WO2013062056A1 - 非水系二次電池 - Google Patents

非水系二次電池 Download PDF

Info

Publication number
WO2013062056A1
WO2013062056A1 PCT/JP2012/077629 JP2012077629W WO2013062056A1 WO 2013062056 A1 WO2013062056 A1 WO 2013062056A1 JP 2012077629 W JP2012077629 W JP 2012077629W WO 2013062056 A1 WO2013062056 A1 WO 2013062056A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
positive electrode
active material
aqueous secondary
electrode active
Prior art date
Application number
PCT/JP2012/077629
Other languages
English (en)
French (fr)
Inventor
松岡 直樹
古賀 健裕
仁 菖蒲川
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP12843297.8A priority Critical patent/EP2772981B1/en
Priority to CN201280051508.3A priority patent/CN103891028B/zh
Priority to US14/352,864 priority patent/US10644353B2/en
Priority to KR1020147010256A priority patent/KR101551135B1/ko
Priority to JP2013540829A priority patent/JP6120772B2/ja
Publication of WO2013062056A1 publication Critical patent/WO2013062056A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous secondary battery.
  • Non-aqueous secondary batteries containing non-aqueous electrolytes are characterized by their light weight, high energy, and long life, and are portable for notebook computers, mobile phones, smartphones, tablet PCs, digital cameras, video cameras, etc. Widely used as a power source for electronic equipment.
  • HEV hybrid electric vehicles
  • PHEV plug-in Hybrid Electric Vehicle
  • the battery components When mounting non-aqueous secondary batteries in vehicles such as automobiles and residential power storage systems, the battery components are chemically and electrochemically stable from the viewpoints of cycle performance and long-term reliability in high-temperature environments. Materials with excellent properties, strength, corrosion resistance, etc. are required. Further, since the use conditions are significantly different from those of the portable electronic device power supply and it must operate even in a cold region, high output performance and long life performance in a low temperature environment are also required as necessary physical properties. On the other hand, in order to meet the needs for higher capacity and higher output expected in the future, it is necessary not only to develop materials, but also to assemble batteries into an optimal state so that each material can fully perform its functions. is there.
  • the design must be balanced.
  • increasing the capacity of a non-aqueous secondary battery can be achieved by improving the performance of the electrode active material, but in practice it is most important to produce an electrode active material layer with a high volumetric energy density. is there.
  • the amount of the electrode active material per unit volume of the battery is relatively larger than other battery materials not related to the battery capacity, such as current collector foils and separators. As a battery, the capacity will be increased.
  • an electrode active material layer having a low porosity is obtained, and in this case as well, high capacity is realized as a battery.
  • the diffusion path of lithium ions is contrary to the case of aiming for higher capacity. It is necessary to design the electrode active material layer so as to shorten the length. Specifically, there are methods such as decreasing the basis weight of the electrode active material layer and increasing the porosity of the electrode active material layer. By the way, in order to improve the output characteristics, it is also effective to select an electrolytic solution having high ion conductivity.
  • a non-aqueous electrolyte as the electrolyte of a lithium ion secondary battery operating at room temperature.
  • a high dielectric solvent such as a cyclic carbonate and a low chain carbonate such as a low chain carbonate are preferable.
  • a combination with a viscous solvent is a common solvent.
  • ordinary high dielectric constant solvents have a high melting point, and depending on the type of electrolyte used, their output characteristics, and further, low temperature characteristics can be degraded.
  • a nitrile solvent having an excellent balance between viscosity and relative dielectric constant has been proposed.
  • Patent Document 1 reports an electrolytic solution with reduced influence of reductive decomposition, which is obtained by mixing and diluting a cyclic carbonate such as ethylene carbonate and a nitrile solvent such as acetonitrile.
  • Patent Documents 2 to 4 report batteries that suppress reductive decomposition of a nitrile solvent by using a negative electrode that is nobler than the reduction potential of the nitrile solvent.
  • Patent Document 5 reports a nonaqueous electrolytic solution in which sulfur dioxide and one or more other aprotic polar solvents are added to a nitrile solvent for the purpose of forming a protective film on the negative electrode. Yes.
  • Patent Document 1 no solution for high temperature durability performance has been presented, and when the use is continued in a high temperature environment, the battery deteriorates and the capacity of the battery is greatly increased. There is a high possibility that it will decrease or charge / discharge itself will be impossible.
  • Patent Documents 2 to 4 when the negative electrodes described in Patent Documents 2 to 4 are used, the characteristics of the lithium ion secondary battery that are high voltage are sacrificed.
  • Patent Document 5 uses a highly reactive gas as an additive, the addition itself is very difficult, and self-discharge during charge storage is unavoidable. Further, when the gas is volatilized, the inside of the battery is pressurized, which leaves extremely serious practical problems such as battery expansion and, in some cases, rupture.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous secondary battery that realizes high output performance even when an electrode active material layer having a high volume energy density is designed. .
  • the present inventors have found that a non-aqueous secondary battery using a specific non-aqueous electrolyte having an ionic conductivity of 15 mS / cm or more at 25 ° C. Even when an electrode active material layer having a high energy density is designed, it has been found that high output performance can be realized, and the present invention has been completed. That is, the present invention is as follows.
  • a non-aqueous secondary battery comprising an electrolyte containing a lithium salt and a non-aqueous solvent, a positive electrode, and a negative electrode, wherein the basis weight of the positive electrode active material layer contained in the positive electrode is 8 to 100 mg / cm 2 , And / or the non-aqueous secondary battery in which the basis weight of the negative electrode active material layer included in the negative electrode is 3 to 46 mg / cm 2 and the ionic conductivity of the electrolyte at 25 ° C. is 15 mS / cm or more. .
  • the electrolytic solution has an ionic conductivity at 25 ° C. of 50 mS / cm or less.
  • the basis weight of the positive electrode active material layer contained in the positive electrode is 24 to 100 mg / cm 2 and / or the basis weight of the negative electrode active material layer contained in the negative electrode is 10 to 46 mg / cm 2 .
  • the non-aqueous secondary battery as described in [2].
  • R 1 -AR 2 (1) (Wherein R 1 and R 2 each independently represents an aryl group or an alkyl group optionally substituted with a halogen atom, or an aryl group optionally substituted with an alkyl group or a halogen atom, or , R 1 and R 2 are bonded to each other to form a cyclic structure which may have an unsaturated bond with A, and A is represented by any one of the following formulas (2) to (6) A divalent group having a structure is shown.) [12] The compound represented by the formula (1) includes ethylene sulfite, propylene sulfite, butylene sulfite, pentene sulfite, sulfolane, 3-methylsulfolane, 3-sulfolene, 1,3-propane sultone, 1,4- The non-aqueous secondary battery according to [11] above, comprising one or more compounds selected from the group consisting of butane sultone, 1,3-propanedi
  • the lithium salt is an inorganic lithium salt having a fluorine atom.
  • the inorganic lithium salt is LiPF 6, a nonaqueous secondary battery of the above-mentioned [14], wherein.
  • the inorganic lithium salt is LiBF 4 .
  • An organic lithium salt is further contained, and the organic lithium salt and the inorganic lithium salt are represented by the following formula (7): 0 ⁇ X ⁇ 1 (7) (In the formula, X is the molar ratio of the organic lithium salt to the inorganic lithium salt.)
  • the non-aqueous secondary battery according to [18], wherein the organic lithium salt is one or more organic lithium salts selected from the group consisting of lithium bis (oxalato) borate and lithium oxalatodifluoroborate.
  • the positive electrode contains at least one material selected from the group consisting of materials capable of inserting and extracting lithium ions as a positive electrode active material, and the negative electrode absorbs and releases lithium ions as a negative electrode active material.
  • the lithium-containing compound includes at least one compound selected from the group consisting of a metal oxide having lithium and a metal chalcogenide having lithium.
  • the negative electrode contains, as the negative electrode active material, one or more materials selected from the group consisting of metallic lithium, a carbon material, and a material containing an element capable of forming an alloy with lithium.
  • the negative electrode has lithium ions of 1.4 Vvs.
  • the positive electrode mixture of the positive electrode contains at least one compound selected from the group consisting of a positive electrode active material, a conductive additive, a binder, an organic acid, and an organic acid salt.
  • non-aqueous secondary battery [26] The non-aqueous secondary battery according to [25], wherein the compound includes a divalent or higher valent organic acid or organic acid salt. [27] The non-aqueous secondary battery according to [25] or [26] above, wherein the positive electrode active material layer produced from the positive electrode mixture has a thickness of 50 to 300 ⁇ m. [28] The positive electrode and / or negative electrode is an electrode obtained by applying a positive electrode active material layer and / or a negative electrode active material layer on an electrode substrate obtained by applying a conductive layer containing a conductive material on an electrode current collector. ] The nonaqueous secondary battery according to any one of [27] to [27].
  • the non-aqueous secondary battery of this embodiment includes a non-aqueous secondary battery that includes a non-aqueous electrolyte solution (hereinafter, also simply referred to as “electrolyte solution”) containing a lithium salt and a non-aqueous solvent, a positive electrode, and a negative electrode.
  • electrolyte solution a non-aqueous electrolyte solution
  • the basis weight of the positive electrode active material layer contained in the positive electrode is 8 to 100 mg / cm 2 and / or the basis weight of the negative electrode active material layer contained in the negative electrode is 3 to 46 mg / cm 2 .
  • the ionic conductivity in 25 degreeC of the said electrolyte solution is 15 mS / cm or more.
  • non-aqueous secondary battery examples include a positive electrode containing one or more materials selected from the group consisting of materials capable of inserting and extracting lithium ions as a positive electrode active material, and lithium ions as a negative electrode active material. And a negative electrode containing one or more materials selected from the group consisting of a negative electrode material that can be occluded and released and a metallic lithium, and a lithium ion secondary battery.
  • Examples of the non-aqueous secondary battery of the present embodiment include a lithium ion secondary battery, and more specifically, a lithium ion secondary battery schematically showing a cross-sectional view in FIG.
  • a lithium ion secondary battery 100 shown in FIG. 1 includes a separator 110, a positive electrode active material layer 120 and a negative electrode active material layer 130 sandwiching the separator 110 from both sides, and further (separator 110, positive electrode active material layer 120 and negative electrode).
  • a positive electrode current collector 140 (disposed outside the positive electrode active material layer 120) sandwiching the laminate of the active material layers 130), a negative electrode current collector 150 (arranged outside the negative electrode active material layer 130), and the like are accommodated (Hereinafter, also abbreviated as “electrode” as a generic term for a positive electrode and a negative electrode, and as an “electrode active material layer” as a generic term for a positive electrode active material layer and a negative electrode active material layer).
  • the positive electrode is composed of a positive electrode active material layer 120 made from a positive electrode mixture and a positive electrode current collector 140
  • the negative electrode is made up of a negative electrode active material layer 130 made from a negative electrode mixture and a negative electrode current collector 150 (hereinafter referred to as positive electrode).
  • Electrode mixture As a general term for a mixture and a negative electrode mixture.
  • the laminate in which the positive electrode active material layer 120, the separator 110, and the negative electrode active material layer 130 are stacked is impregnated with an electrolytic solution.
  • electrolytic solution As these members, those provided in a conventional lithium ion secondary battery can be used as long as the requirements in the present embodiment are satisfied. For example, those described below may be used.
  • the electrolyte solution in the present embodiment contains a lithium salt and a non-aqueous solvent, and is not particularly limited as long as the ionic conductivity at 25 ° C. is 15 mS / cm or more.
  • the lithium salt and the non-aqueous solvent are known ones. May be.
  • the ion conductivity at 25 ° C. is preferably 20 mS / cm or more, and preferably 25 mS / cm or more from the viewpoint of achieving high output performance. Is more preferable.
  • the upper limit of the ionic conductivity at 25 ° C. is not particularly limited, but the ionic conductivity may be 50 mS / cm or less from the viewpoint of suppressing unexpected battery deterioration such as elution deterioration and peeling deterioration of various battery members. Preferably, it is 49 mS / cm or less, and more preferably 48 mS / cm or less.
  • the ionic conductivity of the electrolytic solution can be controlled, for example, by adjusting the viscosity and / or polarity of the non-aqueous solvent. More specifically, the ionic conductivity of the non-aqueous solvent and the high polarity can be controlled. By mixing with a non-aqueous solvent, the ionic conductivity of the electrolytic solution can be controlled to be high. Further, by using a non-aqueous solvent having a low viscosity and a high polarity, the ionic conductivity of the electrolytic solution can be controlled to be high.
  • the ionic conductivity of the electrolytic solution can be measured according to the method described in “(1-1) Measurement of ionic conductivity of non-aqueous electrolytic solution” in Examples described later.
  • the non-aqueous electrolyte solution in this embodiment preferably does not contain moisture, but may contain a very small amount of moisture as long as it does not impede the solution of the problems of the present invention.
  • the water content is preferably 0 to 100 ppm with respect to the total amount of the nonaqueous electrolytic solution.
  • Non-aqueous solvent is not particularly limited as long as a predetermined ion conductivity can be obtained in combination with other components, and examples thereof include alcohols such as methanol and ethanol, and aprotic solvents. An aprotic polar solvent is preferred.
  • non-aqueous solvent examples include, for example, ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, trans-2,3-butylene carbonate, cis-2,3-butylene carbonate, 1,2-pentylene carbonate, Cyclic carbonates represented by trans-2,3-pentylene carbonate, cis-2,3-pentylene carbonate, trifluoromethylethylene carbonate, fluoroethylene carbonate, 1,2-difluoroethylene carbonate; ⁇ -butyrolactone, ⁇ - Lactones typified by valerolactone; sulfur compounds typified by sulfolane and dimethyl sulfoxide; cyclic ethers typified by tetrahydrofuran, 1,4-dioxane and 1,3-dioxane; ethyl methyl carbonate, di Chain carbonates typified by methyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isoprop
  • the non-aqueous solvent those having a low viscosity and a high dielectric constant are preferable, and among them, a nitrile solvent having an excellent balance between viscosity and dielectric constant is preferably included.
  • the nitrile solvent preferably contains acetonitrile.
  • Acetonitrile has a low viscosity and a high polarity.
  • non-aqueous secondary battery By using an electrolytic solution containing such a non-aqueous solvent, it is possible to provide a non-aqueous secondary battery that enables large-current discharge and rapid charging based on its characteristics. Since compounds containing nitrile groups are easily electrochemically reduced and decomposed, when using nitrile solvents, they are mixed with other solvents and / or additives for forming a protective film on the electrode are added. It is preferable to do.
  • the non-aqueous solvent preferably contains one or more cyclic aprotic polar solvents, and contains one or more cyclic carbonates. It is more preferable.
  • a mixed solvent of two or more non-aqueous solvents is preferable.
  • the non-aqueous solvent that is a component of the mixed solvent include the same ones as described above, and examples of the mixed solvent include a mixed solvent of a cyclic carbonate and acetonitrile.
  • the content of acetonitrile is not particularly limited as long as predetermined ion conductivity is obtained in combination with other components, but the total amount of the non-aqueous solvent
  • the content is preferably 5 to 97% by volume, more preferably 10 to 90% by volume, and still more preferably 25 to 80% by volume.
  • the content of acetonitrile is 5% by volume or more, the ionic conductivity tends to increase and high output characteristics tend to be exhibited.
  • it is 97% by volume or less problems caused by volatilization are suppressed, and a special method is used. There is a tendency that the reductive decomposition reaction at the negative electrode can be moderated without using.
  • the content of acetonitrile in the non-aqueous solvent is within the above range, the cycle performance long-term characteristics and other battery characteristics tend to be further improved while maintaining the excellent performance of acetonitrile. is there.
  • the lithium salt is not particularly limited as long as it is a lithium salt that is usually used in an electrolyte solution for a non-aqueous secondary battery as long as a predetermined ion conductivity can be obtained in combination with other components. It may be a thing.
  • the lithium salt is preferably contained in the nonaqueous electrolytic solution in the present embodiment at a concentration of 0.1 to 3 mol / L, and more preferably 0.5 to 2 mol / L. When the concentration of the lithium salt is within the above range, the electric conductivity of the electrolytic solution is kept higher, and at the same time, the charge / discharge efficiency of the nonaqueous secondary battery tends to be kept higher.
  • the lithium salt in this embodiment it is an inorganic lithium salt.
  • the “inorganic lithium salt” refers to a lithium salt that does not contain a carbon atom in an anion and is soluble in acetonitrile, and the “organic lithium salt” described later contains a carbon atom in an anion and is soluble in acetonitrile.
  • the inorganic lithium salt is not particularly limited as long as it is used as a normal non-aqueous electrolyte, and may be any one.
  • inorganic lithium salts include, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , Li 2 B 12 F b H 12-b [B is an integer of 0 to 3], and lithium salt bonded to a polyvalent anion containing no carbon atom.
  • inorganic lithium salts are used singly or in combination of two or more.
  • an inorganic lithium salt having a fluorine atom is used as the inorganic lithium salt
  • a passive film is formed on the surface of the metal foil that is the positive electrode current collector, which is preferable from the viewpoint of suppressing an increase in internal resistance.
  • an inorganic lithium salt having a phosphorus atom is used as the inorganic lithium salt, it is more preferable because free fluorine atoms are easily released, and LiPF 6 is particularly preferable.
  • it is preferable to use an inorganic lithium salt having a boron atom as the inorganic lithium salt because it is easy to capture an excess free acid component that may cause battery deterioration. From such a viewpoint, LiBF 4 is particularly preferable. .
  • the content of the inorganic lithium salt in the non-aqueous electrolyte solution of the present embodiment is preferably 0.1 to 40% by mass and more preferably 1 to 30% by mass with respect to the total amount of the non-aqueous electrolyte solution.
  • the content is 5 to 25% by mass.
  • the lithium salt in the present embodiment may further contain an organic lithium salt in addition to the inorganic lithium salt.
  • organic lithium salt with inorganic lithium salt with high ion conductivity following formula (7): 0 ⁇ X ⁇ 1 (7) It is preferable to satisfy the condition represented by.
  • X shows the molar ratio of the organic lithium salt with respect to the inorganic lithium salt contained in a non-aqueous electrolyte solution.
  • the content of the organic lithium salt in the non-aqueous electrolyte solution of the present embodiment is preferably 0.1 to 30% by mass, and preferably 0.2 to 20% by mass with respect to the total amount of the non-aqueous electrolyte solution. Is more preferably 0.5 to 15% by mass.
  • the content of the organic lithium salt is in the above range, the balance between the function and solubility of the electrolytic solution tends to be ensured.
  • organic lithium salt examples include LiN (SO 2 C m F 2m + 1 ) 2 such as LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2, where m is an integer of 1 to 8.
  • the organic lithium salt represented by the following general formula (8a), (8b), and (8c) can also be used.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 may be the same as or different from each other, and are perfluoroalkyl having 1 to 8 carbon atoms. Indicates a group.
  • organic lithium salts are used singly or in combination of two or more, and organic lithium salts having boron atoms are preferred because of their structural stability.
  • the organic lithium salt having an organic ligand has an internal structure including a positive electrode because the organic ligand participates in an electrochemical reaction and forms a protective film called Solid Electrolyte Interface (SEI) on the electrode surface. This is preferable from the viewpoint of suppressing an increase in resistance.
  • SEI Solid Electrolyte Interface
  • LiBOB a borate lithium salt having a halogenated organic acid as a ligand, LiODFB, and LiBMB are preferable, and LiBOB and LiODFB are particularly preferable.
  • the electrolytic solution in the present embodiment may further contain an ionic compound composed of a salt formed of an organic cation species other than lithium ions and an anionic species.
  • an ionic compound composed of a salt formed of an organic cation species other than lithium ions and an anionic species.
  • Examples of the cation of the ionic compound include tetraethylammonium, tetrabutylammonium, triethylmethylammonium, trimethylethylammonium, dimethyldiethylammonium, trimethylpropylammonium, trimethylbutylammonium, trimethylpentylammonium, trimethylhexylammonium, trimethyloctylammonium, and diethyl.
  • Quaternary ammonium cations such as methylmethoxyethylammonium; 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1,2-dimethyl-3-propylimidazolium, 1-hexyl-3-methyl Imidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-methyl-3-propylimidazolium, etc.
  • pyridinium cation such as 1-ethylpyridinium, 1-butylpyridinium, 1-hexylpyridinium
  • piperidinium cation such as 1-methyl-1-propylpiperidinium, 1-butyl-1-methylpiperidinium
  • Pyrrolidinium cations such as 1-ethyl-1-methylpyrrolidinium, 1-methyl-1-propylpyrrolidinium and 1-butyl-1-methylpyrrolidinium
  • sulfonium cations such as diethylmethylsulfonium and triethylsulfonium
  • a quaternary phosphonium cation Among these cations, a cation having a nitrogen atom is preferable from the viewpoint of electrochemical stability, and a pyridinium cation is more preferable.
  • the anion of the ionic compound is not particularly limited as long as it is usually used as a counter ion of the cation.
  • BF 4 ⁇ , PF 6 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 ⁇ and SO 3 CF 3 — Among these anions, PF 6 - is preferable because it is excellent in dissociation of ions and suppression of increase in internal resistance.
  • the electrolytic solution in the present embodiment may contain an additive for protecting the electrode.
  • the additive is not particularly limited as long as it does not inhibit the solution of the problem according to the present invention, and may substantially overlap with a substance that plays a role as a solvent for dissolving a lithium salt, that is, the above non-aqueous solvent.
  • the additive is preferably a substance that contributes to the performance improvement of the non-aqueous electrolyte solution and the non-aqueous secondary battery in the present embodiment, but also includes a substance that does not directly participate in the electrochemical reaction, One kind is used alone, or two or more kinds are used in combination.
  • the additive include, for example, 4-fluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, cis-4,5-difluoro-1, 3-dioxolan-2-one, trans-4,5-difluoro-1,3-dioxolan-2-one, 4,4,5-trifluoro-1,3-dioxolan-2-one, 4,4,5 , 5-tetrafluoro-1,3-dioxolan-2-one, fluoroethylene carbonate represented by 4,4,5-trifluoro-5-methyl-1,3-dioxolan-2-one; vinylene carbonate, 4 , 5-dimethyl vinylene carbonate, cyclic carbonates containing unsaturated bonds typified by vinyl ethylene carbonate; ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolac Lactones represented by N, ⁇ -valerolactone,
  • the content of the additive in the electrolytic solution in the present embodiment is not particularly limited, but is preferably 0.1 to 30% by mass, and preferably 0.2 to 25% by mass with respect to the total amount of the electrolytic solution. More preferably, it is more preferably 0.5 to 20% by mass.
  • the additive contributes to the development of high cycle performance, but on the other hand, the contribution to high output performance in a low temperature environment has not been confirmed. As the content of the additive increases, the deterioration of the electrolytic solution is suppressed. However, the lower the additive, the higher the high output characteristics in a low temperature environment.
  • the superior performance based on the high ionic conductivity of the non-aqueous electrolyte solution can be more fully satisfied without impairing the basic function as a non-aqueous secondary battery.
  • the cycle performance of the electrolytic solution, the high output performance under a low temperature environment, and other battery characteristics tend to be further improved.
  • the non-nitrile additive contains one or more compounds selected from the group consisting of compounds represented by the following formula (1) (hereinafter referred to as “compound (1)”).
  • compound (1) compounds represented by the following formula (1)
  • R 1 and R 2 are each independently an aryl group or an alkyl group which may be substituted with a halogen atom, or an aryl group which may be substituted with an alkyl group or a halogen atom.
  • R 1 and R 2 are bonded to each other to form a cyclic structure which may have an unsaturated bond with A, and A is any one of the following formulas (2) to (6): And a divalent group having a structure represented by
  • the aryl group represented by R 1 and R 2 or the alkyl group which may be substituted with a halogen atom is preferably an alkyl group having 1 to 4 carbon atoms which may be substituted with an aryl group or a halogen atom, and more A phenyl group or an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom is preferable.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  • aryl group serving as a substituent examples include a phenyl group, a naphthyl group, and an anthranyl group, and among them, a phenyl group is preferable.
  • a halogen atom which becomes a substituent of an alkyl group a fluorine atom, a chlorine atom and a bromine atom are preferable.
  • a plurality of these substituents may be substituted with an alkyl group, and both an aryl group and a halogen atom may be substituted.
  • the aryl group optionally substituted with an alkyl group or a halogen atom represented by R 1 and R 2 is preferably a phenyl group, a naphthyl group or an anthranyl group optionally substituted with an alkyl group or a halogen atom, and more Preferred is an alkyl group or a phenyl group which may be substituted with a halogen atom, and more preferred is a phenyl group which may be substituted with a halogen atom.
  • the aryl group include a phenyl group, a naphthyl group, and an anthranyl group, and among them, a phenyl group is preferable.
  • the alkyl group that serves as a substituent for the aryl group is preferably an alkyl group having 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  • a halogen atom serving as a substituent for the aryl group a fluorine atom, a chlorine atom and a bromine atom are preferable. A plurality of these substituents may be substituted with an aryl group, and both an alkyl group and a halogen atom may be substituted.
  • the cyclic structure formed by R 1 and R 2 bonded to each other together with A is preferably a 4-membered ring or more, and may have any one or more of a double bond and a triple bond.
  • R 1 and R 2 bonded to each other are each preferably a divalent hydrocarbon group, preferably having 1 to 6 carbon atoms.
  • one or more hydrogen atoms of these groups are any of an alkyl group (for example, a methyl group and an ethyl group), a halogen atom (for example, a fluorine atom, a chlorine atom, and a bromine atom) and an aryl group (for example, a phenyl group). Or may be substituted by one or more.
  • R 1 and R 2 may be the same or different from each other.
  • Specific examples of the compound (1) in which A is a divalent group having the structure represented by the above formula (2) include dimethyl sulfite, diethyl sulfite, ethyl methyl sulfite, methyl propyl sulfite, ethyl propyl Chain sulfites such as sulfite, diphenyl sulfite, methylphenyl sulfite, ethyl sulfite, dibenzyl sulfite, benzyl methyl sulfite, benzyl ethyl sulfite; ethylene sulfite, propylene sulfite, butylene sulfite, pentene Cyclic sulfites such as sulfite, vinylene sulfite, phenylethylene sulfite, 1-methyl-2-phenylethylene sulfite, and 1-ethyl-2-phenylethylene sulfite
  • Specific examples of the compound (1) in which A is a divalent group having the structure represented by the above formula (3) include dimethylsulfone, diethylsulfone, ethylmethylsulfone, methylpropylsulfone, ethylpropylsulfone, diphenylsulfone, Chain sulfones such as methylphenylsulfone, ethylphenylsulfone, dibenzylsulfone, benzylmethylsulfone, benzylethylsulfone; sulfolane, 2-methylsulfolane, 3-methylsulfolane, 2-ethylsulfolane, 3-ethylsulfolane, 2,4 -Cyclic sulfones such as dimethylsulfolane, 3-sulfolene, 3-methylsulfolene, 2-phenylsulfolane, and 3-phenylsulfolane; and chain
  • Specific examples of the compound (1) in which A is a divalent group having the structure represented by the above formula (4) include methyl methanesulfonate, ethyl methanesulfonate, propyl methanesulfonate, methyl ethanesulfonate, ethane Ethyl sulfonate, propyl ethane sulfonate, methyl benzene sulfonate, ethyl benzene sulfonate, propyl benzene sulfonate, phenyl methane sulfonate, phenyl ethane sulfonate, phenyl propane sulfonate, benzyl methane sulfonate, benzyl ethane sulfonate, propane Chain sulfonate esters such as benzyl sulfonate: cyclic sulfonate esters such as 1,
  • Specific examples of the compound (1) in which A is a divalent group having the structure represented by the above formula (5) include dimethyl sulfate, diethyl sulfate, ethyl methyl sulfate, methyl propyl sulfate, ethyl propyl sulfate, methyl phenyl sulfate.
  • Chain sulfate such as ethylphenyl sulfate, phenylpropyl sulfate, benzylmethyl sulfate, benzylethyl sulfate; ethylene glycol sulfate, 1,2-propanediol sulfate, 1,3-propanediol sulfate, 1,2- Cyclic sulfates such as butanediol sulfate, 1,3-butanediol sulfate, 2,3-butanediol sulfate, phenylethylene glycol sulfate, methylphenylethylene glycol sulfate, ethylphenylethylene glycol sulfate; and the above Halides Jo sulfate or cyclic sulfate esters.
  • Specific examples of the compound (1) in which A is a divalent group having the structure represented by the above formula (6) include dimethyl sulfoxide, diethyl sulfoxide, ethyl methyl sulfoxide, methyl propyl sulfoxide, ethyl propyl sulfoxide, diphenyl sulfoxide, Chain sulfoxides such as methylphenyl sulfoxide, ethylphenyl sulfoxide, dibenzyl sulfoxide, benzylmethyl sulfoxide, benzylethyl sulfoxide; cyclic sulfoxides such as tetramethylene sulfoxide and thiophene 1-oxide; and halides of the above chain sulfoxides and cyclic sulfoxides; Can be mentioned.
  • Compound (1) is used singly or in combination of two or more. When two or more compounds (1) are combined, the structures of A in each compound (1) may be the same or different from each other.
  • the content of the compound (1) in the non-aqueous electrolyte solution is not particularly limited, but may be 0.05 to 30% by volume with respect to the total amount of components contained in the non-aqueous electrolyte solution excluding the lithium salt. Preferably, it is 0.1 to 20% by volume, more preferably 0.5 to 10% by volume.
  • Some of the compounds (1) are solid at room temperature (25 ° C.), but in that case, the saturated dissolution amount in acetonitrile or less, preferably 60% by mass or less of the saturated dissolution amount, more preferably the saturated dissolution amount. It is used in the range of 30% by mass or less.
  • the compound (1) preferably has a cyclic structure.
  • one or more compounds selected from the group consisting of tetramethylene sulfoxide it is possible to continuously exhibit higher performance even under harsh use environments such as high-temperature charge / discharge and charge storage. .
  • the electrolytic solution in the present embodiment uses carbonates, that is, one or more compounds selected from the group consisting of compounds having CO 3 in the molecule in combination with the compound (1) from the viewpoint of improving the durability of SEI. It is preferable.
  • the carbonates are preferably organic carbonates, more preferably cyclic carbonates, and further preferably compounds having an intercarbon unsaturated double bond.
  • vinylene carbonate is used as a main component, that is, a carbonate containing the largest amount
  • the durability of SEI is dramatically improved by a synergistic effect with the compound (1). This is because such carbonates tend to undergo copolymerization decomposition reaction, that is, copolymer formation with other additives, and the compound (1) plays a role as a comonomer. This is thought to be due to the increase in properties and poor solubility.
  • the factor is not limited to this.
  • the non-aqueous electrolyte in the present embodiment may further contain a dinitrile compound, that is, a compound having two nitrile groups in the molecule.
  • the dinitrile compound has the effect of reducing corrosion of metal parts such as battery cans and electrodes. The reason for this is considered to be that the use of a dinitrile compound forms a protective film that suppresses corrosion on the surface of the metal portion with reduced corrosion.
  • the factor is not limited to this.
  • the dinitrile compound is not particularly limited as long as it does not hinder the solution of the problems of the present invention, but preferably has methylene chains, more preferably 1 to 12 methylene chains, linear, branched, Any of the shapes may be used.
  • Examples of the dinitrile compound include succinonitrile, glutaronitrile, adiponitrile, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, 1,8-dicyanooctane, 1,9-dicyanononane.
  • Linear dinitrile compounds such as 1,10-dicyanodecane, 1,11-dicyanoundecane, 1,12-dicyanododecane; tetramethylsuccinonitrile, 2-methylglutaronitrile, 2,4-dimethylglutaronitrile 2,2,4,4-tetramethylglutaronitrile, 1,4-dicyanopentane, 2,5-dimethyl-2,5-hexanedicarbonitrile, 2,6-dicyanoheptane, 2,7-dicyanooctane Branched dinitrile compounds such as 2,8-dicyanononane and 1,6-dicyanodecane; , 2-dicyanobenzene, 1,3-dicyanobenzene, aromatic dinitrile compounds such as 1,4-dicyano benzene. These are used singly or in combination of two or more.
  • the content of the dinitrile compound in the nonaqueous electrolytic solution in the present embodiment is not particularly limited, but is preferably 0.01 to 1 mol / L with respect to the total amount of components contained in the electrolytic solution excluding the lithium salt. 0.02 to 0.5 mol / L is more preferable, and 0.05 to 0.3 mol / L is still more preferable.
  • the cycle performance tends to be further improved without impairing the basic function as the non-aqueous secondary battery.
  • the dinitrile compound tends to have a low dipole moment when the number of methylene chains is an even number, but surprisingly a higher addition effect was experimentally recognized than when the number of methylene chains was an odd number. Therefore, the dinitrile compound preferably contains one or more compounds selected from the group consisting of compounds represented by the following general formula (9).
  • R 10 and R 11 each independently represent a hydrogen atom or an alkyl group, and a represents an integer of 1 to 6.
  • the alkyl group preferably has 1 to 10 carbon atoms.
  • Positive electrode and positive electrode current collector> A positive electrode will not be specifically limited if it acts as a positive electrode of a non-aqueous secondary battery, A well-known thing may be used.
  • the positive electrode contains one or more materials selected from the group consisting of materials capable of occluding and releasing lithium ions as the positive electrode active material, high voltage and high energy density tend to be obtained. preferable. Examples of such materials include lithium-containing compounds represented by the following general formulas (10a) and (10b), and metal oxides and metal chalcogenides having a tunnel structure and a layered structure.
  • the chalcogenide refers to sulfide, selenide, and telluride.
  • M represents one or more metal elements including at least one transition metal element
  • x represents a number from 0 to 1.1
  • y represents a number from 0 to 2.
  • lithium-containing compound represented by the general formulas (10a) and (10b) examples include lithium cobalt oxides typified by LiCoO 2 ; typified by LiMnO 2 , LiMn 2 O 4 , and Li 2 Mn 2 O 4.
  • the lithium-containing compound other than (10a) and (10b) is not particularly limited as long as it contains lithium, and includes, for example, a composite oxide containing lithium and a transition metal element, and lithium and a transition metal element.
  • a metal phosphate compound and a metal silicate compound containing lithium and a transition metal element (for example, Li t M u SiO 4 , M is as defined in the above formula (10a), t is a number from 0 to 1, and u is 0 Represents the number of ⁇ 2.).
  • lithium, cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), chromium (Cr), vanadium ( V) and composite oxides containing at least one transition metal element selected from the group consisting of titanium (Ti) and metal phosphate compounds are preferred.
  • the lithium-containing compound is preferably a metal oxide having lithium or a metal chalcogenide having lithium, and a metal phosphate compound having lithium, for example, represented by the following general formulas (11a) and (11b), respectively.
  • the compound which is made is mentioned.
  • metal oxides having lithium and metal chalcogenides having lithium are more preferable.
  • Li v M I D 2 (11a ) Li w M II PO 4 (11b)
  • D represents oxygen or a chalcogen element
  • M I and M II each represent one or more transition metal elements
  • the values of v and w differ depending on the charge / discharge state of the battery, but usually v is 0.05 to 1.10, w represents a number from 0.05 to 1.10.
  • the compound represented by the general formula (11a) generally has a layered structure
  • the compound represented by the general formula (11b) generally has an olivine structure.
  • a part of the transition metal element is substituted with Al, Mg, other transition metal elements or included in the crystal grain boundary, or one of the oxygen atoms.
  • Those obtained by substituting a part with a fluorine atom or the like may be used, and further, at least part of the surface of the positive electrode active material may be coated with another positive electrode active material.
  • Examples of the metal oxide or metal chalcogenide having a tunnel structure and a layered structure include, for example, MnO 2 , FeO 2 , FeS 2 , V 2 O 5 , V 6 O 13 , TiO 2 , TiS 2 , MoS 2 and NbSe.
  • 2 includes oxides, sulfides and selenides of metals other than lithium.
  • Examples of other positive electrode active materials include sulfur and conductive polymers represented by polyaniline, polythiophene, polyacetylene, and polypyrrole.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the number average particle size (primary particle size) of the positive electrode active material is preferably 0.05 to 100 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the number average particle size of the positive electrode active material can be measured by a wet particle size measuring device (for example, a laser diffraction / scattering particle size distribution meter, a dynamic light scattering particle size distribution meter).
  • 100 particles observed with a transmission electron microscope are randomly extracted and analyzed with image analysis software (for example, image analysis software manufactured by Asahi Kasei Engineering Co., Ltd., trade name “A Image-kun”). It can also be obtained by calculating an average. In this case, when the number average particle diameter differs between measurement methods for the same sample, a calibration curve created for the standard sample may be used.
  • the positive electrode mixture of the non-aqueous secondary battery in this embodiment is a positive electrode active material, a conductive additive, a binder, and at least one compound selected from the group consisting of an organic acid and an organic acid salt (hereinafter referred to as “organic”). It may also be abbreviated as “acid compound”). Cathode mixtures containing organic acid compounds function extremely stably, with little risk of embrittlement and poor binding to the electrode current collector, even when non-ionic electrolytes with high ionic conductivity are used. This is preferable.
  • the non-aqueous secondary battery by which the increase in internal resistance resulting from positive electrode deterioration was suppressed significantly can be provided.
  • Organic acids and organic acid salts have a role of increasing the binding force between the positive electrode active materials and between the positive electrode active material layer and the electrode current collector, and the type thereof is not particularly limited as long as the organic solvent is soluble.
  • the at least one compound selected from the group consisting of an organic acid and an organic acid salt is a divalent or higher organic compound from the viewpoint that the fluidity of the positive electrode mixture is high and the increase in viscosity with time is suppressed. It is preferable to include an acid or an organic acid salt.
  • organic acid compounds include monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, and acrylic acid; oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelain.
  • Aliphatic saturated dicarboxylic acids such as acid and sebacic acid; aliphatic unsaturated dicarboxylic acids such as maleic acid and fumaric acid; aromatic dicarboxylic acids such as phthalic acid; tricarboxylic acids such as citric acid; and lithium salts of the above carboxylic acids; A sodium salt and an ammonium salt are mentioned.
  • oxalic acid and malonic acid are preferred because there is a tendency that unevenness of the surface of the dry cathode active material layer is less likely to occur by suppressing an increase in the viscosity of the cathode mixture slurry.
  • the said compound may be used individually by 1 type, or may use 2 or more types together.
  • the addition amount of the organic acid compound is preferably 0.01 to 3 parts by mass, more preferably 0.05 to 2.5 parts by mass, and more preferably 0.1 to 2 parts by mass per 100 parts by mass of the positive electrode active material. More preferably, it is part.
  • the addition amount of the organic acid compound is preferably 0.01 parts by mass or more from the viewpoint of binding force, and is 3 parts by mass or less from the viewpoint of slurry viscosity, dispersibility, and uniformity of the dry cathode active material layer. It is preferable.
  • a positive electrode containing a positive electrode active material and, if necessary, a conductive additive, a binder, and an organic acid compound can be obtained, for example, as follows. That is, first, a conductive additive and an organic acid compound are added to the positive electrode active material and mixed uniformly in a dry state, and then a binder is added and dispersed in a solvent to prepare a positive electrode mixture-containing slurry. To do.
  • the solid content concentration in the positive electrode mixture-containing slurry is preferably 30 to 80% by mass, more preferably 40 to 70% by mass.
  • this positive electrode mixture-containing slurry is applied to a positive electrode current collector and dried to form a coating layer.
  • the positive electrode active material layer is formed by compressing the coating layer obtained after drying with a roll press or the like.
  • the thickness of the positive electrode active material layer after compression is preferably 10 to 300 ⁇ m, more preferably 20 to 280 ⁇ m, and still more preferably 30 to 250 ⁇ m.
  • the thickness of the positive electrode active material layer after compression is preferably 50 to 300 ⁇ m, more preferably 60 to 280 ⁇ m, and more preferably 80 to More preferably, it is 250 ⁇ m.
  • the basis weight of the positive electrode active material layer included in the positive electrode is adjusted to a range of 8 to 100 mg / cm 2 .
  • the basis weight is preferably 9 to 50 mg / cm 2 , more preferably 10 to 26 mg / cm 2 , but the output performance of the non-aqueous secondary battery From the viewpoint of improving the volume energy density while maintaining balance, the basis weight is preferably 24 to 100 mg / cm 2 , more preferably 25 to 80 mg / cm 2 , and 26 to 60 mg / cm 2 . More preferably.
  • the non-aqueous secondary battery in the present embodiment uses an electrolytic solution having an ionic conductivity of 15 mS / cm or more, even when an electrode active material layer having a high volume energy density is designed, the non-aqueous secondary battery that realizes high output performance A secondary battery can be provided.
  • the basis weight indicates the mass of the electrode active material contained per 1 cm 2 of the electrode area, and the electrode active material layer is formed on both sides of the current collector. Is formed, the mass of the electrode active material contained per 1 cm 2 of electrode area on each side is shown.
  • the amount of the electrode active material per unit volume of the battery is relatively greater than other battery materials not related to the battery capacity, such as current collector foils and separators. The capacity of the battery will be increased.
  • the basis weight when the electrode active material layer is formed on one surface of the current collector can be calculated by the following equation (12).
  • Weight per unit area [mg / cm 2 ] (electrode mass [mg] ⁇ electrode current collector mass [mg]) ⁇ electrode area [cm 2 ] (12)
  • the basis weight of the electrode active material layer is determined by a doctor blade method when an electrode mixture-containing slurry obtained by dispersing an electrode mixture in which an electrode active material, a binder and a conductive additive are mixed in a solvent is applied to a current collector.
  • it can be adjusted by controlling the coating thickness of the active material layer.
  • it can adjust also by controlling the density
  • the porosity of the positive electrode active material layer in the present embodiment is not particularly limited. However, in the non-aqueous secondary battery, it is 20 to 45% from the viewpoint of improving the volume energy density while maintaining a balance with the output performance. Preferably, it is 22 to 42%, more preferably 25 to 35%. When the porosity is 20% or more, the diffusion of lithium ions in the positive electrode active material layer is hardly inhibited, and the output characteristics tend to be secured. In addition, when the porosity of the positive electrode active material layer is 45% or less, it is possible to suppress the peeling deterioration of the positive electrode active material layer and the drainage of the non-aqueous electrolyte, and to ensure durability while achieving high output. Tend to be able to.
  • the porosity of the electrode active material layer can be obtained by the following formula (13).
  • Porosity [%] (1 ⁇ Actual electrode density [g / cm 3 ] / Theoretical electrode density [g / cm 3 ]) ⁇ 100 (13)
  • the actual electrode density can be determined by dividing the electrode active material layer mass by the electrode active material layer volume.
  • the electrode active material layer mass is a value calculated by subtracting the mass of the electrode current collector from the mass of the electrode punched out with a punch, and the electrode active material layer volume is This is a value calculated by multiplying the area of the electrode active material layer thickness obtained by subtracting the thickness of the electrode current collector from the electrode thickness measured with a micrometer.
  • the theoretical electrode density can be determined by adding and multiplying the density and composition ratio of each material constituting the electrode, such as an electrode active material, a conductive additive, and a binder.
  • the particle density is a value obtained by dividing the mass of the particle by the volume of the particle including the closed cavity inside the particle, and does not include the dent, crack or open cavity on the particle surface.
  • the porosity of the electrode active material layer can be adjusted, for example, by controlling the bulk density of the electrode active material or compressing the electrode.
  • the compression of the electrode is performed by a compression means such as a roll press, and the pressing pressure is not particularly limited, but is preferably 2 to 8 MPa, more preferably 4 to 7 MPa. Since an electrode active material layer having a low porosity can be obtained by pressing the electrode at a high pressure, it is preferable from the viewpoint of increasing the battery capacity. Moreover, since the binding force of the electrode active material layer is increased, it is also preferable from the viewpoint of suppressing electrode deterioration when a non-aqueous electrolyte having high ionic conductivity is used.
  • Examples of the conductive aid include carbon black typified by graphite, acetylene black and ketjen black, and carbon fiber.
  • the number average particle size (primary particle size) of the conductive assistant is preferably 10 nm to 10 ⁇ m, more preferably 20 nm to 1 ⁇ m, and is measured by the same method as the number average particle size of the positive electrode active material.
  • Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid, styrene butadiene rubber, and fluorine rubber.
  • the solvent is not particularly limited, and a conventionally known solvent can be used. Examples thereof include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, and water.
  • the positive electrode current collector is made of a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil. Moreover, the carbon coat may be given or it may be processed into the mesh form.
  • the thickness of the positive electrode current collector is preferably 5 to 40 ⁇ m, more preferably 7 to 35 ⁇ m, and still more preferably 9 to 30 ⁇ m.
  • a negative electrode will not be specifically limited if it acts as a negative electrode of a non-aqueous secondary battery, A well-known thing may be used.
  • the negative electrode preferably contains at least one material selected from the group consisting of a material capable of inserting and extracting lithium ions as a negative electrode active material and metallic lithium.
  • metallic lithium examples of such materials include amorphous carbon (hard carbon), artificial graphite, natural graphite, pyrolytic carbon, coke, glassy carbon, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon Examples thereof include carbon materials represented by fiber, activated carbon, graphite, carbon colloid, and carbon black.
  • coke examples include pitch coke, needle coke, and petroleum coke.
  • the fired body of an organic polymer compound is obtained by firing and polymerizing a polymer material such as phenol resin or furan resin at an appropriate temperature.
  • the carbon material may contain different elements or compounds such as O, B, P, N, S, Si, SiC, SiO, SiO 2 , and B 4 C.
  • the content of the different element or the different compound is preferably 0 to 10% by mass with respect to the carbon material.
  • examples of materials capable of inserting and extracting lithium ions include materials containing elements capable of forming an alloy with lithium. This material may be a single metal or a semi-metal, an alloy or a compound, and may have at least a part of one or more of these phases. Good.
  • alloy in addition to what consists of 2 or more types of metal elements, what has 1 or more types of metal elements and 1 or more types of metalloid elements is contained in "alloy".
  • the alloy may have a nonmetallic element as long as it has metal properties as a whole.
  • metal elements and metalloid elements capable of forming an alloy with lithium include titanium (Ti), tin (Sn), lead (Pb), aluminum (Al), indium (In), silicon (Si), and zinc ( Zn), antimony (Sb), bismuth (Bi), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), hafnium (Hf), zirconium (Zr) and yttrium (Y). .
  • the metal elements and metalloid elements of Group 4 or Group 14 in the long-period periodic table are preferable, and particularly preferable is titanium or silicon that has a large ability to occlude and release lithium and can obtain a high energy density. And tin.
  • tin for example, as a second constituent element other than tin, silicon, magnesium (Mg), nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium (Ti), germanium, bismuth, Examples thereof include those having one or more elements selected from the group consisting of antimony and chromium (Cr).
  • silicon alloy examples include, as the second constituent element other than silicon, tin, magnesium, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, and chromium. Those having one or more elements selected from the above are listed.
  • titanium compound examples include those having oxygen (O) or carbon (C).
  • tin compound examples include those having oxygen (O) or carbon (C).
  • C carbon
  • the compound having the second constituent element described above is used. You may do it.
  • the negative electrode has a negative active material of 0.4 to 3 V vs.
  • metal compounds include metal oxides, metal sulfides, and metal nitrides.
  • the metal oxide examples include titanium oxide, lithium titanium oxide (lithium titanium-containing composite oxide), tungsten oxide (for example, WO 3 ), and amorphous tin oxide (for example, SnB 0.4 P 0.6 O 3). .1), tin silicon oxide (e.g., SnSiO 3) and silicon oxide (SiO) and the like. Among these, titanium oxide and lithium titanium oxide are preferable.
  • lithium titanium oxide examples include spinel lithium titanate ⁇ for example, Li 4 + c Ti 5 O 12 (c can be changed within a range of ⁇ 1 ⁇ c ⁇ 3 by charge / discharge reaction) ⁇ , titanium having a ramsdellite structure Lithium acid ⁇ for example, Li 2 + d Ti 3 O 7 (d can be changed within the range of ⁇ 1 ⁇ d ⁇ 3 by charge / discharge reaction) ⁇ .
  • titanium oxide any one containing or not containing Li before charging / discharging can be used.
  • titanium oxides that do not contain Li before charge / discharge, that is, synthesis include, for example, titanium oxide (eg, TiO 2 , H 2 Ti 12 O 25 ), Ti and P, V, Sn, Cu, Ni, and Fe.
  • titanium composite oxide examples include TiO 2 —P 2 O 5 , TiO 2 —V 2 O 5 , TiO 2 —P 2 O 5 —SnO 2 , TiO 2 —P 2 O 5 —MeO (Me is Cu, At least one element selected from the group consisting of Ni and Fe).
  • the titanium composite oxide preferably has a low crystallinity and has a microstructure in which the crystal phase and the amorphous phase coexist or exist alone. By having such a microstructure, cycle performance can be greatly improved.
  • Examples of the titanium oxide containing Li before charge / discharge that is, the titanium oxide containing Li from the time of synthesis include Li e TiO 2 (e is 0 ⁇ e ⁇ 1.1).
  • metal sulfide examples include titanium sulfide (for example, TiS 2 ), molybdenum sulfide (for example, MoS 2 ), and iron sulfide (for example, FeS, FeS 2 , Li f FeS 2 (f is 0 ⁇ f ⁇ 1)). It is done.
  • metal nitride examples include lithium cobalt nitride (for example, Li g Co h N, 0 ⁇ g ⁇ 4, 0 ⁇ h ⁇ 0.5).
  • the negative electrode uses 0.4 V vs. lithium ion as the negative electrode active material. It is preferable to contain a material that occludes at a lower potential than Li / Li + .
  • Examples of such materials include amorphous carbon (hard carbon), artificial graphite, natural graphite, graphite, pyrolytic carbon, coke, glassy carbon, a fired body of an organic polymer compound, mesocarbon microbeads, carbon fiber,
  • amorphous carbon hard carbon
  • artificial graphite natural graphite, graphite, pyrolytic carbon, coke, glassy carbon
  • a fired body of an organic polymer compound mesocarbon microbeads, carbon fiber
  • mesocarbon microbeads carbon fiber
  • carbon materials represented by activated carbon, graphite, carbon colloid and carbon black metallic lithium, metal oxide, metal nitride, lithium alloy, tin alloy, silicon alloy, intermetallic compound, organic compound, inorganic compound, metal complex And organic polymer compounds.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the number average particle diameter (primary particle diameter) of the negative electrode active material is preferably 0.1 to 100 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the number average particle size of the negative electrode active material is measured by the same method as the number average particle size of the positive electrode active material.
  • the negative electrode is obtained, for example, as follows. That is, first, a negative electrode mixture-containing slurry is prepared by dispersing, in a solvent, a negative electrode mixture prepared by adding a conductive additive or a binder to the negative electrode active material as necessary.
  • the solid content concentration in the negative electrode mixture-containing slurry is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass.
  • this negative electrode mixture-containing slurry is applied to the negative electrode current collector and dried to form a coating layer.
  • the negative electrode active material layer is formed by compressing the coating layer obtained after drying with a roll press or the like.
  • the thickness of the negative electrode active material layer after compression is preferably 10 to 300 ⁇ m, more preferably 20 to 280 ⁇ m, and still more preferably 30 to 250 ⁇ m.
  • the basis weight of the negative electrode active material layer included in the negative electrode is adjusted to be in the range of 3 to 46 mg / cm 2 .
  • the basis weight is preferably 4 to 23 mg / cm 2 , more preferably 5 to 12 mg / cm 2 , but the output performance of the non-aqueous secondary battery From the viewpoint of improving the volume energy density while maintaining a balance, the basis weight is preferably 10 to 46 mg / cm 2 , more preferably 11 to 37 mg / cm 2 , and 12 to 27 mg / cm 2 . More preferably.
  • the non-aqueous secondary battery in the present embodiment uses an electrolytic solution having an ionic conductivity of 15 mS / cm or more, even when an electrode active material layer having a high volume energy density is designed, the non-aqueous secondary battery that realizes high output performance A secondary battery can be provided.
  • the porosity of the negative electrode active material layer in the present embodiment is not particularly limited, but from the viewpoint of improving the volume energy density while maintaining a balance with the output performance in the nonaqueous secondary battery in the present embodiment, 20 to It is preferably 45%, more preferably 22 to 42%, still more preferably 25 to 35%.
  • the porosity is 20% or more, the diffusion of lithium ions in the negative electrode active material layer is hardly inhibited, and the output characteristics tend to be secured.
  • the porosity of the negative electrode active material layer is 45% or less, the negative electrode active material layer can be prevented from degrading and the non-aqueous electrolyte from draining, and the durability can be ensured while realizing high output. Tend to be able to.
  • Examples of the conductive aid include carbon black typified by graphite, acetylene black and ketjen black, and carbon fiber.
  • the number average particle size (primary particle size) of the conductive assistant is preferably 10 nm to 10 ⁇ m, more preferably 20 nm to 1 ⁇ m, and is measured by the same method as the number average particle size of the positive electrode active material.
  • Examples of the binder include PVDF, PTFE, polyacrylic acid, styrene butadiene rubber, and fluorine rubber.
  • the solvent is not particularly limited, and a conventionally known solvent can be used, and examples thereof include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, water and the like.
  • the negative electrode current collector is made of a metal foil such as a copper foil, a nickel foil, or a stainless steel foil. Moreover, the carbon coat may be given or it may be processed into the mesh form.
  • the thickness of the negative electrode current collector is preferably 5 to 40 ⁇ m, more preferably 6 to 35 ⁇ m, and even more preferably 7 to 30 ⁇ m.
  • the positive electrode and the negative electrode included in the non-aqueous secondary battery in this embodiment are electrodes in which a conductive layer containing a conductive material is applied on an electrode current collector, and a positive electrode active material layer or a negative electrode active material layer is formed thereon. It is also one of the preferable embodiments.
  • the presence of the conductive layer on the electrode current collector can maintain high conductivity, and the adhesive strength between the active material layer and the current collector can be increased, so that the electrode has high strength while maintaining high output performance and high performance.
  • a non-aqueous secondary battery having durability can be manufactured.
  • the conductive layer is prepared by preparing a conductive mixture-containing slurry by dispersing a conductive mixture mixed with a conductive material and a binder in a solvent, and then applying this conductive mixture-containing slurry to the positive electrode and the negative electrode current collector. And after drying and forming a conductive mixture layer, it can produce by pressing it as needed and adjusting thickness.
  • the conductive material contained in the conductive layer is not particularly limited as long as it has conductivity.
  • the carbonaceous material such as activated carbon, non-graphitizable carbon and graphitizable carbon, and amorphous carbon such as polyacene-based material.
  • examples thereof include carbon blacks such as ketjen black and acetylene black, carbon nanotubes, fullerenes, carbon nanophones, and fibrous carbonaceous materials.
  • graphite and acetylene black can be suitably used from the viewpoints of high conductivity and ease of forming a conductive layer.
  • the number average particle diameter of the conductive material is preferably 20 nm to 1 ⁇ m, and more preferably 20 to 500 nm.
  • the number average particle diameter of the conductive material can be measured by the same method as the number average particle diameter of the positive electrode active material.
  • resins include alkane polymers such as polyethylene, polypropylene, poly-1,1-dimethylethylene; unsaturated polymers such as polybutadiene and polyisoprene; polystyrene, polymethylstyrene, polyvinylpyridine, poly-N.
  • -Polymers having a ring such as vinylpyrrolidone; acrylic derivatives such as polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polyacrylic acid, polymethacrylic acid, polyacrylamide Polymers: Fluorine resins such as polyvinyl fluoride, polyvinylidene fluoride, and polytetrafluoroethylene; CN group-containing polymers such as polyacrylonitrile and polyvinylidene cyanide; polyvinyl acetate, polyvinyl alcohol Polyvinyl alcohol polymers such as; polyvinyl chloride, halogen-containing polymers such as polyvinylidene chloride; a conductive polymer such as polyaniline. Moreover, mixtures, modified bodies, derivatives, random copolymers, alternating copolymers, graft copolymers, block copolymers, and the like of the above polymers can also be used
  • the solid content concentration in the conductive mixture slurry comprising the conductive material, the binder and the solvent is preferably 30 to 80% by mass, more preferably 40 to 70% by mass.
  • the thickness of the conductive layer is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • the thickness of the conductive layer is 0.05 ⁇ m or more, the resistance between the electrode active material layer and the electrode current collector tends to decrease, and when the thickness is 10 ⁇ m or less, the energy density as the power storage element decreases little. Tend to be.
  • the resistance between the electrode active material layer and the electrode current collector is suppressed, and further the adhesion between the electrode active material layer and the electrode current collector is increased. Can do.
  • the nonaqueous secondary battery in the present embodiment preferably includes a separator between the positive electrode and the negative electrode from the viewpoint of providing safety such as prevention of short circuit between the positive and negative electrodes and shutdown.
  • a separator the same separator as that used in known nonaqueous secondary batteries may be used, and an insulating thin film having high ion permeability and excellent mechanical strength is preferable.
  • the separator include a woven fabric, a nonwoven fabric, and a synthetic resin microporous membrane. Among these, a synthetic resin microporous membrane is preferable.
  • the synthetic resin microporous membrane for example, a microporous membrane containing polyethylene or polypropylene as a main component or a polyolefin microporous membrane such as a microporous membrane containing both of these polyolefins is suitably used.
  • the non-woven fabric include porous films made of heat resistant resin such as ceramic, polyolefin, polyester, polyamide, liquid crystal polyester, and aramid.
  • the separator may be a single microporous membrane or a laminate of a plurality of microporous membranes, or a laminate of two or more microporous membranes.
  • the battery exterior of the non-aqueous secondary battery in the present embodiment is not particularly limited, any battery exterior of a battery can and a laminate film exterior body can be used.
  • the battery can for example, a metal can made of steel or aluminum can be used.
  • a laminate film outer package for example, two laminated films of a three-layer structure of hot melt resin / metal film / resin are stacked with the hot melt resin side facing inward, and the ends are sealed by heat sealing. What stopped can be used.
  • a positive electrode terminal (or a lead tab connected to the positive electrode terminal) and a negative electrode terminal (or a lead tab connected to the negative electrode terminal) are connected to the positive electrode current collector and the negative electrode current collector, respectively.
  • the laminate film exterior body may be sealed with the end of the (or lead tab) being pulled out of the exterior body.
  • the non-aqueous secondary battery in the present embodiment uses the above-described electrolytic solution, a positive electrode body composed of a positive electrode and a positive electrode current collector, a negative electrode body composed of a negative electrode and a negative electrode current collector, and a separator as necessary. It is produced by a known method. For example, a long positive electrode body and a negative electrode body can be wound in a stacked state in which a long separator is interposed therebetween to form a wound structure. Moreover, they are cut into a plurality of sheets having a certain area and shape, and formed into a laminate having a laminated structure in which separator sheets are interposed between a plurality of positive electrode sheets and a negative electrode sheet that are alternately laminated. can do. Further, a long separator can be folded in a zigzag manner, and a positive electrode sheet and a negative electrode sheet can be alternately inserted between the zippered separators to form a laminate having a laminated structure.
  • the laminate is accommodated in a battery case (battery exterior), the electrolytic solution according to the present embodiment is injected into the battery case, and the laminate is immersed in the electrolytic solution and sealed.
  • the non-aqueous secondary battery in the embodiment can be produced.
  • a gel electrolyte membrane is prepared in advance, and using a sheet-like positive electrode body, a negative electrode body, the electrolyte membrane, and a separator as necessary, After forming a laminated body having a laminated structure as described above, it can be housed in a battery case to produce a non-aqueous secondary battery.
  • the shape of the non-aqueous secondary battery in the present embodiment is not particularly limited, and for example, a cylindrical shape, an elliptical shape, a rectangular tube shape, a button shape, a coin shape, a flat shape, and a laminate shape are suitably employed.
  • the non-aqueous secondary battery in the present embodiment can function as a battery by the first charge, but is stabilized when a part of the non-aqueous electrolyte is decomposed during the first charge.
  • the initial charge is preferably performed at 0.001 to 0.3C, more preferably 0.002 to 0.25C, and 0.003 to 0.2C. More preferably, it is also preferable that the initial charging is performed via the constant voltage charging in the middle. In addition, the constant current which discharges rated capacity in 1 hour is 1C.
  • the electrochemical property of the lithium salt dissolved in the electrolyte It is very effective to perform the first charge in consideration of the reaction.
  • the non-aqueous secondary battery in the present embodiment can be used as a battery pack by connecting a plurality of non-aqueous secondary batteries in series or in parallel.
  • the voltage range used per battery is preferably 2 to 5 V, more preferably 2.5 to 5 V, and 2.75 V to 5 V. It is particularly preferred.
  • CT-57101B (trade name) manufactured by Toa DKK Co., Ltd., connected to the non-aqueous electrolyte solution is inserted into the container containing the non-aqueous electrolyte solution, and the non-aqueous electrolyte solution at 25 ° C. The ionic conductivity of was measured.
  • Porosity measurement of electrode active material layer The porosity of the electrode active material layer was determined by the following formula (13).
  • Porosity [%] (1 ⁇ Actual electrode density [g / cm 3 ] / Theoretical electrode density [g / cm 3 ]) ⁇ 100 (13)
  • the actual electrode density was determined by dividing the electrode active material layer mass by the electrode active material layer volume.
  • the electrode active material layer mass was calculated by subtracting the mass of the electrode current collector separately punched with the same area from the mass of the electrode punched with a punching punch so that the area was 2 cm 2.
  • the layer volume was calculated by multiplying the electrode active material layer thickness obtained by subtracting the thickness of the electrode current collector measured separately from the thickness of the electrode measured with a micrometer by the area.
  • the theoretical electrode density was determined by adding the density and the composition ratio of the electrode active material, the conductive additive and the binder constituting the electrode.
  • Thickness of the electrode active material layer was determined by subtracting the thickness of the electrode current collector measured separately from the thickness of the electrode measured with a micrometer.
  • the positive electrode was produced as follows. (2-1) Production of Positive Electrode (P1) Lithium cobaltate (LiCoO 2 ; density 4.95 g / cm 3 ) having a number average particle diameter of 7.4 ⁇ m as a positive electrode active material and a number average particle diameter of 48 nm as a conductive assistant Acetylene black (density 1.95 g / cm 3 ) and polyvinylidene fluoride (PVdF; density 1.75 g / cm 3 ) as a binder were mixed at a mass ratio of 89.3: 5.2: 5.5, A positive electrode mixture was obtained.
  • P1 Lithium cobaltate (LiCoO 2 ; density 4.95 g / cm 3 ) having a number average particle diameter of 7.4 ⁇ m as a positive electrode active material and a number average particle diameter of 48 nm as a conductive assistant
  • N-methyl-2-pyrrolidone as a solvent was added to the obtained positive electrode mixture so as to have a solid content of 68% by mass and further mixed to prepare a positive electrode mixture-containing slurry.
  • This positive electrode mixture-containing slurry was applied to one surface of an aluminum foil having a thickness of 20 ⁇ m and a width of 200 mm to be a positive electrode current collector by a doctor blade method while adjusting the basis weight to 6.1 mg / cm 2. Removed dry. Then, it rolled by the roll press so that an actual electrode density might be 2.77 g / cm ⁇ 3 >, and the positive electrode (P1) which consists of a positive electrode active material layer and a positive electrode electrical power collector was obtained. The theoretical electrode density was calculated to be 4.62 g / cm 3 . Table 1 shows the basis weight, electrode active material layer thickness, actual electrode density, and porosity.
  • the positive electrode mixture-containing slurry was applied by a doctor blade method while adjusting the basis weight to 10.0 mg / cm 2 , and the actual electrode density was adjusted to 2.50 g /
  • a positive electrode (P5) was obtained in the same manner as in (2-1) except that the film was rolled to cm 3 .
  • Table 1 shows the basis weight, electrode active material layer thickness, actual electrode density, and porosity.
  • N-methyl-2-pyrrolidone as a solvent was added to the obtained positive electrode mixture so as to have a solid content of 68% by mass and further mixed to prepare a positive electrode mixture-containing slurry.
  • the positive electrode mixture-containing slurry was applied to one surface of an aluminum foil having a thickness of 20 ⁇ m and a width of 200 mm to be a positive electrode current collector by a doctor blade method while adjusting the basis weight to 12.0 mg / cm 2. Was removed by drying. Then, it rolled by the roll press so that an actual electrode density might be 3.24 g / cm ⁇ 3 >, and the positive electrode (P8) which consists of a positive electrode active material layer and a positive electrode electrical power collector was obtained. The theoretical electrode density was calculated to be 4.44 g / cm 3 . Table 2 shows the basis weight, the electrode active material layer thickness, the actual electrode density, and the porosity.
  • a positive electrode (P11) was obtained in the same manner as (2-8) except that it was not rolled by a roll press.
  • Table 2 shows the basis weight, the electrode active material layer thickness, the actual electrode density, and the porosity.
  • the positive electrode mixture-containing slurry was applied by the doctor blade method while adjusting the basis weight to be 12.0 mg / cm 2 , and the actual electrode density was 3.02 g /
  • a positive electrode (P12) was obtained in the same manner as (2-8) except that the film was rolled to cm 3 .
  • Table 2 shows the basis weight, the electrode active material layer thickness, the actual electrode density, and the porosity.
  • the mixture is uniformly in a dry state.
  • a binder and N-methyl-2-pyrrolidone as a solvent were added so as to have a solid content of 68% by mass, and further mixed to prepare a positive electrode mixture-containing slurry.
  • the positive electrode mixture-containing slurry was applied to one surface of an aluminum foil having a thickness of 20 ⁇ m and a width of 200 mm to be a positive electrode current collector by a doctor blade method while adjusting the basis weight to be 24.9 mg / cm 2. Was removed by drying.
  • N-methyl-2-pyrrolidone as a solvent was added to the obtained positive electrode mixture so as to have a solid content of 70% by mass and further mixed to prepare a positive electrode mixture-containing slurry.
  • the positive electrode mixture-containing slurry was applied by the doctor blade method while adjusting the basis weight to be 48.2 mg / cm 2 , and the roll press was adjusted to roll the actual electrode density to 2.47 g / cm 3 .
  • a positive electrode (P20) was obtained in the same manner as (2-8).
  • Table 3 shows the basis weight, electrode active material layer thickness, actual electrode density, and porosity.
  • Negative electrode production The negative electrode was produced as follows. (3-1) Production of Negative Electrode (N1) Graphite carbon powder having a number average particle size of 25 ⁇ m (trade name “MCMB25-28”, manufactured by Osaka Gas Chemical Co., Ltd .; density 2.25 g / cm 3 ) as a negative electrode active material Acetylene black (density 1.95 g / cm 3 ) having a number average particle diameter of 48 nm as a conductive assistant and polyvinylidene fluoride (PVdF; density 1.75 g / cm 3 ) as a binder, 93.0: 2.0 : It mixed by the mass ratio of 5.0, and obtained the negative mix.
  • N1 Negative Electrode
  • MCMB25-28 manufactured by Osaka Gas Chemical Co., Ltd .
  • density 2.25 g / cm 3 a negative electrode active material
  • Acetylene black density 1.95 g / cm 3
  • PVdF polyvinylidene flu
  • N-methyl-2-pyrrolidone as a solvent was added to the obtained negative electrode mixture so as to have a solid content of 45% by mass and further mixed to prepare a negative electrode mixture-containing slurry.
  • the negative electrode mixture-containing slurry was applied to one side of a copper foil having a thickness of 18 ⁇ m and a width of 200 mm to be a negative electrode current collector by a doctor blade method while adjusting the basis weight to 2.3 mg / cm 2. Removed dry. Then, it rolled by the roll press so that an actual electrode density might be 1.15 g / cm ⁇ 3 >, and the negative electrode (N1) which consists of a negative electrode active material layer and a negative electrode collector was obtained. The theoretical electrode density was calculated to be 2.22 g / cm 3 . Table 4 shows the basis weight, electrode active material layer thickness, actual electrode density, and porosity.
  • Negative Electrode (N2) The negative electrode mixture-containing slurry was applied by the doctor blade method while adjusting the basis weight to 4.1 mg / cm 2 , and the actual electrode density was adjusted by adjusting the roll press. A negative electrode (N2) was obtained in the same manner as (3-1) except that rolling was performed to 1.41 g / cm 3 .
  • Table 4 shows the basis weight, electrode active material layer thickness, actual electrode density, and porosity.
  • N-methyl-2-pyrrolidone as a solvent was added to the obtained negative electrode mixture so as to have a solid content of 45% by mass and further mixed to prepare a negative electrode mixture-containing slurry.
  • the negative electrode mixture-containing slurry was applied to one side of a copper foil having a thickness of 18 ⁇ m and a width of 200 mm to be a negative electrode current collector by a doctor blade method while adjusting the basis weight to be 29.4 mg / cm 2. Removed dry. Then, it rolled so that an actual electrode density might be 1.86 g / cm ⁇ 3 > with a roll press, and the negative electrode (N6) which consists of a negative electrode active material layer and a negative electrode collector was obtained. The theoretical electrode density was calculated to be 3.04 g / cm 3 . Table 4 shows the basis weight, electrode active material layer thickness, actual electrode density, and porosity.
  • a negative electrode mixture was obtained. Water was added to the obtained negative electrode mixture as a solvent so as to have a solid content of 45% by mass, and further mixed to prepare a negative electrode mixture-containing slurry.
  • the negative electrode mixture-containing slurry was applied to one side of a copper foil having a thickness of 10 ⁇ m and a width of 200 mm to be a negative electrode current collector by a doctor blade method while adjusting the basis weight to 5.5 mg / cm 2. Removed dry. Then, it rolled by the roll press so that an actual electrode density might be 1.62 g / cm ⁇ 3 >, and the negative electrode (N7) which consists of a negative electrode active material layer and a negative electrode collector was obtained. The theoretical electrode density was calculated to be 2.20 g / cm 3 . Table 5 shows the basis weight, electrode active material layer thickness, actual electrode density, and porosity.
  • Negative Electrode (N12) The negative electrode mixture-containing slurry was applied by a doctor blade method while adjusting the basis weight to 10.0 mg / cm 2 , and the actual electrode density was adjusted by adjusting the roll press. A negative electrode (N12) was obtained in the same manner as (3-7) except that rolling was performed to 1.35 g / cm 3 .
  • Table 5 shows the basis weight, electrode active material layer thickness, actual electrode density, and porosity.
  • a negative electrode mixture was obtained. Water was added to the obtained negative electrode mixture as a solvent so as to have a solid content of 48% by mass, and further mixed to prepare a negative electrode mixture-containing slurry.
  • the negative electrode mixture-containing slurry was applied by a doctor blade method while adjusting the basis weight to be 21.4 mg / cm 2 , and the roll press was adjusted to roll the actual electrode density to 1.24 g / cm 3 .
  • a negative electrode (N14) was obtained in the same manner as (3-7) except that. Table 5 shows the basis weight, electrode active material layer thickness, actual electrode density, and porosity.
  • VC vinylene carbonate
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • ES ethylene sulfite
  • 1,3-PS 1,3 Propane sultone
  • TMSO tetramethylene sulfoxide
  • SL is sulfolane
  • 3-SLE 3-sulfolene
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 is lithium tetrafluoroborate
  • LiBOB represents lithium bisoxalate borate.
  • the battery cap was fitted and crimped with a caulking machine.
  • the overflowing electrolyte was wiped clean with a waste cloth. It was kept at 25 ° C. for 24 hours, and the laminate was sufficiently adjusted with the electrolyte solution to obtain a coin-type non-aqueous secondary battery.
  • a negative electrode (N6) other than the negative electrode (N6) means a current value that is expected to be discharged from a fully charged state of 4.2 V to 3.0 V at a constant current and finished in one hour.
  • Table 9 shows current values corresponding to 1 C for the positive electrodes (P1) to (P20).
  • the discharge capacity at this time was set to 3C discharge capacity.
  • charging was performed with a constant voltage of 4.2 V for a total of 3 hours. Thereafter, the battery was discharged to 3.0 V with a constant current corresponding to 5C.
  • the discharge capacity at this time was set to 5C discharge capacity.
  • charging was performed with a constant voltage of 4.2 V for a total of 3 hours. Thereafter, the battery was discharged to 3.0 V at a constant current corresponding to 10C.
  • the discharge capacity at this time was 10 C discharge capacity.
  • the discharge capacity of (6-1) is 0.3C discharge capacity and the 0.3C discharge capacity is 100%
  • the 1C, 3C, 5C, or 10C discharge capacity is 40% or more, respectively. % And less than 40% were judged as ⁇ , and less than 20% were judged as x.
  • the discharge capacity at this time was set to 3C discharge capacity.
  • charging was performed with a constant voltage of 2.7 V for a total of 3 hours. Thereafter, the battery was discharged to 1.5 V with a constant current corresponding to 5C.
  • the discharge capacity at this time was set to 5C discharge capacity.
  • charging was performed with a constant voltage of 2.7 V for a total of 3 hours. Thereafter, the battery was discharged to 1.5 V with a constant current corresponding to 10 C.
  • the discharge capacity at this time was 10 C discharge capacity.
  • the discharge capacity of (6-3) is 0.3C discharge capacity and the 0.3C discharge capacity is 100%
  • the 1C, 3C, 5C, or 10C discharge capacity is 40% or more. % And less than 40% were judged as ⁇ , and less than 20% were judged as x.
  • AC impedance measurement of small non-aqueous secondary batteries (AC resistance measurement 1)
  • the AC impedance was measured using a frequency response analyzer 1400 (trade name) manufactured by Solartron and a potentio-galvanostat 1470E (trade name) manufactured by Solartron.
  • the non-aqueous secondary battery to be measured is repeatedly charged and discharged as described in (6-10) above, and the battery after the first charge / discharge treatment and after 25 cycles and 100 cycles is subjected to a constant current corresponding to 1C. After charging and reaching 4.0V, the battery was charged at 4.0V for a total of 3 hours.
  • the measurement conditions were an amplitude of ⁇ 5 mV and a frequency of 0.1 to 20 kHz. AC impedance values at 0.1 kHz and 20 kHz were obtained.
  • the ambient temperature of the battery when measuring AC impedance was 25 ° C.
  • the battery was charged with a constant current corresponding to 1 C and reached 4.2 V, and then charged with 4.2 V for a total of 3 hours, and discharged to 3.0 V with a constant current corresponding to 0.3 C.
  • the discharge capacity at this time was 0.3 C recovery capacity.
  • the battery was charged with a constant current corresponding to 1 C and reached 4.2 V, and then charged with 4.2 V for a total of 3 hours, and discharged to 3.0 V with a constant current corresponding to 1.5 C.
  • the discharge capacity at this time was 1.5 C recovery capacity.
  • Examples 1 to 10, Comparative Examples 1 to 7 The method according to (5-1) above, wherein the positive electrodes (P1) to (P5), (P20), the negative electrodes (N1) to (N4), (N14), and the electrolytes (S1) to (S4) are combined.
  • a small non-aqueous secondary battery was produced according to the above. These batteries were first charged and discharged by the method described in (6-1) above, and the measurements described in (6-5) above were performed. The results are shown in Table 10.
  • the non-aqueous secondary battery of the present embodiment shows a high discharge capacity compared to the conventional non-aqueous secondary battery even when an electrode with a high basis weight is used at a high output. .
  • Examples 11 to 18, Comparative Example 8 A combination of the positive electrodes (P8) to (P12), the negative electrodes (N7) to (N10), and the electrolytes (S1) and (S5) to (S7), and a small non-aqueous system according to the method described in (5-1) above A secondary battery was produced. These batteries were subjected to initial charge / discharge treatment by the method described in (6-1) above, and the measurements described in (6-6) above were performed. The results are shown in Table 11.
  • the non-aqueous secondary battery of this embodiment has high output characteristics.
  • the comparative example 8 since the existing carbonate type electrolyte solution was used, sufficient output characteristics were not obtained.
  • Example 17 although the electrolyte solution (S7) having high ionic conductivity was used, the discharge capacity retention rate during 10C discharge was less than 65%. Although it is sufficient as practical performance, it is presumed that an electrode having an originally insufficient electrode active material layer binding force was affected by a highly polar solvent because it was not rolled by a roll press.
  • Examples 25 to 33 A small non-aqueous secondary battery was fabricated by combining the positive electrode (P13), the negative electrode (N11), and the electrolytes (S28) to (S36) according to the method described in (5-1) above. These batteries were subjected to initial charge / discharge treatment by the method described in (6-1) above, and the measurements described in (6-9) above were performed. The results are shown in Table 13.
  • a secondary battery was produced. These batteries were subjected to initial charge / discharge treatment by the method described in (6-1) or (6-2), and the measurements described in (6-9) and (6-10) were performed. The results are shown in Table 14.
  • a small non-aqueous secondary battery was produced by combining the positive electrode (P13), the negative electrode (N11), and the electrolytes (S41) and (S42) according to the method described in (5-1) above. These batteries were subjected to the initial charge / discharge treatment according to the method described in (6-2) and the measurement described in (6-9) above, but the discharge capacity retention rate was low, and other measurements were not performed. It was. The results are shown in Table 14.
  • Examples 52 to 61, Comparative Example 14 Combining the positive electrodes (P15) to (P20), the negative electrodes (N12) to (N14), and the electrolytes (S1), (S10) to (S12), (S25) to (S27), the above (5-1)
  • a small non-aqueous secondary battery was produced according to the method described in 1. These batteries were subjected to the initial charge / discharge treatment by the method described in (6-4) above, and the measurements described in (6-7), (6-11) and (6-13) above were performed. The results are shown in Table 16.
  • Example 62 to 65 Comparative Example 15
  • a positive electrode (P14), (P19), a negative electrode (N13), and electrolytes (S20) to (S24) were combined to produce a coin-type non-aqueous secondary battery according to the method described in (5-2) above.
  • These batteries were subjected to initial charge / discharge treatment by the method described in (6-4) above, and the measurements described in (6-14) above were performed. The results are shown in Table 17.
  • the non-aqueous secondary battery of the present invention is, for example, a rechargeable battery for automobiles such as a hybrid vehicle, a plug-in hybrid vehicle, and an electric vehicle, as well as a portable device such as a mobile phone, a portable audio device, a personal computer, and an IC tag Use as a power storage system is also expected.
  • SYMBOLS 100 Lithium ion secondary battery, 110 ... Separator, 120 ... Positive electrode active material layer, 130 ... Negative electrode active material layer, 140 ... Positive electrode collector, 150 ... Negative electrode collector, 160 ... Battery exterior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 リチウム塩と非水系溶媒とを含有する電解液と、正極と、負極とを含む非水系二次電池であって、前記正極に含まれる正極活物質層の目付量が8~100mg/cm、及び/又は、前記負極に含まれる負極活物質層の目付量が3~46mg/cmであり、かつ、前記電解液の25℃におけるイオン伝導度が15mS/cm以上である非水系二次電池。

Description

非水系二次電池
 本発明は、非水系二次電池に関する。
 非水系電解液を含む非水系二次電池は、軽量、高エネルギー及び長寿命であることが大きな特徴であり、ノートブックコンピューター、携帯電話、スマートフォン、タブレットPC、デジタルカメラ、ビデオカメラ等の携帯用電子機器電源として広範囲に用いられている。また、低環境負荷社会への移行に伴い、ハイブリッド型電気自動車(Hybrid Electric Vehicle、以下「HEV」と略記する。)、プラグインHEV(Plug-in Hybrid Electric Vehicle、以下「PHEV」と略記する。)、及び電動バイクの電源、さらには住宅用蓄電システム等の電力貯蔵分野においても注目されている。
 自動車等の車両及び住宅用蓄電システムに非水系二次電池を搭載する場合、高温環境下におけるサイクル性能及び長期信頼性等の観点から、電池の構成材料には、化学的、電気化学的な安定性、強度、耐腐食性等に優れた材料が求められている。さらに、携帯用電子機器電源とは使用条件が大きく異なり、寒冷地においても作動しなければならないことから、低温環境下における高出力性能及び長寿命性能も必要な物性として求められている。
 一方、今後予測される高容量化・高出力化のニーズに応えるためには、材料開発のみだけでなく、各々の材料がその機能を十分に発揮できるよう、電池として最適な状態に組み上げる必要がある。特に、体積エネルギー密度の高い電極活物質層であるほどリチウムイオンの拡散経路が長く、リチウムイオンの挿入・脱離に伴う内部抵抗が増大してしまうため、実用的な出力性能を維持するには、バランスを考えた設計にしなければならない。
 一般に、非水系二次電池の高容量化については、電極活物質の性能向上により達成可能であるとされるが、実際には体積エネルギー密度の高い電極活物質層を作製することが最も重要である。例えば、電極集電体に電極合剤を多く塗布すると、電池の単位体積あたりの電極活物質量が電池容量に関係しない他の電池材料、例えば集電箔やセパレータよりも相対的に多くなるため、電池としては高容量化することになる。また、電極を高圧でプレスすると空孔率の低い電極活物質層が得られ、この場合も同様に電池として高容量化が実現する。
 充電時間の短縮、大電流での放電、あるいは低温環境下における放電等、非水系二次電池の出力特性を重視する場合には、高容量化を目指す場合とは逆に、リチウムイオンの拡散経路が短くなるように電極活物質層の設計を行う必要がある。具体的には、電極活物質層の目付量を低くする、電極活物質層の空孔率を上げる等の方法が挙げられる。
 ところで、出力特性の向上には、イオン伝導度の高い電解液を選択することも有効である。常温作動型のリチウムイオン二次電池の電解液には非水系電解液を使用することが実用性の観点から望ましく、例えば、環状炭酸エステル等の高誘電性溶媒と低級鎖状炭酸エステル等の低粘性溶媒との組み合わせが一般的な溶媒として挙げられる。ところが、通常の高誘電率溶媒は融点が高く、用いる電解質の種類によってはそれらの出力特性、さらには低温特性を劣化させる原因にもなり得る。このような課題を克服する溶媒の1つとして、粘度と比誘電率とのバランスに優れたニトリル系溶媒が提案されている。中でもアセトニトリルは突出した性能を有する溶媒であることが知られているが、ニトリル基を含有するこれらの溶媒は電気化学的に還元分解するといった致命的な欠点があるため、いくつかの改善策が報告されてきた。
 例えば、特許文献1においては、エチレンカーボネート等の環状カーボネート類とアセトニトリルなどのニトリル系溶媒とを混合して希釈することにより得られる、還元分解の影響を低減した電解液が報告されている。また、特許文献2~4においては、ニトリル系溶媒の還元電位よりも貴である負極を用いることによって、ニトリル系溶媒の還元分解を抑制した電池が報告されている。さらに、特許文献5においては、負極への保護皮膜形成を目的として、ニトリル系溶媒に、二酸化硫黄と1つ又はそれ以上のその他の非プロトン性極性溶媒を添加した非水系電解液が報告されている。
特許第3154719号公報 特開2009-21134号公報 特許第3239267号公報 特開2007-273405号公報 特表2010-528431号公報
 しかしながら、特許文献1に記載された電解液では、高温耐久性能についての解決策が提示されておらず、高温環境下で使用を継続した場合には電池劣化が進行して電池の容量が大幅に低下してしまうか、充放電自体が不可能になってしまう可能性が高い。また、特許文献2~4に記載された負極を用いると、高電圧であるというリチウムイオン二次電池の特徴が犠牲になってしまう。さらに、特許文献5に至っては、添加剤として極めて反応性の高いガスを用いるため、添加自体が非常に困難であることに加え、充電保存時の自己放電も避けられない。さらに、ガスが揮発すると電池内が加圧状態となり、電池の膨張及び場合によっては破裂といった、実用上極めて重大な課題を残すことになる。
 一方、これらの公知の技術は、共通して、負極におけるニトリル系溶媒の還元分解に焦点が置かれ、幾つかの課題は残しながらも負極の反応さえ解決できれば二次電池として実施可能であると論じている。ところが、例えば、特許文献2及び4に記載の負極を用いた場合、すなわち負極における還元分解が起こり得ない環境で充放電サイクルを繰り返した場合においても、従来のリチウムイオン二次電池と比較して内部抵抗が大きく増加してしまうといった事実については一切触れられていない。このような内部抵抗の増加は負極における還元分解以外にも要因があると考えざるを得ないが、必ずしも電池として最適な状態に組み上げるには至っておらず、高容量化・高出力化の要求に応えるためには、さらなる改良が切望されている。
 本発明は、上記事情に鑑みてなされたものであり、体積エネルギー密度の高い電極活物質層を設計した場合においても、高出力性能を実現する非水系二次電池を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、25℃におけるイオン伝導度が15mS/cm以上である特定の非水系電解液を用いた非水系二次電池が、体積エネルギー密度の高い電極活物質層を設計した場合においても、高出力性能を実現できることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記のとおりである。
[1]
 リチウム塩と非水系溶媒とを含有する電解液と、正極と、負極とを含む非水系二次電池であって、前記正極に含まれる正極活物質層の目付量が8~100mg/cm、及び/又は、前記負極に含まれる負極活物質層の目付量が3~46mg/cmであり、かつ、前記電解液の25℃におけるイオン伝導度が15mS/cm以上である非水系二次電池。
[2]
 前記電解液の25℃におけるイオン伝導度が50mS/cm以下である、上記[1]記載の非水系二次電池。
[3]
 前記正極に含まれる正極活物質層の目付量が24~100mg/cm、及び/又は、前記負極に含まれる負極活物質層の目付量が10~46mg/cmである、上記[1]又は[2]記載の非水系二次電池。
[4]
 前記正極又は前記負極の少なくとも一方の電極に含まれる電極活物質層の空孔率が20~45%である、上記[1]~[3]のいずれか記載の非水系二次電池。
[5] 
 前記正極に含まれる正極活物質層の空孔率が20~45%である、上記[1]~[4]のいずれか記載の非水系二次電池。
[6]
 前記負極に含まれる負極活物質層の空孔率が20~45%である、上記[1]~[5]のいずれか記載の非水系二次電池。
[7]
 前記非水系溶媒はニトリル系溶媒を含む、上記[1]~[6]のいずれか記載の非水系二次電池。
[8]
 前記ニトリル系溶媒はアセトニトリルを含む、上記[7]記載の非水系二次電池。
[9]
 前記非水系溶媒中のアセトニトリルの含有量が5~97体積%である、上記[8]記載の非水系二次電池。
[10]
 前記非水系溶媒中のアセトニトリルの含有量が25~80体積%である、上記[8]記載の非水系二次電池。
[11]
 前記電解液は、アセトニトリルと、リチウム塩と、下記一般式(1)で表される化合物からなる群より選ばれる1種以上の化合物とを含有する、上記[8]~[10]のいずれか記載の非水系二次電池。
  R-A-R ・・・・・(1)
(式中、R及びRは各々独立して、アリール基若しくはハロゲン原子で置換されていてもよいアルキル基、又は、アルキル基若しくはハロゲン原子で置換されていてもよいアリール基を示し、あるいは、RとRとは互いに結合してAと共に不飽和結合を有していてもよい環状構造を形成し、Aは下記式(2)~(6)のいずれか一つで表される構造を有する2価の基を示す。)
Figure JPOXMLDOC01-appb-C000002
[12]
 前記式(1)で表される化合物は、エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-メチルスルホラン、3-スルホレン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロパンジオール硫酸エステル及びテトラメチレンスルホキシドからなる群より選ばれる1種以上の化合物を含む、上記[11]記載の非水系二次電池。
[13]
 前記電解液が、炭素間不飽和二重結合を有する環状カーボネートからなる群より選ばれる1種以上の化合物を更に含有する、上記[11]又は[12]記載の非水系二次電池。
[14]
 前記リチウム塩は、フッ素原子を有する無機リチウム塩である、上記[1]~[13]のいずれか記載の非水系二次電池。
[15]
 前記無機リチウム塩は、LiPFである、上記[14]記載の非水系二次電池。
[16]
 前記無機リチウム塩は、LiBFである、上記[14]記載の非水系二次電池。
[17]
 前記無機リチウム塩の含有量は、前記電解液の全量に対して0.1~40質量%である、上記[14]~[16]のいずれか記載の非水系二次電池。
[18]
 有機リチウム塩を更に含有し、前記有機リチウム塩と前記無機リチウム塩とが、下記式(7):
 0≦X<1 ・・・・・(7)
(式中、Xは前記無機リチウム塩に対する前記有機リチウム塩の含有モル比である。)
で表される条件を満足する、上記[14]~[17]のいずれか記載の非水系二次電池。
[19]
 前記有機リチウム塩は、リチウムビス(オキサラト)ボレート及びリチウムオキサラトジフルオロボレートからなる群より選ばれる1種以上の有機リチウム塩である、上記[18]記載の非水系二次電池。
[20]
 前記正極は、正極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料からなる群より選ばれる1種以上の材料を含有し、前記負極は、負極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料及び金属リチウムからなる群より選ばれる1種以上の材料を含有する、上記[1]~[19]のいずれか記載の非水系二次電池。
[21]
 前記正極は、前記正極活物質として、リチウム含有化合物を含有する、上記[20]記載の非水系二次電池。
[22]
 前記リチウム含有化合物は、リチウムを有する金属酸化物及びリチウムを有する金属カルコゲン化物からなる群より選ばれる1種以上の化合物を含む、上記[21]記載の非水系二次電池。
[23]
 前記負極は、前記負極活物質として、金属リチウム、炭素材料、及びリチウムと合金形成が可能な元素を含む材料からなる群より選ばれる1種以上の材料を含有する、上記[20]~[22]のいずれか記載の非水系二次電池。
[24]      
 前記負極は、前記負極活物質として、リチウムイオンを1.4Vvs.Li/Liよりも卑な電位で吸蔵する材料を含有する、上記[20]~[23]のいずれか記載の非水系二次電池。
[25]
 前記正極の正極合剤は、正極活物質、導電助剤、バインダー、有機酸、及び有機酸塩からなる群から選択される少なくとも1種の化合物を含む、上記[1]~[24]のいずれか記載の非水系二次電池。
[26]
 前記化合物は2価以上の有機酸又は有機酸塩を含む、上記[25]記載の非水系二次電池。
[27]      
 前記正極合剤から作製した正極活物質層の厚さが50~300μmである、上記[25]又は[26]記載の非水系二次電池。
[28]
 前記正極及び/又は負極は、電極集電体上に導電性材料を含む導電層を塗布した電極基板上に、正極活物質層及び/又は負極活物質層を塗布した電極である、上記[1]~[27]のいずれか記載の非水系二次電池。
[29]
 前記導電層が、導電性材料とバインダーを含む、上記[28]記載の非水系二次電池。
[30]
 上記[1]~[29]のいずれか記載の非水系二次電池の製造方法であって、0.001~0.3Cの初回充電を行う工程を有する、非水系二次電池の製造方法。
[31]
 前記初回充電が定電圧充電を途中に経由して行われる、上記[30]記載の非水系二次電池の製造方法。
 本発明によれば、体積エネルギー密度の高い電極活物質層を設計した場合においても、高出力性能を実現した非水系二次電池を提供することができる。
本実施形態の非水系二次電池の一例を概略的に示す断面図である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。なお、本明細書において「~」を用いて記載される数値範囲は、その前後に記載される数値を含むものである。
 本実施形態の非水系二次電池は、リチウム塩と非水系溶媒とを含有する非水系電解液(以下、単に「電解液」ともいう。)と、正極と、負極とを含む非水系二次電池であって、前記正極に含まれる正極活物質層の目付量が8~100mg/cm、及び/又は、前記負極に含まれる負極活物質層の目付量が3~46mg/cmであり、かつ、前記電解液の25℃におけるイオン伝導度が15mS/cm以上である。
 非水系二次電池としては、例えば、正極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料からなる群より選ばれる1種以上の材料を含有する正極と、負極活物質としてリチウムイオンを吸蔵及び放出することが可能な負極材料及び金属リチウムからなる群より選ばれる1種以上の材料を含有する負極と、を備えるリチウムイオン二次電池が挙げられる。
 本実施形態の非水系二次電池としては、例えば、リチウムイオン二次電池が挙げられ、より具体的には、図1に概略的に断面図を示すリチウムイオン二次電池であってもよい。図1に示されるリチウムイオン二次電池100は、セパレータ110と、そのセパレータ110を両側から挟む正極活物質層120と負極活物質層130と、さらにそれら(セパレータ110、正極活物質層120及び負極活物質層130)の積層体を挟む正極集電体140(正極活物質層120の外側に配置)と、負極集電体150(負極活物質層130の外側に配置)と、それらを収容する電池外装160とを備える(以下、正極と負極の総称として「電極」、正極活物質層と負極活物質層の総称として「電極活物質層」とも略記する。)。正極は正極合剤から作製した正極活物質層120と正極集電体140から構成され、負極は負極合剤から作製した負極活物質層130と負極集電体150から構成される(以下、正極合剤と負極合剤の総称として「電極合剤」とも略記する。)。正極活物質層120とセパレータ110と負極活物質層130とを積層した積層体には、電解液が含浸されている。これらの各部材としては、本実施形態における各要件を満たしていれば、従来のリチウムイオン二次電池に備えられるものを用いることができ、例えば後述のものであってもよい。
<1.電解液>
 本実施形態における電解液は、リチウム塩と非水系溶媒とを含有し、25℃におけるイオン伝導度が15mS/cm以上であれば特に限定されず、リチウム塩と非水系溶媒は公知のものであってもよい。体積エネルギー密度の高い電極活物質層を設計した場合においても、高出力性能を発揮できる観点から、25℃におけるイオン伝導度は、20mS/cm以上であることが好ましく、25mS/cm以上であることがより好ましい。電解液の25℃におけるイオン伝導度が15mS/cm以上であると、電極活物質層内でのリチウムイオン伝導が充分に行われるため、大電流での充放電が可能となる。また、25℃におけるイオン伝導度の上限は特に限定されないが、各種電池部材の溶出劣化や剥離劣化等、予期せぬ電池劣化を抑制する観点から、イオン伝導度は50mS/cm以下であることが好ましく、49mS/cm以下であることが好ましく、48mS/cm以下であることがさらに好ましい。ここで、電解液のイオン伝導度は、例えば、非水系溶媒の粘度及び/又は極性を調整することにより、制御することができ、より具体的には、低粘度の非水系溶媒と高極性の非水系溶媒とを混合することにより、電解液のイオン伝導度を高く制御することができる。また、低粘度で、かつ高極性を有する非水系溶媒を用いることによって、電解液のイオン伝導度を高く制御することも可能である。なお、電解液のイオン伝導度は、後述の実施例における「(1-1)非水系電解液のイオン伝導度測定」に記載された方法に準拠して測定することができる。
 本実施形態における非水系電解液は、水分を含まないことが好ましいが、本発明の課題解決を阻害しない範囲であれば、ごく微量の水分を含有してもよい。そのような水分の含有量は、非水系電解液の全量に対して、好ましくは0~100ppmである。
<1-1.非水系溶媒>
 非水系溶媒としては、他の成分と組み合わせて所定のイオン伝導度が得られるものであれば特に制限はなく、例えば、メタノール及びエタノール等のアルコール類、並びに、非プロトン性溶媒が挙げられ、中でも、非プロトン性極性溶媒が好ましい。
 非水系溶媒の具体例としては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、トランス-2,3-ブチレンカーボネート、シス-2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、トランス-2,3-ペンチレンカーボネート、シス-2,3-ペンチレンカーボネート、トリフルオロメチルエチレンカーボネート、フルオロエチレンカーボネート、1,2-ジフルオロエチレンカーボネートに代表される環状カーボネート;γ-ブチロラクトン、γ-バレロラクトンに代表されるラクトン;スルホラン、ジメチルスルホキシドに代表される硫黄化合物;テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキサンに代表される環状エーテル;エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート、メチルトリフルオロエチルカーボネートに代表される鎖状カーボネート;アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、アクリロニトリル等のモノニトリル;メトキシアセトニトリル、3-メトキシプロピオニトリルに代表されるアルコキシ基置換ニトリル;メチルプロピオネートに代表される鎖状カルボン酸エステル;ジメトキシエタンに代表される鎖状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類が挙げられる。また、これらのフッ素化物に代表されるハロゲン化物も挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 非水系溶媒としては、低粘度で高誘電率を有するものが好ましく、中でも、粘度と誘電率とのバランスに優れたニトリル系溶媒を含むことが好ましい。特に、アセトニトリルは突出した性能を有する溶媒であるため、ニトリル系溶媒はアセトニトリルを含むことがより好ましい。アセトニトリルは低い粘度かつ高い極性を有しており、その含有量を調整することにより、電解液の25℃におけるイオン伝導度を、15mS/cm以上という高い範囲に制御することができる。このような非水系溶媒を含む電解液を用いることにより、その特性に基づき、大電流放電、急速充電を可能とする非水系二次電池を提供することができる。ニトリル基を含有する化合物は電気化学的に還元分解されやすいため、ニトリル系溶媒を使用する場合、別の溶媒と混合すること、及び/又は、電極への保護皮膜形成のための添加剤を添加することが好ましい。
 また、非水系二次電池の充放電に寄与するリチウム塩の電離度を高めるために、非水系溶媒は環状の非プロトン性極性溶媒を1種以上含むことが好ましく、環状カーボネートを1種以上含むことがより好ましい。
 また、リチウム塩の溶解性、伝導度及び電離度という機能を全て良好にするために、2種以上の非水系溶媒の混合溶媒であることが好ましい。この混合溶媒の成分となる非水系溶媒としては上記と同様のものが挙げられ、混合溶媒の例としては環状カーボネートとアセトニトリルとの混合溶媒が挙げられる。
 本実施形態における非水系溶媒がアセトニトリルを含む場合、アセトニトリルの含有量については、他の成分と組み合わせて所定のイオン伝導度が得られる範囲であれば特に制限はないが、非水系溶媒の全体量に対して、5~97体積%であることが好ましく、10~90体積%であることがより好ましく、25~80体積%であることが更に好ましい。アセトニトリルの含有量が5体積%以上である場合、イオン伝導度が増大し高出力特性を発現できる傾向にあり、97体積%以下である場合、揮発に起因する問題を抑制し、かつ特殊な方法を用いずに負極での還元分解反応を和らげることができる傾向にある。非水系溶媒中のアセトニトリルの含有量が上記範囲内にある場合、アセトニトリルの優れた性能を維持しながら、サイクル性能長期特性及びその他の電池特性の全てを一層良好なものとすることができる傾向にある。
<1-2.リチウム塩>
 リチウム塩としては、非水系二次電池の電解液に通常用いられているものであれば、他の成分と組み合わせて所定のイオン伝導度が得られるものである限りにおいて特に制限はなく、いずれのものであってもよい。リチウム塩は、本実施形態における非水系電解液中に0.1~3mol/Lの濃度で含有されることが好ましく、0.5~2mol/Lの濃度で含有されることがより好ましい。リチウム塩の濃度が上記範囲内にある場合、電解液の導電率がより高い状態に保たれると同時に、非水系二次電池の充放電効率もより高い状態に保たれる傾向にある。
 本実施形態におけるリチウム塩については、特に制限はないが、無機リチウム塩であることが好ましい。ここで、「無機リチウム塩」とは、炭素原子をアニオンに含まず、アセトニトリルに可溶なリチウム塩をいい、後述の「有機リチウム塩」とは、炭素原子をアニオンに含み、アセトニトリルに可溶なリチウム塩をいう。無機リチウム塩は、通常の非水系電解質として用いられているものであれば特に限定されず、いずれのものであってもよい。そのような無機リチウム塩の具体例としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiSbF、LiAlO、LiAlCl、Li1212-b〔bは0~3の整数〕、炭素原子を含まない多価アニオンと結合したリチウム塩等が挙げられる。
 これらの無機リチウム塩は1種を単独で又は2種以上を組み合わせて用いられる。中でも、無機リチウム塩としてフッ素原子を有する無機リチウム塩を用いると、正極集電体である金属箔の表面に不働態皮膜を形成するため、内部抵抗の増加を抑制する観点から好ましい。また、無機リチウム塩として、リン原子を有する無機リチウム塩を用いると、遊離のフッ素原子を放出しやすくなることからより好ましく、LiPFが特に好ましい。なお、無機リチウム塩として、ホウ素原子を有する無機リチウム塩を用いると、電池劣化を招くおそれのある過剰な遊離酸成分を捕捉しやすくなることから好ましく、このような観点からはLiBFが特に好ましい。
 本実施形態の非水系電解液における、無機リチウム塩の含有量は、非水系電解液の全量に対して0.1~40質量%であることが好ましく、1~30質量%であることがより好ましく、5~25質量%であることが更に好ましい。
 本実施形態におけるリチウム塩は、無機リチウム塩に加えて有機リチウム塩が更に含有されていてもよい。なお、有機リチウム塩をイオン伝導性の高い無機リチウム塩と併用する場合、下記式(7):
 0≦X<1 ・・・・・(7)
で表される条件を満足することが好ましい。ここで、上記式(7)中、Xは、非水系電解液に含まれる無機リチウム塩に対する有機リチウム塩のモル比を示す。非水系電解液に含まれる有機リチウム塩の無機リチウム塩に対するモル比が上記範囲にある場合、無機リチウム塩の高いイオン伝導性能を優先的に機能させることができる傾向にある。
 本実施形態の非水系電解液における、有機リチウム塩の含有量は、非水系電解液の全量に対して0.1~30質量%であることが好ましく、0.2~20質量%であることがより好ましく、0.5~15質量%であることが更に好ましい。有機リチウム塩の含有量が上記範囲にある場合、電解液の機能と溶解性とのバランスを確保することができる傾向にある。
 有機リチウム塩の具体例としては、例えば、LiN(SOCF、LiN(SO等のLiN(SO2m+1〔mは1~8の整数〕で表される有機リチウム塩;LiN(SOF)で表される有機リチウム塩;LiPF(CF)等のLiPF(C2p+16-n〔nは1~5の整数、pは1~8の整数〕で表される有機リチウム塩;LiBF(CF)等のLiBF(C2s+14-q〔qは1~3の整数、sは1~8の整数〕で表される有機リチウム塩;LiB(Cで表されるリチウムビス(オキサラト)ボレート(LiBOB);ハロゲン化された有機酸を配位子とするボレートのリチウム塩;LiBF(C)で表されるリチウムオキサラトジフルオロボレート(LiODFB);LiB(Cで表されるリチウムビス(マロネート)ボレート(LiBMB);LiPF(C)で表されるリチウムテトラフルオロオキサラトフォスフェート等の有機リチウム塩が挙げられる。
 また、下記一般式(8a)、(8b)及び(8c)で表される有機リチウム塩を用いることもできる。
 LiC(SO)(SO)(SO)  (8a)
 LiN(SOOR)(SOOR)  (8b)
 LiN(SO)(SOOR)  (8c)
ここで、式中、R、R、R、R、R、R、及びRは、互いに同一であっても異なっていてもよく、炭素数1~8のパーフルオロアルキル基を示す。
 これらの有機リチウム塩は1種を単独で又は2種以上を組み合わせて用いられるが、構造上安定であることからホウ素原子を有する有機リチウム塩が好ましい。また、有機配位子を有する有機リチウム塩は、有機配位子が電気化学的な反応に関与してSolid Electrolyte Interface(SEI)と呼ばれる保護皮膜を電極表面に形成するため、正極を含めた内部抵抗の増加を抑制する観点から好ましい。そのような有機リチウム塩としては、具体的には、LiBOB、ハロゲン化された有機酸を配位子とするボレートのリチウム塩、LiODFB及びLiBMBが好ましく、LiBOB及びLiODFBが特に好ましい。
 本実施形態における電解液は、リチウムイオン以外の有機カチオン種とアニオン種とで形成される塩からなるイオン性化合物を更に含有してもよい。イオン性化合物を電解液に含有させると、電池の内部抵抗増加を更に抑制する効果がある。
 イオン性化合物のカチオンとしては、例えば、テトラエチルアンモニウム、テトラブチルアンモニウム、トリエチルメチルアンモニウム、トリメチルエチルアンモニウム、ジメチルジエチルアンモニウム、トリメチルプロピルアンモニウム、トリメチルブチルアンモニウム、トリメチルペンチルアンモニウム、トリメチルヘキシルアンモニウム、トリメチルオクチルアンモニウム、ジエチルメチルメトキシエチルアンモニウム等の四級アンモニウムカチオン;1-エチル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1,2-ジメチル-3-プロピルイミダゾリウム、1-ヘキシル-3-メチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1-メチル-3-プロピルイミダゾリウム等のイミダゾリウムカチオン;1-エチルピリジニウム、1-ブチルピリジニウム、1-ヘキシルピリジニウム等のピリジニウムカチオン;1-メチル-1-プロピルピペリジニウム、1-ブチル-1-メチルピペリジニウム等のピペリジニウムカチオン;1-エチル-1-メチルピロリジニウム、1-メチル-1-プロピルピロリジニウム、1-ブチル-1-メチルピロリジニウム等のピロリジニウムカチオン;ジエチルメチルスルホニウム、トリエチルスルホニウム等のスルホニウムカチオン;四級ホスホニウムカチオンが挙げられる。これらのカチオンの中でも、電気化学的安定性の観点から、窒素原子を有するカチオンが好ましく、ピリジニウムカチオンがより好ましい。
 イオン性化合物のアニオンとしては、上記カチオンの対イオンとして通常採用されるものであればよく、例えば、BF 、PF 、N(SOCF 、N(SO 、SOCF が挙げられる。これらのアニオンの中でも、イオンの解離性や内部抵抗の増加抑制に優れるため、PF が好ましい。
<1-3.添加剤>
 本実施形態における電解液には、電極を保護する添加剤が含まれていてもよい。添加剤としては、本発明による課題解決を阻害しないものであれば特に制限はなく、リチウム塩を溶解する溶媒としての役割を担う物質、すなわち上記の非水系溶媒と実質的に重複してもよい。また、添加剤は、本実施形態における非水系電解液及び非水系二次電池の性能向上に寄与する物質であることが好ましいが、電気化学的な反応には直接関与しない物質をも包含し、1種を単独で又は2種以上を組み合わせて用いられる。
 添加剤の具体例としては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、シス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、トランス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4,5,5-テトラフルオロ-1,3-ジオキソラン-2-オン、4,4,5-トリフルオロ-5-メチル-1,3-ジオキソラン-2-オンに代表されるフルオロエチレンカーボネート;ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、ビニルエチレンカーボネートに代表される不飽和結合含有環状カーボネート;γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、ε-カプロラクトンに代表されるラクトン;1,2-ジオキサンに代表される環状エーテル;メチルホルメート、メチルアセテート、メチルプロピオネート、メチルブチレート、エチルホルメート、エチルアセテート、エチルプロピオネート、エチルブチレート、n-プロピルホルメート、n-プロピルアセテート、n-プロピルプロピオネート、n-プロピルブチレート、イソプロピルホルメート、イソプロピルアセテート、イソプロピルプロピオネート、イソプロピルブチレート、n-ブチルホルメート、n-ブチルアセテート、n-ブチルプロピオネート、n-ブチルブチレート、イソブチルホルメート、イソブチルアセテート、イソブチルプロピオネート、イソブチルブチレート、sec-ブチルホルメート、sec-ブチルアセテート、sec-ブチルプロピオネート、sec-ブチルブチレート、tert-ブチルホルメート、tert-ブチルアセテート、tert-ブチルプロピオネート、tert-ブチルブチレート、メチルピバレート、n-ブチルピバレート、n-ヘキシルピバレート、n-オクチルピバレート、ジメチルオキサレート、エチルメチルオキサレート、ジエチルオキサレート、ジフェニルオキサレート、マロン酸エステル、フマル酸エステル、マレイン酸エステルに代表されるカルボン酸エステル;N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドに代表されるアミド;エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-メチルスルホラン、3-スルホレン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロパンジオール硫酸エステル、テトラメチレンスルホキシド、チオフェン1-オキシドに代表される環状硫黄化合物;モノフルオロベンゼン、ビフェニル、フッ素化ビフェニルに代表される芳香族化合物;ニトロメタンに代表されるニトロ化合物;シッフ塩基;シッフ塩基錯体;オキサラト錯体が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 本実施形態における電解液中の添加剤の含有量については、特に制限はないが、電解液の全量に対して、0.1~30質量%であることが好ましく、0.2~25質量%であることがより好ましく、0.5~20質量%であることが更に好ましい。本実施形態において、添加剤は高いサイクル性能の発現に寄与するが、一方で低温環境下における高出力性能への寄与は確認されていない。添加剤の含有量が多いほど電解液の劣化が抑えられるが、添加剤が少ないほど低温環境下における高出力特性が向上することになる。したがって、添加剤の含有量を上記範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく非水系電解液の高イオン伝導度に基づく優れた性能をより十分に発揮することができる傾向にある。このような組成で電解液を作製することで、電解液のサイクル性能、低温環境下における高出力性能及びその他の電池特性の全てを一層良好なものとすることができる傾向にある。
 本実施形態においては、SEIの耐久性向上の観点から、特に非ニトリル系添加剤を2種以上組み合わせて用いることが好ましい。非ニトリル系添加剤が、下記式(1)で表される化合物(以下、「化合物(1)」という。)からなる群より選ばれる1種以上の化合物を含むことも好ましい。
  R-A-R ・・・・・(1)
 ここで、式(1)中、R及びRは各々独立して、アリール基若しくはハロゲン原子で置換されていてもよいアルキル基、又は、アルキル基若しくはハロゲン原子で置換されていてもよいアリール基を示し、あるいは、RとRとは互いに結合してAと共に不飽和結合を有していてもよい環状構造を形成し、Aは下記式(2)~(6)のいずれか一つで表される構造を有する2価の基を示す。
Figure JPOXMLDOC01-appb-C000003
 R及びRで示されるアリール基若しくはハロゲン原子で置換されていてもよいアルキル基は、好ましくはアリール基若しくはハロゲン原子で置換されていてもよい炭素数1~4のアルキル基であり、より好ましくはフェニル基若しくはハロゲン原子で置換されていてもよい炭素数1~4のアルキル基である。アルキル基としては、具体的にはメチル基、エチル基、プロピル基、イソプロピル基及びブチル基が挙げられる。また、置換基となるアリール基としては、例えば、フェニル基、ナフチル基及びアントラニル基が挙げられるが、中でもフェニル基が好ましい。アルキル基の置換基となるハロゲン原子としては、フッ素原子、塩素原子及び臭素原子が好ましい。これらの置換基はアルキル基に複数個置換されていてもよく、アリール基及びハロゲン原子の両方が置換されていてもよい。
 R及びRで示されるアルキル基若しくはハロゲン原子で置換されていてもよいアリール基は、好ましくはアルキル基若しくはハロゲン原子で置換されていてもよいフェニル基、ナフチル基及びアントラニル基であり、より好ましくはアルキル基若しくはハロゲン原子で置換されていてもよいフェニル基であり、更に好ましくはハロゲン原子で置換されていてもよいフェニル基である。アリール基としては、例えばフェニル基、ナフチル基及びアントラニル基が挙げられ、中でもフェニル基が好ましい。また、アリール基の置換基となるアルキル基は、炭素数1~4のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基及びブチル基が挙げられる。アリール基の置換基となるハロゲン原子としては、フッ素原子、塩素原子及び臭素原子が好ましい。これらの置換基はアリール基に複数個置換されていてもよく、アルキル基及びハロゲン原子の両方が置換されていてもよい。
 RとRとが互いに結合してAと共に形成する環状構造は、好ましくは4員環以上であり、二重結合及び三重結合のいずれか1つ以上を有していてもよい。互いに結合するR及びRとしては、それぞれ、2価の炭化水素基が好ましく、その炭素数は、1~6であることが好ましい。具体的には、例えば、-CH-、-CHCH-、-CHCHCH-、-CHCHCHCH-、-CHCHCHCHCH-、-CH=CH-、-CH=CHCH-、-CH=CHCHCH-、-CHCH=CHCH-、-CHCHC≡CCHCH-が挙げられる。また、これらの基が有する1以上の水素原子が、アルキル基(例えば、メチル基及びエチル基)、ハロゲン原子(例えば、フッ素原子、塩素原子及び臭素原子)及びアリール基(例えばフェニル基)のいずれか1つ以上によって置換されていてもよい。R及びRは、互いに同一であっても異なっていてもよい。
 Aが上記式(2)で表される構造を有する2価の基である化合物(1)の具体例としては、ジメチルサルファイト、ジエチルサルファイト、エチルメチルサルファイト、メチルプロピルサルファイト、エチルプロピルサルファイト、ジフェニルサルファイト、メチルフェニルサルファイト、エチルサルファイト、ジベンジルサルファイト、ベンジルメチルサルファイト、ベンジルエチルサルファイト等の鎖状サルファイト;エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、ビニレンサルファイト、フェニルエチレンサルファイト、1-メチル-2-フェニルエチレンサルファイト、1-エチル-2-フェニルエチレンサルファイト等の環状サルファイト;及びこれらの鎖状サルファイトや環状サルファイトのハロゲン化物が挙げられる。
 Aが上記式(3)で表される構造を有する2価の基である化合物(1)の具体例として、ジメチルスルホン、ジエチルスルホン、エチルメチルスルホン、メチルプロピルスルホン、エチルプロピルスルホン、ジフェニルスルホン、メチルフェニルスルホン、エチルフェニルスルホン、ジベンジルスルホン、ベンジルメチルスルホン、ベンジルエチルスルホン等の鎖状スルホン;スルホラン、2-メチルスルホラン、3-メチルスルホラン、2-エチルスルホラン、3-エチルスルホラン、2,4-ジメチルスルホラン、3-スルホレン、3-メチルスルホレン、2-フェニルスルホラン、3-フェニルスルホラン等の環状スルホン;及び上記鎖状スルホンや環状スルホンのハロゲン化物が挙げられる。
 Aが上記式(4)で表される構造を有する2価の基である化合物(1)の具体例として、メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸プロピル、エタンスルホン酸メチル、エタンスルホン酸エチル、エタンスルホン酸プロピル、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸プロピル、メタンスルホン酸フェニル、エタンスルホン酸フェニル、プロパンスルホン酸フェニル、メタンスルホン酸ベンジル、エタンスルホン酸ベンジル、プロパンスルホン酸ベンジル等の鎖状スルホン酸エステル:1,3-プロパンスルトン、1,4-ブタンスルトン、3-フェニル-1,3-プロパンスルトン、4-フェニル-1,4-ブタンスルトン等の環状スルホン酸エステル;及び上記鎖状スルホン酸エステルや環状スルホン酸エステルのハロゲン化物が挙げられる。
 Aが上記式(5)で表される構造を有する2価の基である化合物(1)の具体例として、硫酸ジメチル、硫酸ジエチル、硫酸エチルメチル、硫酸メチルプロピル、硫酸エチルプロピル、硫酸メチルフェニル、硫酸エチルフェニル、硫酸フェニルプロピル、硫酸ベンジルメチル、硫酸ベンジルエチル等の鎖状硫酸エステル;エチレングリコール硫酸エステル、1,2-プロパンジオール硫酸エステル、1,3-プロパンジオール硫酸エステル、1,2-ブタンジオール硫酸エステル、1,3-ブタンジオール硫酸エステル、2,3-ブタンジオール硫酸エステル、フェニルエチレングリコール硫酸エステル、メチルフェニルエチレングリコール硫酸エステル、エチルフェニルエチレングリコール硫酸エステル等の環状硫酸エステル;及び上記鎖状硫酸エステルや環状硫酸エステルのハロゲン化物が挙げられる。
 Aが上記式(6)で表される構造を有する2価の基である化合物(1)の具体例として、ジメチルスルホキシド、ジエチルスルホキシド、エチルメチルスルホキシド、メチルプロピルスルホキシド、エチルプロピルスルホキシド、ジフェニルスルホキシド、メチルフェニルスルホキシド、エチルフェニルスルホキシド、ジベンジルスルホキシド、ベンジルメチルスルホキシド、ベンジルエチルスルホキシド等の鎖状スルホキシド;テトラメチレンスルホキシド、チオフェン1-オキシド等の環状スルホキシド;及び上記鎖状スルホキシドや環状スルホキシドのハロゲン化物が挙げられる。
 化合物(1)は、1種を単独で又は2種以上を組み合わせて用いられる。2種以上の化合物(1)を組み合わせる場合、それぞれの化合物(1)におけるAの構造は、互いに同一であっても異なっていてもよい。
 化合物(1)の非水系電解液中の含有量については特に制限はないが、リチウム塩を除いた非水系電解液に含まれる成分の全量に対し、0.05~30体積%であることが好ましく、0.1~20体積%であることがより好ましく、0.5~10体積%であることが更に好ましい。化合物(1)の中には室温(25℃)で固体のものもあるが、その場合はアセトニトリルへの飽和溶解量以下、好ましくは飽和溶解量の60質量%以下、より好ましくは飽和溶解量の30質量%以下の範囲で使用する。化合物(1)の含有量が上記範囲内にある場合、電気化学的な反応に関与してSEIを電極表面に形成するため、正極を含めた内部抵抗の増加が抑制される傾向にある。
 なお、開環重合の観点から、化合物(1)は環状構造を形成していることが好ましい。中でも、エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-メチルスルホラン、3-スルホレン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロパンジオール硫酸エステル及びテトラメチレンスルホキシドからなる群より選ばれる1種以上の化合物を含むことにより、高温充放電や充電保存等の過酷な使用環境下においても、より高い性能を持続的に発揮することが可能になる。
 本実施形態における電解液は、SEIの耐久性向上の観点から、カーボネート類、すなわち分子内にCOを有する化合物からなる群より選ばれる1種以上の化合物を化合物(1)と組み合わせて使用することが好ましい。また、カーボネート類は、有機カーボネートであることが好ましく、環状カーボネートであることがより好ましく、さらに、炭素間不飽和二重結合を有する化合物であることが好ましい。中でも、ビニレンカーボネートを主成分、すなわち最も多く含まれるカーボネート類とする場合、化合物(1)との相乗効果によりSEIの耐久性が飛躍的に向上する。この要因としては、そのようなカーボネート類は共重合的な分解反応、すなわち他の添加剤との共重合体形成が起こりやすく、化合物(1)がコモノマーとしての役割を果たすことにより、SEIの柔軟性や難溶性が高まることに起因すると考えられる。ただし、要因はこれに限定されない。
<1-4.ジニトリル化合物>
 本実施形態における非水系電解液は、ジニトリル化合物、すなわち分子内にニトリル基を2つ有する化合物を更に含有してもよい。ジニトリル化合物は、電池缶や電極等、金属部分の腐食を低減する効果がある。その要因としては、ジニトリル化合物を用いることにより、腐食の低減された金属部分の表面に腐食を抑制する保護皮膜が形成されるためと考えられる。ただし、要因はこれに限定されない。
 ジニトリル化合物は、本発明による課題解決を阻害しない限りにおいて、特に限定されないが、メチレン鎖を有するものが好ましく、そのメチレン鎖の個数は1~12であることがより好ましく、直鎖状、分枝状のいずれであってもよい。ジニトリル化合物としては、例えば、スクシノニトリル、グルタロニトリル、アジポニトリル、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、1,8-ジシアノオクタン、1,9-ジシアノノナン、1,10-ジシアノデカン、1,11-ジシアノウンデカン、1,12-ジシアノドデカン等の直鎖状ジニトリル化合物;テトラメチルスクシノニトリル、2-メチルグルタロニトリル、2,4-ジメチルグルタロニトリル、2,2,4,4-テトラメチルグルタロニトリル、1,4-ジシアノペンタン、2,5-ジメチル-2,5-ヘキサンジカルボニトリル、2,6-ジシアノヘプタン、2,7-ジシアノオクタン、2,8-ジシアノノナン、1,6-ジシアノデカン等の分枝状ジニトリル化合物;1,2-ジシアノベンゼン、1,3-ジシアノベンゼン、1,4-ジシアノベンゼン等の芳香族系ジニトリル化合物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 本実施形態における非水系電解液中のジニトリル化合物の含有量は特に限定されないが、リチウム塩を除いた電解液に含まれる成分の全量に対して、0.01~1mol/Lであることが好ましく、0.02~0.5mol/Lであることがより好ましく、0.05~0.3mol/Lであることが更に好ましい。ジニトリル化合物の含有量が上記範囲内にある場合、非水系二次電池としての基本的な機能を損なうことなくサイクル性能を一層良好なものとすることができる傾向にある。
 なお、ジニトリル化合物は、メチレン鎖が偶数個の場合、双極子モーメントが低い傾向にあるが、驚くべきことに奇数個の場合よりも高い添加効果が実験的に認められた。したがって、ジニトリル化合物は、下記一般式(9)で表される化合物からなる群より選ばれる1種以上の化合物を含むことが好ましい。
  NC-(CR10112a-CN ・・・・・(9)
 ここで、式(9)中、R10及びR11は各々独立して、水素原子又はアルキル基を示し、aは1~6の整数を示す。アルキル基は、炭素数1~10であることが好ましい。
<2.正極及び正極集電体>
 正極は、非水系二次電池の正極として作用するものであれば特に限定されず、公知のものであってもよい。
 正極は、正極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料からなる群より選ばれる1種以上の材料を含有する場合、高電圧及び高エネルギー密度を得ることができる傾向にあるので好ましい。そのような材料としては、例えば、下記一般式(10a)及び(10b)で表されるリチウム含有化合物、並びにトンネル構造及び層状構造の金属酸化物及び金属カルコゲン化物が挙げられる。なお、カルコゲン化物とは、硫化物、セレン化物、及びテルル化物をいう。
  LiMO  (10a)
  Li  (10b)
 ここで、式中、Mは少なくとも1種の遷移金属元素を含む1種以上の金属元素を示し、xは0~1.1の数、yは0~2の数を示す。
 上記一般式(10a)及び(10b)で表されるリチウム含有化合物としては、例えば、LiCoOに代表されるリチウムコバルト酸化物;LiMnO、LiMn、LiMnに代表されるリチウムマンガン酸化物;LiNiOに代表されるリチウムニッケル酸化物;LiMO(MはNi、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含み、且つ、Ni、Mn、Co、Al、及びMgからなる群より選ばれる2種以上の金属元素を示し、zは0.9超1.2未満の数を示す)で表されるリチウム含有複合金属酸化物があげられる。
 (10a)及び(10b)以外のリチウム含有化合物としては、リチウムを含有するものであれば特に限定されず、例えば、リチウムと遷移金属元素とを含む複合酸化物、リチウムと遷移金属元素とを含むリン酸金属化合物、及びリチウムと遷移金属元素とを含むケイ酸金属化合物(例えばLiSiO、Mは上記式(10a)と同義であり、tは0~1の数、uは0~2の数を示す。)が挙げられる。より高い電圧を得る観点から、特に、リチウムと、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、クロム(Cr)、バナジウム(V)及びチタン(Ti)からなる群より選ばれる少なくとも1種の遷移金属元素を含む複合酸化物、並びにリン酸金属化合物が好ましい。
 リチウム含有化合物としてより具体的には、リチウムを有する金属酸化物またはリチウムを有する金属カルコゲン化物、及びリチウムを有するリン酸金属化合物が好ましく、例えば、それぞれ下記一般式(11a)、(11b)で表される化合物が挙げられる。これらの中では、リチウムを有する金属酸化物及びリチウムを有する金属カルコゲン化物がより好ましい。
  Li  (11a)
  LiIIPO  (11b)
 ここで、式中、Dは酸素またはカルコゲン元素を示し、M及びMIIはそれぞれ1種以上の遷移金属元素を示し、v及びwの値は電池の充放電状態によって異なるが、通常vは0.05~1.10、wは0.05~1.10の数を示す。
 上記一般式(11a)で表される化合物は一般に層状構造を有し、上記一般式(11b)で表される化合物は一般にオリビン構造を有する。これらの化合物において、構造を安定化させる等の目的から、遷移金属元素の一部をAl、Mg、その他の遷移金属元素で置換したり結晶粒界に含ませたりしたものや、酸素原子の一部をフッ素原子等で置換したものを用いてもよく、更に、正極活物質表面の少なくとも一部に他の正極活物質を被覆したものを用いてもよい。
 また、トンネル構造及び層状構造の、金属酸化物または金属カルコゲン化物としては、例えば、MnO、FeO、FeS、V、V13、TiO、TiS、MoS及びNbSeに代表されるリチウム以外の金属の酸化物、硫化物、セレン化物が挙げられる。
 他の正極活物質としては、イオウ、並びにポリアニリン、ポリチオフェン、ポリアセチレン、及びポリピロールに代表される導電性高分子も挙げられる。
 上記正極活物質は、1種を単独で又は2種以上を組み合わせて用いられる。正極活物質の数平均粒子径(一次粒子径)は、好ましくは0.05~100μm、より好ましくは1~10μmである。正極活物質の数平均粒子径は湿式の粒子径測定装置(例えば、レーザー回折/散乱式粒度分布計、動的光散乱式粒度分布計)により測定することができる。あるいは、透過型電子顕微鏡にて観察した粒子100個をランダムに抽出し、画像解析ソフト(例えば、旭化成エンジニアリング株式会社製の画像解析ソフト、商品名「A像くん」)で解析し、その相加平均を算出することでも得られる。この場合、同じ試料に対して、測定方法間で数平均粒子径が異なる場合は、標準試料を対象として作成した検量線を用いてもよい。
 本実施形態における非水系二次電池の正極合剤は、正極活物質、導電助剤、バインダー、並びに、有機酸及び有機酸塩からなる群から選択される少なくとも1種の化合物(以下、「有機酸化合物」とも略記する。)を含む正極合剤であってもよい。有機酸化合物を含む正極合剤は、高イオン伝導度の非水系電解液を用いた場合においても、脆化や電極集電体との結着性低下を招くリスクが少なく、極めて安定的に機能する傾向にあるため好ましい。さらに、高容量化を達成するためできるだけ厚い正極活物質層を形成した場合においても、正極活物質層のひび割れ若しくは崩壊による正極劣化を引き起こすリスクが少なく、高イオン伝導度を有する非水系電解液の機能を十分に発揮できる傾向にあるため、正極劣化に起因する内部抵抗の増大が大幅に抑制された非水系二次電池を提供することができる。
 有機酸及び有機酸塩は、正極活物質同士及び正極活物質層と電極集電体間の結着力を増大する役割があり、有機溶剤に溶解性があればその種類は特に限定されない。有機酸及び有機酸塩からなる群から選択される少なくとも1種の化合物としては、正極合剤の流動性が高く、かつ時間経過に伴う粘度の上昇が抑制される観点から、2価以上の有機酸又は有機酸塩を含むことが好ましい。有機酸化合物の具体例としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、アクリル酸等のモノカルボン酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族飽和ジカルボン酸;マレイン酸、フマル酸等の脂肪族不飽和ジカルボン酸;フタル酸等の芳香族ジカルボン酸;クエン酸等のトリカルボン酸;及び上記カルボン酸のリチウム塩、ナトリウム塩、アンモニウム塩が挙げられる。これらの中でも、正極合剤スラリー粘度の上昇を抑えることで乾燥正極活物質層の表面ムラが生じ難くなる傾向にあるため、シュウ酸、マロン酸が好ましい。上記化合物は、1種を単独で用いても、2種以上を併用してもよい。
 有機酸化合物の添加量は、正極活物質100質量部当たり0.01~3質量部であることが好ましく、0.05~2.5質量部であることがより好ましく、0.1~2質量部であることが更に好ましい。有機酸化合物の添加量は、結着力の観点から、0.01質量部以上であることが好ましく、スラリー粘度、分散性及び乾燥正極活物質層の均一性の観点から、3質量部以下であることが好ましい。
 正極活物質と、必要に応じて、導電助剤、バインダー、及び有機酸化合物を含む正極は、例えば、下記のようにして得られる。すなわち、まず、上記正極活物質に対して、導電助剤、有機酸化合物を加えてドライの状態で均一に混合した後、バインダー等を加え、溶剤に分散させることで正極合剤含有スラリーを調製する。ここで、正極合剤含有スラリー中の固形分濃度は、好ましくは30~80質量%であり、より好ましくは40~70質量%である。次いで、この正極合剤含有スラリーを正極集電体に塗布し、乾燥して塗工層を形成する。乾燥後に得られた塗工層をロールプレス等により圧縮することで正極活物質層が形成される。圧縮後の正極活物質層厚さは10~300μmであることが好ましく、20~280μmであることがより好ましく、30~250μmであることが更に好ましい。なお、有機酸化合物を含むことにより、高容量化を達成するためできるだけ厚い正極活物質層を形成した場合においても、正極活物質層のひび割れ若しくは崩壊による正極劣化を引き起こすことなく、高イオン伝導度を有する非水系電解液の機能を十分に発揮できるため、この場合、圧縮後の正極活物質層厚さは、50~300μmであることが好ましく、60~280μmであることがより好ましく、80~250μmであることが更に好ましい。
 本実施形態における非水系二次電池は、正極に含まれる正極活物質層の目付量が8~100mg/cmの範囲に調整されている。高出力特性を最重視する場合には、目付量は9~50mg/cmであることが好ましく、10~26mg/cmであることがより好ましいが、非水系二次電池における出力性能とのバランスを保ちながら体積エネルギー密度を向上する観点からは、目付量は24~100mg/cmであることが好ましく、25~80mg/cmであることがより好ましく、26~60mg/cmであることが更に好ましい。本実施形態における非水系二次電池は、イオン伝導度が15mS/cm以上の電解液を用いるため、体積エネルギー密度の高い電極活物質層を設計した場合においても、高出力性能を実現する非水系二次電池を提供することができる。
 ここで、目付量とは、集電体の片面に電極活物質層を形成する場合は、電極面積1cmあたりに含まれる電極活物質の質量を示し、集電体の両面に電極活物質層を形成する場合は、各片面の電極面積1cmあたりに含まれる電極活物質の質量を示す。電極集電体に電極活物質を多く塗布すると、電池の単位体積あたりの電極活物質量が、電池容量に関係しない他の電池材料、例えば集電箔やセパレータよりも相対的に多くなるため、電池としては高容量化することになる。
 集電体の片面に電極活物質層を形成する場合の目付量は、以下の式(12)により算出することができる。
 目付量[mg/cm]=(電極質量[mg]-電極集電体質量[mg])÷電極面積[cm] ・・・・・(12)
 電極活物質層の目付量は、電極活物質とバインダーと導電助剤とを混合した電極合剤を溶剤に分散させて得られる電極合剤含有スラリーを集電体に塗布する際、ドクターブレード法により活物質層の塗布膜厚を制御することにより調整することができる。また、電極合剤含有スラリーの濃度を制御することによっても調整することができる。
 本実施形態における正極活物質層の空孔率については特に制限はないが、非水系二次電池において、出力性能とのバランスを保ちながら体積エネルギー密度を向上させる観点からは、20~45%であることが好ましく、22~42%であることがより好ましく、25~35%であることが更に好ましい。空孔率が20%以上である場合、正極活物質層内におけるリチウムイオンの拡散が阻害されにくくなり、出力特性が確保される傾向にある。また、正極活物質層の空孔率が45%以下である場合、正極活物質層の剥離劣化や非水系電解液の液枯れを抑えることができ、高出力化を実現しながら耐久性能を確保することができる傾向にある。
 電極活物質層の空孔率は、以下の式(13)により求めることができる。
空孔率[%]=(1-実電極密度[g/cm]/理論電極密度[g/cm])×100 ・・・・・(13)
 実電極密度は、電極活物質層質量を電極活物質層体積で割ることにより求めることができる。ここで、電極活物質層質量とは、打ち抜きポンチ等の打抜機で所定面積を打ち抜いた電極の質量から電極集電体の質量を引いて算出した値であり、電極活物質層体積とは、マイクロメータにより測定した電極の厚さから電極集電体の厚さを引いた電極活物質層厚さに面積をかけて算出した値である。
 理論電極密度は、電極活物質、導電助剤およびバインダー等、電極を構成する材料それぞれの密度と組成比率をかけて足し合わせることにより求めることができる。なお、粒子の密度とは、粒子の内部にある閉じた空洞を含む粒子の体積で粒子の質量を割った値であり、粒子表面の凹みや割れ目、開いた空洞は粒子の体積に含めない。
 電極活物質層の空孔率は、例えば、電極活物質の嵩密度を制御したり、電極を圧縮することにより、調整することができる。電極の圧縮はロールプレス等の圧縮手段により行われ、プレス圧は特に限定されないが、2~8MPaであることが好ましく、4~7MPaであることがより好ましい。電極を高圧でプレスすると空孔率の低い電極活物質層が得られるため、電池の高容量化を目指す観点から好ましい。また、電極活物質層の結着力が高まるため、高イオン伝導度を有する非水系電解液を用いた場合の電極劣化を抑制する観点からも好ましい。
 導電助剤としては、例えば、グラファイト、アセチレンブラック及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の数平均粒子径(一次粒子径)は、好ましくは10nm~10μm、より好ましくは20nm~1μmであり、正極活物質の数平均粒子径と同様の方法により測定される。また、バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、スチレンブタジエンゴム及びフッ素ゴムが挙げられる。また、溶剤としては、特に制限はなく、従来公知のものを用いることができ、例えば、N―メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水が挙げられる。
 正極集電体は、例えば、アルミニウム箔、ニッケル箔又はステンレス箔などの金属箔により構成される。また、カーボンコートが施されていたり、メッシュ状に加工されていてもよい。正極集電体の厚みは5~40μmであることが好ましく、7~35μmであることがより好ましく、9~30μmであることが更に好ましい。
<3.負極及び負極集電体>
 負極は、非水系二次電池の負極として作用するものであれば特に限定されず、公知のものであってもよい。
 負極は、負極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料及び金属リチウムからなる群より選ばれる1種以上の材料を含有することが好ましい。そのような材料としては金属リチウムの他、例えば、アモルファスカーボン(ハードカーボン)、人造黒鉛、天然黒鉛、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラファイト、炭素コロイド、カーボンブラックに代表される炭素材料が挙げられる。コークスとしては、例えば、ピッチコークス、ニードルコークス及び石油コークスが挙げられる。有機高分子化合物の焼成体とは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものである。炭素材料には、炭素以外にも、O、B、P、N、S、Si、SiC、SiO、SiO、BC等の異種元素または異種化合物が含まれていてよい。異種元素または異種化合物の含有量としては、炭素材料に対して0~10質量%であることが好ましい。
 更に、リチウムイオンを吸蔵及び放出することが可能な材料としては、リチウムと合金を形成可能な元素を含む材料も挙げられる。この材料は金属又は半金属の単体であっても合金であっても化合物であってもよく、また、これらの1種又は2種以上の相を少なくとも一部に有するようなものであってもよい。
 なお、本明細書において、「合金」には、2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを有するものも含まれる。また、合金が、全体として金属の性質を有するものであれば非金属元素を有していてもよい。合金の組織には固溶体、共晶(共融混合物)、金属間化合物又はこれらのうちの2種以上が共存する。
 リチウムと合金を形成可能な金属元素及び半金属元素としては、例えば、チタン(Ti)、スズ(Sn)、鉛(Pb)、アルミニウム(Al)、インジウム(In)、ケイ素(Si)、亜鉛(Zn)、アンチモン(Sb)、ビスマス(Bi)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、銀(Ag)、ハフニウム(Hf)、ジルコニウム(Zr)及びイットリウム(Y)が挙げられる。
 これらの中でも、長周期型周期表における4族又は14族の金属元素及び半金属元素が好ましく、特に好ましくは、リチウムを吸蔵及び放出する能力が大きく、高いエネルギー密度を得ることができるチタン、ケイ素及びスズである。
 スズの合金としては、例えば、スズ以外の第2の構成元素として、ケイ素、マグネシウム(Mg)、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン(Ti)、ゲルマニウム、ビスマス、アンチモン及びクロム(Cr)からなる群より選ばれる1種以上の元素を有するものが挙げられる。
 ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ、マグネシウム、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン及びクロムからなる群より選ばれる1種以上の元素を有するものが挙げられる。
 チタンの化合物、スズの化合物及びケイ素の化合物としては、例えば、酸素(O)又は炭素(C)を有するものが挙げられ、チタン、スズ又はケイ素に加えて、上述の第2の構成元素を有していてもよい。
 負極は、負極活物質として、0.4~3V vs.Li/Liの範囲でリチウムイオンを吸蔵することが可能な金属化合物を含有してもよい。このような金属化合物としては、例えば、金属酸化物、金属硫化物及び金属窒化物が挙げられる。
 金属酸化物としては、例えば、チタン酸化物、リチウムチタン酸化物(リチウムチタン含有複合酸化物)、タングステン酸化物(例えばWO)、アモルファススズ酸化物(例えばSnB0.40.63.1)、スズ珪素酸化物(例えばSnSiO)及び酸化珪素(SiO)が挙げられる。これらの中でも、チタン酸化物及びリチウムチタン酸化物が好ましい。
 リチウムチタン酸化物としては、例えば、スピネル構造のチタン酸リチウム{例えばLi4+cTi12(cは充放電反応により-1≦c≦3の範囲で変化し得る)}、ラムスデライト構造のチタン酸リチウム{例えばLi2+dTi(dは充放電反応により-1≦d≦3の範囲で変化し得る)}が挙げられる。
 チタン酸化物としては、充放電前からLiを含むもの又は含まないもののいずれをも用いることができる。充放電前、すなわち合成時にLiを含まないチタン酸化物としては、例えば、酸化チタン(例えばTiO、HTi1225)、TiとP、V、Sn、Cu、Ni及びFeよりなる群から選ばれる少なくとも1種の元素とを含有するチタン複合酸化物が挙げられる。TiOとしては、アナターゼ型で熱処理温度が300~500℃の低結晶性のものが好ましい。チタン複合酸化物としては、例えば、TiO-P、TiO-V、TiO-P-SnO、TiO-P-MeO(MeはCu、Ni及びFeよりなる群から選ばれる少なくとも1種の元素)が挙げられる。チタン複合酸化物は、結晶性が低く、結晶相とアモルファス相とが共存した、又はアモルファス相単独で存在したミクロ構造を有することが好ましい。このようなミクロ構造を有することにより、サイクル性能を大幅に向上させることができる。
 充放電前からLiを含むもの、すなわち合成時からLiを含むチタン酸化物としては、例えば、LiTiO(eは0≦e≦1.1)が挙げられる。
 金属硫化物としては、例えば、硫化チタン(例えばTiS)、硫化モリブデン(例えばMoS)及び硫化鉄(例えば、FeS、FeS、LiFeS(fは0≦f≦1))が挙げられる。金属窒化物としては、例えば、リチウムコバルト窒化物(例えば、LiCoN、0<g<4、0<h<0.5)が挙げられる。
 本実施形態における非水系二次電池は、電池電圧を高められるという観点から、負極が、負極活物質として、リチウムイオンを0.4V vs.Li/Liよりも卑な電位で吸蔵する材料を含有することが好ましい。そのような材料としては、例えば、アモルファスカーボン(ハードカーボン)、人造黒鉛、天然黒鉛、黒鉛、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラファイト、炭素コロイド及びカーボンブラックに代表される炭素材料の他、金属リチウム、金属酸化物、金属窒化物、リチウム合金、スズ合金、シリコン合金、金属間化合物、有機化合物、無機化合物、金属錯体、有機高分子化合物が挙げられる。
 負極活物質は1種を単独で又は2種以上を組み合わせて用いられる。負極活物質の数平均粒子径(一次粒子径)は、好ましくは0.1~100μm、より好ましくは1~10μmである。負極活物質の数平均粒子径は、正極活物質の数平均粒子径と同様の方法により測定される。
 負極は、例えば、下記のようにして得られる。すなわち、まず、上記負極活物質に対して、必要に応じて、導電助剤やバインダー等を加えて混合した負極合剤を溶剤に分散させて負極合剤含有スラリーを調製する。ここで、負極合剤含有スラリー中の固形分濃度は、好ましくは30~80質量%であり、より好ましくは40~70質量%である。次いで、この負極合剤含有スラリーを負極集電体に塗布し、乾燥して塗工層を形成する。乾燥後に得られた塗工層をロールプレス等により圧縮することで負極活物質層が形成される。圧縮後の負極活物質層厚さは10~300μmであることが好ましく、20~280μmであることがより好ましく、30~250μmであることが更に好ましい。
 本実施形態における非水系二次電池は、負極に含まれる負極活物質層の目付量が3~46mg/cmの範囲に調整されている。高出力特性を最重視する場合には、目付量は4~23mg/cmであることが好ましく、5~12mg/cmであることがより好ましいが、非水系二次電池における出力性能とのバランスを保ちながら体積エネルギー密度を向上する観点からは、目付量は10~46mg/cmであることが好ましく、11~37mg/cmであることがより好ましく、12~27mg/cmであることが更に好ましい。本実施形態における非水系二次電池は、イオン伝導度が15mS/cm以上の電解液を用いるため、体積エネルギー密度の高い電極活物質層を設計した場合においても、高出力性能を実現する非水系二次電池を提供することができる。
 本実施形態における負極活物質層の空孔率については特に制限はないが、本実施形態における非水系二次電池において出力性能とのバランスを保ちながら体積エネルギー密度を向上させる観点からは、20~45%であることが好ましく、22~42%であることがより好ましく、25~35%であることが更に好ましい。空孔率が20%以上である場合、負極活物質層内におけるリチウムイオンの拡散が阻害されにくくなり、出力特性が確保される傾向にある。また、負極活物質層の空孔率が45%以下である場合、負極活物質層の剥離劣化や非水系電解液の液枯れを抑えることができ、高出力化を実現しながら耐久性能を確保することができる傾向にある。
 導電助剤としては、例えば、グラファイト、アセチレンブラック及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の数平均粒子径(一次粒子径)は、好ましくは10nm~10μm、より好ましくは20nm~1μmであり、正極活物質の数平均粒子径と同様の方法により測定される。また、バインダーとしては、例えば、PVDF、PTFE、ポリアクリル酸、スチレンブタジエンゴム及びフッ素ゴムが挙げられる。また、溶剤としては、特に制限はなく、従来公知のものを用いることができ、例えば、N―メチルー2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
 負極集電体は、例えば、銅箔、ニッケル箔又はステンレス箔などの金属箔により構成される。また、カーボンコートが施されていたり、メッシュ状に加工されていてもよい。負極集電体の厚みは5~40μmであることが好ましく、6~35μmであることがより好ましく、7~30μmであることが更に好ましい。
<4.導電層>
 本実施形態における非水系二次電池に含まれる正極及び負極は、電極集電体上に導電性材料を含む導電層を塗布し、その上に正極活物質層又は負極活物質層を形成した電極であることも好ましい態様の一つである。
 電極集電体上に導電層が存在することで高い導電性を保持でき、活物質層と集電体の接着強度を高めることができるため、電極が高強度を保ちつつ、高出力性能と高耐久性を兼ね備えた非水系二次電池を作製できる。導電層は、導電性材料とバインダー等を加えて混合した導電合剤を溶剤に分散させて導電合剤含有スラリーを調製し、次いで、この導電合剤含有スラリーを正極及び負極集電体に塗布し、乾燥して導電合剤層を形成した後、それを必要に応じて加圧し厚みを調整することによって作製することができる。
 導電層に含まれる導電性材料としては、導電性を有するものであれば特に限定されず、例えば、活性炭、難黒鉛性カーボンや易黒鉛性カーボンといった炭素質材料、ポリアセン系物質等のアモルファス炭素質材料、ケッチェンブラックやアセチレンブラックといったカーボンブラック、カーボンナノチューブ、フラーレン、カーボンナノフォーン、繊維状炭素質材料等が挙げられる。特に、導電性の高さ、導電層の形成しやすさといった観点からは、グラファイトやアセチレンブラックを好適に用いることができる。導電性材料の数平均粒子径は、好ましくは20nm~1μmであり、より好ましくは20~500nmである。導電性材料の数平均粒子径は、正極活物質の数平均粒子径と同様の方法により測定することができる。
 導電層に含まれるバインダーについて特に制限はないが、電解液及び充放電挙動に対して安定であるものが好ましく、各種の樹脂が使用できる。そのような樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ-1,1-ジメチルエチレンなどのアルカン系ポリマー;ポリブタジエン、ポリイソプレンなどの不飽和系ポリマー;ポリスチレン、ポリメチルスチレン、ポリビニルピリジン、ポリ-N-ビニルピロリドンなどの環を有するポリマー;ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミドなどのアクリル誘導体系ポリマー;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂;ポリアクリロニトリル、ポリビニリデンシアニドなどのCN基含有ポリマー;ポリ酢酸ビニル、ポリビニルアルコールなどのポリビニルアルコール系ポリマー;ポリ塩化ビニル、ポリ塩化ビニリデンなどのハロゲン含有ポリマー;ポリアニリンなどの導電性ポリマーなどが挙げられる。また上記のポリマーなどの混合物、変性体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体なども使用することができる。
 前記導電性材料とバインダーと溶剤からなる導電合剤スラリー中の固形分濃度は、好ましくは30~80質量%であり、より好ましくは40~70質量%である。
 また、導電層の厚みは、好ましくは0.05~10μm、より好ましくは0.1~10μmである。導電層の厚みが0.05μm以上である場合、電極活物質層と電極集電体との間の抵抗が減少する傾向にあり、10μm以下である場合、蓄電素子としてのエネルギー密度の低下が少なくなる傾向にある。導電層の上に電極活物質層を形成することにより、電極活物質層と電極集電体との間の抵抗を抑え、さらには電極活物質層と電極集電体との密着性を高めることができる。
<5.セパレータ>
 本実施形態における非水系二次電池は、正負極の短絡防止、シャットダウン等の安全性付与の観点から、正極と負極との間にセパレータを備えることが好ましい。セパレータとしては、公知の非水系二次電池に備えられるものと同様のものを用いてもよく、イオン透過性が大きく、機械的強度に優れる絶縁性の薄膜が好ましい。セパレータとしては、例えば、織布、不織布、合成樹脂製微多孔膜が挙げられ、これらの中でも、合成樹脂製微多孔膜が好ましい。合成樹脂製微多孔膜としては、例えば、ポリエチレン又はポリプロピレンを主成分として含有する微多孔膜、あるいは、これらのポリオレフィンを共に含有する微多孔膜等のポリオレフィン系微多孔膜が好適に用いられる。不織布としては、セラミック製、ポリオレフィン製、ポリエステル製、ポリアミド製、液晶ポリエステル製、アラミド製など、耐熱樹脂製の多孔膜が挙げられる。
 セパレータは、1種の微多孔膜を単層又は複数積層したものであってもよく、2種以上の微多孔膜を積層したものであってもよい。
<6.電池外装>
 本実施形態における非水系二次電池の電池外装は特に限定されないが、電池缶及びラミネートフィルム外装体のいずれかの電池外装を用いることができる。電池缶としては、例えば、スチール又はアルミニウムからなる金属缶を用いることができる。ラミネートフィルム外装体としては、例えば、熱溶融樹脂/金属フィルム/樹脂の3層構成からなるラミネートフィルムを、熱溶融樹脂側を内側に向けた状態で2枚重ねて端部をヒートシールにて封止したものを用いることができる。なお、ラミネートフィルム外装体を用いる場合、正極集電体及び負極集電体にそれぞれ正極端子(又は正極端子と接続するリードタブ)及び負極端子(又は負極端子と接続するリードタブ)を接続し、両端子(又はリードタブ)の端部が外装体の外部に引き出された状態でラミネートフィルム外装体を封止してもよい。
<7.電池の作製方法>
 本実施形態における非水系二次電池は、上述の電解液、正極と正極集電体とからなる正極体、負極と負極集電体とからなる負極体、及び必要に応じてセパレータを用いて、公知の方法により作製される。例えば、長尺の正極体と負極体とを、その間に長尺のセパレータを介在させた積層状態で巻回して巻回構造の積層体に成形することができる。また、それらを一定の面積と形状とを有する複数枚のシートに切断して、交互に積層した複数の正極体シートと負極体シートとの間にセパレータシートが介在する積層構造の積層体に成形することができる。また、長尺のセパレータをつづら折にして、つづら折になったセパレータ同士の間に交互に正極体シートと負極体シートとを挿入して積層構造の積層体に成形することができる。
 次いで、電池ケース(電池外装)内にその積層体を収容して、本実施形態に係る電解液を電池ケース内部に注液し、上記積層体を電解液に浸漬して封印することによって、本実施形態における非水系二次電池を作製することができる。
 あるいは、非水系電解液を基材に含浸させることによって、ゲル状態の電解質膜を予め作製しておき、シート状の正極体、負極体、該電解質膜、及び必要に応じてセパレータを用いて、上述のように積層構造の積層体を形成した後、電池ケース内に収容して非水系二次電池を作製することもできる。
 本実施形態における非水系二次電池の形状は、特に限定されず、例えば、円筒形、楕円形、角筒型、ボタン形、コイン形、扁平形、及びラミネート形などが好適に採用される。
 本実施形態における非水系二次電池は、初回充電により電池として機能し得るが、初回充電の際に非水系電解液の一部が分解することにより安定化する。初回充電の方法について特に制限はないが、初回充電は0.001~0.3Cで行われることが好ましく、0.002~0.25Cで行われることがより好ましく、0.003~0.2Cで行われることがさらに好ましい。また、初回充電が定電圧充電を途中に経由して行われることも好ましい結果を与える。なお、定格容量を1時間で放電する定電流が1Cである。リチウム塩が電気化学的な反応に関与する電圧範囲を長く設定することによって、SEIが電極表面に形成され、正極を含めた内部抵抗の増加を抑制する効果がある。また、反応生成物が負極のみに強固に固定化されることなく、何らかの形で正極やセパレータ等、負極以外の部材にも良好な効果を与えるため、電解液に溶解したリチウム塩の電気化学的な反応を考慮して初回充電を行うことは非常に有効である。
 本実施形態における非水系二次電池は、複数個を直列あるいは並列につないで電池パックとして使用することもできる。なお、電池パックの充放電状態を管理する観点から、1個あたりの使用電圧範囲は2~5Vであることが好ましく、2.5~5Vであることがより好ましく、2.75V~5Vであることが特に好ましい。
 以上、本発明を実施するための形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、非水系二次電池の各種特性は下記のようにして測定及び評価した。
(1)測定
(1-1)非水系電解液のイオン伝導度測定
 非水系電解液をポリプロピレン製容器内で調製し、東亜ディーケーケー(株)製のイオン伝導度計「CM-30R」(商品名)に接続した東亜ディーケーケー(株)製のイオン伝導度測定用セル「CT-57101B」(商品名)を、非水系電解液が収容された上記容器に挿入し、25℃での非水系電解液のイオン伝導度を測定した。
(1-2)電極活物質層の目付量
 電極活物質層の目付量は、以下の式(12)により算出した。
 目付量[mg/cm]=(電極質量[mg]-電極集電体質量[mg])÷電極面積[cm] ・・・・・(12)
(1-3)電極活物質層の空孔率測定
 電極活物質層の空孔率は、以下の式(13)により求めた。
空孔率[%]=(1-実電極密度[g/cm]/理論電極密度[g/cm])×100 ・・・・・(13)
 実電極密度は、電極活物質層質量を電極活物質層体積で割ることにより求めた。ここで、電極活物質層質量は、面積が2cmになるよう打ち抜きポンチで打ち抜いた電極の質量から同じ面積で別途打ち抜いた電極集電体の質量を引いて算出した値を用い、電極活物質層体積は、マイクロメータにより測定した電極の厚さから別途測定した電極集電体の厚さを引いた電極活物質層厚さに面積をかけて算出した。理論電極密度は、電極を構成する電極活物質、導電助剤およびバインダーの密度と組成比率をそれぞれかけて足し合わせることにより求めた。
(1-4)電極活物質層の厚さ
 電極活物質層の厚さは、マイクロメータにより測定した電極の厚さから別途測定した電極集電体の厚さを引くことにより求めた。
(2)正極作製
 正極はそれぞれ以下のようにして作製した。
(2-1)正極(P1)の作製
 正極活物質として数平均粒子径7.4μmのコバルト酸リチウム(LiCoO;密度4.95g/cm)と、導電助剤として数平均粒子径48nmのアセチレンブラック(密度1.95g/cm)と、バインダーとしてポリフッ化ビニリデン(PVdF;密度1.75g/cm)とを、89.3:5.2:5.5の質量比で混合し、正極合剤を得た。得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを固形分68質量%となるように投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ20μm、幅200mmのアルミニウム箔の片面に、この正極合剤含有スラリーを目付量が6.1mg/cmになるよう調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで実電極密度が2.77g/cmになるよう圧延して、正極活物質層と正極集電体からなる正極(P1)を得た。なお、理論電極密度は4.62g/cmと算出された。目付量、電極活物質層厚さ、実電極密度、空孔率を表1に示す。
(2-2)正極(P2)の作製
 正極合剤含有スラリーを目付量が10.3mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が2.58g/cmになるよう圧延したこと以外は、(2-1)と同様にして正極(P2)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表1に示す。
(2-3)正極(P3)の作製
 正極合剤含有スラリーを目付量が26.0mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が3.17g/cmになるよう圧延したこと以外は、(2-1)と同様にして正極(P3)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表1に示す。
(2-4)正極(P4)の作製
 正極合剤含有スラリーを目付量が39.3mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が3.20g/cmになるよう圧延したこと以外は、(2-1)と同様にして正極(P4)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表1に示す。
(2-5)正極(P5)の作製
 導電性材料として数平均粒子径3μmのグラファイト炭素粉末と、バインダーとしてポリフッ化ビニリデン(PVdF)とを90:10の質量比で混合した。得られた混合物にN-メチル-2-ピロリドンを固形分60質量%となるように投入して更に混合して、導電合剤スラリーを調製した。この導電合剤スラリーを厚さ20μm、幅200mmのアルミニウム箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。導電層の厚みは5μmであった。
 この導電層の上に、正極合剤含有スラリーを目付量が10.0mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が2.50g/cmになるよう圧延したこと以外は、(2-1)と同様にして正極(P5)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表1に示す。
(2-6)正極(P6)の作製
 正極集電体として厚さ30μmのアルミニウム箔を用い、正極合剤含有スラリーを目付量が24.6mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が3.00g/cmになるよう圧延したこと以外は、(2-1)と同様にして正極(P6)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表1に示す。
(2-7)正極(P7)の作製
 正極合剤含有スラリーを目付量が24.6mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が3.00g/cmになるよう圧延したこと以外は、(2-5)と同様にして正極(P7)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表1に示す。
Figure JPOXMLDOC01-appb-T000004
(2-8)正極(P8)の作製
 正極活物質として数平均粒子径11μmのリチウムとニッケル、マンガン及びコバルトとの複合酸化物(Ni/Mn/Co=1/1/1(元素比);密度4.70g/cm)と、導電助剤として数平均粒子径6.5μmのグラファイト炭素粉末(密度2.26g/cm)及び数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm)と、バインダーとしてポリフッ化ビニリデン(PVdF;密度1.75g/cm)とを、90.4:3.8:1.6:4.2の質量比で混合し、正極合剤を得た。得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを固形分68質量%となるように投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ20μm、幅200mmのアルミニウム箔の片面に、この正極合剤含有スラリーを目付量が12.0mg/cmになるように調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで実電極密度が3.24g/cmになるよう圧延して、正極活物質層と正極集電体からなる正極(P8)を得た。なお、理論電極密度は4.44g/cmと算出された。目付量、電極活物質層厚さ、実電極密度、空孔率を表2に示す。
(2-9)正極(P9)の作製
 ロールプレスを調整して実電極密度が3.02g/cmになるよう圧延したこと以外は、(2-8)と同様にして正極(P9)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表2に示す。
(2-10)正極(P10)の作製
 ロールプレスを調整して実電極密度が2.66g/cmになるよう圧延したこと以外は、(2-8)と同様にして正極(P10)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表2に示す。
(2-11)正極(P11)の作製
 ロールプレスで圧延しなかったこと以外は、(2-8)と同様にして正極(P11)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表2に示す。
(2-12)正極(P12)の作製
 導電性材料として数平均粒子径3μmのグラファイト炭素粉末と、バインダーとしてポリフッ化ビニリデン(PVdF)とを90:10の質量比で混合した。得られた混合物にN-メチル-2-ピロリドンを固形分60質量%となるように投入して更に混合して、導電合剤スラリーを調製した。この導電合剤スラリーを厚さ20μm、幅200mmのアルミニウム箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。導電層の厚みは5μmであった。
 この導電層の上に、正極合剤含有スラリーを目付量が12.0mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が3.02g/cmになるよう圧延したこと以外は、(2-8)と同様にして正極(P12)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表2に示す。
(2-13)正極(P13)の作製
 正極合剤含有スラリーを目付量が24.0mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が2.90g/cmになるよう圧延したこと以外は、(2-8)と同様にして正極(P13)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表2に示す。
(2-14)正極(P14)の作製
 正極合剤含有スラリーを目付量が36.0mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が3.00g/cmになるよう圧延したこと以外は、(2-8)と同様にして正極(P14)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表2に示す。
Figure JPOXMLDOC01-appb-T000005
(2-15)正極(P15)の作製
 正極活物質として数平均粒子径11μmのリチウムとニッケル、マンガン及びコバルトとの複合酸化物(Ni/Mn/Co=1/1/1(元素比);密度4.70g/cm)と、導電助剤として数平均粒子径6.5μmのグラファイト炭素粉末(密度2.26g/cm)及び数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm)と、バインダーとしてポリフッ化ビニリデン(PVdF;密度1.75g/cm)とを、100:4.2:1.8:4.5の質量比で準備した。次に、正極活物質と、導電助剤と、2価以上の有機酸としてシュウ酸を正極活物質100質量部に対して0.1質量部となるように調整した後、ドライの状態で均一に混合した。得られた混合物に、バインダーと、溶剤としてN-メチル-2-ピロリドンを固形分68質量%となるように投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ20μm、幅200mmのアルミニウム箔の片面に、この正極合剤含有スラリーを目付量が24.9mg/cmになるように調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで実電極密度が2.77g/cmになるよう圧延して、正極活物質層と正極集電体からなる正極(P15)を得た。なお、理論電極密度は4.44g/cmと算出された。目付量、電極活物質層厚さ、実電極密度、空孔率を表3に示す。
(2-16)正極(P16)の作製
 有機酸としてマロン酸を使用したこと以外は、(2-15)と同様にして正極(P16)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表3に示す。
(2-17)正極(P17)の作製
 有機酸を使用しなかったこと以外は、(2-15)と同様にして正極(P17)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表3に示す。
(2-18)正極(P18)の作製
 有機酸として酢酸を使用したこと以外は、(2-15)と同様にして正極(P18)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表3に示す。
(2-19)正極(P19)の作製
 正極合剤含有スラリーを目付量が35.6mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が2.94g/cmになるよう圧延したこと以外は、(2-15)と同様にして正極(P19)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表3に示す。
(2-20)正極(P20)の作製
 正極活物質として数平均粒子径11μmのリチウムとニッケル、マンガン及びコバルトとの複合酸化物(Ni/Mn/Co=1/1/1(元素比);密度4.70g/cm)と、導電助剤として数平均粒子径6.5μmのグラファイト炭素粉末(密度2.26g/cm)及び数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm)と、バインダーとしてポリフッ化ビニリデン(PVdF;密度1.75g/cm)とを、90.4:3.8:1.6:4.2の質量比で混合し、正極合剤を得た。得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを固形分70質量%となるように投入して更に混合して、正極合剤含有スラリーを調製した。正極合剤含有スラリーを目付量が48.2mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が2.47g/cmになるよう圧延したこと以外は、(2-8)と同様にして正極(P20)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表3に示す。
Figure JPOXMLDOC01-appb-T000006
(3)負極作製
 負極はそれぞれ以下のようにして作製した。
(3-1)負極(N1)の作製
 負極活物質として数平均粒子径25μmのグラファイト炭素粉末(商品名「MCMB25-28」、大阪ガスケミカル(株)製;密度2.25g/cm)と、導電助剤として数平均粒子径48nmのアセチレンブラック(密度1.95g/cm)と、バインダーとしてポリフッ化ビニリデン(PVdF;密度1.75g/cm)とを、93.0:2.0:5.0の質量比で混合し、負極合剤を得た。得られた負極合剤に溶剤としてN-メチル-2-ピロリドンを固形分45質量%となるように投入して更に混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ18μm、幅200mmの銅箔の片面に、この負極合剤含有スラリーを目付量が2.3mg/cmになるよう調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで実電極密度が1.15g/cmになるよう圧延して、負極活物質層と負極集電体からなる負極(N1)を得た。なお、理論電極密度は2.22g/cmと算出された。目付量、電極活物質層厚さ、実電極密度、空孔率を表4に示す。
(3-2)負極(N2)の作製
 負極合剤含有スラリーを目付量が4.1mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が1.41g/cmになるよう圧延したこと以外は、(3-1)と同様にして負極(N2)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表4に示す。
(3-3)負極(N3)の作製
 負極合剤含有スラリーを目付量が12.0mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が1.45g/cmになるよう圧延したこと以外は、(3-1)と同様にして負極(N3)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表4に示す。
(3-4)負極(N4)の作製
 負極合剤含有スラリーを目付量が18.0mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が1.18g/cmになるよう圧延したこと以外は、(3-1)と同様にして負極(N4)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表4に示す。
(3-5)負極(N5)の作製
 負極合剤含有スラリーを目付量が11.8mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が1.42g/cmになるよう圧延したこと以外は、(3-1)と同様にして負極(N5)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表4に示す。
(3-6)負極(N6)の作製
 負極活物質として数平均粒子径7.4μmのLiTi12(密度3.30g/cm)と、導電助剤として数平均粒子径48nmのアセチレンブラック(密度1.95g/cm)と、バインダーとしてポリフッ化ビニリデン(PVdF;密度1.75g/cm)とを、82.0:8.0:10.0の質量比で混合し、負極合剤を得た。得られた負極合剤に溶剤としてN-メチル-2-ピロリドンを固形分45質量%となるように投入して更に混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ18μm、幅200mmの銅箔の片面に、この負極合剤含有スラリーを目付量が29.4mg/cmになるよう調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで実電極密度が1.86g/cmになるよう圧延して、負極活物質層と負極集電体からなる負極(N6)を得た。なお、理論電極密度は3.04g/cmと算出された。目付量、電極活物質層厚さ、実電極密度、空孔率を表4に示す。
Figure JPOXMLDOC01-appb-T000007
(3-7)負極(N7)の作製
 負極活物質として数平均粒子径12.7μmのグラファイト炭素粉末(密度2.23g/cm)及び数平均粒子径6.5μmのグラファイト炭素粉末(密度2.27g/cm)と、バインダーとしてカルボキシメチルセルロース(密度1.60g/cm)溶液(固形分濃度1.83質量%)と、ジエン系ゴム(ガラス転移温度:-5℃、乾燥時の数平均粒子径:120nm、密度1.00g/cm、分散媒:水、固形分濃度40質量%)とを、87.2:9.7:1.4:1.7の固形分質量比で混合し、負極合剤を得た。得られた負極合剤に溶剤として水を固形分45質量%となるように投入して更に混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ10μm、幅200mmの銅箔の片面に、この負極合剤含有スラリーを目付量が5.5mg/cmになるよう調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで実電極密度が1.62g/cmになるよう圧延して、負極活物質層と負極集電体からなる負極(N7)を得た。なお、理論電極密度は2.20g/cmと算出された。目付量、電極活物質層厚さ、実電極密度、空孔率を表5に示す。
(3-8)負極(N8)の作製
 ロールプレスを調整して実電極密度が1.50g/cmになるよう圧延したこと以外は、(3-7)と同様にして負極(N8)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表5に示す。
(3-9)負極(N9)の作製
 ロールプレスを調整して実電極密度が1.32g/cmになるよう圧延したこと以外は、(3-7)と同様にして負極(N9)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表5に示す。
(3-10)負極(N10)の作製
 ロールプレスで圧延しなかったこと以外は、(3-7)と同様にして負極(N10)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表5に示す。
(3-11)負極(N11)の作製
 負極合剤含有スラリーを目付量が10.6mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が1.50g/cmになるよう圧延したこと以外は、(3-7)と同様にして負極(N11)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表5に示す。
(3-12)負極(N12)の作製
 負極合剤含有スラリーを目付量が10.0mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が1.35g/cmになるよう圧延したこと以外は、(3-7)と同様にして負極(N12)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表5に示す。
(3-13)負極(N13)の作製
 負極合剤含有スラリーを目付量が16.0mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が1.51g/cmになるよう圧延したこと以外は、(3-7)と同様にして負極(N13)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表5に示す。
(3-14)負極(N14)の作製
 負極活物質として数平均粒子径12.7μmのグラファイト炭素粉末(密度2.23g/cm)及び数平均粒子径6.5μmのグラファイト炭素粉末(密度2.27g/cm)と、バインダーとしてカルボキシメチルセルロース(密度1.60g/cm)溶液(固形分濃度1.83質量%)と、ジエン系ゴム(ガラス転移温度:-5℃、乾燥時の数平均粒子径:120nm、密度1.00g/cm、分散媒:水、固形分濃度40質量%)とを、87.2:9.7:1.4:1.7の固形分質量比で混合し、負極合剤を得た。得られた負極合剤に溶剤として水を固形分48質量%となるように投入して更に混合して、負極合剤含有スラリーを調製した。負極合剤含有スラリーを目付量が21.4mg/cmになるように調節しながらドクターブレード法で塗布し、ロールプレスを調整して実電極密度が1.24g/cmになるよう圧延したこと以外は、(3-7)と同様にして負極(N14)を得た。目付量、電極活物質層厚さ、実電極密度、空孔率を表5に示す。
Figure JPOXMLDOC01-appb-T000008
(4)電解液の調製
(4-1)溶媒の調製
 各種有機溶媒を所定の体積比になるよう混合して、溶媒(L1)~(L22)を調製した。各溶媒の組成を表6に示す。なお、表6において、「AN」はアセトニトリル、「ADN」はアジポニトリル、「DMC」はジメチルカーボネート、「EC」はエチレンカーボネート、「EMC」はエチルメチルカーボネート、「GBL」はγ-ブチロラクトン、「PC」はプロピレンカーボネート、をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000009
(4-2)電解液(α)の調製(方法1)
 上述の(4-1)で調製した溶媒と各種添加剤とをそれぞれが所定の濃度になるよう混合し、更に、リチウム塩を所定の濃度になるよう添加して、電解液(α)として(S1)~(S27)を調製した。また、これらの電解液(α)について上記(1-1)に記載の測定を行った。結果を表7に示す。なお、表7において、「VC」はビニレンカーボネート、「FEC」は4-フルオロ-1,3-ジオキソラン-2-オン、「ES」はエチレンサルファイト、「1,3-PS」は1,3-プロパンスルトン、「TMSO」はテトラメチレンスルホキシド、「SL」はスルホラン、「3-SLE」は3-スルホレン、「LiPF」はヘキサフルオロリン酸リチウム、「LiBF」はテトラフルオロホウ酸リチウム、「LiBOB」はリチウムビスオキサレートボレート、をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000010
(4-3)電解液(γ)の調製(方法2)
 溶媒にリチウム塩を所定の濃度になるよう添加して、電解液(β)を調製した(以下、添加剤を添加する前の電解液(β)を「母電解液(β)」という)。その母電解液(β)に各種添加剤並びにジニトリル化合物を所定の濃度となるよう混合して、電解液(γ)を得た。この調製方法により得られた電解液(γ)を表8の(S28)~(S48)に示す。なお、表8において、「SN」はスクシノニトリルを示す。
Figure JPOXMLDOC01-appb-T000011
(5)評価用電池作製
 上述の方法により得られた電極と電解液とを組み合わせることにより、各種電池を作製した。具体的な作製方法を以下に示す。
(5-1)小型非水系二次電池の作製
 上述のようにして得られた正極を直径16mmの円盤状に打ち抜いたものと、上述のようにして得られた負極を直径16mmの円盤状に打ち抜いたものとをポリエチレンからなるセパレータ(膜厚25μm、空孔率50%、孔径0.1μm~1μm)の両側に重ね合わせて積層体を得た。その積層体をSUS製の円盤型電池ケースに挿入した。次いで、その電池ケース内に電解液を0.5mL注入し、積層体を電解液に浸漬した後、電池ケースを密閉して25℃で24時間保持し、積層体に電解液を十分馴染ませて小型非水系二次電池を得た。
(5-2)コイン型非水系二次電池の作製
 CR2032タイプの電池ケース(SUS304/Alクラッド)にポリプロピレン製ガスケットをセットし、その中央に上述のようにして得られた正極を直径16mmの円盤状に打ち抜いたものを、正極活物質層を上向きにしてセットした。その上からガラス繊維濾紙(アドバンテック社製ガラス繊維濾紙 GA-100)を直径16mmの円盤状に打ち抜いたものをセットして、電解液を150μL注入した後、上述のようにして得られた負極を直径16mmの円盤状に打ち抜いたものを、負極活物質層を下向きにしてセットした。さらにスペーサーとスプリングをセットした後に電池キャップをはめ込み、カシメ機でかしめた。あふれた電解液はウエスできれいにふきとった。25℃で24時間保持し、積層体に電解液を十分馴染ませてコイン型非水系二次電池を得た。
(6)評価
 上述のようにして得られた評価用電池について、まず、下記(6-1)~(6-4)の手順に従って、初回充放電処理及び初回充放電容量測定を行った。次に、下記(6-5)~(6-14)に従って、それぞれの電池を評価した。なお、充放電はアスカ電子(株)製の充放電装置ACD-01(商品名)及び二葉科学社製の恒温槽PLM-63S(商品名)を用いて行った。
 ここで、1Cとは満充電状態の電池を定電流で放電して1時間で放電終了となることが期待される電流値を意味する。負極(N6)以外を用いた場合には4.2Vの満充電状態から定電流で3.0Vまで放電して1時間で放電終了となることが期待される電流値を意味し、負極(N6)を用いた場合には2.7Vの満充電状態から定電流で1.5Vまで放電して1時間で放電終了となることが期待される電流値を意味する。正極(P1)~(P20)について1Cに相当する電流値を表9に示す。
Figure JPOXMLDOC01-appb-T000012
(6-1)小型非水系二次電池の初回充放電処理(条件1)
 0.005Cに相当する定電流で充電して3.0Vに到達した後、3.0Vで合計30時間充電を行った。さらに、0.2Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計8時間充電を行った。その後、0.3Cに相当する定電流で3.0Vまで放電した。このときの電池の周囲温度は25℃に設定した。
(6-2)小型非水系二次電池の初回充放電処理(条件2)
 0.3Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計8時間充電を行った。その後、0.3Cに相当する定電流で3.0Vまで放電した。このときの電池の周囲温度は25℃に設定した。
(6-3)小型非水系二次電池の初回充放電処理(条件3)
 0.3Cに相当する定電流で充電して2.7Vに到達した後、2.7Vの定電圧で合計8時間充電を行った。その後、0.3Cに相当する定電流で1.5Vまで放電した。このときの電池の周囲温度は25℃に設定した。
(6-4)小型非水系二次電池の初回充放電処理(条件4)
 0.1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計15時間充電を行った。その後、0.3Cに相当する定電流で3.0Vまで放電した。このときの電池の周囲温度は25℃に設定した。
(6-5)小型非水系二次電池の高出力での放電容量測定(出力試験1)
 上記(6-1)に記載の方法で初回充放電処理を行った電池を用い、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、10Cに相当する定電流で3.0Vまで放電した。このときの放電容量を10C放電容量とし、上記(6-1)の放電容量を0.3C放電容量とした。
(6-6)小型非水系二次電池の高出力での放電容量測定(出力試験2)
 上記(6-1)に記載の方法で初回充放電処理を行った電池を用い、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、1Cに相当する定電流で3.0Vまで放電した。このときの放電容量を1C放電容量とした。次に、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、10Cに相当する定電流で3.0Vまで放電した。このときの放電容量を10C放電容量とした。上記(6-1)の放電容量を0.3C放電容量とし、0.3C放電容量を100%としたときの1C又は10C放電容量が75%以上である場合をそれぞれ◎、65%以上75%未満である場合をそれぞれ○、55%以上65%未満である場合をそれぞれ△、55%未満である場合をそれぞれ×と判定した。
(6-7)小型非水系二次電池の高出力での放電容量測定(出力試験3)
 上記(6-1)に記載の方法で初回充放電処理を行った電池を用い、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、1Cに相当する定電流で3.0Vまで放電した。このときの放電容量を1C放電容量とした。次に、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、3Cに相当する定電流で3.0Vまで放電した。このときの放電容量を3C放電容量とした。次に、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、5Cに相当する定電流で3.0Vまで放電した。このときの放電容量を5C放電容量とした。次に、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、10Cに相当する定電流で3.0Vまで放電した。このときの放電容量を10C放電容量とした。上記(6-1)の放電容量を0.3C放電容量とし、0.3C放電容量を100%としたときの1C、3C、5C又は10C放電容量が40%以上である場合をそれぞれ◎、20%以上40%未満である場合をそれぞれ○、20%未満である場合をそれぞれ×と判定した。
(6-8)小型非水系二次電池の高出力での放電容量測定(出力試験4)
 上記(6-3)に記載の方法で初回充放電処理を行った電池を用い、1Cに相当する定電流で充電して2.7Vに到達した後、2.7Vの定電圧で合計3時間充電を行った。その後、1Cに相当する定電流で1.5Vまで放電した。このときの放電容量を1C放電容量とした。次に、1Cに相当する定電流で充電して2.7Vに到達した後、2.7Vの定電圧で合計3時間充電を行った。その後、3Cに相当する定電流で1.5Vまで放電した。このときの放電容量を3C放電容量とした。次に、1Cに相当する定電流で充電して2.7Vに到達した後、2.7Vの定電圧で合計3時間充電を行った。その後、5Cに相当する定電流で1.5Vまで放電した。このときの放電容量を5C放電容量とした。次に、1Cに相当する定電流で充電して2.7Vに到達した後、2.7Vの定電圧で合計3時間充電を行った。その後、10Cに相当する定電流で1.5Vまで放電した。このときの放電容量を10C放電容量とした。上記(6-3)の放電容量を0.3C放電容量とし、0.3C放電容量を100%としたときの1C、3C、5C又は10C放電容量が40%以上である場合をそれぞれ◎、20%以上40%未満である場合をそれぞれ○、20%未満である場合をそれぞれ×と判定した。
(6-9)小型非水系二次電池の高出力での放電容量測定(出力試験5)
 上記(6-1)又は(6-2)に記載の方法で初回充放電処理を行った電池を用い、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、1Cに相当する定電流で3.0Vまで放電した。このときの放電容量をAとした。次に、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、5Cに相当する定電流で3.0Vまで放電した。このときの放電容量をBとした。出力試験測定値として、100×B/A[%]を求めた。
(6-10)小型非水系二次電池の50℃サイクル測定(サイクル試験1)
 上記(6-9)に記載の方法で出力試験を行った後の電池について、50℃における充放電サイクル特性を評価した。まず、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vで合計3時間充電を行い、1Cに相当する定電流で3.0Vまで放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、25サイクルの充放電を行った。なお、1回目及び25回目の放電は1Cに代えて0.3Cに相当する定電流で行った。25サイクル終了後も充分な放電容量が維持できている場合、更にこれと同じサイクル評価を繰り返し行った。2サイクル目の放電容量を100%としたときの各サイクルの放電容量の比率を放電容量維持率とした。なお、放電容量維持率が10%未満となった時点で測定を終了した。これらの測定に際しての電池の周囲温度は50℃に設定した。
(6-11)小型非水系二次電池の50℃サイクル測定(サイクル試験2)
 上記(6-4)に記載の方法で初回充放電処理を行った電池について、50℃における充放電サイクル特性を評価した。まず、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vで合計3時間充電を行い、1Cに相当する定電流で3.0Vまで放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、50サイクル目の充電まで繰り返し充放電を行った。1サイクル目の放電容量を100%としたときの49サイクル目の放電容量の比率を放電容量維持率とした。これらの測定に際しての電池の周囲温度は50℃に設定した。
(6-12)小型非水系二次電池の交流インピーダンス測定(交流抵抗測定1)
 交流インピーダンスの測定は、ソーラトロン社製の周波数応答アナライザ1400(商品名)とソーラトロン社製のポテンショ-ガルバノスタット1470E(商品名)とを用いて行った。測定する非水系二次電池は、上記(6-10)に記載のように充放電を繰り返し、初回充放電処理後、並びに、25サイクル及び100サイクル後の電池を、1Cに相当する定電流で充電して4.0Vに到達した後、4.0Vで合計3時間充電を行った状態のものを用いた。測定条件は、振幅を±5mV、周波数を0.1~20kHzに設定した。0.1kHz及び20kHzにおける交流インピーダンス値を求めた。交流インピーダンスを測定する際の電池の周囲温度は25℃であった。
(6-13)小型非水系二次電池の交流インピーダンス測定(交流抵抗測定2)
 上記(6-11)に記載の方法で50サイクル目の充電まで行った電池について、上記(6-12)に記載の装置を用い交流インピーダンスの測定を行った。測定条件は、振幅を±5mV、周波数を0.1~20kHzに設定した。0.1kHz及び20kHzにおける交流インピーダンス値を求めた。交流インピーダンスを測定する際の電池の周囲温度は25℃であった。
(6-14)小型非水系二次電池の85℃満充電保存試験
 上記(6-4)に記載の方法で初回充放電処理を行った電池について、85℃満充電保存時の耐久性能を評価した。まず、電池の周囲温度を25℃に設定し、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vで合計3時間充電を行った。次に、この非水系二次電池を85℃の恒温槽に4時間保存した。その後、電池の周囲温度を25℃に戻し、0.3Cに相当する定電流で3.0Vまで放電した。このときの放電容量を残存容量とした。次に、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vで合計3時間充電を行い、0.3Cに相当する定電流で3.0Vまで放電した。このときの放電容量を0.3C回復容量とした。次に、1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vで合計3時間充電を行い、1.5Cに相当する定電流で3.0Vまで放電した。このときの放電容量を1.5C回復容量とした。
[実施例1~10、比較例1~7]
 正極(P1)~(P5)、(P20)、負極(N1)~(N4)、(N14)、及び電解液(S1)~(S4)を組み合わせ、上述の(5-1)に記載の方法に従って小型非水系二次電池を作製した。これらの電池について上記(6-1)に記載の方法で初回充放電処理を行い、上記(6-5)に記載の測定を行った。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000013
 上記の結果から、本実施形態の非水系二次電池は、目付量の高い電極を高出力で使用した場合においても、従来の非水系二次電池と比較して高い放電容量を示すことが分かる。
[実施例11~18、比較例8]
 正極(P8)~(P12)、負極(N7)~(N10)、及び電解液(S1)、(S5)~(S7)を組み合わせ、上述の(5-1)に記載の方法に従って小型非水系二次電池を作製した。これらの電池について上記(6-1)に記載の方法で初回充放電処理を行い、上記(6-6)に記載の測定を行った。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000014
 上記の結果から、本実施形態の非水系二次電池は高い出力特性を有していることが分かる。一方、比較例8では、既存のカーボネート系電解液を用いたため、十分な出力特性が得られなかった。なお、実施例17では、イオン伝導度の高い電解液(S7)を用いたにもかかわらず、10C放電時の放電容量維持率が65%未満となった。実用性能としては十分であるものの、ロールプレスで圧延しなかったことにより、電極活物質層の結着力が元々不十分な電極が高極性溶媒によって影響を受けたものと推測される。
[実施例19~22、比較例9~10]
 正極(P6)~(P7)、負極(N5)、及び電解液(S1)、(S8)~(S9)を組み合わせ、上述の(5-1)に記載の方法に従って小型非水系二次電池を作製した。これらの電池について上記(6-1)に記載の方法で初回充放電処理を行い、上記(6-7)に記載の測定を行った。結果を表12に示す。
[実施例23~24、比較例11]
 正極(P6)、負極(N6)、及び電解液(S1)、(S8)~(S9)を組み合わせ、上述の(5-1)に記載の方法に従って小型非水系二次電池を作製した。これらの電池について上記(6-3)に記載の方法で初回充放電処理を行い、上記(6-8)に記載の測定を行った。結果を表12に示す。
 なお、炭素材料と比較して導電性の低いLiTi12等の合金を負極活物質として用いた非水系二次電池は、負極活物質層の導電ネットワークを確保するため比表面積を大きくすることや粒径を小さくすること等の工夫が必要であるが、一般に、目付量の低い電極と既存のカーボネート系電解液を組み合わせた場合には問題なく作動することが知られている。一方、本実施形態における非水系二次電池のように、目付量の高い電極と高イオン伝導度の非水系電解液とを組み合わせた場合には、実用性能としては十分であるものの、炭素材料とは異なる粒子性状に起因して出力性能が炭素材料には及ばなかったと推測される。
Figure JPOXMLDOC01-appb-T000015
[実施例25~33]
 正極(P13)、負極(N11)、及び電解液(S28)~(S36)を組み合わせ、上述の(5-1)に記載の方法に従って小型非水系二次電池を作製した。これらの電池について上記(6-1)に記載の方法で初回充放電処理を行い、上記(6-9)に記載の測定を行った。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000016
[実施例34~41]
 正極(P13)、負極(N11)、及び電解液(S13)、(S15)~(S17)、(S37)~(S40)を組み合わせ、上述の(5-1)に記載の方法に従って小型非水系二次電池を作製した。これらの電池について上記(6-1)又は(6-2)に記載の方法で初回充放電処理を行い、上記(6-9)及び(6-10)に記載の測定を行った。結果を表14に示す。
[比較例12~13]
 正極(P13)、負極(N11)、及び電解液(S41)、(S42)を組み合わせ、上述の(5-1)に記載の方法に従って小型非水系二次電池を作製した。これらの電池について上記(6-2)に記載の方法で初回充放電処理を行い、上記(6-9)に記載の測定を行ったが、放電容量維持率が低く、その他の測定は行わなかった。結果を表14に示す。
Figure JPOXMLDOC01-appb-T000017
[実施例42~51]
 正極(P13)、負極(N11)、及び電解液(S14)、(S18)、(S19)、(S40)、(S43)~(S48)を組み合わせ、上述の(5-1)に記載の方法に従って小型非水系二次電池を作製した。これらの電池について上記(6-1)に記載の方法で初回充放電処理を行い、上記(6-9)、(6-10)及び(6-12)に記載の測定を行った。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000018
[実施例52~61、比較例14]
 正極(P15)~(P20)、負極(N12)~(N14)、及び電解液(S1)、(S10)~(S12)、(S25)~(S27)を組み合わせ、上述の(5-1)に記載の方法に従って小型非水系二次電池を作製した。これらの電池について上記(6-4)に記載の方法で初回充放電処理を行い、上記(6-7)、(6-11)及び(6-13)に記載の測定を行った。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000019
[実施例62~65、比較例15]
 正極(P14)、(P19)、負極(N13)、及び電解液(S20)~(S24)を組み合わせ、上述の(5-2)に記載の方法に従ってコイン型非水系二次電池を作製した。これらの電池について上記(6-4)に記載の方法で初回充放電処理を行い、上記(6-14)に記載の測定を行った。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000020
 本出願は、2011年10月28日に日本国特許庁へ出願された日本特許出願(特願2011-237707、2011-237706、2011-237765、2011-237808)及び2012年4月27日に日本国特許庁へ出願された日本特許出願(特願2012-103331)基づくものであり、その内容はここに参照として取り込まれる。
 本発明の非水系二次電池は、例えば、携帯電話、携帯オーディオ、パソコン、ICタグなどの携帯機器に加え、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車などの自動車用充電池、さらには住宅用蓄電システムとしての利用も期待される。
 100…リチウムイオン二次電池、110…セパレータ、120…正極活物質層、130…負極活物質層、140…正極集電体、150…負極集電体、160…電池外装。

Claims (31)

  1.  リチウム塩と非水系溶媒とを含有する電解液と、正極と、負極とを含む非水系二次電池であって、前記正極に含まれる正極活物質層の目付量が8~100mg/cm、及び/又は、前記負極に含まれる負極活物質層の目付量が3~46mg/cmであり、かつ、前記電解液の25℃におけるイオン伝導度が15mS/cm以上である非水系二次電池。
  2.  前記電解液の25℃におけるイオン伝導度が50mS/cm以下である、請求項1記載の非水系二次電池。
  3.  前記正極に含まれる正極活物質層の目付量が24~100mg/cm、及び/又は、前記負極に含まれる負極活物質層の目付量が10~46mg/cmである、請求項1又は2記載の非水系二次電池。
  4.  前記正極又は前記負極の少なくとも一方の電極に含まれる電極活物質層の空孔率が20~45%である、請求項1~3のいずれか1項記載の非水系二次電池。
  5.  前記正極に含まれる正極活物質層の空孔率が20~45%である、請求項1~4のいずれか1項記載の非水系二次電池。
  6.  前記負極に含まれる負極活物質層の空孔率が20~45%である、請求項1~5のいずれか1項記載の非水系二次電池。
  7.  前記非水系溶媒はニトリル系溶媒を含む、請求項1~6のいずれか1項記載の非水系二次電池。
  8.  前記ニトリル系溶媒はアセトニトリルを含む、請求項7記載の非水系二次電池。
  9.  前記非水系溶媒中のアセトニトリルの含有量が5~97体積%である、請求項8記載の非水系二次電池。
  10.  前記非水系溶媒中のアセトニトリルの含有量が25~80体積%である、請求項8記載の非水系二次電池。
  11.  前記電解液は、アセトニトリルと、リチウム塩と、下記一般式(1)で表される化合物からなる群より選ばれる1種以上の化合物とを含有する、請求項8~10のいずれか1項記載の非水系二次電池。
      R-A-R ・・・・・(1)
    (式中、R及びRは各々独立して、アリール基若しくはハロゲン原子で置換されていてもよいアルキル基、又は、アルキル基若しくはハロゲン原子で置換されていてもよいアリール基を示し、あるいは、RとRとは互いに結合してAと共に不飽和結合を有していてもよい環状構造を形成し、Aは下記式(2)~(6)のいずれか一つで表される構造を有する2価の基を示す。)
    Figure JPOXMLDOC01-appb-C000001
  12.  前記式(1)で表される化合物は、エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-メチルスルホラン、3-スルホレン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロパンジオール硫酸エステル及びテトラメチレンスルホキシドからなる群より選ばれる1種以上の化合物を含む、請求項11記載の非水系二次電池。
  13.  前記電解液が、炭素間不飽和二重結合を有する環状カーボネートからなる群より選ばれる1種以上の化合物を更に含有する、請求項11又は12記載の非水系二次電池。
  14.  前記リチウム塩は、フッ素原子を有する無機リチウム塩である、請求項1~13のいずれか1項記載の非水系二次電池。
  15.  前記無機リチウム塩は、LiPFである、請求項14記載の非水系二次電池。
  16.  前記無機リチウム塩は、LiBFである、請求項14記載の非水系二次電池。
  17.  前記無機リチウム塩の含有量は、前記電解液の全量に対して0.1~40質量%である、請求項14~16のいずれか1項記載の非水系二次電池。
  18.  有機リチウム塩を更に含有し、前記有機リチウム塩と前記無機リチウム塩とが、下記式(7):
     0≦X<1 ・・・・・(7)
    (式中、Xは前記無機リチウム塩に対する前記有機リチウム塩の含有モル比である。)
    で表される条件を満足する、請求項14~17のいずれか1項記載の非水系二次電池。
  19.  前記有機リチウム塩は、リチウムビス(オキサラト)ボレート及びリチウムオキサラトジフルオロボレートからなる群より選ばれる1種以上の有機リチウム塩である、請求項18記載の非水系二次電池。
  20.  前記正極は、正極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料からなる群より選ばれる1種以上の材料を含有し、前記負極は、負極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料及び金属リチウムからなる群より選ばれる1種以上の材料を含有する、請求項1~19のいずれか1項記載の非水系二次電池。
  21.  前記正極は、前記正極活物質として、リチウム含有化合物を含有する、請求項20記載の非水系二次電池。
  22.  前記リチウム含有化合物は、リチウムを有する金属酸化物及びリチウムを有する金属カルコゲン化物からなる群より選ばれる1種以上の化合物を含む、請求項21記載の非水系二次電池。
  23.  前記負極は、前記負極活物質として、金属リチウム、炭素材料、及びリチウムと合金形成が可能な元素を含む材料からなる群より選ばれる1種以上の材料を含有する、請求項20~22のいずれか1項記載の非水系二次電池。
  24.  前記負極は、前記負極活物質として、リチウムイオンを1.4Vvs.Li/Liよりも卑な電位で吸蔵する材料を含有する、請求項20~23のいずれか1項記載の非水系二次電池。
  25.  前記正極の正極合剤は、正極活物質、導電助剤、バインダー、有機酸、及び有機酸塩からなる群から選択される少なくとも1種の化合物を含む、請求項1~24のいずれか1項記載の非水系二次電池。
  26.  前記化合物は2価以上の有機酸又は有機酸塩を含む、請求項25記載の非水系二次電池。
  27.  前記正極合剤から作製した正極活物質層の厚さが50~300μmである、請求項25又は26記載の非水系二次電池。
  28.  前記正極及び/又は負極は、電極集電体上に導電性材料を含む導電層を塗布した電極基板上に、正極活物質層及び/又は負極活物質層を塗布した電極である、請求項1~27のいずれか1項記載の非水系二次電池。
  29.  前記導電層が、導電性材料とバインダーを含む、請求項28記載の非水系二次電池。
  30.  請求項1~29のいずれか1項記載の非水系二次電池の製造方法であって、0.001~0.3Cの初回充電を行う工程を有する、非水系二次電池の製造方法。
  31.  前記初回充電が定電圧充電を途中に経由して行われる、請求項30記載の非水系二次電池の製造方法。
PCT/JP2012/077629 2011-10-28 2012-10-25 非水系二次電池 WO2013062056A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12843297.8A EP2772981B1 (en) 2011-10-28 2012-10-25 Non-aqueous secondary battery
CN201280051508.3A CN103891028B (zh) 2011-10-28 2012-10-25 非水系二次电池
US14/352,864 US10644353B2 (en) 2011-10-28 2012-10-25 Non-aqueous secondary battery
KR1020147010256A KR101551135B1 (ko) 2011-10-28 2012-10-25 비수계 이차 전지
JP2013540829A JP6120772B2 (ja) 2011-10-28 2012-10-25 非水系二次電池

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011237808 2011-10-28
JP2011-237707 2011-10-28
JP2011237765 2011-10-28
JP2011-237765 2011-10-28
JP2011237707 2011-10-28
JP2011237706 2011-10-28
JP2011-237706 2011-10-28
JP2011-237808 2011-10-28
JP2012103331 2012-04-27
JP2012-103331 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013062056A1 true WO2013062056A1 (ja) 2013-05-02

Family

ID=48167882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077629 WO2013062056A1 (ja) 2011-10-28 2012-10-25 非水系二次電池

Country Status (7)

Country Link
US (1) US10644353B2 (ja)
EP (1) EP2772981B1 (ja)
JP (2) JP6120772B2 (ja)
KR (1) KR101551135B1 (ja)
CN (1) CN103891028B (ja)
TW (1) TWI472083B (ja)
WO (1) WO2013062056A1 (ja)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280598A (zh) * 2013-05-31 2013-09-04 东莞新能源科技有限公司 锂离子电池及其电解液
JP2014022321A (ja) * 2012-07-23 2014-02-03 Kaneka Corp 捕捉剤を含む非水電解質二次電池
CN103746139A (zh) * 2013-12-10 2014-04-23 宁波维科电池股份有限公司 安全性能良好的锂离子动力电池
CN104282878A (zh) * 2013-07-10 2015-01-14 浙江万向亿能动力电池有限公司 高性能钛酸锂动力电池
JP2015056304A (ja) * 2013-09-12 2015-03-23 ユニチカ株式会社 リチウム二次電池用電極
JP2015056318A (ja) * 2013-09-12 2015-03-23 新神戸電機株式会社 リチウムイオン電池
JP2015088465A (ja) * 2013-09-27 2015-05-07 日立マクセル株式会社 非水電解質二次電池
JP2015187964A (ja) * 2014-03-13 2015-10-29 株式会社Gsユアサ 非水電解液蓄電素子及びそれを備えた蓄電装置
EP2945213A1 (en) * 2014-05-15 2015-11-18 Nano and Advanced Materials Institute Limited High voltage electrolyte and lithium ion battery
JP2016039142A (ja) * 2014-08-05 2016-03-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用正極組成物、リチウム二次電池用正極及びリチウム二次電池
JP2016042461A (ja) * 2014-08-13 2016-03-31 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 正極材、それを含む正極、及び該正極を含むリチウム電池
JP2016111005A (ja) * 2012-06-12 2016-06-20 エー123 システムズ エルエルシーA123 Systems LLC 広い温度範囲のサイクルにおけるガス発生を抑えた電解質組成物及び二次電池
WO2016098428A1 (ja) * 2014-12-19 2016-06-23 Necエナジーデバイス株式会社 リチウムイオン二次電池
JP2016143505A (ja) * 2015-01-30 2016-08-08 株式会社Gsユアサ 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子
CN105900275A (zh) * 2014-01-10 2016-08-24 日产自动车株式会社 非水电解质二次电池的制造方法
JP2016219393A (ja) * 2015-05-14 2016-12-22 株式会社Gsユアサ 非水電解質二次電池
JP2016219144A (ja) * 2015-05-15 2016-12-22 三井化学株式会社 リチウムイオン二次電池用の正極、リチウムイオン二次電池、リチウムイオン二次電池用の正極の製造方法、およびリチウムイオン二次電池の製造方法
JP2017004776A (ja) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 非水電解質二次電池の製造方法
US20170054180A1 (en) * 2014-05-02 2017-02-23 Sony Corporation Electrolytic solution, battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
JPWO2015037380A1 (ja) * 2013-09-13 2017-03-02 日本電気株式会社 新規化合物、電解液及び二次電池
US9705119B2 (en) 2014-05-26 2017-07-11 Gs Yuasa International Ltd. Energy storage device, energy storage apparatus, vehicle, and method for using energy storage device
KR20170104596A (ko) 2015-03-31 2017-09-15 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
JP2017188299A (ja) * 2016-04-05 2017-10-12 旭化成株式会社 非水系二次電池とそれに用いられる非水系電解液
JP2017191677A (ja) * 2016-04-12 2017-10-19 旭化成株式会社 非水系電解液及び非水系二次電池
JP2018049821A (ja) * 2016-09-16 2018-03-29 株式会社Gsユアサ 蓄電素子用非水電解質、非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法
JP2018060691A (ja) * 2016-10-05 2018-04-12 旭化成株式会社 非水系二次電池
JP2018060692A (ja) * 2016-10-05 2018-04-12 旭化成株式会社 非水系二次電池
JP2018060690A (ja) * 2016-10-05 2018-04-12 旭化成株式会社 非水系二次電池
JP2018060693A (ja) * 2016-10-05 2018-04-12 旭化成株式会社 非水系二次電池
JP2018519643A (ja) * 2015-07-06 2018-07-19 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト 電極の形成
WO2018169028A1 (ja) 2017-03-17 2018-09-20 旭化成株式会社 非水系電解液、非水系二次電池、セルパック、及び、ハイブリッドシステム
JP2019029205A (ja) * 2017-07-31 2019-02-21 パナソニック株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
JP2019061826A (ja) * 2017-09-26 2019-04-18 Tdk株式会社 リチウムイオン二次電池
JP2019102231A (ja) * 2017-11-30 2019-06-24 株式会社Gsユアサ 蓄電素子
US10333174B2 (en) 2015-03-24 2019-06-25 Nec Corporation Lithium ion secondary battery and method for manufacturing same
JP2019518320A (ja) * 2016-07-06 2019-06-27 株式会社村田製作所 二次電池およびその製造方法
WO2020054866A1 (ja) 2018-09-14 2020-03-19 旭化成株式会社 非水系二次電池
WO2020054863A1 (ja) 2018-09-14 2020-03-19 旭化成株式会社 非水系電解液及び非水系二次電池
WO2020116583A1 (ja) * 2018-12-05 2020-06-11 日立化成株式会社 電解液及び電気化学デバイス
US10693189B2 (en) 2015-03-31 2020-06-23 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte and nonaqueous secondary battery
JP2020119909A (ja) * 2020-05-12 2020-08-06 株式会社東芝 電極、二次電池、電池パック及び車両
WO2020262670A1 (ja) 2019-06-28 2020-12-30 旭化成株式会社 非水系電解液、及び非水系二次電池
JP2021111586A (ja) * 2020-01-15 2021-08-02 旭化成株式会社 非水系電解液及び非水系二次電池
WO2021187068A1 (ja) * 2020-03-16 2021-09-23 株式会社村田製作所 二次電池
JP2021533527A (ja) * 2018-08-11 2021-12-02 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング リチウムイオン二次バッテリーに使用するための有機カーボネート及び環状スルホキシドを含む液状電解質
WO2021241761A1 (ja) 2020-05-28 2021-12-02 旭化成株式会社 非水系二次電池及び非水系電解液
KR20220009486A (ko) 2019-09-13 2022-01-24 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
JP2022528136A (ja) * 2019-07-18 2022-06-08 エルジー エナジー ソリューション リミテッド リチウム-硫黄二次電池
JP2022528412A (ja) * 2019-07-18 2022-06-10 エルジー エナジー ソリューション リミテッド リチウム-硫黄二次電池
CN116888751A (zh) * 2023-01-03 2023-10-13 宁德时代新能源科技股份有限公司 负极极片以及包含其的电极组件、电池单体、电池和用电装置
KR20230150837A (ko) 2021-03-26 2023-10-31 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11721831B2 (en) * 2013-08-30 2023-08-08 Sila Nanotechnologies, Inc. Electrolyte or electrode additives for increasing metal content in metal-ion batteries
JP5742905B2 (ja) * 2013-09-27 2015-07-01 トヨタ自動車株式会社 正極活物質層
JP2016048624A (ja) * 2014-08-27 2016-04-07 日立マクセル株式会社 リチウム二次電池
CN104577089A (zh) * 2014-11-19 2015-04-29 山东精工电子科技有限公司 一种钛酸锂负极浆料的制备方法
WO2016081525A1 (en) * 2014-11-20 2016-05-26 Coors Tek Fluorochemicals, Inc. Concentrated electrolyte solution
CN105470572B (zh) * 2015-01-16 2018-03-23 万向一二三股份公司 一种钛酸锂电池及其化成方法
CN105355975B (zh) * 2015-10-20 2018-08-21 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
US10381645B2 (en) * 2015-12-14 2019-08-13 Bettergy Corp. Low cost rechargeable battery and the method for making the same
CN105789700A (zh) * 2016-03-29 2016-07-20 宁德时代新能源科技股份有限公司 一种电解液及锂离子电池
US10748715B2 (en) * 2016-04-26 2020-08-18 Gs Yuasa International Ltd. Energy storage device and method for manufacturing same
US20190245207A1 (en) * 2016-10-28 2019-08-08 Panasonic Intellectual Property Management Co., Ltd. Electrochemical device
CN106848327A (zh) * 2017-03-03 2017-06-13 广州鹏辉能源科技股份有限公司 一种锂二硫化铁电池的正极及由其组成的电池
CN110352527B (zh) 2017-03-17 2022-09-20 旭化成株式会社 非水系电解液、非水系二次电池、电池包和混合动力系统
JP6659608B2 (ja) * 2017-03-21 2020-03-04 株式会社東芝 二次電池、電池パック及び車両
KR102244905B1 (ko) * 2017-07-28 2021-04-26 주식회사 엘지화학 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
US11171362B2 (en) 2017-09-12 2021-11-09 Sila Nanotechnologies, Inc. Electrolyte for a metal-ion battery cell with high-capacity, micron-scale, volume-changing anode particles
JP7029921B2 (ja) * 2017-10-10 2022-03-04 日産自動車株式会社 非水電解質二次電池用電極
CN111448688A (zh) * 2017-11-08 2020-07-24 株式会社杰士汤浅国际 正极、非水电解质蓄电元件、正极的制造方法、以及非水电解质蓄电元件的制造方法
EP3712998A4 (en) * 2017-11-22 2021-08-04 GS Yuasa International Ltd. SECONDARY LITHIUM-ION BATTERY
WO2019150901A1 (ja) * 2018-01-31 2019-08-08 パナソニックIpマネジメント株式会社 非水電解質二次電池、電解液及び非水電解質二次電池の製造方法
KR102331068B1 (ko) * 2018-02-09 2021-11-25 삼성에스디아이 주식회사 관통 특성이 개선된 리튬전지 및 이의 제조방법
JP7071732B2 (ja) * 2018-02-23 2022-05-19 国立研究開発法人産業技術総合研究所 積層体とその製造方法
US11757098B2 (en) 2018-03-12 2023-09-12 Tdk Corporation Negative electrode active material layer with controlled reflectance and lithium ion secondary battery
US10985371B2 (en) * 2018-03-12 2021-04-20 Tdk Corporation Negative electrode active material layer with controlled reflectance and lithium ion secondary battery
JP7169763B2 (ja) * 2018-04-09 2022-11-11 日産自動車株式会社 非水電解質二次電池
WO2019230506A1 (ja) * 2018-05-31 2019-12-05 宇部興産株式会社 蓄電デバイス用非水電解液、及び蓄電デバイス
US20210296645A1 (en) * 2018-07-19 2021-09-23 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device and energy storage apparatus
CN112514130A (zh) * 2018-07-30 2021-03-16 株式会社村田制作所 锂离子二次电池
JP7223980B2 (ja) * 2018-07-31 2023-02-17 パナソニックIpマネジメント株式会社 正極材料および二次電池
CN110858664A (zh) * 2018-08-24 2020-03-03 比亚迪股份有限公司 电解液、含有该电解液的电池和电动车辆
CN109494349B (zh) * 2018-10-17 2020-08-28 宁德时代新能源科技股份有限公司 负极极片及二次电池
CN109560249A (zh) * 2018-11-30 2019-04-02 中国科学院过程工程研究所 一种双层结构正极极片、及其制备方法和用途
WO2020119431A1 (zh) * 2018-12-14 2020-06-18 宁德时代新能源科技股份有限公司 一种锂离子电池
CN111354949B (zh) * 2018-12-24 2021-12-07 宁德时代新能源科技股份有限公司 一种锂离子电池
KR102434257B1 (ko) * 2018-12-26 2022-08-19 주식회사 엘지에너지솔루션 옥살산을 포함하는 양극 슬러리, 이의 제조방법, 이차전지용 양극, 및 이차전지
JP7270210B2 (ja) * 2019-03-05 2023-05-10 株式会社日立製作所 非水電解液、半固体電解質層、二次電池用シート及び二次電池
JP7252014B2 (ja) * 2019-03-08 2023-04-04 株式会社エンビジョンAescジャパン 電池
CN112151750A (zh) * 2020-10-15 2020-12-29 宁德新能源科技有限公司 电化学装置和电子装置
EP4012805A4 (en) * 2020-10-15 2022-06-15 Ningde Amperex Technology Ltd. ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE
JP7150799B2 (ja) * 2020-11-19 2022-10-11 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
CN118173861A (zh) * 2021-09-30 2024-06-11 东莞新能源科技有限公司 一种电化学装置和电子装置
CN114335735B (zh) * 2021-12-14 2023-02-24 哈尔滨工业大学 一种-70℃锂离子电池低温电解液及其制备方法
JP7389397B1 (ja) * 2022-07-26 2023-11-30 ダイキン工業株式会社 電極合剤、電極および二次電池
WO2024077635A1 (zh) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
CN116888798A (zh) * 2022-10-17 2023-10-13 宁德时代新能源科技股份有限公司 二次电池以及包含其的用电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652897A (ja) * 1992-07-28 1994-02-25 Asahi Chem Ind Co Ltd 非水系炭素質二次電池
JP2000030746A (ja) * 1998-07-15 2000-01-28 Toyota Motor Corp バイポーラ型リチウムイオン2次電池
JP3154719B2 (ja) 1990-11-28 2001-04-09 東芝電池株式会社 非水電解液二次電池
JP3239267B2 (ja) 1990-05-21 2001-12-17 日本電池株式会社 有機電解液電池
JP2007273405A (ja) 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008034193A (ja) * 2006-07-27 2008-02-14 Nippon Shokubai Co Ltd 電解液材料および電解液
JP2009021134A (ja) 2007-07-12 2009-01-29 Toshiba Corp 非水電解質電池及び電池パック
JP2010528431A (ja) 2007-05-22 2010-08-19 タイアックス エルエルシー 非水系電界液及びこれを含む電気化学装置
JP2011134547A (ja) * 2009-12-24 2011-07-07 Fuji Heavy Ind Ltd リチウムイオン二次電池

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552652B2 (ja) 1986-03-25 1996-11-13 日本電信電話株式会社 リチウム電池用電解液
JPH0821428B2 (ja) * 1986-10-31 1996-03-04 日本電信電話株式会社 リチウム二次電池用電解液
JP3049768B2 (ja) * 1990-11-30 2000-06-05 日本電池株式会社 有機電解液電池
WO1995031499A1 (en) * 1994-05-18 1995-11-23 Asahi Kasei Kogyo Kabushiki Kaisha Ion-conductive film and precursor film therefor
US5824120A (en) * 1996-04-10 1998-10-20 Valence Technology, Inc. Electrically conductive adhesion promoters for current collectors
JPH1186907A (ja) 1997-09-05 1999-03-30 Asahi Chem Ind Co Ltd 非水系二次電池
JPH11111273A (ja) * 1997-09-29 1999-04-23 Furukawa Battery Co Ltd:The リチウム二次電池用極板の製造法及びリチウム二次電池
JP3578015B2 (ja) * 1998-12-03 2004-10-20 住友電気工業株式会社 リチウム二次電池
US6302928B1 (en) * 1998-12-17 2001-10-16 Moltech Corporation Electrochemical cells with high volumetric density of electroactive sulfur-containing materials in cathode active layers
US6686095B2 (en) * 1999-12-28 2004-02-03 Kabushiki Kaisha Toshiba Gel electrolyte precursor and chemical battery
JP3990107B2 (ja) 2000-12-28 2007-10-10 株式会社東芝 非水電解質二次電池の充電方法
KR100882144B1 (ko) * 2000-12-28 2009-02-06 소니 가부시끼 가이샤 양극 활성 물질 및 비수전해액 2차 전지
JP2002260633A (ja) 2001-02-28 2002-09-13 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
CN1799162A (zh) 2001-06-07 2006-07-05 三菱化学株式会社 锂二次电池
JP2003086249A (ja) 2001-06-07 2003-03-20 Mitsubishi Chemicals Corp リチウム二次電池
EP1406338A4 (en) 2001-06-07 2007-07-04 Mitsubishi Chem Corp LITHIUM SECONDARY CELL
JP4048763B2 (ja) 2001-06-14 2008-02-20 新神戸電機株式会社 非水電解液二次電池
DE10212609B4 (de) * 2002-03-21 2015-03-26 Epcos Ag Elektrolytlösung und deren Verwendung
JP2004014472A (ja) * 2002-06-11 2004-01-15 Sony Corp 非水二次電池
CN100585935C (zh) 2002-07-15 2010-01-27 宇部兴产株式会社 非水电解液和锂电池
US7172834B1 (en) * 2002-07-29 2007-02-06 The United States Of America As Represented By The Secretary Of The Army Additive for enhancing the performance of electrochemical cells
US20050014070A1 (en) 2003-03-17 2005-01-20 Palanisamy Thirumalai G. Nonaqueous electrolyte
CN100389512C (zh) 2003-05-15 2008-05-21 株式会社杰士汤浅 非水电解质电池
US20070072086A1 (en) 2003-05-15 2007-03-29 Yuasa Corporation Nonaqueous electrolyte cell
JP4656366B2 (ja) 2003-06-17 2011-03-23 ソニー株式会社 電極合剤、電極および二次電池
ATE355629T1 (de) * 2003-08-20 2006-03-15 Samsung Sdi Co Ltd Elektrolyt für wiederaufladbare lithium-batterie und wiederaufladbare lithium-batterie enthaltend denselben
US7238453B2 (en) * 2005-04-25 2007-07-03 Ferro Corporation Non-aqueous electrolytic solution with mixed salts
JP4807072B2 (ja) 2005-12-28 2011-11-02 株式会社Gsユアサ 非水電解質二次電池
KR101375675B1 (ko) 2006-07-27 2014-03-19 니치콘 가부시키가이샤 이온성 화합물
JP2009123497A (ja) * 2007-11-14 2009-06-04 Sony Corp 非水電解液組成物及び非水電解液電池
KR20100065205A (ko) * 2007-11-14 2010-06-15 가부시끼가이샤 구레하 비수계 전지용 정극 합제 및 정극 구조체
JP5827122B2 (ja) * 2008-04-25 2015-12-02 エルジー・ケム・リミテッド リチウム二次電池用非水電解質及びそれを含むリチウム二次電池
JP2011034893A (ja) * 2009-08-05 2011-02-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP5155278B2 (ja) 2009-10-26 2013-03-06 アオイ電子株式会社 イオン伝導性高分子電解質二次電池
CN102055017A (zh) 2010-07-22 2011-05-11 中信国安盟固利动力科技有限公司 加环状磺酸内酯和草酰硼酸锂组合物的碳酸酯电解液
TWI452748B (zh) * 2010-10-29 2014-09-11 Asahi Kasei E Materials Corp 非水系電解液及非水系二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3239267B2 (ja) 1990-05-21 2001-12-17 日本電池株式会社 有機電解液電池
JP3154719B2 (ja) 1990-11-28 2001-04-09 東芝電池株式会社 非水電解液二次電池
JPH0652897A (ja) * 1992-07-28 1994-02-25 Asahi Chem Ind Co Ltd 非水系炭素質二次電池
JP2000030746A (ja) * 1998-07-15 2000-01-28 Toyota Motor Corp バイポーラ型リチウムイオン2次電池
JP2007273405A (ja) 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008034193A (ja) * 2006-07-27 2008-02-14 Nippon Shokubai Co Ltd 電解液材料および電解液
JP2010528431A (ja) 2007-05-22 2010-08-19 タイアックス エルエルシー 非水系電界液及びこれを含む電気化学装置
JP2009021134A (ja) 2007-07-12 2009-01-29 Toshiba Corp 非水電解質電池及び電池パック
JP2011134547A (ja) * 2009-12-24 2011-07-07 Fuji Heavy Ind Ltd リチウムイオン二次電池

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111005A (ja) * 2012-06-12 2016-06-20 エー123 システムズ エルエルシーA123 Systems LLC 広い温度範囲のサイクルにおけるガス発生を抑えた電解質組成物及び二次電池
JP2014022321A (ja) * 2012-07-23 2014-02-03 Kaneka Corp 捕捉剤を含む非水電解質二次電池
CN103280598A (zh) * 2013-05-31 2013-09-04 东莞新能源科技有限公司 锂离子电池及其电解液
CN104282878A (zh) * 2013-07-10 2015-01-14 浙江万向亿能动力电池有限公司 高性能钛酸锂动力电池
JP2015056304A (ja) * 2013-09-12 2015-03-23 ユニチカ株式会社 リチウム二次電池用電極
JP2015056318A (ja) * 2013-09-12 2015-03-23 新神戸電機株式会社 リチウムイオン電池
JPWO2015037380A1 (ja) * 2013-09-13 2017-03-02 日本電気株式会社 新規化合物、電解液及び二次電池
JP2015088465A (ja) * 2013-09-27 2015-05-07 日立マクセル株式会社 非水電解質二次電池
CN103746139B (zh) * 2013-12-10 2016-02-10 宁波维科电池股份有限公司 安全性能良好的锂离子动力电池
CN103746139A (zh) * 2013-12-10 2014-04-23 宁波维科电池股份有限公司 安全性能良好的锂离子动力电池
US10468729B2 (en) * 2014-01-10 2019-11-05 Envision Aesc Japan Ltd. Method for producing non-aqueous electrolyte secondary battery
CN105900275A (zh) * 2014-01-10 2016-08-24 日产自动车株式会社 非水电解质二次电池的制造方法
JP2015187964A (ja) * 2014-03-13 2015-10-29 株式会社Gsユアサ 非水電解液蓄電素子及びそれを備えた蓄電装置
US11482731B2 (en) * 2014-05-02 2022-10-25 Murata Manufacturing Co., Ltd. Electrolytic solution, battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
US20170054180A1 (en) * 2014-05-02 2017-02-23 Sony Corporation Electrolytic solution, battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
US9666906B2 (en) 2014-05-15 2017-05-30 Nano And Advanced Materials Institute Limited High voltage electrolyte and lithium ion battery
EP2945213A1 (en) * 2014-05-15 2015-11-18 Nano and Advanced Materials Institute Limited High voltage electrolyte and lithium ion battery
US9705119B2 (en) 2014-05-26 2017-07-11 Gs Yuasa International Ltd. Energy storage device, energy storage apparatus, vehicle, and method for using energy storage device
JP2016039142A (ja) * 2014-08-05 2016-03-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用正極組成物、リチウム二次電池用正極及びリチウム二次電池
JP2016042461A (ja) * 2014-08-13 2016-03-31 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 正極材、それを含む正極、及び該正極を含むリチウム電池
WO2016098428A1 (ja) * 2014-12-19 2016-06-23 Necエナジーデバイス株式会社 リチウムイオン二次電池
JPWO2016098428A1 (ja) * 2014-12-19 2017-09-28 Necエナジーデバイス株式会社 リチウムイオン二次電池
JP2016143505A (ja) * 2015-01-30 2016-08-08 株式会社Gsユアサ 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子
US10333174B2 (en) 2015-03-24 2019-06-25 Nec Corporation Lithium ion secondary battery and method for manufacturing same
KR20170104596A (ko) 2015-03-31 2017-09-15 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
EP3467930A1 (en) 2015-03-31 2019-04-10 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte and nonaqueous secondary battery
US10756394B2 (en) 2015-03-31 2020-08-25 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte and nonaqueous secondary battery
US10693189B2 (en) 2015-03-31 2020-06-23 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte and nonaqueous secondary battery
JP2016219393A (ja) * 2015-05-14 2016-12-22 株式会社Gsユアサ 非水電解質二次電池
JP2016219144A (ja) * 2015-05-15 2016-12-22 三井化学株式会社 リチウムイオン二次電池用の正極、リチウムイオン二次電池、リチウムイオン二次電池用の正極の製造方法、およびリチウムイオン二次電池の製造方法
JP2017004776A (ja) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 非水電解質二次電池の製造方法
US9960459B2 (en) 2015-06-11 2018-05-01 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous electrolyte secondary battery
US10559862B2 (en) 2015-07-06 2020-02-11 Bayerische Motoren Werke Aktiengesellschaft Method of forming a negative electrode for a lithium-ion cell
JP2018519643A (ja) * 2015-07-06 2018-07-19 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト 電極の形成
JP2017188299A (ja) * 2016-04-05 2017-10-12 旭化成株式会社 非水系二次電池とそれに用いられる非水系電解液
JP2017191677A (ja) * 2016-04-12 2017-10-19 旭化成株式会社 非水系電解液及び非水系二次電池
JP2019518320A (ja) * 2016-07-06 2019-06-27 株式会社村田製作所 二次電池およびその製造方法
JP2018049821A (ja) * 2016-09-16 2018-03-29 株式会社Gsユアサ 蓄電素子用非水電解質、非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法
JP2018060693A (ja) * 2016-10-05 2018-04-12 旭化成株式会社 非水系二次電池
JP2018060690A (ja) * 2016-10-05 2018-04-12 旭化成株式会社 非水系二次電池
JP2018060692A (ja) * 2016-10-05 2018-04-12 旭化成株式会社 非水系二次電池
JP2018060691A (ja) * 2016-10-05 2018-04-12 旭化成株式会社 非水系二次電池
WO2018169028A1 (ja) 2017-03-17 2018-09-20 旭化成株式会社 非水系電解液、非水系二次電池、セルパック、及び、ハイブリッドシステム
US11515567B2 (en) 2017-03-17 2022-11-29 Asahi Kasei Kabushiki Kaisha Non-aqueous electrolyte solution, non-aqueous secondary battery, cell pack, and hybrid power system
KR20190103453A (ko) 2017-03-17 2019-09-04 아사히 가세이 가부시키가이샤 비수계 전해액, 비수계 이차 전지, 셀 팩, 및 하이브리드 시스템
KR20210132242A (ko) 2017-03-17 2021-11-03 아사히 가세이 가부시키가이샤 비수계 전해액, 비수계 이차 전지, 셀 팩, 및 하이브리드 시스템
JP2019029205A (ja) * 2017-07-31 2019-02-21 パナソニック株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
JP2019061826A (ja) * 2017-09-26 2019-04-18 Tdk株式会社 リチウムイオン二次電池
JP6992362B2 (ja) 2017-09-26 2022-01-13 Tdk株式会社 リチウムイオン二次電池
JP2019102231A (ja) * 2017-11-30 2019-06-24 株式会社Gsユアサ 蓄電素子
JP7147157B2 (ja) 2017-11-30 2022-10-05 株式会社Gsユアサ 蓄電素子
JP2021533527A (ja) * 2018-08-11 2021-12-02 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング リチウムイオン二次バッテリーに使用するための有機カーボネート及び環状スルホキシドを含む液状電解質
JP7427650B2 (ja) 2018-08-11 2024-02-05 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング リチウムイオン二次バッテリーに使用するための有機カーボネート及び環状スルホキシドを含む液状電解質
WO2020054866A1 (ja) 2018-09-14 2020-03-19 旭化成株式会社 非水系二次電池
JP7019062B2 (ja) 2018-09-14 2022-02-14 旭化成株式会社 非水系電解液及び非水系二次電池
JPWO2020054866A1 (ja) * 2018-09-14 2021-03-18 旭化成株式会社 非水系二次電池
JPWO2020054863A1 (ja) * 2018-09-14 2021-03-18 旭化成株式会社 非水系電解液及び非水系二次電池
KR20210011427A (ko) 2018-09-14 2021-02-01 아사히 가세이 가부시키가이샤 비수계 이차 전지
WO2020054863A1 (ja) 2018-09-14 2020-03-19 旭化成株式会社 非水系電解液及び非水系二次電池
KR20210011428A (ko) 2018-09-14 2021-02-01 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
JP7019063B2 (ja) 2018-09-14 2022-02-14 旭化成株式会社 非水系二次電池
WO2020116583A1 (ja) * 2018-12-05 2020-06-11 日立化成株式会社 電解液及び電気化学デバイス
KR20210011441A (ko) 2019-06-28 2021-02-01 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
WO2020262670A1 (ja) 2019-06-28 2020-12-30 旭化成株式会社 非水系電解液、及び非水系二次電池
JP2022528136A (ja) * 2019-07-18 2022-06-08 エルジー エナジー ソリューション リミテッド リチウム-硫黄二次電池
JP2022528412A (ja) * 2019-07-18 2022-06-10 エルジー エナジー ソリューション リミテッド リチウム-硫黄二次電池
JP7469325B2 (ja) 2019-07-18 2024-04-16 エルジー エナジー ソリューション リミテッド リチウム-硫黄二次電池
JP7469327B2 (ja) 2019-07-18 2024-04-16 エルジー エナジー ソリューション リミテッド リチウム-硫黄二次電池
US11843092B2 (en) 2019-09-13 2023-12-12 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20220009486A (ko) 2019-09-13 2022-01-24 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
KR20220150997A (ko) 2019-09-13 2022-11-11 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
JP7303755B2 (ja) 2020-01-15 2023-07-05 旭化成株式会社 非水系電解液及び非水系二次電池
JP2021111586A (ja) * 2020-01-15 2021-08-02 旭化成株式会社 非水系電解液及び非水系二次電池
WO2021187068A1 (ja) * 2020-03-16 2021-09-23 株式会社村田製作所 二次電池
JP2020119909A (ja) * 2020-05-12 2020-08-06 株式会社東芝 電極、二次電池、電池パック及び車両
KR20220035220A (ko) 2020-05-28 2022-03-21 아사히 가세이 가부시키가이샤 비수계 이차 전지 및 비수계 전해액
WO2021241761A1 (ja) 2020-05-28 2021-12-02 旭化成株式会社 非水系二次電池及び非水系電解液
KR20230150837A (ko) 2021-03-26 2023-10-31 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
CN116888751A (zh) * 2023-01-03 2023-10-13 宁德时代新能源科技股份有限公司 负极极片以及包含其的电极组件、电池单体、电池和用电装置

Also Published As

Publication number Publication date
JPWO2013062056A1 (ja) 2015-04-02
EP2772981B1 (en) 2020-10-21
EP2772981A1 (en) 2014-09-03
EP2772981A4 (en) 2015-04-08
CN103891028B (zh) 2016-04-13
KR20140072105A (ko) 2014-06-12
TWI472083B (zh) 2015-02-01
CN103891028A (zh) 2014-06-25
JP2017054822A (ja) 2017-03-16
US20140255796A1 (en) 2014-09-11
JP6427544B2 (ja) 2018-11-21
KR101551135B1 (ko) 2015-09-07
JP6120772B2 (ja) 2017-04-26
TW201322528A (zh) 2013-06-01
US10644353B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
JP6427544B2 (ja) 非水系二次電池
JP6258584B2 (ja) 非水系電解液及び非水系二次電池
CN107431247B (zh) 非水系电解液和非水系二次电池
KR102536581B1 (ko) 비수계 전해액 및 비수계 이차 전지
JP5977573B2 (ja) 非水系二次電池
JP6865555B2 (ja) 非水系二次電池
US8481205B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JP6868969B2 (ja) 非水系二次電池とそれに用いられる非水系電解液
JP5931572B2 (ja) 非水系二次電池用レドックスシャトル剤、非水系二次電池用電解液及び非水系二次電池
JP2019197632A (ja) 非水系電解液及び非水系二次電池
JP2019197633A (ja) 非水系電解液及び非水系二次電池
JP7339921B2 (ja) 非水系電解液及び非水系二次電池
JP2023146966A (ja) 非水系二次電池及びその製造方法
JP6506078B2 (ja) イオン伝導性ポリマー電解質
JP7366845B2 (ja) 非水系電解液及び非水系二次電池
JP7200465B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2023146938A (ja) 非水系電解液及び非水系二次電池
JP2021197341A (ja) 非水系二次電池
JP2015118859A (ja) 非水電解質二次電池
JP2018060691A (ja) 非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540829

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147010256

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012843297

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14352864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE