CN102887650B - 一种对平板玻璃进行综合强化的方法 - Google Patents

一种对平板玻璃进行综合强化的方法 Download PDF

Info

Publication number
CN102887650B
CN102887650B CN201210365582.4A CN201210365582A CN102887650B CN 102887650 B CN102887650 B CN 102887650B CN 201210365582 A CN201210365582 A CN 201210365582A CN 102887650 B CN102887650 B CN 102887650B
Authority
CN
China
Prior art keywords
glass
sheet glass
ion beam
polishing
chemical enhanced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210365582.4A
Other languages
English (en)
Other versions
CN102887650A (zh
Inventor
颜悦
姜良宝
郭新涛
厉蕾
张官理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Original Assignee
BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp filed Critical BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Priority to CN201210365582.4A priority Critical patent/CN102887650B/zh
Publication of CN102887650A publication Critical patent/CN102887650A/zh
Application granted granted Critical
Publication of CN102887650B publication Critical patent/CN102887650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种对平板玻璃进行综合强化的方法,其特征在于:该方法的步骤是:⑴用离子束对平板玻璃的上、下表面进行刻蚀,以减少微观裂纹,刻蚀深度为1~50μm;⑵对离子束刻蚀后的平板玻璃进行化学强化,化学强化温度为390~470℃,化学强化时间为1~50h;⑶对化学强化后的平板玻璃的上、下表面进行离子束抛光,抛光深度为1~10μm;⑷对离子束抛光后、新形成的无损伤的平板玻璃的上、下表面进行单面或双面镀晶态二氧化硅薄膜,晶态二氧化硅薄膜的厚度为100~1000nm;⑸对镀膜后的玻璃进行透光率和抗落球冲击强度测试。本发明提供的方法能大大提高玻璃的强度,且不会造成环境污染,并可以实现连续、稳定、批量生产。

Description

一种对平板玻璃进行综合强化的方法
技术领域
本发明是一种对平板玻璃进行综合强化的方法,属于玻璃材料表面的强化处理技术领域。
背景技术
平板玻璃的实际强度(50-100MPa)比理论强度(7000MPa)低得多,与理论强度相差2~3个数量级。玻璃实际强度较低的原因是由于玻璃的脆性和玻璃中存在有微裂纹(尤其是表面微裂纹)和内部不均匀区及缺陷的存在。由于玻璃受到应力作用时不会产生流动,表面上的微裂纹便急剧扩展,并且应力集中,以致破裂。为此,人们采用多种方法来消除或降低微裂纹以提高玻璃的强度。对玻璃进行强化的方法大致可分为五种(1)减小玻璃的表面缺陷;(2)控制裂纹缺陷尖端附近的环境;(3)使用聚合物进行涂层以增强;(4)引入表面压应力;(5)改变玻璃组分以在裂纹和裂纹周围析出二相沉淀。其中,引入表面压应力的方法应用最为广泛。引入表面压应力可以通过物理或化学方法来实现,分别称为物理钢化法和化学钢化法。表面压应力增强的局限是在表面产生压应力的同时内部会相应地产生与之平衡的张应力,因此压应力值不能太高,使强化效果的提升受到限制。一般来说,根据工艺的不同玻璃弯曲强度可以达到150-700MPa之间。
为提高玻璃强度,前人在玻璃综合强化方面做过一些探索。US3287200希望能够综合物理强化和化学强化的优点,形成表面应力大并且应力层厚的制品,于是采用物理钢化和化学钢化相结合的方式对玻璃进行增强,但是这种方法的可操作性不强。因为在化学强化温度下(大于400℃),物理强化产生的应力会迅速衰减,从而大大降低了强化效果。CN1369449A采用氢氟酸前处理、化学钢化、氢氟酸后处理、有机硅保护相结合的方法对玻璃进行综合增强,能够大幅度提高玻璃的强度。但是这种方法存在几个致命的缺陷:第一,工艺中使用的氢氟酸和有机硅会对人体和环境造成严重破坏。第二,此工艺受人为因素影响很大,导致强度和光学性能稳定性不够高。第三,这种综合增强方法不能实现连续、稳定、批量生产。离子束改性目前更多地用在半导体或机械行业。离子注入在金属材料的改性中获得的结果十分引人注目,在常用金属的离子注入改性中,可以提高金属的硬度、抗腐蚀性能和抗疲劳强度,降低金属的磨损率。其在玻璃强化方面应用很少。
发明内容
本发明正是针对上述现有技术中存在的问题而设计提供了一种对平板玻璃进行综合强化的方法,其目的是通过几种强化手段的组合,大大提高玻璃的强度,而且不会造成环境污染,并可以实现连续、稳定、批量生产。
本发明的目的是通过以下技术措施来实现的:
该种对平板玻璃进行综合强化的方法,其特征在于:该方法的步骤是:
⑴用离子束对平板玻璃的上、下表面进行刻蚀,以减少微观裂纹,刻蚀深度为1~50μm;
⑵对离子束刻蚀后的平板玻璃进行化学强化,化学强化温度为390~470℃,化学强化时间为1~50h;
⑶对化学强化后的平板玻璃的上、下表面进行离子束抛光,抛光深度为1~10μm;
⑷对离子束抛光后、新形成的无损伤的平板玻璃的上、下表面进行单面或双面镀晶态二氧化硅薄膜,晶态二氧化硅薄膜的厚度为100~1000nm,;
⑸对镀膜后的玻璃进行透光率和抗落球冲击强度测试。
平板玻璃的材料为普通Na-Ca-Si玻璃、铝硅酸盐玻璃。
具体实施方式
实施例一
100×100×2mm浮法玻璃样品,成分如下:
  SiO2   Al2O3   CaO   MgO   Na2O   K2O
  72   0.5   6.9   3.7   16.4   0.5
采用本发明技术方案对平板浮法玻璃进行强化的过程如下:
首先用去离子水清洗玻璃,然后自然干燥。对洗净干燥后的玻璃用离子束进行刻蚀,刻蚀深度为1μm,然后对离子束刻蚀后的玻璃进行化学强化,强化温度为410℃,强化时间为12h,并对化学强化后的玻璃清洗、干燥,紧接着对化学强化后的玻璃进行离子束抛光,抛光深度为6μm,然后对离子束抛光后的玻璃进行单面镀晶态二氧化硅薄膜,晶态二氧化硅薄膜厚度约为100nm。最后采用透光率-雾度仪和落球法(1040g钢球)分别对综合强化后的玻璃进行透光率、弯曲强度和抗落球冲击强度测试。测试结果如下:
玻璃原片数据:
综合强化玻璃数据:
实施例二
100×100×2mm浮法玻璃样品,成分如下:
  SiO2   Al2O3   CaO   MgO   Na2O   K2O
  72   0.5   6.9   3.7   16.4   0.5
采用本发明技术方案对平板浮法玻璃进行强化的过程如下:
首先用去离子水清洗玻璃,然后自然干燥。对洗净干燥后的玻璃用离子束进行刻蚀,刻蚀深度为30μm,然后对离子束刻蚀后的玻璃进行化学强化,强化温度为450℃,强化时间为16h,并对化学强化后的玻璃清洗、干燥,紧接着对化学强化后的玻璃进行离子束抛光,抛光深度为4μm,然后对离子束抛光后的玻璃上、下表面镀晶态二氧化硅薄膜,晶态二氧化硅薄膜厚度约为500nm。最后采用透光率-雾度仪和落球法(1040g钢球)分别对综合强化后的玻璃进行透光率、弯曲强度和抗落球冲击强度测试。测试结果如下:
玻璃原片数据:
综合强化玻璃数据:
实施例三
100×100×2mm浮法玻璃样品,成分如下:
  SiO2   Al2O3   CaO   MgO   Na2O   K2O
  67   5   2.6   9.5   16.4   0.5
采用本发明技术方案对平板浮法玻璃进行强化的过程如下:
首先用去离子水清洗玻璃,然后自然干燥。对洗净干燥后的玻璃用离子束进行刻蚀,刻蚀深度为20μm,然后对离子束刻蚀后的玻璃进行化学强化,强化温度为430℃,强化时间为20h,并对化学强化后的玻璃清洗、干燥,紧接着对化学强化后的玻璃进行离子束抛光,抛光深度为10μm,然后对离子束抛光后的玻璃上、下表面镀晶态二氧化硅薄膜,晶态二氧化硅薄膜厚度约为600nm。最后采用透光率-雾度仪和落球法(1040g钢球)分别对综合强化后的玻璃进行透光率、弯曲强度和抗落球冲击强度测试。测试结果如下:
玻璃原片数据:
综合强化玻璃数据:
本发明技术方案与现有技术相比,该方法能大大提高玻璃的强度,且不会造成环境污染,并可以实现连续、稳定、批量生产。

Claims (3)

1.一种对平板玻璃进行综合强化的方法,其特征在于:该方法的步骤是:
⑴用离子束对平板玻璃的上、下表面进行刻蚀,刻蚀深度为1~50μm;
⑵对离子束刻蚀后的平板玻璃进行化学强化;
⑶对化学强化后的平板玻璃的上、下表面进行离子束抛光,抛光深度为1~10μm;
⑷对离子束抛光后的平板玻璃的上、下表面进行单面或双面镀晶态二氧化硅薄膜,晶态二氧化硅薄膜的厚度为100~1000nm;
⑸对镀膜后的玻璃进行透光率和抗落球冲击强度测试。
2.根据权利要求1所述的对平板玻璃进行综合强化的方法,其特征在于:化学强化温度为390~470℃,化学强化时间为1~50h。
3.根据权利要求1所述的对平板玻璃进行综合强化的方法,其特征在于:平板玻璃为普通Na-Ca-Si玻璃或铝硅酸盐玻璃。
CN201210365582.4A 2012-09-27 2012-09-27 一种对平板玻璃进行综合强化的方法 Active CN102887650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210365582.4A CN102887650B (zh) 2012-09-27 2012-09-27 一种对平板玻璃进行综合强化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210365582.4A CN102887650B (zh) 2012-09-27 2012-09-27 一种对平板玻璃进行综合强化的方法

Publications (2)

Publication Number Publication Date
CN102887650A CN102887650A (zh) 2013-01-23
CN102887650B true CN102887650B (zh) 2014-12-24

Family

ID=47531354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210365582.4A Active CN102887650B (zh) 2012-09-27 2012-09-27 一种对平板玻璃进行综合强化的方法

Country Status (1)

Country Link
CN (1) CN102887650B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107265845A (zh) * 2016-04-08 2017-10-20 康宁股份有限公司 具有金属氧化物浓度梯度的玻璃基制品

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9359251B2 (en) 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
CN105081892A (zh) * 2014-05-22 2015-11-25 宇瀚光电科技(苏州)有限公司 一种盖板玻璃抗冲击生产工艺
TWI773291B (zh) 2014-06-19 2022-08-01 美商康寧公司 無易碎應力分布曲線的玻璃
CN105753314B (zh) 2014-10-08 2020-11-27 康宁股份有限公司 包含金属氧化物浓度梯度的玻璃和玻璃陶瓷
US10579106B2 (en) 2015-07-21 2020-03-03 Corning Incorporated Glass articles exhibiting improved fracture performance
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
DE202016008995U1 (de) 2015-12-11 2021-04-20 Corning Incorporated Durch Fusion bildbare glasbasierte Artikel mit einem Metalloxidkonzentrationsgradienten
EP3397597B1 (en) 2016-04-08 2023-11-08 Corning Incorporated Glass-based articles including a stress profile comprising two regions, and methods of making
CN106634619B (zh) * 2016-12-06 2018-08-03 中国航空工业集团公司北京航空材料研究院 一种高强度玻璃的制造方法
CN106915906A (zh) * 2017-04-07 2017-07-04 蚌埠玻璃工业设计研究院 一种超薄浮法玻璃的综合强化方法
CN111039564B (zh) * 2018-10-12 2022-04-01 重庆鑫景特种玻璃有限公司 雾面钢化保护玻璃及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161298C (zh) * 2002-03-26 2004-08-11 中国建筑材料科学研究院 一种玻璃综合增强方法
CN101648776A (zh) * 2008-08-14 2010-02-17 比亚迪股份有限公司 一种提高玻璃强度的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107265845A (zh) * 2016-04-08 2017-10-20 康宁股份有限公司 具有金属氧化物浓度梯度的玻璃基制品
CN107265845B (zh) * 2016-04-08 2021-12-31 康宁股份有限公司 具有金属氧化物浓度梯度的玻璃基制品

Also Published As

Publication number Publication date
CN102887650A (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
CN102887650B (zh) 一种对平板玻璃进行综合强化的方法
JP6381742B2 (ja) ガラス物品の強化のための表面傷の変形
US10155689B2 (en) Glass with high frictive damage resistance
CN1161298C (zh) 一种玻璃综合增强方法
CN104944790B (zh) 强化玻璃的组合物和用其制造触摸屏玻璃的方法
TWI612017B (zh) 玻璃的酸強化
CN111094204A (zh) 具有耐刮擦性的玻璃基织构化制品及其制造方法
CN107879610B (zh) 具有防雾和露滴自洁功能的透明超疏水玻璃及其制备方法
EP3670461A2 (en) Impact-damage-resistant glass sheet
KR101268956B1 (ko) 디스플레이용 유리의 강화 또는 동시 항균처리를 위한 이온교환 방법 및 그 방법에 의해 강화 또는 동시 항균처리된 디스플레이용 유리
JP2012527399A (ja) 機械的耐久性エッジを有する薄型基材
TW201532995A (zh) 具有增進的強度與抗微生物特性之玻璃以及製造彼之方法
JP6208748B2 (ja) カバーガラスの製造方法
CN103508674A (zh) 玻璃增强方法
CN103723929A (zh) 玻璃的强化或抗菌处理方法及由其方法强化或抗菌处理的玻璃
TW201936536A (zh) 玻璃製品及其製造方法
CN106915906A (zh) 一种超薄浮法玻璃的综合强化方法
WO2018199045A1 (ja) 化学強化ガラス
TWI662107B (zh) 用於修復玻璃的組合物和方法及經該組合物處理過的玻璃
CN114920454A (zh) 一种锂铝硅玻璃制备及其强化后玻璃表面微缺陷处理方法
Maeng et al. The effect of chemical treatment on the strength and transmittance of soda-lime cover glass for mobile
CN104926147A (zh) 氟磷酸盐玻璃表面处理方法
TW201817689A (zh) 化學強化玻璃之製造方法
CN105102393A (zh) 化学强化玻璃板
KR20120038079A (ko) 디스플레이용 강화유리 제조방법 및 그 강화유리

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant