WO2022005846A1 - Integrated device packages - Google Patents
Integrated device packages Download PDFInfo
- Publication number
- WO2022005846A1 WO2022005846A1 PCT/US2021/038696 US2021038696W WO2022005846A1 WO 2022005846 A1 WO2022005846 A1 WO 2022005846A1 US 2021038696 W US2021038696 W US 2021038696W WO 2022005846 A1 WO2022005846 A1 WO 2022005846A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- integrated device
- carrier
- stress compensation
- molding compound
- device package
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/07—Structure, shape, material or disposition of the bonding areas after the connecting process
- H01L24/08—Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/561—Batch processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/565—Moulds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/568—Temporary substrate used as encapsulation process aid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3121—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/562—Protection against mechanical damage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/96—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0655—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68327—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54426—Marks applied to semiconductor devices or parts for alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/07—Structure, shape, material or disposition of the bonding areas after the connecting process
- H01L2224/08—Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
- H01L2224/0805—Shape
- H01L2224/08057—Shape in side view
- H01L2224/08058—Shape in side view being non uniform along the bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/07—Structure, shape, material or disposition of the bonding areas after the connecting process
- H01L2224/08—Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
- H01L2224/081—Disposition
- H01L2224/0812—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/08121—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the connected bonding areas being not aligned with respect to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/07—Structure, shape, material or disposition of the bonding areas after the connecting process
- H01L2224/08—Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
- H01L2224/081—Disposition
- H01L2224/0812—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/08135—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/08145—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/07—Structure, shape, material or disposition of the bonding areas after the connecting process
- H01L2224/08—Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
- H01L2224/081—Disposition
- H01L2224/0812—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/08135—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/08145—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
- H01L2224/08146—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bonding area connecting to a via connection in the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/80001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/80003—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus
- H01L2224/80006—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/80001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/80053—Bonding environment
- H01L2224/80095—Temperature settings
- H01L2224/80096—Transient conditions
- H01L2224/80097—Heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/80001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/808—Bonding techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/80001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/808—Bonding techniques
- H01L2224/80894—Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
- H01L2224/80895—Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/80001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/808—Bonding techniques
- H01L2224/80894—Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
- H01L2224/80896—Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically insulating surfaces, e.g. oxide or nitride layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/96—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06513—Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06541—Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/544—Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
Definitions
- the field relates to integrated device packages and methods for forming the same.
- SIPs system- in-package
- some packages include different types of active chips or integrated device dies spaced apart from one another along a package substrate.
- 3D integration techniques often utilize packages in which two or more integrated device dies are stacked on top of and electrically connected to one another.
- a molding compound or encapsulant can be provided over the integrated device dies, which can generate stresses in the package. Accordingly, there remains a continuing need for improved integrated device packages.
- Figures 1A-1C schematically illustrates the use of a sacrificial carrier in various direct bonding processes.
- Figure 2 illustrates a plurality of elements directly bonded to a carrier.
- Figures 3A-3C show various examples in which elements are directly bonded to a carrier without an adhesive.
- Figure 4A is a schematic side view of a plurality of elements directly bonded to a carrier and with a protective material applied over the elements and within gaps between the elements.
- Figure 4B is a schematic side view of a plurality of elements that include one or more dummy elements directly bonded to a carrier.
- Figures 5A-5C illustrate a series of processing steps for forming a reconstituted wafer.
- Figure 6 is a schematic side sectional view of a reconstituted wafer having a bonding layer configured to directly bond to another reconstituted wafer or substrate.
- Figure 7A illustrates two opposing reconstituted wafers prior to direct bonding.
- Figure 7B illustrates the two opposing reconstituted wafers after being directly bonded to one another.
- Figure 8A-8B illustrate methods and structures for stacking more than two reconstituted wafers, according to various embodiments.
- Figures 9A-9F illustrate various face up bonded structures, according to various embodiments.
- Figures 10A-10E illustrate various face down bonded structures, according to various embodiments.
- Figure 11 illustrates another embodiment in which an additional filler material can serve as a second protective material and may be provided over a conformal protective material in the gaps between adjacent elements.
- Figures 12A-12C illustrate a method for forming a reconstituted wafer according to various embodiments.
- Figures 13A-13B illustrate a method for forming a reconstituted wafer according to various embodiments.
- Figures 14A- 14C illustrate another embodiment in which a mold compound can be provided between adjacent elements directly bonded to a carrier, and a metal can be provided on the mold compound.
- Figures 15A-15C illustrate another embodiment in which a mold compound can be provided between adjacent elements directly bonded to a carrier, and a metal can be provided on both sides of the mold compound.
- Figures 16A-16C illustrate another embodiment in which a protective coating or layer can be provided between the mold compound and the carrier.
- Figures 17A-17D illustrates additional bonded structures that can be provided with the methods disclosed herein.
- Figure 18A is a schematic side sectional view of an integrated device package, according to another embodiment.
- Figure 18B is a schematic top plan view of the integrated device package of Figure 18 A, with the molding compound hidden for ease of illustration.
- Figure 18C is a schematic top plan view of an integrated device package that includes increased lateral overlap among stress compensation elements.
- Figure 19 is a schematic diagram of a system incorporating one or more bonded structures, according to various embodiments.
- a bonded structure comprising a first element (e.g ., a first integrated device die) having a first side and a second side opposite the first side.
- the bonded structure can include a second element (e.g., a second integrated device die) having a first side and a second side opposite the first side.
- the first side of the second integrated device die can be directly bonded to the first side of the first integrated device die without an intervening adhesive along a bonding interface.
- a protective material can be disposed about a periphery ( e.g. respective sidewalls) of the first and second integrated device dies. The protective material can extend from the second side of the first integrated device die to the second side of the second integrated device die.
- portions of the protective material can be disposed within gaps between adjacent first integrated device dies or elements.
- the protective material can comprise an inorganic dielectric, such as silicon dioxide, silicon nitride, polysilicon, amorphous silicon, etc.
- the embodiments disclosed herein can comprise wafer-level processes in which wafers or substrates, serving as carriers, are provided with a plurality of integrated device dies and a protective material (which can comprise one or a plurality of protective layers) over the integrated device dies.
- the die(s) and protective material can form at least a portion of a reconstituted wafer which can be bonded ( e.g ., directly bonded without an adhesive) to another reconstituted wafer formed by a similar process.
- the bonded reconstituted wafers can be singulated to form a plurality of bonded structures, for example after removal of the carriers.
- the bonded structures can comprise packaging structures in some embodiments.
- direct bond interconnects can comprise bonded structures in which densely dispersed conductive contacts are bonded to one another without an intervening adhesive.
- the surrounding dielectric or nonconductive materials can also be directly bonded without an intervening adhesive.
- a ZiBond ® process can comprise a direct bond between nonconductive materials without an intervening adhesive. Examples of DBI and ZiBond processes and structures may be found throughout at least U.S. Patent Nos. 9,391,143; 10,141,218; 10,147,641; 9,431,368; and 7,126,212, the entire contents of each of which are incorporated by reference herein in their entireties and for all purposes.
- Each of the singulated dies mounted on the carriers can be tested prior to mounting, such that all dies in the reconstituted wafer can be Known Good Dies (KGD).
- FIGS 1A-1C schematically illustrate the use of a sacrificial carrier 3 in various direct bonding processes.
- an element 2 can be directly bonded to a carrier 3 without an adhesive.
- the element 2 (or any of the other elements described herein) can comprise any suitable type of element, such as a semiconductor element (e.g., an integrated device die), an optical element, etc.
- the carrier 3 can comprise any suitable type of carrier, such as a carrier with one or more logic or processing devices, and/or a sacrificial carrier (e.g., a carrier without active processing circuitry) that is to be removed at some point during processing.
- the element 2 can comprise a front side 9 and a back side 10 opposite the front side 9.
- the front side 9 can comprise a surface nearest to active circuitry or devices formed in the element 2.
- a first front bonding layer 4 can be provided at the front side 9 of the element 2.
- the bonding layer 4 is shown at the front side 9 of the element 2, a bonding layer may also or alternatively be provided on the back side 10 for bonding.
- the bonding layer 4 can comprise one or a plurality of contact pads 6 disposed within or surrounded by a nonconductive field region 5.
- the contact pads can comprise copper, although other conductive materials are suitable.
- the nonconductive field region can comprise a dielectric such as silicon oxide, silicon nitride, etc.
- the back side 10 may or may not include active circuitry or devices.
- the element 2 can comprise a singulated element (such as a singulated device die) having a side surface 8.
- the side surface 8 can comprise markings indicative of a singulation process, for example, saw markings, etch patterns, etc.
- the element 2 e.g., a die
- the front bonding layer 4 can be prepared for bonding, as explained above.
- the front bonding layer 4 can be polished to a very low surface roughness and processed so as to enhance dielectric-to-dielectric direct bonding.
- the surfaces to be bonded may be terminated with a suitable species and activated prior to bonding.
- the surfaces to be bonded may be very lightly etched for activation and exposed to a nitrogen-containing solution and terminated with a nitrogen-containing species.
- the surfaces to be bonded may be exposed to an ammonia dip after a very slight etch, and/or a nitrogen-containing plasma (with or without a separate etch).
- the nonconductive field region 5 of the element 2 can be brought into contact with corresponding nonconductive regions of the carrier 3.
- the interaction of the activated surfaces can cause the nonconductive region 5 of the element 2 to directly bond with the corresponding nonconductive regions of the carrier 3 without an intervening adhesive, without application of external pressure, without application of voltage, and at room temperature.
- the bonding forces of the nonconductive regions can be covalent bonds that are greater than Van der Waals bonds.
- only nonconductive field regions of the element 2 are directly bonded to corresponding nonconductive regions of the carrier 3.
- a protective material 7 can be applied over at least a portion of the element 2, including about at least a periphery or side surface 8 of the element 2. In some embodiments, the protective material 7 can be deposited along the side surface 8 and over an upper surface of the carrier 3.
- the protective material 7 can comprise one or more protective layers, including one or more inorganic layers, such as silicon oxide, silicon nitride, polysilicon, amorphous silicon, a metal, etc.
- the carrier 3 can be removed from the element 2 and the protective material 7 in any suitable manner.
- the carrier 3 can comprise a silicon substrate or element with a nano oxide layer 11, which as used herein can include at least one of a native silicon oxide layer and a thermal silicon oxide layer.
- the carrier 3 in the carrier removal process can be selectively etched using the silicon nano oxide layer 11 as an etch stop.
- at least a portion of the nano oxide 11 layer can remain after removing the silicon base material of the carrier 3.
- the entirety of the carrier 3 (e.g ., the silicon base material and the nano oxide layer 11) can be removed.
- the element 2 can be planarized for bonding, but the carrier 3 may not be planarized prior to direct bonding.
- both the element 2 and carrier 3 can be planarized for direct bonding.
- Direct bonding and subsequent removal of the carrier 3 as described herein can advantageously leave a planar surface for a reconstituted wafer for further processing as desired, including for additional direct bonding processes.
- reconstituted wafers formed on sacrificial or temporary adhesive layers do not reliably provide planar surfaces and thus can lead to subsequent alignment issues, e.g., for subsequent direct bonding of dies for stacking.
- Such stacking with direct bonding could be by way of direct bonding individual second dies on a first reconstituted wafer, or simultaneously bonding multiple second dies in a second reconstituted wafer.
- Figures 1A-1C can enable the reconstitution of wafers for direct bonding with improved alignment accuracy.
- an array of multiple dies can be provided, and as shown below.
- the elements 2 or dies may become misaligned relative to the carrier 3 due to movement or migration of the adhesive, for example, during or after heating or during placement for bonding.
- Such misalignments can result in misalignment for subsequently bonded structures and negatively affect the performance of the bonded structures.
- the embodiments disclosed herein can beneficially reduce misalignment by providing a direct bond interconnection with the carrier 3, which can serve to effectively fix the element 2 or die relative to the carrier 3 for subsequent processing, such as providing a protective material 7 (inorganic or organic) over the element 2, or any other suitable processing.
- Figure 2 illustrates a plurality of elements 2 directly bonded to a carrier 3, such as a wafer.
- a carrier 3 such as a wafer.
- reference numerals in Figure 2 may represent components that are the same as or generally similar to like-numbered components of Figures 1A-1C.
- each element 2 can include one or more conductive vias 13 connected to back side(s) of corresponding contact pads 6.
- the conductive vias may initially extend upwardly from the contact pad and terminate within the body of the element 2.
- the dies or elements 2 can be diced or singulated into a plurality of diced or singulated elements 2.
- the removal of a silicon substrate using the nano oxide layer 11 may leave a substantially smooth surface for subsequent direct bonding.
- Figures 3 A-3C show various examples in which elements 2 (e.g . , integrated device dies) are directly bonded to a carrier 3 (e.g., a silicon substrate with nano oxide layer 11) without an intervening adhesive.
- Figure 3 A illustrates a relatively wide separation or gap G between elements 2
- Figure 3B illustrates a relatively narrow separation or gap G between elements 2.
- Figure 3C illustrates additional dummy elements 2’ or dies disposed between active elements 2 or dies, with relatively narrow gaps G therebetween.
- Providing the narrow gaps G in Figures 3B and 3C can beneficially reduce the amount of protective material 7 used to fill the gaps G in subsequent steps and can enable conformal filling of the gaps G.
- one or more alignment feature(s) 14 can be provide on the upper surface of the carrier 3.
- the alignment features 14 can be selectively positioned on the carrier 3 to assist in accurate placement of the elements 2.
- Figure 4A is a schematic side view of a plurality of elements 2 directly bonded to a carrier 3 and with a protective material 7 applied over the elements 2 and within the gaps G between the elements 2.
- the elements 2 are illustrated as being all active integrated device dies.
- some of the elements comprise dummy elements 2’, such as inactive blocks of semiconductor material (e.g ., silicon).
- a protective layer 7 (such as an inorganic protective layer) can be provided over portions of the elements 2, including around a portion of the periphery (e.g., the side surface 8) within the gaps G and over upper surfaces (which are the back sides 10 in Figures 4A-4B) of the elements 2. Seams 15 such as voids or discontinuities may be present in the protective material 7.
- the protective layer 7 can include one or a plurality of protective layers, including, e.g., inorganic or organic protective layer(s).
- the protective layer 7 can comprise inorganic layer(s) such as silicon oxide, silicon nitride, polysilicon, amorphous silicon, or a metal.
- at least a portion of the protective material 7 can comprise an organic material, such as a molding compound or epoxy.
- the protective material 7 comprises both a conformal layer and a gap-fill layer.
- the protective material 7 can assist in affixing the elements 2 to the carrier 3 such that the elements 2 do not shift during subsequent direct bonding processes.
- the protective material 7 can also assist in protecting the elements 2 during polishing and other processing techniques to prevent damage to the dies (e.g., chipping).
- Examples of structures and processes for providing protective material 7 on and between adjacent directly bonded dies over a carrier, for use in conjunction with post-bonding thinning and/or singulation processes, are disclosed in U.S. Patent No. 10,204,893, the entire contents of which are hereby incorporated by reference herein in their entirety and for all purposes.
- Figures 5A-5C illustrate a series of processing steps for forming a reconstituted wafer 20.
- the reconstituted wafer 20 can be bonded (e.g., directly bonded) to another reconstituted wafer 20 or to other substrates in subsequent steps.
- the upper surfaces of the conformal protective material 7 can be removed, e.g., by etching, lapping, grinding, polishing, etc.
- the removal of the protective material 7 can also remove a portion of the back side 10 of the elements 2.
- the removal step can terminate at the back side 10 of the element 2.
- a portion of the element 2 from the back side 10 can be removed by etching, lapping, chemical mechanical polishing (CMP), or any other suitable method, to form a thinned back side 10’ of the element 2.
- this removal step can expose the conductive through substrate vias (TSVs) 13 or other electrical interconnects formed within the elements.
- the removal step can also form a cavity 16 defined at least in part by the thinned back side 10’ of the element 2 and side walls of the protective material 7.
- a nonconductive layer 18 (e.g., a second oxide layer) can be provided (e.g., deposited) over the thinned back sides 10’ of the elements 2 and around the exposed vias 13.
- the provided nonconductive layer 18 for example, silicon oxide
- the provided nonconductive layer 18 can be lapped or polished to generate a planar surface and to ensure that the nonconductive layer 18 is generally planar relative to the exposed ends of the vias 13 and the protective material.
- the reconstituted wafer 20 can comprise a front surface 22 configured to be bonded (e.g., direct bonded) to another reconstituted wafer or other type of substrate.
- the reconstituted wafer 20 can also comprise a back surface 23.
- the protective material 7 can be disposed between adjacent elements 2 and can extend from the front surface 22 of the reconstituted wafer 20 to the upper surface of the carrier 3.
- a vertical interface 19 can be defined between the nonconductive layer 18 over the element 2 and the protective material 7.
- a vertical interface 21 can be defined between the bonding layer 4 and the protective material 7.
- Figure 6 is a schematic side sectional view of a reconstituted wafer having a second bonding layer 4b configured to directly bond to another reconstituted wafer or substrate.
- the first bonding layer 4, the contacts 6, and the nonconductive field region 5 of Figures 1A-5 have been renumbered as reference numerals 4a, 6a, and 5a, respectively, in Figure 6.
- the second bonding layer 4b e.g., a DBI layer having alternating conductive contacts 6b and nonconductive bonding portions (e.g., field regions 5b)
- the nonconductive layer 18 e.g., a second oxide layer
- the second bonding layer 4b can extend across multiple (e.g., all) of the elements 2 of the reconstituted wafer 20.
- a horizontal interface 19 can be formed between the second bonding layer 4b and the nonconductive layer 18, and between the second bonding layer 4b and the underlying protective material 7.
- FIGs 7A-7B two opposing reconstituted wafers 20a, 20b can be provided and can be directly bonded to form a pair of bonded reconstituted wafers 1 ’ .
- the reference numerals have been appended with “a” or “b” to denote their respective associations with the reconstituted wafers 20a or 20b.
- Figure 7A illustrates the two opposing reconstituted wafers 20a, 20b prior to direct bonding.
- Figure 7B illustrates the two opposing reconstituted wafers 20a, 20b after being directly bonded to one another.
- Use of direct bonding on the carriers 3 a, 3b provides the planarity desired at the die bonding surfaces for die-to-die direct bonding of conductive and non-conductive surfaces.
- the carriers may not be used and instead the reconstituted wafers may comprise elements (e.g ., dies) at least partially embedded in a molding compound or encapsulant without the use of a carrier.
- the nonconductive protective layers can be directly bonded to one another without an adhesive along the bond interface 12.
- Other non-conductive field regions of the reconstituted wafers 20a, 20b can also be bonded to one another by an adhesive.
- the conductive contacts 6a, 6b can be directly bonded without an adhesive.
- some or all of the conductive contacts 6a, 6b can be initially recessed relative to the bonding surfaces.
- the bonded wafers 20a, 20b can be heated to cause the contacts 6a, 6b to expand and form an electrical contact. After heating, the interface between the contacts 6a and 6b may not be in the same plane as the bond interface 12.
- Additional reconstituted wafers 20a, 20b can be provided as shown in Figures 8A-8B to provide any number of stacked reconstituted wafers 1’.
- the stacked reconstituted wafers 1’ can be singulated along singulation streets S to provide a plurality of bonded structures 1.
- Any suitable number of reconstituted wafers 20a, 20b can be provided to form the stacked reconstituted wafers 1’, which can also be singulated to form any suitable number of bonded structures 1.
- the singulation can be before removal of the carriers 3 as shown (if sacrificial), or after singulation. In some embodiments, as shown in Figure 8A, both carriers 3a, 3b may not be removed prior to singulation.
- one carrier 3a can be removed prior to singulation.
- both carriers 3a, 3b can be removed prior to singulation.
- removal of the carriers 3a and/or 3b using, for example, an etch process may leave behind a nano oxide layer 11 to facilitate additional direct bonding.
- Figures 9A-9F and 10A-10E illustrate various face up or face down bonded structures 1 that can result from the methods described herein.
- the bonded structures 1 shown in Figures 9A-9F and 10A-10E can comprise singulated reconstituted elements 24, such as singulated reconstituted integrated device dies.
- the singulated reconstituted elements 24 are shown in Figures 9A, 9E and 9F for illustrative purposes to show what structures may result from a singulated reconstituted wafer 20, according to various embodiments.
- the surfaces nearest to active circuitry or devices can be the front surfaces 22 of the bonded structures 1, while the surfaces opposite the front surfaces 22 can be the back surfaces 23.
- the directly bonded reconstituted elements 24 of the illustrated embodiments can have coplanar side surfaces as well as a direct bonding interface 12 between conductive (e.g., metal) and nonconductive (e.g., inorganic dielectrics such as oxides, including nitrogen and/or fluorine content to aid direct bonding) surfaces of the reconstituted elements 24, with no intervening adhesives.
- conductive e.g., metal
- nonconductive e.g., inorganic dielectrics such as oxides, including nitrogen and/or fluorine content to aid direct bonding
- Figures 9A-9F illustrate examples of face down bonded structures.
- the singulated reconstituted element 24 can comprise the element 2, the nonconductive layer 18 disposed on the thinned back side 10’ of the element 2, and bonding layers 4a, 4b at the front and back surfaces 22, 23, respectively.
- the protective material 7 can extend from the back side 23 to the front side 22 of the reconstituted element 24.
- the singulated reconstituted element 24 can have a sidewall 25 defined by the outer exposed surface of the protective material.
- a vertical interface 26 can be defined between the protective material 7 and the element 2, the nonconductive layer 8, and the first and second bonding layers 4a, 4b.
- the protective material 7 accordingly abuts the bonding layers 4a, 4b, which may be applied before the protective material 7 is provided.
- one or more of the bonding layers 4a, 4b can extend over the protective material 7 such that the sidewall 25 includes the protective material 7 and a side edge of the bonding layers 4a and/or 4b.
- Figure 9B illustrates a front-to-back bonding arrangement in which the front surface 22a of the reconstituted element 24a is directly bonded to the back surface 23b of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
- a first portion 7a of protective material can extend from the back surface 23 a of the reconstituted element 24a to the bonding interface 12.
- a second portion 7b of protective material can extend from the bonding interface 12 to the front surface 22b of the reconstituted element 24b.
- Figure 9C illustrates a front-to-front bonding arrangement in which the front surface 22a of the reconstituted element 24a is directly bonded to the front surface 23 a of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
- the first portion 7a of protective material can extend from the back surface 23a of the reconstituted element 24a to the bonding interface 12.
- the second portion 7b of protective material can extend from the bonding interface 12 to the back surface 23b of the reconstituted element 24b.
- Figure 9D illustrates a back-to-back bonding arrangement in which the back surface 23a of the reconstituted element 24a is directly bonded to the back surface 23b of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
- the first portion 7a of protective material can extend from the front surface 22a of the reconstituted element 24a to the bonding interface 12.
- the second portion 7b of protective material can extend from the bonding interface 12 to the front surface 22b of the reconstituted element 24b.
- Figures 9E and 9F illustrate additional examples of singulated reconstituted elements 24 that utilize a second protective layer 40. Additional details regarding methods of forming the reconstituted element 24 of Figures 9E and 9F may be found below in, for example, Figures 11-12C.
- the second protective material 40 can be applied over the protective material 7.
- the second protective material 40 may be exposed at the back surface 23 of the reconstituted element 24 adjacent the bonding layer 4b.
- the protective material 7 can be exposed at the front surface 22 adjacent the bonding layer 4a and underlying the second protective layer 40.
- the sidewall 25 can include a horizontal interface 42 between the first and second protective materials 7, 25.
- a vertical interface 41 can be provided between the first and second protective materials 7, 25.
- the second protective material 40 can also be applied over the protective material 7.
- a third protective layer 43 can be provided over the second protective material 40.
- the third protective layer 43 may be exposed at the back surface 23 of the reconstituted element 24.
- a vertical interface 45 can be provided between the protective material 7 and the third protective material 43.
- a horizontal interface 46 can be provided between the second protective material 40 and the third protective material 43.
- Figures 10A-10E illustrate examples of face up bonded structures 1. Unless otherwise noted, reference numerals in Figures 10A-10E may refer to the same or generally similar components as reference numerals in Figures 9A-9F.
- Figure 10A a singulated reconstituted element 24 is shown in a face up orientation.
- Figures 10B-10D respective reconstituted elements 24a, 24b are directly bonded to one another to form bonded structures.
- Figure 10B illustrates a front-to-back bonding arrangement in which the front surface 22a of the reconstituted element 24a is directly bonded to the back surface 23b of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
- a first portion 7 a of protective material can extend from the back surface 23a of the reconstituted element 24a to the bonding interface 12.
- a second portion 7b of protective material can extend from the bonding interface 12 to the front surface 22b of the reconstituted element 24b.
- Figure IOC illustrates a back-to-back bonding arrangement in which the back surface 23a of the reconstituted element 24a is directly bonded to the back surface 23b of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
- the first portion 7a of protective material can extend from the front surface 22a of the reconstituted element 24a to the bonding interface 12.
- the second portion 7b of protective material can extend from the bonding interface 12 to the front surface 22b of the reconstituted element 24b.
- Figure 10D illustrates a front-to-front bonding arrangement in which the front surface 22a of the reconstituted element 24a is directly bonded to the front surface 22b of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
- the first portion 7a of protective material can extend from the back surface 23a of the reconstituted element 24a to the bonding interface 12.
- the second portion 7b of protective material can extend from the bonding interface 12 to the back surface 23b of the reconstituted element 24b.
- the bonding layers 4a can extend over the protective material 7a, 7b and can be exposed on the sidewall 25.
- the bonding layer 4a can be provided across the wafer over the protective material 7 such that, when the reconstituted wafer is singulated, the bonding layer 4a is exposed at the sidewall and flush with the protective material 7 at the sidewall 25.
- Figure 10E illustrates a singulated reconstituted element 24 that has a second protective material 40 disposed over side and upper surfaces of the protective material 7.
- the first front bonding layer 4a can be coplanar or flush with the second protective material 40.
- the second back bonding layer 4b can be coplanar or flush with the protective material 7.
- Figure 11 illustrates another embodiment similar to those described above, except an additional filler material can serve as a second protective material 40 and may be provided over a conformal protective material 7 in the gaps G between adjacent elements 2.
- the protective material 7 can be deposited conformally over the back sides 10 and side surface 8 of the elements 2 and over the upper surface of the carrier 3.
- the conformal protective material 7 can have gaps G between portions of the protective material 7 disposed on the side surfaces 8 of the elements 2.
- the second protective material 40 can serve to fill the gaps G.
- the second filler protective material 40 can comprise any suitable material, including organic or inorganic materials.
- Figures 12A-12C illustrate a method for forming a reconstituted wafer 20 according to various embodiments.
- Figure 12A is generally similar to Figure 11, except additional portions of the second protective material 40 are provided on the ends of the outer elements 2.
- a portion of the protective material 7 and a portion of the second filler protective material 40 can be removed to provide a generally planar surface.
- the respective portions of the filler and conformal protective materials 40, 7 can be removed by etching, lapping, grinding, chemical mechanical polishing (CMP), etc.
- a portion of the bulk semiconductor material of the elements 2 or dies can be removed to form a cavity 16, for example, by etching, lapping, CMP, etc., to expose the conductive vias 13.
- the conformal and/or gap-fill protective materials may have coefficient(s) of thermal expansion that is (are) within 5 ppm/°C of a coefficient of thermal expansion of the elements 2 (e.g., integrated device dies).
- the second filler protective material 40 can be removed from the structure shown in Figure 12C, and an additional protective material 48 can be provided over the elements 2 and the exposed vias 13.
- the provided additional protective material 48 and a portion of the protective material 7 can be removed or planarized to form a bonding surface 49 with the vias exposed on the upper surface.
- Figures 14A- 14C illustrate another embodiment in which a mold compound
- the vias 13 are shown as being exposed on the back side, but in other embodiments, the vias 13 can be buried as illustrated above. As shown in Figure 14B, a metal
- the metal 51 (such as copper) can be provided over the mold compound 51 as shown in Figure 14B.
- the metal 51 can be provided using an electroless plating process, a sputtering process, or any other suitable method.
- the metal 51 can be planarized, for example, by chemical mechanical polishing (CMP), or any other suitable method.
- CMP chemical mechanical polishing
- structures that utilize an organic material for the mold compound may be challenging to planarize using CMP to sufficient smoothness (e.g ., less than 5 nm, etc.).
- CMP chemical mechanical polishing
- Figures 15A-15C are generally similar to Figures 14A-14C, except in Figures 15A-15C, a second metal 52 can be provided over the carrier 3 between the carrier 3 and the mold compound 50.
- Figures 16A-16C illustrate another embodiment in which a protective coating 53 or layer (e.g. , silicon oxide) can be provided between the mold compound 50 and the carrier 3.
- a protective coating can also be provided after die placement and before metal deposition in various embodiments.
- the protective coating 53 can conformally coat the upper surface of the carrier 3 and upper and side surfaces of the elements 3.
- the mold compound 50 can be provided over the protective coating 53 and between the elements 2.
- the metal 51 can be provided over the mold compound 50 as explained above.
- the portions of the protective coating 53 that overlie the elements 2 can be removed using a polishing, grinding, or lapping process to expose the vias 13.
- the metal 51 and element 2 can be planarized to form a smooth surface for bonding.
- FIGs 17A-17D illustrates additional bonded structures 1 that can be provided with the methods disclosed herein.
- the bonded structure 1 can include a plurality of elements 2, which can include combinations of integrated device dies and interposers. Thus, the methods disclosed herein can be used for active and/or inactive devices.
- an insulating column 55 can be provided to separate the adjacent elements 2 in the upper reconstituted element.
- the bonded structure 1 can include one or more redistribution layers (RDLs) 57 which can include lateral conductive routing traces to carry signals laterally inward or outward.
- the RDLs 57 can enable fan-in or fan-out arrangements for connecting to an external package substrate.
- a conductive via 56 can be provided in the insulating column 56 to carry signals from the lower element 2 to the upper surface of the bonded structure 1.
- the bonded structure 1 can include both the via 56 in the insulating column 56 and the RDL(s) 57. Skilled artisans will understand that additional combinations may be suitable.
- Integrated device packages can include one or multiple integrated device dies (e.g . , chips) that have active circuitry, such as transistors and other types of active devices.
- the integrated device dies can be mounted to a carrier, such as a semiconductor interposer, a semiconductor or dielectric (e.g. , glass) substrate, another integrated device die, a reconstituted wafer or element, etc.
- a molding compound or encapsulant can be provided over the integrated device dies and exposed surfaces of the package substrate.
- the molding compound can comprise a polymer material, such as an epoxy or potting compound.
- the material of the molding compound can have a coefficient of thermal expansion (CTE) that differs from the CTE of the carrier and/or of the integrated device die(s).
- CTE coefficient of thermal expansion
- the CTE mismatch between the molding compound and the carrier (and/or integrated device die(s)) may induce stresses in the carrier and/or integrated device die(s).
- the stresses induced by CTE mismatch can cause cracking and/or warpage of the carrier and/or integrated device die(s), which can reduce package yield and/or affect system performance. Accordingly, there remains a continuing need for improved packages that reduce stresses due to CTE mismatch between molding compound and the carrier (and/or integrated device die(s)).
- Figure 18A is a schematic side sectional view of an integrated device package 82, according to various embodiments.
- Figure 18B is a schematic top plan view of the integrated device package 82 of Figure 18 A.
- the package 82 can comprise a carrier 103 and a plurality of integrated device dies 102 mounted to an upper surface of the carrier 103.
- the integrated device dies 102 can comprise active circuitry.
- the integrated device dies 102 can comprise processor die(s), memory die(s), sensor die(s), microelectromechanical systems (MEMS) dies, or any other suitable device that includes active circuitry (such as transistors or other active devices).
- MEMS microelectromechanical systems
- Three integrated device dies 102 are shown in the top view of Figure 18B, but it should be appreciated that any suitable number of device dies 102 can be provided.
- one or two integrated device dies 102 can be mounted to the carrier 103, or more than three integrated device dies 102 can be mounted to the carrier.
- the integrated device dies 102 are spaced apart laterally along the carrier 103.
- integrated device dies 102 can be stacked vertically in order to reduce package footprint.
- the carrier 103 can comprise any suitable support structure for the integrated device dies 102.
- the carrier 103 can comprise an interposer (such as a semiconductor interposer), a semiconductor or dielectric (e.g ., glass) substrate, another integrated device die (e.g., an active chip with active electronic circuitry), a reconstituted wafer or element, etc.
- the carrier 103 can comprise a material (e.g., a semiconductor material, a dielectric material, etc.) having a first CTE.
- the integrated device dies 102 can have a CTE that is substantially similar to the first CTE of the carrier 103.
- bulk material of one or more of the dies 102 may be the same material as corresponding bulk material of the carrier 103.
- the carrier 103 can comprise silicon, glass, or any other suitable material.
- the carrier 103 can comprise an integrated device die (such as a processor die) that has a larger lateral footprint than the dies 102.
- the integrated device dies 102 can be mounted to the carrier 103 in any suitable manner.
- the dies 102 can be directly hybrid bonded to the carrier 103 without an adhesive, as explained herein.
- nonconductive field regions of the dies 102 can be directly bonded to corresponding nonconductive field regions of the carrier 103 without an adhesive.
- conductive contacts of the dies 102 can be directly bonded to corresponding conductive contacts of the carrier 103 without an adhesive.
- the dies 102 can be mounted to the carrier 103 with an adhesive.
- the carrier 103 can remain coupled to the dies 102 such that the carrier 103 remains present in the larger electronic system.
- the carrier 103 can comprise a temporary structure (such as a mounting tape or sacrificial substrate) that is removed ( e.g ., lifted off or etched away) and not present in the final electronic package or system.
- a molding compound 108 can be provided over the integrated device dies 102 and over an exposed upper surface of the carrier 103.
- the molding compound 108 is hidden in the top view of Figure 18B for ease of illustration.
- the integrated device dies 102 can be at least partially embedded (e.g., completely embedded or buried) within the molding compound 108.
- the molding compound 108 can comprise a polymer material (such as an epoxy or potting compound) that has a second CTE that is different from the first CTE of the carrier 103 (and/or of the dies 102).
- the second CTE of the molding compound 108 can differ from the first CTE of the carrier 103 (and/or of the dies 102) by an amount that is sufficiently large so as cause CTE- induced stresses on the carrier 103 and/or dies 102 (e.g., the CTE mismatch can be up to about 12 ppm in some cases).
- the CTE mismatch between the molding compound 108 and the carrier 103 (and/or dies 102) can induce stresses that cause warpage, cracks, or other types of damage to the components of the package 82.
- the package 82 can include one or a plurality of stress compensation elements 104a- 104d mounted to the upper surface of the carrier 103.
- the stress compensation elements 104a- 104d can be disposed around the integrated device dies 102, such that the integrated device dies 102 are disposed within an interior region of the package 82 surrounded by the stress compensation elements 104a- 104d.
- the molding compound 108 can also be provided or applied over the stress compensation elements 104a- 104d, such that the stress compensation elements 104a- 104d are at least partially embedded in the molding compound 108.
- the stress compensation elements 104a- 104d can be spaced apart from one another and from the dies 102 by intervening portions of the molding compound 108.
- the stress compensation elements 104a- 104d can comprise a semiconductor material (e.g., silicon), an insulating material (e.g., glass), or any other suitable material type that has a CTE that substantially matches (or is close to) the second CTE of the carrier 103 and/or the dies 102.
- the stress compensation elements 104a- 104d can comprise the same material as the carrier 103 and/or the dies 102.
- the stress compensation elements 104a- 104d can comprise a material that is different from that of the carrier 103 and/or the dies 102.
- Each stress compensation element 104a- 104d can comprise the same material, or some (or all) can comprise different materials.
- the CTE of the stress compensation elements 104a- 104d can be within 10% of the second CTE of the carrier 103 and/or of the integrated device dies 102, within 5% of the second CTE, or within 1% of the second CTE.
- the CTE of the stress compensation elements 104a- 104d can be less than 10 ppm, less than 8 ppm, or less than 7 ppm.
- the CTE of the stress compensation elements 104a- 104d can be in a range of 3 ppm to 7 ppm.
- the stress compensation elements 104a- 104d can reduce the stresses imparted to the carrier 103 and/or the dies 102, since the material composition of the stress compensation elements 104a- 104d is selected to have a CTE that substantially matches that of the carrier 103 and/or the dies 102.
- the CTE-matched stress compensation elements 104a- 104d can be provided over a large area of the carrier 103 so as to serve as a stress-matched filler that compensates or reduces any stresses induced by the CTE mismatch between the molding compound 108 and the carrier 103 and/or dies 102.
- the stress compensation elements 104a- 104d can be mounted so as to cover most of an unoccupied area of the carrier 103 (e.g., regions of the carrier 103 that do not support the dies 102 or other electronic components or devices), e.g., at least 20%, at least 50%, at least 75%, at least 85%, or at least 90% of the unoccupied area of the carrier 103.
- the stress compensation elements 104a-104d can be mounted so as to cover a range of 20% to 90% of the unoccupied area of the carrier 103, a range of 35% to 90% of the unoccupied area of the carrier 103, or a range of 50% to 90% of the unoccupied area of the carrier 103.
- the stress compensation elements 104a- 104d can laterally overlap such that all lines perpendicular to opposing side edges 105a, 105b can pass through or intersect at least one stress compensation element 104a- 104d. In such arrangements, the stress compensation elements 104a- 104d can serve to prevent or arrest cracks from propagating through the carrier 103.
- the stress compensation elements 104a-104d can be disposed between the outer side edges 105a-105d of the package 82 and the integrated device dies 102 such that at least one lateral side edge 109 of each integrated device die 102 lies in a corresponding plane that intersects at least one stress compensation element 104a- 104d.
- a majority (or all) of the side edges 109 of the dies 102 can lie in respective planes that intersect at least one stress compensation element 104a- 104d.
- Figure 18C is a schematic top plan view of an integrated device package 82, that includes increased lateral overlap among the stress compensation elements 104a- 104d. Unless otherwise noted, the components of Figure 18C may be the same as or generally similar to like-numbered components of Figures 18A-18B.
- stress compensation element 104b is vertically (as shown in the top view) shortened, and stress compensation element 104d is horizontally (as shown in the top view) lengthened as compared to Figure 18B.
- stress compensation element 104d can extend to and be exposed along side edge 105b.
- all lines perpendicular to each side edge 105a-105d can pass through or intersect with at least one stress compensation element 104a- 104d, which can prevent or arrest crack propagation.
- the stress compensation elements 104a- 104d can comprise dummy stress compensation elements that are devoid of active circuitry, e.g., there are no active devices in the dummy stress compensation elements.
- the dummy stress compensation elements can comprise dummy pieces or blocks of a semiconductor material (such as silicon) or a dielectric material (such as glass) without any active circuitry.
- the use of dummy elements can provide further benefits because no circuitry or devices need be patterned or formed in the elements 104a- 104d, which can reduce processing costs and complexity.
- one or more of the stress compensation elements 104a- 104d may comprise an active integrated device die with active circuitry or devices.
- the use of multiple stress compensation elements 104a- 104d can beneficially enable the package assembler to pick and place the elements 104a- 104d at desired locations, e.g., at locations with high susceptibility to cracking and/or in targeted spaces over the carrier 103.
- the stress compensation elements 104a- 104d can be mounted to the carrier 103 in any suitable manner.
- the stress compensation elements 104a- 104d can be directly bonded to the carrier 103 without an adhesive.
- the stress compensation elements 104a- 104d can comprise dummy stress compensation elements without active circuitry.
- the stress compensation elements 104a- 104d can comprise nonconductive field regions that are directly bonded to corresponding nonconductive field regions of the carrier 103 along a bond interface without an adhesive.
- the stress compensation elements 104a- 104d may be directly bonded such that the bond interface between the elements 104a- 104d and the carrier 103 includes only nonconductive-to-nonconductive direct bonds (e.g., the bond interface is devoid of conductor-to-conductor or metal-to-metal direct bonds).
- the stress compensation elements 104a- 104d can be directly bonded to the carrier 103 utilizing only nonconductive-to-nonconductive direct bonds, e.g., a nonconductive or dielectric bonding layer of the elements 104a- 104d can be directly bonded to a corresponding nonconductive or dielectric bonding layer of the carrier 103 without an adheisve.
- the nonconductive-to-nonconductive direct bonds can comprise one type or multiple different types of nonconductive material(s) along the bond interface.
- one or more elements such as dies
- the carrier 103 can be hybrid direct bonded to the carrier 103 along a bond interface without an adhesive such that nonconductive field regions and conductive contact pads of the one or more elements (e.g., dies 102) are directly bonded to corresponding nonconductive field regions and conductive contacts of the carrier 103.
- One or more other elements can be directly bonded to the carrier 103 without an adhesive along the bond interface such that the bond interface between the stress compensation elements 104a- 104d and the carrier 103 includes only nonconductive-to-nonconductive direct bonds (e.g., directly bonded dielectric bonding layers of the elements 104a- 104d and carrier
- the nonconductive field regions of the dies 102, stress compensation elements 104a- 104d, and/or carrier 103 can comprise an inorganic dielectric material (e.g., silicon oxide).
- the nonconductive field regions can comprise unpatterned portions of the dies 102, stress compensation elements 104a- 104d, and/or carrier 103.
- the bond interface can include signature indicative of direct nonconductive bonds, such as nitrogen terminated surfaces, fluorine peak(s) at the bond interface and at upper and/or lower interfaces of dielectric bonding layers of the elements.
- both nonconductive field regions and contact pads of the stress compensation elements 104a- 104d can be directly bonded to corresponding nonconductive field regions and contact pads of the carrier 103.
- the stress compensation elements 104a- 104d can be bonded to the carrier 103 with an adhesive.
- the carrier 103 can be mounted to an external device, such as a system motherboard, or to another structure.
- the carrier 103 can comprise a temporary support structure that can be removed after the molding compound 108 is applied.
- Four stress compensation elements 104a-104d are shown in Figure 18B, but it should be appreciated that fewer than four, or more than four, stress compensation elements 104a- 104d can be provided.
- the package 82 can comprise outer side edges 105a-105d.
- the package 82 can be formed from a singulation process by which a larger wafer or reconstituted wafer is singulated along singulation streets S to yield a plurality of singulated packages 82.
- singulation can comprise a sawing process, an etching process, or any other suitable process by which packages 82 can be formed from a larger wafer or reconstituted wafer.
- the outer side edges 105a- 105d can comprise singulation markings indicative of the singulation process.
- the singulation markings can comprise saw markings, such as striations in the singulated surface.
- the singulation markings can comprise marks or microstmctures indicative of the etch pathway.
- the outer side edge 105b can include an outer edge of stress compensation element 104d, an edge of the carrier 103 and the molding compound, each of which may include markings indicative of the singulation process.
- the stress compensation elements 104a-104d can be positioned anywhere along the carrier 103.
- some or all of the stress compensation elements 104a-104d can be positioned laterally inset relative to the outer side edges 105a- 105d of the package 82 such that the stress compensation elements 104a- 104d are embedded in the molding compound 108.
- the singulation streets S can pass through one or more of the stress compensation elements 104a- 104d such that, upon singulation, the molding compound 108 and one or more stress compensation elements 104a- 104d can be exposed along one or more outer side edges 105a- 105d of the package 82.
- stress compensation elements 104a, 104c can comprise side edges 106a, 106c that are exposed at the corresponding outer side edges 105a, 105c of the package 82.
- side edges 107 of the molding compound 108 can be exposed along the outer side edges 105a- 105d of the package 82.
- the exposed side edges 106a, 106c of the stress compensation elements 104a, 104c can be flush with the side edges 107 of the molding compound 108, including portions of the molding compound 108 that are over the stress compensation elements 104a, 104c and portions of the molding compound 108 that are laterally adjacent the stress compensation elements 104a, 104c.
- some stress compensation elements 104b, 104d can be laterally inset relative to the outer side edges 105b, 105d of the package 82, such that the elements 104b, 104d may be completely embedded in the molding compound 108. In some embodiments, all of the stress compensation elements 104a- 104d can be laterally inset relative to the outer side edges 105a- 105d.
- FIG 19 is a schematic diagram of a system 80 incorporating one or more integrated device packages 82, according to various embodiments.
- the system 80 can comprise any suitable type of electronic device, such as a mobile electronic device (e.g ., a smartphone, a tablet computing device, a laptop computer, etc.), a desktop computer, an automobile or components thereof, a stereo system, a medical device, a camera, or any other suitable type of system.
- the electronic device can comprise a microprocessor, a graphics processor, an electronic recording device, or digital memory.
- the system 80 can include one or more device packages 82 which are mechanically and electrically connected to the system 80, e.g., by way of one or more motherboards.
- Each package 82 can comprise one or more integrated device dies and/or bonded structures 1.
- the integrated device dies and/or bonded structures can comprise any of the integrated device packages and/or bonded structures shown and described above in connection with Figures 1A-18B.
- an integrated device package can comprise a carrier an a molding compound over a portion of an upper surface of the carrier.
- the integrated device package can comprise an integrated device die mounted to the carrier and at least partially embedded in the molding compound, the integrated device die comprising active circuitry.
- the integrated device package can comprise a stress compensation element mounted to the carrier and at least partially embedded in the molding compound, the stress compensation element spaced apart from the integrated device die, the stress compensation element comprising a dummy stress compensation element devoid of active circuitry. At least one of the stress compensation element and the integrated device die can be directly bonded to the carrier without an adhesive.
- an integrated device package in another embodiment, can include a molding compound and an integrated device die at least partially embedded in the molding compound, the integrated device die comprising active circuitry.
- the integrated device package can include a plurality of dummy stress compensation elements at least partially embedded in the molding compound, the plurality of dummy stress compensation elements devoid of active circuitry, the plurality of dummy stress compensation element spaced apart from one another by the molding compound.
- a method of forming an integrated device package can include providing a molding compound over an integrated device die and a plurality of dummy stress compensation elements, the plurality of dummy stress compensation elements spaced apart from one another by the molding compound.
- the integrated device die can comprise active circuitry.
- the plurality of dummy stress compensation elements can be devoid of active circuitry.
- an integrated device package in another embodiment, can comprise a molding compound and an integrated device die at least partially embedded in the molding compound,, the integrated device die comprising active circuitry.
- the integrated device package can comprise a stress compensation element at least partially embedded in the molding compound and spaced apart from the integrated device die. The molding compound and the stress compensation element can be exposed at an outer side edge of the integrated device package.
- an electronic component in another embodiment, can comprise a carrier having a first nonconductive field region and a first conductive contact.
- the electronic component can comprise a first element directly hybrid bonded to the carrier without an adhesive, a second nonconductive field region of the first element directly bonded to the first nonconductive field region of the carrier without an adhesive and a second conductive contact of the first element directly bonded to the first conductive contact of the carrier.
- the electronic component can comprise a second element directly bonded to the carrier without an adhesive such that only a third nonconductive field region of the second element is directly bonded to the first nonconductive field region of the carrier.
- an electronic component in another embodiment, can include a carrier having a first nonconductive field region and a first conductive contact.
- the electronic component can include a first element directly hybrid bonded to the carrier without an adhesive, a second nonconductive field region of the first element directly bonded to the first nonconductive field region of the carrier without an adhesive and a second conductive contact of the first element directly bonded to the first conductive contact of the carrier.
- the electronic component can include a second element directly bonded to the carrier without an adhesive, wherein the second element does not include any conductive contacts that are directly bonded to the carrier.
- a bonded structure can include a first reconstituted element comprising a first element and having a first side comprising a first bonding surface and a second side opposite the first side.
- the first reconstituted element can comprise a first protective material disposed about a first sidewall surface of the first element.
- the bonded structure can comprise a second reconstituted element comprising a second element and having a first side comprising a second bonding surface and a second side opposite the first side.
- the first reconstituted element can comprise a second protective material disposed about a second sidewall surface of the second element.
- the second bonding surface of the first side of the second reconstituted element can be directly bonded to the first bonding surface of the first side of the first reconstituted element without an intervening adhesive along a bonding interface.
- the first protective material can be flush with the first bonding surface and the second protective material can be flush with the second bonding surface.
- a bonded structure in another embodiment, can include a first reconstituted element comprising a first element and having a first side and a second side opposite the first side.
- the bonded structure can include a second reconstituted element comprising a second element and having a first side and a second side opposite the first side, the first side of the second reconstituted element directly bonded to the first side of the first reconstituted element without an intervening adhesive along a bonding interface.
- the bonded structure can include a protective material disposed about respective first and second side surfaces of the first and second elements.
- the bonded structure can include a nonconductive layer disposed between the first and second elements, the nonconductive layer flush with at least one of the first and second side surfaces of the first and second elements such that an interface is provided between the protective material and the nonconductive layer.
- a bonded structure in another embodiment, can include a first reconstituted wafer comprising a plurality of first elements.
- the bonded structure can comprise a second reconstituted wafer comprising a plurality of second elements.
- the first and second reconstituted wafers can be directly bonded to one another without an adhesive.
- a bonding method can include applying a first protective material over a plurality of first elements to form a first reconstituted wafer.
- the bonding method can include applying a second protective material over a plurality of second elements to form a second reconstituted wafer.
- the bonding method can include directly bonding the first reconstituted wafer to the second reconstituted wafer without an adhesive.
- a bonding method can include directly bonding a first element to a carrier without an adhesive.
- the carrier can comprise a silicon carrier with a silicon oxide layer disposed directly onto a surface of the silicon carrier.
- the silicon oxide layer can be directly bonded to the first element.
- the silicon oxide layer can comprise a native oxide layer or a thermal oxide layer.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Micromachines (AREA)
- Semiconductor Integrated Circuits (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP21833640.2A EP4173032A4 (en) | 2020-06-30 | 2021-06-23 | INTEGRATED DEVICE PACKAGING |
| KR1020237003430A KR102750432B1 (ko) | 2020-06-30 | 2021-06-23 | 통합 장치 패키지 |
| KR1020247043566A KR20250010110A (ko) | 2020-06-30 | 2021-06-23 | 통합 장치 패키지 |
| JP2022581735A JP7441979B2 (ja) | 2020-06-30 | 2021-06-23 | 集積デバイスパッケージ |
| CN202180055333.2A CN116157918A (zh) | 2020-06-30 | 2021-06-23 | 集成器件封装件 |
| JP2024023028A JP2024055908A (ja) | 2020-06-30 | 2024-02-19 | 集積デバイスパッケージ |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/917,686 US11631647B2 (en) | 2020-06-30 | 2020-06-30 | Integrated device packages with integrated device die and dummy element |
| US16/917,686 | 2020-06-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2022005846A1 true WO2022005846A1 (en) | 2022-01-06 |
Family
ID=79031452
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2021/038696 Ceased WO2022005846A1 (en) | 2020-06-30 | 2021-06-23 | Integrated device packages |
Country Status (7)
| Country | Link |
|---|---|
| US (4) | US11631647B2 (enExample) |
| EP (1) | EP4173032A4 (enExample) |
| JP (2) | JP7441979B2 (enExample) |
| KR (2) | KR102750432B1 (enExample) |
| CN (1) | CN116157918A (enExample) |
| TW (1) | TW202211398A (enExample) |
| WO (1) | WO2022005846A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20230395563A1 (en) * | 2022-06-02 | 2023-12-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multiple non-active dies in a multi-die package |
Families Citing this family (94)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7109092B2 (en) | 2003-05-19 | 2006-09-19 | Ziptronix, Inc. | Method of room temperature covalent bonding |
| US7485968B2 (en) | 2005-08-11 | 2009-02-03 | Ziptronix, Inc. | 3D IC method and device |
| US8735219B2 (en) | 2012-08-30 | 2014-05-27 | Ziptronix, Inc. | Heterogeneous annealing method and device |
| US10886250B2 (en) | 2015-07-10 | 2021-01-05 | Invensas Corporation | Structures and methods for low temperature bonding using nanoparticles |
| US9953941B2 (en) | 2015-08-25 | 2018-04-24 | Invensas Bonding Technologies, Inc. | Conductive barrier direct hybrid bonding |
| US10204893B2 (en) | 2016-05-19 | 2019-02-12 | Invensas Bonding Technologies, Inc. | Stacked dies and methods for forming bonded structures |
| US10580735B2 (en) | 2016-10-07 | 2020-03-03 | Xcelsis Corporation | Stacked IC structure with system level wiring on multiple sides of the IC die |
| US10719762B2 (en) | 2017-08-03 | 2020-07-21 | Xcelsis Corporation | Three dimensional chip structure implementing machine trained network |
| US10672663B2 (en) | 2016-10-07 | 2020-06-02 | Xcelsis Corporation | 3D chip sharing power circuit |
| TWI892323B (zh) | 2016-10-27 | 2025-08-01 | 美商艾德亞半導體科技有限責任公司 | 用於低溫接合的結構和方法 |
| US10002844B1 (en) | 2016-12-21 | 2018-06-19 | Invensas Bonding Technologies, Inc. | Bonded structures |
| KR102320673B1 (ko) | 2016-12-28 | 2021-11-01 | 인벤사스 본딩 테크놀로지스 인코포레이티드 | 적층된 기판의 처리 |
| US20180182665A1 (en) | 2016-12-28 | 2018-06-28 | Invensas Bonding Technologies, Inc. | Processed Substrate |
| KR20230156179A (ko) | 2016-12-29 | 2023-11-13 | 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 | 집적된 수동 컴포넌트를 구비한 접합된 구조체 |
| WO2018169968A1 (en) | 2017-03-16 | 2018-09-20 | Invensas Corporation | Direct-bonded led arrays and applications |
| US10515913B2 (en) | 2017-03-17 | 2019-12-24 | Invensas Bonding Technologies, Inc. | Multi-metal contact structure |
| US10508030B2 (en) | 2017-03-21 | 2019-12-17 | Invensas Bonding Technologies, Inc. | Seal for microelectronic assembly |
| US10269756B2 (en) | 2017-04-21 | 2019-04-23 | Invensas Bonding Technologies, Inc. | Die processing |
| US10879212B2 (en) | 2017-05-11 | 2020-12-29 | Invensas Bonding Technologies, Inc. | Processed stacked dies |
| US10446441B2 (en) | 2017-06-05 | 2019-10-15 | Invensas Corporation | Flat metal features for microelectronics applications |
| US10217720B2 (en) | 2017-06-15 | 2019-02-26 | Invensas Corporation | Multi-chip modules formed using wafer-level processing of a reconstitute wafer |
| US10840205B2 (en) | 2017-09-24 | 2020-11-17 | Invensas Bonding Technologies, Inc. | Chemical mechanical polishing for hybrid bonding |
| US11031285B2 (en) | 2017-10-06 | 2021-06-08 | Invensas Bonding Technologies, Inc. | Diffusion barrier collar for interconnects |
| WO2019090057A1 (en) * | 2017-11-02 | 2019-05-09 | Nextinput, Inc. | Sealed force sensor with etch stop layer |
| US11380597B2 (en) | 2017-12-22 | 2022-07-05 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US10923408B2 (en) | 2017-12-22 | 2021-02-16 | Invensas Bonding Technologies, Inc. | Cavity packages |
| US10727219B2 (en) | 2018-02-15 | 2020-07-28 | Invensas Bonding Technologies, Inc. | Techniques for processing devices |
| US11169326B2 (en) | 2018-02-26 | 2021-11-09 | Invensas Bonding Technologies, Inc. | Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects |
| US11256004B2 (en) | 2018-03-20 | 2022-02-22 | Invensas Bonding Technologies, Inc. | Direct-bonded lamination for improved image clarity in optical devices |
| US10991804B2 (en) | 2018-03-29 | 2021-04-27 | Xcelsis Corporation | Transistor level interconnection methodologies utilizing 3D interconnects |
| US11056348B2 (en) | 2018-04-05 | 2021-07-06 | Invensas Bonding Technologies, Inc. | Bonding surfaces for microelectronics |
| US10790262B2 (en) | 2018-04-11 | 2020-09-29 | Invensas Bonding Technologies, Inc. | Low temperature bonded structures |
| US11244916B2 (en) | 2018-04-11 | 2022-02-08 | Invensas Bonding Technologies, Inc. | Low temperature bonded structures |
| US10964664B2 (en) | 2018-04-20 | 2021-03-30 | Invensas Bonding Technologies, Inc. | DBI to Si bonding for simplified handle wafer |
| US11004757B2 (en) | 2018-05-14 | 2021-05-11 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US11276676B2 (en) | 2018-05-15 | 2022-03-15 | Invensas Bonding Technologies, Inc. | Stacked devices and methods of fabrication |
| US10923413B2 (en) | 2018-05-30 | 2021-02-16 | Xcelsis Corporation | Hard IP blocks with physically bidirectional passageways |
| KR102878117B1 (ko) | 2018-06-13 | 2025-10-28 | 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 | 패드로서의 tsv |
| US11393779B2 (en) | 2018-06-13 | 2022-07-19 | Invensas Bonding Technologies, Inc. | Large metal pads over TSV |
| US10910344B2 (en) | 2018-06-22 | 2021-02-02 | Xcelsis Corporation | Systems and methods for releveled bump planes for chiplets |
| WO2020010056A1 (en) | 2018-07-03 | 2020-01-09 | Invensas Bonding Technologies, Inc. | Techniques for joining dissimilar materials in microelectronics |
| US11462419B2 (en) | 2018-07-06 | 2022-10-04 | Invensas Bonding Technologies, Inc. | Microelectronic assemblies |
| US11158606B2 (en) | 2018-07-06 | 2021-10-26 | Invensas Bonding Technologies, Inc. | Molded direct bonded and interconnected stack |
| US12406959B2 (en) | 2018-07-26 | 2025-09-02 | Adeia Semiconductor Bonding Technologies Inc. | Post CMP processing for hybrid bonding |
| US11515291B2 (en) | 2018-08-28 | 2022-11-29 | Adeia Semiconductor Inc. | Integrated voltage regulator and passive components |
| US11296044B2 (en) | 2018-08-29 | 2022-04-05 | Invensas Bonding Technologies, Inc. | Bond enhancement structure in microelectronics for trapping contaminants during direct-bonding processes |
| US11011494B2 (en) | 2018-08-31 | 2021-05-18 | Invensas Bonding Technologies, Inc. | Layer structures for making direct metal-to-metal bonds at low temperatures in microelectronics |
| US11158573B2 (en) | 2018-10-22 | 2021-10-26 | Invensas Bonding Technologies, Inc. | Interconnect structures |
| US11244920B2 (en) | 2018-12-18 | 2022-02-08 | Invensas Bonding Technologies, Inc. | Method and structures for low temperature device bonding |
| US11476213B2 (en) | 2019-01-14 | 2022-10-18 | Invensas Bonding Technologies, Inc. | Bonded structures without intervening adhesive |
| US11387202B2 (en) | 2019-03-01 | 2022-07-12 | Invensas Llc | Nanowire bonding interconnect for fine-pitch microelectronics |
| US11901281B2 (en) | 2019-03-11 | 2024-02-13 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures with integrated passive component |
| US10854578B2 (en) | 2019-03-29 | 2020-12-01 | Invensas Corporation | Diffused bitline replacement in stacked wafer memory |
| US11610846B2 (en) | 2019-04-12 | 2023-03-21 | Adeia Semiconductor Bonding Technologies Inc. | Protective elements for bonded structures including an obstructive element |
| US11373963B2 (en) | 2019-04-12 | 2022-06-28 | Invensas Bonding Technologies, Inc. | Protective elements for bonded structures |
| US11205625B2 (en) | 2019-04-12 | 2021-12-21 | Invensas Bonding Technologies, Inc. | Wafer-level bonding of obstructive elements |
| US11355404B2 (en) | 2019-04-22 | 2022-06-07 | Invensas Bonding Technologies, Inc. | Mitigating surface damage of probe pads in preparation for direct bonding of a substrate |
| US11385278B2 (en) | 2019-05-23 | 2022-07-12 | Invensas Bonding Technologies, Inc. | Security circuitry for bonded structures |
| US12374641B2 (en) | 2019-06-12 | 2025-07-29 | Adeia Semiconductor Bonding Technologies Inc. | Sealed bonded structures and methods for forming the same |
| US11296053B2 (en) | 2019-06-26 | 2022-04-05 | Invensas Bonding Technologies, Inc. | Direct bonded stack structures for increased reliability and improved yield in microelectronics |
| US12080672B2 (en) | 2019-09-26 | 2024-09-03 | Adeia Semiconductor Bonding Technologies Inc. | Direct gang bonding methods including directly bonding first element to second element to form bonded structure without adhesive |
| US12113054B2 (en) | 2019-10-21 | 2024-10-08 | Adeia Semiconductor Technologies Llc | Non-volatile dynamic random access memory |
| TW202522760A (zh) * | 2019-10-29 | 2025-06-01 | 日商東京威力科創股份有限公司 | 附有晶片之基板的製造方法 |
| US11862602B2 (en) | 2019-11-07 | 2024-01-02 | Adeia Semiconductor Technologies Llc | Scalable architecture for reduced cycles across SOC |
| US11762200B2 (en) | 2019-12-17 | 2023-09-19 | Adeia Semiconductor Bonding Technologies Inc. | Bonded optical devices |
| US11876076B2 (en) | 2019-12-20 | 2024-01-16 | Adeia Semiconductor Technologies Llc | Apparatus for non-volatile random access memory stacks |
| KR20220120631A (ko) | 2019-12-23 | 2022-08-30 | 인벤사스 본딩 테크놀로지스 인코포레이티드 | 결합형 구조체를 위한 전기적 리던던시 |
| US11721653B2 (en) | 2019-12-23 | 2023-08-08 | Adeia Semiconductor Bonding Technologies Inc. | Circuitry for electrical redundancy in bonded structures |
| CN115943489A (zh) | 2020-03-19 | 2023-04-07 | 隔热半导体粘合技术公司 | 用于直接键合结构的尺寸补偿控制 |
| US11742314B2 (en) | 2020-03-31 | 2023-08-29 | Adeia Semiconductor Bonding Technologies Inc. | Reliable hybrid bonded apparatus |
| US11735523B2 (en) | 2020-05-19 | 2023-08-22 | Adeia Semiconductor Bonding Technologies Inc. | Laterally unconfined structure |
| US11631647B2 (en) | 2020-06-30 | 2023-04-18 | Adeia Semiconductor Bonding Technologies Inc. | Integrated device packages with integrated device die and dummy element |
| US11728273B2 (en) | 2020-09-04 | 2023-08-15 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structure with interconnect structure |
| US11764177B2 (en) | 2020-09-04 | 2023-09-19 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structure with interconnect structure |
| US12199018B2 (en) | 2020-09-18 | 2025-01-14 | Intel Corporation | Direct bonding in microelectronic assemblies |
| US11990448B2 (en) * | 2020-09-18 | 2024-05-21 | Intel Corporation | Direct bonding in microelectronic assemblies |
| US11264357B1 (en) | 2020-10-20 | 2022-03-01 | Invensas Corporation | Mixed exposure for large die |
| WO2022094587A1 (en) * | 2020-10-29 | 2022-05-05 | Invensas Bonding Technologies, Inc. | Direct bonding methods and structures |
| CN116635998A (zh) * | 2020-10-29 | 2023-08-22 | 美商艾德亚半导体接合科技有限公司 | 直接键合方法和结构 |
| EP3993021A1 (en) * | 2020-11-03 | 2022-05-04 | Infineon Technologies AG | Method of manufacturing a bonded substrate stack |
| WO2022147430A1 (en) | 2020-12-28 | 2022-07-07 | Invensas Bonding Technologies, Inc. | Structures with through-substrate vias and methods for forming the same |
| KR20230125309A (ko) | 2020-12-28 | 2023-08-29 | 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 | 기판-관통 비아를 가지는 구조체 및 이를 형성하기위한 방법 |
| JP7783896B2 (ja) | 2020-12-30 | 2025-12-10 | アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド | 導電特徴部を備えた構造体及びその形成方法 |
| WO2022160102A1 (zh) * | 2021-01-26 | 2022-08-04 | 华为技术有限公司 | 芯片堆叠结构及其制备方法、芯片堆叠封装、电子设备 |
| WO2023014616A1 (en) | 2021-08-02 | 2023-02-09 | Invensas Bonding Technologies, Inc. | Protective semiconductor elements for bonded structures |
| KR20230025587A (ko) * | 2021-08-13 | 2023-02-22 | 삼성전자주식회사 | 반도체 패키지 제조 방법 |
| JP2023043671A (ja) * | 2021-09-16 | 2023-03-29 | キオクシア株式会社 | 半導体記憶装置及びその設計方法 |
| EP4483406A1 (en) * | 2022-02-24 | 2025-01-01 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures |
| JP2023137395A (ja) * | 2022-03-18 | 2023-09-29 | キオクシア株式会社 | 半導体装置及び半導体製造装置 |
| US20230369070A1 (en) * | 2022-05-12 | 2023-11-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package structure and method of manufacturing thereof |
| US20240186268A1 (en) * | 2022-12-01 | 2024-06-06 | Adeia Semiconductor Bonding Technologies Inc. | Directly bonded structure with frame structure |
| US12341083B2 (en) | 2023-02-08 | 2025-06-24 | Adeia Semiconductor Bonding Technologies Inc. | Electronic device cooling structures bonded to semiconductor elements |
| US20250079366A1 (en) * | 2023-09-05 | 2025-03-06 | Micron Technology, Inc. | Semiconductor device with layered dielectric |
| US20250226308A1 (en) * | 2024-01-08 | 2025-07-10 | Micron Technology, Inc. | Semiconductor device with backside connection mechanism and methods for manufacturing the same |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7126212B2 (en) | 1999-10-01 | 2006-10-24 | Ziptronix, Inc. | Three dimensional device integration method and integrated device |
| US9391143B2 (en) | 2000-02-16 | 2016-07-12 | Ziptronix, Inc. | Method for low temperature bonding and bonded structure |
| US20160322330A1 (en) * | 2015-04-30 | 2016-11-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fan-out stacked system in package (sip) having dummy dies and methods of making the same |
| US20180138101A1 (en) * | 2016-11-14 | 2018-05-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package structures and methods of forming the same |
| US10141218B2 (en) | 2003-02-07 | 2018-11-27 | Invensas Bonding Technologies, Inc. | Room temperature metal direct bonding |
| US10147641B2 (en) | 2005-08-11 | 2018-12-04 | Invensas Bonding Technologies, Inc. | 3D IC method and device |
| US10204893B2 (en) | 2016-05-19 | 2019-02-12 | Invensas Bonding Technologies, Inc. | Stacked dies and methods for forming bonded structures |
| US20190189590A1 (en) | 2017-12-17 | 2019-06-20 | Rahul Agarwal | Stacked dies and dummy components for improved thermal performance |
| US20190371763A1 (en) * | 2018-05-29 | 2019-12-05 | Rahul Agarwal | Die stacking for multi-tier 3d integration |
| US20190385981A1 (en) | 2018-06-15 | 2019-12-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit package having dummy structures and method of forming same |
| US20200006173A1 (en) | 2018-05-18 | 2020-01-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated Circuit Package and Method of Forming Same |
| KR20200047841A (ko) * | 2018-10-24 | 2020-05-08 | 삼성전자주식회사 | 반도체 패키지 |
Family Cites Families (601)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2626408B1 (fr) | 1988-01-22 | 1990-05-11 | Thomson Csf | Capteur d'image a faible encombrement |
| JPH0272642A (ja) | 1988-09-07 | 1990-03-12 | Nec Corp | 基板の接続構造および接続方法 |
| JPH0344067A (ja) | 1989-07-11 | 1991-02-25 | Nec Corp | 半導体基板の積層方法 |
| US5019673A (en) | 1990-08-22 | 1991-05-28 | Motorola, Inc. | Flip-chip package for integrated circuits |
| JPH04337694A (ja) | 1991-05-15 | 1992-11-25 | Nec Yamagata Ltd | 電子部品保護用樹脂膜 |
| CA2083072C (en) | 1991-11-21 | 1998-02-03 | Shinichi Hasegawa | Method for manufacturing polyimide multilayer wiring substrate |
| US6008126A (en) | 1992-04-08 | 1999-12-28 | Elm Technology Corporation | Membrane dielectric isolation IC fabrication |
| JPH07193294A (ja) | 1993-11-01 | 1995-07-28 | Matsushita Electric Ind Co Ltd | 電子部品およびその製造方法 |
| KR960009074A (ko) | 1994-08-29 | 1996-03-22 | 모리시다 요이치 | 반도체 장치 및 그 제조방법 |
| DE4433330C2 (de) | 1994-09-19 | 1997-01-30 | Fraunhofer Ges Forschung | Verfahren zur Herstellung von Halbleiterstrukturen mit vorteilhaften Hochfrequenzeigenschaften sowie eine Halbleiterwaferstruktur |
| JP3979687B2 (ja) | 1995-10-26 | 2007-09-19 | アプライド マテリアルズ インコーポレイテッド | ハロゲンをドープした酸化珪素膜の膜安定性を改良する方法 |
| KR100274333B1 (ko) | 1996-01-19 | 2001-01-15 | 모기 쥰이찌 | 도체층부착 이방성 도전시트 및 이를 사용한 배선기판 |
| US5956605A (en) | 1996-09-20 | 1999-09-21 | Micron Technology, Inc. | Use of nitrides for flip-chip encapsulation |
| US5729896A (en) | 1996-10-31 | 1998-03-24 | International Business Machines Corporation | Method for attaching a flip chip on flexible circuit carrier using chip with metallic cap on solder |
| US6221753B1 (en) | 1997-01-24 | 2001-04-24 | Micron Technology, Inc. | Flip chip technique for chip assembly |
| JP4032454B2 (ja) | 1997-06-27 | 2008-01-16 | ソニー株式会社 | 三次元回路素子の製造方法 |
| US6097096A (en) | 1997-07-11 | 2000-08-01 | Advanced Micro Devices | Metal attachment method and structure for attaching substrates at low temperatures |
| US6049124A (en) | 1997-12-10 | 2000-04-11 | Intel Corporation | Semiconductor package |
| US5854507A (en) | 1998-07-21 | 1998-12-29 | Hewlett-Packard Company | Multiple chip assembly |
| JP2000100679A (ja) | 1998-09-22 | 2000-04-07 | Canon Inc | 薄片化による基板間微小領域固相接合法及び素子構造 |
| FR2787241B1 (fr) | 1998-12-14 | 2003-01-31 | Ela Medical Sa | Composant microelectronique cms enrobe, notamment pour un dispositif medical implantable actif, et son procede de fabrication |
| JP3532788B2 (ja) | 1999-04-13 | 2004-05-31 | 唯知 須賀 | 半導体装置及びその製造方法 |
| US6782610B1 (en) | 1999-05-21 | 2004-08-31 | North Corporation | Method for fabricating a wiring substrate by electroplating a wiring film on a metal base |
| JP3767246B2 (ja) | 1999-05-26 | 2006-04-19 | 富士通株式会社 | 複合モジュール及びプリント回路基板ユニット |
| JP2001102479A (ja) | 1999-09-27 | 2001-04-13 | Toshiba Corp | 半導体集積回路装置およびその製造方法 |
| US6500694B1 (en) | 2000-03-22 | 2002-12-31 | Ziptronix, Inc. | Three dimensional device integration method and integrated device |
| JP2001284520A (ja) | 2000-04-04 | 2001-10-12 | Matsushita Electric Ind Co Ltd | 半導体チップ搭載用の配線基板、配線基板の製造方法、中継接続用の配線基板、半導体装置および半導体装置間接続構造 |
| JP2001313350A (ja) | 2000-04-28 | 2001-11-09 | Sony Corp | チップ状電子部品及びその製造方法、並びにその製造に用いる疑似ウエーハ及びその製造方法 |
| US7247932B1 (en) | 2000-05-19 | 2007-07-24 | Megica Corporation | Chip package with capacitor |
| JP4322402B2 (ja) | 2000-06-22 | 2009-09-02 | 大日本印刷株式会社 | プリント配線基板及びその製造方法 |
| JP3440057B2 (ja) | 2000-07-05 | 2003-08-25 | 唯知 須賀 | 半導体装置およびその製造方法 |
| US6423640B1 (en) | 2000-08-09 | 2002-07-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Headless CMP process for oxide planarization |
| US6507115B2 (en) | 2000-12-14 | 2003-01-14 | International Business Machines Corporation | Multi-chip integrated circuit module |
| JP3420748B2 (ja) | 2000-12-14 | 2003-06-30 | 松下電器産業株式会社 | 半導体装置及びその製造方法 |
| US6686588B1 (en) | 2001-01-16 | 2004-02-03 | Amkor Technology, Inc. | Optical module with lens integral holder |
| JP2002359345A (ja) | 2001-03-30 | 2002-12-13 | Toshiba Corp | 半導体装置及びその製造方法 |
| JP2002353416A (ja) | 2001-05-25 | 2002-12-06 | Sony Corp | 半導体記憶装置およびその製造方法 |
| US6887769B2 (en) | 2002-02-06 | 2005-05-03 | Intel Corporation | Dielectric recess for wafer-to-wafer and die-to-die metal bonding and method of fabricating the same |
| TWI309074B (en) | 2002-02-07 | 2009-04-21 | Advanced Epitaxy Technology | Method of forming semiconductor device |
| US6762076B2 (en) | 2002-02-20 | 2004-07-13 | Intel Corporation | Process of vertically stacking multiple wafers supporting different active integrated circuit (IC) devices |
| US7319197B2 (en) | 2002-05-23 | 2008-01-15 | International Business Machines Corporation | Structure of stacked vias in multiple layer electrode device carriers |
| US7573136B2 (en) | 2002-06-27 | 2009-08-11 | Micron Technology, Inc. | Semiconductor device assemblies and packages including multiple semiconductor device components |
| US7105980B2 (en) | 2002-07-03 | 2006-09-12 | Sawtek, Inc. | Saw filter device and method employing normal temperature bonding for producing desirable filter production and performance characteristics |
| JP4083502B2 (ja) | 2002-08-19 | 2008-04-30 | 株式会社フジミインコーポレーテッド | 研磨方法及びそれに用いられる研磨用組成物 |
| JP4579489B2 (ja) | 2002-09-02 | 2010-11-10 | 新光電気工業株式会社 | 半導体チップ製造方法及び半導体チップ |
| US7023093B2 (en) | 2002-10-24 | 2006-04-04 | International Business Machines Corporation | Very low effective dielectric constant interconnect Structures and methods for fabricating the same |
| US6713857B1 (en) | 2002-12-05 | 2004-03-30 | Ultra Tera Corporation | Low profile stacked multi-chip semiconductor package with chip carrier having opening and fabrication method of the semiconductor package |
| JP2004193493A (ja) | 2002-12-13 | 2004-07-08 | Nec Machinery Corp | ダイピックアップ方法および装置 |
| US7354798B2 (en) | 2002-12-20 | 2008-04-08 | International Business Machines Corporation | Three-dimensional device fabrication method |
| TW586677U (en) | 2003-01-22 | 2004-05-01 | Via Tech Inc | Stack structure of chip package |
| TWI239629B (en) | 2003-03-17 | 2005-09-11 | Seiko Epson Corp | Method of manufacturing semiconductor device, semiconductor device, circuit substrate and electronic apparatus |
| US6908027B2 (en) | 2003-03-31 | 2005-06-21 | Intel Corporation | Complete device layer transfer without edge exclusion via direct wafer bonding and constrained bond-strengthening process |
| US7109092B2 (en) | 2003-05-19 | 2006-09-19 | Ziptronix, Inc. | Method of room temperature covalent bonding |
| TWI275168B (en) | 2003-06-06 | 2007-03-01 | Sanyo Electric Co | Semiconductor device and method for making the same |
| US6873049B2 (en) | 2003-07-31 | 2005-03-29 | The Boeing Company | Near hermetic power chip on board device and manufacturing method therefor |
| US6867073B1 (en) | 2003-10-21 | 2005-03-15 | Ziptronix, Inc. | Single mask via method and device |
| US7183643B2 (en) | 2003-11-04 | 2007-02-27 | Tessera, Inc. | Stacked packages and systems incorporating the same |
| US7205233B2 (en) | 2003-11-07 | 2007-04-17 | Applied Materials, Inc. | Method for forming CoWRe alloys by electroless deposition |
| JP2005175423A (ja) | 2003-11-18 | 2005-06-30 | Denso Corp | 半導体パッケージ |
| TWI228286B (en) | 2003-11-24 | 2005-02-21 | Ind Tech Res Inst | Bonding structure with buffer layer and method of forming the same |
| US7060601B2 (en) | 2003-12-17 | 2006-06-13 | Tru-Si Technologies, Inc. | Packaging substrates for integrated circuits and soldering methods |
| KR100538158B1 (ko) | 2004-01-09 | 2005-12-22 | 삼성전자주식회사 | 웨이퍼 레벨 적층 칩 접착 방법 |
| US20050161808A1 (en) | 2004-01-22 | 2005-07-28 | Anderson Douglas G. | Wafer, intermediate wafer assembly and associated method for fabricating a silicon on insulator wafer having an improved edge profile |
| DE102004013681B3 (de) | 2004-03-18 | 2005-11-17 | Infineon Technologies Ag | Halbleitermodul mit einem Kopplungssubstrat und Verfahren zur Herstellung desselben |
| JP4865197B2 (ja) | 2004-06-30 | 2012-02-01 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
| JP5354765B2 (ja) | 2004-08-20 | 2013-11-27 | カミヤチョウ アイピー ホールディングス | 三次元積層構造を持つ半導体装置の製造方法 |
| US20060057945A1 (en) | 2004-09-16 | 2006-03-16 | Chia-Lin Hsu | Chemical mechanical polishing process |
| US7566634B2 (en) | 2004-09-24 | 2009-07-28 | Interuniversitair Microelektronica Centrum (Imec) | Method for chip singulation |
| US20060076634A1 (en) | 2004-09-27 | 2006-04-13 | Lauren Palmateer | Method and system for packaging MEMS devices with incorporated getter |
| US7262492B2 (en) | 2004-09-28 | 2007-08-28 | Intel Corporation | Semiconducting device that includes wirebonds |
| WO2006043122A1 (en) | 2004-10-21 | 2006-04-27 | Infineon Technologies Ag | Semiconductor package and method to produce the same |
| TWI303864B (en) | 2004-10-26 | 2008-12-01 | Sanyo Electric Co | Semiconductor device and method for making the same |
| FR2880184B1 (fr) | 2004-12-28 | 2007-03-30 | Commissariat Energie Atomique | Procede de detourage d'une structure obtenue par assemblage de deux plaques |
| GB0505680D0 (en) | 2005-03-22 | 2005-04-27 | Cambridge Display Tech Ltd | Apparatus and method for increased device lifetime in an organic electro-luminescent device |
| TWI242820B (en) | 2005-03-29 | 2005-11-01 | Siliconware Precision Industries Co Ltd | Sensor semiconductor device and method for fabricating the same |
| US7364945B2 (en) | 2005-03-31 | 2008-04-29 | Stats Chippac Ltd. | Method of mounting an integrated circuit package in an encapsulant cavity |
| JP4275096B2 (ja) | 2005-04-14 | 2009-06-10 | パナソニック株式会社 | 半導体チップの製造方法 |
| US7354862B2 (en) | 2005-04-18 | 2008-04-08 | Intel Corporation | Thin passivation layer on 3D devices |
| US7671449B2 (en) | 2005-05-04 | 2010-03-02 | Sun Microsystems, Inc. | Structures and methods for an application of a flexible bridge |
| US7884483B2 (en) | 2005-06-14 | 2011-02-08 | Cufer Asset Ltd. L.L.C. | Chip connector |
| JP4983049B2 (ja) | 2005-06-24 | 2012-07-25 | セイコーエプソン株式会社 | 半導体装置および電子機器 |
| US7786572B2 (en) | 2005-09-13 | 2010-08-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | System in package (SIP) structure |
| US7682937B2 (en) | 2005-11-25 | 2010-03-23 | Advanced Laser Separation International B.V. | Method of treating a substrate, method of processing a substrate using a laser beam, and arrangement |
| KR100804392B1 (ko) | 2005-12-02 | 2008-02-15 | 주식회사 네패스 | 반도체 패키지 및 그 제조 방법 |
| US7193423B1 (en) | 2005-12-12 | 2007-03-20 | International Business Machines Corporation | Wafer-to-wafer alignments |
| DE102005060081B4 (de) | 2005-12-15 | 2007-08-30 | Infineon Technologies Ag | Elektronisches Bauteil mit zumindest einer Leiterplatte und mit einer Mehrzahl gleichartiger Halbleiterbausteine und Verfahren |
| US7402442B2 (en) | 2005-12-21 | 2008-07-22 | International Business Machines Corporation | Physically highly secure multi-chip assembly |
| US7781309B2 (en) | 2005-12-22 | 2010-08-24 | Sumco Corporation | Method for manufacturing direct bonded SOI wafer and direct bonded SOI wafer manufactured by the method |
| US20070158024A1 (en) | 2006-01-11 | 2007-07-12 | Symbol Technologies, Inc. | Methods and systems for removing multiple die(s) from a surface |
| TWI299552B (en) | 2006-03-24 | 2008-08-01 | Advanced Semiconductor Eng | Package structure |
| US7972683B2 (en) | 2006-03-28 | 2011-07-05 | Innovative Micro Technology | Wafer bonding material with embedded conductive particles |
| JP4160083B2 (ja) | 2006-04-11 | 2008-10-01 | シャープ株式会社 | 光学装置用モジュール及び光学装置用モジュールの製造方法 |
| JP4844216B2 (ja) * | 2006-04-26 | 2011-12-28 | 凸版印刷株式会社 | 多層回路配線基板及び半導体装置 |
| US7385283B2 (en) | 2006-06-27 | 2008-06-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three dimensional integrated circuit and method of making the same |
| US7554203B2 (en) | 2006-06-30 | 2009-06-30 | Intel Corporation | Electronic assembly with stacked IC's using two or more different connection technologies and methods of manufacture |
| US7750488B2 (en) | 2006-07-10 | 2010-07-06 | Tezzaron Semiconductor, Inc. | Method for bonding wafers to produce stacked integrated circuits |
| KR100809696B1 (ko) | 2006-08-08 | 2008-03-06 | 삼성전자주식회사 | 사이즈가 상이한 복수의 반도체 칩이 적층된 멀티 칩패키지 및 그 제조방법 |
| TWI305036B (en) | 2006-09-28 | 2009-01-01 | Siliconware Precision Industries Co Ltd | Sensor-type package structure and fabrication method thereof |
| US7901989B2 (en) | 2006-10-10 | 2011-03-08 | Tessera, Inc. | Reconstituted wafer level stacking |
| JP2008130603A (ja) | 2006-11-16 | 2008-06-05 | Toshiba Corp | イメージセンサ用ウェハレベルパッケージ及びその製造方法 |
| JP5011981B2 (ja) | 2006-11-30 | 2012-08-29 | 富士通株式会社 | デバイス素子製造方法およびダイシング方法 |
| US7812459B2 (en) | 2006-12-19 | 2010-10-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Three-dimensional integrated circuits with protection layers |
| US8178963B2 (en) | 2007-01-03 | 2012-05-15 | Advanced Chip Engineering Technology Inc. | Wafer level package with die receiving through-hole and method of the same |
| US8178964B2 (en) | 2007-03-30 | 2012-05-15 | Advanced Chip Engineering Technology, Inc. | Semiconductor device package with die receiving through-hole and dual build-up layers over both side-surfaces for WLP and method of the same |
| US20080165521A1 (en) | 2007-01-09 | 2008-07-10 | Kerry Bernstein | Three-dimensional architecture for self-checking and self-repairing integrated circuits |
| US7803693B2 (en) | 2007-02-15 | 2010-09-28 | John Trezza | Bowed wafer hybridization compensation |
| US7919410B2 (en) | 2007-03-14 | 2011-04-05 | Aptina Imaging Corporation | Packaging methods for imager devices |
| US8609463B2 (en) | 2007-03-16 | 2013-12-17 | Stats Chippac Ltd. | Integrated circuit package system employing multi-package module techniques |
| JP2008258383A (ja) | 2007-04-04 | 2008-10-23 | Spansion Llc | 半導体装置及びその製造方法 |
| EP2137757B1 (en) | 2007-04-17 | 2015-09-02 | Imec | Method for reducing the thickness of substrates |
| JP4734282B2 (ja) | 2007-04-23 | 2011-07-27 | 株式会社日立製作所 | 半導体チップおよび半導体装置 |
| US8119500B2 (en) | 2007-04-25 | 2012-02-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wafer bonding |
| DE102007020656B4 (de) | 2007-04-30 | 2009-05-07 | Infineon Technologies Ag | Werkstück mit Halbleiterchips, Halbleiterbauteil und Verfahren zur Herstellung eines Werkstücks mit Halbleiterchips |
| US7723159B2 (en) | 2007-05-04 | 2010-05-25 | Stats Chippac, Ltd. | Package-on-package using through-hole via die on saw streets |
| TWI332790B (en) | 2007-06-13 | 2010-11-01 | Ind Tech Res Inst | Image sensor module with a three-dimensional dies-stacking structure |
| US7553752B2 (en) | 2007-06-20 | 2009-06-30 | Stats Chippac, Ltd. | Method of making a wafer level integration package |
| US20090001599A1 (en) | 2007-06-28 | 2009-01-01 | Spansion Llc | Die attachment, die stacking, and wire embedding using film |
| US20090029274A1 (en) | 2007-07-25 | 2009-01-29 | 3M Innovative Properties Company | Method for removing contamination with fluorinated compositions |
| US8044497B2 (en) | 2007-09-10 | 2011-10-25 | Intel Corporation | Stacked die package |
| US20090127667A1 (en) | 2007-11-21 | 2009-05-21 | Powertech Technology Inc. | Semiconductor chip device having through-silicon-via (TSV) and its fabrication method |
| JP2009135348A (ja) | 2007-12-03 | 2009-06-18 | Panasonic Corp | 半導体チップと半導体装置およびそれらの製造方法 |
| US7871902B2 (en) | 2008-02-13 | 2011-01-18 | Infineon Technologies Ag | Crack stop trenches |
| US8120186B2 (en) | 2008-02-15 | 2012-02-21 | Qimonda Ag | Integrated circuit and method |
| JP2009212315A (ja) * | 2008-03-04 | 2009-09-17 | Elpida Memory Inc | 半導体装置及びその製造方法 |
| EP2963675A1 (en) | 2008-03-05 | 2016-01-06 | The Board of Trustees of The University of Illinois | Stretchable and foldable electronic devices |
| WO2009114345A1 (en) | 2008-03-07 | 2009-09-17 | 3M Innovative Properties Company | Dicing tape and die attach adhesive with patterned backing |
| US8064224B2 (en) | 2008-03-31 | 2011-11-22 | Intel Corporation | Microelectronic package containing silicon patches for high density interconnects, and method of manufacturing same |
| KR20090106822A (ko) | 2008-04-07 | 2009-10-12 | 삼성전자주식회사 | 웨이퍼 본딩 방법 및 그 방법에 의해 본딩된 웨이퍼 구조체 |
| US7968373B2 (en) | 2008-05-02 | 2011-06-28 | Stats Chippac Ltd. | Integrated circuit package on package system |
| US8253230B2 (en) | 2008-05-15 | 2012-08-28 | Micron Technology, Inc. | Disabling electrical connections using pass-through 3D interconnects and associated systems and methods |
| US8349635B1 (en) | 2008-05-20 | 2013-01-08 | Silicon Laboratories Inc. | Encapsulated MEMS device and method to form the same |
| US7969009B2 (en) | 2008-06-30 | 2011-06-28 | Qualcomm Incorporated | Through silicon via bridge interconnect |
| JP2010034294A (ja) * | 2008-07-29 | 2010-02-12 | Nec Electronics Corp | 半導体装置およびその設計方法 |
| US8193632B2 (en) | 2008-08-06 | 2012-06-05 | Industrial Technology Research Institute | Three-dimensional conducting structure and method of fabricating the same |
| WO2010024678A1 (en) | 2008-09-01 | 2010-03-04 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Chip die clamping device and transfer method |
| US9818680B2 (en) | 2011-07-27 | 2017-11-14 | Broadpak Corporation | Scalable semiconductor interposer integration |
| US9893004B2 (en) | 2011-07-27 | 2018-02-13 | Broadpak Corporation | Semiconductor interposer integration |
| JP2010073964A (ja) | 2008-09-19 | 2010-04-02 | Fujitsu Microelectronics Ltd | 半導体装置の製造方法 |
| KR20100037300A (ko) | 2008-10-01 | 2010-04-09 | 삼성전자주식회사 | 내장형 인터포저를 갖는 반도체장치의 형성방법 |
| US7843052B1 (en) | 2008-11-13 | 2010-11-30 | Amkor Technology, Inc. | Semiconductor devices and fabrication methods thereof |
| WO2010059781A1 (en) | 2008-11-19 | 2010-05-27 | Semprius, Inc. | Printing semiconductor elements by shear-assisted elastomeric stamp transfer |
| FR2938976A1 (fr) | 2008-11-24 | 2010-05-28 | St Microelectronics Grenoble | Dispositif semi-conducteur a composants empiles |
| US7897481B2 (en) | 2008-12-05 | 2011-03-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | High throughput die-to-wafer bonding using pre-alignment |
| US8168458B2 (en) | 2008-12-08 | 2012-05-01 | Stats Chippac, Ltd. | Semiconductor device and method of forming bond wires and stud bumps in recessed region of peripheral area around the device for electrical interconnection to other devices |
| KR100945800B1 (ko) | 2008-12-09 | 2010-03-05 | 김영혜 | 이종 접합 웨이퍼 제조방법 |
| US20100164083A1 (en) | 2008-12-29 | 2010-07-01 | Numonyx B.V. | Protective thin film coating in chip packaging |
| US7816856B2 (en) | 2009-02-25 | 2010-10-19 | Global Oled Technology Llc | Flexible oled display with chiplets |
| US8610019B2 (en) | 2009-02-27 | 2013-12-17 | Mineral Separation Technologies Inc. | Methods for sorting materials |
| CN105140136B (zh) | 2009-03-30 | 2018-02-13 | 高通股份有限公司 | 使用顶部后钝化技术和底部结构技术的集成电路芯片 |
| US8476165B2 (en) | 2009-04-01 | 2013-07-02 | Tokyo Electron Limited | Method for thinning a bonding wafer |
| JP2010245383A (ja) | 2009-04-08 | 2010-10-28 | Elpida Memory Inc | 半導体装置および半導体装置の製造方法 |
| US20100258952A1 (en) | 2009-04-08 | 2010-10-14 | Interconnect Portfolio Llc | Interconnection of IC Chips by Flex Circuit Superstructure |
| US8013525B2 (en) | 2009-04-09 | 2011-09-06 | Global Oled Technology Llc | Flexible OLED display with chiplets |
| US8072056B2 (en) | 2009-06-10 | 2011-12-06 | Medtronic, Inc. | Apparatus for restricting moisture ingress |
| US8227904B2 (en) | 2009-06-24 | 2012-07-24 | Intel Corporation | Multi-chip package and method of providing die-to-die interconnects in same |
| US8263434B2 (en) | 2009-07-31 | 2012-09-11 | Stats Chippac, Ltd. | Semiconductor device and method of mounting die with TSV in cavity of substrate for electrical interconnect of Fi-PoP |
| JP5304536B2 (ja) | 2009-08-24 | 2013-10-02 | ソニー株式会社 | 半導体装置 |
| US8482132B2 (en) | 2009-10-08 | 2013-07-09 | International Business Machines Corporation | Pad bonding employing a self-aligned plated liner for adhesion enhancement |
| JP5697898B2 (ja) | 2009-10-09 | 2015-04-08 | ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. | 半導体装置及びその製造方法 |
| JP2011128140A (ja) | 2009-11-19 | 2011-06-30 | Dainippon Printing Co Ltd | センサデバイス及びその製造方法 |
| US9202769B2 (en) | 2009-11-25 | 2015-12-01 | Stats Chippac, Ltd. | Semiconductor device and method of forming thermal lid for balancing warpage and thermal management |
| EP2339614A1 (en) | 2009-12-22 | 2011-06-29 | Imec | Method for stacking semiconductor chips |
| FR2954585B1 (fr) | 2009-12-23 | 2012-03-02 | Soitec Silicon Insulator Technologies | Procede de realisation d'une heterostructure avec minimisation de contrainte |
| US8138014B2 (en) | 2010-01-29 | 2012-03-20 | Stats Chippac, Ltd. | Method of forming thin profile WLCSP with vertical interconnect over package footprint |
| JP5609144B2 (ja) | 2010-02-19 | 2014-10-22 | ソニー株式会社 | 半導体装置および貫通電極のテスト方法 |
| JP2011171614A (ja) | 2010-02-22 | 2011-09-01 | Casio Computer Co Ltd | 半導体装置及び半導体装置の製造方法 |
| US9385095B2 (en) | 2010-02-26 | 2016-07-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D semiconductor package interposer with die cavity |
| JP5423874B2 (ja) | 2010-03-18 | 2014-02-19 | 日本電気株式会社 | 半導体素子内蔵基板およびその製造方法 |
| US8241964B2 (en) | 2010-05-13 | 2012-08-14 | Stats Chippac, Ltd. | Semiconductor device and method of embedding bumps formed on semiconductor die into penetrable adhesive layer to reduce die shifting during encapsulation |
| US8674513B2 (en) | 2010-05-13 | 2014-03-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interconnect structures for substrate |
| JP5517800B2 (ja) | 2010-07-09 | 2014-06-11 | キヤノン株式会社 | 固体撮像装置用の部材および固体撮像装置の製造方法 |
| SG177816A1 (en) | 2010-07-15 | 2012-02-28 | Soitec Silicon On Insulator | Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods |
| US8481406B2 (en) | 2010-07-15 | 2013-07-09 | Soitec | Methods of forming bonded semiconductor structures |
| US8791575B2 (en) | 2010-07-23 | 2014-07-29 | Tessera, Inc. | Microelectronic elements having metallic pads overlying vias |
| US8415808B2 (en) | 2010-07-28 | 2013-04-09 | Sandisk Technologies Inc. | Semiconductor device with die stack arrangement including staggered die and efficient wire bonding |
| US8361842B2 (en) | 2010-07-30 | 2013-01-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Embedded wafer-level bonding approaches |
| US8288201B2 (en) | 2010-08-25 | 2012-10-16 | Stats Chippac, Ltd. | Semiconductor device and method of forming FO-WLCSP with discrete semiconductor components mounted under and over semiconductor die |
| US8435835B2 (en) | 2010-09-02 | 2013-05-07 | Stats Chippac, Ltd. | Semiconductor device and method of forming base leads from base substrate as standoff for stacking semiconductor die |
| US9224647B2 (en) | 2010-09-24 | 2015-12-29 | Stats Chippac, Ltd. | Semiconductor device and method of forming TSV interposer with semiconductor die and build-up interconnect structure on opposing surfaces of the interposer |
| KR20120032254A (ko) | 2010-09-28 | 2012-04-05 | 삼성전자주식회사 | 반도체 적층 패키지 및 이의 제조 방법 |
| FR2966283B1 (fr) | 2010-10-14 | 2012-11-30 | Soi Tec Silicon On Insulator Tech Sa | Procede pour realiser une structure de collage |
| US8377798B2 (en) | 2010-11-10 | 2013-02-19 | Taiwan Semiconductor Manufacturing Co., Ltd | Method and structure for wafer to wafer bonding in semiconductor packaging |
| US9202715B2 (en) | 2010-11-16 | 2015-12-01 | Stats Chippac Ltd. | Integrated circuit packaging system with connection structure and method of manufacture thereof |
| US8476146B2 (en) | 2010-12-03 | 2013-07-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reducing wafer distortion through a low CTE layer |
| US8987137B2 (en) | 2010-12-16 | 2015-03-24 | Lsi Corporation | Method of fabrication of through-substrate vias |
| US8620164B2 (en) | 2011-01-20 | 2013-12-31 | Intel Corporation | Hybrid III-V silicon laser formed by direct bonding |
| JP5682327B2 (ja) | 2011-01-25 | 2015-03-11 | ソニー株式会社 | 固体撮像素子、固体撮像素子の製造方法、及び電子機器 |
| US20120194719A1 (en) | 2011-02-01 | 2012-08-02 | Scott Churchwell | Image sensor units with stacked image sensors and image processors |
| JP5659033B2 (ja) | 2011-02-04 | 2015-01-28 | 株式会社東芝 | 半導体装置の製造方法 |
| US20120199960A1 (en) | 2011-02-07 | 2012-08-09 | Texas Instruments Incorporated | Wire bonding for interconnection between interposer and flip chip die |
| US8988299B2 (en) | 2011-02-17 | 2015-03-24 | International Business Machines Corporation | Integrated antenna for RFIC package applications |
| US8623702B2 (en) | 2011-02-24 | 2014-01-07 | Stats Chippac, Ltd. | Semiconductor device and method of forming conductive THV and RDL on opposite sides of semiconductor die for RDL-to-RDL bonding |
| EP2686878B1 (en) | 2011-03-16 | 2016-05-18 | MEMC Electronic Materials, Inc. | Silicon on insulator structures having high resistivity regions in the handle wafer and methods for producing such structures |
| US8501537B2 (en) | 2011-03-31 | 2013-08-06 | Soitec | Methods for bonding semiconductor structures involving annealing processes, and bonded semiconductor structures formed using such methods |
| US8716105B2 (en) | 2011-03-31 | 2014-05-06 | Soitec | Methods for bonding semiconductor structures involving annealing processes, and bonded semiconductor structures and intermediate structures formed using such methods |
| KR20120123919A (ko) | 2011-05-02 | 2012-11-12 | 삼성전자주식회사 | 칩 적층 반도체 패키지 제조 방법 및 이에 의해 제조된 칩 적층 반도체 패키지 |
| KR102378636B1 (ko) | 2011-05-24 | 2022-03-25 | 소니그룹주식회사 | 반도체 장치 |
| US9252172B2 (en) | 2011-05-31 | 2016-02-02 | Stats Chippac, Ltd. | Semiconductor device and method of forming EWLB semiconductor package with vertical interconnect structure and cavity region |
| US9029242B2 (en) | 2011-06-15 | 2015-05-12 | Applied Materials, Inc. | Damage isolation by shaped beam delivery in laser scribing process |
| KR20130007371A (ko) | 2011-07-01 | 2013-01-18 | 삼성전자주식회사 | 반도체 패키지 |
| JP5982748B2 (ja) | 2011-08-01 | 2016-08-31 | ソニー株式会社 | 半導体装置、半導体装置の製造方法、および電子機器 |
| US8697493B2 (en) | 2011-07-18 | 2014-04-15 | Soitec | Bonding surfaces for direct bonding of semiconductor structures |
| US8710648B2 (en) | 2011-08-09 | 2014-04-29 | Alpha & Omega Semiconductor, Inc. | Wafer level packaging structure with large contact area and preparation method thereof |
| US9190297B2 (en) | 2011-08-11 | 2015-11-17 | Stats Chippac, Ltd. | Semiconductor device and method of forming a stackable semiconductor package with vertically-oriented discrete electrical devices as interconnect structures |
| US8441131B2 (en) | 2011-09-12 | 2013-05-14 | Globalfoundries Inc. | Strain-compensating fill patterns for controlling semiconductor chip package interactions |
| US8816404B2 (en) | 2011-09-16 | 2014-08-26 | Stats Chippac, Ltd. | Semiconductor device and method of forming stacked semiconductor die and conductive interconnect structure through an encapsulant |
| US20130075923A1 (en) | 2011-09-23 | 2013-03-28 | YeongIm Park | Integrated circuit packaging system with encapsulation and method of manufacture thereof |
| KR101906408B1 (ko) | 2011-10-04 | 2018-10-11 | 삼성전자주식회사 | 반도체 패키지 및 그 제조 방법 |
| WO2013069798A1 (ja) | 2011-11-11 | 2013-05-16 | 住友ベークライト株式会社 | 半導体装置の製造方法 |
| TWI467736B (zh) | 2012-01-04 | 2015-01-01 | 國立交通大學 | 立體積體電路裝置 |
| US8686570B2 (en) | 2012-01-20 | 2014-04-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-dimensional integrated circuit structures and methods of forming the same |
| US8698308B2 (en) | 2012-01-31 | 2014-04-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bump structural designs to minimize package defects |
| JP5994274B2 (ja) | 2012-02-14 | 2016-09-21 | ソニー株式会社 | 半導体装置、半導体装置の製造方法、及び、電子機器 |
| TWI469312B (zh) | 2012-03-09 | 2015-01-11 | 財團法人工業技術研究院 | 晶片堆疊結構及其製作方法 |
| US20130265733A1 (en) | 2012-04-04 | 2013-10-10 | Texas Instruments Incorporated | Interchip communication using an embedded dielectric waveguide |
| US9111949B2 (en) | 2012-04-09 | 2015-08-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods and apparatus of wafer level package for heterogeneous integration technology |
| CN103377911B (zh) | 2012-04-16 | 2016-09-21 | 中国科学院微电子研究所 | 提高化学机械平坦化工艺均匀性的方法 |
| US20130277855A1 (en) | 2012-04-24 | 2013-10-24 | Terry (Teckgyu) Kang | High density 3d package |
| US9142517B2 (en) | 2012-06-05 | 2015-09-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Hybrid bonding mechanisms for semiconductor wafers |
| US8809123B2 (en) | 2012-06-05 | 2014-08-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Three dimensional integrated circuit structures and hybrid bonding methods for semiconductor wafers |
| US8723309B2 (en) | 2012-06-14 | 2014-05-13 | Stats Chippac Ltd. | Integrated circuit packaging system with through silicon via and method of manufacture thereof |
| KR20140006587A (ko) | 2012-07-06 | 2014-01-16 | 삼성전자주식회사 | 반도체 패키지 |
| US8759961B2 (en) | 2012-07-16 | 2014-06-24 | International Business Machines Corporation | Underfill material dispensing for stacked semiconductor chips |
| US9006908B2 (en) | 2012-08-01 | 2015-04-14 | Marvell Israel (M.I.S.L) Ltd. | Integrated circuit interposer and method of manufacturing the same |
| US8963336B2 (en) | 2012-08-03 | 2015-02-24 | Samsung Electronics Co., Ltd. | Semiconductor packages, methods of manufacturing the same, and semiconductor package structures including the same |
| US8735219B2 (en) | 2012-08-30 | 2014-05-27 | Ziptronix, Inc. | Heterogeneous annealing method and device |
| US9136293B2 (en) | 2012-09-07 | 2015-09-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods and apparatus for sensor module |
| US8872349B2 (en) | 2012-09-11 | 2014-10-28 | Intel Corporation | Bridge interconnect with air gap in package assembly |
| US9099475B2 (en) * | 2012-09-12 | 2015-08-04 | Freescale Semiconductor, Inc. | Techniques for reducing inductance in through-die vias of an electronic assembly |
| US20140070405A1 (en) | 2012-09-13 | 2014-03-13 | Globalfoundries Inc. | Stacked semiconductor devices with a glass window wafer having an engineered coefficient of thermal expansion and methods of making same |
| US8963335B2 (en) | 2012-09-13 | 2015-02-24 | Invensas Corporation | Tunable composite interposer |
| US9136236B2 (en) | 2012-09-28 | 2015-09-15 | Intel Corporation | Localized high density substrate routing |
| US9368404B2 (en) | 2012-09-28 | 2016-06-14 | Plasma-Therm Llc | Method for dicing a substrate with back metal |
| US8912670B2 (en) | 2012-09-28 | 2014-12-16 | Intel Corporation | Bumpless build-up layer package including an integrated heat spreader |
| US9177884B2 (en) | 2012-10-09 | 2015-11-03 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Two-sided-access extended wafer-level ball grid array (eWLB) package, assembly and method |
| US8975726B2 (en) | 2012-10-11 | 2015-03-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | POP structures and methods of forming the same |
| KR20140058020A (ko) | 2012-11-05 | 2014-05-14 | 삼성전자주식회사 | 발광 소자 및 그 제조 방법 |
| US9252491B2 (en) * | 2012-11-30 | 2016-02-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Embedding low-k materials in antennas |
| US9190380B2 (en) | 2012-12-06 | 2015-11-17 | Intel Corporation | High density substrate routing in BBUL package |
| US8878353B2 (en) | 2012-12-20 | 2014-11-04 | Invensas Corporation | Structure for microelectronic packaging with bond elements to encapsulation surface |
| DE102012224310A1 (de) | 2012-12-21 | 2014-06-26 | Tesa Se | Gettermaterial enthaltendes Klebeband |
| US20140175655A1 (en) | 2012-12-22 | 2014-06-26 | Industrial Technology Research Institute | Chip bonding structure and manufacturing method thereof |
| US8970023B2 (en) | 2013-02-04 | 2015-03-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package structure and methods of forming same |
| TWI518991B (zh) | 2013-02-08 | 2016-01-21 | 巽晨國際股份有限公司 | Integrated antenna and integrated circuit components of the shielding module |
| US8946784B2 (en) | 2013-02-18 | 2015-02-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for image sensor packaging |
| US8901748B2 (en) | 2013-03-14 | 2014-12-02 | Intel Corporation | Direct external interconnect for embedded interconnect bridge package |
| US9443796B2 (en) | 2013-03-15 | 2016-09-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Air trench in packages incorporating hybrid bonding |
| US8802538B1 (en) | 2013-03-15 | 2014-08-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods for hybrid wafer bonding |
| US9312198B2 (en) | 2013-03-15 | 2016-04-12 | Intel Deutschland Gmbh | Chip package-in-package and method thereof |
| US10269619B2 (en) | 2013-03-15 | 2019-04-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wafer level chip scale packaging intermediate structure apparatus and method |
| US9087765B2 (en) | 2013-03-15 | 2015-07-21 | Qualcomm Incorporated | System-in-package with interposer pitch adapter |
| US9054063B2 (en) | 2013-04-05 | 2015-06-09 | Infineon Technologies Ag | High power single-die semiconductor package |
| US9064937B2 (en) | 2013-05-30 | 2015-06-23 | International Business Machines Corporation | Substrate bonding with diffusion barrier structures |
| FR3007403B1 (fr) | 2013-06-20 | 2016-08-05 | Commissariat Energie Atomique | Procede de realisation d'un dispositif microelectronique mecaniquement autonome |
| KR102077153B1 (ko) | 2013-06-21 | 2020-02-14 | 삼성전자주식회사 | 관통전극을 갖는 반도체 패키지 및 그 제조방법 |
| JP2015012244A (ja) | 2013-07-01 | 2015-01-19 | 株式会社東芝 | 半導体発光素子 |
| US9929050B2 (en) | 2013-07-16 | 2018-03-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanisms for forming three-dimensional integrated circuit (3DIC) stacking structure |
| US9324698B2 (en) | 2013-08-13 | 2016-04-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-chip structure and method of forming same |
| US9633869B2 (en) | 2013-08-16 | 2017-04-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Packages with interposers and methods for forming the same |
| WO2015040798A1 (ja) | 2013-09-20 | 2015-03-26 | パナソニックIpマネジメント株式会社 | 半導体装置及びその製造方法 |
| US9159690B2 (en) | 2013-09-25 | 2015-10-13 | Intel Corporation | Tall solders for through-mold interconnect |
| US9349703B2 (en) | 2013-09-25 | 2016-05-24 | Intel Corporation | Method for making high density substrate interconnect using inkjet printing |
| US9723716B2 (en) | 2013-09-27 | 2017-08-01 | Infineon Technologies Ag | Contact pad structure, an electronic component, and a method for manufacturing a contact pad structure |
| US9093337B2 (en) * | 2013-09-27 | 2015-07-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods for controlling warpage in packaging |
| FR3011679B1 (fr) | 2013-10-03 | 2017-01-27 | Commissariat Energie Atomique | Procede ameliore d'assemblage par collage direct entre deux elements, chaque element comprenant des portions de metal et de materiaux dielectriques |
| KR102143518B1 (ko) | 2013-10-16 | 2020-08-11 | 삼성전자 주식회사 | 칩 적층 반도체 패키지 및 그 제조 방법 |
| US9257399B2 (en) | 2013-10-17 | 2016-02-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D integrated circuit and methods of forming the same |
| KR102149150B1 (ko) * | 2013-10-21 | 2020-08-28 | 삼성전자주식회사 | 전자 장치 |
| US9373527B2 (en) | 2013-10-30 | 2016-06-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Chip on package structure and method |
| US9530730B2 (en) | 2013-11-08 | 2016-12-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Configurable routing for packaging applications |
| JP6441025B2 (ja) | 2013-11-13 | 2018-12-19 | 株式会社東芝 | 半導体チップの製造方法 |
| US9570421B2 (en) | 2013-11-14 | 2017-02-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Stacking of multiple dies for forming three dimensional integrated circuit (3DIC) structure |
| KR102147354B1 (ko) | 2013-11-14 | 2020-08-24 | 삼성전자 주식회사 | 반도체 패키지 및 그 제조 방법 |
| US9330954B2 (en) | 2013-11-22 | 2016-05-03 | Invensas Corporation | Substrate-to-carrier adhesion without mechanical adhesion between abutting surfaces thereof |
| US9583456B2 (en) | 2013-11-22 | 2017-02-28 | Invensas Corporation | Multiple bond via arrays of different wire heights on a same substrate |
| US9224697B1 (en) | 2013-12-09 | 2015-12-29 | Xilinx, Inc. | Multi-die integrated circuits implemented using spacer dies |
| JP2015115446A (ja) | 2013-12-11 | 2015-06-22 | 株式会社東芝 | 半導体装置の製造方法 |
| US9318474B2 (en) | 2013-12-16 | 2016-04-19 | Apple Inc. | Thermally enhanced wafer level fan-out POP package |
| US9437572B2 (en) | 2013-12-18 | 2016-09-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Conductive pad structure for hybrid bonding and methods of forming same |
| US10170409B2 (en) | 2013-12-23 | 2019-01-01 | Intel Corporation | Package on package architecture and method for making |
| US9768038B2 (en) | 2013-12-23 | 2017-09-19 | STATS ChipPAC, Pte. Ltd. | Semiconductor device and method of making embedded wafer level chip scale packages |
| CN103730379A (zh) | 2014-01-16 | 2014-04-16 | 苏州晶方半导体科技股份有限公司 | 芯片封装方法及结构 |
| US9396300B2 (en) | 2014-01-16 | 2016-07-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Packaging methods for semiconductor devices, packaged semiconductor devices, and design methods thereof |
| US9653442B2 (en) | 2014-01-17 | 2017-05-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit package and methods of forming same |
| US9343433B2 (en) | 2014-01-28 | 2016-05-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Packages with stacked dies and methods of forming the same |
| US20150287697A1 (en) | 2014-04-02 | 2015-10-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor Device and Method |
| US10971476B2 (en) | 2014-02-18 | 2021-04-06 | Qualcomm Incorporated | Bottom package with metal post interconnections |
| US9293437B2 (en) | 2014-02-20 | 2016-03-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Functional block stacked 3DIC and method of making same |
| US20150255349A1 (en) | 2014-03-07 | 2015-09-10 | JAMES Matthew HOLDEN | Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes |
| US20150262902A1 (en) | 2014-03-12 | 2015-09-17 | Invensas Corporation | Integrated circuits protected by substrates with cavities, and methods of manufacture |
| US9355997B2 (en) | 2014-03-12 | 2016-05-31 | Invensas Corporation | Integrated circuit assemblies with reinforcement frames, and methods of manufacture |
| US9418924B2 (en) | 2014-03-20 | 2016-08-16 | Invensas Corporation | Stacked die integrated circuit |
| US9230941B2 (en) | 2014-03-28 | 2016-01-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding structure for stacked semiconductor devices |
| US9299736B2 (en) | 2014-03-28 | 2016-03-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Hybrid bonding with uniform pattern density |
| US9076860B1 (en) | 2014-04-04 | 2015-07-07 | Applied Materials, Inc. | Residue removal from singulated die sidewall |
| US8975163B1 (en) | 2014-04-10 | 2015-03-10 | Applied Materials, Inc. | Laser-dominated laser scribing and plasma etch hybrid wafer dicing |
| US9601463B2 (en) | 2014-04-17 | 2017-03-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fan-out stacked system in package (SIP) and the methods of making the same |
| US9472458B2 (en) | 2014-06-04 | 2016-10-18 | Semiconductor Components Industries, Llc | Method of reducing residual contamination in singulated semiconductor die |
| US9385110B2 (en) | 2014-06-18 | 2016-07-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method |
| KR102275705B1 (ko) | 2014-07-11 | 2021-07-09 | 삼성전자주식회사 | 웨이퍼 대 웨이퍼 접합 구조 |
| US9601353B2 (en) | 2014-07-30 | 2017-03-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Packages with molding structures and methods of forming the same |
| US9666559B2 (en) | 2014-09-05 | 2017-05-30 | Invensas Corporation | Multichip modules and methods of fabrication |
| US9601437B2 (en) | 2014-09-09 | 2017-03-21 | Nxp B.V. | Plasma etching and stealth dicing laser process |
| US10468381B2 (en) | 2014-09-29 | 2019-11-05 | Apple Inc. | Wafer level integration of passive devices |
| US9536848B2 (en) | 2014-10-16 | 2017-01-03 | Globalfoundries Inc. | Bond pad structure for low temperature flip chip bonding |
| US9394161B2 (en) | 2014-11-14 | 2016-07-19 | Taiwan Semiconductor Manufacturing Co., Ltd. | MEMS and CMOS integration with low-temperature bonding |
| US9673096B2 (en) | 2014-11-14 | 2017-06-06 | Infineon Technologies Ag | Method for processing a semiconductor substrate and a method for processing a semiconductor wafer |
| KR102360381B1 (ko) | 2014-12-01 | 2022-02-11 | 삼성전자주식회사 | 적층 구조를 갖는 반도체 소자 및 그 제조방법 |
| US9548273B2 (en) | 2014-12-04 | 2017-01-17 | Invensas Corporation | Integrated circuit assemblies with rigid layers used for protection against mechanical thinning and for other purposes, and methods of fabricating such assemblies |
| US11069734B2 (en) | 2014-12-11 | 2021-07-20 | Invensas Corporation | Image sensor device |
| US9899442B2 (en) | 2014-12-11 | 2018-02-20 | Invensas Corporation | Image sensor device |
| JP2017503360A (ja) | 2014-12-15 | 2017-01-26 | インテル コーポレイション | オポッサム・ダイ型パッケージ・オン・パッケージ装置 |
| US9583462B2 (en) | 2015-01-22 | 2017-02-28 | Qualcomm Incorporated | Damascene re-distribution layer (RDL) in fan out split die application |
| KR101672622B1 (ko) | 2015-02-09 | 2016-11-03 | 앰코 테크놀로지 코리아 주식회사 | 반도체 디바이스 및 그 제조 방법 |
| US9508660B2 (en) | 2015-02-10 | 2016-11-29 | Intel Corporation | Microelectronic die having chamfered corners |
| US9633974B2 (en) | 2015-03-04 | 2017-04-25 | Apple Inc. | System in package fan out stacking architecture and process flow |
| DE102015103274A1 (de) | 2015-03-06 | 2016-09-08 | HARTING Electronics GmbH | Kabelabdichtung |
| JP6738591B2 (ja) | 2015-03-13 | 2020-08-12 | 古河電気工業株式会社 | 半導体ウェハの処理方法、半導体チップおよび表面保護テープ |
| US9443824B1 (en) | 2015-03-30 | 2016-09-13 | Qualcomm Incorporated | Cavity bridge connection for die split architecture |
| US9659907B2 (en) | 2015-04-07 | 2017-05-23 | Apple Inc. | Double side mounting memory integration in thin low warpage fanout package |
| US10068862B2 (en) | 2015-04-09 | 2018-09-04 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming a package in-fan out package |
| US10074630B2 (en) | 2015-04-14 | 2018-09-11 | Amkor Technology, Inc. | Semiconductor package with high routing density patch |
| US9666502B2 (en) | 2015-04-17 | 2017-05-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Discrete polymer in fan-out packages |
| US9601471B2 (en) | 2015-04-23 | 2017-03-21 | Apple Inc. | Three layer stack structure |
| US9595494B2 (en) | 2015-05-04 | 2017-03-14 | Qualcomm Incorporated | Semiconductor package with high density die to die connection and method of making the same |
| US20160343685A1 (en) | 2015-05-21 | 2016-11-24 | Mediatek Inc. | Semiconductor package assembly and method for forming the same |
| US10032756B2 (en) | 2015-05-21 | 2018-07-24 | Mediatek Inc. | Semiconductor package assembly with facing active surfaces of first and second semiconductor die and method for forming the same |
| JP6468071B2 (ja) | 2015-05-25 | 2019-02-13 | 富士通株式会社 | 半導体装置及び電子装置並びに半導体装置の製造方法 |
| US10043769B2 (en) * | 2015-06-03 | 2018-08-07 | Micron Technology, Inc. | Semiconductor devices including dummy chips |
| KR101664411B1 (ko) | 2015-06-04 | 2016-10-14 | 주식회사 에스에프에이반도체 | 웨이퍼 레벨의 팬 아웃 패키지 제조방법 |
| US9741620B2 (en) | 2015-06-24 | 2017-08-22 | Invensas Corporation | Structures and methods for reliable packages |
| US9704827B2 (en) | 2015-06-25 | 2017-07-11 | Taiwan Semiconductor Manufacturing Co., Ltd. | Hybrid bond pad structure |
| US9656852B2 (en) | 2015-07-06 | 2017-05-23 | Taiwan Semiconductor Manufacturing Company Ltd. | CMOS-MEMS device structure, bonding mesa structure and associated method |
| US10886250B2 (en) | 2015-07-10 | 2021-01-05 | Invensas Corporation | Structures and methods for low temperature bonding using nanoparticles |
| US10352991B2 (en) | 2015-07-21 | 2019-07-16 | Fermi Research Alliance, Llc | Edgeless large area ASIC |
| US10075657B2 (en) | 2015-07-21 | 2018-09-11 | Fermi Research Alliance, Llc | Edgeless large area camera system |
| US9728521B2 (en) | 2015-07-23 | 2017-08-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Hybrid bond using a copper alloy for yield improvement |
| US9559081B1 (en) | 2015-08-21 | 2017-01-31 | Apple Inc. | Independent 3D stacking |
| US9953941B2 (en) | 2015-08-25 | 2018-04-24 | Invensas Bonding Technologies, Inc. | Conductive barrier direct hybrid bonding |
| US9768145B2 (en) | 2015-08-31 | 2017-09-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods of forming multi-die package structures including redistribution layers |
| US10049953B2 (en) | 2015-09-21 | 2018-08-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of manufacturing an integrated fan-out package having fan-out redistribution layer (RDL) to accommodate electrical connectors |
| US9917072B2 (en) | 2015-09-21 | 2018-03-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of manufacturing an integrated stacked package with a fan-out redistribution layer (RDL) and a same encapsulating process |
| US9754891B2 (en) | 2015-09-23 | 2017-09-05 | International Business Machines Corporation | Low-temperature diffusion doping of copper interconnects independent of seed layer composition |
| WO2017052652A1 (en) | 2015-09-25 | 2017-03-30 | Intel Corporation | Combination of semiconductor die with another die by hybrid bonding |
| US10032751B2 (en) | 2015-09-28 | 2018-07-24 | Invensas Corporation | Ultrathin layer for forming a capacitive interface between joined integrated circuit components |
| KR101787832B1 (ko) | 2015-10-22 | 2017-10-19 | 앰코 테크놀로지 코리아 주식회사 | 반도체 패키지 제조 방법 및 이를 이용한 반도체 패키지 |
| US10163856B2 (en) | 2015-10-30 | 2018-12-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Stacked integrated circuit structure and method of forming |
| US9524959B1 (en) * | 2015-11-04 | 2016-12-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | System on integrated chips and methods of forming same |
| US9711458B2 (en) | 2015-11-13 | 2017-07-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and formation method for chip package |
| FR3044167B1 (fr) | 2015-11-20 | 2018-01-05 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dispositif optoelectronique a diodes electroluminescentes comportant au moins une diode zener |
| US9666560B1 (en) | 2015-11-25 | 2017-05-30 | Invensas Corporation | Multi-chip microelectronic assembly with built-up fine-patterned circuit structure |
| US9627365B1 (en) | 2015-11-30 | 2017-04-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tri-layer CoWoS structure |
| US9496239B1 (en) | 2015-12-11 | 2016-11-15 | International Business Machines Corporation | Nitride-enriched oxide-to-oxide 3D wafer bonding |
| US9852988B2 (en) | 2015-12-18 | 2017-12-26 | Invensas Bonding Technologies, Inc. | Increased contact alignment tolerance for direct bonding |
| KR20170075125A (ko) | 2015-12-22 | 2017-07-03 | 에스케이하이닉스 주식회사 | 반도체 패키지 및 제조 방법 |
| US9881882B2 (en) | 2016-01-06 | 2018-01-30 | Mediatek Inc. | Semiconductor package with three-dimensional antenna |
| US20170200659A1 (en) | 2016-01-08 | 2017-07-13 | International Business Machines Corporation | Porous underfill enabling rework |
| US9923011B2 (en) | 2016-01-12 | 2018-03-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device structure with stacked semiconductor dies |
| US10446532B2 (en) | 2016-01-13 | 2019-10-15 | Invensas Bonding Technologies, Inc. | Systems and methods for efficient transfer of semiconductor elements |
| JP2017130610A (ja) | 2016-01-22 | 2017-07-27 | ソニー株式会社 | イメージセンサ、製造方法、及び、電子機器 |
| US20170243845A1 (en) | 2016-02-19 | 2017-08-24 | Qualcomm Incorporated | Fan-out wafer-level packages with improved topology |
| US10050018B2 (en) | 2016-02-26 | 2018-08-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3DIC structure and methods of forming |
| US10636767B2 (en) | 2016-02-29 | 2020-04-28 | Invensas Corporation | Correction die for wafer/die stack |
| US9831148B2 (en) | 2016-03-11 | 2017-11-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated fan-out package including voltage regulators and methods forming same |
| JP6453796B2 (ja) | 2016-03-14 | 2019-01-16 | 株式会社東芝 | 半導体装置およびその製造方法 |
| SG10201913140RA (en) | 2016-03-21 | 2020-03-30 | Agency Science Tech & Res | Semiconductor package and method of forming the same |
| US10186468B2 (en) | 2016-03-31 | 2019-01-22 | Infineon Technologies Ag | System and method for a transducer in an eWLB package |
| CN108701690B (zh) | 2016-04-01 | 2023-10-27 | 英特尔公司 | 用于管芯堆叠的技术和关联配置 |
| TWI606563B (zh) | 2016-04-01 | 2017-11-21 | 力成科技股份有限公司 | 薄型晶片堆疊封裝構造及其製造方法 |
| US10002857B2 (en) | 2016-04-12 | 2018-06-19 | Qualcomm Incorporated | Package on package (PoP) device comprising thermal interface material (TIM) in cavity of an encapsulation layer |
| US10026716B2 (en) | 2016-04-15 | 2018-07-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3DIC formation with dies bonded to formed RDLs |
| US9761559B1 (en) | 2016-04-21 | 2017-09-12 | Micron Technology, Inc. | Semiconductor package and fabrication method thereof |
| US20170330855A1 (en) | 2016-05-13 | 2017-11-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and Method for Immersion Bonding |
| US10032722B2 (en) | 2016-05-31 | 2018-07-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor package structure having am antenna pattern and manufacturing method thereof |
| US9972565B1 (en) | 2016-06-07 | 2018-05-15 | National Technology & Engineering Solutions Of Sandia, Llc | Lateral vias for connections to buried microconductors |
| KR102505856B1 (ko) | 2016-06-09 | 2023-03-03 | 삼성전자 주식회사 | 웨이퍼 대 웨이퍼 접합 구조체 |
| KR102521881B1 (ko) | 2016-06-15 | 2023-04-18 | 삼성전자주식회사 | 반도체 소자 및 이의 제조 방법 |
| US9865566B1 (en) * | 2016-06-15 | 2018-01-09 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacturing method thereof |
| US9818729B1 (en) | 2016-06-16 | 2017-11-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package-on-package structure and method |
| KR102538175B1 (ko) | 2016-06-20 | 2023-06-01 | 삼성전자주식회사 | 반도체 패키지 |
| US10431738B2 (en) | 2016-06-24 | 2019-10-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Integrated fan-out package and method for fabricating the same |
| KR102570582B1 (ko) | 2016-06-30 | 2023-08-24 | 삼성전자 주식회사 | 반도체 패키지 및 그 제조 방법 |
| US9859254B1 (en) | 2016-06-30 | 2018-01-02 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and a manufacturing method thereof |
| US9941241B2 (en) | 2016-06-30 | 2018-04-10 | International Business Machines Corporation | Method for wafer-wafer bonding |
| US11355427B2 (en) | 2016-07-01 | 2022-06-07 | Intel Corporation | Device, method and system for providing recessed interconnect structures of a substrate |
| US10892219B2 (en) | 2016-07-01 | 2021-01-12 | Intel Corporation | Molded embedded bridge for enhanced EMIB applications |
| US9966360B2 (en) | 2016-07-05 | 2018-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor package and manufacturing method thereof |
| US9892961B1 (en) | 2016-08-09 | 2018-02-13 | International Business Machines Corporation | Air gap spacer formation for nano-scale semiconductor devices |
| US10672741B2 (en) | 2016-08-18 | 2020-06-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor packages with thermal-electrical-mechanical chips and methods of forming the same |
| EP3288076B1 (en) | 2016-08-25 | 2021-06-23 | IMEC vzw | A semiconductor die package and method of producing the package |
| BR112019001313A2 (pt) | 2016-08-26 | 2019-04-30 | Intel Corporation | estruturas de dispositivo de circuito integrado e técnicas de fabricação de frente e verso |
| US10535632B2 (en) | 2016-09-02 | 2020-01-14 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor package structure and method of manufacturing the same |
| KR102649471B1 (ko) | 2016-09-05 | 2024-03-21 | 삼성전자주식회사 | 반도체 패키지 및 그의 제조 방법 |
| US9768133B1 (en) | 2016-09-22 | 2017-09-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package and method of forming the same |
| US11508662B2 (en) | 2016-09-30 | 2022-11-22 | Intel Corporation | Device and method of very high density routing used with embedded multi-die interconnect bridge |
| US10446487B2 (en) | 2016-09-30 | 2019-10-15 | Invensas Bonding Technologies, Inc. | Interface structures and methods for forming same |
| US10748864B2 (en) | 2016-10-05 | 2020-08-18 | Semiconductor Components Industries, Llc | Bonded semiconductor package and related methods |
| US10719762B2 (en) | 2017-08-03 | 2020-07-21 | Xcelsis Corporation | Three dimensional chip structure implementing machine trained network |
| US10672663B2 (en) | 2016-10-07 | 2020-06-02 | Xcelsis Corporation | 3D chip sharing power circuit |
| US10580735B2 (en) | 2016-10-07 | 2020-03-03 | Xcelsis Corporation | Stacked IC structure with system level wiring on multiple sides of the IC die |
| US10872852B2 (en) | 2016-10-12 | 2020-12-22 | Micron Technology, Inc. | Wafer level package utilizing molded interposer |
| US9722098B1 (en) | 2016-10-18 | 2017-08-01 | Ase Electronics (M) Sdn Bhd | Semiconductor device package and method of manufacturing the same |
| US10304801B2 (en) | 2016-10-31 | 2019-05-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Redistribution layers in semiconductor packages and methods of forming same |
| US20180130768A1 (en) | 2016-11-09 | 2018-05-10 | Unisem (M) Berhad | Substrate Based Fan-Out Wafer Level Packaging |
| US10529690B2 (en) * | 2016-11-14 | 2020-01-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package structures and methods of forming the same |
| US10177078B2 (en) | 2016-11-28 | 2019-01-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for forming chip package structure |
| US10163750B2 (en) | 2016-12-05 | 2018-12-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package structure for heat dissipation |
| US10453832B2 (en) | 2016-12-15 | 2019-10-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Seal ring structures and methods of forming same |
| US10002844B1 (en) | 2016-12-21 | 2018-06-19 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US20180182665A1 (en) | 2016-12-28 | 2018-06-28 | Invensas Bonding Technologies, Inc. | Processed Substrate |
| KR102320673B1 (ko) | 2016-12-28 | 2021-11-01 | 인벤사스 본딩 테크놀로지스 인코포레이티드 | 적층된 기판의 처리 |
| KR20230156179A (ko) | 2016-12-29 | 2023-11-13 | 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 | 집적된 수동 컴포넌트를 구비한 접합된 구조체 |
| US20180190583A1 (en) | 2016-12-29 | 2018-07-05 | Invensas Bonding Technologies, Inc. | Bonded structures with integrated passive component |
| US10276909B2 (en) | 2016-12-30 | 2019-04-30 | Invensas Bonding Technologies, Inc. | Structure comprising at least a first element bonded to a carrier having a closed metallic channel waveguide formed therein |
| US10431614B2 (en) | 2017-02-01 | 2019-10-01 | Semiconductor Components Industries, Llc | Edge seals for semiconductor packages |
| US9865567B1 (en) | 2017-02-02 | 2018-01-09 | Xilinx, Inc. | Heterogeneous integration of integrated circuit device and companion device |
| WO2018147940A1 (en) | 2017-02-09 | 2018-08-16 | Invensas Bonding Technologies, Inc. | Bonded structures |
| WO2018169968A1 (en) | 2017-03-16 | 2018-09-20 | Invensas Corporation | Direct-bonded led arrays and applications |
| US10515913B2 (en) | 2017-03-17 | 2019-12-24 | Invensas Bonding Technologies, Inc. | Multi-metal contact structure |
| US10508030B2 (en) | 2017-03-21 | 2019-12-17 | Invensas Bonding Technologies, Inc. | Seal for microelectronic assembly |
| JP6640780B2 (ja) | 2017-03-22 | 2020-02-05 | キオクシア株式会社 | 半導体装置の製造方法および半導体装置 |
| US10784191B2 (en) | 2017-03-31 | 2020-09-22 | Invensas Bonding Technologies, Inc. | Interface structures and methods for forming same |
| US10269756B2 (en) | 2017-04-21 | 2019-04-23 | Invensas Bonding Technologies, Inc. | Die processing |
| US10580823B2 (en) | 2017-05-03 | 2020-03-03 | United Microelectronics Corp. | Wafer level packaging method |
| US10879212B2 (en) | 2017-05-11 | 2020-12-29 | Invensas Bonding Technologies, Inc. | Processed stacked dies |
| US10446441B2 (en) | 2017-06-05 | 2019-10-15 | Invensas Corporation | Flat metal features for microelectronics applications |
| US10541228B2 (en) | 2017-06-15 | 2020-01-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Packages formed using RDL-last process |
| US10217720B2 (en) | 2017-06-15 | 2019-02-26 | Invensas Corporation | Multi-chip modules formed using wafer-level processing of a reconstitute wafer |
| US10658335B2 (en) | 2017-06-16 | 2020-05-19 | Futurewei Technologies, Inc. | Heterogenous 3D chip stack for a mobile processor |
| US10483187B2 (en) * | 2017-06-30 | 2019-11-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Heat spreading device and method |
| US10304805B2 (en) | 2017-08-24 | 2019-05-28 | Micron Technology, Inc. | Dual sided fan-out package having low warpage across all temperatures |
| US10707145B2 (en) | 2017-09-08 | 2020-07-07 | Kemet Electronics Corporation | High density multi-component packages |
| US11558029B2 (en) | 2017-09-14 | 2023-01-17 | Kyocera Corporation | Acoustic wave device and communication apparatus |
| US10468384B2 (en) | 2017-09-15 | 2019-11-05 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming embedded die substrate, and system-in-package modules with the same |
| US10840205B2 (en) | 2017-09-24 | 2020-11-17 | Invensas Bonding Technologies, Inc. | Chemical mechanical polishing for hybrid bonding |
| KR101901711B1 (ko) | 2017-09-27 | 2018-09-27 | 삼성전기 주식회사 | 팬-아웃 반도체 패키지 |
| US11195748B2 (en) | 2017-09-27 | 2021-12-07 | Invensas Corporation | Interconnect structures and methods for forming same |
| US10332899B2 (en) | 2017-09-29 | 2019-06-25 | Intel Corporation | 3D package having edge-aligned die stack with direct inter-die wire connections |
| CN111052364B (zh) | 2017-09-29 | 2025-08-19 | 英特尔公司 | 具有嵌入式互连的半导体封装 |
| US11031285B2 (en) | 2017-10-06 | 2021-06-08 | Invensas Bonding Technologies, Inc. | Diffusion barrier collar for interconnects |
| US10818624B2 (en) | 2017-10-24 | 2020-10-27 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and method for manufacturing the same |
| US11251157B2 (en) | 2017-11-01 | 2022-02-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Die stack structure with hybrid bonding structure and method of fabricating the same and package |
| US10672820B2 (en) | 2017-11-23 | 2020-06-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Hybrid bonded structure |
| US10483156B2 (en) | 2017-11-29 | 2019-11-19 | International Business Machines Corporation | Non-embedded silicon bridge chip for multi-chip module |
| US11011503B2 (en) | 2017-12-15 | 2021-05-18 | Invensas Bonding Technologies, Inc. | Direct-bonded optoelectronic interconnect for high-density integrated photonics |
| US11380597B2 (en) | 2017-12-22 | 2022-07-05 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US10923408B2 (en) | 2017-12-22 | 2021-02-16 | Invensas Bonding Technologies, Inc. | Cavity packages |
| TWI643307B (zh) | 2018-01-30 | 2018-12-01 | 矽品精密工業股份有限公司 | 電子封裝件及其製法 |
| US10559507B1 (en) | 2018-02-06 | 2020-02-11 | Facebook Technologies, Llc | Direct wafer mapping and selective elastomer deposition |
| US11127738B2 (en) | 2018-02-09 | 2021-09-21 | Xcelsis Corporation | Back biasing of FD-SOI circuit blocks |
| US10727219B2 (en) | 2018-02-15 | 2020-07-28 | Invensas Bonding Technologies, Inc. | Techniques for processing devices |
| US11169326B2 (en) | 2018-02-26 | 2021-11-09 | Invensas Bonding Technologies, Inc. | Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects |
| US10847478B2 (en) | 2018-02-27 | 2020-11-24 | Amkor Technology Singapore Holding Pte. Ltd. | Method of forming an electronic device structure having an electronic component with an on-edge orientation and related structures |
| US11256004B2 (en) | 2018-03-20 | 2022-02-22 | Invensas Bonding Technologies, Inc. | Direct-bonded lamination for improved image clarity in optical devices |
| US10991804B2 (en) | 2018-03-29 | 2021-04-27 | Xcelsis Corporation | Transistor level interconnection methodologies utilizing 3D interconnects |
| US11056348B2 (en) | 2018-04-05 | 2021-07-06 | Invensas Bonding Technologies, Inc. | Bonding surfaces for microelectronics |
| US10790262B2 (en) | 2018-04-11 | 2020-09-29 | Invensas Bonding Technologies, Inc. | Low temperature bonded structures |
| US10964664B2 (en) | 2018-04-20 | 2021-03-30 | Invensas Bonding Technologies, Inc. | DBI to Si bonding for simplified handle wafer |
| US10825772B2 (en) | 2018-04-30 | 2020-11-03 | Xilinx, Inc. | Redundancy scheme for multi-chip stacked devices |
| US10937743B2 (en) | 2018-04-30 | 2021-03-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mixing organic materials into hybrid packages |
| US11398258B2 (en) | 2018-04-30 | 2022-07-26 | Invensas Llc | Multi-die module with low power operation |
| US10403577B1 (en) | 2018-05-03 | 2019-09-03 | Invensas Corporation | Dielets on flexible and stretchable packaging for microelectronics |
| US11469138B2 (en) | 2018-05-04 | 2022-10-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Via for coupling attached component upper electrode to substrate |
| US11004757B2 (en) | 2018-05-14 | 2021-05-11 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US11276676B2 (en) | 2018-05-15 | 2022-03-15 | Invensas Bonding Technologies, Inc. | Stacked devices and methods of fabrication |
| US10923413B2 (en) | 2018-05-30 | 2021-02-16 | Xcelsis Corporation | Hard IP blocks with physically bidirectional passageways |
| CN112514059B (zh) | 2018-06-12 | 2024-05-24 | 隔热半导体粘合技术公司 | 堆叠微电子部件的层间连接 |
| KR102878117B1 (ko) | 2018-06-13 | 2025-10-28 | 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 | 패드로서의 tsv |
| US11393779B2 (en) | 2018-06-13 | 2022-07-19 | Invensas Bonding Technologies, Inc. | Large metal pads over TSV |
| US10910344B2 (en) | 2018-06-22 | 2021-02-02 | Xcelsis Corporation | Systems and methods for releveled bump planes for chiplets |
| US10333623B1 (en) | 2018-06-25 | 2019-06-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Optical transceiver |
| US10930633B2 (en) | 2018-06-29 | 2021-02-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Buffer design for package integration |
| WO2020010056A1 (en) | 2018-07-03 | 2020-01-09 | Invensas Bonding Technologies, Inc. | Techniques for joining dissimilar materials in microelectronics |
| US11462419B2 (en) | 2018-07-06 | 2022-10-04 | Invensas Bonding Technologies, Inc. | Microelectronic assemblies |
| US11158606B2 (en) | 2018-07-06 | 2021-10-26 | Invensas Bonding Technologies, Inc. | Molded direct bonded and interconnected stack |
| US12406959B2 (en) | 2018-07-26 | 2025-09-02 | Adeia Semiconductor Bonding Technologies Inc. | Post CMP processing for hybrid bonding |
| KR102560697B1 (ko) | 2018-07-31 | 2023-07-27 | 삼성전자주식회사 | 인터포저를 가지는 반도체 패키지 |
| US10700094B2 (en) | 2018-08-08 | 2020-06-30 | Xcelsis Corporation | Device disaggregation for improved performance |
| US10727205B2 (en) | 2018-08-15 | 2020-07-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Hybrid bonding technology for stacking integrated circuits |
| US11515291B2 (en) | 2018-08-28 | 2022-11-29 | Adeia Semiconductor Inc. | Integrated voltage regulator and passive components |
| US11296044B2 (en) | 2018-08-29 | 2022-04-05 | Invensas Bonding Technologies, Inc. | Bond enhancement structure in microelectronics for trapping contaminants during direct-bonding processes |
| US11011494B2 (en) | 2018-08-31 | 2021-05-18 | Invensas Bonding Technologies, Inc. | Layer structures for making direct metal-to-metal bonds at low temperatures in microelectronics |
| US10797031B2 (en) | 2018-09-20 | 2020-10-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package |
| US10504824B1 (en) | 2018-09-21 | 2019-12-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit package and method |
| US10868353B2 (en) | 2018-09-27 | 2020-12-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Electronic device and manufacturing method thereof |
| US11158573B2 (en) | 2018-10-22 | 2021-10-26 | Invensas Bonding Technologies, Inc. | Interconnect structures |
| KR20200047845A (ko) | 2018-10-24 | 2020-05-08 | 삼성전자주식회사 | 반도체 패키지 |
| US10861808B2 (en) * | 2018-11-21 | 2020-12-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding structure of dies with dangling bonds |
| US11158607B2 (en) | 2018-11-29 | 2021-10-26 | Apple Inc. | Wafer reconstitution and die-stitching |
| US10867978B2 (en) | 2018-12-11 | 2020-12-15 | Advanced Micro Devices, Inc. | Integrated circuit module with integrated discrete devices |
| US11244920B2 (en) | 2018-12-18 | 2022-02-08 | Invensas Bonding Technologies, Inc. | Method and structures for low temperature device bonding |
| US11476213B2 (en) | 2019-01-14 | 2022-10-18 | Invensas Bonding Technologies, Inc. | Bonded structures without intervening adhesive |
| KR102803426B1 (ko) | 2019-01-24 | 2025-05-07 | 삼성전기주식회사 | 브리지 내장 인터포저, 및 이를 포함하는 패키지 기판 및 반도체 패키지 |
| US11387202B2 (en) | 2019-03-01 | 2022-07-12 | Invensas Llc | Nanowire bonding interconnect for fine-pitch microelectronics |
| US11901281B2 (en) | 2019-03-11 | 2024-02-13 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures with integrated passive component |
| US11552019B2 (en) | 2019-03-12 | 2023-01-10 | Intel Corporation | Substrate patch reconstitution options |
| US10770430B1 (en) | 2019-03-22 | 2020-09-08 | Xilinx, Inc. | Package integration for memory devices |
| US10854578B2 (en) | 2019-03-29 | 2020-12-01 | Invensas Corporation | Diffused bitline replacement in stacked wafer memory |
| US11373963B2 (en) | 2019-04-12 | 2022-06-28 | Invensas Bonding Technologies, Inc. | Protective elements for bonded structures |
| US11205625B2 (en) | 2019-04-12 | 2021-12-21 | Invensas Bonding Technologies, Inc. | Wafer-level bonding of obstructive elements |
| US11610846B2 (en) | 2019-04-12 | 2023-03-21 | Adeia Semiconductor Bonding Technologies Inc. | Protective elements for bonded structures including an obstructive element |
| US11355404B2 (en) | 2019-04-22 | 2022-06-07 | Invensas Bonding Technologies, Inc. | Mitigating surface damage of probe pads in preparation for direct bonding of a substrate |
| US11385278B2 (en) | 2019-05-23 | 2022-07-12 | Invensas Bonding Technologies, Inc. | Security circuitry for bonded structures |
| US12374641B2 (en) | 2019-06-12 | 2025-07-29 | Adeia Semiconductor Bonding Technologies Inc. | Sealed bonded structures and methods for forming the same |
| US12341129B2 (en) | 2019-06-13 | 2025-06-24 | Intel Corporation | Substrateless double-sided embedded multi-die interconnect bridge |
| US11145623B2 (en) | 2019-06-14 | 2021-10-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit packages and methods of forming the same |
| US11296053B2 (en) | 2019-06-26 | 2022-04-05 | Invensas Bonding Technologies, Inc. | Direct bonded stack structures for increased reliability and improved yield in microelectronics |
| US20210020577A1 (en) | 2019-07-16 | 2021-01-21 | Dyi-chung Hu | Semiconductor package and manufacturing method thereof |
| US11978685B2 (en) | 2019-07-25 | 2024-05-07 | Intel Corporation | Glass core patch with in situ fabricated fan-out layer to enable die tiling applications |
| US11742301B2 (en) | 2019-08-19 | 2023-08-29 | Advanced Micro Devices, Inc. | Fan-out package with reinforcing rivets |
| US11094613B2 (en) | 2019-08-22 | 2021-08-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structure and manufacturing method thereof |
| US11094635B2 (en) | 2019-08-22 | 2021-08-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Package structure and method for forming the same |
| US11508677B2 (en) | 2019-08-29 | 2022-11-22 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor package for high-speed data transmission and manufacturing method thereof |
| US11133263B2 (en) | 2019-09-17 | 2021-09-28 | Intel Corporation | High-density interconnects for integrated circuit packages |
| US10998272B2 (en) | 2019-09-17 | 2021-05-04 | Intel Corporation | Organic interposers for integrated circuit packages |
| WO2021061246A1 (en) | 2019-09-25 | 2021-04-01 | Intel Corporation | Molded interconnects in bridges for integrated-circuit packages |
| US11183477B2 (en) | 2019-09-26 | 2021-11-23 | Intel Corporation | Mixed hybrid bonding structures and methods of forming the same |
| US12080672B2 (en) | 2019-09-26 | 2024-09-03 | Adeia Semiconductor Bonding Technologies Inc. | Direct gang bonding methods including directly bonding first element to second element to form bonded structure without adhesive |
| US11824040B2 (en) | 2019-09-27 | 2023-11-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package component, electronic device and manufacturing method thereof |
| TWI734455B (zh) | 2019-10-09 | 2021-07-21 | 財團法人工業技術研究院 | 多晶片封裝件及其製造方法 |
| US12113054B2 (en) | 2019-10-21 | 2024-10-08 | Adeia Semiconductor Technologies Llc | Non-volatile dynamic random access memory |
| US20210125965A1 (en) | 2019-10-24 | 2021-04-29 | Advanced Semiconductor Engineering, Inc. | Semiconductor device package and method of manufacturing the same |
| US11688693B2 (en) | 2019-10-29 | 2023-06-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor packages and method of manufacture |
| US11164817B2 (en) | 2019-11-01 | 2021-11-02 | International Business Machines Corporation | Multi-chip package structures with discrete redistribution layers |
| US11862602B2 (en) | 2019-11-07 | 2024-01-02 | Adeia Semiconductor Technologies Llc | Scalable architecture for reduced cycles across SOC |
| US11762200B2 (en) | 2019-12-17 | 2023-09-19 | Adeia Semiconductor Bonding Technologies Inc. | Bonded optical devices |
| US11876076B2 (en) | 2019-12-20 | 2024-01-16 | Adeia Semiconductor Technologies Llc | Apparatus for non-volatile random access memory stacks |
| KR20220120631A (ko) | 2019-12-23 | 2022-08-30 | 인벤사스 본딩 테크놀로지스 인코포레이티드 | 결합형 구조체를 위한 전기적 리던던시 |
| US11721653B2 (en) | 2019-12-23 | 2023-08-08 | Adeia Semiconductor Bonding Technologies Inc. | Circuitry for electrical redundancy in bonded structures |
| US11791275B2 (en) | 2019-12-27 | 2023-10-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method of manufacturing |
| US11616026B2 (en) | 2020-01-17 | 2023-03-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method of manufacture |
| US11600526B2 (en) | 2020-01-22 | 2023-03-07 | iCometrue Company Ltd. | Chip package based on through-silicon-via connector and silicon interconnection bridge |
| US20210242152A1 (en) | 2020-02-05 | 2021-08-05 | Invensas Bonding Technologies, Inc. | Selective alteration of interconnect pads for direct bonding |
| TW202135243A (zh) | 2020-03-04 | 2021-09-16 | 力成科技股份有限公司 | 扇出型堆疊式半導體封裝結構之多層模封方法 |
| US20210280507A1 (en) | 2020-03-05 | 2021-09-09 | Qualcomm Incorporated | Package comprising dummy interconnects |
| CN115943489A (zh) | 2020-03-19 | 2023-04-07 | 隔热半导体粘合技术公司 | 用于直接键合结构的尺寸补偿控制 |
| US11742314B2 (en) | 2020-03-31 | 2023-08-29 | Adeia Semiconductor Bonding Technologies Inc. | Reliable hybrid bonded apparatus |
| US11515229B2 (en) | 2020-03-31 | 2022-11-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package and manufacturing method thereof |
| US11594498B2 (en) | 2020-04-27 | 2023-02-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor package and method |
| US11735523B2 (en) | 2020-05-19 | 2023-08-22 | Adeia Semiconductor Bonding Technologies Inc. | Laterally unconfined structure |
| US11508633B2 (en) | 2020-05-28 | 2022-11-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package structure having taper-shaped conductive pillar and method of forming thereof |
| TWI732568B (zh) | 2020-05-28 | 2021-07-01 | 欣興電子股份有限公司 | 內埋元件的基板結構及其製造方法 |
| US11562963B2 (en) | 2020-06-05 | 2023-01-24 | Intel Corporation | Stacked semiconductor package and method of forming the same |
| US11955431B2 (en) | 2020-06-05 | 2024-04-09 | Intel Corporation | Interposer structures and methods for 2.5D and 3D packaging |
| US11239184B2 (en) | 2020-06-11 | 2022-02-01 | Advanced Semicondutor Engineering, Inc. | Package substrate, electronic device package and method for manufacturing the same |
| US11335650B2 (en) | 2020-06-11 | 2022-05-17 | Advanced Semiconductor Engineering, Inc. | Package substrate, electronic device package and method for manufacturing the same |
| US11342272B2 (en) | 2020-06-11 | 2022-05-24 | Advanced Semiconductor Engineering, Inc. | Substrate structures, and methods for forming the same and semiconductor package structures |
| US11450615B2 (en) | 2020-06-12 | 2022-09-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package structure and method of fabricating the same |
| US11631647B2 (en) | 2020-06-30 | 2023-04-18 | Adeia Semiconductor Bonding Technologies Inc. | Integrated device packages with integrated device die and dummy element |
| US11574890B2 (en) | 2020-07-01 | 2023-02-07 | Amkor Technology Singapore Holding Pte. Lte. | Semiconductor devices and methods of manufacturing semiconductor devices |
| US11728273B2 (en) | 2020-09-04 | 2023-08-15 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structure with interconnect structure |
| US11764177B2 (en) | 2020-09-04 | 2023-09-19 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structure with interconnect structure |
| US11264357B1 (en) | 2020-10-20 | 2022-03-01 | Invensas Corporation | Mixed exposure for large die |
| WO2022094587A1 (en) | 2020-10-29 | 2022-05-05 | Invensas Bonding Technologies, Inc. | Direct bonding methods and structures |
| CN116635998A (zh) | 2020-10-29 | 2023-08-22 | 美商艾德亚半导体接合科技有限公司 | 直接键合方法和结构 |
| WO2022147430A1 (en) | 2020-12-28 | 2022-07-07 | Invensas Bonding Technologies, Inc. | Structures with through-substrate vias and methods for forming the same |
| KR20230125309A (ko) | 2020-12-28 | 2023-08-29 | 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 | 기판-관통 비아를 가지는 구조체 및 이를 형성하기위한 방법 |
| JP7783896B2 (ja) | 2020-12-30 | 2025-12-10 | アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド | 導電特徴部を備えた構造体及びその形成方法 |
| KR20230128062A (ko) | 2020-12-30 | 2023-09-01 | 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 | 직접 접합 구조 |
| CN117256047A (zh) | 2021-03-03 | 2023-12-19 | 美商艾德亚半导体接合科技有限公司 | 用于直接接合的接触结构 |
| EP4315398A4 (en) | 2021-03-31 | 2025-03-05 | Adeia Semiconductor Bonding Technologies Inc. | DIRECT ADHESION AND REMOVING A CARRIER |
| US20220320035A1 (en) | 2021-03-31 | 2022-10-06 | Invensas Bonding Technologies, Inc. | Direct bonding methods and structures |
| WO2022212595A1 (en) | 2021-03-31 | 2022-10-06 | Invensas Bonding Technologies, Inc. | Direct bonding and debonding of carrier |
| WO2023278605A1 (en) | 2021-06-30 | 2023-01-05 | Invensas Bonding Technologies, Inc. | Element with routing structure in bonding layer |
| WO2023288021A1 (en) | 2021-07-16 | 2023-01-19 | Invensas Bonding Technologies, Inc. | Optically obstructive protective element for bonded structures |
| WO2023014616A1 (en) | 2021-08-02 | 2023-02-09 | Invensas Bonding Technologies, Inc. | Protective semiconductor elements for bonded structures |
| EP4396872A4 (en) | 2021-09-01 | 2025-05-21 | Adeia Semiconductor Technologies LLC | STACKED STRUCTURE WITH INTERPOSER |
| US20230067677A1 (en) | 2021-09-01 | 2023-03-02 | Invensas Bonding Technologies, Inc. | Sequences and equipment for direct bonding |
| EP4402717A4 (en) | 2021-09-14 | 2025-10-22 | Adeia Semiconductor Bonding Technologies Inc | METHOD FOR BONDING THIN SUBSTRATES |
| JP2024535904A (ja) | 2021-09-24 | 2024-10-02 | アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド | 能動インターポーザ付きのボンデッド構造体 |
| KR20240093687A (ko) | 2021-10-18 | 2024-06-24 | 아데이아 세미컨덕터 테크놀로지스 엘엘씨 | 결합 구조체 내의 감소된 기생 커패시턴스 |
| KR20240090512A (ko) | 2021-10-19 | 2024-06-21 | 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 | 멀티-다이 스태킹에서의 적층된 인덕터 |
| JP2024538873A (ja) | 2021-10-22 | 2024-10-24 | アデイア セミコンダクター テクノロジーズ リミテッド ライアビリティ カンパニー | 高周波デバイスパッケージ |
| WO2023076842A1 (en) | 2021-10-25 | 2023-05-04 | Adeia Semiconductor Bonding Technologies Inc. | Power distribution for stacked electronic devices |
| US20230125395A1 (en) | 2021-10-27 | 2023-04-27 | Adeia Semiconductor Bonding Technologies Inc. | Stacked structures with capacitive coupling connections |
| US20230140107A1 (en) | 2021-10-28 | 2023-05-04 | Adeia Semiconductor Bonding Technologies Inc. | Direct bonding methods and structures |
| CN118435345A (zh) | 2021-10-28 | 2024-08-02 | 美商艾德亚半导体接合科技有限公司 | 扩散势垒及其形成方法 |
| US20230142680A1 (en) | 2021-10-28 | 2023-05-11 | Adeia Semiconductor Bonding Technologies Inc. | Stacked electronic devices |
| WO2023081273A1 (en) | 2021-11-05 | 2023-05-11 | Adeia Semiconductor Bonding Technologies Inc. | Multi-channel device stacking |
| EP4434089A4 (en) | 2021-11-17 | 2025-11-19 | Adeia Semiconductor Bonding Technologies Inc | THERMAL DETACHMENT FOR STACKED MATRICES |
| KR20240101651A (ko) | 2021-11-18 | 2024-07-02 | 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 | 다이 적층체를 위한 유체 냉각 |
| US20230187264A1 (en) | 2021-12-13 | 2023-06-15 | Adeia Semiconductor Technologies Llc | Methods for bonding semiconductor elements |
| US20230187317A1 (en) | 2021-12-13 | 2023-06-15 | Adeia Semiconductor Bonding Technologies Inc. | Interconnect structures |
| KR20240118874A (ko) | 2021-12-17 | 2024-08-05 | 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 | 직접 접합을 위한 전도성 특징부를 갖는 구조체 및 그 형성 방법 |
| EP4454440A4 (en) | 2021-12-20 | 2025-11-26 | Adeia Semiconductor Bonding Technologies Inc | THERMOELECTRIC COOLING IN MICROELECTRONICS |
| CN118661254A (zh) | 2021-12-20 | 2024-09-17 | 美商艾德亚半导体接合科技有限公司 | 用于管芯封装的热电冷却 |
| JP2024547065A (ja) | 2021-12-20 | 2024-12-26 | アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド | 素子の直接接合及び剥離 |
| WO2023122559A1 (en) | 2021-12-22 | 2023-06-29 | Adeia Semiconductor Bonding Technologies Inc. | Low stress direct hybrid bonding |
| WO2023122687A1 (en) | 2021-12-23 | 2023-06-29 | Adeia Semiconductor Bonding Technologies Inc. | Apparatuses and methods for die bond control |
| EP4454013A4 (en) | 2021-12-23 | 2025-07-30 | Adeia Semiconductor Bonding Technologies Inc | LINKED STRUCTURES COMPRISING INTERCONNECTING ASSEMBLIES |
| EP4454008A4 (en) | 2021-12-23 | 2025-11-05 | Adeia Semiconductor Bonding Technologies Inc | DIRECT CONNECTION TO ENCLOSURE SUBSTRATES |
| JP2024545355A (ja) | 2021-12-27 | 2024-12-05 | アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド | 直接結合されたフレームウェハ |
| KR20240144961A (ko) | 2022-01-31 | 2024-10-04 | 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 | 전자 디바이스용 열소산 시스템 |
| EP4483406A1 (en) | 2022-02-24 | 2025-01-01 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures |
| EP4494184A1 (en) | 2022-03-16 | 2025-01-22 | Adeia Semiconductor Bonding Technologies Inc. | Expansion control for bonding |
| CN119096348A (zh) | 2022-04-25 | 2024-12-06 | 美商艾德亚半导体接合科技有限公司 | 用于直接结合的膨胀控制结构及其形成方法 |
| US20230360950A1 (en) | 2022-05-05 | 2023-11-09 | Adeia Semiconductor Bonding Technologies Inc. | Gang-flipping of dies prior to bonding |
| CN119110988A (zh) | 2022-05-05 | 2024-12-10 | 美商艾德亚半导体接合科技有限公司 | 低温直接键合 |
| US20230369136A1 (en) | 2022-05-13 | 2023-11-16 | Adeia Semiconductor Bonding Technologies Inc. | Bonding surface validation on dicing tape |
| JP2025517291A (ja) | 2022-05-23 | 2025-06-05 | アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド | ボンデッド構造体のための試験用素子 |
| US20240038702A1 (en) | 2022-07-27 | 2024-02-01 | Adeia Semiconductor Bonding Technologies Inc. | High-performance hybrid bonded interconnect systems |
-
2020
- 2020-06-30 US US16/917,686 patent/US11631647B2/en active Active
-
2021
- 2021-06-23 KR KR1020237003430A patent/KR102750432B1/ko active Active
- 2021-06-23 CN CN202180055333.2A patent/CN116157918A/zh active Pending
- 2021-06-23 JP JP2022581735A patent/JP7441979B2/ja active Active
- 2021-06-23 WO PCT/US2021/038696 patent/WO2022005846A1/en not_active Ceased
- 2021-06-23 KR KR1020247043566A patent/KR20250010110A/ko active Pending
- 2021-06-23 EP EP21833640.2A patent/EP4173032A4/en active Pending
- 2021-06-24 TW TW110123204A patent/TW202211398A/zh unknown
- 2021-12-28 US US17/646,238 patent/US11538781B2/en active Active
-
2023
- 2023-04-04 US US18/295,776 patent/US12046569B2/en active Active
-
2024
- 2024-02-19 JP JP2024023028A patent/JP2024055908A/ja active Pending
- 2024-07-11 US US18/770,099 patent/US20250149483A1/en active Pending
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9431368B2 (en) | 1999-10-01 | 2016-08-30 | Ziptronix, Inc. | Three dimensional device integration method and integrated device |
| US7126212B2 (en) | 1999-10-01 | 2006-10-24 | Ziptronix, Inc. | Three dimensional device integration method and integrated device |
| US9391143B2 (en) | 2000-02-16 | 2016-07-12 | Ziptronix, Inc. | Method for low temperature bonding and bonded structure |
| US10141218B2 (en) | 2003-02-07 | 2018-11-27 | Invensas Bonding Technologies, Inc. | Room temperature metal direct bonding |
| US10147641B2 (en) | 2005-08-11 | 2018-12-04 | Invensas Bonding Technologies, Inc. | 3D IC method and device |
| US20160322330A1 (en) * | 2015-04-30 | 2016-11-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fan-out stacked system in package (sip) having dummy dies and methods of making the same |
| US10204893B2 (en) | 2016-05-19 | 2019-02-12 | Invensas Bonding Technologies, Inc. | Stacked dies and methods for forming bonded structures |
| US20180138101A1 (en) * | 2016-11-14 | 2018-05-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package structures and methods of forming the same |
| US20190189590A1 (en) | 2017-12-17 | 2019-06-20 | Rahul Agarwal | Stacked dies and dummy components for improved thermal performance |
| US20200006173A1 (en) | 2018-05-18 | 2020-01-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated Circuit Package and Method of Forming Same |
| US20190371763A1 (en) * | 2018-05-29 | 2019-12-05 | Rahul Agarwal | Die stacking for multi-tier 3d integration |
| US20190385981A1 (en) | 2018-06-15 | 2019-12-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit package having dummy structures and method of forming same |
| KR20200047841A (ko) * | 2018-10-24 | 2020-05-08 | 삼성전자주식회사 | 반도체 패키지 |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP4173032A4 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20230395563A1 (en) * | 2022-06-02 | 2023-12-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multiple non-active dies in a multi-die package |
Also Published As
| Publication number | Publication date |
|---|---|
| US20250149483A1 (en) | 2025-05-08 |
| CN116157918A (zh) | 2023-05-23 |
| JP2023525403A (ja) | 2023-06-15 |
| US11538781B2 (en) | 2022-12-27 |
| US11631647B2 (en) | 2023-04-18 |
| KR102750432B1 (ko) | 2025-01-03 |
| KR20230029960A (ko) | 2023-03-03 |
| JP7441979B2 (ja) | 2024-03-01 |
| US20230420398A1 (en) | 2023-12-28 |
| US20210407941A1 (en) | 2021-12-30 |
| KR20250010110A (ko) | 2025-01-20 |
| EP4173032A1 (en) | 2023-05-03 |
| TW202211398A (zh) | 2022-03-16 |
| US20220122934A1 (en) | 2022-04-21 |
| JP2024055908A (ja) | 2024-04-19 |
| EP4173032A4 (en) | 2024-11-27 |
| US12046569B2 (en) | 2024-07-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12046569B2 (en) | Integrated device packages with integrated device die and dummy element | |
| US11476213B2 (en) | Bonded structures without intervening adhesive | |
| US12113056B2 (en) | Stacked dies and methods for forming bonded structures | |
| US12255163B2 (en) | Bond pads for semiconductor die assemblies and associated methods and systems | |
| CN112331617B (zh) | 一种埋入式键合工艺三维集成方法 | |
| US20250343220A1 (en) | Semiconductor die assemblies with sidewall protection and associated methods and systems | |
| US20250079366A1 (en) | Semiconductor device with layered dielectric | |
| KR20240176460A (ko) | 열 완화가 강화된 반도체 디바이스 | |
| WO2024258567A1 (en) | Edge recess design for molded and fusion or hybrid bonded integrated circuit | |
| WO2021259477A1 (en) | Semiconductor die assembly and method of stacking semiconductor components |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21833640 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2022581735 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2021833640 Country of ref document: EP Effective date: 20230130 |