WO2022005846A1 - Integrated device packages - Google Patents

Integrated device packages Download PDF

Info

Publication number
WO2022005846A1
WO2022005846A1 PCT/US2021/038696 US2021038696W WO2022005846A1 WO 2022005846 A1 WO2022005846 A1 WO 2022005846A1 US 2021038696 W US2021038696 W US 2021038696W WO 2022005846 A1 WO2022005846 A1 WO 2022005846A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated device
carrier
stress compensation
molding compound
device package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2021/038696
Other languages
English (en)
French (fr)
Inventor
Belgacem Haba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeia Semiconductor Bonding Technologies Inc
Original Assignee
Invensas Bonding Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Invensas Bonding Technologies Inc filed Critical Invensas Bonding Technologies Inc
Priority to EP21833640.2A priority Critical patent/EP4173032A4/en
Priority to KR1020237003430A priority patent/KR102750432B1/ko
Priority to KR1020247043566A priority patent/KR20250010110A/ko
Priority to JP2022581735A priority patent/JP7441979B2/ja
Priority to CN202180055333.2A priority patent/CN116157918A/zh
Publication of WO2022005846A1 publication Critical patent/WO2022005846A1/en
Anticipated expiration legal-status Critical
Priority to JP2024023028A priority patent/JP2024055908A/ja
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
    • H01L25/0655Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/0805Shape
    • H01L2224/08057Shape in side view
    • H01L2224/08058Shape in side view being non uniform along the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08121Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the connected bonding areas being not aligned with respect to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/08146Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bonding area connecting to a via connection in the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80003Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/80006Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80053Bonding environment
    • H01L2224/80095Temperature settings
    • H01L2224/80096Transient conditions
    • H01L2224/80097Heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80896Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically insulating surfaces, e.g. oxide or nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps

Definitions

  • the field relates to integrated device packages and methods for forming the same.
  • SIPs system- in-package
  • some packages include different types of active chips or integrated device dies spaced apart from one another along a package substrate.
  • 3D integration techniques often utilize packages in which two or more integrated device dies are stacked on top of and electrically connected to one another.
  • a molding compound or encapsulant can be provided over the integrated device dies, which can generate stresses in the package. Accordingly, there remains a continuing need for improved integrated device packages.
  • Figures 1A-1C schematically illustrates the use of a sacrificial carrier in various direct bonding processes.
  • Figure 2 illustrates a plurality of elements directly bonded to a carrier.
  • Figures 3A-3C show various examples in which elements are directly bonded to a carrier without an adhesive.
  • Figure 4A is a schematic side view of a plurality of elements directly bonded to a carrier and with a protective material applied over the elements and within gaps between the elements.
  • Figure 4B is a schematic side view of a plurality of elements that include one or more dummy elements directly bonded to a carrier.
  • Figures 5A-5C illustrate a series of processing steps for forming a reconstituted wafer.
  • Figure 6 is a schematic side sectional view of a reconstituted wafer having a bonding layer configured to directly bond to another reconstituted wafer or substrate.
  • Figure 7A illustrates two opposing reconstituted wafers prior to direct bonding.
  • Figure 7B illustrates the two opposing reconstituted wafers after being directly bonded to one another.
  • Figure 8A-8B illustrate methods and structures for stacking more than two reconstituted wafers, according to various embodiments.
  • Figures 9A-9F illustrate various face up bonded structures, according to various embodiments.
  • Figures 10A-10E illustrate various face down bonded structures, according to various embodiments.
  • Figure 11 illustrates another embodiment in which an additional filler material can serve as a second protective material and may be provided over a conformal protective material in the gaps between adjacent elements.
  • Figures 12A-12C illustrate a method for forming a reconstituted wafer according to various embodiments.
  • Figures 13A-13B illustrate a method for forming a reconstituted wafer according to various embodiments.
  • Figures 14A- 14C illustrate another embodiment in which a mold compound can be provided between adjacent elements directly bonded to a carrier, and a metal can be provided on the mold compound.
  • Figures 15A-15C illustrate another embodiment in which a mold compound can be provided between adjacent elements directly bonded to a carrier, and a metal can be provided on both sides of the mold compound.
  • Figures 16A-16C illustrate another embodiment in which a protective coating or layer can be provided between the mold compound and the carrier.
  • Figures 17A-17D illustrates additional bonded structures that can be provided with the methods disclosed herein.
  • Figure 18A is a schematic side sectional view of an integrated device package, according to another embodiment.
  • Figure 18B is a schematic top plan view of the integrated device package of Figure 18 A, with the molding compound hidden for ease of illustration.
  • Figure 18C is a schematic top plan view of an integrated device package that includes increased lateral overlap among stress compensation elements.
  • Figure 19 is a schematic diagram of a system incorporating one or more bonded structures, according to various embodiments.
  • a bonded structure comprising a first element (e.g ., a first integrated device die) having a first side and a second side opposite the first side.
  • the bonded structure can include a second element (e.g., a second integrated device die) having a first side and a second side opposite the first side.
  • the first side of the second integrated device die can be directly bonded to the first side of the first integrated device die without an intervening adhesive along a bonding interface.
  • a protective material can be disposed about a periphery ( e.g. respective sidewalls) of the first and second integrated device dies. The protective material can extend from the second side of the first integrated device die to the second side of the second integrated device die.
  • portions of the protective material can be disposed within gaps between adjacent first integrated device dies or elements.
  • the protective material can comprise an inorganic dielectric, such as silicon dioxide, silicon nitride, polysilicon, amorphous silicon, etc.
  • the embodiments disclosed herein can comprise wafer-level processes in which wafers or substrates, serving as carriers, are provided with a plurality of integrated device dies and a protective material (which can comprise one or a plurality of protective layers) over the integrated device dies.
  • the die(s) and protective material can form at least a portion of a reconstituted wafer which can be bonded ( e.g ., directly bonded without an adhesive) to another reconstituted wafer formed by a similar process.
  • the bonded reconstituted wafers can be singulated to form a plurality of bonded structures, for example after removal of the carriers.
  • the bonded structures can comprise packaging structures in some embodiments.
  • direct bond interconnects can comprise bonded structures in which densely dispersed conductive contacts are bonded to one another without an intervening adhesive.
  • the surrounding dielectric or nonconductive materials can also be directly bonded without an intervening adhesive.
  • a ZiBond ® process can comprise a direct bond between nonconductive materials without an intervening adhesive. Examples of DBI and ZiBond processes and structures may be found throughout at least U.S. Patent Nos. 9,391,143; 10,141,218; 10,147,641; 9,431,368; and 7,126,212, the entire contents of each of which are incorporated by reference herein in their entireties and for all purposes.
  • Each of the singulated dies mounted on the carriers can be tested prior to mounting, such that all dies in the reconstituted wafer can be Known Good Dies (KGD).
  • FIGS 1A-1C schematically illustrate the use of a sacrificial carrier 3 in various direct bonding processes.
  • an element 2 can be directly bonded to a carrier 3 without an adhesive.
  • the element 2 (or any of the other elements described herein) can comprise any suitable type of element, such as a semiconductor element (e.g., an integrated device die), an optical element, etc.
  • the carrier 3 can comprise any suitable type of carrier, such as a carrier with one or more logic or processing devices, and/or a sacrificial carrier (e.g., a carrier without active processing circuitry) that is to be removed at some point during processing.
  • the element 2 can comprise a front side 9 and a back side 10 opposite the front side 9.
  • the front side 9 can comprise a surface nearest to active circuitry or devices formed in the element 2.
  • a first front bonding layer 4 can be provided at the front side 9 of the element 2.
  • the bonding layer 4 is shown at the front side 9 of the element 2, a bonding layer may also or alternatively be provided on the back side 10 for bonding.
  • the bonding layer 4 can comprise one or a plurality of contact pads 6 disposed within or surrounded by a nonconductive field region 5.
  • the contact pads can comprise copper, although other conductive materials are suitable.
  • the nonconductive field region can comprise a dielectric such as silicon oxide, silicon nitride, etc.
  • the back side 10 may or may not include active circuitry or devices.
  • the element 2 can comprise a singulated element (such as a singulated device die) having a side surface 8.
  • the side surface 8 can comprise markings indicative of a singulation process, for example, saw markings, etch patterns, etc.
  • the element 2 e.g., a die
  • the front bonding layer 4 can be prepared for bonding, as explained above.
  • the front bonding layer 4 can be polished to a very low surface roughness and processed so as to enhance dielectric-to-dielectric direct bonding.
  • the surfaces to be bonded may be terminated with a suitable species and activated prior to bonding.
  • the surfaces to be bonded may be very lightly etched for activation and exposed to a nitrogen-containing solution and terminated with a nitrogen-containing species.
  • the surfaces to be bonded may be exposed to an ammonia dip after a very slight etch, and/or a nitrogen-containing plasma (with or without a separate etch).
  • the nonconductive field region 5 of the element 2 can be brought into contact with corresponding nonconductive regions of the carrier 3.
  • the interaction of the activated surfaces can cause the nonconductive region 5 of the element 2 to directly bond with the corresponding nonconductive regions of the carrier 3 without an intervening adhesive, without application of external pressure, without application of voltage, and at room temperature.
  • the bonding forces of the nonconductive regions can be covalent bonds that are greater than Van der Waals bonds.
  • only nonconductive field regions of the element 2 are directly bonded to corresponding nonconductive regions of the carrier 3.
  • a protective material 7 can be applied over at least a portion of the element 2, including about at least a periphery or side surface 8 of the element 2. In some embodiments, the protective material 7 can be deposited along the side surface 8 and over an upper surface of the carrier 3.
  • the protective material 7 can comprise one or more protective layers, including one or more inorganic layers, such as silicon oxide, silicon nitride, polysilicon, amorphous silicon, a metal, etc.
  • the carrier 3 can be removed from the element 2 and the protective material 7 in any suitable manner.
  • the carrier 3 can comprise a silicon substrate or element with a nano oxide layer 11, which as used herein can include at least one of a native silicon oxide layer and a thermal silicon oxide layer.
  • the carrier 3 in the carrier removal process can be selectively etched using the silicon nano oxide layer 11 as an etch stop.
  • at least a portion of the nano oxide 11 layer can remain after removing the silicon base material of the carrier 3.
  • the entirety of the carrier 3 (e.g ., the silicon base material and the nano oxide layer 11) can be removed.
  • the element 2 can be planarized for bonding, but the carrier 3 may not be planarized prior to direct bonding.
  • both the element 2 and carrier 3 can be planarized for direct bonding.
  • Direct bonding and subsequent removal of the carrier 3 as described herein can advantageously leave a planar surface for a reconstituted wafer for further processing as desired, including for additional direct bonding processes.
  • reconstituted wafers formed on sacrificial or temporary adhesive layers do not reliably provide planar surfaces and thus can lead to subsequent alignment issues, e.g., for subsequent direct bonding of dies for stacking.
  • Such stacking with direct bonding could be by way of direct bonding individual second dies on a first reconstituted wafer, or simultaneously bonding multiple second dies in a second reconstituted wafer.
  • Figures 1A-1C can enable the reconstitution of wafers for direct bonding with improved alignment accuracy.
  • an array of multiple dies can be provided, and as shown below.
  • the elements 2 or dies may become misaligned relative to the carrier 3 due to movement or migration of the adhesive, for example, during or after heating or during placement for bonding.
  • Such misalignments can result in misalignment for subsequently bonded structures and negatively affect the performance of the bonded structures.
  • the embodiments disclosed herein can beneficially reduce misalignment by providing a direct bond interconnection with the carrier 3, which can serve to effectively fix the element 2 or die relative to the carrier 3 for subsequent processing, such as providing a protective material 7 (inorganic or organic) over the element 2, or any other suitable processing.
  • Figure 2 illustrates a plurality of elements 2 directly bonded to a carrier 3, such as a wafer.
  • a carrier 3 such as a wafer.
  • reference numerals in Figure 2 may represent components that are the same as or generally similar to like-numbered components of Figures 1A-1C.
  • each element 2 can include one or more conductive vias 13 connected to back side(s) of corresponding contact pads 6.
  • the conductive vias may initially extend upwardly from the contact pad and terminate within the body of the element 2.
  • the dies or elements 2 can be diced or singulated into a plurality of diced or singulated elements 2.
  • the removal of a silicon substrate using the nano oxide layer 11 may leave a substantially smooth surface for subsequent direct bonding.
  • Figures 3 A-3C show various examples in which elements 2 (e.g . , integrated device dies) are directly bonded to a carrier 3 (e.g., a silicon substrate with nano oxide layer 11) without an intervening adhesive.
  • Figure 3 A illustrates a relatively wide separation or gap G between elements 2
  • Figure 3B illustrates a relatively narrow separation or gap G between elements 2.
  • Figure 3C illustrates additional dummy elements 2’ or dies disposed between active elements 2 or dies, with relatively narrow gaps G therebetween.
  • Providing the narrow gaps G in Figures 3B and 3C can beneficially reduce the amount of protective material 7 used to fill the gaps G in subsequent steps and can enable conformal filling of the gaps G.
  • one or more alignment feature(s) 14 can be provide on the upper surface of the carrier 3.
  • the alignment features 14 can be selectively positioned on the carrier 3 to assist in accurate placement of the elements 2.
  • Figure 4A is a schematic side view of a plurality of elements 2 directly bonded to a carrier 3 and with a protective material 7 applied over the elements 2 and within the gaps G between the elements 2.
  • the elements 2 are illustrated as being all active integrated device dies.
  • some of the elements comprise dummy elements 2’, such as inactive blocks of semiconductor material (e.g ., silicon).
  • a protective layer 7 (such as an inorganic protective layer) can be provided over portions of the elements 2, including around a portion of the periphery (e.g., the side surface 8) within the gaps G and over upper surfaces (which are the back sides 10 in Figures 4A-4B) of the elements 2. Seams 15 such as voids or discontinuities may be present in the protective material 7.
  • the protective layer 7 can include one or a plurality of protective layers, including, e.g., inorganic or organic protective layer(s).
  • the protective layer 7 can comprise inorganic layer(s) such as silicon oxide, silicon nitride, polysilicon, amorphous silicon, or a metal.
  • at least a portion of the protective material 7 can comprise an organic material, such as a molding compound or epoxy.
  • the protective material 7 comprises both a conformal layer and a gap-fill layer.
  • the protective material 7 can assist in affixing the elements 2 to the carrier 3 such that the elements 2 do not shift during subsequent direct bonding processes.
  • the protective material 7 can also assist in protecting the elements 2 during polishing and other processing techniques to prevent damage to the dies (e.g., chipping).
  • Examples of structures and processes for providing protective material 7 on and between adjacent directly bonded dies over a carrier, for use in conjunction with post-bonding thinning and/or singulation processes, are disclosed in U.S. Patent No. 10,204,893, the entire contents of which are hereby incorporated by reference herein in their entirety and for all purposes.
  • Figures 5A-5C illustrate a series of processing steps for forming a reconstituted wafer 20.
  • the reconstituted wafer 20 can be bonded (e.g., directly bonded) to another reconstituted wafer 20 or to other substrates in subsequent steps.
  • the upper surfaces of the conformal protective material 7 can be removed, e.g., by etching, lapping, grinding, polishing, etc.
  • the removal of the protective material 7 can also remove a portion of the back side 10 of the elements 2.
  • the removal step can terminate at the back side 10 of the element 2.
  • a portion of the element 2 from the back side 10 can be removed by etching, lapping, chemical mechanical polishing (CMP), or any other suitable method, to form a thinned back side 10’ of the element 2.
  • this removal step can expose the conductive through substrate vias (TSVs) 13 or other electrical interconnects formed within the elements.
  • the removal step can also form a cavity 16 defined at least in part by the thinned back side 10’ of the element 2 and side walls of the protective material 7.
  • a nonconductive layer 18 (e.g., a second oxide layer) can be provided (e.g., deposited) over the thinned back sides 10’ of the elements 2 and around the exposed vias 13.
  • the provided nonconductive layer 18 for example, silicon oxide
  • the provided nonconductive layer 18 can be lapped or polished to generate a planar surface and to ensure that the nonconductive layer 18 is generally planar relative to the exposed ends of the vias 13 and the protective material.
  • the reconstituted wafer 20 can comprise a front surface 22 configured to be bonded (e.g., direct bonded) to another reconstituted wafer or other type of substrate.
  • the reconstituted wafer 20 can also comprise a back surface 23.
  • the protective material 7 can be disposed between adjacent elements 2 and can extend from the front surface 22 of the reconstituted wafer 20 to the upper surface of the carrier 3.
  • a vertical interface 19 can be defined between the nonconductive layer 18 over the element 2 and the protective material 7.
  • a vertical interface 21 can be defined between the bonding layer 4 and the protective material 7.
  • Figure 6 is a schematic side sectional view of a reconstituted wafer having a second bonding layer 4b configured to directly bond to another reconstituted wafer or substrate.
  • the first bonding layer 4, the contacts 6, and the nonconductive field region 5 of Figures 1A-5 have been renumbered as reference numerals 4a, 6a, and 5a, respectively, in Figure 6.
  • the second bonding layer 4b e.g., a DBI layer having alternating conductive contacts 6b and nonconductive bonding portions (e.g., field regions 5b)
  • the nonconductive layer 18 e.g., a second oxide layer
  • the second bonding layer 4b can extend across multiple (e.g., all) of the elements 2 of the reconstituted wafer 20.
  • a horizontal interface 19 can be formed between the second bonding layer 4b and the nonconductive layer 18, and between the second bonding layer 4b and the underlying protective material 7.
  • FIGs 7A-7B two opposing reconstituted wafers 20a, 20b can be provided and can be directly bonded to form a pair of bonded reconstituted wafers 1 ’ .
  • the reference numerals have been appended with “a” or “b” to denote their respective associations with the reconstituted wafers 20a or 20b.
  • Figure 7A illustrates the two opposing reconstituted wafers 20a, 20b prior to direct bonding.
  • Figure 7B illustrates the two opposing reconstituted wafers 20a, 20b after being directly bonded to one another.
  • Use of direct bonding on the carriers 3 a, 3b provides the planarity desired at the die bonding surfaces for die-to-die direct bonding of conductive and non-conductive surfaces.
  • the carriers may not be used and instead the reconstituted wafers may comprise elements (e.g ., dies) at least partially embedded in a molding compound or encapsulant without the use of a carrier.
  • the nonconductive protective layers can be directly bonded to one another without an adhesive along the bond interface 12.
  • Other non-conductive field regions of the reconstituted wafers 20a, 20b can also be bonded to one another by an adhesive.
  • the conductive contacts 6a, 6b can be directly bonded without an adhesive.
  • some or all of the conductive contacts 6a, 6b can be initially recessed relative to the bonding surfaces.
  • the bonded wafers 20a, 20b can be heated to cause the contacts 6a, 6b to expand and form an electrical contact. After heating, the interface between the contacts 6a and 6b may not be in the same plane as the bond interface 12.
  • Additional reconstituted wafers 20a, 20b can be provided as shown in Figures 8A-8B to provide any number of stacked reconstituted wafers 1’.
  • the stacked reconstituted wafers 1’ can be singulated along singulation streets S to provide a plurality of bonded structures 1.
  • Any suitable number of reconstituted wafers 20a, 20b can be provided to form the stacked reconstituted wafers 1’, which can also be singulated to form any suitable number of bonded structures 1.
  • the singulation can be before removal of the carriers 3 as shown (if sacrificial), or after singulation. In some embodiments, as shown in Figure 8A, both carriers 3a, 3b may not be removed prior to singulation.
  • one carrier 3a can be removed prior to singulation.
  • both carriers 3a, 3b can be removed prior to singulation.
  • removal of the carriers 3a and/or 3b using, for example, an etch process may leave behind a nano oxide layer 11 to facilitate additional direct bonding.
  • Figures 9A-9F and 10A-10E illustrate various face up or face down bonded structures 1 that can result from the methods described herein.
  • the bonded structures 1 shown in Figures 9A-9F and 10A-10E can comprise singulated reconstituted elements 24, such as singulated reconstituted integrated device dies.
  • the singulated reconstituted elements 24 are shown in Figures 9A, 9E and 9F for illustrative purposes to show what structures may result from a singulated reconstituted wafer 20, according to various embodiments.
  • the surfaces nearest to active circuitry or devices can be the front surfaces 22 of the bonded structures 1, while the surfaces opposite the front surfaces 22 can be the back surfaces 23.
  • the directly bonded reconstituted elements 24 of the illustrated embodiments can have coplanar side surfaces as well as a direct bonding interface 12 between conductive (e.g., metal) and nonconductive (e.g., inorganic dielectrics such as oxides, including nitrogen and/or fluorine content to aid direct bonding) surfaces of the reconstituted elements 24, with no intervening adhesives.
  • conductive e.g., metal
  • nonconductive e.g., inorganic dielectrics such as oxides, including nitrogen and/or fluorine content to aid direct bonding
  • Figures 9A-9F illustrate examples of face down bonded structures.
  • the singulated reconstituted element 24 can comprise the element 2, the nonconductive layer 18 disposed on the thinned back side 10’ of the element 2, and bonding layers 4a, 4b at the front and back surfaces 22, 23, respectively.
  • the protective material 7 can extend from the back side 23 to the front side 22 of the reconstituted element 24.
  • the singulated reconstituted element 24 can have a sidewall 25 defined by the outer exposed surface of the protective material.
  • a vertical interface 26 can be defined between the protective material 7 and the element 2, the nonconductive layer 8, and the first and second bonding layers 4a, 4b.
  • the protective material 7 accordingly abuts the bonding layers 4a, 4b, which may be applied before the protective material 7 is provided.
  • one or more of the bonding layers 4a, 4b can extend over the protective material 7 such that the sidewall 25 includes the protective material 7 and a side edge of the bonding layers 4a and/or 4b.
  • Figure 9B illustrates a front-to-back bonding arrangement in which the front surface 22a of the reconstituted element 24a is directly bonded to the back surface 23b of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
  • a first portion 7a of protective material can extend from the back surface 23 a of the reconstituted element 24a to the bonding interface 12.
  • a second portion 7b of protective material can extend from the bonding interface 12 to the front surface 22b of the reconstituted element 24b.
  • Figure 9C illustrates a front-to-front bonding arrangement in which the front surface 22a of the reconstituted element 24a is directly bonded to the front surface 23 a of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
  • the first portion 7a of protective material can extend from the back surface 23a of the reconstituted element 24a to the bonding interface 12.
  • the second portion 7b of protective material can extend from the bonding interface 12 to the back surface 23b of the reconstituted element 24b.
  • Figure 9D illustrates a back-to-back bonding arrangement in which the back surface 23a of the reconstituted element 24a is directly bonded to the back surface 23b of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
  • the first portion 7a of protective material can extend from the front surface 22a of the reconstituted element 24a to the bonding interface 12.
  • the second portion 7b of protective material can extend from the bonding interface 12 to the front surface 22b of the reconstituted element 24b.
  • Figures 9E and 9F illustrate additional examples of singulated reconstituted elements 24 that utilize a second protective layer 40. Additional details regarding methods of forming the reconstituted element 24 of Figures 9E and 9F may be found below in, for example, Figures 11-12C.
  • the second protective material 40 can be applied over the protective material 7.
  • the second protective material 40 may be exposed at the back surface 23 of the reconstituted element 24 adjacent the bonding layer 4b.
  • the protective material 7 can be exposed at the front surface 22 adjacent the bonding layer 4a and underlying the second protective layer 40.
  • the sidewall 25 can include a horizontal interface 42 between the first and second protective materials 7, 25.
  • a vertical interface 41 can be provided between the first and second protective materials 7, 25.
  • the second protective material 40 can also be applied over the protective material 7.
  • a third protective layer 43 can be provided over the second protective material 40.
  • the third protective layer 43 may be exposed at the back surface 23 of the reconstituted element 24.
  • a vertical interface 45 can be provided between the protective material 7 and the third protective material 43.
  • a horizontal interface 46 can be provided between the second protective material 40 and the third protective material 43.
  • Figures 10A-10E illustrate examples of face up bonded structures 1. Unless otherwise noted, reference numerals in Figures 10A-10E may refer to the same or generally similar components as reference numerals in Figures 9A-9F.
  • Figure 10A a singulated reconstituted element 24 is shown in a face up orientation.
  • Figures 10B-10D respective reconstituted elements 24a, 24b are directly bonded to one another to form bonded structures.
  • Figure 10B illustrates a front-to-back bonding arrangement in which the front surface 22a of the reconstituted element 24a is directly bonded to the back surface 23b of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
  • a first portion 7 a of protective material can extend from the back surface 23a of the reconstituted element 24a to the bonding interface 12.
  • a second portion 7b of protective material can extend from the bonding interface 12 to the front surface 22b of the reconstituted element 24b.
  • Figure IOC illustrates a back-to-back bonding arrangement in which the back surface 23a of the reconstituted element 24a is directly bonded to the back surface 23b of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
  • the first portion 7a of protective material can extend from the front surface 22a of the reconstituted element 24a to the bonding interface 12.
  • the second portion 7b of protective material can extend from the bonding interface 12 to the front surface 22b of the reconstituted element 24b.
  • Figure 10D illustrates a front-to-front bonding arrangement in which the front surface 22a of the reconstituted element 24a is directly bonded to the front surface 22b of the reconstituted element 24b without an intervening adhesive to form the bonded structure 1.
  • the first portion 7a of protective material can extend from the back surface 23a of the reconstituted element 24a to the bonding interface 12.
  • the second portion 7b of protective material can extend from the bonding interface 12 to the back surface 23b of the reconstituted element 24b.
  • the bonding layers 4a can extend over the protective material 7a, 7b and can be exposed on the sidewall 25.
  • the bonding layer 4a can be provided across the wafer over the protective material 7 such that, when the reconstituted wafer is singulated, the bonding layer 4a is exposed at the sidewall and flush with the protective material 7 at the sidewall 25.
  • Figure 10E illustrates a singulated reconstituted element 24 that has a second protective material 40 disposed over side and upper surfaces of the protective material 7.
  • the first front bonding layer 4a can be coplanar or flush with the second protective material 40.
  • the second back bonding layer 4b can be coplanar or flush with the protective material 7.
  • Figure 11 illustrates another embodiment similar to those described above, except an additional filler material can serve as a second protective material 40 and may be provided over a conformal protective material 7 in the gaps G between adjacent elements 2.
  • the protective material 7 can be deposited conformally over the back sides 10 and side surface 8 of the elements 2 and over the upper surface of the carrier 3.
  • the conformal protective material 7 can have gaps G between portions of the protective material 7 disposed on the side surfaces 8 of the elements 2.
  • the second protective material 40 can serve to fill the gaps G.
  • the second filler protective material 40 can comprise any suitable material, including organic or inorganic materials.
  • Figures 12A-12C illustrate a method for forming a reconstituted wafer 20 according to various embodiments.
  • Figure 12A is generally similar to Figure 11, except additional portions of the second protective material 40 are provided on the ends of the outer elements 2.
  • a portion of the protective material 7 and a portion of the second filler protective material 40 can be removed to provide a generally planar surface.
  • the respective portions of the filler and conformal protective materials 40, 7 can be removed by etching, lapping, grinding, chemical mechanical polishing (CMP), etc.
  • a portion of the bulk semiconductor material of the elements 2 or dies can be removed to form a cavity 16, for example, by etching, lapping, CMP, etc., to expose the conductive vias 13.
  • the conformal and/or gap-fill protective materials may have coefficient(s) of thermal expansion that is (are) within 5 ppm/°C of a coefficient of thermal expansion of the elements 2 (e.g., integrated device dies).
  • the second filler protective material 40 can be removed from the structure shown in Figure 12C, and an additional protective material 48 can be provided over the elements 2 and the exposed vias 13.
  • the provided additional protective material 48 and a portion of the protective material 7 can be removed or planarized to form a bonding surface 49 with the vias exposed on the upper surface.
  • Figures 14A- 14C illustrate another embodiment in which a mold compound
  • the vias 13 are shown as being exposed on the back side, but in other embodiments, the vias 13 can be buried as illustrated above. As shown in Figure 14B, a metal
  • the metal 51 (such as copper) can be provided over the mold compound 51 as shown in Figure 14B.
  • the metal 51 can be provided using an electroless plating process, a sputtering process, or any other suitable method.
  • the metal 51 can be planarized, for example, by chemical mechanical polishing (CMP), or any other suitable method.
  • CMP chemical mechanical polishing
  • structures that utilize an organic material for the mold compound may be challenging to planarize using CMP to sufficient smoothness (e.g ., less than 5 nm, etc.).
  • CMP chemical mechanical polishing
  • Figures 15A-15C are generally similar to Figures 14A-14C, except in Figures 15A-15C, a second metal 52 can be provided over the carrier 3 between the carrier 3 and the mold compound 50.
  • Figures 16A-16C illustrate another embodiment in which a protective coating 53 or layer (e.g. , silicon oxide) can be provided between the mold compound 50 and the carrier 3.
  • a protective coating can also be provided after die placement and before metal deposition in various embodiments.
  • the protective coating 53 can conformally coat the upper surface of the carrier 3 and upper and side surfaces of the elements 3.
  • the mold compound 50 can be provided over the protective coating 53 and between the elements 2.
  • the metal 51 can be provided over the mold compound 50 as explained above.
  • the portions of the protective coating 53 that overlie the elements 2 can be removed using a polishing, grinding, or lapping process to expose the vias 13.
  • the metal 51 and element 2 can be planarized to form a smooth surface for bonding.
  • FIGs 17A-17D illustrates additional bonded structures 1 that can be provided with the methods disclosed herein.
  • the bonded structure 1 can include a plurality of elements 2, which can include combinations of integrated device dies and interposers. Thus, the methods disclosed herein can be used for active and/or inactive devices.
  • an insulating column 55 can be provided to separate the adjacent elements 2 in the upper reconstituted element.
  • the bonded structure 1 can include one or more redistribution layers (RDLs) 57 which can include lateral conductive routing traces to carry signals laterally inward or outward.
  • the RDLs 57 can enable fan-in or fan-out arrangements for connecting to an external package substrate.
  • a conductive via 56 can be provided in the insulating column 56 to carry signals from the lower element 2 to the upper surface of the bonded structure 1.
  • the bonded structure 1 can include both the via 56 in the insulating column 56 and the RDL(s) 57. Skilled artisans will understand that additional combinations may be suitable.
  • Integrated device packages can include one or multiple integrated device dies (e.g . , chips) that have active circuitry, such as transistors and other types of active devices.
  • the integrated device dies can be mounted to a carrier, such as a semiconductor interposer, a semiconductor or dielectric (e.g. , glass) substrate, another integrated device die, a reconstituted wafer or element, etc.
  • a molding compound or encapsulant can be provided over the integrated device dies and exposed surfaces of the package substrate.
  • the molding compound can comprise a polymer material, such as an epoxy or potting compound.
  • the material of the molding compound can have a coefficient of thermal expansion (CTE) that differs from the CTE of the carrier and/or of the integrated device die(s).
  • CTE coefficient of thermal expansion
  • the CTE mismatch between the molding compound and the carrier (and/or integrated device die(s)) may induce stresses in the carrier and/or integrated device die(s).
  • the stresses induced by CTE mismatch can cause cracking and/or warpage of the carrier and/or integrated device die(s), which can reduce package yield and/or affect system performance. Accordingly, there remains a continuing need for improved packages that reduce stresses due to CTE mismatch between molding compound and the carrier (and/or integrated device die(s)).
  • Figure 18A is a schematic side sectional view of an integrated device package 82, according to various embodiments.
  • Figure 18B is a schematic top plan view of the integrated device package 82 of Figure 18 A.
  • the package 82 can comprise a carrier 103 and a plurality of integrated device dies 102 mounted to an upper surface of the carrier 103.
  • the integrated device dies 102 can comprise active circuitry.
  • the integrated device dies 102 can comprise processor die(s), memory die(s), sensor die(s), microelectromechanical systems (MEMS) dies, or any other suitable device that includes active circuitry (such as transistors or other active devices).
  • MEMS microelectromechanical systems
  • Three integrated device dies 102 are shown in the top view of Figure 18B, but it should be appreciated that any suitable number of device dies 102 can be provided.
  • one or two integrated device dies 102 can be mounted to the carrier 103, or more than three integrated device dies 102 can be mounted to the carrier.
  • the integrated device dies 102 are spaced apart laterally along the carrier 103.
  • integrated device dies 102 can be stacked vertically in order to reduce package footprint.
  • the carrier 103 can comprise any suitable support structure for the integrated device dies 102.
  • the carrier 103 can comprise an interposer (such as a semiconductor interposer), a semiconductor or dielectric (e.g ., glass) substrate, another integrated device die (e.g., an active chip with active electronic circuitry), a reconstituted wafer or element, etc.
  • the carrier 103 can comprise a material (e.g., a semiconductor material, a dielectric material, etc.) having a first CTE.
  • the integrated device dies 102 can have a CTE that is substantially similar to the first CTE of the carrier 103.
  • bulk material of one or more of the dies 102 may be the same material as corresponding bulk material of the carrier 103.
  • the carrier 103 can comprise silicon, glass, or any other suitable material.
  • the carrier 103 can comprise an integrated device die (such as a processor die) that has a larger lateral footprint than the dies 102.
  • the integrated device dies 102 can be mounted to the carrier 103 in any suitable manner.
  • the dies 102 can be directly hybrid bonded to the carrier 103 without an adhesive, as explained herein.
  • nonconductive field regions of the dies 102 can be directly bonded to corresponding nonconductive field regions of the carrier 103 without an adhesive.
  • conductive contacts of the dies 102 can be directly bonded to corresponding conductive contacts of the carrier 103 without an adhesive.
  • the dies 102 can be mounted to the carrier 103 with an adhesive.
  • the carrier 103 can remain coupled to the dies 102 such that the carrier 103 remains present in the larger electronic system.
  • the carrier 103 can comprise a temporary structure (such as a mounting tape or sacrificial substrate) that is removed ( e.g ., lifted off or etched away) and not present in the final electronic package or system.
  • a molding compound 108 can be provided over the integrated device dies 102 and over an exposed upper surface of the carrier 103.
  • the molding compound 108 is hidden in the top view of Figure 18B for ease of illustration.
  • the integrated device dies 102 can be at least partially embedded (e.g., completely embedded or buried) within the molding compound 108.
  • the molding compound 108 can comprise a polymer material (such as an epoxy or potting compound) that has a second CTE that is different from the first CTE of the carrier 103 (and/or of the dies 102).
  • the second CTE of the molding compound 108 can differ from the first CTE of the carrier 103 (and/or of the dies 102) by an amount that is sufficiently large so as cause CTE- induced stresses on the carrier 103 and/or dies 102 (e.g., the CTE mismatch can be up to about 12 ppm in some cases).
  • the CTE mismatch between the molding compound 108 and the carrier 103 (and/or dies 102) can induce stresses that cause warpage, cracks, or other types of damage to the components of the package 82.
  • the package 82 can include one or a plurality of stress compensation elements 104a- 104d mounted to the upper surface of the carrier 103.
  • the stress compensation elements 104a- 104d can be disposed around the integrated device dies 102, such that the integrated device dies 102 are disposed within an interior region of the package 82 surrounded by the stress compensation elements 104a- 104d.
  • the molding compound 108 can also be provided or applied over the stress compensation elements 104a- 104d, such that the stress compensation elements 104a- 104d are at least partially embedded in the molding compound 108.
  • the stress compensation elements 104a- 104d can be spaced apart from one another and from the dies 102 by intervening portions of the molding compound 108.
  • the stress compensation elements 104a- 104d can comprise a semiconductor material (e.g., silicon), an insulating material (e.g., glass), or any other suitable material type that has a CTE that substantially matches (or is close to) the second CTE of the carrier 103 and/or the dies 102.
  • the stress compensation elements 104a- 104d can comprise the same material as the carrier 103 and/or the dies 102.
  • the stress compensation elements 104a- 104d can comprise a material that is different from that of the carrier 103 and/or the dies 102.
  • Each stress compensation element 104a- 104d can comprise the same material, or some (or all) can comprise different materials.
  • the CTE of the stress compensation elements 104a- 104d can be within 10% of the second CTE of the carrier 103 and/or of the integrated device dies 102, within 5% of the second CTE, or within 1% of the second CTE.
  • the CTE of the stress compensation elements 104a- 104d can be less than 10 ppm, less than 8 ppm, or less than 7 ppm.
  • the CTE of the stress compensation elements 104a- 104d can be in a range of 3 ppm to 7 ppm.
  • the stress compensation elements 104a- 104d can reduce the stresses imparted to the carrier 103 and/or the dies 102, since the material composition of the stress compensation elements 104a- 104d is selected to have a CTE that substantially matches that of the carrier 103 and/or the dies 102.
  • the CTE-matched stress compensation elements 104a- 104d can be provided over a large area of the carrier 103 so as to serve as a stress-matched filler that compensates or reduces any stresses induced by the CTE mismatch between the molding compound 108 and the carrier 103 and/or dies 102.
  • the stress compensation elements 104a- 104d can be mounted so as to cover most of an unoccupied area of the carrier 103 (e.g., regions of the carrier 103 that do not support the dies 102 or other electronic components or devices), e.g., at least 20%, at least 50%, at least 75%, at least 85%, or at least 90% of the unoccupied area of the carrier 103.
  • the stress compensation elements 104a-104d can be mounted so as to cover a range of 20% to 90% of the unoccupied area of the carrier 103, a range of 35% to 90% of the unoccupied area of the carrier 103, or a range of 50% to 90% of the unoccupied area of the carrier 103.
  • the stress compensation elements 104a- 104d can laterally overlap such that all lines perpendicular to opposing side edges 105a, 105b can pass through or intersect at least one stress compensation element 104a- 104d. In such arrangements, the stress compensation elements 104a- 104d can serve to prevent or arrest cracks from propagating through the carrier 103.
  • the stress compensation elements 104a-104d can be disposed between the outer side edges 105a-105d of the package 82 and the integrated device dies 102 such that at least one lateral side edge 109 of each integrated device die 102 lies in a corresponding plane that intersects at least one stress compensation element 104a- 104d.
  • a majority (or all) of the side edges 109 of the dies 102 can lie in respective planes that intersect at least one stress compensation element 104a- 104d.
  • Figure 18C is a schematic top plan view of an integrated device package 82, that includes increased lateral overlap among the stress compensation elements 104a- 104d. Unless otherwise noted, the components of Figure 18C may be the same as or generally similar to like-numbered components of Figures 18A-18B.
  • stress compensation element 104b is vertically (as shown in the top view) shortened, and stress compensation element 104d is horizontally (as shown in the top view) lengthened as compared to Figure 18B.
  • stress compensation element 104d can extend to and be exposed along side edge 105b.
  • all lines perpendicular to each side edge 105a-105d can pass through or intersect with at least one stress compensation element 104a- 104d, which can prevent or arrest crack propagation.
  • the stress compensation elements 104a- 104d can comprise dummy stress compensation elements that are devoid of active circuitry, e.g., there are no active devices in the dummy stress compensation elements.
  • the dummy stress compensation elements can comprise dummy pieces or blocks of a semiconductor material (such as silicon) or a dielectric material (such as glass) without any active circuitry.
  • the use of dummy elements can provide further benefits because no circuitry or devices need be patterned or formed in the elements 104a- 104d, which can reduce processing costs and complexity.
  • one or more of the stress compensation elements 104a- 104d may comprise an active integrated device die with active circuitry or devices.
  • the use of multiple stress compensation elements 104a- 104d can beneficially enable the package assembler to pick and place the elements 104a- 104d at desired locations, e.g., at locations with high susceptibility to cracking and/or in targeted spaces over the carrier 103.
  • the stress compensation elements 104a- 104d can be mounted to the carrier 103 in any suitable manner.
  • the stress compensation elements 104a- 104d can be directly bonded to the carrier 103 without an adhesive.
  • the stress compensation elements 104a- 104d can comprise dummy stress compensation elements without active circuitry.
  • the stress compensation elements 104a- 104d can comprise nonconductive field regions that are directly bonded to corresponding nonconductive field regions of the carrier 103 along a bond interface without an adhesive.
  • the stress compensation elements 104a- 104d may be directly bonded such that the bond interface between the elements 104a- 104d and the carrier 103 includes only nonconductive-to-nonconductive direct bonds (e.g., the bond interface is devoid of conductor-to-conductor or metal-to-metal direct bonds).
  • the stress compensation elements 104a- 104d can be directly bonded to the carrier 103 utilizing only nonconductive-to-nonconductive direct bonds, e.g., a nonconductive or dielectric bonding layer of the elements 104a- 104d can be directly bonded to a corresponding nonconductive or dielectric bonding layer of the carrier 103 without an adheisve.
  • the nonconductive-to-nonconductive direct bonds can comprise one type or multiple different types of nonconductive material(s) along the bond interface.
  • one or more elements such as dies
  • the carrier 103 can be hybrid direct bonded to the carrier 103 along a bond interface without an adhesive such that nonconductive field regions and conductive contact pads of the one or more elements (e.g., dies 102) are directly bonded to corresponding nonconductive field regions and conductive contacts of the carrier 103.
  • One or more other elements can be directly bonded to the carrier 103 without an adhesive along the bond interface such that the bond interface between the stress compensation elements 104a- 104d and the carrier 103 includes only nonconductive-to-nonconductive direct bonds (e.g., directly bonded dielectric bonding layers of the elements 104a- 104d and carrier
  • the nonconductive field regions of the dies 102, stress compensation elements 104a- 104d, and/or carrier 103 can comprise an inorganic dielectric material (e.g., silicon oxide).
  • the nonconductive field regions can comprise unpatterned portions of the dies 102, stress compensation elements 104a- 104d, and/or carrier 103.
  • the bond interface can include signature indicative of direct nonconductive bonds, such as nitrogen terminated surfaces, fluorine peak(s) at the bond interface and at upper and/or lower interfaces of dielectric bonding layers of the elements.
  • both nonconductive field regions and contact pads of the stress compensation elements 104a- 104d can be directly bonded to corresponding nonconductive field regions and contact pads of the carrier 103.
  • the stress compensation elements 104a- 104d can be bonded to the carrier 103 with an adhesive.
  • the carrier 103 can be mounted to an external device, such as a system motherboard, or to another structure.
  • the carrier 103 can comprise a temporary support structure that can be removed after the molding compound 108 is applied.
  • Four stress compensation elements 104a-104d are shown in Figure 18B, but it should be appreciated that fewer than four, or more than four, stress compensation elements 104a- 104d can be provided.
  • the package 82 can comprise outer side edges 105a-105d.
  • the package 82 can be formed from a singulation process by which a larger wafer or reconstituted wafer is singulated along singulation streets S to yield a plurality of singulated packages 82.
  • singulation can comprise a sawing process, an etching process, or any other suitable process by which packages 82 can be formed from a larger wafer or reconstituted wafer.
  • the outer side edges 105a- 105d can comprise singulation markings indicative of the singulation process.
  • the singulation markings can comprise saw markings, such as striations in the singulated surface.
  • the singulation markings can comprise marks or microstmctures indicative of the etch pathway.
  • the outer side edge 105b can include an outer edge of stress compensation element 104d, an edge of the carrier 103 and the molding compound, each of which may include markings indicative of the singulation process.
  • the stress compensation elements 104a-104d can be positioned anywhere along the carrier 103.
  • some or all of the stress compensation elements 104a-104d can be positioned laterally inset relative to the outer side edges 105a- 105d of the package 82 such that the stress compensation elements 104a- 104d are embedded in the molding compound 108.
  • the singulation streets S can pass through one or more of the stress compensation elements 104a- 104d such that, upon singulation, the molding compound 108 and one or more stress compensation elements 104a- 104d can be exposed along one or more outer side edges 105a- 105d of the package 82.
  • stress compensation elements 104a, 104c can comprise side edges 106a, 106c that are exposed at the corresponding outer side edges 105a, 105c of the package 82.
  • side edges 107 of the molding compound 108 can be exposed along the outer side edges 105a- 105d of the package 82.
  • the exposed side edges 106a, 106c of the stress compensation elements 104a, 104c can be flush with the side edges 107 of the molding compound 108, including portions of the molding compound 108 that are over the stress compensation elements 104a, 104c and portions of the molding compound 108 that are laterally adjacent the stress compensation elements 104a, 104c.
  • some stress compensation elements 104b, 104d can be laterally inset relative to the outer side edges 105b, 105d of the package 82, such that the elements 104b, 104d may be completely embedded in the molding compound 108. In some embodiments, all of the stress compensation elements 104a- 104d can be laterally inset relative to the outer side edges 105a- 105d.
  • FIG 19 is a schematic diagram of a system 80 incorporating one or more integrated device packages 82, according to various embodiments.
  • the system 80 can comprise any suitable type of electronic device, such as a mobile electronic device (e.g ., a smartphone, a tablet computing device, a laptop computer, etc.), a desktop computer, an automobile or components thereof, a stereo system, a medical device, a camera, or any other suitable type of system.
  • the electronic device can comprise a microprocessor, a graphics processor, an electronic recording device, or digital memory.
  • the system 80 can include one or more device packages 82 which are mechanically and electrically connected to the system 80, e.g., by way of one or more motherboards.
  • Each package 82 can comprise one or more integrated device dies and/or bonded structures 1.
  • the integrated device dies and/or bonded structures can comprise any of the integrated device packages and/or bonded structures shown and described above in connection with Figures 1A-18B.
  • an integrated device package can comprise a carrier an a molding compound over a portion of an upper surface of the carrier.
  • the integrated device package can comprise an integrated device die mounted to the carrier and at least partially embedded in the molding compound, the integrated device die comprising active circuitry.
  • the integrated device package can comprise a stress compensation element mounted to the carrier and at least partially embedded in the molding compound, the stress compensation element spaced apart from the integrated device die, the stress compensation element comprising a dummy stress compensation element devoid of active circuitry. At least one of the stress compensation element and the integrated device die can be directly bonded to the carrier without an adhesive.
  • an integrated device package in another embodiment, can include a molding compound and an integrated device die at least partially embedded in the molding compound, the integrated device die comprising active circuitry.
  • the integrated device package can include a plurality of dummy stress compensation elements at least partially embedded in the molding compound, the plurality of dummy stress compensation elements devoid of active circuitry, the plurality of dummy stress compensation element spaced apart from one another by the molding compound.
  • a method of forming an integrated device package can include providing a molding compound over an integrated device die and a plurality of dummy stress compensation elements, the plurality of dummy stress compensation elements spaced apart from one another by the molding compound.
  • the integrated device die can comprise active circuitry.
  • the plurality of dummy stress compensation elements can be devoid of active circuitry.
  • an integrated device package in another embodiment, can comprise a molding compound and an integrated device die at least partially embedded in the molding compound,, the integrated device die comprising active circuitry.
  • the integrated device package can comprise a stress compensation element at least partially embedded in the molding compound and spaced apart from the integrated device die. The molding compound and the stress compensation element can be exposed at an outer side edge of the integrated device package.
  • an electronic component in another embodiment, can comprise a carrier having a first nonconductive field region and a first conductive contact.
  • the electronic component can comprise a first element directly hybrid bonded to the carrier without an adhesive, a second nonconductive field region of the first element directly bonded to the first nonconductive field region of the carrier without an adhesive and a second conductive contact of the first element directly bonded to the first conductive contact of the carrier.
  • the electronic component can comprise a second element directly bonded to the carrier without an adhesive such that only a third nonconductive field region of the second element is directly bonded to the first nonconductive field region of the carrier.
  • an electronic component in another embodiment, can include a carrier having a first nonconductive field region and a first conductive contact.
  • the electronic component can include a first element directly hybrid bonded to the carrier without an adhesive, a second nonconductive field region of the first element directly bonded to the first nonconductive field region of the carrier without an adhesive and a second conductive contact of the first element directly bonded to the first conductive contact of the carrier.
  • the electronic component can include a second element directly bonded to the carrier without an adhesive, wherein the second element does not include any conductive contacts that are directly bonded to the carrier.
  • a bonded structure can include a first reconstituted element comprising a first element and having a first side comprising a first bonding surface and a second side opposite the first side.
  • the first reconstituted element can comprise a first protective material disposed about a first sidewall surface of the first element.
  • the bonded structure can comprise a second reconstituted element comprising a second element and having a first side comprising a second bonding surface and a second side opposite the first side.
  • the first reconstituted element can comprise a second protective material disposed about a second sidewall surface of the second element.
  • the second bonding surface of the first side of the second reconstituted element can be directly bonded to the first bonding surface of the first side of the first reconstituted element without an intervening adhesive along a bonding interface.
  • the first protective material can be flush with the first bonding surface and the second protective material can be flush with the second bonding surface.
  • a bonded structure in another embodiment, can include a first reconstituted element comprising a first element and having a first side and a second side opposite the first side.
  • the bonded structure can include a second reconstituted element comprising a second element and having a first side and a second side opposite the first side, the first side of the second reconstituted element directly bonded to the first side of the first reconstituted element without an intervening adhesive along a bonding interface.
  • the bonded structure can include a protective material disposed about respective first and second side surfaces of the first and second elements.
  • the bonded structure can include a nonconductive layer disposed between the first and second elements, the nonconductive layer flush with at least one of the first and second side surfaces of the first and second elements such that an interface is provided between the protective material and the nonconductive layer.
  • a bonded structure in another embodiment, can include a first reconstituted wafer comprising a plurality of first elements.
  • the bonded structure can comprise a second reconstituted wafer comprising a plurality of second elements.
  • the first and second reconstituted wafers can be directly bonded to one another without an adhesive.
  • a bonding method can include applying a first protective material over a plurality of first elements to form a first reconstituted wafer.
  • the bonding method can include applying a second protective material over a plurality of second elements to form a second reconstituted wafer.
  • the bonding method can include directly bonding the first reconstituted wafer to the second reconstituted wafer without an adhesive.
  • a bonding method can include directly bonding a first element to a carrier without an adhesive.
  • the carrier can comprise a silicon carrier with a silicon oxide layer disposed directly onto a surface of the silicon carrier.
  • the silicon oxide layer can be directly bonded to the first element.
  • the silicon oxide layer can comprise a native oxide layer or a thermal oxide layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Micromachines (AREA)
  • Semiconductor Integrated Circuits (AREA)
PCT/US2021/038696 2020-06-30 2021-06-23 Integrated device packages Ceased WO2022005846A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21833640.2A EP4173032A4 (en) 2020-06-30 2021-06-23 INTEGRATED DEVICE PACKAGING
KR1020237003430A KR102750432B1 (ko) 2020-06-30 2021-06-23 통합 장치 패키지
KR1020247043566A KR20250010110A (ko) 2020-06-30 2021-06-23 통합 장치 패키지
JP2022581735A JP7441979B2 (ja) 2020-06-30 2021-06-23 集積デバイスパッケージ
CN202180055333.2A CN116157918A (zh) 2020-06-30 2021-06-23 集成器件封装件
JP2024023028A JP2024055908A (ja) 2020-06-30 2024-02-19 集積デバイスパッケージ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/917,686 US11631647B2 (en) 2020-06-30 2020-06-30 Integrated device packages with integrated device die and dummy element
US16/917,686 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022005846A1 true WO2022005846A1 (en) 2022-01-06

Family

ID=79031452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/038696 Ceased WO2022005846A1 (en) 2020-06-30 2021-06-23 Integrated device packages

Country Status (7)

Country Link
US (4) US11631647B2 (enExample)
EP (1) EP4173032A4 (enExample)
JP (2) JP7441979B2 (enExample)
KR (2) KR102750432B1 (enExample)
CN (1) CN116157918A (enExample)
TW (1) TW202211398A (enExample)
WO (1) WO2022005846A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230395563A1 (en) * 2022-06-02 2023-12-07 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple non-active dies in a multi-die package

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109092B2 (en) 2003-05-19 2006-09-19 Ziptronix, Inc. Method of room temperature covalent bonding
US7485968B2 (en) 2005-08-11 2009-02-03 Ziptronix, Inc. 3D IC method and device
US8735219B2 (en) 2012-08-30 2014-05-27 Ziptronix, Inc. Heterogeneous annealing method and device
US10886250B2 (en) 2015-07-10 2021-01-05 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US9953941B2 (en) 2015-08-25 2018-04-24 Invensas Bonding Technologies, Inc. Conductive barrier direct hybrid bonding
US10204893B2 (en) 2016-05-19 2019-02-12 Invensas Bonding Technologies, Inc. Stacked dies and methods for forming bonded structures
US10580735B2 (en) 2016-10-07 2020-03-03 Xcelsis Corporation Stacked IC structure with system level wiring on multiple sides of the IC die
US10719762B2 (en) 2017-08-03 2020-07-21 Xcelsis Corporation Three dimensional chip structure implementing machine trained network
US10672663B2 (en) 2016-10-07 2020-06-02 Xcelsis Corporation 3D chip sharing power circuit
TWI892323B (zh) 2016-10-27 2025-08-01 美商艾德亞半導體科技有限責任公司 用於低溫接合的結構和方法
US10002844B1 (en) 2016-12-21 2018-06-19 Invensas Bonding Technologies, Inc. Bonded structures
KR102320673B1 (ko) 2016-12-28 2021-11-01 인벤사스 본딩 테크놀로지스 인코포레이티드 적층된 기판의 처리
US20180182665A1 (en) 2016-12-28 2018-06-28 Invensas Bonding Technologies, Inc. Processed Substrate
KR20230156179A (ko) 2016-12-29 2023-11-13 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 집적된 수동 컴포넌트를 구비한 접합된 구조체
WO2018169968A1 (en) 2017-03-16 2018-09-20 Invensas Corporation Direct-bonded led arrays and applications
US10515913B2 (en) 2017-03-17 2019-12-24 Invensas Bonding Technologies, Inc. Multi-metal contact structure
US10508030B2 (en) 2017-03-21 2019-12-17 Invensas Bonding Technologies, Inc. Seal for microelectronic assembly
US10269756B2 (en) 2017-04-21 2019-04-23 Invensas Bonding Technologies, Inc. Die processing
US10879212B2 (en) 2017-05-11 2020-12-29 Invensas Bonding Technologies, Inc. Processed stacked dies
US10446441B2 (en) 2017-06-05 2019-10-15 Invensas Corporation Flat metal features for microelectronics applications
US10217720B2 (en) 2017-06-15 2019-02-26 Invensas Corporation Multi-chip modules formed using wafer-level processing of a reconstitute wafer
US10840205B2 (en) 2017-09-24 2020-11-17 Invensas Bonding Technologies, Inc. Chemical mechanical polishing for hybrid bonding
US11031285B2 (en) 2017-10-06 2021-06-08 Invensas Bonding Technologies, Inc. Diffusion barrier collar for interconnects
WO2019090057A1 (en) * 2017-11-02 2019-05-09 Nextinput, Inc. Sealed force sensor with etch stop layer
US11380597B2 (en) 2017-12-22 2022-07-05 Invensas Bonding Technologies, Inc. Bonded structures
US10923408B2 (en) 2017-12-22 2021-02-16 Invensas Bonding Technologies, Inc. Cavity packages
US10727219B2 (en) 2018-02-15 2020-07-28 Invensas Bonding Technologies, Inc. Techniques for processing devices
US11169326B2 (en) 2018-02-26 2021-11-09 Invensas Bonding Technologies, Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
US11256004B2 (en) 2018-03-20 2022-02-22 Invensas Bonding Technologies, Inc. Direct-bonded lamination for improved image clarity in optical devices
US10991804B2 (en) 2018-03-29 2021-04-27 Xcelsis Corporation Transistor level interconnection methodologies utilizing 3D interconnects
US11056348B2 (en) 2018-04-05 2021-07-06 Invensas Bonding Technologies, Inc. Bonding surfaces for microelectronics
US10790262B2 (en) 2018-04-11 2020-09-29 Invensas Bonding Technologies, Inc. Low temperature bonded structures
US11244916B2 (en) 2018-04-11 2022-02-08 Invensas Bonding Technologies, Inc. Low temperature bonded structures
US10964664B2 (en) 2018-04-20 2021-03-30 Invensas Bonding Technologies, Inc. DBI to Si bonding for simplified handle wafer
US11004757B2 (en) 2018-05-14 2021-05-11 Invensas Bonding Technologies, Inc. Bonded structures
US11276676B2 (en) 2018-05-15 2022-03-15 Invensas Bonding Technologies, Inc. Stacked devices and methods of fabrication
US10923413B2 (en) 2018-05-30 2021-02-16 Xcelsis Corporation Hard IP blocks with physically bidirectional passageways
KR102878117B1 (ko) 2018-06-13 2025-10-28 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 패드로서의 tsv
US11393779B2 (en) 2018-06-13 2022-07-19 Invensas Bonding Technologies, Inc. Large metal pads over TSV
US10910344B2 (en) 2018-06-22 2021-02-02 Xcelsis Corporation Systems and methods for releveled bump planes for chiplets
WO2020010056A1 (en) 2018-07-03 2020-01-09 Invensas Bonding Technologies, Inc. Techniques for joining dissimilar materials in microelectronics
US11462419B2 (en) 2018-07-06 2022-10-04 Invensas Bonding Technologies, Inc. Microelectronic assemblies
US11158606B2 (en) 2018-07-06 2021-10-26 Invensas Bonding Technologies, Inc. Molded direct bonded and interconnected stack
US12406959B2 (en) 2018-07-26 2025-09-02 Adeia Semiconductor Bonding Technologies Inc. Post CMP processing for hybrid bonding
US11515291B2 (en) 2018-08-28 2022-11-29 Adeia Semiconductor Inc. Integrated voltage regulator and passive components
US11296044B2 (en) 2018-08-29 2022-04-05 Invensas Bonding Technologies, Inc. Bond enhancement structure in microelectronics for trapping contaminants during direct-bonding processes
US11011494B2 (en) 2018-08-31 2021-05-18 Invensas Bonding Technologies, Inc. Layer structures for making direct metal-to-metal bonds at low temperatures in microelectronics
US11158573B2 (en) 2018-10-22 2021-10-26 Invensas Bonding Technologies, Inc. Interconnect structures
US11244920B2 (en) 2018-12-18 2022-02-08 Invensas Bonding Technologies, Inc. Method and structures for low temperature device bonding
US11476213B2 (en) 2019-01-14 2022-10-18 Invensas Bonding Technologies, Inc. Bonded structures without intervening adhesive
US11387202B2 (en) 2019-03-01 2022-07-12 Invensas Llc Nanowire bonding interconnect for fine-pitch microelectronics
US11901281B2 (en) 2019-03-11 2024-02-13 Adeia Semiconductor Bonding Technologies Inc. Bonded structures with integrated passive component
US10854578B2 (en) 2019-03-29 2020-12-01 Invensas Corporation Diffused bitline replacement in stacked wafer memory
US11610846B2 (en) 2019-04-12 2023-03-21 Adeia Semiconductor Bonding Technologies Inc. Protective elements for bonded structures including an obstructive element
US11373963B2 (en) 2019-04-12 2022-06-28 Invensas Bonding Technologies, Inc. Protective elements for bonded structures
US11205625B2 (en) 2019-04-12 2021-12-21 Invensas Bonding Technologies, Inc. Wafer-level bonding of obstructive elements
US11355404B2 (en) 2019-04-22 2022-06-07 Invensas Bonding Technologies, Inc. Mitigating surface damage of probe pads in preparation for direct bonding of a substrate
US11385278B2 (en) 2019-05-23 2022-07-12 Invensas Bonding Technologies, Inc. Security circuitry for bonded structures
US12374641B2 (en) 2019-06-12 2025-07-29 Adeia Semiconductor Bonding Technologies Inc. Sealed bonded structures and methods for forming the same
US11296053B2 (en) 2019-06-26 2022-04-05 Invensas Bonding Technologies, Inc. Direct bonded stack structures for increased reliability and improved yield in microelectronics
US12080672B2 (en) 2019-09-26 2024-09-03 Adeia Semiconductor Bonding Technologies Inc. Direct gang bonding methods including directly bonding first element to second element to form bonded structure without adhesive
US12113054B2 (en) 2019-10-21 2024-10-08 Adeia Semiconductor Technologies Llc Non-volatile dynamic random access memory
TW202522760A (zh) * 2019-10-29 2025-06-01 日商東京威力科創股份有限公司 附有晶片之基板的製造方法
US11862602B2 (en) 2019-11-07 2024-01-02 Adeia Semiconductor Technologies Llc Scalable architecture for reduced cycles across SOC
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices
US11876076B2 (en) 2019-12-20 2024-01-16 Adeia Semiconductor Technologies Llc Apparatus for non-volatile random access memory stacks
KR20220120631A (ko) 2019-12-23 2022-08-30 인벤사스 본딩 테크놀로지스 인코포레이티드 결합형 구조체를 위한 전기적 리던던시
US11721653B2 (en) 2019-12-23 2023-08-08 Adeia Semiconductor Bonding Technologies Inc. Circuitry for electrical redundancy in bonded structures
CN115943489A (zh) 2020-03-19 2023-04-07 隔热半导体粘合技术公司 用于直接键合结构的尺寸补偿控制
US11742314B2 (en) 2020-03-31 2023-08-29 Adeia Semiconductor Bonding Technologies Inc. Reliable hybrid bonded apparatus
US11735523B2 (en) 2020-05-19 2023-08-22 Adeia Semiconductor Bonding Technologies Inc. Laterally unconfined structure
US11631647B2 (en) 2020-06-30 2023-04-18 Adeia Semiconductor Bonding Technologies Inc. Integrated device packages with integrated device die and dummy element
US11728273B2 (en) 2020-09-04 2023-08-15 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11764177B2 (en) 2020-09-04 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US12199018B2 (en) 2020-09-18 2025-01-14 Intel Corporation Direct bonding in microelectronic assemblies
US11990448B2 (en) * 2020-09-18 2024-05-21 Intel Corporation Direct bonding in microelectronic assemblies
US11264357B1 (en) 2020-10-20 2022-03-01 Invensas Corporation Mixed exposure for large die
WO2022094587A1 (en) * 2020-10-29 2022-05-05 Invensas Bonding Technologies, Inc. Direct bonding methods and structures
CN116635998A (zh) * 2020-10-29 2023-08-22 美商艾德亚半导体接合科技有限公司 直接键合方法和结构
EP3993021A1 (en) * 2020-11-03 2022-05-04 Infineon Technologies AG Method of manufacturing a bonded substrate stack
WO2022147430A1 (en) 2020-12-28 2022-07-07 Invensas Bonding Technologies, Inc. Structures with through-substrate vias and methods for forming the same
KR20230125309A (ko) 2020-12-28 2023-08-29 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 기판-관통 비아를 가지는 구조체 및 이를 형성하기위한 방법
JP7783896B2 (ja) 2020-12-30 2025-12-10 アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド 導電特徴部を備えた構造体及びその形成方法
WO2022160102A1 (zh) * 2021-01-26 2022-08-04 华为技术有限公司 芯片堆叠结构及其制备方法、芯片堆叠封装、电子设备
WO2023014616A1 (en) 2021-08-02 2023-02-09 Invensas Bonding Technologies, Inc. Protective semiconductor elements for bonded structures
KR20230025587A (ko) * 2021-08-13 2023-02-22 삼성전자주식회사 반도체 패키지 제조 방법
JP2023043671A (ja) * 2021-09-16 2023-03-29 キオクシア株式会社 半導体記憶装置及びその設計方法
EP4483406A1 (en) * 2022-02-24 2025-01-01 Adeia Semiconductor Bonding Technologies Inc. Bonded structures
JP2023137395A (ja) * 2022-03-18 2023-09-29 キオクシア株式会社 半導体装置及び半導体製造装置
US20230369070A1 (en) * 2022-05-12 2023-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package structure and method of manufacturing thereof
US20240186268A1 (en) * 2022-12-01 2024-06-06 Adeia Semiconductor Bonding Technologies Inc. Directly bonded structure with frame structure
US12341083B2 (en) 2023-02-08 2025-06-24 Adeia Semiconductor Bonding Technologies Inc. Electronic device cooling structures bonded to semiconductor elements
US20250079366A1 (en) * 2023-09-05 2025-03-06 Micron Technology, Inc. Semiconductor device with layered dielectric
US20250226308A1 (en) * 2024-01-08 2025-07-10 Micron Technology, Inc. Semiconductor device with backside connection mechanism and methods for manufacturing the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126212B2 (en) 1999-10-01 2006-10-24 Ziptronix, Inc. Three dimensional device integration method and integrated device
US9391143B2 (en) 2000-02-16 2016-07-12 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US20160322330A1 (en) * 2015-04-30 2016-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Fan-out stacked system in package (sip) having dummy dies and methods of making the same
US20180138101A1 (en) * 2016-11-14 2018-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming the same
US10141218B2 (en) 2003-02-07 2018-11-27 Invensas Bonding Technologies, Inc. Room temperature metal direct bonding
US10147641B2 (en) 2005-08-11 2018-12-04 Invensas Bonding Technologies, Inc. 3D IC method and device
US10204893B2 (en) 2016-05-19 2019-02-12 Invensas Bonding Technologies, Inc. Stacked dies and methods for forming bonded structures
US20190189590A1 (en) 2017-12-17 2019-06-20 Rahul Agarwal Stacked dies and dummy components for improved thermal performance
US20190371763A1 (en) * 2018-05-29 2019-12-05 Rahul Agarwal Die stacking for multi-tier 3d integration
US20190385981A1 (en) 2018-06-15 2019-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit package having dummy structures and method of forming same
US20200006173A1 (en) 2018-05-18 2020-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated Circuit Package and Method of Forming Same
KR20200047841A (ko) * 2018-10-24 2020-05-08 삼성전자주식회사 반도체 패키지

Family Cites Families (601)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626408B1 (fr) 1988-01-22 1990-05-11 Thomson Csf Capteur d'image a faible encombrement
JPH0272642A (ja) 1988-09-07 1990-03-12 Nec Corp 基板の接続構造および接続方法
JPH0344067A (ja) 1989-07-11 1991-02-25 Nec Corp 半導体基板の積層方法
US5019673A (en) 1990-08-22 1991-05-28 Motorola, Inc. Flip-chip package for integrated circuits
JPH04337694A (ja) 1991-05-15 1992-11-25 Nec Yamagata Ltd 電子部品保護用樹脂膜
CA2083072C (en) 1991-11-21 1998-02-03 Shinichi Hasegawa Method for manufacturing polyimide multilayer wiring substrate
US6008126A (en) 1992-04-08 1999-12-28 Elm Technology Corporation Membrane dielectric isolation IC fabrication
JPH07193294A (ja) 1993-11-01 1995-07-28 Matsushita Electric Ind Co Ltd 電子部品およびその製造方法
KR960009074A (ko) 1994-08-29 1996-03-22 모리시다 요이치 반도체 장치 및 그 제조방법
DE4433330C2 (de) 1994-09-19 1997-01-30 Fraunhofer Ges Forschung Verfahren zur Herstellung von Halbleiterstrukturen mit vorteilhaften Hochfrequenzeigenschaften sowie eine Halbleiterwaferstruktur
JP3979687B2 (ja) 1995-10-26 2007-09-19 アプライド マテリアルズ インコーポレイテッド ハロゲンをドープした酸化珪素膜の膜安定性を改良する方法
KR100274333B1 (ko) 1996-01-19 2001-01-15 모기 쥰이찌 도체층부착 이방성 도전시트 및 이를 사용한 배선기판
US5956605A (en) 1996-09-20 1999-09-21 Micron Technology, Inc. Use of nitrides for flip-chip encapsulation
US5729896A (en) 1996-10-31 1998-03-24 International Business Machines Corporation Method for attaching a flip chip on flexible circuit carrier using chip with metallic cap on solder
US6221753B1 (en) 1997-01-24 2001-04-24 Micron Technology, Inc. Flip chip technique for chip assembly
JP4032454B2 (ja) 1997-06-27 2008-01-16 ソニー株式会社 三次元回路素子の製造方法
US6097096A (en) 1997-07-11 2000-08-01 Advanced Micro Devices Metal attachment method and structure for attaching substrates at low temperatures
US6049124A (en) 1997-12-10 2000-04-11 Intel Corporation Semiconductor package
US5854507A (en) 1998-07-21 1998-12-29 Hewlett-Packard Company Multiple chip assembly
JP2000100679A (ja) 1998-09-22 2000-04-07 Canon Inc 薄片化による基板間微小領域固相接合法及び素子構造
FR2787241B1 (fr) 1998-12-14 2003-01-31 Ela Medical Sa Composant microelectronique cms enrobe, notamment pour un dispositif medical implantable actif, et son procede de fabrication
JP3532788B2 (ja) 1999-04-13 2004-05-31 唯知 須賀 半導体装置及びその製造方法
US6782610B1 (en) 1999-05-21 2004-08-31 North Corporation Method for fabricating a wiring substrate by electroplating a wiring film on a metal base
JP3767246B2 (ja) 1999-05-26 2006-04-19 富士通株式会社 複合モジュール及びプリント回路基板ユニット
JP2001102479A (ja) 1999-09-27 2001-04-13 Toshiba Corp 半導体集積回路装置およびその製造方法
US6500694B1 (en) 2000-03-22 2002-12-31 Ziptronix, Inc. Three dimensional device integration method and integrated device
JP2001284520A (ja) 2000-04-04 2001-10-12 Matsushita Electric Ind Co Ltd 半導体チップ搭載用の配線基板、配線基板の製造方法、中継接続用の配線基板、半導体装置および半導体装置間接続構造
JP2001313350A (ja) 2000-04-28 2001-11-09 Sony Corp チップ状電子部品及びその製造方法、並びにその製造に用いる疑似ウエーハ及びその製造方法
US7247932B1 (en) 2000-05-19 2007-07-24 Megica Corporation Chip package with capacitor
JP4322402B2 (ja) 2000-06-22 2009-09-02 大日本印刷株式会社 プリント配線基板及びその製造方法
JP3440057B2 (ja) 2000-07-05 2003-08-25 唯知 須賀 半導体装置およびその製造方法
US6423640B1 (en) 2000-08-09 2002-07-23 Taiwan Semiconductor Manufacturing Co., Ltd. Headless CMP process for oxide planarization
US6507115B2 (en) 2000-12-14 2003-01-14 International Business Machines Corporation Multi-chip integrated circuit module
JP3420748B2 (ja) 2000-12-14 2003-06-30 松下電器産業株式会社 半導体装置及びその製造方法
US6686588B1 (en) 2001-01-16 2004-02-03 Amkor Technology, Inc. Optical module with lens integral holder
JP2002359345A (ja) 2001-03-30 2002-12-13 Toshiba Corp 半導体装置及びその製造方法
JP2002353416A (ja) 2001-05-25 2002-12-06 Sony Corp 半導体記憶装置およびその製造方法
US6887769B2 (en) 2002-02-06 2005-05-03 Intel Corporation Dielectric recess for wafer-to-wafer and die-to-die metal bonding and method of fabricating the same
TWI309074B (en) 2002-02-07 2009-04-21 Advanced Epitaxy Technology Method of forming semiconductor device
US6762076B2 (en) 2002-02-20 2004-07-13 Intel Corporation Process of vertically stacking multiple wafers supporting different active integrated circuit (IC) devices
US7319197B2 (en) 2002-05-23 2008-01-15 International Business Machines Corporation Structure of stacked vias in multiple layer electrode device carriers
US7573136B2 (en) 2002-06-27 2009-08-11 Micron Technology, Inc. Semiconductor device assemblies and packages including multiple semiconductor device components
US7105980B2 (en) 2002-07-03 2006-09-12 Sawtek, Inc. Saw filter device and method employing normal temperature bonding for producing desirable filter production and performance characteristics
JP4083502B2 (ja) 2002-08-19 2008-04-30 株式会社フジミインコーポレーテッド 研磨方法及びそれに用いられる研磨用組成物
JP4579489B2 (ja) 2002-09-02 2010-11-10 新光電気工業株式会社 半導体チップ製造方法及び半導体チップ
US7023093B2 (en) 2002-10-24 2006-04-04 International Business Machines Corporation Very low effective dielectric constant interconnect Structures and methods for fabricating the same
US6713857B1 (en) 2002-12-05 2004-03-30 Ultra Tera Corporation Low profile stacked multi-chip semiconductor package with chip carrier having opening and fabrication method of the semiconductor package
JP2004193493A (ja) 2002-12-13 2004-07-08 Nec Machinery Corp ダイピックアップ方法および装置
US7354798B2 (en) 2002-12-20 2008-04-08 International Business Machines Corporation Three-dimensional device fabrication method
TW586677U (en) 2003-01-22 2004-05-01 Via Tech Inc Stack structure of chip package
TWI239629B (en) 2003-03-17 2005-09-11 Seiko Epson Corp Method of manufacturing semiconductor device, semiconductor device, circuit substrate and electronic apparatus
US6908027B2 (en) 2003-03-31 2005-06-21 Intel Corporation Complete device layer transfer without edge exclusion via direct wafer bonding and constrained bond-strengthening process
US7109092B2 (en) 2003-05-19 2006-09-19 Ziptronix, Inc. Method of room temperature covalent bonding
TWI275168B (en) 2003-06-06 2007-03-01 Sanyo Electric Co Semiconductor device and method for making the same
US6873049B2 (en) 2003-07-31 2005-03-29 The Boeing Company Near hermetic power chip on board device and manufacturing method therefor
US6867073B1 (en) 2003-10-21 2005-03-15 Ziptronix, Inc. Single mask via method and device
US7183643B2 (en) 2003-11-04 2007-02-27 Tessera, Inc. Stacked packages and systems incorporating the same
US7205233B2 (en) 2003-11-07 2007-04-17 Applied Materials, Inc. Method for forming CoWRe alloys by electroless deposition
JP2005175423A (ja) 2003-11-18 2005-06-30 Denso Corp 半導体パッケージ
TWI228286B (en) 2003-11-24 2005-02-21 Ind Tech Res Inst Bonding structure with buffer layer and method of forming the same
US7060601B2 (en) 2003-12-17 2006-06-13 Tru-Si Technologies, Inc. Packaging substrates for integrated circuits and soldering methods
KR100538158B1 (ko) 2004-01-09 2005-12-22 삼성전자주식회사 웨이퍼 레벨 적층 칩 접착 방법
US20050161808A1 (en) 2004-01-22 2005-07-28 Anderson Douglas G. Wafer, intermediate wafer assembly and associated method for fabricating a silicon on insulator wafer having an improved edge profile
DE102004013681B3 (de) 2004-03-18 2005-11-17 Infineon Technologies Ag Halbleitermodul mit einem Kopplungssubstrat und Verfahren zur Herstellung desselben
JP4865197B2 (ja) 2004-06-30 2012-02-01 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP5354765B2 (ja) 2004-08-20 2013-11-27 カミヤチョウ アイピー ホールディングス 三次元積層構造を持つ半導体装置の製造方法
US20060057945A1 (en) 2004-09-16 2006-03-16 Chia-Lin Hsu Chemical mechanical polishing process
US7566634B2 (en) 2004-09-24 2009-07-28 Interuniversitair Microelektronica Centrum (Imec) Method for chip singulation
US20060076634A1 (en) 2004-09-27 2006-04-13 Lauren Palmateer Method and system for packaging MEMS devices with incorporated getter
US7262492B2 (en) 2004-09-28 2007-08-28 Intel Corporation Semiconducting device that includes wirebonds
WO2006043122A1 (en) 2004-10-21 2006-04-27 Infineon Technologies Ag Semiconductor package and method to produce the same
TWI303864B (en) 2004-10-26 2008-12-01 Sanyo Electric Co Semiconductor device and method for making the same
FR2880184B1 (fr) 2004-12-28 2007-03-30 Commissariat Energie Atomique Procede de detourage d'une structure obtenue par assemblage de deux plaques
GB0505680D0 (en) 2005-03-22 2005-04-27 Cambridge Display Tech Ltd Apparatus and method for increased device lifetime in an organic electro-luminescent device
TWI242820B (en) 2005-03-29 2005-11-01 Siliconware Precision Industries Co Ltd Sensor semiconductor device and method for fabricating the same
US7364945B2 (en) 2005-03-31 2008-04-29 Stats Chippac Ltd. Method of mounting an integrated circuit package in an encapsulant cavity
JP4275096B2 (ja) 2005-04-14 2009-06-10 パナソニック株式会社 半導体チップの製造方法
US7354862B2 (en) 2005-04-18 2008-04-08 Intel Corporation Thin passivation layer on 3D devices
US7671449B2 (en) 2005-05-04 2010-03-02 Sun Microsystems, Inc. Structures and methods for an application of a flexible bridge
US7884483B2 (en) 2005-06-14 2011-02-08 Cufer Asset Ltd. L.L.C. Chip connector
JP4983049B2 (ja) 2005-06-24 2012-07-25 セイコーエプソン株式会社 半導体装置および電子機器
US7786572B2 (en) 2005-09-13 2010-08-31 Taiwan Semiconductor Manufacturing Company, Ltd. System in package (SIP) structure
US7682937B2 (en) 2005-11-25 2010-03-23 Advanced Laser Separation International B.V. Method of treating a substrate, method of processing a substrate using a laser beam, and arrangement
KR100804392B1 (ko) 2005-12-02 2008-02-15 주식회사 네패스 반도체 패키지 및 그 제조 방법
US7193423B1 (en) 2005-12-12 2007-03-20 International Business Machines Corporation Wafer-to-wafer alignments
DE102005060081B4 (de) 2005-12-15 2007-08-30 Infineon Technologies Ag Elektronisches Bauteil mit zumindest einer Leiterplatte und mit einer Mehrzahl gleichartiger Halbleiterbausteine und Verfahren
US7402442B2 (en) 2005-12-21 2008-07-22 International Business Machines Corporation Physically highly secure multi-chip assembly
US7781309B2 (en) 2005-12-22 2010-08-24 Sumco Corporation Method for manufacturing direct bonded SOI wafer and direct bonded SOI wafer manufactured by the method
US20070158024A1 (en) 2006-01-11 2007-07-12 Symbol Technologies, Inc. Methods and systems for removing multiple die(s) from a surface
TWI299552B (en) 2006-03-24 2008-08-01 Advanced Semiconductor Eng Package structure
US7972683B2 (en) 2006-03-28 2011-07-05 Innovative Micro Technology Wafer bonding material with embedded conductive particles
JP4160083B2 (ja) 2006-04-11 2008-10-01 シャープ株式会社 光学装置用モジュール及び光学装置用モジュールの製造方法
JP4844216B2 (ja) * 2006-04-26 2011-12-28 凸版印刷株式会社 多層回路配線基板及び半導体装置
US7385283B2 (en) 2006-06-27 2008-06-10 Taiwan Semiconductor Manufacturing Co., Ltd. Three dimensional integrated circuit and method of making the same
US7554203B2 (en) 2006-06-30 2009-06-30 Intel Corporation Electronic assembly with stacked IC's using two or more different connection technologies and methods of manufacture
US7750488B2 (en) 2006-07-10 2010-07-06 Tezzaron Semiconductor, Inc. Method for bonding wafers to produce stacked integrated circuits
KR100809696B1 (ko) 2006-08-08 2008-03-06 삼성전자주식회사 사이즈가 상이한 복수의 반도체 칩이 적층된 멀티 칩패키지 및 그 제조방법
TWI305036B (en) 2006-09-28 2009-01-01 Siliconware Precision Industries Co Ltd Sensor-type package structure and fabrication method thereof
US7901989B2 (en) 2006-10-10 2011-03-08 Tessera, Inc. Reconstituted wafer level stacking
JP2008130603A (ja) 2006-11-16 2008-06-05 Toshiba Corp イメージセンサ用ウェハレベルパッケージ及びその製造方法
JP5011981B2 (ja) 2006-11-30 2012-08-29 富士通株式会社 デバイス素子製造方法およびダイシング方法
US7812459B2 (en) 2006-12-19 2010-10-12 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional integrated circuits with protection layers
US8178963B2 (en) 2007-01-03 2012-05-15 Advanced Chip Engineering Technology Inc. Wafer level package with die receiving through-hole and method of the same
US8178964B2 (en) 2007-03-30 2012-05-15 Advanced Chip Engineering Technology, Inc. Semiconductor device package with die receiving through-hole and dual build-up layers over both side-surfaces for WLP and method of the same
US20080165521A1 (en) 2007-01-09 2008-07-10 Kerry Bernstein Three-dimensional architecture for self-checking and self-repairing integrated circuits
US7803693B2 (en) 2007-02-15 2010-09-28 John Trezza Bowed wafer hybridization compensation
US7919410B2 (en) 2007-03-14 2011-04-05 Aptina Imaging Corporation Packaging methods for imager devices
US8609463B2 (en) 2007-03-16 2013-12-17 Stats Chippac Ltd. Integrated circuit package system employing multi-package module techniques
JP2008258383A (ja) 2007-04-04 2008-10-23 Spansion Llc 半導体装置及びその製造方法
EP2137757B1 (en) 2007-04-17 2015-09-02 Imec Method for reducing the thickness of substrates
JP4734282B2 (ja) 2007-04-23 2011-07-27 株式会社日立製作所 半導体チップおよび半導体装置
US8119500B2 (en) 2007-04-25 2012-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer bonding
DE102007020656B4 (de) 2007-04-30 2009-05-07 Infineon Technologies Ag Werkstück mit Halbleiterchips, Halbleiterbauteil und Verfahren zur Herstellung eines Werkstücks mit Halbleiterchips
US7723159B2 (en) 2007-05-04 2010-05-25 Stats Chippac, Ltd. Package-on-package using through-hole via die on saw streets
TWI332790B (en) 2007-06-13 2010-11-01 Ind Tech Res Inst Image sensor module with a three-dimensional dies-stacking structure
US7553752B2 (en) 2007-06-20 2009-06-30 Stats Chippac, Ltd. Method of making a wafer level integration package
US20090001599A1 (en) 2007-06-28 2009-01-01 Spansion Llc Die attachment, die stacking, and wire embedding using film
US20090029274A1 (en) 2007-07-25 2009-01-29 3M Innovative Properties Company Method for removing contamination with fluorinated compositions
US8044497B2 (en) 2007-09-10 2011-10-25 Intel Corporation Stacked die package
US20090127667A1 (en) 2007-11-21 2009-05-21 Powertech Technology Inc. Semiconductor chip device having through-silicon-via (TSV) and its fabrication method
JP2009135348A (ja) 2007-12-03 2009-06-18 Panasonic Corp 半導体チップと半導体装置およびそれらの製造方法
US7871902B2 (en) 2008-02-13 2011-01-18 Infineon Technologies Ag Crack stop trenches
US8120186B2 (en) 2008-02-15 2012-02-21 Qimonda Ag Integrated circuit and method
JP2009212315A (ja) * 2008-03-04 2009-09-17 Elpida Memory Inc 半導体装置及びその製造方法
EP2963675A1 (en) 2008-03-05 2016-01-06 The Board of Trustees of The University of Illinois Stretchable and foldable electronic devices
WO2009114345A1 (en) 2008-03-07 2009-09-17 3M Innovative Properties Company Dicing tape and die attach adhesive with patterned backing
US8064224B2 (en) 2008-03-31 2011-11-22 Intel Corporation Microelectronic package containing silicon patches for high density interconnects, and method of manufacturing same
KR20090106822A (ko) 2008-04-07 2009-10-12 삼성전자주식회사 웨이퍼 본딩 방법 및 그 방법에 의해 본딩된 웨이퍼 구조체
US7968373B2 (en) 2008-05-02 2011-06-28 Stats Chippac Ltd. Integrated circuit package on package system
US8253230B2 (en) 2008-05-15 2012-08-28 Micron Technology, Inc. Disabling electrical connections using pass-through 3D interconnects and associated systems and methods
US8349635B1 (en) 2008-05-20 2013-01-08 Silicon Laboratories Inc. Encapsulated MEMS device and method to form the same
US7969009B2 (en) 2008-06-30 2011-06-28 Qualcomm Incorporated Through silicon via bridge interconnect
JP2010034294A (ja) * 2008-07-29 2010-02-12 Nec Electronics Corp 半導体装置およびその設計方法
US8193632B2 (en) 2008-08-06 2012-06-05 Industrial Technology Research Institute Three-dimensional conducting structure and method of fabricating the same
WO2010024678A1 (en) 2008-09-01 2010-03-04 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Chip die clamping device and transfer method
US9818680B2 (en) 2011-07-27 2017-11-14 Broadpak Corporation Scalable semiconductor interposer integration
US9893004B2 (en) 2011-07-27 2018-02-13 Broadpak Corporation Semiconductor interposer integration
JP2010073964A (ja) 2008-09-19 2010-04-02 Fujitsu Microelectronics Ltd 半導体装置の製造方法
KR20100037300A (ko) 2008-10-01 2010-04-09 삼성전자주식회사 내장형 인터포저를 갖는 반도체장치의 형성방법
US7843052B1 (en) 2008-11-13 2010-11-30 Amkor Technology, Inc. Semiconductor devices and fabrication methods thereof
WO2010059781A1 (en) 2008-11-19 2010-05-27 Semprius, Inc. Printing semiconductor elements by shear-assisted elastomeric stamp transfer
FR2938976A1 (fr) 2008-11-24 2010-05-28 St Microelectronics Grenoble Dispositif semi-conducteur a composants empiles
US7897481B2 (en) 2008-12-05 2011-03-01 Taiwan Semiconductor Manufacturing Company, Ltd. High throughput die-to-wafer bonding using pre-alignment
US8168458B2 (en) 2008-12-08 2012-05-01 Stats Chippac, Ltd. Semiconductor device and method of forming bond wires and stud bumps in recessed region of peripheral area around the device for electrical interconnection to other devices
KR100945800B1 (ko) 2008-12-09 2010-03-05 김영혜 이종 접합 웨이퍼 제조방법
US20100164083A1 (en) 2008-12-29 2010-07-01 Numonyx B.V. Protective thin film coating in chip packaging
US7816856B2 (en) 2009-02-25 2010-10-19 Global Oled Technology Llc Flexible oled display with chiplets
US8610019B2 (en) 2009-02-27 2013-12-17 Mineral Separation Technologies Inc. Methods for sorting materials
CN105140136B (zh) 2009-03-30 2018-02-13 高通股份有限公司 使用顶部后钝化技术和底部结构技术的集成电路芯片
US8476165B2 (en) 2009-04-01 2013-07-02 Tokyo Electron Limited Method for thinning a bonding wafer
JP2010245383A (ja) 2009-04-08 2010-10-28 Elpida Memory Inc 半導体装置および半導体装置の製造方法
US20100258952A1 (en) 2009-04-08 2010-10-14 Interconnect Portfolio Llc Interconnection of IC Chips by Flex Circuit Superstructure
US8013525B2 (en) 2009-04-09 2011-09-06 Global Oled Technology Llc Flexible OLED display with chiplets
US8072056B2 (en) 2009-06-10 2011-12-06 Medtronic, Inc. Apparatus for restricting moisture ingress
US8227904B2 (en) 2009-06-24 2012-07-24 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
US8263434B2 (en) 2009-07-31 2012-09-11 Stats Chippac, Ltd. Semiconductor device and method of mounting die with TSV in cavity of substrate for electrical interconnect of Fi-PoP
JP5304536B2 (ja) 2009-08-24 2013-10-02 ソニー株式会社 半導体装置
US8482132B2 (en) 2009-10-08 2013-07-09 International Business Machines Corporation Pad bonding employing a self-aligned plated liner for adhesion enhancement
JP5697898B2 (ja) 2009-10-09 2015-04-08 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置及びその製造方法
JP2011128140A (ja) 2009-11-19 2011-06-30 Dainippon Printing Co Ltd センサデバイス及びその製造方法
US9202769B2 (en) 2009-11-25 2015-12-01 Stats Chippac, Ltd. Semiconductor device and method of forming thermal lid for balancing warpage and thermal management
EP2339614A1 (en) 2009-12-22 2011-06-29 Imec Method for stacking semiconductor chips
FR2954585B1 (fr) 2009-12-23 2012-03-02 Soitec Silicon Insulator Technologies Procede de realisation d'une heterostructure avec minimisation de contrainte
US8138014B2 (en) 2010-01-29 2012-03-20 Stats Chippac, Ltd. Method of forming thin profile WLCSP with vertical interconnect over package footprint
JP5609144B2 (ja) 2010-02-19 2014-10-22 ソニー株式会社 半導体装置および貫通電極のテスト方法
JP2011171614A (ja) 2010-02-22 2011-09-01 Casio Computer Co Ltd 半導体装置及び半導体装置の製造方法
US9385095B2 (en) 2010-02-26 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. 3D semiconductor package interposer with die cavity
JP5423874B2 (ja) 2010-03-18 2014-02-19 日本電気株式会社 半導体素子内蔵基板およびその製造方法
US8241964B2 (en) 2010-05-13 2012-08-14 Stats Chippac, Ltd. Semiconductor device and method of embedding bumps formed on semiconductor die into penetrable adhesive layer to reduce die shifting during encapsulation
US8674513B2 (en) 2010-05-13 2014-03-18 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures for substrate
JP5517800B2 (ja) 2010-07-09 2014-06-11 キヤノン株式会社 固体撮像装置用の部材および固体撮像装置の製造方法
SG177816A1 (en) 2010-07-15 2012-02-28 Soitec Silicon On Insulator Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
US8481406B2 (en) 2010-07-15 2013-07-09 Soitec Methods of forming bonded semiconductor structures
US8791575B2 (en) 2010-07-23 2014-07-29 Tessera, Inc. Microelectronic elements having metallic pads overlying vias
US8415808B2 (en) 2010-07-28 2013-04-09 Sandisk Technologies Inc. Semiconductor device with die stack arrangement including staggered die and efficient wire bonding
US8361842B2 (en) 2010-07-30 2013-01-29 Taiwan Semiconductor Manufacturing Company, Ltd. Embedded wafer-level bonding approaches
US8288201B2 (en) 2010-08-25 2012-10-16 Stats Chippac, Ltd. Semiconductor device and method of forming FO-WLCSP with discrete semiconductor components mounted under and over semiconductor die
US8435835B2 (en) 2010-09-02 2013-05-07 Stats Chippac, Ltd. Semiconductor device and method of forming base leads from base substrate as standoff for stacking semiconductor die
US9224647B2 (en) 2010-09-24 2015-12-29 Stats Chippac, Ltd. Semiconductor device and method of forming TSV interposer with semiconductor die and build-up interconnect structure on opposing surfaces of the interposer
KR20120032254A (ko) 2010-09-28 2012-04-05 삼성전자주식회사 반도체 적층 패키지 및 이의 제조 방법
FR2966283B1 (fr) 2010-10-14 2012-11-30 Soi Tec Silicon On Insulator Tech Sa Procede pour realiser une structure de collage
US8377798B2 (en) 2010-11-10 2013-02-19 Taiwan Semiconductor Manufacturing Co., Ltd Method and structure for wafer to wafer bonding in semiconductor packaging
US9202715B2 (en) 2010-11-16 2015-12-01 Stats Chippac Ltd. Integrated circuit packaging system with connection structure and method of manufacture thereof
US8476146B2 (en) 2010-12-03 2013-07-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing wafer distortion through a low CTE layer
US8987137B2 (en) 2010-12-16 2015-03-24 Lsi Corporation Method of fabrication of through-substrate vias
US8620164B2 (en) 2011-01-20 2013-12-31 Intel Corporation Hybrid III-V silicon laser formed by direct bonding
JP5682327B2 (ja) 2011-01-25 2015-03-11 ソニー株式会社 固体撮像素子、固体撮像素子の製造方法、及び電子機器
US20120194719A1 (en) 2011-02-01 2012-08-02 Scott Churchwell Image sensor units with stacked image sensors and image processors
JP5659033B2 (ja) 2011-02-04 2015-01-28 株式会社東芝 半導体装置の製造方法
US20120199960A1 (en) 2011-02-07 2012-08-09 Texas Instruments Incorporated Wire bonding for interconnection between interposer and flip chip die
US8988299B2 (en) 2011-02-17 2015-03-24 International Business Machines Corporation Integrated antenna for RFIC package applications
US8623702B2 (en) 2011-02-24 2014-01-07 Stats Chippac, Ltd. Semiconductor device and method of forming conductive THV and RDL on opposite sides of semiconductor die for RDL-to-RDL bonding
EP2686878B1 (en) 2011-03-16 2016-05-18 MEMC Electronic Materials, Inc. Silicon on insulator structures having high resistivity regions in the handle wafer and methods for producing such structures
US8501537B2 (en) 2011-03-31 2013-08-06 Soitec Methods for bonding semiconductor structures involving annealing processes, and bonded semiconductor structures formed using such methods
US8716105B2 (en) 2011-03-31 2014-05-06 Soitec Methods for bonding semiconductor structures involving annealing processes, and bonded semiconductor structures and intermediate structures formed using such methods
KR20120123919A (ko) 2011-05-02 2012-11-12 삼성전자주식회사 칩 적층 반도체 패키지 제조 방법 및 이에 의해 제조된 칩 적층 반도체 패키지
KR102378636B1 (ko) 2011-05-24 2022-03-25 소니그룹주식회사 반도체 장치
US9252172B2 (en) 2011-05-31 2016-02-02 Stats Chippac, Ltd. Semiconductor device and method of forming EWLB semiconductor package with vertical interconnect structure and cavity region
US9029242B2 (en) 2011-06-15 2015-05-12 Applied Materials, Inc. Damage isolation by shaped beam delivery in laser scribing process
KR20130007371A (ko) 2011-07-01 2013-01-18 삼성전자주식회사 반도체 패키지
JP5982748B2 (ja) 2011-08-01 2016-08-31 ソニー株式会社 半導体装置、半導体装置の製造方法、および電子機器
US8697493B2 (en) 2011-07-18 2014-04-15 Soitec Bonding surfaces for direct bonding of semiconductor structures
US8710648B2 (en) 2011-08-09 2014-04-29 Alpha & Omega Semiconductor, Inc. Wafer level packaging structure with large contact area and preparation method thereof
US9190297B2 (en) 2011-08-11 2015-11-17 Stats Chippac, Ltd. Semiconductor device and method of forming a stackable semiconductor package with vertically-oriented discrete electrical devices as interconnect structures
US8441131B2 (en) 2011-09-12 2013-05-14 Globalfoundries Inc. Strain-compensating fill patterns for controlling semiconductor chip package interactions
US8816404B2 (en) 2011-09-16 2014-08-26 Stats Chippac, Ltd. Semiconductor device and method of forming stacked semiconductor die and conductive interconnect structure through an encapsulant
US20130075923A1 (en) 2011-09-23 2013-03-28 YeongIm Park Integrated circuit packaging system with encapsulation and method of manufacture thereof
KR101906408B1 (ko) 2011-10-04 2018-10-11 삼성전자주식회사 반도체 패키지 및 그 제조 방법
WO2013069798A1 (ja) 2011-11-11 2013-05-16 住友ベークライト株式会社 半導体装置の製造方法
TWI467736B (zh) 2012-01-04 2015-01-01 國立交通大學 立體積體電路裝置
US8686570B2 (en) 2012-01-20 2014-04-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-dimensional integrated circuit structures and methods of forming the same
US8698308B2 (en) 2012-01-31 2014-04-15 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structural designs to minimize package defects
JP5994274B2 (ja) 2012-02-14 2016-09-21 ソニー株式会社 半導体装置、半導体装置の製造方法、及び、電子機器
TWI469312B (zh) 2012-03-09 2015-01-11 財團法人工業技術研究院 晶片堆疊結構及其製作方法
US20130265733A1 (en) 2012-04-04 2013-10-10 Texas Instruments Incorporated Interchip communication using an embedded dielectric waveguide
US9111949B2 (en) 2012-04-09 2015-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus of wafer level package for heterogeneous integration technology
CN103377911B (zh) 2012-04-16 2016-09-21 中国科学院微电子研究所 提高化学机械平坦化工艺均匀性的方法
US20130277855A1 (en) 2012-04-24 2013-10-24 Terry (Teckgyu) Kang High density 3d package
US9142517B2 (en) 2012-06-05 2015-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid bonding mechanisms for semiconductor wafers
US8809123B2 (en) 2012-06-05 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Three dimensional integrated circuit structures and hybrid bonding methods for semiconductor wafers
US8723309B2 (en) 2012-06-14 2014-05-13 Stats Chippac Ltd. Integrated circuit packaging system with through silicon via and method of manufacture thereof
KR20140006587A (ko) 2012-07-06 2014-01-16 삼성전자주식회사 반도체 패키지
US8759961B2 (en) 2012-07-16 2014-06-24 International Business Machines Corporation Underfill material dispensing for stacked semiconductor chips
US9006908B2 (en) 2012-08-01 2015-04-14 Marvell Israel (M.I.S.L) Ltd. Integrated circuit interposer and method of manufacturing the same
US8963336B2 (en) 2012-08-03 2015-02-24 Samsung Electronics Co., Ltd. Semiconductor packages, methods of manufacturing the same, and semiconductor package structures including the same
US8735219B2 (en) 2012-08-30 2014-05-27 Ziptronix, Inc. Heterogeneous annealing method and device
US9136293B2 (en) 2012-09-07 2015-09-15 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for sensor module
US8872349B2 (en) 2012-09-11 2014-10-28 Intel Corporation Bridge interconnect with air gap in package assembly
US9099475B2 (en) * 2012-09-12 2015-08-04 Freescale Semiconductor, Inc. Techniques for reducing inductance in through-die vias of an electronic assembly
US20140070405A1 (en) 2012-09-13 2014-03-13 Globalfoundries Inc. Stacked semiconductor devices with a glass window wafer having an engineered coefficient of thermal expansion and methods of making same
US8963335B2 (en) 2012-09-13 2015-02-24 Invensas Corporation Tunable composite interposer
US9136236B2 (en) 2012-09-28 2015-09-15 Intel Corporation Localized high density substrate routing
US9368404B2 (en) 2012-09-28 2016-06-14 Plasma-Therm Llc Method for dicing a substrate with back metal
US8912670B2 (en) 2012-09-28 2014-12-16 Intel Corporation Bumpless build-up layer package including an integrated heat spreader
US9177884B2 (en) 2012-10-09 2015-11-03 Avago Technologies General Ip (Singapore) Pte. Ltd. Two-sided-access extended wafer-level ball grid array (eWLB) package, assembly and method
US8975726B2 (en) 2012-10-11 2015-03-10 Taiwan Semiconductor Manufacturing Company, Ltd. POP structures and methods of forming the same
KR20140058020A (ko) 2012-11-05 2014-05-14 삼성전자주식회사 발광 소자 및 그 제조 방법
US9252491B2 (en) * 2012-11-30 2016-02-02 Taiwan Semiconductor Manufacturing Company, Ltd. Embedding low-k materials in antennas
US9190380B2 (en) 2012-12-06 2015-11-17 Intel Corporation High density substrate routing in BBUL package
US8878353B2 (en) 2012-12-20 2014-11-04 Invensas Corporation Structure for microelectronic packaging with bond elements to encapsulation surface
DE102012224310A1 (de) 2012-12-21 2014-06-26 Tesa Se Gettermaterial enthaltendes Klebeband
US20140175655A1 (en) 2012-12-22 2014-06-26 Industrial Technology Research Institute Chip bonding structure and manufacturing method thereof
US8970023B2 (en) 2013-02-04 2015-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure and methods of forming same
TWI518991B (zh) 2013-02-08 2016-01-21 巽晨國際股份有限公司 Integrated antenna and integrated circuit components of the shielding module
US8946784B2 (en) 2013-02-18 2015-02-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for image sensor packaging
US8901748B2 (en) 2013-03-14 2014-12-02 Intel Corporation Direct external interconnect for embedded interconnect bridge package
US9443796B2 (en) 2013-03-15 2016-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. Air trench in packages incorporating hybrid bonding
US8802538B1 (en) 2013-03-15 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for hybrid wafer bonding
US9312198B2 (en) 2013-03-15 2016-04-12 Intel Deutschland Gmbh Chip package-in-package and method thereof
US10269619B2 (en) 2013-03-15 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer level chip scale packaging intermediate structure apparatus and method
US9087765B2 (en) 2013-03-15 2015-07-21 Qualcomm Incorporated System-in-package with interposer pitch adapter
US9054063B2 (en) 2013-04-05 2015-06-09 Infineon Technologies Ag High power single-die semiconductor package
US9064937B2 (en) 2013-05-30 2015-06-23 International Business Machines Corporation Substrate bonding with diffusion barrier structures
FR3007403B1 (fr) 2013-06-20 2016-08-05 Commissariat Energie Atomique Procede de realisation d'un dispositif microelectronique mecaniquement autonome
KR102077153B1 (ko) 2013-06-21 2020-02-14 삼성전자주식회사 관통전극을 갖는 반도체 패키지 및 그 제조방법
JP2015012244A (ja) 2013-07-01 2015-01-19 株式会社東芝 半導体発光素子
US9929050B2 (en) 2013-07-16 2018-03-27 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming three-dimensional integrated circuit (3DIC) stacking structure
US9324698B2 (en) 2013-08-13 2016-04-26 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-chip structure and method of forming same
US9633869B2 (en) 2013-08-16 2017-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. Packages with interposers and methods for forming the same
WO2015040798A1 (ja) 2013-09-20 2015-03-26 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
US9159690B2 (en) 2013-09-25 2015-10-13 Intel Corporation Tall solders for through-mold interconnect
US9349703B2 (en) 2013-09-25 2016-05-24 Intel Corporation Method for making high density substrate interconnect using inkjet printing
US9723716B2 (en) 2013-09-27 2017-08-01 Infineon Technologies Ag Contact pad structure, an electronic component, and a method for manufacturing a contact pad structure
US9093337B2 (en) * 2013-09-27 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for controlling warpage in packaging
FR3011679B1 (fr) 2013-10-03 2017-01-27 Commissariat Energie Atomique Procede ameliore d'assemblage par collage direct entre deux elements, chaque element comprenant des portions de metal et de materiaux dielectriques
KR102143518B1 (ko) 2013-10-16 2020-08-11 삼성전자 주식회사 칩 적층 반도체 패키지 및 그 제조 방법
US9257399B2 (en) 2013-10-17 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. 3D integrated circuit and methods of forming the same
KR102149150B1 (ko) * 2013-10-21 2020-08-28 삼성전자주식회사 전자 장치
US9373527B2 (en) 2013-10-30 2016-06-21 Taiwan Semiconductor Manufacturing Company, Ltd. Chip on package structure and method
US9530730B2 (en) 2013-11-08 2016-12-27 Taiwan Semiconductor Manufacturing Company, Ltd. Configurable routing for packaging applications
JP6441025B2 (ja) 2013-11-13 2018-12-19 株式会社東芝 半導体チップの製造方法
US9570421B2 (en) 2013-11-14 2017-02-14 Taiwan Semiconductor Manufacturing Co., Ltd. Stacking of multiple dies for forming three dimensional integrated circuit (3DIC) structure
KR102147354B1 (ko) 2013-11-14 2020-08-24 삼성전자 주식회사 반도체 패키지 및 그 제조 방법
US9330954B2 (en) 2013-11-22 2016-05-03 Invensas Corporation Substrate-to-carrier adhesion without mechanical adhesion between abutting surfaces thereof
US9583456B2 (en) 2013-11-22 2017-02-28 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9224697B1 (en) 2013-12-09 2015-12-29 Xilinx, Inc. Multi-die integrated circuits implemented using spacer dies
JP2015115446A (ja) 2013-12-11 2015-06-22 株式会社東芝 半導体装置の製造方法
US9318474B2 (en) 2013-12-16 2016-04-19 Apple Inc. Thermally enhanced wafer level fan-out POP package
US9437572B2 (en) 2013-12-18 2016-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive pad structure for hybrid bonding and methods of forming same
US10170409B2 (en) 2013-12-23 2019-01-01 Intel Corporation Package on package architecture and method for making
US9768038B2 (en) 2013-12-23 2017-09-19 STATS ChipPAC, Pte. Ltd. Semiconductor device and method of making embedded wafer level chip scale packages
CN103730379A (zh) 2014-01-16 2014-04-16 苏州晶方半导体科技股份有限公司 芯片封装方法及结构
US9396300B2 (en) 2014-01-16 2016-07-19 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging methods for semiconductor devices, packaged semiconductor devices, and design methods thereof
US9653442B2 (en) 2014-01-17 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit package and methods of forming same
US9343433B2 (en) 2014-01-28 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Packages with stacked dies and methods of forming the same
US20150287697A1 (en) 2014-04-02 2015-10-08 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Device and Method
US10971476B2 (en) 2014-02-18 2021-04-06 Qualcomm Incorporated Bottom package with metal post interconnections
US9293437B2 (en) 2014-02-20 2016-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Functional block stacked 3DIC and method of making same
US20150255349A1 (en) 2014-03-07 2015-09-10 JAMES Matthew HOLDEN Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes
US20150262902A1 (en) 2014-03-12 2015-09-17 Invensas Corporation Integrated circuits protected by substrates with cavities, and methods of manufacture
US9355997B2 (en) 2014-03-12 2016-05-31 Invensas Corporation Integrated circuit assemblies with reinforcement frames, and methods of manufacture
US9418924B2 (en) 2014-03-20 2016-08-16 Invensas Corporation Stacked die integrated circuit
US9230941B2 (en) 2014-03-28 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Bonding structure for stacked semiconductor devices
US9299736B2 (en) 2014-03-28 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid bonding with uniform pattern density
US9076860B1 (en) 2014-04-04 2015-07-07 Applied Materials, Inc. Residue removal from singulated die sidewall
US8975163B1 (en) 2014-04-10 2015-03-10 Applied Materials, Inc. Laser-dominated laser scribing and plasma etch hybrid wafer dicing
US9601463B2 (en) 2014-04-17 2017-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. Fan-out stacked system in package (SIP) and the methods of making the same
US9472458B2 (en) 2014-06-04 2016-10-18 Semiconductor Components Industries, Llc Method of reducing residual contamination in singulated semiconductor die
US9385110B2 (en) 2014-06-18 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
KR102275705B1 (ko) 2014-07-11 2021-07-09 삼성전자주식회사 웨이퍼 대 웨이퍼 접합 구조
US9601353B2 (en) 2014-07-30 2017-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. Packages with molding structures and methods of forming the same
US9666559B2 (en) 2014-09-05 2017-05-30 Invensas Corporation Multichip modules and methods of fabrication
US9601437B2 (en) 2014-09-09 2017-03-21 Nxp B.V. Plasma etching and stealth dicing laser process
US10468381B2 (en) 2014-09-29 2019-11-05 Apple Inc. Wafer level integration of passive devices
US9536848B2 (en) 2014-10-16 2017-01-03 Globalfoundries Inc. Bond pad structure for low temperature flip chip bonding
US9394161B2 (en) 2014-11-14 2016-07-19 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS and CMOS integration with low-temperature bonding
US9673096B2 (en) 2014-11-14 2017-06-06 Infineon Technologies Ag Method for processing a semiconductor substrate and a method for processing a semiconductor wafer
KR102360381B1 (ko) 2014-12-01 2022-02-11 삼성전자주식회사 적층 구조를 갖는 반도체 소자 및 그 제조방법
US9548273B2 (en) 2014-12-04 2017-01-17 Invensas Corporation Integrated circuit assemblies with rigid layers used for protection against mechanical thinning and for other purposes, and methods of fabricating such assemblies
US11069734B2 (en) 2014-12-11 2021-07-20 Invensas Corporation Image sensor device
US9899442B2 (en) 2014-12-11 2018-02-20 Invensas Corporation Image sensor device
JP2017503360A (ja) 2014-12-15 2017-01-26 インテル コーポレイション オポッサム・ダイ型パッケージ・オン・パッケージ装置
US9583462B2 (en) 2015-01-22 2017-02-28 Qualcomm Incorporated Damascene re-distribution layer (RDL) in fan out split die application
KR101672622B1 (ko) 2015-02-09 2016-11-03 앰코 테크놀로지 코리아 주식회사 반도체 디바이스 및 그 제조 방법
US9508660B2 (en) 2015-02-10 2016-11-29 Intel Corporation Microelectronic die having chamfered corners
US9633974B2 (en) 2015-03-04 2017-04-25 Apple Inc. System in package fan out stacking architecture and process flow
DE102015103274A1 (de) 2015-03-06 2016-09-08 HARTING Electronics GmbH Kabelabdichtung
JP6738591B2 (ja) 2015-03-13 2020-08-12 古河電気工業株式会社 半導体ウェハの処理方法、半導体チップおよび表面保護テープ
US9443824B1 (en) 2015-03-30 2016-09-13 Qualcomm Incorporated Cavity bridge connection for die split architecture
US9659907B2 (en) 2015-04-07 2017-05-23 Apple Inc. Double side mounting memory integration in thin low warpage fanout package
US10068862B2 (en) 2015-04-09 2018-09-04 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming a package in-fan out package
US10074630B2 (en) 2015-04-14 2018-09-11 Amkor Technology, Inc. Semiconductor package with high routing density patch
US9666502B2 (en) 2015-04-17 2017-05-30 Taiwan Semiconductor Manufacturing Company, Ltd. Discrete polymer in fan-out packages
US9601471B2 (en) 2015-04-23 2017-03-21 Apple Inc. Three layer stack structure
US9595494B2 (en) 2015-05-04 2017-03-14 Qualcomm Incorporated Semiconductor package with high density die to die connection and method of making the same
US20160343685A1 (en) 2015-05-21 2016-11-24 Mediatek Inc. Semiconductor package assembly and method for forming the same
US10032756B2 (en) 2015-05-21 2018-07-24 Mediatek Inc. Semiconductor package assembly with facing active surfaces of first and second semiconductor die and method for forming the same
JP6468071B2 (ja) 2015-05-25 2019-02-13 富士通株式会社 半導体装置及び電子装置並びに半導体装置の製造方法
US10043769B2 (en) * 2015-06-03 2018-08-07 Micron Technology, Inc. Semiconductor devices including dummy chips
KR101664411B1 (ko) 2015-06-04 2016-10-14 주식회사 에스에프에이반도체 웨이퍼 레벨의 팬 아웃 패키지 제조방법
US9741620B2 (en) 2015-06-24 2017-08-22 Invensas Corporation Structures and methods for reliable packages
US9704827B2 (en) 2015-06-25 2017-07-11 Taiwan Semiconductor Manufacturing Co., Ltd. Hybrid bond pad structure
US9656852B2 (en) 2015-07-06 2017-05-23 Taiwan Semiconductor Manufacturing Company Ltd. CMOS-MEMS device structure, bonding mesa structure and associated method
US10886250B2 (en) 2015-07-10 2021-01-05 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US10352991B2 (en) 2015-07-21 2019-07-16 Fermi Research Alliance, Llc Edgeless large area ASIC
US10075657B2 (en) 2015-07-21 2018-09-11 Fermi Research Alliance, Llc Edgeless large area camera system
US9728521B2 (en) 2015-07-23 2017-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Hybrid bond using a copper alloy for yield improvement
US9559081B1 (en) 2015-08-21 2017-01-31 Apple Inc. Independent 3D stacking
US9953941B2 (en) 2015-08-25 2018-04-24 Invensas Bonding Technologies, Inc. Conductive barrier direct hybrid bonding
US9768145B2 (en) 2015-08-31 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming multi-die package structures including redistribution layers
US10049953B2 (en) 2015-09-21 2018-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing an integrated fan-out package having fan-out redistribution layer (RDL) to accommodate electrical connectors
US9917072B2 (en) 2015-09-21 2018-03-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing an integrated stacked package with a fan-out redistribution layer (RDL) and a same encapsulating process
US9754891B2 (en) 2015-09-23 2017-09-05 International Business Machines Corporation Low-temperature diffusion doping of copper interconnects independent of seed layer composition
WO2017052652A1 (en) 2015-09-25 2017-03-30 Intel Corporation Combination of semiconductor die with another die by hybrid bonding
US10032751B2 (en) 2015-09-28 2018-07-24 Invensas Corporation Ultrathin layer for forming a capacitive interface between joined integrated circuit components
KR101787832B1 (ko) 2015-10-22 2017-10-19 앰코 테크놀로지 코리아 주식회사 반도체 패키지 제조 방법 및 이를 이용한 반도체 패키지
US10163856B2 (en) 2015-10-30 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Stacked integrated circuit structure and method of forming
US9524959B1 (en) * 2015-11-04 2016-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. System on integrated chips and methods of forming same
US9711458B2 (en) 2015-11-13 2017-07-18 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and formation method for chip package
FR3044167B1 (fr) 2015-11-20 2018-01-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique a diodes electroluminescentes comportant au moins une diode zener
US9666560B1 (en) 2015-11-25 2017-05-30 Invensas Corporation Multi-chip microelectronic assembly with built-up fine-patterned circuit structure
US9627365B1 (en) 2015-11-30 2017-04-18 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-layer CoWoS structure
US9496239B1 (en) 2015-12-11 2016-11-15 International Business Machines Corporation Nitride-enriched oxide-to-oxide 3D wafer bonding
US9852988B2 (en) 2015-12-18 2017-12-26 Invensas Bonding Technologies, Inc. Increased contact alignment tolerance for direct bonding
KR20170075125A (ko) 2015-12-22 2017-07-03 에스케이하이닉스 주식회사 반도체 패키지 및 제조 방법
US9881882B2 (en) 2016-01-06 2018-01-30 Mediatek Inc. Semiconductor package with three-dimensional antenna
US20170200659A1 (en) 2016-01-08 2017-07-13 International Business Machines Corporation Porous underfill enabling rework
US9923011B2 (en) 2016-01-12 2018-03-20 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device structure with stacked semiconductor dies
US10446532B2 (en) 2016-01-13 2019-10-15 Invensas Bonding Technologies, Inc. Systems and methods for efficient transfer of semiconductor elements
JP2017130610A (ja) 2016-01-22 2017-07-27 ソニー株式会社 イメージセンサ、製造方法、及び、電子機器
US20170243845A1 (en) 2016-02-19 2017-08-24 Qualcomm Incorporated Fan-out wafer-level packages with improved topology
US10050018B2 (en) 2016-02-26 2018-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. 3DIC structure and methods of forming
US10636767B2 (en) 2016-02-29 2020-04-28 Invensas Corporation Correction die for wafer/die stack
US9831148B2 (en) 2016-03-11 2017-11-28 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated fan-out package including voltage regulators and methods forming same
JP6453796B2 (ja) 2016-03-14 2019-01-16 株式会社東芝 半導体装置およびその製造方法
SG10201913140RA (en) 2016-03-21 2020-03-30 Agency Science Tech & Res Semiconductor package and method of forming the same
US10186468B2 (en) 2016-03-31 2019-01-22 Infineon Technologies Ag System and method for a transducer in an eWLB package
CN108701690B (zh) 2016-04-01 2023-10-27 英特尔公司 用于管芯堆叠的技术和关联配置
TWI606563B (zh) 2016-04-01 2017-11-21 力成科技股份有限公司 薄型晶片堆疊封裝構造及其製造方法
US10002857B2 (en) 2016-04-12 2018-06-19 Qualcomm Incorporated Package on package (PoP) device comprising thermal interface material (TIM) in cavity of an encapsulation layer
US10026716B2 (en) 2016-04-15 2018-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. 3DIC formation with dies bonded to formed RDLs
US9761559B1 (en) 2016-04-21 2017-09-12 Micron Technology, Inc. Semiconductor package and fabrication method thereof
US20170330855A1 (en) 2016-05-13 2017-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. System and Method for Immersion Bonding
US10032722B2 (en) 2016-05-31 2018-07-24 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor package structure having am antenna pattern and manufacturing method thereof
US9972565B1 (en) 2016-06-07 2018-05-15 National Technology & Engineering Solutions Of Sandia, Llc Lateral vias for connections to buried microconductors
KR102505856B1 (ko) 2016-06-09 2023-03-03 삼성전자 주식회사 웨이퍼 대 웨이퍼 접합 구조체
KR102521881B1 (ko) 2016-06-15 2023-04-18 삼성전자주식회사 반도체 소자 및 이의 제조 방법
US9865566B1 (en) * 2016-06-15 2018-01-09 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method thereof
US9818729B1 (en) 2016-06-16 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Package-on-package structure and method
KR102538175B1 (ko) 2016-06-20 2023-06-01 삼성전자주식회사 반도체 패키지
US10431738B2 (en) 2016-06-24 2019-10-01 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated fan-out package and method for fabricating the same
KR102570582B1 (ko) 2016-06-30 2023-08-24 삼성전자 주식회사 반도체 패키지 및 그 제조 방법
US9859254B1 (en) 2016-06-30 2018-01-02 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and a manufacturing method thereof
US9941241B2 (en) 2016-06-30 2018-04-10 International Business Machines Corporation Method for wafer-wafer bonding
US11355427B2 (en) 2016-07-01 2022-06-07 Intel Corporation Device, method and system for providing recessed interconnect structures of a substrate
US10892219B2 (en) 2016-07-01 2021-01-12 Intel Corporation Molded embedded bridge for enhanced EMIB applications
US9966360B2 (en) 2016-07-05 2018-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor package and manufacturing method thereof
US9892961B1 (en) 2016-08-09 2018-02-13 International Business Machines Corporation Air gap spacer formation for nano-scale semiconductor devices
US10672741B2 (en) 2016-08-18 2020-06-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor packages with thermal-electrical-mechanical chips and methods of forming the same
EP3288076B1 (en) 2016-08-25 2021-06-23 IMEC vzw A semiconductor die package and method of producing the package
BR112019001313A2 (pt) 2016-08-26 2019-04-30 Intel Corporation estruturas de dispositivo de circuito integrado e técnicas de fabricação de frente e verso
US10535632B2 (en) 2016-09-02 2020-01-14 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor package structure and method of manufacturing the same
KR102649471B1 (ko) 2016-09-05 2024-03-21 삼성전자주식회사 반도체 패키지 및 그의 제조 방법
US9768133B1 (en) 2016-09-22 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package and method of forming the same
US11508662B2 (en) 2016-09-30 2022-11-22 Intel Corporation Device and method of very high density routing used with embedded multi-die interconnect bridge
US10446487B2 (en) 2016-09-30 2019-10-15 Invensas Bonding Technologies, Inc. Interface structures and methods for forming same
US10748864B2 (en) 2016-10-05 2020-08-18 Semiconductor Components Industries, Llc Bonded semiconductor package and related methods
US10719762B2 (en) 2017-08-03 2020-07-21 Xcelsis Corporation Three dimensional chip structure implementing machine trained network
US10672663B2 (en) 2016-10-07 2020-06-02 Xcelsis Corporation 3D chip sharing power circuit
US10580735B2 (en) 2016-10-07 2020-03-03 Xcelsis Corporation Stacked IC structure with system level wiring on multiple sides of the IC die
US10872852B2 (en) 2016-10-12 2020-12-22 Micron Technology, Inc. Wafer level package utilizing molded interposer
US9722098B1 (en) 2016-10-18 2017-08-01 Ase Electronics (M) Sdn Bhd Semiconductor device package and method of manufacturing the same
US10304801B2 (en) 2016-10-31 2019-05-28 Taiwan Semiconductor Manufacturing Company, Ltd. Redistribution layers in semiconductor packages and methods of forming same
US20180130768A1 (en) 2016-11-09 2018-05-10 Unisem (M) Berhad Substrate Based Fan-Out Wafer Level Packaging
US10529690B2 (en) * 2016-11-14 2020-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming the same
US10177078B2 (en) 2016-11-28 2019-01-08 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming chip package structure
US10163750B2 (en) 2016-12-05 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure for heat dissipation
US10453832B2 (en) 2016-12-15 2019-10-22 Taiwan Semiconductor Manufacturing Co., Ltd. Seal ring structures and methods of forming same
US10002844B1 (en) 2016-12-21 2018-06-19 Invensas Bonding Technologies, Inc. Bonded structures
US20180182665A1 (en) 2016-12-28 2018-06-28 Invensas Bonding Technologies, Inc. Processed Substrate
KR102320673B1 (ko) 2016-12-28 2021-11-01 인벤사스 본딩 테크놀로지스 인코포레이티드 적층된 기판의 처리
KR20230156179A (ko) 2016-12-29 2023-11-13 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 집적된 수동 컴포넌트를 구비한 접합된 구조체
US20180190583A1 (en) 2016-12-29 2018-07-05 Invensas Bonding Technologies, Inc. Bonded structures with integrated passive component
US10276909B2 (en) 2016-12-30 2019-04-30 Invensas Bonding Technologies, Inc. Structure comprising at least a first element bonded to a carrier having a closed metallic channel waveguide formed therein
US10431614B2 (en) 2017-02-01 2019-10-01 Semiconductor Components Industries, Llc Edge seals for semiconductor packages
US9865567B1 (en) 2017-02-02 2018-01-09 Xilinx, Inc. Heterogeneous integration of integrated circuit device and companion device
WO2018147940A1 (en) 2017-02-09 2018-08-16 Invensas Bonding Technologies, Inc. Bonded structures
WO2018169968A1 (en) 2017-03-16 2018-09-20 Invensas Corporation Direct-bonded led arrays and applications
US10515913B2 (en) 2017-03-17 2019-12-24 Invensas Bonding Technologies, Inc. Multi-metal contact structure
US10508030B2 (en) 2017-03-21 2019-12-17 Invensas Bonding Technologies, Inc. Seal for microelectronic assembly
JP6640780B2 (ja) 2017-03-22 2020-02-05 キオクシア株式会社 半導体装置の製造方法および半導体装置
US10784191B2 (en) 2017-03-31 2020-09-22 Invensas Bonding Technologies, Inc. Interface structures and methods for forming same
US10269756B2 (en) 2017-04-21 2019-04-23 Invensas Bonding Technologies, Inc. Die processing
US10580823B2 (en) 2017-05-03 2020-03-03 United Microelectronics Corp. Wafer level packaging method
US10879212B2 (en) 2017-05-11 2020-12-29 Invensas Bonding Technologies, Inc. Processed stacked dies
US10446441B2 (en) 2017-06-05 2019-10-15 Invensas Corporation Flat metal features for microelectronics applications
US10541228B2 (en) 2017-06-15 2020-01-21 Taiwan Semiconductor Manufacturing Company, Ltd. Packages formed using RDL-last process
US10217720B2 (en) 2017-06-15 2019-02-26 Invensas Corporation Multi-chip modules formed using wafer-level processing of a reconstitute wafer
US10658335B2 (en) 2017-06-16 2020-05-19 Futurewei Technologies, Inc. Heterogenous 3D chip stack for a mobile processor
US10483187B2 (en) * 2017-06-30 2019-11-19 Taiwan Semiconductor Manufacturing Company, Ltd. Heat spreading device and method
US10304805B2 (en) 2017-08-24 2019-05-28 Micron Technology, Inc. Dual sided fan-out package having low warpage across all temperatures
US10707145B2 (en) 2017-09-08 2020-07-07 Kemet Electronics Corporation High density multi-component packages
US11558029B2 (en) 2017-09-14 2023-01-17 Kyocera Corporation Acoustic wave device and communication apparatus
US10468384B2 (en) 2017-09-15 2019-11-05 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming embedded die substrate, and system-in-package modules with the same
US10840205B2 (en) 2017-09-24 2020-11-17 Invensas Bonding Technologies, Inc. Chemical mechanical polishing for hybrid bonding
KR101901711B1 (ko) 2017-09-27 2018-09-27 삼성전기 주식회사 팬-아웃 반도체 패키지
US11195748B2 (en) 2017-09-27 2021-12-07 Invensas Corporation Interconnect structures and methods for forming same
US10332899B2 (en) 2017-09-29 2019-06-25 Intel Corporation 3D package having edge-aligned die stack with direct inter-die wire connections
CN111052364B (zh) 2017-09-29 2025-08-19 英特尔公司 具有嵌入式互连的半导体封装
US11031285B2 (en) 2017-10-06 2021-06-08 Invensas Bonding Technologies, Inc. Diffusion barrier collar for interconnects
US10818624B2 (en) 2017-10-24 2020-10-27 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and method for manufacturing the same
US11251157B2 (en) 2017-11-01 2022-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Die stack structure with hybrid bonding structure and method of fabricating the same and package
US10672820B2 (en) 2017-11-23 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Hybrid bonded structure
US10483156B2 (en) 2017-11-29 2019-11-19 International Business Machines Corporation Non-embedded silicon bridge chip for multi-chip module
US11011503B2 (en) 2017-12-15 2021-05-18 Invensas Bonding Technologies, Inc. Direct-bonded optoelectronic interconnect for high-density integrated photonics
US11380597B2 (en) 2017-12-22 2022-07-05 Invensas Bonding Technologies, Inc. Bonded structures
US10923408B2 (en) 2017-12-22 2021-02-16 Invensas Bonding Technologies, Inc. Cavity packages
TWI643307B (zh) 2018-01-30 2018-12-01 矽品精密工業股份有限公司 電子封裝件及其製法
US10559507B1 (en) 2018-02-06 2020-02-11 Facebook Technologies, Llc Direct wafer mapping and selective elastomer deposition
US11127738B2 (en) 2018-02-09 2021-09-21 Xcelsis Corporation Back biasing of FD-SOI circuit blocks
US10727219B2 (en) 2018-02-15 2020-07-28 Invensas Bonding Technologies, Inc. Techniques for processing devices
US11169326B2 (en) 2018-02-26 2021-11-09 Invensas Bonding Technologies, Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
US10847478B2 (en) 2018-02-27 2020-11-24 Amkor Technology Singapore Holding Pte. Ltd. Method of forming an electronic device structure having an electronic component with an on-edge orientation and related structures
US11256004B2 (en) 2018-03-20 2022-02-22 Invensas Bonding Technologies, Inc. Direct-bonded lamination for improved image clarity in optical devices
US10991804B2 (en) 2018-03-29 2021-04-27 Xcelsis Corporation Transistor level interconnection methodologies utilizing 3D interconnects
US11056348B2 (en) 2018-04-05 2021-07-06 Invensas Bonding Technologies, Inc. Bonding surfaces for microelectronics
US10790262B2 (en) 2018-04-11 2020-09-29 Invensas Bonding Technologies, Inc. Low temperature bonded structures
US10964664B2 (en) 2018-04-20 2021-03-30 Invensas Bonding Technologies, Inc. DBI to Si bonding for simplified handle wafer
US10825772B2 (en) 2018-04-30 2020-11-03 Xilinx, Inc. Redundancy scheme for multi-chip stacked devices
US10937743B2 (en) 2018-04-30 2021-03-02 Taiwan Semiconductor Manufacturing Company, Ltd. Mixing organic materials into hybrid packages
US11398258B2 (en) 2018-04-30 2022-07-26 Invensas Llc Multi-die module with low power operation
US10403577B1 (en) 2018-05-03 2019-09-03 Invensas Corporation Dielets on flexible and stretchable packaging for microelectronics
US11469138B2 (en) 2018-05-04 2022-10-11 Taiwan Semiconductor Manufacturing Company, Ltd. Via for coupling attached component upper electrode to substrate
US11004757B2 (en) 2018-05-14 2021-05-11 Invensas Bonding Technologies, Inc. Bonded structures
US11276676B2 (en) 2018-05-15 2022-03-15 Invensas Bonding Technologies, Inc. Stacked devices and methods of fabrication
US10923413B2 (en) 2018-05-30 2021-02-16 Xcelsis Corporation Hard IP blocks with physically bidirectional passageways
CN112514059B (zh) 2018-06-12 2024-05-24 隔热半导体粘合技术公司 堆叠微电子部件的层间连接
KR102878117B1 (ko) 2018-06-13 2025-10-28 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 패드로서의 tsv
US11393779B2 (en) 2018-06-13 2022-07-19 Invensas Bonding Technologies, Inc. Large metal pads over TSV
US10910344B2 (en) 2018-06-22 2021-02-02 Xcelsis Corporation Systems and methods for releveled bump planes for chiplets
US10333623B1 (en) 2018-06-25 2019-06-25 Taiwan Semiconductor Manufacturing Co., Ltd. Optical transceiver
US10930633B2 (en) 2018-06-29 2021-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Buffer design for package integration
WO2020010056A1 (en) 2018-07-03 2020-01-09 Invensas Bonding Technologies, Inc. Techniques for joining dissimilar materials in microelectronics
US11462419B2 (en) 2018-07-06 2022-10-04 Invensas Bonding Technologies, Inc. Microelectronic assemblies
US11158606B2 (en) 2018-07-06 2021-10-26 Invensas Bonding Technologies, Inc. Molded direct bonded and interconnected stack
US12406959B2 (en) 2018-07-26 2025-09-02 Adeia Semiconductor Bonding Technologies Inc. Post CMP processing for hybrid bonding
KR102560697B1 (ko) 2018-07-31 2023-07-27 삼성전자주식회사 인터포저를 가지는 반도체 패키지
US10700094B2 (en) 2018-08-08 2020-06-30 Xcelsis Corporation Device disaggregation for improved performance
US10727205B2 (en) 2018-08-15 2020-07-28 Taiwan Semiconductor Manufacturing Co., Ltd. Hybrid bonding technology for stacking integrated circuits
US11515291B2 (en) 2018-08-28 2022-11-29 Adeia Semiconductor Inc. Integrated voltage regulator and passive components
US11296044B2 (en) 2018-08-29 2022-04-05 Invensas Bonding Technologies, Inc. Bond enhancement structure in microelectronics for trapping contaminants during direct-bonding processes
US11011494B2 (en) 2018-08-31 2021-05-18 Invensas Bonding Technologies, Inc. Layer structures for making direct metal-to-metal bonds at low temperatures in microelectronics
US10797031B2 (en) 2018-09-20 2020-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package
US10504824B1 (en) 2018-09-21 2019-12-10 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit package and method
US10868353B2 (en) 2018-09-27 2020-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Electronic device and manufacturing method thereof
US11158573B2 (en) 2018-10-22 2021-10-26 Invensas Bonding Technologies, Inc. Interconnect structures
KR20200047845A (ko) 2018-10-24 2020-05-08 삼성전자주식회사 반도체 패키지
US10861808B2 (en) * 2018-11-21 2020-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Bonding structure of dies with dangling bonds
US11158607B2 (en) 2018-11-29 2021-10-26 Apple Inc. Wafer reconstitution and die-stitching
US10867978B2 (en) 2018-12-11 2020-12-15 Advanced Micro Devices, Inc. Integrated circuit module with integrated discrete devices
US11244920B2 (en) 2018-12-18 2022-02-08 Invensas Bonding Technologies, Inc. Method and structures for low temperature device bonding
US11476213B2 (en) 2019-01-14 2022-10-18 Invensas Bonding Technologies, Inc. Bonded structures without intervening adhesive
KR102803426B1 (ko) 2019-01-24 2025-05-07 삼성전기주식회사 브리지 내장 인터포저, 및 이를 포함하는 패키지 기판 및 반도체 패키지
US11387202B2 (en) 2019-03-01 2022-07-12 Invensas Llc Nanowire bonding interconnect for fine-pitch microelectronics
US11901281B2 (en) 2019-03-11 2024-02-13 Adeia Semiconductor Bonding Technologies Inc. Bonded structures with integrated passive component
US11552019B2 (en) 2019-03-12 2023-01-10 Intel Corporation Substrate patch reconstitution options
US10770430B1 (en) 2019-03-22 2020-09-08 Xilinx, Inc. Package integration for memory devices
US10854578B2 (en) 2019-03-29 2020-12-01 Invensas Corporation Diffused bitline replacement in stacked wafer memory
US11373963B2 (en) 2019-04-12 2022-06-28 Invensas Bonding Technologies, Inc. Protective elements for bonded structures
US11205625B2 (en) 2019-04-12 2021-12-21 Invensas Bonding Technologies, Inc. Wafer-level bonding of obstructive elements
US11610846B2 (en) 2019-04-12 2023-03-21 Adeia Semiconductor Bonding Technologies Inc. Protective elements for bonded structures including an obstructive element
US11355404B2 (en) 2019-04-22 2022-06-07 Invensas Bonding Technologies, Inc. Mitigating surface damage of probe pads in preparation for direct bonding of a substrate
US11385278B2 (en) 2019-05-23 2022-07-12 Invensas Bonding Technologies, Inc. Security circuitry for bonded structures
US12374641B2 (en) 2019-06-12 2025-07-29 Adeia Semiconductor Bonding Technologies Inc. Sealed bonded structures and methods for forming the same
US12341129B2 (en) 2019-06-13 2025-06-24 Intel Corporation Substrateless double-sided embedded multi-die interconnect bridge
US11145623B2 (en) 2019-06-14 2021-10-12 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit packages and methods of forming the same
US11296053B2 (en) 2019-06-26 2022-04-05 Invensas Bonding Technologies, Inc. Direct bonded stack structures for increased reliability and improved yield in microelectronics
US20210020577A1 (en) 2019-07-16 2021-01-21 Dyi-chung Hu Semiconductor package and manufacturing method thereof
US11978685B2 (en) 2019-07-25 2024-05-07 Intel Corporation Glass core patch with in situ fabricated fan-out layer to enable die tiling applications
US11742301B2 (en) 2019-08-19 2023-08-29 Advanced Micro Devices, Inc. Fan-out package with reinforcing rivets
US11094613B2 (en) 2019-08-22 2021-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and manufacturing method thereof
US11094635B2 (en) 2019-08-22 2021-08-17 Taiwan Semiconductor Manufacturing Co., Ltd. Package structure and method for forming the same
US11508677B2 (en) 2019-08-29 2022-11-22 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor package for high-speed data transmission and manufacturing method thereof
US11133263B2 (en) 2019-09-17 2021-09-28 Intel Corporation High-density interconnects for integrated circuit packages
US10998272B2 (en) 2019-09-17 2021-05-04 Intel Corporation Organic interposers for integrated circuit packages
WO2021061246A1 (en) 2019-09-25 2021-04-01 Intel Corporation Molded interconnects in bridges for integrated-circuit packages
US11183477B2 (en) 2019-09-26 2021-11-23 Intel Corporation Mixed hybrid bonding structures and methods of forming the same
US12080672B2 (en) 2019-09-26 2024-09-03 Adeia Semiconductor Bonding Technologies Inc. Direct gang bonding methods including directly bonding first element to second element to form bonded structure without adhesive
US11824040B2 (en) 2019-09-27 2023-11-21 Taiwan Semiconductor Manufacturing Company, Ltd. Package component, electronic device and manufacturing method thereof
TWI734455B (zh) 2019-10-09 2021-07-21 財團法人工業技術研究院 多晶片封裝件及其製造方法
US12113054B2 (en) 2019-10-21 2024-10-08 Adeia Semiconductor Technologies Llc Non-volatile dynamic random access memory
US20210125965A1 (en) 2019-10-24 2021-04-29 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method of manufacturing the same
US11688693B2 (en) 2019-10-29 2023-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor packages and method of manufacture
US11164817B2 (en) 2019-11-01 2021-11-02 International Business Machines Corporation Multi-chip package structures with discrete redistribution layers
US11862602B2 (en) 2019-11-07 2024-01-02 Adeia Semiconductor Technologies Llc Scalable architecture for reduced cycles across SOC
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices
US11876076B2 (en) 2019-12-20 2024-01-16 Adeia Semiconductor Technologies Llc Apparatus for non-volatile random access memory stacks
KR20220120631A (ko) 2019-12-23 2022-08-30 인벤사스 본딩 테크놀로지스 인코포레이티드 결합형 구조체를 위한 전기적 리던던시
US11721653B2 (en) 2019-12-23 2023-08-08 Adeia Semiconductor Bonding Technologies Inc. Circuitry for electrical redundancy in bonded structures
US11791275B2 (en) 2019-12-27 2023-10-17 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method of manufacturing
US11616026B2 (en) 2020-01-17 2023-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacture
US11600526B2 (en) 2020-01-22 2023-03-07 iCometrue Company Ltd. Chip package based on through-silicon-via connector and silicon interconnection bridge
US20210242152A1 (en) 2020-02-05 2021-08-05 Invensas Bonding Technologies, Inc. Selective alteration of interconnect pads for direct bonding
TW202135243A (zh) 2020-03-04 2021-09-16 力成科技股份有限公司 扇出型堆疊式半導體封裝結構之多層模封方法
US20210280507A1 (en) 2020-03-05 2021-09-09 Qualcomm Incorporated Package comprising dummy interconnects
CN115943489A (zh) 2020-03-19 2023-04-07 隔热半导体粘合技术公司 用于直接键合结构的尺寸补偿控制
US11742314B2 (en) 2020-03-31 2023-08-29 Adeia Semiconductor Bonding Technologies Inc. Reliable hybrid bonded apparatus
US11515229B2 (en) 2020-03-31 2022-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package and manufacturing method thereof
US11594498B2 (en) 2020-04-27 2023-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor package and method
US11735523B2 (en) 2020-05-19 2023-08-22 Adeia Semiconductor Bonding Technologies Inc. Laterally unconfined structure
US11508633B2 (en) 2020-05-28 2022-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure having taper-shaped conductive pillar and method of forming thereof
TWI732568B (zh) 2020-05-28 2021-07-01 欣興電子股份有限公司 內埋元件的基板結構及其製造方法
US11562963B2 (en) 2020-06-05 2023-01-24 Intel Corporation Stacked semiconductor package and method of forming the same
US11955431B2 (en) 2020-06-05 2024-04-09 Intel Corporation Interposer structures and methods for 2.5D and 3D packaging
US11239184B2 (en) 2020-06-11 2022-02-01 Advanced Semicondutor Engineering, Inc. Package substrate, electronic device package and method for manufacturing the same
US11335650B2 (en) 2020-06-11 2022-05-17 Advanced Semiconductor Engineering, Inc. Package substrate, electronic device package and method for manufacturing the same
US11342272B2 (en) 2020-06-11 2022-05-24 Advanced Semiconductor Engineering, Inc. Substrate structures, and methods for forming the same and semiconductor package structures
US11450615B2 (en) 2020-06-12 2022-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure and method of fabricating the same
US11631647B2 (en) 2020-06-30 2023-04-18 Adeia Semiconductor Bonding Technologies Inc. Integrated device packages with integrated device die and dummy element
US11574890B2 (en) 2020-07-01 2023-02-07 Amkor Technology Singapore Holding Pte. Lte. Semiconductor devices and methods of manufacturing semiconductor devices
US11728273B2 (en) 2020-09-04 2023-08-15 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11764177B2 (en) 2020-09-04 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11264357B1 (en) 2020-10-20 2022-03-01 Invensas Corporation Mixed exposure for large die
WO2022094587A1 (en) 2020-10-29 2022-05-05 Invensas Bonding Technologies, Inc. Direct bonding methods and structures
CN116635998A (zh) 2020-10-29 2023-08-22 美商艾德亚半导体接合科技有限公司 直接键合方法和结构
WO2022147430A1 (en) 2020-12-28 2022-07-07 Invensas Bonding Technologies, Inc. Structures with through-substrate vias and methods for forming the same
KR20230125309A (ko) 2020-12-28 2023-08-29 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 기판-관통 비아를 가지는 구조체 및 이를 형성하기위한 방법
JP7783896B2 (ja) 2020-12-30 2025-12-10 アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド 導電特徴部を備えた構造体及びその形成方法
KR20230128062A (ko) 2020-12-30 2023-09-01 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 직접 접합 구조
CN117256047A (zh) 2021-03-03 2023-12-19 美商艾德亚半导体接合科技有限公司 用于直接接合的接触结构
EP4315398A4 (en) 2021-03-31 2025-03-05 Adeia Semiconductor Bonding Technologies Inc. DIRECT ADHESION AND REMOVING A CARRIER
US20220320035A1 (en) 2021-03-31 2022-10-06 Invensas Bonding Technologies, Inc. Direct bonding methods and structures
WO2022212595A1 (en) 2021-03-31 2022-10-06 Invensas Bonding Technologies, Inc. Direct bonding and debonding of carrier
WO2023278605A1 (en) 2021-06-30 2023-01-05 Invensas Bonding Technologies, Inc. Element with routing structure in bonding layer
WO2023288021A1 (en) 2021-07-16 2023-01-19 Invensas Bonding Technologies, Inc. Optically obstructive protective element for bonded structures
WO2023014616A1 (en) 2021-08-02 2023-02-09 Invensas Bonding Technologies, Inc. Protective semiconductor elements for bonded structures
EP4396872A4 (en) 2021-09-01 2025-05-21 Adeia Semiconductor Technologies LLC STACKED STRUCTURE WITH INTERPOSER
US20230067677A1 (en) 2021-09-01 2023-03-02 Invensas Bonding Technologies, Inc. Sequences and equipment for direct bonding
EP4402717A4 (en) 2021-09-14 2025-10-22 Adeia Semiconductor Bonding Technologies Inc METHOD FOR BONDING THIN SUBSTRATES
JP2024535904A (ja) 2021-09-24 2024-10-02 アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド 能動インターポーザ付きのボンデッド構造体
KR20240093687A (ko) 2021-10-18 2024-06-24 아데이아 세미컨덕터 테크놀로지스 엘엘씨 결합 구조체 내의 감소된 기생 커패시턴스
KR20240090512A (ko) 2021-10-19 2024-06-21 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 멀티-다이 스태킹에서의 적층된 인덕터
JP2024538873A (ja) 2021-10-22 2024-10-24 アデイア セミコンダクター テクノロジーズ リミテッド ライアビリティ カンパニー 高周波デバイスパッケージ
WO2023076842A1 (en) 2021-10-25 2023-05-04 Adeia Semiconductor Bonding Technologies Inc. Power distribution for stacked electronic devices
US20230125395A1 (en) 2021-10-27 2023-04-27 Adeia Semiconductor Bonding Technologies Inc. Stacked structures with capacitive coupling connections
US20230140107A1 (en) 2021-10-28 2023-05-04 Adeia Semiconductor Bonding Technologies Inc. Direct bonding methods and structures
CN118435345A (zh) 2021-10-28 2024-08-02 美商艾德亚半导体接合科技有限公司 扩散势垒及其形成方法
US20230142680A1 (en) 2021-10-28 2023-05-11 Adeia Semiconductor Bonding Technologies Inc. Stacked electronic devices
WO2023081273A1 (en) 2021-11-05 2023-05-11 Adeia Semiconductor Bonding Technologies Inc. Multi-channel device stacking
EP4434089A4 (en) 2021-11-17 2025-11-19 Adeia Semiconductor Bonding Technologies Inc THERMAL DETACHMENT FOR STACKED MATRICES
KR20240101651A (ko) 2021-11-18 2024-07-02 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 다이 적층체를 위한 유체 냉각
US20230187264A1 (en) 2021-12-13 2023-06-15 Adeia Semiconductor Technologies Llc Methods for bonding semiconductor elements
US20230187317A1 (en) 2021-12-13 2023-06-15 Adeia Semiconductor Bonding Technologies Inc. Interconnect structures
KR20240118874A (ko) 2021-12-17 2024-08-05 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 직접 접합을 위한 전도성 특징부를 갖는 구조체 및 그 형성 방법
EP4454440A4 (en) 2021-12-20 2025-11-26 Adeia Semiconductor Bonding Technologies Inc THERMOELECTRIC COOLING IN MICROELECTRONICS
CN118661254A (zh) 2021-12-20 2024-09-17 美商艾德亚半导体接合科技有限公司 用于管芯封装的热电冷却
JP2024547065A (ja) 2021-12-20 2024-12-26 アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド 素子の直接接合及び剥離
WO2023122559A1 (en) 2021-12-22 2023-06-29 Adeia Semiconductor Bonding Technologies Inc. Low stress direct hybrid bonding
WO2023122687A1 (en) 2021-12-23 2023-06-29 Adeia Semiconductor Bonding Technologies Inc. Apparatuses and methods for die bond control
EP4454013A4 (en) 2021-12-23 2025-07-30 Adeia Semiconductor Bonding Technologies Inc LINKED STRUCTURES COMPRISING INTERCONNECTING ASSEMBLIES
EP4454008A4 (en) 2021-12-23 2025-11-05 Adeia Semiconductor Bonding Technologies Inc DIRECT CONNECTION TO ENCLOSURE SUBSTRATES
JP2024545355A (ja) 2021-12-27 2024-12-05 アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド 直接結合されたフレームウェハ
KR20240144961A (ko) 2022-01-31 2024-10-04 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 전자 디바이스용 열소산 시스템
EP4483406A1 (en) 2022-02-24 2025-01-01 Adeia Semiconductor Bonding Technologies Inc. Bonded structures
EP4494184A1 (en) 2022-03-16 2025-01-22 Adeia Semiconductor Bonding Technologies Inc. Expansion control for bonding
CN119096348A (zh) 2022-04-25 2024-12-06 美商艾德亚半导体接合科技有限公司 用于直接结合的膨胀控制结构及其形成方法
US20230360950A1 (en) 2022-05-05 2023-11-09 Adeia Semiconductor Bonding Technologies Inc. Gang-flipping of dies prior to bonding
CN119110988A (zh) 2022-05-05 2024-12-10 美商艾德亚半导体接合科技有限公司 低温直接键合
US20230369136A1 (en) 2022-05-13 2023-11-16 Adeia Semiconductor Bonding Technologies Inc. Bonding surface validation on dicing tape
JP2025517291A (ja) 2022-05-23 2025-06-05 アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド ボンデッド構造体のための試験用素子
US20240038702A1 (en) 2022-07-27 2024-02-01 Adeia Semiconductor Bonding Technologies Inc. High-performance hybrid bonded interconnect systems

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431368B2 (en) 1999-10-01 2016-08-30 Ziptronix, Inc. Three dimensional device integration method and integrated device
US7126212B2 (en) 1999-10-01 2006-10-24 Ziptronix, Inc. Three dimensional device integration method and integrated device
US9391143B2 (en) 2000-02-16 2016-07-12 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US10141218B2 (en) 2003-02-07 2018-11-27 Invensas Bonding Technologies, Inc. Room temperature metal direct bonding
US10147641B2 (en) 2005-08-11 2018-12-04 Invensas Bonding Technologies, Inc. 3D IC method and device
US20160322330A1 (en) * 2015-04-30 2016-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Fan-out stacked system in package (sip) having dummy dies and methods of making the same
US10204893B2 (en) 2016-05-19 2019-02-12 Invensas Bonding Technologies, Inc. Stacked dies and methods for forming bonded structures
US20180138101A1 (en) * 2016-11-14 2018-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming the same
US20190189590A1 (en) 2017-12-17 2019-06-20 Rahul Agarwal Stacked dies and dummy components for improved thermal performance
US20200006173A1 (en) 2018-05-18 2020-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated Circuit Package and Method of Forming Same
US20190371763A1 (en) * 2018-05-29 2019-12-05 Rahul Agarwal Die stacking for multi-tier 3d integration
US20190385981A1 (en) 2018-06-15 2019-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit package having dummy structures and method of forming same
KR20200047841A (ko) * 2018-10-24 2020-05-08 삼성전자주식회사 반도체 패키지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4173032A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230395563A1 (en) * 2022-06-02 2023-12-07 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple non-active dies in a multi-die package

Also Published As

Publication number Publication date
US20250149483A1 (en) 2025-05-08
CN116157918A (zh) 2023-05-23
JP2023525403A (ja) 2023-06-15
US11538781B2 (en) 2022-12-27
US11631647B2 (en) 2023-04-18
KR102750432B1 (ko) 2025-01-03
KR20230029960A (ko) 2023-03-03
JP7441979B2 (ja) 2024-03-01
US20230420398A1 (en) 2023-12-28
US20210407941A1 (en) 2021-12-30
KR20250010110A (ko) 2025-01-20
EP4173032A1 (en) 2023-05-03
TW202211398A (zh) 2022-03-16
US20220122934A1 (en) 2022-04-21
JP2024055908A (ja) 2024-04-19
EP4173032A4 (en) 2024-11-27
US12046569B2 (en) 2024-07-23

Similar Documents

Publication Publication Date Title
US12046569B2 (en) Integrated device packages with integrated device die and dummy element
US11476213B2 (en) Bonded structures without intervening adhesive
US12113056B2 (en) Stacked dies and methods for forming bonded structures
US12255163B2 (en) Bond pads for semiconductor die assemblies and associated methods and systems
CN112331617B (zh) 一种埋入式键合工艺三维集成方法
US20250343220A1 (en) Semiconductor die assemblies with sidewall protection and associated methods and systems
US20250079366A1 (en) Semiconductor device with layered dielectric
KR20240176460A (ko) 열 완화가 강화된 반도체 디바이스
WO2024258567A1 (en) Edge recess design for molded and fusion or hybrid bonded integrated circuit
WO2021259477A1 (en) Semiconductor die assembly and method of stacking semiconductor components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581735

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833640

Country of ref document: EP

Effective date: 20230130