WO2018003992A1 - 非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池 - Google Patents

非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池 Download PDF

Info

Publication number
WO2018003992A1
WO2018003992A1 PCT/JP2017/024241 JP2017024241W WO2018003992A1 WO 2018003992 A1 WO2018003992 A1 WO 2018003992A1 JP 2017024241 W JP2017024241 W JP 2017024241W WO 2018003992 A1 WO2018003992 A1 WO 2018003992A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
aqueous electrolyte
atom
Prior art date
Application number
PCT/JP2017/024241
Other languages
English (en)
French (fr)
Inventor
沙央梨 板橋
鈴木 克俊
武田 一成
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016247976A external-priority patent/JP6860782B2/ja
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to KR1020197003207A priority Critical patent/KR102195713B1/ko
Priority to CN201780041296.3A priority patent/CN109417200B/zh
Publication of WO2018003992A1 publication Critical patent/WO2018003992A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an additive for non-aqueous electrolyte, a non-aqueous electrolyte using the additive, and a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolytes are no exception, and it has been proposed to suppress deterioration due to decomposition of the electrolyte on the surface of the active positive electrode or negative electrode by electrolysis coatings with various durability improvers.
  • Patent Document 1 discloses non-aqueous oxalate salts such as difluoro (bis (oxalato)) lithium phosphate, tetrafluoro (oxalato) lithium phosphate, difluoro (oxalato) lithium borate, and bis (oxalato) lithium borate.
  • difluoro (bis (oxalato)) lithium phosphate tetrafluoro (oxalato) lithium phosphate
  • difluoro (oxalato) lithium borate difluoro (oxalato) lithium borate
  • bis (oxalato) lithium borate bis (oxalato) lithium borate
  • Patent Document 2 in a lithium ion secondary battery, in order to form a passivating layer on an electrode, it contains at least one unsaturated bond in a proportion of 0.01 to 10% by mass of the nonaqueous electrolytic solution, and An electrolyte solution for a secondary battery is disclosed in which a soluble compound that can be reduced at the anode at a potential 1 V higher than lithium is added to form a passivation layer.
  • a soluble compound containing the unsaturated bond for example, adding a carbonate compound having an unsaturated bond typified by vinylene carbonate (hereinafter sometimes referred to as “VC”) is disclosed.
  • VC vinylene carbonate
  • Patent Document 3 in a lithium ion secondary battery, for the purpose of improving the capacity retention rate after repeating the charge / discharge cycle at a high temperature, VC and Li [M (C 2 O 4 ) x R y ] (wherein M is one selected from the group consisting of P, Al, Si and C, R is selected from the group consisting of a halogen group, an alkyl group and a halogenated alkyl group) And a total amount of oxalate salt represented by 1 type of group, x is a positive integer, and y is 0 or a positive integer).
  • An electrolytic solution for a secondary battery is disclosed.
  • Patent Document 4 for the purpose of providing a non-aqueous electrolyte for a secondary battery that suppresses a decrease in the repeated charge / discharge characteristics (cycle characteristics) of the battery and is excellent in low-temperature discharge characteristics, at least a non-aqueous solvent,
  • a non-aqueous electrolyte solution for a secondary battery which contains phosphate at 10 ppm or more with respect to the total mass of the electrolyte solution.
  • Patent Document 5 proposes that an ionic complex represented by any one of the following formulas (1) to (3) having high-temperature durability is contained in a non-aqueous electrolyte and used in a non-aqueous electrolyte battery.
  • the following compound No. It is disclosed that a VC represented by 21-1 may further be contained.
  • [A is a metal ion, proton or onium ion; M is a group 13-15 element; R 1 is a C 1-10 ring, a hydrocarbon group that may have a hetero atom or a halogen atom, or —N (R 2 )-; R 2 is H, an alkali metal, a C1-10 ring, a hydrocarbon group which may have a hetero atom or a halogen atom; when the number of carbon atoms is 3 or more, R 2 has a branched chain or cyclic structure Y is C or S; when Y is carbon, r is 1; when Y is sulfur, r is 1 or 2; a is 1 or 2; o is 2 or 4; n is 1 or 2; p is 0 or 1; q is 1 or 2; r is 0, 1 or 2; when p is 0, a direct bond is formed between SY. ]
  • Patent Document 6 a non-aqueous electrolyte solution containing an imide salt having a phosphoryl group represented by the following general formula (I) as a component for improving cycle characteristics and internal resistance characteristics is used in a non-aqueous electrolyte battery.
  • an imide salt having a phosphoryl group represented by the following general formula (I) as a component for improving cycle characteristics and internal resistance characteristics is used in a non-aqueous electrolyte battery.
  • VC may be further contained as a commonly used additive.
  • R 1 to R 4 are each independently a fluorine atom or an organic group represented by —OR 5 ;
  • R 5 is a linear or branched alkyl group, alkenyl group having 1 to 10 carbon atoms, or And at least one organic group selected from an alkynyl group, a cycloalkyl group or a cycloalkenyl group having 3 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and a fluorine atom or an oxygen atom in the organic group
  • Unsaturated bonds can also be present.
  • M represents an alkali metal cation, an alkaline earth metal cation, or an onium cation, and m represents an integer equal to the valence of the corresponding cation. However, at least one of R 1 to R 4 represents a fluorine atom. ]
  • Patent Document 7 a non-aqueous electrolyte secondary battery excellent in cycle characteristics and low-temperature characteristics is formed by containing a salt having a divalent imide anion represented by the following general formulas (1) to (4).
  • Non-aqueous electrolyte battery electrolytes have been proposed and disclosed that they may further contain VC.
  • R 1 to R 3 are each independently a fluorine atom, a linear or branched alkoxy group having 1 to 10 carbon atoms, or an alkenyl having 2 to 10 carbon atoms.
  • An organic group selected from an oxy group, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group, and an aryloxy group having 6 to 10 carbon atoms.
  • a fluorine atom, an oxygen atom, or an unsaturated bond may be present.
  • X represents a fluorine atom, a linear or branched alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms.
  • a fluorine atom, an oxygen atom, or an unsaturated bond may be present.
  • M 1 and M 2 are each independently a proton, a metal cation or an onium cation. ]
  • Patent Document 8 proposes an electrolyte for a non-aqueous electrolyte battery having improved storage stability by containing at least one siloxane compound represented by the following general formula (1) or general formula (2). , VC may be further contained.
  • R 1 , R 2 , and R 7 are independently selected from alkyl groups, alkenyl groups, alkynyl groups, and aryl groups containing at least one fluorine atom. These groups may have an oxygen atom.
  • R 3 to R 6 and R 8 each independently represent a group selected from an alkyl group, an alkoxy group, an alkenyl group, an alkenyloxy group, an alkynyl group, an alkynyloxy group, an aryl group, and an aryloxy group; These groups may have a fluorine atom and an oxygen atom.
  • N represents an integer of 1 to 10.
  • Patent Document 9 by including a predetermined oxalato compound and a silicon compound represented by the following general formula (2), excellent high-temperature cycle characteristics and high-temperature storage characteristics assuming use at a high temperature of 60 ° C. or higher can be exhibited.
  • a non-aqueous electrolyte battery electrolyte has been proposed, and it is disclosed that VC may be further contained.
  • each R 3 independently represents a group having a carbon-carbon unsaturated bond.
  • R 4 each independently represents a fluorine atom, an alkyl group, an alkoxy group, an alkenyl group, an alkenyloxy group, an alkynyl group, an alkynyloxy group, an aryl group, or an aryloxy group, The group may have a fluorine atom and / or an oxygen atom.
  • x is 2-4.
  • Patent Document 10 by incorporating a predetermined oxalato compound and at least one siloxane compound represented by the following general formula (1) or general formula (2), the effect of improving cycle characteristics and suppressing an increase in internal resistance, An electrolyte for a non-aqueous electrolyte battery having an increased initial electric capacity without impairing improvement in low temperature characteristics or the like has been proposed, and it is disclosed that VC may further be contained.
  • R 1 to R 8 are each independently an alkyl group, an alkoxy group, an alkenyl group, an alkenyloxy group, an alkynyl group, an alkynyloxy group, an aryl group, and The group selected from the aryloxy group is shown, These groups may have a fluorine atom and an oxygen atom.
  • N represents an integer of 1 to 10.
  • n is 2 or more, the plurality of R 4 , R 6 , R 7 or R 8 may be the same as or different from each other.
  • Patent Document 11 proposes an electrolyte for a secondary battery that includes an aprotic solvent and a cyclic sulfonic acid ester having at least two sulfonyl groups, thereby suppressing decomposition of the solvent of the electrolyte of the secondary battery. It is disclosed that VC may be further contained.
  • Patent Document 12 discloses a non-aqueous electrolytic solution having improved self-extinguishing properties by containing trimethyl phosphate and vinylene carbonate in a predetermined ratio.
  • Patent Document 13 discloses a nonflammable non-aqueous electrolyte containing vinylene carbonate and vinyl ethylene carbonate as essential components.
  • Patent Document 14 discloses a nonaqueous electrolytic solution that contains a compound having at least two isocyanate groups in the molecule as an essential component and may further contain VC.
  • Patent Document 15 discloses a non-aqueous electrolytic solution that contains 1,3-dioxane as an essential component and may further contain VC.
  • Patent Document 16 discloses a nonaqueous electrolytic solution containing vinylene carbonate and a compound having a higher reduction potential than vinylene carbonate such as succinic anhydride and maleic anhydride as essential components.
  • Patent Document 17 proposes a non-aqueous electrolyte that improves the safety and battery characteristics of a non-aqueous electrolyte secondary battery by containing a cyclic phosphazene compound having a predetermined structure as an essential component, and further contains VC. It is disclosed that it may be.
  • Patent Document 18 discloses a non-aqueous electrolyte that contains cyclohexylbenzene and biphenyl as essential components and may further contain VC.
  • the durability improving additive containing an unsaturated bond as described above is generally added as a monomer body.
  • a polymerization inhibitor is also added so that the battery does not swell due to a reaction at a portion other than that where VC should function.
  • patent document 20 when forming the polymer gel layer containing the electrolyte solution containing VC, it is made to gelatinize by cationic polymerization, a free radical seed
  • the durability improving additive containing an unsaturated bond has been conventionally added as a monomer body.
  • a non-aqueous electrolyte solution containing a compound, a cyclic phosphazene compound, an aromatic compound, and a carbonate compound containing an unsaturated bond which has been added as a conventional monomer body, is used in a non-aqueous electrolyte secondary battery, Although excellent cycle characteristics are exhibited, the rate characteristics tend to be low, and improvement is desired.
  • the present invention provides an oxalato salt, a difluorophosphate, an ionic complex having a cyclic structure, a salt having an imide anion, a Si-containing compound, a sulfate ester compound, a phosphate ester compound, a cyclic carbonate compound, an isocyanate compound, and a cyclic acetal.
  • a non-aqueous electrolyte solution together with a compound, cyclic acid anhydride, cyclic phosphazene compound, and aromatic compound
  • cycle characteristics and rate characteristics can be exhibited in a well-balanced manner.
  • An object of the present invention is to provide an additive for a non-aqueous electrolyte solution. It is another object of the present invention to provide a non-aqueous electrolyte solution having the non-aqueous electrolyte solution additive and a non-aqueous electrolyte secondary battery including the non-aqueous electrolyte solution.
  • the present invention is a non-aqueous electrolyte additive having a repeating unit represented by the following general formula [1] and having a polystyrene-equivalent number average molecular weight of 170 to 5,000.
  • R represents a hydrogen atom, a halogen or a lower alkyl group. R may be all the same or different, and may be linked to each other to have a cyclic structure.
  • the number average molecular weight of the non-aqueous electrolyte additive is preferably 340 to 4000, and more preferably 800 to 3000.
  • the present invention also provides: (I) Oxalato salt, difluorophosphate, ionic complex having cyclic structure, salt having imide anion, Si-containing compound, sulfate ester compound, phosphate ester compound, cyclic carbonate compound, isocyanate compound, cyclic acetal compound, cyclic At least one selected from the group consisting of acid anhydrides, cyclic phosphazene compounds, aromatic compounds, (II) A compound having a repeating unit represented by the following general formula [1], having a polystyrene-equivalent number average molecular weight of 170 to 5,000, an additive for non-aqueous electrolyte solution, (III) a non-aqueous organic solvent, and (IV) A nonaqueous electrolytic solution containing a solute.
  • R represents a hydrogen atom, a halogen or a lower alkyl group. R may be all the same or different, and may be linked to each other to have a cyclic structure.
  • the number average molecular weight of the additive for non-aqueous electrolyte solution is preferably 340 to 4000, and more preferably 800 to 3000.
  • all R of the additive for non-aqueous electrolyte solution are hydrogen atoms.
  • the content of (II) is preferably 0.03 to 14.0% by mass with respect to 100% by mass of the total of (I), (II), (III) and (IV).
  • the oxalato salt comprises bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, and tetrafluoro (oxalato) phosphate. It is preferably at least one selected from the group.
  • the electrolytic solution contains at least lithium difluorobis (oxalato) phosphate and lithium difluorophosphate as (I).
  • the ionic complex having a cyclic structure is preferably at least one selected from the group consisting of compounds represented by the following general formulas [2] to [4].
  • A is at least one selected from the group consisting of metal ions, protons and onium ions
  • F is fluorine
  • M is a group 13 element (Al, B)
  • group 14 element ( Si) and at least one selected from the group consisting of Group 15 elements (P, As, Sb)
  • O oxygen
  • S sulfur.
  • R 1 is a hydrocarbon group which may have a ring having 1 to 10 carbon atoms, a hetero atom or a halogen atom (in the case of 3 or more carbon atoms, a branched chain or cyclic structure can be used) Or -N (R 2 )-.
  • R 2 represents hydrogen, an alkali metal, a hydrocarbon group having 1 to 10 carbon atoms, a hetero atom or a halogen atom which may have a halogen atom.
  • R 2 can also take a branched chain or a cyclic structure.
  • Y is carbon or sulfur.
  • R is 1 when Y is carbon.
  • Y sulfur, r is 1 or 2.
  • a is 1 or 2, o is 2 or 4, n is 1 or 2, p is 0 or 1, q is 1 or 2, and r is 0, 1 or 2.
  • A is at least one selected from the group consisting of metal ions, protons and onium ions, F is fluorine, M is a group 13 element (Al, B), group 14 element ( Si) and at least one selected from the group consisting of Group 15 elements (P, As, Sb), O is oxygen, and N is nitrogen.
  • Y is carbon or sulfur. When Y is carbon, q is 1. When Y is sulfur, q is 1 or 2.
  • R 1 is a hydrocarbon group which may have a ring having 1 to 10 carbon atoms, a hetero atom or a halogen atom (in the case of 3 or more carbon atoms, a branched chain or cyclic structure can be used) Or -N (R 2 )-.
  • R 2 represents hydrogen, an alkali metal, a hydrocarbon group having 1 to 10 carbon atoms, a hetero atom or a halogen atom which may have a halogen atom.
  • R 2 can also take a branched chain or a cyclic structure.
  • R 3 is hydrogen, a hydrocarbon group which may have a ring having 1 to 10 carbon atoms, a hetero atom or a halogen atom (in the case of 3 or more carbon atoms, a branched chain or cyclic structure is also used. Or -N (R 2 )-.
  • R 2 represents hydrogen, an alkali metal, a hydrocarbon group having 1 to 10 carbon atoms, a hetero atom or a halogen atom which may have a halogen atom.
  • R 2 can also take a branched chain or a cyclic structure.
  • a is 1 or 2
  • o is 2 or 4
  • n is 1 or 2
  • p is 0 or 1
  • q is 1 or 2
  • r is 0 or 1.
  • D represents a halogen ion, hexafluorophosphate anion, tetrafluoroborate anion, bis (trifluoromethanesulfonyl) imide anion, bis (fluorosulfonyl) imide anion, (fluorosulfonyl) (trifluoromethanesulfonyl) )
  • Anion anion, bis (difluorophosphonyl) imide anion F is fluorine
  • M is a group 13 element (Al, B)
  • O oxygen
  • N nitrogen.
  • Y is carbon or sulfur.
  • R 1 is a hydrocarbon group which may have a ring having 1 to 10 carbon atoms, a hetero atom or a halogen atom (in the case of 3 or more carbon atoms, a branched chain or cyclic structure can be used) Or -N (R 2 )-.
  • R 2 represents hydrogen, an alkali metal, a hydrocarbon group having 1 to 10 carbon atoms, a hetero atom or a halogen atom which may have a halogen atom.
  • R 2 can also take a branched chain or a cyclic structure.
  • R 4 and R 5 are each independently a hydrocarbon group optionally having a ring having 1 to 10 carbon atoms, a hetero atom, or a halogen atom.
  • a branched chain or An annular structure can also be used.
  • o 2 or 4
  • n 1 or 2
  • p is 0 or 1
  • q is 1 or 2
  • r is 1 or 2
  • s is 0 or 1.
  • p a direct bond is formed between YX.
  • N (R 4 ) (R 5 ) and R 1 are directly bonded, and in this case, the following structures [6] to [9] can be taken.
  • R 5 does not exist. Moreover, it can also take the structure where the double bond went out of the ring like [8].
  • R 6 and R 7 are each independently hydrogen or a hydrocarbon group optionally having a ring having 1 to 10 carbon atoms, a hetero atom, or a halogen atom.
  • a branched chain or cyclic structure can be used.
  • the salt having the imide anion is a compound represented by the following general formulas [10] to [16], a salt of (CF 2 ) 2 (SO 2 ) 2 N ⁇ , and (CF 2 ) 3 (SO 2 ) 2.
  • N - is preferably at least one selected from the group consisting of a salt.
  • R 8 to R 11 are each independently a fluorine atom or a linear or branched alkoxy group having 1 to 10 carbon atoms.
  • An alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group, a cycloalkenyloxy group having 3 to 10 carbon atoms, and an aryl having 6 to 10 carbon atoms It is an organic group selected from oxy groups, and fluorine atoms, oxygen atoms, and unsaturated bonds may be present in the organic groups.
  • X 2 and X 3 are each independently a fluorine atom, a linear or branched alkyl group having 1 to 10 carbon atoms, An alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkenyl group, an aryl group having 6 to 10 carbon atoms, and a carbon number of 1
  • the Si-containing compound is at least one compound represented by the following general formula [17], hexamethylsiloxane, 1,3-divinyltetramethyldisiloxane, (bishexafluoroisopropoxy) (dimethyl) (divinyl) disiloxane , Tetramethylsilane, trimethylvinylsilane, vinyldimethylfluorosilane, and at least one selected from the group consisting of divinylmethylfluorosilane.
  • R 12 each independently represents a group having a carbon-carbon unsaturated bond.
  • R 13 each independently represents a fluorine atom, an alkyl group, an alkoxy group, an alkenyl group, an alkenyloxy group, an alkynyl group, an alkynyloxy group, an aryl group, or an aryloxy group, The group may have a fluorine atom and / or an oxygen atom.
  • x is 2-4.
  • the sulfate compound is a cyclic sulfonic acid compound represented by the following general formulas [18], [19] and [20], 2,2-dioxide-1,2-oxathiolan-4-yl, 1,3-propane It is preferably at least one selected from the group consisting of sultone, 1,3-butane sultone, and 1,4-butane sultone.
  • O is an oxygen atom
  • S is a sulfur atom
  • n 2 is an integer of 1 to 3.
  • R 14 , R 15 , R 16 and R 17 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted carbon group having 1 to 4 carbon atoms.
  • a substituted alkyl group having 1 to 5 carbon atoms, and R 20 and R 21 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted group.
  • n 4 is an integer of 0 or more and 4 or less.
  • O is an oxygen atom
  • S is a sulfur atom
  • n 5 is an integer of 0 to 3
  • R 22 and R 23 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted atom.
  • the phosphoric acid ester compound is composed of trimethyl phosphate, tributyl phosphate, trioctyl phosphate, tris (2,2,2-trifluoroethyl) phosphate, and monofluoropropargyloxyphosphate-lithium pentafluorophosphate. It is preferably at least one selected from the group consisting of
  • the cyclic carbonate compound is preferably at least one selected from the group consisting of the cyclic carbonate compound represented by the following general formula [21] and dimethyl vinylene carbonate.
  • O is an oxygen atom
  • A is a hydrocarbon having 10 or less carbon atoms and may have an unsaturated bond, a cyclic structure or a halogen
  • B is an unsaturated bond having 10 or less carbon atoms.
  • a double bond may be present between AB.
  • the isocyanate compound is preferably at least one selected from the group consisting of hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate.
  • the cyclic acetal compound is preferably at least one selected from the group consisting of 1,3-dioxolane, 1,3-dioxane, and 1,3,5-trioxane.
  • the cyclic acid anhydride is preferably at least one selected from the group consisting of succinic anhydride, maleic anhydride, and 3-allyl succinic anhydride.
  • the cyclic phosphazene compound is at least one selected from the group consisting of methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, diethoxypentafluorocyclotriphosphazene, and ethoxyheptafluorocyclotetraphosphazene.
  • it is a seed.
  • the aromatic compound is at least selected from the group consisting of cyclohexylbenzene, biphenyl, tert-butylbenzene, 4-fluorobiphenyl, fluorobenzene, 2,4-difluorobenzene, 1-cyclohexyl-4-fluorobenzene, and difluoroanisole.
  • One type is preferable.
  • the solute is lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), bis (trifluoromethanesulfonyl) imidolithium (LiN (CF 3 SO 2 ) 2 ), bis (pentafluoroethanesulfonyl) It consists of imidolithium (LiN (C 2 F 5 SO 2 ) 2 ), bis (fluorosulfonyl) imide lithium (LiN (FSO 2 ) 2 ), and bis (difluorophosphonyl) imide lithium (LiN (POF 2 ) 2 ). It is preferably at least one selected from the group.
  • the non-aqueous solvent is preferably at least one selected from the group consisting of cyclic carbonates, chain carbonates, cyclic esters, chain esters, cyclic ethers, chain ethers, sulfone compounds, sulfoxide compounds, and ionic liquids. .
  • the electrolyte solution is an ionic complex having a cyclic structure together with an oxalate salt and / or difluorophosphate, a salt having an imide anion, a Si-containing compound, a sulfate ester compound, a phosphate ester compound, a cyclic carbonate compound, an isocyanate compound, It is also one of preferable modes to contain at least one compound selected from the group consisting of a cyclic acetal compound, a cyclic acid anhydride, a cyclic phosphazene compound, and an aromatic compound.
  • the present invention is a non-aqueous electrolyte secondary battery comprising at least a positive electrode, a negative electrode, and the non-aqueous electrolyte solution described above.
  • the cycle characteristics and rate characteristics can be exhibited in a well-balanced manner when used in a non-aqueous electrolyte secondary battery.
  • An additive for non-aqueous electrolyte solution can be provided.
  • non-aqueous electrolysis when used in a non-aqueous electrolyte secondary battery, non-aqueous electrolysis can exhibit cycle characteristics and rate characteristics in a better balance than when a carbonate compound containing an unsaturated bond is added as a monomer body.
  • Liquid and non-aqueous electrolyte secondary batteries can be provided.
  • Non-aqueous electrolyte additive is a compound having a repeating unit represented by the following general formula [1], and has a polystyrene-equivalent number average molecular weight of 170 to 5,000. It is an additive for aqueous electrolyte solution.
  • R represents a hydrogen atom, a halogen or a lower alkyl group. R may be all the same or different, and may be linked to each other by a covalent bond to have a cyclic structure.
  • the additive for a non-aqueous electrolyte solution of the present invention is mainly composed of an oligomer of a repeating unit represented by the above general formula [1]. Although the monomer corresponding to the general formula [1] may be included, the content is preferably as small as possible from the viewpoint of cycle characteristics and / or rate characteristics.
  • the additive for non-aqueous electrolyte solution of the present invention is more preferably substantially composed of an oligomer of a repeating unit represented by the above general formula [1].
  • the polystyrene-equivalent number average molecular weight of the non-aqueous electrolyte additive is 170 to 5,000.
  • a compound having a repeating unit represented by the general formula [1] and having the number average molecular weight exhibits cycle characteristics and rate characteristics in a balanced manner when used in a non-aqueous electrolyte secondary battery.
  • the additive for non-aqueous electrolyte solution which can be obtained can be obtained.
  • the number average molecular weight is preferably 340 to 4000, more preferably 800 to 3000, and particularly preferably 1000 to 2500.
  • R in the general formula [1] is a hydrogen atom, a halogen or a lower alkyl group.
  • the halogen include a fluorine atom, a chlorine atom, and a bromine atom
  • examples of the lower alkyl group include a methyl group, an ethyl group, and a propyl group.
  • R is preferably a hydrogen atom.
  • the above-mentioned additive for non-aqueous electrolyte solution is obtained by polymerizing a corresponding monomer in advance.
  • the polymerization method is not particularly limited as long as it is a generally used method, but it can be polymerized by a radical polymerization method or a photopolymerization method. Of these, radical polymerization is particularly preferred.
  • Radical polymerization is carried out in the presence of a radical polymerization initiator or a radical initiator by a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization, and is either batch-wise, semi-continuous or continuous. Can be implemented by operation.
  • the radical initiator is not particularly limited, and examples thereof include azo compounds, peroxide compounds, and redox compounds.
  • azo compounds peroxide compounds, and redox compounds.
  • the reactor used in the polymerization reaction for obtaining the polymer represented by the general formula [1] is not particularly limited.
  • a polymerization solvent may be used.
  • the polymerization solvent those which do not inhibit radical polymerization are preferable, and ester solvents such as ethyl acetate, n-butyl acetate, ketone solvents such as acetone, methyl isobutyl ketone, hydrocarbon solvents such as toluene, cyclohexane, and aprotic solvents. Examples thereof include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, and dimethyl sulfoxide, which are polar solvents.
  • the reaction temperature is appropriately selected depending on the radical initiator or radical initiator, and is preferably in the range of 20 to 200 ° C, more preferably 30 to 140 ° C.
  • Non-aqueous electrolyte The non-aqueous electrolyte of the present invention is (I) Oxalato salt, difluorophosphate, ionic complex having cyclic structure, salt having imide anion, Si-containing compound, sulfate ester compound, phosphate ester compound, cyclic carbonate compound, isocyanate compound, cyclic acetal compound, cyclic At least one selected from the group consisting of acid anhydrides, cyclic phosphazene compounds, aromatic compounds, (II) Non-aqueous electrolyte additive, (III) a non-aqueous organic solvent, and (IV) A nonaqueous electrolytic solution containing a solute.
  • bis (oxalato) borate, difluoro (oxalato) borate, difluorobis (oxalato) phosphate and from the viewpoint of exhibiting excellent cycle characteristics while preventing excessive generation of gas , At least one selected from the group consisting of tetrafluoro (oxalato) phosphates is preferred.
  • Bis (oxalato) borate and difluoro (oxalato) borate may be used in combination, bis (oxalato) borate and tris (oxalato) phosphate may be used in combination, or bis ( Oxalato) borate and difluorobis (oxalato) phosphate may be used in combination, bis (oxalato) borate and tetrafluoro (oxalato) phosphate may be used in combination, or difluoro (oxalato) Borate and tris (oxalato) phosphate may be used in combination, difluoro (oxalato) borate and difluorobis (oxalato) phosphate may be used in combination, or difluoro (oxalato) borate And tetrafluoro (oxalato) phosphate may be used in combination, or tris (oxalato) phosphate and difluorobis (oxal
  • (Oxalato) phosphate, difluorobis (oxalato) phosphate and tetrafluoro (oxalato) phosphate may be used in combination, or bis (oxalato) borate, difluoro (oxalato) borate and tris ( Oxalato) phosphate, difluorobis (oxalato) phosphate and tetrafluoro (oxalato) phosphate in combination May be.
  • the content of (I) with respect to the total amount of 100% by mass of (I), (II), (III), (IV) is 0.01 to 10.0% by mass is preferable because when used in a non-aqueous electrolyte secondary battery, the cycle characteristics and rate characteristics are easily exhibited in a well-balanced manner. From the viewpoint of cycle characteristics and / or rate characteristics, the content of (I) is more preferably 0.05 to 5.0% by mass.
  • lithium salt is preferable, and as the oxalate salt, bis (oxalato) lithium borate, difluoro (oxalato) lithium borate, difluorobis (oxalato).
  • Lithium phosphate and lithium tetrafluoro (oxalato) phosphate are preferred. Accordingly, lithium difluorophosphate and lithium bis (oxalato) borate may be used in combination, lithium difluorophosphate and lithium difluoro (oxalate) borate may be used in combination, or lithium difluorophosphate and difluorobis (oxalato).
  • Lithium phosphate may be used in combination, lithium difluorophosphate and lithium tetrafluoro (oxalato) phosphate may be used in combination, lithium difluorophosphate, lithium bis (oxalato) borate, and difluoro (oxalato) Lithium borate may be used in combination, lithium difluorophosphate, lithium bis (oxalato) borate, and lithium difluorobis (oxalato) phosphate may be used in combination, or lithium difluorophosphate and bis (oxalato) borohydride.
  • Lithium oxide and tetrafluoro (oxa G) Lithium phosphate may be used in combination, lithium difluorophosphate, lithium difluoro (oxalato) borate, and lithium difluorobis (oxalato) phosphate may be used in combination, or lithium difluorophosphate and difluoro (oxalato).
  • Lithium borate and tetrafluoro (oxalato) lithium phosphate may be used in combination, or difluorolithium phosphate, difluorobis (oxalato) lithium phosphate and tetrafluoro (oxalato) lithium phosphate may be used in combination.
  • Lithium difluorophosphate, lithium bis (oxalato) borate, lithium difluoro (oxalato) borate and lithium difluorobis (oxalato) phosphate, or lithium difluorophosphate and lithium bis (oxalato) borate And difluoro (Oki Lato) lithium borate and tetrafluoro (oxalato) lithium phosphate may be used in combination, lithium difluorophosphate, lithium difluoro (oxalato) borate, lithium difluorobis (oxalato) phosphate and tetrafluoro (oxalato) phosphorus
  • Lithium phosphate may be used in combination, or lithium difluorophosphate, lithium bis (oxalato) borate, lithium difluoro (oxalato) borate, lithium difluorobis (oxalato) phosphate, and lithium tetrafluoro (oxalato)
  • the electrolytic solution contains at least lithium difluorobis (oxalato) phosphate and lithium difluorophosphate as (I).
  • the content of lithium difluorobis (oxalato) phosphate is 0.15 to 2.50% by mass with respect to the total amount of 100% by mass of the above (I), (II), (III), and (IV).
  • the content of lithium difluorophosphate is particularly preferably from 0.3 to 3.0% by mass.
  • Specific examples of the ionic complex represented by the general formula [2] include the following compounds.
  • A is any one cation selected from the group consisting of Li ions, Na ions, K ions, or quaternary alkyl ammonium ions.
  • the ionic complex is selected from the group consisting of [2Bb] and [2Bd] in that the cycle characteristics of the nonaqueous electrolyte battery are enhanced by using it as a component of the electrolyte for a nonaqueous electrolyte battery. At least one is preferred.
  • the compound represented by the general formula [3] include the following compounds.
  • A is any one cation selected from the group consisting of Li ions, Na ions, K ions, or quaternary alkyl ammonium ions.
  • the ionic complex is used in the above [3Pa], [3Pc], [3Ba], and [3Ba] in that the cycle characteristics of the nonaqueous electrolyte battery are enhanced by using it as a component of the electrolyte for a nonaqueous electrolyte battery. It is preferably at least one selected from the group consisting of the above [3Bc].
  • D ⁇ represents hexafluorophosphate anion, tetrafluoroborate anion, bis (trifluoromethanesulfonyl) imide anion, bis (fluorosulfonyl) imide anion, (fluorosulfonyl) (trifluoromethanesulfonyl) imide anion, bis ( It is any one anion selected from the group consisting of (difluorophosphonyl) imide anions.
  • the ionic complex is the above [4Pa], [4Pb], [4Pd], [4Pd], in that the cycle characteristics of the nonaqueous electrolyte battery are enhanced by using it as a component of the electrolyte for a nonaqueous electrolyte battery. It is preferably any one selected from the group consisting of [4Pg], [4Ba], [4Bb], [4Bf], [4Bg] and [4Bi].
  • the relationship between the kind of ionic complex and the strength of the effect of improving the cycle characteristics when the ionic complex is used as a component of the electrolyte for a nonaqueous electrolyte battery is 4Pa> 2Bd-Li >> 4Ba> 4Bi. 4Bf >> 4Pd. Therefore, the ionic complex is particularly preferably 4Pa or 2Bd-Li.
  • the “2Bd—Li” means an ionic complex in which 2Bd A is Li.
  • the cycle characteristics of the non-aqueous electrolyte battery can be improved by using the ionic complex (IB-1) having a cyclic structure as a component of the electrolyte for the non-aqueous electrolyte battery.
  • the ionic complex (IB-1) having a cyclic structure As a component of the electrolyte for the non-aqueous electrolyte battery.
  • the carbonate compound (monomer body) containing an unsaturated bond and the ionic complex having the cyclic structure are used in combination. Compared with the above, it is easy to improve the rate characteristics without impairing the effect of improving the cycle characteristics of the ionic complex.
  • the content of the ionic complex (IB-1) having a cyclic structure with respect to 100% by mass of the total amount of (I), (II), (III), and (IV) is 0.001 to 20% by mass. Preferably, it is in the range of 0.01 to 10.0% by mass, more preferably in the range of 0.1 to 5.0% by mass, and in the range of 0.5 to 2.0% by mass. More preferably it is. If the concentration of the ionic complex is too low, the effect of improving durability at high temperatures such as the cycle characteristics of the non-aqueous electrolyte battery may not be sufficiently obtained. If it is too high, the viscosity of the electrolyte will increase.
  • ionic complexes having a cyclic structure may be used alone, or two or more kinds may be mixed in any combination and ratio according to the application.
  • the salt having an imide anion contains a site having a high electron-withdrawing property (for example, a fluorine atom or a fluorine-containing alkoxy group), the bias of charge becomes larger, and the film with lower resistance (better output characteristics) It is considered that a film is formed.
  • a site having a high electron-withdrawing property for example, a fluorine atom or a fluorine-containing alkoxy group
  • the anion of the salt having an imide anion represented by the general formulas [10] to [16] include the following compounds.
  • the salt having an imide anion used in the present invention is not limited by the following examples. Among these, from the viewpoint of forming a film having lower resistance (good output characteristics), the above [10a], [10c], [11a], [11b], [11c], [12a], and the above [12d] and [13a] above are preferable.
  • the high-temperature cycle characteristics can be improved by using the salt having an imide anion (IB-2) as a component of the electrolyte for a non-aqueous electrolyte battery.
  • Some salts having an imide anion further tend to improve high-temperature storage characteristics and low-temperature cycle characteristics.
  • the carbonate compound (monomer body) containing an unsaturated bond and the salt having the imide anion are used in combination. It is easy to improve the rate characteristics without impairing the cycle characteristics improvement effect of the salt having an imide anion.
  • the preferred content of the salt (IB-2) having an imide anion with respect to 100% by mass of the total amount of (I), (II), (III), (IV) is 0.001% by mass or more, more preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and the upper limit is 13.0% by mass or less, more preferably 10.0% by mass or less, and further preferably 7.0% by mass or less. It is a range. If it is less than 0.001% by mass, the effect of improving the output characteristics of the nonaqueous electrolyte battery at low temperature may not be sufficiently obtained.
  • the salt which has this imide anion may be used individually by 1 type, and may mix 2 or more types by arbitrary combinations and a ratio according to a use.
  • Si-containing compound There exists a tendency which can improve cycling characteristics because a non-aqueous electrolyte contains a Si containing compound. Further, some Si-containing compounds can further reduce the amount of gas generated.
  • Si-containing compound a compound represented by the above general formula [17] is preferable.
  • Si-containing compound represented by the general formula [17] include the following [17a] to [17y].
  • the Si-containing compound used in the present invention is not limited by the following examples. Among these, [17c] and [17l] are preferable from the viewpoint of forming a stronger film (good durability).
  • the cycle characteristics of the non-aqueous electrolyte battery can be improved by using the Si-containing compound (IB-3) as a component of the electrolyte for the non-aqueous electrolyte battery.
  • the Si-containing compound is compared with the case of using a carbonate compound (monomer) containing an unsaturated bond and the Si-containing compound in combination. It is easy to improve the rate characteristics without impairing the cycle characteristics improvement effect.
  • the preferred content of the Si-containing compound (IB-3) with respect to 100% by mass of the total amount of (I), (II), (III), (IV) is 0.005% by mass or more, more preferably 0.8%. It is 03 mass% or more, More preferably, it is 0.05 mass% or more, and an upper limit is 7.0 mass% or less, More preferably, it is 5.0 mass% or less, More preferably, it is 2.5 mass% or less. If the concentration is less than 0.005% by mass, it is difficult to sufficiently obtain the effect of improving the high-temperature cycle characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte.
  • One of these Si-containing compounds may be used alone, or two or more of these Si-containing compounds may be mixed in any combination and ratio according to the application.
  • Examples of the cyclic sulfonate ester having an unsaturated bond represented by the general formula [18] include 1,3-propene sultone, 1,4-butene sultone, 2,4-pentene sultone, 3,5-pentene sultone, 1- Fluoro-1,3-propene sultone, 1-trifluoromethyl-1,3-propene sultone, 1,1,1-trifluoro-2,4-butene sultone, 1,4-butene sultone, 1,5-pentene sultone, etc. Is mentioned. In particular, considering the reactivity in the battery system, it is more preferable to use 1,3-propene sultone or 1,4-butene sultone.
  • Examples of the cyclic disulfonic acid ester represented by the general formula [19] include compounds represented by [19a] to [19ac]. Of these, the compounds shown in [19a], [19b], [19j], [19o] or [19p] are more preferable.
  • the cyclic disulfonic acid ester represented by the general formula [19] is not limited to the compounds represented by [19a] to [19ac], and may be other compounds.
  • Examples of the cyclic disulfonic acid ester represented by the general formula [20] include compounds represented by [20a] to [20e]. Of these, the compounds shown in [20a], [20b] or [20e] are more preferred.
  • the cyclic disulfonic acid ester represented by the general formula [20] is not limited to the compounds shown in [20a] to [20e], and may be other compounds.
  • the cycle characteristics of the non-aqueous electrolyte battery tend to be improved.
  • the sulfate ester compound of the sulfate compound is compared with the case of using a carbonate compound (monomer) containing an unsaturated bond and the sulfate ester compound in combination. It is easy to improve the rate characteristics without impairing the cycle characteristics improvement effect.
  • the suitable content of the sulfate ester compound (IB-4) with respect to 100% by mass of the total amount of (I), (II), (III) and (IV) is 0.001% by mass or more, more preferably 0.8%. 01% by mass or more, more preferably 0.1% by mass or more, and the upper limit is 10.0% by mass or less, more preferably 5.0% by mass or less, and further preferably 2.0% by mass or less. is there.
  • concentration is less than 0.001% by mass, it is not preferable because the effect of improving the cycle characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • the concentration exceeds 10.0% by mass, the effect of improving the cycle characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained, which is not preferable.
  • One of these sulfate ester compounds may be used alone, or two or more thereof may be mixed in any combination and ratio according to the application.
  • phosphoric acid ester compound examples are not particularly limited to these.
  • cycle characteristics can be improved by using a phosphoric acid ester compound (IB-5) as a component of an electrolyte for a non-aqueous electrolyte battery.
  • a phosphoric acid ester compound IB-5
  • the phosphoric acid is compared with a case where the carbonate compound (monomer) containing an unsaturated bond and the phosphoric acid ester compound are used in combination. It is easy to improve the rate characteristics without impairing the effect of improving the cycle characteristics of the ester compound.
  • the preferred content of the phosphate ester compound (IB-5) with respect to 100% by mass of the total amount of (I), (II), (III), (IV) is 0.001% by mass or more, more preferably 0 0.01 mass% or more, more preferably 0.1 mass% or more, and the upper limit is 15.0 mass% or less, more preferably 12.0 mass% or less, and even more preferably 10.0 mass% or less. It is. When the concentration is less than 0.001% by mass, it is not preferable because the effect of improving the cycle characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • phosphate ester compounds may be used individually by 1 type, and may mix 2 or more types by arbitrary combinations and a ratio according to a use.
  • [(IB-6) cyclic carbonate compound] There exists a tendency which can improve cycling characteristics because a non-aqueous electrolyte solution contains a cyclic carbonate compound.
  • Specific examples of the cyclic carbonate compound represented by the general formula [21] include, for example, cyclic carbonate compounds represented by [21a] to [21f]. Especially, the compound shown in [21a] is more preferable at the point with the durable improvement effect.
  • the cyclic carbonate compound represented by the general formula [21] is not limited to the compounds represented by [21a] to [21f], and may be other compounds.
  • the cyclic carbonate compound may correspond to a monomer corresponding to the repeating unit represented by the general formula [1].
  • the cycle characteristics of the non-aqueous electrolyte battery tend to be improved.
  • the cyclic carbonate compound of the cyclic carbonate compound is compared with the case where the carbonate compound (monomer body) containing an unsaturated bond and the cyclic carbonate compound are used in combination. It is easy to improve the rate characteristics without impairing the cycle characteristics improvement effect.
  • the cyclic carbonate compound does not correspond to the monomer corresponding to the repeating unit represented by the general formula [1] the cyclic carbonate with respect to 100% by mass of the total amount of (I), (II), (III), and (IV)
  • the preferred content of compound (IB-6) is 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more, and the upper limit is 10. It is 0 mass% or less, More preferably, it is 5.0 mass% or less, More preferably, it is the range of 2.0 mass% or less.
  • concentration is less than 0.001% by mass, it is not preferable because the effect of improving the cycle characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • concentration exceeds 10.0% by mass, it is not preferable because it is difficult to sufficiently obtain the effect of improving the cycle characteristics of the nonaqueous electrolyte battery using the nonaqueous electrolyte.
  • One of these cyclic carbonate compounds may be used alone, or two or more thereof may be mixed in any combination and ratio according to the application.
  • isocyanate compound examples are not particularly limited, and examples thereof include hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate.
  • the high-temperature cycle characteristics can be improved by using the isocyanate compound (IB-7) as a component of the electrolyte for a non-aqueous electrolyte battery.
  • the additive for non-aqueous electrolyte solution of the present invention and the isocyanate compound are used in combination, the cycle characteristics of the isocyanate compound are improved as compared with the case of using a carbonate compound (monomer) containing an unsaturated bond and the isocyanate compound in combination. It is easy to improve rate characteristics without losing the effect.
  • the preferred content of the isocyanate compound (IB-7) with respect to 100% by mass of the total amount of (I), (II), (III), (IV) is 0.001% by mass or more, more preferably 0.01%. % By mass or more, more preferably 0.1% by mass or more, and the upper limit is 7.0% by mass or less, more preferably 5.0% by mass or less, and further preferably 2.0% by mass or less. . If the concentration is less than 0.001% by mass, it is not preferable because the effect of improving the cycle characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • isocyanate compounds may be used individually by 1 type, and may mix 2 or more types by arbitrary combinations and a ratio according to a use.
  • cyclic acetal compound examples include 1,3-dioxolane, 1,3-dioxane, and 1,3,5-trioxane. Among them, 1,3-dioxane is preferable.
  • the high-temperature cycle characteristics can be improved by using the cyclic acetal compound (IB-8) as a component of the electrolyte for a non-aqueous electrolyte battery.
  • the cyclic acetal compound of the cyclic acetal compound is compared with the case of using a carbonate compound (monomer body) containing an unsaturated bond and the cyclic acetal compound in combination. It is easy to improve the rate characteristics without impairing the high temperature cycle characteristics improvement effect.
  • the preferred content of the cyclic acetal compound (IB-8) with respect to 100% by mass of the total amount of (I), (II), (III), (IV) is 0.001% by mass or more, more preferably 0.8%. 01 mass% or more, more preferably 0.1 mass% or more, and the upper limit is 7.0 mass% or less, more preferably 5.0 mass% or less, and even more preferably 2.0 mass% or less. is there. If the concentration is less than 0.001% by mass, it is not preferable because the effect of improving the cycle characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • cyclic acetal compounds may be used individually by 1 type, and may mix 2 or more types by arbitrary combinations and a ratio according to a use.
  • cyclic acid anhydride examples include succinic anhydride, maleic anhydride, 3-allyl succinic anhydride, etc. Among them, succinic anhydride and 3-allyl succinic anhydride are preferable.
  • cyclic acid anhydride IB-9
  • the additive for non-aqueous electrolyte of the present invention and the cyclic acid anhydride are used in combination, the cyclic acid is compared with the case of using a carbonate compound (monomer body) containing an unsaturated bond and the cyclic acid anhydride in combination. It is easy to improve the rate characteristics without impairing the high temperature cycle characteristics improvement effect of the anhydride.
  • the preferred content of the cyclic acid anhydride (IB-9) with respect to 100% by mass of the total amount of (I), (II), (III), (IV) is 0.001% by mass or more, more preferably 0 0.01 mass% or more, more preferably 0.1 mass% or more, and the upper limit is 7.0 mass% or less, more preferably 5.0 mass% or less, and still more preferably 2.0 mass% or less. It is. If the concentration is less than 0.001% by mass, it is not preferable because the effect of improving the cycle characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • cyclic acid anhydrides may be used individually by 1 type, and may mix 2 or more types by arbitrary combinations and a ratio according to a use.
  • cyclic phosphazene compound examples include methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, diethoxypentafluorocyclotriphosphazene, and ethoxyheptafluorocyclotetraphosphazene. Ethoxypentafluorocyclotriphosphazene is preferred.
  • the high-temperature cycle characteristics can be improved by using the cyclic phosphazene compound (IB-10) as a component of the electrolyte for a non-aqueous electrolyte battery.
  • the cyclic phosphazene compound of the cyclic phosphazene compound is compared with the case of using a carbonate compound (monomer) containing an unsaturated bond and the cyclic phosphazene compound in combination. It is easy to improve the rate characteristics without impairing the high temperature cycle characteristics improvement effect.
  • the suitable content of the cyclic phosphazene compound (IB-10) with respect to 100% by mass of the total amount of (I), (II), (III), (IV) is 0.001% by mass or more, more preferably 0.8%. 01 mass% or more, more preferably 0.1 mass% or more, and the upper limit is 7.0 mass% or less, more preferably 5.0 mass% or less, still more preferably 3.0 mass% or less. is there. If the concentration is less than 0.001% by mass, it is not preferable because the effect of improving the cycle characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • cyclic phosphazene compounds may be used individually by 1 type, and may mix 2 or more types by arbitrary combinations and a ratio according to a use.
  • Aromatic Compound There exists a tendency which can improve a high temperature cycling characteristic because a non-aqueous electrolyte solution contains an aromatic compound. Some aromatic compounds further tend to suppress overcharge under high voltage conditions.
  • aromatic compound examples include cyclohexylbenzene, biphenyl, tert-butylbenzene, 4-fluorobiphenyl, fluorobenzene, 2,4-difluorobenzene, 1-cyclohexyl-4-fluorobenzene, and difluoroanisole, Of these, 1-cyclohexyl-4-fluorobenzene is preferable.
  • the high-temperature cycle characteristics can be improved by using the aromatic compound (IB-11) as a component of the electrolyte for a non-aqueous electrolyte battery.
  • the aromatic compound of the aromatic compound is compared with the case of using the carbonate compound (monomer body) containing an unsaturated bond and the aromatic compound in combination. It is easy to improve the rate characteristics without impairing the improvement effect of the high temperature cycle characteristics.
  • the preferred content of the aromatic compound (IB-11) with respect to 100% by mass of the total amount of (I), (II), (III) and (IV) is 0.001% by mass or more, more preferably 0.001% by mass.
  • the upper limit is 20.0% by mass or less, more preferably 10.0% by mass or less, and further preferably 5.0% by mass or less. is there. If the concentration is less than 0.001% by mass, it is not preferable because the effect of improving the cycle characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • aromatic compounds may be used individually by 1 type, and may mix 2 or more types by arbitrary combinations and a ratio according to a use.
  • the non-aqueous electrolyte solution of the present invention contains the above-mentioned additive for non-aqueous electrolyte solution.
  • the content of (II) is 0.03 to 14.0% by mass with respect to 100% by mass of the total of (I), (II), (III) and (IV), the non-aqueous electrolyte secondary battery When used, it is preferable because the cycle characteristics and rate characteristics are easily exhibited in a well-balanced manner. From the viewpoint of cycle characteristics and / or rate characteristics, the content of (II) is more preferably 0.07 to 12.0% by mass.
  • Non-aqueous organic solvent If a non-aqueous solvent is used, the non-aqueous electrolyte is generally called a non-aqueous electrolyte, and if a polymer is used, it becomes a polymer solid electrolyte.
  • the polymer solid electrolyte includes those containing a non-aqueous solvent as a plasticizer.
  • the non-aqueous organic solvent (III) is not particularly limited as long as it is an aprotic solvent that can dissolve (I), (II), and (IV) of the present invention.
  • an aprotic solvent that can dissolve (I), (II), and (IV) of the present invention.
  • carbonates, Esters, ethers, lactones, nitriles, imides, sulfones and the like can be used.
  • ethyl methyl carbonate dimethyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl butyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4, 5-difluoroethylene carbonate, 4,5-difluoro-4,5-dimethylethylene carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl 2-fluoropropionate, ethyl 2-fluoropropionate, diethyl ether , Acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, furan, tetrahydropyran, 1, - dioxane, 1,4-dioxane, dibutyl ether, diisopropyl ether,
  • the polymer used for obtaining the polymer solid electrolyte is not particularly limited as long as it is an aprotic polymer capable of dissolving (I), (II), and (IV).
  • examples thereof include a polymer having polyethylene oxide in the main chain or side chain, a homopolymer or copolymer of polyvinylidene fluoride, a methacrylic acid ester polymer, polyacrylonitrile and the like.
  • a plasticizer is added to these polymers, the above-mentioned aprotic non-aqueous solvent can be used.
  • the solute is not particularly limited, and a salt composed of an arbitrary cation and anion pair can be used.
  • a salt composed of an arbitrary cation and anion pair can be used.
  • Specific examples include alkali metal ions such as lithium ions and sodium ions, alkaline earth metal ions, quaternary ammonium, etc. as cations, and hexafluorophosphoric acid, tetrafluoroboric acid, perchloric acid as anions.
  • the cation is preferably at least one selected from the group consisting of lithium, sodium, magnesium and quaternary ammonium, and the anion is hexafluorophosphate, tetra From the group consisting of fluoroboric acid, bis (trifluoromethanesulfonyl) imide, bis (pentafluoroethanesulfonyl) imide, bis (fluorosulfonyl) imide, bis (difluorophosphonyl) imide, (difluorophosphonyl) (fluorosulfonyl) imide At least one selected is preferred.
  • lithium hexafluorophosphate LiPF 6
  • lithium tetrafluoroborate LiBF 4
  • bis (trifluoromethanesulfonyl) imide lithium LiN (CF 3 SO 2 ) 2
  • bis (pentafluoroethanesulfonyl) imide lithium From the group consisting of (LiN (C 2 F 5 SO 2 ) 2 ), bis (fluorosulfonyl) imide lithium (LiN (FSO 2 ) 2 ), and bis (difluorophosphonyl) imide lithium (LiN (POF 2 ) 2 ) At least one selected is preferred.
  • the total amount of (IV) (hereinafter referred to as “solute concentration”) with respect to the total amount of 100% by mass of (I), (II), (III), and (IV) is not particularly limited, but the lower limit is 0. 5 mol / L or more, preferably 0.7 mol / L or more, more preferably 0.9 mol / L or more, and the upper limit is 5.0 mol / L or less, preferably 4.0 mol / L or less, more preferably 2 The range is 0.0 mol / L or less. When the concentration is less than 0.5 mol / L, the ionic conductivity decreases, thereby reducing the cycle characteristics and output characteristics of the non-aqueous electrolyte secondary battery.
  • the concentration exceeds 5.0 mol / L, the viscosity of the non-aqueous electrolyte is decreased. If it rises, the ionic conduction may be lowered, and the cycle characteristics and output characteristics of the non-aqueous electrolyte secondary battery may be lowered.
  • an additive having an overcharge prevention effect, a negative electrode film formation effect, and a positive electrode protection effect generally used in the non-aqueous electrolyte solution of the present invention may be added at an arbitrary ratio. good.
  • a non-aqueous electrolyte by quasi-solidifying it with a gelling agent or a cross-linked polymer as in the case of use in a non-aqueous electrolyte secondary battery called a polymer battery.
  • a compound corresponding to the monomer of the additive for non-aqueous electrolyte of the present invention may also be present in the non-aqueous electrolyte.
  • the total amount (M) of the monomer in the non-aqueous electrolyte and the total amount (P) of the non-aqueous electrolyte additive (monomer conversion) are calculated from the 1 H-NMR measurement results.
  • Non-aqueous electrolyte secondary battery Non-aqueous electrolyte, negative electrode material capable of reversibly inserting and removing alkali metal ions such as lithium ions and sodium ions, or alkaline earth metal ions, lithium ions and sodium
  • An electrochemical device using a positive electrode material into which alkali metal ions such as ions or alkaline earth metal ions can be reversibly inserted and removed is called a non-aqueous electrolyte secondary battery.
  • the negative electrode is not particularly limited, but a material in which an alkali metal ion such as lithium ion or sodium ion or an alkaline earth metal ion can be reversibly inserted and removed is used, and the positive electrode is not particularly limited. However, materials in which alkali metal ions such as lithium ions and sodium ions or alkaline earth metal ions can be reversibly inserted and removed are used.
  • the negative electrode material is lithium metal, alloys of lithium and other metals, intermetallic compounds, various carbon materials capable of inserting and extracting lithium, metal oxides, metal nitrides, activated carbon
  • the carbon material include graphitizable carbon, non-graphitizable carbon (also referred to as hard carbon) having a (002) plane spacing of 0.37 nm or more, and a (002) plane spacing of 0.
  • Examples include graphite having a thickness of 37 nm or less, and the latter is made of artificial graphite, natural graphite, or the like.
  • lithium-containing transition metal composite oxides such as 4 as a positive electrode material
  • a mixture of a plurality of transition metals for example, LiNi 0.5 Mn 1.5 O 4 ), a transition metal part of those lithium-containing transition metal composite oxides substituted with a metal other than the transition metal, called olivine LiFePO 4, LiCoPO 4, LiMnPO phosphate compound of a transition metal such as 4, an oxide such as TiO 2, V 2 O 5, MoO 3, TiS 2, sulfides such as FeS, or polyacetylene, polyparaphenylene, polyaniline, And conductive polymers such as polypyrrole, activated carbon, polymers generating radicals, carbon materials, etc. are used. olivine LiFePO 4, LiCoPO 4, LiMnPO phosphate compound of a transition metal such as 4, an oxide such as TiO 2, V 2 O 5, MoO 3, TiS 2, sulfides such as FeS, or polyacetylene, polyparaphenylene, polyaniline, And conductive polymers such as polypyrrole, activated carbon, polymers generating radicals, carbon materials
  • acetylene black, ketjen black, carbon fiber, or graphite is added as a conductive material, and polytetrafluoroethylene, polyvinylidene fluoride, or SBR resin is added as a binder.
  • the electrode sheet made can be used.
  • a separator for preventing contact between the positive electrode and the negative electrode a nonwoven fabric or a porous sheet made of polypropylene, polyethylene, paper, glass fiber or the like is used.
  • an electrochemical device having a coin shape, cylindrical shape, square shape, aluminum laminate sheet shape or the like is assembled.
  • a non-aqueous electrolyte secondary battery includes a non-aqueous electrolyte comprising: (i) the non-aqueous electrolyte described above; (ii) a positive electrode; (iii) a negative electrode; and (iv) a separator.
  • An electrolyte secondary battery may be used.
  • the positive electrode preferably contains at least one oxide and / or polyanion compound as the positive electrode active material.
  • the positive electrode active material constituting the positive electrode is not particularly limited as long as it is various materials that can be charged and discharged.
  • the positive electrode active material constituting the positive electrode is not particularly limited as long as it is various materials that can be charged and discharged.
  • mold phosphate and the lithium excess layered transition metal oxide which has (D) layered rock salt type structure is mentioned.
  • lithium transition metal composite oxide Cathode active material
  • lithium transition metal composite oxides containing at least one metal selected from nickel, manganese and cobalt and having a layered structure include lithium-cobalt composite oxides and lithium-nickel composite oxides. Lithium / nickel / cobalt composite oxide, lithium / nickel / cobalt / aluminum composite oxide, lithium / cobalt / manganese composite oxide, lithium / nickel / manganese composite oxide, lithium / nickel / manganese / cobalt composite oxide Etc.
  • transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Fe, Cu, Zn, Mg, Ga, Zr, Si, B, Ba, Y, Sn. Those substituted with other elements such as may also be used.
  • lithium-cobalt composite oxide and the lithium-nickel composite oxide include LiCoO 2 , LiNiO 2 and lithium cobaltate to which a different element such as Mg, Zr, Al, Ti is added (LiCo 0.98 Mg 0.01 Zr 0.01 O 2 , LiCo 0.98 Mg 0.01 Al 0.01 O 2 , LiCo 0.975 Mg 0.01 Zr 0.005 Al 0.01 O 2, etc.), lithium cobaltate with a rare earth compound fixed to the surface described in WO2014 / 034043, etc. may be used. . Further, as described in Japanese Patent Application Laid-Open No. 2002-151077, etc., a part of the particle surface of LiCoO 2 particle powder coated with aluminum oxide may be used.
  • the lithium / nickel / cobalt composite oxide and the lithium / nickel / cobalt / aluminum composite oxide are represented by the general formula (1-1).
  • M 1 is at least one element selected from the group consisting of Al, Fe, Mg, Zr, Ti, and B, a is 0.9 ⁇ a ⁇ 1.2, b , C satisfy the conditions of 0.1 ⁇ b ⁇ 0.3 and 0 ⁇ c ⁇ 0.1.
  • lithium / cobalt / manganese composite oxide and the lithium / nickel / manganese composite oxide include LiNi 0.5 Mn 0.5 O 2 and LiCo 0.5 Mn 0.5 O 2 .
  • lithium / nickel / manganese / cobalt composite oxide examples include a lithium-containing composite oxide represented by the general formula (1-2).
  • M 2 is at least one element selected from the group consisting of Al, Fe, Mg, Zr, Ti, B, and Sn, and d is 0.9 ⁇ d ⁇ 1.2.
  • Lithium / nickel / manganese / cobalt composite oxides contain manganese in the range represented by the general formula (1-2) in order to improve structural stability and improve safety at high temperatures in lithium secondary batteries.
  • cobalt in the range represented by the general formula (1-2).
  • Li [Ni 1/3 Mn 1/3 Co 1/3 ] O 2 Li [Ni 0.45 Mn 0.35 Co 0.2 ] O 2 , Li [Ni having a charge / discharge region at 4.3 V or higher.
  • lithium manganese composite oxide having spinel structure examples include a spinel type lithium manganese composite oxide represented by the general formula (1-3).
  • M 3 is at least one metal element selected from the group consisting of Ni, Co, Fe, Mg, Cr, Cu, Al, and Ti, and j is 1.05 ⁇ j ⁇ 1. 15 and k is 0 ⁇ k ⁇ 0.20.
  • LiMn 2 O 4 LiMn 1.95 Al 0.05 O 4 , LiMn 1.9 Al 0.1 O 4 , LiMn 1.9 Ni 0.1 O 4 , LiMn 1.5 Ni 0.5 O 4 and the like can be mentioned.
  • (C) Lithium-containing olivine-type phosphate examples include those represented by the general formula (1-4).
  • M 4 is at least one selected from Co, Ni, Mn, Cu, Zn, Nb, Mg, Al, Ti, W, Zr, and Cd, and n is 0 ⁇ n ⁇ 1.
  • LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like can be mentioned, among which LiFePO 4 and / or LiMnPO 4 are preferable.
  • lithium-excess layered transition metal oxide examples include those represented by the general formula (1-5).
  • x is a number satisfying 0 ⁇ x ⁇ 1
  • M 5 is at least one metal element having an average oxidation number of 3 +
  • M 6 is an average oxidation It is at least one metal element having a number of 4 + .
  • M 5 is preferably one or more metal elements selected from trivalent Mn, Ni, Co, Fe, V, and Cr. The average oxidation number may be trivalent with an amount of metal.
  • M 6 is preferably one or more metal elements selected from Mn, Zr, and Ti.
  • the positive electrode active material (D) represented by the general formula (1-5) is known to exhibit a high capacity when charged at a high voltage of 4.4 V (Li standard) or higher (for example, US Pat. No. 7 , 135, 252).
  • These positive electrode active materials can be prepared according to the production methods described in, for example, JP 2008-270201 A, WO 2013/118661, JP 2013-030284 A, and the like.
  • the positive electrode active material may contain at least one selected from the above (A) to (D) as a main component, but other examples include FeS 2 , TiS 2 , V 2 O 5. , Transition element chalcogenides such as MoO 3 and MoS 2 , or conductive polymers such as polyacetylene, polyparaphenylene, polyaniline, and polypyrrole, activated carbon, polymers that generate radicals, and carbon materials.
  • the positive electrode has a positive electrode current collector.
  • the positive electrode current collector for example, aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • a positive electrode active material layer is formed on at least one surface of the positive electrode current collector.
  • a positive electrode active material layer is comprised by the above-mentioned positive electrode active material, a binder, and a electrically conductive agent as needed, for example.
  • binder examples include polytetrafluoroethylene, polyvinylidene fluoride, or styrene butadiene rubber (SBR) resin.
  • SBR styrene butadiene rubber
  • a carbon material such as acetylene black, ketjen black, carbon fiber, or graphite (granular graphite or flake graphite) can be used.
  • acetylene black or ketjen black having low crystallinity.
  • the negative electrode preferably contains at least one negative electrode active material.
  • the negative electrode active material constituting the negative electrode can be doped / dedoped with lithium ions.
  • a material (G) an oxide of one or more metals selected from Si, Sn, Al, (H) one or more metals selected from Si, Sn, Al, alloys containing these metals, or these metals or alloys; Examples include an alloy with lithium and (I) at least one selected from lithium titanium oxide.
  • These negative electrode active materials can be used individually by 1 type, and can also be used in combination of 2 or more type.
  • Examples of the carbon material having a d value of 0.340 nm or less in the lattice plane (002 plane) in the negative electrode active material (E) X-ray diffraction include pyrolytic carbons and cokes (for example, pitch coke, needle coke, and petroleum coke).
  • Graphites organic polymer compound fired bodies (for example, those obtained by firing and carbonizing a phenol resin, furan resin, etc.), carbon fibers, activated carbon, and the like. These may be graphitized.
  • the carbon material has a (002) plane spacing (d002) of 0.340 nm or less measured by an X-ray diffraction method, among which graphite having a true density of 1.70 g / cm 3 or more, or A highly crystalline carbon material having close properties is preferred.
  • amorphous carbon As the carbon material in which the d value of the lattice plane (002 plane) in the negative electrode active material (F) X-ray diffraction exceeds 0.340 nm, amorphous carbon can be cited, which is obtained by heat treatment at a high temperature of 2000 ° C. or higher. Is a carbon material whose stacking order hardly changes. Examples thereof include non-graphitizable carbon (hard carbon), mesocarbon microbeads (MCMB) baked at 1500 ° C. or less, and mesopage bitch carbon fiber (MCF). A typical example is Carbotron (registered trademark) P manufactured by Kureha Co., Ltd.
  • Negative electrode active material (G) One or more metal oxides selected from Si, Sn, and Al)
  • Negative electrode active material (G) One or more metal oxides selected from Si, Sn, and Al can be doped / dedoped with lithium ions, such as silicon oxide and tin oxide. .
  • Examples include SiO x having a structure in which ultrafine particles of Si are dispersed in SiO 2 .
  • SiO x particles having the above structure itself have a small surface area, so that the negative electrode active material layer
  • the coating properties and the adhesion of the negative electrode mixture layer to the current collector when the composition (paste) is used to form the film are also good.
  • SiO x has a large volume change due to charge / discharge
  • high capacity and good charge / discharge cycle characteristics can be obtained by using SiO x and graphite of the negative electrode active material (E) in a specific ratio in combination with the negative electrode active material. And both.
  • Negative electrode active material (H) one or more metals selected from Si, Sn, Al, alloys containing these metals, or alloys of these metals or alloys and lithium)
  • Negative electrode active material (H) one or more metals selected from Si, Sn, Al, alloys containing these metals, or alloys of these metals or alloys and lithium include, for example, metals such as silicon, tin, and aluminum, and silicon alloys , Tin alloys, aluminum alloys, and the like, and materials in which these metals and alloys are alloyed with lithium during charge and discharge can also be used.
  • a negative electrode active material formed of silicon micro pillars having a submicron diameter a negative electrode active material formed of fibers made of silicon, and the like described in WO 2004/042851 and WO 2007/083155 may be used. .
  • Examples of the negative electrode active material (I) lithium titanium oxide include lithium titanate having a spinel structure and lithium titanate having a ramsdellite structure.
  • lithium titanate having a spinel structure examples include Li 4 + ⁇ Ti 5 O 12 ( ⁇ varies within a range of 0 ⁇ ⁇ ⁇ 3 due to a charge / discharge reaction).
  • lithium titanate having a ramsdellite structure examples include Li 2 + ⁇ Ti 3 O 7 ( ⁇ varies within a range of 0 ⁇ ⁇ ⁇ 3 due to charge / discharge reaction).
  • These negative electrode active materials can be prepared according to the production methods described in, for example, Japanese Patent Application Laid-Open No. 2007-018883 and Japanese Patent Application Laid-Open No. 2009-176752.
  • the cation in the non-aqueous electrolyte is mainly sodium
  • hard carbon oxides such as TiO 2 , V 2 O 5 , and MoO 3 are used as the negative electrode active material.
  • a sodium-containing transition metal composite oxide such as NaFeO 2 , NaCrO 2 , NaNiO 2 , NaMnO 2 , NaCoO 2 as the positive electrode active material
  • transition metals such as Fe, Cr, Ni, Mn, Co, etc.
  • transition metal phosphate compounds such as Na 2 FeP 2 O 7 , NaCo 3 (PO 4 ) 2 P 2 O 7
  • sulfides such as TiS 2 and FeS 2
  • polyacetylene polypara Conductive polymers such as phenylene, polyaniline, and polypyrrole, activated carbon, polymers that generate radicals, and carbon materials are used.
  • the negative electrode has a negative electrode current collector.
  • the negative electrode current collector for example, copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • a negative electrode active material layer is formed on at least one surface of the negative electrode current collector.
  • a negative electrode active material layer is comprised by the above-mentioned negative electrode active material, a binder, and a electrically conductive agent as needed, for example.
  • binder examples include polytetrafluoroethylene, polyvinylidene fluoride, or styrene butadiene rubber (SBR) resin.
  • SBR styrene butadiene rubber
  • a carbon material such as acetylene black, ketjen black, carbon fiber, or graphite (granular graphite or flake graphite) can be used.
  • the electrode is obtained, for example, by dispersing and kneading an active material, a binder, and, if necessary, a conductive agent in a solvent such as N-methyl-2-pyrrolidone (NMP) or water in a predetermined blending amount.
  • NMP N-methyl-2-pyrrolidone
  • the paste can be applied to a current collector and dried to form an active material layer.
  • the obtained electrode is preferably compressed by a method such as a roll press to adjust the electrode to an appropriate density.
  • the non-aqueous electrolyte battery includes (iv) a separator.
  • a separator for preventing contact between (ii) the positive electrode and (iii) the negative electrode, a nonwoven fabric or a porous sheet made of polyolefin such as polypropylene or polyethylene, cellulose, paper, glass fiber or the like is used. These films are preferably microporous so that the electrolyte can penetrate and ions can easily pass therethrough.
  • the polyolefin separator examples include a membrane that electrically insulates the positive electrode and the negative electrode and is permeable to lithium ions, such as a microporous polymer film such as a porous polyolefin film.
  • a porous polyolefin film for example, a porous polyethylene film alone or a porous polyethylene film and a porous polypropylene film may be overlapped and used as a multilayer film.
  • the film etc. which compounded the porous polyethylene film and the polypropylene film are mentioned.
  • a metal can such as a coin shape, a cylindrical shape, or a square shape, or a laminate exterior body can be used.
  • the metal can material include a steel plate subjected to nickel plating, a stainless steel plate, a stainless steel plate subjected to nickel plating, aluminum or an alloy thereof, nickel, and titanium.
  • the laminate outer package for example, an aluminum laminate film, a SUS laminate film, a laminate film made of silica, polypropylene, polyethylene, or the like can be used.
  • the configuration of the non-aqueous electrolyte battery according to the present embodiment is not particularly limited.
  • an electrode element in which a positive electrode and a negative electrode are opposed to each other and a non-aqueous electrolyte are included in an outer package. It can be set as a structure.
  • the shape of the non-aqueous electrolyte battery is not particularly limited, but an electrochemical device having a shape such as a coin shape, a cylindrical shape, a square shape, or an aluminum laminate sheet type is assembled from the above elements.
  • VC Vinylene carbonate
  • NMP N-methylpyrrolidone
  • V601 manufactured by Wako Pure Chemical Industries, Ltd. 4 0.5 g was added, and the operation of degassing under vacuum and introducing nitrogen was performed three times to make it in a nitrogen atmosphere, and then heated at 80 ° C. for 6 hours.
  • the obtained reaction solution was poured into a large amount of methanol, and the polymer was reprecipitated using the methanol as a poor solvent.
  • Non-aqueous electrolyte additive No. 1 was subjected to 1 H-NMR measurement, and it was confirmed that all Rs in the above general formula [1] were H and a compound comprising an oligomer.
  • non-aqueous electrolyte additive No. 1 GPC measurement was performed, and it was confirmed that the number average molecular weight in terms of polystyrene was 750. The results are shown in Table 1.
  • Non-aqueous electrolyte additive No. 1 was subjected to 1 H-NMR measurement, and it was confirmed that all the Rs in the above general formula [1] were H and a compound comprising an oligomer.
  • non-aqueous electrolyte additive No. GPC measurement of No. 2 was performed, and it was confirmed that the number average molecular weight in terms of polystyrene was 1000. The results are shown in Table 1.
  • Non-aqueous electrolyte additive No. 1 was subjected to 1 H-NMR measurement, and it was confirmed that all Rs in the above general formula [1] were H and that the compound was composed of oligomers.
  • non-aqueous electrolyte additive No. GPC measurement of No. 4 was performed, and it was confirmed that the number average molecular weight in terms of polystyrene was 2500. The results are shown in Table 1.
  • Non-aqueous electrolyte additive No. 1 was subjected to 1 H-NMR measurement, and it was confirmed that all Rs in the above general formula [1] were H and a compound comprising an oligomer.
  • non-aqueous electrolyte additive No. 5 GPC measurement was performed, and it was confirmed that the number average molecular weight in terms of polystyrene was 4500. The results are shown in Table 1.
  • Non-aqueous electrolyte additive No. 1 was subjected to 1 H-NMR measurement, and it was confirmed that all Rs in the above general formula [1] were H and a compound comprising an oligomer.
  • non-aqueous electrolyte additive No. GPC measurement of 6 was performed, and it was confirmed that the number average molecular weight in terms of polystyrene was 6500. The results are shown in Table 1.
  • the non-aqueous organic solvent (III) was prepared such that ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were in a volume ratio of 3: 7.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • II lithium difluorobis (oxalato) phosphate
  • Table 2 the concentration of lithium difluorobis (oxalato) phosphate as (I) is as shown in Table 2 in the solution.
  • the nonaqueous electrolyte additive of the type shown in Table 2 as (II) was added so as to have the concentration shown in Table 2. 1A-1 to 1A-14 were obtained.
  • LiFSI bis (fluorosulfonyl) imidolithium
  • PS 1,3-propane sultone
  • PRS 1,3-propene sultone
  • MMDS methylenemethane disulfonate
  • TFP-MDS 1,5,2,4-dioxadithian-6-trifluoro Ethyl-2,2,4,4-tetraoxide
  • VEC vinyl ethylene carbonate
  • VEC bis (difluorophosphoryl) imidolithium
  • HISHICOLI bis (fluorosulfonyl) imidolithium
  • HISHICOLI 1,3-propane sultone
  • PRS 1,3-propene sultone
  • MMDS methylenemethane disulfonate
  • TFP-MDS vinyl ethylene carbonate
  • VEC bis (difluorophosphoryl) imidolithium
  • HISHICOLI bis (difluorophosphoryl) imidolithium
  • FPI difluorophosphoryl (trifluoromethanesulfonyl) imide lithium
  • LiDFP-TFMSI difluorophosphoryl (vinylsulfonyl) imide lithium
  • LiDFP-VSI difluorophosphoryl (vinylsulfonyl) imide lithium
  • FTVSi fluorotrivinylsilane
  • TVSi tetravinylsilane
  • L difluorophosphoryl (fluorosulfonyl) imide lithium
  • The may be described as DFP-FSI "), respectively, by adding to give a concentration shown in Table 4, the electrolytic solution No. 1A-15 to 1A-29 were obtained.
  • lithium difluorobis (oxalato) phosphate instead of lithium difluorobis (oxalato) phosphate, lithium difluorophosphate (hereinafter referred to as “LiPO 2 F 2 ” including the table) is used, and the concentration of (I) , (II) types and concentrations as shown in Table 6, electrolyte No. 2A-1 to 2A-14 were obtained.
  • electrolyte solution No. In 2A-6 and 2A-7 VC corresponding to the monomer of (II) is added as other components so that the amount is 0.015% by mass and 0.25% by mass, respectively, with respect to the total amount of the electrolytic solution. It was obtained.
  • electrolyte No. In 2A-3 as component (I), LiFSI, PS, PRS, MMDS, TFP-MDS, VEC, LiFPI, HISHICOLIN E, TFPPA, LiDFP-FPI, LiDFP-TFMSI, LiDFP-VSI, FTVSi, TVSi, LiDFP- By adding FSI so as to have the concentrations shown in Table 8, the electrolyte solution No. 2A-15 to 2A-29 were obtained.
  • difluorobis (oxalato) lithium phosphate instead of difluorobis (oxalato) lithium phosphate, difluorobis (oxalato) lithium phosphate and LiPO 2 F 2 are used in the ratios shown in Table 10, and the type and content of (II), ( Except that the type of III) was changed as shown in Table 10, electrolyte No. In the same manner as in 1A-14, the electrolytic solution No. 3A-1 to 3A-10 were obtained.
  • “EC / EMC / DMC3 / 4/3” is a non-aqueous organic solvent in which EC, EMC, and dimethyl carbonate (DMC) are mixed at a volume ratio of 3: 4: 3, and “EC / EMC / FEC3 / 6”.
  • EC / 1 is a non-aqueous organic solvent in which EC, EMC and fluoroethylene carbonate (FEC) are mixed at a volume ratio of 3: 6: 1, and“ EC / EMC / PC3 / 5/2 ”is EC and EMC.
  • electrolyte No. In 3A-5 as component (I), LiFSI, PS, PRS, MMDS, TFP-MDS, VEC, LiFPI, HISHICOLIN E, TFPPA, LiDFP-FPI, LiDFP-TFMSI, LiDFP-VSI, FTVSi, TVSi, LiDFP- By adding FSI so as to have the concentrations shown in Table 12, the electrolyte solution No. 3A-11 to 3A-25 were obtained.
  • electrolyte No. In 4A-3 as component (I), LiFSI, PS, PRS, MMDS, TFP-MDS, VEC, LiFPI, HISHICOLIN E, TFPPA, LiDFP-FPI, LiDFP-TFMSI, LiDFP-VSI, FTVSi, TVSi, LiDFP- By adding FSI so as to have the concentrations shown in Table 16, the electrolyte solution No. 4A-15 to 4A-29 were obtained.
  • electrolytic solution No. 5A-1 to 5A-14 were obtained.
  • electrolyte solution No. In 5A-6 and 5A-7 as other components, VC corresponding to the monomer of (II) is added so as to be 0.015 mass% and 0.25 mass%, respectively, with respect to the total amount of the electrolytic solution. It was obtained.
  • electrolyte No. In 5A-3 as component (I), LiFSI, PS, PRS, MMDS, TFP-MDS, VEC, LiFPI, HISHICOLIN E, TFPPA, LiDFP-FPI, LiDFP-TFMSI, LiDFP-VSI, FTVSi, TVSi, LiDFP- By adding FSI to the concentrations shown in Table 20, the electrolyte solution No. 5A-15 to 5A-29 were obtained.
  • comparative electrolyte No. 1A-1 and 1A-15 to 1A-29 were obtained by adding VC corresponding to the monomer of (II) without adding (II) as shown in Tables 2 and 4.
  • Comparative electrolyte No. As shown in Table 2, the additive No. 1A-2 for non-aqueous electrolyte solution was used as (II) as shown in Table 2. 6 was added.
  • Comparative electrolyte No. As shown in Table 6, the comparative electrolyte No. In 1A-1, LiPO 2 F 2 was used instead of lithium difluorobis (oxalato) phosphate, and the concentration was 1.0% by mass. Comparative electrolyte No. As shown in Table 8, each of 2A-15 to 2A-29 was electrolyte solution No. except that VC corresponding to the monomer of (II) was added without adding (II). It was obtained in the same manner as 2A-15 to 2A-29. Comparative electrolyte No. As shown in Table 6, 2A-2 is additive (No.) for non-aqueous electrolyte solution as (II). 6 was added.
  • difluorobis (oxalato) lithium phosphate in place of difluorobis (oxalato) lithium phosphate, difluorobis (oxalato) lithium phosphate and LiPO 2 F 2 are used in the ratios shown in Table 10, and the types of (III) are shown in Table 10. Except for the changes as shown, the comparative electrolyte No. In the same manner as in 1A-1, the comparative electrolyte No. 3A-1 to 3A-6 were obtained. Comparative electrolyte No. As shown in Table 12, each of 3A-11 to 3A-25 was electrolyte solution No. except that VC corresponding to the monomer of (II) was added without adding (II). It was obtained in the same manner as 3A-11 to 3A-25.
  • Comparative electrolyte No. As shown in Table 14, Comparative Electrolyte No. In 2A-1, lithium difluoro (oxalato) borate was used instead of LiPO 2 F 2 . Comparative electrolyte No. As shown in Table 14, 4A-2 is additive (No.) for non-aqueous electrolyte solution as (II). 6 was added. Comparative electrolyte No. As shown in Table 16, electrolytes Nos. 4A-15 to 4A-29 were prepared by adding electrolytic solution No. 4 except that (II) was not added and VC corresponding to the monomer of (II) was added. It was obtained in the same manner as 4A-15 to 4A-29.
  • lithium hexafluorophosphate (LiPF 6 ) was dissolved at a rate of 1 mol / L as (IV), and (4) was added to the solution as (I).
  • (I) was added so as to have the concentration shown in Table 22, and an additive for non-aqueous electrolyte solution of the type shown in Table 22 as (II) was added so as to have the concentration shown in Table 22. 1B-1 to 1B-14 were obtained.
  • the Li salt of [10a] (hereinafter sometimes referred to as “10a-Li”) was used, the concentration of (I), the type and concentration of (II) As shown in Table 24, the electrolytic solution No. 2B-1 to 2B-14 were obtained. In addition, electrolyte solution No. In 2B-6 and 2B-7, VC corresponding to the monomer of (II) is added as other components so that the amount is 0.015% by mass and 0.25% by mass, respectively, with respect to the total amount of the electrolytic solution. It was obtained.
  • the Li salt of [11a] (hereinafter sometimes referred to as “11a-Li”) is used, the concentration of (I), the type of (II) As shown in Table 26, the electrolyte solution No. 3B-1 to 3B-14 were obtained. In addition, electrolyte solution No. In 3B-6 and 3B-7, VC corresponding to the monomer of (II) is added as other components so that the amounts of the components are 0.015% by mass and 0.25% by mass, respectively, with respect to the total amount of the electrolytic solution. It was obtained.
  • Li salt of [11b] (hereinafter sometimes referred to as “11b-Li”) was used, and the concentration of (I) and the type of (II) As shown in Table 28, the electrolyte solution No. 4B-1 to 4B-14 were obtained.
  • the Li salt of [11c] (hereinafter sometimes referred to as “11c-Li”) was used, and the concentration of (I) and the type of (II) As shown in Table 10, the electrolyte solution No. 5B-1 to 5B-14 were obtained.
  • a Li salt of [12a] (hereinafter sometimes referred to as “12a-Li”) was used, and the concentration of (I) and the type of (II) As shown in Table 32, the electrolyte No. 6B-1 to 6B-14 were obtained.
  • the Li salt of [13a] (hereinafter sometimes referred to as “13a-Li”) is used, and the concentration of (I) and the type of (II) As shown in Table 34, the electrolyte solution No. 7B-1 to 7B-14 were obtained.
  • ethoxy (pentafluoro) cyclotriphosphazene (hereinafter sometimes referred to as HISHICOLIN E (manufactured by Nippon Chemical Industry Co., Ltd.)) may be used instead of [4 Pa]
  • HISHICOLIN E manufactured by Nippon Chemical Industry Co., Ltd.
  • the electrolyte solution No. 15B-1 to 15B-14 were obtained.
  • electrolyte solution No. In 15B-6 and 15B-7 as other components, VC corresponding to the monomer of (II) is added so as to be 0.015 mass% and 0.25 mass%, respectively, with respect to the total amount of the electrolytic solution. It was obtained.
  • electrolytic solution No. 16B-1 to 16B-10 were obtained.
  • EC / EMC / DMC3 / 4/3 is a non-aqueous organic solvent in which EC, EMC, and dimethyl carbonate (DMC) are mixed at a volume ratio of 3: 4: 3, and “EC / EMC / FEC3 / 6”.
  • EC / 1 is a non-aqueous organic solvent in which EC, EMC and fluoroethylene carbonate (FEC) are mixed at a volume ratio of 3: 6: 1, and“ EC / EMC / PC3 / 5/2 ”is EC and EMC.
  • the electrolytic solution No. is used except that (I) three kinds of substances are used in the ratio shown in Table 54.
  • the electrolytic solution No. 17B-1 to 17B-18 were obtained.
  • comparative electrolyte No. 1B-1, 2B-1, 3B-1, 4B-1, 5B-1, 6B-1, 7B-1, 8B-1, 9B-1, 10B-1, 11B-1, 12B-1, 13B- 1, 14B-1, 15B-1, 16B-1 to 16B-6, 17B-1 to 17B-18 are shown in Tables 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, respectively.
  • 42, 44, 46, 48, 50, 52, 55 it was obtained by adding VC corresponding to the monomer of (II) without adding (II).
  • comparative electrolyte No. 1B-2, 2B-2, 3B-2, 4B-2, 5B-2, 6B-2, 7B-2, 8B-2, 9B-2, 10B-2, 11B-2, 12B-2, 13B- 2, 14B-2 and 15B-2 are as shown in Tables 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, and 50, respectively (II) As additive No. for non-aqueous electrolyte solution. 6 was added.
  • test cell (Production and evaluation of cell) Using this electrolyte, a cell was fabricated using LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode material and graphite as the negative electrode material, and the initial electric capacity, cycle characteristics, and rate characteristics of the battery were actually evaluated. did.
  • the test cell was produced as follows.
  • PVDF polyvinylidene fluoride
  • acetylene black a conductive material
  • N-methylpyrrolidone was added to make a paste.
  • the paste was applied on an aluminum foil and dried to obtain a test positive electrode body.
  • 90% by mass of graphite powder was mixed with 10% by mass of PVDF as a binder, and N-methylpyrrolidone was further added to form a slurry. This slurry was applied on a copper foil and dried at 150 ° C. for 12 hours to obtain a test negative electrode body. Then, an electrolytic solution was immersed in a polyethylene separator to assemble a 50 mAh cell with an aluminum laminate exterior.
  • Discharge capacity maintenance rate after 500 cycles (discharge capacity after 500 cycles / initial discharge capacity) ⁇ 100
  • the results are shown in Tables 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49. , 51, 53, 56.
  • High capacity discharge capacity ratio (discharge capacity at 5 C discharge / discharge capacity at 0.2 C discharge) ⁇ 100 The results are shown in Tables 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49. , 51, 53, 56.
  • Example 1A-1 to 1A-5 when the polystyrene-equivalent number average molecular weight of the additive for nonaqueous electrolyte solution of the present invention is 170 to 5000, it is used for a nonaqueous electrolyte secondary battery. In addition, the cycle characteristics and the rate characteristics can be exhibited with a good balance. On the other hand, a comparison using an electrolytic solution in which VC corresponding to the monomer (compound corresponding to the monomer of the general formula [1]) was added instead of the non-aqueous electrolytic solution additive of the present invention was added. In Example 1A-1, it was confirmed that the cycle characteristics and rate characteristics tend to be inferior to those of the above-described Examples. In addition, in Comparative Example 1A-2 to which a compound having a polystyrene-equivalent number average molecular weight exceeding 5000 was added, it was confirmed that the cycle characteristics and rate characteristics tended to be inferior to those in the above Examples.
  • the content of (II) with respect to the total amount of 100% by mass of the above (I), (II), (III), (IV) is 0.03 to When it is 14.0% by mass, when used in a non-aqueous electrolyte secondary battery, the cycle characteristics and rate characteristics are easily exhibited in a balanced manner, and the content of (II) is 0.07 to 12.0% by mass. It turns out that it is more preferable that it is.
  • the cycle characteristics can be obtained by using the additive for non-aqueous electrolyte of the present invention.
  • the rate characteristics can be exhibited in a well-balanced manner.
  • Examples 1B-1 to 1B-14 by using the additive for non-aqueous electrolyte solution of the present invention in combination with [4 Pa] which is an ionic complex (IB-1) having a cyclic structure.
  • the rate characteristics can be easily improved without impairing the effect of improving the cycle characteristics of the ionic complex.
  • Examples 1B-1 to 1B-5 when the number average molecular weight in terms of polystyrene of the nonaqueous electrolyte additive of the present invention is 170 to 5000, it is used for a nonaqueous electrolyte secondary battery.
  • the cycle characteristics and rate characteristics can be exhibited in a balanced manner.
  • Example 1B-1 it was confirmed that the cycle characteristics and rate characteristics tend to be inferior to those of the above-described Examples. Further, in Comparative Example 1B-2 to which a compound having a polystyrene-equivalent number average molecular weight of more than 5000 was added, it was confirmed that the cycle characteristics and rate characteristics tend to be inferior to those in the above Examples.
  • the content of (II) with respect to the total amount of 100% by mass of the above (I), (II), (III), and (IV) is 0.03 to When it is 14.0% by mass, when used in a non-aqueous electrolyte secondary battery, the cycle characteristics and rate characteristics are easily exhibited in a balanced manner, and the content of (II) is 0.07 to 12.0% by mass. It turns out that it is more preferable that it is.
  • the Si-containing compound can be obtained by using the non-aqueous electrolyte additive of the present invention. It is easy to improve the rate characteristics without impairing the effect of improving the cycle characteristics of the compound.
  • the sulfate ester can be obtained by using the additive for non-aqueous electrolyte of the present invention. It is easy to improve the rate characteristics without impairing the effect of improving the cycle characteristics of the compound.
  • the sulfate ester can be obtained by using the additive for non-aqueous electrolyte of the present invention. It is easy to improve the rate characteristics without impairing the effect of improving the cycle characteristics of the compound.
  • the sulfate ester can be obtained by using the additive for non-aqueous electrolyte of the present invention. It is easy to improve the rate characteristics without impairing the effect of improving the cycle characteristics of the compound.
  • the sulfate ester can be obtained by using the additive for non-aqueous electrolyte of the present invention. It is easy to improve the rate characteristics without impairing the effect of improving the cycle characteristics of the compound.
  • the cyclic carbonate compound can be obtained by using the additive for non-aqueous electrolyte of the present invention. It is easy to improve the rate characteristics without impairing the effect of improving the cycle characteristics of the compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

非水系電解液用添加剤は、下記一般式[1]で表される繰り返し単位を有する化合物であり、ポリスチレン換算の数平均分子量が170~5000である。[式中、括弧の内部はそれぞれが繰り返し単位であることを意味する。Rは、水素原子、ハロゲン又は低級アルキル基を表す。Rは、全て同一であってもよく、異なっていてもよく、互いに連結して環状構造を有していてもよい。]

Description

非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池
 本発明は、非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池に関する。
 これまで非水電解液電池の耐久性を向上するための手段として、正極や負極の活物質をはじめとする様々な電池構成要素の最適化が検討されてきた。非水電解液もその例外ではなく、種々の耐久性向上剤による電気分解被膜で、電解液が活性な正極や負極の表面で分解することによる劣化を抑制することが提案されている。
 例えば、特許文献1には、ジフルオロ(ビス(オキサラト))リン酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、ビス(オキサラト)ホウ酸リチウム等のオキサラト塩を非水電解液に添加することにより、電池の内部抵抗の上昇とサイクル特性の劣化を抑制する方法が提案されている。
 特許文献2では、リチウムイオン二次電池において、電極上に不動態化層を形成するために、非水電解液の0.01~10質量%の割合で少なくとも1個の不飽和結合を含み且つ不動態化層を形成するためにリチウムよりも1V高い電位でアノードにおいて還元可能な可溶性化合物を加えることを特徴とする二次電池用電解液が開示されている。上記不飽和結合を含有する可溶性化合物として、例えば、ビニレンカーボネート(以下「VC」と記載する場合がある)に代表される不飽和結合を有するカーボネート化合物を添加することが開示されている。
 特許文献3では、リチウムイオン二次電池において、高温で充放電サイクルを繰り返した後の容量維持率を向上させることを目的として、非水電解液100質量部に対して、VCと、Li[M(C24xy](式中、MはP、Al、SiおよびCからなる群より選択される1種、Rはハロゲン基、アルキル基およびハロゲン化アルキル基からなる群より選択される1種の基、xは正の整数、yは0または正の整数である)で表されるオキサラト塩とを総量で0.6質量部以上3.9質量部以下添加することを特徴とする二次電池用電解液が開示されている。
 特許文献4では、電池の繰り返し充放電特性(サイクル特性)の低下を抑制し、低温放電特性にも優れた二次電池用非水系電解液を提供することを目的として、少なくとも、非水溶媒、リチウム塩及びビニレンカーボネートを含有する二次電池用非水系電解液であって、該ビニレンカーボネートの含有量が、電解液総質量の0.001質量%から3質量%の範囲にあり、更に、ジフルオロリン酸塩を電解液総質量に対し10ppm以上含有することを特徴とする二次電池用非水系電解液が開示されている。
 特許文献5には、高温耐久性を有する下記式(1)~(3)のいずれかで示されるイオン性錯体を非水電解液に含有させて、非水電解液電池へ使用することが提案されており、下記化合物No.21-1で示されるVCをさらに含有してもよいことが開示されている。
Figure JPOXMLDOC01-appb-C000014
[Aは金属イオン、プロトン又はオニウムイオン;Mは13族~15族元素;R1はC1~10の環やヘテロ原子やハロゲン原子を有してもよい炭化水素基、又は-N(R2)-;R2はH、アルカリ金属、C1~10の環やヘテロ原子やハロゲン原子を有してもよい炭化水素基;炭素数が3以上の場合、R2は分岐鎖或いは環状構造をとることもできる;YはC又はS;Yが炭素の場合、rは1;Yが硫黄の場合、rは1又は2;aは1又は2;oは2又は4;nは1又は2;pは0又は1;qは1又は2;rは0、1又は2;pが0の場合、S-Y間に直接結合を形成する。]
Figure JPOXMLDOC01-appb-C000015
 特許文献6では、サイクル特性や内部抵抗特性を向上する成分として下記一般式(I)で示されるホスホリル基を有するイミド塩を非水電解液に含有させて、非水電解液電池へ使用することが提案されており、一般的に用いられる添加剤としてVCをさらに含有してもよいことが開示されている。
Figure JPOXMLDOC01-appb-C000016
[式中、R1~R4はそれぞれ互いに独立して、フッ素原子、又は-OR5で示される有機基;R5は炭素数1~10の直鎖あるいは分岐状のアルキル基、アルケニル基又はアルキニル基、炭素数が3~10のシクロアルキル基又はシクロアルケニル基、及び、炭素数が6~10のアリール基から選ばれる少なくとも1つの有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。Mはアルカリ金属カチオン、アルカリ土類金属カチオン、又はオニウムカチオンで、mは該当するカチオンの価数と同数の整数を表す。但し、R1~R4の少なくとも一つはフッ素原子を示す。]
 特許文献7では、下記一般式(1)~(4)で示される2価のイミドアニオンを有する塩を含有させることで、サイクル特性及び低温特性に優れた非水電解液二次電池を構成する非水電解液電池用電解液が提案されており、VCをさらに含有してもよいことが開示されている。
Figure JPOXMLDOC01-appb-C000017
[式(1)~(3)中、R1~R3はそれぞれ互いに独立して、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。式(2)及び(4)中、Xは、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルキル基、炭素数が2~10のアルケニル基、炭素数が2~10のアルキニル基、炭素数が3~10の、シクロアルキル基、シクロアルケニル基、炭素数が6~10のアリール基、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。M1、M2はそれぞれ互いに独立して、プロトン、金属カチオンまたはオニウムカチオンである。]
 特許文献8では、下記一般式(1)又は一般式(2)で示されるシロキサン化合物を少なくとも一つ含有させることで、保存安定性が向上した非水電解液電池用電解液が提案されており、VCをさらに含有してもよいことが開示されている。
Figure JPOXMLDOC01-appb-C000018
[一般式(1)及び一般式(2)中、R1、R2、R7は互いに独立して、フッ素原子を少なくとも一つ含有するアルキル基、アルケニル基、アルキニル基、アリール基から選ばれた基を示し、これらの基は酸素原子を有していても良い。R3~R6、R8はそれぞれ互いに独立して、アルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基、アルキニル基、アルキニルオキシ基、アリール基、及びアリールオキシ基から選ばれた基を示し、これらの基はフッ素原子及び酸素原子を有していても良い。また、nは1~10の整数を示す。]
 特許文献9では、所定のオキサラト化合物と下記一般式(2)で示されるケイ素化合物を含有させることで、60℃以上の高温での使用を想定した優れた高温サイクル特性及び高温貯蔵特性を発揮できる、非水電解液電池用電解液が提案されており、VCをさらに含有してもよいことが開示されている。
Figure JPOXMLDOC01-appb-C000019
[一般式(2)中、R3はそれぞれ互いに独立して炭素-炭素不飽和結合を有する基を表す。R4はそれぞれ互いに独立して、フッ素原子、アルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基、アルキニル基、アルキニルオキシ基、アリール基、及びアリールオキシ基からなる群から選ばれる基を示し、これらの基はフッ素原子及び/又は酸素原子を有していても良い。xは2~4である。]
 特許文献10では、所定のオキサラト化合物と下記一般式(1)又は一般式(2)で示される少なくとも一つのシロキサン化合物を含有させることで、サイクル特性の向上、内部抵抗の上昇を抑制する効果、低温特性の向上等を損なわないで、初期の電気容量が増大した非水電解液電池用電解液が提案されており、VCをさらに含有してもよいことが開示されている。
Figure JPOXMLDOC01-appb-C000020
[一般式(1)及び一般式(2)中、R1~R8はそれぞれ互いに独立して、アルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基、アルキニル基、アルキニルオキシ基、アリール基、及びアリールオキシ基から選ばれた基を示し、これらの基はフッ素原子及び酸素原子を有していても良い。また、nは1~10の整数を示す。nが2以上の場合、複数のR4、R6、R7又はR8は、それぞれお互い同一であっても、異なっていても良い。]
 特許文献11では、非プロトン性溶媒と、スルホニル基を少なくとも2個有する環式スルホン酸エステルとを含むことで、二次電池の電解液の溶媒の分解を抑制する二次電池用電解液が提案されており、VCをさらに含有してもよいことが開示されている。
 特許文献12では、リン酸トリメチルとビニレンカーボネートとを、所定の割合で含有させることで、自己消火性を高めた非水電解液が開示されている。
 特許文献13では、ビニレンカーボネートとビニルエチレンカーボネートを必須成分として含む不燃性非水系電解液が開示されている。
 特許文献14では、分子内に少なくとも2つのイソシアネート基を有する化合物を必須成分として含有し、VCをさらに含有してもよい非水系電解液が開示されている。
 特許文献15では、1,3-ジオキサンを必須成分として含有し、VCをさらに含有してもよい非水系電解液が開示されている。
 特許文献16では、ビニレンカーボネート及び、無水コハク酸や無水マレイン酸などのビニレンカーボネートよりも高い還元電位を有する化合物を必須成分として含有する非水電解液が開示されている。
 特許文献17では、所定構造の環状ホスファゼン化合物を必須成分として含有させることで、非水電解液二次電池の安全性及び電池特性を向上させる非水系電解液が提案されており、VCをさらに含有してもよいことが開示されている。
 特許文献18では、シクロヘキシルベンゼンとビフェニルを必須成分として含有し、VCをさらに含有してもよい非水系電解液が開示されている。
 上記のような不飽和結合を含有する耐久性向上添加剤はモノマー体として添加することが一般的である。例えば、VCを添加する場合、特許文献19では、VCが機能すべき以外の部分で反応して電池の膨れが起こらないように重合防止剤も添加している。また、特許文献20では、VCを含有する電解液を含むポリマーゲル層を形成する際に、カチオン重合によりゲル化させることで、系内にフリーラジカル種が存在しないようにし、電解液中のVCが自己重合反応によって減少するのを抑制している。このように、不飽和結合を含有する耐久性向上添加剤は従来モノマー体として添加されてきた。
特開2005-032714号公報 特開平8-045545号公報 国際公開第2010/067549号 特開2007-141830号公報 特開2016-027028号公報 特開2016-015214号公報 特開2016-105370号公報 特開2015-005329公報 特開2016-035820公報 特開2015-005328公報 特許第4033074号公報 特許第5712808号公報 特許第4521525号公報 特許第5966410号公報 特開2014-007010公報 特開2004-259681公報 特許第5738010号公報 特許第4695748号公報 特開2008-034233号公報 特開2008-282735号公報
 オキサラト塩、ジフルオロリン酸塩や、環状構造を有するイオン性錯体、イミドアニオンを有する塩、Si含有化合物、硫酸エステル化合物、リン酸エステル化合物、環状カーボネート化合物、イソシアネート化合物、環状アセタール化合物、環状酸無水物、環状ホスファゼン化合物、芳香族化合物と、従来モノマー体として添加されてきた不飽和結合を含有するカーボネート化合物とを含有する非水系電解液は、非水系電解液二次電池に用いた際に、優れたサイクル特性を発揮するもののレート特性が低い傾向があり、向上が望まれている。
 そこで本発明は、オキサラト塩、ジフルオロリン酸塩や、環状構造を有するイオン性錯体、イミドアニオンを有する塩、Si含有化合物、硫酸エステル化合物、リン酸エステル化合物、環状カーボネート化合物、イソシアネート化合物、環状アセタール化合物、環状酸無水物、環状ホスファゼン化合物、芳香族化合物と共に非水系電解液に添加することによって、非水系電解液二次電池に用いた際に、サイクル特性及びレート特性をバランス良く発揮することができる非水系電解液用添加剤を提供することを課題とする。また、当該非水系電解液用添加剤を有する非水系電解液、及び当該非水系電解液を備えた非水系電解液二次電池を提供することを課題とする。
 本発明は、下記一般式[1]で表される繰り返し単位を有する化合物であり、ポリスチレン換算の数平均分子量が170~5000である、非水系電解液用添加剤である。
Figure JPOXMLDOC01-appb-C000021
[式中、括弧の内部はそれぞれが繰り返し単位であることを意味する。Rは、水素原子、ハロゲン又は低級アルキル基を表す。Rは、全て同一であってもよく、異なっていてもよく、互いに連結して環状構造を有していてもよい。]
 上記非水系電解液用添加剤の数平均分子量が340~4000であることが好ましく、800~3000であることがより好ましい。
 上記非水系電解液用添加剤のRが全て水素原子であることが好ましい。
 また、本発明は、
(I)オキサラト塩、ジフルオロリン酸塩、環状構造を有するイオン性錯体、イミドアニオンを有する塩、Si含有化合物、硫酸エステル化合物、リン酸エステル化合物、環状カーボネート化合物、イソシアネート化合物、環状アセタール化合物、環状酸無水物、環状ホスファゼン化合物、芳香族化合物からなる群から選ばれる少なくとも1種、
(II)下記一般式[1]で表される繰り返し単位を有する化合物であり、ポリスチレン換算の数平均分子量が170~5000である、非水系電解液用添加剤、
(III)非水有機溶媒、及び、
(IV)溶質
とを含む、非水系電解液である。
Figure JPOXMLDOC01-appb-C000022
[式中、括弧の内部はそれぞれが繰り返し単位であることを意味する。Rは、水素原子、ハロゲン又は低級アルキル基を表す。Rは、全て同一であってもよく、異なっていてもよく、互いに連結して環状構造を有していてもよい。]
 上記非水系電解液において、非水系電解液用添加剤の数平均分子量が340~4000であることが好ましく、800~3000であることがより好ましい。
 上記非水系電解液において、非水系電解液用添加剤のRが全て水素原子であることが好ましい。
 上記(I)、(II)、(III)、(IV)の総量100質量%に対する(II)の含有量が0.03~14.0質量%であることが好ましい。
 上記電解液中に存在する、上記一般式[1]で表される繰り返し単位に相当するモノマーの総量(以下(M)と記載)と、上記非水系電解液用添加剤の総量(モノマー換算、以下(P)と記載)が、(M)/(P)=0~0.05(質量比)であることが好ましい。
 上記オキサラト塩が、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、及び、テトラフルオロ(オキサラト)リン酸塩からなる群から選ばれる少なくとも1つであることが好ましい。
 また、上記電解液が(I)として、少なくとも、ジフルオロビス(オキサラト)リン酸リチウム及びジフルオロリン酸リチウムを含むことが好ましい。
 上記環状構造を有するイオン性錯体が、下記一般式[2]~[4]で示される化合物からなる群から選ばれる少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000023
[一般式[2]において、Aは金属イオン、プロトン及びオニウムイオンからなる群から選ばれる少なくとも1つであり、Fはフッ素であり、Mは13族元素(Al、B)、14族元素(Si)及び15族元素(P、As、Sb)からなる群から選ばれる少なくとも1つであり、Oは酸素であり、Sは硫黄である。R1は炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素、アルカリ金属、炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖あるいは環状構造をとることもできる。Yは炭素又は硫黄である。Yが炭素である場合、rは1である。Yが硫黄である場合、rは1又は2である。aは1又は2、oは2又は4、nは1又は2、pは0又は1、qは1又は2、rは0、1又は2である。pが0の場合、S-Y間に直接結合を形成する。]
Figure JPOXMLDOC01-appb-C000024
[一般式[3]において、Aは金属イオン、プロトン及びオニウムイオンからなる群から選ばれる少なくとも1つであり、Fはフッ素であり、Mは13族元素(Al、B)、14族元素(Si)、及び15族元素(P、As、Sb)からなる群から選ばれる少なくとも1つであり、Oは酸素であり、Nは窒素である。Yは炭素又は硫黄であり、Yが炭素である場合、qは1であり、Yが硫黄である場合、qは1又は2である。R1は炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素、アルカリ金属、炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖あるいは環状構造をとることもできる。R3は水素、炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素、アルカリ金属、炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖あるいは環状構造をとることもできる。aは1又は2、oは2又は4、nは1又は2、pは0又は1、qは1又は2、rは0又は1である。pが0の場合、R1の両隣に位置する原子同士(すなわちYと炭素原子)が直接結合を形成する。rが0の場合M-N間に直接結合を形成する。]
Figure JPOXMLDOC01-appb-C000025
[一般式[4]において、Dはハロゲンイオン、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、(フルオロスルホニル)(トリフルオロメタンスルホニル)イミドアニオン、ビス(ジフルオロホスホニル)イミドアニオンから選ばれる少なくとも一つであり、Fはフッ素であり、Mは13族元素(Al、B)、14族元素(Si)及び15族元素(P、As、Sb)からなる群から選ばれるいずれか1つであり、Oは酸素であり、Nは窒素である。Yは炭素又は硫黄であり、Yが炭素である場合qは1であり、Yが硫黄である場合qは1又は2である。Xは炭素又は硫黄であり、Xが炭素である場合rは1であり、Xが硫黄である場合rは1又は2である。R1は炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素、アルカリ金属、炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖あるいは環状構造をとることもできる。R4、R5はそれぞれ独立で炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基であり、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる。また、下記一般式[5]の様にお互いを含む環状構造を有しても良い。
Figure JPOXMLDOC01-appb-C000026
cは0又は1であり、nが1の場合、cは0(cが0のときDは存在しない)であり、nが2の場合、cは1となる。oは2又は4、nは1又は2、pは0又は1、qは1又は2、rは1又は2、sは0又は1である。pが0の場合、Y-X間に直接結合を形成する。sが0の場合、N(R4)(R5)とR1は直接結合し、その際は下記の[6]~[9]のような構造をとることもできる。直接結合が二重結合となる[7]、[9]の場合、R5は存在しない。また[8]の様に二重結合が環の外に出た構造を取ることも出来る。この場合のR6、R7はそれぞれ独立で水素、又は炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基であり、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる。]
Figure JPOXMLDOC01-appb-C000027
 上記イミドアニオンを有する塩が、下記一般式[10]~[16]で示される化合物、(CF22(SO22-の塩、及び、(CF23(SO22-の塩からなる群から選ばれる少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000028
[一般式[10]~[11]及び[13]~[15]中、R8~R11はそれぞれ互いに独立して、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。一般式[11]、[12]、[15]及び[16]中、X2及びX3はそれぞれ互いに独立して、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルキル基、炭素数が2~10のアルケニル基、炭素数が2~10のアルキニル基、炭素数が3~10の、シクロアルキル基、シクロアルケニル基、炭素数が6~10のアリール基、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。また、一般式[10]~[16]中には少なくとも一つのP-F結合及び/又はS-F結合を含む。M2、M3はそれぞれ互いに独立して、プロトン、金属カチオン又はオニウムカチオンである。]
 上記Si含有化合物が、下記一般式[17]で示される少なくとも1種の化合物、ヘキサメチルシロキサン、1,3-ジビニルテトラメチルジシロキサン、(ビスヘキサフルオロイソプロポキシ)(ジメチル)(ジビニル)ジシロキサン、テトラメチルシラン、トリメチルビニルシラン、ビニルジメチルフルオロシラン、及びジビニルメチルフルオロシランからなる群から選ばれる少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
[一般式[17]中、R12はそれぞれ互いに独立して炭素-炭素不飽和結合を有する基を表す。R13はそれぞれ互いに独立して、フッ素原子、アルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基、アルキニル基、アルキニルオキシ基、アリール基、及びアリールオキシ基からなる群から選ばれる基を示し、これらの基はフッ素原子及び/又は酸素原子を有していても良い。xは2~4である。]
 上記硫酸エステル化合物が、下記一般式[18]、[19]、及び[20]で示される環状スルホン酸化合物、2,2-ジオキシド-1,2-オキサチオラン-4-イル、1,3-プロパンスルトン、1,3-ブタンスルトン、及び1,4-ブタンスルトンからなる群から選ばれる少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
[式[18]中、Oは酸素原子、Sは硫黄原子、n2は1以上3以下の整数である。また、R14、R15、R16、R17は、それぞれ独立して水素原子、置換若しくは無置換の炭素数1以上5以下のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基である。]
Figure JPOXMLDOC01-appb-C000031
[式[19]中、Oは酸素原子、Sは硫黄原子、n3は0以上4以下の整数であり、R18、R19は、それぞれ独立して水素原子、ハロゲン原子、又は置換若しくは無置換の炭素数1以上5以下のアルキル基であり、R20、R21は、それぞれ独立して水素原子、ハロゲン原子、置換若しくは無置換の炭素数1~5のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基であり、n4は0以上4以下の整数である。]
Figure JPOXMLDOC01-appb-C000032
[式[20]中、Oは酸素原子、Sは硫黄原子、n5は0~3の整数であり、R22、R23は、それぞれ独立して水素原子、ハロゲン原子、置換若しくは無置換の炭素数1以上5以下のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基である。]
 上記リン酸エステル化合物が、リン酸トリメチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、及びモノフルオロプロパギロキシリン酸-五フッ化リン酸リチウムからなる群から選ばれる少なくとも1種であることが好ましい。
 上記環状カーボネート化合物が、下記一般式[21]で示される環状カーボネート化合物、ジメチルビニレンカーボネートからなる群から選ばれる少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
[式[21]中、Oは酸素原子、Aは炭素数10以下の、不飽和結合や環状構造やハロゲンを有してもよい炭化水素であり、Bは炭素数10以下の、不飽和結合や環状構造やハロゲンを有してもよい炭化水素である。なお、A-B間に二重結合を有してもよい。]
 上記イソシアネート化合物が、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチルアクリレート、及び2-イソシアナトエチルメタクリレートからなる群から選ばれる少なくとも1種であることが好ましい。
 上記環状アセタール化合物が、1,3-ジオキソラン、1,3-ジオキサン、及び1,3,5-トリオキサンからなる群から選ばれる少なくとも1種であることが好ましい。
 上記環状酸無水物が、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸からなる群から選ばれる少なくとも1種であることが好ましい。
 上記環状ホスファゼン化合物が、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、ジエトキシペンタフルオロシクロトリホスファゼン、及びエトキシヘプタフルオロシクロテトラホスファゼンからなる群から選ばれる少なくとも1種であることが好ましい。
 上記芳香族化合物が、シクロヘキシルベンゼン、ビフェニル、tert-ブチルベンゼン、4-フルオロビフェニル、フルオロベンゼン、2,4-ジフルオロベンゼン、1-シクロヘキシル-4-フルオロベンゼン、及びジフルオロアニソールからなる群から選ばれる少なくとも1種であることが好ましい。
 上記溶質が、ヘキサフルオロリン酸リチウム(LiPF6)、テトラフルオロホウ酸リチウム(LiBF4)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3SO22)、ビス(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(C25SO22)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO22)、及びビス(ジフルオロホスホニル)イミドリチウム(LiN(POF22)からなる群から選ばれる少なくとも一つであることが好ましい。
 上記非水溶媒が、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つであることが好ましい。
 上記電解液が、オキサラト塩及び/又はジフルオロリン酸塩と共に、環状構造を有するイオン性錯体、イミドアニオンを有する塩、Si含有化合物、硫酸エステル化合物、リン酸エステル化合物、環状カーボネート化合物、イソシアネート化合物、環状アセタール化合物、環状酸無水物、環状ホスファゼン化合物、芳香族化合物からなる群から選ばれる少なくとも1種の化合物を含有することも好ましい形態の一つである。
 また、本発明は、少なくとも正極と、負極と、上記のいずれかに記載の非水系電解液とを備えた、非水系電解液二次電池である。
 本発明によると、オキサラト塩、ジフルオロリン酸塩、環状構造を有するイオン性錯体、イミドアニオンを有する塩、Si含有化合物、硫酸エステル化合物、リン酸エステル化合物、環状カーボネート化合物、イソシアネート化合物、環状アセタール化合物、環状酸無水物、環状ホスファゼン化合物、芳香族化合物と共に非水系電解液に添加することによって、非水系電解液二次電池に用いた際に、サイクル特性及びレート特性をバランス良く発揮することができる非水系電解液用添加剤を提供することができる。また、非水系電解液二次電池に用いた際に、不飽和結合を含有するカーボネート化合物をモノマー体として添加した場合に比べて、サイクル特性及びレート特性をバランス良く発揮することができる非水系電解液、及び、非水系電解液二次電池を提供することができる。
 以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。
 1.非水系電解液用添加剤
 本発明の非水系電解液用添加剤は、下記一般式[1]で表される繰り返し単位を有する化合物であり、ポリスチレン換算の数平均分子量が170~5000である非水系電解液用添加剤である。
Figure JPOXMLDOC01-appb-C000034
[式中、括弧の内部はそれぞれが繰り返し単位であることを意味する。Rは、水素原子、ハロゲン又は低級アルキル基を表す。Rは、全て同一であってもよく、異なっていてもよく、共有結合により互いに連結して環状構造を有していてもよい。]
 本発明の非水系電解液用添加剤は、上記一般式[1]で表される繰り返し単位のオリゴマーを主成分とするものである。上記一般式[1]に相当するモノマーも含んでもよいが、その含有量は、サイクル特性及び/又はレート特性の観点から、少ないほどよい。本発明の非水系電解液用添加剤は、実質的に上記一般式[1]で表される繰り返し単位のオリゴマーからなるものがより好ましい。
 そして、非水系電解液用添加剤のポリスチレン換算の数平均分子量が170~5000であることが重要である。一般式[1]で表される繰り返し単位を有する化合物であり、かつ当該数平均分子量を有することで、非水系電解液二次電池に用いた際に、サイクル特性及びレート特性をバランス良く発揮することができる非水系電解液用添加剤を得ることができる。サイクル特性及び/又はレート特性の観点から、上記数平均分子量は340~4000が好ましく、800~3000がより好ましく、1000~2500が特に好ましい。
 上記一般式[1]のRは、水素原子、ハロゲン又は低級アルキル基である。上記ハロゲンとしてはフッ素原子、塩素原子、臭素原子が挙げられ、上記低級アルキル基としてはメチル基、エチル基、プロピル基等が挙げられる。化学的および電気化学的安定性、工業的な入手のしやすさの観点からRは水素原子であることが好ましい。
 上記非水系電解液用添加剤は、対応するモノマーを予め重合させることにより得られる。重合方法としては一般的に使用されている方法であれば特に制限はされないが、ラジカル重合法や光重合法などで重合することができる。中でもラジカル重合が特に好ましい。
 ラジカル重合は、ラジカル重合開始剤あるいはラジカル開始源の存在下で、塊状重合、溶液重合、懸濁重合または乳化重合等の公知の重合方法により、回分式、半連続式又は連続式のいずれかの操作で実施できる。
 ラジカル開始剤は特に限定されないが、アゾ系化合物、過酸化物系化合物、レドックス系化合物が挙げられる。例えば、2,2’-アゾビス(イソ酪酸)ジメチル、アゾビスイソブチロニトリル、t-ブチルパーオキシピバレート、ジ-t-ブチルパーオキシド、i-ブチリルパーオキシド、ラウロイルパーオキサイド、スクシン酸パーオキシド、ジシンナミルパーオキシド、ジ-n-プロピルパーオキシジカーボネート、t-ブチルパーオキシアリルモノカーボネート、過酸化ベンゾイル、過酸化水素または過硫酸アンモニウムが好ましく使用される。
 一般式[1]で表される重合物を得るための重合反応において用いる反応器は特に限定されない。また、重合反応において、重合溶媒を用いてもよい。重合溶媒としては、ラジカル重合を阻害しないものが好ましく、エステル系溶媒である酢酸エチル、酢酸n-ブチル、ケトン系溶媒であるアセトン、メチルイソブチルケトン、炭化水素系溶媒であるトルエン、シクロヘキサン、非プロトン性極性溶媒であるN-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等を例示することができる。また、重合反応において、反応温度はラジカル開始剤あるいはラジカル開始源により適宜選択され、20~200℃の範囲が好ましく、30~140℃がより好ましい。また、重合反応により得られた重合物に対して、必要に応じて貧溶媒を用いた再沈精製をしても良い。再沈等の精製によって、モノマーを除去することにより、実質的に上記一般式[1]で表される繰り返し単位のオリゴマーからなる非水系電解液用添加剤を得ることができる。
 2.非水系電解液
 本発明の非水系電解液は、
(I)オキサラト塩、ジフルオロリン酸塩、環状構造を有するイオン性錯体、イミドアニオンを有する塩、Si含有化合物、硫酸エステル化合物、リン酸エステル化合物、環状カーボネート化合物、イソシアネート化合物、環状アセタール化合物、環状酸無水物、環状ホスファゼン化合物、芳香族化合物からなる群から選ばれる少なくとも1種、
(II)上記非水系電解液用添加剤、
(III)非水有機溶媒、及び、
(IV)溶質
とを含む、非水系電解液である。
 [(I-A)オキサラト塩及び/又はジフルオロリン酸塩について]
 中心元素にシュウ酸イオンが配位した錯体であれば特に限定はなく、例えば、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、及び、テトラフルオロ(オキサラト)リン酸塩等が挙げられる。中でも、ガス発生量が多くなり過ぎないようにしつつ、優れたサイクル特性を発揮する観点から、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、ジフルオロビス(オキサラト)リン酸塩、及び、テトラフルオロ(オキサラト)リン酸塩からなる群から選ばれる少なくとも1つが好ましい。
 なお、ビス(オキサラト)ホウ酸塩とジフルオロ(オキサラト)ホウ酸塩を併用してもよいし、ビス(オキサラト)ホウ酸塩とトリス(オキサラト)リン酸塩を併用してもよいし、ビス(オキサラト)ホウ酸塩とジフルオロビス(オキサラト)リン酸塩を併用してもよいし、ビス(オキサラト)ホウ酸塩とテトラフルオロ(オキサラト)リン酸塩を併用してもよいし、ジフルオロ(オキサラト)ホウ酸塩とトリス(オキサラト)リン酸塩を併用してもよいし、ジフルオロ(オキサラト)ホウ酸塩とジフルオロビス(オキサラト)リン酸塩を併用してもよいし、ジフルオロ(オキサラト)ホウ酸塩とテトラフルオロ(オキサラト)リン酸塩を併用してもよいし、トリス(オキサラト)リン酸塩とジフルオロビス(オキサラト)リン酸塩を併用してもよいし、トリス(オキサラト)リン酸塩とテトラフルオロ(オキサラト)リン酸塩を併用してもよいし、ビス(オキサラト)ホウ酸塩とジフルオロ(オキサラト)ホウ酸塩とトリス(オキサラト)リン酸塩を併用してもよいし、ビス(オキサラト)ホウ酸塩とジフルオロ(オキサラト)ホウ酸塩とジフルオロビス(オキサラト)リン酸塩を併用してもよいし、ビス(オキサラト)ホウ酸塩とジフルオロ(オキサラト)ホウ酸塩とテトラフルオロ(オキサラト)リン酸塩を併用してもよいし、ビス(オキサラト)ホウ酸塩とトリス(オキサラト)リン酸塩とジフルオロビス(オキサラト)リン酸塩を併用してもよいし、ビス(オキサラト)ホウ酸塩とトリス(オキサラト)リン酸塩とテトラフルオロ(オキサラト)リン酸塩を併用してもよいし、ビス(オキサラト)ホウ酸塩とジフルオロビス(オキサラト)リン酸塩とテトラフルオロ(オキサラト)リン酸塩を併用してもよいし、ジフルオロ(オキサラト)ホウ酸塩とトリス(オキサラト)リン酸塩とジフルオロビス(オキサラト)リン酸塩を併用してもよいし、ジフルオロ(オキサラト)ホウ酸塩とトリス(オキサラト)リン酸塩とテトラフルオロ(オキサラト)リン酸塩を併用してもよいし、トリス(オキサラト)リン酸塩とジフルオロビス(オキサラト)リン酸塩とテトラフルオロ(オキサラト)リン酸塩を併用してもよいし、ビス(オキサラト)ホウ酸塩とジフルオロ(オキサラト)ホウ酸塩とトリス(オキサラト)リン酸塩とジフルオロビス(オキサラト)リン酸塩とテトラフルオロ(オキサラト)リン酸塩を併用してもよい。
 上記(I)がオキサラト塩及び/又はジフルオロリン酸塩である場合、(I)、(II)、(III)、(IV)の総量100質量%に対する(I)の含有量が0.01~10.0質量%であると、非水系電解液二次電池に用いた際に、サイクル特性及びレート特性をバランス良く発揮しやすいため好ましい。サイクル特性及び/又はレート特性の観点から、上記(I)の含有量は0.05~5.0質量%がより好ましい。
 なお、上記オキサラト塩とジフルオロリン酸塩をともに含有させる場合は、いずれもリチウム塩が好ましく、該オキサラト塩としては、ビス(オキサラト)ホウ酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、ジフルオロビス(オキサラト)リン酸リチウム、及び、テトラフルオロ(オキサラト)リン酸リチウムが好ましい。従ってジフルオロリン酸リチウムとビス(オキサラト)ホウ酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとジフルオロ(オキサラト)ホウ酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとジフルオロビス(オキサラト)リン酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとテトラフルオロ(オキサラト)リン酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとビス(オキサラト)ホウ酸リチウムとジフルオロ(オキサラト)ホウ酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとビス(オキサラト)ホウ酸リチウムとジフルオロビス(オキサラト)リン酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとビス(オキサラト)ホウ酸リチウムとテトラフルオロ(オキサラト)リン酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとジフルオロ(オキサラト)ホウ酸リチウムとジフルオロビス(オキサラト)リン酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとジフルオロ(オキサラト)ホウ酸リチウムとテトラフルオロ(オキサラト)リン酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとジフルオロビス(オキサラト)リン酸リチウムとテトラフルオロ(オキサラト)リン酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとビス(オキサラト)ホウ酸リチウムとジフルオロ(オキサラト)ホウ酸リチウムとジフルオロビス(オキサラト)リン酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとビス(オキサラト)ホウ酸リチウムとジフルオロ(オキサラト)ホウ酸リチウムとテトラフルオロ(オキサラト)リン酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとジフルオロ(オキサラト)ホウ酸リチウムとジフルオロビス(オキサラト)リン酸リチウムとテトラフルオロ(オキサラト)リン酸リチウムを併用してもよいし、ジフルオロリン酸リチウムとビス(オキサラト)ホウ酸リチウムとジフルオロ(オキサラト)ホウ酸リチウムとジフルオロビス(オキサラト)リン酸リチウムとテトラフルオロ(オキサラト)リン酸リチウムを併用してもよい。
 特には、上記電解液が(I)として、少なくとも、ジフルオロビス(オキサラト)リン酸リチウム及びジフルオロリン酸リチウムを含むことが好ましい。その場合、上記(I)、(II)、(III)、(IV)の総量100質量%に対して、ジフルオロビス(オキサラト)リン酸リチウムの含有量が0.15~2.50質量%で、ジフルオロリン酸リチウムの含有量が0.3~3.0質量%であることが特に好ましい。
 [(I-B-1)環状構造を有するイオン性錯体について]
 上記一般式[2]で示されるイオン性錯体の具体例としては、下記の化合物が挙げられる。ここでAは、Liイオン、Naイオン、Kイオン、又は4級アルキルアンモニウムイオンからなる群から選ばれるいずれか一つのカチオンである。
Figure JPOXMLDOC01-appb-C000035
中でも、非水電解液電池用電解液の成分として用いることで、非水電解液電池のサイクル特性が高まる点で、イオン性錯体は、上記[2Bb]及び上記[2Bd]からなる群から選ばれる少なくとも1つであることが好ましい。
 上記一般式[3]で示される化合物の具体例としては、下記の化合物が挙げられる。ここでAは、Liイオン、Naイオン、Kイオン、又は4級アルキルアンモニウムイオンからなる群から選ばれるいずれか一つのカチオンである。
Figure JPOXMLDOC01-appb-C000036
中でも、非水電解液電池用電解液の成分として用いることで、非水電解液電池のサイクル特性が高まる点で、イオン性錯体は、上記[3Pa]、上記[3Pc]、上記[3Ba]及び上記[3Bc]からなる群から選ばれる少なくとも1つであることが好ましい。
 上記一般式[4]で示される化合物の具体例としては、下記のカチオン部分を有する化合物が挙げられる。ここで上記D-は、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、(フルオロスルホニル)(トリフルオロメタンスルホニル)イミドアニオン、ビス(ジフルオロホスホニル)イミドアニオンからなる群から選ばれるいずれか一つのアニオンである。
Figure JPOXMLDOC01-appb-C000037
中でも、非水電解液電池用電解液の成分として用いることで、非水電解液電池のサイクル特性が高まる点で、イオン性錯体は、上記[4Pa]、上記[4Pb]、上記[4Pd]、上記[4Pg]、上記[4Ba]、上記[4Bb]、上記[4Bf]、上記[4Bg]及び上記[4Bi]からなる群から選ばれるいずれか1つであることが好ましい。
 ところで、イオン性錯体の種類と、イオン性錯体を非水電解液電池用電解液の成分として用いたときのサイクル特性向上の効果の強さとの関係は、4Pa>2Bd-Li>>4Ba>4Bi、4Bf>>4Pdである。そのため、イオン性錯体は、4Pa又は2Bd-Liであることが特に好ましい。なお、上記「2Bd-Li」は、2BdのAがLiであるイオン性錯体を意味する。
 環状構造を有するイオン性錯体(I-B-1)を非水電解液電池用電解液の成分として用いることで、非水電解液電池のサイクル特性を向上できる傾向がある。本発明の非水系電解液用添加剤と上記環状構造を有するイオン性錯体とを併用すると、不飽和結合を含有するカーボネート化合物(モノマー体)と上記環状構造を有するイオン性錯体とを併用する場合と比べ、該イオン性錯体のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。(I)、(II)、(III)、(IV)の総量100質量%に対する環状構造を有するイオン性錯体(I-B-1)の含有量は0.001~20質量%であることが好ましく、0.01~10.0質量%の範囲にあることがより好ましく、0.1~5.0質量%の範囲にあることがより好ましく、0.5~2.0質量%の範囲にあることがさらに好ましい。該イオン性錯体濃度が低すぎると非水電解液電池のサイクル特性等、高温での耐久性を向上させる効果が十分に得られない可能性があり、高すぎると、電解液の粘度が上昇し過ぎるために、非水電解液電池内でのカチオンの移動が妨げられることにより、電池性能の低下を引き起こす可能性がある。これらの環状構造を有するイオン性錯体は、1種類を単独で用いてもよく、2種類以上を用途に合わせて任意の組み合わせ、比率で混合してもよい。
 [(I-B-2)イミドアニオンを有する塩について]
 非水系電解液がイミドアニオンを有する塩を含有することで電池性能の劣化を抑制する。当該イミドアニオンを有する塩の一部が正極、及び負極上で分解し、イオン伝導性の良い皮膜を正極、及び負極表面に形成すると推定され、この皮膜が、非水溶媒や溶質と電極活物質との間の直接の接触を抑制して、非水溶媒や溶質の分解を防ぐためと考えられる。皮膜中に多くのフルオロホスホリル構造及び/又はフルオロスルホニル構造が取り込まれることで、形成した皮膜の電荷に偏りが生じ、リチウム導電性の高い、すなわち抵抗の小さい皮膜(出力特性が良好な皮膜)となっていると考えられる。さらに、不飽和結合を含む部位が多く含まれるほど、より正極、負極上で分解されやすくなり、耐久性に優れた皮膜が形成されやすいため、上記の効果はより良好なものとなると思われる。また、イミドアニオンを有する塩中に電子吸引性の高い部位(例えばフッ素原子や含フッ素アルコキシ基)が含まれることで電荷の偏りがより大きくなり、より抵抗の小さい皮膜(出力特性がより良好な皮膜)が形成されると考えられる。
 上記一般式[10]~[16]で表されるイミドアニオンを有する塩の陰イオンとしては、より具体的には、例えば以下の化合物が挙げられる。但し、本発明で用いられるイミドアニオンを有する塩は、以下の例示により何ら制限を受けるものではない。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
中でも、より抵抗の小さい皮膜(出力特性が良好)を形成させる観点から、上記[10a]、上記[10c]、上記[11a]、上記[11b]、上記[11c]、上記[12a]、上記[12d]、上記[13a]が好ましい。
 イミドアニオンを有する塩(I-B-2)を非水電解液電池用電解液の成分として用いることで、高温サイクル特性を向上できる傾向がある。またイミドアニオンを有する塩の中には、さらに、高温貯蔵特性や低温サイクル特性を向上しやすいものもある。本発明の非水系電解液用添加剤と上記イミドアニオンを有する塩とを併用すると、不飽和結合を含有するカーボネート化合物(モノマー体)と上記イミドアニオンを有する塩とを併用する場合と比べ、該イミドアニオンを有する塩のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。(I)、(II)、(III)、(IV)の総量100質量%に対するイミドアニオンを有する塩(I-B-2)の好適な含有量は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は13.0質量%以下、より好ましくは10.0質量%以下、さらに好ましくは7.0質量%以下の範囲である。0.001質量%未満であると非水電解液電池の低温での出力特性を向上させる効果が十分に得られない恐れがある。一方、10.0質量%を超えると、それ以上の効果は得られず無駄であるだけでなく、電解液の粘度が上昇しイオン伝導度が低下する傾向があり、抵抗が増加し電池性能の劣化を引き起こしやすいため好ましくない。なお、該イミドアニオンを有する塩は、1種類を単独で用いてもよく、2種類以上を用途に合わせて任意の組み合わせ、比率で混合してもよい。
 [(I-B-3)Si含有化合物について]
 非水系電解液がSi含有化合物を含有することで、サイクル特性を向上できる傾向がある。またSi含有化合物の中には、さらに、ガス発生量を低減しやすいものもある。Si含有化合物としては、上記一般式[17]で表される化合物が好ましい。
 上記一般式[17]で表されるSi含有化合物としては、より具体的には、例えば以下の[17a]~[17y]等が挙げられる。但し、本発明で用いられるSi含有化合物は、以下の例示により何ら制限を受けるものではない。
Figure JPOXMLDOC01-appb-C000040
中でもより強固な被膜(耐久性が良好)を形成させる観点から、上記[17c]、上記[17l]が好ましい。
 Si含有化合物(I-B-3)を非水電解液電池用電解液の成分として用いることで、非水電解液電池のサイクル特性を向上できる傾向がある。本発明の非水系電解液用添加剤と上記Si含有化合物とを併用すると、不飽和結合を含有するカーボネート化合物(モノマー体)と上記Si含有化合物とを併用する場合と比べ、該Si含有化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。(I)、(II)、(III)、(IV)の総量100質量%に対するSi含有化合物(I-B-3)の好適な含有量は、0.005質量%以上、より好ましくは0.03質量%以上、さらに好ましくは0.05質量%以上であり、また、上限は7.0質量%以下、より好ましくは5.0質量%以下、さらに好ましくは2.5質量%以下である。上記濃度が0.005質量%を下回ると該非水電解液を用いた非水電解液電池の高温サイクル特性を向上させる効果が十分に得られ難いため好ましくない。これらのSi含有化合物は、1種類を単独で用いてもよく、2種類以上を用途に合わせて任意の組み合わせ、比率で混合してもよい。
 [(I-B-4)硫酸エステル化合物について]
 非水系電解液が硫酸エステル化合物を含有することで、サイクル特性を向上できる傾向がある。また硫酸エステル化合物の中には、さらに、ガス発生量を低減しやすいものや、低温での出力特性を向上しやすいものもある。
 一般式[18]で示される不飽和結合を有する環状スルホン酸エステルとして、例えば、1,3-プロペンスルトン、1,4-ブテンスルトン、2,4-ペンテンスルトン、3,5-ペンテンスルトン、1-フルオロ-1,3-プロペンスルトン、1-トリフルオロメチル-1,3-プロペンスルトン、1,1,1-トリフルオロ-2,4-ブテンスルトン、1,4-ブテンスルトン及び1,5-ペンテンスルトン等が挙げられる。中でも電池系内での反応性を考慮すると、1,3-プロペンスルトンや1,4-ブテンスルトンを用いることがより好ましい。
 一般式[19]で示される環状ジスルホン酸エステルとして、例えば、[19a]~[19ac]で表される化合物等が挙げられる。中でも、[19a]、[19b]、[19j]、[19o]又は[19p]に示した化合物がより好ましい。なお、一般式[19]で示される環状ジスルホン酸エステルは、[19a]~[19ac]に示した化合物に限定されず、他の化合物でも良い。
Figure JPOXMLDOC01-appb-C000041
 一般式[20]で示される環状ジスルホン酸エステルとしては、[20a]~[20e]で表される化合物等が挙げられる。中でも[20a]、[20b]又は[20e]に示した化合物がより好ましい。なお、一般式[20]で示される環状ジスルホン酸エステルは、[20a]~[20e]に示した化合物に限定されず、他の化合物でも良い。
Figure JPOXMLDOC01-appb-C000042
 硫酸エステル化合物(I-B-4)を非水電解液電池用電解液の成分として用いることで、非水電解液電池のサイクル特性を向上できる傾向がある。本発明の非水系電解液用添加剤と上記硫酸エステル化合物とを併用すると、不飽和結合を含有するカーボネート化合物(モノマー体)と上記硫酸エステル化合物とを併用する場合と比べ、該硫酸エステル化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。(I)、(II)、(III)、(IV)の総量100質量%に対する硫酸エステル化合物(I-B-4)の好適な含有量は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は10.0質量%以下、より好ましくは5.0質量%以下、さらに好ましくは2.0質量%以下の範囲である。上記濃度が0.001質量%を下回ると該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が10.0質量%を超えると、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。これらの硫酸エステル化合物は、1種類を単独で用いてもよく、2種類以上を用途に合わせて任意の組み合わせ、比率で混合してもよい。
 [(I-B-5)リン酸エステル化合物について]
 非水系電解液がリン酸エステル化合物を含有することで、サイクル特性を向上できる傾向がある。またリン酸エステル化合物の中には、さらに、長期的な難燃性を有しやすいものもある。
 リン酸エステル化合物の具体例としては、特にこれらに限定されるわけではないが、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸(2,2,2-トリフルオロエチル)ジメチル及びモノフルオロプロパギロキシリン酸-五フッ化リン酸リチウムなどが挙げられる。
 リン酸エステル化合物(I-B-5)を非水電解液電池用電解液の成分として用いることで、サイクル特性を向上できる傾向がある。本発明の非水系電解液用添加剤と上記リン酸エステル化合物とを併用すると、不飽和結合を含有するカーボネート化合物(モノマー体)と上記リン酸エステル化合物とを併用する場合と比べ、該リン酸エステル化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。(I)、(II)、(III)、(IV)の総量100質量%に対するリン酸エステル化合物(I-B-5)の好適な含有量は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は15.0質量%以下、より好ましくは12.0質量%以下、さらに好ましくは10.0質量%以下の範囲である。上記濃度が0.001質量%を下回ると該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が15.0質量%を超えると、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。これらのリン酸エステル化合物は、1種類を単独で用いてもよく、2種類以上を用途に合わせて任意の組み合わせ、比率で混合してもよい。
 [(I-B-6)環状カーボネート化合物について]
 非水系電解液が環状カーボネート化合物を含有することで、サイクル特性を向上できる傾向がある。一般式[21]で示される環状カーボネート化合物の具体例としては、例えば、[21a]~[21f]で表される環状カーボネート化合物が挙げられる。中でも、耐久性向上効果が高い点で、[21a]に示した化合物がより好ましい。なお、一般式[21]で示される環状カーボネート化合物は、[21a]~[21f]に示した化合物に限定されず、他の化合物でも良い。
Figure JPOXMLDOC01-appb-C000043
 なお、上記環状カーボネート化合物は、上記一般式[1]で表される繰り返し単位に相当するモノマーに該当する場合があり、その際は上述のとおり、上記一般式[1]で表される繰り返し単位に相当するモノマーの総量(以下(M)と記載)と、上記非水系電解液用添加剤の総量(モノマー換算、以下(P)と記載)が、(M)/(P)=0~0.05(質量比)を満たすことが好ましい。
 環状カーボネート化合物(I-B-6)を非水電解液電池用電解液の成分として用いることで、非水電解液電池のサイクル特性を向上できる傾向がある。本発明の非水系電解液用添加剤と上記環状カーボネート化合物とを併用すると、不飽和結合を含有するカーボネート化合物(モノマー体)と上記環状カーボネート化合物とを併用する場合と比べ、該環状カーボネート化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。上記環状カーボネート化合物が、上記一般式[1]で表される繰り返し単位に相当するモノマーに該当しない場合、(I)、(II)、(III)、(IV)の総量100質量%に対する環状カーボネート化合物(I-B-6)の好適な含有量は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は10.0質量%以下、より好ましくは5.0質量%以下、さらに好ましくは2.0質量%以下の範囲である。上記濃度が0.001質量%を下回ると、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が10.0質量%を超えても、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。これらの環状カーボネート化合物は、1種類を単独で用いてもよく、2種類以上を用途に合わせて任意の組み合わせ、比率で混合してもよい。
 [(I-B-7)イソシアネート化合物について]
 非水系電解液がイソシアネート化合物を含有することで、非水電解液電池のサイクル特性を向上できる傾向がある。
 イソシアネート化合物の具体例としては、特にこれらに限定されるものではないが、例えば、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチルアクリレート、及び2-イソシアナトエチルメタクリレートなどが挙げられる。
 イソシアネート化合物(I-B-7)を非水電解液電池用電解液の成分として用いることで、高温サイクル特性を向上できる傾向がある。本発明の非水系電解液用添加剤と上記イソシアネート化合物とを併用すると、不飽和結合を含有するカーボネート化合物(モノマー体)と上記イソシアネート化合物とを併用する場合と比べ、該イソシアネート化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。(I)、(II)、(III)、(IV)の総量100質量%に対するイソシアネート化合物(I-B-7)の好適な含有量は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は7.0質量%以下、より好ましくは5.0質量%以下、さらに好ましくは2.0質量%以下の範囲である。上記濃度が0.001質量%を下回ると、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が7.0質量%を超えても、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。これらのイソシアネート化合物は、1種類を単独で用いてもよく、2種類以上を用途に合わせて任意の組み合わせ、比率で混合してもよい。
 [(I-B-8)環状アセタール化合物について]
 非水系電解液が環状アセタール化合物を含有することで、高温サイクル特性を向上させることができる傾向がある。
 環状アセタール化合物の具体例としては、1,3-ジオキソラン、1,3-ジオキサン、及び1,3,5-トリオキサンが挙げられ、中でも、1,3-ジオキサンが好ましい。
 環状アセタール化合物(I-B-8)を非水電解液電池用電解液の成分として用いることで、高温サイクル特性を向上できる傾向がある。本発明の非水系電解液用添加剤と上記環状アセタール化合物とを併用すると、不飽和結合を含有するカーボネート化合物(モノマー体)と上記環状アセタール化合物とを併用する場合と比べ、該環状アセタール化合物の高温サイクル特性向上効果を損なうことなくレート特性を改善しやすい。(I)、(II)、(III)、(IV)の総量100質量%に対する環状アセタール化合物(I-B-8)の好適な含有量は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は7.0質量%以下、より好ましくは5.0質量%以下、さらに好ましくは2.0質量%以下の範囲である。上記濃度が0.001質量%を下回ると、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が7.0質量%を超えても、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。これらの環状アセタール化合物は、1種類を単独で用いてもよく、2種類以上を用途に合わせて任意の組み合わせ、比率で混合してもよい。
 [(I-B-9)環状酸無水物について]
 非水系電解液が環状酸無水物を含有することで、高温サイクル特性を向上できる傾向がある。また環状酸無水物の中には、さらに、保存特性を向上しやすいものもある。
 環状酸無水物の具体例としては、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸等が挙げられ、中でも、無水コハク酸、3-アリル無水コハク酸が好ましい。
 環状酸無水物(I-B-9)を非水電解液電池用電解液の成分として用いることで、高温サイクル特性を向上できる傾向がある。本発明の非水系電解液用添加剤と上記環状酸無水物とを併用すると、不飽和結合を含有するカーボネート化合物(モノマー体)と上記環状酸無水物とを併用する場合と比べ、該環状酸無水物の高温サイクル特性向上効果を損なうことなくレート特性を改善しやすい。(I)、(II)、(III)、(IV)の総量100質量%に対する環状酸無水物(I-B-9)の好適な含有量は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は7.0質量%以下、より好ましくは5.0質量%以下、さらに好ましくは2.0質量%以下の範囲である。上記濃度が0.001質量%を下回ると、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が7.0質量%を超えても、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。これらの環状酸無水物は、1種類を単独で用いてもよく、2種類以上を用途に合わせて任意の組み合わせ、比率で混合してもよい。
 [(I-B-10)環状ホスファゼン化合物について]
 非水系電解液が環状ホスファゼン化合物を含有することで、非水電解液電池の高温サイクル特性を向上できる傾向がある。また環状ホスファゼン化合物の中には、さらに、保存特性を向上しやすいものもある。
 環状ホスファゼン化合物の具体例としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、ジエトキシペンタフルオロシクロトリホスファゼン、及びエトキシヘプタフルオロシクロテトラホスファゼンが挙げられ、中でも、エトキシペンタフルオロシクロトリホスファゼンが好ましい。
 環状ホスファゼン化合物(I-B-10)を非水電解液電池用電解液の成分として用いることで、高温サイクル特性を向上できる傾向がある。本発明の非水系電解液用添加剤と上記環状ホスファゼン化合物とを併用すると、不飽和結合を含有するカーボネート化合物(モノマー体)と上記環状ホスファゼン化合物とを併用する場合と比べ、該環状ホスファゼン化合物の高温サイクル特性向上効果を損なうことなくレート特性を改善しやすい。(I)、(II)、(III)、(IV)の総量100質量%に対する環状ホスファゼン化合物(I-B-10)の好適な含有量は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は7.0質量%以下、より好ましくは5.0質量%以下、さらに好ましくは3.0質量%以下の範囲である。上記濃度が0.001質量%を下回ると、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が7.0質量%を超えても、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。これらの環状ホスファゼン化合物は、1種類を単独で用いてもよく、2種類以上を用途に合わせて任意の組み合わせ、比率で混合してもよい。
 [(I-B-11)芳香族化合物について]
 非水系電解液が芳香族化合物を含有することで、高温サイクル特性を向上できる傾向がある。また芳香族化合物の中には、さらに、高電圧条件下での過充電を抑制しやすいものもある。
 芳香族化合物の具体例としては、シクロヘキシルベンゼン、ビフェニル、tert-ブチルベンゼン、4-フルオロビフェニル、フルオロベンゼン、2,4-ジフルオロベンゼン、1-シクロヘキシル-4-フルオロベンゼン、及びジフルオロアニソールが挙げられ、中でも、1-シクロヘキシル-4-フルオロベンゼンが好ましい。
 芳香族化合物(I-B-11)を非水電解液電池用電解液の成分として用いることで、高温サイクル特性を向上できる傾向がある。本発明の非水系電解液用添加剤と上記芳香族化合物とを併用すると、不飽和結合を含有するカーボネート化合物(モノマー体)と上記芳香族化合物とを併用する場合と比べ、該芳香族化合物の高温サイクル特性の向上効果を損なうことなくレート特性を改善しやすい。(I)、(II)、(III)、(IV)の総量100質量%に対する芳香族化合物(I-B-11)の好適な含有量は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は20.0質量%以下、より好ましくは10.0質量%以下、さらに好ましくは5.0質量%以下の範囲である。上記濃度が0.001質量%を下回ると、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が20.0質量%を超えても、該非水電解液を用いた非水電解液電池のサイクル特性を向上させる効果が十分に得られ難いため好ましくない。これらの芳香族化合物は、1種類を単独で用いてもよく、2種類以上を用途に合わせて任意の組み合わせ、比率で混合してもよい。
 (I)として、上述した、オキサラト塩、ジフルオロリン酸塩、環状構造を有するイオン性錯体、イミドアニオンを有する塩、Si含有化合物、硫酸エステル化合物、リン酸エステル化合物、環状カーボネート化合物、イソシアネート化合物、環状アセタール化合物、環状酸無水物、環状ホスファゼン化合物、及び芳香族化合物のうち、1種類の物質のみを含有してもよいし、任意の組み合わせの複数の物質を含有してもよいが、オキサラト塩及び/又はジフルオロリン酸塩と、環状構造を有するイオン性錯体、イミドアニオンを有する塩、Si含有化合物、硫酸エステル化合物、リン酸エステル化合物、環状カーボネート化合物、イソシアネート化合物、環状アセタール化合物、環状酸無水物、環状ホスファゼン化合物、芳香族化合物からなる群から選ばれる少なくとも1種の化合物とを含有することは好ましい形態の一つである。
 なお、(I)として上記で挙げた物質の一部は(IV)溶質と重複するものがあるが、そのような化合物は、(IV)溶質のように比較的多く含有させて用いることもできるし、(I)のように比較的少なく含有させて用いることもできる。
 [(II)非水系電解液用添加剤について]
 本発明の非水系電解液は上述した非水系電解液用添加剤を含有する。上記(I)、(II)、(III)、(IV)の総量100質量%に対する(II)の含有量が0.03~14.0質量%であると、非水系電解液二次電池に用いた際に、サイクル特性及びレート特性をバランス良く発揮しやすいため好ましい。サイクル特性及び/又はレート特性の観点から、上記(II)の含有量は0.07~12.0質量%がより好ましい。
 [(III)非水有機溶媒について]
 非水系電解液は非水系溶媒を用いれば、一般に非水系電解液と呼ばれ、ポリマーを用いれば、ポリマー固体電解質と呼ばれるものになる。ポリマー固体電解質には可塑剤として非水系溶媒を含有するものも含まれる。
 非水有機溶媒である(III)としては、本発明の(I)、(II)、(IV)を溶解できる非プロトン性の溶媒であれば特に限定されるものではなく、例えば、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、イミド類、スルホン類等が使用できる。また、単一の溶媒だけでなく、二種類以上の混合溶媒でもよい。具体例としては、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルブチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4,5-ジフルオロ-4,5-ジメチルエチレンカーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、2-フルオロプロピオン酸メチル、2-フルオロプロピオン酸エチル、ジエチルエーテル、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、フラン、テトラヒドロピラン、1,3-ジオキサン、1,4-ジオキサン、ジブチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、及びγ-バレロラクトン等を挙げることができる。
 ポリマー固体電解質を得るために用いるポリマーとしては、(I)、(II)、(IV)を溶解できる非プロトン性のポリマーであれば特に限定されるものではない。例えば、ポリエチレンオキシドを主鎖又は側鎖に持つポリマー、ポリフッ化ビニリデンのホモポリマー又はコポリマー、メタクリル酸エステルポリマー、ポリアクリロニトリルなどが挙げられる。これらのポリマーに可塑剤を加える場合は、上記の非プロトン性非水溶媒が使用可能である。
 [(IV)溶質について]
 溶質は特に限定されず、任意のカチオンとアニオンの対からなる塩を用いることができる。具体例としては、カチオンとしてリチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、アルカリ土類金属イオン、四級アンモニウム等が挙げられ、アニオンとして、ヘキサフルオロリン酸、テトラフルオロホウ酸、過塩素酸、ヘキサフルオロヒ酸、ヘキサフルオロアンチモン酸、トリフルオロメタンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド、ビス(ペンタフルオロエタンスルホニル)イミド、(トリフルオロメタンスルホニル)(ペンタフルオロエタンスルホニル)イミド、ビス(フルオロスルホニル)イミド、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミド、(ペンタフルオロエタンスルホニル)(フルオロスルホニル)イミド、トリス(トリフルオロメタンスルホニル)メチド、ビス(ジフルオロホスホニル)イミド、(ジフルオロホスホニル)(フルオロスルホニル)イミド等が挙げられる。これらの溶質は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組合せ、比率で混合して用いても良い。中でも、電池としてのエネルギー密度、出力特性、寿命等から考えると、カチオンは、リチウム、ナトリウム、マグネシウム、四級アンモニウムからなる群から選ばれる少なくとも1種が好ましく、アニオンは、ヘキサフルオロリン酸、テトラフルオロホウ酸、ビス(トリフルオロメタンスルホニル)イミド、ビス(ペンタフルオロエタンスルホニル)イミド、ビス(フルオロスルホニル)イミド、ビス(ジフルオロホスホニル)イミド、(ジフルオロホスホニル)(フルオロスルホニル)イミドからなる群から選ばれる少なくとも1種が好ましい。特に、ヘキサフルオロリン酸リチウム(LiPF6)、テトラフルオロホウ酸リチウム(LiBF4)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3SO22)、ビス(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(C25SO22)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO22)、及びビス(ジフルオロホスホニル)イミドリチウム(LiN(POF22)からなる群から選ばれる少なくとも一つが好ましい。
 (I)、(II)、(III)、(IV)の総量100質量%に対する、(IV)の総量(以降、「溶質濃度」と記載する)は、特に制限はないが、下限は0.5mol/L以上、好ましくは0.7mol/L以上、さらに好ましくは0.9mol/L以上であり、また、上限は5.0mol/L以下、好ましくは4.0mol/L以下、さらに好ましくは2.0mol/L以下の範囲である。0.5mol/Lを下回るとイオン伝導度が低下することにより非水系電解液二次電池のサイクル特性、出力特性が低下し、一方、5.0mol/Lを超えると非水系電解液の粘度が上昇することによりやはりイオン伝導を低下させ、非水系電解液二次電池のサイクル特性、出力特性を低下させる恐れがある。
 [その他の成分について]
 さらには、本発明の要旨を損なわない限りにおいて、本発明の非水系電解液に一般に用いられる過充電防止効果、負極皮膜形成効果、正極保護効果を有する添加剤を任意の比率で添加しても良い。また、ポリマー電池と呼ばれる非水系電解液二次電池に使用される場合のように非水系電解液をゲル化剤や架橋ポリマーにより擬固体化して使用することも可能である。
 また、本発明の非水系電解液用添加剤のモノマーに相当する化合物も、非水系電解液中に存在してもよい。このとき、上記電解液中に存在する、上記一般式[1]で表される繰り返し単位に相当するモノマーの総量(M)と、上記非水系電解液用添加剤の総量(P)(モノマー換算)が、(M)/(P)=0~0.05(質量比)であると、レート特性向上につながるため好ましい。(M)/(P)=0~0.02がより好ましく、(M)/(P)=0が更に好ましい。なお、非水系電解液中の、上記モノマーの総量(M)、及び上記非水系電解液用添加剤の総量(P)(モノマー換算)は1H-NMR測定結果から算出される。
 3.非水系電解液二次電池
 非水系電解液と、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入-脱離可能な負極材料と、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入-脱離可能な正極材料を用いる電気化学ディバイスを非水系電解液二次電池と呼ぶ。負極としては、特に限定されないが、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入-脱離可能な材料が用いられ、正極としては、特に限定されないが、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入-脱離可能な材料が用いられる。
 例えばカチオンがリチウムの場合、負極材料としてリチウム金属、リチウムと他の金属との合金及び金属間化合物やリチウムを吸蔵および放出することが可能な種々の炭素材料、金属酸化物、金属窒化物、活性炭、導電性ポリマー等が用いられる。上記の炭素材料としては、例えば、易黒鉛化性炭素や(002)面の面間隔が0.37nm以上の難黒鉛化性炭素(ハードカーボンとも呼ばれる)や(002)面の面間隔が0.37nm以下の黒鉛などが挙げられ、後者は、人造黒鉛、天然黒鉛などが用いられる。
 例えばカチオンがリチウムの場合、正極材料としてLiCoO2、LiNiO2、LiMnO2、LiMn24等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物のCo、Mn、Ni等の遷移金属が複数混合したもの(例えばLiNi0.5Mn1.54等)、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、オリビンと呼ばれるLiFePO4、LiCoPO4、LiMnPO4等の遷移金属のリン酸化合物、TiO2、V25、MoO3等の酸化物、TiS2、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。
 正極材料や負極材料には、導電材としてアセチレンブラック、ケッチェンブラック、炭素繊維、又は黒鉛、結着剤としてポリテトラフルオロエチレン、ポリフッ化ビニリデン、又はSBR樹脂等が加えられ、さらにシート状に成型された電極シートを用いることができる。
 正極と負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン、紙、又はガラス繊維等で作られた不織布や多孔質シートが使用される。
 以上の各要素からコイン状、円筒状、角形、又はアルミラミネートシート型等の形状の電気化学ディバイスが組み立てられる。
 また、非水系電解液二次電池は、以下に記載するような、(i)上記の非水系電解液と、(ii)正極と、(iii)負極と、(iv)セパレータとを備える非水系電解液二次電池であってもよい。
 〔(ii)正極〕
 (ii)正極は、少なくとも1種の酸化物及び/又はポリアニオン化合物を正極活物質として含むことが好ましい。
 [正極活物質]
 非水系電解液中のカチオンがリチウム主体となるリチウムイオン二次電池の場合、(ii)正極を構成する正極活物質は、充放電が可能な種々の材料であれば特に限定されるものでないが、例えば、(A)ニッケル、マンガン、コバルトの少なくとも1種以上の金属を含有し、かつ層状構造を有するリチウム遷移金属複合酸化物、(B)スピネル構造を有するリチウムマンガン複合酸化物、(C)リチウム含有オリビン型リン酸塩、及び(D)層状岩塩型構造を有するリチウム過剰層状遷移金属酸化物から少なくとも1種を含有するものが挙げられる。
 ((A)リチウム遷移金属複合酸化物)
 正極活物質(A)ニッケル、マンガン、コバルトの少なくとも1種以上の金属を含有し、かつ層状構造を有するリチウム遷移金属複合酸化物としては、例えば、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物、リチウム・ニッケル・コバルト複合酸化物、リチウム・ニッケル・コバルト・アルミニウム複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・マンガン・コバルト複合酸化物等が挙げられる。また、これらリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部を、Al、Ti、V、Cr、Fe、Cu、Zn、Mg、Ga、Zr、Si、B、Ba、Y、Sn等の他の元素で置換したものを用いても良い。
 リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物の具体例としては、LiCoO2、LiNiO2やMg、Zr、Al、Ti等の異種元素を添加したコバルト酸リチウム(LiCo0.98Mg0.01Zr0.012、LiCo0.98Mg0.01Al0.012、LiCo0.975Mg0.01Zr0.005Al0.012等)、WO2014/034043号公報に記載の表面に希土類の化合物を固着させたコバルト酸リチウム等を用いても良い。また、特開2002-151077号公報等に記載されているように、LiCoO2粒子粉末の粒子表面の一部に酸化アルミニウムが被覆したものを用いても良い。
 リチウム・ニッケル・コバルト複合酸化物、リチウム・ニッケル・コバルト・アルミニウム複合酸化物については、一般式(1-1)で示される。
 LiaNi1-b-cCob1 c2   (1-1)
式(1-1)中、M1はAl、Fe、Mg、Zr、Ti、Bからなる群より選ばれる少なくとも1つの元素であり、aは0.9≦a≦1.2であり、b、cは、0.1≦b≦0.3、0≦c≦0.1の条件を満たす。
 これらは、例えば、特開2009-137834号公報等に記載される製造方法等に準じて調製することができる。具体的には、LiNi0.8Co0.22、LiNi0.85Co0.10Al0.052、LiNi0.87Co0.10Al0.032、LiNi0.6Co0.3Al0.12等が挙げられる。
 リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物の具体例としては、LiNi0.5Mn0.52、LiCo0.5Mn0.52等が挙げられる。
 リチウム・ニッケル・マンガン・コバルト複合酸化物としては、一般式(1-2)で示されるリチウム含有複合酸化物が挙げられる。
 LidNieMnfCog2 h2   (1-2)
式(1-2)中、M2はAl、Fe、Mg、Zr、Ti、B、Snからなる群より選ばれる少なくとも1つの元素であり、dは0.9≦d≦1.2であり、e、f、g及びhは、e+f+g+h=1、0≦e≦0.7、0≦f≦0.5、0≦g≦0.5、及びh≧0の条件を満たす。
 リチウム・ニッケル・マンガン・コバルト複合酸化物は、構造安定性を高め、リチウム二次電池における高温での安全性を向上させるためにマンガンを一般式(1-2)に示す範囲で含有するものが好ましく、特にリチウムイオン二次電池の高率特性を高めるためにコバルトを一般式(1-2)に示す範囲でさらに含有するものがより好ましい。具体的には、例えば4.3V以上に充放電領域を有する、Li[Ni1/3Mn1/3Co1/3]O2、Li[Ni0.45Mn0.35Co0.2]O2、Li[Ni0.5Mn0.3Co0.2]O2、Li[Ni0.6Mn0.2Co0.2]O2、Li[Ni0.49Mn0.3Co0.2Zr0.01]O2、Li[Ni0.49Mn0.3Co0.2Mg0.01]O2等が挙げられる。
 ((B)スピネル構造を有するリチウムマンガン複合酸化物)
 正極活物質(B)スピネル構造を有するリチウムマンガン複合酸化物としては、例えば、一般式(1-3)で示されるスピネル型リチウムマンガン複合酸化物が挙げられる。
 Lij(Mn2-k3 k)O4   (1-3)
式(1-3)中、M3はNi、Co、Fe、Mg、Cr、Cu、Al及びTiからなる群より選ばれる少なくとも1つの金属元素であり、jは1.05≦j≦1.15であり、kは0≦k≦0.20である。
 具体的には、例えば、LiMn24、LiMn1.95Al0.054、LiMn1.9Al0.14、LiMn1.9Ni0.14、LiMn1.5Ni0.54等が挙げられる。
 ((C)リチウム含有オリビン型リン酸塩)
 正極活物質(C)リチウム含有オリビン型リン酸塩としては、例えば一般式(1-4)で示されるものが挙げられる。
 LiFe1-n4 nPO4   (1-4)
式(1-4)中、M4はCo、Ni、Mn、Cu、Zn、Nb、Mg、Al、Ti、W、Zr及びCdから選ばれる少なくとも1つであり、nは、0≦n≦1である。
 具体的には、例えば、LiFePO4、LiCoPO4、LiNiPO4、LiMnPO4等が挙げられ、中でもLiFePO4及び/又はLiMnPO4が好ましい。
 ((D)リチウム過剰層状遷移金属酸化物)
 正極活物質(D)層状岩塩型構造を有するリチウム過剰層状遷移金属酸化物としては、例えば一般式(1-5)で示されるものが挙げられる。
 xLiM52・(1-x)Li263   (1-5)
式(1-5)中、xは、0<x<1を満たす数であり、M5は、平均酸化数が3+である少なくとも1種以上の金属元素であり、M6は、平均酸化数が4+である少なくとも1種以上の金属元素である。式(1-5)中、M5は、好ましくは3価のMn、Ni、Co、Fe、V、Crから選ばれてなる1種以上の金属元素であるが、2価と4価の等量の金属で平均酸化数を3価にしてもよい。また、式(1-5)中、M6は、好ましくはMn、Zr、Tiから選ばれてなる1種以上の金属元素である。
 具体的には、0.5[LiNi0.5Mn0.52]・0.5[Li2MnO3]、0.5[LiNi1/3Co1/3Mn1/32]・0.5[Li2MnO3]、0.5[LiNi0.375Co0.25Mn0.3752]・0.5[Li2MnO3]、0.5[LiNi0.375Co0.125Fe0.125Mn0.3752]・0.5[Li2MnO3]、0.45[LiNi0.375Co0.25Mn0.3752]・0.10[Li2TiO3]・0.45[Li2MnO3]等が挙げられる。
 この一般式(1-5)で表される正極活物質(D)は、4.4V(Li基準)以上の高電圧充電で高容量を発現することが知られている(例えば、米国特許7,135,252)。
 これら正極活物質は、例えば特開2008-270201号公報、WO2013/118661号公報、特開2013-030284号公報等に記載される製造方法等に準じて調製することができる。
 正極活物質としては、上記(A)~(D)から選ばれる少なくとも1つを主成分として含有すればよいが、それ以外に含まれるものとしては、例えばFeS2、TiS2、V25、MoO3、MoS2等の遷移元素カルコゲナイド、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が挙げられる。
 [正極集電体]
 (ii)正極は、正極集電体を有する。正極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン又はこれらの合金等を用いることができる。
 [正極活物質層]
 (ii)正極は、例えば正極集電体の少なくとも一方の面に正極活物質層が形成される。正極活物質層は、例えば、前述の正極活物質と、結着剤と、必要に応じて導電剤とにより構成される。
 結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、又はスチレンブタジエンゴム(SBR)樹脂等が挙げられる。
 導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、炭素繊維、又は黒鉛(粒状黒鉛や燐片状黒鉛)等の炭素材料を用いることができる。正極においては、結晶性の低いアセチレンブラックやケッチェンブラックを用いることが好ましい。
 〔(iii)負極〕
 (iii)負極は、少なくとも1種の負極活物質を含むことが好ましい。
 [負極活物質]
 非水系電解液中のカチオンがリチウム主体となるリチウムイオン二次電池の場合、(iii)負極を構成する負極活物質としては、リチウムイオンのド-プ・脱ド-プが可能なものであり、例えば(E)X線回折における格子面(002面)のd値が0.340nm以下の炭素材料、(F)X線回折における格子面(002面)のd値が0.340nmを超える炭素材料、(G)Si、Sn、Alから選ばれる1種以上の金属の酸化物、(H)Si、Sn、Alから選ばれる1種以上の金属若しくはこれら金属を含む合金又はこれら金属若しくは合金とリチウムとの合金、及び(I)リチウムチタン酸化物から選ばれる少なくとも1種を含有するものが挙げられる。これら負極活物質は、1種を単独で用いることができ、2種以上を組合せて用いることもできる。
 ((E)X線回折における格子面(002面)のd値が0.340nm以下の炭素材料)
 負極活物質(E)X線回折における格子面(002面)のd値が0.340nm以下の炭素材料としては、例えば熱分解炭素類、コークス類(例えばピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、有機高分子化合物焼成体(例えばフェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等が挙げられ、これらは黒鉛化したものでもよい。当該炭素材料は、X線回折法で測定した(002)面の面間隔(d002)が0.340nm以下のものであり、中でも、その真密度が1.70g/cm3以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料が好ましい。
 ((F)X線回折における格子面(002面)のd値が0.340nmを超える炭素材料)
 負極活物質(F)X線回折における格子面(002面)のd値が0.340nmを超える炭素材料としては、非晶質炭素が挙げられ、これは、2000℃以上の高温で熱処理してもほとんど積層秩序が変化しない炭素材料である。例えば難黒鉛化炭素(ハードカーボン)、1500℃以下で焼成したメソカーボンマイクロビーズ(MCMB)、メソペーズビッチカーボンファイバー(MCF)等が例示される。株式会社クレハ製のカーボトロン(登録商標)P等は、その代表的な事例である。
 ((G)Si、Sn、Alから選ばれる1種以上の金属の酸化物)
 負極活物質(G)Si、Sn、Alから選ばれる1種以上の金属の酸化物としては、リチウムイオンのド-プ・脱ド-プが可能な、例えば酸化シリコン、酸化スズ等が挙げられる。
 Siの超微粒子がSiO2中に分散した構造を持つSiOx等がある。この材料を負極活物質として用いると、Liと反応するSiが超微粒子であるために充放電がスムーズに行われる一方で、前記構造を有するSiOx粒子自体は表面積が小さいため、負極活物質層を形成するための組成物(ペースト)とした際の塗料性や負極合剤層の集電体に対する接着性も良好である。
 なお、SiOxは充放電に伴う体積変化が大きいため、SiOxと上述負極活物質(E)の黒鉛とを特定比率で負極活物質に併用することで高容量化と良好な充放電サイクル特性とを両立することができる。
 ((H)Si、Sn、Alから選ばれる1種以上の金属若しくはこれら金属を含む合金又はこれら金属若しくは合金とリチウムとの合金)
 負極活物質(H)Si、Sn、Alから選ばれる1種以上の金属若しくはこれら金属を含む合金又はこれら金属若しくは合金とリチウムとの合金としては、例えばシリコン、スズ、アルミニウム等の金属、シリコン合金、スズ合金、アルミニウム合金等が挙げられ、これらの金属や合金が、充放電に伴いリチウムと合金化した材料も使用できる。
 これらの好ましい具体例としては、WO2004/100293号や特開2008-016424号等に記載される、例えばケイ素(Si)、スズ(Sn)等の金属単体(例えば粉末状のもの)、該金属合金、該金属を含有する化合物、該金属にスズ(Sn)とコバルト(Co)とを含む合金等が挙げられる。当該金属を電極に使用した場合、高い充電容量を発現することができ、かつ、充放電に伴う体積の膨張・収縮が比較的少ないことから好ましい。また、これらの金属は、これをリチウムイオン二次電池の負極に用いた場合に、充電時にLiと合金化するため、高い充電容量を発現することが知られており、この点でも好ましい。
 さらに、例えばWO2004/042851号、WO2007/083155号等に記載される、サブミクロン直径のシリコンのピラーから形成された負極活物質、シリコンで構成される繊維からなる負極活物質等を用いてもよい。
 ((I)リチウムチタン酸化物)
 負極活物質(I)リチウムチタン酸化物としては、例えば、スピネル構造を有するチタン酸リチウム、ラムスデライト構造を有するチタン酸リチウム等を挙げることができる。
 スピネル構造を有するチタン酸リチウムとしては、例えば、Li4+αTi512(αは充放電反応により0≦α≦3の範囲内で変化する)を挙げることができる。また、ラムスデライト構造を有するチタン酸リチウムとしては、例えば、Li2+βTi37(βは充放電反応により0≦β≦3の範囲内で変化する)を挙げることができる。これら負極活物質は、例えば特開2007-018883号公報、特開2009-176752号公報等に記載される製造方法等に準じて調製することができる。
 例えば、非水電解液中のカチオンがナトリウム主体となるナトリウムイオン二次電池の場合、負極活物質としてハードカーボンやTiO2、V25、MoO3等の酸化物等が用いられる。例えば、非水電解液中のカチオンがナトリウム主体となるナトリウムイオン二次電池の場合、正極活物質としてNaFeO2、NaCrO2、NaNiO2、NaMnO2、NaCoO2等のナトリウム含有遷移金属複合酸化物、それらのナトリウム含有遷移金属複合酸化物のFe、Cr、Ni、Mn、Co等の遷移金属が複数混合したもの、それらのナトリウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、Na2FeP27、NaCo3(PO4227等の遷移金属のリン酸化合物、TiS2、FeS2等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。
 [負極集電体]
 (iii)負極は、負極集電体を有する。負極集電体としては、例えば、銅、ステンレス鋼、ニッケル、チタン又はこれらの合金等を用いることができる。
 [負極活物質層]
 (iii)負極は、例えば負極集電体の少なくとも一方の面に負極活物質層が形成される。負極活物質層は、例えば、前述の負極活物質と、結着剤と、必要に応じて導電剤とにより構成される。
 結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、又はスチレンブタジエンゴム(SBR)樹脂等が挙げられる。
 導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、炭素繊維、又は黒鉛(粒状黒鉛や燐片状黒鉛)等の炭素材料を用いることができる。
 〔電極((ii)正極及び(iii)負極)の製造方法〕
 電極は、例えば、活物質と、結着剤と、必要に応じて導電剤とを所定の配合量でN-メチル-2-ピロリドン(NMP)や水等の溶媒中に分散混練し、得られたペーストを集電体に塗布、乾燥して活物質層を形成することで得ることができる。得られた電極は、ロールプレス等の方法により圧縮して、適当な密度の電極に調節することが好ましい。
 〔(iv)セパレータ〕
 上記の非水系電解液電池は、(iv)セパレータを備える。(ii)正極と(iii)負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィンや、セルロース、紙、又はガラス繊維等で作られた不織布や多孔質シートが使用される。これらのフィルムは、電解液がしみ込んでイオンが透過し易いように、微多孔化されているものが好ましい。
 ポリオレフィンセパレ-タとしては、例えば多孔性ポリオレフィンフィルム等の微多孔性高分子フィルムといった正極と負極とを電気的に絶縁し、かつリチウムイオンが透過可能な膜が挙げられる。多孔性ポリオレフィンフィルムの具体例としては、例えば多孔性ポリエチレンフィルム単独、又は多孔性ポリエチレンフィルムと多孔性ポリプロピレンフィルムとを重ね合わせて複層フィルムとして用いてもよい。また、多孔性のポリエチレンフィルムとポリプロピレンフィルムとを複合化したフィルム等が挙げられる。
 〔外装体〕
 非水系電解液電池を構成するにあたり、非水系電解液電池の外装体としては、例えばコイン型、円筒型、角型等の金属缶や、ラミネート外装体を用いることができる。金属缶材料としては、例えばニッケルメッキを施した鉄鋼板、ステンレス鋼板、ニッケルメッキを施したステンレス鋼板、アルミニウム又はその合金、ニッケル、チタン等が挙げられる。
 ラミネート外装体としては、例えば、アルミニウムラミネートフィルム、SUS製ラミネートフィルム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルム等を用いることができる。
 本実施形態にかかる非水系電解液電池の構成は、特に制限されるものではないが、例えば、正極及び負極が対向配置された電極素子と、非水系電解液とが、外装体に内包されている構成とすることができる。非水系電解液電池の形状は、特に限定されるものではないが、以上の各要素からコイン状、円筒状、角形、又はアルミラミネートシート型等の形状の電気化学デバイスが組み立てられる。
 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。
 (非水系電解液用添加剤No.1の作製)
 ビニレンカーボネート(以降「VC」と記載)10gのN-メチルピロリドン(以降「NMP」と記載)40mL溶液に2,2’-アゾビス(イソ酪酸)ジメチル(V601:和光純薬工業株式会社製)4.5gを加え、真空下での脱気、窒素導入の操作を3回行い、窒素雰囲気下とした後、80℃で6時間加温した。得られた反応液を多量のメタノール中に注ぎ込み、該メタノールを貧溶媒として重合物を再沈殿させた。沈殿物をろ過により分離して、重合物を回収した。得られた重合物を、減圧下60℃で4時間乾燥することにより残留溶媒を除去し、非水系電解液用添加剤No.1を3.8g、収率38%で得た。非水系電解液用添加剤No.1の1H-NMR測定を行い、上記一般式[1]のRが全てHであること、及びオリゴマーからなる化合物であることを確認した。また、非水系電解液用添加剤No.1のGPC測定を行い、ポリスチレン換算の数平均分子量が750であることを確認した。結果を表1に示す。
 (非水系電解液用添加剤No.2の作製)
 VC10gのNMP40mL溶液に2,2’-アゾビス(イソ酪酸)ジメチル(V601:和光純薬工業株式会社製)4.0gを加え、真空下での脱気、窒素導入の操作を3回行い、窒素雰囲気下とした後、80℃で6時間加温した。得られた反応液を多量のメタノール中に注ぎ込み、該メタノールを貧溶媒として重合物を再沈殿させた。沈殿物をろ過により分離して、重合物を回収した。得られた重合物を、減圧下60℃で4時間乾燥することにより残留溶媒を除去し、非水系電解液用添加剤No.2を4.4g、収率44%で得た。非水系電解液用添加剤No.2の1H-NMR測定を行い、上記一般式[1]のRが全てHであること、及びオリゴマーからなる化合物であることを確認した。また、非水系電解液用添加剤No.2のGPC測定を行い、ポリスチレン換算の数平均分子量が1000であることを確認した。結果を表1に示す。
 (非水系電解液用添加剤No.3の作製)
 VC10gのNMP20mL溶液に2,2’-アゾビス(イソ酪酸)ジメチル(V601:和光純薬工業株式会社製)4.0gを加え、真空下での脱気、窒素導入の操作を3回行い、窒素雰囲気下とした後、80℃で6時間加温した。得られた反応液を多量のメタノール中に注ぎ込み、該メタノールを貧溶媒として重合物を再沈殿させた。沈殿物をろ過により分離して、重合物を回収した。得られた重合物を、減圧下60℃で4時間乾燥することにより残留溶媒を除去し、非水系電解液用添加剤No.3を7.8g、収率78%で得た。非水系電解液用添加剤No.3の1H-NMR測定を行い、上記一般式[1]のRが全てHであること、及びオリゴマーからなる化合物であることを確認した。また、非水系電解液用添加剤No.3のGPC測定を行い、ポリスチレン換算の数平均分子量が2000であることを確認した。結果を表1に示す。
 (非水系電解液用添加剤No.4の作製)
 VC10gのNMP20mL溶液に2,2’-アゾビス(イソ酪酸)ジメチル(V601:和光純薬工業株式会社製)2.3gを加え、真空下での脱気、窒素導入の操作を3回行い、窒素雰囲気下とした後、80℃で6時間加温した。得られた反応液を多量のメタノール中に注ぎ込み、該メタノールを貧溶媒として重合物を再沈殿させた。沈殿物をろ過により分離して、重合物を回収した。得られた重合物を、減圧下60℃で4時間乾燥することにより残留溶媒を除去し、非水系電解液用添加剤No.4を7.5g、収率75%で得た。非水系電解液用添加剤No.4の1H-NMR測定を行い、上記一般式[1]のRが全てHであること、及びオリゴマーからなる化合物であることを確認した。また、非水系電解液用添加剤No.4のGPC測定を行い、ポリスチレン換算の数平均分子量が2500であることを確認した。結果を表1に示す。
 (非水系電解液用添加剤No.5の作製)
 VC10gのNMP20mL溶液に2,2’-アゾビス(イソ酪酸)ジメチル(V601:和光純薬工業株式会社製)1.5gを加え、真空下での脱気、窒素導入の操作を3回行い、窒素雰囲気下とした後、80℃で6時間加温した。得られた反応液を多量のメタノール中に注ぎ込み、該メタノールを貧溶媒として重合物を再沈殿させた。沈殿物をろ過により分離して、重合物を回収した。得られた重合物を、減圧下60℃で4時間乾燥することにより残留溶媒を除去し、非水系電解液用添加剤No.5を8.3g、収率83%で得た。非水系電解液用添加剤No.5の1H-NMR測定を行い、上記一般式[1]のRが全てHであること、及びオリゴマーからなる化合物であることを確認した。また、非水系電解液用添加剤No.5のGPC測定を行い、ポリスチレン換算の数平均分子量が4500であることを確認した。結果を表1に示す。
 (非水系電解液用添加剤No.6の作製)
 VC10gのNMP20mL溶液に2,2’-アゾビス(イソ酪酸)ジメチル(V601:和光純薬工業株式会社製)0.5gを加え、真空下での脱気、窒素導入の操作を3回行い、窒素雰囲気下とした後、80℃で6時間加温した。得られた反応液を多量のメタノール中に注ぎ込み、該メタノールを貧溶媒として重合物を再沈殿させた。沈殿物をろ過により分離して、重合物を回収した。得られた重合物を、減圧下60℃で4時間乾燥することにより残留溶媒を除去し、非水系電解液用添加剤No.6を8.1g、収率81%で得た。非水系電解液用添加剤No.6の1H-NMR測定を行い、上記一般式[1]のRが全てHであること、及びオリゴマーからなる化合物であることを確認した。また、非水系電解液用添加剤No.6のGPC測定を行い、ポリスチレン換算の数平均分子量が6500であることを確認した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000044
 (非水系電解液の作製)
 (III)の非水有機溶媒は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を体積比率で3:7になるように調製した。この溶媒に(IV)としてヘキサフルオロリン酸リチウム(LiPF6)を1mol/Lの割合で溶解させ、該溶液に、(I)としてジフルオロビス(オキサラト)リン酸リチウムを表2に示す濃度となるように添加し、(II)として表2に示す種類の非水系電解液用添加剤を、表2に示す濃度となるように添加することにより、電解液No.1A-1~1A-14を得た。なお、電解液No.1A-6及び1A-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、電解液No.1A-3に、成分(I)として、ビス(フルオロスルホニル)イミドリチウム(以降「LiFSI」と記載する場合がある)、1,3-プロパンスルトン(以降「PS」と記載する場合がある)、1,3-プロペンスルトン(以降「PRS」と記載する場合がある)、メチレンメタンジスルホネート(以降「MMDS」と記載する場合がある)、1,5,2,4-ジオキサジチアン-6-トリフルオロエチル-2,2,4,4-テトラオキシド(以降「TFP-MDS」と記載する場合がある)、ビニルエチレンカーボネート(以降「VEC」と記載する場合がある)、ビス(ジフルオロホスホリル)イミドリチウム(以降「LiFPI」と記載する場合がある)、エトキシ(ペンタフルオロ)シクロトリホスファゼン(以降HISHICOLIN E(日本化学工業株式会社製)と記載する場合がある)、テトラフルオロホスホニルピコリン酸(以降「TFPPA」と記載する場合がある)、ジフルオロホスホリル(フルオロホスホリル)イミドジリチウム(以降「LiDFP-FPI」と記載する場合がある)、ジフルオロホスホリル(トリフルオロメタンスルホニル)イミドリチウム(以降「LiDFP-TFMSI」と記載する場合がある)、ジフルオロホスホリル(ビニルスルホニル)イミドリチウム(以降「LiDFP-VSI」と記載する場合がある)、フルオロトリビニルシラン(以降「FTVSi」と記載する場合がある)、テトラビニルシラン(以降「TVSi」と記載する場合がある)、ジフルオロホスホリル(フルオロスルホニル)イミドリチウム(以降「LiDFP-FSI」と記載する場合がある)を、それぞれ、表4に示す濃度となるように添加することにより、電解液No.1A-15~1A-29を得た。
 また、表6に示すように、ジフルオロビス(オキサラト)リン酸リチウムの代わりに、ジフルオロリン酸リチウム(以降、表中も含めて「LiPO22」と表記)を用い、(I)の濃度、(II)の種類と濃度を表6に示すようにして、電解液No.2A-1~2A-14を得た。なお、電解液No.2A-6及び2A-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、電解液No.2A-3に、成分(I)として、LiFSI、PS、PRS、MMDS、TFP-MDS、VEC、LiFPI、HISHICOLIN E、TFPPA、LiDFP-FPI、LiDFP-TFMSI、LiDFP-VSI、FTVSi、TVSi、LiDFP-FSIを、それぞれ、表8に示す濃度となるように添加することにより、電解液No.2A-15~2A-29を得た。
 また、ジフルオロビス(オキサラト)リン酸リチウムの代わりに、ジフルオロビス(オキサラト)リン酸リチウムとLiPO22を表10の比率となるように用いること、及び(II)の種類と含有量、(III)の種類等を表10に示すように変更したこと以外は電解液No.1A-14と同様にして電解液No.3A-1~3A-10を得た。なお、「EC/EMC/DMC3/4/3」は、ECとEMCとジメチルカーボネート(DMC)を体積比率3:4:3で混合した非水有機溶媒であり、「EC/EMC/FEC3/6/1」は、ECとEMCとフルオロエチレンカーボネート(FEC)を体積比率3:6:1で混合した非水有機溶媒であり、「EC/EMC/PC3/5/2」は、ECとEMCとプロピレンカーボネート(PC)を体積比率3:5:2で混合した非水有機溶媒である。
 また、電解液No.3A-5に、成分(I)として、LiFSI、PS、PRS、MMDS、TFP-MDS、VEC、LiFPI、HISHICOLIN E、TFPPA、LiDFP-FPI、LiDFP-TFMSI、LiDFP-VSI、FTVSi、TVSi、LiDFP-FSIを、それぞれ、表12に示す濃度となるように添加することにより、電解液No.3A-11~3A-25を得た。
 また、表14に示すように、ジフルオロビス(オキサラト)リン酸リチウムの代わりに、ジフルオロ(オキサラト)ホウ酸リチウムを用い、(I)の濃度、(II)の種類と濃度を表14に示すようにして、電解液No.4A-1~4A-14を得た。なお、電解液No.4A-6及び4A-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、電解液No.4A-3に、成分(I)として、LiFSI、PS、PRS、MMDS、TFP-MDS、VEC、LiFPI、HISHICOLIN E、TFPPA、LiDFP-FPI、LiDFP-TFMSI、LiDFP-VSI、FTVSi、TVSi、LiDFP-FSIを、それぞれ、表16に示す濃度となるように添加することにより、電解液No.4A-15~4A-29を得た。
 また、表18に示すように、ジフルオロビス(オキサラト)リン酸リチウムの代わりに、テトラフルオロ(オキサラト)リン酸リチウムを用い、(I)の濃度、(II)の種類と濃度を表18に示すようにして、電解液No.5A-1~5A-14を得た。なお、電解液No.5A-6及び5A-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、電解液No.5A-3に、成分(I)として、LiFSI、PS、PRS、MMDS、TFP-MDS、VEC、LiFPI、HISHICOLIN E、TFPPA、LiDFP-FPI、LiDFP-TFMSI、LiDFP-VSI、FTVSi、TVSi、LiDFP-FSIを、それぞれ、表20に示す濃度となるように添加することにより、電解液No.5A-15~5A-29を得た。
 また、比較電解液No.1A-1及び1A-15~1A-29は、表2及び表4に示すように(II)を添加せずに、(II)のモノマーに相当するVCを添加して得たものである。また、比較電解液No.1A-2は、表2に示すように(II)として非水系電解液用添加剤No.6を添加して得たものである。
 比較電解液No.2A-1は、表6に示すように、比較電解液No.1A-1においてジフルオロビス(オキサラト)リン酸リチウムの代わりに、LiPO22を用い、その濃度が1.0質量%となるようにしたものである。また、比較電解液No.2A-15~2A-29は、表8に示すように、(II)を添加せずに、(II)のモノマーに相当するVCを添加した以外は、それぞれ電解液No.2A-15~2A-29と同様にして得たものである。また、比較電解液No.2A-2は、表6に示すように(II)として非水系電解液用添加剤No.6を添加して得たものである。
 また、ジフルオロビス(オキサラト)リン酸リチウムの代わりに、ジフルオロビス(オキサラト)リン酸リチウムとLiPO22を表10の比率となるように用いること、及び(III)の種類等を表10に示すように変更したこと以外は比較電解液No.1A-1と同様にして比較電解液No.3A-1~3A-6を得た。比較電解液No.3A-11~3A-25は、表12に示すように、(II)を添加せずに、(II)のモノマーに相当するVCを添加した以外は、それぞれ電解液No.3A-11~3A-25と同様にして得たものである。
 比較電解液No.4A-1は、表14に示すように、比較電解液No.2A-1においてLiPO22の代わりに、ジフルオロ(オキサラト)ホウ酸リチウムを用いて得たものである。また、比較電解液No.4A-2は、表14に示すように(II)として非水系電解液用添加剤No.6を添加して得たものである。比較電解液No.4A-15~4A-29は、表16に示すように、(II)を添加せずに、(II)のモノマーに相当するVCを添加した以外は、それぞれ電解液No.4A-15~4A-29と同様にして得たものである。
 比較電解液No.5A-1は、表18に示すように、比較電解液No.2A-1においてLiPO22の代わりに、テトラフルオロ(オキサラト)リン酸リチウムを用いて得たものである。比較電解液No.5A-2は、表18に示すように(II)として非水系電解液用添加剤No.6を添加して得たものである。比較電解液No.5A-15~5A-29は、表20に示すように、(II)を添加せずに、(II)のモノマーに相当するVCを添加した以外は、それぞれ電解液No.5A-15~5A-29と同様にして得たものである。
 上記同様に調整したECとEMCの溶媒(III)に、(IV)としてヘキサフルオロリン酸リチウム(LiPF6)を1mol/Lの割合で溶解させ、該溶液に、(I)として、[4Pa]を表22に示す濃度となるように添加し、(II)として表22に示す種類の非水系電解液用添加剤を、表22に示す濃度となるように添加することにより、電解液No.1B-1~1B-14を得た。なお、電解液No.1B-6及び1B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 表24に示すように、[4Pa]の代わりに、[10a]のLi塩(以降「10a-Li」と表記する場合がある)を用い、(I)の濃度、(II)の種類と濃度を表24に示すようにして、電解液No.2B-1~2B-14を得た。なお、電解液No.2B-6及び2B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表26に示すように、[4Pa]の代わりに、[11a]のLi塩(以降「11a-Li」と表記する場合がある)を用い、(I)の濃度、(II)の種類と濃度を表26に示すようにして、電解液No.3B-1~3B-14を得た。なお、電解液No.3B-6及び3B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表28に示すように、[4Pa]の代わりに、[11b]のLi塩(以降「11b-Li」と表記する場合がある)を用い、(I)の濃度、(II)の種類と濃度を表28に示すようにして、電解液No.4B-1~4B-14を得た。なお、電解液No.4B-6及び4B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表30に示すように、[4Pa]の代わりに、[11c]のLi塩(以降「11c-Li」と表記する場合がある)を用い、(I)の濃度、(II)の種類と濃度を表10に示すようにして、電解液No.5B-1~5B-14を得た。なお、電解液No.5B-6及び5B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表32に示すように、[4Pa]の代わりに、[12a]のLi塩(以降「12a-Li」と表記する場合がある)を用い、(I)の濃度、(II)の種類と濃度を表32に示すようにして、電解液No.6B-1~6B-14を得た。なお、電解液No.6B-6及び6B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表34に示すように、[4Pa]の代わりに、[13a]のLi塩(以降「13a-Li」と表記する場合がある)を用い、(I)の濃度、(II)の種類と濃度を表34に示すようにして、電解液No.7B-1~7B-14を得た。なお、電解液No.7B-6及び7B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表36に示すように、[4Pa]の代わりに、[17c]を用い、(I)の濃度、(II)の種類と濃度を表36に示すようにして、電解液No.8B-1~8B-14を得た。なお、電解液No.8B-6及び8B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表38に示すように、[4Pa]の代わりに、[17l]を用い、(I)の濃度、(II)の種類と濃度を表38に示すようにして、電解液No.9B-1~9B-14を得た。なお、電解液No.9B-6及び9B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表40に示すように、[4Pa]の代わりに、1,3-プロパンスルトン(以降「PS」と記載する場合がある)を用い、(I)の濃度、(II)の種類と濃度を表40に示すようにして、電解液No.10B-1~10B-14を得た。なお、電解液No.10B-6及び10B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表42に示すように、[4Pa]の代わりに、1,3-プロペンスルトン(以降「PRS」と記載する場合がある)を用い、(I)の濃度、(II)の種類と濃度を表42に示すようにして、電解液No.11B-1~11B-14を得た。なお、電解液No.11B-6及び11B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表44に示すように、[4Pa]の代わりに、[19a]を用い、(I)の濃度、(II)の種類と濃度を表44に示すようにして、電解液No.12B-1~12B-14を得た。なお、電解液No.12B-6及び12B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表46に示すように、[4Pa]の代わりに、[19o]を用い、(I)の濃度、(II)の種類と濃度を表46に示すようにして、電解液No.13B-1~13B-14を得た。なお、電解液No.13B-6及び13B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表48に示すように、[4Pa]の代わりに、[21b]を用い、(I)の濃度、(II)の種類と濃度を表48に示すようにして、電解液No.14B-1~14B-14を得た。なお、電解液No.14B-6及び14B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表50に示すように、[4Pa]の代わりに、エトキシ(ペンタフルオロ)シクロトリホスファゼン(以降HISHICOLIN E(日本化学工業株式会社製)と記載する場合がある)を用い、(I)の濃度、(II)の種類と濃度を表50に示すようにして、電解液No.15B-1~15B-14を得た。なお、電解液No.15B-6及び15B-7は、その他の成分として(II)のモノマーに相当するVCを、電解液の総量に対して、それぞれ0.015質量%、0.25質量%となるように添加して得たものである。
 また、表52に示すように、[4Pa]の代わりに、[11a-Li]と[10a-Li]と[17l]を表52の比率となるように用いること、及び(II)の種類と含有量、(III)の種類等を表52に示すように変更したこと以外は電解液No.1B-1と同様にして電解液No.16B-1~16B-10を得た。なお、「EC/EMC/DMC3/4/3」は、ECとEMCとジメチルカーボネート(DMC)を体積比率3:4:3で混合した非水有機溶媒であり、「EC/EMC/FEC3/6/1」は、ECとEMCとフルオロエチレンカーボネート(FEC)を体積比率3:6:1で混合した非水有機溶媒であり、「EC/EMC/PC3/5/2」は、ECとEMCとプロピレンカーボネート(PC)を体積比率3:5:2で混合した非水有機溶媒である。
 また、表54に示すように、(I)として3種類の物質を表54の比率となるように用いること以外は電解液No.1B-3と同様にして電解液No.17B-1~17B-18を得た。
 また、比較電解液No.1B-1,2B-1,3B-1,4B-1,5B-1,6B-1,7B-1,8B-1,9B-1,10B-1,11B-1,12B-1,13B-1,14B-1,15B-1,16B-1~16B-6,17B-1~17B-18は、それぞれ、表22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,55に示すように、(II)を添加せずに、(II)のモノマーに相当するVCを添加して得たものである。
 また、比較電解液No.1B-2,2B-2,3B-2,4B-2,5B-2,6B-2,7B-2,8B-2,9B-2,10B-2,11B-2,12B-2,13B-2,14B-2,15B-2は、それぞれ、表22,24,26,28,30,32,34,36,38,40,42,44,46,48,50に示すように(II)として非水系電解液用添加剤No.6を添加して得たものである。
 (セルの作製及び評価)
 この電解液を用いてLiNi1/3Co1/3Mn1/32を正極材料、黒鉛を負極材料としてセルを作製し、実際に電池の初期の電気容量、サイクル特性、レート特性を評価した。試験用セルは以下のように作製した。
 LiNi1/3Co1/3Mn1/32粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(以下「PVDF」と記載する)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。また、黒鉛粉末90質量%に、バインダーとして10質量%のPVDFを混合し、さらにN-メチルピロリドンを添加し、スラリー状にした。このスラリーを銅箔上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。そして、ポリエチレン製セパレータに電解液を浸み込ませてアルミラミネート外装の50mAhセルを組み立てた。
 [初期の電気容量]
 作製したセルを用い、電流密度0.35mA/cm2で4.2Vまで充電した後に、電流密度0.35mA/cm2で3.0Vまで放電を行い、このときの初放電容量を初期の電気容量とした。尚、測定は25℃の環境温度で行った。
 [高温サイクル特性]
 上記のセルを用いて、60℃の環境温度での充放電試験を実施し、サイクル特性を評価した。充電、放電ともに電流レート3Cで行い、充電は、4.2Vに達した後、1時間4.2Vを維持、放電は、3.0Vまで行い、充放電サイクルを繰り返した。そして、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(サイクル特性評価)。放電容量維持率は下記式で求めた。
<500サイクル後の放電容量維持率>
 放電容量維持率(%)=(500サイクル後の放電容量/初放電容量)×100
結果を表3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,56に示す。
 [レート特性]
 上記のセルを用いて、25℃の環境温度での充放電試験を実施し、高レート特性を評価した。充電は常に電流レート0.2Cで行い、4.2Vに達した後、1時間4.2Vを維持、放電は3.0Vまで電流レート0.2Cの場合と5Cの場合の2点のデータを測定して、0.2C放電と5C放電のときの放電容量比を下記の式で求めた。
<高レート特性の放電容量比率>
高レート時放電容量比率(%)=(5C放電時の放電容量/0.2C放電時の放電容量)×100
結果を表3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,56に示す。
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
 実施例1A-1~1A-5から分かるように、本発明の非水系電解液用添加剤のポリスチレン換算の数平均分子量が170~5000であると、非水系電解液二次電池に用いた際に、サイクル特性及びレート特性をバランス良く発揮することができる。これに対し、本発明の非水系電解液用添加剤を添加せずに、代わりにそのモノマーに相当するVC(一般式[1]のモノマーに相当する化合物)を添加した電解液を用いた比較例1A-1では、上記の実施例に比べてサイクル特性及びレート特性が劣る傾向が確認された。また、上記ポリスチレン換算の数平均分子量が5000を超える化合物を添加した比較例1A-2においても、上記の実施例に比べてサイクル特性及びレート特性が劣る傾向が確認された。
 また、実施例1A-3、1A-8~1A-13から、上記(I)、(II)、(III)、(IV)の総量100質量%に対する(II)の含有量が0.03~14.0質量%であると、非水系電解液二次電池に用いた際に、サイクル特性及びレート特性をバランス良く発揮しやすく、(II)の含有量が0.07~12.0質量%であるとより好ましいことが分かる。
 また、実施例1A-6及び1A-7から、上記(M)/(P)(質量比)の値が0~0.05であると、レート特性がより良好な傾向であることが確認された。
 また、実施例2A-1~2A-14から分かるように、(I)としてジフルオロリン酸塩を用いた場合も、本発明の非水系電解液用添加剤を用いることでサイクル特性及びレート特性をバランス良く発揮することができる。
 また、実施例3A-1~3A-10から分かるように、(I)としてオキサラト塩及びジフルオロリン酸塩を用いた場合も、本発明の非水系電解液用添加剤を用いることでサイクル特性及びレート特性をバランス良く発揮することができる。
 また、実施例4A-1~4A-14から分かるように、(I)としてジフルオロ(オキサラト)ホウ酸リチウムを用いた場合も、本発明の非水系電解液用添加剤を用いることでサイクル特性及びレート特性をバランス良く発揮することができる。
 また、実施例5A-1~5A-14から分かるように、(I)としてテトラフルオロ(オキサラト)リン酸リチウムを用いた場合も、本発明の非水系電解液用添加剤を用いることでサイクル特性及びレート特性をバランス良く発揮することができる。
 実施例1B-1~1B-14から分かるように、本発明の非水系電解液用添加剤と環状構造を有するイオン性錯体(I-B-1)である[4Pa]とを併用することで、該イオン性錯体のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。また、実施例1B-1~1B-5から分かるように、本発明の非水系電解液用添加剤のポリスチレン換算の数平均分子量が170~5000であると、非水系電解液二次電池に用いた際に、サイクル特性及びレート特性をバランス良く発揮することができる。これに対し、本発明の非水系電解液用添加剤を添加せずに、代わりにそのモノマーに相当するVC(一般式[1]のモノマーに相当する化合物)を添加した電解液を用いた比較例1B-1では、上記の実施例に比べてサイクル特性及びレート特性が劣る傾向が確認された。また、上記ポリスチレン換算の数平均分子量が5000を超える化合物を添加した比較例1B-2においても、上記の実施例に比べてサイクル特性及びレート特性が劣る傾向が確認された。
 また、実施例1B-3、1B-8~1B-13から、上記(I)、(II)、(III)、(IV)の総量100質量%に対する(II)の含有量が0.03~14.0質量%であると、非水系電解液二次電池に用いた際に、サイクル特性及びレート特性をバランス良く発揮しやすく、(II)の含有量が0.07~12.0質量%であるとより好ましいことが分かる。
 また、実施例1B-6及び1B-7から、上記(M)/(P)(質量比)の値が0~0.05であると、レート特性がより良好な傾向であることが確認された。
 また、実施例2B-1~2B-14から分かるように、(I)としてイミドアニオンを有する塩である[10a-Li]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該イミドアニオンを有する塩のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例3B-1~3B-14から分かるように、(I)としてイミドアニオンを有する塩である[11a-Li]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該イミドアニオンを有する塩のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例4B-1~4B-14から分かるように、(I)としてイミドアニオンを有する塩である[11b-Li]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該イミドアニオンを有する塩のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例5B-1~5B-14から分かるように、(I)としてイミドアニオンを有する塩である[11c-Li]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該イミドアニオンを有する塩のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例6B-1~6B-14から分かるように、(I)としてイミドアニオンを有する塩である[12a-Li]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該イミドアニオンを有する塩のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例7B-1~7B-14から分かるように、(I)としてイミドアニオンを有する塩である[13a-Li]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該イミドアニオンを有する塩のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例8B-1~8B-14から分かるように、(I)としてSi含有化合物である[17c]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該Si含有化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例9B-1~9B-14から分かるように、(I)としてSi含有化合物である[17l]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該Si含有化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例10B-1~10B-14から分かるように、(I)として硫酸エステル化合物である[PS]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該硫酸エステル化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例11B-1~11B-14から分かるように、(I)として硫酸エステル化合物である[PRS]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該硫酸エステル化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例12B-1~12B-14から分かるように、(I)として硫酸エステル化合物である[19a]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該硫酸エステル化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例13B-1~13B-14から分かるように、(I)として硫酸エステル化合物である[19o]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該硫酸エステル化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例14B-1~14B-14から分かるように、(I)として環状カーボネート化合物である[21b]を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該環状カーボネート化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 実施例15B-1~15B-14から分かるように、(I)として環状ホスファゼン化合物であるエトキシ(ペンタフルオロ)シクロトリホスファゼン([HISHICOLIN E](日本化学工業株式会社製))を用いた場合も、本発明の非水系電解液用添加剤を用いることで、該環状ホスファゼン化合物のサイクル特性向上効果を損なうことなくレート特性を改善しやすい。
 また、実施例1A-15~1A-29、実施例2A-15~2A-29、実施例3A-11~3A-25、実施例4A-15~4A-29、実施例5A-15~5A-29、実施例16B-1~16B-10、実施例17B-1~17B-18から分かるように、(I)として、オキサラト塩及び/又はジフルオロリン酸塩と共に、環状構造を有するイオン性錯体、イミドアニオンを有する塩、Si含有化合物、硫酸エステル化合物、リン酸エステル化合物、環状カーボネート化合物、イソシアネート化合物、環状アセタール化合物、環状酸無水物、環状ホスファゼン化合物、芳香族化合物からなる群から選ばれる少なくとも1種の化合物を併用するなど複数の物質を用いた場合も、本発明の非水系電解液用添加剤を用いることでサイクル特性及びレート特性をバランス良く発揮することができる。

Claims (27)

  1. 下記一般式[1]で表される繰り返し単位を有する化合物であり、ポリスチレン換算の数平均分子量が170~5000である、非水系電解液用添加剤。
    Figure JPOXMLDOC01-appb-C000001
    [式中、括弧の内部はそれぞれが繰り返し単位であることを意味する。Rは、水素原子、ハロゲン又は低級アルキル基を表す。Rは、全て同一であってもよく、異なっていてもよく、互いに連結して環状構造を有していてもよい。]
  2. 前記数平均分子量が340~4000である、請求項1に記載の非水系電解液用添加剤。
  3. 前記数平均分子量が800~3000である、請求項1又は2に記載の非水系電解液用添加剤。
  4. 前記Rが全て水素原子である、請求項1~3のいずれかに記載の非水系電解液用添加剤。
  5. (I)オキサラト塩、ジフルオロリン酸塩、環状構造を有するイオン性錯体、イミドアニオンを有する塩、Si含有化合物、硫酸エステル化合物、リン酸エステル化合物、環状カーボネート化合物、イソシアネート化合物、環状アセタール化合物、環状酸無水物、環状ホスファゼン化合物、芳香族化合物からなる群から選ばれる少なくとも1種、
    (II)下記一般式[1]で表される繰り返し単位を有する化合物であり、ポリスチレン換算の数平均分子量が170~5000である、非水系電解液用添加剤、
    (III)非水有機溶媒、及び、
    (IV)溶質と、を含む、非水系電解液。
    Figure JPOXMLDOC01-appb-C000002
    [式中、括弧の内部はそれぞれが繰り返し単位であることを意味する。Rは、水素原子、ハロゲン又は低級アルキル基を表す。Rは、全て同一であってもよく、異なっていてもよく、互いに連結して環状構造を有していてもよい。]
  6. 前記数平均分子量が340~4000である、請求項5に記載の非水系電解液。
  7. 前記数平均分子量が800~3000である、請求項5又は6に記載の非水系電解液。
  8. 前記Rが全て水素原子である、請求項5~7のいずれかに記載の非水系電解液。
  9. 前記(I)、(II)、(III)、(IV)の総量100質量%に対する(II)の含有量が0.03~14.0質量%である、請求項5~8のいずれかに記載の非水系電解液。
  10. 前記電解液中に存在する、前記一般式[1]で表される繰り返し単位に相当するモノマーの総量(以下(M)と記載)と、前記非水系電解液用添加剤の総量(モノマー換算、以下(P)と記載)が、(M)/(P)=0~0.05(質量比)である、請求項5~9のいずれかに記載の非水系電解液。
  11. 前記オキサラト塩が、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、及び、テトラフルオロ(オキサラト)リン酸塩からなる群から選ばれる少なくとも1つである、請求項5~10のいずれかに記載の非水系電解液。
  12. 前記環状構造を有するイオン性錯体が、下記一般式[2]~[4]で示される化合物からなる群から選ばれる少なくとも1種である、請求項5~10のいずれかに記載の非水系電解液。
    Figure JPOXMLDOC01-appb-C000003
    [一般式[2]において、Aは金属イオン、プロトン及びオニウムイオンからなる群から選ばれる少なくとも1つであり、Fはフッ素であり、Mは13族元素(Al、B)、14族元素(Si)及び15族元素(P、As、Sb)からなる群から選ばれる少なくとも1つであり、Oは酸素であり、Sは硫黄である。R1は炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素、アルカリ金属、炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖あるいは環状構造をとることもできる。Yは炭素又は硫黄である。Yが炭素である場合、rは1である。Yが硫黄である場合、rは1又は2である。aは1又は2、oは2又は4、nは1又は2、pは0又は1、qは1又は2、rは0、1又は2である。pが0の場合、S-Y間に直接結合を形成する。]
    Figure JPOXMLDOC01-appb-C000004
    [一般式[3]において、Aは金属イオン、プロトン及びオニウムイオンからなる群から選ばれる少なくとも1つであり、Fはフッ素であり、Mは13族元素(Al、B)、14族元素(Si)、及び15族元素(P、As、Sb)からなる群から選ばれる少なくとも1つであり、Oは酸素であり、Nは窒素である。Yは炭素又は硫黄であり、Yが炭素である場合、qは1であり、Yが硫黄である場合、qは1又は2である。R1は炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素、アルカリ金属、炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖あるいは環状構造をとることもできる。R3は水素、炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素、アルカリ金属、炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖あるいは環状構造をとることもできる。aは1又は2、oは2又は4、nは1又は2、pは0又は1、qは1又は2、rは0又は1である。pが0の場合、R1の両隣に位置する原子同士(すなわちYと炭素原子)が直接結合を形成する。rが0の場合M-N間に直接結合を形成する。]
    Figure JPOXMLDOC01-appb-C000005
    [一般式[4]において、Dはハロゲンイオン、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、(フルオロスルホニル)(トリフルオロメタンスルホニル)イミドアニオン、ビス(ジフルオロホスホニル)イミドアニオンから選ばれる少なくとも一つであり、Fはフッ素であり、Mは13族元素(Al、B)、14族元素(Si)及び15族元素(P、As、Sb)からなる群から選ばれるいずれか1つであり、Oは酸素であり、Nは窒素である。Yは炭素又は硫黄であり、Yが炭素である場合qは1であり、Yが硫黄である場合qは1又は2である。Xは炭素又は硫黄であり、Xが炭素である場合rは1であり、Xが硫黄である場合rは1又は2である。R1は炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素、アルカリ金属、炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖あるいは環状構造をとることもできる。R4、R5はそれぞれ独立で炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基であり、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる。また、下記一般式[5]の様にお互いを含む環状構造を有しても良い。
    Figure JPOXMLDOC01-appb-C000006
    cは0又は1であり、nが1の場合、cは0(cが0のときDは存在しない)であり、nが2の場合、cは1となる。oは2又は4、nは1又は2、pは0又は1、qは1又は2、rは1又は2、sは0又は1である。pが0の場合、Y-X間に直接結合を形成する。sが0の場合、N(R4)(R5)とR1は直接結合し、その際は下記の[6]~[9]のような構造をとることもできる。直接結合が二重結合となる[7]、[9]の場合、R5は存在しない。また[8]の様に二重結合が環の外に出た構造を取ることも出来る。この場合のR6、R7はそれぞれ独立で水素、又は炭素数1~10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基であり、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる。]
    Figure JPOXMLDOC01-appb-C000007
  13. 前記イミドアニオンを有する塩が、下記一般式[10]~[16]で示される化合物、(CF22(SO22-の塩、及び、(CF23(SO22-の塩からなる群から選ばれる少なくとも1種である、請求項5~10のいずれかに記載の非水系電解液。
    Figure JPOXMLDOC01-appb-C000008
    [一般式[10]~[11]及び[13]~[15]中、R8~R11はそれぞれ互いに独立して、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。一般式[11]、[12]、[15]及び[16]中、X2及びX3はそれぞれ互いに独立して、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルキル基、炭素数が2~10のアルケニル基、炭素数が2~10のアルキニル基、炭素数が3~10の、シクロアルキル基、シクロアルケニル基、炭素数が6~10のアリール基、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。また、一般式[10]~[16]中には少なくとも一つのP-F結合及び/又はS-F結合を含む。M2、M3はそれぞれ互いに独立して、プロトン、金属カチオン又はオニウムカチオンである。]
  14. 前記Si含有化合物が、下記一般式[17]で示される少なくとも1種の化合物、ヘキサメチルシロキサン、1,3-ジビニルテトラメチルジシロキサン、(ビスヘキサフルオロイソプロポキシ)(ジメチル)(ジビニル)ジシロキサン、テトラメチルシラン、トリメチルビニルシラン、ビニルジメチルフルオロシラン、及びジビニルメチルフルオロシランからなる群から選ばれる少なくとも1種である、請求項5~10のいずれかに記載の非水系電解液。
    Figure JPOXMLDOC01-appb-C000009
    [一般式[17]中、R12はそれぞれ互いに独立して炭素-炭素不飽和結合を有する基を表す。R13はそれぞれ互いに独立して、フッ素原子、アルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基、アルキニル基、アルキニルオキシ基、アリール基、及びアリールオキシ基からなる群から選ばれる基を示し、これらの基はフッ素原子及び/又は酸素原子を有していても良い。xは2~4である。]
  15. 前記硫酸エステル化合物が、下記一般式[18]、[19]、及び[20]で示される環状スルホン酸化合物、2,2-ジオキシド-1,2-オキサチオラン-4-イル、1,3-プロパンスルトン、1,3-ブタンスルトン、及び1,4-ブタンスルトンからなる群から選ばれる少なくとも1種である、請求項5~10のいずれかに記載の非水系電解液。
    Figure JPOXMLDOC01-appb-C000010
    [式[18]中、Oは酸素原子、Sは硫黄原子、n2は1以上3以下の整数である。また、R14、R15、R16、R17は、それぞれ独立して水素原子、置換若しくは無置換の炭素数1以上5以下のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基である。]
    Figure JPOXMLDOC01-appb-C000011
    [式[19]中、Oは酸素原子、Sは硫黄原子、n3は0以上4以下の整数であり、R18、R19は、それぞれ独立して水素原子、ハロゲン原子、又は置換若しくは無置換の炭素数1以上5以下のアルキル基であり、R20、R21は、それぞれ独立して水素原子、ハロゲン原子、置換若しくは無置換の炭素数1~5のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基であり、n4は0以上4以下の整数である。]
    Figure JPOXMLDOC01-appb-C000012
    [式[20]中、Oは酸素原子、Sは硫黄原子、n5は0~3の整数であり、R22、R23は、それぞれ独立して水素原子、ハロゲン原子、置換若しくは無置換の炭素数1以上5以下のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基である。]
  16. 前記リン酸エステル化合物が、リン酸トリメチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、及びモノフルオロプロパギロキシリン酸-五フッ化リン酸リチウムからなる群から選ばれる少なくとも1種である、請求項5~10のいずれかに記載の非水系電解液。
  17. 前記環状カーボネート化合物が、下記一般式[21]で示される環状カーボネート化合物、ジメチルビニレンカーボネートからなる群から選ばれる少なくとも1種である、請求項5~10のいずれかに記載の非水系電解液。
    Figure JPOXMLDOC01-appb-C000013
    [式[21]中、Oは酸素原子、Aは炭素数10以下の、不飽和結合や環状構造やハロゲンを有してもよい炭化水素であり、Bは炭素数10以下の、不飽和結合や環状構造やハロゲンを有してもよい炭化水素である。なお、A-B間に二重結合を有してもよい。]
  18. 前記イソシアネート化合物が、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチルアクリレート、及び2-イソシアナトエチルメタクリレートからなる群から選ばれる少なくとも1種である、請求項5~10のいずれかに記載の非水系電解液。
  19. 前記環状アセタール化合物が、1,3-ジオキソラン、1,3-ジオキサン、及び1,3,5-トリオキサンからなる群から選ばれる少なくとも1種である、請求項5~10のいずれかに記載の非水系電解液。
  20. 前記環状酸無水物が、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸からなる群から選ばれる少なくとも1種である、請求項5~10のいずれかに記載の非水系電解液。
  21. 前記環状ホスファゼン化合物が、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、ジエトキシペンタフルオロシクロトリホスファゼン、及びエトキシヘプタフルオロシクロテトラホスファゼンからなる群から選ばれる少なくとも1種である、請求項5~10のいずれかに記載の非水系電解液。
  22. 前記芳香族化合物が、シクロヘキシルベンゼン、ビフェニル、tert-ブチルベンゼン、4-フルオロビフェニル、フルオロベンゼン、2,4-ジフルオロベンゼン、1-シクロヘキシル-4-フルオロベンゼン、及びジフルオロアニソールからなる群から選ばれる少なくとも1種である、請求項5~10のいずれかに記載の非水系電解液。
  23. 前記溶質が、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、ビス(トリフルオロメタンスルホニル)イミドリチウム、ビス(ペンタフルオロエタンスルホニル)イミドリチウム、ビス(フルオロスルホニル)イミドリチウム、及びビス(ジフルオロホスホニル)イミドリチウムからなる群から選ばれる少なくとも一つである、請求項5~22のいずれかに記載の非水系電解液。
  24. (I)として、少なくとも、ジフルオロビス(オキサラト)リン酸リチウム及びジフルオロリン酸リチウムを含む、請求項5~10のいずれかに記載の非水系電解液。
  25. (I)として、オキサラト塩及び/又はジフルオロリン酸塩と、環状構造を有するイオン性錯体、イミドアニオンを有する塩、Si含有化合物、硫酸エステル化合物、リン酸エステル化合物、環状カーボネート化合物、イソシアネート化合物、環状アセタール化合物、環状酸無水物、環状ホスファゼン化合物、芳香族化合物からなる群から選ばれる少なくとも1種の化合物とを、含有する、請求項5~10のいずれかに記載の非水系電解液。
  26. 前記非水溶媒が、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つである、請求項5~25のいずれかに記載の非水系電解液。
  27. 少なくとも正極と、負極と、請求項5~26のいずれかに記載の非水系電解液とを備えた、非水系電解液二次電池。
PCT/JP2017/024241 2016-07-01 2017-06-30 非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池 WO2018003992A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197003207A KR102195713B1 (ko) 2016-07-01 2017-06-30 비수계 전해액용 첨가제, 당해 첨가제를 이용하는 비수계 전해액, 및 비수계 전해액 이차전지
CN201780041296.3A CN109417200B (zh) 2016-07-01 2017-06-30 非水系电解液用添加剂、使用该添加剂的非水系电解液、及非水系电解液二次电池

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016132097 2016-07-01
JP2016-132097 2016-07-01
JP2016-165238 2016-08-26
JP2016165238 2016-08-26
JP2016247976A JP6860782B2 (ja) 2016-07-01 2016-12-21 非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池
JP2016-248120 2016-12-21
JP2016248120A JP6860783B2 (ja) 2016-07-01 2016-12-21 非水系電解液、及び非水系電解液二次電池
JP2016-247976 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018003992A1 true WO2018003992A1 (ja) 2018-01-04

Family

ID=60786072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024241 WO2018003992A1 (ja) 2016-07-01 2017-06-30 非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池

Country Status (1)

Country Link
WO (1) WO2018003992A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108503670A (zh) * 2018-04-11 2018-09-07 惠州市大道新材料科技有限公司 一种氟磷酰亚胺及其碱金属盐的制备方法
WO2019146705A1 (ja) * 2018-01-24 2019-08-01 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
WO2019188757A1 (ja) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 電気化学デバイス
WO2019188759A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 電気化学デバイス
CN110808412A (zh) * 2018-08-06 2020-02-18 宁德时代新能源科技股份有限公司 电解液及锂离子电池
WO2020050359A1 (ja) * 2018-09-05 2020-03-12 株式会社Gsユアサ 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
WO2020054863A1 (ja) * 2018-09-14 2020-03-19 旭化成株式会社 非水系電解液及び非水系二次電池
CN110998959A (zh) * 2018-01-30 2020-04-10 株式会社Lg化学 具有提高的高温存储特性的锂二次电池
WO2020153791A1 (ko) * 2019-01-25 2020-07-30 주식회사 엘지화학 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR20200092889A (ko) * 2019-01-25 2020-08-04 주식회사 엘지화학 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP2020528639A (ja) * 2017-11-13 2020-09-24 エルジー・ケム・リミテッド リチウム二次電池用非水電解液及びこれを含むリチウム二次電池
WO2020246520A1 (ja) * 2019-06-05 2020-12-10 セントラル硝子株式会社 非水電解液
US20210036365A1 (en) * 2018-07-02 2021-02-04 Lg Chem, Ltd. Lithium Secondary Battery Having Improved High-Temperature Characteristics
CN112602224A (zh) * 2018-09-14 2021-04-02 旭化成株式会社 非水系二次电池
WO2023163082A1 (ja) * 2022-02-25 2023-08-31 Muアイオニックソリューションズ株式会社 非水系電解液、該非水系電解液を含む非水系電解液電池、及び化合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270271A (ja) * 1996-03-30 1997-10-14 Akinobu Ozawa 非水系二次電池およびその製造法
JPH1167273A (ja) * 1997-08-21 1999-03-09 Toshiba Corp リチウム二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270271A (ja) * 1996-03-30 1997-10-14 Akinobu Ozawa 非水系二次電池およびその製造法
JPH1167273A (ja) * 1997-08-21 1999-03-09 Toshiba Corp リチウム二次電池

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309583B2 (en) 2017-11-13 2022-04-19 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP7045589B2 (ja) 2017-11-13 2022-04-01 エルジー エナジー ソリューション リミテッド リチウム二次電池用非水電解液及びこれを含むリチウム二次電池
JP2020528639A (ja) * 2017-11-13 2020-09-24 エルジー・ケム・リミテッド リチウム二次電池用非水電解液及びこれを含むリチウム二次電池
WO2019146705A1 (ja) * 2018-01-24 2019-08-01 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN110998959B (zh) * 2018-01-30 2023-03-24 株式会社Lg新能源 具有提高的高温存储特性的锂二次电池
CN110998959A (zh) * 2018-01-30 2020-04-10 株式会社Lg化学 具有提高的高温存储特性的锂二次电池
WO2019188757A1 (ja) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 電気化学デバイス
JP7382549B2 (ja) 2018-03-30 2023-11-17 パナソニックIpマネジメント株式会社 電気化学デバイス
WO2019188759A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 電気化学デバイス
JPWO2019188759A1 (ja) * 2018-03-30 2021-04-08 パナソニックIpマネジメント株式会社 電気化学デバイス
CN108503670A (zh) * 2018-04-11 2018-09-07 惠州市大道新材料科技有限公司 一种氟磷酰亚胺及其碱金属盐的制备方法
US20210036365A1 (en) * 2018-07-02 2021-02-04 Lg Chem, Ltd. Lithium Secondary Battery Having Improved High-Temperature Characteristics
US11870036B2 (en) * 2018-07-02 2024-01-09 Lg Energy Solution, Ltd. Lithium secondary battery having improved high-temperature characteristics
CN110808412B (zh) * 2018-08-06 2022-06-07 宁德时代新能源科技股份有限公司 电解液及锂离子电池
CN110808412A (zh) * 2018-08-06 2020-02-18 宁德时代新能源科技股份有限公司 电解液及锂离子电池
WO2020050359A1 (ja) * 2018-09-05 2020-03-12 株式会社Gsユアサ 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP7363792B2 (ja) 2018-09-05 2023-10-18 株式会社Gsユアサ 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JPWO2020054863A1 (ja) * 2018-09-14 2021-03-18 旭化成株式会社 非水系電解液及び非水系二次電池
CN112602224A (zh) * 2018-09-14 2021-04-02 旭化成株式会社 非水系二次电池
KR20210011428A (ko) * 2018-09-14 2021-02-01 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
CN112640182A (zh) * 2018-09-14 2021-04-09 旭化成株式会社 非水系电解液及非水系二次电池
US20210344046A1 (en) * 2018-09-14 2021-11-04 Asahi Kasei Kabushiki Kaisha Nonaqueous Electrolytic Solution and Nonaqueous Secondary Battery
JP7019062B2 (ja) 2018-09-14 2022-02-14 旭化成株式会社 非水系電解液及び非水系二次電池
KR102581173B1 (ko) 2018-09-14 2023-09-21 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
WO2020054863A1 (ja) * 2018-09-14 2020-03-19 旭化成株式会社 非水系電解液及び非水系二次電池
KR102500815B1 (ko) * 2019-01-25 2023-02-17 주식회사 엘지에너지솔루션 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP7154677B2 (ja) 2019-01-25 2022-10-18 エルジー エナジー ソリューション リミテッド リチウム二次電池用電解質およびこれを含むリチウム二次電池
WO2020153791A1 (ko) * 2019-01-25 2020-07-30 주식회사 엘지화학 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR20200092889A (ko) * 2019-01-25 2020-08-04 주식회사 엘지화학 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP2022517684A (ja) * 2019-01-25 2022-03-09 エルジー エナジー ソリューション リミテッド リチウム二次電池用電解質およびこれを含むリチウム二次電池
CN113728484A (zh) * 2019-01-25 2021-11-30 株式会社Lg新能源 锂二次电池用电解质和包含该电解质的锂二次电池
WO2020246520A1 (ja) * 2019-06-05 2020-12-10 セントラル硝子株式会社 非水電解液
WO2023163082A1 (ja) * 2022-02-25 2023-08-31 Muアイオニックソリューションズ株式会社 非水系電解液、該非水系電解液を含む非水系電解液電池、及び化合物

Similar Documents

Publication Publication Date Title
JP6886116B2 (ja) 非水系電解液、及び非水系電解液二次電池
KR102195713B1 (ko) 비수계 전해액용 첨가제, 당해 첨가제를 이용하는 비수계 전해액, 및 비수계 전해액 이차전지
WO2018003992A1 (ja) 非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池
JP7232355B2 (ja) 再充電可能なバッテリーセル
KR102469213B1 (ko) 비수 전해액 전지용 전해액 및 그것을 이용한 비수 전해액 전지
JP6004124B2 (ja) 非水電解液二次電池用電解液及び非水電解液二次電池
JP2019204789A (ja) イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法
KR102427676B1 (ko) 비수전해액용 첨가제, 비수전해액, 및 비수전해액 전지
WO2019111983A1 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
CN104285320A (zh) 电极合剂
KR20140118809A (ko) 프리 도핑제, 이것을 이용한 축전 디바이스 및 그 제조 방법
JP2019102451A (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
KR20180075406A (ko) 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지, 및 모듈
KR102380511B1 (ko) 리튬 전지용 전해질 및 이를 포함하는 리튬 전지
JP2011138759A (ja) 非水系電解液及びそれを用いた非水系電解液電池
WO2020246522A1 (ja) 非水電解液及び非水電解液電池
WO2020036222A1 (ja) 非水系電解液、及び非水系電解液二次電池
WO2019003776A1 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
KR20160024413A (ko) 리튬 전지용 전해질, 및 이를 포함하는 리튬 전지
JP2022536290A (ja) リチウムイオン電池用のその場重合されたポリマー電解質
WO2019003780A1 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
CN112119528B (zh) 电解液、电化学器件、锂离子二次电池和组件
KR20210002629A (ko) 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지 및 모듈
WO2019093160A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2018181657A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197003207

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17820346

Country of ref document: EP

Kind code of ref document: A1