JP6868969B2 - 非水系二次電池とそれに用いられる非水系電解液 - Google Patents

非水系二次電池とそれに用いられる非水系電解液 Download PDF

Info

Publication number
JP6868969B2
JP6868969B2 JP2016076051A JP2016076051A JP6868969B2 JP 6868969 B2 JP6868969 B2 JP 6868969B2 JP 2016076051 A JP2016076051 A JP 2016076051A JP 2016076051 A JP2016076051 A JP 2016076051A JP 6868969 B2 JP6868969 B2 JP 6868969B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous
secondary battery
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016076051A
Other languages
English (en)
Other versions
JP2017188299A (ja
Inventor
松岡 直樹
直樹 松岡
佐和子 仁科
佐和子 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2016076051A priority Critical patent/JP6868969B2/ja
Publication of JP2017188299A publication Critical patent/JP2017188299A/ja
Application granted granted Critical
Publication of JP6868969B2 publication Critical patent/JP6868969B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水系二次電池とそれに用いられる非水系電解液に関する。
リチウムイオン二次電池をはじめとする非水系二次電池は、軽量、高エネルギー及び長寿命であることが大きな特徴であり、各種携帯用電子機器電源として広範囲に用いられている。近年では、非水系二次電池は、電動工具等のパワーツールに代表される産業用機器への適用、及び電気自動車、電動式自転車等における車載用電池として広がりを見せている。更には、非水系二次電池は、住宅用蓄電システム等の電力貯蔵分野において注目度が高まっている。
常温作動型のリチウムイオン二次電池の電解液は、比誘電率が高く、粘度が低いことが好ましいが、高誘電率であると粘度も高くなる傾向がある。したがって、高誘電率及び高粘度を有する溶媒を別の低粘度溶媒と混合して、電解液の粘度を低下させて用いる必要がある。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状炭酸エステルは、高誘電率であるが、粘度が高いので、低級鎖状炭酸エステル等の低粘性溶媒と混合して電解液とするのが一般的である。これらの高誘電率溶媒は、融点が高いことの他、非水系電解液に用いる電解質塩の種類によっては非水系電解液の負荷特性(出力特性)及び低温特性を劣化させる要因にもなり得る。
このような問題を克服する溶媒の1つとして、粘度と比誘電率とのバランスに優れたニトリル系溶媒が提案されている。中でもアセトニトリルは、リチウムイオン二次電池の電解液に用いる溶媒として高いポテンシャルを有する。しかしながら、アセトニトリルは負極で電気化学的に還元分解するという致命的な欠点があるため、実用性能を発揮することができていなかった。この問題に対して、幾つかの改善策が提案されている。
これまでに提案されている改善策のうち主なものは、以下の3つに分類される。
(1)特定の電解質塩、添加剤等との組み合わせによって負極を保護し、アセトニトリルの還元分解を抑制する方法
例えば、特許文献1及び2には、溶媒であるアセトニトリルを特定の電解質塩及び添加剤と組み合わせることによって、アセトニトリルの還元分解の影響を低減した電解液が報告されている。なお、リチウムイオン二次電池の黎明期には、特許文献3のように、アセトニトリルをプロピレンカーボネート及びエチレンカーボネートで希釈しただけの溶媒を含む電解液も報告されている。しかしながら、特許文献3では、高温耐久性能について高温保存後の内部抵抗及び電池厚みのみの評価により判定しているため、高温環境下に置かれた場合に実際に電池として作動するか否かという情報は開示されていない。単純にエチレンカーボネート及びプロピレンカーボネートで希釈するだけの措置によってアセトニトリルをベースとする溶媒を含む電解液の還元分解を抑制することは、実際には至難の業である。溶媒の還元分解の抑制方法としては、特許文献1及び2のように、複数の電解質塩及び添加剤を組み合わせる方法が現実的である。
(2)アセトニトリルの還元電位よりも貴な電位でリチウムイオンを吸蔵する負極活物質を用いることによって、アセトニトリルの還元分解を抑制する方法
例えば、特許文献4には、負極に特定の金属化合物を用いることにより、アセトニトリルの還元分解を回避した電池を得ることができると報告されている。ただし、リチウムイオン二次電池のエネルギー密度を重視する用途においては、アセトニトリルの還元電位よりも卑な電位でリチウムイオンを吸蔵する負極活物質を用いる方が電位差の観点から圧倒的に有利となる。そのため、そのような用途において特許文献4の改善策を適用すると、使用可能な電圧の範囲が狭くなるため、不利である。
(3)高濃度の電解質塩をアセトニトリルに溶解させて安定な液体状態を維持する方法
例えば、特許文献5には、濃度が4.2mol/Lとなるようにリチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF)をアセトニトリルに溶解させた電解液を用いると、黒鉛電極への可逆的なリチウム挿入脱離が可能であることが記載されている。また、特許文献6には、濃度が4.5mol/Lとなるようにリチウムビス(フルオロスルホニル)イミド(LiN(SOF))をアセトニトリルに溶解させた電解液を用いたセルに対して充放電測定を行った結果、黒鉛へのLi挿入脱離反応が観察され、更に、ハイレートで放電可能であることが報告されている。
国際公開第2012/057311号 国際公開第2013/062056号 特開平4−351860号公報 特開2009−21134号公報 国際公開第2013/146714号 特開2014−241198号公報
しかしながら、アセトニトリルを含有する電解液を用いたリチウムイオン二次電池は、カーボネート溶媒を含有する電解液を用いた既存のリチウムイオン二次電池と比較して高温耐久性能に劣っており、市販品レベルに達していないことから、未だ本格的な実用化には至っていない。
各種検証実験の結果から、アセトニトリル系リチウムイオン二次電池が高温耐久性能に劣る理由は以下のように考察される。
高温環境下において、フッ素含有無機リチウム塩がアセトニトリルのメチル基から水素を引き抜きながら分解し、その分解生成物が正極遷移金属の溶出を促進する。この溶出金属にアセトニトリルが配位した錯体カチオンは化学的に安定であり、該安定錯体カチオンの酸化還元反応が自己放電の要因となっている可能性がある。解体解析の結果に裏付けされたこれらの現象は、本発明者らによって新たに判明した課題であり、特許文献1〜6には一切記載されていない。
本発明は、上述の事情に鑑みてなされたものである。従って本発明は、粘度と比誘電率とのバランスに優れたアセトニトリルを用いる非水系二次電池において、遷移金属とアセトニトリルとから成る錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、高温貯蔵時の自己放電を抑制することができる非水系二次電池を提供することを目的とする。
本発明者らは、上述の課題を解決するために鋭意研究を重ねた。その結果、非水系二次電池内部に、ピリジン環構造を有するポリマーを存在させて、アセトニトリルを含有する非水系電解液と接触させることにより、遷移金属とアセトニトリルとから成る錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、高温貯蔵時の自己放電を抑制することができることを見出し、本発明を完成するに至った。
すなわち、本発明は以下のとおりである。
[1]
正極集電体の片面又は両面に、Ni、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有する正極活物質層を有する正極と、
負極集電体の片面又は両面に負極活物質層を有する負極と、
非水系電解液と、
を具備する非水系二次電池であって、
前記非水系電解液は、アセトニトリルを30〜100体積%含む非水系溶媒と、フッ素含有無機リチウム塩とを含有し、かつ
前記非水系二次電池の内部に、ピリジン環を有するポリマーが存在する、
前記非水系二次電池。
[2]
前記フッ素含有無機リチウム塩が、LiPFを含有する、[1]に記載の非水系二次電池。
[3]
前記ポリマーの前記ピリジン環由来のN原子の重量割合が、前記非水系二次電池中に存在する前記非水系電解液の全重量に対して、0.002〜2重量%である、[1]又は[2]に記載の非水系二次電池。
[4]
前記ポリマーが、前記非水系電解液中、前記正極の表面若しくは内部、又は前記負極の表面若しくは内部に存在している、[1]〜[3]のいずれか1項に記載の非水系二次電池。
[5]
前記非水系二次電池がセパレータをさらに具備し、かつ前記ポリマーが、前記セパレータの表面又は内部に存在している、[1]〜[3]のいずれか1項に記載の非水系二次電池。
[6]
前記ポリマーが、前記セパレータの前記正極側の表面に存在している、[5]に記載の非水系二次電池。
[7]
前記ポリマーが、前記正極の表面又は内部に存在している、[4]に記載の非水系二次電池。
[8]
アセトニトリルを非水系溶媒の全体積に対して30〜100体積%含む前記非水系溶媒と;
フッ素含有無機リチウム塩としてLiPFと;
非水系電解液の全質量に対して0.01〜10質量%の、ピリジン環を有するポリマーと;
を含む前記非水系電解液。
本発明によれば、粘度と比誘電率とのバランスに優れたアセトニトリル電解液を用いた二次電池において、遷移金属とアセトニトリルとから成る錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、高温貯蔵時の自己放電が抑制された非水系二次電池を提供することができる。
本実施形態に係る非水系二次電池の一例を概略的に示す平面図である。 図1の非水系二次電池のA−A線断面図である。
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。本明細書において「〜」を用いて記載される数値範囲は、その前後に記載される数値を含むものである。
<1.非水系二次電池の全体構成>
本実施形態に係る非水系二次電池は、以下の:
正極活物質として、リチウムイオンを吸蔵及び放出することが可能な正極材料を含有する正極と、
負極活物質として、リチウムイオンを吸蔵及び放出することが可能な負極材料、並びに金属リチウムから成る群より選ばれる1種以上の負極材料を含有する負極と、
電解液と、
を備える。
本実施形態に係る非水系二次電池としては、具体的には、図1及び2に図示される非水系二次電池であってもよい。ここで、図1は非水系二次電池を概略的に表す平面図であり、図2は図1のA−A線断面図である。
非水系二次電池8は、2枚のアルミニウムラミネートフィルム1で構成した電池外装2内に、正極5及び負極6をセパレータ7を介して積層して構成した積層電極体と、非水系電解液(図示せず)とを収容している。電池外装2は、その外周部において、上下のアルミニウムラミネートフィルム1を熱融着することにより封止されている。正極5、セパレータ7、及び負極6を順に積層した積層体には、非水系電解液が含浸されている。なお、図2では、図面が煩雑になることを避けるために、電池外装2を構成している各層、並びに正極5及び負極6の各層を区別して示していない。
電池外装2を構成しているアルミニウムラミネートフィルム1は、アルミニウム箔の両面をポリオレフィン系の樹脂でコートしたものであることが好ましい。
正極5は、電池内で正極リード体3と接続している。図示していないが、負極6も、電池8内で負極リード体4と接続している。そして、正極リード体3及び負極リード体4は、それぞれ、外部の機器等と接続可能なように、片端側が電池外装2の外側に引き出されており、それらのアイオノマー部分が、電池装2の一辺と共に熱融着されている。
図1及び2に図示される非水系二次電池8は、正極5及び負極6が、それぞれ1枚ずつの積層電極体を有しているが、容量設計により正極5及び負極6の積層枚数を適宜増やすことができる。正極5及び負極6をそれぞれ複数枚有する積層電極体の場合には、同一極のタブ同士を溶接等により接合したうえで1つのリード体に溶接等により接合して電池外部に取り出してもよい。上記同一極のタブとしては、集電体の露出部から構成される態様、集電体の露出部に金属片を溶接して構成される態様等が可能である。
正極5は、正極合剤から作製した正極活物質層と、正極集電体とから構成される。負極6は、負極合剤から作製した負極活物質層と、負極集電体とから構成される。正極5及び負極6は、セパレータ7を介して正極活物質層と負極活物質層とが対向するように配置される。
以下、正極及び負極の総称として「電極」、正極活物質層及び負極活物質層の総称として「電極活物質層」、正極合剤及び負極合剤の総称として「電極合剤」とも略記する。
これらの各部材としては、本実施形態における各要件を満たしていれば、従来のリチウムイオン二次電池に備えられる材料を用いることができ、例えば後述の材料であってもよい。以下、非水系二次電池の各部材について詳細に説明する。
<2.電解液>
本実施形態における電解液は、アセトニトリルを30〜100体積%含有する非水系溶媒(以下、単に「溶媒」ともいう。)と、フッ素含有無機リチウム塩を含む。フッ素含有無機リチウム塩は、イオン伝導度に優れるものの、熱安定性が十分でないうえ、溶媒中の微量水分により加水分解し易く、フッ化リチウム及びフッ化水素を発生し易い性質を有する。フッ素含有無機リチウム塩が分解すると、該フッ素含有無機リチウム塩を含有する電解液のイオン伝導度が低下するとともに、生成したフッ化リチウム及びフッ化水素が、電極、集電体等の材料を腐食し、或いは溶媒を分解する等の、電池に致命的な悪影響を及ぼす場合がある。
本実施形態における電解液は、水分を含まないことが好ましいが、本発明の課題解決を阻害しない範囲であれば、ごく微量の水分を含有してもよい。そのような水分の含有量は、電解液の全量に対して、好ましくは0〜100ppmである。
<2−1.非水系溶媒>
アセトニトリルはイオン伝導性が高く、電池内におけるリチウムイオンの拡散性を高めることができる。そのため、電解液がアセトニトリルを含有する場合には、特に正極活物質層を厚くして正極活物質の充填量を高めた正極においても、高負荷での放電時にはリチウムイオンが到達し難い集電体近傍の領域にまで、リチウムイオンが良好に拡散できるようになる。よって、高負荷放電時にも十分な容量を引き出すことが可能となり、負荷特性に優れた非水系二次電池とすることができる。
また、非水系電解液の非水系溶媒にアセトニトリルを用いることにより、前記のとおり、非水系電解液のイオン伝導性が向上することから、非水系二次電池の急速充電特性を高めることもできる。非水系二次電池の定電流(CC)−定電圧(CV)充電では、CV充電期間における単位時間当たりの充電容量よりも、CC充電期間における単位時間当たりの容量の方が大きい。非水系電解液の非水系溶媒にアセトニトリルを使用した場合には、CC充電できる領域を大きく(CC充電の時間を長く)でき、また、充電電流を高め得るため、非水系二次電池の充電開始から満充電状態にするまでの時間を大幅に短縮できる。
非水系溶媒としては、アセトニトリルを非水系溶媒の全体積に対して30〜100体積%含んでいれば特に制限はなく、その他の非水系溶媒を含んでもよいし含んでいなくてもよい。
なお、本実施形態でいう「非水系溶媒」とは、アセトニトリルと、それ以外の有機溶媒と、後述する、液状の電極保護用添加剤を含んでいる場合には、その添加剤との混合液体を称する。従って固形分であるリチウム塩及びピリジン環を含有するポリマーは、非水系溶媒には該当しない。
アセトニトリル以外で非水系溶媒に用いられる有機溶媒としては、例えば、メタノール、エタノール等のアルコール類;非プロトン性溶媒等が挙げられる。中でも、非プロトン性極性溶媒が好ましい。
非プロトン性溶媒の具体例としては、例えば:
エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、トランス−2,3−ブチレンカーボネート、シス−2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、トランス−2,3−ペンチレンカーボネート、シス−2,3−ペンチレンカーボネート、及びビニレンカーボネートに代表される環状カーボネート;
フルオロエチレンカーボネート、1,2−ジフルオロエチレンカーボネート、及びトリフルオロメチルエチレンカーボネートに代表される環状フッ素化カーボネート;
γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、δ−バレロラクトン、δ−カプロラクトン、及びε−カプロラクトンに代表されるラクトン;
スルホラン、ジメチルスルホキシド、及びエチレングリコールサルファイトに代表される硫黄化合物;
テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、及び1,3−ジオキサンに代表される環状エーテル;
エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート、及びメチルトリフルオロエチルカーボネートに代表される鎖状カーボネート;
トリフルオロジメチルカーボネート、トリフルオロジエチルカーボネート、及びトリフルオロエチルメチルカーボネートに代表される鎖状フッ素化カーボネート;
プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、及びアクリロニトリルに代表されるモノニトリル;
メトキシアセトニトリル及び3−メトキシプロピオニトリルに代表されるアルコキシ基置換ニトリル;マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、1,4−ジシアノヘプタン、1,5−ジシアノペンタン、1,6−ジシアノヘキサン、1,7−ジシアノヘプタン、2,6−ジシアノヘプタン、1,8−ジシアノオクタン、2,7−ジシアノオクタン、1,9−ジシアノノナン、2,8−ジシアノノナン、1,10−ジシアノデカン、1,6−ジシアノデカン、及び2,4−ジメチルグルタロニトリルに代表されるジニトリル;
ベンゾニトリルに代表される環状ニトリル;
プロピオン酸メチルに代表される鎖状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、及びテトラグライムに代表される鎖状エーテル;
Rf−O−R(式中、Rfはフッ素を含有するアルキル基であり、Rはフッ素を含有してもよい有機基である)に代表されるフッ素化エーテル;
アセトン、メチルエチルケトン、及びメチルイソブチルケトンに代表されるケトン類;
及び、これらの有機化合物の部分フッ素化物、又は全フッ素化物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
これらの有機溶媒の中でも、環状カーボネート及び鎖状カーボネートのうちの1種以上をアセトニトリルと共に使用することがより好ましい。ここで、環状カーボネート及び鎖状カーボネートとして前記に例示したもののうちの1種のみを選択して使用していてもよく、2種以上(例えば、前記例示の環状カーボネートのうちの2種以上、前記例示の鎖状カーボネートのうちの2種以上、又は前記例示の環状カーボネートのうちの1種以上及び前記例示の鎖状カーボネートのうちの1種以上から成る2種以上)を使用してもよい。これらの中でも、環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、又はフルオロエチレンカーボネートがより好ましく、鎖状カーボネートとしてはエチルメチルカーボネート、ジメチルカーボネート、又はジエチルカーボネートがより好ましい。そして、環状カーボネートを使用することが更に好ましい。
アセトニトリルは電気化学的に還元分解され易い。そのため、アセトニトリルを、別の有機溶媒と混合すること、及び/又は、電極への保護皮膜形成のための電極保護用添加剤をアセトニトリルへ添加することが好ましい。また、非水系二次電池の充放電に寄与するリチウム塩の電離度を高めるために、本実施形態で用いられる非水系溶媒中には、環状の非プロトン性極性溶媒を1種以上含むことが好ましく、環状カーボネートを1種以上含むことがより好ましい。
アセトニトリルの含有量は、非水系溶媒の全体積に対して、30〜100体積%であり、35体積%以上であることがより好ましく、40体積%以上であることが更に好ましい。また、アセトニトリルの含有量は、85体積%以下であることがより好ましく、66体積%以下であることが更に好ましい。アセトニトリルの含有量が30体積%以上である場合、イオン伝導度が増大して高出力特性を発現できる傾向にあり、更に、リチウム塩の溶解を促進することができる。非水系溶媒中のアセトニトリルの含有量が上述の範囲内にある場合、アセトニトリルの優れた性能を維持しながら、貯蔵特性及びその他の電池特性を、一層良好なものとすることができる傾向にある。
<2−2.リチウム塩>
本実施形態におけるリチウム塩は、フッ素含有無機リチウム塩を含むことを特徴としている。ここで、「フッ素含有無機リチウム塩」とは、炭素原子をアニオンに含まず、フッ素原子をアニオンに含み、アセトニトリルに可溶なリチウム塩をいう。また、後述する「無機リチウム塩」とは、炭素原子をアニオンに含まず、アセトニトリルに可溶なリチウム塩をいい、「有機リチウム塩」とは、炭素原子をアニオンに含み、アセトニトリルに可溶なリチウム塩をいう。
本実施形態におけるフッ素含有無機リチウム塩は、正極集電体である金属箔の表面に不働態皮膜を形成し、正極集電体の腐食を抑制する。また、フッ素含有無機リチウム塩は、溶解性、伝導度、及び電離度という観点からも優れている。このため、フッ素含有無機リチウム塩は、リチウム塩として必ず加える必要がある。フッ素含有無機リチウム塩の具体例としては、例えば、LiPF、LiBF、LiAsF、LiSiF、LiSbF、Li1212−b〔式中、bは0〜3の整数である〕、LiN(SOF)等が挙げられる。
これらのフッ素含有無機リチウム塩は、1種を単独で又は2種以上を組み合わせて用いられる。フッ素含有無機リチウム塩として、LiFとルイス酸との複塩である化合物が望ましく、中でも、リン原子を有するフッ素含有無機リチウム塩を用いると、遊離のフッ素原子を放出し易くなることからより好ましく、LiPFが特に好ましい。また、フッ素含有無機リチウム塩として、ホウ素原子を有するフッ素含有無機リチウム塩を用いると、電池劣化を招くおそれのある過剰な遊離酸成分を捕捉し易くなることから好ましく、このような観点からはLiBFが特に好ましい。
本実施形態に係る電解液におけるフッ素含有無機リチウム塩の含有量については、特に制限はないが、非水系溶媒1Lに対して0.2mol以上であることが好ましく、0.5mol以上であることがより好ましく、0.8mol以上であることが更に好ましい。また、フッ素含有無機リチウム塩の含有量は、非水系溶媒1Lに対して15mol以下であることが好ましく、4mol以下であることがより好ましく、2.8mol以下であることが更に好ましい。フッ素含有無機リチウム塩の含有量が上述の範囲内にある場合、イオン伝導度が増大し高出力特性を発現できる傾向にあり、アセトニトリルの優れた性能を維持しながら、貯蔵特性及びその他の電池特性を一層良好なものとすることができる傾向にある。
本実施形態におけるリチウム塩として、フッ素含有無機リチウム塩以外に、一般に非水系二次電池用に用いられているリチウム塩を補助的に添加してもよい。
その他のリチウム塩の具体例としては、例えば:
LiClO、LiAlO、LiAlCl、LiB10Cl10、クロロボランLi等のフッ素原子をアニオンに含まない無機リチウム塩;
LiCFSO、LiCFCO、Li(SO、LiC(CFSO、LiC2n+1SO(式中、n≧2である)、低級脂肪族カルボン酸Li、四フェニルホウ酸Li等の有機リチウム塩;
LiN(SOCF、LiN(SO等のLiN(SO2m+1〔式中、mは1〜8の整数である〕で表される有機リチウム塩;
LiPF(CF)等のLiPF(C2p+16−n〔式中、nは1〜5の整数であり、かつpは1〜8の整数である〕で表される有機リチウム塩;
LiBF(CF)等のLiBF(C2s+14−q〔式中、qは1〜3の整数であり、かつsは1〜8の整数である〕で表される有機リチウム塩;
LiB(Cで表されるリチウムビス(オキサラト)ボレート(LiBOB);
ハロゲン化LiBOB;
LiBF(C)で表されるリチウムオキサラトジフルオロボレート(LiODFB);
LiB(Cで表されるリチウムビス(マロネート)ボレート(LiBMB);
LiPF(C)で表されるリチウムテトラフルオロオキサラトフォスフェート、LiPF(Cで表されるリチウムジフルオロビス(オキサラト)フォスフェート等の有機リチウム塩;
多価アニオンと結合されたリチウム塩;
下記一般式(2a)、(2b)、及び(2c):
LiC(SO)(SO)(SO) (2a)
LiN(SOOR)(SOOR10) (2b)
LiN(SO11)(SOOR12) (2c)
{式中、R、R、R、R、R10、R11、及びR12は、互いに同一であっても異なっていてもよく、炭素数1〜8のパーフルオロアルキル基を示す。}のそれぞれで表される有機リチウム塩等が挙げられ、これらのうちの1種又は2種以上を、フッ素含有無機リチウム塩と共に使用することができる。
非水系二次電池の負荷特性改善及び充放電サイクル特性改善のためには、シュウ酸基を有する有機リチウム塩を補助的に添加することが好ましく、LiB(C、LiBF(C)、LiPF(C)、及びLiPF(Cから成る群より選択される1種以上を添加することが特に好ましい。シュウ酸基を有する有機リチウム塩は、非水系電解液に添加する他、負極(負極活物質層)に含有させてもよい。
シュウ酸基を有する有機リチウム塩の非水系電解液への添加量は、その使用による効果をより良好に確保する観点から、非水系電解液の非水系溶媒1L当たりの量として、0.005モル以上であることが好ましく、0.02モル以上であることがより好ましく、0.05モル以上であることが更に好ましい。ただし、シュウ酸基を有する有機リチウム塩の非水系電解液中の量が多すぎると析出する恐れがある。よって、シュウ酸基を有する有機リチウム塩の非水系電解液への添加量は、非水系電解液の非水系溶媒1L当たりの量で、1.0モル未満であることが好ましく、0.5モル未満であることがより好ましく、0.2モル未満であることが更に好ましい。
<2−3.電極保護用添加剤>
本実施形態における電解液には、電極を保護する添加剤が含まれていてもよい。なお、上述したように、電解液が電極保護用添加剤を含む場合、該電極保護用添加剤は非水系溶媒に含まれるから、該電解液中には、電極保護用添加剤を含む非水系溶媒(上述の非水系溶媒と電極保護用添加剤との合計体積)に対して30〜100体積%のアセトニトリルが含まれていればよい。
電極保護用添加剤としては、本発明による課題解決を阻害しないものであれば特に制限はない。リチウム塩を溶解する溶媒としての役割を担う物質(すなわち上述の非水系溶媒)と実質的に重複してもよい。電極保護用添加剤は、本実施形態における電解液及び非水系二次電池の性能向上に寄与する物質であることが好ましいが、電気化学的な反応には直接関与しない物質をも包含する。
電極保護用添加剤の具体例としては、例えば:
4−フルオロ−1,3−ジオキソラン−2−オン、4,4−ジフルオロ−1,3−ジオキソラン−2−オン、シス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、トランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、4,4,5−トリフルオロ−1,3−ジオキソラン−2−オン、4,4,5,5−テトラフルオロ−1,3−ジオキソラン−2−オン、及び4,4,5−トリフルオロ−5−メチル−1,3−ジオキソラン−2−オンに代表されるフルオロエチレンカーボネート;
ビニレンカーボネート、4,5−ジメチルビニレンカーボネート、及びビニルエチレンカーボネートに代表される不飽和結合含有環状カーボネート;
γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、δ−バレロラクトン、δ−カプロラクトン、及びε−カプロラクトンに代表されるラクトン;
1,4−ジオキサンに代表される環状エーテル;
エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3−メチルスルホラン、1,3−プロパンスルトン、1,4−ブタンスルトン、及びテトラメチレンスルホキシドに代表される環状硫黄化合物;
が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
非水系溶媒の一成分であるアセトニトリルは電気化学的に還元分解され易いため、アセトニトリルを含む非水系溶媒は、負極への保護皮膜形成のための添加剤として環状の非プロトン性極性溶媒を1種以上含むことが好ましく、不飽和結合含有環状カーボネートを1種以上含むことがより好ましい。
本実施形態における電解液中の電極保護用添加剤の含有量については、特に制限はないが、非水系溶媒の全体積に対する電極保護用添加剤の含有量として、0.1〜30体積%であることが好ましく、2〜20体積%であることがより好ましく、5〜15体積%であることが更に好ましい。
本実施形態においては、電極保護用添加剤の含有量が多いほど電解液の劣化が抑えられるが、電極保護用添加剤の含有量が少ないほど非水系二次電池の低温環境下における高出力特性が向上することになる。従って、電極保護用添加剤の含有量を上述の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、電解液の高イオン伝導度に基づく優れた性能を最大限に発揮することができる傾向にある。このような組成で電解液を調製することにより、非水系二次電池のサイクル性能、低温環境下における高出力性能及びその他の電池特性の全てを一層良好なものとすることができる傾向にある。
<2−4.その他の任意的添加剤>
本実施形態においては、非水系二次電池の充放電サイクル特性の改善、高温貯蔵性、安全性の向上(例えば過充電防止等)等の目的で、非水系電解液に、例えば:
無水酸、スルホン酸エステル、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、tert−ブチルベンゼン;
リン酸エステル〔エチルジエチルホスホノアセテート(EDPA):(CO)(P=O)−CH(C=O)OC;リン酸トリス(トリフルオロエチル)(TFEP):(CFCHO)P=O、リン酸トリフェニル(TPP):(CO)P=O等〕等;及びこれらの各化合物の誘導体等から選択される任意的添加剤を、適宜含有させることもできる。特に、リン酸エステルは、貯蔵時の副反応を抑制する作用があり、効果的である。
<3.正極>
図2に示されるように、正極5は、正極合剤から作製した正極活物質層と、正極集電体とから構成される。正極5は、非水系二次電池の正極として作用するものであれば特に限定されず、公知のものであってもよい。
正極活物質層は、正極活物質を含有し、場合により導電助剤及びバインダーを更に含有する。
正極活物質層は、正極活物質として、リチウムイオンを吸蔵及び放出することが可能な材料を含有することが好ましい。正極活物質層は、正極活物質とともに、必要に応じて導電助剤及びバインダーを含有することが好ましい。このような材料を用いる場合、高電圧及び高エネルギー密度を得ることができる傾向にあるので好ましい。
正極活物質としては、例えば、下記一般式(3a)及び(3b):
LiMO (3a)
Li (3b)
{式中、Mは少なくとも1種の遷移金属元素を含む1種以上の金属元素を示し、xは0〜1.1の数を示し、yは0〜2の数を示す。}のそれぞれで表されるリチウム含有化合物、及びその他のリチウム含有化合物が挙げられる。
一般式(3a)及び(3b)のそれぞれで表されるリチウム含有化合物としては、例えば:
LiCoOに代表されるリチウムコバルト酸化物;
LiMnO、LiMn、及びLiMnに代表されるリチウムマンガン酸化物;
LiNiOに代表されるリチウムニッケル酸化物;
LiMO(式中、MはNi、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含み、且つ、Ni、Mn、Co、Al、及びMgから成る群より選ばれる2種以上の金属元素を示し、zは0.9超1.2未満の数を示す)で表されるリチウム含有複合金属酸化物等が挙げられる。
一般式(3a)及び(3b)のそれぞれで表されるリチウム含有化合物以外のリチウム含有化合物としては、リチウムを含有するものであれば特に限定されない。このようなリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物、リチウムを有する金属カルコゲン化物、リチウムと遷移金属元素とを含むリン酸金属化合物、及びリチウムと遷移金属元素とを含むケイ酸金属化合物[例えば、LiSiO{式中、Mは一般式(3a)と同義であり、tは0〜1の数を示し、かつuは0〜2の数を示す。}など]が挙げられる。
より高い電圧を得る観点から、リチウム含有化合物としては、特に:
リチウムと、
コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、クロム(Cr)、バナジウム(V)、及びチタン(Ti)から成る群より選ばれる少なくとも1種の遷移金属元素と、
を含む複合酸化物、及びリン酸金属化合物が好ましい。
リチウム含有化合物として、より具体的には、リチウムと遷移金属元素とを含む複合酸化物又はリチウムと遷移金属元素とを有する金属カルコゲン化物、及びリチウムを有するリン酸金属化合物がより好ましく、例えば、それぞれ下記一般式(4a)及び(4b): Li (4a)
LiIIPO (4b)
{式中、Dは酸素又はカルコゲン元素を示し、M及びMIIはそれぞれ1種以上の遷移金属元素を示し、v及びwの値は、電池の充放電状態によって異なり、vは0.05〜1.10の数を示し、wは0.05〜1.10の数を示す。}のそれぞれで表される化合物が挙げられる。
一般式(4a)で表されるリチウム含有化合物は層状構造を有し、一般式(4b)で表される化合物はオリビン構造を有する。これらのリチウム含有化合物は、構造を安定化させる等の目的から、Al、Mg、又はその他の遷移金属元素により遷移金属元素の一部を置換したもの、これらの金属元素を結晶粒界に含ませたもの、酸素原子の一部をフッ素原子等で置換したもの、正極活物質表面の少なくとも一部に他の正極活物質を被覆したもの等であってもよい。
本実施形態における正極活物質としては、上記のようなリチウム含有化合物のみを用いてもよいし、該リチウム含有化合物とともに、その他の正極活物質を併用してもよい。その他の正極活物質としては、例えば、トンネル構造及び層状構造を有する金属酸化物又は金属カルコゲン化物;イオウ;導電性高分子等が挙げられる。トンネル構造及び層状構造を有する金属酸化物又は金属カルコゲン化物としては、例えば、MnO、FeO、FeS、V、V13、TiO、TiS、MoS、及びNbSeに代表される、リチウム以外の金属の酸化物、硫化物、セレン化物等が挙げられる。導電性高分子としては、例えば、ポリアニリン、ポリチオフェン、ポリアセチレン、及びポリピロールに代表される導電性高分子を挙げられる。
その他の正極活物質は、1種を単独で又は2種以上を組み合わせて用いられ、特に制限はない。しかしながら、本実施形態では、リチウムイオンを可逆安定的に吸蔵及び放出することが可能であり、且つ、高エネルギー密度を達成できることから、前記正極活物質層がNi、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有する。
正極活物質として、リチウム含有化合物とその他の正極活物質とを併用する場合、両者の使用割合としては、正極活物質の全質量に対するリチウム含有化合物の使用割合として、80質量%以上が好ましく、85質量%以上がより好ましい。
導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有割合は、正極活物質100質量部に対して、10質量部以下とすることが好ましく、より好ましくは1〜5質量部である。
バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、スチレンブタジエンゴム、及びフッ素ゴムが挙げられる。バインダーの含有割合は、正極活物質100質量部に対して、6質量部以下とすることが好ましく、より好ましくは0.5〜4質量部である。
正極活物質層は、正極活物質と、必要に応じて導電助剤及びバインダーとを混合した正極合剤を溶剤に分散した正極合剤含有スラリーを、正極集電体に塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、特に制限はなく、従来公知のものを用いることができ、例えば、N―メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。正極活物質層は、正極集電体の片面又は両面に形成される。
正極集電体は、例えば、アルミニウム箔、ニッケル箔、ステンレス箔等の金属箔により構成される。正極集電体は、表面にカーボンコートが施されていてもよく、メッシュ状に加工されていてもよい。正極集電体の厚みは、5〜40μmであることが好ましく、7〜35μmであることがより好ましく、9〜30μmであることが更に好ましい。
<4.負極>
図2に示されるように、負極6は、負極合剤から作製した負極活物質層と、負極集電体とから構成される。負極6は、非水系二次電池の負極として作用するものであれば特に限定されず、公知のものであってもよい。
負極活物質層は、電池電圧を高められるという観点から、負極活物質としてリチウムイオンを0.4V vs.Li/Liよりも卑な電位で吸蔵することが可能な材料を含有することが好ましい。負極活物質層は、負極活物質とともに、必要に応じて導電助剤及びバインダーを含有することが好ましい。
負極活物質としては、例えば、アモルファスカーボン(ハードカーボン)、人造黒鉛、天然黒鉛、黒鉛、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、炭素コロイド、及びカーボンブラックに代表される炭素材料の他、金属リチウム、金属酸化物、金属窒化物、リチウム合金、スズ合金、シリコン合金、金属間化合物、有機化合物、無機化合物、金属錯体、有機高分子化合物等が挙げられる。
負極活物質は1種を単独で又は2種以上を組み合わせて用いられる。
導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有割合は、負極活物質100質量部に対して、20質量部以下とすることが好ましく、より好ましくは0.1〜10質量部である。
バインダーとしては、例えば、PVDF、PTFE、ポリアクリル酸、スチレンブタジエンゴム、及びフッ素ゴムが挙げられる。バインダーの含有割合は、負極活物質100質量部に対して、10質量部以下とすることが好ましく、より好ましくは0.5〜6質量部である。
負極活物質層は、負極活物質と必要に応じて導電助剤及びバインダーとを混合した負極合剤を溶剤に分散した負極合剤含有スラリーを、負極集電体に塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、特に制限はなく、従来公知のものを用いることができ、例えば、N―メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。負極活物質層は、負極集電体の片面又は両面に形成される。
負極集電体は、例えば、銅箔、ニッケル箔、ステンレス箔等の金属箔により構成される。また、負極集電体は、表面にカーボンコートが施されていてもよいし、メッシュ状に加工されていてもよい。負極集電体の厚みは、5〜40μmであることが好ましく、6〜35μmであることがより好ましく、7〜30μmであることが更に好ましい。
<5.セパレータ>
図2に示されるように、本実施形態に係る非水系二次電池8は、正極5及び負極6の短絡防止、シャットダウン等の安全性付与の観点から、正極5と負極6との間にセパレータ7を備えることが好ましい。セパレータ7としては、公知の非水系二次電池に備えられるものと同様のものを用いてもよく、イオン透過性が大きく、機械的強度に優れる絶縁性の薄膜が好ましい。セパレータ7としては、例えば、織布、不織布、合成樹脂製微多孔膜等が挙げられ、これらの中でも、合成樹脂製微多孔膜が好ましい。
合成樹脂製微多孔膜としては、例えば、ポリエチレン又はポリプロピレンを主成分として含有する微多孔膜、又はこれらのポリオレフィンの双方を含有する微多孔膜等のポリオレフィン系微多孔膜が好適に用いられる。不織布としては、例えば、ガラス製、セラミック製、ポリオレフィン製、ポリエステル製、ポリアミド製、液晶ポリエステル製、アラミド製等の耐熱樹脂製の多孔膜が挙げられる。
セパレータ7は、1種の微多孔膜を単層又は複数積層した構成であってもよく、2種以上の微多孔膜を積層したものであってもよい。セパレータ7は、2種以上の樹脂材料を溶融混錬した混合樹脂材料を用いて単層又は複数層に積層した構成であってもよい。
<6.電池外装>
図2では電池外装2が2枚のアルミニウムラミネートフィルム1で構成されているが、本実施形態に係る非水系二次電池の電池外装の構成は、特に限定されず、例えば、電池缶及びラミネートフィルム外装体のいずれかの電池外装を用いることができる。電池缶としては、例えば、スチール又はアルミニウムから成る金属缶を用いることができる。ラミネートフィルム外装体としては、例えば、熱溶融樹脂/金属フィルム/樹脂の3層構成から成るラミネートフィルムを用いることができる。
ラミネートフィルム外装体は、熱溶融樹脂側を内側に向けた状態で2枚重ねて、又は熱溶融樹脂側を内側に向けた状態となるように折り曲げて、端部をヒートシールにより封止した状態で外装体として用いることができる。ラミネートフィルム外装体を用いる場合、正極集電体に正極リード体(又は正極端子及び正極端子と接続するリードタブ)を接続し、負極集電体に負極リード体(又は負極端子及び負極端子と接続するリードタブ)を接続してもよい。この場合、正極リード体及び負極リード体(又は正極端子及び負極端子のそれぞれに接続されたリードタブ)の端部が外装体の外部に引き出された状態でラミネートフィルム外装体を封止してもよい。
<7.ピリジン環を有するポリマー>
本実施形態に係る非水系二次電池は、電池内部に、ピリジン環を有するポリマーが存在することを特徴とする。ピリジン環を有するポリマーとは、下記一般式(1)で表される構造である。
Figure 0006868969
一般式(1)中の数値は、l≧0、m≧1、n≧1の整数である。
一般式(1)でl=0、かつm≠0、かつn≠0の場合、主鎖にピリジン環を有する構造となる。
ピリジン環同士を結合する構造Xは、アルキル鎖、エステル構造、若しくはその両者を含む構造、又はピリジン環同士が直接結合している単結合等の結合状態が選択可能である。
但し、ピリジン環同士が直接結合した構造であれば、結合部位が電池内部で分解した場合に、分解物によるガス発生が生じ難く、好ましい。上記のピリジン環骨格は、規則的な繰り返し構造、ブロック構造、ランダム構造のいずれでもよい。ポリマーの繰り返し単位n、mの数は、ポリマーの構造(繰り返し/ブロック/ランダム)、ポリマーの分子量、置換基に応じて変わる。
一般式(1)でl≠0の場合、ピリジン環を側鎖に有するポリマーとなる。主鎖の繰り返し単位の構造Yは、アルキル鎖で、側鎖の導入間隔を調整するものである。また、Yは架橋構造となっていてもよい。側鎖の繰り返し構造Xは、アルキル鎖、エステル構造、若しくはその両者を含む構造、又はピリジン環同志が直接結合している単結合等の結合状態が選択可能である。l、m及びnの数は、ポリマーの構造、分子量、又は置換基に応じて変わる。
例えば、YがCHであり、Xは単結合であり、m=n=1であり、単結合Xがピリジン環の2位に形成されていれば、ポリ(2−ビニルピリジン)となり、4位であればポリ(4−ビニルピリジン)となる。
一般式(1)で表される構造を有するポリマー中のピリジン環は、その中に存在するH原子の一部が置換されていてもよい。置換基としては、アルキル基、シクロアルキル基、アルキルオキシ基、アルキルアミノ基、フェニル基、シアノ基等が挙げられる。アルキル基の炭素数は1〜6が好ましい。
また、ピリジン環のH原子の一部又は全て、ピリジン環に接続した置換基のHの一部又は全てがF、Br等で置換されていてもよい。また、主鎖アルキル骨格のH原子の一部又は全てがFで置換されていてもよい。
フッ素含有無機リチウム塩として、LiFとルイス酸との複塩である化合物を用いた場合、ピリジン環のN原子周辺には立体障害が存在しないことが望ましい。そのため、N原子の両脇の2、6位の炭素原子には置換基が存在しない構造が好ましい。またポリマー主鎖内の結合、あるいはポリマー側鎖への結合も、2、6位以外の部位で結合していることが好ましい。
ピリジン環を有するポリマーがアセトニトリルを含有する非水系電解液と接触することによって、遷移金属とアセトニトリルとから成る錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、高温貯蔵時の自己放電を抑制することができる。
本実施形態では、電池に用いられるピリジン環を有するポリマーの、電池内部での存在形態は、非水系電解液に溶解していてもよく、また、電池内部に、塗布層として存在していてもよく、更には粒子状で分散されていてもよい。また、これらのうちの複数状態であってもよい。ポリマーの分子量は、重量平均分子量1,000〜100,000である。一般式(1)中の繰り返し単位数nと、側鎖の繰り返し単位数mは、ポリマーの分子量が前述の範囲に収まるようになればよい。
ピリジン環を有するポリマーが低分子量であれば有機溶媒への溶解性が高くなるため、電解液中に溶液として存在することで、錯体カチオン生成の抑制効果が高くなる。一方、高分子量のポリマーは、溶解性が低いので、反応性も低くなるが、分解劣化が生じ難くなるので、効果の持続性に優れる。
本願発明の電池においてピリジン環を有するポリマーは、電池内部で、電解液中に含有されるアセトニトリルと該ポリマーが接触した状態で存在することにより、錯体形成を抑制することが可能となる。従って、該ポリマーは非水系電解液に溶解している状態が好ましい。電解液中に溶解している状態では、ピリジン環を有するポリマーは電池内部のほぼ全域に存在する。溶解性が低いポリマーでは、電極(例えば、正極及び/又は負極)の表面又は内部、及びセパレータの表面又は内部のいずれか一か所以上に存在する状態とすることが好ましい。電極やセパレータの表面であれば、ポリマー溶液を塗布すればよい。また、電極内部であるならば、活物質を電極に塗工する際に、ポリマー溶液またはポリマー粒子として活物質合剤中に加えておく。セパレータの内部ならば、セパレータ製造時に、セパレータ材料樹脂と共に混錬しておくなどの手段がある。また、ここに記載したポリマーの存在状態が複数あってもよい。
遷移金属とアセトニトリルから成る錯体カチオンの生成は、主に正極側で生じる。そのため、ピリジン環を有するポリマーが、正極側に多く存在すると、効果的に錯体カチオンの生成を抑制することができる。したがって、ポリマーを正極の表面、正極の内部、セパレータの正極側表面に塗布または分散して固定した形態が好ましい。特に、正極活物質の粒子表面にピリジン環を有するポリマーをコーティングした構造だと、正極表面での錯体形成が最も生じ易い個所において、その錯体形成反応を抑制することが可能となる。
本実施形態に係る電池内部に存在するピリジン環を有するポリマーの量は、ポリマーに含まれるピリジン環構造由来のN原子の重量で規定すると、電池内部に存在する電解液の全重量に対して、ピリジン環構造由来のN原子の重量が0.002〜2重量%となることが好ましく、より好ましくは0.005〜1重量%、更に好ましくは0.01〜1重量%である。
電池中で錯体カチオンの生成を抑制し、電池の優れた負荷特性を確保し、かつ高温貯蔵時の自己放電を抑制するという観点から、本実施形態に係る非水電解液中のピリジン環を有するポリマーの含有量は、非水系電解液の全質量に対する割合として規定すると、0.01〜10質量%であることが好ましい。
本実施形態においては、ピリジン環を有するポリマーの含有量を上述の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、電極表面における反応が抑制できるため、充放電に伴う内部抵抗の増加を低減できる。
<8.電池の作製方法>
本実施形態における非水系二次電池は、図2に示されるように、上述の非水系電解液、集電体の片面又は両面に正極活物質層を有する正極5、集電体の片面又は両面に負極活物質層を有する負極6、及び電池外装2、並びに必要に応じてセパレータ7を用いて、公知の方法により作製される。
先ず、正極5及び正極6、並びに必要に応じてセパレータ7から成る積層体を形成する。例えば、長尺の正極5と負極6とを、正極5と負極6との間に該長尺のセパレータを介在させた積層状態で巻回して巻回構造の積層体を形成する態様;
正極5及び負極6を一定の面積と形状とを有する複数枚のシートに切断して得た正極シートと負極シートとを、セパレータシートを介して交互に積層した積層構造の積層体を形成する態様;
長尺のセパレータをつづら折りにして、該つづら折りになったセパレータ同士の間に交互に正極体シートと負極体シートとを挿入した積層構造の積層体を形成する態様;
等が可能である。
この積層体を形成する工程において、セパレータ及び/又は正極の、表面及び/又は内部に、ピリジン環を有するポリマーを塗布または混合して配置してもよい。
次いで、電池外装2(電池ケース)内に上述の積層体を収容して、本実施形態に係る電解液を電池ケース内部に注液し、積層体を電解液に浸漬して封印することによって、本実施形態に係る非水系二次電池を作製することができる。
代替的には、電解液を高分子材料から成る基材に含浸させることによって、ゲル状態の電解質膜を予め作製しておき、シート状の正極5、負極6、及び電解質膜、並びに必要に応じてセパレータ7を用いて積層構造の積層体を形成した後、電池外装2内に収容して非水系二次電池を作製することもできる。
この非水系二次電池を作製する工程において、浸漬する電解液中にピリジン環を有するポリマーを溶解して用いてもよい。
本実施形態における非水系二次電池の形状は、特に限定されず、例えば、円筒形、楕円形、角筒型、ボタン形、コイン形、扁平形、ラミネート形等が好適に採用される。
本実施形態における非水系二次電池は、初回充電により電池として機能し得るが、初回充電の際に電解液の一部が分解することにより安定化する。初回充電の方法について特に制限はないが、初回充電は0.001〜0.3Cで行われることが好ましく、0.002〜0.25Cで行われることがより好ましく、0.003〜0.2Cで行われることが更に好ましい。初回充電が、途中に定電圧充電を経由して行われることも好ましい結果を与える。定格容量を1時間で放電する定電流が1Cである。リチウム塩が電気化学的な反応に関与する電圧範囲を長く設定することによって、SEI(Solid Electrolyte Interface:固体電解質界面)が電極表面に形成され、正極5を含めた内部抵抗の増加を抑制する効果があることの他、反応生成物が負極6のみに強固に固定化されることなく、何らかの形で、正極5、セパレータ7等の、負極6以外の部材にも良好な効果を与える。このため、非水系電解液に溶解したリチウム塩の電気化学的な反応を考慮して初回充電を行うことは、非常に有効である。
本実施形態における非水系二次電池は、複数個の非水系二次電池を直列又は並列に接続した電池パックとして使用することもできる。電池パックの充放電状態を管理する観点から、1個当たりの使用電圧範囲は2〜5Vであることが好ましく、2.5〜5Vであることがより好ましく、2.75V〜5Vであることが特に好ましい。
以上、本発明を実施するための形態について説明したが、本発明は上述の実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
以下、実施例によって本発明を更に詳細に説明する。各種評価は以下のようにして実施した。
(1)正極浸漬試験
アルミラミネート袋を2.7cm×6cmに加工し、23mm×17mmに打ち抜いた後述の正極を封入した後、不活性雰囲気下において、各実施例又は比較例で調製した非水系電解液0.5mLを注液した。このとき、電極面が電解液中に浸漬されていることを確認した。注液後シールし、アルミラミネート袋を縦に立て掛けた状態で60℃に保ち、10日間保存した。保存後、内部の電解液及び正極表面の観察を行った。遷移金属とアセトニトリルとから成る錯体カチオンの塩を主成分とするゲル状物の生成が認められなかった場合を「○」(良好)、前記ゲル状物の生成が認められた場合を「×」(不良)と判定した。
(2)電池作製
(2−1)正極(P1)の作製
正極活物質として数平均粒子径11μmのリチウム、ニッケル、マンガン、及びコバルトの複合酸化物(LiNi1/3Mn1/3Co1/3、密度4.70g/cm)と、導電助剤として数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm)と、バインダーとしてポリフッ化ビニリデン(PVdF;密度1.75g/cm)とを、93:4:3の質量比で混合し、正極合剤を得た。得られた正極合剤に溶剤としてN−メチル−2−ピロリドンを投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ20μm、幅200mmのアルミニウム箔の片面に、この正極合剤含有スラリーを、目付量が22mg/cmになるように調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで正極活物質層の密度が2.8g/cmになるように圧延することにより、正極活物質層と正極集電体とから成る正極(P1)を得た。
(2−2)負極(N1)の作製
負極活物質として数平均粒子径25μmのグラファイト炭素粉末(商品名「MCMB25−28」、大阪ガスケミカル(株)製)と、導電助剤として数平均粒子径48nmのアセチレンブラックと、バインダーとしてポリフッ化ビニリデン(PVdF;密度1.75g/cm)とを、93:2:5の固形分質量比で混合した。得られた混合物にN−メチル−2−ピロリドンを投入して更に混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ10μm、幅200mmの銅箔の片面に、この負極合剤含有スラリーを目付量が12mg/cmになるように調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで負極活物質層の密度が1.5g/cmになるよう圧延することにより、負極活物質層と負極集電体とから成る負極(N1)を得た。
(2−3)単層ラミネート型電池(評価用)の作製
アルミニウム層と樹脂層とを積層したラミネートフィルム(絞り加工なし、厚さ120μm、31mm×37mm)2枚を、アルミニウム層側を外側にして重ね、三辺をシールしてラミネートセル外装を作製した。上述のように作製した正極(P1)を14.0mm×20.0mmに打ち抜き、上述のように作製した負極(N1)を14.5mm×20.5mmに打ち抜いた。続いて、セパレータとしてポリエチレン製微多孔膜(膜厚20μm、16mm×22mm)を用意し、正極(P1)と負極(N1)とをセパレータの両側に重ね合わせた積層体を、上記のラミネートセル外装内に配置した。次いで、そのセル外装内に各実施例及び比較例で調製した電解液を注入し、積層体を電解液に浸漬した。そして、ラミネートセル外装の残りの一辺をシールして非水系二次電池(単層ラミネート型電池。以下、単に「電池」ともいう。)を作製した。これを25℃で24時間保持し、積層体に電解液を十分馴染ませることにより、1C=8.5mAとなる単層ラミネート型電池を得た。
ここで、1Cとは、満充電状態の電池を定電流で放電して1時間で放電終了となることが期待される電流値を意味する。上記で作製した単層ラミネート型電池については、4.2Vの満充電状態から定電流で2.7Vまで放電して、1時間で放電終了となることが期待される電流値を意味する。
(3)単層ラミネート型電池の電池評価
上述のようにして得られた電池について、先ず、以下の(3−1)の手順に従って、初回充電処理及び初期充放電容量測定を行った。次に、以下の(3−2)及び(3−3)に従って、それぞれの電池を評価した。充放電は、アスカ電子(株)製の充放電装置ACD−01(商品名)及び二葉科学社製の恒温槽PLM−63S(商品名)を用いて行った。
(3−1)単層ラミネート型電池の初期充放電特性
電池の周囲温度を25℃に設定し、0.2Cに相当する1.7mAの定電流で充電して電池電圧が4.2Vに到達するまで充電を行った後、4.2Vの定電圧で8時間充電を行った。その後、0.2Cに相当する1.7mAの定電流で2.7Vまで放電した。この一連の充放電操作を1サイクルとし、nサイクル目のときの放電容量をnサイクル目の充電容量で割った値を、初期充放電効率とする。
(3−2)単層ラミネート型電池の高出力での放電容量測定(出力試験)
上述の(3−1)に記載の方法で初回充放電処理を行った電池を用い、1Cに相当する8.5mAの定電流で充電して電池電圧が4.2Vに到達するまで充電を行った後、4.2Vの定電圧で合計3時間充電を行った。その後、1Cに相当する8.5mAの定電流で電池電圧2.7Vまで放電した。このときの放電容量をAとした。次に、1Cに相当する8.5mAの定電流で充電して電池電圧が4.2Vに到達するまで充電を行った後、4.2Vの定電圧で合計3時間充電を行った。その後、5Cに相当する42.5mAの定電流で電池電圧2.7Vまで放電した。このときの放電容量をBとした。出力試験測定値として、以下の値を算出した。
容量維持率=100×B/A[%]
[実施例1]
不活性雰囲気下、非水系溶媒として830mLのアセトニトリル及び170mLのビニレンカーボネートから成る混合溶媒を調製し、該混合溶媒に対して、1.3molのLiPF及び0.1molのLiBOBを溶解させた。次に、上記混合溶媒100質量部に対して、添加剤としてポリ(2−ビニルピリジン)(Aldrich社製、Mw=5,000)1質量部を溶解して電解液を得た。電解液中に存在するピリジン環由来のN原子の重量割合は0.13重量%である。
[実施例2]
実施例1で用いた添加剤を、混合溶媒100質量部に対してポリ(4−ビニルピリジン)(Aldrich社製、Mw=60,000)0.1質量部とした以外は全て同じ条件で電解液を得た。電解液中に存在するピリジン環由来のN原子の重量割合は0.013重量%である。
[比較例1]
上記実施例1において、同組成で添加剤を入れない電解液を作製した。
[実施例1,2及び比較例1の正極浸漬試験及び初回充放電処理]
実施例1、2及び比較例1の組成の電解液について、(1)の正極浸漬試験を行ったところ、フッ素含有無機リチウム塩と有意量のアセトニトリルとを含む電解液において、ピリジン環を有するポリマーを含有しない比較例1では、褐色ゲル状物の生成が認められた。このゲル状物は、H−NMR、19F−NMR、およびICPによる分析結果から遷移金属とアセトニトリルとから成る錯体カチオンを含むものであることが判明した。一方、フッ素含有無機リチウム塩と有意量のアセトニトリルとを含む電解液においても、ピリジン環を有するポリマーを含有する実施例1,2では、褐色ゲル状物の生成が認められなかった。
これらの結果から、フッ素含有無機リチウム塩と有意量のアセトニトリルとを含む電解液において、ピリジン環を有するポリマーの添加が、高温耐久性に大きく寄与していることが明らかとなった。
次に、上述のようにして作製した正極(P1)及び負極(N1)、並びに実施例1,2及び比較例1で調製した電解液を組み合わせ、上述の(2−3)に記載の方法に従って単層ラミネート型非水系二次電池を作製した。この電池について上述の(3−1)に記載の方法により初回充放電処理を行った。
[比較例2]
また、アセトニトリルを含有する電解液の電池と、含有しない電池の性能を比較するため、比較例2として、アセトニトリルを含有しない電解液を調製した。すなわち、エチレンカーボネート/エチルメチルカーボネート=30/70(V/V)で混合した非水系溶媒に対して、LiPFを1.0mol/Lの濃度で溶解させた電解液を用いて電池を作製し、比較例1,2の電池について、上述の(3−2)に記載の方法により放電容量測定を行った。
[実施例1,2及び比較例1,2の電解液組成と評価結果]
実施例1,2及び比較例1,2の電解液組成を表1に示し、それぞれの電池評価結果を表2に示す。
Figure 0006868969
Figure 0006868969
比較例1の電池は、初期充放電効率は他の電池と比肩するものの、保存による電解液中にゲル発生があり、その後、電池特性は急速に劣化する。
尚、実施例1,2及び比較例1は、アセトニトリルを電解液中に含有する電池であり、これと比較するため、比較例2のアセトニトリルを含まない電解液の電池を作製し、評価したが、アセトニトリルを含有する電池(比較例1)と比較して、容量維持率が極端に悪い。
以上の結果から、本実施形態に係る電解液を用いた非水系二次電池は、既存電解液並みの高温耐久性能を維持しながら、高い出力特性が実現されていることが検証された。
本発明の非水系二次電池は、例えば、携帯電話機、携帯オーディオ機器、パーソナルコンピュータ、IC(Integrated Circuit)タグ等の携帯機器;ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車等の自動車用充電池;住宅用蓄電システム等への適用が可能である。
1 アルミラミネートフィルム
2 電池外装
3 正極リード体
4 負極リード体
5 正極
6 負極
7 セパレータ
8 非水系二次電池

Claims (4)

  1. 正極集電体の片面又は両面に、Ni、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有する正極活物質層を有する正極と、
    負極集電体の片面又は両面に負極活物質層を有する負極と、
    非水系電解液と、
    を具備する非水系二次電池であって、
    前記非水系電解液は、アセトニトリルを30〜100体積%含む非水系溶媒と、フッ素含有無機リチウム塩とを含有し、
    前記非水系二次電池の内部に、ピリジン環を有するポリマーが存在し
    前記ピリジン環を有するポリマーが、ポリ(2−ビニルピリジン)及び/又はポリ(4−ビニルピリジン)であり、
    前記ピリジン環を有するポリマーは、前記非水系電解液中に存在し、かつ
    前記非水系電解液は、シリル基を含有する化合物を含まない、非水系二次電池。
  2. 前記フッ素含有無機リチウム塩が、LiPFを含有する、請求項1に記載の非水系二次電池。
  3. 前記ポリマーの前記ピリジン環由来のN原子の重量割合が、前記非水系二次電池中に存在する前記非水系電解液の全重量に対して、0.002〜2重量%である、請求項1又は2に記載の非水系二次電池。
  4. アセトニトリルを非水系溶媒の全体積に対して30〜100体積%含む前記非水系溶媒と;
    フッ素含有無機リチウム塩としてLiPFと;
    非水系電解液の全質量に対して0.01〜10質量%の、ピリジン環を有するポリマーと;
    を含み、かつ前記ピリジン環を有するポリマーが、ポリ(2−ビニルピリジン)及び/又はポリ(4−ビニルピリジン)であり、
    シリル基を含有する化合物を含まない、非水系電解液。
JP2016076051A 2016-04-05 2016-04-05 非水系二次電池とそれに用いられる非水系電解液 Active JP6868969B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076051A JP6868969B2 (ja) 2016-04-05 2016-04-05 非水系二次電池とそれに用いられる非水系電解液

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076051A JP6868969B2 (ja) 2016-04-05 2016-04-05 非水系二次電池とそれに用いられる非水系電解液

Publications (2)

Publication Number Publication Date
JP2017188299A JP2017188299A (ja) 2017-10-12
JP6868969B2 true JP6868969B2 (ja) 2021-05-12

Family

ID=60045037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076051A Active JP6868969B2 (ja) 2016-04-05 2016-04-05 非水系二次電池とそれに用いられる非水系電解液

Country Status (1)

Country Link
JP (1) JP6868969B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101965B2 (ja) * 2018-03-22 2022-07-19 富山薬品工業株式会社 蓄電デバイス用非水電解液
EP4113652A1 (en) * 2020-02-28 2023-01-04 Zeon Corporation Electrolyte solution for electrochemical devices, themoplastic composition, use and production method
JPWO2021229680A1 (ja) * 2020-05-12 2021-11-18
CN113571771B (zh) * 2021-02-08 2023-03-28 深圳市研一新材料有限责任公司 锂离子电池用电解液及其制备方法和锂离子电池
WO2023233724A1 (ja) * 2022-05-31 2023-12-07 オルガノ株式会社 非水電解液二次電池
JP2024002595A (ja) * 2022-06-24 2024-01-11 ダイキン工業株式会社 電極材料用表面処理剤、正極活物質、集電箔、負極活物質、導電助剤、電極、正極活物質の製造方法、集電箔の製造方法、負極活物質の製造方法、導電助剤の製造方法、及び、電極の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223031A (ja) * 2000-02-09 2001-08-17 Ngk Insulators Ltd リチウム二次電池
JP5305678B2 (ja) * 2008-02-07 2013-10-02 株式会社東芝 非水電解液電池及び組電池
JP5733915B2 (ja) * 2010-06-24 2015-06-10 Fdk株式会社 リチウムイオン二次電池
JP2013069512A (ja) * 2011-09-21 2013-04-18 Daikin Ind Ltd 非水電解液、リチウムイオン二次電池、及び、モジュール
KR101551135B1 (ko) * 2011-10-28 2015-09-07 아사히 가세이 가부시키가이샤 비수계 이차 전지

Also Published As

Publication number Publication date
JP2017188299A (ja) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6346990B2 (ja) 非水系電解液及び非水系二次電池
JP6346989B2 (ja) 非水系電解液及び非水系二次電池
JP6865555B2 (ja) 非水系二次電池
WO2018169029A1 (ja) 非水系電解液、非水系二次電池、セルパック、及び、ハイブリッドシステム
JP6868969B2 (ja) 非水系二次電池とそれに用いられる非水系電解液
JP6917528B2 (ja) 非水系電解液、及び非水系二次電池
JP6767151B2 (ja) 非水系電解液及び非水系二次電池
JP6796445B2 (ja) 非水系二次電池
JP2019197634A (ja) 非水系電解液
JP6564336B2 (ja) 非水系電解液及び非水系二次電池
JP2021111586A (ja) 非水系電解液及び非水系二次電池
JP2019197632A (ja) 非水系電解液及び非水系二次電池
JP2019197633A (ja) 非水系電解液及び非水系二次電池
JP7339921B2 (ja) 非水系電解液及び非水系二次電池
JP7233323B2 (ja) 非水系電解液、及び非水系二次電池
JP2018060693A (ja) 非水系二次電池
JP7260983B2 (ja) 非水系電解液及び非水系二次電池
JP7020818B2 (ja) 非水系電解液及び非水系二次電池
JP7366845B2 (ja) 非水系電解液及び非水系二次電池
JP2021197341A (ja) 非水系二次電池
JP2022047197A (ja) 非水系電解液及び非水系二次電池
JP2022150999A (ja) 非水系二次電池の初回コンディショニング方法
JP2023146938A (ja) 非水系電解液及び非水系二次電池
JP2021190314A (ja) 非水系二次電池
JP2018060692A (ja) 非水系二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210304

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210310

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6868969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150