WO2019188759A1 - 電気化学デバイス - Google Patents

電気化学デバイス Download PDF

Info

Publication number
WO2019188759A1
WO2019188759A1 PCT/JP2019/012024 JP2019012024W WO2019188759A1 WO 2019188759 A1 WO2019188759 A1 WO 2019188759A1 JP 2019012024 W JP2019012024 W JP 2019012024W WO 2019188759 A1 WO2019188759 A1 WO 2019188759A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
electrode
electrochemical device
winding element
Prior art date
Application number
PCT/JP2019/012024
Other languages
English (en)
French (fr)
Inventor
祐介 中村
基浩 坂田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020509947A priority Critical patent/JP7382549B2/ja
Publication of WO2019188759A1 publication Critical patent/WO2019188759A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to an electrochemical device including a positive electrode including a conductive polymer.
  • Patent Documents In recent years, an electrochemical device having intermediate performance between a lithium ion secondary battery and an electric double layer capacitor has attracted attention, and for example, the use of a conductive polymer as a positive electrode material has been studied (for example, Patent Documents). 1). Electrochemical devices containing a conductive polymer as the positive electrode material charge and discharge by anion adsorption (doping) and desorption (de-doping), so the reaction resistance is small, compared to general lithium ion secondary batteries Has high output. In Patent Document 1, a carbonaceous material that can insert and desorb ions is used as the negative electrode material.
  • the anion contained in the electrolyte is adsorbed on the positive electrode, and the cation is occluded in the negative electrode. Due to such adsorption and occlusion of ions, both the positive electrode and the negative electrode expand during charging.
  • an electrochemical device provided with a winding element when silicon oxide is used as the negative electrode material, peeling of the conductive polymer at the positive electrode becomes significant, and the cycle characteristics deteriorate.
  • One aspect of the present disclosure includes a winding element in which a positive electrode including a positive electrode material, a negative electrode including a negative electrode material, a separator interposed between the positive electrode and the negative electrode is wound, and an electrolytic solution,
  • the electrolyte includes a cation and an anion
  • the positive electrode material includes a conductive polymer that performs doping and dedoping of the anion by charging and discharging
  • the negative electrode material is a negative electrode that occludes and releases the cation by charging and discharging.
  • An active material, the negative electrode active material includes SiOx (0 ⁇ x ⁇ 2), and at least one of the innermost electrode and the outermost electrode of the winding element is the negative electrode. It relates to chemical devices.
  • an electrochemical device including a winding element having a positive electrode including a conductive polymer and a negative electrode including a silicon oxide, deterioration in cycle characteristics can be suppressed.
  • FIG. 1 is a longitudinal sectional view schematically showing an electrochemical device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram for explaining the configuration of the winding element in FIG. 1.
  • FIG. 3 is a cross-sectional view schematically showing the winding element in FIG.
  • FIG. 4 is a cross-sectional view schematically showing the configuration of the positive electrode, the separator, and the negative electrode before winding of the winding element of FIG.
  • An electrochemical device includes a winding element including a positive electrode including a positive electrode material, a negative electrode including a negative electrode material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution.
  • the electrolytic solution contains a cation and an anion.
  • the positive electrode material includes a conductive polymer that is doped and dedoped with anions by charging and discharging.
  • a negative electrode material contains the negative electrode active material which occludes and discharge
  • This negative electrode active material contains SiOx (0 ⁇ x ⁇ 2). At least one of the innermost electrode and the outermost electrode of the winding element is a negative electrode.
  • SiOx may be referred to as the first material.
  • the conductive polymer In an electrochemical device using a positive electrode material containing a conductive polymer, the conductive polymer is expanded by doping anions in the electrolyte during charging, and is dedoped and contracted during discharging. In addition, the conductive polymer swells by absorbing the electrolytic solution. Therefore, the expansion of the positive electrode during charging is large.
  • the silicon oxide SiOx can reversibly store and release many cations, so that the capacity can be increased, while expansion due to charging is extremely remarkable. That is, in an electrochemical device using such an electrode material, both the positive electrode and the negative electrode expand greatly during charging. When the expansion of the electrode increases, a large compressive stress is applied to the electrode in the wound element.
  • the negative electrode has a high SOC (state of charge) (for example, SOC is 70% or more). Charging / discharging is performed in the range of. On the other hand, in the positive electrode, charging / discharging is performed in a wide range (for example, SOC is in a range of 0 to 100%). Therefore, in a state where the negative electrode expands and the volume increases, the positive electrode greatly expands and contracts due to charge and discharge. Therefore, a large compressive stress is easily applied to the electrode.
  • SOC state of charge
  • At least one of the innermost electrode and the outermost electrode of the winding element is a negative electrode.
  • At least the innermost electrode is preferably a negative electrode.
  • the innermost peripheral electrode to which a large compressive stress is applied as the negative electrode, it is possible to effectively suppress the peeling of the conductive polymer in the positive electrode.
  • a length L1 of a region (hereinafter referred to as a first region) that does not face the positive electrode of the negative electrode is preferably 5 mm or more and 20 mm or less.
  • the length L2 of a region (hereinafter referred to as a second region) that does not face the positive electrode of the negative electrode on the outermost peripheral side is 5 mm or more and 20 mm or less. It is preferable. By setting the length of the second region in such a range, it is possible to further enhance the effect of suppressing the peeling of the conductive polymer in the positive electrode while securing a high capacity.
  • the winding element usually has a pair of strip-shaped (or strip-shaped) electrodes (specifically, a positive electrode and a negative electrode) having different polarities from one end in the length direction of each electrode between the pair of electrodes. It is formed by winding with a separator interposed.
  • the innermost electrode refers to an electrode in which one end portion in the length direction of the electrode is located closer to the inner periphery of the pair of electrodes.
  • the outermost peripheral electrode refers to an electrode in which the other end portion in the length direction of the electrode is located on the outer peripheral side of the pair of electrodes.
  • the length direction of the electrode is a direction perpendicular to the winding axis of the winding element.
  • the region of the negative electrode that does not face the positive electrode refers to a region that does not face the region where the positive electrode material of the positive electrode exists in the region where the negative electrode material of the negative electrode exists.
  • region is a continuous area
  • the second region is a continuous region including the other end portion in the length direction of the negative electrode (that is, the end portion located on the outer peripheral side of the winding element).
  • the length L1 of the first region is the length from the end on the inner peripheral side of the negative electrode in the direction parallel to the length direction of the negative electrode.
  • the length L2 of the second region is the length of the second region from the end on the outer peripheral side of the negative electrode in the direction parallel to the length direction of the negative electrode.
  • the length L1 of the first region and the length L2 of the second region may be obtained from a cross-sectional photograph in a direction perpendicular to the winding axis of the winding element, respectively, and the winding element taken out from the electrochemical device is developed. You may ask for in the state.
  • L1 and L2 may be obtained for a laminate of the positive electrode, the negative electrode, and the separator before winding.
  • the electrochemical device according to the present embodiment includes a winding element in which a positive electrode, a negative electrode, and a separator interposed therebetween are wound, and an electrolytic solution.
  • FIG. 1 is a schematic cross-sectional view of an electrochemical device 100 according to the present embodiment
  • FIG. 2 is a schematic developed view of a part of a winding element 10 included in the electrochemical device 100.
  • the electrochemical device 100 includes a winding element 10, a container 101 that houses the winding element 10 and an electrolyte solution (not shown), a sealing body 102 that closes the opening of the container 101, a lead wire 104A that is led out from the sealing body 102, 104B and lead tabs 105A and 105B for connecting each lead wire and each electrode of the winding element 10 are provided.
  • the vicinity of the opening end of the container 101 is drawn inward, and the opening end is curled so as to caulk the sealing body 102.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the winding element 10.
  • FIG. 3 shows a cross section when the winding element 10 is cut in a direction perpendicular to the winding axis.
  • FIG. 4 is a cross-sectional view schematically showing the configuration of the positive electrode, the separator, and the negative electrode before winding of the winding element 10 of FIG.
  • a cross section when cut in a direction perpendicular to the winding axis that is, a cross section parallel to the length direction of the positive electrode and the negative electrode
  • the positive current collecting lead 60 and the negative current collecting lead 70 are omitted for convenience.
  • 3 shows the state of the positive electrode 11, the negative electrode 12, and the separator 13 on the innermost and outermost sides of the winding element 10, and the positive electrode 11, the negative electrode 12, and the separator 13 in the portion between them. The state is omitted.
  • the total length of the negative electrode 12 is longer than the total length of the positive electrode 11 (that is, the total length in the direction parallel to the length direction of the positive electrode 11).
  • the negative electrode 12 includes a first region A ⁇ b> 1 and a second region A ⁇ b> 2 that do not face the positive electrode 11 on the innermost peripheral side and the outermost peripheral side of the winding element 10.
  • the length of the first region A1 from the innermost end 12a of the negative electrode 12 is indicated by L1
  • the length of the second region A2 from the outermost end 12b is indicated by L2.
  • the positive electrode 11 is sandwiched between the pair of separators 13.
  • a winding element 10 as shown in FIG. 3 is formed by winding the positive electrode 11 while winding it from the portion 12a. Note that the core is extracted after winding.
  • the positive electrode material contained in the positive electrode 11 contains a conductive polymer that dopes and undopes anions contained in the electrolyte solution by charging and discharging.
  • the negative electrode material contained in the negative electrode 12 includes a negative electrode active material that occludes and releases cations contained in the electrolytic solution by charging and discharging.
  • the negative electrode active material includes a first material, that is, SiOx (0 ⁇ x ⁇ 2).
  • the compressive stress applied to the positive electrode 11 can be reduced by using the innermost electrode and the outermost electrode of the winding element 10 as the negative electrode 12 as described above. Therefore, peeling of the conductive polymer in the positive electrode 11 can be suppressed.
  • FIGS. 3 and 4 show examples in which both the innermost electrode and the outermost electrode are the negative electrodes 12. However, the present invention is not limited to these cases, and the innermost electrode and the outermost electrode. Any one of the electrodes on the side may be the negative electrode 12.
  • the positive electrode 11 includes a positive electrode material.
  • the positive electrode 11 usually includes a positive electrode material and a positive electrode current collector carrying the positive electrode material.
  • a sheet-like metal material is used for the positive electrode current collector.
  • the sheet-like metal material for example, a metal foil, a metal porous body, a punching metal, an expanded metal, an etching metal, or the like is used.
  • the material of the positive electrode current collector for example, aluminum, aluminum alloy, nickel, titanium or the like can be used, and preferably aluminum or aluminum alloy is used.
  • the thickness of the positive electrode current collector is, for example, 10 ⁇ m to 100 ⁇ m.
  • the positive electrode material contains a conductive polymer that is doped and dedoped with anions contained in the electrolyte by charging and discharging.
  • a ⁇ -conjugated polymer is preferable.
  • the ⁇ -conjugated polymer include polymers having a basic skeleton of polypyrrole, polythiophene, polyfuran, polyaniline, polythiophene vinylene, or polypyridine.
  • Such a polymer is not limited to polypyrrole, polythiophene, polyfuran, polyaniline, polythiophene vinylene, and polypyridine, but also includes a polymer having a substituent in these skeletons (also referred to as a substituted product).
  • the substituent includes not only a monovalent group but also a polyvalent group that forms a bridged ring integrally with a ring included in the basic skeleton.
  • polythiophenes include polythiophene and substituted products thereof, and the substituted materials include poly (3,4-ethylenedioxythiophene) (PEDOT) and the like.
  • the conductive polymer one kind may be used alone, or two or more kinds may be used in combination.
  • Polyanilines may be used from the viewpoint of easily obtaining high adhesion between the positive electrode material and the positive electrode current collector. Since polyaniline can be directly generated on the positive electrode current collector by an electrolytic polymerization process, it is advantageous for improving the adhesion between the positive electrode material and the positive electrode current collector.
  • the polyaniline includes polyaniline and substituted products thereof.
  • the polyaniline includes a polymer having aniline (Bz—NH 2 ) and / or a substitution product thereof as a monomer.
  • Bz represents a benzene ring.
  • Each benzene ring may have one or more substituents. Examples of the substituent include an alkyl group such as a methyl group, a halogen atom, and the like, but are not limited thereto.
  • the weight average molecular weight of the conductive polymer is not particularly limited, but is, for example, 1000 to 100,000.
  • the weight average molecular weight is a polystyrene-reduced weight average molecular weight measured by gel permeation chromatography.
  • a dopant may be introduced.
  • the dopant include sulfate ion, nitrate ion, phosphate ion, borate ion, benzenesulfonate ion, naphthalenesulfonate ion, toluenesulfonate ion, methanesulfonate ion (CF 3 SO 3 ⁇ ), perchlorate ion (ClO 4).
  • the dopant may be a polymer ion.
  • Polymer ions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly (2-acrylamido-2-methylpropane sulfonic acid), polyisoprene sulfonic acid, polyacrylic.
  • Examples include ions such as acids. These may be homopolymers or copolymers of two or more monomers. These may be used alone or in combination of two or more.
  • the positive electrode material may be layered on at least one main surface of the positive electrode current collector.
  • the thickness of such a layered positive electrode material (hereinafter also referred to as a positive electrode material layer) is, for example, 10 ⁇ m to 300 ⁇ m per side of the positive electrode current collector.
  • a carbon layer may be formed between the positive electrode current collector and the positive electrode material as necessary.
  • the resistance between the positive electrode current collector and the positive electrode material can be kept low.
  • the positive electrode material is formed on the positive electrode current collector by electrolytic polymerization or chemical polymerization, the positive electrode material can be easily formed.
  • the carbon layer includes a conductive carbon material.
  • the carbon layer may include a polymer material in addition to the conductive carbon material.
  • As the conductive carbon material graphite, hard carbon, soft carbon, carbon black, or the like can be used.
  • the material of the polymer material is not particularly limited, but is fluorochemical, acrylic resin, polyvinyl chloride, styrene-butadiene rubber (SBR), water glass (sodium silicate) because it is electrochemically stable and has excellent acid resistance. Polymer) and the like are preferably used.
  • the negative electrode 12 includes a negative electrode material.
  • the negative electrode 12 usually includes a negative electrode material and a negative electrode current collector carrying the negative electrode material.
  • a sheet-like metal material is used for the negative electrode current collector.
  • the sheet-like metal material for example, a metal foil, a metal porous body, a punching metal, an expanded metal, an etching metal, or the like is used.
  • a material of the negative electrode current collector for example, copper, copper alloy, nickel, stainless steel, or the like can be used.
  • the thickness of the negative electrode current collector is, for example, 10 ⁇ m to 100 ⁇ m.
  • the negative electrode material includes a negative electrode active material that absorbs and releases cations by charging and discharging. That is, insertion and extraction of cations by the negative electrode active material are performed reversibly.
  • the negative electrode active material includes SiOx (0 ⁇ x ⁇ 2) that is the first material.
  • a cation contains a lithium ion at least.
  • the first material can electrochemically occlude and release cations such as lithium ions. By using the first material, a high capacity can be secured.
  • x is preferably 0.5 ⁇ x ⁇ 1.5, and may be 0.5 ⁇ x ⁇ 1.5.
  • x is in such a range, a high occlusion amount of lithium ions can be secured, which is advantageous from the viewpoint of increasing the capacity.
  • the amount of expansion during charging of SiOx is large.
  • the compressive stress applied to the positive electrode 11 can be reduced by using the outermost electrode and / or the outermost electrode as the negative electrode. Therefore, it is possible to suppress the deterioration of the cycle characteristics even though the first material having x in such a range is used.
  • the negative electrode active material can include a second material that occludes and releases cations such as lithium ions in addition to the first material.
  • the second material include a carbon material, a metal compound, an alloy, and a ceramic material.
  • the carbon material graphite, non-graphitizable carbon (hard carbon), and graphitizable carbon (soft carbon) are preferable, and graphite and hard carbon are particularly preferable.
  • the metal compound include compounds other than the first material, such as tin oxide.
  • the alloy include a silicon alloy and a tin alloy.
  • the ceramic material include lithium titanate and lithium manganate. These may be used alone or in combination of two or more.
  • a carbon material (particularly graphite) is preferable in that it has a high occlusion amount of cations such as lithium ions and can lower the potential of the negative electrode 12.
  • the graphite includes a carbon material having a graphite-type crystal structure. Examples of graphite include natural graphite and / or artificial graphite.
  • the ratio of the first material in the negative electrode material is, for example, 0.5% by mass or more, 1% by mass or more, 3% by mass or more, 4% by mass or more, or 5% by mass. It may be the above.
  • the ratio of the first material is, for example, 15% by mass or less, 12% by mass or less, or 10% by mass or less. Even when the ratio of the first material is in such a range, a high capacity can be secured and it is easy to balance the capacity of the positive electrode 11. Moreover, the effect which suppresses peeling of the conductive polymer in the positive electrode 11 can further be improved.
  • the qualitative analysis of the first material in the negative electrode material can be performed by, for example, X-ray absorption spectroscopy such as an X-ray absorption edge vicinity (XANES) spectrum.
  • XANES X-ray absorption edge vicinity
  • the ratio of the first material in the negative electrode material may be calculated from the total amount of the constituent components (solid content) of the negative electrode material and the mass of the first material. For example, you may obtain
  • the negative electrode is taken out from the electrochemical device, washed with a nonaqueous solvent of an electrolytic solution (for example, an organic solvent such as dimethyl carbonate), and sufficiently dried. More specifically, after drying the negative electrode, a predetermined amount of the negative electrode material is taken out, and the mass change when heated at 800 ° C. for 1 hour in an oxygen atmosphere is determined. The mass change is subtracted from the mass before heating.
  • the ratio (mass%) that the time difference occupies in the mass before heating can be obtained as the ratio of the first material in the negative electrode material.
  • the negative electrode material can contain a conductive agent, a binder and the like in addition to the negative electrode active material.
  • the conductive agent include carbon black and / or carbon fiber.
  • the binder include a fluororesin, an acrylic resin, a rubber material, and / or a cellulose derivative (such as cellulose ether or cellulose ether).
  • the fluororesin include polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, and the like.
  • the acrylic resin include polyacrylic acid, acrylic acid-methacrylic acid copolymer, or a salt thereof (sodium salt, ammonium salt, etc.).
  • the rubber material include styrene butadiene rubber, and examples of the cellulose derivative include cellulose ethers such as carboxymethyl cellulose or salts thereof (sodium salt, ammonium salt, etc.).
  • the ratio of the conductive agent in the negative electrode material is, for example, 5% by mass or less.
  • the ratio of the conductive agent may be 0.1% by mass or more.
  • the ratio of the binder in the negative electrode material is, for example, 5% by mass or less, and may be 0.1% by mass or more.
  • the innermost electrode and the outermost electrode of the winding element 10 by applying at least one of the innermost electrode and the outermost electrode of the winding element 10 to the negative electrode 12, it is possible to suppress application of excessive compressive stress to the positive electrode 11. . Therefore, peeling of the conductive polymer in the positive electrode 11 can be suppressed, and as a result, high cycle characteristics can be ensured.
  • at least the innermost electrode is preferably the negative electrode 12. Since a particularly large compressive stress is easily applied to the innermost peripheral electrode, it is easy to ensure higher cycle characteristics by making the electrode in this portion the negative electrode 12.
  • the length L1 of the first region that does not face the positive electrode 11 of the negative electrode 12 on the innermost peripheral side of the winding element 10 may be 3 mm or more, 5 mm or more, or 10 mm or more. When the length L1 of the first region is in such a range, the effect of suppressing the peeling of the conductive polymer in the positive electrode 11 can be further enhanced.
  • the length L1 of the first region may be 25 mm or less, 23 mm or less, or 20 mm or less. When the length of the first region is in such a range, higher capacity can be ensured while suppressing peeling of the conductive polymer in the positive electrode 11.
  • the length L2 of the second region that does not face the positive electrode 11 of the negative electrode 12 on the outermost peripheral side of the winding element 10 may be 3 mm or more, 5 mm or more, or 10 mm or more. When the length L2 of the second region is in such a range, the effect of suppressing the peeling of the conductive polymer in the positive electrode 11 can be further enhanced.
  • the length L2 of the second region may be 25 mm or less, 23 mm or less, or 20 mm or less. When the length of the second region is within such a range, a higher capacity can be ensured while suppressing peeling of the conductive polymer in the positive electrode 11.
  • one of L1 and L2 is 3 mm or more (for example, 3 mm or more and 5 mm or less), the other is, for example, 5 mm or more or 10 mm or more. Also good.
  • the negative electrode 12 is pre-doped with lithium ions in advance. Since the potential of the negative electrode 12 decreases due to the pre-doping of lithium ions, the potential difference (that is, voltage) between the positive electrode 11 and the negative electrode 12 is increased, and the energy density of the electrochemical device 100 is improved.
  • pre-doping of the negative electrode 12 with lithium ions is performed, for example, by forming a metal lithium film serving as a lithium ion supply source on the surface of the negative electrode material layer, and replacing the negative electrode 12 having the metal lithium film with lithium ion conductive electrolyte. It progresses by making it impregnate. At this time, lithium ions are eluted from the metal lithium film into the electrolytic solution, and the eluted lithium ions are occluded in the negative electrode active material.
  • the amount of lithium ions to be predoped can be controlled by the mass of the metal lithium film.
  • the step of pre-doping lithium ions into the negative electrode 12 may be performed before the winding element 10 is assembled. Alternatively, the pre-doping may proceed after the winding element 10 is accommodated in the container 101 of the electrochemical device 100 together with the electrolytic solution.
  • the separator 13 a microporous film, a woven fabric, a non-woven fabric, or the like is preferable.
  • the material constituting the separator include organic materials (polymer materials such as polyolefin and cellulose), inorganic materials (glass and the like), and the like.
  • the fibers constituting the woven fabric and the nonwoven fabric include polymer fibers such as polyolefin, cellulose fibers, and glass fibers. These materials may be used in combination.
  • the thickness of the separator 13 is, for example, 10 ⁇ m to 300 ⁇ m.
  • the thickness of the separator 13 is, for example, 10 ⁇ m to 40 ⁇ m in the case of a microporous film, and is, for example, 100 ⁇ m to 300 ⁇ m in the case of a woven or non-woven fabric.
  • the electrochemical device 100 includes an electrolytic solution.
  • the electrolytic solution contains a cation and an anion.
  • the cation preferably contains at least lithium ions.
  • the electrolytic solution containing lithium ions has lithium ion conductivity.
  • a nonaqueous electrolytic solution containing a lithium salt and a nonaqueous solvent for dissolving the lithium salt is preferable.
  • the anion of the lithium salt can reversibly repeat doping and dedoping of the positive electrode 11.
  • cations preferably lithium ions derived from lithium salts
  • lithium salt examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiFSO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , LiCl, LiBr, LiI. , LiBCl 4 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type. Among them, it is desirable to use at least one selected from the group consisting of a lithium salt having an oxo acid anion containing a halogen atom and an imide anion suitable as an anion.
  • the cation preferably includes at least lithium ion (first cation), and may include lithium ion and a cation other than lithium ion (second cation).
  • first cation may include lithium ion and a cation other than lithium ion (second cation).
  • second cation examples include inorganic cations other than lithium ions such as sodium ions, potassium ions, calcium ions, and magnesium ions, and organic cations.
  • the electrolytic solution may contain one kind of second cation or two or more kinds of second cation.
  • the concentration of the lithium salt in the electrolytic solution in the charged state (SOC 90 to 100%) is, for example, 0.2 mol / L to 5 mol / L.
  • Non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, fats such as methyl formate, methyl acetate, methyl propionate, and ethyl propionate.
  • Cyclic ether dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propionitrile, nitromethane , Ethyl monoglyme, trimethoxymethane, sulfolane, methyl sulfolane, 1,3-propane sultone, and the like can be used. These may be used alone or in combination of two or more.
  • the electrolytic solution may contain an additive as necessary.
  • the additive include unsaturated carbonate.
  • examples of the unsaturated carbonate include vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate, and the like.
  • the electrochemical device 100 includes, for example, a step of winding the positive electrode 11, the negative electrode 12, and the separator 13 to form the winding element 10, and a step of sealing the winding element 10 and the electrolytic solution. It can be manufactured by a manufacturing method.
  • Each of the positive electrode 11, the negative electrode 12, and the separator 13 is prepared, for example, prior to the step of forming the winding element 10.
  • the electrolyte is prepared, for example, prior to the sealing step. Sealing can be performed by housing the winding element 10 and the electrolytic solution in the container 101 and closing the opening of the container 101 with the sealing body 102.
  • the positive electrode 11 can be prepared by, for example, supporting a positive electrode material on a positive electrode current collector. As described above, a sheet-like metal material is used for the positive electrode current collector, but surface treatment such as hydrophilic treatment may be performed as necessary.
  • the positive electrode 11 includes a carbon layer
  • the carbon layer is formed on the positive electrode current collector, and the positive electrode material is supported on the positive electrode current collector through the carbon layer.
  • the carbon layer may be formed by a known procedure.
  • the carbon layer may be formed by, for example, depositing a conductive carbon material on the positive electrode current collector, applying a carbon paste containing the conductive carbon material on the positive electrode current collector, and drying the coating film. You may form by.
  • the carbon paste includes, for example, a conductive carbon material, a polymer material, and a liquid medium.
  • a positive electrode current collector (or a laminate of a positive electrode current collector and a carbon layer) is immersed in a reaction solution containing a raw material monomer of a conductive polymer, and the raw material monomer is subjected to electrolytic polymerization or chemical polymerization. This is carried on the positive electrode current collector.
  • electrolytic polymerization polymerization is performed using a positive electrode current collector as an anode.
  • the positive electrode material containing the conductive polymer is formed so as to cover the surface of the positive electrode current collector or the carbon layer.
  • the positive electrode material may be formed by a method other than electrolytic polymerization or chemical polymerization.
  • the positive electrode material is supported on the positive electrode current collector by bringing a solution in which the conductive polymer is dissolved or a dispersion liquid in which the conductive polymer is dispersed into contact with the positive electrode current collector or the carbon layer. Also good.
  • the raw material monomer used in electrolytic polymerization or chemical polymerization may be a polymerizable compound capable of generating a conductive polymer by polymerization.
  • the raw material monomer may include an oligomer.
  • As the raw material monomer for example, aniline, pyrrole, thiophene, furan, thiophene vinylene, pyridine, or a substituted product thereof is used. These may be used alone or in combination of two or more.
  • the raw material monomer is preferably aniline in that the positive electrode material is easily carried on the surface of the positive electrode current collector or the carbon layer.
  • Electrolytic polymerization or chemical polymerization is desirably performed using a reaction solution containing an anion (dopant). It is desirable that the conductive polymer dispersion or solution also contains a dopant.
  • the ⁇ -electron conjugated polymer exhibits excellent conductivity by doping with a dopant.
  • a positive electrode current collector or a laminate of a positive electrode current collector and a carbon layer
  • a reaction solution containing a dopant, an oxidant, and a raw material monomer, and then lifted from the reaction solution and dried. You can do it.
  • a positive electrode current collector (or a laminate of a positive electrode current collector and a carbon layer) is immersed in a reaction solution containing a dopant and a raw material monomer, the positive electrode current collector is used as an anode, and a counter electrode. Is used as a cathode, and a current may be passed between them.
  • the solvent of the reaction solution water may be used, but a nonaqueous solvent may be used in consideration of the solubility of the monomer.
  • a nonaqueous solvent it is desirable to use alcohols such as ethyl alcohol, methyl alcohol, isopropyl alcohol, ethylene glycol, and polyoprene glycol.
  • alcohols such as ethyl alcohol, methyl alcohol, isopropyl alcohol, ethylene glycol, and polyoprene glycol.
  • the dispersion medium or solvent for the conductive polymer include water and the above non-aqueous solvents.
  • loading of the positive electrode material on the positive electrode current collector is usually performed in an acidic atmosphere due to the influence of the oxidizing agent and dopant used.
  • the thickness of the positive electrode material layer to be formed can be controlled, for example, by adjusting the polymerization time. In the electropolymerization, the thickness of the layer can also be controlled by adjusting the current density of electrolysis. When using a solution or dispersion containing a conductive polymer, adjust the concentration of the conductive polymer in these liquids, or adjust the number of times the liquid is brought into contact with the positive electrode current collector or the carbon layer. Thus, the thickness of the positive electrode material layer can be controlled.
  • the negative electrode 12 is prepared by mixing a first material (and a second material as necessary), a conductive agent, a binder, and the like together with a dispersion medium to prepare a negative electrode mixture paste. It is formed by applying to the negative electrode current collector and then drying.
  • a lead member (lead tab 105A including the lead wire 104A) is connected to the positive electrode 11.
  • another lead member (lead tab 105B including the lead wire 104B) is connected to the negative electrode 12.
  • the lead member is wound from one end face as shown in FIG. 2 by winding the separator 13 between the positive electrode 11 and the negative electrode 12 to which the lead member is connected.
  • An exposed winding element 10 is obtained.
  • the outermost periphery of the winding element 10 is fixed with a winding tape 14.
  • the winding element 10 is housed in a bottomed cylindrical container 101 having an opening together with an electrolytic solution (not shown).
  • Lead wires 104A and 104B are led out from the sealing body.
  • a sealing body 102 is disposed at the opening of the container 101 to seal the container 101. Specifically, the vicinity of the opening end of the container 101 is drawn inward, and the opening end is curled so as to caulk the sealing body 102.
  • the sealing body 102 is made of an elastic material containing a rubber component, for example.
  • a mixed powder containing 11 parts by mass of carbon black and 7 parts by mass of polypropylene resin particles was kneaded with water to prepare a carbon paste.
  • the obtained carbon paste was applied to the entire front and back surfaces of the positive electrode current collector, and then dried by heating to form a carbon layer.
  • the thickness of the carbon layer was 2 ⁇ m per side.
  • the positive electrode current collector on which the carbon layer was formed and the counter electrode were immersed in an aniline aqueous solution, electropolymerized at a current density of 10 mA / cm 2 for 20 minutes, and doped with sulfate ions (SO 4 2 ⁇ ).
  • a conductive polymer (polyaniline) film was deposited on the front and back carbon layers of the positive electrode current collector.
  • the conductive polymer doped with sulfate ions was reduced, and the doped sulfate ions were dedoped.
  • a positive electrode material layer containing a conductive polymer dedoped with sulfate ions was formed.
  • the positive electrode material layer was sufficiently washed and then dried.
  • the thickness of the positive electrode material layer was 35 ⁇ m per side.
  • the negative electrode mixture paste was applied to both sides of the negative electrode current collector and dried to obtain a negative electrode having a negative electrode material layer having a thickness of 35 ⁇ m on both sides.
  • an amount of metal lithium foil calculated so that the negative electrode potential in the electrolyte after completion of pre-doping was 0.2 V or less with respect to metal lithium was attached to the negative electrode material layer.
  • a cellulose nonwoven fabric separator thickness 35 ⁇ m
  • a positive electrode positive electrode
  • a cellulose nonwoven fabric separator A laminated body in which a thickness of 35 ⁇ m) and a negative electrode were overlapped in this order was wound to form a wound element.
  • the length of the negative electrode was adjusted so that the length L1 of the first region and the length L2 of the second region were the values shown in Table 1.
  • the innermost and / or outermost electrode is a positive electrode
  • the length of the region of the positive electrode that does not face the negative electrode is shown in the L1 and / or L2 column of Table 1.
  • Electrolytic Solution 0.2% by mass of vinylene carbonate was added to a 1: 1 volume ratio mixture of propylene carbonate and dimethyl carbonate to prepare a solvent.
  • LiPF 6 as a lithium salt was dissolved in a predetermined concentration in the obtained solvent to prepare a nonaqueous electrolytic solution containing lithium ions as cations and hexafluorophosphate ions (PF 6 ⁇ ) as anions.
  • Production of electrochemical device A wound element and an electrolytic solution were accommodated in a bottomed container having an opening, and an electrochemical device as shown in FIG. 1 was assembled. Thereafter, aging was performed at 25 ° C. for 24 hours while applying a charging voltage of 3.8 V between the positive electrode and negative electrode terminals, and pre-doping of the lithium ions into the negative electrode was advanced. (Evaluation) The following evaluation was performed about the obtained electrochemical device.
  • the electrochemical device was charged at a voltage of 3.8V and then discharged to 2.5V at a current of 5.0A.
  • the cycle consisting of the above charging and discharging was repeated 100,000 times. Determined by the capacitance C 1 in the same manner as the initial capacity C 0 of the 100,000 th cycle, to the initial capacity C 0, the ratio of the capacitance C 1 100 000 cycle (%), calculated as the capacity maintenance ratio was used as an indicator of cycle characteristics .
  • Evaluation results are shown in Table 2. Examples 9 to 11 are A9 to A11. Table 2 also shows the results of A1 to A3, B1, and R1.
  • the ratio of the first material in the negative electrode material is preferably 10% by mass or less.
  • Evaluation results are shown in Table 3. Examples 12 and 13 are A12 and A13. Table 3 also shows the results of A2, A4 to A6, B1, and R1.
  • L1 and / or L2 be 5 mm or more. Even when one of L1 and L2 is 3 mm, if the other is made larger (for example, 5 mm or more or 10 mm or more), higher cycle characteristics than A13 can be secured.
  • L1 and / or L2 is preferably 20 mm or less.
  • the electrochemical device according to the present disclosure excellent cycle characteristics can be obtained. Therefore, it is suitable as various electrochemical devices that require high cycle characteristics, particularly as a backup power source.
  • Winding element 11 Positive electrode 12: Negative electrode 12a: End part of innermost peripheral side of negative electrode 12b: End part of outermost peripheral side of negative electrode 13: Separator 14: Winding tape 100: Electrochemical device 101: Container 102: Sealing body 104A, 104B: Lead wire 105A, 105B: Lead tab A1: First region A2: Second region L1: Length of first region L2: Length of second region

Abstract

本発明の電気化学デバイスは、正極材料を含む正極と、負極材料を含む負極と、前記正極および前記負極の間に介在するセパレータと、が巻回された巻回素子、ならびに電解液を備える。前記電解液は、カチオンとアニオンとを含む。前記正極材料は、充放電により前記アニオンをドープおよび脱ドープする導電性高分子を含む。前記負極材料は、充放電により前記カチオンを吸蔵および放出する負極活物質を含む。前記負極活物質は、SiOx(0<x<2)を含む。前記巻回素子の最内周側の電極および最外周側の電極の少なくとも一方は、前記負極である。

Description

電気化学デバイス
 本開示は、導電性高分子を含む正極を備える電気化学デバイスに関する。
 近年、リチウムイオン二次電池と電気二重層キャパシタの中間的な性能を有する電気化学デバイスが注目を集めており、例えば導電性高分子を正極材料として用いることが検討されている(例えば、特許文献1)。正極材料として導電性高分子を含む電気化学デバイスは、アニオンの吸着(ドープ)と脱離(脱ドープ)により充放電を行うため、反応抵抗が小さく、一般的なリチウムイオン二次電池に比べると高い出力を有する。特許文献1では、負極材料には、イオンを挿入および脱離し得る炭素質材料が用いられている。
特開2014-35836号公報
 上記のような電気化学デバイスでは、充電時に、電解液に含まれるアニオンが正極に吸着され、カチオンが負極に吸蔵される。このようなイオンの吸着および吸蔵により、充電時には正極および負極の双方が膨張することになる。巻回素子を備える電気化学デバイスにおいて、負極材料にケイ素酸化物を用いた場合には、正極における導電性高分子の剥離が顕著になり、サイクル特性が低下する。
 本開示の一局面は、正極材料を含む正極と、負極材料を含む負極と、前記正極および前記負極の間に介在するセパレータと、が巻回された巻回素子、ならびに電解液を備え、前記電解液は、カチオンとアニオンとを含み、前記正極材料は、充放電により前記アニオンをドープおよび脱ドープする導電性高分子を含み、前記負極材料は、充放電により前記カチオンを吸蔵および放出する負極活物質を含み、前記負極活物質は、SiOx(0<x<2)を含み、前記巻回素子の最内周側の電極および最外周側の電極の少なくとも一方は、前記負極である、電気化学デバイスに関する。
 本開示の上記局面によれば、導電性高分子を含む正極とケイ素酸化物を含む負極とを有する巻回素子を備える電気化学デバイスにおいて、サイクル特性の低下を抑制できる。
図1は、本開示の一実施形態に係る電気化学デバイスを模式的に示す縦断面図である。 図2は、図1における巻回素子の構成を説明するための概略図である。 図3は、図1における巻回素子を概略的に示す横断面図である。 図4は、図3の巻回素子の巻回前の正極、セパレータ、および負極の構成を概略的に示す断面図である。
 本開示の一局面に係る電気化学デバイスは、正極材料を含む正極と、負極材料を含む負極と、正極および負極の間に介在するセパレータと、が巻回された巻回素子、および電解液を備える。電解液は、カチオンとアニオンとを含む。正極材料は、充放電によりアニオンをドープおよび脱ドープする導電性高分子を含む。負極材料は、充放電によりカチオンを吸蔵および放出する負極活物質を含む。この負極活物質は、SiOx(0<x<2)を含む。巻回素子の最内周側の電極および最外周側の電極の少なくとも一方は、負極である。以下、SiOxを第1材料と称することがある。
 導電性高分子を含む正極材料を用いた電気化学デバイスでは、導電性高分子は、充電時に電解液中のアニオンをドープして膨張し、放電時に脱ドープして収縮する。また、導電性高分子は、電解液を吸収して膨潤する。そのため、充電時の正極の膨張が大きい。ケイ素酸化物SiOxは、多くのカチオンを可逆的に吸蔵および放出することができるため高容量化が可能である一方で、充電による膨張が極めて顕著である。つまり、このような電極材料を用いる電気化学デバイスでは、充電時に正極および負極の双方が大きく膨張することになる。電極の膨張が大きくなると、巻回素子では、大きな圧縮応力が電極に加わることになる。
 また、上記の電極材料を用いる電気化学デバイスでは、正極の容量と負極の容量とのバランスをとる観点から、負極はSOC(充電状態:State of charge)が高い(例えば、SOCが70%以上)の範囲で充放電が行われることになる。その一方で、正極では、広い範囲(例えば、SOCが0~100%の範囲)で充放電が行われる。そのため、負極が膨張して体積が大きくなった状態で、充放電により正極が大きく膨張収縮することになる。よって、電極には大きな圧縮応力が加わり易くなる。巻回素子の最内周側では、電極の曲率が大きく、応力が逃げ難いため、電極に大きな圧縮応力が加わり易い。また、巻回素子の最外周側では、内周側に位置する電極の膨張とケースによる圧力とから、電極に大きな圧縮応力が加わることになる。さらに、巻回素子の最外周の端部は、接着テープにより固定されているため、電極の周囲の空間が少なく、電極に加わる大きな圧縮応力を緩和することが難しい。特に、このような大きな圧縮応力が、正極に加わると、導電性高分子の剥離が顕著になり、サイクル特性の低下を招く。
 本開示では、上記の電極材料を用いる電気化学デバイスにおいて、巻回素子の最内周側の電極および最外周側の電極の少なくとも一方を負極とする。これにより、最内周側および/または最外周側において正極に大きな応力が加わることが抑制されるため、正極における導電性高分子の剥離を抑制することができる。導電性高分子の剥離が抑制されることで、充放電を繰り返しても高い容量を確保することができる。よって、サイクル特性の低下を抑制することができる。また、上記の電極材料を用いることで、高容量を確保することができる。
 巻回素子において、少なくとも最内周側の電極は負極であることが好ましい。大きな圧縮応力が加わる最内周側の電極を負極とすることで、正極における導電性高分子の剥離を効果的に抑制することができる。
 巻回素子の最内周側において、負極の正極と対向しない領域(以下、第1領域と称する。)の長さL1は、5mm以上20mm以下であることが好ましい。第1領域の長さをこのような範囲とすることで、高容量を確保しながらも、正極における導電性高分子の剥離抑制効果をさらに高めることができる。
 巻回素子の最外周側の電極が、負極である場合、最外周側において、負極の正極と対向しない領域(以下、第2領域と称する。)の長さL2は、5mm以上20mm以下であることが好ましい。第2領域の長さをこのような範囲とすることで、高容量を確保しながらも、正極における導電性高分子の剥離抑制効果をさらに高めることができる。
 なお、巻回素子は、通常、極性の異なる一対のストリップ状(又は帯状)の電極(具体的には、正極および負極)を、各電極の長さ方向の一端部から、一対の電極間にセパレータを介在させた状態で巻回することにより形成される。本明細書において、最内周側の電極とは、一対の電極のうち、電極の長さ方向の一端部が、より内周側に位置する電極を言う。最外周側の電極とは、一対の電極のうち、電極の長さ方向の他端部が、より外周側に位置する電極を言う。
 電極の長さ方向は、巻回素子の巻回軸に垂直な方向である。負極の、正極と対向しない領域とは、負極の負極材料が存在する領域において、正極の正極材料が存在する領域と対向していない領域を言う。ただし、第1領域は、負極の長さ方向の両端部のうち、巻回素子の内周側に位置する一端部を含む連続する領域である。また、第2領域は、負極の長さ方向における他端部(つまり、巻回素子の外周側に位置する端部)を含む連続する領域である。第1領域の長さL1は、負極の長さ方向に平行な方向における、第1領域の、負極の内周側の端部からの長さである。第2領域の長さL2は、負極の長さ方向に平行な方向における、第2領域の、負極の外周側の端部からの長さである。
 第1領域の長さL1および第2領域の長さL2は、それぞれ、巻回素子の巻回軸に垂直な方向の断面写真から求めてもよく、電気化学デバイスから取り出した巻回素子を展開した状態で求めてもよい。また、L1およびL2は、巻回する前の正極、負極、およびセパレータの積層体について求めてもよい。
 以下に、本開示の一実施形態に係る電気化学デバイスについて、適宜図面を参照しながら、より具体的に説明する。
[電気化学デバイス]
 本実施形態に係る電気化学デバイスは、正極と、負極と、これらの間に介在するセパレータとが巻回された巻回素子、および電解液を備えている。
 図1は、本実施形態に係る電気化学デバイス100の断面模式図であり、図2は、同電気化学デバイス100が具備する巻回素子10の一部を展開した概略図である。
 電気化学デバイス100は、巻回素子10と、巻回素子10および図示しない電解液を収容する容器101と、容器101の開口を塞ぐ封口体102と、封口体102から導出されるリード線104A、104Bと、各リード線と巻回素子10の各電極とを接続するリードタブ105A、105Bと、を備える。容器101の開口端近傍は、内側に絞り加工されており、開口端は封口体102にかしめるようにカール加工されている。
 図3は、巻回素子10の構成を概略的に示す断面図である。図3では、巻回素子10を巻回軸に垂直な方向に切断したときの断面が示されている。図4は、図3の巻回素子10の巻回前の正極、セパレータおよび負極の構成を概略的に示す断面図である。図4では、巻回軸に垂直な方向に切断したときの断面(つまり、正極や負極の長さ方向に平行な断面)が示されている。図3および図4では、便宜的に、正極集電リード60および負極集電リード70を省略している。また、図3では、巻回素子10の最内周側および最外周側の正極11、負極12、およびセパレータ13の状態を示しており、その間の部分における正極11、負極12、およびセパレータ13の状態については省略している。
 負極12の全長は、正極11の全長(つまり、正極11の長さ方向に平行な方向における全長)よりも長くなっている。図示例では、巻回素子10における最内周側および最外周側のそれぞれにおいて、負極12は、正極11と対向しない第1領域A1および第2領域A2を備える。第1領域A1の、負極12の最内周側の端部12aからの長さをL1、第2領域A2の、最外周側の端部12bからの長さをL2で示す。なお、図4では、一対のセパレータ13で正極11を挟んだ状態で配置されている。図4に示す、セパレータ13、正極11、セパレータ13、および負極12の積層体を、一対のセパレータ13の一端部を巻芯で挟んで、反時計回りに、負極12の最内周側の端部12aから正極11を巻き込みながら巻回することにより、図3に示すような巻回素子10が形成される。なお、巻芯は、巻回後に抜き取られる。
 正極11に含まれる正極材料は、充放電により電解液に含まれるアニオンをドープおよび脱ドープする導電性高分子を含む。負極12に含まれる負極材料は、充放電により電解液に含まれるカチオンを吸蔵および放出する負極活物質を含む。ここで、負極活物質は、第1材料、つまりSiOx(0<x<2)を含む。そして、本実施形態では、上記のように巻回素子10の最内周の電極および最外周の電極をそれぞれ負極12とすることで、正極11に加わる圧縮応力を低減することができる。よって、正極11における導電性高分子の剥離を抑制することができる。なお、図3および図4では、最内周側の電極および最外周側の電極の双方が負極12である例を示したが、これらの場合に限らず、最内周側の電極および最外周側の電極のうち、いずれか一方を負極12としてもよい。
 以下、電気化学デバイスの構成要素について、より詳細に説明する。
(正極)
 正極11は、正極材料を含む。正極11は、通常、正極材料と、正極材料を担持する正極集電体とを含んでいる。
 正極集電体には、例えば、シート状の金属材料が用いられる。シート状の金属材料としては、例えば、金属箔、金属多孔体、パンチングメタル、エキスパンデッドメタル、エッチングメタルなどが用いられる。
 正極集電体の材質としては、例えば、アルミニウム、アルミニウム合金、ニッケル、チタンなどを用いることができ、好ましくは、アルミニウム、アルミニウム合金が用いられる。
 正極集電体の厚みは、例えば、10μm~100μmである。
 正極材料は、充放電により電解液に含まれるアニオンをドープおよび脱ドープする導電性高分子を含む。導電性高分子としては、π共役系高分子が好ましい。π共役系高分子としては、例えば、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリチオフェンビニレン、またはポリピリジンを基本骨格とする高分子が挙げられる。このような高分子には、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリチオフェンビニレン、およびポリピリジンに限らず、これらの骨格に置換基を有する高分子(置換体とも言う)も含まれる。なお、置換基には、一価の基だけでなく、基本骨格に含まれる環と一体となって架橋環を形成するような多価基も含まれる。例えば、ポリチオフェン類には、ポリチオフェンおよびその置換体が含まれ、置換体には、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)なども含まれる。
 導電性高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。正極材料と正極集電体との高い密着性が得られやすい観点から、ポリアニリン類を用いてもよい。ポリアニリン類は、電解重合プロセスにより、正極集電体上に直接生成させることができるため、正極材料と正極集電体との密着性を高めるのに有利である。ポリアニリン類には、ポリアニリンおよびその置換体が含まれる。
 なお、ポリアニリン類には、アニリン(Bz-NH)および/またはその置換体をモノマーとするポリマーが含まれる。ポリアニリン類は、-Bz-NH-Bz-NH-のアミン構造単位、および/または、-Bz-N=Bz=N-のイミン構造単位を有する。Bzはベンゼン環を示す。各ベンゼン環は、1つまたは複数の置換基を有していてもよい。置換基としては、メチル基などのアルキル基、ハロゲン原子等が挙げられるが、これらに制限されるものではない。
 導電性高分子の重量平均分子量は、特に限定されないが、例えば1000~100000である。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィにより測定されるポリスチレン換算の重量平均分子量である。
 導電性高分子は、ドーパントが導入されていてもよい。ドーパントとしては、硫酸イオン、硝酸イオン、燐酸イオン、硼酸イオン、ベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、トルエンスルホン酸イオン、メタンスルホン酸イオン(CF3SO3 )、過塩素酸イオン(ClO4 )、テトラフルオロ硼酸イオン(BF4 )、ヘキサフルオロ燐酸イオン(PF6 )、フルオロ硫酸イオン(FSO3 )、ビス(フルオロスルホニル)イミドイオン(N(FSO22 )、ビス(トリフルオロメタンスルホニル)イミドイオン(N(CF3SO22 )などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ドーパントは、高分子イオンであってもよい。高分子イオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸などのイオンが挙げられる。これらは単独重合体であってもよく、2種以上のモノマーの共重合体であってもよい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 正極11において、正極材料は、正極集電体の少なくとも一方の主面に層状に形成されていてもよい。このような層状の正極材料(以下、正極材料層とも称する。)の厚みは、例えば、正極集電体の片面につき、10μm~300μmである。
 なお、正極集電体と正極材料との間には、必要に応じて、カーボン層を形成してもよい。カーボン層を設けると、正極集電体と正極材料との間の抵抗を低く抑えることができる。また、電解重合や化学重合により、正極集電体上に正極材料を形成する場合には、正極材料の形成が容易になる。
 カーボン層は、導電性炭素材料を含む。カーボン層は、導電性炭素材料に加え、高分子材料を含んでもよい。導電性炭素材料には、黒鉛、ハードカーボン、ソフトカーボン、カーボンブラックなどを用いることができる。高分子材料の材質は特に限定されないが、電気化学的に安定であり、耐酸性に優れる点で、フッ素樹脂、アクリル樹脂、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)、水ガラス(珪酸ナトリウムのポリマー)等が好ましく用いられる。
(負極)
 負極12は、負極材料を含む。負極12は、通常、負極材料と負極材料を担持する負極集電体とを含んでいる。
 負極集電体には、例えば、シート状の金属材料が用いられる。シート状の金属材料としては、例えば、金属箔、金属多孔体、パンチングメタル、エキスパンデッドメタル、エッチングメタルなどが用いられる。負極集電体の材質としては、例えば、銅、銅合金、ニッケル、ステンレス鋼などを用いることができる。
 負極集電体の厚みは、例えば、10μm~100μmである。
 負極材料は、充放電によりカチオンを吸蔵および放出する負極活物質を含む。つまり、負極活物質によるカチオンを吸蔵および放出は、可逆的に行われる。負極活物質は、第1材料であるSiOx(0<x<2)を含む。なお、カチオンは、少なくともリチウムイオンを含むことが好ましい。第1材料は、リチウムイオンなどのカチオンを、電気化学的に吸蔵および放出可能である。第1材料を用いることで、高容量を確保することができる。
 SiOxにおいて、xは、好ましくは0.5≦x≦1.5であり、0.5<x<1.5であってもよい。xがこのような範囲である場合、リチウムイオンの高い吸蔵量を確保することができ、高容量化の観点から有利である。xがこのような範囲である場合、SiOxの充電時の膨張量も大きい。しかし、本開示によれば、最外周側および/または最外周側の電極を負極とすることで、正極11に加わる圧縮応力を低減できる。そのため、xがこのような範囲の第1材料を用いるにも拘わらず、サイクル特性の低下を抑制できる。
 負極活物質は、第1材料以外に、リチウムイオンなどのカチオンを吸蔵および放出する第2材料を含むことができる。第2材料としては、炭素材料、金属化合物、合金、セラミックス材料などが挙げられる。炭素材料としては、黒鉛、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)が好ましく、特に黒鉛やハードカーボンが好ましい。金属化合物としては、第1材料以外の化合物、例えば、錫酸化物などが挙げられる。合金としては、ケイ素合金、錫合金などが挙げられる。セラミックス材料としては、チタン酸リチウム、マンガン酸リチウムなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、炭素材料(特に、黒鉛)は、リチウムイオンなどのカチオンの吸蔵量が高く、負極12の電位を低くすることができる点で好ましい。なお、黒鉛には、黒鉛型の結晶構造を有する炭素材料が含まれる。黒鉛としては、例えば、天然黒鉛および/または人造黒鉛が挙げられる。
 負極材料中の第1材料の比率は、例えば、0.5質量%以上であり、1質量%以上であってもよく、3質量%以上であってもよく、4質量%以上または5質量%以上であってもよい。第1材料の比率がこのような範囲である場合、最内周側および/または最外周側の電極を負極12とする効果が発揮され易い。また、高容量を確保し易い。第1材料の比率は、例えば、15質量%以下であり、12質量%以下であってもよく、10質量%以下であってもよい。第1材料の比率がこのような範囲でも、高い容量を確保することができるとともに、正極11の容量とのバランスを取り易い。また、正極11における導電性高分子の剥離を抑制する効果をさらに高めることができる。これらの下限値と上限値とは任意に組み合わせることができる。
 なお、負極材料中における第1材料の定性分析は、例えば、X線吸収端近傍(XANES)スペクトルなどのX線吸収分光法により行うことができる。例えば、負極材料に第1材料が含まれる場合には、負極材料のXANESスペクトルにおいて、Si単体のピークおよびSiOのピークの双方が検出される。これらのピークの検出により、負極材料における第1材料の存在を確認できる。なお、電気化学デバイスから取り出した負極について第1材料の定性分析を行う場合、取り出した負極を、水洗し、乾燥したものが使用される。
 負極材料中の第1材料の比率は、負極材料の構成成分(固形分)の総量と、第1材料の質量とから算出してもよい。例えば、負極の作製に使用される負極合剤ペーストについて、このような算出方法で第1材料の比率を求めてもよい。また、電気化学デバイスから取り出した負極について、第1材料の比率を求めてもよい。この場合、電気化学デバイスから負極を取り出して、電解液の非水溶媒(例えば、ジメチルカーボネートなどの有機溶媒)で洗浄し、十分に乾燥したものが用いられる。より詳細には、負極を乾燥した後、所定量の負極材料を取り出し、酸素雰囲気下、800℃で1時間加熱した際の質量変化を求め、この質量変化分を加熱前の質量から差し引き、このときの差が加熱前の質量に占める比率(質量%)を、負極材料中の第1材料の比率として求めることができる。
 負極材料は、負極活物質の他に、導電剤、結着剤などを含むことができる。導電剤としては、カーボンブラック、および/または炭素繊維などが挙げられる。結着剤としては、フッ素樹脂、アクリル樹脂、ゴム材料、および/またはセルロース誘導体(セルロースエーテルまたはセルロースエーテルなど)などが挙げられる。フッ素樹脂としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などが挙げられる。アクリル樹脂としては、ポリアクリル酸、アクリル酸-メタクリル酸共重合体、またはその塩(ナトリウム塩、アンモニウム塩など)などが挙げられる。ゴム材料としては、スチレンブタジエンゴムが挙げられ、セルロース誘導体としては、セルロースエーテル、例えば、カルボキシメチルセルロースまたはその塩(ナトリウム塩、アンモニウム塩など)が挙げられる。
 負極材料中の導電剤の比率は、例えば、5質量%以下である。導電剤の比率は、0.1質量%以上であってもよい。負極材料中のバインダの比率は、例えば、5質量%以下であり、0.1質量%以上であってもよい。
 本実施形態によれば、巻回素子10の最内周側の電極および最外周側の電極の少なくとも一方を、負極12とすることで、正極11に過度な圧縮応力が加わることが抑制される。よって、正極11における導電性高分子の剥離を抑制することができ、その結果、高いサイクル特性を確保することができる。特に、少なくとも最内周側の電極を、負極12とすることが好ましい。最内周側の電極には、特に大きな圧縮応力が加わり易いため、この部分の電極が負極12となるようにすることで、より高いサイクル特性を確保し易くなる。
 巻回素子10の最内周側において、負極12の正極11と対向しない第1領域の長さL1は、3mm以上であってもよく、5mm以上または10mm以上であってもよい。第1領域の長さL1がこのような範囲である場合、正極11における導電性高分子の剥離を抑制する効果をさらに高めることができる。第1領域の長さL1は、25mm以下であってもよく、23mm以下または20mm以下であってもよい。第1領域の長さがこのような範囲である場合、正極11における導電性高分子の剥離を抑制しながらも、より高い容量を確保することができる。これらの下限値と上限値とは任意に組み合わせることができる。
 巻回素子10の最外周側において、負極12の正極11と対向しない第2領域の長さL2は、3mm以上であってもよく、5mm以上または10mm以上であってもよい。第2領域の長さL2がこのような範囲である場合、正極11における導電性高分子の剥離を抑制する効果をさらに高めることができる。第2領域の長さL2は、25mm以下であってもよく、23mm以下であってもよく、20mm以下であってもよい。第2領域の長さがこのような範囲である場合、正極11における導電性高分子の剥離を抑制しながらも、より高い容量を確保することができる。これらの下限値と上限値とは任意に組み合わせることができる。
 なお、正極11に加わる圧縮応力を低減し易い観点から、L1およびL2の一方が、3mm以上の場合(例えば、3mm以上5mm以下の場合)には、他方を、例えば、5mm以上または10mm以上としてもよい。
 負極12には、予めリチウムイオンをプレドープすることが望ましい。リチウムイオンのプレドープにより、負極12の電位が低下するため、正極11と負極12の電位差(すなわち電圧)が大きくなり、電気化学デバイス100のエネルギー密度が向上する。
 例えば、リチウムイオンの負極12へのプレドープは、例えば、リチウムイオン供給源となる金属リチウム膜を負極材料層の表面に形成し、金属リチウム膜を有する負極12を、リチウムイオン伝導性を有する電解液に含浸させることにより進行する。このとき、金属リチウム膜からリチウムイオンが電解液中に溶出し、溶出したリチウムイオンが負極活物質に吸蔵される。プレドープさせるリチウムイオンの量は、金属リチウム膜の質量により制御することができる。
 負極12にリチウムイオンをプレドープするステップは、巻回素子10を組み立てる前に行なってもよい。また、電解液とともに巻回素子10を電気化学デバイス100の容器101に収容してからプレドープを進行させてもよい。
(セパレータ)
 セパレータ13としては、微多孔膜、織布、不織布などが好ましい。セパレータを構成する材料としては、有機材料(ポリオレフィン、セルロースなどの高分子材料など)、無機材料(ガラスなど)などが挙げられる。織布や不織布を構成する繊維としては、ポリオレフィンなどのポリマー繊維、セルロース繊維、ガラス繊維などが挙げられる。これらの材料が併用されていてもよい。
 セパレータ13の厚みは、例えば10μm~300μmである。セパレータ13の厚みは、微多孔膜の場合には、例えば10μm~40μmであり、織布や不織布の場合には、例えば、100μm~300μmである。
(電解液)
 電気化学デバイス100は、電解液を含む。電解液は、カチオンとアニオンとを含む。カチオンは、少なくともリチウムイオンを含むことが好ましい。リチウムイオンを含む電解液は、リチウムイオン伝導性を有する。このような電解液としては、例えば、リチウム塩と、リチウム塩を溶解させる非水溶媒とを含む非水電解液が好ましい。このとき、リチウム塩のアニオンは、正極11へのドープと脱ドープとを、可逆的に繰り返すことが可能である。一方、カチオン(好ましくはリチウム塩に由来するリチウムイオン)は、可逆的に負極12に吸蔵および放出される。
 リチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiFSO3、LiCF3CO2、LiAsF6、LiB10Cl10、LiCl、LiBr、LiI、LiBCl4、LiN(FSO22、LiN(CF3SO22などが挙げられる。これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。なかでも、アニオンとして好適なハロゲン原子を含むオキソ酸アニオンを有するリチウム塩およびイミドアニオンを有するリチウム塩よりなる群から選択される少なくとも1種を用いることが望ましい。
 カチオンは、少なくともリチウムイオン(第1カチオン)を含むことが好ましく、リチウムイオンと、リチウムイオン以外のカチオン(第2カチオン)とを含んでもよい。第2カチオンとしては、例えば、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオンなどのリチウムイオン以外の無機カチオンの他、有機カチオンなども挙げられる。電解液は、一種の第2カチオンを含んでもよく、二種以上の第2カチオンを含んでもよい。
 充電状態(SOC90~100%)における電解液中のリチウム塩の濃度は、例えば、0.2mol/L~5mol/Lである。
 非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル、γ-ブチロラクトン、γ-バレロラクトンなどのラクトン類、1,2-ジメトキシエタン、1,2-ジエトキシエタン、エトキシメトキシエタンなどの鎖状エーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピオニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、スルホラン、メチルスルホラン、1,3-プロパンサルトンなどを用いることができる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解液は、必要に応じて添加剤を含んでもよい。添加剤としては、例えば、不飽和カーボネートが挙げられる。不飽和カーボネートとしては、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートなどが挙げられる。
[電気化学デバイスの製造方法]
 以下、本開示に係る電気化学デバイス100の製造方法の一例について、図2~図4を参照しながら説明する。ただし、本開示に係る電気化学デバイス100の製造方法はこれに限定されるものではない。
 上記の電気化学デバイス100は、例えば、正極11と負極12とセパレータ13とを巻回して巻回素子10を形成するステップと、巻回素子10と電解液とを封止するステップと、を備える製造方法により製造できる。正極11、負極12およびセパレータ13のそれぞれは、例えば、巻回素子10を形成するステップに先立ってそれぞれ準備される。電解液は、例えば、封止ステップに先立って調製される。封止は、巻回素子10と電解液とを容器101内に収容し、容器101の開口を封口体102で塞ぐことにより行うことができる。
 正極11は、例えば、正極集電体上に正極材料を担持させることにより準備することができる。正極集電体には、上述のようにシート状の金属材料が用いられるが、必要に応じて、親水性処理などの表面処理を行ってもよい。正極11が、カーボン層を含む場合には、正極集電体上にカーボン層を形成し、カーボン層を介して正極集電体上に正極材料を担持させる。カーボン層は、公知の手順で形成すればよい。カーボン層は、例えば、正極集電体上に導電性炭素材料を蒸着することにより形成してもよく、導電性炭素材料を含むカーボンペーストを正極集電体上に塗布し、塗膜を乾燥することで形成してもよい。カーボンペーストは、例えば、導電性炭素材料と、高分子材料と、液体媒体とを含む。
 正極材料は、例えば、正極集電体(または正極集電体とカーボン層との積層体)を、導電性高分子の原料モノマーを含む反応液に浸漬し、原料モノマーを電解重合または化学重合することにより正極集電体上に担持される。電解重合では、正極集電体をアノードとして重合が行われる。このようにして、導電性高分子を含む正極材料は、正極集電体やカーボン層の表面を覆うように形成される。正極材料は、電解重合や化学重合以外の方法で形成してもよい。例えば、正極材料は、導電性高分子が溶解した溶液、または、導電性高分子が分散した分散液を、正極集電体またはカーボン層に接触させることにより、正極集電体上に担持させてもよい。
 電解重合または化学重合で用いられる原料モノマーは、重合により導電性高分子を生成可能な重合性化合物であればよい。原料モノマーは、オリゴマーを含んでもよい。原料モノマーとしては、例えばアニリン、ピロール、チオフェン、フラン、チオフェンビニレン、ピリジンまたはこれらの置換体が用いられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。正極集電体やカーボン層の表面に正極材料が担持され易い点で、原料モノマーはアニリンであることが好ましい。
 電解重合または化学重合は、アニオン(ドーパント)を含む反応液を用いて行うことが望ましい。導電性高分子の分散液や溶液もまた、ドーパントを含むことが望ましい。π電子共役系高分子は、ドーパントをドープすることで、優れた導電性を発現する。例えば、化学重合では、ドーパントと酸化剤と原料モノマーとを含む反応液に、正極集電体(または正極集電体とカーボン層との積層体)を浸漬し、その後、反応液から引き揚げて乾燥させればよい。また、電解重合では、ドーパントと原料モノマーとを含む反応液に、正極集電体(または正極集電体とカーボン層との積層体)とを浸漬し、正極集電体をアノードとし、対向電極をカソードとして、両者の間に電流を流せばよい。
 反応液の溶媒には、水を用いてもよいが、モノマーの溶解度を考慮して非水溶媒を用いてもよい。非水溶媒としては、エチルアルコール、メチルアルコール、イソプロピルアルコール、エチレングリコール、ポロプレングリコールなどアルコール類などを用いることが望ましい。導電性高分子の分散媒あるいは溶媒としても、水や上記非水溶媒が挙げられる。
 なお、正極材料の正極集電体への担持は、用いられる酸化剤やドーパントの影響により、通常、酸性雰囲気下で行われる。
 形成される正極材料層の厚みは、例えば、重合時間を調節することにより制御できる。電解重合では、電解の電流密度を調節することによっても、層の厚みを制御することができる。導電性高分子を含む溶液や分散液を用いる場合には、これらの液体中の導電性高分子の濃度を調節したり、液体を正極集電体やカーボン層に接触させる回数を調節したりすることにより正極材料層の厚みを制御することができる。
 負極12は、例えば、第1材料(および必要に応じて第2材料)と、導電剤および結着剤などとを、分散媒とともに混合して負極合剤ペーストを調製し、負極合剤ペーストを負極集電体に塗布した後、乾燥することにより形成される。
 正極11の準備ステップでは、正極11には、リード部材(リード線104Aを備えるリードタブ105A)が接続される。負極12の準備ステップでは、負極12に他のリード部材(リード線104Bを備えるリードタブ105B)が接続される。
 巻回素子10を形成するステップでは、リード部材が接続された正極11と負極12との間にセパレータ13を介在させて巻回することにより、図2に示すような、一端面よりリード部材が露出する巻回素子10を得る。巻回素子10の最外周を、巻止めテープ14で固定する。
 封止ステップでは、まず、図1に示すように、巻回素子10を、電解液(図示せず)とともに、開口を有する有底円筒形の容器101に収容する。封口体102からリード線104A、104Bを導出する。容器101の開口に封口体102を配置し、容器101を封口する。具体的には、容器101の開口端近傍を内側に絞り加工し、開口端を封口体102にかしめるようにカール加工する。封口体102は、例えば、ゴム成分を含む弾性材料で形成されている。
 上記の実施形態では、円筒形状の巻回型の電気化学デバイスについて説明したが、本開示の適用範囲は上記に限定されず、角形形状の巻回型の電気化学デバイスにも適用することができる。
[実施例]
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
(実施例1~8および比較例1)
(1)正極の作製
 厚さ30μmのアルミニウム箔を正極集電体として準備した。一方、アニリンおよび硫酸を含むアニリン水溶液を準備した。
 カーボンブラック11質量部およびポリプロピレン樹脂粒子7質量部を混合した混合粉末と、水とを混錬して、カーボンペーストを調製した。得られたカーボンペーストを、正極集電体の裏表の全面に塗布した後、加熱により乾燥して、カーボン層を形成した。カーボン層の厚さは、片面あたり2μmであった。
 カーボン層が形成された正極集電体と対向電極とを、アニリン水溶液に浸漬し、10mA/cm2の電流密度で20分間、電解重合を行ない、硫酸イオン(SO 2-)がドープされた導電性高分子(ポリアニリン)の膜を、正極集電体の裏表のカーボン層上に付着させた。
 硫酸イオンがドープされた導電性高分子を還元し、ドープされていた硫酸イオンを脱ドープした。こうして、硫酸イオンが脱ドープされた導電性高分子を含む正極材料層を形成した。次いで、正極材料層を十分に洗浄し、その後、乾燥を行なった。正極材料層の厚さは、片面あたり35μmであった。
(2)負極の作製
 厚さ20μmの銅箔を負極集電体として準備した。一方、負極活物質(SiO(第1材料)および人造黒鉛の総量)97質量部と、カルボキシセルロース1質量部と、スチレンブタジエンゴム2質量部とを混合した混合粉末と、所定量の水とを混錬した負極合剤ペーストを調製した。SiOと人造黒鉛との質量比は、負極材料(固形分)中の第1材料の比率(質量%)が表1に示す値となるように調節した。
 負極合剤ペーストを負極集電体の両面に塗布し、乾燥して、厚さ35μmの負極材料層を両面に有する負極を得た。次に、負極材料層に、プレドープ完了後の電解液中での負極電位が金属リチウムに対して0.2V以下となるように計算された分量の金属リチウム箔を貼り付けた。
(3)巻回素子の作製
 正極と負極にそれぞれリードタブを接続した後、図2および図4に示すように、セルロース製不織布のセパレータ(厚さ35μm)と、正極と、セルロース製不織布のセパレータ(厚さ35μm)と、負極とを、この順序で重ね合わせた積層体を巻回して、巻回素子を形成した。正極と負極とセパレータとを積層する際には、第1領域の長さL1および第2領域の長さL2が、表1に示す値となるように負極の長さを調節した。ただし、最内周側および/または最外周側の電極が正極である場合には、正極の、負極と対向しない領域の長さを、表1のL1および/またはL2の欄に記載した。
(4)電解液の調製
 プロピレンカーボネートとジメチルカーボネートとの体積比1:1の混合物に、ビニレンカーボネートを0.2質量%添加して、溶媒を調製した。得られた溶媒にリチウム塩としてLiPF6を所定濃度で溶解させて、カチオンとしてリチウムイオンを、アニオンとしてヘキサフルオロ燐酸イオン(PF )を、それぞれ含む非水電解液を調製した。
(5)電気化学デバイスの作製
 開口を有する有底の容器に、巻回素子と電解液とを収容し、図1に示すような電気化学デバイスを組み立てた。その後、正極と負極との端子間に3.8Vの充電電圧を印加しながら25℃で24時間エージングし、リチウムイオンの負極へのプレドープを進行させた。
(評価)
 得られた電気化学デバイスについて、下記の評価を行った。
 電気化学デバイスを3.8Vの電圧で充電した後、5.0Aの電流で2.5Vまで放電した。途中3.3Vから3.0Vに低下する間に流れた放電電荷量(A・s)を電圧変化ΔV(=0.3V)で除算し、初期容量C(F)とした。
 上記の充電と放電からなるサイクルを100000回繰り返した。100000サイクル目における容量Cを初期容量Cと同様にして求め、初期容量Cに対する、100000サイクル目の容量Cの割合(%)を、容量維持率として求め、サイクル特性の指標とした。容量維持率Rは、R=C/C×100により算出した。
(参考例1)
 負極活物質として人造黒鉛のみを用いたこと以外は、実施例1と同様にして、負極および電気化学デバイスを作製し、評価を行った。
 評価結果を表1に示す。実施例1~8は、A1~A8であり、比較例1はB1であり、参考例1は、R1である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、負極がSiOを含まないR1では、88%の高いサイクル特性が得られる。一方、負極がSiOを含む場合に、最外周側および最内周側の電極を正極とすると、サイクル特性は40%にまで大きく低下する(B1)。それに対し、負極がSiOを含む場合に、最外周側および/または最内周側の電極を負極とすることで、A1~A8では、60~90%と高いサイクル特性が確保できている。また、A1~A8では、1200F以上の高い容量が得られる。
(実施例9~11)
 負極材料中の第1材料の比率を11質量%に変更した。実施例10~11では、さらにL1およびL2が表2に示す値となるように負極の長さを調節した。これら以外は、実施例1と同様にして、負極および電気化学デバイスを作製し、評価を行った。
 評価結果を表2に示す。実施例9~11は、A9~A11である。表2には、A1~A3、B1、およびR1の結果も合わせて示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、A9~A11でも、高い容量が確保できるとともに、B1よりも高いサイクル特性が得られた。より高いサイクル特性を確保する観点からは、負極材料中の第1材料の比率を、10質量%以下とすることが好ましい。
(実施例12および13)
 L1およびL2が、表3に示す値となるように負極の長さを調節したこと以外は、実施例2と同様にして負極および電気化学デバイスを作製し、評価を行った。
 評価結果を表3に示す。実施例12および13は、A12およびA13である。表3には、A2、A4~A6、B1、およびR1の結果も合わせて示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、A12およびA13でも、高い容量が確保できるとともに、B1よりも高いサイクル特性が得られた。より高いサイクル特性を確保する観点からは、L1および/またはL2を、5mm以上とすることが好ましい。なお、L1およびL2の一方が3mmの場合でも、他方を大きく(例えば、5mm以上や10mm以上)とすれば、A13よりも高いサイクル特性を確保できる。
 高容量を確保し易い観点からは、L1および/またはL2を20mm以下とすることが好ましい。
 本開示に係る電気化学デバイスでは、優れたサイクル特性が得られる。よって、高いサイクル特性が求められる各種電気化学デバイス、特にバックアップ用電源として好適である。
 10:巻回素子
  11:正極
  12:負極
   12a:負極の最内周側の端部
   12b:負極の最外周側の端部
  13:セパレータ
  14:巻止めテープ
 100:電気化学デバイス
  101:容器
  102:封口体
  104A、104B:リード線
  105A、105B:リードタブ
 A1:第1領域
 A2:第2領域
 L1:第1領域の長さ
 L2:第2領域の長さ

Claims (8)

  1.  正極材料を含む正極と、負極材料を含む負極と、前記正極および前記負極の間に介在するセパレータと、が巻回された巻回素子、ならびに電解液を備え、
     前記電解液は、カチオンとアニオンとを含み、
     前記正極材料は、充放電により前記アニオンをドープおよび脱ドープする導電性高分子を含み、
     前記負極材料は、充放電により前記カチオンを吸蔵および放出する負極活物質を含み、
     前記負極活物質は、SiOx(0<x<2)を含み、
     前記巻回素子の最内周側の電極および最外周側の電極の少なくとも一方は、前記負極である、電気化学デバイス。
  2.  少なくとも前記最内周側の電極は、前記負極である、請求項1に記載の電気化学デバイス。
  3.  前記最内周側において、前記負極の前記正極と対向しない領域の長さL1は、5mm以上20mm以下である、請求項2に記載の電気化学デバイス。
  4.  前記最外周側の電極は、前記負極であり、
     前記最外周側において、前記負極の前記正極と対向しない領域の長さL2は、5mm以上20mm以下である、請求項1~3のいずれか1項に記載の電気化学デバイス。
  5.  前記負極材料中のSiOxの比率は、0.5質量%以上10質量%以下である、請求項1~4のいずれか1項に記載の電気化学デバイス。
  6.  前記xは、0.5≦x≦1.5を充足する、請求項1~5のいずれか1項に記載の電気化学デバイス。
  7.  前記負極材料は、さらに黒鉛を含む請求項1~6のいずれか1項に記載の電気化学デバイス。
  8.  前記導電性高分子は、ポリアニリン類を含む、請求項1~7のいずれか1項に記載の電気化学デバイス。
PCT/JP2019/012024 2018-03-30 2019-03-22 電気化学デバイス WO2019188759A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509947A JP7382549B2 (ja) 2018-03-30 2019-03-22 電気化学デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068153 2018-03-30
JP2018068153 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019188759A1 true WO2019188759A1 (ja) 2019-10-03

Family

ID=68061677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012024 WO2019188759A1 (ja) 2018-03-30 2019-03-22 電気化学デバイス

Country Status (2)

Country Link
JP (1) JP7382549B2 (ja)
WO (1) WO2019188759A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318070A (ja) * 2002-04-25 2003-11-07 Nissan Diesel Motor Co Ltd 電気二重層キャパシタ
JP2007201118A (ja) * 2006-01-26 2007-08-09 Matsushita Electric Ind Co Ltd 巻回形電気二重層コンデンサ
JP2014035836A (ja) * 2012-08-07 2014-02-24 Nitto Denko Corp 非水電解液二次電池およびその製造方法
WO2018003992A1 (ja) * 2016-07-01 2018-01-04 セントラル硝子株式会社 非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318070A (ja) * 2002-04-25 2003-11-07 Nissan Diesel Motor Co Ltd 電気二重層キャパシタ
JP2007201118A (ja) * 2006-01-26 2007-08-09 Matsushita Electric Ind Co Ltd 巻回形電気二重層コンデンサ
JP2014035836A (ja) * 2012-08-07 2014-02-24 Nitto Denko Corp 非水電解液二次電池およびその製造方法
WO2018003992A1 (ja) * 2016-07-01 2018-01-04 セントラル硝子株式会社 非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池

Also Published As

Publication number Publication date
JPWO2019188759A1 (ja) 2021-04-08
JP7382549B2 (ja) 2023-11-17

Similar Documents

Publication Publication Date Title
JP6814945B2 (ja) 電気化学デバイスおよびその製造方法
JP7045616B2 (ja) 電気化学デバイス用正極および電気化学デバイス、ならびにこれらの製造方法
JP6854403B2 (ja) 電気化学デバイス用正極活物質、電気化学デバイス用正極および電気化学デバイスならびに電気化学デバイス用正極活物質の製造方法
JP6865355B2 (ja) 電気化学デバイスおよびこれに用いる負極とその製造方法
JP7407350B2 (ja) 電気化学デバイス
JP7033700B2 (ja) 電気化学デバイス
WO2018181441A1 (ja) 電気化学デバイス用正極およびそれを備える電気化学デバイス
WO2019188759A1 (ja) 電気化学デバイス
WO2019188760A1 (ja) 電気化学デバイス
US10867754B2 (en) Electrochemical device
WO2021200779A1 (ja) 電気化学デバイス
WO2020262440A1 (ja) 電気化学デバイス
WO2022004166A1 (ja) 電気化学デバイス
JP7203303B2 (ja) 電気化学デバイス用正極およびそれを備える電気化学デバイス
WO2021200778A1 (ja) 電気化学デバイス
WO2019188757A1 (ja) 電気化学デバイス
WO2020045375A1 (ja) 電気化学デバイス
WO2018143049A1 (ja) 電気化学デバイス
JPWO2019188758A1 (ja) 電気化学デバイスおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509947

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19776344

Country of ref document: EP

Kind code of ref document: A1