JP5742905B2 - 正極活物質層 - Google Patents

正極活物質層 Download PDF

Info

Publication number
JP5742905B2
JP5742905B2 JP2013202163A JP2013202163A JP5742905B2 JP 5742905 B2 JP5742905 B2 JP 5742905B2 JP 2013202163 A JP2013202163 A JP 2013202163A JP 2013202163 A JP2013202163 A JP 2013202163A JP 5742905 B2 JP5742905 B2 JP 5742905B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material layer
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013202163A
Other languages
English (en)
Other versions
JP2015069795A (ja
Inventor
元 長谷川
元 長谷川
知哉 鈴木
知哉 鈴木
友陽 笹岡
友陽 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013202163A priority Critical patent/JP5742905B2/ja
Priority to US14/916,089 priority patent/US20160218349A1/en
Priority to PCT/JP2014/074278 priority patent/WO2015045921A1/ja
Priority to CN201480052508.4A priority patent/CN105580169B/zh
Publication of JP2015069795A publication Critical patent/JP2015069795A/ja
Application granted granted Critical
Publication of JP5742905B2 publication Critical patent/JP5742905B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、正極活物質層、及びこれを用いた全固体リチウムイオン電池に関する。
リチウムイオン電池は、比較的大きなエネルギー密度を有するため、携帯電話、ノートパソコン、及びタブレット端末などの電源として広く使用されている。また、CO2の放出を削減するための次世代の電気自動車(EV)にリチウムイオン電池を用いることも期待されており、大容量のリチウムイオン電池の開発が求められている。
これに関して、従来、電解質として液体電解質を用いることが一般に行われてきたが、近年では、電解質として固体電解質を用いることが検討されている。電解質として固体電解質を用いる全固体リチウムイオン電池は、製造コスト、生産性等に関して優れることが知られている。
電解質として液体電解質を用いるリチウムイオン電池のための正極活物質層、及び電解質として固体電解質を用いるリチウムイオン電池のための正極活物質層はいずれも、正極活物質、電解質、及び導電助剤を含有しており、正極活物質からの電子及びリチウムイオンの輸送を、それぞれ主として電解質及び導電助剤によって行っている。
具体的には、図1(a)に示すように、電解質として液体電解質(12)を用いる正極活物質層(10)では、液体電解質(12)が正極活物質(11)間の隙間にも浸透することによって、液体電解質(12)と正極活物質(11)との間の良好な接触を確保しており、したがって高いリチウムイオン伝導度を得ることができる。
これに対して、図1(b)に示すように、電解質として固体電解質(22)を用いる正極活物質層(20)では、液体電解質の場合(10)と比較して、固体電解質(22)自体のリチウムイオン伝導度が小さく、また固体電解質(22)と正極活物質(21)との間の接触が少ないことによって、高いリチウムイオン伝導度を得ることが難しい。
このような背景から、高いリチウムイオン伝導性を有する固体電解質の開発が行われている。
これに関して、特許文献1及び2では、特定の硫化物固体電解質材料を提案している。また、特許文献3では、特定の硫黄含有イオン伝導性物質を正極活物質としても用いることを提案している。
特開2013−016423号公報 特開2012−048973号公報 特開2012−160415号公報
上記のように、従来、固体電解質を使用する全固体リチウムイオン電池においては、固体電解質のリチウムイオン伝導性を改良するための試みが多く行われている。
しかしながら、このような固体電解質を用いる全固体リチウムイオン電池全体の内部抵抗の低減に関しては、十分な検討がなされていなかった。
したがって、本発明では、全固体リチウムイオン電池の内部抵抗を低減することができる正極活物質層を提供する。また、本発明では、このような正極活物質層を有する全固体リチウムイオン電池を提供する。
本発明の正極活物質層は、正極活物質、固体電解質、及び導電助剤を含有しており、固体電解質及び導電助剤の合計含有率が、正極活物質層の合計体積に対して10体積%〜40体積%であり、かつ電子伝導度/リチウムイオン伝導度比が2〜500である。正極活物質層は、更にバインダーを含有してもよい。
また、本発明では、このような正極活物質層を有する全固体リチウムイオン電池を提供する。
本発明の正極活物質層によれば、全固体リチウムイオン電池の内部抵抗を低減することができる。
図1(a)は、液体電解質を用いるリチウムイオン電池における正極活物質層の概略図であり、図1(b)は、固体電解質を用いるリチウムイオン電池における正極活物質層の概略図である。 図2は、様々な電子伝導度/リチウムイオン伝導度比を有する正極活物質層を使用した場合の、全固体リチウムイオン電池の内部抵抗(Ω)の変化を示す。
《正極活物質層》
本発明の正極活物質層は、正極活物質、電解質、及び導電助剤を含有しており、固体電解質及び導電助剤の合計含有率が、正極活物質層の合計体積に対して10体積%〜40体積%、好ましくは10体積%〜35体積%であり、かつ電子伝導度/リチウムイオン伝導度比が、2〜500、好ましくは5〜110である。
本発明の正極活物質層は、全固体リチウムイオン電池において用いたときに、得られる全固体リチウムイオン電池の内部抵抗を低減することができる。
理論に限定されるものではないが、このようなリチウムイオン電池の内部抵抗の低減は、電子伝導度/リチウムイオン伝導度比が上記の範囲であることによって、電子伝導度とリチウムイオン伝導度との間で適度なバランスが得られていることによると考えられる。
これに対して、この比が小さすぎる場合、すなわち電子伝導度が小さすぎ、かつ/又はリチウムイオン伝導度が大きすぎる場合、電子に対する伝導度が相対的に不足し、それによってこの正極活物質層を有するリチウムイオン電池の内部抵抗が大きくなると考えられる。反対に、この比が大きすぎる場合、すなわち電子伝導度が大きすぎ、かつ/又はリチウムイオン伝導度が小さすぎる場合、リチウムイオンに対する伝導度が相対的に不足し、それによってこの正極活物質層を有するリチウムイオン電池の内部抵抗が大きくなると考えられる。
また、理論に限定されるものではないが、このようなリチウムイオン電池の内部抵抗の低減は、正極活物質層における固体電解質及び導電助剤の合計含有率が上記の範囲であることによって、正極活物質と固体電解質との間の接触、及び正極活物質と導電助剤との間の接触が適切に行われていることによると考えられる。
これに対して例えば、正極活物質層における固体電解質及び導電助剤の合計含有率が大きすぎる場合、すなわち正極活物質層における固体電解質及び導電助剤の割合が大きすぎる場合、固体電解質が、正極活物質と導電助剤との接触を阻害し、また導電助剤が、正極活物質と固体電解質との接触を阻害することによって、この正極活物質層を有するリチウムイオン電池の内部抵抗が大きくなると考えられる。
なお、固体電解質ではなく、液体電解質を用いる場合には、正極活物質と導電助剤との接触を液体電解質が阻害せず、また正極活物質と液体電解質との接触を導電助剤が阻害しないので、このような問題は生じないと考えられる。
〈電子伝導度〉
本発明における「電子伝導度」とは、正極活物質層における深さ方向の電子の通り易さ、すなわち、正極活物質層における正極集電体側から負極集電体側への、又は負極集電体側から正極集電体側への電子の通り易さを意味しており、この電子伝導度には、主に導電助剤及び正極活物質が寄与していると考えられる。
本発明において、正極活物質層の電子伝導度γ(S/m)の測定は、以下のように行うことができる。すなわち、任意の方法及び手順により、正極活物質層を2枚の正極集電体で挟持して、任意の面積A(cm)を有する金型を用いてプレスし、電子伝導度の測定用積層体を作製する。この積層体の厚み(μm)を測定し、この値から2枚の正極集電体の厚み(μm)を除いて、正極活物質層の厚みL(μm)を算出することができる。また、用いた金型の面積A(cm)を正極電極面積A(cm)とすることができる。
次に、試料の一方の集電体と他方の集電体との間に直流電流(例えば1mA)を一定時間(例えば30秒間)印加し、このときの電流I(mA)及び電圧降下ΔE(mV)を測定し、これらの値から抵抗値R(Ω)=ΔE/Iを算出する。なお、測定は一定温度下で、例えば、25℃に維持して行うことが好ましい。このようにして得られた正極活物質層の厚みL(μm)、正極電極面積A(cm)、及び抵抗値R(Ω)とから、下式1により、電子伝導度γ(S/m)を算出することができる。
Figure 0005742905
〈リチウムイオン伝導度〉
本発明における「リチウムイオン伝導度」とは、正極活物質層における深さ方向のリチウムイオンの通り易さ、すなわち、正極活物質層における正極活物質層における正極集電体側から負極集電体側への、又は負極集電体側から正極集電体側へのリチウムイオンの通り易さを意味しており、主に固体電解質が寄与していると考えられる。
本発明において、正極活物質層のリチウムイオン伝導度γLi(S/m)の測定は、以下のように行うことができる。すなわち、任意の方法及び手順により、正極集電体、正極活物質層、固体電解質層、リチウムイオン伝導度を測定すべき正極活物質層、固体電解質層、負極活物質層、及び負極集電体をこの順に積層して、任意の面積A(cm)を有する金型を用いてプレスし、リチウムイオン伝導度の測定用積層体を作製する。また、この積層体からリチウムイオン伝導度を測定すべき正極活物質層のみを除いた構造を有する積層体を同じ方法で作製し、参照用積層体として使用する。得られた測定用積層体の厚み(μm)から参照用積層体の厚み(μm)を除くことにより、リチウムイオン伝導度を測定すべき正極活物質層の厚みL(μm)を算出することができる。また、用いた金型の面積A(cm)を正極電極面積A(cm)とすることができる。
次に、測定用積層体の正極集電体と負極集電体との間に直流電流(例えば1mA)を一定時間(例えば30秒間)印加し、このときの電流I(mA)及び電圧降下ΔE(mV)を測定し、抵抗値R(Ω)=ΔE/Iを算出する。同様にして、参照用積層体の抵抗値R(Ω)を測定する。なお、測定は一定温度下で、例えば25℃に維持して行うことが好ましい。
ここで、測定用積層体は、上記のように、リチウムイオン伝導度を測定すべき正極活物質層が2枚の固体電解質層に挟持された構造を有している。固体電解質層はほとんど電子伝導度を有しないと考えられるから、直流電流を印加している間、測定すべき正極活物質層中では、リチウムイオンのみが伝導していると考えられる。したがって、得られた測定用積層体の抵抗値から参照用積層体の抵抗値を除くことにより、リチウムイオン伝導度を測定すべき正極活物質層のリチウムイオン抵抗値RLi(Ω)を算出することができる。
リチウムイオン伝導度を測定すべき正極活物質層の厚みL(μm)、正極電極面積A(cm)、及びリチウムイオン抵抗値RLi(Ω)から、下式2により、リチウムイオン伝導度γLi(S/m)を算出することができる。
Figure 0005742905
〈電子伝導度/リチウムイオン伝導度比〉
正極活物質層の電子伝導度/リチウムイオン伝導度比は、以上により得た電子伝導度γの値を、リチウムイオン伝導度γLiの値で除することにより得ることができる。
〈含有量〉
本発明における材料の含有量(体積%)の算出は、以下のように行。すなわち、正極活物質層に使用する各材料の質量(g)と公称密度(g/cm)から各材料の体積(cm)を求め、各材料の体積の和を正極活物質層の合計体積とする。正極活物質層におけるある材料の体積を百分率で表した値を、正極活物質層におけるその材料の含有量(体積%)とす。したがって、正極活物質中の空隙は含有量の計算に含まれない。
〈正極活物質〉
正極活物質としては、リチウムイオン電池の正極活物質として用いることができる材料であれば特に限定されないが、例えばLiNi1/3Mn1/3Co1/32、LiCoO2、LiNiO2、LiMn24、LiCoMnO4、Li2NiMn38等のリチウム金属酸化物、又はLiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、Li3Fe2(PO43、及びLi32(PO43等のリン酸金属リチウムを挙げることができる。
正極活物質の形態は、好ましくは粉体である。正極活物質の平均粒径としては、例えば1μm〜50μm、好ましくは1μm〜20μm、より好ましくは1μm〜10μm、更に好ましくは1μm〜6μmの範囲である。
ここで、本発明において、粒子径は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等による観察によって撮影した画像をもとに直接に投影面積円相当粒子径を計測し、集合数100以上からなる粒子群を解析することで、数平均二次粒子径として求めることができる。
正極活物質はコーティングしたものを使用することができる。コーティングは、リチウムイオン伝導性を有し、活物質及び固体電解質等と接触しても流動せず形態を維持できる材料であれば特に限定されないが、例えばLiNbO3、Li4Ti512、Li3PO4、ZrO2、Al23、及びTiO2、B23等の金属酸化物で形成することができる。このようなコーティングによれば、例えば放充電時における正極活物質の溶出や正極活物質と固体電解質との反応を抑制できる等の効果が期待できる。
正極活物質のコーティングは、正極活物質粒子の表面に均一なコーティングを形成することができる任意の方法で行うことができ、例えば転動流動式コーティング等が挙げられる。
〈固体電解質〉
固体電解質としては、リチウムイオン伝導性を有し、常温(15℃〜25℃)において固体形状であれば特に限定されない。固体電解質としては、例えば以下に示す酸化物固体電解質、及び硫化物固体電解質等が挙げられる。
酸化物固体電解質は、結晶質であってもよく、又は非晶質であってもよい。酸化物固体電解質としては、例えばLi2O−B23−P25、Li2O−SiO2、Li5La3Ta212、Li7La3Zr212、Li6BaLa2Ta212、Li3PO(4-3/2x)x(リン酸リチウムオキシナイトライド、x<1)、Li3.6Si0.60.44、Li1.3Al0.3Ti0.7(PO43、Li0.34La0.51TiO0.74、Li3PO4、Li2SiO2、Li2SiO4、Li0.5La0.5TiO3、及びLi1.5Al0.5Ge1.5(PO43等を挙げることができる。
硫化物固体電解質としては、例えばLi2S−P25、Li2S−SiS2、Li2S−P23、Li2S−P23−P25、LiI−Li2S−P25、LiI−Li2S−P25、LiI−Li2S−SiS2、LiI−Li3PO4−P25、LiI−Li2S−P25、LiI−Li2S−SiS2−P25、Li2S−SiS2−Li4SiO4、Li2S−SiS2−Li3PO4、Li3PS4−Li4GeS4、及びLi7311等を挙げることができる。
固体電解質の形態は、好ましくは粉体である。固体電解質の粒径は、例えば0.1μm〜20μm、好ましくは0.2μm〜10μm、より好ましくは0.3μm〜6μm、更に好ましくは0.5μm〜3μmの範囲である。
〈導電助剤〉
導電助剤としては、導電性を有する材料であれば特に限定されないが、カーボンブラック(CB)、例えばアセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンファイバー(CF)、カーボンナノチューブ(CNT)、及びカーボンナノファイバー(CNF)等の炭素材料を挙げることができる。
〈バインダー〉
バインダーとしては、正極活物質等の材料を固定化できるものであれば特に限定されないが、例えばポリビニリデンフルオライド(PVdF)、ポリテトラフルオロエチレン(PTFE)、ブタジエンゴム(BR)、及びスチレンブタジエンゴム(SBR)等のポリマー材料を挙げることができる。
正極活物質層におけるバインダーの含有量は、正極活物質等を固定化できる程度の量であれば良く、より少ないことが好ましい。バインダーの含有量としては、バインダーの種類により異なるが、通常、正極活物質100質量部に対して1質量部〜10質量部の範囲内である。
〈製造方法〉
本発明の正極活物質層は、例えば、上記の正極活物質、固体電解質、及び導電助剤等の材料を分散媒中に混合及び分散させてスラリーを作り、次いで、得られたスラリーを、正極集電体等の基材上に塗布して乾燥させることによって製造することができる。
分散媒としては、スラリーを形成でき、乾燥によって除去できる分散媒であれば特に限定されないが、例えば酪酸ブチル、ヘプタン等を挙げることができる。
スラリーを作製する方法としては、任意の方法を使用することができ、例えばホモジナイザー、超音波分散機、震盪機、ロータリーミキサー、ビーズミル等が挙げられる。
スラリーを正極集電体上に塗布する方法としては、均一な正極活物質層を形成する方法であれば特に限定されないが、例えばドクターブレード法、スプレー塗布、スクリーン印刷等を挙げることができる。
乾燥方法としては、分散媒を蒸発させて固体状の正極活物質層を形成する方法であれば特に限定されないが、例えば自然乾燥、加熱乾燥、真空乾燥、及びこれらの組合せ等が挙げられる。
《全固体リチウムイオン電池》
本発明の全固体リチウムイオン電池では、正極集電体、本発明の正極活物質層、負極活物質層、及び負極集電体がこの順に積層されている。また、本発明の全固体リチウムイオン電池は、上記の正極活物質層に加えて、全固体リチウムイオン電池の構成要素として使用できる任意の構成要素を有することができ、特に本発明の全固体リチウムイオン電池では、正極活物質層と負極活物質層との間に、固体電解質層及び/又はセパレータが積層されていてもよい。特に本発明の全固体リチウムイオン電池では、構成要素がすべて固体である。
〈正極集電体及び負極集電体〉
本発明の全固体リチウムイオン電池の正極集電体及び負極集電体としては、正極活物質層及び負極活物質層からの集電を行う任意の集電体を用いることができる。集電体の材料としては、例えばステンレス鋼、Al、Cr、Au、Pt、Fe、Ti、及びZn等の金属又は合金を挙げることができる。
集電体の形状としては、限定されないが例えば、箔状、板状、メッシュ状、及び多孔質体等を挙げることができる。
〈正極活物質層〉
本発明の全固体リチウムイオン電池の正極活物質層としては、本発明の正極活物質層を用いることができる。
〈固体電解質層〉
本発明の全固体リチウムイオン電池の固体電解質層としては、固体電解質を含有しており、かつ正極活物質及び負極活物質を実質的に含有していない層を用いることができる。ここで、「正極活物質及び負極活物質を実質的に含有していない」は、正極活物質層と負極活物質層との間の短絡等の問題がない程度に、正極活物質及び負極活物質を含有していないことを意味している。
この固体電解質層は随意に、バインダーを含むことができる。
固体電解質層のための固体電解質及びバインダーとしては、正極活物質層に関して言及したものを使用することができる。
固体電解質層は、正極活物質層と同様に、まず固体電解質等の材料を分散媒中に混合及び分散させてスラリーを作り、次いで、得られたスラリーを基材上に塗布し、乾燥させて製造することができる。
〈負極活物質層〉
本発明の全固体リチウムイオン電池の負極活物質層としては、負極活物質を含有しており、それによって電池の放電時にリチウムイオンを放出し、かつ随意に電池の充電時にリチウムイオンを吸蔵できる任意の層を用いることができる。
負極活物質層は随意に、負極活物質に加えて、固体電解質、バインダー、導電助剤等を含有することができる。
負極活性物質としては、リチウムイオンを吸蔵/放出可能なものであれば特に限定されないが、例えば黒鉛(グラファイト)、及びハードカーボン等の炭素材料、又はSi、Si合金、及びLi4Ti512等を挙げることができる。
負極活物質層に用いる固体電解質、バインダー、及び導電助剤としては、正極活物質層に関して言及したものを使用することができる。
負極活物質層は、正極活物質層と同様に、まず負極活物質等の材料を分散媒中に混合及び分散させてスラリーを作り、次いで、得られたスラリーを基材上に塗布し、乾燥させて製造することができる。
〈製造方法〉
本発明の全固体リチウムイオン電池は、正極集電体、正極活物質層、負極活物質層、及び負極集電体をこの順に積層することにより製造できる。
例えば、本発明の全固体リチウムイオン電池は、正極集電体上に上記のようにして正極活物質層を積層し、そしてその上に固体電解質層をプレスし、さらにこの固体電解質層上に、上記のようにして予め積層しておいた負極集電体と負極活物質層の積層体を重ねてプレスすることによって製造できる。
この場合のプレス方法は、特に限定されないが、1軸プレス、冷間等方圧加圧法(CIP)、ロールプレス等が挙げられる。また、プレス圧力は、各構成要素を一体に圧着でき、かつ各構成要素の変形量が許容できる圧力であればよく、例えば0.5t/cm2〜15t/cm2、好ましくは0.5t/cm2〜6t/cm2の圧力を用いることができる。
《比較例1》
〈正極活物質のコーティング〉
平均粒径6μmのLiNi1/3Mn1/3Co1/32正極活物質上に、大気環境下で、転動流動式コーティング装置(パウレック社製)を用いて、LiNbO3をコーティングした。得られた粒子を大気環境下で焼成した。
以下、正極集電体上に正極活物質層が形成されたものを「正極」と言及し、同様に、負極集電体上に負極活物質層が形成されたものを「負極」と言及する。
〈正極の作製〉
正極活物質として平均粒径6μmのコーティングしたLiNi1/3Mn1/3Co1/32、硫化物固体電解質として平均粒径0.8μmの、LiIを含むLi2S−P25系ガラスセラミック、バインダーとしてPVdF系バインダー(クレハ製)の5質量%酪酸ブチル溶液、及び分散媒として酪酸ブチルを、ポリプロピレン製容器内に入れた。
なお、各材料の含有量は、乾燥後の正極活物質層において、正極活物質が70体積%、硫化物固体電解質が28.8体積%となるようにした。
上記の正極活物質、分散媒等が入っている容器を、超音波分散装置(エスエムテー社製UH−50)を用いて30秒間撹拌し、次いで震盪機(柴田化学社製TTM−1)を用いて3分間震盪した。更に、この容器を、超音波分散装置を用いて30秒間撹拌し、次いで震盪機を用いて3分間震盪することによって、スラリーを得た。
得られたスラリーを、アプリケーターを使用して、ブレード法によって集電体としてのカーボン塗工アルミニウム(Al)箔(昭和電工社製SDX)上に塗工した。
得られた塗工したAl箔を自然乾燥させた後、100℃のホットプレート上で30分間乾燥させて、正極を作製した。
〈固体電解質層の作製〉
硫化物固体電解質として平均粒径2.5μmの、LiIを含むLi2S−P25系ガラスセラミック、バインダーとしてBR系バインダーの5質量%ヘプタン溶液、及び分散媒としてヘプタンをポリプロピレン製容器内に入れた。
この容器を、超音波分散装置(エスエムテー社製UH−50)を用いて30秒間撹拌し、次いで震盪機(柴田化学社製TTM−1)を用いて30分間震盪することによってスラリーを得た。
得られたスラリーを、アプリケーターを使用して、ブレード法によって、集電体としてのAl箔上に塗工した。
得られた塗工したAl箔を自然乾燥させた後、100℃のホットプレート上で30分間乾燥させて、集電体上に固体電解質層を積層した。
〈負極の作製〉
負極活物質として平均粒径10μmの天然黒鉛系カーボン(三菱化学社製)、硫化物固体電解質として平均粒径0.8μmの、LiIを含むLi2S−P25系ガラスセラミック、バインダーとしてPVdF系バインダー(クレハ社製)の5質量%酪酸ブチル溶液、及び分散媒として酪酸ブチルをポリプロピレン製容器内に入れた。
この容器を、超音波分散装置(エスエムテー社製UH−50)を用いて30秒間撹拌し、次いで震盪機(柴田化学社製TTM−1)を用いて30分間震盪することによってスラリーを得た。
得られたスラリーを、アプリケーターを使用して、ブレード法によって、集電体としてのCu箔上に塗工した。
得られた塗工したCu箔を自然乾燥させた後、100℃のホットプレート上で30分間乾燥させて、負極を作製した。
〈全固体リチウムイオン電池の作製〉
上記により得られた固体電解質層を面積1cm2の金型に入れて、1t/cm2でプレスし、セパレート層を作製した。このセパレート層の一方の面に正極を重ねて1t/cm2でプレスし、更に他の面に負極を重ねて6t/cm2でプレスすることにより、全固体リチウムイオン電池を作製した。
《比較例2》
硫化物固体電解質として平均粒径0.8μmの、LiI及びLi2Oを含むLi2S−P25系ガラスセラミックを、乾燥後の正極活物質層において28.5体積%となるよう使用し、また、導電助剤としてVGCF(昭和電工社製)を、乾燥後の正極活物質層において0.8体積%となるよう使用したこと以外は比較例1と同様の方法により、比較例2の正極を作製した。
この正極を使用して、比較例1と同様の方法により、比較例2の全固体リチウムイオン電池を作製した。
《比較例3》
硫化物固体電解質として平均粒径0.8μmの、LiIを含むLi2S−P25系ガラスセラミックを、乾燥後の正極活物質層において28.5体積%となるよう使用し、また、導電助剤としてVGCF(昭和電工社製)を、乾燥後の正極活物質層において0.8体積%となるよう使用したこと以外は比較例1と同様の方法により、比較例3の正極を作製した。
この正極を使用して、比較例1と同様の方法により、比較例3の全固体リチウムイオン電池を作製した。
《比較例4》
硫化物固体電解質として平均粒径0.8μmの、LiIを含むLi2S−P25系ガラスセラミックを、乾燥後の正極活物質層において26.7体積%となるよう使用し、また、導電助剤としてVGCF(昭和電工社製)を、乾燥後の正極活物質層において7.2体積%となるよう使用したこと以外は比較例1と同様の方法により、比較例4の正極を作製した。
この正極を使用して、比較例1と同様の方法により、比較例4の全固体リチウムイオン電池を作製した。
《比較例5》
硫化物固体電解質として平均粒径0.8μmの、LiI及びLi2Oを含むLi2S−P25系ガラスセラミックを、乾燥後の正極活物質層において27.5体積%となるよう使用し、また、導電助剤としてVGCF(昭和電工社製)を、乾燥後の正極活物質層において4.5体積%となるよう使用したこと以外は比較例1と同様の方法により、比較例5の正極を作製した。
この正極を使用して、比較例1と同様の方法により、比較例5の全固体リチウムイオン電池を作製した。
《実施例1》
硫化物固体電解質として平均粒径0.8μmの、LiIを含むLi2S−P25系ガラスセラミックを、乾燥後の正極活物質層において28.3体積%となるよう使用し、また、導電助剤としてVGCF(昭和電工社製)を、乾燥後の正極活物質層において1.5体積%となるよう使用したこと以外は比較例1と同様の方法により、実施例1の正極を作製した。
この正極を使用して、比較例1と同様の方法により、実施例1の全固体リチウムイオン電池を作製した。
《実施例2》
硫化物固体電解質として平均粒径0.8μmの、LiIを含むLi2S−P25系ガラスセラミックを、乾燥後の正極活物質層において28.1体積%となるよう使用し、また、導電助剤としてVGCF(昭和電工社製)を、乾燥後の正極活物質層において2.3体積%となるよう使用したこと以外は比較例1と同様の方法により、実施例2の正極を作製した。
この正極を使用して、比較例1と同様の方法により、実施例2の全固体リチウムイオン電池を作製した。
《実施例3》
硫化物固体電解質として平均粒径0.8μmの、LiIを含むLi2S−P25系ガラスセラミックを、乾燥後の正極活物質層において27.9体積%となるよう使用し、また、導電助剤としてVGCF(昭和電工社製)を、乾燥後の正極活物質層において3体積%となるよう使用したこと以外は比較例1と同様の方法により、実施例3の正極を作製した。
この正極を使用して、比較例1と同様の方法により、実施例3の全固体リチウムイオン電池を作製した。
《実施例4》
硫化物固体電解質として平均粒径0.8μmの、LiIを含むLi2S−P25系ガラスセラミックを、乾燥後の正極活物質層において27.5体積%となるよう使用し、また、導電助剤としてVGCF(昭和電工社製)を、乾燥後の正極活物質層において4.5体積%となるよう使用したこと以外は比較例1と同様の方法により、実施例4の正極を作製した。
この正極を使用して、比較例1と同様の方法により、実施例4の全固体リチウムイオン電池を作製した。
《実施例5》
硫化物固体電解質として平均粒径0.8μmの、LiI及びLi2Oを含むLi2S−P25系ガラスセラミックを、乾燥後の正極活物質層において28.3体積%となるよう使用し、また、導電助剤としてVGCF(昭和電工社製)を、乾燥後の正極活物質層において1.5体積%となるよう使用したこと以外は比較例1と同様の方法により、実施例5の正極を作製した。
この正極を使用して、比較例1と同様の方法により、実施例5の全固体リチウムイオン電池を作製した。
《実施例6》
硫化物固体電解質として平均粒径0.8μmの、LiI及びLi2Oを含むLi2S−P25系ガラスセラミックを、乾燥後の正極活物質層において28.1体積%となるよう使用し、また、導電助剤としてVGCF(昭和電工社製)を、乾燥後の正極活物質層において2.3体積%となるよう使用したこと以外は比較例1と同様の方法により、実施例6の正極を作製した。
この正極を使用して、比較例1と同様の方法により、実施例6の全固体リチウムイオン電池を作製した。
《実施例7》
硫化物固体電解質として平均粒径0.8μmの、LiI及びLi2Oを含むLi2S−P25系ガラスセラミックを、乾燥後の正極活物質層において27.9体積%となるよう使用し、また、導電助剤としてVGCF(昭和電工社製)を、乾燥後の正極活物質層において3体積%となるよう使用したこと以外は比較例1と同様の方法により、実施例7の正極を作製した。
この正極を使用して、比較例1と同様の方法により、実施例7の全固体リチウムイオン電池を作製した。
《評価》
〈電子伝導度の測定〉
正極活物質層の電子伝導度γを、以下のように測定した。すなわち、上記により得た正極を、直径11.28mmのハンドパンチ(野上技研製)を使用して2枚打ち抜き、これらを、正極活物質層を内側に挟むようにして面積1cm2の金型内に入れ、6t/cm2でプレスして積層体を得た。次に、得られた積層体を1.5MPaで拘束しながら、積層体全体の厚み(μm)を測定した。積層体全体の厚みから、2枚の正極集電体の厚みを除くことによって、正極活物質層の厚みL(μm)を算出した。
一方の集電体と他方の集電体との間に1mAの直流電流を30秒間印加し、このときの電圧降下量ΔE(mV)を測定した。印加した電流I(mA)と電圧降下ΔE(mV)との値から、正極電解質層の抵抗値R(Ω)=ΔE/Iを算出した。
得られた正極電解質層の厚みL(μm)、正極電極面積A(cm)(1cm)、及び抵抗値R(Ω)から、上述した式1により、正極活物質層の電子伝導度γ(S/m)を得た。
〈リチウムイオン伝導度の測定〉
正極活物質層のリチウムイオン伝導度γLi(S/m)を、以下のように測定した。
比較例1で使用した固体電解質75mgを、面積1cm2の金型に入れて表面をならし、1t/cm2でプレスすることにより、固体電解質層を形成した。次いで、リチウムイオン伝導度を測定すべき正極活物質層を有する正極を、直径11.28mmのハンドパンチ(野上技研製)を使用して1枚打ち抜いた。打ち抜かれた正極を、得られた固体電解質層の上に、正極集電体を上側にして積層し、1t/cm2でプレスした。プレス後、正極集電体を剥離した。
正極集電体を剥離した面上に、更に比較例1で使用した固体電解質75mgを入れて表面をならし、1t/cm2でプレスすることにより、固体電解質層―正極活物質層―固体電解質層の構造を有する三層の積層体を形成した。
次いで、比較例1の方法により作製した正極及び負極を、直径11.28mmのハンドパンチ(野上技研製)を使用して1枚ずつ打ち抜いた。打ち抜かれた正極及び負極を、上記より得た三層の積層体の両面上に、それぞれ集電体を外側にして重ね、6t/cm2でプレスして、積層体を得た。得られた積層体は、正極集電体、正極活物質層、固体電解質層、リチウムイオン伝導度を測定すべき正極活物質層、固体電解質層、負極活物質層、及び負極集電体をこの順に有する積層体であった。以下、この積層体を測定用積層体として言及する。
測定用積層体とは別に、比較例1で使用した固体電解質75mgを、面積1cm2の金型に入れて表面をならし、1t/cm2でプレスすることにより、固体電解質層を形成した。この上に、更に比較例1で使用した固体電解質75mgを入れて表面をならし、1t/cm2でプレスすることにより、固体電解質層―固体電解質層の構造を有する二層の積層体を形成した。
次いで、比較例1の方法により作製した正極及び負極を、直径11.28mmのハンドパンチ(野上技研製)を使用して1枚ずつ打ち抜いた。打ち抜かれた正極及び負極を、上記より得た二層の積層体の両面上に、それぞれ集電体を外側にして重ね、6t/cm2でプレスして、積層体を得た。得られた積層体は、正極集電体、正極活物質層、2枚の固体電解質層、負極活物質層、及び負極集電体をこの順に有する積層体であった。以下、この積層体を参照用積層体と言及する。
測定用積層体を1.5MPaで拘束しながら、測定用積層体の厚み(μm)を測定した。同様の方法により、参照用積層体の厚み(μm)を測定した。測定用積層体の厚みから参照用積層体の厚みを除くことにより、リチウムイオン伝導度を測定すべき正極活物質層の厚みL(μm)を算出した。
測定用積層体の正極集電体及び負極集電体の間に、3C相当の直流電流(1mA)を5秒間印加して、電圧降下量ΔE(mV)を測定した。印加した電流I(mA)と電圧降下ΔE(mV)の値から、測定用積層体の抵抗値R(Ω)=ΔE/Iを算出した。同様の方法により、参照用積層体の抵抗値R(Ω)を測定した。測定用積層体の抵抗値から参照用積層体の抵抗値を除くことにより、リチウムイオン伝導度を測定すべき正極活物質層のリチウムイオン抵抗値RLi(Ω)を得た。
最後に、リチウムイオン伝導度を測定すべき正極活物質層の厚み(μm)、正極電極面積A(cm)(1cm)、及びリチウムイオン抵抗値RLi(Ω)の値から、上述した式2により、正極活物質層のリチウムイオン伝導度γLi(S/m)を算出した。
〈電子伝導度/リチウムイオン伝導度比〉
以上により得た電子伝導度γの値を、リチウムイオン伝導度γLiの値で除することにより、正極活物質層の電子伝導度/リチウムイオン伝導度比を得た。
〈内部抵抗の測定〉
作製した全固体リチウムイオン電池を、定電流−定電圧充電により、3.52Vまで充電した。終止電流は1/100C相当であった。充電後、電池を10分間休止させた。次いで定電流放電を実施し、電流値I(mA)及び5秒後の電圧降下ΔE(mV)より、全固体リチウムイオン電池の内部抵抗R(Ω)=ΔE/Iを測定した。
評価結果を表1、及び図2にまとめる。
Figure 0005742905
表1、及び図2に示した結果は、電子伝導度/リチウムイオン伝導度比が2〜500である実施例の正極活物質層を使用した場合、比較例の正極活物質層を使用した場合と比較して、全固体リチウムイオン電池の内部抵抗を低減することができることを示している。
10 液体電解質を使用したリチウムイオン電池における正極活物質層
11 正極活物質
12 液体電解質
13 導電助剤
20 固体電解質を使用した全固体リチウムイオン電池における正極活物質層
21 正極活物質
22 固体電解質
23 導電助剤

Claims (3)

  1. 正極活物質層であって、
    正極活物質、固体電解質、導電助剤、及びバインダーを含有し、
    正極活物質層における固体電解質及び導電助剤の合計含有量が、正極活物質層の合計体積に対して10体積%〜40体積%であり、
    正極活物質層におけるバインダーの含有量が、正極活物質100質量部に対して、1質量部〜10質量部であり、
    正極活物質の平均粒径が、1μm〜50μmであり、
    固体電解質の平均粒径が、0.1μm〜20μmであり、
    電子伝導度/リチウムイオン伝導度比が2〜500であり、かつ
    正極活物質層に使用する各材料の質量(g)と公称密度(g/cm )から各材料の体積(cm )を求め、各材料の体積の和を正極活物質層の合計体積とし、正極活物質層におけるある材料の体積を百分率で表した値を、正極活物質層におけるその材料の体積%とする、
    正極活物質層。
  2. 電子伝導度/リチウムイオン伝導度比が5〜110である、請求項1に記載した正極活物質層
  3. 請求項1〜2のいずれか一項に記載した正極活物質層を用いた、全固体リチウムイオン電池。
JP2013202163A 2013-09-27 2013-09-27 正極活物質層 Active JP5742905B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013202163A JP5742905B2 (ja) 2013-09-27 2013-09-27 正極活物質層
US14/916,089 US20160218349A1 (en) 2013-09-27 2014-09-12 Positive electrode active material layer
PCT/JP2014/074278 WO2015045921A1 (ja) 2013-09-27 2014-09-12 正極活物質層
CN201480052508.4A CN105580169B (zh) 2013-09-27 2014-09-12 正极活性物质层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202163A JP5742905B2 (ja) 2013-09-27 2013-09-27 正極活物質層

Publications (2)

Publication Number Publication Date
JP2015069795A JP2015069795A (ja) 2015-04-13
JP5742905B2 true JP5742905B2 (ja) 2015-07-01

Family

ID=52743063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202163A Active JP5742905B2 (ja) 2013-09-27 2013-09-27 正極活物質層

Country Status (4)

Country Link
US (1) US20160218349A1 (ja)
JP (1) JP5742905B2 (ja)
CN (1) CN105580169B (ja)
WO (1) WO2015045921A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269597B2 (ja) * 2015-06-29 2018-01-31 トヨタ自動車株式会社 正極活物質層、全固体リチウム電池および正極活物質層の製造方法
PL3326226T3 (pl) 2015-07-22 2020-07-27 Umicore Materiał katodowy do baterii litowo-jonowych wielokrotnego ładowania z elektrolitem w stanie stałym
JP6710692B2 (ja) * 2015-09-17 2020-06-17 株式会社東芝 二次電池用複合電解質、二次電池及び電池パック
WO2017197039A1 (en) * 2016-05-10 2017-11-16 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
WO2018047946A1 (ja) * 2016-09-12 2018-03-15 富士フイルム株式会社 電極層材、全固体二次電池電極用シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
US10854930B2 (en) * 2016-10-07 2020-12-01 The Regents Of The University Of Michigan Stabilization coatings for solid state batteries
JP7129144B2 (ja) * 2017-01-24 2022-09-01 日立造船株式会社 全固体電池およびその製造方法
JP6597701B2 (ja) * 2017-04-18 2019-10-30 トヨタ自動車株式会社 負極合材、当該負極合材を含む負極、及び、当該負極を備える全固体リチウムイオン二次電池
JP6593381B2 (ja) * 2017-04-18 2019-10-23 トヨタ自動車株式会社 全固体リチウムイオン二次電池用の負極合材、当該負極合材を含む負極、及び当該負極を備える全固体リチウムイオン二次電池
CN110114916B (zh) * 2017-05-15 2022-04-15 株式会社Lg新能源 全固态电池用电极及其制造方法
KR102439364B1 (ko) * 2017-06-27 2022-09-02 가부시키가이샤 닛폰 쇼쿠바이 전해질 조성물, 전해질막, 전극, 전지 및 전해질 조성물의 평가 방법
JP2019103266A (ja) * 2017-12-04 2019-06-24 株式会社デンソー 多重巻線回転機の制御装置
JP6969422B2 (ja) * 2018-02-19 2021-11-24 セイコーエプソン株式会社 電解質、電池、電子機器、電解質および電池の製造方法
JP6799713B2 (ja) * 2018-03-30 2020-12-16 富士フイルム株式会社 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池の製造方法
JP7018376B2 (ja) * 2018-11-13 2022-02-10 本田技研工業株式会社 固体電池
CN111370751B (zh) * 2018-12-25 2021-12-07 深圳市比亚迪锂电池有限公司 固态电池及其制备方法和电动汽车
JP7067498B2 (ja) * 2019-01-24 2022-05-16 トヨタ自動車株式会社 負極
JP7107867B2 (ja) * 2019-02-07 2022-07-27 本田技研工業株式会社 リチウムイオン二次電池用正極、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびリチウムイオン二次電池の製造方法
KR20240054575A (ko) * 2022-10-19 2024-04-26 주식회사 엘지에너지솔루션 양극 입자, 이를 포함하는 양극 및 전고체 전지

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU531998B2 (en) * 1978-09-05 1983-09-15 Coles Cranes Ltd. Counterweight removal system
JP2010040190A (ja) * 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd 極材スラリーの製造方法
JP2010262764A (ja) * 2009-04-30 2010-11-18 Toyota Motor Corp 正極合剤層形成用スラリーおよび正極合剤層
JP2011159534A (ja) * 2010-02-02 2011-08-18 Toyota Motor Corp リチウム電池
US20130040206A1 (en) * 2010-02-26 2013-02-14 Zeon Corporation All solid-state secondary battery and a production method of an all solid-state secondary battery
JP5708467B2 (ja) * 2011-03-18 2015-04-30 トヨタ自動車株式会社 スラリー、固体電解質層の製造方法、電極活物質層の製造方法、および全固体電池の製造方法
JP5855897B2 (ja) * 2011-10-20 2016-02-09 富士重工業株式会社 リチウムイオン二次電池
JP6120772B2 (ja) * 2011-10-28 2017-04-26 旭化成株式会社 非水系二次電池
WO2014002857A1 (ja) * 2012-06-29 2014-01-03 株式会社 村田製作所 全固体電池

Also Published As

Publication number Publication date
CN105580169B (zh) 2018-03-27
JP2015069795A (ja) 2015-04-13
US20160218349A1 (en) 2016-07-28
WO2015045921A1 (ja) 2015-04-02
CN105580169A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5742905B2 (ja) 正極活物質層
JP6871342B2 (ja) 電極、電極製造方法、並びに二次電池及びその製造方法
US9985314B2 (en) All-solid battery and method for manufacturing the same
JP2020021674A (ja) 全固体電池およびその製造方法
JP5850154B2 (ja) 全固体電池の製造方法
JP6296030B2 (ja) 電極積層体及び全固体電池の製造方法
JP2015005398A (ja) 全固体リチウムイオン電池用正極
JP2018181707A (ja) 負極合材、当該負極合材を含む負極、及び、当該負極を備える全固体リチウムイオン二次電池
JP2018142431A (ja) 硫化物全固体電池用負極、及び、硫化物全固体電池、並びに当該硫化物全固体電池の製造方法
CN110165300B (zh) 全固体电池的制造方法
JPWO2018193992A1 (ja) 全固体リチウムイオン二次電池
JP7077923B2 (ja) 負極
JP2019106352A (ja) 硫化物固体電池の製造方法
JP2018106984A (ja) 全固体リチウムイオン電池
JP7156263B2 (ja) 全固体電池および全固体電池の製造方法
JP7107880B2 (ja) 負極合材層
CN111063886B (zh) 硫化物全固体电池
JP2023009988A (ja) 全固体電池及び全固体電池の製造方法
CN110943255B (zh) 全固体电池的制造方法及全固体电池
JP6992710B2 (ja) 複合固体電解質層、及びそれの製造方法、並びに、全固体電池の製造方法
JP7067498B2 (ja) 負極
JP7188224B2 (ja) 全固体電池
JP6776978B2 (ja) 全固体リチウムイオン二次電池用負極及びその負極を備える全固体リチウムイオン二次電池
JP2022128794A (ja) 全固体電池
JP2022153951A (ja) 全固体電池

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R151 Written notification of patent or utility model registration

Ref document number: 5742905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151