WO2020054863A1 - 非水系電解液及び非水系二次電池 - Google Patents

非水系電解液及び非水系二次電池 Download PDF

Info

Publication number
WO2020054863A1
WO2020054863A1 PCT/JP2019/036212 JP2019036212W WO2020054863A1 WO 2020054863 A1 WO2020054863 A1 WO 2020054863A1 JP 2019036212 W JP2019036212 W JP 2019036212W WO 2020054863 A1 WO2020054863 A1 WO 2020054863A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
positive electrode
negative electrode
formula
active material
Prior art date
Application number
PCT/JP2019/036212
Other languages
English (en)
French (fr)
Inventor
松岡 直樹
丈主 加味根
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US17/269,634 priority Critical patent/US20210344046A1/en
Priority to CN201980056194.8A priority patent/CN112640182A/zh
Priority to JP2020546235A priority patent/JP7019062B2/ja
Priority to EP19859253.7A priority patent/EP3836276A4/en
Priority to KR1020207036711A priority patent/KR102581173B1/ko
Publication of WO2020054863A1 publication Critical patent/WO2020054863A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion batteries are characterized by being lightweight, high energy, and long in life, and are widely used as power sources for various portable electronic devices.
  • non-aqueous secondary batteries have been widely used in industrial applications typified by power tools such as power tools, and in vehicles for use in electric vehicles and electric bicycles. Attention is also paid to the storage field.
  • a non-aqueous electrolyte as an electrolyte.
  • a combination of a highly dielectric solvent such as a cyclic carbonate and a low-viscosity solvent such as a lower chain carbonate is exemplified as a general solvent.
  • an electrode protection additive exemplified by an organic compound such as vinylene carbonate is added. It is desirable.
  • Patent Literature 1 discloses a non-aqueous secondary battery operated with a thick-film electrode using a highly ion-conductive electrolyte. Also, a method for enhancing SEI by combining a plurality of electrode protecting additives has been reported. Similarly, Patent Literature 2 reports that SEI is enhanced by a specific organic lithium salt and decomposition of a highly ion-conductive electrolyte is suppressed. Non-Patent Document 1 reports that in a layered rock salt-type positive electrode active material, as the Ni content increases, the energy density increases.
  • Non-Patent Document 2 mentions a specific deterioration factor, and describes that as the Ni ratio is higher, deterioration proceeds at a lower voltage.
  • Non-Patent Document 3 reports a mechanism in which the decomposition of a high dielectric constant solvent triggers the decomposition of a lithium salt.
  • non-aqueous secondary batteries Due to concerns about global warming and depletion of fossil fuels, application of non-aqueous secondary batteries to the large-scale power storage industry centering on electric vehicles is keenly desired. However, the spread of electric vehicles sometimes requires a non-aqueous secondary battery to have higher output and higher energy density. In order to realize these required performances, research and development for increasing the energy density of each of the active material of the positive electrode and the negative electrode are being advanced daily.
  • Patent Literature 3 states that it is preferable from the viewpoint of the SEI durability of the negative electrode surface to determine the optimum LUMO energy range and HOMO energy range of the anion of the organic lithium salt and combine a plurality of additives. Is described. Patent Document 4 also describes that it is preferable to combine a specific lithium salt with a plurality of additives from the viewpoint of durability of SEI on the negative electrode surface.
  • Patent Document 5 reports that by designing the porosity of the composite particles constituting the electrode material to be in an optimum range, it is possible to suppress electrode deterioration caused by repeated expansion and contraction of a high-capacity negative electrode.
  • Patent Document 6 reports that by designing the thickness of the negative electrode active material to be twice or less the average particle size of the negative electrode active material particles, it is possible to suppress an increase in resistance caused by repeated expansion and contraction of the negative electrode. Have been.
  • Patent Document 7 describes that deterioration of battery performance caused by repeated expansion and contraction of a high-capacity negative electrode can be suppressed by adding an additive.
  • non-aqueous secondary batteries which are aimed at higher energy density, are inferior in long-term durability compared to existing non-aqueous secondary batteries, and have not yet reached the level of commercial products. Has not yet been put to practical use. Both electrolytes and electrodes are required to have durability under more severe environments.
  • the layered rock salt-type positive electrode active material essentially has an active site that oxidizes and degrades the electrolytic solution. This active point unintentionally consumes the compound added for protecting the negative electrode on the positive electrode side.
  • these additive decomposition products taken in and deposited on the positive electrode side not only cause an increase in the internal resistance of the nonaqueous secondary battery, but also accelerate the deterioration of the lithium salt.
  • Patent Literatures 3 and 4 focus on formation of a protective film having solubility resistance to a non-aqueous electrolyte (formation of a protective film on a negative electrode).
  • the inventions described in Patent Documents 3 and 4 can operate as a non-aqueous electrolyte if the reductive decomposition of the non-aqueous electrolyte at the negative electrode can be solved.
  • the negative electrodes described in Patent Literatures 5 and 6 the active material itself expands and contracts significantly with charge and discharge cycles. For this reason, as the charge / discharge cycle is repeated, a defect occurs in the protective film formed initially, and the nonaqueous electrolyte solution is reductively decomposed from the defect, leading to deterioration in battery performance. Therefore, when the electrolytes described in Patent Literatures 3 and 4 are used for a negative electrode material having large expansion and contraction, the protective coating of the negative electrode is required to have not only excellent dissolution resistance but also excellent physical strength.
  • the object of the present invention is to suppress the active points (active points of the positive electrode active material) that oxidize and degrade the non-aqueous electrolyte so that excellent load characteristics can be exhibited and high-temperature storage or charge / discharge can be achieved.
  • An object of the present invention is to provide a non-aqueous electrolyte solution and a non-aqueous secondary battery that can suppress various deterioration phenomena when a cycle is repeated.
  • the object of the present invention is to exhibit excellent output performance by providing a coating having excellent physical strength on the negative electrode active material surface as well as being excellent in dissolution resistance to a non-aqueous electrolyte. It is an object of the present invention to provide a non-aqueous secondary battery that can perform various deteriorations during a charge / discharge cycle under low and high temperature environments.
  • R 1 and R 2 represent an alkyl group optionally substituted with an aryl group or an alkoxysilyl group or an aryl group optionally substituted with an alkyl group or an alkoxysilyl group
  • n is an integer of 1 to 4.
  • the cyclic acid anhydride is malonic anhydride, succinic anhydride, glutaric anhydride, maleic anhydride, phthalic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 2,3-naphthalenedicarboxylic anhydride, and
  • the non-aqueous electrolyte according to [4] which is at least one selected from the group consisting of naphthalene-1,4,5,8-tetracarboxylic dianhydride.
  • a non-aqueous secondary battery including a positive electrode having a positive electrode active material layer on one or both surfaces of a current collector, a negative electrode having a negative electrode active material layer on one or both surfaces of a current collector, a separator, and a non-aqueous electrolyte solution
  • the negative electrode has the following general formula (4A): The following general formula (5A): The following general formula (6A): A non-aqueous secondary battery containing at least one compound selected from the group consisting of compounds represented by the formula: [11] The content of at least one compound selected from the group consisting of the compounds represented by the general formulas (4A) to (6A) is 0.01 to 100 mg as a quantity per 1 g of the negative electrode active material.
  • a non-aqueous secondary battery including a positive electrode having a positive electrode active material layer on one or both surfaces of a current collector, a negative electrode having a negative electrode active material layer on one or both surfaces of a current collector, a separator, and a non-aqueous electrolyte solution
  • Both the positive electrode and the negative electrode contain a decomposition product of an acid anhydride, and the amount of the decomposition product per unit area of the acid anhydride contained in the positive electrode is a unit area of the acid anhydride contained in the negative electrode.
  • Non-aqueous secondary battery with less amount of decomposition products per unit.
  • the decomposition product of the acid anhydride is represented by the following general formula (8):
  • R 6 and R 7 represent an alkoxy group, OH group or OLi group which may be substituted with a halogen atom
  • f is an integer of 1 to 3.
  • R 8 and R 9 represent an alkoxy group, an OH group, or an OLi group which may be substituted with a halogen atom.
  • R 10 and R 11 represent an alkoxy group, an OH group, or an OLi group which may be substituted with a halogen atom.
  • R 12 and R 13 represent an alkoxy group, an OH group, or an OLi group which may be substituted with a halogen atom.
  • R 14 and R 15 represent an alkoxy group, an OH group, or an OLi group which may be substituted with a halogen atom.
  • R 16 to R 19 represent an alkoxy group, OH group or OLi group which may be substituted with a halogen atom.
  • the positive electrode active material layer contains a positive electrode active material containing at least one transition metal element selected from the group consisting of nickel (Ni), manganese (Mn), and cobalt (Co), [13] or [ 14]
  • the positive electrode active material has the following general formula (14): Li p Ni q Co r Mn s M t O u ⁇ (14) ⁇
  • M is aluminum (Al), tin (Sn), indium (In), iron (Fe), vanadium (V), copper (Cu), magnesium (Mg), titanium (Ti), zinc (Zn). , Molybdenum (Mo), zirconium (Zr), strontium (Sr), and barium (Ba), and at least one of 0 ⁇ p ⁇ 1.3 and 0 ⁇ q ⁇ 1.
  • At least one battery member selected from the group consisting of the positive electrode, the negative electrode, and the separator has the following general formula (1): R 1- (S) n -R 2 (1)
  • R 1 and R 2 represent an alkyl group optionally substituted with an aryl group or an alkoxysilyl group or an aryl group optionally substituted with an alkyl group or an alkoxysilyl group, and n is an integer of 1 to 4.
  • each R 5 independently represents an aryl group or an alkyl group optionally substituted with a halogen atom or an aryl group optionally substituted with an alkyl group or a halogen atom
  • y is an integer of 2 to 8
  • X represents at least one selected from the group consisting of groups represented by formulas (5) to (7) and (17).
  • the present invention first, by suppressing active points (active points of the positive electrode active material) that oxidize and degrade the nonaqueous electrolyte, excellent load characteristics can be exhibited, and high-temperature storage or charge / discharge can be achieved. It is possible to provide a non-aqueous electrolyte and a non-aqueous secondary battery that can suppress various deterioration phenomena when a cycle is repeated. According to the present invention, secondly, it is possible to exhibit excellent output performance by providing a coating having excellent physical strength on the negative electrode active material surface as well as being excellent in dissolution resistance to a non-aqueous electrolyte. It is possible to provide a non-aqueous secondary battery capable of suppressing various deteriorations during a charge / discharge cycle under low-temperature and high-temperature environments.
  • FIG. 2 is a plan view schematically showing an example of a non-aqueous secondary battery according to the embodiment.
  • FIG. 2 is a sectional view taken along line AA of the non-aqueous secondary battery of FIG. 1.
  • the present embodiment a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the invention.
  • the numerical ranges described using “to” include the numerical values described before and after.
  • non-aqueous electrolyte in the present embodiment refers to an electrolyte in which water is 1% by mass or less based on the total amount of the non-aqueous electrolyte.
  • the non-aqueous electrolyte according to the present embodiment preferably contains as little water as possible, but may contain a very small amount of water as long as the solution of the present invention is not hindered.
  • the content of such water is 300 ppm by mass or less, preferably 200 ppm by mass or less based on the total amount of the nonaqueous electrolyte.
  • the constituent materials of the known non-aqueous electrolyte used for the lithium ion battery may be appropriately changed. Can be selected and applied.
  • R 1 and R 2 represent an alkyl group optionally substituted with an aryl group or an alkoxysilyl group or an aryl group optionally substituted with an alkyl group or an alkoxysilyl group, and n is an integer of 1 to 4. is there.
  • R 3 , R 4 , X and m are as defined in the general formula (2), and R 3 ′ is an alkylene which may be substituted with an aryl group, an alkoxysilyl group or a halogen atom.
  • R 3 ′ is an alkylene which may be substituted with an aryl group, an alkoxysilyl group or a halogen atom.
  • R 3 ′ is an alkylene which may be substituted with an aryl group, an alkoxysilyl group or a halogen atom.
  • the compounds represented by the general formulas (1) to (4) and (18) have an effect of suppressing active points (active points of the positive electrode active material) that cause oxidative deterioration of the nonaqueous electrolyte. Therefore, by using such a compound, while exhibiting excellent load characteristics, it is possible to suppress various deterioration phenomena when a high-temperature storage or repeated charge / discharge cycle is repeated, a non-aqueous electrolyte and a non-aqueous secondary solution.
  • a battery can be provided.
  • Specific examples of the compounds represented by the general formulas (1) to (4) and (18) include, for example, di-tert-butyl disulfide, bis [3- (triethoxysilyl) propyl] tetrasulfide, allyl sulfide, Amyl methyl sulfide, amyl sulfide, allyl propyl sulfide, allyl methyl sulfide, allyl methyl disulfide, allyl propyl disulfide, benzyl phenyl sulfide, dibenzyl disulfide, benzyl sulfide, butyl methyl sulfide, butyl sulfide, tert-butyl disulfide, benzyl methyl sulfide, tert-butyl methyl sulfide, 4-tert-butyl diphenyl sulfide, bis (trimethylsilylmethyl) s
  • the content of the compounds represented by the general formulas (1) to (4) and (18) is calculated by mass percentage with respect to the total mass of all components constituting the non-aqueous electrolyte.
  • the content of at least one compound selected from the group consisting of the compounds represented by the general formulas (1) to (4) and (18) is the total amount of the nonaqueous electrolyte (ie, 100 parts by mass of the nonaqueous electrolyte).
  • the compounds represented by the general formulas (1) to (4) and (18) are preferably contained in a non-aqueous electrolyte. On the other hand, it is only necessary that the compounds represented by the general formulas (1) to (4) and (18) can function in a non-aqueous secondary battery. At least one kind of battery member selected from these may contain those compounds. As a method of including these compounds in the battery member, for example, the compound may be included in the battery member at the time of manufacturing the battery member, or may be applied to the battery member by post-treatment such as immersion or spray drying. May be impregnated.
  • the non-aqueous electrolyte according to the present embodiment includes, in addition to the non-aqueous solvent and the compounds represented by the general formulas (1) to (4) and (18), an acid anhydride, an electrode protecting additive, And other optional additives.
  • the non-aqueous electrolyte according to the present embodiment can be produced by mixing a non-aqueous solvent and various additives by any means.
  • the various additives include compounds represented by the general formulas (1) to (4) and (18).
  • the various additives include the compounds represented by the general formulas (1) to (4) and (18), and an acid anhydride, an electrode protection additive, and other optional components included as necessary. Generic name.
  • non-aqueous solvent in the present embodiment refers to an element obtained by removing a lithium salt and various additives from a non-aqueous electrolyte.
  • the ⁇ non-aqueous solvent '' is a non-aqueous electrolyte from which the lithium salt and additives other than the electrode protection additive are removed.
  • the non-aqueous solvent include alcohols such as methanol and ethanol; aprotic solvents and the like. Above all, an aprotic solvent is preferable as the non-aqueous solvent.
  • the non-aqueous solvent may contain a solvent other than the aprotic solvent as long as the solution of the present invention is not hindered.
  • the non-aqueous solvent relating to the non-aqueous electrolyte can contain acetonitrile as the aprotic solvent. Since the non-aqueous solvent contains acetonitrile, the ionic conductivity of the non-aqueous electrolytic solution is improved, so that the diffusivity of lithium ions in the battery can be increased. Therefore, when the non-aqueous electrolyte contains acetonitrile, especially in a positive electrode in which the positive electrode active material layer is thickened to increase the amount of the positive electrode active material filled, it is difficult for lithium ions to reach the collector when discharging under a high load. Lithium ions can be satisfactorily diffused to a nearby region.
  • a sufficient capacity can be obtained even during high-load discharge, and a non-aqueous secondary battery having excellent load characteristics can be obtained.
  • the non-aqueous solvent contains acetonitrile, the rapid charging characteristics of the non-aqueous secondary battery can be improved.
  • the capacity per unit time in the CC charging period is larger than the charging capacity per unit time in the CV charging period.
  • the chargeable area of the non-aqueous secondary battery can be increased since the chargeable area of the non-aqueous rechargeable battery can be increased in addition to increasing the area where CC charge can be performed (longer CC charge time). The time until the battery is fully charged can be greatly reduced.
  • Acetonitrile is easily electrochemically decomposed and reduced. Therefore, when acetonitrile is used, other solvents (for example, an aprotic solvent other than acetonitrile) are used in combination with acetonitrile as a non-aqueous solvent, and / or an electrode protection additive for forming a protective film on the electrode. Is preferably added.
  • the content of acetonitrile is preferably 5 to 95% by volume based on the total amount of the non-aqueous solvent.
  • the content of acetonitrile, based on the total amount of the non-aqueous solvent is more preferably 20% by volume or more or 30% by volume or more, and further preferably 40% by volume or more. This value is more preferably not more than 85% by volume, and still more preferably not more than 66% by volume.
  • ionic conductivity tends to increase and high output characteristics can be exhibited, and further, dissolution of lithium salt is promoted. Can be.
  • the additives described below suppress the increase in the internal resistance of the battery, when the content of acetonitrile in the non-aqueous solvent is within the above range, while maintaining the excellent performance of acetonitrile, high-temperature cycle characteristics and other There is a tendency that battery characteristics can be further improved.
  • aprotic solvents other than acetonitrile include, for example, cyclic carbonate, fluoroethylene carbonate, lactone, organic compounds other than the general formula (1) having a sulfur atom, chain fluorinated carbonate, cyclic ether, mononitrile other than acetonitrile, Examples include alkoxy-substituted nitriles, dinitrile, cyclic nitriles, short-chain fatty acid esters, chain ethers, fluorinated ethers, ketones, and compounds in which some or all of the H atoms of the aprotic solvent have been substituted with halogen atoms.
  • Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, trans-2,3-butylene carbonate, cis-2,3-butylene carbonate, 1,2-pentylene carbonate, trans-2, 3-pentylene carbonate, cis-2,3-pentylene carbonate, vinylene carbonate, 4,5-dimethylvinylene carbonate, and vinyl ethylene carbonate;
  • the fluoroethylene carbonate include 4-fluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, and cis-4,5-difluoro-1,3- Dioxolan-2-one, trans-4,5-difluoro-1,3-dioxolan-2-one, 4,4,5-trifluoro-1,3-dioxolan-2-one, 4,4,5,5 -Tetrafluoro-1,3-dioxolan-2-
  • the fluorinated product of the chain carbonate for example, methyl trifluoroethyl carbonate, trifluorodimethyl carbonate, trifluorodiethyl carbonate, trifluoroethyl methyl carbonate, methyl 2,2-difluoroethyl carbonate, methyl 2,2, Examples include 2-trifluoroethyl carbonate and methyl 2,2,3,3-tetrafluoropropyl carbonate.
  • the above fluorinated chain carbonate has the following general formula: R 29 -OC (O) OR 30 (Wherein, R 29 and R 30 are at least one selected from the group consisting of CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH (CH 3 ) 2 , and CH 2 Rf 31 ) , Rf 31 is an alkyl group having 1 to 3 carbon atoms in which a hydrogen atom is substituted with at least one fluorine atom, and R 29 and / or R 30 contain at least one fluorine atom) Can be.
  • fluorinated short-chain fatty acid ester examples include fluorine represented by 2,2-difluoroethyl acetate, 2,2,2-trifluoroethyl acetate, and 2,2,3,3-tetrafluoropropyl acetate. And short chain fatty acid esters.
  • the fluorinated short-chain fatty acid ester has the following general formula: R 32 -C (O) OR 33 (Wherein R 32 is CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH (CH 3 ) 2 , CF 3 CF 2 H, CFH 2 , CF 2 Rf 34 , CFHRf 34 , and CH 2 At least one selected from the group consisting of Rf 35 , wherein R 33 is selected from the group consisting of CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH (CH 3 ) 2 , and CH 2 Rf 35 at least one selected, Rf 34 is at least one alkyl group having a fluorine-or carbon 1 is substituted hydrogen atoms in atom 3, Rf 35 is a hydrogen atom with at least one fluorine atom A substituted alkyl group having 1 to 3 carbon atoms, and R 32 and / or R 33 contains at least one fluorine atom, and when R 32 is CF 2 H,
  • aprotic solvent other than acetonitrile in the present embodiment one kind may be used alone, or two or more kinds may be used in combination.
  • the non-aqueous solvent in the present embodiment is preferably used in combination with one or more of cyclic carbonate and chain carbonate together with acetonitrile from the viewpoint of improving the stability of the non-aqueous electrolyte.
  • the nonaqueous solvent in the present embodiment preferably uses a cyclic carbonate together with acetonitrile, and more preferably uses both a cyclic carbonate and a chain carbonate with acetonitrile.
  • a cyclic carbonate with acetonitrile it is particularly preferred that such a cyclic carbonate comprises ethylene carbonate, vinylene carbonate and / or fluoroethylene carbonate.
  • the non-aqueous electrolyte according to the present embodiment contains a lithium salt.
  • the lithium salt in the present embodiment is preferably an imide salt in which LiN (SO 2 C m F 2m + 1 ) 2 ⁇ m is an integer of 0 to 8 ⁇ .
  • the lithium salt in the present embodiment may further include, together with the imide salt, at least one selected from a fluorine-containing inorganic lithium salt, an organic lithium salt, and another lithium salt.
  • the imide salt preferably contains at least one of LiN (SO 2 F) 2 and LiN (SO 2 CF 3 ) 2 .
  • the saturation concentration of the imide salt with respect to acetonitrile is higher than the saturation concentration of LiPF 6 , the presence of the imide salt in a molar concentration that satisfies LiPF 6 ⁇ imide salt indicates that lithium at a low temperature. It is preferable because the association and precipitation of the salt and acetonitrile can be suppressed.
  • the ion supply amount to the non-aqueous electrolyte according to the present embodiment is secured.
  • the non-aqueous electrolyte containing acetonitrile containing at least one of LiN (SO 2 F) 2 and LiN (SO 2 CF 3 ) 2 ion conduction in a low temperature range such as ⁇ 10 ° C. or ⁇ 30 ° C. Rate can be effectively suppressed, and excellent low-temperature characteristics can be obtained.
  • ion conduction in a low temperature range such as ⁇ 10 ° C. or ⁇ 30 ° C. Rate
  • the lithium salt in the present embodiment may include a fluorine-containing inorganic lithium salt.
  • the “fluorine-containing inorganic lithium salt” refers to a lithium salt that does not contain carbon atoms in anions, contains fluorine atoms in anions, and is soluble in acetonitrile.
  • the fluorine-containing inorganic lithium salt is excellent in that a passive film is formed on the surface of the positive electrode current collector and corrosion of the positive electrode current collector is suppressed.
  • Examples of the fluorine-containing inorganic lithium salt e.g., LiPF 6, LiBF 4, LiAsF 6, Li 2 SiF 6, LiSbF 6, Li 2 B 12 F b H 12-b ⁇ b is an integer of 0 to 3 ⁇ and the like, etc. And one or more types selected from these can be used.
  • the fluorine-containing inorganic lithium salt a compound which is a double salt of LiF and a Lewis acid is desirable. Among them, the use of a fluorine-containing inorganic lithium salt having a phosphorus atom is more preferable because a free fluorine atom is easily released.
  • a typical fluorine-containing inorganic lithium salt is LiPF 6 which dissolves to release PF 6 anion.
  • fluorine-containing inorganic lithium salt having a boron atom When a fluorine-containing inorganic lithium salt having a boron atom is used as the fluorine-containing inorganic lithium salt, it is preferable because an excess free acid component that may cause battery deterioration is easily captured, and from such a viewpoint, LiBF 4 is preferred.
  • the content of the fluorine-containing inorganic lithium salt in the non-aqueous electrolyte according to the present embodiment is preferably 0.01 mol or more, more preferably 0.1 mol or more. More preferably, it is 0.25 mol or more.
  • the amount per 1 L of the non-aqueous solvent is preferably 2.8 mol or less, more preferably 1.5 mol or less, even more preferably 1.0 mol or less.
  • the content of the fluorine-containing inorganic lithium salt in the nonaqueous electrolyte according to the present embodiment may be, for example, 0.05 mol or more and 1.0 mol or less as 1 L of the nonaqueous solvent.
  • the lithium salt in the present embodiment may include an organic lithium salt.
  • the “organic lithium salt” refers to a lithium salt other than an imide salt, which contains a carbon atom in an anion and is soluble in acetonitrile.
  • Examples of the organic lithium salt include an organic lithium salt having an oxalic acid group.
  • organic lithium salt having an oxalic acid group examples include, for example, LiB (C 2 O 4 ) 2 , LiBF 2 (C 2 O 4 ), LiPF 4 (C 2 O 4 ), and LiPF 2 (C 2 O 4 ) Organic lithium salts and the like represented by 2 above, among which at least one lithium salt selected from lithium salts represented by LiB (C 2 O 4 ) 2 and LiBF 2 (C 2 O 4 ) Is preferred. It is more preferable to use one or more of these together with a fluorine-containing inorganic lithium salt.
  • the organic lithium salt having an oxalic acid group may be contained in the negative electrode (negative electrode active material layer) in addition to being added to the non-aqueous electrolyte.
  • the amount of the organic lithium salt added to the non-aqueous electrolyte in the present embodiment is preferably 0.005 mol or more per 1 L of the non-aqueous solvent, from the viewpoint of better securing the effect of its use. , 0.01 mol or more, more preferably 0.02 mol or more, and particularly preferably 0.05 mol or more. However, if the amount of the organic lithium salt having an oxalic acid group in the non-aqueous electrolyte is too large, there is a possibility of precipitation.
  • the amount of the organic lithium salt having an oxalic acid group to be added to the nonaqueous electrolyte is preferably less than 1.0 mol, more preferably less than 0.5 mol, per 1 L of the nonaqueous solvent. Is more preferable, and it is further preferable that the amount is less than 0.2 mol. It is known that an organic lithium salt having an oxalic acid group is poorly soluble in a low-polarity organic solvent, particularly in a linear carbonate.
  • the content of the organic lithium salt in the non-aqueous electrolyte according to the present embodiment may be, for example, 0.01 mol or more and 0.5 mol or less as 1 L of the non-aqueous solvent.
  • an organic lithium salt having an oxalic acid group may contain a trace amount of lithium oxalate. As a result, a new white precipitate of lithium oxalate may be generated. Therefore, the content of lithium oxalate in the nonaqueous electrolyte according to the present embodiment is preferably suppressed to a range of 500 ppm or less.
  • the lithium salt in the present embodiment may include other lithium salts in addition to the above.
  • specific examples of other lithium salts include, for example, Inorganic lithium salts containing no fluorine atoms in anions, such as LiClO 4 , LiAlO 4 , LiAlCl 4 , LiB 10 Cl 10 , and chloroborane Li; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F (2n + 1) SO 3 (n ⁇ 2), lower aliphatic Organic lithium salts such as Li carboxylate, Li tetraphenylborate, and LiB (C 3 O 4 H 2 ) 2 ;
  • the amount of the other lithium salt added to the non-aqueous electrolyte may be appropriately set, for example, in the range of 0.01 mol to 0.5 mol as 1 L of the non-aqueous solvent.
  • the non-aqueous electrolyte according to the present embodiment may include an additive for protecting the electrode (electrode protection additive).
  • the electrode-protecting additive may substantially overlap the substance serving as a solvent for dissolving the lithium salt (that is, the non-aqueous solvent described above).
  • the electrode protecting additive is preferably a substance that contributes to improving the performance of the non-aqueous electrolyte and the non-aqueous secondary battery, but also includes a substance that does not directly participate in an electrochemical reaction.
  • the electrode protection additive include, for example, 4-fluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, cis-4,5-difluoro-1,3-dioxolan-2-one, trans- 4,5-difluoro-1,3-dioxolan-2-one, 4,4,5-trifluoro-1,3-dioxolan-2-one, 4,4,5,5-tetrafluoro-1,3- Fluoroethylene carbonate represented by dioxolan-2-one and 4,4,5-trifluoro-5-methyl-1,3-dioxolan-2-one; Cyclic carbonate containing an unsaturated bond represented by vinylene carbonate, 4,5-dimethylvinylene carbonate, and vinylethylene carbonate; lactones represented by ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone
  • the content of the electrode protection additive in the non-aqueous electrolyte is preferably 0.1 to 30% by volume, and more preferably 0.3 to 15% by volume, based on the total amount of the non-aqueous solvent. More preferably, the content is 0.4 to 8% by volume, particularly preferably 0.5 to 4% by volume.
  • the content of the electrode protecting additive is larger, the deterioration of the non-aqueous electrolyte is suppressed.
  • the lower the content of the electrode protecting additive the better the high output characteristics of the non-aqueous secondary battery under a low temperature environment.
  • the non-aqueous solvent containing acetonitrile preferably contains at least one kind of cyclic aprotic polar solvent as an electrode protection additive for forming a protective film on the negative electrode. More preferably, it contains more than one species.
  • the unsaturated bond-containing cyclic carbonate vinylene carbonate is preferable, and the content of vinylene carbonate in the non-aqueous electrolyte is preferably 0.1% by volume to 4% by volume, and 0.2% by volume to 3% by volume. %, More preferably less than 0.5% by volume and less than 2.5% by volume.
  • Vinylene carbonate as an electrode protecting additive suppresses the reductive decomposition reaction of acetonitrile on the negative electrode surface.
  • excessive film formation causes a decrease in low-temperature performance. Therefore, by adjusting the amount of vinylene carbonate to be added within the above range, the interface (coating) resistance can be suppressed low, and the cycle deterioration at low temperatures can be suppressed.
  • part of the non-aqueous electrolyte is decomposed at the time of initial charging, and is stabilized by forming SEI on the negative electrode surface.
  • an acid anhydride can be added.
  • acetonitrile is contained as a non-aqueous solvent, the strength of SEI tends to decrease with an increase in temperature, but the addition of an acid anhydride promotes the strengthening of SEI. Therefore, by using such an acid anhydride, an increase in internal resistance over time due to heat history can be effectively suppressed.
  • acid anhydrides include, for example, linear acid anhydrides represented by acetic anhydride, propionic anhydride, and benzoic anhydride; malonic anhydride, succinic anhydride, glutaric anhydride, maleic anhydride, and maleic anhydride.
  • Cyclic acid anhydrides represented by phthalic acid, 1,2-cyclohexanedicarboxylic anhydride, 2,3-naphthalenedicarboxylic anhydride, or naphthalene-1,4,5,8-tetracarboxylic dianhydride;
  • Examples thereof include a mixed acid anhydride having a structure in which two different kinds of carboxylic acids or a different kind of acid such as a carboxylic acid and a sulfonic acid are dehydrated and condensed. These may be used alone or in combination of two or more.
  • the non-aqueous secondary battery according to the present embodiment preferably strengthens SEI before the reductive decomposition of the non-aqueous solvent, at least a cyclic acid anhydride that acts early at the time of the first charge is used as the acid anhydride. It is preferable to include one kind. These cyclic acid anhydrides may contain only one kind or plural kinds. Alternatively, a cyclic acid anhydride other than these cyclic acid anhydrides may be contained. Further, the cyclic acid anhydride preferably contains at least one of succinic anhydride, maleic anhydride, and phthalic anhydride.
  • a strong SEI can be formed on the negative electrode, and the resistance increase during high-temperature heating can be suppressed more effectively.
  • succinic anhydride it is preferable to include succinic anhydride. This makes it possible to more effectively form strong SEI on the negative electrode while suppressing side reactions.
  • the content thereof is in the range of 0.01 part by mass or more and 10 parts by mass or less as an amount per 100 parts by mass of the non-aqueous electrolyte. Is preferably from 0.05 to 1 part by mass, more preferably from 0.1 to 0.5 part by mass.
  • the dianhydride is contained in the non-aqueous electrolyte.
  • at least one battery member selected from the group consisting of a positive electrode, a negative electrode, and a separator is an acid anhydride. May be contained.
  • the acid anhydride may be contained in the battery member at the time of manufacturing the battery member, or may be applied to the battery member by post-treatment such as application to the battery member, immersion or spray drying. It may be impregnated.
  • an optional additive for example, an additive ( Compounds represented by the general formulas (1) to (4) and (18), acid anhydrides, and additives other than the electrode protecting additives) can also be appropriately contained.
  • the content thereof is in the range of 0.01% by mass or more and 10% by mass or less as the amount per total amount of the non-aqueous electrolyte. It is preferably at least 0.02% by mass and not more than 5% by mass, more preferably 0.05 to 3% by mass.
  • the ionic conductivity of the non-aqueous electrolyte is preferably 10 mS / cm or more, more preferably 15 mS / cm, and still more preferably 20 mS / cm.
  • the non-aqueous electrolyte according to the present embodiment comprises a non-aqueous solvent, a lithium salt, and compounds represented by the general formulas (1) to (4) and (18), if necessary, and other additives ( (Electrode protection additive, acid anhydride, optional additive, etc.).
  • the non-aqueous electrolyte according to the present embodiment can be used to form a non-aqueous secondary battery.
  • the non-aqueous secondary battery according to the present embodiment is configured such that a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte are housed in an appropriate battery exterior.
  • the non-aqueous secondary battery according to the present embodiment may be the non-aqueous secondary battery 100 shown in FIGS.
  • FIG. 1 is a plan view schematically showing a non-aqueous secondary battery
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • the non-aqueous secondary battery 100 shown in FIGS. 1 and 2 is composed of a pouch-type cell.
  • the non-aqueous secondary battery 100 includes, in a space 120 of a battery outer case 110, a stacked electrode body formed by stacking a positive electrode 150 and a negative electrode 160 with a separator 170 interposed therebetween, and a non-aqueous electrolyte (not shown). Accommodating.
  • the battery casing 110 is made of, for example, an aluminum laminated film, and is sealed by heat-sealing the upper and lower films at an outer peripheral portion of a space formed by the two aluminum laminated films.
  • the laminate in which the positive electrode 150, the separator 170, and the negative electrode 160 are sequentially laminated is impregnated with a non-aqueous electrolyte.
  • the layers constituting the battery exterior 110 and the layers of the positive electrode 150 and the negative electrode 160 are not separately illustrated to avoid complicating the drawing.
  • the aluminum laminate film constituting the battery casing 110 is preferably one in which both surfaces of an aluminum foil are coated with a polyolefin-based resin.
  • the positive electrode 150 is connected to the positive electrode lead body 130 in the non-aqueous secondary battery 100.
  • the negative electrode 160 is also connected to the negative electrode lead body 140 in the non-aqueous secondary battery 100.
  • Each of the positive electrode lead 130 and the negative electrode lead 140 has one end drawn out of the battery exterior 110 so that it can be connected to an external device or the like. Heat-sealed with the sides.
  • each of the positive electrode 150 and the negative electrode 160 has one laminated electrode body. It can be increased as appropriate.
  • tabs of the same polarity may be joined together by welding or the like, and then joined to one lead body by welding or the like and taken out of the battery. Examples of the tab having the same pole include a mode configured by an exposed portion of the current collector, a mode configured by welding a metal piece to the exposed portion of the current collector, and the like.
  • the positive electrode 150 includes a positive electrode current collector and a positive electrode active material layer.
  • the negative electrode 160 includes a negative electrode current collector and a negative electrode active material layer.
  • the positive electrode active material layer contains a positive electrode active material, and the negative electrode active material layer contains a negative electrode active material.
  • the positive electrode 150 and the negative electrode 160 are arranged such that the positive electrode active material layer and the negative electrode active material layer face each other with the separator 170 interposed therebetween.
  • the positive electrode has a positive electrode active material layer on one or both surfaces of a positive electrode current collector.
  • the positive electrode current collector is made of, for example, a metal foil such as an aluminum foil, a nickel foil, and a stainless steel foil.
  • the positive electrode current collector may have a surface coated with carbon and may be processed into a mesh.
  • the thickness of the positive electrode current collector is preferably 5 to 40 ⁇ m, more preferably 7 to 35 ⁇ m, and further preferably 9 to 30 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material, and may further contain a conductive auxiliary and / or a binder as needed.
  • the positive electrode active material layer preferably contains a material capable of inserting and extracting lithium ions as the positive electrode active material.
  • the use of such a material is preferable because a high voltage and a high energy density tend to be obtained.
  • M is at least one metal selected from the group consisting of Al, Sn, In, Fe, V, Cu, Mg, Ti, Zn, Mo, Zr, Sr, and Ba, and 0 ⁇ p ⁇ 1.3, 0 ⁇ q ⁇ 1.2, 0 ⁇ r ⁇ 1.2, 0 ⁇ s ⁇ 0.5, 0 ⁇ t ⁇ 0.3, 0.7 ⁇ q + r + s + t ⁇ 1.2, 1.8 ⁇ U ⁇ 2.2, and p is a value determined by the charge / discharge state of the battery.
  • At least one selected from lithium-containing metal oxides represented by
  • Lithium cobalt oxide typified by LiCoO 2
  • Lithium manganese oxide represented by LiMnO 2 , LiMn 2 O 4 , and Li 2 Mn 2 O 4
  • Lithium nickel oxide typified by LiNiO 2
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 LiNi 0.5 Co 0.2 Mn 0.3 O 2
  • LiNi 0.8 Co 0.2 O 2 LiNi 0.6 Co 0.2 Mn 0.2 O 2
  • LiNi Li z MO typified by 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.85 Co 0.075 Mn 0.075 O 2
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 LiNi 0.81 Co 0.1 Al 0.09 O 2
  • M includes at least one transition metal element selected from the group consisting of Ni
  • Ni content ratio q of the Li-containing metal oxide represented by the general formula (14) satisfies 0.5 ⁇ q ⁇ 1.2, it is possible to reduce the amount of use of Co as a rare metal and achieve high energy It is preferable because both densification is achieved.
  • the positive electrode active material of the lithium-containing metal oxide represented by the general formula (14) has an active site for oxidatively deteriorating the non-aqueous electrolyte, and this active site is determined by a compound added to protect the negative electrode. May be unintentionally consumed on the positive electrode side.
  • acid anhydrides tend to be easily affected. In particular, when acetonitrile is contained as a non-aqueous solvent, the effect of adding the acid anhydride is so great that the acid anhydride is consumed on the positive electrode side.
  • the positive electrode active material contains at least one metal selected from the group consisting of Al, Sn, In, Fe, V, Cu, Mg, Ti, Zn, Mo, Zr, Sr, and Ba.
  • the surface of the positive electrode active material is coated with a compound containing at least one metal element selected from the group consisting of Zr, Ti, Al, and Nb. Further, it is more preferable that the surface of the positive electrode active material is coated with an oxide containing at least one metal element selected from the group consisting of Zr, Ti, Al, and Nb. Furthermore, the fact that the surface of the positive electrode active material is coated with at least one oxide selected from the group consisting of ZrO 2 , TiO 2 , Al 2 O 3 , NbO 3 , and LiNbO 2 , means that lithium ion transmission Is more preferable because it does not inhibit
  • the positive electrode active material may be a lithium-containing compound other than the lithium-containing metal oxide represented by the formula (14).
  • a lithium-containing compound include, for example, a composite oxide containing lithium and a transition metal element, a metal chalcogenide containing lithium, a metal phosphate compound containing lithium and a transition metal element, and lithium and a transition metal element.
  • the lithium-containing compound the following formula (16a): Li v M I D 2 (16a )
  • D represents a chalcogen element
  • M I represents one or more transition metal elements including at least one transition metal element
  • the value of v is determined by the charge / discharge state of the battery, and 1. denotes a number and u denotes a number from 0 to 2.
  • The following equation (16b): Li w M II PO 4 (16b)
  • D represents a chalcogen element
  • M II represents one or more transition metal elements including at least one transition metal element, and the value of w is determined by the charge / discharge state of the battery, and 1. denotes a number and u denotes a number from 0 to 2.
  • the lithium-containing compound represented by the above formula (16a) has a layered structure, and the compounds represented by the above formulas (16b) and (16c) have an olivine structure.
  • these lithium-containing compounds are obtained by substituting a part of the transition metal element with Al, Mg, or another transition metal element, and including these metal elements in crystal grain boundaries.
  • the positive electrode active material one type may be used alone, or two or more types may be used in combination. Since it is possible to reversibly and stably store and release lithium ions and achieve a high energy density, the positive electrode active material layer contains at least one transition metal element selected from Ni, Mn, and Co. Is preferred.
  • the use ratio of both is preferably 80% by mass or more, and more preferably 85% by mass, as the use ratio of the lithium-containing compound to all of the positive electrode active materials. % Or more is more preferable.
  • Examples of the conductive additive include carbon black represented by graphite, acetylene black, and Ketjen black, and carbon fiber.
  • the content of the conductive additive is preferably 10 parts by mass or less, more preferably 1 to 5 parts by mass, per 100 parts by mass of the positive electrode active material.
  • binder examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid, styrene butadiene rubber, and fluoro rubber.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the content of the binder is preferably 6 parts by mass or less, more preferably 0.5 to 4 parts by mass, per 100 parts by mass of the positive electrode active material.
  • the positive electrode active material layer is formed by applying a positive electrode mixture-containing slurry in which a positive electrode mixture obtained by mixing a positive electrode active material and, if necessary, a conductive auxiliary and a binder, to a solvent is applied to a positive electrode current collector and dried (solvent removal). ) And, if necessary, by pressing.
  • a solvent a known solvent can be used. For example, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, water and the like can be mentioned.
  • the negative electrode in the nonaqueous secondary battery according to this embodiment has a negative electrode active material layer on one or both surfaces of a negative electrode current collector.
  • the negative electrode current collector is made of, for example, a metal foil such as a copper foil, a nickel foil, and a stainless steel foil.
  • the negative electrode current collector may have a surface coated with carbon or may be processed into a mesh shape.
  • the thickness of the negative electrode current collector is preferably from 5 to 40 ⁇ m, more preferably from 6 to 35 ⁇ m, and further preferably from 7 to 30 ⁇ m.
  • the negative electrode active material layer contains a negative electrode active material, and may further contain a conductive auxiliary and / or a binder as necessary.
  • the negative electrode active material includes, for example, amorphous carbon (hard carbon), artificial graphite, natural graphite, graphite, pyrolytic carbon, coke, glassy carbon, a fired body of an organic polymer compound, mesocarbon microbeads, carbon fiber, activated carbon,
  • amorphous carbon hard carbon
  • artificial graphite natural graphite, graphite, pyrolytic carbon, coke, glassy carbon
  • a fired body of an organic polymer compound mesocarbon microbeads, carbon fiber, activated carbon
  • metal lithium, metal oxide, metal nitride, lithium alloy, tin alloy, Si material, intermetallic compound, organic compound, inorganic compound, metal complex, Organic polymer compounds and the like can be mentioned.
  • the negative electrode active materials may be used alone or in combination of two or more. Examples of the Si material include silicon, a Si alloy, and a Si oxide. From the viewpoint that the battery voltage can be increased, the negative electrode active material layer contains lithium ions of 0.4 V
  • the non-aqueous electrolyte according to the present embodiment has an advantage that even when a Si material is applied to the negative electrode active material, it is possible to suppress various deterioration phenomena due to a change in the volume of the negative electrode when charge / discharge cycles are repeated. Therefore, in the non-aqueous secondary battery according to the present embodiment, the use of a Si material typified by a silicon alloy or the like as the negative electrode active material also has a high capacity derived from the Si material, and has a high charge-discharge cycle characteristic. This is a preferred mode in that it is excellent.
  • the negative electrode active material may include a Si material, particularly, SiO x (0.5 ⁇ x ⁇ 1.5).
  • the Si material may be in any of a crystalline form, a low crystalline form, and an amorphous form.
  • Acetonitrile used as the non-aqueous solvent in the present embodiment may cause a reduction reaction with lithium metal to generate gas. Therefore, a negative electrode active material which is difficult to deposit lithium is preferable when used in combination with a non-aqueous electrolyte containing acetonitrile.
  • the negative electrode active material has a potential of 0.4 V vs. 0.4 V. It is preferable to operate at a lower potential than Li / Li + .
  • the content of the Si material is preferably in the range of 0.1% by mass to 100% by mass, and more preferably in the range of 1% by mass to 80% by mass, based on the total amount of the negative electrode active material layer. More preferably, it is in the range of 3% by mass or more and 60% by mass or less.
  • Examples of the conductive additive include carbon black represented by graphite, acetylene black, and Ketjen black, and carbon fiber.
  • the content of the conductive additive is preferably 20 parts by mass or less, more preferably 0.1 to 10 parts by mass, per 100 parts by mass of the negative electrode active material.
  • binder examples include carboxymethylcellulose, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid, and fluoro rubber.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • polyacrylic acid and fluoro rubber.
  • a diene rubber for example, styrene butadiene rubber and the like are also included.
  • the content of the binder is preferably 10 parts by mass or less, more preferably 0.5 to 6 parts by mass, per 100 parts by mass of the negative electrode active material.
  • the negative electrode active material layer is formed by applying a negative electrode mixture-containing slurry obtained by dispersing a negative electrode mixture obtained by mixing a negative electrode active material and a conductive auxiliary agent and / or a binder, as necessary, to a negative electrode current collector. And drying (removing the solvent) and pressing if necessary.
  • a solvent a known solvent can be used. For example, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, water and the like can be mentioned.
  • the above-mentioned acid anhydride is added in order to more effectively strengthen the SEI on the negative electrode surface.
  • the positive electrode and the negative electrode contain acid anhydride decomposed products, and the amount of acid anhydride decomposed product per unit area of the acid anhydride contained in the positive electrode is contained in the negative electrode. Less than the amount of decomposition products per unit area of anhydride.
  • the amount of the acid anhydride decomposed product per unit area of the positive electrode active material contained in the positive electrode is smaller than the amount of acid anhydride decomposed product per unit area of the negative electrode active material contained in the negative electrode. Is more preferred. Thereby, it is easy to effectively suppress an increase in internal resistance over time due to heat history.
  • the amount of the decomposed product of the acid anhydride is also calculated based on, for example, a peak area value in LC-MS measurement with respect to a unit gram mass of the negative electrode active material.
  • the amount of the decomposition product of the acid anhydride (the content of at least one compound selected from the group consisting of the compounds represented by the following general formulas (8) to (13)) is defined as the peak area as an amount per 1 ⁇ g of the negative electrode active material.
  • the value is preferably in the range of 0.1 to 200, more preferably in the range of 1 to 175, even more preferably in the range of 20 to 150.
  • the peak area value is in this range, the balance between the suppression of the increase in the film resistance and the solubility can be ensured.
  • it is preferable that the above content is satisfied within a range of up to 100 cycles of repeating charging and discharging.
  • the decomposition product of the acid anhydride is represented by the following general formula (8):
  • R 6 and R 7 represent an alkoxy group, OH group or OLi group which may be substituted with a halogen atom
  • f is an integer of 1 to 3.
  • R 8 and R 9 represent an alkoxy group, an OH group, or an OLi group which may be substituted with a halogen atom.
  • R 10 and R 11 represent an alkoxy group, an OH group, or an OLi group which may be substituted with a halogen atom.
  • R 12 and R 13 represent an alkoxy group, an OH group, or an OLi group which may be substituted with a halogen atom.
  • R 14 and R 15 represent an alkoxy group, an OH group, or an OLi group which may be substituted with a halogen atom.
  • R 16 to R 19 represent an alkoxy group, OH group or OLi group which may be substituted with a halogen atom.
  • halogen atom in the description of the general formulas (8) to (13) may include an F atom.
  • F atom may include an F atom.
  • the nonaqueous secondary battery according to the present embodiment preferably includes a separator between the positive electrode and the negative electrode from the viewpoint of preventing short-circuit between the positive electrode and the negative electrode and providing safety such as shutdown.
  • a separator similar to that provided in a known nonaqueous secondary battery may be used, and an insulating thin film having high ion permeability and excellent mechanical strength is preferable.
  • the material constituting the separator include a woven fabric, a nonwoven fabric, a synthetic resin microporous membrane, and the like.
  • a polyolefin-based microporous membrane such as a microporous membrane or a microporous membrane containing both of these polyolefins is suitably used.
  • the nonwoven fabric include a porous film made of a heat-resistant resin such as glass, ceramic, polyolefin, polyester, polyamide, liquid crystal polyester, and aramid.
  • the separator may have a configuration in which one type of microporous film is laminated in a single layer or a plurality of layers, or may have a configuration in which two or more types of microporous films are laminated.
  • the separator may have a configuration in which a single layer or a plurality of layers are laminated using a mixed resin material obtained by melt-kneading two or more resin materials.
  • inorganic particles may be present on the surface or inside the separator, and another organic layer may be further applied or laminated on the separator.
  • the separator may include a crosslinked structure. These techniques may be combined as necessary to enhance the safety performance of the non-aqueous secondary battery.
  • a known configuration can be adopted as the configuration of the battery exterior of the nonaqueous secondary battery in the present embodiment.
  • a battery can or a laminate film case may be used as the battery case.
  • the battery can for example, a metal can made of steel, stainless steel, aluminum, a clad material, or the like can be used.
  • the laminated film exterior body is a state in which two sheets are stacked with the hot-melt resin side facing inward, or folded so that the hot-melt resin side faces inward, and the ends are sealed by heat sealing. And can be used as an exterior body.
  • a positive electrode current collector is connected to a positive electrode lead (or a lead tab connected to a positive electrode terminal and a positive electrode terminal)
  • a negative electrode current collector is connected to a negative electrode lead (or a negative electrode terminal and a negative electrode terminal).
  • Lead tab the laminate film exterior body may be sealed with the ends of the positive electrode lead body and the negative electrode lead body (or the lead tabs connected to each of the positive electrode terminal and the negative electrode terminal) drawn out of the exterior body.
  • the laminate film package for example, a laminate film having a three-layer structure of a hot-melt resin / metal film / resin can be used.
  • the aluminum laminate film forming the battery casing 110 is preferably one in which both surfaces of an aluminum foil are coated with a polyolefin-based resin.
  • the shape of the non-aqueous secondary battery according to the present embodiment can be applied to, for example, a square type, a square tube type, a cylindrical type, an elliptical type, a button type, a coin type, a flat type, a laminated type, and the like.
  • the non-aqueous secondary battery according to the present embodiment can be preferably applied particularly to a prismatic type, a prismatic type, and a laminate type.
  • the non-aqueous secondary battery according to the present embodiment can be manufactured by a known method using the above-described non-aqueous electrolyte, positive electrode, negative electrode, separator, and battery exterior.
  • a laminate including a positive electrode, a negative electrode, and a separator is formed.
  • a mode in which a long separator is folded in a zigzag manner, and a laminate having a laminated structure in which positive electrode sheets and negative electrode sheets are alternately inserted into gaps between the zigzag separators; Etc. are possible.
  • the non-aqueous electrolyte according to the present embodiment is injected into the battery exterior, and the laminate is immersed in the non-aqueous electrolyte to seal the same.
  • the non-aqueous secondary battery according to the embodiment can be manufactured.
  • the nonaqueous electrolytic solution according to the present embodiment is impregnated into a base material made of a polymer material to prepare a gel electrolyte membrane in advance, and a sheet-like positive electrode, a negative electrode, and the obtained electrolyte are prepared.
  • a non-aqueous secondary battery may be manufactured by forming a laminated body having a laminated structure using a membrane and a separator and then housing the laminated body in a battery exterior.
  • the arrangement of the electrodes is such that there is a portion where the outer peripheral edge of the negative electrode active material layer and the outer peripheral edge of the positive electrode active material layer overlap, or a portion where the width is too small exists in the non-opposing portion of the negative electrode active material layer.
  • the electrodes may be displaced when the battery is assembled. In this case, the charge / discharge cycle characteristics of the non-aqueous secondary battery may decrease.
  • the positions of the electrodes are fixed in advance by a tape such as a polyimide tape, a polyphenylene sulfide tape, a PP tape, an adhesive, or the like.
  • the initial charge / discharge efficiency may be reduced.
  • the area of the positive electrode active material layer is larger than that of the negative electrode active material layer or when both are the same, current concentration tends to occur at the edge portion of the negative electrode active material layer during charging, and lithium dendrite is generated. It will be easier.
  • the ratio of the area of the entire negative electrode active material layer to the area of the portion where the positive electrode active material layer and the negative electrode active material layer face each other is preferably greater than 1.0 and less than 1.1 for the above reason, It is more preferably larger than 1.002 and smaller than 1.09, further preferably larger than 1.005 and smaller than 1.08, and particularly preferably larger than 1.01 and smaller than 1.08.
  • a non-aqueous secondary battery using a non-aqueous electrolyte containing acetonitrile by reducing the ratio of the area of the entire negative electrode active material layer to the area of the portion where the positive electrode active material layer and the negative electrode active material layer face each other, The first charge / discharge efficiency can be improved.
  • Reducing the ratio of the area of the entire negative electrode active material layer to the area of the portion where the positive electrode active material layer and the negative electrode active material layer face means that the negative electrode active material layer does not face the positive electrode active material layer This means limiting the proportion of the area of the part.
  • the load characteristics of the battery can be improved by using acetonitrile. While increasing the initial charge / discharge efficiency of the battery, the generation of lithium dendrite can be suppressed.
  • the non-aqueous secondary battery according to the present embodiment will be described.
  • the elements described in the first embodiment can be appropriately applied to various elements for obtaining the nonaqueous secondary battery.
  • the preferred embodiment and the operation and effect based on the preferred embodiment in the present embodiment are as described in the first embodiment.
  • the non-aqueous electrolyte described in the first embodiment can be used as the non-aqueous electrolyte. Therefore, in the non-aqueous secondary battery according to the present embodiment, the non-aqueous solvent preferably contains a cyclic carbonate, as in the first embodiment, and when the non-aqueous solvent contains a cyclic carbonate, Preferably, the carbonate comprises ethylene carbonate, vinylene carbonate and / or fluoroethylene carbonate.
  • the negative electrode contains at least one compound selected from the group consisting of compounds represented by the following general formulas (4A) to (6A).
  • a cyclic carbonate decomposition reaction product can be used.
  • the non-aqueous secondary battery according to the present embodiment includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte.
  • the negative electrode in the nonaqueous secondary battery according to this embodiment has a negative electrode active material layer on one or both surfaces of a negative electrode current collector.
  • the physical strength of the negative electrode against expansion and contraction is further enhanced, and thus the electrode characteristics due to charge / discharge cycles are increased. Is easily suppressed.
  • at least one selected from the group consisting of the compounds represented by the general formulas (4A) to (6A) it is easy to secure a balance between physical strength and expansion solubility and contraction of the negative electrode.
  • the content of at least one selected from the group consisting of the compounds represented by the general formulas (4A) to (6A) is obtained by dividing the quantitative value obtained by analyzing the components of the negative electrode protective coating by the mass of the negative electrode active material. Is calculated.
  • the content of at least one compound selected from the group consisting of the compounds represented by the general formulas (4A) to (6A) is preferably 0.01 to 100 mg as 1 g of the negative electrode active material, The amount is more preferably from 0.05 to 50 mg, even more preferably from 0.1 to 10 mg. By being in this range, it is easy to suppress an increase in film resistance due to charge / discharge cycles without impairing the basic function as a non-aqueous secondary battery. In addition, it is preferable that the above content is satisfied within a range of up to 100 cycles of repeating charging and discharging.
  • the negative electrode may contain the PF 6 anion, and may contain the N (SO 2 F) 2 anion and / or the N (SO 2 CF 3 ) 2 anion. That is, the non-aqueous electrolyte may contain at least one anion selected from the group consisting of PF 6 anion, N (SO 2 CF 3 ) 2 or N (SO 2 F) 2 anion.
  • the anion promotes the effect of forming the protective film and forms a passivation film on the surface of the surface foil as the positive electrode current collector, which is preferable from the viewpoint of suppressing an increase in internal resistance.
  • the positive electrode and the negative electrode include at least one compound selected from the group consisting of compounds represented by general formulas (4A) to (6A), and are included in the positive electrode. It is preferable that the amount of the compound is smaller than the amount of the compound contained in the negative electrode. According to this, the SEI on the negative electrode surface can be more effectively strengthened. When acetonitrile is contained as the non-aqueous solvent, the increase in internal resistance over time due to heat history can be effectively suppressed.
  • the content of at least one kind selected from the group consisting of the compounds represented by the general formulas (4A) to (6A) in the negative electrode is determined by the quantitative value obtained by analyzing the negative electrode protective coating component as the negative electrode active material. Calculated by dividing by mass.
  • the content of at least one kind selected from the group consisting of the compounds represented by the general formulas (4A) to (6A) in the positive electrode is determined by the quantitative value obtained by analyzing the positive electrode protective coating component. Calculated by dividing by mass.
  • the negative electrode current collector is made of, for example, a metal foil such as a copper foil, a nickel foil, and a stainless steel foil.
  • the negative electrode current collector may have a surface coated with carbon or may be processed into a mesh shape.
  • the thickness of the negative electrode current collector is preferably from 5 to 40 ⁇ m, more preferably from 6 to 35 ⁇ m, and further preferably from 7 to 30 ⁇ m.
  • the negative electrode active material layer contains a negative electrode active material, and may further contain a conductive auxiliary and / or a binder as necessary.
  • the negative electrode active material includes, for example, amorphous carbon (hard carbon), artificial graphite, natural graphite, graphite, pyrolytic carbon, coke, glassy carbon, a fired body of an organic polymer compound, mesocarbon microbeads, carbon fiber, activated carbon,
  • amorphous carbon hard carbon
  • artificial graphite natural graphite, graphite, pyrolytic carbon, coke, glassy carbon
  • a fired body of an organic polymer compound mesocarbon microbeads, carbon fiber, activated carbon
  • metal lithium, metal oxide, metal nitride, lithium alloy, tin alloy, Si material, intermetallic compound, organic compound, inorganic compound, metal complex, Organic polymer compounds and the like can be mentioned.
  • the negative electrode active materials may be used alone or in combination of two or more. Examples of the Si material include silicon, a Si alloy, and a Si oxide. From the viewpoint that the battery voltage can be increased, the negative electrode active material layer contains lithium ions of 0.4 V
  • the non-aqueous electrolyte according to the present embodiment has an advantage that even when a Si material is applied to the negative electrode active material, it is possible to suppress various deterioration phenomena due to a change in the volume of the negative electrode when charge / discharge cycles are repeated. Therefore, in the non-aqueous secondary battery according to the present embodiment, the use of a Si material typified by a silicon alloy or the like as the negative electrode active material also has a high capacity derived from the Si material, and has a high charge-discharge cycle characteristic. This is a preferred mode in that it is excellent.
  • the negative electrode active material may include a Si material, particularly, SiO x (0.5 ⁇ x ⁇ 1.5).
  • the Si material may be in any of a crystalline form, a low crystalline form, and an amorphous form.
  • Acetonitrile used as the non-aqueous solvent in the present embodiment may cause a reduction reaction with lithium metal to generate gas. Therefore, the negative electrode active material which is difficult to deposit lithium is preferable when used in combination with a non-aqueous electrolyte containing acetonitrile. On the other hand, a negative electrode active material having an excessively high operating potential lowers the energy density of the battery. Therefore, from the viewpoint of improving the energy density, the negative electrode active material has a potential of 0.4 V vs. 0.4 V. It is preferable to operate at a lower potential than Li / Li + .
  • the content of the Si material is preferably in the range of 0.1% by mass to 100% by mass, and more preferably in the range of 1% by mass to 80% by mass, based on the total amount of the negative electrode active material layer. More preferably, it is in the range of 3% by mass or more and 60% by mass or less.
  • Examples of the conductive additive include carbon black represented by graphite, acetylene black, and Ketjen black, and carbon fiber.
  • the content of the conductive additive is preferably 20 parts by mass or less, more preferably 0.1 to 10 parts by mass, per 100 parts by mass of the negative electrode active material.
  • binder examples include carboxymethyl cellulose, PVDF, PTFE, polyacrylic acid, and fluoro rubber.
  • a diene rubber for example, styrene butadiene rubber and the like are also included.
  • the content of the binder is preferably 10 parts by mass or less, more preferably 0.5 to 6 parts by mass, per 100 parts by mass of the negative electrode active material.
  • the negative electrode active material layer is formed by applying a negative electrode mixture-containing slurry obtained by dispersing a negative electrode mixture obtained by mixing a negative electrode active material and a conductive auxiliary agent and / or a binder, as necessary, to a negative electrode current collector. And drying (removing the solvent) and pressing if necessary.
  • a solvent a known solvent can be used. For example, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, water and the like can be mentioned.
  • the positive electrode has a positive electrode active material layer on one or both surfaces of a positive electrode current collector.
  • the positive electrode current collector is made of, for example, a metal foil such as an aluminum foil, a nickel foil, and a stainless steel foil.
  • the positive electrode current collector may be provided with a carbon coat on the surface, or may be processed into a mesh shape.
  • the thickness of the positive electrode current collector is preferably 5 to 40 ⁇ m, more preferably 7 to 35 ⁇ m, and further preferably 9 to 30 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material, and may further contain a conductive auxiliary and / or a binder as needed.
  • the positive electrode active material layer preferably contains a material capable of inserting and extracting lithium ions as the positive electrode active material.
  • the use of such a material is preferable because a high voltage and a high energy density tend to be obtained.
  • M is at least one metal selected from the group consisting of Al, Sn, In, Fe, V, Cu, Mg, Ti, Zn, Mo, Zr, Sr, and Ba, and 0 ⁇ p ⁇ 1.3, 0 ⁇ q ⁇ 1.2, 0 ⁇ r ⁇ 1.2, 0 ⁇ s ⁇ 0.5, 0 ⁇ t ⁇ 0.3, 0.7 ⁇ q + r + s + t ⁇ 1.2, 1.8 ⁇ U ⁇ 2.2, and p is a value determined by the charge / discharge state of the battery.
  • Lithium cobalt oxide typified by LiCoO 2
  • Lithium manganese oxide represented by LiMnO 2 , LiMn 2 O 4 , and Li 2 Mn 2 O 4
  • Lithium nickel oxide typified by LiNiO 2
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 LiNi 0.5 Co 0.2 Mn 0.3 O 2
  • LiNi 0.8 Co 0.2 O 2 LiNi 0.6 Co 0.2 Mn 0.2 O 2
  • LiNi Li z MO typified by 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.85 Co 0.075 Mn 0.075 O 2
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 LiNi 0.81 Co 0.1 Al 0.09 O 2
  • LiNi 0.85 Co 0.1 Al 0.05 O 2 2 (M includes at least one transition metal element selected from the group consisting of
  • Metal oxides or metal chalcogenides having a tunnel structure and a layered structure represented by MnO 2 , FeO 2 , FeS 2 , V 2 O 5 , V 6 O 13 , TiO 2 , TiS 2 , MoS 2 and NbSe 2 ; Sulfur; Conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole; Is mentioned.
  • Ni content ratio q of the Li-containing metal oxide represented by the general formula (14) satisfies 0.5 ⁇ q ⁇ 1.2, it is possible to reduce the amount of use of Co as a rare metal and achieve high energy It is preferable because both densification is achieved.
  • the positive electrode active material of the lithium-containing metal oxide represented by the general formula (14) has an active site for oxidatively deteriorating the non-aqueous electrolyte, and this active site is determined by a compound added to protect the negative electrode. May be unintentionally consumed on the positive electrode side.
  • acid anhydrides tend to be easily affected. In particular, when acetonitrile is contained as a non-aqueous solvent, the effect of adding the acid anhydride is so great that the acid anhydride is consumed on the positive electrode side.
  • the positive electrode active material contains at least one metal selected from the group consisting of Al, Sn, In, Fe, V, Cu, Mg, Ti, Zn, Mo, Zr, Sr, and Ba.
  • the surface of the positive electrode active material is coated with a compound containing at least one metal element selected from the group consisting of Zr, Ti, Al, and Nb. Further, it is more preferable that the surface of the positive electrode active material is coated with an oxide containing at least one metal element selected from the group consisting of Zr, Ti, Al, and Nb. Furthermore, the fact that the surface of the positive electrode active material is coated with at least one oxide selected from the group consisting of ZrO 2 , TiO 2 , Al 2 O 3 , NbO 3 , and LiNbO 2 , means that lithium ion transmission Is more preferable because it does not inhibit
  • the positive electrode active material may be a lithium-containing compound other than the lithium-containing metal oxide represented by the formula (14).
  • a lithium-containing compound include, for example, a composite oxide containing lithium and a transition metal element, a metal chalcogenide containing lithium, a metal phosphate compound containing lithium and a transition metal element, and lithium and a transition metal element.
  • the lithium-containing compound the following formula (16a): Li v M I D 2 (16a )
  • D represents a chalcogen element
  • M I represents one or more transition metal elements including at least one transition metal element
  • the value of v is determined by the charge / discharge state of the battery, and 1. denotes a number and u denotes a number from 0 to 2.
  • The following equation (16b): Li w M II PO 4 (16b)
  • D represents a chalcogen element
  • M II represents one or more transition metal elements including at least one transition metal element, and the value of w is determined by the charge / discharge state of the battery, and 1. denotes a number and u denotes a number from 0 to 2.
  • the lithium-containing compound represented by the above formula (16a) has a layered structure, and the compounds represented by the above formulas (16b) and (16c) have an olivine structure.
  • these lithium-containing compounds are obtained by substituting a part of the transition metal element with Al, Mg, or another transition metal element, and including these metal elements in crystal grain boundaries.
  • the positive electrode active material one type may be used alone, or two or more types may be used in combination. Since it is possible to reversibly and stably store and release lithium ions and achieve a high energy density, the positive electrode active material layer contains at least one transition metal element selected from Ni, Mn, and Co. Is preferred.
  • the use ratio of both is preferably 80% by mass or more, and more preferably 85% by mass, as the use ratio of the lithium-containing compound to all of the positive electrode active materials. % Or more is more preferable.
  • Examples of the conductive additive include carbon black represented by graphite, acetylene black, and Ketjen black, and carbon fiber.
  • the content of the conductive additive is preferably 10 parts by mass or less, more preferably 1 to 5 parts by mass, per 100 parts by mass of the positive electrode active material.
  • binder examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid, styrene butadiene rubber, and fluoro rubber.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the content of the binder is preferably 6 parts by mass or less, more preferably 0.5 to 4 parts by mass, per 100 parts by mass of the positive electrode active material.
  • the positive electrode active material layer is formed by applying a positive electrode mixture-containing slurry obtained by dispersing a positive electrode mixture obtained by mixing a positive electrode active material and a conductive auxiliary agent and / or a binder, if necessary, to a positive electrode current collector. And drying (removing the solvent) and pressing if necessary.
  • a solvent a known solvent can be used. For example, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, water and the like can be mentioned.
  • the nonaqueous secondary battery according to the present embodiment preferably includes a separator between the positive electrode and the negative electrode from the viewpoint of preventing short-circuit between the positive electrode and the negative electrode and providing safety such as shutdown.
  • a separator similar to that provided in a known nonaqueous secondary battery may be used, and an insulating thin film having high ion permeability and excellent mechanical strength is preferable.
  • the material constituting the separator include a woven fabric, a nonwoven fabric, a synthetic resin microporous membrane, and the like.
  • a polyolefin-based microporous membrane such as a microporous membrane or a microporous membrane containing both of these polyolefins is suitably used.
  • the nonwoven fabric include a porous film made of a heat-resistant resin such as glass, ceramic, polyolefin, polyester, polyamide, liquid crystal polyester, and aramid.
  • the separator 170 may have a configuration in which one type of microporous film is laminated in a single layer or a plurality of layers, or may have a configuration in which two or more types of microporous films are laminated. Further, the separator 170 may have a configuration in which a single layer or a plurality of layers are laminated using a mixed resin material obtained by melt-kneading two or more types of resin materials.
  • the thickness of the separator is preferably 1 ⁇ m or more from the viewpoint of film strength, and is preferably 500 ⁇ m or less from the viewpoint of transparency. It is preferably 3 ⁇ m or more and 40 ⁇ m or less, and more preferably 10 ⁇ m or more and 25 ⁇ m or less, from the viewpoint that the calorific value is relatively high, and that it is used for high output applications, and from the viewpoint of winding properties with a large battery winding machine. Is more preferred.
  • the thickness is more preferably 15 ⁇ m or more and 25 ⁇ m or less, but when emphasizing both high energy density and output performance is important, it is 10 ⁇ m or more and less than 15 ⁇ m.
  • the porosity is preferably 30% or more and 90% or less, more preferably 35% or more and 80% or less, further preferably 40% or more and 70% or less, from the viewpoint of following the rapid movement of lithium ions at the time of high output.
  • 50% or more and 70% or less are particularly preferable.
  • 40% or more and 50% or more are particularly preferred.
  • Air permeability, thickness, from the viewpoint of the balance between the porosity preferably 1 sec / 100 cm 3 to 400 seconds / 100 cm 3 or less, more preferably 100 sec / 100 cm 3 or more 350/100 cm 3 or less.
  • 150 seconds / 100 cm 3 or more and 350 seconds / 100 cm 3 or less are more preferable.
  • priority is given to improving output performance while ensuring safety.
  • the moving speed of lithium ions is not the structure of the separator, and the high ionic conductivity of the non-aqueous electrolyte is rate-determining, which is expected. Such input / output characteristics tend not to be obtained.
  • the ionic conductivity of the non-aqueous electrolyte is preferably 10 mS / cm or more, more preferably 15 mS / cm, and still more preferably 20 mS / cm.
  • the thickness, air permeability and porosity of the separator, and the ionic conductivity of the non-aqueous electrolyte are merely examples.
  • inorganic particles may be present on the surface or inside the separator, and another organic layer may be further applied or laminated on the separator. Further, the separator may include a crosslinked structure. These techniques may be combined as necessary to enhance the safety performance of the non-aqueous secondary battery.
  • the elements described in the first embodiment can be appropriately applied. Therefore, it is possible to manufacture the nonaqueous secondary battery according to the present embodiment by appropriately applying the contents described in the first embodiment.
  • N-methyl-2-pyrrolidone was added as a solvent to the obtained positive electrode mixture so as to have a solid content of 68% by mass and further mixed to prepare a positive electrode mixture-containing slurry.
  • a coating width of 240 to 250 mm, a coating length of 125 mm, and a non-coating length of 20 mm were applied to one surface of an aluminum foil having a thickness of 15 ⁇ m and a width of 280 mm serving as a positive electrode current collector while adjusting the basis weight of the slurry containing the positive electrode mixture.
  • the positive electrode active material layer was rolled by a roll press to a density of 2.9 g / cm 3 to obtain a positive electrode (P1) including the positive electrode active material layer and the positive electrode current collector.
  • the basis weight of the positive electrode active material layer was 23.8 mg / cm 2 , and the mass of the positive electrode active material was 21.9 mg / cm 2 .
  • P2 Positive Electrode
  • A As a positive electrode active material, a composite oxide of lithium, nickel, cobalt and aluminum (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) having a number average particle diameter of 11 ⁇ m; as (B) a conductive additive, and graphite powder having an average particle diameter of 6.5 [mu] m (density 2.26 g / cm 3) and the number average acetylene black powder having a particle diameter of 48 nm (density 1.95g / cm 3), (c ) Polyvinylidene fluoride (PVDF; density 1.75 g / cm 3 ) as a binder was mixed at a mass ratio of 92: 4: 4 to obtain a positive electrode mixture.
  • PVDF Polyvinylidene fluoride
  • N-methyl-2-pyrrolidone was added as a solvent to the obtained positive electrode mixture so as to have a solid content of 68% by mass and further mixed to prepare a positive electrode mixture-containing slurry.
  • a coating width of 240 to 250 mm, a coating length of 125 mm, and a non-coating length of 20 mm were applied to one surface of an aluminum foil having a thickness of 15 ⁇ m and a width of 280 mm serving as a positive electrode current collector while adjusting the basis weight of the slurry containing the positive electrode mixture.
  • the basis weight of the positive electrode active material layer was 19.3 mg / cm 2 , and the mass of the positive electrode active material was 17.8 mg / cm 2 .
  • N-methyl-2-pyrrolidone was added as a solvent to the obtained positive electrode mixture so as to have a solid content of 68% by mass and further mixed to prepare a positive electrode mixture-containing slurry.
  • a coating width of 98 to 100 mm, a coating length of 200 mm, and a non-coating length of 20 mm were adjusted on one surface of an aluminum foil having a thickness of 20 ⁇ m and a width of 150 mm serving as a positive electrode current collector while adjusting the basis weight of the slurry containing the positive electrode mixture.
  • Negative Electrode (a) As negative electrode active material, artificial graphite powder (density 2.23 g / cm 3 ) having a number average particle diameter of 12.7 ⁇ m, and (b) conductive auxiliary agent Acetylene black powder having a number average particle diameter of 48 nm (density 1.95 g / cm 3 ), (c) a carboxymethyl cellulose (density 1.60 g / cm 3 ) solution (1.83 mass% solid content) as a binder and A diene-based rubber (glass transition temperature: -5 ° C., number average particle diameter when dried: 120 nm, density: 1.00 g / cm 3 , dispersion medium: water, solid content concentration: 40% by mass) and 95.7: The mixture was mixed at a solid content mass ratio of 0.5: 3.8 to obtain a negative electrode mixture.
  • Water was added as a solvent to the obtained negative electrode mixture so as to have a solid content of 45% by mass and further mixed to prepare a negative electrode mixture-containing slurry.
  • a coating width of 240 to 250 mm, a coating length of 125 mm, and a non-coating length of 20 mm were adjusted while controlling the basis weight of the slurry containing the negative electrode mixture.
  • the basis weight of the negative electrode active material layer was 11.9 mg / cm 2 , and the mass of the negative electrode active material was 11.4 mg / cm 2 .
  • Negative Electrode (a) As negative electrode active material, artificial graphite powder having a number average particle diameter of 12.7 ⁇ m (density 2.23 g / cm 3 ), and (b) conductive auxiliary agent 90. a carbon black powder for battery (SUPER-P (registered trademark) manufactured by Imerys Graphite & Carbon Co.) and (c) polyvinylidene fluoride (PVDF; density 1.75 g / cm 3 ) as a binder. The mixture was mixed at a solid content mass ratio of 0: 3.0: 7.0 to obtain a negative electrode mixture.
  • SUPER-P registered trademark
  • PVDF polyvinylidene fluoride
  • N-Methyl-2-pyrrolidone was added as a solvent to the obtained negative electrode mixture so as to have a solid content of 45% by mass and further mixed to prepare a negative electrode mixture-containing slurry.
  • a coating width of 98 to 101 mm, a coating length of 200 mm, and a non-coating length of 20 mm were adjusted while controlling the basis weight of the slurry containing the negative electrode mixture.
  • the battery cap was inserted and caulked with a caulking machine.
  • the overflowed non-aqueous electrolyte was wiped clean with a waste cloth.
  • the laminate was kept at 25 ° C. for 12 hours, and the laminated body was sufficiently adapted to the non-aqueous electrolyte to obtain a coin-type non-aqueous secondary battery.
  • 1C means a current value at which a fully charged battery is discharged at a constant current and the discharge is expected to be completed in one hour. It means a current value which is expected to be discharged from the fully charged state at a constant current and to be completed in one hour.
  • the residual discharge capacity at this time was B.
  • Remaining capacity retention rate (0.3 C residual discharge capacity B after full charge storage at 85 ° C./0.3 C initial capacity A before full charge storage test at 85 ° C.) ⁇ 100 [%]
  • the ambient temperature was set to 25 ° C., and the battery was charged with a constant current of 6 mA corresponding to 1 C. After reaching 2 V, the battery was charged at a constant voltage of 4.2 V for 1.5 hours. The recovery charge capacity at this time was C. Thereafter, the battery was discharged to 3.0 V at a current value of 1.8 mA corresponding to 0.3 C. The recovery discharge capacity at this time was D.
  • the recovery test measurement values the post-recovery charge / discharge efficiency and the recovery capacity retention rate were calculated based on the following formula.
  • (4-2) Storage test at 85 ° C. full charge of coin-type non-aqueous secondary battery
  • the ambient temperature of the coin-type non-aqueous secondary battery subjected to the first charge / discharge treatment according to the method described in (4-1) above is 25.
  • the battery was charged at a constant voltage of 4.2 V for 1.5 hours.
  • this coin-type non-aqueous secondary battery was stored in a thermostat at 85 ° C. for 4 hours. Thereafter, the ambient temperature was returned to 25 ° C., and the battery was discharged to 3.0 V at a current value of 0.9 mA corresponding to 0.3 C.
  • the residual discharge capacity at this time was B.
  • Remaining capacity retention rate (0.3 C residual discharge capacity B after full charge storage at 85 ° C./0.3 C initial capacity A before full charge storage test at 85 ° C.) ⁇ 100 [%]
  • the ambient temperature was set to 25 ° C., and the battery was charged at a constant current of 3 mA corresponding to 1 C. After reaching 2 V, the battery was charged at a constant voltage of 4.2 V for 1.5 hours.
  • the recovery charge capacity at this time was C.
  • the battery was discharged to 3.0 V at a current value of 0.9 mA corresponding to 0.3 C.
  • the recovery discharge capacity at this time was D.
  • the post-recovery charge / discharge efficiency and the recovery capacity retention rate were calculated based on the following formula.
  • Charge / discharge efficiency after recovery (0.3 C recovery discharge capacity D after 85 ° C. full charge storage test / 1 C recovery charge capacity C after 85 ° C. full charge storage test) ⁇ 100 [%]
  • Recovery capacity retention rate (0.3 C recovery discharge capacity after 85 ° C. full charge storage test / 0.3 C initial capacity A before 85 ° C. full charge storage test) ⁇ 100 [%]
  • Examples 1 to 6 and Comparative Examples 1 to 4 Using the positive electrode (P1), the negative electrode (N1), and the non-aqueous electrolyte shown in Table 1, a coin-type non-aqueous secondary battery was prepared according to the method described in (2) above, and the procedure of (3-1) was performed. The first charge / discharge process of each coin-type non-aqueous secondary battery was performed according to the above. The initial efficiency of the coin-type non-aqueous secondary batteries of Examples 1 to 6, Comparative Example 1, and Comparative Example 4 exceeded the acceptable level of 84%. Next, each coin-type non-aqueous secondary battery was evaluated according to the above procedure (3-2). Table 4 shows the test results.
  • the coin-type non-aqueous secondary battery using the non-aqueous electrolyte solution (S8) of Comparative Example 2 exhibited an abnormal value in which the initial charge capacity exceeded the limit, and the charging / discharging device was immediately stopped.
  • acetonitrile is contained as a non-aqueous solvent, it is preferable to enhance the SEI on the negative electrode surface in order to suppress reductive decomposition at the time of first charging, but since no acid anhydride was added, the reductive decomposition of acetonitrile was continued. It is thought that it was easy to proceed.
  • the non-aqueous electrolyte solution (S9) of Comparative Example 3 turned blackish brown after adding the lithium salt. Therefore, continuing the test was abandoned.
  • Japanese Patent Application Laid-Open No. 8-321213 discloses that pyridine used as an additive of the non-aqueous electrolyte (S9) is effective in improving storage characteristics.
  • anhydrous succinate added to enhance SEI on the surface of the negative electrode is described. It is considered that a side reaction occurred with the acid. From this result, it became clear that it was difficult to use acid anhydride and pyridine in combination.
  • Example 7 Using the positive electrode (P3), the negative electrode (N1), and the non-aqueous electrolyte solution (S7) in Table 1, a coin-type non-aqueous secondary battery was produced according to the method described in (2) above. Next, the coin-type non-aqueous secondary battery was evaluated according to the above procedure (3-3). Table 5 shows the test results.
  • Example 7 From a comparison between Example 7 and Comparative Example 5, the general formulas (1) to (4) and (18) as various additives having an effect of suppressing the active point of the positive electrode active material that oxidizes and degrades the nonaqueous electrolyte solution.
  • the compound represented by) When the compound represented by) is directly contacted with the positive electrode, the oxidative deterioration of succinic anhydride is suppressed as compared with the case where the positive electrode without contacting those additives is used, and even after storage at a high temperature. It was confirmed that the 25 ° C. cycle performance was improved.
  • Example 8 to 17 and Comparative Examples 6 to 8 Using the positive electrode (P1), the negative electrode (N1), and the non-aqueous electrolyte shown in Table 2, a coin-type non-aqueous secondary battery was prepared according to the method described in (2) above, and the procedure of (3-1) was performed. The first charge / discharge process of each coin-type non-aqueous secondary battery was performed according to the above. The coin-type non-aqueous secondary batteries of Examples 8 to 17 and Comparative Examples 6 to 8 proceeded to the next evaluation because the initial efficiency exceeded the acceptable level of 84%. Next, each of the coin-type non-aqueous secondary batteries was evaluated according to the above procedures (3-2) and (3-3). Table 6 shows the test results.
  • Example 18 to 23 Using the positive electrode (P1), the negative electrode (N1), and the non-aqueous electrolyte shown in Table 3, a coin-type non-aqueous secondary battery was prepared according to the method described in (2) above, and the procedure of (3-1) was performed. The first charge / discharge process of each coin-type non-aqueous secondary battery was performed according to the above. The coin-type non-aqueous secondary batteries of Examples 18 to 23 and Comparative Examples 6 to 8 proceeded to the next evaluation because the initial efficiency exceeded the acceptable level of 84%. Next, each of the coin-type non-aqueous secondary batteries was evaluated according to the above procedure (3-3). Table 7 shows the test results.
  • Example 24 Using the positive electrode (P4), the negative electrode (N2), and the non-aqueous electrolyte (S17) in Table 2, a coin-type non-aqueous secondary battery was prepared according to the method described in (2) above, and the above-mentioned (4-1) was prepared. ), The first charge / discharge treatment of each coin-type nonaqueous secondary battery was performed. The initial efficiency of the coin-type non-aqueous secondary battery of Example 24 exceeded the acceptable level of 84%, and the process was advanced to the next evaluation. Next, each of the coin-type non-aqueous secondary batteries was evaluated according to the above procedures (4-2) and (4-3). Table 8 shows the test results.
  • N-Methyl-2-pyrrolidone was added as a solvent to the obtained positive electrode mixture and further mixed to prepare a positive electrode mixture-containing slurry.
  • the slurry containing the positive electrode mixture was applied to one surface of an aluminum foil having a thickness of 20 ⁇ m as a positive electrode current collector while adjusting the basis weight, and the solvent was dried and removed in a hot air drying furnace.
  • the positive electrode mixture-containing slurry was applied to the aluminum foil, an uncoated region was formed so that a part of the aluminum foil was exposed.
  • the obtained electrode roll was trimmed on both sides and dried under reduced pressure at 130 ° C. for 8 hours.
  • this positive electrode was cut so that the area of the positive electrode mixture layer was 14 mm ⁇ 20 mm and the exposed portion of the aluminum foil was included. Then, an aluminum lead piece for extracting a current was welded to the exposed portion of the aluminum foil, and vacuum drying was performed at 120 ° C. for 12 hours to obtain a leaded positive electrode.
  • A As a positive electrode active material, a composite oxide of lithium, nickel, manganese, and cobalt (LiNi 0.6 Mn 0.2 Co 0.2 O 2 ), and (B) a conductive additive Acetylene black powder having a number average particle diameter of 48 nm (density 1.95 g / cm 3 ), and (c) polyvinylidene fluoride (PVDF; density 1.75 g / cm 3 ) as a binder, 93: 4: The mixture was mixed at a mass ratio of 3 to obtain a positive electrode mixture.
  • PVDF polyvinylidene fluoride
  • N-Methyl-2-pyrrolidone was added as a solvent to the obtained positive electrode mixture and further mixed to prepare a positive electrode mixture-containing slurry.
  • the slurry containing the positive electrode mixture was applied to one surface of an aluminum foil having a thickness of 20 ⁇ m as a positive electrode current collector while adjusting the basis weight, and the solvent was dried and removed in a hot air drying furnace.
  • the positive electrode mixture-containing slurry was applied to the aluminum foil, an uncoated region was formed so that a part of the aluminum foil was exposed.
  • the obtained electrode roll was trimmed on both sides and dried under reduced pressure at 130 ° C. for 8 hours.
  • the positive electrode active material layer was rolled by a roll press to a density of 2.9 g / cm 3 to obtain a positive electrode (P12) including the positive electrode active material layer and the positive electrode current collector.
  • the basis weight of the positive electrode active material layer was 19.0 mg / cm 2 , and the mass of the positive electrode active material was 17.7 mg / cm 2 .
  • this positive electrode was cut so that the area of the positive electrode mixture layer was 14 mm ⁇ 20 mm and the exposed portion of the aluminum foil was included. Then, an aluminum lead piece for extracting a current was welded to the exposed portion of the aluminum foil, and vacuum drying was performed at 120 ° C. for 12 hours to obtain a leaded positive electrode.
  • Negative Electrode (a) Artificial graphite powder as negative electrode active material, and (b) acetylene black powder having a number average particle diameter of 48 nm as conductive assistant (density 1.95 g / cm 3 ) and (c) polyvinylidene fluoride (PVDF; density 1.75 g / cm 3 ) as a binder were mixed at a solid content mass ratio of 93: 2: 5 to obtain a negative electrode mixture.
  • PVDF polyvinylidene fluoride
  • N-Methyl-2-pyrrolidone was added as a solvent to the obtained negative electrode mixture and further mixed to prepare a negative electrode mixture-containing slurry.
  • the slurry containing the negative electrode mixture was applied to one surface of a copper foil having a thickness of 10 ⁇ m as a negative electrode current collector while adjusting the basis weight, and the solvent was dried and removed in a hot air drying furnace.
  • an uncoated region was formed such that a part of the copper foil was exposed.
  • the obtained electrode roll was trimmed on both sides and dried under reduced pressure at 130 ° C. for 8 hours.
  • the basis weight of the negative electrode active material layer was 11.8 mg / cm 2
  • the mass of the negative electrode active material was 11.0 mg / cm 2 .
  • this negative electrode was cut so that the area of the negative electrode mixture layer was 15 mm ⁇ 21 mm and the exposed portion of the copper foil was included. Then, a lead piece made of nickel for extracting a current was welded to the exposed portion of the copper foil, and vacuum drying was performed at 80 ° C. for 12 hours to obtain a negative electrode with a lead.
  • Negative Electrode (a) Artificial graphite powder as negative electrode active material, and (b) acetylene black powder with a number average particle diameter of 48 nm as conductive assistant (density 1.95 g / cm 3 ) and (c) a carboxymethylcellulose (density: 1.60 g / cm 3 ) solution (solids concentration: 1.83% by mass) and a diene rubber (glass transition temperature: ⁇ 5 ° C., number average upon drying) as binders (Particle size: 120 nm, density: 1.00 g / cm 3 , dispersion medium: water, solid content concentration: 40% by mass) at a solid content mass ratio of 97.5: 1.0: 1.5. A mixture was obtained.
  • a negative electrode mixture-containing slurry Water was added as a solvent to the obtained negative electrode mixture so as to have a solid content of 45% by mass and further mixed to prepare a negative electrode mixture-containing slurry.
  • the slurry containing the negative electrode mixture was applied to one surface of a copper foil having a thickness of 8 ⁇ m as a negative electrode current collector while controlling the basis weight, and the solvent was dried and removed in a hot air drying furnace.
  • an uncoated region was formed such that a part of the copper foil was exposed.
  • the obtained electrode roll was trimmed on both sides and dried under reduced pressure at 80 ° C. for 12 hours.
  • the negative electrode active material layer was rolled by a roll press to a density of 1.45 g / cm 3 to obtain a negative electrode (N12) including the negative electrode active material layer and the negative electrode current collector.
  • Basis weight of the negative electrode active material layer 10.6 mg / cm 2
  • the mass of the negative electrode active material was 10.3 mg / cm 2.
  • this negative electrode was cut so that the area of the negative electrode mixture layer was 15 mm ⁇ 21 mm and the exposed portion of the copper foil was included. Then, a lead piece made of nickel for extracting a current was welded to the exposed portion of the copper foil, and vacuum drying was performed at 80 ° C. for 12 hours to obtain a negative electrode with a lead.
  • a positive electrode with a lead and a negative electrode with a lead are placed on a polyethylene microporous membrane separator (thickness 21 ⁇ m, air permeable) so that the mixture-applied surface of each electrode faces each other. (Degree: 285 seconds / 100 cm 3 , porosity: 41%) to form a laminated electrode body.
  • This laminated electrode body was housed in a 100 mm ⁇ 60 mm aluminum laminate sheet exterior, and vacuum-dried at 80 ° C. for 5 hours to remove moisture.
  • single-layer laminated battery has a design capacity value of 7.5 mAh and a rated voltage value of 4.2 V.
  • the single-layer laminated nonaqueous secondary battery was disassembled under an argon atmosphere, the positive electrode and the negative electrode were taken out, washed with diethyl carbonate, and dried. Under an argon atmosphere, each of the positive electrode piece and the negative electrode piece was placed in a glass screw tube, and 1 mL of heavy water was injected using a syringe, and sealed with a lid. After leaving still for 72 hours to extract the electrode coating, it was filtered with a cotton plug using a Pasteur pipette filled with glass wool to obtain an extract. The extract was further diluted 10-fold with distilled water, centrifuged (12000 rpm, 15 minutes) to remove solids, and subjected to LC-MS measurement.
  • the measuring apparatus was used by connecting a UPLC liquid chromatograph manufactured by Nippon Waters Co., Ltd. and a SYNAPT G2 mass spectrometer manufactured by Nippon Waters Co., Ltd.
  • the column used was ACQUITY UPLC BEH C18 (1.7 ⁇ m, 2.1 mm ⁇ 50 mm) manufactured by Japan Waters Co., Ltd.
  • the column temperature was 40 ° C. and the flow rate was 0.3 mL / min.
  • As the detector a photodiode array (200 to 400 nm) was used.
  • phase A water containing 0.1% by volume of formic acid was used as the phase A, and acetonitrile containing 0.1% by volume of formic acid was used as the phase B, and gradient elution was performed as shown in Table 9 below.
  • the sample injection volume was 2 ⁇ L.
  • ionization used electrospray ionization (ESI + and ESI-).
  • the scan range of m / z was 50-1200.
  • Table 10 shows the LC-MS result of the extract in Comparative Example 9.
  • Examples 25 to 28 and Comparative Example 10 Using the positive electrode (P11), the positive electrode (P13), the negative electrode (N11), and the nonaqueous electrolyte shown in Table 11, a single-layer laminated nonaqueous secondary battery was prepared according to the method described in (5) above. The initial charge / discharge treatment of the single-layer laminated nonaqueous secondary battery was performed according to the procedure of (6-1). The single-layer laminated nonaqueous secondary batteries of Examples 25 to 28 and Comparative Example 10 had the initial efficiencies exceeding the acceptable level of 84%, and were therefore subjected to the next evaluation. Next, each of the single-layer laminated nonaqueous secondary batteries was evaluated according to the above procedure (6-3). Table 12 shows the test results.
  • the single-layer laminated nonaqueous secondary battery of Example 27 showing the highest cycle performance was disassembled in an argon atmosphere, the positive electrode and the negative electrode were taken out, washed with diethyl carbonate, and dried.
  • each of the positive electrode piece and the negative electrode piece was placed in a glass screw tube, and 1 mL of heavy water was injected using a syringe, and sealed with a lid. After leaving still for 72 hours to extract the electrode coating, it was filtered with a cotton plug using a Pasteur pipette filled with glass wool to obtain an extract. Next, the obtained extract was put into an NMR tube having a diameter of 3 mm and sealed.
  • tetrafluorobenzene manufactured by Tokyo Chemical Industry Co., Ltd.
  • heavy chloroform manufactured by Sigma-Aldrich
  • 1 H-NMR measurement was performed by a double tube method.
  • a heavy aqueous solution of dimethyl sulfoxide concentration: 0.398 mg / mL was prepared as a reference substance for quantification, and 1 H-NMR measurement was similarly performed.
  • the measuring apparatus used was a JNM-ECS-400 type FT NMR apparatus manufactured by JEOL RESONANCE CO., LTD.
  • a lock solvent deuterated chloroform was used, the number of integration was 256 times, and tetramethylsilane (0 ppm) was used as a chemical shift standard.
  • the integral value of the peak attributed to the proton of tetrafluorobenzene was set to 2000, and the integral value corresponding to one proton per unit concentration was obtained from the integral value of the signal of dimethyl sulfoxide as the reference substance, and the value was obtained.
  • Table 13 below shows the 1 H-NMR results of the positive electrode and negative electrode extracts in Example 27.
  • Example 27 As shown in Table 13 above, from the results of 1 H-NMR measurement, in Example 27, compounds represented by the above general formulas (4A) to (6A) were confirmed.
  • Example 29 and 30 Using the positive electrode (P12), the negative electrode (N12), and the nonaqueous electrolyte shown in Table 11, a single-layer laminated nonaqueous secondary battery was prepared according to the method described in (5) above, and the above (6-1) The first charge / discharge treatment of a single-layer laminated nonaqueous secondary battery was performed according to the procedure described in (1).
  • the single-layer laminated non-aqueous secondary batteries of Examples 29 and 30 had an initial efficiency exceeding the acceptable level of 84%, and were therefore subjected to the next evaluation.
  • each single-layer laminated non-aqueous secondary battery was evaluated according to the above procedure (6-4). Table 14 shows the test results.
  • the nonaqueous secondary battery according to the present embodiment can effectively suppress the active point of the positive electrode active material that oxidizes and degrades the nonaqueous electrolyte while keeping the internal resistance in a low state. Yes, the deterioration phenomenon when stored at high temperature can be suppressed.
  • the non-aqueous electrolyte and the non-aqueous secondary battery of the present invention include, for example, rechargeable batteries for portable devices such as mobile phones, portable audio devices, personal computers, and IC (Integrated Circuit) tags; hybrid vehicles, plug-in hybrid vehicles, Rechargeable batteries for automobiles such as electric vehicles; low-voltage power supplies such as 12 V-class power supplies, 24 V-class power supplies, and 48 V-class power supplies; use as residential power storage systems, IoT devices, and the like are expected. Further, the non-aqueous secondary battery of the present invention can also be applied to applications for cold regions, outdoor applications in summer, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水系溶媒と、リチウム塩と、下記一般式(1): R1-(S)n-R2 ・・・・・(1) 下記一般式(2): X-Si(OR3(3-m)4 m・・・・・(2) 下記一般式(3): 下記一般式(4): 及び下記一般式(18) X-Si(OR3'OR3(3-m)4 m・・・・・(18) で表される化合物から成る群より選ばれる少なくとも1種の化合物と、を含有する、非水系電解液が提供される。

Description

非水系電解液及び非水系二次電池
 本発明は、非水系電解液及び非水系二次電池に関する。
 リチウムイオン電池をはじめとする非水系二次電池は、軽量、高エネルギー及び長寿命であるという特徴があり、各種携帯用電子機器電源として広範囲に用いられている。近年では、非水系二次電池は、電動工具等のパワーツールに代表される産業用、及び電気自動車、電動式自転車における車載用としても広がりを見せており、更には住宅用蓄電システム等の電力貯蔵分野においても注目されている。
 常温作動型のリチウムイオン電池では、電解液として非水系電解液を使用することが、実用の見地から望ましい。例えば、環状炭酸エステル等の高誘電性溶媒と、低級鎖状炭酸エステル等の低粘性溶媒と、の組み合わせが、一般的な溶媒として例示される。また、負極表面にSEI(Solid Electrolyte Interface:固体電解質界面)を形成し、これによって非水系溶媒の還元分解を抑制するため、ビニレンカーボネート等の有機化合物に例示される電極保護用添加剤を添加することが望ましい。
 ところで、電気自動車を中心とした大型蓄電産業の拡大に伴い、非水系二次電池の更なる高エネルギー密度化が切望されており、研究開発も活況である。
 特許文献1には、高イオン伝導性電解液によって厚膜電極で作動する非水系二次電池が開示されている。また、複数の電極保護用添加剤を組み合わせることによって、SEIを強化するための方法が報告されている。同様に、特許文献2でも、特定の有機リチウム塩によってSEIが強化され、高イオン伝導性電解液の分解が抑制されることを報告している。
 非特許文献1には、層状岩塩型の正極活物質において、Niの含有率が高まるほど、エネルギー密度が高まることが報告されている。
 しかしながら、非水系二次電池では、エネルギー密度が向上するものの、長期耐久性能に劣るという課題が残っている。例えば、非特許文献2では、特有の劣化因子に言及しており、Ni比率が高いほど低電圧で劣化が進行すると記載されている。非特許文献3では、高誘電率溶媒の分解が引き金となって、リチウム塩の分解を誘発するメカニズムが報告されている。
 また、非水系二次電池に関しては、以下の背景技術も存在する。地球温暖化及び化石燃料枯渇への懸念から、電気自動車を中心とした大型蓄電産業への非水系二次電池の適用が切望されている。しかしながら、電気自動車の普及には、非水系二次電池の更なる高出力化及び高エネルギー密度化の実現が要求される場合がある。これらの要求性能を実現するため、正極及び負極の各々の活物質材料のエネルギー密度を高める研究開発が日々進められている。
 特許文献3には、有機リチウム塩のアニオンの、最適なLUMOエネルギー範囲とHOMOエネルギー範囲とを定めた上で、複数の添加剤を組み合わせることが、負極表面のSEIの耐久性の観点から好ましい旨が記載されている。特許文献4でも、特定のリチウム塩と複数の添加剤とを組み合わせることが、負極表面のSEIの耐久性の観点から好ましい旨が記載されている。
 特許文献5には、電極材料を構成する複合体粒子の空隙率を最適な範囲に設計することで、高容量の負極が膨張、収縮を繰り返すことで引き起こされる、電極劣化を抑制できることが報告されている。特許文献6には、負極活物質の厚みを負極活物質粒子の平均粒子径の2倍以下に設計することで、負極が膨張、収縮を繰り返すことで引き起こされる、抵抗の増加を抑制できることが報告されている。
 特許文献7には、高容量の負極が膨張、収縮を繰り返すことで引き起こされる電池性能の劣化を、添加剤の添加によって抑制できることが記載されている。
国際公開第2013/062056号 国際公開第2012/057311号 国際公開第2012/057311号 国際公開第2013/062056号 特開2003-303588号公報 特開2004-146104号公報 国際公開第2017/077986号
ACS Energy Lett.,2,196-223(2017). J. Power Sources,233,121-130(2013). J. Phys. Chem. Lett.,8,4820-4825(2017).
 しかしながら、高エネルギー密度化を志向したこれらの非水系二次電池は、既存の非水系二次電池と比較して長期耐久性能に劣っており、市販品レベルに達していないことから、未だ本格的な実用化には至っていない。電解液及び電極の双方に、より過酷な環境下での耐久性が求められている。
 層状岩塩型の正極活物質には電解液を酸化劣化させる活性点が本質的に存在する。この活性点は、負極を保護するために添加した化合物を、正極側で意図せず消費してしまう。また、正極側に取り込まれ堆積したこれらの添加剤分解物は、非水系二次電池の内部抵抗増加要因となるだけでなく、リチウム塩の劣化も加速させる。更に、これら添加剤の意図されない消費により、負極表面の保護も不十分となる。
 解体解析の結果に裏付けされたこれらの現象は、本発明者らによって新たに判明した課題であり、特許文献1~3及び非特許文献1~3には一切記載されていない。
 また、非水系二次電池に関しては、以下の課題も存在する。負極の被膜は、非水系電解液の溶解性に十分耐えることができないと、高温環境下における各種試験時に溶解してしまう場合がある。この場合、その溶解部分から非水系電解液の還元分解が進行し、ガス発生又は容量低下等が引き起こされる。
 ここで、特許文献3及び4では、非水系電解液に対する耐溶解性を有する保護被膜の形成(負極における保護被膜の形成)に焦点が当てられている。すなわち、特許文献3及び4に記載の発明は、負極での非水系電解液の還元分解を解決できれば非水系電解液として動作可能である、というものである。
 ところが、特許文献5及び6に記載された負極を用いると、充放電サイクルに伴い活物質自体が大きく膨張、収縮する。このため、充放電サイクルを繰り返すにつれて、初期に形成された保護被膜に欠陥が生じ、そこから非水系電解液の還元分解が生じ、電池性能の劣化に繋がってしまう。そのため、特許文献3及び4に記載された電解液を、膨張、収縮の大きい負極材料に用いるとき、負極の保護被膜は、耐溶解性のみならず、物理的強度にも優れることが求められる。
 他方、特許文献7に記載された添加剤を用いると、負極の膨張、収縮に対する耐久性は向上される傾向にあるが、電解液に対する耐溶解性が不十分となり易い。
 本発明は、上記の事情に鑑みてなされたものである。本発明の目的は、第1に、非水系電解液を酸化劣化させる活性点(正極活物質の活性点)を抑制することによって、優れた負荷特性を発揮することができるとともに高温貯蔵又は充放電サイクルを繰り返したときの各種劣化現象を抑制することができる、非水系電解液及び非水系二次電池を提供することである。
 また、本発明の目的は、第2に、非水系電解液に対する耐溶解性に優れるのみならず、物理的強度にも優れる被膜を負極活物質表面に備えることによって、優れた出力性能を発揮することができるとともに低温及び高温環境下における充放電サイクル時の各種劣化を抑制することができる、非水系二次電池を提供することを目的とする。
 本発明者らは、上記の課題を解決するために鋭意研究を重ねた。その結果、以下の構成を有する非水系電解液又は非水系二次電池を用いることによって上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明を実施するための態様例は以下のとおりである。
[1]
 非水系溶媒と、リチウム塩と、下記一般式(1):
  R1-(S)n-R2 ・・・・・(1)
{式中、R1及びR2は、アリール基若しくはアルコキシシリル基で置換されてよいアルキル基又はアルキル基若しくはアルコキシシリル基で置換されてよいアリール基を示し、そしてnは1~4の整数である。}、
下記一般式(2):
  X-Si(OR3(3-m)4 m・・・・・(2)
{式中、R3及びR4は、アリール基若しくはアルコキシシリル基若しくはハロゲン原子で置換されてよいアルキル基、又はアルキル基若しくはアルコキシシリル基若しくはハロゲン原子で置換されてよいアリール基を示し、そしてXは、下記式(5):
Figure JPOXMLDOC01-appb-C000022
 (式中、kは0~8の整数であり、そして*はSiとの結合個所を示す。)、
下記式(6):
Figure JPOXMLDOC01-appb-C000023
 (式中、jは0~8の整数であり、そして*はSiとの結合個所を示す。)、
下記式(7):
Figure JPOXMLDOC01-appb-C000024
 (式中、hは0~8の整数であり、gは0又は1の整数であり、そして*はSiとの結合個所を示す。)、及び
下記式(17)
Figure JPOXMLDOC01-appb-C000025
 (式中、*はSiとの結合個所を示す。)
で表される基から成る群より選ばれる少なくとも1つを示し、そしてmは0~2の整数である。}、
下記一般式(3):
Figure JPOXMLDOC01-appb-C000026
{式中、Xは各々独立して、前記式(5)~(7)及び(17)で表される基から成る群より選ばれる少なくとも1つを示し、そしてdは0~10000の整数である。}、
下記一般式(4):
Figure JPOXMLDOC01-appb-C000027
{式中、R5は各々独立して、アリール基若しくはハロゲン原子で置換されてよいアルキル基又はアルキル基若しくはハロゲン原子で置換されてよいアリール基を示し、yは2~8の整数であり、そしてXは前記式(5)~(7)及び(17)で表される基から成る群より選ばれる少なくとも1つを示す。}、及び
下記一般式(18):
  X-Si(OR3'OR3(3-m)4 m・・・・・(18)
{式中、R3、R4、X、及びmは、一般式(2)において定義されたとおりであり、かつR’は、アリール基、アルコキシシリル基又はハロゲン原子で置換されてよいアルキレン基である。}
で表される化合物から成る群より選ばれる少なくとも1種の化合物と、を含有する非水系電解液。
[2]
 前記一般式(1)~(4)及び(18)で表される化合物から成る群より選ばれる少なくとも1種の化合物の含有量が、非水系電解液100質量部当たりの量として、0.01~10質量部である、[1]に記載の非水系電解液。
[3]
 前記非水系電解液が酸無水物を含有する、[1]又は[2]に記載の非水系電解液。
[4]
 前記酸無水物が、少なくとも1種の環状酸無水物を含有する、[3]に記載の非水系電解液。
[5]
 前記環状酸無水物が、マロン酸無水物、無水コハク酸、グルタル酸無水物、無水マレイン酸、無水フタル酸、1,2-シクロヘキサンジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、及びナフタレン-1,4,5,8-テトラカルボン酸二無水物から成る群より選ばれる少なくとも1種である、[4]に記載の非水系電解液。
[6]
 前記酸無水物の含有量が、非水系電解液100質量部当たりの量として、0.01~10質量部である、[3]~[5]のいずれか1項に記載の非水系電解液。
[7]
 前記非水系溶媒が、該非水系溶媒の全量当たりの量として、アセトニトリルを5~95体積%含有する、[1]~[6]のいずれか1項に記載の非水系電解液。
[8]
 前記非水系溶媒が環状カーボネートを含有する、[1]~[7]のいずれか1項に記載の非水系電解液。
[9]
 前記環状カーボネートが、ビニレンカーボネート及び/又はフルオロエチレンカーボネートを含有する、[8]に記載の非水系電解液。
[10]
 集電体の片面又は両面に正極活物質層を有する正極と、集電体の片面又は両面に負極活物質層を有する負極と、セパレータと、非水系電解液とを具備する非水系二次電池において、
 前記非水系電解液は、[1]~[9]のいずれか1項に記載の非水系電解液であり、
 前記負極は、下記一般式(4A):
Figure JPOXMLDOC01-appb-C000028
下記一般式(5A):及び
Figure JPOXMLDOC01-appb-C000029
下記一般式(6A):
Figure JPOXMLDOC01-appb-C000030
で表される化合物から成る群より選ばれる少なくとも1種の化合物を含有する非水系二次電池。
[11]
 前記一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種の化合物の含有量が、負極活物質1g当たりの量として、0.01~100mgである、[10]に記載の非水系二次電池。
[12]
 前記正極及び前記負極の双方に、前記一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種の化合物が含まれ、且つ、前記正極に含まれる前記化合物の量が、前記負極に含まれる前記化合物の量より少ない、[10]又は[11]に記載の非水系二次電池。
[13]
 集電体の片面又は両面に正極活物質層を有する正極と、集電体の片面又は両面に負極活物質層を有する負極と、セパレータと、非水系電解液とを具備する非水系二次電池において、
 前記正極及び前記負極の双方に酸無水物の分解物が含まれ、且つ、前記正極に含まれる前記酸無水物の単位面積当たりの分解物量が、前記負極に含まれる前記酸無水物の単位面積当たりの分解物量より少ない非水系二次電池。
[14]
 前記酸無水物の前記分解物が、下記一般式(8):
Figure JPOXMLDOC01-appb-C000031
{式中、R6及びR7は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示し、そしてfは1~3の整数である。}、
下記一般式(9):
Figure JPOXMLDOC01-appb-C000032
{式中、R8及びR9は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}、
下記一般式(10):
Figure JPOXMLDOC01-appb-C000033
{式中、R10及びR11は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}、
下記一般式(11):
Figure JPOXMLDOC01-appb-C000034
{式中、R12及びR13は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}、
下記一般式(12):
Figure JPOXMLDOC01-appb-C000035
{式中、R14及びR15は、ハロゲン原子で置換されてよいアルコキシ基、OH基、又はOLi基を示す。}、及び
下記一般式(13):
Figure JPOXMLDOC01-appb-C000036
{式中、R16~R19は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}
で表される化合物から成る群より選ばれる少なくとも1種の化合物を含有する、[13]に記載の非水系二次電池。
[15]
 前記正極活物質層が、ニッケル(Ni)、マンガン(Mn)、及びコバルト(Co)から成る群より選ばれる少なくとも1種の遷移金属元素を含有する正極活物質を含有する、[13]又は[14]のいずれか1項に記載の非水系二次電池。
[16]
 前記正極活物質が、下記一般式(14):
  LipNiqCorMnstu・・・・・(14)
{式中、Mはアルミニウム(Al)、スズ(Sn)、インジウム(In)、鉄(Fe)、バナジウム(V)、銅(Cu)、マグネシウム(Mg)、チタン(Ti)、亜鉛(Zn)、モリブデン(Mo)、ジルコニウム(Zr)、ストロンチウム(Sr)、及びバリウム(Ba)から成る群より選ばれる少なくとも1種の金属であり、且つ、0<p<1.3、0<q<1.2、0<r<1.2、0≦s<0.5、0≦t<0.3、0.7≦q+r+s+t≦1.2、1.8<u<2.2の範囲であり、そしてpは、電池の充放電状態により決まる値である。}
で表されるリチウム含有金属酸化物から成る群より選ばれる少なくとも1種を含有する、[15]に記載の非水系二次電池。
[17]
 前記一般式(14)で表されるリチウム含有金属酸化物のニッケル(Ni)含有比qが、0.5<q<1.2である、[16]に記載の非水系二次電池。
[18]
 前記正極活物質の表面が、ジルコニウム(Zr)、チタン(Ti)、アルミニウム(Al)、及びニオブ(Nb)から成る群より選ばれる少なくとも1種の金属元素を含有する化合物で被覆された、[15]~[17]のいずれか1項に記載の非水系二次電池。
[19]
 前記正極、前記負極、及び前記セパレータから成る群より選ばれる少なくとも1種の電池部材が、下記一般式(1):
  R1-(S)n-R2 ・・・・・(1)
{式中、R1及びR2は、アリール基若しくはアルコキシシリル基で置換されてよいアルキル基又はアルキル基若しくはアルコキシシリル基で置換されてよいアリール基を示し、そしてnは1~4の整数である。}、
下記一般式(2):
  X-Si(OR3(3-m)4 m・・・・・(2)
{式中、R3及びR4は、アリール基若しくはアルコキシシリル基若しくはハロゲン原子で置換されてよいアルキル基、又はアルキル基若しくはアルコキシシリル基若しくはハロゲン原子で置換されてよいアリール基を示し、そしてXは、下記式(5):
Figure JPOXMLDOC01-appb-C000037
 (式中、kは0~8の整数であり、そして*はSiとの結合個所を示す。)、
下記式(6):
Figure JPOXMLDOC01-appb-C000038
 (式中、jは0~8の整数であり、そして*はSiとの結合個所を示す。)、
下記式(7):
Figure JPOXMLDOC01-appb-C000039
 (式中、hは0~8の整数であり、gは0又は1の整数であり、そして*はSiとの結合個所を示す。)、及び
下記式(17)
Figure JPOXMLDOC01-appb-C000040
 (式中、*はSiとの結合個所を示す。)
で表される基から成る群より選ばれる少なくとも1つを示し、そしてmは0~2の整数である。}、
下記一般式(3):
Figure JPOXMLDOC01-appb-C000041
{式中、Xは各々独立して、前記式(5)~(7)及び(17)で表される基から成る群より選ばれる少なくとも1つを示し、そしてdは0~10000の整数である。}、
下記一般式(4):
Figure JPOXMLDOC01-appb-C000042
{式中、R5は各々独立して、アリール基若しくはハロゲン原子で置換されてよいアルキル基又はアルキル基若しくはハロゲン原子で置換されてよいアリール基を示し、yは2~8の整数であり、そしてXは前記式(5)~(7)及び(17)で表される基から成る群より選ばれる少なくとも1つを示す。}、及び
下記一般式(18):
  X-Si(OR3'OR3(3-m)4 m・・・・・(18)
{式中、R3、R4、X、及びmは、一般式(2)において定義されたとおりであり、かつR’は、アリール基、アルコキシシリル基又はハロゲン原子で置換されてよいアルキレン基である。}
で表される化合物から成る群より選ばれる少なくとも1種の化合物を含有する、[10]~[18]のいずれか一項に記載の非水系二次電池。
 本発明によれば、第1に、非水系電解液を酸化劣化させる活性点(正極活物質の活性点)を抑制することによって、優れた負荷特性を発揮することができるとともに高温貯蔵又は充放電サイクルを繰り返したときの各種劣化現象を抑制することができる、非水系電解液及び非水系二次電池を提供することができる。
 本発明によれば、第2に、非水系電解液に対する耐溶解性に優れるのみならず、物理的強度にも優れる被膜を負極活物質表面に備えることによって、優れた出力性能を発揮することができるとともに低温及び高温環境下における充放電サイクル時の各種劣化を抑制することができる、非水系二次電池を提供することができる。
本実施形態に係る非水系二次電池の一例を概略的に示す平面図である。 図1の非水系二次電池のA-A線断面図である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。本発明は、以下の実施形態に限定されず、その要旨を逸脱しない範囲で様々な変形が可能である。本明細書において「~」を用いて記載される数値範囲は、その前後に記載される数値を含む。
<第1の実施形態>
《非水系電解液》
 本実施形態における「非水系電解液」とは、非水系電解液の全量に対し、水が1質量%以下の電解液を指す。本実施形態に係る非水系電解液は、水分を極力含まないことが好ましいが、本発明の課題解決を阻害しない範囲であれば、ごく微量の水分を含有してよい。そのような水分の含有量は、非水系電解液の全量当たりの量として300質量ppm以下であり、好ましくは200質量ppm以下である。非水系電解液については、本発明の課題解決を達成するための構成を具備していれば、その他の構成要素については、リチウムイオン電池に用いられる既知の非水系電解液における構成材料を、適宜選択して適用することができる。
 本実施形態に係る非水系電解液は、
 非水系溶媒と、リチウム塩と、下記一般式(1):
  R1-(S)n-R2 ・・・・・(1)
{式中、R1及びR2は、アリール基若しくはアルコキシシリル基で置換されてよいアルキル基又はアルキル基若しくはアルコキシシリル基で置換されてよいアリール基を示し、そしてnは1~4の整数である。}、
下記一般式(2):
  X-Si(OR3(3-m)4 m・・・・・(2)
{式中、R3及びR4は、アリール基若しくはアルコキシシリル基若しくはハロゲン原子で置換されてよいアルキル基、又はアルキル基若しくはアルコキシシリル基若しくはハロゲン原子で置換されてよいアリール基を示し、そしてXは、下記式(5):
Figure JPOXMLDOC01-appb-C000043
 (式中、kは0~8の整数であり、そして*はSiとの結合個所を示す。)、
下記式(6):
Figure JPOXMLDOC01-appb-C000044
 (式中、jは0~8の整数であり、そして*はSiとの結合個所を示す。)、
下記式(7):
Figure JPOXMLDOC01-appb-C000045
 (式中、hは0~8の整数であり、gは0又は1の整数であり、そして*はSiとの結合個所を示す。)、及び
下記式(17)
Figure JPOXMLDOC01-appb-C000046
 (式中、*はSiとの結合個所を示す。)
で表される基から成る群より選ばれる少なくとも1つを示し、そしてmは0~2の整数である。}、
下記一般式(3):
Figure JPOXMLDOC01-appb-C000047
{式中、Xは各々独立して、式(5)~(7)及び(17)で表される基から成る群より選ばれる少なくとも1つを示し、そしてdは0~10000の整数である。}、
下記一般式(4):
Figure JPOXMLDOC01-appb-C000048
{式中、R5は各々独立して、アリール基若しくはハロゲン原子で置換されてよいアルキル基又はアルキル基若しくはハロゲン原子で置換されてよいアリール基を示し、yは2~8の整数であり、そしてXは式(5)~(7)及び(17)で表される基から成る群より選ばれる少なくとも1つを示す。}、及び
下記一般式(18):
  X-Si(OR3'OR3(3-m)4 m・・・・・(18)
{式中、R3、R4、X、及びmは、一般式(2)において定義されたとおりであり、かつR’は、アリール基、アルコキシシリル基又はハロゲン原子で置換されてよいアルキレン基である。}
で表される化合物から成る群より選ばれる少なくとも1種の化合物と、を含有する。
 一般式(1)~(4)及び(18)で表される化合物には、非水系電解液を酸化劣化させる活性点(正極活物質の活性点)を抑制する効果がある。よって、このような化合物を用いることによって、優れた負荷特性を発揮するとともに、高温貯蔵又は充放電サイクルを繰り返したときの各種劣化現象を抑制することができる、非水系電解液及び非水系二次電池を提供することができる。
 一般式(1)~(4)及び(18)で表される化合物の具体例としては、例えば、ジ-tert-ブチルジスルフィド、ビス[3-(トリエトキシシリル)プロピル]テトラスルフィド、アリルスルフィド、アミルメチルスルフィド、アミルスルフィド、アリルプロピルスルフィド、アリルメチルスルフィド、アリルメチルジスルフィド、アリルプロピルジスルフィド、ベンジルフェニルスルフィド、ジベンジルジスルフィド、ベンジルスルフィド、ブチルメチルスルフィド、ブチルスルフィド、tert-ブチルジスルフィド、ベンジルメチルスルフィド、tert-ブチルメチルスルフィド、4-tert-ブチルジフェニルスルフィド、ビス(トリメチルシリルメチル)スルフィド、シクロプロピルフェニルスルフィド 、ジアリルジスルフィド、ジアミルジスルフィド、ジブチルジスルフィド、ジ-tert-ドデシルジスルフィド、ジエチルジスルフィド、ジイソブチルジスルフィド、ジメチルジスルフィド、ジ-tert-オクチルジスルフィド、ジ(α-フェニルエチル)スルフィド、ジプロピルジスルフィド、ジデシルジスルフィド、ドデシルスルフィド、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、デシルメチルスルフィド、ジイソプロピルジスルフィド、ジメチルトリスルフィド、ドデシルメチルスルフィド、ジイソプロピルトリスルフィド、エチレンスルフィド、エチルメチルスルフィド、エチルスルフィド、エチルプロピルスルフィド、エチルイソプロピルスルフィド、エチルビニルスルフィド、エチルフェニルスルフィド、ヘプチルスルフィド、ヘキシルスルフィド、ヘキサデシルスルフィド、ヘプチルメチルスルフィド、ジイソアミルジスルフィド、イソブチルスルフィド、イソプロピルスルフィド、イソブチレンスルフィド、イソプロピルメチルスルフィド、メチルn-オクチルスルフィド、メチルスルフィド、メチルプロピルジスルフィド、メチルプロピルスルフィド、ノニルスルフィド、オクタデシルスルフィド、ペンタメチレンスルフィド、ジフェニルジスルフィド、フェニルスルフィド、プロピレンスルフィド、プロピルスルフィド、イソプロピルプロピルスルフィド、フェニルビニルスルフィド、フェニルp-トリルスルフィド、チオアニソール、トリメチレンスルフィド、テトラデシルスルフィド、ジ-p-トリルジスルフィド、トリス(エチルチオ)メタン、トリエトキシビニルシラン、アリルトリエトキシシラン、トリエトキシ(3-グリシジルオキシプロピル)シラン、2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサン、アリルトリス(トリメチルシリルオキシ)シラン 、1,3-ジビニルテトラメチルジシロキサン、1,1,1,3,5,5,5-ヘプタメチル-3-(3-グリシジルオキシプロピル)トリシロキサン 、2,4,6-トリメチル-2,4,6-トリビニルシクロトリシロキサン、アリルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、[8-(グリシジルオキシ)-n-オクチル]トリメトキシシラン、トリメトキシ(4-ビニルフェニル)シラン 、トリメトキシ(7-オクテン-1-イル)シラン、ビニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ジエトキシメチルビニルシラン、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、ジメトキシメチルビニルシラン 、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、ビニル基末端ジメチルポリシロキサン、アリル基末端ジメチルポリシロキサン、エポシキ基末端ジメチルポリシロキサン、グリシジル基末端ジメチルポリシロキサン、シクロエポキシ基末端ジメチルポリシロキサン、アルキルシクロエポキシ基末端ジメチルポリシロキサン等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 一般式(1)~(4)及び(18)で表される化合物の含有量は、非水系電解液を構成する全ての成分の合計質量に対する質量百分率により算出される。一般式(1)~(4)及び(18)で表される化合物から成る群より選ばれる少なくとも1種の化合物の含有量は、非水系電解液の全量(すなわち、非水系電解液100質量部)当たりの量として、0.01質量%以上10質量%以下であることが好ましく、0.05質量%以上1質量%以下であることがより好ましく、0.1質量%以上0.5質量%以下であることが更に好ましい。この範囲にあることによって、非水系二次電池の内部抵抗を低い状態に保ちながら、非水系電解液を酸化劣化させる正極活物質の活性点を効果的に抑制することができる。
 一般式(1)~(4)及び(18)で表される化合物は、非水系電解液に含有されることが好ましい。他方、一般式(1)~(4)及び(18)で表される化合物が、非水系二次電池の中で作用することが可能であればよいので、正極、負極、及びセパレータから成る群より選ばれる少なくとも1種の電池部材が、それらの化合物を含有してよい。それらの化合物を電池部材に含有させる方法としては、例えば、電池部材作製時にその電池部材に含有させてよいし、電池部材への塗布、浸漬又は噴霧乾燥等に代表される後処理によってその電池部材に含浸させてよい。
 本実施形態に係る非水系電解液は、非水系溶媒と、一般式(1)~(4)及び(18)で表される化合物と、に加えて、酸無水物、電極保護用添加剤、及びその他の任意的添加剤等を含んでよい。
 本実施形態に係る非水系電解液は、非水系溶媒と、各種添加剤とを、任意の手段で混合して製造することができる。ここで、各種添加剤は、一般式(1)~(4)及び(18)で表される化合物を含む。本実施形態において、各種添加剤とは、一般式(1)~(4)及び(18)で表される化合物と、必要により含まれる、酸無水物、電極保護用添加剤、及びその他の任意的添加剤等と、の総称である。
〈非水系溶媒〉
 本実施形態でいう「非水系溶媒」とは、非水系電解液中から、リチウム塩及び各種添加剤を除いた要素をいう。非水系電解液に電極保護用添加剤が含まれている場合、「非水系溶媒」とは、非水系電解液中から、リチウム塩と、電極保護用添加剤以外の添加剤とを除いた要素をいう。非水系溶媒としては、例えば、メタノール、エタノール等のアルコール類;非プロトン性溶媒等が挙げられる。中でも、非水系溶媒としては、非プロトン性溶媒が好ましい。本発明の課題解決を阻害しない範囲であれば、非水系溶媒は、非プロトン性溶媒以外の溶媒を含有してよい。
 例えば、非水系電解液に係る非水系溶媒は、非プロトン性溶媒としてアセトニトリルを含有することができる。非水系溶媒がアセトニトリルを含有することにより、非水系電解液のイオン伝導性が向上することから、電池内におけるリチウムイオンの拡散性を高めることができる。そのため、非水系電解液がアセトニトリルを含有する場合、特に正極活物質層を厚くして正極活物質の充填量を高めた正極においても、高負荷での放電時にはリチウムイオンが到達し難い集電体近傍の領域にまで、リチウムイオンが良好に拡散できるようになる。よって、高負荷放電時にも十分な容量を引き出すことが可能となり、負荷特性に優れた非水系二次電池を得ることができる。
 また、非水系溶媒がアセトニトリルを含有することにより、非水系二次電池の急速充電特性を高めることができる。非水系二次電池の定電流(CC)-定電圧(CV)充電では、CV充電期間における単位時間当たりの充電容量よりも、CC充電期間における単位時間当たりの容量の方が大きい。非水系電解液の非水系溶媒にアセトニトリルを使用する場合、CC充電できる領域を大きく(CC充電の時間を長く)できる他、充電電流を高めることもできるため、非水系二次電池の充電開始から満充電状態にするまでの時間を大幅に短縮できる。
 なお、アセトニトリルは、電気化学的に還元分解され易い。そのため、アセトニトリルを用いる場合、非水系溶媒としてアセトニトリルとともに他の溶媒(例えば、アセトニトリル以外の非プロトン性溶媒)を併用すること、及び/又は、電極への保護被膜形成のための電極保護用添加剤を添加すること、を行うことが好ましい。
 アセトニトリルの含有量は、非水系溶媒の全量当たりの量として、5~95体積%であることが好ましい。アセトニトリルの含有量は、非水系溶媒の全量当たりの量として、20体積%以上又は30体積%以上であることがより好ましく、40体積%以上であることが更に好ましい。この値は、85体積%以下であることがより好ましく、66体積%以下であることが更に好ましい。アセトニトリルの含有量が、非水系溶媒の全量当たりの量として5体積%以上である場合、イオン伝導度が増大して高出力特性を発現できる傾向にあり、更に、リチウム塩の溶解を促進することができる。後述の添加剤が電池の内部抵抗の増加を抑制するため、非水系溶媒中のアセトニトリルの含有量が上記の範囲内にある場合、アセトニトリルの優れた性能を維持しながら、高温サイクル特性及びその他の電池特性を一層良好なものとすることができる傾向にある。
 アセトニトリル以外の非プロトン性溶媒としては、例えば、環状カーボネート、フルオロエチレンカーボネート、ラクトン、硫黄原子を有する一般式(1)以外の有機化合物、鎖状フッ素化カーボネート、環状エーテル、アセトニトリル以外のモノニトリル、アルコキシ基置換ニトリル、ジニトリル、環状ニトリル、短鎖脂肪酸エステル、鎖状エーテル、フッ素化エーテル、ケトン、前記非プロトン性溶媒のH原子の一部または全部をハロゲン原子で置換した化合物等が挙げられる。
 環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、トランス-2,3-ブチレンカーボネート、シス-2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、トランス-2,3-ペンチレンカーボネート、シス-2,3-ペンチレンカーボネート、ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネート;
 フルオロエチレンカーボネートとしては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、シス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、トランス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4,5,5-テトラフルオロ-1,3-ジオキソラン-2-オン、及び4,4,5-トリフルオロ-5-メチル-1,3-ジオキソラン-2-オン;
 ラクトンとしては、γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、及びε-カプロラクトン;
 硫黄原子を有する一般式(1)以外の有機化合物としては、例えば、エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-スルホレン、3-メチルスルホラン、1,3-プロパンスルトン、1,4-ブタンスルトン、1-プロペン1,3-スルトン、ジメチルスルホキシド、テトラメチレンスルホキシド、及びエチレングリコールサルファイト;
 鎖状カーボネートとしては、例えば、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート; 
 環状エーテルとしては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、及び1,3-ジオキサン;
 アセトニトリル以外のモノニトリルとしては、例えば、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、及びアクリロニトリル;
 アルコキシ基置換ニトリルとしては、例えば、メトキシアセトニトリル及び3-メトキシプロピオニトリル;
 ジニトリルとしては、例えば、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、1,4-ジシアノヘプタン、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、2,6-ジシアノヘプタン、1,8-ジシアノオクタン、2,7-ジシアノオクタン、1,9-ジシアノノナン、2,8-ジシアノノナン、1,10-ジシアノデカン、1,6-ジシアノデカン、及び2,4-ジメチルグルタロニトリル;
 環状ニトリルとしては、例えば、ベンゾニトリル;
 短鎖脂肪酸エステルとしては、例えば、酢酸メチル、プロピオン酸メチル、イソ酪酸メチル、酪酸メチル、イソ吉草酸メチル、吉草酸メチル、ピバル酸メチル、ヒドロアンゲリカ酸メチル、カプロン酸メチル、酢酸エチル、プロピオン酸エチル、イソ酪酸エチル、酪酸エチル、イソ吉草酸エチル、吉草酸エチル、ピバル酸エチル、ヒドロアンゲリカ酸エチル、カプロン酸エチル、酢酸プロピル、プロピオン酸プロピル、イソ酪酸プロピル、酪酸プロピル、イソ吉草酸プロピル、吉草酸プロピル、ピバル酸プロピル、ヒドロアンゲリカ酸プロピル、カプロン酸プロピル、酢酸イソプロピル、プロピオン酸イソプロピル、イソ酪酸イソプロピル、酪酸イソプロピル、イソ吉草酸イソプロピル、吉草酸イソプロピル、ピバル酸イソプロピル、ヒドロアンゲリカ酸イソプロピル、カプロン酸イソプロピル、酢酸ブチル、プロピオン酸ブチル、イソ酪酸ブチル、酪酸ブチル、イソ吉草酸ブチル、吉草酸ブチル、ピバル酸ブチル、ヒドロアンゲリカ酸ブチル、カプロン酸ブチル、酢酸イソブチル、プロピオン酸イソブチル、イソ酪酸イソブチル、酪酸イソブチル、イソ吉草酸イソブチル、吉草酸イソブチル、ピバル酸イソブチル、ヒドロアンゲリカ酸イソブチル、カプロン酸イソブチル、酢酸tert-ブチル、プロピオン酸tert-ブチル、イソ酪酸tert-ブチル、酪酸tert-ブチル、イソ吉草酸tert-ブチル、吉草酸tert-ブチル、ピバル酸tert-ブチル、ヒドロアンゲリカ酸tert-ブチル、及びカプロン酸tert-ブチル;
 鎖状エーテルとしては、例えば、ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、及びテトラグライム;
 フッ素化エーテルとしては、例えば、Rf20-OR21(Rf20はフッ素原子を含有するアルキル基、R7はフッ素原子を含有してよい有機基);
 ケトンとしては、例えば、アセトン、メチルエチルケトン、及びメチルイソブチルケトン;
 前記非プロトン性溶媒のH原子の一部または全部をハロゲン原子で置換した化合物としては、例えば、ハロゲン原子がフッ素である化合物;
を挙げることができる。
 ここで、鎖状カーボネートのフッ素化物としては、例えば、メチルトリフルオロエチルカーボネート、トリフルオロジメチルカーボネート、トリフルオロジエチルカーボネート、トリフルオロエチルメチルカーボネート、メチル2,2-ジフルオロエチルカーボネート、メチル2,2,2-トリフルオロエチルカーボネート、メチル2,2,3,3-テトラフルオロプロピルカーボネートが挙げられる。上記のフッ素化鎖状カーボネートは、下記の一般式:
 R29-O-C(O)O-R30
 (式中、R29及びR30は、CH3、CH2CH3、CH2CH2CH3、CH(CH32、及びCH2Rf31から成る群より選択される少なくとも一つであり、Rf31は、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基であり、そしてR29及び/又はR30は、少なくとも1つのフッ素原子を含有する)で表すことができる。
 また、短鎖脂肪酸エステルのフッ素化物としては、例えば、酢酸2,2-ジフルオロエチル、酢酸2,2,2-トリフルオロエチル、酢酸2,2,3,3-テトラフルオロプロピルに代表されるフッ素化短鎖脂肪酸エステルが挙げられる。フッ素化短鎖脂肪酸エステルは、下記の一般式:
 R32-C(O)O-R33
 (式中、R32は、CH3、CH2CH3,CH2CH2CH3、CH(CH32、CF3CF2H、CFH2、CF2Rf34、CFHRf34、及びCH2Rf35から成る群より選択される少なくとも一つであり、R33は、CH3、CH2CH3、CH2CH2CH3、CH(CH32、及びCH2Rf35から成る群より選択される少なくとも一つであり、Rf34は、少なくとも1つのフッ素原子で水素原子が置換されてよい炭素数1~3のアルキル基であり、Rf35は、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基であり、そしてR32及び/又はR33は、少なくとも1つのフッ素原子を含有し、R32がCF2Hである場合、R33はCH3ではない)で表すことができる。
 本実施形態におけるアセトニトリル以外の非プロトン性溶媒は、1種を単独で使用することができ、又は2種以上を組み合わせて使用してよい。
 本実施形態における非水系溶媒は、アセトニトリルとともに、環状カーボネート及び鎖状カーボネートのうちの1種以上を併用することが、非水系電解液の安定性向上の観点から好ましい。この観点から、本実施形態における非水系溶媒は、アセトニトリルとともに環状カーボネートを併用することがより好ましく、アセトニトリルとともに環状カーボネート及び鎖状カーボネートの双方を使用することが、更に好ましい。
 アセトニトリルとともに環状カーボネートを使用する場合、かかる環状カーボネートが、エチレンカーボネート、ビニレンカーボネート及び/又はフルオロエチレンカーボネートを含むことが特に好ましい。
〈リチウム塩〉
 本実施形態に係る非水系電解液は、リチウム塩を含む。
 本実施形態におけるリチウム塩は、LiN(SO2m2m+12{mは0~8の整数}で表されるイミド塩であることが好ましい。
 本実施形態におけるリチウム塩は、イミド塩とともに、フッ素含有無機リチウム塩、有機リチウム塩、及びその他のリチウム塩から選択される1種以上を、更に含んでよい。
(イミド塩)
 イミド塩としては、具体的には、LiN(SO2F)2、及びLiN(SO2CF32のうち少なくとも1種を含むことが好ましい。
 非水系溶媒にアセトニトリルが含まれる場合、アセトニトリルに対するイミド塩の飽和濃度がLiPF6の飽和濃度よりも高いことから、LiPF6≦イミド塩となるモル濃度でイミド塩を含むことが、低温でのリチウム塩とアセトニトリルの会合及び析出を抑制できるため好ましい。また、イミド塩の含有量が、非水系溶媒1L当たりの量として、0.5モル以上3.0モル以下であることが、本実施形態に係る非水系電解液へのイオン供給量を確保する観点から好ましい。
 LiN(SO2F)2、及びLiN(SO2CF32のうち少なくとも1種を含むアセトニトリル含有非水系電解液によれば、-10℃又は-30℃のような低温域でのイオン伝導率の低減を効果的に抑制でき、優れた低温特性を得ることができる。
 そして、このように、含有量を限定することで、より効果的に、高温加熱時の抵抗増加を抑制することも可能となる。
(フッ素含有無機リチウム塩)
 本実施形態におけるリチウム塩は、フッ素含有無機リチウム塩を含んでよい。ここで、「フッ素含有無機リチウム塩」とは、炭素原子をアニオンに含まず、フッ素原子をアニオンに含み、アセトニトリルに可溶なリチウム塩をいう。フッ素含有無機リチウム塩は、正極集電体の表面に不働態被膜を形成し、正極集電体の腐食を抑制する点で優れている。
 フッ素含有無機リチウム塩としては、例えば、LiPF6、LiBF4、LiAsF6、Li2SiF6、LiSbF6、Li212b12-b{bは0~3の整数}等を挙げることが出来、これらのうちから選択される1種以上を使用することができる。
 フッ素含有無機リチウム塩として、LiFとルイス酸との複塩である化合物が望ましく、中でも、リン原子を有するフッ素含有無機リチウム塩を用いると、遊離のフッ素原子を放出し易くなることからより好ましい。代表的なフッ素含有無機リチウム塩は、溶解してPF6アニオンを放出するLiPF6である。フッ素含有無機リチウム塩として、ホウ素原子を有するフッ素含有無機リチウム塩を用いた場合には、電池劣化を招くおそれのある過剰な遊離酸成分を捕捉し易くなることから好ましく、このような観点からはLiBF4が好ましい。
 本実施形態に係る非水系電解液におけるフッ素含有無機リチウム塩の含有量は、非水系溶媒1L当たりの量として、0.01モル以上であることが好ましく、0.1モル以上であることがより好ましく、0.25モル以上であることが更に好ましい。フッ素含有無機リチウム塩の含有量が上記の範囲内にある場合、イオン伝導度が増大し高出力特性を発現できる傾向にある。また、非水系溶媒1L当たりの量が、2.8モル以下であることが好ましく、1.5モル以下であることがより好ましく、1.0モル以下であることが更に好ましい。フッ素含有無機リチウム塩の含有量が上記の範囲内にある場合、イオン伝導度が増大し高出力特性を発現できると共に、低温での粘度上昇に伴うイオン伝導度の低下を抑制できる傾向にあり、非水系電解液の優れた性能を維持しながら、高温サイクル特性及びその他の電池特性を一層良好なものとすることができる傾向にある。
 本実施形態に係る非水系電解液におけるフッ素含有無機リチウム塩の含有量は、非水系溶媒1L当たりの量として、例えば、0.05モル以上1.0モル以下であってよい。
(有機リチウム塩)
 本実施形態におけるリチウム塩は、有機リチウム塩を含んでよい。「有機リチウム塩」とは、炭素原子をアニオンに含み、アセトニトリルに可溶な、イミド塩以外のリチウム塩をいう。
 有機リチウム塩としては、シュウ酸基を有する有機リチウム塩を挙げることができる。シュウ酸基を有する有機リチウム塩の具体例としては、例えば、LiB(C242、LiBF2(C24)、LiPF4(C24)、及びLiPF2(C242のそれぞれで表される有機リチウム塩等が挙げられ、中でもLiB(C242及びLiBF2(C24)で表されるリチウム塩から選ばれる少なくとも1種のリチウム塩が好ましい。また、これらのうちの1種又は2種以上を、フッ素含有無機リチウム塩と共に使用することがより好ましい。このシュウ酸基を有する有機リチウム塩は、非水系電解液に添加する他、負極(負極活物質層)に含有させてもよい。
 本実施形態における有機リチウム塩の非水系電解液への添加量は、その使用による効果をより良好に確保する観点から、非水系溶媒1L当たりの量として、0.005モル以上であることが好ましく、0.01モル以上であることがより好ましく、0.02モル以上であることが更に好ましく、0.05モル以上であることが特に好ましい。ただし、前記シュウ酸基を有する有機リチウム塩の非水系電解液中の量が多すぎると析出する恐れがある。よって、前記シュウ酸基を有する有機リチウム塩の非水系電解液への添加量は、非水系溶媒1L当たりの量として、1.0モル未満であることが好ましく、0.5モル未満であることがより好ましく、0.2モル未満であることが更に好ましい。
 シュウ酸基を有する有機リチウム塩は、極性の低い有機溶媒、特に鎖状カーボネートに対して難溶性であることが知られている。本実施形態に係る非水系電解液における有機リチウム塩の含有量は、非水系溶媒1L当たりの量として、例えば、0.01モル以上0.5モル以下であってよい。
 なお、シュウ酸基を有する有機リチウム塩は、微量のシュウ酸リチウムを含有している場合があり、更に、非水系電解液として混合するときにも、他の原料に含まれる微量の水分と反応して、シュウ酸リチウムの白色沈殿を新たに発生させる場合がある。したがって、本実施形態に係る非水系電解液におけるシュウ酸リチウムの含有量は、500ppm以下の範囲に抑制することが好ましい。
(その他のリチウム塩)
 本実施形態におけるリチウム塩は、上記以外に、その他のリチウム塩を含んでよい。
 その他のリチウム塩の具体例としては、例えば、
 LiClO4、LiAlO4、LiAlCl4、LiB10Cl10、クロロボランLi等のフッ素原子をアニオンに含まない無機リチウム塩;
 LiCF3SO3、LiCF3CO2、Li224(SO32、LiC(CF3SO23、LiCn(2n+1)SO3(n≧2)、低級脂肪族カルボン酸Li、四フェニルホウ酸Li、LiB(C3422等の有機リチウム塩;
 LiPF5(CF3)等のLiPFn(Cp2p+16-n〔nは1~5の整数、pは1~8の整数〕で表される有機リチウム塩;
 LiBF3(CF3)等のLiBFq(Cs2s+14-q〔qは1~3の整数、sは1~8の整数〕で表される有機リチウム塩;多価アニオンと結合されたリチウム塩;下記式(15a):
  LiC(SO222)(SO223)(SO224)   (15a)
{式中、R22、R23、及びR24は、互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基を示す。}、
下記式(15b)
  LiN(SO2OR25)(SO2OR26)   (15b)
{式中、R25、及びR26は、互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基を示す。}、及び
下記式(15c)
  LiN(SO227)(SO2OR28)   (15c)
{式中、R27、及びR28は、互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基を示す。}
のそれぞれで表される有機リチウム塩等が挙げられ、これらのうちの1種又は2種以上を、フッ素含有無機リチウム塩と共に使用することができる。
 その他のリチウム塩の非水系電解液への添加量は、非水系溶媒1L当たりの量として、例えば、0.01モル以上0.5モル以下の範囲で適宜に設定されてよい。
〈電極保護用添加剤〉
 本実施形態に係る非水系電解液は、電極を保護するための添加剤(電極保護用添加剤)を含んでよい。電極保護用添加剤は、リチウム塩を溶解させるための溶媒としての役割を担う物質(すなわち上記の非水系溶媒)と実質的に重複してよい。電極保護用添加剤は、非水系電解液及び非水系二次電池の性能向上に寄与する物質であることが好ましいが、電気化学的な反応には直接関与しない物質をも包含する。
 電極保護用添加剤の具体例としては、例えば、
 4-フルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、シス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、トランス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4,5,5-テトラフルオロ-1,3-ジオキソラン-2-オン、及び4,4,5-トリフルオロ-5-メチル-1,3-ジオキソラン-2-オンに代表されるフルオロエチレンカーボネート;
 ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネートに代表される不飽和結合含有環状カーボネート;
 γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、及びε-カプロラクトンに代表されるラクトン;
 1,4-ジオキサンに代表される環状エーテル;
 エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-スルホレン、3-メチルスルホラン、1,3-プロパンスルトン、1,4-ブタンスルトン、1-プロペン1,3-スルトン、及びテトラメチレンスルホキシドに代表される環状硫黄化合物;
が挙げられ、これらは1種を単独で又は2種以上を組み合わせて用いられる。
 非水系電解液中の電極保護用添加剤の含有量は、非水系溶媒の全量当たりの量として、0.1~30体積%であることが好ましく、0.3~15体積%であることがより好ましく、0.4~8体積%であることが更に好ましく、0.5~4体積%であることが特に好ましい。
 本実施形態においては、電極保護用添加剤の含有量が多いほど、非水系電解液の劣化が抑えられる。しかし、電極保護用添加剤の含有量が少ないほど、非水系二次電池の低温環境下における高出力特性が向上することになる。従って、電極保護用添加剤の含有量を上記の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、電解液の高イオン伝導度に基づく優れた性能を発揮することができる傾向にある。そして、このような組成で非水系電解液を調製することにより、非水系二次電池のサイクル性能、低温環境下における高出力性能及びその他の電池特性を、一層良好なものとすることができる傾向にある。
 アセトニトリルは、電気化学的に還元分解され易い。そのため、アセトニトリルを含む非水系溶媒は、負極への保護被膜形成のための電極保護用添加剤として、環状の非プロトン性極性溶媒を1種以上含むことが好ましく、不飽和結合含有環状カーボネートを1種以上含むことがより好ましい。
 不飽和結合含有環状カーボネートとしてはビニレンカーボネートが好ましく、ビニレンカーボネートの含有量は、非水系電解液中、0.1体積%以上4体積%以下であることが好ましく、0.2体積%以上3体積%未満であることがより好ましく、0.5体積%以上2.5体積%未満であることが更に好ましい。これにより、低温耐久性をより効果的に向上させることができ、低温性能に優れた二次電池を提供することが可能になる。
 電極保護用添加剤としてのビニレンカーボネートは、負極表面でのアセトニトリルの還元分解反応を抑制する。他方、過剰な被膜形成は低温性能の低下を招く。そこで、ビニレンカーボネートの添加量を上記の範囲内に調整することで、界面(被膜)抵抗を低く抑えることができ、低温時のサイクル劣化を抑制することができる。
〈酸無水物〉
 本実施形態に係る非水系二次電池は、初回充電のときに非水系電解液の一部が分解し、負極表面にSEIを形成することにより安定化する。このSEIをより効果的に強化するため、酸無水物を添加することができる。非水系溶媒としてアセトニトリルを含む場合には、温度上昇に伴いSEIの強度が低下する傾向にあるが、酸無水物の添加によってSEIの強化が促進される。よって、このような酸無水物を用いることにより、効果的に熱履歴による経時的な内部抵抗の増加を抑制することができる。
 酸無水物の具体例としては、例えば、無水酢酸、無水プロピオン酸、無水安息香酸に代表される鎖状酸無水物;マロン酸無水物、無水コハク酸、グルタル酸無水物、無水マレイン酸、無水フタル酸、1,2-シクロヘキサンジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、又は、ナフタレン-1,4,5,8-テトラカルボン酸二無水物に代表される環状酸無水物;異なる2種類のカルボン酸、又はカルボン酸とスルホン酸等、違う種類の酸が脱水縮合した構造の混合酸無水物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 本実施形態に係る非水系二次電池は、非水系溶媒の還元分解前にSEIを強化することが好ましいことから、酸無水物としては初回充電のときに早期に作用する環状酸無水物を少なくとも1種含むことが好ましい。これら環状酸無水物は、1種のみ含んでも複数種含んでよい。又は、これらの環状酸無水物以外の環状酸無水物を含んでいてよい。また、環状酸無水物は、無水コハク酸、無水マレイン酸、及び無水フタル酸のうち少なくとも1種を含むことが好ましい。
 無水コハク酸、無水マレイン酸、及び無水フタル酸のうち少なくとも1種を含む非水系電解液によれば、負極に強固なSEIを形成でき、より効果的に、高温加熱時の抵抗増加を抑制する。特に、無水コハク酸を含むことが好ましい。これにより、副反応を抑制しつつ、より効果的に、負極に強固なSEIを形成できる。
 本実施形態に係る非水系電解液が酸無水物を含有する場合、その含有量は、非水系電解液100質量部当たりの量として、0.01質量部以上10質量部以下の範囲であることが好ましく、0.05質量部以上1質量部以下であることがより好ましく、0.1質量部以上0.5質量部以下であることが更に好ましい。
 酸無水物は、非水系電解液が含有することが好ましい。他方、酸無水物が、非水系二次電池の中で作用することが可能であればよいので、正極、負極、及びセパレータから成る群より選ばれる少なくとも1種の電池部材が、酸無水物を含有していてよい。酸無水物を電池部材含有させる方法としては、例えば、電池部材作製時にその電池部材に含有させてよいし、電池部材への塗布、浸漬又は噴霧乾燥等に代表される後処理によってその電池部材に含浸させてよい。
〈任意的添加剤〉
 本実施形態においては、非水系二次電池の充放電サイクル特性の改善、高温貯蔵性、安全性の向上(例えば過充電防止等)等の目的で、非水系電解液に、任意的添加剤(一般式(1)~(4)及び(18)で表される化合物、酸無水物、及び電極保護用添加剤以外の添加剤)を適宜含有させることもできる。
 任意的添加剤としては、例えば、スルホン酸エステル、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、tert-ブチルベンゼン、リン酸エステル〔エチルジエチルホスホノアセテート(EDPA);(C25O)2(P=O)-CH2(C=O)OC25、リン酸トリス(トリフルオロエチル)(TFEP);(CF3CH2O)3P=O、リン酸トリフェニル(TPP);(C65O)3P=O、リン酸トリアリル;(CH2=CHCH2O)3P=O等〕、非共有電子対周辺に立体障害のない窒素含有環状化合物〔ピリジン、1-メチル-1H-ベンゾトリアゾール、1-メチルピラゾール等〕等が挙げられる。特に、リン酸エステルは、貯蔵時の副反応を抑制する作用があり、任意的添加剤として効果的である。
 本実施形態に係る非水系電解液がその他の任意的添加剤を含有する場合、その含有量は、非水系電解液の全量当たりの量として、0.01質量%以上10質量%以下の範囲であることが好ましく、0.02質量%以上5質量%以下であることがより好ましく、0.05~3質量%であることが更に好ましい。その他の任意的添加剤の含有量を上記の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、より一層良好な電池特性を付加することができる傾向にある。
〈非水系電解液のイオン伝導度〉
 非水系二次電池において、後述の好ましい態様のセパレータを、イオン伝導度の低い非水系電解液と組み合わせた場合、リチウムイオンの移動速度が、非水系電解液のイオン伝導度に律速されることととなり、所望の入出力特性が得られない場合がある。そのため、本実施形態に係る非水系電解液のイオン伝導度は、10mS/cm以上が好ましく、15mS/cmがより好ましく、20mS/cmが更に好ましい。
〈非水系電解液の製造方法〉
 本実施形態に係る非水系電解液は、非水系溶媒と、リチウム塩と、一般式(1)~(4)及び(18)で表される化合物とを、必要に応じてその他の添加剤(電極保護用添加剤、酸無水物、及び任意的添加剤等)とともに任意の手段で混合して製造することができる。
《非水系二次電池》
 本実施形態に係る非水系電解液は、非水系二次電池を構成するために用いることができる。
 本実施形態に係る非水系二次電池は、正極、負極、セパレータ、及び非水系電解液が、適当な電池外装中に収納されて構成される。
 本実施形態に係る非水系二次電池としては、具体的には、図1及び2に図示される非水系二次電池100であってよい。ここで、図1は非水系二次電池を概略的に表す平面図であり、図2は図1のA-A線断面図である。
 図1、図2に示す非水系二次電池100は、パウチ型セルで構成される。非水系二次電池100は、電池外装110の空間120内に、正極150と負極160とをセパレータ170を介して積層して構成した積層電極体と、非水系電解液(図示せず)とを収容している。電池外装110は、例えばアルミニウムラミネートフィルムで構成されており、2枚のアルミニウムラミネートフィルムで形成された空間の外周部において、上下のフィルムを熱融着することにより封止されている。正極150、セパレータ170、及び負極160を順に積層した積層体には、非水系電解液が含浸されている。ただしこの図2では、図面が煩雑になることを避けるために、電池外装110を構成している各層、並びに正極150及び負極160の各層を区別して示していない。
 電池外装110を構成するアルミニウムラミネートフィルムは、アルミニウム箔の両面をポリオレフィン系の樹脂でコートしたものであることが好ましい。
 正極150は、非水系二次電池100内で正極リード体130と接続している。図示していないが、負極160も、非水系二次電池100内で負極リード体140と接続している。そして、正極リード体130及び負極リード体140は、それぞれ、外部の機器等と接続可能なように、片端側が電池外装110の外側に引き出されており、それらのアイオノマー部分が、電池外装110の1辺とともに熱融着されている。
 図1及び2に図示される非水系二次電池100は、正極150及び負極160が、それぞれ1枚ずつの積層電極体を有しているが、容量設計により正極150及び負極160の積層枚数を適宜増やすことができる。正極150及び負極160をそれぞれ複数枚有する積層電極体の場合には、同一極のタブ同士を溶接等により接合したうえで1つのリード体に溶接等により接合して電池外部に取り出してよい。上記同一極のタブとしては、集電体の露出部から構成される態様、集電体の露出部に金属片を溶接して構成される態様等が可能である。
 正極150は、正極集電体と、正極活物質層とから構成される。負極160は、負極集電体と、負極活物質層とから構成される。
 正極活物質層は正極活物質を含み、負極活物質層は負極活物質を含む。
 正極150及び負極160は、セパレータ170を介して正極活物質層と負極活物質層とが対向するように配置される。
 以下、本実施形態に係る非水系二次電池を構成する各要素について、順に説明する。
〈正極〉
 本実施形態に係る非水系二次電池において、正極は、正極集電体の片面又は両面に正極活物質層を有する。
[正極集電体]
 正極集電体は、例えば、アルミニウム箔、ニッケル箔、ステンレス箔等の金属箔により構成される。正極集電体は、表面にカーボンコートが施されていてよく、メッシュ状に加工されていてよい。正極集電体の厚みは、5~40μmであることが好ましく、7~35μmであることがより好ましく、9~30μmであることが更に好ましい。
[正極活物質層]
 正極活物質層は、正極活物質を含有し、必要に応じて導電助剤及び/又はバインダーを更に含有してよい。
(正極活物質)
 正極活物質層は、正極活物質として、リチウムイオンを吸蔵及び放出することが可能な材料を含有することが好ましい。このような材料を用いる場合、高電圧及び高エネルギー密度を得ることができる傾向にあるので好ましい。
 正極活物質としては、例えば、
 Ni、Mn、及びCoから成る群より選ばれる少なくとも1種の遷移金属元素を含有する正極活物質;
が挙げられ、下記一般式(14):
  LipNiqCorMnstu・・・・・(14)
{式中、MはAl、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Mo、Zr、Sr、Baから成る群から選ばれる少なくとも1種の金属であり、且つ、0<p<1.3、0<q<1.2、0<r<1.2、0≦s<0.5、0≦t<0.3、0.7≦q+r+s+t≦1.2、1.8<u<2.2の範囲であり、そしてpは、電池の充放電状態により決まる値である。}
で表されるリチウム含有金属酸化物から選ばれる少なくとも1種が好適である。
 また、正極活物質としては、例えば、
 LiCoO2に代表されるリチウムコバルト酸化物;
 LiMnO2、LiMn24、及びLi2Mn24に代表されるリチウムマンガン酸化物;
 LiNiO2に代表されるリチウムニッケル酸化物;
 LiNi1/3Co1/3Mn1/32、LiNi0.5Co0.2Mn0.32、LiNi0.8Co0.22、LiNi0.6Co0.2Mn0.22、LiNi0.75Co0.15Mn0.152、LiNi0.8Co0.1Mn0.12、LiNi0.85Co0.075Mn0.0752、LiNi0.8Co0.15Al0.052、LiNi0.81Co0.1Al0.092、LiNi0.85Co0.1Al0.052に代表されるLizMO2(MはNi、Mn、及びCoから成る群より選ばれる少なくとも1種の遷移金属元素を含み、且つ、Ni、Mn、Co、Al、及びMgから成る群より選ばれる2種以上の金属元素を示し、zは0.9超1.2未満の数を示す)で表されるリチウム含有複合金属酸化物; MnO2、FeO2、FeS2、V25、V613、TiO2、TiS2、MoS2、及びNbSe2に代表される、トンネル構造及び層状構造を有する金属酸化物又は金属カルコゲン化物;
 イオウ;
 ポリアニリン、ポリチオフェン、ポリアセチレン、及びポリピロールに代表される導電性高分子等;
が挙げられる。
 特に、一般式(14)で表されるLi含有金属酸化物のNi含有比qが、0.5<q<1.2である場合には、レアメタルであるCoの使用量削減と、高エネルギー密度化の両方が達成されるため好ましい。
 ここで、Ni含有比が高まるほど、低電圧で劣化が進行する傾向にある。一般式(14)で表されるリチウム含有金属酸化物の正極活物質には、非水系電解液を酸化劣化させる活性点が存在するが、この活性点は、負極を保護するために添加した化合物を、正極側で意図せず消費してしまうことがある。中でも酸無水物はその影響を受け易い傾向にある。特に、非水系溶媒としてアセトニトリルを含有する場合には、酸無水物の添加効果は絶大であるが故に、正極側で酸無水物が消費されてしまうことは課題である。
 また、正極側に取り込まれ堆積したこれらの添加剤分解物は、非水系二次電池の内部抵抗の増加要因となるだけでなく、リチウム塩の劣化も加速させる。更に、負極表面の保護も不十分となってしまう。非水系電解液を本質的に酸化劣化させる活性点を失活させるには、ヤーンテラー歪みの制御又は中和剤的な役割を担う成分の共存が好ましい。そのため、正極活物質は、Al、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Mo、Zr、Sr、Baから成る群より選ばれる少なくとも1種の金属を含有することが好ましい。
 同様の理由により、正極活物質の表面が、Zr、Ti、Al、及びNbから成る群より選ばれる少なくとも1種の金属元素を含有する化合物で被覆されていることが好ましい。また、正極活物質の表面が、Zr、Ti、Al、及びNbから成る群より選ばれる少なくとも1種の金属元素を含有する酸化物で被覆されていることがより好ましい。更に、正極活物質の表面が、ZrO2、TiO2、Al23、NbO3、及びLiNbO2から成る群より選ばれる少なくとも1種の酸化物で被覆されていることが、リチウムイオンの透過を阻害しないため更に好ましい。
 なお、正極活物質は、式(14)で表されるリチウム含有金属酸化物以外のリチウム含有化合物であってよい。このようなリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物、リチウムを有する金属カルコゲン化物、リチウムと遷移金属元素とを含むリン酸金属化合物、及びリチウムと遷移金属元素とを含むケイ酸金属化合物が挙げられる。より高い電圧を得る観点から、リチウム含有化合物としては、特に、リチウムと、Co、Ni、Mn、Fe、Cu、Zn、Cr、V、及びTiから成る群より選ばれる少なくとも1種の遷移金属元素と、を含むリン酸金属化合物が好ましい。
 リチウム含有化合物として、より具体的には、以下の式(16a):
  LivI2   (16a)
{式中、Dはカルコゲン元素を示し、MIは少なくとも1種の遷移金属元素を含む1種以上の遷移金属元素を示し、vの値は、電池の充放電状態により決まり、0.05~1.10の数を示し、そしてuは0~2の数を示す。}、
以下の式(16b):
  LiwIIPO4   (16b)
{式中、Dはカルコゲン元素を示し、MIIは少なくとも1種の遷移金属元素を含む1種以上の遷移金属元素を示し、wの値は、電池の充放電状態により決まり、0.05~1.10の数を示し、そしてuは0~2の数を示す。}、及び
以下の式(16c):
  LitIII uSiO4   (16c)
{式中、Dはカルコゲン元素を示し、MIIIは少なくとも1種の遷移金属元素を含む1種以上の遷移金属元素を示し、tの値は、電池の充放電状態により決まり、0.05~1.10の数を示し、そしてuは0~2の数を示す。}
のそれぞれで表される化合物が挙げられる。
 上記の式(16a)で表されるリチウム含有化合物は層状構造を有し、上記の式(16b)及び(16c)で表される化合物はオリビン構造を有する。これらのリチウム含有化合物は、構造を安定化させる等の目的から、Al、Mg、又はその他の遷移金属元素により遷移金属元素の一部を置換したもの、これらの金属元素を結晶粒界に含ませたもの、酸素原子の一部をフッ素原子等で置換したもの、正極活物質表面の少なくとも一部に他の正極活物質を被覆したもの等であってよい。
 正極活物質は、1種を単独で又は2種以上を組み合わせて用いられる。リチウムイオンを可逆安定的に吸蔵及び放出することが可能であり、且つ、高エネルギー密度を達成できることから、正極活物質層がNi、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有することが好ましい。
 正極活物質として、リチウム含有化合物とその他の正極活物質とを併用する場合、双方の使用割合としては、正極活物質の全部に対するリチウム含有化合物の使用割合として、80質量%以上が好ましく、85質量%以上がより好ましい。
(導電助剤)
 導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有量は、正極活物質100質量部当たりの量として、10質量部以下とすることが好ましく、より好ましくは1~5質量部である。
(バインダー)
 バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、スチレンブタジエンゴム、及びフッ素ゴムが挙げられる。バインダーの含有量は、正極活物質100質量部当たりの量として、6質量部以下とすることが好ましく、より好ましくは0.5~4質量部である。
[正極活物質層の形成]
 正極活物質層は、正極活物質と、必要に応じて導電助剤及びバインダーとを混合した正極合剤を溶剤に分散した正極合剤含有スラリーを、正極集電体に塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、既知のものを用いることができる。例えば、N―メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
〈負極〉
 本実施形態に係る非水系二次電池における負極は、負極集電体の片面又は両面に負極活物質層を有する。
[負極集電体]
 負極集電体は、例えば、銅箔、ニッケル箔、ステンレス箔等の金属箔により構成される。また、負極集電体は、表面にカーボンコートが施されていてもよいし、メッシュ状に加工されていてもよい。負極集電体の厚みは、5~40μmであることが好ましく、6~35μmであることがより好ましく、7~30μmであることが更に好ましい。
[負極活物質層]
 負極活物質層は、負極活物質を含有し、必要に応じて導電助剤及び/又はバインダーを更に含有してよい。
(負極活物質)
 負極活物質は、例えば、アモルファスカーボン(ハードカーボン)、人造黒鉛、天然黒鉛、黒鉛、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラファイト、炭素コロイド、及びカーボンブラックに代表される炭素材料の他、金属リチウム、金属酸化物、金属窒化物、リチウム合金、スズ合金、Si材料、金属間化合物、有機化合物、無機化合物、金属錯体、有機高分子化合物等が挙げられる。負極活物質は1種を単独で又は2種以上を組み合わせて用いられる。上記のSi材料としては、例えば、シリコン、Si合金、Si酸化物等が挙げられる。
 負極活物質層は、電池電圧を高められるという観点から、負極活物質としてリチウムイオンを0.4V vs.Li/Li+よりも卑な電位で吸蔵することが可能な材料を含有することが好ましい。
 本実施形態に係る非水系電解液は、負極活物質にSi材料を適用した場合でも、充放電サイクルを繰り返したときの負極の体積変化に伴う各種劣化現象を抑制することができる利点を有する。したがって、本実施形態に係る非水系二次電池では、負極活物質として、シリコン合金等に代表されるSi材料を用いることも、Si材料に由来する高い容量を具備しつつ、充放電サイクル特性に優れるものとなる点で、好ましい態様である。
 本実施形態では、負極活物質としてSi材料、特に、SiOx(0.5≦x≦1.5)を含んでよい。Si材料は、結晶体、低結晶体、及びアモルファス体のいずれの形態であってよい。また、負極活物質としてSi材料を用いる場合、活物質表面を導電性の材料によって被覆すると、活物質粒子間の導電性が向上されるため、好ましい。
 シリコンは作動電位が約0.5V(vsLi/Li+)と、黒鉛の作動電位の約0.05V(vsLi/Li+)に対して少し高い。そのため、Si材料を用いると、リチウム電析の危険性が軽減される。本実施形態における非水系溶媒に用いられているアセトニトリルは、リチウム金属と還元反応して、ガス発生を引き起こす可能性がある。そのため、リチウム電析し難い負極活物質は、アセトニトリルを含む非水系電解液と組み合わせて用いるときに好ましい。
 他方、作動電位が高すぎる負極活物質は、電池としてのエネルギー密度が低下してしまうため、エネルギー密度向上の観点から、負極活物質は0.4V vs.Li/Li+よりも卑な電位で作動する方が好ましい。
 Si材料の含有量は、負極活物質層の全量当たりの量として、0.1質量%以上100質量%以下の範囲であることが好ましく、1質量%以上80質量%以下の範囲であることがより好ましく、3質量%以上60質量%以下の範囲であることが更に好ましい。Si材料の含有量を上記の範囲内に調整することによって、非水系二次電池の高容量化と、充放電サイクル性能とのバランスを確保することができる。
(導電助剤)
 導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有量は、負極活物質100質量部当たりの量として、20質量部以下とすることが好ましく、より好ましくは0.1~10質量部である。
(バインダー)
 バインダーとしては、例えば、カルボキシメチルセルロース、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、及びフッ素ゴムが挙げられる。また、ジエン系ゴム、例えばスチレンブタジエンゴム等も挙げられる。バインダーの含有量は、負極活物質100質量部当たりの量として、10質量部以下とすることが好ましく、より好ましくは0.5~6質量部である。
[負極活物質層の形成]
 負極活物質層は、負極活物質と、必要に応じて含まれる、導電助剤及び/又はバインダーとを混合した負極合剤を溶剤に分散した負極合剤含有スラリーを、負極集電体に塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、既知のものを用いることができる。例えば、N―メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
[酸無水物の分解物]
 ここで、上記の酸無水物は、負極表面のSEIをより効果的に強化するために添加される。本実施形態に係る非水系二次電池においては、正極と負極とに酸無水物の分解物が含まれ、且つ、正極に含まれる酸無水物の単位面積当たりの分解物量が負極に含まれる酸無水物の単位面積当たりの分解物量より少ない。
 非水系溶媒としてアセトニトリルを含む場合、正極に含まれる正極活物質の単位面積当たりの酸無水物の分解物量が、負極に含まれる負極活物質の単位面積当たりの酸無水物の分解物量より少ないことがより好ましい。これにより、熱履歴による経時的な内部抵抗の増加を効果的に抑制し易くなる。
 酸無水物の分解物量は、例えば、負極活物質の単位グラム質量に対するLC-MS測定のピーク面積値に基づいても算出される。酸無水物の分解物量(下記一般式(8)~(13)で表される化合物から成る群より選ばれる少なくとも1種の化合物の含有量)は、負極活物質1μg当たりの量として、ピーク面積値が0.1~200の範囲の量であることが好ましく、1~175の範囲の量であることがより好ましく、20~150の範囲の量であることが更に好ましい。ピーク面積値がこの範囲にあることによって、被膜抵抗増加の抑制と溶解性のバランスを確保することができる。なお、充電と放電を繰り返すサイクルが100回までの範囲で上記の含有量を満たしていることが好ましい。
 酸無水物の分解物は、下記一般式(8):
Figure JPOXMLDOC01-appb-C000049
{式中、R6及びR7は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示し、そしてfは1~3の整数である。}、
下記一般式(9):
Figure JPOXMLDOC01-appb-C000050
{式中、R8及びR9は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}、
下記一般式(10):
Figure JPOXMLDOC01-appb-C000051
{式中、R10及びR11は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}、
下記一般式(11):
Figure JPOXMLDOC01-appb-C000052
{式中、R12及びR13は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}、
下記一般式(12):
Figure JPOXMLDOC01-appb-C000053
{式中、R14及びR15は、ハロゲン原子で置換されてよいアルコキシ基、OH基、又はOLi基を示す。}、及び
下記一般式(13):
Figure JPOXMLDOC01-appb-C000054
{式中、R16~R19は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}
で表される化合物から成る群より選ばれる少なくとも1種の化合物を含有することが好ましい。なお、一般式(8)~(13)の説明中の「ハロゲン原子」はF原子を含んでよい。
 これらの化合物は負極表面のSEI強化に貢献する。特に、非水系溶媒としてアセトニトリルを含有する場合には優れた効果を発揮する。そのため、正極側で酸無水物が不必要に消費されないようにすることが好ましい。
〈セパレータ〉
 本実施形態に係る非水系二次電池は、正極及び負極の短絡防止、シャットダウン等の安全性付与等の観点から、正極と負極との間にセパレータを備えることが好ましい。セパレータとしては、既知の非水系二次電池に備えられるものと同様のものを用いてよく、イオン透過性が大きく、機械的強度に優れる絶縁性の薄膜が好ましい。セパレータを構成する素材としては、例えば、織布、不織布、合成樹脂製微多孔膜等が挙げられ、これらの中でも、合成樹脂製微多孔膜が好ましく、特に、ポリエチレン又はポリプロピレンを主成分として含有する微多孔膜、又はこれらのポリオレフィンの双方を含有する微多孔膜等のポリオレフィン系微多孔膜が好適に用いられる。不織布としては、例えば、ガラス製、セラミック製、ポリオレフィン製、ポリエステル製、ポリアミド製、液晶ポリエステル製、アラミド製等の耐熱樹脂製の多孔膜が挙げられる。
 セパレータは、1種の微多孔膜を単層又は複数積層した構成であってもよく、2種以上の微多孔膜を積層したものであってもよい。セパレータは、2種以上の樹脂材料を溶融混錬した混合樹脂材料を用いて単層又は複数層に積層した構成であってもよい。
 セパレータに所定の機能を付与することを目的として、セパレータの表層又は内部に無機粒子を存在させてよく、また、セパレータに対して他の有機層を更に塗工又は積層してよい。また、セパレータは、架橋構造を含むものであってよい。非水系二次電池の安全性能を高めるため、これらの手法は必要に応じ組み合わせてよい。
〈電池外装〉
 本実施形態における非水系二次電池の電池外装の構成は、既知の構成を採用することができる。例えば、電池外装として、電池缶又はラミネートフィルム外装体を用いてよい。
 電池缶としては、例えば、スチール、ステンレス、アルミニウム、又はクラッド材等から成る金属缶を用いることができる。
 ラミネートフィルム外装体は、熱溶融樹脂側を内側に向けた状態で2枚重ねて、又は熱溶融樹脂側を内側に向けた状態となるように折り曲げて、端部をヒートシールにより封止した状態で外装体として用いることができる。ラミネートフィルム外装体を用いる場合、正極集電体に正極リード体(又は正極端子及び正極端子と接続するリードタブ)を接続し、負極集電体に負極リード体(又は負極端子及び負極端子と接続するリードタブ)を接続してよい。この場合、正極リード体及び負極リード体(又は正極端子及び負極端子のそれぞれに接続されたリードタブ)の端部が外装体の外部に引き出された状態でラミネートフィルム外装体を封止してよい。
 ラミネートフィルム外装体としては、例えば、熱溶融樹脂/金属フィルム/樹脂の3層構成から成るラミネートフィルムを用いることができる。
 電池外装110を構成しているアルミニウムラミネートフィルムは、アルミニウム箔の両面をポリオレフィン系の樹脂でコートしたものであることが好ましい。
〈非水系二次電池の形状〉
 本実施形態に係る非水系二次電池の形状は、例えば、角型、角筒型、円筒型、楕円型、ボタン型、コイン型、扁平型、ラミネート型等に適用できる。
 本実施形態に係る非水系二次電池は、特に、角型、角筒型、及びラミネート型に好ましく適用することができる。
〈非水系二次電池の製造方法〉
 本実施形態に係る非水系二次電池は、上記の非水系電解液、正極、負極、セパレータ、及び電池外装を用いて、既知の方法により作製することができる。
 先ず、正極及び負極、並びにセパレータから成る積層体を形成する。
 このとき、例えば、
  長尺の正極と負極とを、これらの間隙に長尺のセパレータを介在させた積層状態で巻回して巻回構造の積層体を形成する態様;
  正極及び負極を、それぞれ一定の面積及び形状を有する複数枚のシートに切断して得た正極シートと負極シートとを、セパレータシートを介して交互に積層した積層構造の積層体を形成する態様;
  長尺のセパレータをつづら折りにして、つづら折りになったセパレータの間隙に、正極体シートと負極体シートとを交互に挿入した積層構造の積層体を形成する態様;
等が可能である。
 次いで、電池外装内に上記の積層体を収容して、本実施形態に係る非水系電解液を電池外装内に注液し、積層体を非水系電解液に浸漬して封印することによって、本実施形態に係る非水系二次電池を製造することができる。
 別法として、本実施形態に係る非水系電解液を、高分子材料から成る基材に含浸させて、ゲル状態の電解質膜を予め作製しておき、シート状の正極、負極、得られた電解質膜、及びセパレータを用いて積層構造の積層体を形成した後、電池外装内に収容することにより、非水系二次電池を製造してよい。
 なお、電極の配置が、負極活物質層の外周端と正極活物質層の外周端とが重なる部分が存在するように、又は負極活物質層の非対向部分に幅が小さすぎる箇所が存在するように設計されている場合、電池組み立て時に電極の位置ずれが生じる可能性がある。この場合、非水系二次電池における充放電サイクル特性が低下するおそれがある。このような事態を防止できるよう、電極の位置を、予めポリイミドテープ、ポリフェニレンスルフィドテープ、PPテープ等のテープ類、接着剤等により固定しておくことが好ましい。
 アセトニトリルを使用した非水系電解液を用いた場合、その高いイオン伝導性に起因して、非水系二次電池の初回充電時に正極から放出されたリチウムイオンが、負極の全体に拡散してしまう可能性がある。非水系二次電池では、正極活物質層よりも負極活物質層の面積を大きくすることが一般的である。しかしながら、負極活物質層のうち正極活物質層と対向していない箇所にまでリチウムイオンが拡散して吸蔵されてしまうと、このリチウムイオンが初回放電時に放出されずに負極に留まることとなる。そのため、該放出されないリチウムイオンの寄与分が不可逆容量となってしまう。こうした理由から、アセトニトリルを含有する非水系電解液を用いた非水系二次電池では、初回充放電効率が低くなってしまう場合がある。
 他方、負極活物質層よりも正極活物質層の面積が大きいか、又は双方が同じである場合には、充電時に負極活物質層のエッジ部分で電流の集中が起こり易く、リチウムデンドライトが生成し易くなる。
 正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比については、上記の理由により、1.0より大きく1.1未満であることが好ましく、1.002より大きく1.09未満であることがより好ましく、1.005より大きく1.08未満であることが更に好ましく、1.01より大きく1.08未満であることが特に好ましい。アセトニトリルを含む非水系電解液を用いた非水系二次電池では、正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を小さくすることにより、初回充放電効率を改善できる。
 正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を小さくするということは、負極活物質層のうち、正極活物質層と対向していない部分の面積の割合を制限することを意味している。これにより、初回充電時に正極から放出されたリチウムイオンのうち、正極活物質層とは対向していない負極活物質層の部分に吸蔵されるリチウムイオンの量(すなわち、初回放電時に負極から放出されずに不可逆容量となるリチウムイオンの量)を可及的に低減することが可能となる。よって、正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を上記の範囲に設計することによって、アセトニトリルを使用することによる電池の負荷特性向上を図りつつ、電池の初回充放電効率を高め、更にリチウムデンドライトの生成も抑えることができるのである。
 本実施形態に係る非水系二次電池は、初回充電により電池として機能し得るが、初回充電のときに非水系電解液の一部が分解することにより安定化する。初回充電は0.001~0.3Cで行われることが好ましく、0.002~0.25Cで行われることがより好ましく、0.003~0.2Cで行われることが更に好ましい。初回充電が、途中に定電圧充電を経由して行われることも好ましい結果を与える。設計容量を1時間で放電する定電流が1Cである。リチウム塩が電気化学的な反応に関与する電圧範囲を長く設定することによって、安定強固なSEIが電極表面に形成され、内部抵抗の増加を抑制する効果があることの他、反応生成物が負極160のみに強固に固定化されることなく、何らかの形で、正極150、セパレータ170等の、負極160以外の部材にも良好な効果を与える。このため、非水系電解液に溶解したリチウム塩の電気化学的な反応を考慮して初回充電を行うことは、非常に有効である。
 本実施形態における非水系二次電池100は、複数個の非水系二次電池100を直列又は並列に接続した電池パックとして使用することもできる。電池パックの充放電状態を管理する観点から、1個当たりの使用電圧範囲は2~5Vであることが好ましく、2.5~5Vであることがより好ましく、2.75V~5Vであることが特に好ましい。
 以上、本発明を実施するための形態について説明した。しかしながら、本発明は、上記の実施形態に限定されず、その要旨を逸脱しない範囲で様々な変形が可能である。
<第2の実施形態>
 以下、本実施形態に係る非水系二次電池について説明する。
 本実施形態において、非水系二次電池を得るための各種の要素は、第1の実施形態において説明された要素を適宜適用することができる。例えば、本実施形態における、好ましい態様、及びその好ましい態様に基づく作用効果は、第1の実施形態での説明のとおりである。
《非水系電解液》
 本実施形態に係る非水系二次電池において、非水系電解液としては、第1の実施形態で説明した非水系電解液を用いることができる。
 従って、本実施形態に係る非水系二次電池において、非水系溶媒は、第1の実施形態と同様に、環状カーボネートを含むことが好ましく、そして、非水系溶媒が環状カーボネートを含む場合、その環状カーボネートが、エチレンカーボネート、ビニレンカーボネート及び/又はフルオロエチレンカーボネートを含むことが好ましい。このような環状カーボネートを含む非水系溶媒を用いることで、後述する一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種の化合物を負極に含有させるのに、環状カーボネートの分解反応物等を利用できるようになる。
《非水系二次電池》
 本実施形態に係る非水系二次電池は、正極、負極、セパレータ、及び非水系電解液を具備する。
〈負極〉
 本実施形態に係る非水系二次電池における負極は、負極集電体の片面又は両面に負極活物質層を有する。
 負極は、下記一般式(4A):
Figure JPOXMLDOC01-appb-C000055
下記一般式(5A):及び
Figure JPOXMLDOC01-appb-C000056
下記一般式(6A):
Figure JPOXMLDOC01-appb-C000057
で表される化合物から成る群より選ばれる少なくとも1種の化合物を含有する。
 一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種を用いることで、負極の膨張、収縮に対する物理的強度がより強化されるため、充放電サイクルによる電極特性の低下を抑制し易くなる。また、一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種を用いることで、負極の膨張、収縮に対する物理的強度と溶解性のバランスを確保し易くなる。
 一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種の含有量は、負極保護被膜成分の解析で得られた定量値を負極活物質の質量で除して算出される。一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種の化合物の含有量は、負極活物質1g当たりの量として、0.01~100mgであることが好ましく、0.05~50mgであることがより好ましく、0.1~10mgであることが更に好ましい。この範囲にあることによって、非水系二次電池としての基本的な機能を損なうことなく、充放電サイクルによる被膜抵抗の増加を抑制し易くなる。なお、充電と放電を繰り返すサイクルが100回までの範囲で上記の含有量を満たしていることが好ましい。
 このとき、負極は、PF6アニオンを含有してよく、また、N(SO2F)2アニオン及び/又はN(SO2CF32アニオンを含有してよい。すなわち、非水系電解液にPF6アニオン、N(SO2CF32又はN(SO2F)2アニオンからなる群から選ばれる少なくとも一つのアニオンを含有されてよい。アニオンは保護被膜の形成効果を促進するとともに、正極集電体である表面箔の表面に不働態膜を形成するため、内部抵抗の増加を抑制する観点から好ましい。
 本実施形態に係る非水系二次電池では、正極と負極に一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種の化合物が含まれ、且つ、正極に含まれる当該化合物の量が負極に含まれる当該化合物の量より少ないことが好ましい。これによれば、負極表面のSEIをより効果的に強化することができる。また、非水系溶媒としてアセトニトリルを含む場合には、熱履歴による経時的な内部抵抗の増加を効果的に抑制することができる。
 なお、一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種の、負極における含有量は、負極保護被膜成分の解析で得られた定量値を負極活物質の質量で除して算出される。
 また、一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種の、正極における含有量は、正極保護被膜成分の解析で得られた定量値を正極活物質の質量で除して算出される。
[負極集電体]
 負極集電体は、例えば、銅箔、ニッケル箔、ステンレス箔等の金属箔により構成される。また、負極集電体は、表面にカーボンコートが施されていてもよいし、メッシュ状に加工されていてもよい。負極集電体の厚みは、5~40μmであることが好ましく、6~35μmであることがより好ましく、7~30μmであることが更に好ましい。
[負極活物質層]
 負極活物質層は、負極活物質を含有し、必要に応じて導電助剤及び/又はバインダーを更に含有してよい。
(負極活物質)
 負極活物質は、例えば、アモルファスカーボン(ハードカーボン)、人造黒鉛、天然黒鉛、黒鉛、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラファイト、炭素コロイド、及びカーボンブラックに代表される炭素材料の他、金属リチウム、金属酸化物、金属窒化物、リチウム合金、スズ合金、Si材料、金属間化合物、有機化合物、無機化合物、金属錯体、有機高分子化合物等が挙げられる。負極活物質は1種を単独で又は2種以上を組み合わせて用いられる。上記のSi材料としては、例えば、シリコン、Si合金、Si酸化物等が挙げられる。
 負極活物質層は、電池電圧を高められるという観点から、負極活物質としてリチウムイオンを0.4V vs.Li/Li+よりも卑な電位で吸蔵することが可能な材料を含有することが好ましい。
 本実施形態に係る非水系電解液は、負極活物質にSi材料を適用した場合でも、充放電サイクルを繰り返したときの負極の体積変化に伴う各種劣化現象を抑制することができる利点を有する。したがって、本実施形態に係る非水系二次電池では、負極活物質として、シリコン合金等に代表されるSi材料を用いることも、Si材料に由来する高い容量を具備しつつ、充放電サイクル特性に優れるものとなる点で、好ましい態様である。
 本実施形態では、負極活物質としてSi材料、特に、SiOx(0.5≦x≦1.5)を含んでよい。Si材料は、結晶体、低結晶体、及びアモルファス体のいずれの形態であってよい。また、負極活物質としてSi材料を用いる場合、活物質表面を導電性の材料によって被覆すると、活物質粒子間の導電性が向上されるため、好ましい。
 シリコンは作動電位が約0.5V(vsLi/Li+)と、黒鉛の作動電位の約0.05V(vsLi/Li+)に対して少し高い。そのため、Si材料を用いると、リチウム電析の危険性が軽減される。本実施形態における非水系溶媒に用いられているアセトニトリルは、リチウム金属と還元反応して、ガス発生を引き起こす可能性がある。そのため、リチウム電析し難い負極活物質は、アセトニトリルを含む非水系電解液との組み合わせて用いるときに好ましい。
 他方、作動電位が高すぎる負極活物質は、電池としてのエネルギー密度が低下してしまうため、エネルギー密度向上の観点から、負極活物質は0.4V vs.Li/Li+よりも卑な電位で作動する方が好ましい。
 Si材料の含有量は、負極活物質層の全量当たりの量として、0.1質量%以上100質量%以下の範囲であることが好ましく、1質量%以上80質量%以下の範囲であることがより好ましく、3質量%以上60質量%以下の範囲であることが更に好ましい。Si材料の含有量を上記の範囲内に調整することによって、非水系二次電池の高容量化と、充放電サイクル性能とのバランスを確保することができる。
(導電助剤)
 導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有量は、負極活物質100質量部当たりの量として、20質量部以下とすることが好ましく、より好ましくは0.1~10質量部である。
(バインダー)
 バインダーとしては、例えば、カルボキシメチルセルロース、PVDF、PTFE、ポリアクリル酸、及びフッ素ゴムが挙げられる。また、ジエン系ゴム、例えばスチレンブタジエンゴム等も挙げられる。バインダーの含有量は、負極活物質100質量部当たりの量として、10質量部以下とすることが好ましく、より好ましくは0.5~6質量部である。
[負極活物質層の形成]
 負極活物質層は、負極活物質と、必要に応じて含まれる、導電助剤及び/又はバインダーとを混合した負極合剤を溶剤に分散した負極合剤含有スラリーを、負極集電体に塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、既知のものを用いることができる。例えば、N―メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
〈正極〉
 本実施形態に係る非水系二次電池において、正極は、正極集電体の片面又は両面に正極活物質層を有する。
[正極集電体]
 正極集電体は、例えば、アルミニウム箔、ニッケル箔、ステンレス箔等の金属箔により構成される。正極集電体は、表面にカーボンコートが施されていてよく、また、メッシュ状に加工されていてよい。正極集電体の厚みは、5~40μmであることが好ましく、7~35μmであることがより好ましく、9~30μmであることが更に好ましい。
[正極活物質層]
 正極活物質層は、正極活物質を含有し、必要に応じて導電助剤及び/又はバインダーを更に含有してよい。
(正極活物質)
 正極活物質層は、正極活物質として、リチウムイオンを吸蔵及び放出することが可能な材料を含有することが好ましい。このような材料を用いる場合、高電圧及び高エネルギー密度を得ることができる傾向にあるので好ましい。
 正極活物質としては、例えば、
 Ni、Mn、及びCoから成る群より選ばれる少なくとも1種の遷移金属元素を含有する正極活物質;
が挙げられ、下記一般式(14):
  LipNiqCorMnstu・・・・・(14)
{式中、MはAl、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Mo、Zr、Sr、Baから成る群から選ばれる少なくとも1種の金属であり、且つ、0<p<1.3、0<q<1.2、0<r<1.2、0≦s<0.5、0≦t<0.3、0.7≦q+r+s+t≦1.2、1.8<u<2.2の範囲であり、そしてpは、電池の充放電状態により決まる値である。}
で表されるLi含有金属酸化物から選ばれる少なくとも1種のLi含有金属酸化物が好適である。
 また、正極活物質としては、例えば、
 LiCoO2に代表されるリチウムコバルト酸化物;
 LiMnO2、LiMn24、及びLi2Mn24に代表されるリチウムマンガン酸化物;
 LiNiO2に代表されるリチウムニッケル酸化物;
 LiNi1/3Co1/3Mn1/32、LiNi0.5Co0.2Mn0.32、LiNi0.8Co0.22、LiNi0.6Co0.2Mn0.22、LiNi0.75Co0.15Mn0.152、LiNi0.8Co0.1Mn0.12、LiNi0.85Co0.075Mn0.0752、LiNi0.8Co0.15Al0.052、LiNi0.81Co0.1Al0.092、LiNi0.85Co0.1Al0.052に代表されるLizMO2(MはNi、Mn、及びCoから成る群より選ばれる少なくとも1種の遷移金属元素を含み、且つ、Ni、Mn、Co、Al、及びMgから成る群より選ばれる2種以上の金属元素を示し、zは0.9超1.2未満の数を示す)で表されるリチウム含有複合金属酸化物;
 MnO2、FeO2、FeS2、V25、V613、TiO2、TiS2、MoS2、及びNbSe2に代表される、トンネル構造及び層状構造を有する金属酸化物又は金属カルコゲン化物;
 イオウ;
 ポリアニリン、ポリチオフェン、ポリアセチレン、及びポリピロールに代表される導電性高分子等;
が挙げられる。
 特に、一般式(14)で表されるLi含有金属酸化物のNi含有比qが、0.5<q<1.2である場合には、レアメタルであるCoの使用量削減と、高エネルギー密度化の両方が達成されるため好ましい。
 ここで、Ni含有比が高まるほど、低電圧で劣化が進行する傾向にある。一般式(14)で表されるリチウム含有金属酸化物の正極活物質には、非水系電解液を酸化劣化させる活性点が存在するが、この活性点は、負極を保護するために添加した化合物を、正極側で意図せず消費してしまうことがある。中でも酸無水物はその影響を受け易い傾向にある。特に、非水系溶媒としてアセトニトリルを含有する場合には、酸無水物の添加効果は絶大であるが故に、正極側で酸無水物が消費されてしまうことは課題である。
 また、正極側に取り込まれ堆積したこれらの添加剤分解物は、非水系二次電池の内部抵抗の増加要因となるだけでなく、リチウム塩の劣化も加速させる。更に、負極表面の保護も不十分となってしまう。非水系電解液を本質的に酸化劣化させる活性点を失活させるには、ヤーンテラー歪みの制御又は中和剤的な役割を担う成分の共存が好ましい。そのため、正極活物質は、Al、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Mo、Zr、Sr、Baから成る群より選ばれる少なくとも1種の金属を含有することが好ましい。
 同様の理由により、正極活物質の表面が、Zr、Ti、Al、及びNbから成る群より選ばれる少なくとも1種の金属元素を含有する化合物で被覆されていることが好ましい。また、正極活物質の表面が、Zr、Ti、Al、及びNbから成る群より選ばれる少なくとも1種の金属元素を含有する酸化物で被覆されていることがより好ましい。更に、正極活物質の表面が、ZrO2、TiO2、Al23、NbO3、及びLiNbO2から成る群より選ばれる少なくとも1種の酸化物で被覆されていることが、リチウムイオンの透過を阻害しないため更に好ましい。
 なお、正極活物質としては、式(14)で表されるリチウム含有金属酸化物以外のリチウム含有化合物であってよい。このようなリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物、リチウムを有する金属カルコゲン化物、リチウムと遷移金属元素とを含むリン酸金属化合物、及びリチウムと遷移金属元素とを含むケイ酸金属化合物が挙げられる。より高い電圧を得る観点から、リチウム含有化合物としては、特に、リチウムと、Co、Ni、Mn、Fe、Cu、Zn、Cr、V、及びTiから成る群より選ばれる少なくとも1種の遷移金属元素と、を含むリン酸金属化合物が好ましい。
 リチウム含有化合物として、より具体的には、以下の式(16a):
  LivI2   (16a)
{式中、Dはカルコゲン元素を示し、MIは少なくとも1種の遷移金属元素を含む1種以上の遷移金属元素を示し、vの値は、電池の充放電状態により決まり、0.05~1.10の数を示し、そしてuは0~2の数を示す。}、
以下の式(16b):
  LiwIIPO4   (16b)
{式中、Dはカルコゲン元素を示し、MIIは少なくとも1種の遷移金属元素を含む1種以上の遷移金属元素を示し、wの値は、電池の充放電状態により決まり、0.05~1.10の数を示し、そしてuは0~2の数を示す。}、及び
以下の式(16c):
  LitIII uSiO4   (16c)
{式中、Dはカルコゲン元素を示し、MIIIは少なくとも1種の遷移金属元素を含む1種以上の遷移金属元素を示し、tの値は、電池の充放電状態により決まり、0.05~1.10の数を示し、そしてuは0~2の数を示す。}
のそれぞれで表される化合物が挙げられる。
 上記の式(16a)で表されるリチウム含有化合物は層状構造を有し、上記の式(16b)及び(16c)で表される化合物はオリビン構造を有する。これらのリチウム含有化合物は、構造を安定化させる等の目的から、Al、Mg、又はその他の遷移金属元素により遷移金属元素の一部を置換したもの、これらの金属元素を結晶粒界に含ませたもの、酸素原子の一部をフッ素原子等で置換したもの、正極活物質表面の少なくとも一部に他の正極活物質を被覆したもの等であってよい。
 正極活物質は、1種を単独で又は2種以上を組み合わせて用いられる。リチウムイオンを可逆安定的に吸蔵及び放出することが可能であり、且つ、高エネルギー密度を達成できることから、正極活物質層がNi、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有することが好ましい。
 正極活物質として、リチウム含有化合物とその他の正極活物質とを併用する場合、双方の使用割合としては、正極活物質の全部に対するリチウム含有化合物の使用割合として、80質量%以上が好ましく、85質量%以上がより好ましい。
(導電助剤)
 導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有量は、正極活物質100質量部当たりの量として、10質量部以下とすることが好ましく、より好ましくは1~5質量部である。
(バインダー)
 バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、スチレンブタジエンゴム、及びフッ素ゴムが挙げられる。バインダーの含有量は、正極活物質100質量部当たりの量として、6質量部以下とすることが好ましく、より好ましくは0.5~4質量部である。
[正極活物質層の形成]
 正極活物質層は、正極活物質と、必要に応じて含まれる、導電助剤及び/又はバインダーとを混合した正極合剤を溶剤に分散した正極合剤含有スラリーを、正極集電体に塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、既知のものを用いることができる。例えば、N―メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
〈セパレータ〉
 本実施形態に係る非水系二次電池は、正極及び負極の短絡防止、シャットダウン等の安全性付与等の観点から、正極と負極との間にセパレータを備えることが好ましい。セパレータとしては、既知の非水系二次電池に備えられるものと同様のものを用いてよく、イオン透過性が大きく、機械的強度に優れる絶縁性の薄膜が好ましい。セパレータを構成する素材としては、例えば、織布、不織布、合成樹脂製微多孔膜等が挙げられ、これらの中でも、合成樹脂製微多孔膜が好ましく、特に、ポリエチレン又はポリプロピレンを主成分として含有する微多孔膜、又はこれらのポリオレフィンの双方を含有する微多孔膜等のポリオレフィン系微多孔膜が好適に用いられる。不織布としては、例えば、ガラス製、セラミック製、ポリオレフィン製、ポリエステル製、ポリアミド製、液晶ポリエステル製、アラミド製等の耐熱樹脂製の多孔膜が挙げられる。
 セパレータ170は、1種の微多孔膜を単層又は複数積層した構成であってよく、また、2種以上の微多孔膜を積層した構成であってよい。更に、セパレータ170は、2種以上の樹脂材料を溶融混錬した混合樹脂材料を用いて、単層又は複数層に積層した構成であってよい。
 セパレータの膜厚は、膜強度の観点から1μm以上であることが好ましく、透過性の観点より500μm以下であることが好ましい。発熱量が比較的高く、高出力用途に使用されるとの観点、及び大型の電池捲回機による捲回性の観点から、3μm以上40μm以下であることが好ましく、10μm以上25μm以下であることがより好ましい。なお、耐ショート性能と出力性能の両立を重視する場合には、15μm以上25μm以下であることが更に好ましいが、高エネルギー密度化と出力性能の両立を重視する場合には、10μm以上15μm未満であることが更に好ましい。
 気孔率は、高出力時のリチウムイオンの急速な移動に追従する観点から、30%以上90%以下が好ましく、35%以上80%以下がより好ましく、40%以上70%以下が更に好ましい。なお、安全性を確保しつつ出力性能の向上を優先に考えた場合には、50%以上70%以下が特に好ましく、耐ショート性能と出力性能の両立を重視する場合には、40%以上50%未満が特に好ましい。
 透気度は、膜厚、気孔率とのバランスの観点から、1秒/100cm3以上400秒/100cm3以下が好ましく、100秒/100cm3以上350/100cm3以下がより好ましい。なお、耐ショート性能と出力性能の両立を重視する場合には、150秒/100cm3以上350秒/100cm3以下が更に好ましく、安全性を確保しつつ出力性能の向上を優先に考えた場合には、100/100cm3秒以上150秒/100cm3未満が特に好ましい。
 他方、イオン伝導度の低い非水系電解液と上記範囲内のセパレータを組み合わせた場合、リチウムイオンの移動速度がセパレータの構造ではなく、非水系電解液のイオン伝導度の高さが律速となり、期待したような入出力特性が得られない傾向がある。そのため、非水系電解液のイオン伝導度は10mS/cm以上が好ましく、15mS/cmがより好ましく、20mS/cmが更に好ましい。
 ただし、セパレータの膜厚、透気度及び気孔率、並びに非水系電解液のイオン伝導度は一例である。
 セパレータに所定の機能を付与することを目的として、セパレータの表層又は内部に無機粒子を存在させてよく、また、セパレータに対して他の有機層を更に塗工又は積層してよい。また、セパレータは、架橋構造を含むものであってよい。非水系二次電池の安全性能を高めるため、これらの手法は必要に応じ組み合わせてよい。
 なお、上記のとおり、本実施形態において、非水系二次電池を得るための各種の要素は、第1の実施形態において説明された要素を適宜適用することができる。
 従って、第1の実施形態において説明された内容を適宜適用し、本実施形態に係る非水系二次電池を製造することが可能である。
 以上、本発明を実施するための形態について説明した。しかしながら、本発明は、上記の実施形態に限定されず、その要旨を逸脱しない範囲で様々な変形が可能である。
 以下、実施例によって本発明を更に詳細に説明する。しかしながら本発明は、これらの実施例に限定されない。以下、第1の実施例と第2の実施例とに分けて説明する。
<第1の実施例>
(1)非水系電解液の調製
 不活性雰囲気下、各種非水系溶媒、各種酸無水物、及び各種添加剤を、それぞれが所定の濃度になるよう混合し、更に、各種リチウム塩をそれぞれ所定の濃度になるよう添加することにより、非水系電解液(S1)~(S29)を調製した。これらの非水系電解液組成を表1~表3に示す。
 表1~表3における非水系溶媒、リチウム塩、酸無水物、及び添加剤の略称は、それぞれ以下の意味である。また、表1における添加剤の質量%は、非水系電解液の全量に対する質量%を示している。
(非水系溶媒)
  AcN:アセトニトリル
  DEC:ジエチルカーボネート
  EMC:エチルメチルカーボネート
  DFA:酢酸2,2-ジフルオロエチル
  DMC:ジメチルカーボネート
  EC:エチレンカーボネート
  VC:ビニレンカーボネート
  FEC:4-フルオロ-1,3-ジオキソラン-2-オン
(リチウム塩)
  LiPF6:ヘキサフルオロリン酸リチウム
  LiFSI:リチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2
  LiTFSI:リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(SO2CF32
(添加剤:酸無水物)
  SAH:無水コハク酸
(添加剤:一般式(1)~(4)及び(18)で表される化合物)
  V0044:トリエトキシビニルシラン
  A0785:アリルトリエトキシシラン
  T2675:トリエトキシ(3-グリシジルオキシプロピル)シラン
  T2523:2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサン
  D0225:ジ-tert-ブチルジスルフィド
  BTESPTS:ビス[3-(トリエトキシシリル)プロピル]テトラスルフィド
  PD:ピリジン
  MBTA:1-メチル-1H-ベンゾトリアゾール
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
(2)コイン型非水系二次電池の作製
(2-1-1)正極(P1)の作製
 (A)正極活物質として、数平均粒子径11μmのリチウム、ニッケル、マンガン及びコバルトの複合酸化物(LiNi1/3Mn1/3Co1/32、密度4.70g/cm3)と、(B)導電助剤として、数平均粒子径6.5μmのグラファイト粉末(密度2.26g/cm3)及び数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm3)と、(c)バインダーとして、ポリフッ化ビニリデン(PVDF;密度1.75g/cm3)と、を、92:4:4の質量比で混合し、正極合剤を得た。
 得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを固形分68質量%となるように投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ15μm、幅280mmのアルミニウム箔の片面に、この正極合剤含有スラリーの目付量を調節しながら、塗工幅240~250mm、塗工長125mm、無塗工長20mmの塗布パターンになるよう3本ロール式転写コーターを用いて塗布し、熱風乾燥炉で溶剤を乾燥除去した。得られた電極ロールは、両サイドをトリミングカットし、130℃8時間の減圧乾燥を実施した。その後、ロールプレスで正極活物質層の密度が2.9g/cm3になるよう圧延して、正極活物質層と正極集電体から成る正極(P1)を得た。正極活物質層の目付量は23.8mg/cm2、正極活物質の質量は21.9mg/cm2であった。
(2-1-2)正極(P2)の作製
 (A)正極活物質として、数平均粒子径11μmのリチウム、ニッケル、コバルト及びアルミニウムの複合酸化物(LiNi0.8Co0.15Al0.052)と、(B)導電助剤として、数平均粒子径6.5μmのグラファイト粉末(密度2.26g/cm3)及び数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm3)と、(c)バインダーとして、ポリフッ化ビニリデン(PVDF;密度1.75g/cm3)と、を、92:4:4の質量比で混合し、正極合剤を得た。
 得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを固形分68質量%となるように投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ15μm、幅280mmのアルミニウム箔の片面に、この正極合剤含有スラリーの目付量を調節しながら、塗工幅240~250mm、塗工長125mm、無塗工長20mmの塗布パターンになるよう3本ロール式転写コーターを用いて塗布し、熱風乾燥炉で溶剤を乾燥除去した。得られた電極ロールは、両サイドをトリミングカットし、130℃8時間の減圧乾燥を実施した。その後、ロールプレスで正極活物質層の密度が2.9g/cm3になるよう圧延して、正極活物質層と正極集電体から成る正極(P2)を得た。正極活物質層の目付量は19.3mg/cm2、正極活物質の質量は17.8mg/cm2であった。
(2-1-3)正極(P3)の作製
 アセトニトリルにビス[3-(トリエトキシシリル)プロピル]テトラスルフィドを5質量%溶かして浸漬液を作製し、正極(P2)を浸漬した。次に、浸漬液から正極(P2)を取り出し、30分間風乾させた後、更に100℃で12時間真空乾燥した。上記の処理を行ったものを、正極(P3)とした。
(2-1-4)正極(P4)の作製
 (A)正極活物質として、リチウム、ニッケル、マンガン及びコバルトの複合酸化物(LiNi0.6Mn0.2Co0.22)と、(B)導電助剤として、バッテリー用カーボンブラック粉末(イメリス・グラファイト&カーボン社製SUPER-P(登録商標))と、(c)バインダーとして、ポリフッ化ビニリデン(PVDF;密度1.75g/cm3)と、を、94:3:3の質量比で混合し、正極合剤を得た。
 得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを固形分68質量%となるように投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ20μm、幅150mmのアルミニウム箔の片面に、この正極合剤含有スラリーの目付量を調節しながら、塗工幅98~100mm、塗工長200mm、無塗工長20mmの塗布パターンになるよう3本ロール式転写コーターを用いて塗布し、熱風乾燥炉で溶剤を乾燥除去した。得られた電極ロールは、両サイドをトリミングカットし、130℃8時間の減圧乾燥を実施した。その後、ロールプレスで正極活物質層の密度が2.7g/cm3になるよう圧延して、正極活物質層と正極集電体から成る正極(P4)を得た。正極活物質層の目付量は10.0mg/cm2、正極活物質の質量は9.4mg/cm2であった。
(2-2-1)負極(N1)の作製
 (a)負極活物質として、数平均粒子径12.7μmの人造黒鉛粉末(密度2.23g/cm3)と、(b)導電助剤として、数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm3)と、(c)バインダーとして、カルボキシメチルセルロース(密度1.60g/cm3)溶液(固形分濃度1.83質量%)及びジエン系ゴム(ガラス転移温度:-5℃、乾燥時の数平均粒子径:120nm、密度1.00g/cm3、分散媒:水、固形分濃度40質量%)と、を、95.7:0.5:3.8の固形分質量比で混合し、負極合剤を得た。
 得られた負極合剤に溶剤として水を固形分45質量%となるように投入して更に混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ8μm、幅280mmの銅箔の片面に、この負極合剤含有スラリーの目付量を調節しながら、塗工幅240~250mm、塗工長125mm、無塗工長20mmの塗布パターンになるよう3本ロール式転写コーターを用いて塗布し、熱風乾燥炉で溶剤を乾燥除去した。得られた電極ロールは、両サイドをトリミングカットし、80℃12時間の減圧乾燥を実施した。その後、ロールプレスで負極活物質層の密度が1.5g/cm3になるよう圧延して、負極活物質層と負極集電体から成る負極(N1)を得た。負極活物質層の目付量は11.9mg/cm2、負極活物質の質量は11.4mg/cm2であった。
(2-2-2)負極(N2)の作製
 (a)負極活物質として、数平均粒子径12.7μmの人造黒鉛粉末(密度2.23g/cm3)と、(b)導電助剤として、バッテリー用カーボンブラック粉末(イメリス・グラファイト&カーボン社製SUPER-P(登録商標))と、(c)バインダーとして、ポリフッ化ビニリデン(PVDF;密度1.75g/cm3)と、を、90.0:3.0:7.0の固形分質量比で混合し、負極合剤を得た。
 得られた負極合剤に溶剤としてN-メチル-2-ピロリドンを固形分45質量%となるように投入して更に混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ8μm、幅150mmの銅箔の片面に、この負極合剤含有スラリーの目付量を調節しながら、塗工幅98~101mm、塗工長200mm、無塗工長20mmの塗布パターンになるよう3本ロール式転写コーターを用いて塗布し、熱風乾燥炉で溶剤を乾燥除去した。得られた電極ロールは、両サイドをトリミングカットし、130℃8時間の減圧乾燥を実施した。その後、ロールプレスで負極活物質層の密度が1.3g/cm3になるよう圧延して、負極活物質層と負極集電体から成る負極(N2)を得た。負極活物質層の目付量は5.4mg/cm2、負極活物質の質量は4.9mg/cm2であった。
(2-3)コイン型非水系二次電池の組み立て
 CR2032タイプの電池ケース(SUS304/Alクラッド)にポリプロピレン製ガスケットをセットし、その中央に上記のようにして得られた正極(P1)を直径15.958mmの円盤状に打ち抜いたものを、正極活物質層を上向きにしてセットした。その上からガラス繊維濾紙(アドバンテック社製、GA-100)を直径16.156mmの円盤状に打ち抜いたものをセットして、非水系電解液を150μL注入した後、上記のようにして得られた負極を直径16.156mmの円盤状に打ち抜いたものを、負極活物質層を下向きにしてセットした。更にスペーサーとスプリングをセットした後に電池キャップをはめ込み、カシメ機でかしめた。あふれた非水系電解液はウエスできれいにふきとった。25℃で12時間保持し、積層体に非水系電解液を十分馴染ませてコイン型非水系二次電池を得た。
(3)コイン型非水系二次電池(1C=6mA)の評価
 上記のようにして得られたコイン型非水系二次電池について、まず、下記(3-1)の手順に従って初回充電処理及び初回充放電容量測定を行った。次に(3-2)又は(3-3)の手順に従ってそれぞれのコイン型非水系二次電池を評価した。なお、充放電はアスカ電子(株)製の充放電装置ACD-M01A(商品名)及びヤマト科学(株)製のプログラム恒温槽IN804(商品名)を用いて行った。
 ここで、1Cとは満充電状態の電池を定電流で放電して1時間で放電終了となることが期待される電流値を意味する。満充電状態から定電流で放電して1時間で放電終了となることが期待される電流値を意味する。
(3-1)コイン型非水系二次電池の初回充放電処理
 コイン型非水系二次電池の周囲温度を25℃に設定し、0.1Cに相当する0.6mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で0.02Cに相当する0.12mAに電流が減衰するまで充電を行った。その後、0.3Cに相当する1.8mAの定電流で3.0Vまで放電した。この初回放電容量を初回充電容量で割ることによって、初回効率を算出した。なお、正極(P1)と負極(N1)を用いた場合の初回効率は、84%以上であれば合格であり、次の評価に進むことができる。また、このときの初回放電容量を初期容量Aとした。
(3-2)コイン型非水系二次電池の85℃満充電保存試験
 上記(3-1)に記載の方法で初回充放電処理を行ったコイン型非水系二次電池について、周囲温度を25℃に設定し、1Cに相当する6mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で1.5時間充電を行った。次に、このコイン型非水系二次電池を85℃の恒温槽に4時間保存した。その後、周囲温度を25℃に戻し、0.3Cに相当する1.8mAの電流値で3.0Vまで放電した。このときの残存放電容量をBとした。85℃満充電保存試験の測定値として、以下の式に基づき、残存容量維持率を算出した。
 残存容量維持率=(85℃満充電保存後の0.3C残存放電容量B/85℃満充電保存試験前の0.3C初期容量A)×100[%]
 次に、上記に記載の方法で85℃満充電保存試験を行ったコイン型非水系二次電池について、周囲温度を25℃に設定し、1Cに相当する6mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で1.5時間充電を行った。この時の回復充電容量をCとした。その後、0.3Cに相当する1.8mAの電流値で3.0Vまで放電した。このときの回復放電容量をDとした。回復試験測定値として、以下の式に基づき、回復後充放電効率及び回復容量維持率を算出した。
 回復後充放電効率=(85℃満充電保存試験後の0.3C回復放電容量D/85℃満充電保存試験後の1C回復充電容量C)×100[%]
 回復容量維持率=(85℃満充電保存試験後の0.3C回復放電容量D/85℃満充電保存試験前の0.3C初期容量A)×100[%]
(3-3)コイン型非水系二次電池のサイクル試験
 上記(3-2)に記載の方法で加速劣化処理を行った電池について、サイクル試験を実施した。なお、サイクル試験は電池の周囲温度を25℃に設定した。まず、1.5Cに相当する9mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で電流が0.05Cに相当する0.3mAに減衰するまで充電を行った。その後、9mAの定電流で3Vまで放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、100サイクルの充放電を行った。1サイクル目の放電容量を100%としたときの100サイクル目の放電容量を容量維持率とした。
(4)コイン型非水系二次電池(1C=3mA)の評価
 上記のようにして得られたコイン型非水系二次電池について、まず、下記(4-1)の手順に従って初回充電処理及び初回充放電容量測定を行った。次に(4-2)又は(4-3)の手順に従ってそれぞれのコイン型非水系二次電池を評価した。なお、充放電はアスカ電子(株)製の充放電装置ACD-M01A(商品名)及びヤマト科学(株)製のプログラム恒温槽IN804(商品名)を用いて行った。
(4-1)コイン型非水系二次電池の初回充放電処理
 コイン型非水系二次電池の周囲温度を25℃に設定し、0.1Cに相当する0.3mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で0.02Cに相当する0.06mAに電流が減衰するまで充電を行った。その後、0.3Cに相当する0.9mAの定電流で3.0Vまで放電した。この初回放電容量を初回充電容量で割ることによって、初回効率を算出した。なお、正極(P4)と負極(N2)を用いた場合の初回効率は、84%以上であれば合格であり、次の評価に進むことができる。また、このときの初回放電容量を初期容量Aとした。
(4-2)コイン型非水系二次電池の85℃満充電保存試験
 上記(4-1)に記載の方法で初回充放電処理を行ったコイン型非水系二次電池について、周囲温度を25℃に設定し、1Cに相当する3mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で1.5時間充電を行った。次に、このコイン型非水系二次電池を85℃の恒温槽に4時間保存した。その後、周囲温度を25℃に戻し、0.3Cに相当する0.9mAの電流値で3.0Vまで放電した。このときの残存放電容量をBとした。85℃満充電保存試験の測定値として、以下の式に基づき、残存容量維持率を算出した。
 残存容量維持率=(85℃満充電保存後の0.3C残存放電容量B/85℃満充電保存試験前の0.3C初期容量A)×100[%]
 次に、上記に記載の方法で85℃満充電保存試験を行ったコイン型非水系二次電池について、周囲温度を25℃に設定し、1Cに相当する3mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で1.5時間充電を行った。この時の回復充電容量をCとした。その後、0.3Cに相当する0.9mAの電流値で3.0Vまで放電した。このときの回復放電容量をDとした。回復試験測定値として、以下の式に基づき、回復後充放電効率及び回復容量維持率を算出した。
 回復後充放電効率=(85℃満充電保存試験後の0.3C回復放電容量D/85℃満充電保存試験後の1C回復充電容量C)×100[%]
 回復容量維持率=(85℃満充電保存試験後の0.3C回復放電容量D/85℃満充電保存試験前の0.3C初期容量A)×100[%]
(4-3)コイン型非水系二次電池のサイクル試験
 上記(4-2)に記載の方法で加速劣化処理を行った電池について、サイクル試験を実施した。なお、サイクル試験は電池の周囲温度を25℃に設定した。まず、3Cに相当する9mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で電流が0.02Cに相当する0.06mAに減衰するまで充電を行った。その後、3Cに相当する9mAの定電流で3Vまで放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、100サイクルの充放電を行った。1サイクル目の放電容量を100%としたときの100サイクル目の放電容量を容量維持率とした。
[実施例1~6及び比較例1~4]
 正極(P1)、負極(N1)、表1の非水系電解液を用い、上記の(2)に記載の方法に従ってコイン型非水系二次電池を作製し、上記の(3-1)の手順に従ってそれぞれのコイン型非水系二次電池の初回充放電処理を行った。実施例1~6、比較例1、及び比較例4のコイン型非水系二次電池は、初回効率が合格水準である84%を超えたため、次の評価に進めた。次に、上記の(3-2)の手順に従ってそれぞれのコイン型非水系二次電池を評価した。この試験結果を表4に示す。
Figure JPOXMLDOC01-appb-T000061
 実施例1~6と比較例1との比較から、非水系電解液を酸化劣化させる正極活物質の活性点を抑制する効果がある各種添加剤としての、一般式(1)~(4)及び(18)で表される化合物を用いた場合には、それらの添加剤を含まない非水系電解液を用いた場合と比較して、85℃満充電保存試験後の残存容量維持率、回復後充放電効率、及び回復容量維持率が向上することが確認された。
 また、実施例1~6と比較例4との比較から、酸無水物と併用可能な他の効能を有する添加剤を用いた場合と比較しても、一般式(1)~(4)及び(18)で表される化合物を用いた場合は高温耐久性能に優れることが確認された。なお、比較例4で用いたMBTAは、非水系溶媒としてアセトニトリルを含有する非水系電解液であっても、遷移金属とアセトニトリルとから成る錯体カチオンの生成を抑制し、優れた負荷特性を発揮すると共に、充放電サイクルを繰り返したときの内部抵抗の増加を抑制することができると国際公開第2016/159117号に記載されている。しかし、比較例4の結果から、非水系電解液を酸化劣化させる正極活物質の活性点を抑制する効果は認められなかった。
 他方、比較例2の非水系電解液(S8)を用いたコイン型非水系二次電池は、初回充電容量がリミットを超える異常値を示し、充放電装置が緊急停止してしまった。非水系溶媒としてアセトニトリルを含有する場合には初回充電時の還元分解を抑制するため、負極表面のSEIを強化することが好ましいが、酸無水物を添加しなかったため、アセトニトリルの還元分解が継続的に進行し易かったと考えられる。
 比較例3の非水系電解液(S9)は、リチウム塩を添加した後、黒褐色に変色してしまった。そのため、以後の試験継続は断念した。非水系電解液(S9)の添加剤として用いたピリジンは保存特性の改善に効果があると特開平8-321312号に記載されているが、負極表面のSEIを強化するために添加した無水コハク酸と副反応を起こしてしまったと考えられる。この結果から、酸無水物とピリジンの併用は困難であることが明らかとなった。
[実施例7]
 正極(P3)、負極(N1)、表1の非水系電解液(S7)を用い、上記の(2)に記載の方法に従ってコイン型非水系二次電池を作製した。次に、上記の(3-3)の手順に従ってコイン型非水系二次電池を評価した。この試験結果を表5に示す。
[比較例5]
 正極(P2)をそのまま用いた以外は、実施例7と同様の手順に従ってコイン型非水系二次電池を評価した。この試験結果を表5に示す。
Figure JPOXMLDOC01-appb-T000062
 実施例7と比較例5との比較から、非水系電解液を酸化劣化させる正極活物質の活性点を抑制する効果がある各種添加剤としての、一般式(1)~(4)及び(18)で表される化合物を正極に直接接触させた場合には、それらの添加剤を接触させない正極を用いた場合と比較して無水コハク酸の酸化劣化が抑制され、高温保存後であっても25℃サイクル性能が向上することが確認された。
[実施例8~17及び比較例6~8]
 正極(P1)、負極(N1)、表2の非水系電解液を用い、上記の(2)に記載の方法に従ってコイン型非水系二次電池を作製し、上記の(3-1)の手順に従ってそれぞれのコイン型非水系二次電池の初回充放電処理を行った。実施例8~17、比較例6~8のコイン型非水系二次電池は、初回効率が合格水準である84%を超えたため、次の評価に進めた。次に、上記の(3-2)及び(3-3)の手順に従ってそれぞれのコイン型非水系二次電池を評価した。この試験結果を表6に示す。
Figure JPOXMLDOC01-appb-T000063
[実施例18~23]
 正極(P1)、負極(N1)、表3の非水系電解液を用い、上記の(2)に記載の方法に従ってコイン型非水系二次電池を作製し、上記の(3-1)の手順に従ってそれぞれのコイン型非水系二次電池の初回充放電処理を行った。実施例18~23、比較例6~8のコイン型非水系二次電池は、初回効率が合格水準である84%を超えたため、次の評価に進めた。次に、上記の(3-3)の手順に従ってそれぞれのコイン型非水系二次電池を評価した。この試験結果を表7に示す。
Figure JPOXMLDOC01-appb-T000064
[実施例24]
 正極(P4)、負極(N2)、表2の非水系電解液(S17)を用い、上記の(2)に記載の方法に従ってコイン型非水系二次電池を作製し、上記の(4-1)の手順に従ってそれぞれのコイン型非水系二次電池の初回充放電処理を行った。実施例24のコイン型非水系二次電池は、初回効率が合格水準である84%を超えたため、次の評価に進めた。次に、上記の(4-2)及び(4-3)の手順に従ってそれぞれのコイン型非水系二次電池を評価した。この試験結果を表8に示す。
Figure JPOXMLDOC01-appb-T000065
<第2の実施例>
(5)単層ラミネート型非水系二次電池の作製
(5-1-1)正極(P11)の作製
 (A)正極活物質として、リチウム、ニッケル、マンガン及びコバルトの複合酸化物(LiNi0.8Mn0.1Co0.12)と、(B)導電助剤として、数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm3)と、(c)バインダーとして、ポリフッ化ビニリデン(PVDF;密度1.75g/cm3)と、を、92:4:4の質量比で混合し、正極合剤を得た。
 得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ20μmのアルミニウム箔の片面に、この正極合剤含有スラリーの目付量を調節しながら塗布し、熱風乾燥炉で溶剤を乾燥除去した。正極合剤含有スラリーをアルミニウム箔に塗布するときには、アルミニウム箔の一部が露出するように未塗布領域を形成した。得られた電極ロールは、両サイドをトリミングカットし、130℃8時間の減圧乾燥を実施した。その後、ロールプレスで正極活物質層の密度が2.8g/cm3になるよう圧延して、正極活物質層と正極集電体から成る正極(P11)を得た。正極活物質層の目付量は18.1mg/cm2、正極活物質の質量は16.7mg/cm2であった。
 次に、この正極を、正極合剤層の面積が14mm×20mmで、且つアルミニウム箔の露出部を含むように切断した。そして、アルミニウム箔の露出部に電流を取り出すためのアルミニウム製のリード片を溶接し、120℃で12時間真空乾燥を行うことにより、リード付き正極を得た。
(5-1-2)正極(P12)の作製
 (A)正極活物質として、リチウム、ニッケル、マンガン及びコバルトの複合酸化物(LiNi0.6Mn0.2Co0.22)と、(B)導電助剤として、数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm3)と、(c)バインダーとして、ポリフッ化ビニリデン(PVDF;密度1.75g/cm3)と、を、93:4:3の質量比で混合し、正極合剤を得た。
 得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ20μmのアルミニウム箔の片面に、この正極合剤含有スラリーの目付量を調節しながら塗布し、熱風乾燥炉で溶剤を乾燥除去した。正極合剤含有スラリーをアルミニウム箔に塗布するときには、アルミニウム箔の一部が露出するように未塗布領域を形成した。得られた電極ロールは、両サイドをトリミングカットし、130℃8時間の減圧乾燥を実施した。その後、ロールプレスで正極活物質層の密度が2.9g/cm3になるよう圧延して、正極活物質層と正極集電体から成る正極(P12)を得た。正極活物質層の目付量は19.0mg/cm2、正極活物質の質量は17.7mg/cm2であった。
 次に、この正極を、正極合剤層の面積が14mm×20mmで、且つアルミニウム箔の露出部を含むように切断した。そして、アルミニウム箔の露出部に電流を取り出すためのアルミニウム製のリード片を溶接し、120℃で12時間真空乾燥を行うことにより、リード付き正極を得た。
(5-1-3)正極(P13)の作製
 アセトニトリルにビス[3-(トリエトキシシリル)プロピル]テトラスルフィドを5質量%溶かして浸漬液を作製し、正極(P11)を浸漬した。次に、浸漬液から正極(P11)を取り出し、30分間風乾させた後、更に100℃で12時間真空乾燥した。上記の処理を行ったものを、正極(P13)とした。
(5-2-1)負極(N11)の作製
 (a)負極活物質として、人造黒鉛粉末と、(b)導電助剤として、数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm3)と、(c)バインダーとして、ポリフッ化ビニリデン(PVDF;密度1.75g/cm3)と、を、93:2:5の固形分質量比で混合し、負極合剤を得た。
 得られた負極合剤に溶剤としてN-メチル-2-ピロリドンを投入して更に混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ10μmの銅箔の片面に、この負極合剤含有スラリーの目付量を調節しながら塗布し、熱風乾燥炉で溶剤を乾燥除去した。負極合剤含有スラリーを銅箔に塗布するときには、銅箔の一部が露出するように未塗布領域を形成した。得られた電極ロールは、両サイドをトリミングカットし、130℃8時間の減圧乾燥を実施した。その後、ロールプレスで負極活物質層の密度が1.5g/cm3になるよう圧延して、負極活物質層と負極集電体から成る負極(N11)を得た。負極活物質層の目付量は11.8mg/cm2、負極活物質の質量は11.0mg/cm2であった。
 次に、この負極を、負極合剤層の面積が15mm×21mmで、且つ銅箔の露出部を含むように切断した。そして、銅箔の露出部に電流を取り出すためのニッケル製のリード片を溶接し、80℃で12時間真空乾燥を行うことにより、リード付き負極を得た。
(5-2-2)負極(N12)の作製
 (a)負極活物質として、人造黒鉛粉末と、(b)導電助剤として、数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm3)と、(c)バインダーとして、カルボキシメチルセルロース(密度1.60g/cm3)溶液(固形分濃度1.83質量%)及びジエン系ゴム(ガラス転移温度:-5℃、乾燥時の数平均粒子径:120nm、密度1.00g/cm3、分散媒:水、固形分濃度40質量%)と、を、97.5:1.0:1.5の固形分質量比で混合し、負極合剤を得た。
 得られた負極合剤に溶剤として水を固形分45質量%となるように投入して更に混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ8μmの銅箔の片面に、この負極合剤含有スラリーの目付量を調節しながら塗布し、熱風乾燥炉で溶剤を乾燥除去した。負極合剤含有スラリーを銅箔に塗布するときには、銅箔の一部が露出するように未塗布領域を形成した。得られた電極ロールは、両サイドをトリミングカットし、80℃12時間の減圧乾燥を実施した。その後、ロールプレスで負極活物質層の密度が1.45g/cm3になるよう圧延して、負極活物質層と負極集電体から成る負極(N12)を得た。負極活物質層の目付量は10.6mg/cm2、負極活物質の質量は10.3mg/cm2であった。
 次に、この負極を、負極合剤層の面積が15mm×21mmで、且つ銅箔の露出部を含むように切断した。そして、銅箔の露出部に電流を取り出すためのニッケル製のリード片を溶接し、80℃で12時間真空乾燥を行うことにより、リード付き負極を得た。
(5-3)単層ラミネート型非水系二次電池の組み立て
 リード付き正極とリード付き負極とを、各極の合剤塗布面が対向するようにポリエチレン製微多孔膜セパレータ(厚み21μm、透気度285秒/100cm、気孔率41%)を介して重ね合わせて積層電極体とした。この積層電極体を、100mm×60mmのアルミニウムラミネートシート外装体内に収容し、水分を除去するために80℃で5時間真空乾燥を行った。続いて、上記した各非水系電解液を外装体内に注入した後、外装体を封止することにより、単層ラミネート型(パウチ型)非水系二次電池(以下、単に「単層ラミネート電池」ともいう。)を作製した。この単層ラミネート電池は、設計容量値が7.5mAh、定格電圧値が4.2Vのものである。
(6)単層ラミネート型非水系二次電池の評価
 上記のようにして得られた単層ラミネート型非水系二次電池について、まず、下記(6-1)の手順に従って初回充電処理を行った。次に(6-2)の手順に従ってそれぞれの単層ラミネート型非水系二次電池を評価した。
(6-1)単層ラミネート型非水系二次電池の初回充放電処理
 単層ラミネート型非水系二次電池の周囲温度を25℃に設定し、0.025Cに相当する0.19mAの定電流で2時間充電した後、3時間休止し、0.05Cに相当する0.38mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で0.02Cに相当する0.15mAに電流が減衰するまで充電を行った。その後、0.05Cに相当する0.38mAの定電流で2.7Vまで放電した。
(6-2)単層ラミネート型非水系二次電池の50℃サイクル試験1
 上記(6-1)に記載の方法で初回充放電処理を行った単層ラミネート型非水系二次電池について、周囲温度を50℃に設定し、0.5Cに相当する3.8mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、0.5Cに相当する3.8mAの定電流で2.7Vまで放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、100サイクルの充放電を行った。1サイクル目の放電容量を100%としたときの100サイクル目の放電容量を容量維持率とした。
(6-3)単層ラミネート型非水系二次電池の35℃サイクル試験
 上記(6-1)に記載の方法で初回充放電処理を行った単層ラミネート型非水系二次電池について、周囲温度を35℃に設定し、0.5Cに相当する3.8mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、3.8mAの定電流で2.7Vまで放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、50サイクルの充放電を行った。1サイクル目の放電容量を100%としたときの50サイクル目の放電容量を容量維持率とした。
(6-4)単層ラミネート型非水系二次電池の50℃サイクル試験2
 上記(6-1)に記載の方法で初回充放電処理を行った単層ラミネート型非水系二次電池について、周囲温度を50℃に設定し、0.5Cに相当する3.8mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。その後、0.5Cに相当する3.8mAの定電流で2.7Vまで放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、50サイクルの充放電を行った。1サイクル目の放電容量を100%としたときの50サイクル目の放電容量を容量維持率とした。
[比較例9]
 正極(P11)、負極(N11)、表1の非水系電解液(S10)を用い、上記の(5)に記載の方法に従って単層ラミネート型非水系二次電池を作製し、上記の(6-1)の手順に従って単層ラミネート型非水系二次電池の初回充放電処理を行った。比較例9の単層ラミネート型非水系二次電池は、初回効率が合格水準である84%を超えたため、次の評価に進めた。次に、上記の(6-2)の手順に従って単層ラミネート型非水系二次電池を評価した。100サイクル目の放電容量は12%であった。
 サイクル試験終了後、アルゴン雰囲気下で単層ラミネート型非水系二次電池を解体して正極及び負極を取り出し、ジエチルカーボネートで洗浄後、乾燥した。
 アルゴン雰囲気下にて、正極片、負極片をそれぞれガラススクリュー管に入れ、シリンジを用いて重水1mLをそれぞれ注入し、蓋で密封した。72時間静置して電極被膜を抽出した後、ガラスウールを詰めたパスツールピペットで綿栓濾過し、抽出液を得た。
 上記抽出液を更に蒸留水で10倍希釈し、遠心分離(12000rpm、15分間)を行って固形分を除去し、LC-MS測定を行った。
 測定装置は日本ウォーターズ(株)製UPLC型液体クロマトグラフと日本ウォーターズ(株)製SYNAPT G2型質量分析計を接続して使用した。カラムは日本ウォーターズ(株)製ACQUITY UPLC BEH C18(1.7μm、2.1mm×50mm)を用いた。カラム温度は40℃、流速は毎分0.3mLとした。検出器はフォトダイオードアレイ(200~400nm)を用いた。移動相はA相として0.1体積%の蟻酸を含む水、B相として0.1体積%の蟻酸を含むアセトニトリルを用い、以下の表9のとおりグラジエント溶離を行った。試料注入量は2μLとした。
Figure JPOXMLDOC01-appb-T000066
 質量分析計において、イオン化はエレクトロスプレーイオン化法(ESI+及びESI-)を用いた。m/zのスキャンレンジは50~1200とした。
 以下の表10には、比較例9における、抽出液のLC-MS結果を示す。なお、活物質1μg当たりのピーク面積(X)は下記数式により算出した。
 X={(ピーク面積の実測値[Area])×(希釈抽出液量[mL])/(LC-MS注入量[μL])}/{(集電体を除く活物質層の質量(mg))×(活物質比率)}
Figure JPOXMLDOC01-appb-T000067
 表10に示すように、比較例9では、LC-MS測定の結果からESI-において分子量117の化合物が検出された。また、単位面積当たりのピーク面積は、負極よりも正極の方が多い結果となり、負極表面のSEIを強化するために添加した無水コハク酸が正極側で多く消費されてしまったことが示唆された。さらに、負極活物質1μg当たりのピーク面積は、抵抗成分として影響を及ぼす200Area/μgを大幅に超過していた。
[実施例25~28及び比較例10]
 正極(P11)、正極(P13)、負極(N11)、表11の非水系電解液を用い、上記の(5)に記載の方法に従って単層ラミネート型非水系二次電池を作製し、上記の(6-1)の手順に従って単層ラミネート型非水系二次電池の初回充放電処理を行った。実施例25~28、比較例10の単層ラミネート型非水系二次電池は、初回効率が合格水準である84%を超えたため、次の評価に進めた。次に、上記の(6-3)の手順に従ってそれぞれの単層ラミネート型非水系二次電池を評価した。この試験結果を表12に示す。
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
 サイクル試験終了後、アルゴン雰囲気下で、最も高いサイクル性能を示した実施例27の単層ラミネート型非水系二次電池を解体して正極及び負極を取り出し、ジエチルカーボネートで洗浄後、乾燥した。
 アルゴン雰囲気下にて、正極片、負極片をそれぞれガラススクリュー管に入れ、シリンジを用いて重水1mLをそれぞれ注入し、蓋で密封した。72時間静置して電極被膜を抽出した後、ガラスウールを詰めたパスツールピペットで綿栓濾過し、抽出液を得た。
 次に、得られた抽出液を直径3mmのNMR管に入れ、密封した。別途、化学シフト標準としてテトラメチルシランを含む重クロロホルム(シグマアルドリッチ製)に、標準物質としてテトラフルオロベンゼン(東京化成工業(株)製)を溶解させ、直径5mmのNMR管に入れた。このNMR管に上記3mmのNMR管を挿し込み、二重管法による1H-NMR測定を行った。また定量の基準物質としてジメチルスルホキシドの重水溶液(濃度0.398mg/mL)を調製し、同様に1H-NMR測定を行った。
 測定装置は(株)JEOL RESONANCE製JNM-ECS-400型FT NMR装置を用いた。ロック溶媒は重クロロホルムを用い、積算回数は256回とし、化学シフト基準はテトラメチルシラン(0ppm)を用いた。定量計算は、テトラフルオロベンゼンのプロトンに帰属されるピークの積分値を2000として、基準物質であるジメチルスルホキシドのシグナルの積分値から単位濃度当たりのプロトン1個に相当する積分値を求め、その値を用いて各ピークの積分値から算出した。以下の表13には、実施例27における、正極及び負極抽出液のH-NMR結果を示す。
Figure JPOXMLDOC01-appb-T000070
 上記の表13に示すように、H-NMR測定の結果から、実施例27では、上記一般式(4A)~(6A)で表される化合物が確認された。
[実施例29及び30]
 正極(P12)、負極(N12)、表11の非水系電解液を用い、上記の(5)に記載の方法に従って単層ラミネート型非水系二次電池を作製し、上記の(6-1)の手順に従って単層ラミネート型非水系二次電池の初回充放電処理を行った。実施例29及び30の単層ラミネート型非水系二次電池は、初回効率が合格水準である84%を超えたため、次の評価に進めた。次に、上記の(6-4)の手順に従ってそれぞれの単層ラミネート型非水系二次電池を評価した。この試験結果を表14に示す。
Figure JPOXMLDOC01-appb-T000071
 上記の結果から、本実施形態に係る非水系二次電池は、内部抵抗を低い状態に保ちながら、非水系電解液を酸化劣化させる正極活物質の活性点を効果的に抑制することが可能であり、高温で貯蔵したときの劣化現象を抑制することができる。
 本発明の非水系電解液及び非水系二次電池は、例えば、携帯電話機、携帯オーディオ機器、パーソナルコンピュータ、IC(Integrated Circuit)タグ等の携帯機器用の充電池;ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車等の自動車用充電池;12V級電源、24V級電源、48V級電源等の低電圧電源;住宅用蓄電システム、IoT機器等としての利用等が期待される。また、本発明の非水系二次電池は、寒冷地用の用途、及び夏場の屋外用途等にも適用することができる。
 100  非水系二次電池
 110  電池外装
 120  電池外装110の空間
 130  正極リード体
 140  負極リード体
 150  正極
 160  負極
 170  セパレータ

Claims (19)

  1.  非水系溶媒と、リチウム塩と、下記一般式(1):
      R1-(S)n-R2 ・・・・・(1)
    {式中、R1及びR2は、アリール基若しくはアルコキシシリル基で置換されてよいアルキル基又はアルキル基若しくはアルコキシシリル基で置換されてよいアリール基を示し、そしてnは1~4の整数である。}、
    下記一般式(2):
      X-Si(OR3(3-m)4 m・・・・・(2)
    {式中、R3及びR4は、アリール基若しくはアルコキシシリル基若しくはハロゲン原子で置換されてよいアルキル基、又はアルキル基若しくはアルコキシシリル基若しくはハロゲン原子で置換されてよいアリール基を示し、そしてXは、下記式(5):
    Figure JPOXMLDOC01-appb-C000001
     (式中、kは0~8の整数であり、そして*はSiとの結合個所を示す。)、
    下記式(6):
    Figure JPOXMLDOC01-appb-C000002
     (式中、jは0~8の整数であり、そして*はSiとの結合個所を示す。)、
    下記式(7):
    Figure JPOXMLDOC01-appb-C000003
     (式中、hは0~8の整数であり、gは0又は1の整数であり、そして*はSiとの結合個所を示す。)、及び
    下記式(17)
    Figure JPOXMLDOC01-appb-C000004
     (式中、*はSiとの結合個所を示す。)
    で表される基から成る群より選ばれる少なくとも1つを示し、そしてmは0~2の整数である。}、
    下記一般式(3):
    Figure JPOXMLDOC01-appb-C000005
    {式中、Xは各々独立して、前記式(5)~(7)及び(17)で表される基から成る群より選ばれる少なくとも1つを示し、そしてdは0~10000の整数である。}、
    下記一般式(4):
    Figure JPOXMLDOC01-appb-C000006
    {式中、R5は各々独立して、アリール基若しくはハロゲン原子で置換されてよいアルキル基又はアルキル基若しくはハロゲン原子で置換されてよいアリール基を示し、yは2~8の整数であり、そしてXは前記式(5)~(7)及び(17)で表される基から成る群より選ばれる少なくとも1つを示す。}、及び
    下記一般式(18):
      X-Si(OR3'OR3(3-m)4 m・・・・・(18)
    {式中、R3、R4、X、及びmは、一般式(2)において定義されたとおりであり、かつR’は、アリール基、アルコキシシリル基又はハロゲン原子で置換されてよいアルキレン基である。}
    で表される化合物から成る群より選ばれる少なくとも1種の化合物と、を含有する非水系電解液。
  2.  前記一般式(1)~(4)及び(18)で表される化合物から成る群より選ばれる少なくとも1種の化合物の含有量が、非水系電解液100質量部当たりの量として、0.01~10質量部である、請求項1に記載の非水系電解液。
  3.  前記非水系電解液が酸無水物を含有する、請求項1又は2に記載の非水系電解液。
  4.  前記酸無水物が、少なくとも1種の環状酸無水物を含有する、請求項3に記載の非水系電解液。
  5.  前記環状酸無水物が、マロン酸無水物、無水コハク酸、グルタル酸無水物、無水マレイン酸、無水フタル酸、1,2-シクロヘキサンジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、及びナフタレン-1,4,5,8-テトラカルボン酸二無水物から成る群より選ばれる少なくとも1種である、請求項4に記載の非水系電解液。
  6.  前記酸無水物の含有量が、非水系電解液100質量部当たりの量として、0.01~10質量部である、請求項3~5のいずれか1項に記載の非水系電解液。
  7.  前記非水系溶媒が、該非水系溶媒の全量当たりの量として、アセトニトリルを5~95体積%含有する、請求項1~6のいずれか1項に記載の非水系電解液。
  8.  前記非水系溶媒が環状カーボネートを含有する、請求項1~7のいずれか1項に記載の非水系電解液。
  9.  前記環状カーボネートが、ビニレンカーボネート及び/又はフルオロエチレンカーボネートを含有する、請求項8に記載の非水系電解液。
  10.  集電体の片面又は両面に正極活物質層を有する正極と、集電体の片面又は両面に負極活物質層を有する負極と、セパレータと、非水系電解液とを具備する非水系二次電池において、
     前記非水系電解液は、請求項1~9のいずれか1項に記載の非水系電解液であり、
     前記負極は、下記一般式(4A):
    Figure JPOXMLDOC01-appb-C000007
    下記一般式(5A):及び
    Figure JPOXMLDOC01-appb-C000008
    下記一般式(6A):
    Figure JPOXMLDOC01-appb-C000009
    で表される化合物から成る群より選ばれる少なくとも1種の化合物を含有する非水系二次電池。
  11.  前記一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種の化合物の含有量が、負極活物質1g当たりの量として、0.01~100mgである、請求項10に記載の非水系二次電池。
  12.  前記正極及び前記負極の双方に、前記一般式(4A)~(6A)で表される化合物から成る群より選ばれる少なくとも1種の化合物が含まれ、且つ、前記正極に含まれる前記化合物の量が、前記負極に含まれる前記化合物の量より少ない、請求項10又は11に記載の非水系二次電池。
  13.  集電体の片面又は両面に正極活物質層を有する正極と、集電体の片面又は両面に負極活物質層を有する負極と、セパレータと、非水系電解液とを具備する非水系二次電池において、
     前記正極及び前記負極の双方に酸無水物の分解物が含まれ、且つ、前記正極に含まれる前記酸無水物の単位面積当たりの分解物量が、前記負極に含まれる前記酸無水物の単位面積当たりの分解物量より少ない非水系二次電池。
  14.  前記酸無水物の前記分解物が、下記一般式(8):
    Figure JPOXMLDOC01-appb-C000010
    {式中、R6及びR7は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示し、そしてfは1~3の整数である。}、
    下記一般式(9):
    Figure JPOXMLDOC01-appb-C000011
    {式中、R8及びR9は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}、
    下記一般式(10):
    Figure JPOXMLDOC01-appb-C000012
    {式中、R10及びR11は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}、
    下記一般式(11):
    Figure JPOXMLDOC01-appb-C000013
    {式中、R12及びR13は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}、
    下記一般式(12):
    Figure JPOXMLDOC01-appb-C000014
    {式中、R14及びR15は、ハロゲン原子で置換されてよいアルコキシ基、OH基、又はOLi基を示す。}、及び
    下記一般式(13):
    Figure JPOXMLDOC01-appb-C000015
    {式中、R16~R19は、ハロゲン原子で置換されてよいアルコキシ基、OH基又はOLi基を示す。}
    で表される化合物から成る群より選ばれる少なくとも1種の化合物を含有する、請求項13に記載の非水系二次電池。
  15.  前記正極活物質層が、ニッケル(Ni)、マンガン(Mn)、及びコバルト(Co)から成る群より選ばれる少なくとも1種の遷移金属元素を含有する正極活物質を含有する、請求項13又は14に記載の非水系二次電池。
  16.  前記正極活物質が、下記一般式(14):
      LipNiqCorMnstu・・・・・(14)
    {式中、Mはアルミニウム(Al)、スズ(Sn)、インジウム(In)、鉄(Fe)、バナジウム(V)、銅(Cu)、マグネシウム(Mg)、チタン(Ti)、亜鉛(Zn)、モリブデン(Mo)、ジルコニウム(Zr)、ストロンチウム(Sr)、及びバリウム(Ba)から成る群より選ばれる少なくとも1種の金属であり、且つ、0<p<1.3、0<q<1.2、0<r<1.2、0≦s<0.5、0≦t<0.3、0.7≦q+r+s+t≦1.2、1.8<u<2.2の範囲であり、そしてpは、電池の充放電状態により決まる値である。}
    で表されるリチウム含有金属酸化物から成る群より選ばれる少なくとも1種を含有する、請求項15に記載の非水系二次電池。
  17.  前記一般式(14)で表されるリチウム含有金属酸化物のニッケル(Ni)含有比qが、0.5<q<1.2である、請求項16に記載の非水系二次電池。
  18.  前記正極活物質の表面が、ジルコニウム(Zr)、チタン(Ti)、アルミニウム(Al)、及びニオブ(Nb)から成る群より選ばれる少なくとも1種の金属元素を含有する化合物で被覆された、請求項15~17のいずれか1項に記載の非水系二次電池。
  19.  前記正極、前記負極、及び前記セパレータから成る群より選ばれる少なくとも1種の電池部材が、下記一般式(1):
      R1-(S)n-R2 ・・・・・(1)
    {式中、R1及びR2は、アリール基若しくはアルコキシシリル基で置換されてよいアルキル基又はアルキル基若しくはアルコキシシリル基で置換されてよいアリール基を示し、そしてnは1~4の整数である。}、
    下記一般式(2):
      X-Si(OR3(3-m)4 m・・・・・(2)
    {式中、R3及びR4は、アリール基若しくはアルコキシシリル基若しくはハロゲン原子で置換されてよいアルキル基、又はアルキル基若しくはアルコキシシリル基若しくはハロゲン原子で置換されてよいアリール基を示し、そしてXは、下記式(5):
    Figure JPOXMLDOC01-appb-C000016
     (式中、kは0~8の整数であり、そして*はSiとの結合個所を示す。)、
    下記式(6):
    Figure JPOXMLDOC01-appb-C000017
     (式中、jは0~8の整数であり、そして*はSiとの結合個所を示す。)、
    下記式(7):
    Figure JPOXMLDOC01-appb-C000018
     (式中、hは0~8の整数であり、gは0又は1の整数であり、そして*はSiとの結合個所を示す。)、及び
    下記式(17)
    Figure JPOXMLDOC01-appb-C000019
     (式中、*はSiとの結合個所を示す。)
    で表される基から成る群より選ばれる少なくとも1つを示し、そしてmは0~2の整数である。}、
    下記一般式(3):
    Figure JPOXMLDOC01-appb-C000020
    {式中、Xは各々独立して、前記式(5)~(7)及び(17)で表される基から成る群より選ばれる少なくとも1つを示し、そしてdは0~10000の整数である。}、
    下記一般式(4):
    Figure JPOXMLDOC01-appb-C000021
    {式中、R5は各々独立して、アリール基若しくはハロゲン原子で置換されてよいアルキル基又はアルキル基若しくはハロゲン原子で置換されてよいアリール基を示し、yは2~8の整数であり、そしてXは前記式(5)~(7)及び(17)で表される基から成る群より選ばれる少なくとも1つを示す。}、及び
    下記一般式(18):
      X-Si(OR3'OR3(3-m)4 m・・・・・(18)
    {式中、R3、R4、X、及びmは、一般式(2)において定義されたとおりであり、かつR’は、アリール基、アルコキシシリル基又はハロゲン原子で置換されてよいアルキレン基である。}で表される化合物から成る群より選ばれる少なくとも1種の化合物を含有する、請求項10~18のいずれか一項に記載の非水系二次電池。
PCT/JP2019/036212 2018-09-14 2019-09-13 非水系電解液及び非水系二次電池 WO2020054863A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/269,634 US20210344046A1 (en) 2018-09-14 2019-09-13 Nonaqueous Electrolytic Solution and Nonaqueous Secondary Battery
CN201980056194.8A CN112640182A (zh) 2018-09-14 2019-09-13 非水系电解液及非水系二次电池
JP2020546235A JP7019062B2 (ja) 2018-09-14 2019-09-13 非水系電解液及び非水系二次電池
EP19859253.7A EP3836276A4 (en) 2018-09-14 2019-09-13 Nonaqueous electrolytic solution and nonaqueous secondary battery
KR1020207036711A KR102581173B1 (ko) 2018-09-14 2019-09-13 비수계 전해액 및 비수계 이차 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018173040 2018-09-14
JP2018-173039 2018-09-14
JP2018173039 2018-09-14
JP2018-173040 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054863A1 true WO2020054863A1 (ja) 2020-03-19

Family

ID=69776544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036212 WO2020054863A1 (ja) 2018-09-14 2019-09-13 非水系電解液及び非水系二次電池

Country Status (6)

Country Link
US (1) US20210344046A1 (ja)
EP (1) EP3836276A4 (ja)
JP (1) JP7019062B2 (ja)
KR (1) KR102581173B1 (ja)
CN (1) CN112640182A (ja)
WO (1) WO2020054863A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153396A1 (ja) * 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 非水電解液用添加剤およびこれを含む非水電解液ならびに非水電解液二次電池
JP2021170459A (ja) * 2020-04-15 2021-10-28 旭化成株式会社 非水系電解液及び非水系二次電池
JPWO2021241761A1 (ja) * 2020-05-28 2021-12-02
WO2022097073A1 (en) * 2020-11-07 2022-05-12 Eocell Limited Nonaqueous electrolyte for lithium ion secondary battery, and lithium ion secondary battery containing the same
WO2022203072A1 (ja) * 2021-03-26 2022-09-29 旭化成株式会社 非水系電解液及び非水系二次電池
EP4080612A1 (en) * 2021-04-21 2022-10-26 Prime Planet Energy & Solutions, Inc. Electrolyte solution for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394459A (zh) * 2021-06-21 2021-09-14 深圳市比克动力电池有限公司 电池电解液用添加剂、电解液及锂离子电池
CN118281342B (zh) * 2024-05-31 2024-08-20 广州天赐高新材料股份有限公司 电解液添加剂、电解液和电池

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321312A (ja) 1995-05-24 1996-12-03 Sanyo Electric Co Ltd 非水電解液電池
JP2003303588A (ja) 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2004022174A (ja) * 2002-06-12 2004-01-22 Yuasa Corp 非水電解質電池
JP2004146104A (ja) 2002-10-22 2004-05-20 Hitachi Maxell Ltd 非水電解質二次電池
WO2012029653A1 (ja) * 2010-09-02 2012-03-08 日本電気株式会社 二次電池
JP2012059410A (ja) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd 負極活物質材料
WO2012057311A1 (ja) 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 非水系電解液及び非水系二次電池
WO2013062056A1 (ja) 2011-10-28 2013-05-02 旭化成株式会社 非水系二次電池
JP2013152824A (ja) * 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013175410A (ja) * 2012-02-27 2013-09-05 Gs Yuasa Corp リチウム二次電池
JP2015072805A (ja) * 2013-10-03 2015-04-16 日立マクセル株式会社 非水二次電池
JP2016021289A (ja) * 2014-07-11 2016-02-04 株式会社Gsユアサ 非水電解質二次電池
JP2016024968A (ja) * 2014-07-22 2016-02-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
WO2016039424A1 (ja) * 2014-09-10 2016-03-17 株式会社 東芝 非水電解質電池
WO2016159117A1 (ja) 2015-03-31 2016-10-06 旭化成株式会社 非水系電解液及び非水系二次電池
WO2017077986A1 (ja) 2015-11-06 2017-05-11 株式会社日立製作所 リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
WO2018003992A1 (ja) * 2016-07-01 2018-01-04 セントラル硝子株式会社 非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354104A (ja) * 1998-04-09 1999-12-24 Denso Corp 非水電解液二次電池及び電極の製造方法
JP4079681B2 (ja) * 2002-04-26 2008-04-23 株式会社デンソー 非水電解液および該電解液を用いた非水電解液二次電池
CN100459276C (zh) * 2005-12-09 2009-02-04 比亚迪股份有限公司 电解液、含有该电解液的锂离子电池以及它们的制备方法
KR20100014725A (ko) * 2007-04-05 2010-02-10 미쓰비시 가가꾸 가부시키가이샤 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
EP2357692B1 (en) * 2008-11-20 2014-09-24 Lg Chem, Ltd. Lithium secondary battery having improved characteristics
CN103066327B (zh) * 2011-10-20 2015-09-23 张家港市国泰华荣化工新材料有限公司 一种具有抗过充性能的非水电解质溶液
US9614252B2 (en) * 2012-03-26 2017-04-04 The University Of Tokyo Lithium secondary battery electrolytic solution and secondary battery including said electrolytic solution
KR20150034261A (ko) * 2012-07-17 2015-04-02 도요타지도샤가부시키가이샤 리튬 이차 전지 및 그 제조 방법
JP6274032B2 (ja) * 2013-08-19 2018-02-07 Jsr株式会社 電極材料の製造方法、電極及び蓄電デバイス
CN105789687A (zh) * 2016-03-25 2016-07-20 华南师范大学 一种抑制过渡金属离子破坏锂离子电池负极界面膜的电解液及其应用
CN106784653A (zh) * 2016-11-25 2017-05-31 清华大学深圳研究生院 动力电池用负极及包含该负极的动力电池
CN108365194B (zh) * 2018-02-06 2020-02-14 深圳市普锐能源科技有限公司 一种锂离子电池用复合负极材料的制备方法
KR102595175B1 (ko) * 2018-03-14 2023-10-30 삼성전자주식회사 트리알콕시알킬실란 화합물을 함유하는 전해액을 포함하는 리튬이차전지

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321312A (ja) 1995-05-24 1996-12-03 Sanyo Electric Co Ltd 非水電解液電池
JP2003303588A (ja) 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2004022174A (ja) * 2002-06-12 2004-01-22 Yuasa Corp 非水電解質電池
JP2004146104A (ja) 2002-10-22 2004-05-20 Hitachi Maxell Ltd 非水電解質二次電池
WO2012029653A1 (ja) * 2010-09-02 2012-03-08 日本電気株式会社 二次電池
JP2012059410A (ja) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd 負極活物質材料
WO2012057311A1 (ja) 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 非水系電解液及び非水系二次電池
WO2013062056A1 (ja) 2011-10-28 2013-05-02 旭化成株式会社 非水系二次電池
JP2013152824A (ja) * 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013175410A (ja) * 2012-02-27 2013-09-05 Gs Yuasa Corp リチウム二次電池
JP2015072805A (ja) * 2013-10-03 2015-04-16 日立マクセル株式会社 非水二次電池
JP2016021289A (ja) * 2014-07-11 2016-02-04 株式会社Gsユアサ 非水電解質二次電池
JP2016024968A (ja) * 2014-07-22 2016-02-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
WO2016039424A1 (ja) * 2014-09-10 2016-03-17 株式会社 東芝 非水電解質電池
WO2016159117A1 (ja) 2015-03-31 2016-10-06 旭化成株式会社 非水系電解液及び非水系二次電池
WO2017077986A1 (ja) 2015-11-06 2017-05-11 株式会社日立製作所 リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
WO2018003992A1 (ja) * 2016-07-01 2018-01-04 セントラル硝子株式会社 非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACS ENERGY LETT., vol. 2, 2017, pages 196 - 223
J. PHYS. CHEM. LETT., vol. 8, 2017, pages 4820 - 4825
J. POWER SOURCES, vol. 233, 2013, pages 121 - 130

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153396A1 (ja) * 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 非水電解液用添加剤およびこれを含む非水電解液ならびに非水電解液二次電池
JP2021170459A (ja) * 2020-04-15 2021-10-28 旭化成株式会社 非水系電解液及び非水系二次電池
JP7339921B2 (ja) 2020-04-15 2023-09-06 旭化成株式会社 非水系電解液及び非水系二次電池
JPWO2021241761A1 (ja) * 2020-05-28 2021-12-02
WO2021241761A1 (ja) * 2020-05-28 2021-12-02 旭化成株式会社 非水系二次電池及び非水系電解液
JP7359868B2 (ja) 2020-05-28 2023-10-11 旭化成株式会社 非水系二次電池及び非水系電解液
WO2022097073A1 (en) * 2020-11-07 2022-05-12 Eocell Limited Nonaqueous electrolyte for lithium ion secondary battery, and lithium ion secondary battery containing the same
WO2022203072A1 (ja) * 2021-03-26 2022-09-29 旭化成株式会社 非水系電解液及び非水系二次電池
EP4080612A1 (en) * 2021-04-21 2022-10-26 Prime Planet Energy & Solutions, Inc. Electrolyte solution for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR102581173B1 (ko) 2023-09-21
EP3836276A4 (en) 2021-12-29
JP7019062B2 (ja) 2022-02-14
JPWO2020054863A1 (ja) 2021-03-18
CN112640182A (zh) 2021-04-09
KR20210011428A (ko) 2021-02-01
US20210344046A1 (en) 2021-11-04
EP3836276A1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP7019062B2 (ja) 非水系電解液及び非水系二次電池
KR20190105096A (ko) 비수계 전해액, 비수계 이차 전지, 셀 팩, 및 하이브리드 시스템
KR102536581B1 (ko) 비수계 전해액 및 비수계 이차 전지
JP7019063B2 (ja) 非水系二次電池
JP6767151B2 (ja) 非水系電解液及び非水系二次電池
WO2016204278A1 (ja) 非水電解液およびそれを用いた非水電解液二次電池
JP2018055934A (ja) 非水系二次電池
CN114287077A (zh) 非水系电解液、电池包和电池包的制造方法
JP2022150959A (ja) 非水系電解液及び非水系二次電池
WO2022203072A1 (ja) 非水系電解液及び非水系二次電池
JP7514150B2 (ja) 非水系電解液及び非水系二次電池
JP7339921B2 (ja) 非水系電解液及び非水系二次電池
JP2019197632A (ja) 非水系電解液及び非水系二次電池
JP2023146966A (ja) 非水系二次電池及びその製造方法
JP7233323B2 (ja) 非水系電解液、及び非水系二次電池
JP2020047394A (ja) 非水系電解液及び非水系二次電池
JP7514113B2 (ja) 非水系二次電池
WO2024090439A1 (ja) 非水系電解液及び非水系二次電池
JP7366845B2 (ja) 非水系電解液及び非水系二次電池
JP2023111366A (ja) 非水系電解液及び非水系二次電池
JP2023146938A (ja) 非水系電解液及び非水系二次電池
JP2021197341A (ja) 非水系二次電池
JP2022150999A (ja) 非水系二次電池の初回コンディショニング方法
JP2024135086A (ja) リチウムイオン二次電池、及びその充電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546235

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207036711

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019859253

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019859253

Country of ref document: EP

Effective date: 20210311

NENP Non-entry into the national phase

Ref country code: DE