben mobilen Telefonvorrichtung auf 180-Körungssandpapier wiederholt. Die durchschnittliche Ausfallhöhe für Beispiel 6 betrug 190 cm, für Vergleichsbeispiel 9A betrug sie 204 cm, für Beispiel 2 betrug sie 214 cm und für Beispiel 9 betrug sie 214 cm.
  • Glassubstrate nach Vergleichsbeispiel 9B, die eine Nennzusammensetzung von 65 Mol-% SiC2, 5 Mol-% B2O3, 14 Mol-% AI2O3, 14 Mol-% Na2O, 2 Mol-% MgO und 0,1 Mol-% SnO2 und eine Dicke von 0,8 mm aufwiesen, wurden einem Ionenaustauch unterzogen, um ein an sich bekanntes Fehlerfunktions-Spannungsprofil aufzuweisen. Die Proben des auf Glas basierenden Gegenstands von Beispiel 2 und Vergleichsbeispiel 6 (die das vorstehend in diesem Beispiel beschriebene Spannungsprofil aufwiesen), Vergleichsbeispiel 9B und die auf Glas basierenden Gegenstände von Beispiel 9, die einem Ionenaustausch gemäß Bedingung 4, wie in Tabelle 5 gezeigt, unterzogen wurden, wurden einem AROR-Test, wie hier beschrieben, unterzogen.
  • Beispiele 6 und 9 und das Vergleichsbeispiel 9B wurden unter Verwendung einer Last oder Ducks von 25 psi und 45 psi geschliffen, und Beispiel 2 wurde lediglich unter Verwendung einer Last von 25 psi geschliffen. Die AROR-Daten sind in 34 dargestellt. Wie in 34 dargestellt, wiesen Beispiele 2 und 9 eine höhere Last bis zum Versagen auf als Beispiel 6 und Vergleichsbeispiel 9B.
  • Proben des auf Glas basierenden Gegenstands von Beispiel 2 (die einem Ionenaustausch, wie vorstehend in diesem Beispiel beschrieben unterzogen wurden) und 9 (die einem Ionenaustausch gemäß Bedingung 4 unterzogen wurden) wurden einem Vierpunkt-Biegetest unterzogen. Die Ergebnisse sind in dem Weibullverteilungsdiagramm von 35 gezeigt. Wie in 35 dargestellt, wies Beispiel 9 eine höhere Spannung oder Last bis zum Versagen auf (z.B. größer als ungefähr 400 MPa).
  • Wie vorstehend gezeigt, ermöglichen auf Glas basierende Gegenstände, die aus Zusammensetzungen, welche einen Dehnpunkt aufweisen, der höher ist als 525°C, gefertigt sind, Ionenaustauschtemperaturen (oder Ionenaustausch-Badtemperaturen) im Bereich von ungefähr 350 °C bis ungefähr 480 °C. In einigen Ausführungsformen ermöglichen Glaszusammensetzungen, die ein Diffusionsvermögen größer als ungefähr 800 Quadratmikrometer/Stunde aufweisen, es, dass die Metalloxide, die in den auf Glas basierenden Gegenstand diffundieren, die gesamte Tiefe oder Dicke des Gegenstands schnell durchdringen, so dass eine Spannungsrelaxation minimiert wird. Übermäßige Spannungsrelaxation kann die Oberflächendruckspannung des auf Glas basierenden Gegenstands reduzieren.
  • Es ist für einen Fachmann offensichtlich, dass verschiedene Modifikationen und Abwandlungen vorgenommen werden können, ohne vom Geist oder Umfang der Erfindung, abzuweichen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 13463322 [0037]
    • US 61489800 [0037]
    • US 14033954 [0041]
    • US 61/706891 [0041]
    • US 8713972 [0129]
    • US 9003835 [0129]

Claims (30)

  1. Auf Glas basierender Gegenstand, umfassend: eine erste Fläche und eine der ersten Fläche gegenüberliegende zweite Fläche, die eine Dicke (t) definieren, wobei t 1 mm oder weniger beträgt, und eine Konzentration eines Metalloxids, die sowohl von null verschieden ist als auch entlang eines Dickenbereichs von ungefähr 0*t bis ungefähr 0,3 *t variiert, wie mit einer Mikrosonde gemessen, ein Spannungsprofil, wie durch eine Kombination eines Streulicht-Polariskops und eines Oberflächenspannungsmessgeräts gemessen, das sich von der ersten Fläche zu einem Wert zwischen der ersten Fläche und der zweiten Fläche verringert und von dem Wert zu der zweiten Fläche ansteigt, und einen CT-Bereich des Spannungsprofils, wobei der CT-Bereich durch die Gleichung Spannung(x) = MaxCT - (((MaxCT • (n+1))/0,5n)•|(x/t)-0,5|n) definiert ist, wobei MaxCT ein maximaler CT-Wert ist und als ein positiver Wert in Einheiten von MPa bereitgestellt wird, x eine Position entlang der Dicke (t) in Mikrometer ist, und n zwischen 1,5 und 5 beträgt.
  2. Auf Glas basierender Gegenstand nach Anspruch 1, wobei der CT-Bereich eine maximale CT von ungefähr 50 MPa bis ungefähr 250 MPa umfasst.
  3. Auf Glas basierender Gegenstand nach Anspruch 1 oder 2, der ferner eine gespeicherte Zugenergie von ungefähr 10 J/m2 bis ungefähr 25 J/m2 umfasst.
  4. Auf Glas basierender Gegenstand nach einem der Ansprüche 1 bis 3, wobei, wenn einem IBoS-Test (Inverted Ball on Sandpaper) mit einem 180-Körnungs-Sandpapier unterzogen, der auf Glas basierende Gegenstand eine Überlebensrate von 60 % oder mehr umfasst, wenn eine Kugel auf die Fläche des auf Glas basierenden Gegenstands von einer Höhe von 100 cm fallengelassen wird.
  5. Auf Glas basierender Gegenstand nach einem der Ansprüche 1 bis 4, wobei alle Punkte des Spannungsprofils zwischen einem Dickenbereich von ungefähr 0•t bis zu ungefähr 0,3 •t und von mehr als 0,7•t eine Tangente umfassen, die kleiner als ungefähr -0,1 MPa/Mikrometer oder größer als ungefähr 0,1 MPa/Mikrometer ist.
  6. Elektronische Vorrichtung, die den auf Glas basierenden Gegenstand nach einem der Ansprüche 1 bis 5 umfasst.
  7. Auf Glas basierender Gegenstand nach einem der Ansprüche 1 bis 5, wobei der auf Glas basierende Gegenstand eine Bruchzähigkeit (KIC) von ungefähr 0,9 MPa·m1/2 oder mehr umfasst.
  8. Auf Glas basierender Gegenstand nach einem der Ansprüche 1 bis 5, 7, der ferner eine Lichtdurchlässigkeit von ungefähr 88 % oder mehr über eine Wellenlänge im Bereich von ungefähr 380 nm bis ungefähr 780 nm umfasst.
  9. Auf Glas basierender Gegenstand nach Anspruch 1, wobei, wenn einem IBoS-Test (Inverted Ball on Sandpaper) mit einem 180-Körnungs-Sandpapier unterzogen, der auf Glas basierende Gegenstand eine Überlebensrate von 60 % oder mehr umfasst, wenn eine Kugel auf die Fläche des auf Glas basierenden Gegenstands von einer Höhe von 100 cm fallengelassen wird.
  10. Auf Glas basierender Gegenstand nach Anspruch 9, wobei alle Punkte des Spannungsprofils zwischen einem Dickenbereich von ungefähr 0•t bis zu ungefähr 0,3 •t und von mehr als 0,7•t eine Tangente umfassen, die kleiner als ungefähr -0,1 MPa/Mikrometer oder größer als ungefähr 0,1 MPa/Mikrometer ist.
  11. Auf Glas basierender Gegenstand nach Anspruch 9 oder 10, wobei der CT-Bereich eine maximale CT von ungefähr 50 MPa bis ungefähr 250 MPa umfasst.
  12. Auf Glas basierender Gegenstand nach einem der Ansprüche 9 bis 11, der ferner eine gespeicherte Zugenergie von ungefähr 10 J/m2 bis ungefähr 25 J/m2 umfasst.
  13. Elektronische Vorrichtung, die den auf Glas basierenden Gegenstand nach einem der Ansprüche 9 bis 12 umfasst.
  14. Auf Glas basierender Gegenstand nach einem der Ansprüche 9 bis 12, wobei der auf Glas basierende Gegenstand eine Bruchzähigkeit (KIC) von ungefähr 0,8 MPa·m1/2 oder mehr umfasst.
  15. Auf Glas basierender Gegenstand nach einem der Ansprüche 9 bis 12, 14, der ferner eine Lichtdurchlässigkeit von ungefähr 88 % oder mehr über eine Wellenlänge im Bereich von ungefähr 380 nm bis ungefähr 780 nm umfasst.
  16. Auf Glas basierender Gegenstand nach Anspruch 1, wobei alle Punkte des Spannungsprofils zwischen einem Dickenbereich von ungefähr 0•t bis zu ungefähr 0,3 •t und von mehr als 0,7•t eine Tangente umfassen, die kleiner als ungefähr -0,1 MPa/Mikrometer oder größer als ungefähr 0,1 MPa/Mikrometer ist.
  17. Auf Glas basierender Gegenstand nach Anspruch 16, wobei der CT-Bereich eine maximale CT von ungefähr 50 MPa bis ungefähr 250 MPa umfasst.
  18. Auf Glas basierender Gegenstand nach Anspruch 16 oder 17, der ferner eine gespeicherte Zugenergie von ungefähr 10 J/m2 bis ungefähr 25 J/m2 umfasst.
  19. Auf Glas basierender Gegenstand nach einem der Ansprüche 16 bis 18, wobei, wenn einem IBoS-Test (Inverted Ball on Sandpaper) mit einem 180-Körnungs-Sandpapier unterzogen, der auf Glas basierende Gegenstand eine Überlebensrate von 60 % oder mehr umfasst, wenn eine Kugel auf die Fläche des auf Glas basierenden Gegenstands von einer Höhe von 100 cm fallengelassen wird.
  20. Elektronische Vorrichtung, die den auf Glas basierenden Gegenstand nach einem der Ansprüche 16 bis 19 umfasst.
  21. Auf Glas basierender Gegenstand nach einem der Ansprüche 16 bis 19, wobei der auf Glas basierende Gegenstand eine Bruchzähigkeit (KIC) von ungefähr 0,9 MPa·m1/2 oder mehr umfasst.
  22. Auf Glas basierender Gegenstand nach einem der Ansprüche 16 bis 19, 21, der ferner eine Lichtdurchlässigkeit von ungefähr 88 % oder mehr über eine Wellenlänge im Bereich von ungefähr 380 nm bis ungefähr 780 nm umfasst.
  23. Auf Glas basierender Gegenstand nach Anspruch 1, wobei der CT-Bereich eine maximale CT von ungefähr 50 MPa bis ungefähr 250 MPa umfasst.
  24. Auf Glas basierender Gegenstand nach Anspruch 23, der ferner eine gespeicherte Zugenergie von ungefähr 10 J/m2 bis ungefähr 25 J/m2 umfasst.
  25. Auf Glas basierender Gegenstand nach Anspruch 23 oder 24, wobei alle Punkte des Spannungsprofils zwischen einem Dickenbereich von ungefähr 0•t bis zu ungefähr 0,3 •t und von mehr als 0,7•t eine Tangente umfassen, die kleiner als ungefähr -0,1 MPa/Mikrometer oder größer als ungefähr 0,1 MPa/Mikrometer ist.
  26. Elektronische Vorrichtung, die den auf Glas basierenden Gegenstand nach einem der Ansprüche 23 bis 25 umfasst.
  27. Auf Glas basierender Gegenstand nach einem der Ansprüche 23 bis 25, wobei der auf Glas basierende Gegenstand eine Bruchzähigkeit (KIC) von ungefähr 0,8 MPa·m1/2 oder mehr umfasst.
  28. Auf Glas basierender Gegenstand nach einem der Ansprüche 23 bis 25, 27, der ferner eine Lichtdurchlässigkeit von ungefähr 88 % oder mehr über eine Wellenlänge im Bereich von ungefähr 380 nm bis ungefähr 780 nm umfasst.
  29. Auf Glas basierender Gegenstand nach einem der Ansprüche 23 bis 25, 27-28, wobei, wenn einem IBoS-Test (Inverted Ball on Sandpaper) mit einem 180-Körnungs-Sandpapier unterzogen, der auf Glas basierende Gegenstand eine Überlebensrate von 60 % oder mehr umfasst, wenn eine Kugel auf die Fläche des auf Glas basierenden Gegenstands von einer Höhe von 100 cm fallengelassen wird.
  30. Auf Glas basierender Gegenstand, umfassend: eine erste Fläche und eine der ersten Fläche gegenüberliegende zweite Fläche, die eine Dicke (t) definieren, wobei t 1 mm oder weniger beträgt, und eine Konzentration eines Metalloxids, die sowohl von null verschieden ist als auch entlang eines Dickenbereichs von ungefähr 0•t bis ungefähr 0,3•t variiert, wie mit einer Mikrosonde gemessen, ein Spannungsprofil, wie durch eine Kombination eines Streulicht-Polariskops und eines Oberflächenspanungsmessgeräts gemessen, das einen CS-Bereich, einen CT-Bereich und eine DOC umfasst, wobei der CS-Bereich eine maximale CS größer gleich 600 MPa umfasst, wobei der CT-Bereich durch die Gleichung Spannung(x) = MaxCT - (((MaxCT • (n+1))/0,5n)•|(x/t)-0,5|n) definiert ist, wobei MaxCT ein maximaler CT-Wert ist und als ein positiver Wert in Einheiten von MPa bereitgestellt wird, x eine Position entlang der Dicke (t) in Mikrometer ist und n zwischen 1,8 und 3 beträgt. wobei die maximale CT von ungefähr 50 MPa bis ungefähr 150 MPa beträgt, wobei das Verhältnis der maximalen CT zur maximalen CS von 0,05 bis 0,2 beträgt, und wobei die DOC größer gleich 0,16•t ist.
DE202015009694.8U 2014-10-08 2015-10-08 Gläser und Glaskeramiken mit einem Metalloxidkonzentrationsgradienten Active DE202015009694U1 (de)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201462061372P 2014-10-08 2014-10-08
US62/061,372 2014-10-08
US201562117585P 2015-02-18 2015-02-18
US62/117,585 2015-02-18
US201562171110P 2015-06-04 2015-06-04
US62/171,110 2015-06-04
US201562194967P 2015-07-21 2015-07-21
US62/194,967 2015-07-21

Publications (1)

Publication Number Publication Date
DE202015009694U1 true DE202015009694U1 (de) 2019-05-09

Family

ID=54345604

Family Applications (8)

Application Number Title Priority Date Filing Date
DE202015009904.1U Active DE202015009904U1 (de) 2014-10-08 2015-10-08 Glas-basierter Gegenstand
DE202015009765.0U Active DE202015009765U1 (de) 2014-10-08 2015-10-08 Glassubstrat
DE202015009971.8U Active DE202015009971U1 (de) 2014-10-08 2015-10-08 Glassubstrat und Glasartikel
DE202015009892.4U Active DE202015009892U1 (de) 2014-10-08 2015-10-08 Glas-basierter Gegenstand
DE202015009694.8U Active DE202015009694U1 (de) 2014-10-08 2015-10-08 Gläser und Glaskeramiken mit einem Metalloxidkonzentrationsgradienten
DE202015009766.9U Active DE202015009766U1 (de) 2014-10-08 2015-10-08 Glassubstrat und elektronische Vorrichtung mit einem Glassubstrat
DE202015009996.3U Active DE202015009996U1 (de) 2014-10-08 2015-10-08 Gläser und Glaskeramiken mit einem Metalloxidkonzentrationsgradienten
DE202015009997.1U Active DE202015009997U1 (de) 2014-10-08 2015-10-08 Gläser und Glaskeramiken mit einem Metalloxidkonzentrationsgradienten

Family Applications Before (4)

Application Number Title Priority Date Filing Date
DE202015009904.1U Active DE202015009904U1 (de) 2014-10-08 2015-10-08 Glas-basierter Gegenstand
DE202015009765.0U Active DE202015009765U1 (de) 2014-10-08 2015-10-08 Glassubstrat
DE202015009971.8U Active DE202015009971U1 (de) 2014-10-08 2015-10-08 Glassubstrat und Glasartikel
DE202015009892.4U Active DE202015009892U1 (de) 2014-10-08 2015-10-08 Glas-basierter Gegenstand

Family Applications After (3)

Application Number Title Priority Date Filing Date
DE202015009766.9U Active DE202015009766U1 (de) 2014-10-08 2015-10-08 Glassubstrat und elektronische Vorrichtung mit einem Glassubstrat
DE202015009996.3U Active DE202015009996U1 (de) 2014-10-08 2015-10-08 Gläser und Glaskeramiken mit einem Metalloxidkonzentrationsgradienten
DE202015009997.1U Active DE202015009997U1 (de) 2014-10-08 2015-10-08 Gläser und Glaskeramiken mit einem Metalloxidkonzentrationsgradienten

Country Status (9)

Country Link
US (11) US9593042B2 (de)
EP (7) EP3848336A1 (de)
JP (16) JP6502486B2 (de)
KR (12) KR102584492B1 (de)
CN (12) CN117623625A (de)
DE (8) DE202015009904U1 (de)
DK (1) DK3204338T3 (de)
TW (12) TWI705948B (de)
WO (1) WO2016057787A2 (de)

Families Citing this family (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9604877B2 (en) * 2011-09-02 2017-03-28 Guardian Industries Corp. Method of strengthening glass using plasma torches and/or arc jets, and articles made according to the same
US9359251B2 (en) 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US10442730B2 (en) 2013-11-25 2019-10-15 Corning Incorporated Method for achieving a stress profile in a glass
US9517968B2 (en) 2014-02-24 2016-12-13 Corning Incorporated Strengthened glass with deep depth of compression
TWI705889B (zh) 2014-06-19 2020-10-01 美商康寧公司 無易碎應力分布曲線的玻璃
TWI705948B (zh) 2014-10-08 2020-10-01 美商康寧公司 含有金屬氧化物濃度梯度之玻璃以及玻璃陶瓷
US10150698B2 (en) 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
KR102459339B1 (ko) 2014-11-04 2022-10-26 코닝 인코포레이티드 비-취약성 응력 프로파일 및 이의 제조방법
JPWO2016204087A1 (ja) * 2015-06-15 2018-03-29 旭硝子株式会社 化学強化ガラス
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US10579106B2 (en) 2015-07-21 2020-03-03 Corning Incorporated Glass articles exhibiting improved fracture performance
TWI716450B (zh) 2015-09-17 2021-01-21 美商康寧公司 特性量測經離子交換之含鋰化學強化玻璃的方法
KR20180091862A (ko) 2015-12-08 2018-08-16 코닝 인코포레이티드 S-형 응력 프로파일 및 생산 방법
TWI773480B (zh) 2015-12-11 2022-08-01 美商康寧公司 具有金屬氧化物濃度梯度之可熔融成形的玻璃基物件
KR102024126B1 (ko) * 2016-01-21 2019-09-23 에이지씨 가부시키가이샤 화학 강화 유리 및 화학 강화용 유리
KR20180121568A (ko) 2016-03-09 2018-11-07 코닝 인코포레이티드 복합적으로 굽은 유리 제품의 냉간 형성
KR20200091500A (ko) 2016-04-08 2020-07-30 코닝 인코포레이티드 두 영역을 포함하는 응력 프로파일을 포함하는 유리-계 물품, 및 제조 방법
EP3429972A1 (de) 2016-04-08 2019-01-23 Corning Incorporated Artikel auf glasbasis mit einem metalloxidkonzentrationsgradient
US11453612B2 (en) * 2016-04-20 2022-09-27 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
JP6861716B2 (ja) * 2016-05-27 2021-04-21 コーニング インコーポレイテッド 破砕およびスクラッチ耐性を有するガラス物品
CN112299707A (zh) * 2016-05-31 2021-02-02 康宁股份有限公司 展现出改进的破裂性能的玻璃制品
WO2018005646A1 (en) 2016-06-28 2018-01-04 Corning Incorporated Laminating thin strengthened glass to curved molded plastic surface for decorative and display cover application
US11607958B2 (en) 2016-07-05 2023-03-21 Corning Incorporated Cold-formed glass article and assembly process thereof
US10934209B2 (en) * 2016-10-13 2021-03-02 Corning Incorporated Glass-based articles having improved fracture performance
CN110035895B (zh) 2016-10-20 2021-12-24 康宁公司 冷成形的3d盖玻璃对象及制造其之成形工艺
KR102429148B1 (ko) 2016-10-25 2022-08-04 코닝 인코포레이티드 디스플레이에 냉간-성형 유리 적층
US11111173B2 (en) 2016-11-07 2021-09-07 Corning Incorporated Lithium containing glasses
KR102584317B1 (ko) 2016-11-07 2023-10-04 코닝 인코포레이티드 저점도 유리 및 제조를 위한 방법 및 시스템
JP7025427B2 (ja) * 2016-11-30 2022-02-24 コーニング インコーポレイテッド フュージョン成形可能な自動車用ガラス組成物、物品、および積層板
JP2020504693A (ja) 2016-12-30 2020-02-13 コーニング インコーポレイテッド ガラス被覆された乗物室内システム、および、その形成方法
US10712850B2 (en) 2017-01-03 2020-07-14 Corning Incorporated Vehicle interior systems having a curved cover glass and a display or touch panel and methods for forming the same
CN110520293B (zh) 2017-01-03 2021-01-22 康宁公司 具有弯曲的覆盖玻璃以及显示器或触控面板的车辆内部系统及其形成方法
US11016590B2 (en) 2017-01-03 2021-05-25 Corning Incorporated Vehicle interior systems having a curved cover glass and display or touch panel and methods for forming the same
KR20190112316A (ko) * 2017-02-02 2019-10-04 코닝 인코포레이티드 유리 표면 가까이에 변경된 k2o 프로파일을 갖는 리튬 함유 유리 또는 유리 세라믹 물품
CN110234616B (zh) * 2017-02-07 2023-01-03 Agc株式会社 化学强化玻璃
JP6794866B2 (ja) * 2017-02-15 2020-12-02 Agc株式会社 化学強化ガラスおよびその製造方法
KR102332388B1 (ko) * 2017-02-27 2021-11-29 쇼오트 글라스 테크놀로지스 (쑤저우) 코퍼레이션 리미티드. 화학적 강화 후 낮은 팽창을 갖는 리튬 함유 알루미노실리케이트 유리
JP6897270B2 (ja) * 2017-04-20 2021-06-30 Agc株式会社 化学強化ガラス
EP3625179A1 (de) 2017-05-15 2020-03-25 Corning Incorporated Konturierte glasartikel und verfahren zur herstellung davon
MX2019012173A (es) 2017-07-07 2019-11-25 Corning Inc Sistemas interiores de vehiculo que tienen cubierta de vidrio curva y pantalla o panel tactil y metodos para formarlos.
US11332011B2 (en) 2017-07-18 2022-05-17 Corning Incorporated Cold forming of complexly curved glass articles
US20190030861A1 (en) * 2017-07-27 2019-01-31 Corning Incorporated Composite laminate with high depth of compression
KR102669222B1 (ko) 2017-09-12 2024-05-24 코닝 인코포레이티드 장식용 유리 상에 터치 패널을 포함하는 디스플레이용 데드프론트 및 관련 방법
TW202340816A (zh) 2017-09-13 2023-10-16 美商康寧公司 用於顯示器的基於光導器的無電面板、相關的方法及載具內部系統
US11065960B2 (en) 2017-09-13 2021-07-20 Corning Incorporated Curved vehicle displays
US11523527B2 (en) * 2017-10-03 2022-12-06 Corning Incorporated Glass-based articles having crack resistant stress profiles
TWI760291B (zh) 2017-10-06 2022-04-01 美商康寧公司 具有抗衝擊性的預破裂玻璃複合材料及積層物與其製造方法
WO2019071190A1 (en) * 2017-10-06 2019-04-11 Corning Incorporated METHOD AND APPARATUS FOR FORMATION OF CURVED GLASS BY DIFFERENTIAL HEATING OF EDGE AREA
KR20200068690A (ko) 2017-10-10 2020-06-15 코닝 인코포레이티드 신뢰성이 개선된 만곡된 커버 유리를 갖는 차량 내부 시스템 및 이를 형성하는 방법
CN111315697B (zh) * 2017-10-31 2022-10-11 康宁股份有限公司 具有高液相线粘度的过铝质锂铝硅酸盐
US11078104B2 (en) 2017-11-17 2021-08-03 Corning Incorporated Thermal history-insensitive, alkali-containing glasses
KR20200079333A (ko) 2017-11-21 2020-07-02 코닝 인코포레이티드 헤드-업 디스플레이 시스템을 위한 비구면 미러 및 이를 형성하기 위한 방법
US10633279B2 (en) 2017-11-29 2020-04-28 Corning Incorporated Glasses with low excess modifier content
US10906834B2 (en) 2017-11-29 2021-02-02 Corning Incorporated Ion-exchangeable mixed alkali aluminosilicate glasses
KR102605341B1 (ko) 2017-11-30 2023-11-24 코닝 인코포레이티드 곡선형 미러를 성형하기 위한 진공 몰드 장치, 시스템, 및 방법
US11214515B2 (en) 2017-11-30 2022-01-04 Corning Incorporated Glass-based articles having stress profiles with high stored energy and methods of manufacture
US11358897B2 (en) 2017-11-30 2022-06-14 Corning Incorporated Black b-spodumene glass ceramics with an optimized color package
US10723649B2 (en) 2017-11-30 2020-07-28 Corning Incorporated Black lithium silicate glass ceramics
EP3717958A4 (de) 2017-11-30 2021-08-04 Corning Incorporated Systeme und verfahren zur vakuumformung von asphärischen spiegeln
US11192818B2 (en) 2017-11-30 2021-12-07 Corning Incorporated Ion exchangeable, transparent gahnite-spinel glass ceramics with high hardness and modulus
CN108046613B (zh) * 2017-12-29 2020-01-21 深圳市东丽华科技有限公司 一种强化玻璃及其制备方法
JP2019123658A (ja) * 2018-01-19 2019-07-25 Agc株式会社 化学強化ガラスの製造方法および化学強化ガラス
EP3743394B1 (de) 2018-01-24 2021-12-15 Corning Incorporated Gegenstände auf glasbasis mit hoher belastungsgrösse in der tiefe
WO2019177952A1 (en) 2018-03-13 2019-09-19 Corning Incorporated Vehicle interior systems having a crack resistant curved cover glass and methods for forming the same
CN111954646A (zh) * 2018-03-29 2020-11-17 康宁股份有限公司 经离子交换的玻璃陶瓷制品
WO2019191480A1 (en) 2018-03-29 2019-10-03 Corning Incorporated Glasses having high fracture toughness
US20190366682A1 (en) 2018-05-31 2019-12-05 Corning Incorporated Device surface renewal and rework by bundled laminate structures
JP2021525209A (ja) * 2018-05-31 2021-09-24 コーニング インコーポレイテッド 落下性能が改善されたガラス
CN112166091A (zh) * 2018-06-01 2021-01-01 日本电气硝子株式会社 强化玻璃以及强化用玻璃
WO2019235470A1 (ja) * 2018-06-07 2019-12-12 日本電気硝子株式会社 化学強化ガラスおよび化学強化ガラスの製造方法
CN112851142A (zh) * 2018-06-08 2021-05-28 康宁股份有限公司 玻璃中的抗碎裂应力分布
WO2019241013A1 (en) 2018-06-12 2019-12-19 Corning Incorporated Deadfront for displays having a metal layer with a network of cracks formed throughout
TWI825112B (zh) * 2018-07-02 2023-12-11 美商康寧公司 具有改善的應力分佈的玻璃基製品及其製造方法
WO2020018408A1 (en) 2018-07-16 2020-01-23 Corning Incorporated Methods for ceramming glass with nucleation and growth density and viscosity changes
WO2020018284A1 (en) 2018-07-16 2020-01-23 Corning Incorporated Vehicle interior systems having a cold-bent glass substrate and methods for forming the same
WO2020018285A1 (en) 2018-07-16 2020-01-23 Corning Incorporated Methods of ceramming glass articles having improved warp
KR102618611B1 (ko) 2018-07-16 2023-12-27 코닝 인코포레이티드 개선된 특성을 갖는 유리 세라믹 물품 및 이의 제조 방법
EP3694813A2 (de) * 2018-07-16 2020-08-19 Corning Incorporated Glaskeramische gegenstände mit erhöhter bruchbeständigkeit und verfahren zu ihrer herstellung
WO2020023234A1 (en) * 2018-07-23 2020-01-30 Corning Incorporated Automotive interiors and cover glass articles with improved headform impact performance and post-breakage visibility
CN110872175A (zh) * 2018-08-31 2020-03-10 深圳市东丽华科技有限公司 一种微晶玻璃及利用其制成的具有复合压应力的玻璃基板
US11130705B2 (en) * 2018-09-11 2021-09-28 Corning Incorporated Glass-based articles with improved fracture resistance
DE102018124785A1 (de) 2018-10-08 2020-04-09 Schott Ag Glas mit vorzugsweise erhöhter speicherbarer Zugspannung, chemisch vorgespannter Glasartikel mit vorzugsweise erhöhter speicherbarer Zugspannung, Verfahren zu dessen Herstellung sowie dessen Verwendung
CN115784634A (zh) 2018-10-18 2023-03-14 康宁公司 展现改善头型冲击性能的强化玻璃制品和结合有该强化玻璃制品的车辆内部系统
CN111099827B (zh) * 2018-10-29 2022-09-16 华为机器有限公司 一种玻璃板及其制造方法、电子设备
CN111153603B (zh) * 2018-11-08 2021-10-26 华为机器有限公司 玻璃材料、玻璃材料的制造方法、电子设备
CN111867993A (zh) * 2018-11-13 2020-10-30 康宁股份有限公司 化学强化的焦硅酸锂-透锂长石玻璃陶瓷
CN116553809A (zh) 2018-11-21 2023-08-08 康宁公司 低存储拉伸能切割玻璃和优先裂纹碎裂
EP3888077A1 (de) 2018-11-29 2021-10-06 Corning Incorporated Dynamisch einstellbares anzeigesystem und verfahren zur dynamischen einstellung einer anzeige
CN113382972A (zh) 2018-11-30 2021-09-10 康宁股份有限公司 黑色的β-锂辉石锂硅酸盐玻璃陶瓷
WO2020112466A1 (en) 2018-11-30 2020-06-04 Corning Incorporated Ion exchangeable, opaque gahnite-spinel glass ceramics with high hardness and modulus
JP2022509987A (ja) 2018-11-30 2022-01-25 コーニング インコーポレイテッド 熱的に整合した系を有する冷間成形されたガラス物品および同ガラス物品を形成するための方法
WO2020121888A1 (ja) * 2018-12-11 2020-06-18 Agc株式会社 化学強化ガラス板、並びに化学強化ガラスを含むカバーガラス及び電子機器
US11970421B2 (en) 2018-12-21 2024-04-30 Corning Incorporated Strengthened 3D printed surface features and methods of making the same
CA3065876A1 (en) * 2018-12-24 2020-06-24 Schott Glass Technologies (Suzhou) Co.Ltd. Drinking implement with high strength
KR102666860B1 (ko) 2018-12-28 2024-05-21 삼성디스플레이 주식회사 윈도우 패널, 이를 포함하는 전자 장치, 및 윈도우 패널의 제조 방법
KR102642606B1 (ko) 2019-05-30 2024-03-05 삼성디스플레이 주식회사 윈도우 및 윈도우의 제조 방법
CN114096493B (zh) * 2019-06-26 2023-12-01 Agc株式会社 化学强化玻璃及其制造方法
EP3771695A1 (de) 2019-07-31 2021-02-03 Corning Incorporated Verfahren und system zur kaltumformung von glas
DE102019121147A1 (de) 2019-08-05 2021-02-11 Schott Ag Scheibenförmiger, chemisch vorgespannter Glasartikel und Verfahren zu dessen Herstellung
EP4159697A1 (de) 2019-08-05 2023-04-05 Schott Ag Scheibenförmiger, chemisch vorgespannter oder chemisch vorspannbarer glasartikel und verfahren zu dessen herstellung
DE102019121146A1 (de) 2019-08-05 2021-02-11 Schott Ag Heißgeformter chemisch vorspannbarer Glasartikel mit geringem Kristallanteil, insbesondere scheibenförmiger chemisch vorspannbarer Glasartikel, sowie Verfahren und Vorrichtung zu seiner Herstellung
CN110436788A (zh) * 2019-08-21 2019-11-12 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法
WO2021091761A1 (en) * 2019-11-04 2021-05-14 Corning Incorporated Stress profiles of highly frangible glasses
TW202120449A (zh) 2019-11-20 2021-06-01 美商康寧公司 具有高斷裂韌性的含硼玻璃組成
US11584681B2 (en) 2019-11-26 2023-02-21 Corning Incorporated Ion exchangeable alkali aluminosilicate glass compositions having improved mechanical durability
TW202124308A (zh) 2019-11-26 2021-07-01 美商康寧公司 具有高斷裂韌性的鋁矽酸鹽玻璃
EP4065527A2 (de) 2019-11-26 2022-10-05 Corning Incorporated Magnesiumaluminosilikatgläser mit hoher bruchzähigkeit
KR20210109695A (ko) * 2020-02-27 2021-09-07 삼성디스플레이 주식회사 유리 제품 및 그 제조 방법
US11772361B2 (en) 2020-04-02 2023-10-03 Corning Incorporated Curved glass constructions and methods for forming same
EP3909923A1 (de) 2020-05-15 2021-11-17 Corning Incorporated Gehärtete glasartikel und verfahren zu ihrer formung
CN111847885B (zh) * 2020-06-09 2022-06-07 科立视材料科技有限公司 一种具有深层高压应力的强化微晶玻璃及其制备方法
US20210403368A1 (en) 2020-06-30 2021-12-30 Corning Incorporated Glass compositions with high central tension capability
CN111825345A (zh) * 2020-07-02 2020-10-27 清远南玻节能新材料有限公司 玻璃的化学强化方法、强化玻璃、应用和显示器件
WO2022046586A1 (en) 2020-08-26 2022-03-03 Corning Incorporated Tunable glass compositions having improved mechanical durability
CN112592056A (zh) * 2020-10-30 2021-04-02 重庆鑫景特种玻璃有限公司 具有低变化幅度的张应力区的安全强化玻璃及制法和应用
EP4241301A2 (de) 2020-11-08 2023-09-13 Schott Ag Hermetisch verbundene anordnung, umhäusung und verfahren zu deren herstellung
CN116568648A (zh) 2020-11-30 2023-08-08 康宁股份有限公司 具有改善的韧性、表面应力及断裂抗性的可离子交换玻璃组合物
US20240002278A1 (en) 2020-11-30 2024-01-04 Corning Incorporated Ion exchangeable glasses having high fracture toughness
WO2022215717A1 (ja) * 2021-04-07 2022-10-13 Agc株式会社 化学強化ガラス及びその製造方法
DE202021103861U1 (de) 2021-07-20 2021-10-04 Schott Ag Scheibenförmiger, chemisch vorgespannter oder chemisch vorspannbarer Glasartikel
US11884585B2 (en) 2021-10-04 2024-01-30 Corning Incorporated Ion exchangeable glasses having high fracture toughness
WO2023076253A1 (en) 2021-10-26 2023-05-04 Corning Incorporated Ion exchangeable glasses having high fracture toughness
WO2023086354A1 (en) 2021-11-10 2023-05-19 Corning Incorporated Fusion formable high fracture toughness glasses
WO2023096951A1 (en) 2021-11-29 2023-06-01 Corning Incorporated Ion-exchangeable zirconium containing glasses with high ct and cs capability
US20240166551A1 (en) 2021-11-30 2024-05-23 Corning Incorporated Lithium phosphoalumino silicate glasses with fast effective inter-diffusivity
WO2023101898A1 (en) 2021-11-30 2023-06-08 Corning Incorporated Ion exchangeable high refractive index glasses
WO2023101896A1 (en) 2021-11-30 2023-06-08 Corning Incorporated Glass-based articles with reduced risk of delayed failure and high stored strain energy
US20230167010A1 (en) 2021-11-30 2023-06-01 Corning Incorporated Lithium phosphoalumino silicate glasses containing cesium
CN116693208A (zh) 2022-02-28 2023-09-05 康宁股份有限公司 经涂覆的纹理化玻璃制品及其制造方法
WO2024123642A1 (en) 2022-12-05 2024-06-13 Corning Incorporated Coated glass articles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8713972B2 (en) 2011-05-31 2014-05-06 Corning Incorporated Precision glass roll forming process and apparatus
US9003835B2 (en) 2011-05-31 2015-04-14 Corning Incorporated Precision roll forming of textured sheet glass

Family Cites Families (381)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1960121A (en) 1930-02-10 1934-05-22 American Optical Corp Glass treatment
BE510843A (de) 1951-04-21
NL298724A (de) 1962-10-04
US3357876A (en) 1965-01-19 1967-12-12 Pittsburgh Plate Glass Co Method of strengthening a glass article by ion exchange
GB1026770A (en) 1963-09-09 1966-04-20 Corning Glass Works Glass article and method of treatment
NL6410825A (de) 1963-11-21 1965-05-24
NL135450C (de) 1964-01-31 1900-01-01
US3380818A (en) 1964-03-18 1968-04-30 Owens Illinois Inc Glass composition and method and product
NL132488C (de) 1964-05-05
US3404015A (en) 1965-04-28 1968-10-01 Corning Glass Works Low thermal expansion glasses
US3433611A (en) 1965-09-09 1969-03-18 Ppg Industries Inc Strengthening glass by multiple alkali ion exchange
AU6452265A (en) 1965-09-27 1965-10-21 Ppg Industries Inc Glass articles having compressive stress
US3490984A (en) 1965-12-30 1970-01-20 Owens Illinois Inc Art of producing high-strength surface-crystallized,glass bodies
JPS4517798B1 (de) * 1966-01-19 1970-06-18
US3844754A (en) 1966-02-23 1974-10-29 Owens Illinois Inc Process of ion exchange of glass
NL6805259A (de) 1967-04-13 1968-10-14
JPS474192Y1 (de) 1967-09-28 1972-02-14
US3489097A (en) 1968-05-08 1970-01-13 William Gemeinhardt Flexible tube pump
US3656923A (en) 1968-05-27 1972-04-18 Corning Glass Works Method for strengthening photochromic glass articles
US3597305A (en) 1968-06-06 1971-08-03 Corning Glass Works Subsurface fortified glass or glass-ceramic laminates
GB1266257A (de) 1969-03-27 1972-03-08
GB1275653A (en) 1969-08-15 1972-05-24 Glaverbel Articles of chemically tempered glass
US3660060A (en) 1969-12-11 1972-05-02 Owens Illinois Inc Process of making glass lasers of increased heat dissipation capability
US3737294A (en) 1970-08-28 1973-06-05 Corning Glass Works Method for making multi-layer laminated bodies
US3673049A (en) 1970-10-07 1972-06-27 Corning Glass Works Glass laminated bodies comprising a tensilely stressed core and a compressively stressed surface layer fused thereto
JPS474192U (de) 1971-01-27 1972-09-08
FR2128031B1 (de) 1971-03-01 1976-03-19 Saint Gobain Pont A Mousson
US3746526A (en) 1971-03-10 1973-07-17 Corning Glass Works Method for forming subsurface fortified laminates
JPS5417765B1 (de) 1971-04-26 1979-07-03
US3931438A (en) 1971-11-08 1976-01-06 Corning Glass Works Differential densification strengthening of glass-ceramics
US3765855A (en) 1971-12-30 1973-10-16 Us Navy Electro-ionic method of strengthening glass
US4192688A (en) * 1972-07-07 1980-03-11 Owens-Illinois, Inc. Product and process for forming same
US3833388A (en) 1972-07-26 1974-09-03 Ppg Industries Inc Method of manufacturing sheet and float glass at high production rates
US3811855A (en) 1972-10-10 1974-05-21 Rca Corp Method of treating a glass body to provide an ion-depleted region therein
DE2263234C3 (de) 1972-12-23 1975-07-10 Jenaer Glaswerk Schott & Gen., 6500 Mainz Verfahren zur Herstellung von hochfesten und temperaturwechselbeständigen Glasgegenständen durch Oberflächenkristallisation unter Ausnutzung eines lonenaustausches innerhalb des Glases
US3879183A (en) 1973-08-15 1975-04-22 Rca Corp Corona discharge method of depleting mobile ions from a glass region
US3936287A (en) 1974-01-28 1976-02-03 The United States Of America As Represented By The United States Energy Research And Development Administration Method for making glass-ceramic articles exhibiting high frangibility
US3958052A (en) 1974-06-12 1976-05-18 Corning Glass Works Subsurface-fortified glass laminates
US4018965A (en) 1975-04-14 1977-04-19 Corning Glass Works Photochromic sheet glass compositions and articles
US4053679A (en) 1975-08-15 1977-10-11 Ppg Industries, Inc. Chemically strengthened opal glass
US4055703A (en) 1975-08-15 1977-10-25 Ppg Industries, Inc. Ion exchange strengthened glass containing P2 O5
US4042405A (en) 1976-03-18 1977-08-16 American Optical Corporation High strength ophthalmic lens
US4102664A (en) 1977-05-18 1978-07-25 Corning Glass Works Method for making glass articles with defect-free surfaces
JPS5483923A (en) 1977-12-16 1979-07-04 Asahi Glass Co Ltd Ion exchange strengthening of glass
NL7800157A (nl) 1978-01-06 1979-07-10 Philips Nv Werkwijze voor de vervaardiging van optische fibers voor telecommunicatie.
US4190451A (en) 1978-03-17 1980-02-26 Corning Glass Works Photochromic glass
US4130437A (en) 1978-04-12 1978-12-19 Corning Glass Works Photochromic glasses suitable for simultaneous heat treatment and shaping
US4156755A (en) 1978-04-19 1979-05-29 Ppg Industries, Inc. Lithium containing ion exchange strengthened glass
US4214886A (en) 1979-04-05 1980-07-29 Corning Glass Works Forming laminated sheet glass
US4240836A (en) 1979-11-19 1980-12-23 Corning Glass Works Colored photochromic glasses and method
US4358542A (en) 1981-04-08 1982-11-09 Corning Glass Works Photochromic glass suitable for microsheet and simultaneous heat treatment and shaping
FR2515635B1 (fr) 1981-10-29 1986-03-14 Ceraver Procede de fabrication d'un dielectrique en verre trempe pour isolateur electrique et isolateur en resultant
US4537612A (en) 1982-04-01 1985-08-27 Corning Glass Works Colored photochromic glasses and method
US4407966A (en) 1982-09-16 1983-10-04 Corning Glass Works Very fast fading photochromic glass
US4468534A (en) 1982-09-30 1984-08-28 Boddicker Franc W Method and device for cutting glass
DE3327072C2 (de) 1983-07-27 1985-10-10 Schott Glaswerke, 6500 Mainz Thermisch hoch belastbare Wolfram-Einschmelzgläser im System der Erdalkali-Alumosilicatgläser
US4483700A (en) 1983-08-15 1984-11-20 Corning Glass Works Chemical strengthening method
FR2563365B1 (fr) 1984-04-20 1986-12-05 Ceraver Dielectrique en verre pour isolateur electrique
US4702042A (en) 1984-09-27 1987-10-27 Libbey-Owens-Ford Co. Cutting strengthened glass
US4726981A (en) 1985-06-10 1988-02-23 Corning Glass Works Strengthened glass articles and method for making
US4608349A (en) 1985-11-12 1986-08-26 Corning Glass Works Photochromic glass compositions for lightweight lenses
JPH0676224B2 (ja) * 1986-02-13 1994-09-28 旭硝子株式会社 強化ガラスの製造法
CS260146B1 (cs) 1987-06-24 1988-12-15 Jurij Starcev Způsob tepelného zpracování skleněných výrobků určených ke zpevnění iontovou výměnou
US4857485A (en) 1987-10-14 1989-08-15 United Technologies Corporation Oxidation resistant fiber reinforced composite article
JP2602187B2 (ja) * 1988-03-11 1997-04-23 日本電気硝子株式会社 低膨張耐熱性結晶化ガラス接合材及びその接合方法
JPH0686310B2 (ja) * 1989-04-28 1994-11-02 セントラル硝子株式会社 透明非膨張性結晶化ガラス
US5273827A (en) 1992-01-21 1993-12-28 Corning Incorporated Composite article and method
US5559060A (en) 1992-05-22 1996-09-24 Corning Incorporated Glass for laminated glass articles
US5270269A (en) 1992-06-08 1993-12-14 Corning Incorporated Lead-free fine crystal glassware
US5281562A (en) 1992-07-21 1994-01-25 Corning Incorporated Ultraviolet absorbing glasses
US5350607A (en) 1992-10-02 1994-09-27 United Technologies Corporation Ionized cluster beam deposition of sapphire
FR2697242B1 (fr) 1992-10-22 1994-12-16 Saint Gobain Vitrage Int Vitrage trempé chimique.
FR2704852B1 (fr) 1993-05-06 1995-07-07 Saint Gobain Vitrage Int Procédé de renforcement d'objets en verre.
JPH06329439A (ja) * 1993-05-19 1994-11-29 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
US5342426A (en) 1993-07-16 1994-08-30 Corning Incorporated Making glass sheet with defect-free surfaces and alkali metal-free soluble glasses therefor
DE4325656C2 (de) 1993-07-30 1996-08-29 Schott Glaswerke Verwendung eines Glaskörpers zur Erzeugung eines als Brandschutzsicherheitsglas geeigneten vorgespannten Glaskörpers auf einer herkömmlichen Luftvorspannanlage
JP3388453B2 (ja) 1994-03-25 2003-03-24 Hoya株式会社 X線マスク又はx線マスク材料の支持体用ガラス、x線マスク材料及びx線マスク
DE4432235A1 (de) 1994-09-10 1996-03-14 Bayerische Motoren Werke Ag Kratzfeste Beschichtung auf einem thermisch beständigen Substrat und Verfahren zu ihrer Herstellung
JP3269529B2 (ja) * 1995-12-29 2002-03-25 日本電気硝子株式会社 Li2 O−Al2 O3 −SiO2 系結晶化ガラス
DE19616633C1 (de) 1996-04-26 1997-05-07 Schott Glaswerke Chemisch vorspannbare Aluminosilicatgläser und deren Verwendung
US6187441B1 (en) 1996-12-26 2001-02-13 Hoya Corporation Glass substrate for information recording medium and magnetic recording medium having the substrate
US5972460A (en) 1996-12-26 1999-10-26 Hoya Corporation Information recording medium
CH691008A5 (fr) 1997-01-15 2001-03-30 Rado Montres Sa Verre de montre inrayable et transparent et boîte de montre équipée d'un tel verre.
JP3384286B2 (ja) 1997-06-20 2003-03-10 日本板硝子株式会社 磁気記録媒体用ガラス基板
FR2766816B1 (fr) 1997-08-01 1999-08-27 Eurokera Plaque vitroceramique et son procede de fabrication
GB2335423A (en) 1998-03-20 1999-09-22 Pilkington Plc Chemically toughenable glass
JPH11328601A (ja) 1998-05-12 1999-11-30 Asahi Techno Glass Corp 記録媒体用ガラス基板、ガラス基板を用いた記録媒体および記録媒体用ガラス基板の製造方法
JP4497591B2 (ja) 1998-09-11 2010-07-07 Hoya株式会社 ガラス組成物、それを用いた情報記録媒体用基板および情報記録媒体
US6333286B1 (en) 1998-09-11 2001-12-25 Nippon Sheet Glass Co., Ltd. Glass composition and substrate for information recording media comprising the same
US6516634B1 (en) 1999-02-12 2003-02-11 The Penn State Research Foundation Strengthening, crack arrest and multiple cracking in brittle materials using residual stresses
DE19917921C1 (de) 1999-04-20 2000-06-29 Schott Glas Gläser und Glaskeramiken mit hohem spezifischen E-Modul und deren Verwendung
US6440531B1 (en) 1999-05-13 2002-08-27 Nippon Sheet Glass Co., Ltd Hydrofluoric acid etched substrate for information recording medium
JP2006228431A (ja) * 1999-05-13 2006-08-31 Nippon Sheet Glass Co Ltd 磁気ディスク用ガラス基板、磁気ディスク用ガラス基板の製造方法及び磁気ディスク
FR2796637B1 (fr) 1999-07-21 2002-06-07 Corning Inc Verre borosilicate ou aluminosilicate pour amplification optique
JP3762157B2 (ja) 1999-09-02 2006-04-05 旭テクノグラス株式会社 陽極接合用ガラス
JP2001076336A (ja) * 1999-09-08 2001-03-23 Hoya Corp 情報記録媒体用ガラス基板およびそれを用いた情報記録媒体
US6514149B2 (en) 2000-01-07 2003-02-04 Young W. Yoon Multiloop golf net assembly
SG99350A1 (en) * 2000-02-17 2003-10-27 Hoya Corp Glass for cathode-ray tube, strengthened glass, method for the production thereof and use thereof
JP2001342036A (ja) 2000-03-31 2001-12-11 Ngk Insulators Ltd ガラス材料並びに結晶化ガラス製品及び結晶化ガラス材料の製造方法
DE10017701C2 (de) 2000-04-08 2002-03-07 Schott Glas Gefloatetes Flachglas
JP4644347B2 (ja) 2000-10-06 2011-03-02 株式会社アルバック 熱cvd法によるグラファイトナノファイバー薄膜形成方法
US6472068B1 (en) 2000-10-26 2002-10-29 Sandia Corporation Glass rupture disk
JP4512786B2 (ja) 2000-11-17 2010-07-28 独立行政法人産業技術総合研究所 ガラス基板の加工方法
JP2002174810A (ja) * 2000-12-08 2002-06-21 Hoya Corp ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ
JP3995902B2 (ja) 2001-05-31 2007-10-24 Hoya株式会社 情報記録媒体用ガラス基板及びそれを用いた磁気情報記録媒体
ITTO20010673A1 (it) 2001-07-10 2003-01-10 Uni Di Trento Dipartiment O Di Vetro con funzionalita' di sensore di frattura, di sforzo e deformazione e relativo metodo di realizzazione.
DE10150884A1 (de) 2001-10-16 2003-05-08 Schott Glas Thermisch vorspannbares Alkaliborosilikatglas, seine Herstellung und seine Verwendung
JP4126902B2 (ja) 2001-12-13 2008-07-30 日本板硝子株式会社 色ガラス組成物および透明結晶化ガラス
JP3897170B2 (ja) * 2002-01-21 2007-03-22 日本板硝子株式会社 赤外発光体および光増幅媒体
FR2839508B1 (fr) 2002-05-07 2005-03-04 Saint Gobain Vitrage decoupe sans rompage
DE10228381A1 (de) 2002-06-25 2004-01-22 Degudent Gmbh Opaleszierende Glaskeramik
JP2004099370A (ja) 2002-09-10 2004-04-02 Nippon Electric Glass Co Ltd 防火ガラス
AU2003273027A1 (en) 2002-12-25 2004-07-22 Yasushi Fujimoto Glass composition fluorescent in infrared wavelength region
US7176528B2 (en) 2003-02-18 2007-02-13 Corning Incorporated Glass-based SOI structures
JP2004259402A (ja) 2003-02-27 2004-09-16 Hoya Corp 磁気ディスク用ガラス基板および磁気ディスクの製造方法
WO2004094327A2 (en) 2003-04-01 2004-11-04 Corning Incorporated Lamp reflector substrate, glass, glass-ceramic materials and process for making the same
US7514149B2 (en) 2003-04-04 2009-04-07 Corning Incorporated High-strength laminated sheet for optical applications
JP2004343008A (ja) 2003-05-19 2004-12-02 Disco Abrasive Syst Ltd レーザ光線を利用した被加工物分割方法
JP4535692B2 (ja) 2003-05-28 2010-09-01 セントラル硝子株式会社 化学強化ガラス
JP4081416B2 (ja) 2003-08-18 2008-04-23 株式会社日立製作所 リフレクタ、投射型表示装置及び投光装置
US7727917B2 (en) * 2003-10-24 2010-06-01 Schott Ag Lithia-alumina-silica containing glass compositions and glasses suitable for chemical tempering and articles made using the chemically tempered glass
JP4378152B2 (ja) 2003-11-07 2009-12-02 岡本硝子株式会社 耐熱性ガラス
WO2005047647A1 (en) 2003-11-10 2005-05-26 Baker Hughes Incorporated A method and apparatus for a downhole spectrometer based on electronically tunable optical filters
JP2005206406A (ja) 2004-01-21 2005-08-04 Rikogaku Shinkokai 固体中のイオンの交換方法
EP1577276A1 (de) 2004-03-05 2005-09-21 Glaverbel Verglasungsscheibe
DE102004012977A1 (de) 2004-03-17 2005-10-06 Institut für Neue Materialien Gemeinnützige GmbH Kratzfestes optisches Mehrschichtsystem auf einem kristallinen Substrat
JP4039381B2 (ja) 2004-03-25 2008-01-30 コニカミノルタオプト株式会社 ガラス組成物を用いた情報記録媒体用ガラス基板及びこれを用いた情報記録媒体
JPWO2005093720A1 (ja) * 2004-03-25 2008-02-14 Hoya株式会社 磁気ディスク用ガラス基板
JP2005289685A (ja) 2004-03-31 2005-10-20 Central Glass Co Ltd レーザー照射で異質相が形成されてなる強化ガラス
JP2005289683A (ja) 2004-03-31 2005-10-20 Central Glass Co Ltd レーザー照射で異質相が形成されてなる強化ガラス
DE102004022629B9 (de) * 2004-05-07 2008-09-04 Schott Ag Gefloatetes Lithium-Aluminosilikat-Flachglas mit hoher Temperaturbeständigkeit, das chemisch und thermisch vorspannbar ist und dessen Verwendung
US7201965B2 (en) 2004-12-13 2007-04-10 Corning Incorporated Glass laminate substrate having enhanced impact and static loading resistance
JP2006199538A (ja) 2005-01-20 2006-08-03 Huzhou Daikyo Hari Seihin Yugenkoshi Li2O−Al2O3−SiO2系結晶性ガラス及び結晶化ガラス並びにLi2O−Al2O3−SiO2系結晶化ガラスの製造方法。
DE102005026695A1 (de) 2005-06-09 2006-12-21 Schott Ag Leuchtvorrichtung mit einem Außenkolben, insbesondere Hochdruck-Entladungslampe
US8959953B2 (en) 2005-09-12 2015-02-24 Saxon Glass Technologies, Inc. Method for making strengthened glass
US8304078B2 (en) 2005-09-12 2012-11-06 Saxon Glass Technologies, Inc. Chemically strengthened lithium aluminosilicate glass having high strength effective to resist fracture upon flexing
US8234883B2 (en) 2005-11-29 2012-08-07 Ppg Industries Ohio, Inc. Apparatus and method for tempering glass sheets
US20070123410A1 (en) * 2005-11-30 2007-05-31 Morena Robert M Crystallization-free glass frit compositions and frits made therefrom for microreactor devices
US8007913B2 (en) 2006-02-10 2011-08-30 Corning Incorporated Laminated glass articles and methods of making thereof
GB0602821D0 (en) 2006-02-10 2006-03-22 Inovink Ltd Improvements in and relating to printing
US20070208194A1 (en) 2006-03-01 2007-09-06 Woodruff Thomas E Oxidation system with sidedraw secondary reactor
JP4841278B2 (ja) 2006-03-23 2011-12-21 富士フイルム株式会社 内視鏡の吸引装置
JP4650313B2 (ja) 2006-03-23 2011-03-16 トヨタ自動車株式会社 内燃機関の可変排気装置
JP4800809B2 (ja) 2006-03-24 2011-10-26 株式会社ニチベイ 縦型ブラインド
US7476633B2 (en) 2006-03-31 2009-01-13 Eurokera β-spodumene glass-ceramic materials and process for making the same
JP2007314521A (ja) 2006-04-27 2007-12-06 Sumitomo Chemical Co Ltd エポキシ化合物の製造方法
US8076014B2 (en) * 2006-06-08 2011-12-13 Hoya Corporation Glass for use in substrate for information recording medium, substrate for information recording medium and information recording medium, and their manufacturing method
US7456121B2 (en) 2006-06-23 2008-11-25 Eurokera Glass-ceramic materials, precursor glass thereof and process-for making the same
JP2008007384A (ja) 2006-06-30 2008-01-17 Optrex Corp ガラス基板の製造方法
JP2008094713A (ja) 2006-09-15 2008-04-24 Kyoto Univ ガラス基材の表面改質方法、および表面改質ガラス基材
JP5875133B2 (ja) * 2006-10-10 2016-03-02 日本電気硝子株式会社 強化ガラス基板
JP5589252B2 (ja) * 2006-10-10 2014-09-17 日本電気硝子株式会社 強化ガラス基板
KR101351366B1 (ko) 2006-10-10 2014-01-14 니폰 덴키 가라스 가부시키가이샤 강화 유리 기판
US8975374B2 (en) 2006-10-20 2015-03-10 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition comprising anti-HB-EGF antibody as active ingredient
FR2909373B1 (fr) * 2006-11-30 2009-02-27 Snc Eurokera Soc En Nom Collec Vitroceramiques de beta-quartz, transparentes et incolores, exemptes de tio2 ; articles en lesdites vitroceramiques ; verres precurseurs, procedes d'elaboration.
US8887528B2 (en) * 2006-12-04 2014-11-18 Asahi Glass Company, Limited Process for producing surface-treated glass plate
JP5074042B2 (ja) 2007-01-10 2012-11-14 Hoya株式会社 情報記録媒体基板用素材、情報記録媒体基板、情報記録媒体それぞれの製造方法
WO2008102848A1 (ja) 2007-02-22 2008-08-28 Nippon Sheet Glass Company, Limited 陽極接合用ガラス
TWI486320B (zh) 2007-03-02 2015-06-01 Nippon Electric Glass Co 強化板玻璃及其製造方法
JP5207357B2 (ja) 2007-03-29 2013-06-12 独立行政法人産業技術総合研究所 ガラス部材の成形法および成形装置
US7619283B2 (en) 2007-04-20 2009-11-17 Corning Incorporated Methods of fabricating glass-based substrates and apparatus employing same
US7666511B2 (en) 2007-05-18 2010-02-23 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
CN101679105B (zh) 2007-06-07 2015-06-17 日本电气硝子株式会社 强化玻璃基板及其制造方法
JP5467490B2 (ja) 2007-08-03 2014-04-09 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
JP5743125B2 (ja) 2007-09-27 2015-07-01 日本電気硝子株式会社 強化ガラス及び強化ガラス基板
WO2009041618A1 (ja) * 2007-09-28 2009-04-02 Hoya Corporation 磁気ディスク用ガラス基板及びその製造方法、磁気ディスク
MY167819A (en) 2007-09-28 2018-09-26 Hoya Corp Glass substrate for magnetic disk and manufacturing method of the same
JP5393974B2 (ja) * 2007-09-28 2014-01-22 Hoya株式会社 磁気ディスク用ガラス基板の製造方法および磁気ディスク
JP5206261B2 (ja) 2007-10-26 2013-06-12 旭硝子株式会社 情報記録媒体基板用ガラス、磁気ディスク用ガラス基板および磁気ディスク
JP5079452B2 (ja) 2007-10-30 2012-11-21 財団法人神奈川科学技術アカデミー 表面に凹凸パターンを有するガラス材の製造方法
EP3392220A1 (de) 2007-11-29 2018-10-24 Corning Incorporated Brille mit verbesserter zähigkeit und kratzfestigkeit
CN101980983B (zh) 2008-02-26 2014-04-16 康宁股份有限公司 用于硅酸盐玻璃的澄清剂
US8232218B2 (en) * 2008-02-29 2012-07-31 Corning Incorporated Ion exchanged, fast cooled glasses
TWI414502B (zh) * 2008-05-13 2013-11-11 Corning Inc 含稀土元素之玻璃材料及基板及含該基板之裝置
JP5416917B2 (ja) 2008-05-14 2014-02-12 株式会社オハラ ガラス
WO2009154064A1 (ja) 2008-06-18 2009-12-23 日本板硝子株式会社 鱗片状ガラス及び被覆鱗片状ガラス
EP2323955A1 (de) 2008-07-03 2011-05-25 Corning Inc. Haltbare glaskeramikgehäuse für elektronische vorrichtungen
JP2011527661A (ja) 2008-07-11 2011-11-04 コーニング インコーポレイテッド 民生用途のための圧縮面を有するガラス
JP5777109B2 (ja) 2008-07-29 2015-09-09 コーニング インコーポレイテッド ガラスの化学強化のための二段階イオン交換
WO2010016928A2 (en) 2008-08-08 2010-02-11 Corning Incorporated Strengthened glass articles and methods of making
DE102008038808A1 (de) 2008-08-13 2010-02-25 Zf Friedrichshafen Ag Fußpedalmodul
US8347651B2 (en) 2009-02-19 2013-01-08 Corning Incorporated Method of separating strengthened glass
US8327666B2 (en) 2009-02-19 2012-12-11 Corning Incorporated Method of separating strengthened glass
US8341976B2 (en) 2009-02-19 2013-01-01 Corning Incorporated Method of separating strengthened glass
US8383255B2 (en) 2009-02-24 2013-02-26 Eveready Battery Company, Inc. Closure assembly for electrochemical cells
CN101508524B (zh) 2009-03-31 2010-06-30 成都光明光电股份有限公司 适于化学钢化的玻璃及其化学钢化玻璃
JP5483923B2 (ja) 2009-04-24 2014-05-07 興和株式会社 カルニチン及びグリチルリチン酸含有経口固形剤
JP2012527399A (ja) 2009-05-21 2012-11-08 コーニング インコーポレイテッド 機械的耐久性エッジを有する薄型基材
JP4815002B2 (ja) 2009-06-04 2011-11-16 株式会社オハラ 情報記録媒体用結晶化ガラス基板およびその製造方法
US8193128B2 (en) 2009-06-17 2012-06-05 The Penn State Research Foundation Treatment of particles for improved performance as proppants
US8802581B2 (en) 2009-08-21 2014-08-12 Corning Incorporated Zircon compatible glasses for down draw
KR20120073249A (ko) 2009-08-28 2012-07-04 코닝 인코포레이티드 화학적으로 강화된 유리 기판으로부터 제품을 레이저 절단하기 위한 방법
US8932510B2 (en) 2009-08-28 2015-01-13 Corning Incorporated Methods for laser cutting glass substrates
JP5645099B2 (ja) 2009-09-09 2014-12-24 日本電気硝子株式会社 強化ガラス
JP5115545B2 (ja) 2009-09-18 2013-01-09 旭硝子株式会社 ガラスおよび化学強化ガラス
KR101719439B1 (ko) 2009-09-30 2017-03-23 애플 인크. 휴대용 전자 디바이스의 유리 커버를 강화하기 위한 기술
JP5689075B2 (ja) 2009-11-25 2015-03-25 旭硝子株式会社 ディスプレイカバーガラス用ガラス基板及びその製造方法
CN102092940A (zh) 2009-12-11 2011-06-15 肖特公开股份有限公司 用于触摸屏的铝硅酸盐玻璃
TWI401219B (zh) 2009-12-24 2013-07-11 Avanstrate Inc Glass plate manufacturing method and glass plate manufacturing apparatus
CN102741187B (zh) 2010-01-07 2015-09-09 康宁股份有限公司 抗冲击损伤玻璃片
KR101605227B1 (ko) 2010-02-02 2016-03-21 애플 인크. 휴대형 전자 장치의 커버의 향상된 화학적 강화 유리
JP2011164900A (ja) 2010-02-09 2011-08-25 Sony Corp グリーン発電装置、携帯機器、蓄電装置、及びグリーン電力情報の管理方法
DE102010009585B4 (de) * 2010-02-26 2012-04-19 Schott Ag Lithium-Aluminosilicatglas mit hohen E-Modul, Verfahren zu dessen Herstellung und Verwendung
DE102010009584B4 (de) * 2010-02-26 2015-01-08 Schott Ag Chemisch vorgespanntes Glas, Verfahren zu seiner Herstellung sowie Verwendung desselben
CN102167509A (zh) 2010-02-26 2011-08-31 肖特玻璃科技(苏州)有限公司 能进行后续切割的化学钢化玻璃
CN102167507B (zh) 2010-02-26 2016-03-16 肖特玻璃科技(苏州)有限公司 用于3d紧密模压的薄锂铝硅玻璃
JP5683971B2 (ja) 2010-03-19 2015-03-11 石塚硝子株式会社 化学強化用ガラス組成物及び化学強化ガラス材
TWI494284B (zh) 2010-03-19 2015-08-01 Corning Inc 強化玻璃之機械劃割及分離
US9302937B2 (en) 2010-05-14 2016-04-05 Corning Incorporated Damage-resistant glass articles and method
CN101838110B (zh) 2010-05-19 2014-02-26 巨石集团有限公司 一种适用于池窑生产的制备高性能玻璃纤维用组合物
CA2797415A1 (en) * 2010-05-20 2011-11-24 Cardinal Fg Company Glass substrates for high temperature applications
US20110293942A1 (en) 2010-05-26 2011-12-01 Ivan A Cornejo Variable temperature/continuous ion exchange process
US8759238B2 (en) 2010-05-27 2014-06-24 Corning Incorporated Ion exchangeable glasses
US8778820B2 (en) 2010-05-27 2014-07-15 Corning Incorporated Glasses having low softening temperatures and high toughness
US9540278B2 (en) 2010-05-27 2017-01-10 Corning Incorporated Ion exchangeable glasses
JP2010202514A (ja) 2010-06-10 2010-09-16 Hoya Corp 携帯型液晶ディスプレイ用のガラス基板及びその製造方法並びにこれを用いた携帯型液晶ディスプレイ
JP2012020921A (ja) * 2010-06-18 2012-02-02 Asahi Glass Co Ltd ディスプレイ装置用のガラスおよびガラス板
DE102010031114B4 (de) * 2010-07-08 2014-06-05 Schott Ag Glas mit hervorragender Resistenz gegen Oberflächenbeschädigungen und Verwendung von Erdalkaliphosphaten zur Erhöhung der Oberflächenresistenz von Glas
JP2012036074A (ja) 2010-07-12 2012-02-23 Nippon Electric Glass Co Ltd ガラス板
JP5732758B2 (ja) 2010-07-13 2015-06-10 旭硝子株式会社 固体撮像装置用カバーガラス
US8741800B2 (en) 2010-07-22 2014-06-03 Uchicago Argonne, Llc Hydrothermal performance of catalyst supports
US10189743B2 (en) 2010-08-18 2019-01-29 Apple Inc. Enhanced strengthening of glass
US8584354B2 (en) 2010-08-26 2013-11-19 Corning Incorporated Method for making glass interposer panels
US20120052271A1 (en) 2010-08-26 2012-03-01 Sinue Gomez Two-step method for strengthening glass
US20120052275A1 (en) 2010-08-30 2012-03-01 Avanstrate Inc. Glass substrate, chemically strengthened glass substrate and cover glass, and method for manufactruing the same
FR2964655B1 (fr) * 2010-09-13 2017-05-19 Saint Gobain Feuille de verre
US9434644B2 (en) 2010-09-30 2016-09-06 Avanstrate Inc. Cover glass and method for producing cover glass
US8950215B2 (en) 2010-10-06 2015-02-10 Apple Inc. Non-contact polishing techniques for reducing roughness on glass surfaces
JP5720499B2 (ja) 2010-10-26 2015-05-20 旭硝子株式会社 基板用ガラスおよびガラス基板
ES2443592T3 (es) 2010-11-04 2014-02-19 Corning Incorporated Vitrocerámica transparente de espinela exenta de As2O3 y Sb2O3
JP2012116744A (ja) 2010-11-11 2012-06-21 Nippon Electric Glass Co Ltd 半導体封入用無鉛ガラス及び半導体封入用外套管
FR2968070B1 (fr) 2010-11-30 2015-01-09 Active Innovation Man Panneau solaire flottant et installation solaire constituee d'un assemblage de tels panneaux.
US8883663B2 (en) 2010-11-30 2014-11-11 Corning Incorporated Fusion formed and ion exchanged glass-ceramics
JP5897595B2 (ja) 2010-11-30 2016-03-30 コーニング インコーポレイテッド 圧縮下にある表面及び中央領域を有するガラス
US9346703B2 (en) 2010-11-30 2016-05-24 Corning Incorporated Ion exchangable glass with deep compressive layer and high damage threshold
TWI588104B (zh) 2010-12-14 2017-06-21 康寧公司 用於強化玻璃之熱處理
FR2969460B1 (fr) * 2010-12-17 2012-12-28 Eurokera Dispositif de cuisson par induction
JP5834793B2 (ja) 2010-12-24 2015-12-24 旭硝子株式会社 化学強化ガラスの製造方法
CN102531384B (zh) * 2010-12-29 2019-02-22 安瀚视特股份有限公司 玻璃盖片及其制造方法
JP5839338B2 (ja) 2011-01-18 2016-01-06 日本電気硝子株式会社 強化ガラス板の製造方法
JP2012148909A (ja) 2011-01-18 2012-08-09 Nippon Electric Glass Co Ltd 強化ガラス及び強化ガラス板
US20120196110A1 (en) 2011-01-19 2012-08-02 Takashi Murata Tempered glass and tempered glass sheet
US8835007B2 (en) 2011-01-19 2014-09-16 Nippon Electric Glass Co., Ltd. Tempered glass and tempered glass sheet
US8883314B2 (en) 2011-01-25 2014-11-11 Corning Incorporated Coated articles with improved fingerprint resistance and methods of making same
US20120216569A1 (en) 2011-02-24 2012-08-30 Douglas Clippinger Allan Method of producing constancy of compressive stress in glass in an ion-exchange process
US20120216565A1 (en) 2011-02-24 2012-08-30 Douglas Clippinger Allan Method of producing constancy of compressive stress in glass in an ion exchange process
US8756262B2 (en) 2011-03-01 2014-06-17 Splunk Inc. Approximate order statistics of real numbers in generic data
US10781135B2 (en) 2011-03-16 2020-09-22 Apple Inc. Strengthening variable thickness glass
TW201245080A (en) 2011-03-17 2012-11-16 Asahi Glass Co Ltd Glass for chemical strengthening
CN102690059B (zh) 2011-03-23 2016-08-03 肖特玻璃科技(苏州)有限公司 用于化学钢化的铝硅酸盐玻璃和玻璃陶瓷
JP2012232882A (ja) 2011-04-18 2012-11-29 Asahi Glass Co Ltd 化学強化ガラスの製造方法および化学強化用ガラス
US9140543B1 (en) 2011-05-25 2015-09-22 Corning Incorporated Systems and methods for measuring the stress profile of ion-exchanged glass
US8889575B2 (en) 2011-05-31 2014-11-18 Corning Incorporated Ion exchangeable alkali aluminosilicate glass articles
CN103619776B (zh) 2011-06-20 2016-03-16 旭硝子株式会社 夹层玻璃的制造方法和夹层玻璃
KR101302664B1 (ko) 2011-06-30 2013-09-03 박만금 강화유리 제조방법 및 이로부터 제조된 강화유리
TWI591039B (zh) 2011-07-01 2017-07-11 康寧公司 具高壓縮應力的離子可交換玻璃
US9783452B2 (en) 2011-07-01 2017-10-10 Corning Incorporated Ion-exchanged glass of high surface compression and shallow depth of layer with high resistance to radial crack formation from vickers indentation
TWI572480B (zh) 2011-07-25 2017-03-01 康寧公司 經層壓及離子交換之強化玻璃疊層
JP5737043B2 (ja) 2011-07-29 2015-06-17 旭硝子株式会社 基板用ガラスおよびガラス基板
WO2013018774A1 (ja) 2011-08-04 2013-02-07 旭硝子株式会社 化学強化ガラスの衝撃試験方法、化学強化ガラスの割れ再現方法及び化学強化ガラスの製造方法
JP2013035721A (ja) 2011-08-09 2013-02-21 Asahi Glass Co Ltd ガラス板の製造方法およびディスプレイ装置用化学強化ガラス
US10280112B2 (en) * 2011-08-19 2019-05-07 Corning Incorporated Ion exchanged glass with high resistance to sharp contact failure and articles made therefrom
JP2013043795A (ja) 2011-08-23 2013-03-04 Nippon Electric Glass Co Ltd 強化ガラス及びその製造方法
JPWO2013027651A1 (ja) 2011-08-23 2015-03-19 Hoya株式会社 強化ガラス基板の製造方法および強化ガラス基板
US8789998B2 (en) * 2011-08-31 2014-07-29 Corning Incorporated Edge illumination of an ion-exchanged glass sheet
CN103842309B (zh) 2011-09-29 2016-08-17 中央硝子株式会社 化学强化玻璃板及其制造方法
CN103827053B (zh) 2011-09-29 2016-05-11 中央硝子株式会社 化学强化玻璃及其制造方法
CN103058507A (zh) 2011-10-18 2013-04-24 浙江福隆鼎玻璃科技有限公司 防火玻璃的制造方法
CN103058506A (zh) 2011-10-20 2013-04-24 雅士晶业股份有限公司 在玻璃基板表面形成压应力层图案的方法及依该方法制成玻璃基板
US10350139B2 (en) 2011-10-25 2019-07-16 Corning Incorporated Pharmaceutical glass packaging assuring pharmaceutical sterility
EP2771297B1 (de) * 2011-10-25 2017-12-13 Corning Incorporated Delaminationsresistente pharmazeutische glasbehälter mit pharmazeutischen wirkstoffen
CN109704566B (zh) * 2011-10-25 2022-08-26 康宁股份有限公司 具有改善的化学和机械耐久性的碱土金属铝硅酸盐玻璃组合物
US9850162B2 (en) 2012-02-29 2017-12-26 Corning Incorporated Glass packaging ensuring container integrity
US20130122260A1 (en) 2011-11-10 2013-05-16 Nai-Yue Liang Glass substrate having a patterned layer of compressive stress on a surface thereof
EP3342759B1 (de) 2011-11-16 2021-08-25 Corning Incorporated Ionenaustauschglas mit hoher anrissschwelle
JP2013228669A (ja) * 2011-11-30 2013-11-07 Hoya Corp 電子機器用カバーガラスブランク及びその製造方法、並びに電子機器用カバーガラス及びその製造方法
WO2013082246A1 (en) 2011-11-30 2013-06-06 Corning Incorporated Controlling alkali in cigs thin films via glass and application of voltage
CN102393289B (zh) 2011-12-05 2013-08-21 北京神州腾耀通信技术有限公司 一种钢球跌落试验机
KR20150040367A (ko) 2011-12-16 2015-04-14 아사히 가라스 가부시키가이샤 디스플레이용 커버 유리, 디스플레이용 커버 유리의 제조 방법
FR2986279B1 (fr) 2012-01-27 2016-07-29 Converteam Tech Ltd Pale pour rotor d'hydrolienne, rotor d'hydrolienne comprenant une telle pale, hydrolienne associee et procede de fabrication d'une telle pale
WO2013116420A1 (en) 2012-02-01 2013-08-08 Corning Incorporated Method of producing constancy of compressive stress in glass in an ion-exchange process
US9725357B2 (en) 2012-10-12 2017-08-08 Corning Incorporated Glass articles having films with moderate adhesion and retained strength
DE102012002711A1 (de) 2012-02-14 2013-08-14 Thyssenkrupp Uhde Gmbh Bodenproduktkühlung bei einer Wirbelschichtvergasung
US9359251B2 (en) * 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
WO2013130665A2 (en) 2012-02-29 2013-09-06 Corning Incorporated Low cte, ion-exchangeable glass compositions and glass articles comprising the same
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
FR2988089A1 (fr) 2012-03-15 2013-09-20 Saint Gobain Feuille de verre
KR101641812B1 (ko) 2012-03-28 2016-07-21 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 연속 주조 장비
US8664130B2 (en) * 2012-04-13 2014-03-04 Corning Incorporated White, opaque β-spodumene/rutile glass-ceramic articles and methods for making the same
JP6176241B2 (ja) 2012-04-27 2017-08-09 旭硝子株式会社 化学強化ガラスの製造方法
US20130288010A1 (en) 2012-04-27 2013-10-31 Ravindra Kumar Akarapu Strengthened glass article having shaped edge and method of making
US20130309613A1 (en) 2012-05-16 2013-11-21 Corning Incorporated Liquid Based Films
JP6147735B2 (ja) 2012-05-16 2017-06-14 Hoya株式会社 磁気記録媒体基板用ガラスおよびその利用
US9156725B2 (en) 2012-05-30 2015-10-13 Corning Incorporated Down-drawable chemically strengthened glass for information storage devices
KR102651562B1 (ko) 2012-05-31 2024-03-28 코닝 인코포레이티드 높은 내손상성을 갖는 지르콘 호환가능한, 이온 교환가능한 유리
US9512029B2 (en) 2012-05-31 2016-12-06 Corning Incorporated Cover glass article
US9517967B2 (en) 2012-05-31 2016-12-13 Corning Incorporated Ion exchangeable glass with high damage resistance
KR101629779B1 (ko) 2012-06-08 2016-06-13 니폰 덴키 가라스 가부시키가이샤 강화유리, 강화유리판 및 강화용 유리
JP2015523310A (ja) 2012-06-08 2015-08-13 コーニング インコーポレイテッド 強化ガラス物品と製造方法
JP6168288B2 (ja) 2012-06-13 2017-07-26 日本電気硝子株式会社 強化ガラス及び強化ガラス板
JP5924489B2 (ja) 2012-06-21 2016-05-25 日本電気硝子株式会社 強化ガラスの製造方法
WO2014003188A1 (ja) 2012-06-25 2014-01-03 日本電気硝子株式会社 強化ガラス基板及びその製造方法
JP2014012611A (ja) 2012-07-03 2014-01-23 Asahi Glass Co Ltd 化学強化ガラス板
JP6032468B2 (ja) 2012-07-09 2016-11-30 日本電気硝子株式会社 強化ガラス基板の製造方法
WO2014010533A1 (ja) 2012-07-09 2014-01-16 日本電気硝子株式会社 強化ガラス及び強化ガラス板
US9139469B2 (en) 2012-07-17 2015-09-22 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
CA2820253C (en) 2012-08-08 2020-10-27 Shrenik Shah System and method for improving impact safety
WO2014028284A1 (en) * 2012-08-17 2014-02-20 Corning Incorporated Ultra-thin strengthened glasses
US9454025B2 (en) 2012-08-31 2016-09-27 Apple Inc. Displays with reduced driver circuit ledges
CN104619664A (zh) * 2012-09-14 2015-05-13 旭硝子株式会社 化学强化用玻璃、化学强化玻璃以及化学强化用玻璃的制造方法
FR2995887B1 (fr) 2012-09-21 2017-12-15 Saint Gobain Feuille de verre et dispositif comprenant ladite feuille de verre
US9387651B2 (en) 2012-09-26 2016-07-12 Corning Incorporated Methods for producing ion exchanged glass and resulting apparatus
US20140087193A1 (en) 2012-09-26 2014-03-27 Jeffrey Scott Cites Methods for producing ion exchanged glass and resulting apparatus
CN102887650B (zh) 2012-09-27 2014-12-24 中国航空工业集团公司北京航空材料研究院 一种对平板玻璃进行综合强化的方法
US9403716B2 (en) 2012-09-27 2016-08-02 Corning Incorporated Glass-ceramic(s); associated formable and/or color-tunable, crystallizable glass(es); and associated process(es)
US8957374B2 (en) 2012-09-28 2015-02-17 Corning Incorporated Systems and methods for measuring birefringence in glass and glass-ceramics
WO2014055491A1 (en) 2012-10-03 2014-04-10 Corning Incorporated Surface-modified glass substrate
JP6323957B2 (ja) 2012-10-12 2018-05-16 コーニング インコーポレイテッド 残留強度を有する物品
US8854623B2 (en) 2012-10-25 2014-10-07 Corning Incorporated Systems and methods for measuring a profile characteristic of a glass sample
US9272945B2 (en) 2012-10-25 2016-03-01 Corning Incorporated Thermo-electric method for texturing of glass surfaces
US9604871B2 (en) 2012-11-08 2017-03-28 Corning Incorporated Durable glass ceramic cover glass for electronic devices
US9718249B2 (en) 2012-11-16 2017-08-01 Apple Inc. Laminated aluminum oxide cover component
US10501364B2 (en) 2012-11-21 2019-12-10 Corning Incorporated Ion exchangeable glasses having high hardness and high modulus
US20140154661A1 (en) 2012-11-30 2014-06-05 Corning Incorporated Durable glass articles for use as writable erasable marker boards
US10117806B2 (en) 2012-11-30 2018-11-06 Corning Incorporated Strengthened glass containers resistant to delamination and damage
JP5982500B2 (ja) 2012-12-21 2016-08-31 Hoya株式会社 Hdd用ガラス基板および情報記録媒体
KR101872577B1 (ko) * 2012-12-21 2018-06-28 코닝 인코포레이티드 개선된 총 피치 안정성을 갖는 유리
US9623628B2 (en) 2013-01-10 2017-04-18 Apple Inc. Sapphire component with residual compressive stress
JP2014133683A (ja) 2013-01-10 2014-07-24 Central Glass Co Ltd 化学強化ガラス板の製造方法
JP5869500B2 (ja) 2013-01-17 2016-02-24 旭化成ケミカルズ株式会社 組成物及び重合物
JP2014141363A (ja) 2013-01-23 2014-08-07 Konica Minolta Inc 化学強化可能なガラス,ガラス板及び化学強化カバーガラス
US9714192B2 (en) * 2013-02-08 2017-07-25 Corning Incorporated Ion exchangeable glass with advantaged stress profile
WO2014136751A1 (ja) * 2013-03-05 2014-09-12 Hoya株式会社 情報記録媒体用ガラス基板および情報記録媒体
JP2014208570A (ja) 2013-03-25 2014-11-06 日本電気硝子株式会社 強化ガラス基板及びその製造方法
WO2014175144A1 (ja) 2013-04-25 2014-10-30 旭硝子株式会社 化学強化用ガラス板およびその製造方法
ES2907255T3 (es) 2013-05-07 2022-04-22 Agc Glass Europe Lámina de vidrio con alta transmisión a radiaciones infrarrojas
US9359261B2 (en) 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US20140356605A1 (en) 2013-05-31 2014-12-04 Corning Incorporated Antimicrobial Articles and Methods of Making and Using Same
JP6455799B2 (ja) 2013-06-06 2019-01-23 日本電気硝子株式会社 医薬品容器用ガラス管及び医薬品容器
US9512035B2 (en) 2013-06-17 2016-12-06 Corning Incorporated Antimicrobial glass articles with improved strength and methods of making and using same
WO2015013092A1 (en) 2013-07-25 2015-01-29 Corning Incorporated Methods and apparatus for forming a glass ribbon
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US10941071B2 (en) 2013-08-02 2021-03-09 Corning Incorporated Hybrid soda-lime silicate and aluminosilicate glass articles
US9573843B2 (en) 2013-08-05 2017-02-21 Corning Incorporated Polymer edge-covered glass articles and methods for making and using same
CN105683108A (zh) 2013-08-27 2016-06-15 康宁股份有限公司 具有高热膨胀系数的耐损坏的玻璃
US20150060401A1 (en) 2013-08-29 2015-03-05 Corning Incorporated Method of edge coating a batch of glass articles
CN111268912B (zh) 2013-08-30 2022-08-30 康宁股份有限公司 可离子交换玻璃、玻璃-陶瓷及其制造方法
US10160688B2 (en) 2013-09-13 2018-12-25 Corning Incorporated Fracture-resistant layered-substrates and articles including the same
KR102362297B1 (ko) 2013-10-14 2022-02-14 코닝 인코포레이티드 중간 접착력 및 잔류 강도를 갖는 필름을 갖는 유리 제품
KR102431126B1 (ko) 2013-10-14 2022-08-10 코닝 인코포레이티드 이온 교환 공정 및 이로부터 결과하는 화학적으로 강화된 유리 기판
US9663400B2 (en) 2013-11-08 2017-05-30 Corning Incorporated Scratch-resistant liquid based coatings for glass
CN105916824A (zh) 2013-11-19 2016-08-31 康宁股份有限公司 可离子交换的具有高耐损坏性的玻璃
US10442730B2 (en) 2013-11-25 2019-10-15 Corning Incorporated Method for achieving a stress profile in a glass
CN105764863B (zh) 2013-11-26 2018-04-10 旭硝子株式会社 玻璃部件和玻璃部件的制造方法
TWI635063B (zh) 2013-11-26 2018-09-11 康寧公司 具有抗微生物效果之含磷玻璃
EP3074357B1 (de) 2013-11-26 2022-11-09 Corning Inc. Schnelle ionenaustauschbare gläser mit hoher einkerbungsschwelle
US20150166407A1 (en) 2013-12-08 2015-06-18 Saxon Glass Technologies, Inc. Strengthened glass and methods for making utilizing electric field assist
US9517968B2 (en) 2014-02-24 2016-12-13 Corning Incorporated Strengthened glass with deep depth of compression
US20150274585A1 (en) 2014-03-26 2015-10-01 Apple Inc. Asymmetric chemical strengthening
US9359243B2 (en) 2014-05-13 2016-06-07 Corning Incorporated Transparent glass-ceramic articles, glass-ceramic precursor glasses and methods for forming the same
TWI705889B (zh) 2014-06-19 2020-10-01 美商康寧公司 無易碎應力分布曲線的玻璃
WO2015195419A2 (en) 2014-06-19 2015-12-23 Corning Incorporated Strengthened glass with deep depth of compression
CN105293901A (zh) 2014-07-01 2016-02-03 科立视材料科技有限公司 化学强化碱铝硅酸盐玻璃用玻璃组合物及其制造方法
CN105218427B (zh) 2014-07-01 2018-05-25 中国医学科学院医药生物技术研究所 含双脒基吲哚苯的二脒类衍生物及其制备方法和应用
DK3169639T3 (da) 2014-07-25 2022-01-03 Corning Inc Forstærket glas med dyb kompressionsdybde
WO2016028554A1 (en) 2014-08-19 2016-02-25 Corning Incorporated Antimicrobial articles with copper nanoparticles and methods of making and using same
TWI705948B (zh) 2014-10-08 2020-10-01 美商康寧公司 含有金屬氧化物濃度梯度之玻璃以及玻璃陶瓷
US10150698B2 (en) 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
KR102459339B1 (ko) 2014-11-04 2022-10-26 코닝 인코포레이티드 비-취약성 응력 프로파일 및 이의 제조방법
KR101580300B1 (ko) 2014-12-29 2015-12-24 삼성전자주식회사 사용자 단말 장치 및 그의 제어 방법
US9864410B2 (en) 2014-12-29 2018-01-09 Samsung Electronics Co., Ltd. Foldable device and method of controlling the same
JP6517074B2 (ja) 2015-04-27 2019-05-22 日本板硝子株式会社 ガラス組成物、ガラス繊維、鱗片状ガラスおよび被覆鱗片状ガラス
CN110372230B (zh) 2015-05-15 2020-05-19 Agc株式会社 化学增强玻璃
US10579106B2 (en) 2015-07-21 2020-03-03 Corning Incorporated Glass articles exhibiting improved fracture performance
KR20180091862A (ko) 2015-12-08 2018-08-16 코닝 인코포레이티드 S-형 응력 프로파일 및 생산 방법
TWI773480B (zh) 2015-12-11 2022-08-01 美商康寧公司 具有金屬氧化物濃度梯度之可熔融成形的玻璃基物件
CN114956551A (zh) 2016-01-08 2022-08-30 康宁股份有限公司 具有固有抗损坏性的可化学强化锂铝硅酸盐玻璃
JP6923555B2 (ja) 2016-01-12 2021-08-18 コーニング インコーポレイテッド 薄厚熱強化及び化学強化ガラス系物品
EP3429972A1 (de) 2016-04-08 2019-01-23 Corning Incorporated Artikel auf glasbasis mit einem metalloxidkonzentrationsgradient
KR20200091500A (ko) 2016-04-08 2020-07-30 코닝 인코포레이티드 두 영역을 포함하는 응력 프로파일을 포함하는 유리-계 물품, 및 제조 방법
US11453612B2 (en) 2016-04-20 2022-09-27 Corning Incorporated Glass-based articles including a metal oxide concentration gradient

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8713972B2 (en) 2011-05-31 2014-05-06 Corning Incorporated Precision glass roll forming process and apparatus
US9003835B2 (en) 2011-05-31 2015-04-14 Corning Incorporated Precision roll forming of textured sheet glass

Also Published As

Publication number Publication date
KR20200130746A (ko) 2020-11-19
TW201619088A (zh) 2016-06-01
US11220456B2 (en) 2022-01-11
KR20200085378A (ko) 2020-07-14
JP2021075458A (ja) 2021-05-20
TW202014391A (zh) 2020-04-16
JP2019218264A (ja) 2019-12-26
JP2019055911A (ja) 2019-04-11
KR20190143469A (ko) 2019-12-30
EP3677557A3 (de) 2020-09-09
KR20210145324A (ko) 2021-12-01
DK3204338T3 (da) 2021-12-13
US10259746B2 (en) 2019-04-16
JP2019055910A (ja) 2019-04-11
CN108046589A (zh) 2018-05-18
US11459270B2 (en) 2022-10-04
EP4166521A1 (de) 2023-04-19
EP3848336A1 (de) 2021-07-14
WO2016057787A3 (en) 2016-06-02
CN112340983A (zh) 2021-02-09
CN206580739U (zh) 2017-10-24
KR20220017527A (ko) 2022-02-11
CN112250301A (zh) 2021-01-22
TW201825425A (zh) 2018-07-16
KR20200126017A (ko) 2020-11-05
TW202108528A (zh) 2021-03-01
JP2023012551A (ja) 2023-01-25
KR20170066605A (ko) 2017-06-14
US10730791B2 (en) 2020-08-04
EP3204338B1 (de) 2021-11-17
US10364182B2 (en) 2019-07-30
CN117623625A (zh) 2024-03-01
TW201825426A (zh) 2018-07-16
JP2017214282A (ja) 2017-12-07
JP7433149B2 (ja) 2024-02-19
KR20210006512A (ko) 2021-01-18
TW202302481A (zh) 2023-01-16
TWI652244B (zh) 2019-03-01
DE202015009997U1 (de) 2022-11-09
TW202124311A (zh) 2021-07-01
KR102584492B1 (ko) 2023-10-04
JP2022180561A (ja) 2022-12-06
JP2019055912A (ja) 2019-04-11
TW202010719A (zh) 2020-03-16
US20200385305A1 (en) 2020-12-10
KR102523541B1 (ko) 2023-04-19
US20190210916A1 (en) 2019-07-11
JP6502486B2 (ja) 2019-04-17
DE202015009971U1 (de) 2022-02-02
EP3204338A2 (de) 2017-08-16
US10294151B2 (en) 2019-05-21
JP6952809B2 (ja) 2021-10-20
US20160102011A1 (en) 2016-04-14
TWI620729B (zh) 2018-04-11
JP2017537862A (ja) 2017-12-21
KR102584493B1 (ko) 2023-10-04
JP6845907B2 (ja) 2021-03-24
JP2021169411A (ja) 2021-10-28
TW202014390A (zh) 2020-04-16
TWI660929B (zh) 2019-06-01
KR20210149193A (ko) 2021-12-08
DE202015009892U1 (de) 2021-02-09
CN112340984A (zh) 2021-02-09
JP2023002718A (ja) 2023-01-10
DE202015009766U1 (de) 2020-01-17
US9593042B2 (en) 2017-03-14
CN105753314B (zh) 2020-11-27
DE202015009996U1 (de) 2022-10-19
EP3896042A1 (de) 2021-10-20
US20210130233A1 (en) 2021-05-06
CN111204971A (zh) 2020-05-29
TWI749406B (zh) 2021-12-11
US20180029932A1 (en) 2018-02-01
CN108083633A (zh) 2018-05-29
TWI828959B (zh) 2024-01-11
JP2020180045A (ja) 2020-11-05
JP2020073442A (ja) 2020-05-14
US20180057401A1 (en) 2018-03-01
JP2021091605A (ja) 2021-06-17
DE202015009765U1 (de) 2020-01-17
KR102541518B1 (ko) 2023-06-13
TW201930218A (zh) 2019-08-01
JP7254109B2 (ja) 2023-04-07
EP3854759A1 (de) 2021-07-28
US20190016632A1 (en) 2019-01-17
US20160102014A1 (en) 2016-04-14
TW201930217A (zh) 2019-08-01
US20230015444A1 (en) 2023-01-19
TWI699343B (zh) 2020-07-21
JP2018138518A (ja) 2018-09-06
KR20210149192A (ko) 2021-12-08
JP2022071127A (ja) 2022-05-13
KR20190090090A (ko) 2019-07-31
CN108715513A (zh) 2018-10-30
CN105753314A (zh) 2016-07-13
US10532947B2 (en) 2020-01-14
JP7270089B2 (ja) 2023-05-09
DE202015009904U1 (de) 2021-05-14
US10266447B2 (en) 2019-04-23
EP3677558A2 (de) 2020-07-08
EP3677558A3 (de) 2020-09-09
EP3677557A2 (de) 2020-07-08
US20210002167A1 (en) 2021-01-07
EP3854759B1 (de) 2024-05-01
JP7241787B2 (ja) 2023-03-17
US11465937B2 (en) 2022-10-11
TWI705948B (zh) 2020-10-01
KR102005785B1 (ko) 2019-07-31
US20180002223A1 (en) 2018-01-04
TWI660928B (zh) 2019-06-01
CN107873019A (zh) 2018-04-03
TWI740134B (zh) 2021-09-21
TW201825424A (zh) 2018-07-16
CN108164133A (zh) 2018-06-15
JP6539419B2 (ja) 2019-07-03
KR20230058725A (ko) 2023-05-03
TW202304828A (zh) 2023-02-01
TWI734317B (zh) 2021-07-21
WO2016057787A2 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
DE202015009694U1 (de) Gläser und Glaskeramiken mit einem Metalloxidkonzentrationsgradienten
DE202017007024U1 (de) Glasbasierte Artikel einschließlich eines Spannungsprofils, das zwei Gebiete umfasst
DE202016008722U1 (de) Durch Fusion bildbare glasbasierte Artikel mit einem Metalloxidkonzentrationsgradienten
DE202017007020U1 (de) Artikel auf Glasbasis mit einem Metalloxid-Konzentrationsgradienten
DE202015009701U1 (de) Verstärktes Glas mit ultratiefer Kompressionstiefe
EP4159697A1 (de) Scheibenförmiger, chemisch vorgespannter oder chemisch vorspannbarer glasartikel und verfahren zu dessen herstellung
TWI843911B (zh) 含有金屬氧化物濃度梯度之玻璃以及玻璃陶瓷

Legal Events

Date Code Title Description
R150 Utility model maintained after payment of first maintenance fee after three years
R150 Utility model maintained after payment of first maintenance fee after three years
R207 Utility model specification
R151 Utility model maintained after payment of second maintenance fee after six years
R152 Utility model maintained after payment of third maintenance fee after eight years