JP6346990B2 - 非水系電解液及び非水系二次電池 - Google Patents

非水系電解液及び非水系二次電池 Download PDF

Info

Publication number
JP6346990B2
JP6346990B2 JP2017510128A JP2017510128A JP6346990B2 JP 6346990 B2 JP6346990 B2 JP 6346990B2 JP 2017510128 A JP2017510128 A JP 2017510128A JP 2017510128 A JP2017510128 A JP 2017510128A JP 6346990 B2 JP6346990 B2 JP 6346990B2
Authority
JP
Japan
Prior art keywords
group
positive electrode
negative electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017510128A
Other languages
English (en)
Other versions
JPWO2016159117A1 (ja
Inventor
松岡 直樹
直樹 松岡
吉野 彰
吉野  彰
穣 夏目
穣 夏目
岸見 光浩
光浩 岸見
丈主 加味根
丈主 加味根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JPWO2016159117A1 publication Critical patent/JPWO2016159117A1/ja
Application granted granted Critical
Publication of JP6346990B2 publication Critical patent/JP6346990B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/22Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms directly attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水系電解液及び非水系二次電池に関する。
リチウムイオン二次電池をはじめとする非水系二次電池は、軽量、高エネルギー及び長寿命であることが大きな特徴であり、各種携帯用電子機器電源として広範囲に用いられている。近年では電動工具等のパワーツールに代表される産業用;電気自動車、電動式自転車における車載用としても広がりを見せている。更には住宅用蓄電システム等の電力貯蔵分野においても注目されている。
常温作動型のリチウムイオン二次電池の電解液としては、非水系電解液を使用することが実用の見地より望ましい。例えば環状炭酸エステル等の高誘電性溶媒と、低級鎖状炭酸エステル等の低粘性溶媒と、の組み合わせが、一般的な溶媒として例示される。しかしながら、通常の高誘電率溶媒は、融点が高いことの他、非水系電解液に用いる電解質塩の種類によっては非水系電解液の負荷特性(出力特性)及び低温特性を劣化させる要因にもなり得る。
このような問題を克服する溶媒の1つとして、粘度と比誘電率とのバランスに優れたニトリル系溶媒が提案されている。中でもアセトニトリルは、リチウムイオン二次電池の電解液に用いる溶媒として高いポテンシャルを有する。しかしながら、アセトニトリルは負極で電気化学的に還元分解するという致命的な欠点があるため、実用性能を発揮することができていなかった。この問題に対して、幾つかの改善策が提案されている。
これまでに提案されている改善策のうち主なものは、以下の3つに分類される。
(1)特定の電解質塩、添加剤等との組み合わせによって負極を保護し、アセトニトリルの還元分解を抑制する方法
例えば、特許文献1及び2には、溶媒であるアセトニトリルを特定の電解質塩及び添加剤と組み合わせることによって、アセトニトリルの還元分解の影響を低減した電解液が報告されている。リチウムイオン二次電池の黎明期には、アセトニトリルをプロピレンカーボネート及びエチレンカーボネートで希釈しただけの溶媒を含む電解液も報告されている(特許文献3)。しかしながら、特許文献3では、高温耐久性能について高温保存後の内部抵抗及び電池厚みのみの評価により判定しているため、高温環境下に置かれた場合に実際に電池として作動するか否かという情報は開示されていない。単純にエチレンカーボネート及びプロピレンカーボネートで希釈するだけの措置によってアセトニトリルをベースとする溶媒を含む電解液の還元分解を抑制することは、実際には至難の業である。溶媒の還元分解の抑制方法としては、特許文献1及び2のように、複数の電解質塩及び添加剤を組み合わせる方法が現実的である。
(2)アセトニトリルの還元電位よりも貴な電位でリチウムイオンを吸蔵する負極活物質を用いることによって、アセトニトリルの還元分解を抑制する方法
例えば、特許文献4には、負極に特定の金属化合物を用いることにより、アセトニトリルの還元分解を回避した電池を得ることができると報告されている。しかし、リチウムイオン二次電池のエネルギー密度を重視する用途においては、アセトニトリルの還元電位よりも卑な電位でリチウムイオンを吸蔵する負極活物質を用いる方が電位差の観点から圧倒的に有利となる。そのため、そのような用途に特許文献4の改善策を適用すると、使用可能な電圧の範囲が狭くなるため、不利である。
(3)高濃度の電解質塩をアセトニトリルに溶解させて安定な液体状態を維持する方法
例えば、特許文献5には、濃度が4.2mol/Lとなるようにリチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF)をアセトニトリルに溶解させた電解液を用いると、黒鉛電極への可逆的なリチウム挿入脱離が可能であることが記載されている。特許文献6には、濃度が4.5mol/Lとなるようにリチウムビス(フルオロスルホニル)イミド(LiN(SOF))をアセトニトリルに溶解させた電解液を用いたセルに対して充放電測定を行った結果、黒鉛へのLi挿入脱離反応が観察され、ハイレートで放電可能であることが報告されている。
国際公開第2012/057311号 国際公開第2013/062056号 特開平4−351860号公報 特開2009−21134号公報 国際公開第2013/146714号 特開2014−241198号公報
しかしながら、アセトニトリルを含有する電解液を用いたリチウムイオン二次電池は、カーボネート溶媒を含有する電解液を用いた既存のリチウムイオン二次電池と比較して高温耐久性能に劣っており、市販品レベルに達していないことから、未だ本格的な実用化には至っていない。
各種検証実験の結果から、アセトニトリル系リチウムイオン二次電池が高温耐久性能に劣る理由は以下のように推察される。
高温環境下において、フッ素含有無機リチウム塩がアセトニトリルのメチル基から水素を引き抜きながら分解し、その分解生成物が正極遷移金属の溶出を促進する。この溶出金属にアセトニトリルが配位した錯体カチオンは化学的に安定である。そのため、高温環境下で充放電を繰り返した際に、上記安定錯体カチオンが電極上に堆積して内部抵抗の増加要因となっている可能性がある。また、上記安定錯体カチオンが、アセトニトリルの還元分解を抑制している負極の保護皮膜に悪影響を及ぼす可能性もある。解体解析の結果に裏付けされたこれらの現象は、本発明者らによって新たに判明した課題であり、特許文献1〜6には一切記載されていない。
本発明は、上述の事情に鑑みてなされたものである。従って本発明は、粘度と比誘電率とのバランスに優れたアセトニトリル、及びフッ素含有無機リチウム塩を含有する非水系電解液において、遷移金属とアセトニトリルとからなる錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、充放電サイクルを繰り返した際の内部抵抗の増加を抑制することができる非水系電解液及び非水系二次電池を提供することを目的とする。
本発明者らは、上述の課題を解決するために鋭意研究を重ねた。その結果、非水系溶媒としてアセトニトリルを含有する非水系電解液であっても、更に、添加剤として特定の窒素含有環状化合物を含有する場合に、遷移金属とアセトニトリルとからなる錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、充放電サイクルを繰り返した際の内部抵抗の増加を抑制することができることを見出し、本発明を完成するに至った。
すなわち、本発明は以下のとおりである。
[1] アセトニトリルを含む非水系溶媒と、
フッ素含有無機リチウム塩と、
下記一般式(1):
Figure 0006346990
{式(1)中、AはCH又は窒素原子であり、
は、水素原子、炭素数1〜4のアルキル基、アリル基、プロパギル基、フェニル基、ベンジル基、ピリジル基、アミノ基、ピロリジルメチル基、トリメチルシリル基、ニトリル基、アセチル基、トリフルオロアセチル基、クロロメチル基、メトキシメチル基、イソシアノメチル基、メチルスルホニル基、フェニルスルホニル基、アジ化スルホニル基、ピリジルスルホニル基、2−(トリメチルシリル)エトキシカルボニロキシ基、ビス(N,N’−アルキル)アミノメチル基、又はビス(N,N’−アルキル)アミノエチル基であり、
は、炭素数1〜4のアルキル基、炭素数1〜4のフッ素置換アルキル基、炭素数1〜4のアルコキシ基、炭素数1〜4のフッ素置換アルコキシ基、ニトリル基、ニトロ基、アミノ基、又はハロゲン原子であり、そして、
kは0〜4の整数である。}で表される化合物と、
を含有することを特徴とする、非水系電解液。
[2] 前記非水系溶媒がアセトニトリルを20〜100体積%含むものである、[1]記載の非水系電解液。
[3] 前記一般式(1)で表される化合物のRが、炭素数1〜4のアルキル基、ビス(N,N’−アルキル)アミノメチル基、又はビス(N,N’−アルキル)アミノエチル基である、[1]又は[2]記載の非水系電解液。
[4] 前記一般式(1)で表される化合物の含有量が、非水系電解液100質量部に対して0.01〜10質量部である、[1]〜[3]のいずれか1項記載の非水系電解液。
[5] 前記フッ素含有無機リチウム塩がLiPFを含有する、[1]〜[4]のいずれか1項記載の非水系電解液。
[6] 集電体の片面又は両面に、Ni、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有する正極活物質層を有する正極、
集電体の片面又は両面に負極活物質層を有する負極、並びに、
[1]〜[5]のいずれか1項記載の非水系電解液を具備することを特徴とする、非水系二次電池。
[7] 前記正極活物質層と前記負極活物質層とが対向配置されており、
前記負極活物質層のうち、前記正極活物質層に対向する側の面の全面積の、
前記正極活物質層と前記負極活物質層とが対向する領域の面積に対する比が、1.0より大きく1.1未満である、[6]記載の非水系二次電池。
本発明によれば、粘度と比誘電率とのバランスに優れたアセトニトリル、及びフッ素含有無機リチウム塩を含有する非水系電解液において、遷移金属とアセトニトリルとからなる錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、充放電サイクルを繰り返した際の内部抵抗の増加が抑制された、サイクル性能に優れた非水系電解液及び非水系二次電池を提供することができる。
本実施形態の非水系二次電池の一例を概略的に示す平面図である。 図1の非水系二次電池のA−A線断面図である。 積層電極体における「負極活物質層の非対向部分の幅」を説明するための図面である。 捲回電極体における「負極活物質層の非対向部分の幅」を説明するための図面である。 電池用正極を説明するための模式的な平面図である。 電池用負極を説明するための模式的な平面図である。
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。本明細書において「〜」を用いて記載される数値範囲は、その前後に記載される数値を含むものである。
本実施形態の非水系電解液(以下、単に「電解液」ともいう。)は、
アセトニトリルを含む非水系溶媒と、フッ素含有無機リチウム塩と、下記一般式(1):
Figure 0006346990
{式(1)中、AはCH又は窒素原子であり、
は、水素原子、炭素数1〜4のアルキル基、アリル基、プロパギル基、フェニル基、ベンジル基、ピリジル基、アミノ基、ピロリジルメチル基、トリメチルシリル基、ニトリル基、アセチル基、トリフルオロアセチル基、クロロメチル基、メトキシメチル基、イソシアノメチル基、メチルスルホニル基、フェニルスルホニル基、アジ化スルホニル基、ピリジルスルホニル基、2−(トリメチルシリル)エトキシカルボニロキシ基、ビス(N,N’−アルキル)アミノメチル基、又はビス(N,N’−アルキル)アミノエチル基であり、
は、炭素数1〜4のアルキル基、炭素数1〜4のフッ素置換アルキル基、炭素数1〜4のアルコキシ基、炭素数1〜4のフッ素置換アルコキシ基、ニトリル基、ニトロ基、アミノ基、又はハロゲン原子であり、そして
kは0〜4の整数である。}で表される化合物(窒素含有環状化合物)と、を含有する。
<1.非水系二次電池の全体構成>
本実施形態の電解液は、例えば、非水系二次電池に用いることができる。本実施形態の非水系二次電池としては、例えば、
正極活物質としてリチウムイオンを吸蔵及び放出することが可能な正極材料を含有する正極と、
負極活物質として、リチウムイオンを吸蔵及び放出することが可能な負極材料、並びに金属リチウムからなる群より選ばれる1種以上の負極材料を含有する負極と、
を備えるリチウムイオン二次電池が挙げられる。
本実施形態の非水系二次電池としては、具体的には、図1及び2に図示される非水系二次電池であってもよい。ここで、図1は非水系二次電池を概略的に表す平面図であり、図2は図1のA−A線断面図である。
非水系二次電池1は、2枚のアルミニウムラミネートフィルムで構成した電池外装2内に、正極5と負極6とをセパレータ7を介して積層して構成した積層電極体と、非水系電解液(図示せず)とを収容している。電池外装2は、その外周部において、上下のアルミニウムラミネートフィルムを熱融着することにより封止されている。正極5、セパレータ7、及び負極6を順に積層した積層体には、非水系電解液が含浸されている。ただしこの図2では、図面が煩雑になることを避けるために、電池外装2を構成している各層、並びに正極5及び負極6の各層を区別して示していない。
電池外装2を構成しているアルミニウムラミネートフィルムは、アルミニウム箔の両面をポリオレフィン系の樹脂でコートしたものであることが好ましい。
正極5は、電池1内でリード体を介して正極外部端子3と接続している。図示していないが、負極6も、電池1内でリード体を介して負極外部端子4と接続している。そして、正極外部端子3及び負極外部端子4は、それぞれ、外部の機器等と接続可能なように、片端側が電池外装2の外側に引き出されており、それらのアイオノマー部分が、電池外装2の1辺と共に熱融着されている。
図1及び2に図示される非水系二次電池1は、正極5及び負極6が、それぞれ1枚ずつの積層電極体を有しているが、容量設計により正極5及び負極6の積層枚数を適宜増やすことができる。正極5及び負極6をそれぞれ複数枚有する積層電極体の場合には、同一極のタブ同士を溶接等により接合したうえで1つのリード体に溶接等により接合して電池外部に取り出してもよい。上記同一極のタブとしては、集電体の露出部から構成される態様、集電体の露出部に金属片を溶接して構成される態様等が可能である。
正極5は、正極合剤から作製した正極活物質層と、正極集電体とから構成される。負極6は、負極合剤から作製した負極活物質層と、負極集電体とから構成される。正極5及び負極6は、セパレータ7を介して正極活物質層と負極活物質層とが対向するように配置される。
以下、正極及び負極の総称として「電極」、正極活物質層及び負極活物質層の総称として「電極活物質層」、正極合剤及び負極合剤の総称として「電極合剤」とも略記する。
これらの各部材としては、本実施形態における各要件を満たしていれば、従来のリチウムイオン二次電池に備えられる材料を用いることができ、例えば後述の材料であってもよい。以下、非水系二次電池の各部材について詳細に説明する。
<2.電解液>
本実施形態における電解液は、非水系溶媒(以下、単に「溶媒」ともいう。)と、フッ素含有無機リチウム塩と、上記一般式(1)で表される化合物(窒素含有環状化合物)と、を少なくとも含む。フッ素含有無機リチウム塩は、イオン伝導度に優れるものの、熱安定性が十分でないうえ、溶媒中の微量水分によって加水分解してフッ化リチウム及びフッ化水素を発生し易い性質を有する。フッ素含有無機リチウム塩が分解すると、該フッ素含有無機リチウム塩を含有する電解液のイオン伝導度が低下するとともに、生成したフッ化リチウム及びフッ化水素が、電極、集電体等の材料を腐食し、或いは溶媒を分解する等の、電池に致命的な悪影響を及ぼす場合がある。
本実施形態における電解液は、水分を含まないことが好ましいが、本発明の課題解決を阻害しない範囲であれば、ごく微量の水分を含有してもよい。そのような水分の含有量は、電解液の全量に対して、好ましくは0〜100ppmである。
<2−1.非水系溶媒>
アセトニトリルはイオン伝導性が高く、電池内におけるリチウムイオンの拡散性を高めることができる。そのため、電解液がアセトニトリルを含有する場合には、特に正極活物質層を厚くして正極活物質の充填量を高めた正極においても、高負荷での放電時にはリチウムイオンが到達し難い集電体近傍の領域にまで、リチウムイオンが良好に拡散できるようになる。よって、高負荷放電時にも十分な容量を引き出すことが可能となり、負荷特性に優れた非水系二次電池とすることができる。
非水系電解液の非水系溶媒にアセトニトリルを用いることにより、前記のとおり、非水系電解液のイオン伝導性が向上することから、非水系二次電池の急速充電特性を高めることもできる。非水系二次電池の定電流(CC)−定電圧(CV)充電では、CV充電期間における単位時間当たりの充電容量よりも、CC充電期間における単位時間当たりの容量の方が大きい。非水系電解液の非水系溶媒にアセトニトリルを使用した場合には、CC充電できる領域を大きく(CC充電の時間を長く)できる他、充電電流を高めることもできるため、非水系二次電池の充電開始から満充電状態にするまでの時間を大幅に短縮できる。
非水系溶媒としては、アセトニトリルを含んでいれば特に制限はなく、その他の非水系溶媒を含んでもよいし含んでいなくてもよい。
本実施形態でいう「非水系溶媒」とは、電解液中からリチウム塩及び窒素含有環状化合物を除いた成分をいう。すなわち、電解液中に、溶媒、リチウム塩、及び窒素含有環状化合物と共に、後述する電極保護用添加剤を含んでいる場合には、溶媒と電極保護用添加剤とを併せて「非水系溶媒」という。後述するリチウム塩及び窒素含有環状化合物は、非水系溶媒に含まない。
上記その他の非水系溶媒としては、例えば、メタノール、エタノール等のアルコール類;非プロトン性溶媒等が挙げられる。中でも、非プロトン性極性溶媒が好ましい。
上記その他の非水系溶媒のうち、非プロトン性溶媒の具体例としては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、トランス−2,3−ブチレンカーボネート、シス−2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、トランス−2,3−ペンチレンカーボネート、シス−2,3−ペンチレンカーボネート、及びビニレンカーボネートに代表される環状カーボネート;フルオロエチレンカーボネート、1,2−ジフルオロエチレンカーボネート、及びトリフルオロメチルエチレンカーボネートに代表される環状フッ素化カーボネート;γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、δ−バレロラクトン、δ−カプロラクトン、及びε−カプロラクトンに代表されるラクトン;スルホラン、ジメチルスルホキシド、及びエチレングリコールサルファイトに代表される硫黄化合物;テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、及び1,3−ジオキサンに代表される環状エーテル;エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート、及びメチルトリフルオロエチルカーボネートに代表される鎖状カーボネート;トリフルオロジメチルカーボネート、トリフルオロジエチルカーボネート、及びトリフルオロエチルメチルカーボネートに代表される鎖状フッ素化カーボネート;
プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、及びアクリロニトリルに代表されるモノニトリル;メトキシアセトニトリル及び3−メトキシプロピオニトリルに代表されるアルコキシ基置換ニトリル;マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、1,4−ジシアノヘプタン、1,5−ジシアノペンタン、1,6−ジシアノヘキサン、1,7−ジシアノヘプタン、2,6−ジシアノヘプタン、1,8−ジシアノオクタン、2,7−ジシアノオクタン、1,9−ジシアノノナン、2,8−ジシアノノナン、1,10−ジシアノデカン、1,6−ジシアノデカン、及び2,4−ジメチルグルタロニトリルに代表されるジニトリル;ベンゾニトリルに代表される環状ニトリル;プロピオン酸メチルに代表される鎖状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、及びテトラグライムに代表される鎖状エーテル;Rf−OR(Rfはフッ素原子を含有するアルキル基、Rはフッ素原子を含有してもよい有機基)に代表されるフッ素化エーテル;アセトン、メチルエチルケトン、及びメチルイソブチルケトンに代表されるケトン類等の他、これらのフッ素化物に代表されるハロゲン化物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
これらその他の非水系溶媒の中でも、環状カーボネート及び鎖状カーボネートのうちの1種以上をアセトニトリルと共に使用することがより好ましい。ここで、環状カーボネート及び鎖状カーボネートとして前記に例示したもののうちの1種のみを選択して使用してもよく、2種以上(例えば、前記例示の環状カーボネートのうちの2種以上、前記例示の鎖状カーボネートのうちの2種以上、又は前記例示の環状カーボネートのうちの1種以上及び前記例示の鎖状カーボネートのうちの1種以上からなる2種以上)を使用してもよい。これらの中でも、環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、又はフルオロエチレンカーボネートがより好ましく、鎖状カーボネートとしてはエチルメチルカーボネート、ジメチルカーボネート、又はジエチルカーボネートがより好ましい。そして、環状カーボネートを使用することが更に好ましい。
アセトニトリルは電気化学的に還元分解され易い。そのため、これを、別の溶媒と混合すること、及び、電極への保護皮膜形成のための電極保護用添加剤を添加すること、のうちの少なくとも1つを行うことが好ましい。
非水系二次電池の充放電に寄与するリチウム塩の電離度を高めるために、非水系溶媒は、環状の非プロトン性極性溶媒を1種以上含むことが好ましく、環状カーボネートを1種以上含むことがより好ましい。
アセトニトリルの含有量については、特に制限はないが、非水系溶媒の全体量に対して、20〜100体積%であることが好ましい。アセトニトリルの含有量は、非水系溶媒の全体量に対して、30体積%以上であることがより好ましく、40体積%以上であることが更に好ましい。この値は、85体積%以下であることがより好ましく、66体積%以下であることが更に好ましい。アセトニトリルの含有量が非水系溶媒の全体量に対して20体積%以上である場合、イオン伝導度が増大して高出力特性を発現できる傾向にあり、更に、リチウム塩の溶解を促進することができる。後述の窒素含有環状化合物が電池の内部抵抗の増加を抑制するため、非水系溶媒中のアセトニトリルの含有量が上述の範囲内にある場合、アセトニトリルの優れた性能を維持しながら、高温サイクル特性及びその他の電池特性を一層良好なものとすることができる傾向にある。
<2−2.リチウム塩>
本実施形態におけるリチウム塩は、フッ素含有無機リチウム塩を含むことを特徴としている。「フッ素含有無機リチウム塩」とは、炭素原子をアニオンに含まず、フッ素原子をアニオンに含み、アセトニトリルに可溶なリチウム塩をいう。「無機リチウム塩」とは、炭素原子をアニオンに含まず、アセトニトリルに可溶なリチウム塩をいう。「有機リチウム塩」とは、炭素原子をアニオンに含み、アセトニトリルに可溶なリチウム塩をいう。
本実施形態におけるフッ素含有無機リチウム塩は、正極集電体である金属箔の表面に不働態皮膜を形成し、正極集電体の腐食を抑制する。このフッ素含有無機リチウム塩は、溶解性、伝導度、及び電離度という観点からも優れている。このため、フッ素含有無機リチウム塩は、リチウム塩として必ず加える必要がある。フッ素含有無機リチウム塩の具体例としては、例えば、LiPF、LiBF、LiAsF、LiSiF、LiSbF、Li1212−b〔bは0〜3の整数、好ましくは1〜3の整数〕、LiN(SOF)等が挙げられる。
これらのフッ素含有無機リチウム塩は、1種を単独で又は2種以上を組み合わせて用いられる。フッ素含有無機リチウム塩として、LiFとルイス酸との複塩である化合物が望ましく、中でも、リン原子を有するフッ素含有無機リチウム塩を用いると、遊離のフッ素原子を放出し易くなることからより好ましく、LiPFが特に好ましい。フッ素含有無機リチウム塩として、ホウ素原子を有するフッ素含有無機リチウム塩を用いると、電池劣化を招くおそれのある過剰な遊離酸成分を捕捉し易くなることから好ましく、このような観点からはLiBFが特に好ましい。
本実施形態の電解液におけるフッ素含有無機リチウム塩の含有量については、特に制限はない。しかしながらこの値は、非水系溶媒1Lに対して0.2mol以上であることが好ましく、0.5mol以上であることがより好ましく、0.8mol以上であることが更に好ましい。この値は、非水系溶媒1Lに対して15mol以下であることが好ましく、4mol以下であることがより好ましく、2.8mol以下であることが更に好ましい。フッ素含有無機リチウム塩の含有量が上述の範囲内にある場合、イオン伝導度が増大し高出力特性を発現できる傾向にあり、アセトニトリルの優れた性能を維持しながら、高温サイクル特性及びその他の電池特性を一層良好なものとすることができる傾向にある。
本実施形態におけるリチウム塩として、フッ素含有無機リチウム塩以外に、一般に非水系二次電池用に用いられているリチウム塩を補助的に添加してもよい。その他のリチウム塩の具体例としては、例えば、LiClO、LiAlO、LiAlCl、LiB10Cl10、クロロボランLi等のフッ素原子をアニオンに含まない無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiC(CFSO、LiC2n+1SO(n≧2)、低級脂肪族カルボン酸Li、四フェニルホウ酸Li等の有機リチウム塩;LiN(SOCF、LiN(SO等のLiN(SO2m+1〔mは1〜8の整数〕で表される有機リチウム塩;LiPF(CF)等のLiPF(C2p+16−n〔nは1〜5の整数、pは1〜8の整数〕で表される有機リチウム塩;LiBF(CF)等のLiBF(C2s+14−q〔qは1〜3の整数、sは1〜8の整数〕で表される有機リチウム塩;LiB(Cで表されるリチウムビス(オキサラト)ボレート(LiBOB);ハロゲン化LiBOB;LiBF(C)で表されるリチウムオキサラトジフルオロボレート(LiODFB);LiB(Cで表されるリチウムビス(マロネート)ボレート(LiBMB);LiPF(C)で表されるリチウムテトラフルオロオキサラトフォスフェート、LiPF(Cで表されるリチウムジフルオロビス(オキサラト)フォスフェート等の有機リチウム塩、多価アニオンと結合されたリチウム塩;下記一般式(2a)、(2b)、及び(2c);
LiC(SO)(SO)(SO) (2a)
LiN(SOOR)(SOOR10) (2b)
LiN(SO11)(SOOR12) (2c)
{式中、R、R、R、R、R10、R11、及びR12は、互いに同一であっても異なっていてもよく、炭素数1〜8のパーフルオロアルキル基を示す。}のそれぞれで表される有機リチウム塩等が挙げられ、これらのうちの1種又は2種以上を、フッ素含有無機リチウム塩と共に使用することができる。
非水系二次電池の負荷特性改善及び充放電サイクル特性改善のためには、シュウ酸基を有する有機リチウム塩を補助的に添加することが好ましく、LiB(C、LiBF(C)、LiPF(C)、及びLiPF(Cから成る群より選択される1種以上を添加することが特に好ましい。このシュウ酸基を有する有機リチウム塩は、非水系電解液に添加する他、負極(負極活物質層)に含有させてもよい。
前記のシュウ酸基を有する有機リチウム塩の非水系電解液への添加量は、その使用による効果をより良好に確保する観点から、非水系電解液の非水系溶媒1L当たりの量として、0.005モル以上であることが好ましく、0.02モル以上であることがより好ましく、0.05モル以上であることが更に好ましい。ただし、前記のシュウ酸基を有する有機リチウム塩の非水系電解液中の量が多すぎると析出するおそれがある。よって、前記のシュウ酸基を有する有機リチウム塩の非水系電解液への添加量は、非水系電解液の非水系溶媒1L当たりの量で、1.0モル未満であることが好ましく、0.5モル未満であることがより好ましく、0.2モル未満であることが更に好ましい。
<2−3.電極保護用添加剤>
本実施形態における電解液には、窒素含有環状化合物以外に、電極を保護する添加剤が含まれていてもよい。
電極保護用添加剤としては、本発明による課題解決を阻害しないものであれば特に制限はない。リチウム塩を溶解する溶媒としての役割を担う物質(すなわち上述の非水系溶媒)と実質的に重複してもよい。電極保護用添加剤は、本実施形態における電解液及び非水系二次電池の性能向上に寄与する物質であることが好ましいが、電気化学的な反応には直接関与しない物質をも包含する。
電極保護用添加剤の具体例としては、例えば、4−フルオロ−1,3−ジオキソラン−2−オン、4,4−ジフルオロ−1,3−ジオキソラン−2−オン、シス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、トランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、4,4,5−トリフルオロ−1,3−ジオキソラン−2−オン、4,4,5,5−テトラフルオロ−1,3−ジオキソラン−2−オン、及び4,4,5−トリフルオロ−5−メチル−1,3−ジオキソラン−2−オンに代表されるフルオロエチレンカーボネート;ビニレンカーボネート、4,5−ジメチルビニレンカーボネート、及びビニルエチレンカーボネートに代表される不飽和結合含有環状カーボネート;γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、δ−バレロラクトン、δ−カプロラクトン、及びε−カプロラクトンに代表されるラクトン;1,4−ジオキサンに代表される環状エーテル;エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3−メチルスルホラン、1,3−プロパンスルトン、1,4−ブタンスルトン、及びテトラメチレンスルホキシドに代表される環状硫黄化合物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
非水系溶媒の一成分であるアセトニトリルは電気化学的に還元分解され易いため、該アセトニトリルを含む非水系溶媒は、負極への保護皮膜形成のための添加剤として環状の非プロトン性極性溶媒を1種以上含むことが好ましく、不飽和結合含有環状カーボネートを1種以上含むことがより好ましい。
本実施形態における電解液中の電極保護用添加剤の含有量については、特に制限はない。しかし、非水系溶媒の全量に対する電極保護用添加剤の含有量として、0.1〜30体積%であることが好ましく、2〜20体積%であることがより好ましく、5〜15体積%であることが更に好ましい。
本実施形態においては、電極保護用添加剤の含有量が多いほど電解液の劣化が抑えられる。しかし、電極保護用添加剤の含有量が少ないほど非水系二次電池の低温環境下における高出力特性が向上することになる。従って、電極保護用添加剤の含有量を上述の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、電解液の高イオン伝導度に基づく優れた性能を最大限に発揮することができる傾向にある。このような組成で電解液を調製することにより、非水系二次電池のサイクル性能、低温環境下における高出力性能及びその他の電池特性の全てを一層良好なものとすることができる傾向にある。
<2−4.窒素含有環状化合物>
本実施形態における電解液は、添加剤として下記一般式(1):
Figure 0006346990
{式(1)中、AはCH又は窒素原子であり、
は、水素原子、炭素数1〜4のアルキル基、アリル基、プロパギル基、フェニル基、ベンジル基、ピリジル基、アミノ基、ピロリジルメチル基、トリメチルシリル基、ニトリル基、アセチル基、トリフルオロアセチル基、クロロメチル基、メトキシメチル基、イソシアノメチル基、メチルスルホニル基、フェニルスルホニル基、アジ化スルホニル基、ピリジルスルホニル基、2−(トリメチルシリル)エトキシカルボニロキシ基、ビス(N,N’−アルキル)アミノメチル基、又はビス(N,N’−アルキル)アミノエチル基であり、
は、炭素数1〜4のアルキル基、炭素数1〜4のフッ素置換アルキル基、炭素数1〜4のアルコキシ基、炭素数1〜4のフッ素置換アルコキシ基、ニトリル基、ニトロ基、アミノ基、又はハロゲン原子であり、そして、
kは0〜4の整数である。}で表される窒素含有環状化合物を含有することを特徴とする。
本実施形態における窒素含有環状化合物の具体例を以下に例示する。これらは1種を単独で又は2種以上を組み合わせて用いられる。
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
Figure 0006346990
フッ素含有無機リチウム塩としてLiFとルイス酸との複塩である化合物を用いる場合には、窒素含有環状化合物における窒素原子周辺には立体障害が存在しないことが望ましい。そのため、上記一般式(1)における4位は水素原子であることが好ましく、4位及び7位がともに水素原子であることがより好ましい。上記一般式(1)における4位及び7位がともに水素原子である場合、上記一般式(1)における5位及び6位の置換基は、窒素原子上に存在する非共有電子対に及ぼす電子的効果の観点から適宜選択することができる。なお、上記式(1)で表される化合物における骨格原子の位置番号を、下記の化学式にカッコ付き数字として示した。
Figure 0006346990
本実施形態の非水系電解液が、添加剤として上記一般式(1)で表される窒素含有環状化合物を含有することによって、粘度と比誘電率とのバランスに優れたアセトニトリルと、フッ素含有無機リチウム塩と、を含有する非水系電解液において、遷移金属とアセトニトリルとからなる錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、充放電サイクルを繰り返した際の内部抵抗の増加を抑制することができる。
本実施形態における電解液中の窒素含有環状化合物の含有量については、特に制限はないが、電解液の全量を基準として、0.01〜10質量%であることが好ましく、0.02〜5質量%であることがより好ましく、0.05〜3質量%であることが更に好ましい。本実施形態において、窒素含有環状化合物は、遷移金属とアセトニトリルとからなる錯体カチオンの生成を抑制する。従って該窒素含有環状化合物を含有する非水系二次電池は、優れた負荷特性を発揮するとともに、充放電サイクルを繰り返した際の内部抵抗の増加が抑制されたものとなる。しかしながら、本実施形態における窒素含有環状化合物は、π共役平面の影響により、必ずしも溶解性が高いわけではない。従って、該窒素含有環状化合物の含有量を上述の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、電極表面における錯体カチオンの生成反応が抑制できることとなり、充放電に伴う内部抵抗の増加を低減できるのである。このような組成で電解液を調製することにより、得られる非水系二次電池において、サイクル性能、低温環境下における高出力性能、及びその他の電池特性のすべてを、より一層良好なものとすることができる傾向にある。
<2−5.その他の任意的添加剤>
本実施形態においては、非水系二次電池の充放電サイクル特性の改善、高温貯蔵性、安全性の向上(例えば過充電防止等)等の目的で、非水系電解液に、例えば、無水酸、スルホン酸エステル、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、tert−ブチルベンゼン、リン酸エステル〔エチルジエチルホスホノアセテート(EDPA):(CO)(P=O)−CH(C=O)OC、リン酸トリス(トリフルオロエチル)(TFEP):(CFCHO)P=O、リン酸トリフェニル(TPP):(CO)P=O等〕等、及びこれらの化合物の誘導体等から選択される任意的添加剤を、適宜含有させることもできる。特に前記のリン酸エステルは、貯蔵時の副反応を抑制する作用があり、効果的である。
<3.正極>
正極5は、正極合剤から作製した正極活物質層5Aと、正極集電体5Bとから構成される。正極5は、非水系二次電池の正極として作用するものであれば特に限定されず、公知のものであってもよい。
正極活物質層5Aは、正極活物質を含有し、場合により導電助剤及びバインダーを更に含有する。
正極活物質層5Aは、正極活物質として、リチウムイオンを吸蔵及び放出することが可能な材料を含有することが好ましい。正極活物質層5Aは、正極活物質とともに、必要に応じて導電助剤及びバインダーを含有することが好ましい。このような材料を用いる場合、高電圧及び高エネルギー密度を得ることができる傾向にあるので好ましい。
正極活物質としては、例えば、下記の一般式(3a)及び(3b):
LiMO (3a)
Li (3b)
{式中、Mは少なくとも1種の遷移金属元素を含む1種以上の金属元素を示し、xは0〜1.1の数、yは0〜2の数を示す。}のそれぞれで表されるリチウム含有化合物、及びその他のリチウム含有化合物が挙げられる。
一般式(3a)及び(3b)のそれぞれで表されるリチウム含有化合物としては、例えば、LiCoOに代表されるリチウムコバルト酸化物;LiMnO、LiMn、及びLiMnに代表されるリチウムマンガン酸化物;LiNiOに代表されるリチウムニッケル酸化物;LiMO(MはNi、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含み、且つ、Ni、Mn、Co、Al、及びMgからなる群より選ばれる2種以上の金属元素を示し、zは0.9超1.2未満の数を示す)で表されるリチウム含有複合金属酸化物等が挙げられる。
一般式(3a)及び(3b)のそれぞれで表されるリチウム含有化合物以外のリチウム含有化合物としては、リチウムを含有するものであれば特に限定されない。このようなリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物、リチウムを有する金属カルコゲン化物、リチウムと遷移金属元素とを含むリン酸金属化合物、及びリチウムと遷移金属元素とを含むケイ酸金属化合物(例えばLiSiO、Mは一般式(3a)と同義であり、tは0〜1の数、uは0〜2の数を示す。)が挙げられる。より高い電圧を得る観点から、リチウム含有化合物としては、特に、
リチウムと、
コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、クロム(Cr)、バナジウム(V)、及びチタン(Ti)からなる群より選ばれる少なくとも1種の遷移金属元素と、
を含む複合酸化物、及びリン酸金属化合物が好ましい。
リチウム含有化合物としてより具体的には、リチウムと遷移金属元素とを含む複合酸化物又はリチウムと遷移金属元素とを含む金属カルコゲン化物、及びリチウムを有するリン酸金属化合物がより好ましく、例えば、それぞれ以下の一般式(4a)及び(4b):
Li (4a)
LiIIPO (4b)
{式中、Dは酸素又はカルコゲン元素を示し、M及びMIIはそれぞれ1種以上の遷移金属元素を示し、v及びwの値は、電池の充放電状態によってり、vは0.05〜1.10、wは0.05〜1.10の数を示す。}のそれぞれで表される化合物が挙げられる。
上述の一般式(4a)で表されるリチウム含有化合物は層状構造を有し、上述の一般式(4b)で表される化合物はオリビン構造を有する。これらのリチウム含有化合物は、構造を安定化させる等の目的から、Al、Mg、又はその他の遷移金属元素により遷移金属元素の一部を置換したもの、これらの金属元素を結晶粒界に含ませたもの、酸素原子の一部をフッ素原子等で置換したもの、正極活物質表面の少なくとも一部に他の正極活物質を被覆したもの等であってもよい。
本実施形態における正極活物質としては、上記のようなリチウム含有化合物のみを用いてもよいし、該リチウム含有化合物とともにその他の正極活物質を併用してもよい。
このようなその他の正極活物質としては、例えば、トンネル構造及び層状構造を有する金属酸化物又は金属カルコゲン化物;イオウ;導電性高分子等が挙げられる。トンネル構造及び層状構造を有する金属酸化物、又は金属カルコゲン化物としては、例えば、MnO、FeO、FeS、V、V13、TiO、TiS、MoS、及びNbSeに代表されるリチウム以外の金属の酸化物、硫化物、セレン化物等が挙げられる。導電性高分子としては、例えば、ポリアニリン、ポリチオフェン、ポリアセチレン、及びポリピロールに代表される導電性高分子が挙げられる。
上述のその他の正極活物質は、1種を単独で又は2種以上を組み合わせて用いられ、特に制限はない。しかしながら、リチウムイオンを可逆安定的に吸蔵及び放出することが可能であり、且つ、高エネルギー密度を達成できることから、前記正極活物質層がNi、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有することが好ましい。
正極活物質として、リチウム含有化合物とその他の正極活物質とを併用する場合、両者の使用割合としては、正極活物質の全部に対するリチウム含有化合物の使用割合として、80質量%以上が好ましく、85質量%以上がより好ましい。
導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有割合は、正極活物質100質量部に対して、10質量部以下とすることが好ましく、より好ましくは1〜5質量部である。
バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、スチレンブタジエンゴム、及びフッ素ゴムが挙げられる。バインダーの含有割合は、正極活物質100質量部に対して、6質量部以下とすることが好ましく、より好ましくは0.5〜4質量部である。
正極活物質層5Aは、正極活物質と、必要に応じて導電助剤及びバインダーとを混合した正極合剤を溶剤に分散した正極合剤含有スラリーを、正極集電体5Bに塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、特に制限はなく、従来公知のものを用いることができる。例えば、N―メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
正極集電体5Bは、例えば、アルミニウム箔、ニッケル箔、ステンレス箔等の金属箔により構成される。正極集電体5Bは、表面にカーボンコートが施されていてもよく、メッシュ状に加工されていてもよい。正極集電体5Bの厚みは、5〜40μmであることが好ましく、7〜35μmであることがより好ましく、9〜30μmであることが更に好ましい。
<4.負極>
負極6は、負極合剤から作製した負極活物質層6Aと、負極集電体6Bとから構成される。負極6は、非水系二次電池の負極として作用するものであれば特に限定されず、公知のものであってもよい。
負極活物質層6Aは、電池電圧を高められるという観点から、負極活物質としてリチウムイオンを0.4V vs.Li/Liよりも卑な電位で吸蔵することが可能な材料を含有することが好ましい。負極活物質層6Aは、負極活物質とともに、必要に応じて導電助剤及びバインダーを含有することが好ましい。
負極活物質としては、例えば、アモルファスカーボン(ハードカーボン)、人造黒鉛、天然黒鉛、黒鉛、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラファイト、炭素コロイド、及びカーボンブラックに代表される炭素材料の他、金属リチウム、金属酸化物、金属窒化物、リチウム合金、スズ合金、シリコン合金、金属間化合物、有機化合物、無機化合物、金属錯体、有機高分子化合物等が挙げられる。
負極活物質は1種を単独で又は2種以上を組み合わせて用いられる。
導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック;並びに炭素繊維が挙げられる。導電助剤の含有割合は、負極活物質100質量部に対して、20質量部以下とすることが好ましく、より好ましくは0.1〜10質量部である。
バインダーとしては、例えば、PVDF、PTFE、ポリアクリル酸、スチレンブタジエンゴム、及びフッ素ゴムが挙げられる。バインダーの含有割合は、負極活物質100質量部に対して、10質量部以下とすることが好ましく、より好ましくは0.5〜6質量部である。
負極活物質層6Aは、負極活物質と必要に応じて導電助剤及びバインダーとを混合した負極合剤を溶剤に分散した負極合剤含有スラリーを、負極集電体6Bに塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、特に制限はなく、従来公知のものを用いることができる。例えば、N―メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
負極集電体6Bは、例えば、銅箔、ニッケル箔、ステンレス箔等の金属箔により構成される。また、負極集電体6Bは、表面にカーボンコートが施されていてもよいし、メッシュ状に加工されていてもよい。負極集電体6Bの厚みは、5〜40μmであることが好ましく、6〜35μmであることがより好ましく、7〜30μmであることが更に好ましい。
<5.セパレータ>
本実施形態における非水系二次電池1は、正極5及び負極6の短絡防止、シャットダウン等の安全性付与の観点から、正極5と負極6との間にセパレータ7を備えることが好ましい。セパレータ7としては、公知の非水系二次電池に備えられるものと同様のものを用いてもよく、イオン透過性が大きく、機械的強度に優れる絶縁性の薄膜が好ましい。セパレータ7としては、例えば、織布、不織布、合成樹脂製微多孔膜等が挙げられ、これらの中でも、合成樹脂製微多孔膜が好ましい。
合成樹脂製微多孔膜としては、例えば、ポリエチレン又はポリプロピレンを主成分として含有する微多孔膜、或いは、これらのポリオレフィンの双方を含有する微多孔膜等のポリオレフィン系微多孔膜が好適に用いられる。不織布としては、例えば、ガラス製、セラミック製、ポリオレフィン製、ポリエステル製、ポリアミド製、液晶ポリエステル製、アラミド製等の耐熱樹脂製の多孔膜が挙げられる。
セパレータ7は、1種の微多孔膜を単層又は複数積層した構成であってもよく、2種以上の微多孔膜を積層したものであってもよい。セパレータ7は、2種以上の樹脂材料を溶融混錬した混合樹脂材料を用いて単層又は複数層に積層した構成であってもよい。
<6.電池外装>
本実施形態における非水系二次電池1の電池外装2の構成は特に限定されないが、例えば、電池缶及びラミネートフィルム外装体のいずれかの電池外装を用いることができる。電池缶としては、例えば、スチール又はアルミニウムからなる金属缶を用いることができる。ラミネートフィルム外装体としては、例えば、熱溶融樹脂/金属フィルム/樹脂の3層構成からなるラミネートフィルムを用いることができる。
ラミネートフィルム外装体は、熱溶融樹脂側を内側に向けた状態で2枚重ねて、又は熱溶融樹脂側を内側に向けた状態となるように折り曲げて、端部をヒートシールにより封止した状態で外装体として用いることができる。ラミネートフィルム外装体を用いる場合、正極集電体5Bに正極リード体3(又は正極端子及び正極端子と接続するリードタブ)を接続し、負極集電体6Bに負極リード体4(又は負極端子及び負極端子と接続するリードタブ)を接続してもよい。この場合、正極リード体3及び負極リード体4(又は正極端子及び負極端子のそれぞれに接続されたリードタブ)の端部が外装体の外部に引き出された状態でラミネートフィルム外装体を封止してもよい。
<7.電池の作製方法>
本実施形態における非水系二次電池1は、上述の非水系電解液、集電体の片面又は両面に正極活物質層を有する正極5、集電体の片面又は両面に負極活物質層を有する負極6、及び電池外装2、並びに必要に応じてセパレータ7を用いて、公知の方法により作製される。
先ず、正極5及び正極6、並びに必要に応じてセパレータ7からなる積層体を形成する。例えば、長尺の正極5と負極6とを、正極5と負極6との間に該長尺のセパレータを介在させた積層状態で巻回して巻回構造の積層体を形成する態様;
正極5及び負極6を一定の面積と形状とを有する複数枚のシートに切断して得た正極シートと負極シートとを、セパレータシートを介して交互に積層した積層構造の積層体を形成する態様;
長尺のセパレータをつづら折りにして、該つづら折りになったセパレータ同士の間に交互に正極体シートと負極体シートとを挿入した積層構造の積層体を形成する態様;
等が可能である。
次いで、電池外装2(電池ケース)内に上述の積層体を収容して、本実施形態に係る電解液を電池ケース内部に注液し、積層体を電解液に浸漬して封印することによって、本実施形態における非水系二次電池を作製することができる。
或いは、電解液を高分子材料からなる基材に含浸させることによって、ゲル状態の電解質膜を予め作製しておき、シート状の正極5、負極6、及び電解質膜、並びに必要に応じてセパレータ7を用いて積層構造の積層体を形成した後、電池外装2内に収容して非水系二次電池1を作製することができる。
本実施形態における非水系二次電池1の形状は、特に限定されず、例えば、円筒形、楕円形、角筒型、ボタン形、コイン形、扁平形、ラミネート形等が好適に採用される。
本実施形態において、アセトニトリルを使用した非水系電解液を用いた場合、その高いイオン伝導性に起因して、非水系二次電池の初回充電時に正極から放出されたリチウムイオンが負極の全体に拡散してしまう可能性がある。非水系二次電池では、正極活物質層よりも負極活物質層の面積を大きくすることが一般的である。しかしながら、負極活物質層のうち正極活物質層と対向していない箇所にまでリチウムイオンが拡散して吸蔵されてしまうと、このリチウムイオンが初回放電時に放出されずに負極に留まることとなる。そのため、該放出されないリチウムイオンの寄与分が不可逆容量となってしまう。こうした理由から、アセトニトリルを含有する非水系電解液を用いた非水系二次電池では、初回充放電効率が低くなってしまう場合がある。
一方、負極活物質層よりも正極活物質層の面積が大きいか、或いは両者が同じである場合には、充電時に負極活物質層のエッジ部分で電流の集中が起こり易く、リチウムデンドライトが生成し易くなる。
正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比について特に制限はないが、上記の理由により、1.0より大きく1.1未満であることが好ましく、1.002より大きく1.09未満であることがより好ましく、1.005より大きく1.08未満であることが更に好ましく、1.01より大きく1.08未満であることが特に好ましい。アセトニトリルを含む非水系電解液を用いた非水系二次電池では、正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を小さくすることにより、初回充放電効率を改善できる。
正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を小さくするということは、負極活物質層のうち、正極活物質層と対向していない部分の面積の割合を制限することを意味している。これにより、初回充電時に正極から放出されたリチウムイオンのうち、正極活物質層とは対向していない負極活物質層の部分に吸蔵されるリチウムイオンの量(すなわち、初回放電時に負極から放出されずに不可逆容量となるリチウムイオンの量)を可及的に低減することが可能となる。よって、正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を上記の範囲に設計することによって、アセトニトリルを使用することによる電池の負荷特性向上を図りつつ、電池の初回充放電効率を高め、更にリチウムデンドライトの生成も抑えることができるのである。
図3及び図4には、正極活物質層の全面が負極活物質層と対向する本実施態様の構成における「負極活物質層の非対向部分の幅」を説明するための図面を示している。図3は、正極、負極、及びセパレータで構成される電極体が積層電極体(これらを重ねて構成しただけの電極体)である場合の説明図である。図3(a)は、平面視で円形の正極活物質層50を有する正極と、平面視で円形の負極活物質層60を有する負極とが対向している場合を示す。図3(b)は、平面視で四角形の正極活物質層50を有する正極と、平面視で四角形の負極活物質層60を有する負極とが対向している場合を示す。図4は、正極、負極、及びセパレータで構成される電極体が、これらの積層体を渦巻状に巻回して形成した巻回電極体である場合の説明図である。これらの図面では、正極活物質層50と負極活物質層60との位置関係の理解を容易にするために、正極及び負極それぞれの集電体、並びにセパレータは図示していない。図4では、巻回電極体における正極活物質層50と負極活物質層60とが対向している箇所の一部を平面的に示している。
図3では、図中手前側(紙面に垂直な方向における上側)が負極活物質層60であり、奥行き側の点線で示したものが正極活物質層50である。積層電極体における「負極活物質層の非対向部分の幅」は、平面視において、負極活物質層60の外周端と、正極活物質層50の外周端との間の距離(図中aの長さ)を意味する。
図4においても、図3と同様に、図中手前側が負極活物質層60であり、奥行き側の点線で示したものが正極活物質層50である。巻回電極体の形成には、帯状の正極と帯状の負極とが使用される。この「負極活物質層の非対向部分の幅」は、帯状の正極及び帯状の負極の長尺方向に直交する方向における、負極活物質層60の外端と、正極活物質層50の外端との距離(図中bの長さ)を意味する。
電極の配置が、負極活物質層の外周端と正極活物質層の外周端とが重なる部分が存在するように、又は負極活物質層の非対向部分に幅が小さすぎる箇所が存在するように設計されている場合、電池組み立て時に電極の位置ずれが生じることにより、非水系二次電池における充放電サイクル特性が低下するおそれがある。よって、該非水系二次電池に使用する電極体においては、予めポリイミドテープ、ポリフェニレンスルフィドテープ、PPテープ等のテープ類、接着剤等によって、電極の位置を固定しておくことが好ましい。
本実施形態における非水系二次電池1は、初回充電により電池として機能し得る。初回充電の方法について特に制限はない。しかし、該非水系二次電池1は、初回充電の際に電解液の一部が分解することにより安定化することを考慮し、この安定化効果を有効に発現させるために、初回充電は0.001〜0.3Cで行われることが好ましく、0.002〜0.25Cで行われることがより好ましく、0.003〜0.2Cで行われることが更に好ましい。初回充電が、途中に定電圧充電を経由して行われることも好ましい結果を与える。定格容量を1時間で放電する定電流が1Cである。リチウム塩が電気化学的な反応に関与する電圧範囲を長く設定することによって、SEI(Solid Electrolyte Interface:固体電解質界面)が電極表面に形成され、正極5を含めた内部抵抗の増加を抑制する効果があることの他、反応生成物が負極6のみに強固に固定化されることなく、何らかの形で負極6以外の部材(例えば、正極5、セパレータ7等)にも良好な効果を与える。このため、非水系電解液に溶解したリチウム塩の電気化学的な反応を考慮して初回充電を行うことは、非常に有効である。
本実施形態における非水系二次電池1は、複数個の非水系二次電池1を直列又は並列に接続した電池パックとして使用することもできる。電池パックの充放電状態を管理する観点から、1個あたりの使用電圧範囲は2〜5Vであることが好ましく、2.5〜5Vであることがより好ましく、2.75V〜5Vであることが特に好ましい。
以上、本発明を実施するための形態について説明したが、本発明は上述の実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
以下、実施例によって本発明を更に詳細に説明する。しかしながら本発明は、これらの実施例に限定されるものではない。
各種評価は以下のようにして実施した。
(1)正極浸漬試験
アルミラミネート袋を2.7cm×6cmに加工した。この袋に、後述の正極を23mm×17mmに打ち抜いたものを封入した後、不活性雰囲気下において各実施例又は比較例で調製した非水系電解液0.5mLを注液した。この時、電極面が電解液中に浸漬していることを確認した。注液後シールし、アルミラミネート袋を縦に立て掛けた状態で60℃に保ち、10日間保存した。保存後、内部の電解液、及び正極表面の観察を行った。電解液中及び正極表面の双方ともに、遷移金属とアセトニトリルとからなる錯体カチオンの塩を主成分とするゲル状物が認められなかった場合を試験結果「○(良好)」、電解液中及び正極表面のうちのいずれかに前記ゲル状物が認められた場合を試験結果「×(不良)」と判定した。
(2)電池作製
(2−1)単層ラミネート型電池の作製
(2−1−1)正極(P1)の作製
正極活物質として数平均粒子径11μmのリチウム、ニッケル、マンガン、及びコバルトの複合酸化物(LiNi1/3Mn1/3Co1/3、密度4.70g/cm)と、導電助剤として数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm)と、バインダーとしてポリフッ化ビニリデン(PVdF;密度1.75g/cm)とを、93:4:3の質量比で混合し、正極合剤を得た。得られた正極合剤に溶剤としてN−メチル−2−ピロリドンを投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ20μm、幅200mmのアルミニウム箔の片面に、この正極合剤含有スラリーを、目付量が22mg/cmになるように調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで正極活物質層の密度が2.8g/cmになるように圧延することにより、正極活物質層と正極集電体とからなる正極(P1)を得た。
(2−1−2)負極(N1)の作製
負極活物質として数平均粒子径25μmのグラファイト炭素粉末(商品名「MCMB25−28」、大阪ガスケミカル(株)製)と、導電助剤として数平均粒子径48nmのアセチレンブラックと、バインダーとしてポリフッ化ビニリデン(PVdF;密度1.75g/cm)とを、93:2:5の固形分質量比で混合した。得られた混合物にN−メチル−2−ピロリドンを投入して更に混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ10μm、幅200mmの銅箔の片面に、この負極合剤含有スラリーを目付量が12mg/cmになるよう調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで負極活物質層の密度が1.5g/cmになるよう圧延することにより、負極活物質層と負極集電体とからなる負極(N1)を得た。
(2−1−3)単層ラミネート型電池(評価用)の作製
アルミニウム層と樹脂層とを積層したラミネートフィルム(絞り加工なし、厚さ120μm、31mm×37mm)2枚を、アルミニウム層側を外側にして重ね、三辺をシールしてラミネートセル外装を作製した。上述のように作製した正極(P1)を14.0mm×20.0mmに打ち抜き、上述のように作製した負極(N1)を14.5mm×20.5mmに打ち抜いた。続いて、セパレータとしてポリエチレン製微多孔膜(膜厚20μm、16mm×22mm)を用意し、正極(P1)と負極(N1)とをセパレータの両側に重ね合わせた積層体を、上記のラミネートセル外装内に配置した。次いで、そのセル外装内に各実施例及び比較例で調製した電解液を注入し、積層体を電解液に浸漬した。そして、ラミネートセル外装の残りの一辺をシールして非水系二次電池(単層ラミネート型電池。以下、単に「電池」ともいう。)を作製した。これを25℃で24時間保持し、積層体に電解液を十分馴染ませることにより、1C=9mAとなる単層ラミネート型電池(SL1)を得た。
ここで、1Cとは、満充電状態の電池を定電流で放電して1時間で放電終了となることが期待される電流値を意味する。上記で作製した単層ラミネート型電池については、4.2Vの満充電状態から定電流で2.7Vまで放電して、1時間で放電終了となることが期待される電流値を意味する。
(2−2)多層ラミネート型電池の作製
(2−2−1)正極(P2)の作製
正極活物質であるLiNi0.5Co0.2Mn0.3:96.8質量部と、導電助剤であるアセチレンブラック:2質量部と、バインダであるポリフッ化ビニリデン:1質量部と、分散剤であるポリビニルピロリドン:0.2質量部とを混合し、更に適量のN−メチル−2−ピロリドンを添加し、プラネタリーミキサーを用いて混合・分散を行って正極合剤含有スラリーを調製した。この正極合剤含有スラリーを、厚みが15μmのアルミニウム箔(集電体)の両面に塗布し、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、プレス処理を行って正極合剤層の密度を3.15g/cmに調整した後、所定の大きさに切断することにより、帯状の正極を得た。アルミニウム箔に正極合剤含有ペーストを塗布する際には、アルミニウム箔の一部が露出するように非塗布領域を設けた。このとき、表面で塗布領域とした箇所は、対応する裏面も塗布領域とした。得られた正極の正極合剤層の厚み(正極集電体であるアルミニウム箔の片面あたりの厚み)は63μm、塗布量(正極集電体であるアルミニウム箔の片面あたりの塗布量)は15.0mg/cmであった。
前記帯状の正極を、アルミニウム箔(正極集電体)の露出部の一部が突出するように、且つ正極合剤層の形成部が四隅を曲線状とする略四角形状になるようにトムソン刃で打ち抜いて、正極集電体の両面に正極合剤層を有する電池用正極(P2)を得た。ここで、突出したアルミニウム箔露出部はタブ部として機能する。図5に、前記電池用正極を模式的に表す平面図を示した。ただし、正極の構造の理解を容易にするために、図5に示す正極のサイズの比率は必ずしも実際のものと一致しない。
正極10は、正極集電体12の露出部の一部が突出するように打ち抜いたタブ部13を有する形状であり、正極合剤層11形成部の形状は四隅を曲線状にした略四角形であり、図中a、b、及びcの長さはそれぞれ80mm、200mm、及び20mmである。
(2−2−2)負極(N2)の作製
負極活物質である黒鉛:97.5質量部と、バインダであるカルボキシメチルセルロース:1.5質量部と、スチレンブタジエンラテックス:1.0質量部とを混合し、更に適量の水を添加し、十分に混合して負極合剤含有スラリーを調製した。前記負極合剤含有スラリーを厚みが10μmの銅箔(集電体)の両面に塗布し乾燥を行って、銅箔の両面に負極合剤層を形成した。その後、プレス処理を行って負極合剤層の密度を1.55g/cmに調整した後、所定の大きさに切断することにより、帯状の負極を得た。銅箔に負極合剤含有ペーストを塗布する際には、銅箔の一部が露出するように非塗布領域を設けた。このとき、表面で塗布領域とした箇所は対応する裏面も塗布領域とした。得られた負極の負極合剤層の厚み(負極集電体である銅箔の片面あたりの厚み)は69μm、塗布量(負極集電体である銅箔の片面あたりの塗布量)は9.0mg/cmであった。
前記帯状の負極を、銅箔(負極集電体)の露出部の一部が突出するように、且つ負極合剤層の形成部が四隅を曲線状とする略四角形状になるようにトムソン刃で打ち抜いて、負極集電体の両面に負極合剤層を有する電池用負極(N2)を得た。ここで、突出した銅箔露出部はタブ部として機能する。
図6に、前記電池用負極を模式的に表す平面図を示した。ただし、負極の構造の理解を容易にするために、図6に示す負極のサイズの比率は、必ずしも実際のものと一致しない。
負極20は、負極集電体22の露出部の一部が突出するように打ち抜いたタブ部23を有する形状であり、負極合剤層21形成部の形状は、四隅を曲線状にした略四角形であり、図中d、e、及びfの長さはそれぞれ85mm、205mm、及び20mmである。
(2−2−3)多層ラミネート型電池の作製
正極集電体の両面に正極合剤層を形成した電池用正極(P2)20枚、及び負極集電体の両面に負極合剤層を形成した両面負極(N2)21枚を用いて積層電極体を形成した。該積層電極体は、上下の両端を電池用負極として、これらの間に電池用正極と電池用負極とを、セパレータ(微多孔性ポリエチレンフィルム製セパレータ、厚み20μm)を介在させつつ交互に配置し、正極同士のタブ部、及び負極同士のタブ部を、それぞれ溶接した。
次に、厚み:150μm、幅:130mm、高さ:230mmのアルミニウムラミネートフィルムに前記積層電極体が収まるように窪みを形成し、該窪みに前記積層電極体を挿入し、その上に前記と同じサイズのアルミニウムラミネートフィルム(窪みを形成していないもの)を置いて、両アルミニウムラミネートフィルムの3辺を熱溶着した。そして、両アルミニウムラミネートフィルムの残りの1辺から前記非水電解液を注入した。その後、両アルミニウムラミネートフィルムの前記残りの1辺を真空熱封止することにより、多層ラミネート型非水系二次電池(以下、単に「多層ラミネート型電池」ともいう)を作製した。この多層ラミネート型電池は、定格電流値が15Ah、定格電圧値が4.2Vのものである。
積層電極体の有する各正極は、タブ部同士を溶接して一体化し、この溶接したタブ部の一体化物を電池内で正極外部端子と接続した。同様に、積層電極体の有する各負極も、タブ部同士を溶接して一体化し、この溶接したタブ部の一体化物を電池内で負極外部端子と接続した。これら正極外部端子及び負極外部端子は、外部の機器等と接続可能なように、片端側をアルミニウムラミネートフィルム外装体の外側に引き出した。
(3)単層ラミネート型電池の電池評価
上述のようにして得られた単層ラミネート型電池について、先ず、以下の(3−1)の手順に従って、初回充電処理及び初回充放電容量測定を行った。次に、以下の(3−2)及び(3−3)に従って、それぞれの単層ラミネート型電池を評価した。充放電は、アスカ電子(株)製の充放電装置ACD−01(商品名)及び二葉科学社製の恒温槽PLM−63S(商品名)を用いて行った。
(3−1)単層ラミネート型電池の初回充放電処理
単層ラミネート型電池の周囲温度を25℃に設定し、0.2Cに相当する1.8mAの定電流で充電して電池電圧が4.2Vに到達するまで充電を行った後、4.2Vの定電圧で8時間充電を行った。その後、0.2Cに相当する1.8mAの定電流で2.7Vまで放電した。このときの放電容量を充電容量で割ることによって、初回効率を算出した。また、このときの放電容量を初期容量とした。
(3−2)単層ラミネート型電池の高出力での放電容量測定(出力試験)
上述の(3−1)に記載の方法で初回充放電処理を行った電池を用い、1Cに相当する9mAの定電流で充電して電池電圧が4.2Vに到達するまで充電を行った後、4.2Vの定電圧で合計3時間充電を行った。その後、1Cに相当する9mAの定電流で電池電圧2.7Vまで放電した。このときの放電容量をAとした。次に、1Cに相当する9mAの定電流で充電して電池電圧が4.2Vに到達するまで充電を行った後、4.2Vの定電圧で合計3時間充電を行った。その後、5Cに相当する45mAの定電流で電池電圧2.7Vまで放電した。このときの放電容量をBとした。出力試験測定値として、以下の値を算出した。
容量維持率=100×B/A[%]
(3−3)単層ラミネート型電池の50℃サイクル測定
上記(3−1)に記載の方法で初回充放電処理を行った電池について、50℃における充放電サイクル特性を評価した。
先ず、単層ラミネート型電池の周囲温度を50℃に設定した。1Cに相当する定電流で充電して4.2Vに到達した後、4.2Vで合計3時間充電を行い、続いて1Cに相当する定電流で2.7Vまで放電した。充電と放電とを1回ずつ行う上記の工程を1サイクルとして、100サイクルの充放電を行った。なお、1回目、50回目、及び100回目の放電は、それぞれ、1Cに代えて0.3Cに相当する定電流で行った。
この時、2サイクル目の放電容量を100%としたときの各サイクルの放電容量の比率を放電容量維持率とした。
(3−4)単層ラミネート型電池の交流インピーダンス測定
交流インピーダンスの測定は、ソーラトロン社製の周波数応答アナライザ1400(商品名)とソーラトロン社製のポテンショ−ガルバノスタット1470E(商品名)とを用いて行った。測定する非水系二次電池としては、上記(3−3)に記載の方法によって50℃サイクル測定を行った際の、1サイクル目、50サイクル目、及び100サイクル目の充電まで行った時点の単層ラミネート型電池を用いた。この測定には1個の電池のみを使用し、各所定回目のサイクルにおける充電後に測定を行った後、50℃サイクル測定を継続し、次回の測定に供した。
測定条件としては、振幅を±5mV、周波数を0.1〜20kHzに設定し、20kHz及び0.1Hzにおける交流インピーダンス値を求めた。交流インピーダンスを測定する際の電池の周囲温度は25℃であった。
(4)多層ラミネート型電池の電池評価
上述のようにして得られた多層ラミネート型電池について、先ず、以下の(4−1)の手順に従って出力特性を評価した。次に、以下の(4−2)及び(4−3)の手順に従って充放電DCR(直流内部抵抗)及び充放電サイクル特性を評価した。
(4−1)出力特性(放電容量維持率)
各実施例及び比較例で得られた多層ラミネート型電池について、先ず、23℃において、0.2Cの電流値で4.2Vまで定電流充電を行った後、電流値が0.1Cになるまで4.2Vで定電圧充電して、充電容量(0.2C充電容量)を測定した。次いで、上記充電後の多層ラミネート型電池について、0.2Cの電流値で2.5Vになるまで定電流で放電したときの放電容量(0.2C放電容量)を測定した。
次に、上記0.2C放電容量を測定した後の多層ラミネート型電池について、定電流充電時及び定電流放電時の電流値をそれぞれ2Cに変更した以外は、上記0.2C充放電容量測定と同じ条件で定電流−定電圧充電及び定電流放電を行い、2C充電容量及び2C放電容量を測定した。
そして、0.2C放電容量を2C放電容量で除した値を放電容量維持率として、百分率で表した。
(4−2)出力試験(充放電DCR(直流内部抵抗)測定)
各実施例及び比較例で得られた多層ラミネート型電池について、25℃において、1Cの電流値で30分間の定電流充電を行った後、1Cの電流値で10秒間放電し、放電開始から10秒間で低下した電圧:ΔVを測定した。
次に、前記条件下における定電流充電と、2C電流値における定電流放電とを順次行って、2Cの定電流放電の開始から10秒間で低下した電圧:ΔVを同様に測定し、下記式によりDCRを算出した。
DCR(mΩ)=(ΔV−ΔV)/(2Cの電流値−1Cの電流値)
(4−3)充放電サイクル特性
各実施例及び比較例で得られた多層ラミネート型電池について、23℃において、
2Cの電流値で4.2Vまで定電流充電を行った後、電流値が0.1Cになるまで4.2Vで定電圧充電する充電と、
2Cの電流値で2.5Vになるまで定電流で行う放電と
をこの順に行う一連の操作を1サイクルとして充放電を繰り返し、下記式により100サイクル目の容量維持率を算出した。
容量維持率(%)=(100サイクル目の放電容量/1サイクル目の放電容量)×100
(5)電解液の調製
不活性雰囲気下、各種非水系溶媒及び各種電極保護用添加剤を、それぞれが所定の濃度になるよう混合し、更に、各種リチウム塩をそれぞれ所定の濃度になるよう添加することにより、電解液(S11)〜(S22)を調製した。これらの電解液組成を表1に示す。
また、これらの電解液を母電解液とし、母電解液100質量部に対し、各種窒素含有環状化合物が所定の質量部になるよう添加することにより、電解液(S31)〜(S66)を調製した。これらの電解液組成を表2に示す。
Figure 0006346990
Figure 0006346990
表1における非水系溶媒及びリチウム塩の略称は、それぞれ以下の意味である。
(非水系溶媒)
AN:アセトニトリル
EC:エチレンカーボネート
PC:プロピレンカーボネート
EMC:エチルメチルカーボネート
DEC:ジエチルカーボネート
VC:ビニレンカーボネート
ES:エチレンサルファイト
PS:1,3−プロパンスルトン
(リチウム塩)
LiPF:ヘキサフルオロリン酸リチウム
LiBOB:リチウムビス(オキサラト)ボレート(LiB(C
LiTFSI:リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF
[比較例1〜9、参考例1〜2、及び実施例1〜31]
上述のようにして得られた各種電解液について、上述の(1)に記載の方法で正極浸漬試験を行った。得られた評価結果を表3に示す。
Figure 0006346990
フッ素含有無機リチウム塩とアセトニトリルとを含む電解液において、窒素含有環状化合物を含有しない比較例1から比較例9では、褐色ゲル状物の生成が認められた。分析の結果から、この褐色ゲル状物は遷移金属とアセトニトリルとからなる錯体カチオンを含むことが分かった。一方、フッ素含有無機リチウム塩とアセトニトリルとを含む電解液において、窒素含有環状化合物を含有する実施例1から実施例31では、この褐色ゲル状物の生成が認められなかった。
これらの結果から、フッ素含有無機リチウム塩とアセトニトリルとを含む電解液において、窒素含有環状化合物が、電池の高温耐久性に寄与することが示唆された。
なお、リチウム塩として有機リチウム塩のみを用いた参考例1及び参考例2では、褐色ゲル状物の生成が認められなかった。このことから、褐色ゲル状物の生成は、フッ素含有無機リチウム塩とアセトニトリルとを含む電解液に特有の問題であることが示唆された。
[実施例32及び33、並びに比較例10]
正極(P1)、負極(N1)、及び表4に記載の電解液を組み合わせ、上述の(2−1−3)に記載の方法に従って単層ラミネート型電池を作製した。この単層ラミネート型電池について、上述の(3−1)に記載の方法で初回充放電処理を行い、上述の(3−2)に記載の方法で放電容量測定を行った。この出力試験における容量維持率を表4に示す。
Figure 0006346990
実施例32及び実施例33と比較例10との比較から、アセトニトリルを含む電解液を用いた場合には、アセトニトリルを含まない電解液を用いた場合と比較して出力試験における容量維持率が顕著に向上することが確認された。
[実施例34〜40、及び比較例11]
正極(P1)、負極(N1)、及び表5に記載の電解液を組み合わせ、上述の(2−1−3)に記載の方法に従って単層ラミネート型電池を作製した。この単層ラミネート型電池について、上述の(3−1)に記載の方法で初回充放電処理を行い、上述の(3−3)及び(3−4)に記載の方法で50℃サイクル測定及び交流インピーダンス測定を行った。評価結果を表5に示す。
Figure 0006346990
実施例34〜40と比較例11との比較から、アセトニトリルとフッ素含有無機リチウム塩と窒素含有環状化合物とを含む電解液を用いた場合、窒素含有環状化合物を含まない電解液を用いた場合と比較して、50℃サイクル性能に優れ、充放電サイクルを繰り返した際の内部抵抗の増加も抑制されることが確認された。
[実施例41]
正極(P2)、負極(N2)、及び電解液(S64)を組み合わせ、上述の(2−2−3)に記載の方法に従って多層ラミネート型電池を作製した。この多層ラミネート型電池について上述の(4−1)〜(4−3)に記載の方法により出力特性(放電容量維持率)試験、出力試験(充放電DCR測定)、及び充放電サイクル特性試験を行った。評価結果を表6に示す。
[比較例12]
電解液(S12)を使用した以外は、実施例41と同様にして多層ラミネート型電池を作製した。この多層ラミネート型電池について、先ず上述の(4−1)に記載の方法により初回充電を開始したが、膨れガス発生のため、試験継続を断念した。
Figure 0006346990
一般に、大容量の多層ラミネート型電池では、電極表面における電位ムラが生じ易く、ガス発生が大きな課題となる。しかしながら実施例41の多層ラミネート型電池は問題なく作動し、小型の単層ラミネート電池評価では確認できなかったスケールアップ時の課題も解決していることが実証された。この実施例41の多層ラミネート型電池は、小型の単層ラミネート型電池と同等のサイクル性能を示すことが確認された。
上述の結果から、本実施形態の電解液を用いた非水系二次電池は、既存電解液に匹敵する高温耐久性能を維持しながら、極めて高い出力特性を実現していることが分かる。
本発明の非水系電解液を用いて作成された非水系二次電池は、例えば、携帯電話機、携帯オーディオ機器、パーソナルコンピュータ、IC(Integrated Circuit)タグ等の携帯機器用の充電池;ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車等の自動車用充電池;住宅用蓄電システムとしての利用等が期待される。
1 非水系二次電池
2 電池外装
3 正極外部端子
4 負極外部端子
5 正極
5A 正極活物質層
5B 正極集電体
6 負極
6A 負極活物質層
6B 負極集電体
7 セパレータ
10 正極
11 正極合剤層
12 正極集電体
13 タブ部
20 負極
21 負極合剤層
22 負極集電体
23 タブ部

Claims (5)

  1. アセトニトリルを20〜100体積%含む非水系溶媒と、
    フッ素含有無機リチウム塩と、
    下記一般式(1):
    Figure 0006346990
    {式(1)中、AはCH又は窒素原子であり、
    は、水素原子、炭素数1〜4のアルキル基、アリル基、プロパギル基、フェニル基、ベンジル基、ピリジル基、アミノ基、ピロリジルメチル基、トリメチルシリル基、ニトリル基、アセチル基、トリフルオロアセチル基、クロロメチル基、メトキシメチル基、イソシアノメチル基、メチルスルホニル基、フェニルスルホニル基、アジ化スルホニル基、ピリジルスルホニル基、2−(トリメチルシリル)エトキシカルボニロキシ基、ビス(N,N’−アルキル)アミノメチル基、又はビス(N,N’−アルキル)アミノエチル基であり、
    は、炭素数1〜4のアルキル基、炭素数1〜4のフッ素置換アルキル基、炭素数1〜4のアルコキシ基、炭素数1〜4のフッ素置換アルコキシ基、ニトリル基、ニトロ基、アミノ基、又はハロゲン原子であり、そして、
    kは0〜4の整数である。}で表される化合物と、
    を含有する非水系電解液であって、前記一般式(1)で表される化合物の含有量が、前記非水系電解液100質量部に対して0.01〜10質量部である非水系電解液。
  2. 前記一般式(1)で表される化合物のRが、炭素数1〜4のアルキル基、ビス(N,N’−アルキル)アミノメチル基、又はビス(N,N’−アルキル)アミノエチル基である、請求項1記載の非水系電解液。
  3. 前記フッ素含有無機リチウム塩がLiPFを含有する、請求項1又は2記載の非水系電解液。
  4. 集電体の片面又は両面に、Ni、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有する正極活物質層を有する正極、
    集電体の片面又は両面に負極活物質層を有する負極、並びに、
    請求項1〜のいずれか1項記載の非水系電解液を具備することを特徴とする、非水系二次電池。
  5. 前記正極活物質層と前記負極活物質層とが対向配置されており、
    前記負極活物質層のうち、前記正極活物質層に対向する側の面の全面積の、
    前記正極活物質層と前記負極活物質層とが対向する領域の面積に対する比が、1.0より大きく1.1未満である、請求項記載の非水系二次電池。
JP2017510128A 2015-03-31 2016-03-30 非水系電解液及び非水系二次電池 Active JP6346990B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015073052 2015-03-31
JP2015073052 2015-03-31
PCT/JP2016/060453 WO2016159117A1 (ja) 2015-03-31 2016-03-30 非水系電解液及び非水系二次電池

Publications (2)

Publication Number Publication Date
JPWO2016159117A1 JPWO2016159117A1 (ja) 2017-09-21
JP6346990B2 true JP6346990B2 (ja) 2018-06-20

Family

ID=57007234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017510128A Active JP6346990B2 (ja) 2015-03-31 2016-03-30 非水系電解液及び非水系二次電池

Country Status (6)

Country Link
US (1) US10756394B2 (ja)
EP (2) EP3279997B1 (ja)
JP (1) JP6346990B2 (ja)
KR (1) KR101965092B1 (ja)
CN (1) CN107408735B (ja)
WO (1) WO2016159117A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6564336B2 (ja) * 2016-02-22 2019-08-21 旭化成株式会社 非水系電解液及び非水系二次電池
JP6974434B2 (ja) 2017-03-17 2021-12-01 旭化成株式会社 非水系電解液
EP3930043A1 (en) 2017-03-17 2021-12-29 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte, nonaqueous secondary battery, cell pack, and hybrid system
CN108390098B (zh) * 2018-03-30 2020-08-18 诺莱特电池材料(苏州)有限公司 一种高电压锂离子电池电解液及高电压锂离子电池
CN110391457B (zh) * 2018-04-23 2021-11-02 宁德时代新能源科技股份有限公司 电解液及锂离子电池
US20210344046A1 (en) * 2018-09-14 2021-11-04 Asahi Kasei Kabushiki Kaisha Nonaqueous Electrolytic Solution and Nonaqueous Secondary Battery
EP3831780B1 (en) * 2019-06-28 2023-05-03 Asahi Kasei Kabushiki Kaisha Non-aqueous electrolyte solution and non-aqueous secondary battery
CN114342147A (zh) 2019-09-13 2022-04-12 旭化成株式会社 非水系电解液和非水系二次电池
WO2021127333A1 (en) * 2019-12-19 2021-06-24 Casma Therapeutics, Inc. Trpml modulators
JP7514150B2 (ja) 2020-09-11 2024-07-10 旭化成株式会社 非水系電解液及び非水系二次電池
CN112358465B (zh) * 2020-10-27 2022-04-29 东莞东阳光科研发有限公司 一种化合物及其组成的电解液、锂离子电池
CN114497741B (zh) * 2022-02-16 2024-02-27 山东海科创新研究院有限公司 一种高电压电解液以及锂离子电池
CN115298875A (zh) * 2022-03-29 2022-11-04 宁德新能源科技有限公司 电解液、电化学装置及电子装置
WO2024050312A2 (en) * 2022-08-29 2024-03-07 The Broad Institute, Inc. T-type voltage-gated calcium channel potentiators

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233868A (ja) * 1990-02-07 1991-10-17 Furukawa Battery Co Ltd:The アルカリ蓄電池
JPH04351860A (ja) 1991-05-29 1992-12-07 Sanyo Electric Co Ltd 非水電解液電池
EP1018775B1 (en) * 1997-02-28 2007-01-03 Asahi Kasei EMD Corporation Nonaqueous secondary battery and method for manufacturing the same
JP2002231305A (ja) * 2001-01-30 2002-08-16 Denso Corp 電池用電解液および非水電解液電池
JP2003123837A (ja) 2001-10-15 2003-04-25 Sony Corp 電解質および電池
JP2004111349A (ja) * 2002-07-23 2004-04-08 Central Glass Co Ltd 電気化学ディバイスの溶媒分解抑制方法及びそれを用いた電気化学ディバイス
AU2003257556A1 (en) * 2003-08-26 2005-03-10 Japan Aerospace Exploration Agency Nonflammable nonaqueous electrolyte and lithium-ion battery containing the same
JP4618771B2 (ja) * 2004-03-10 2011-01-26 日立マクセル株式会社 ボタン形アルカリ電池
JP2007287677A (ja) * 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP4963186B2 (ja) * 2006-03-31 2012-06-27 パナソニック株式会社 非水電解質二次電池
JP5094084B2 (ja) * 2006-09-28 2012-12-12 三洋電機株式会社 非水電解質二次電池
JP5049680B2 (ja) 2007-07-12 2012-10-17 株式会社東芝 非水電解質電池及び電池パック
WO2012057311A1 (ja) 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 非水系電解液及び非水系二次電池
KR101946011B1 (ko) * 2011-09-22 2019-02-11 삼성전자주식회사 리튬 이차 전지용 전해질 및 이를 채용한 리튬 전지
JP6120772B2 (ja) 2011-10-28 2017-04-26 旭化成株式会社 非水系二次電池
JP5165158B1 (ja) * 2012-03-13 2013-03-21 株式会社日立製作所 非水電解質二次電池及びその製造方法
US9614252B2 (en) 2012-03-26 2017-04-04 The University Of Tokyo Lithium secondary battery electrolytic solution and secondary battery including said electrolytic solution
KR20140090277A (ko) 2012-12-06 2014-07-17 삼성전기주식회사 전해액 조성물 및 이를 갖는 에너지 저장 장치
JP6238582B2 (ja) 2013-06-11 2017-11-29 国立大学法人 東京大学 高濃度金属塩を含むアセトニトリル電解液、及び当該電解液を含む二次電池

Also Published As

Publication number Publication date
CN107408735B (zh) 2019-06-11
EP3467930A1 (en) 2019-04-10
EP3467930B1 (en) 2020-05-13
US10756394B2 (en) 2020-08-25
EP3279997B1 (en) 2020-01-15
KR101965092B1 (ko) 2019-04-02
US20180062213A1 (en) 2018-03-01
KR20170104596A (ko) 2017-09-15
WO2016159117A1 (ja) 2016-10-06
JPWO2016159117A1 (ja) 2017-09-21
CN107408735A (zh) 2017-11-28
EP3279997A4 (en) 2018-03-14
EP3279997A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6346990B2 (ja) 非水系電解液及び非水系二次電池
JP6346989B2 (ja) 非水系電解液及び非水系二次電池
US11532839B2 (en) Non-aqueous secondary battery
JP6865555B2 (ja) 非水系二次電池
JP6767151B2 (ja) 非水系電解液及び非水系二次電池
JP6868969B2 (ja) 非水系二次電池とそれに用いられる非水系電解液
JP6796445B2 (ja) 非水系二次電池
JP2019197634A (ja) 非水系電解液
JP6564336B2 (ja) 非水系電解液及び非水系二次電池
JP2018060693A (ja) 非水系二次電池
JP2021111586A (ja) 非水系電解液及び非水系二次電池
JP2019197632A (ja) 非水系電解液及び非水系二次電池
JP2019197633A (ja) 非水系電解液及び非水系二次電池
JP7260983B2 (ja) 非水系電解液及び非水系二次電池
JP7020818B2 (ja) 非水系電解液及び非水系二次電池
JP2022150999A (ja) 非水系二次電池の初回コンディショニング方法
JP2018060691A (ja) 非水系二次電池
JP2018060690A (ja) 非水系二次電池
JP2018060692A (ja) 非水系二次電池

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6346990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350