WO2006106153A2 - Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration - Google Patents

Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration Download PDF

Info

Publication number
WO2006106153A2
WO2006106153A2 PCT/EP2006/062448 EP2006062448W WO2006106153A2 WO 2006106153 A2 WO2006106153 A2 WO 2006106153A2 EP 2006062448 W EP2006062448 W EP 2006062448W WO 2006106153 A2 WO2006106153 A2 WO 2006106153A2
Authority
WO
WIPO (PCT)
Prior art keywords
aliphatic hydrocarbon
equal
polyhydroxylated aliphatic
ppm
chlorinating agent
Prior art date
Application number
PCT/EP2006/062448
Other languages
English (en)
Other versions
WO2006106153A3 (fr
Inventor
Philippe Krafft
Original Assignee
Solvay (Société Anonyme)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39543862&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006106153(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FR0505120A external-priority patent/FR2885903B1/fr
Priority claimed from EP05104321A external-priority patent/EP1762556A1/fr
Priority to JP2008511721A priority Critical patent/JP2008545643A/ja
Priority to BRPI0610799-0A priority patent/BRPI0610799A2/pt
Priority to EP06763189A priority patent/EP1885677A2/fr
Application filed by Solvay (Société Anonyme) filed Critical Solvay (Société Anonyme)
Priority to MX2007014516A priority patent/MX2007014516A/es
Priority to US11/914,868 priority patent/US8344185B2/en
Priority to CN2006800005352A priority patent/CN1993307B/zh
Priority to CA002608816A priority patent/CA2608816A1/fr
Priority to EA200702555A priority patent/EA200702555A1/ru
Publication of WO2006106153A2 publication Critical patent/WO2006106153A2/fr
Publication of WO2006106153A3 publication Critical patent/WO2006106153A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/62Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C29/82Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/34Halogenated alcohols
    • C07C31/36Halogenated alcohols the halogen not being fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/34Halogenated alcohols
    • C07C31/42Polyhydroxylic acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/06Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/24Synthesis of the oxirane ring by splitting off HAL—Y from compounds containing the radical HAL—C—C—OY
    • C07D301/26Y being hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals

Definitions

  • the present invention relates to a process for producing a chlorohydrin. It relates more specifically to a process for producing a chlorohydrin from a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent.
  • Chlorohydrins are reaction intermediates in the manufacture of epoxides.
  • Dichloropropanol for example, is a reaction intermediate in the manufacture of epichlorohydrin and epoxy resins (Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, 1992, Vol 2, page 156, John Wiley & Sons, Inc.) .
  • dichloropropanol can be obtained in particular by hypochlorination of allyl chloride, by chlorination of allyl alcohol and by hydrochlorination of glycerol.
  • the latter process has the advantage that dichloropropanol can be obtained from fossil raw materials or renewable raw materials, and it is known that petrochemical natural resources, from which fossil fuels are derived, for example petroleum, natural gas or coal, available on the earth are limited.
  • the international application WO 2005/021476 and the application WO 2005/054167 of SOLVAY SA describe a process for the manufacture of dichloropropanol by reaction between glycerol and hydrogen chloride.
  • the hydrogen chloride may be gaseous or in the form of aqueous solutions.
  • the object of the invention is to provide a process for producing chlorohydrin from a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture of them, and a chlorinating agent that does not have these disadvantages.
  • the invention therefore relates to a process for producing a chlorohydrin from a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, and a chlorinating agent, the chlorinating agent containing at least one of nitrogen, oxygen, hydrogen, chlorine, an organic hydrocarbon compound, a halogenated organic compound, an oxygenated organic compound and a metal.
  • the hydrocarbon-based organic compound is chosen from aromatic, saturated or unsaturated aliphatic hydrocarbons and mixtures thereof.
  • the unsaturated aliphatic hydrocarbon is chosen from acetylene, ethylene, propylene, butene, propadiene, methylacetylene and their mixtures
  • the saturated aliphatic hydrocarbon is chosen from methane, ethane, propane, butane and mixtures thereof
  • the aromatic hydrocarbon is benzene.
  • the halogenated organic compound is a chlorinated organic compound chosen from chloromethanes, chloroethanes, chloropropanes, chlorobutanes, vinyl chloride, vinylidene chloride, monochloropropenes, perchlorethylene, trichlorethylene, chlorobutadiene, chlorobenzenes and mixtures thereof.
  • the halogenated organic compound is a fluorinated organic compound chosen from fluoromethanes, fluoroethanes, vinyl fluoride, vinylidene fluoride, and mixtures thereof.
  • the oxygenated organic compound is chosen from alcohols, chloroalcohols, chloroethers and their mixtures.
  • the metal is chosen from alkali metals, alkaline earth metals, iron, nickel, copper, lead, arsenic, cobalt, titanium, cadmium, antimony, mercury, zinc, selenium, aluminum, bismuth, and mixtures thereof.
  • the chlorinating agent is at least partially derived from a process for producing allyl chloride and / or a process for producing chloromethanes and / or a chlorinolysis process and or a process for oxidizing chlorinated compounds at a temperature greater than or equal to 800 ° C.
  • the manufacturing processes can be carried out independently in batch mode or in continuous mode. It is preferred that at least one of the methods be conducted in a continuous mode. It is more particularly preferred that the continuous mode be used for all manufacturing processes considered.
  • the chlorinating agent contains hydrogen chloride.
  • polyhydroxylated aliphatic hydrocarbon refers to a hydrocarbon that contains at least two hydroxyl groups attached to two different saturated carbon atoms.
  • the polyhydroxylated aliphatic hydrocarbon may contain, but is not limited to, from 2 to 60 carbon atoms.
  • Each of the carbons of a polyhydroxylated aliphatic hydrocarbon bearing the functional hydroxyl (OH) group can not have more than one OH group, and must be of sp3 hybridization.
  • the carbon atom carrying the OH group may be primary, secondary or tertiary.
  • the polyhydroxylated aliphatic hydrocarbon used in the present invention must contain at least two sp3 hybridization carbon atoms carrying an OH group.
  • the polyhydroxylated aliphatic hydrocarbon includes any hydrocarbon containing a vicinal diol (1,2-diol) or a vicinal triol (1,2,3-triol) including higher orders of these repeating units, vicinal or contiguous .
  • the definition of the polyhydroxylated aliphatic hydrocarbon also includes, for example, one or more 1,3-, 1,4-, 1,5- and 1,6-diol functional groups.
  • the polyhydroxylated aliphatic hydrocarbon may also be a polymer such as alcohol - AT -
  • the polyhydroxylated aliphatic hydrocarbons may contain aromatic entities or hetero atoms including, for example, hetero atoms of the halogen, sulfur, phosphorus, nitrogen, oxygen, silicon and boron type, and mixtures thereof.
  • Polyhydroxylated aliphatic hydrocarbons for use in the present invention include, for example, 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1-chloro-2, 3-propanediol (chloropropanediol), 2-chloro-1,3-propanediol
  • the polyhydroxylated aliphatic hydrocarbon used in the present invention includes, for example, 1,2-ethanediol, 1,2-propanediol,
  • the polyhydroxylated aliphatic hydrocarbon used in the present invention includes, for example, 1,2-ethanediol, 1,2-propanediol, chloropropanediol and 1,2,3-propanetriol, and mixtures thereof. least two of them. 1,2,3-propanetriol or glycerol is the most preferred.
  • esters of the polyhydroxylated aliphatic hydrocarbon may be present in the polyhydroxylated aliphatic hydrocarbon and / or may be produced in the process for the manufacture of chlorohydrin and / or may be manufactured prior to the process for producing the chlorohydrin.
  • examples of polyhydroxylated aliphatic hydrocarbon esters include ethylene glycol monoacetate, propanediol monoacetates, glycerol monoacetates, glycerol monostearates, glycerol diacetates, and mixtures thereof.
  • chorhydrin is used here to describe a compound containing at least one hydroxyl group and at least one chlorine atom attached to different saturated carbon atoms.
  • a chlorohydrin which contains at least two hydroxyl groups is also a polyhydroxylated aliphatic hydrocarbon.
  • the starting material and the product of the reaction can each be chlorohydrins.
  • the "produced" chlorohydrin is more chlorinated than the starting chlorohydrin, that is to say that it has more chlorine atoms and fewer hydroxyl groups than the chlorohydrin departure.
  • Preferred chlorohydrins are chloroethanol, chloropropanol, chloropropanediol, dichloropropanol and mixtures of at least two of them. Dichloropropanol is particularly preferred.
  • chlorohydrins are 2-chloroethanol, 1-chloropropan-2-ol, 2-chloropropan-1-ol, 1-chloropropane-2,3-diol, 2-chloropropane-1,3-diol. 1,3-dichloropropan-2-ol, 2,3-dichloropropan-1-ol and mixtures of at least two of them.
  • the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, in the process according to the invention can be obtained starting from fossil raw materials or starting from renewable raw materials, from preferably from renewable raw materials.
  • Fossil raw materials are understood to mean materials from the processing of petrochemical natural resources, for example, petroleum, natural gas, and coal. Of these materials, organic compounds having 2 and 3 carbon atoms are preferred.
  • the polyhydroxylated aliphatic hydrocarbon is glycerol, allyl chloride, allyl alcohol and "synthetic" glycerol are particularly preferred.
  • synthetic glycerol is meant a glycerol generally obtained from petrochemical resources.
  • the polyhydroxylated aliphatic hydrocarbon is ethylene glycol
  • ethylene and “synthetic" ethylene glycol are particularly preferred.
  • polyhydroxylated aliphatic hydrocarbon is propylene glycol
  • propylene and synthetic propylene glycol are particularly preferred.
  • synthetic propylene glycol is meant a propylene glycol generally obtained from petrochemical resources.
  • Renewable raw materials are defined as materials derived from the treatment of renewable natural resources.
  • “natural” ethylene glycol, “natural” propylene glycol and “natural” glycerol are preferred.
  • “natural” ethylene glycol, propylene glycol and glycerol are obtained by sugar conversion via thermochemical processes, which sugars can be obtained from biomass, as described in Industrial Bioproducts: Today and Tomorrow, Energetics. , Incorporated for the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, July 2003, pages 49, 52 to 56.
  • One of these processes is, for example, the catalytic hydrogenolysis of sorbitol obtained by thermochemical conversion of glucose, for example another method.
  • catalytic hydrogenolysis of xylitol obtained by hydrogenation of xylose Xylose may, for example, be obtained by hydrolysis of hemicellulose contained in corn fibers
  • natural glycerol or “glycerol obtained from renewable raw materials” is intended to mean particular glycerol obtained during the manufacture of biodiesel or glycerol obtained during transformations of fats or oils of plant or animal origin in general such as saponification reactions, trans-esterification or hydrolysis.
  • oils that can be used to make natural glycerol are all common oils, such as palm, palm kernel, copra, babassu, old or new rapeseed, sunflower, maize, castor oil and cotton oils. , peanut, soybean, flax and crambe oils and all oils derived for example from sunflower or rapeseed plants obtained by genetic modification or hybridization.
  • oils used it is also possible to indicate partially modified oils, for example by polymerization or oligomerization, for example the "standolies" of linseed oil, sunflower oil and blown vegetable oils.
  • a particularly suitable glycerol can be obtained during the processing of animal fats.
  • Another particularly suitable glycerol can be obtained during the manufacture of biodiesel.
  • a third particularly suitable glycerol can be obtained during the transformation of fats or oils, animal or vegetable, by trans-esterification in the presence of a heterogeneous catalyst, as described in documents FR 2752242,
  • the heterogeneous catalyst is chosen from mixed oxides of aluminum and zinc, mixed oxides of zinc and titanium, mixed oxides of zinc, titanium and aluminum, and oxides. mixed bismuth and aluminum, and the heterogeneous catalyst is implemented in the form of a fixed bed.
  • the latter process may be a biodiesel manufacturing process.
  • the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester or the mixture of them may be as described in the patent application entitled " Process for the preparation of chlorohydrin by conversion of polyhydroxylated aliphatic hydrocarbons "deposited in the name of SOLVAY SA on the same day as the present application, the contents of which are hereby incorporated by reference.
  • a process for producing a chlorohydrin in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, of which the total content of expressed metals, is reacted. in the form of elements is greater than or equal to 0.1 ⁇ g / kg and less than or equal to 1000 mg / kg, with a chlorinating agent.
  • glycerol obtained from renewable raw materials.
  • the process for producing chlorohydrins according to the invention may be followed by the manufacture of an epoxide.
  • epoxide is used herein to describe a compound having at least one oxygen bridged on a carbon-carbon bond.
  • carbon atoms of the carbon-carbon bond are adjacent and the compound may contain other atoms than carbon and oxygen atoms, such as hydrogen atoms and halogens.
  • the preferred epoxides are ethylene oxide, propylene oxide, glycidol, epichlorohydrin and mixtures of at least two of them.
  • the process for producing the epoxide may be followed by a process for producing epoxy resins.
  • the processes from which the chlorinating agent may be derived are often associated.
  • the heavy by-products of the synthesis of allyl chloride and epichlorohydrin are advantageously employed as a source of raw materials in a high temperature chlorinolysis process to produce commercially valuable materials. These facilities may, however, have other sources of raw materials. Oxidation at or above 800 ° C is used to remove chlorinated or oxygenated organic waste.
  • the processes from which the chlorinating agent can be generated generate hydrogen chloride or aqueous solutions of hydrogen chloride as co-produced. These acids are generally of poor quality, containing traces of organic matter. They are advantageously engaged in the aforementioned chlorohydrin manufacturing process as such or after treatment.
  • an at least partial feed of the process for the manufacture of chorhydrin by the chlorinating agent from a process for producing allyl chloride and / or a chlorinolysis process and / or a manufacturing process chloromethane and / or a process for the oxidation of chlorinated compounds at a temperature greater than or equal to 800 ° C in addition to limiting the transport of hazardous materials with removal of the costs related to these transports, allows an advantageous alternative valuation of the acids co-products in these processes.
  • plant sharing between various manufacturing processes of the same product can be envisaged, which also contributes to a reduction in the costs of these processes.
  • the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them can be a crude product or a purified product, such as as specifically disclosed in SOLVAY SA application WO 2005/054167, page 2, line 8, to page 4, line 2.
  • the polyhydroxylated aliphatic hydrocarbon the polyhydroxylated aliphatic hydrocarbon ester, or mixture thereof may have an alkali and / or alkaline earth metal content may be less than or equal to 5 g / kg as described in the application entitled " A process for producing a chlorohydrin by chlorination of a polyhydroxylated aliphatic hydrocarbon deposited in the name of SOLVAY SA on the same day as the present application, the contents of which are hereby incorporated by reference.
  • the alkali metals may be selected from lithium, sodium, potassium, rubidium and cesium and the alkaline earth metals may be selected from magnesium, calcium, strontium and barium.
  • the content of alkaline and / or alkaline-earth metals of the polyhydroxylated aliphatic hydrocarbon, of the ester of polyhydroxylated aliphatic hydrocarbon or mixture thereof is less than or equal to 5 g / kg, often less than or equal to 1 g / kg, more particularly less than or equal to 0.5 g / kg and in some case less than or equal to 0.01 g / kg.
  • the content of alkaline and / or alkaline earth metals of glycerol is generally greater than or equal to 0.1 ⁇ g / kg.
  • the alkali metals are generally lithium, sodium, potassium and cesium, often sodium and potassium, and frequently sodium.
  • the lithium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to at 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the sodium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the potassium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the rubidium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the cesium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly lower or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the alkaline-earth elements are generally magnesium, calcium, strontium and barium, often magnesium and calcium and frequently calcium.
  • the magnesium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the calcium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the strontium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the barium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the alkali and / or alkaline earth metals are generally present in the form of salts, frequently in the form of chlorides, sulphates and mixtures thereof. Sodium chloride is most often encountered.
  • the chlorinating agent may be as described in the application WO 2005/054167 of SOLVAY SA, of page 4, line 25, on page 6, line 2 .
  • the chlorinating agent may be hydrogen chloride may be as described in SOLVAY SA application WO 2005/054167, page 4, line 30,
  • the chlorinating agent is gaseous hydrogen chloride or an aqueous solution of hydrogen chloride or a hydrogen chloride. combination of both.
  • This chlorinating agent is particularly advantageous since it is often obtained as a by-product in organic synthesis of chlorination, elimination or substitution, or by combustion.
  • the present invention allows recovery of this by-product.
  • the chlorinating agent comes at least partially from a process for producing allyl chloride.
  • the allyl chloride can be obtained by chlorination of propylene.
  • the process for producing allyl chloride is then fed with at least propylene and chlorine.
  • Other compounds may also be present in the feed such as non-chlorinated hydrocarbons other than propylene, partially chlorinated hydrocarbons, totally chlorinated hydrocarbons or mixtures thereof.
  • the allyl chloride can be obtained by dehydrochlorination of dichloropropane.
  • the process for producing allyl chloride is then fed with at least partially chlorinated hydrocarbons, preferably containing dichloropropane, in particular 1,2-dichloropropane.
  • the chlorinating agent comes at least partially from a process for producing chloromethanes.
  • the manufacturing process is fed with methane and / or methyl chloride and chlorine.
  • the process chlorination can be thermal, photochemical or catalytic. Thermal and photochemical processes are preferred.
  • the chlorinating agent comes at least partially from a chlorinolysis process.
  • chlorinolysis is meant any decomposition reaction with chlorine and more particularly decomposition reactions of organic compounds, carried out at temperatures greater than or equal to 300 ° C, preferably greater than or equal to 350 ° C.
  • the chlorinolysis process is fed with at least chlorine and aliphatic or aromatic hydrocarbons, saturated or unsaturated, preferably aliphatic and selected from non-chlorinated aliphatic hydrocarbons, comprising from 1 to 6 carbon atoms, partially and / or totally chlorinated aliphatic hydrocarbons having 1 to 6 carbon atoms and 1 to 14 chlorine atoms, and mixtures thereof.
  • the non-chlorinated hydrocarbons are, for example, propane, propylene, methyl acetylene, methane and ethylene.
  • Partially chlorinated hydrocarbons are, for example, chloroform, trichloropropanes, chloropropenes, tetrachloroethanes, trichloroethanes, acetylene chloride and tetrachloropentane.
  • the totally chlorinated hydrocarbons can be selected from carbon tetrachloride, hexachloroethane, and perchlorethylene.
  • An example of such a process is the process of pyrolysis of chlorinated hydrocarbons containing from one to three carbon atoms in the presence of chlorine for the production of perchlorethylene and carbon tetrachloride. Generally, these hydrocarbons do not contain other heteroatoms than chlorine.
  • the chlorinating agent comes at least partially from a process for the oxidation of chlorinated compounds at a temperature greater than or equal to 800 ° C. This temperature is often greater than or equal to 900 ° C. and more particularly greater than or equal to 1000 ° C. Thereafter, this process will be referred to as a process
  • the oxidation process is fed with at least one oxidizing agent and at least one chlorinated compound.
  • the oxidizing agent may be selected from oxygen, chlorine oxides, nitrogen oxides, their mixtures and their mixtures with nitrogen. Water can be usefully added to the oxidizing agent especially to facilitate the oxidation of chlorinated compounds.
  • the chlorinated compounds can be inorganic or organic compounds. Chlorinated organic compounds are preferred. These chlorinated organic compounds are hydrocarbons chosen from partially chlorinated hydrocarbons comprising from 1 to 10 carbon atoms and from 1 to 21 chlorine atoms, the totally chlorinated hydrocarbons comprising from 1 to 4 carbon atoms and mixtures thereof.
  • chlorinated compounds from processes for producing allyl chloride, epichlorohydrin, dichloroethane, propylene oxide, vinylidene chloride, vinyl chloride, are oxidized at high temperature.
  • 1-trichloroethane, chloromethanes, trichlorethylene and chlorinolysis process to enhance the energy content of chlorinated compounds in the form of CO 2 and generating hydrogen chloride in the form of aqueous solutions of hydrogen chloride (hydrochloric acid) "Technical”) that can be purified or not.
  • the chlorinating agent resulting from a process for producing allyl chloride and / or a process for producing chloromethanes and / or a chlorinolysis process and or a high temperature oxidation process which feeds the manufacture of dichloropropanol contains hydrogen chloride, liquid or gaseous, preferably gaseous.
  • Hydrogen chloride is particularly preferably substantially anhydrous.
  • substantially anhydrous hydrogen chloride is meant hydrogen chloride whose water content is generally less than or equal to 15 mol%, preferably less than or equal to 10 mol% and particularly preferably preferred less than or equal to 8 mol%. This water content is generally greater than or equal to 0.01 ppm in mole.
  • the nitrogen content of the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 10 ppm vol and in particular greater than or equal to 20 ppm flight .
  • This content is generally less than or equal to 50 000 ppm vol, often less than or equal to 40 000 ppm vol and in particular less than or equal to 30 000 ppm vol.
  • the oxygen content of the chlorinating agent is generally greater than or equal to 0 , 1 ppm volume and often greater than or equal to 0.5 ppm vol. This content is generally less than or equal to 5% vol, often less than or equal to 2% vol and in particular less than or equal to 1% vol.
  • the hydrogen content of the chlorinating agent is generally greater than or equal to 0. , 1 ppm vol and often greater than or equal to 0.5 ppm vol. This content is generally less than or equal to 0.1% vol and often less than or equal to 500 ppm vol.
  • the chlorine content of the chlorinating agent is generally greater than or equal to 0 , 1 ppm vol and often greater than or equal to 0.5 ppm vol.
  • This content is generally less than or equal to 2000 ppm vol, often less than or equal to 1000 ppm vol and in particular less than or equal to 500 ppm vol.
  • the methane content of the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 10,000 ppm vol, often less than or equal to 5,000 ppm vol and in particular less than or equal to 40,000 ppm vol.
  • the carbon monoxide content of the chlorinating agent is generally greater or equal to 0.1 ppm vol, often greater than or equal to 0.5 ppm vol and in particular greater than or equal to 1 ppm vol.
  • This content is generally less than or equal to 10,000 ppm vol, often less than or equal to 5,000 ppm vol and in particular less than or equal to 4,000 ppm vol.
  • the carbon dioxide content of the chlorinating agent is generally greater or equal to 0.1 ppm vol, often greater than or equal to 0.5 ppm vol and in particular greater than or equal to 1 ppm vol.
  • This content is generally less than or equal to 10,000 ppm vol, often less than or equal to 5,000 ppm vol and in particular less than or equal to 4,000 ppm vol.
  • the overall content of chlorinated organic products such as, for example, chloromethanes, ethyl chloride, dichloroethane, vinyl chloride and chlorobenzene, in the chlorinating agent, in not taking into account the water and nitrogen present in the chlorinating agent, is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm flight .
  • This content is generally less than or equal to 50,000 ppm vol, often less than or equal to 20,000 ppm vol and in particular less than or equal to 10,000 ppm vol.
  • the overall content of non-chlorinated organic products such as, for example, ethylene, acetylene, ethane, propylene, methylacetylene and propane, in the chlorinating agent , without taking into account the water and nitrogen present in the chlorinating agent, is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 50,000 ppm vol, often less than or equal to 20,000 ppm vol and in particular less than or equal to 10,000 ppm vol.
  • the overall content of fluorinated organic products such as, for example, vinyl fluoride, fluoroethane, vinylidene fluoride and fluoromethanes, in the chlorinating agent, by not taking account of the water and nitrogen present in the chlorinating agent, is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 500 ppm vol, often less than or equal to 20 000 ppm vol and in particular less than or equal to 100 000 ppm vol.
  • the overall content of organic products comprising heteroatoms other than chlorine and fluoro such as, for example, alcohols and acids, in the chlorinating agent, without taking into account the water and nitrogen present in the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 50,000 ppm vol, often less than or equal to 20,000 ppm vol and in particular less than or equal to 10,000 ppm vol.
  • the propylene content of the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol. This content is generally less than or equal to
  • the monochloropropene content of the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 5000 ppm vol, often less than or equal to 1000 ppm vol and in particular less than or equal to 500 ppm vol.
  • the sum of the chloropropane contents of the chlorinating agent, without taking into account the water and nitrogen present in the chlorinating agent, is generally greater or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 10,000 ppm vol, often less than or equal to 4,000 ppm vol and in particular less than or equal to 3,000 ppm vol.
  • the content of isopropanol, chloroalcohols and chloroethers of the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 5,000 ppm vol, often less than or equal to 4,000 ppm vol and in particular less than or equal to 3,000 ppm vol.
  • the hydrogen chloride is an aqueous solution of hydrogen chloride.
  • the hydrogen chloride solution content is generally at least 10% by weight. Preferably, this content is greater than or equal to 15% by weight. In this case, the content of the hydrogen chloride solution is generally at most 37% by weight.
  • This second aspect allows the development of aqueous solutions of hydrogen chloride of low quality, resulting for example from the pyrolysis of chlorinated organic compounds or having been used for the pickling of metals.
  • a concentrated aqueous solution of hydrogen chloride is used, generally comprising from 28 to 37% by weight of hydrogen chloride as the primary source of the chlorinating agent and said concentrated solution is separated off. for example by evaporation in at least two fractions, the first consisting essentially of anhydrous hydrogen chloride and the second comprising hydrogen chloride and water in proportions in which they form an azeotrope, said azeotrope being at a pressure of 101.3 kPa of 19 to 25% of hydrogen chloride, and 75 to 81% by weight of water, in particular of about 20% by weight of hydrogen chloride and about 80% water.
  • the aqueous solution of 20% hydrogen chloride may optionally be used to absorb hydrogen chloride produced by the allyl chloride production process, the chlorinolysis process, the chloromethane production process and the process oxidation at high temperature, so as to generate an aqueous solution of hydrogen chloride at 33% by weight of hydrogen chloride.
  • this aspect allows the use of a transportable chlorination agent in an easy manner while allowing an effective control of the water content in the reaction medium, particularly when the reaction between the glycerol and the chlorinating agent is carried out in several steps.
  • the aqueous solution of hydrogen chloride used in this second aspect of the process according to the invention may contain compounds other than water and hydrogen chloride. These compounds can be, inter alia, chlorinated or non-chlorinated inorganic compounds and saturated organic compounds or unsaturated, non-chlorinated, partially chlorinated or totally chlorinated. These compounds may be different depending on the manufacturing process from which the aqueous solution of hydrogen chloride is derived.
  • the individual contents of metals and in particular of alkali metals, alkaline earth metals, iron, nickel, copper, lead, arsenic, cobalt, titanium, cadmium, antimony, mercury, zinc, selenium aluminum and bismuth are generally greater than or equal to 0.03 ppb by weight, often greater than or equal to 0.3 ppb by weight and frequently greater than 1 ppb by weight. weight. These contents are generally less than or equal to 5 ppm by weight and preferably less than or equal to 1 ppm by weight.
  • the chlorinating agent fraction which feeds the manufacture of dichloropropanol and which is derived from a process for producing allyl chloride and / or a process for chlorinolysis and / or a process for producing chloromethane and / or a high temperature oxidation process is generally greater than or equal to 0% by weight of the chlorinating agent, often greater than or equal to 10% by weight and frequently greater than or equal to at 20% by weight.
  • This fraction is generally less than or equal to 100% by weight of the chlorinating agent, often less than or equal to 90% by weight and frequently less than 80% by weight.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the ester of the polyhydroxylated aliphatic hydrocarbon, or the mixture of them, and the chlorination can be carried out in a reactor as described in the application WO 2005/054167 SOLVAY SA, on page 6, lines 3 to 23.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the ester of the polyhydroxylated aliphatic hydrocarbon, or mixture thereof, and the chlorinating agent may be carried out in equipment, made of or covered with chlorine-resistant materials, as described in the application entitled " Process for producing a chlorohydrin in corrosion-resistant equipment "deposited in the name of SOLVAY SA on the same day as the present application, the contents of which are hereby incorporated by reference.
  • a process for the manufacture of a chlorohydrin comprising a step in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to a reaction with a chlorinating agent containing hydrogen chloride and at least one other step performed in equipment, made of or coated with chlorinating agent resistant materials, under the conditions of carrying out this step.
  • metallic materials such as enamelled steel, gold and tantalum and non-metallic materials such as high density polyethylene, polypropylene, polyvinylidene fluoride, polytetrafluoroethylene , perfluoroalkoxyalkanes and poly (perfluoropropylvinylether), polysulfones and polysulfides, graphite and impregnated graphite.
  • non-metallic materials such as high density polyethylene, polypropylene, polyvinylidene fluoride, polytetrafluoroethylene , perfluoroalkoxyalkanes and poly (perfluoropropylvinylether), polysulfones and polysulfides, graphite and impregnated graphite.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent may be carried out in a reaction medium, as described in the application entitled “Continuous process for the manufacture of chlorhydrins" filed in the name of SOLVAY SA on the same day as the present application, the content of which is hereby incorporated by reference.
  • a continuous process for the production of chlorohydrin in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture of them is reacted with a chlorinating agent and an organic acid.
  • a liquid reaction medium whose composition in the stationary state comprises polyhydroxylated aliphatic hydrocarbon and esters of the polyhydroxylated aliphatic hydrocarbon whose sum of the contents expressed in moles of polyhydroxylated aliphatic hydrocarbon is greater than 1, 1 mol% and less than or equal to 30 mol%, the percentage being related to the organic part of the liquid reaction medium.
  • the organic part of the liquid reaction medium consists of all the organic compounds of the liquid reaction medium, that is to say compounds whose molecule contains at least 1 carbon atom.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent can be carried out in the presence of a catalyst as described in SOLVAY SA application WO 2005/054167, page 6, line 28, to page 8, line 5.
  • a catalyst as described in SOLVAY SA application WO 2005/054167, page 6, line 28, to page 8, line 5.
  • an acid-based catalyst carboxylic acid or on a carboxylic acid derivative having an atmospheric boiling point greater than or equal to 200 ° C, in particular adipic acid and adipic acid derivatives.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent can be carried out at a catalyst concentration, a temperature, a pressure and for residence times as described in SOLVAY SA application WO 2005/054167, page 8, line 6 to page 10, line 10.
  • a temperature of at least 20 ° C and not more than 160 ° C a pressure of not less than 0.3 bar and not more than 100 bar, and a time of stay of not less than 1 hour and not more than 50 hours.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent may be carried out in the presence of a solvent as described in the application WO 2005/054167 of SOLVAY SA, on page 11, lines 12 to 36.
  • an organic solvent such as a chlorinated organic solvent, an alcohol, a ketone, an ester or an ether, a non-aqueous solvent miscible with the polyhydroxylated aliphatic hydrocarbon such as chloroethanol, chloropropanol and chloropropanediol. , dichloropropanol, dioxane, phenol, cresol, and mixtures of chloropropanediol and dichloropropanol, or heavy products of the reaction such as oligomers of at least partially chlorinated and or esterified polyhydroxylated aliphatic hydrocarbon.
  • an organic solvent such as a chlorinated organic solvent, an alcohol, a ketone, an ester or an ether
  • a non-aqueous solvent miscible with the polyhydroxylated aliphatic hydrocarbon such as chloroethanol, chloropropanol and chloropropanediol.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon and the chlorinating agent can be carried out in the presence of a liquid phase comprising heavy compounds other than hydrocarbon polyhydroxylated aliphatic, as described in the application entitled "Process for manufacturing a chlorohydrin in a liquid phase" filed in the name of SOLVAY SA on the same day as the present application, the contents of which are hereby incorporated by reference.
  • a process for producing a chlorohydrin wherein a polyhydroxylated aliphatic hydrocarbon, a polyhydroxylated aliphatic hydrocarbon ester, or a mixture thereof is subjected to a reaction with a chlorinating agent. in the presence of a liquid phase comprising heavy compounds other than the polyhydroxylated aliphatic hydrocarbon and whose boiling point at a pressure of 1 bar absolute is at least 15 ° C higher than the boiling point of chlorohydrin under a pressure of 1 bar absolute.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent is preferably carried out in a liquid reaction medium.
  • the liquid reaction medium may be mono- or multiphasic.
  • the liquid reaction medium consists of all the dissolved or dispersed solid compounds, dissolved or dispersed liquids and gaseous dissolved or dispersed, at the reaction temperature.
  • the reaction medium comprises the reactants, the catalyst, the solvent, the impurities present in the reagents, in the solvent and in the catalyst, the reaction intermediates, the products and the by-products of the reaction.
  • reagents is meant the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, and the chlorinating agent.
  • impurities present in the polyhydroxylated aliphatic hydrocarbon mention may be made of carboxylic acids, carboxylic acid salts, fatty acid esters with polyhydroxylated aliphatic hydrocarbon, esters of fatty acids with the alcohols used. during the trans-esterification, inorganic salts such as chlorides and sulphates alkali or alkaline earth.
  • polyhydroxylated aliphatic hydrocarbon is glycerol
  • carboxylic acids carboxylic acid salts
  • fatty acid esters such as mono-, di- and triglycerides
  • esters of fatty acids with the alcohols used in transesterification inorganic salts such as alkali or alkaline earth chlorides and sulphates.
  • reaction intermediates mention may be made of the monochlorohydrins of the polyhydroxylated aliphatic hydrocarbon and their esters and / or polyesters, the esters and / or polyesters of the polyhydroxylated aliphatic hydrocarbon and the esters of the polychlorohydrins.
  • chlorohydrin is dichloropropanol
  • the polyhydroxylated aliphatic hydrocarbon ester may therefore be, depending on the case, a reagent, an impurity of the polyhydroxylated aliphatic hydrocarbon or a reaction intermediate.
  • products of the reaction is meant chlorohydrin and water.
  • the water may be the water formed in the chlorination reaction and / or the water introduced into the process, for example via the polyhydroxylated aliphatic hydrocarbon and / or the chlorinating agent, as described in the application WO 2005/054167 of SOLVAY SA, on page 2, lines 22 to 28, on page 3, lines 20 to 25, on page 5, lines 7 to 31 and on page 12, lines 14 to 19.
  • By-products include, for example, partially chlorinated and / or esterified polyhydroxylated aliphatic hydrocarbon oligomers.
  • the polyhydroxylated aliphatic hydrocarbon is glycerol
  • the reaction intermediates and by-products may be formed in the various process steps such as, for example, during the chlorohydrin manufacturing step and during the chlorohydrin separation steps.
  • the liquid reaction medium may thus contain the polyhydroxylated aliphatic hydrocarbon, the dissolved or dispersed chlorination agent in the form of bubbles, the catalyst, the solvent, the impurities present in the reactants, the solvent and the catalyst, such as dissolved salts. or solids for example, the solvent, the catalyst, the reaction intermediates, the products and the by-products of the reaction.
  • the separation of the chlorohydrin and of the other compounds from the reaction medium can be carried out according to the modes as described in the application WO 2005/054167 of SOLVAY SA, of page 12, line 1, to page 16, line 35 and to the These other compounds are those mentioned above and comprise the reagents not consumed, the impurities present in the reagents, the catalyst, the solvent, the reaction intermediates, the water and the by-products of the invention. reaction.
  • the separation of the chlorohydrin and the other compounds from the reaction medium can be carried out according to the methods described in the patent application EP 05104321.4 filed in the name of SOLVAY. SA, 20/20172005, the content of which is hereby incorporated by reference. Particular mention is made of a separation mode comprising at least one separation operation for removing the salt from the liquid phase.
  • a process for producing a chlorohydrin in which (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture are subjected to of them, to a reaction with a chlorinating agent in a reaction medium, (b) a fraction of the reaction medium containing at least water and chlorohydrin is withdrawn continuously or periodically, (c) at least a part of the fraction obtained in step (b) is introduced into a distillation step and (d) the reflux ratio of the distillation step is controlled by supplying water to said distillation step.
  • a process for producing a chlorohydrin in which (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to a reaction with hydrogen chloride in a reaction medium, (b) a fraction of the reaction medium containing at least water and the chlorohydrin is withdrawn continuously or periodically, (c) at least part of the fraction obtained in step ( b) is introduced into a distillation step, wherein the ratio between the hydrogen chloride concentration and the water concentration in the fraction introduced into the distillation step is smaller than the ratio of hydrogen chloride concentrations / water in the azeotropic hydrogen chloride / water binary composition at the distillation temperature and pressure.
  • the separation of the chlorohydrin and the other compounds from the reaction medium of chlorination of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of between them may be carried out according to the modes as described in the application entitled "Process for the manufacture of a chlorohydrin" deposited in the name of SOLVAY SA, the same day as the present application, and the contents of which are hereby incorporated by reference .
  • a process for producing a chlorohydrin comprising the following steps: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, with a chlorination and an organic acid to obtain a mixture containing chlorohydrin and chlorohydrin esters, (b) subjecting at least a portion of the mixture obtained in step (a) to one or more treatments in subsequent steps in step (a) and (c) polyhydroxylated aliphatic hydrocarbon is added to at least one of the steps subsequent to step (a), so that it reacts at a temperature greater than or equal to 20 ° C, with the chlorohydrin esters so as to at least partially form esters of the aliphatic hydrocarbon polyhydroxylated. Mention is more particularly made of a process in which the polyhydroxylated aliphatic hydrocarbon is glycerol and the chlorohydrin is dichloropropanol.
  • the separation of the chlorohydrin and the other compounds from the reaction medium of chlorination of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of between them can be carried out according to the modes as described in the application entitled "Process for the manufacture of a chlorohydrin starting from a polyhydroxylated aliphatic hydrocarbon" deposited in the name of SOLVAY SA the same day as the present application, and whose content is hereby incorporated by reference.
  • a process comprising the following steps: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture of them, with a chlorination agent such as to obtain at least one medium containing chlorohydrin, water and chlorinating agent, (b) removing at least a fraction of the medium formed in step (a) and (c) subjecting the fraction taken in step (b) to a distillation and / or stripping operation in which polyhydroxylated aliphatic hydrocarbon is added so as to separate from the fraction taken in step (b) a mixture containing water and chlorohydrin having a reduced content of chlorinating agent compared to that of the fraction taken in step (b).
  • the separation of the chlorohydrin and the other compounds from the reaction medium of chlorination of the polyhydroxylated aliphatic hydrocarbon can be carried out according to the modes as described in the application entitled "Process of conversion of polyhydroxylated aliphatic hydrocarbons to chlorhydrins "deposited in the name of SOLVAY SA on the same day as the present application and the contents of which are hereby incorporated by reference.
  • a method of preparation of a chlorohydrin comprising the following steps: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, with a chlorinating agent so as to obtain a mixture containing chlorohydrin, chlorohydrin esters and water, (b) subjecting at least a fraction of the mixture obtained in step (a) to a distillation and / or stripping treatment so as to obtain a concentrated portion in water, chlorohydrin and chlorohydrin esters and (c) at least a fraction of the part obtained in step (b) is subjected to a separation operation in the presence of at least one additive so as to obtain a portion concentrated to chlorohydrin and chlorohydrin esters and contains less than 40% by weight of water.
  • the separation operation is more particularly a settling.
  • the separation and the treatment of the other compounds of the reaction medium can be carried out according to modes as described in the application entitled "Process for the production of a chlorohydrin by chlorination" of a polyhydroxylated aliphatic hydrocarbon deposited in the name of SOLVAY SA on the same day as the present application.
  • a preferred treatment is to subject a fraction of the by-products of the reaction to high temperature oxidation.
  • a process for producing a chlorohydrin comprising the following steps: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture of them, the alkali and / or alkaline-earth metal content is less than or equal to 5 g / kg, an oxidizing agent and an organic acid so as to obtain a mixture containing at least chlorohydrin and by-products, (b) subject to at least a portion of the mixture obtained in step (a) to one or more treatments in steps subsequent to step (a) and (c) at least one of the steps subsequent to step (a) consists of oxidation at a temperature greater than or equal to 800 ° C.
  • step (b) a part of the mixture obtained in step (a) is taken and this part is subjected to oxidation at a temperature greater than or equal to 800 ° C. during the sampling.
  • the treatment of step (b) is a separation operation selected from the settling, filtration, centrifugation, extraction, washing, evaporation, stripping, distillation, adsorption or combinations of at least two of them.
  • the chlorohydrin when the chlorohydrin is chloropropanol, it is generally used in the form of a mixture of compounds comprising the isomers of 1-chloropropan-2-ol and 2-chloropropane-1. ol.
  • This mixture generally contains more than 1% by weight of the two isomers, preferably more than 5% by weight and more particularly more than 50%.
  • the mixture usually contains less than 99.9% by weight of the two isomers, preferably less than 95% by weight and most preferably less than 90% by weight.
  • the other constituents of the mixture may be compounds derived from chloropropanol production processes, such as residual reagents, reaction by-products, solvents and in particular water.
  • the mass ratio between the isomers 1-chloropropan-2-ol and 2-chloropropane-1-ol is usually greater than or equal to 0.01, preferably greater than or equal to 0.4. This ratio is usually less than or equal to 99 and preferably less than or equal to 25.
  • the chlorohydrin when the chlorohydrin is chloroethanol, it is generally used in the form of a mixture of compounds comprising the 2-chloroethanol isomer.
  • This mixture generally contains more than 1% by weight of the isomer, preferably more than 5% by weight and especially more than 50%.
  • the mixture usually contains less than 99.9% by weight of the isomer, preferably less than 95% by weight and most preferably less than 90% by weight.
  • the other constituents of the mixture may be compounds derived from chloroethanol production processes, such as residual reagents, reaction by-products, solvents and in particular water.
  • the chlorohydrin when the chlorohydrin is chloropropanediol, it is generally used in the form of a mixture of compounds comprising the isomers of 1-chloropropane-2,3-diol and 2-chloropropane. -l, 3-diol.
  • This mixture generally contains more than 1% by weight of the two isomers, preferably more than 5% by weight and more particularly more than 50%.
  • the mixture usually contains less than 99.9% by weight of the two isomers, preferably less than 95% by weight and most preferably less than 90% by weight.
  • the other constituents of the mixture may be compounds from the manufacturing processes of the chloropropanediol, such as residual reagents, reaction by-products, solvents and in particular water.
  • the weight ratio between the isomers 1-chloropropane-2,3-diol and 2-chloropropane-1,3-diol is usually greater than or equal to 0.01, preferably greater than or equal to 0.4. This ratio is usually less than or equal to 99 and preferably less than or equal to 25.
  • the chlorohydrin when dichloropropanol, it is generally used in the form of a mixture of compounds. comprising the isomers of 1,3-dichloropropan-2-ol and 2,3-dichloropropan-1-ol. This mixture generally contains more than 1% by weight of the two isomers, preferably more than 5% by weight and more particularly more than 50%.
  • the mixture usually contains less than 99.9% by weight of the two isomers, preferably less than 95% by weight and most preferably less than 90% by weight.
  • the other constituents of the mixture may be compounds from dichloropropanol production processes, such as residual reagents, reaction by-products, solvents and in particular water.
  • the weight ratio between the 1,3-dichloropropan-2-ol and 2,3-dichloropropan-1-ol isomers is usually greater than or equal to 0.01, often greater than or equal to 0.4, frequently greater than or equal to 1 , 5, preferably greater than or equal to 3.0, more preferably greater than or equal to 7.0 and most preferably greater than or equal to 20.0.
  • This ratio is usually less than or equal to 99 and preferably less than or equal to 25.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent can take place in the presence of an organic acid.
  • the organic acid can be a product from the process for producing the polyhydroxylated aliphatic hydrocarbon or a product not from this process. In the latter case, it may be an organic acid used to catalyze the reaction between the polyhydroxylated aliphatic hydrocarbon and the chlorinating agent.
  • the organic acid may also be an organic acid mixture derived from the process for producing the polyhydroxylated aliphatic hydrocarbon and an organic acid not derived from the process for producing the polyhydroxylated aliphatic hydrocarbon.
  • the esters of the polyhydroxylated aliphatic hydrocarbon can come from the reaction between the aliphatic hydrocarbon polyhydroxy and the organic acid, before, during or in the steps following the reaction with the chlorinating agent.
  • the chlorohydrin obtained in the process according to the invention may contain a high content of halogenated ketones, in particular chloroacetone, as described in the patent application FR 05.05120 of 20/20172005 filed in the name of the Applicant, and whose content is hereby incorporated by reference.
  • the content of halogenated ketone can be reduced by subjecting the chlorohydrin obtained in the process according to the invention to azeotropic distillation in the presence of water or by subjecting the chlorohydrin to a dehydrochlorination treatment as described in this application, on page 4, line 1, on page 6, line 35.
  • a process for producing an epoxide in which halogenated ketones are formed as by-products and which comprises at least one treatment for removing at least a portion of the halogenated ketones formed Mention is more particularly made of a process for producing an epoxide by dehydrochlorination of a chlorohydrin of which at least one fraction is produced by chlorination of a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, a dehydrochlorination treatment and azeotropic distillation treatment of a halogenated water-ketone mixture for removing at least a portion of the halogenated ketones formed and a method of manufacture epichlorohydrin in which the halogenated ketone formed is chloroacetone.
  • the chlorohydrin obtained in the process according to the invention can be subjected to a dehydrochlorination reaction to produce an epoxide as described in the patent applications WO 2005/054167 and FR 05.05120 filed in the name of SOLVAY SA.
  • the dehydrochlorination of the chlorohydrin can be carried out as described in the application entitled "Process for producing an epoxide from a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent" deposited in the name of SOLVAY SA on the same day as the present application, and the content of which is hereby incorporated by reference.
  • a process for producing an epoxide in which a reaction medium resulting from the reaction between a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture of them, is subjected to and a chlorination agent, the medium reaction containing at least 10 g of chlorohydrin per kg of reaction medium, to a subsequent chemical reaction without intermediate treatment.
  • Epoxide manufacturing comprising the steps of: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, with a chlorinating agent and an organic acid to form chlorohydrin and chlorohydrin esters in a reaction medium containing polyhydroxylated aliphatic hydrocarbon, polyhydroxylated aliphatic hydrocarbon ester, water, the chlorinating agent and the organic acid, the reaction medium containing at least 10 g of chlorohydrin per kg of reaction medium, (b) subjecting at least a fraction of the reaction medium obtained in step (a), which fraction has the same composition as the reaction medium obtained in step (a), one or more treatments in steps subsequent to step (a) and (c) is added a basic compound to at least one of the steps subsequent to step (a); ) so that he at least partially reacts with the chlorohydrin, the chlorohydrin esters, the chlorinating agent and the organic acid to form epoxide
  • the process for the manufacture of chlorohydrin can be integrated into an overall scheme for the manufacture of an epoxide as described in the application entitled “Process for the manufacture of a epoxide from a chlorohydrin "deposited in the name of SOLVAY SA the same day as the present application, and whose content is here incorporated by reference.
  • a process for the production of an epoxide comprising at least one step of purifying the epoxide formed, the epoxide being at least partly produced by a process for the dehydrochlorination of a chlorohydrin, the latter being at least partly manufactured by a process for chlorinating a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture of them.
  • the various processes involved in the process for producing a chlorohydrin according to the invention may or may not be part of an integrated process for producing chlorinated organic products. An integrated method is preferred.
  • the invention also relates to an installation for implementing an integrated process comprising: (a) an allyl chloride production unit and / or a chloromethane production unit and / or a chlorinolysis unit and / or an oxidation unit chlorinated compounds from which a chlorinating agent containing hydrogen chloride
  • This installation may include:
  • the various manufacturing units are preferably distributed on the same industrial site or on nearby sites, and more preferably on the same site.
  • the industrial scheme comprising these units on the same site or on nearby sites is particularly advantageous, such as, for example, a unit according to the above-mentioned method of manufacturing chlorohydrin in the vicinity of allyl chloride production units and epoxides to which there may be added a chlorinolysis unit and / or a chloromethane production unit and / or a high temperature oxidation unit of chlorinated compounds.
  • nearby sites it is meant in particular to designate industrial sites close enough that the transport of materials between facilities can be done economically by collectors.
  • the polyhydroxylated aliphatic hydrocarbon is preferably glycerol
  • the chlorohydrin is preferably dichloropropanol
  • the epoxide is preferably epichlorohydrin.
  • the epoxide is epichlorohydrin, it can be used in the manufacture of epoxy resins.
  • Figure 1 shows a particular scheme of installation used to implement the method according to the invention, in the case where the polyhydroxylated aliphatic hydrocarbon is glycerol, the chlorohydrin is dichloropropanol and the epoxide is epichlorohydrin.
  • a dehydrochlorination unit of dichloropropanol (1) is supplied with dichloropropanol via line (2) and dehydrochlorination agent via line (3).
  • Epichlorohydrin is withdrawn via line (4) and organic compounds other than epichlorohydrin via line (5). At least a fraction these compounds can feed a chlorinolysis plant (21) via the line (33) and / or a high temperature oxidation plant of chlorinated compounds (23) via the line (34).
  • Epichlorohydrin feeds an epoxy resin manufacturing unit (8) via line (6) and / or a polyglycerol production unit (9) via line (7).
  • the dichloropropanol is from a hypochlorination unit of allyl chloride (10) via line (11) and / or a glycerol chlorination unit (12) via line (13).
  • the glycerol chlorination unit (12) is fed with crude and / or purified glycerol via line (14).
  • the crude / and / or purified glycerol comes from a biodiesel production unit (15) from which biodiesel is also withdrawn via the line (37) and which is fed with vegetable and / or animal fats and / or oils via the line ( 16) and alcohol, preferably methanol via line (17).
  • the glycerol chlorination unit (12) is supplied with hydrogen chloride and / or with an aqueous solution of hydrogen chloride via line (18).
  • the hydrogen chloride and / or the aqueous solution of hydrogen chloride come from an allyl chloride production unit by chlorination of the propylene (19) via the line (20) and / or a production unit of chloromethanes (35) via line (36) and / or a chlorinolysis unit (21) via line (22) and / or a high temperature oxidation unit (23) via line (24).
  • Allyl chloride is withdrawn from the unit (19) and at least one fraction of this allyl chloride is fed to the hypochlorination unit (10) via line (25).
  • the allyl chloride (19) production unit extracts organic compounds other than allyl chloride via line (26), at least one fraction of which serves to feed the chlorinolysis unit (21) via the line (27) and / or the high temperature oxidation unit of chlorinated compounds (23) via line (28).
  • the chlorinolysis unit (21) is withdrawn from perchlorethylene and carbon tetrachloride via line (29) and organic compounds other than perchlorethylene and carbon tetrachloride via line (30) and at least a fraction of these are removed.
  • the compounds can be recycled to the chlorinolysis unit via the line (31) and / or fed to the high temperature oxidation unit of chlorinated compounds (23) via the line (32).
  • Chlorinolysis and high temperature oxidation units of chlorinated compounds can be fed with organic products from other manufacturing units than those mentioned.
  • the dichloropropanol production unit can be fed with hydrogen chloride and / or hydrochloric acid from manufacturing processes other than those mentioned above.
  • the benefits of this scheme include:
  • Process water is, for example, water from pumps or ejectors used to maintain the vacuum in the facilities. It can also be water obtained after decantation of organic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Catalysts (AREA)
  • Epoxy Resins (AREA)

Abstract

Procédé de fabrication d'une chlorhydrine à partir d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux, et d'un agent de chloration, l'agent de chloration contenant au moins un des composés suivants: azote, oxygène, hydrogène, chlore, un composé organique hydrocarboné, un composé organique halogène, un composé organique oxygéné et un métal.

Description

Procédé de fabrication d'une chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé et un agent de chloration
La présente demande de brevet revendique le bénéfice de la demande de brevet FR 05.05120 et de la demande de brevet EP 05104321.4, déposées le 20 mai 2005 et des demandes de brevet US provisoires 60/734659, 60/734627, 60/734657, 60/734658, 60/734635, 60/734634, 60/734637 et 60/734636, déposées le 8 novembre 2005, dont les contenus sont ici incorporés par référence.
La présente invention se rapporte à un procédé de fabrication d'une chlorhydrine. Elle se rapporte plus spécifiquement à un procédé de fabrication d'une chlorhydrine à partir d'un hydrocarbure aliphatique poly hydroxylé et d'un agent de chloration.
Les chlorhydrines sont des intermédiaires réactionnels dans la fabrication des époxydes. Le dichloropropanol, par exemple, est un intermédiaire réactionnel dans la fabrication de l'épichlorhydrine et des résines époxy (Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, 1992, Vol. 2, page 156, John Wiley & Sons, Inc.).
Selon des procédés connus, on peut obtenir le dichloropropanol notamment par hypochloration du chlorure d'allyle, par chloration de l'alcool allylique et par hydrochloration du glycérol. Ce dernier procédé présente l'avantage que le dichloropropanol peut être obtenu au départ de matières premières fossiles ou de matières premières renouvelables et il est connu que les ressources naturelles pétrochimiques, dont sont issues les matières fossiles, par exemple le pétrole, le gaz naturel ou le charbon, disponibles sur la terre sont limitées.
La demande internationale WO 2005/021476 et la demande WO 2005/054167 de SOLVAY SA décrivent un procédé de fabrication de dichloropropanol par réaction entre du glycérol et du chlorure d'hydrogène. Le chlorure d'hydrogène peut être gazeux ou sous forme de solutions aqueuses.
La toxicité et la corrosivité de ces composés rendent leur préparation, leur purification, leur stockage et leur transport délicats. Le chlorure d'hydrogène est toxique par contact, inhalation et ingestion (The Merck Index, Eleventh Edition, 1989, pages 759). Il est habituellement transporté sous forme de gaz liquéfié dans des récipients sous pression. L'acide chlorhydrique aqueux est extrêmement corrosif (The Merck Index, Eleventh Edition, 1989, pages 756) et requiert des équipements en matériaux spéciaux pour son stockage et son transport. Ces inconvénients sont pénalisants pour les procédés de fabrication de produits organiques chlorés qui utilisent ces agents de chloration à l'une de leurs étapes.
Le but de l'invention est de fournir un procédé de fabrication de chlorhydrine à partir d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé ou d'un mélange d'entre eux, et d'un agent de chloration qui ne présente pas ces inconvénients. L'invention concerne dès lors un procédé de fabrication d'une chlorhydrine à partir d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux, et d'un agent de chloration, l'agent de chloration contenant au moins un des composés suivants : azote, oxygène, hydrogène, chlore, un composé organique hydrocarboné, un composé organique halogène, un composé organique oxygéné et un métal.
On a trouvé de façon surprenante qu'une alimentation au moins partielle du procédé de fabrication de chlorhydrine par un agent de chloration contenant ces composés donne de particulièrement bons résultats. En particulier, le rendement du procédé de fabrication de la chlorhydrine n'est pas altéré par l'utilisation de cet agent de chloration.
Dans le procédé selon l'invention, le composé organique hydrocarboné est choisi parmi les hydrocarbures aromatiques, aliphatiques saturés ou insaturés et leurs mélanges. Dans le procédé selon l'invention, l'hydrocarbure aliphatique insaturé est choisi parmi l'acétylène, l'éthylène, le propylène, le butène, le propadiène, le méthylacétylène et leurs mélanges, l 'hydrocarbure aliphatique saturé est choisi parmi le méthane, l'éthane, le propane, le butane et leurs mélanges, et l 'hydrocarbure aromatique est le benzène. Dans le procédé selon l'invention, le composé organique halogène est un composé organique chloré choisi parmi les chlorométhanes, les chloroéthanes, les chloropropanes, les chlorobutanes, le chlorure de vinyle, le chlorure de vinylidène, les monochloropropènes, le perchloroéthylène, le trichloréthylène, les chlorobutadiène, les chlorobenzènes et leurs mélanges. Dans le procédé selon l'invention, le composé organique halogène est un composé organique fluoré choisi parmi les fluorométhanes, les fluoroéthanes, le fluorure de vinyle, le fluorure de vinylidène, et leurs mélanges.
Dans le procédé selon l'invention, le composé organique oxygéné est choisi parmi les alcools, les chloroalcools, les chloroéthers et leurs mélanges. Dans le procédé selon l'invention, le métal est choisi parmi les métaux alcalins, les métaux alcalino-terreux, le fer, le nickel, le cuivre, le plomb, l'arsenic, le cobalt, le titane, le cadmium, l'antimoine, le mercure, le zinc, le sélénium, l'aluminium, le bismuth, et leurs mélanges. Dans le procédé selon l'invention, l'agent de chloration est issu au moins partiellement d'un procédé de fabrication de chlorure d'allyle et/ou d'un procédé de fabrication de chlorométhanes et/ou d'un procédé de chlorinolyse et/ou d'un procédé d'oxydation de composés chlorés à une température supérieure ou égale à 800 °C. Les procédés de fabrication peuvent être menés indépendamment en mode batch ou en mode continu. On préfère qu'au moins un des procédés soit mené en mode continu. On préfère plus particulièrement que le mode continu soit utilisé pour l'ensemble des procédés de fabrications considérés.
Dans le procédé selon l'invention, l'agent de chloration contient du chlorure d'hydrogène.
L'expression « hydrocarbure aliphatique poly hydroxylé » se rapporte à un hydrocarbure qui contient au moins deux groupements hydroxyles attachés à deux atomes de carbone différents saturés. L'hydrocarbure aliphatique poly hydroxylé peut contenir, mais n'est pas limité à, de 2 à 60 atomes de carbone. Chacun des carbones d'un hydrocarbure aliphatique poly hydroxylé portant le groupement hydroxylé (OH) fonctionnel ne peut pas posséder plus d'un groupement OH, et doit être d'hybridation sp3. L'atome de carbone portant le groupement OH peut être primaire, secondaire ou tertiaire. L'hydrocarbure aliphatique poly hydroxylé utilisé dans la présente invention doit contenir au moins deux atomes de carbone d'hybridation sp3 portant un groupement OH. L'hydrocarbure aliphatique poly hydroxylé inclut n'importe quel hydrocarbure contenant un diol vicinal (1,2-diol) ou un triol vicinal (1,2,3-triol) y compris des ordres plus élevés de ces unités répétitives, vicinales ou contiguës. La définition de l'hydrocarbure aliphatique poly hydroxylé inclut aussi par exemple un ou plus de groupements fonctionnels 1,3-, 1,4-, 1,5- et 1,6-diol. L'hydrocarbure aliphatique poly hydroxylé peut aussi être un polymère tel que l'alcool - A -
polyvinylique. Les diols géminés, par exemple, sont exclus de cette classe d'hydrocarbures aliphatiques poly hydroxylés.
Les hydrocarbures aliphatiques poly hydroxylés peuvent contenir des entités aromatiques ou des hétéro atomes incluant par exemple les hétéro atomes de type halogène, soufre, phosphore, azote, oxygène, silicium et bore, et leurs mélanges.
Des hydrocarbures aliphatiques poly hydroxylés utilisables dans la présente invention comprennent par exemple, le 1,2-éthanediol (éthylène glycol), le 1,2-propanediol (propylène glycol), le 1,3-propanediol, le 1 -chloro-2,3 -propanediol (chloropropanediol), le 2 -chloro- 1 ,3 -propanediol
(chloropropanediol), le 1,4-butanediol, le 1,5-pentanediol, les cyclohexanediols, le 1,2-butanediol, le 1,2-cyclohexanediméthanol, le 1,2,3-propanetriol (aussi connu comme « glycérol » ou « glycérine »), et leurs mélanges. De façon préférée, l 'hydrocarbure aliphatique poly hydroxylé utilisé dans la présente invention inclut par exemple le 1,2-éthanediol, le 1,2 -propanediol, le
1,3 -propanediol, le chloropropanediol et 1,2,3-propanetriol, et les mélanges d'au moins deux d'entre-eux. De façon plus préférée, l'hydrocarbure aliphatique poly hydroxylé utilisé dans la présente invention inclut par exemple le 1,2-éthanediol, le 1,2 -propanediol, le chloropropanediol et 1,2,3-propanetriol, et les mélanges d'au moins deux d'entre-eux. Le 1,2,3-propanetriol ou glycérol est le plus préféré.
Les esters de l 'hydrocarbure aliphatique poly hydroxylé peuvent être présents dans l'hydrocarbure aliphatique poly hydroxylé et/ou être produits dans le procédé de fabrication de la chlorhydrine et/ou être fabriqués préalablement au procédé de fabrication de la chlorhydrine. Des exemples d'esters de l 'hydrocarbure aliphatique poly hydroxylé comprennent le monoacétate de l'éthylène glycol, les monoacétates de propanediol, les monoacétates de glycérol, les monostéarates de glycérol, les diacétates de glycérol et leurs mélanges. L'expression « chorhydrine » est ici utilisée pour décrire un composé contenant au moins un groupement hydroxylé et au moins un atome de chlore attaché à des différents atomes de carbone saturés. Une chlorhydrine qui contient au moins deux groupements hydroxylés est aussi un hydrocarbure aliphatique poly hydroxylé. Donc, le matériau de départ et le produit de la réaction peuvent chacun être des chlorhydrines. Dans ce cas, la chlorohydrine « produit » est plus chlorée que la chlorhydrine de départ, c'est-à-dire qu'elle a plus d'atomes de chlore et moins de groupements hydroxylés que la chlorhydrine de départ. Des chlorhydrines préférées sont le chloroéthanol, le chloropropanol, le chloropropanediol, le dichloropropanol et les mélanges d'au moins deux d'entre-eux. Le dichloropropanol est particulièrement préféré. Des chlorhydrines plus particulièrement préférées sont le 2 -chloroéthanol, le l-chloropropane-2-ol, le 2-chloropropane-l-ol, le l-chloropropane-2,3-diol, le 2-chloropropane-l,3-diol, le l,3-dichloropropane-2-ol, le 2,3-dichloropropane-l-ol et les mélanges d'au moins deux d'entre-eux.
L'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, dans le procédé selon l'invention peuvent être obtenus au départ de matières premières fossiles ou au départ de matières premières renouvelables, de préférence au départ de matières premières renouvelables.
Par matières premières fossiles, on entend désigner des matières issues du traitement des ressources naturelles pétrochimiques, par exemple le pétrole, le gaz naturel, et le charbon. Parmi ces matières, les composés organiques comportant 2 et 3 atomes de carbone sont préférés. Lorsque l 'hydrocarbure aliphatique poly hydroxylé est le glycérol, le chlorure d'allyle, l'alcool allylique et le glycérol « synthétique » sont particulièrement préférés. Par glycérol « synthétique », on entend désigner un glycérol généralement obtenu à partir de ressources pétrochimiques. Lorsque l'hydrocarbure aliphatique poly hydroxylé est l'éthylène glycol, l'éthylène et l'éthylène glycol « synthétique » sont particulièrement préférés. Par éthylène glycol « synthétique », on entend désigner un éthylène glycol généralement obtenu à partir de ressources pétrochimiques. Lorsque l 'hydrocarbure aliphatique poly hydroxylé est le propylène glycol, le propylène et le propylène glycol « synthétique » sont particulièrement préférés. Par propylène glycol « synthétique », on entend désigner un propylène glycol généralement obtenu à partir de ressources pétrochimiques.
Par matières premières renouvelables, on entend désigner des matières issues du traitement des ressources naturelles renouvelables. Parmi ces matières, l'éthylène glycol « naturel », le propylène glycol « naturel » et le glycérol « naturel » sont préférés. De l'éthylène glycol, du propylène glycol et du glycérol « naturels » sont par exemple obtenus par conversion de sucres via des procédés thermochimiques, ces sucres pouvant être obtenus au départ de biomasse, comme décrit dans "Industrial Bioproducts : Today and Tomorrow, Energetics, Incorporated for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, JuIy 2003, pages 49, 52 to 56". Un de ces procédés est par exemple l'hydrogénolyse catalytique du sorbitol obtenu par conversion thermochimique du glucose. Un autre procédé est par exemple l'hydrogénolyse catalytique du xylitol obtenu par hydrogénation du xylose. Le xylose peut par exemple être obtenu par hydrolyse de l'hemicellulose contenue dans les fibres de maïs. Par « glycérol naturel » ou « glycérol obtenu à partir de matières premières renouvelables » on entend désigner en particulier du glycérol obtenu au cours de la fabrication de biodiesel ou encore du glycérol obtenu au cours de transformations de graisses ou huiles d'origine végétale ou animale en général telles que des réactions de saponification, de trans-estérification ou d'hydrolyse.
Parmi les huiles utilisables pour fabriquer le glycérol naturel, on peut citer toutes les huiles courantes, comme les huiles de palme, de palmiste, de coprah, de babassu, de colza ancien ou nouveau, de tournesol, de maïs, de ricin et de coton, les huiles d'arachide, de soja, de lin et de crambe et toutes les huiles issues par exemple des plantes de tournesol ou de colza obtenues par modification génétique ou hybridation.
On peut même utiliser des huiles de friture usagées, des huiles animales variées, comme les huiles de poisson, le suif, le saindoux et même des graisses d'équarrissage.
Parmi les huiles utilisées, on peut encore indiquer des huiles partiellement modifiées par exemple par polymérisation ou oligomérisation comme par exemple les "standolies" d'huiles de lin, de tournesol et les huiles végétales soufflées. Un glycérol particulièrement adapté peut être obtenu lors de la transformation de graisses animales. Un autre glycérol particulièrement adapté peut être obtenu lors de la fabrication de biodiesel. Un troisième glycérol tout particulièrement bien adapté peut être obtenu lors de la transformation de graisses ou d'huiles, animales ou végétales, par trans-estérification en présence d'un catalyseur hétérogène, tel que décrit dans les documents FR 2752242,
FR 2869612 et FR 2869613. Plus spécifiquement, le catalyseur hétérogène est choisi parmi les oxydes mixtes d'aluminium et de zinc, les oxydes mixtes de zinc et de titane, les oxydes mixtes de zinc, de titane et d'aluminium, et les oxydes mixtes de bismuth et d'aluminium, et le catalyseur hétérogène est mis en œuvre sous la forme d'un lit fixe. Ce dernier procédé peut être un procédé de fabrication de biodiesel. Dans le procédé de fabrication d'une chlorhydrine selon l'invention, l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé ou le mélange d'entre eux, peut être tel que décrit dans la demande de brevet intitulée « Procédé de préparation de chlorhydrine par conversion d'hydrocarbures aliphatiques poly hydroxylés » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.
Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine dans lequel on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, dont la teneur totale en métaux exprimés sous forme d'éléments est supérieure ou égale à 0,1 μg/kg et inférieure ou égale à 1 000 mg/kg, avec un agent de chloration.
Dans le procédé selon l'invention, on préfère utiliser du glycérol obtenu au départ de matières premières renouvelables.
Le procédé de fabrication de chlorhydrines selon l'invention peut être suivi d'une fabrication d'un époxyde.
L'expression « époxyde » est utilisée ici pour décrire un composé comportant au moins un oxygène ponté sur une liaison carbone-carbone. Généralement les atomes de carbone de la liaison carbone-carbone sont adjacents et le composé peut contenir d'autres atomes que des atomes de carbone et d'oxygène, tels que des atomes d'hydrogène et des halogènes. Les époxydes préférés sont l'oxyde d'éthylène, l'oxyde de propylène, le glycidol, l'épichlorhydrine et les mélanges d'au moins deux d'entre-eux. Le procédé de fabrication de l'époxyde peut être suivi d'un procédé de fabrication de résines époxy.
Les procédés dont peut être issu l'agent de chloration sont souvent associés. Les sous-produits lourds de la synthèse du chlorure d'allyle et de l'épichlorhydrine sont avantageusement employés comme source de matières premières dans un procédé de chlorinolyse à haute température pour produire des matières commercialement valorisées. Ces installations peuvent cependant avoir d'autres sources de matières premières. L'oxydation à une température supérieure ou égale à 800 °C est utilisée pour éliminer les déchets organiques chlorés ou oxygénés. Les procédés dont peut être issu l'agent de chloration génèrent du chlorure d'hydrogène ou des solutions aqueuses de chlorure d'hydrogène comme co -produit. Ces acides sont généralement de qualités médiocres, contenant des traces de matières organiques. Ils sont avantageusement engagés dans le procédé de fabrication de chlorhydrine susmentionné tels quels ou après un traitement.
On a trouvé de façon surprenante qu'une alimentation au moins partielle du procédé de fabrication de chlorhydrine par l'agent de chloration brut issu tel quel de ces procédés de fabrication donne de particulièrement bons résultats. En particulier, le rendement du procédé de fabrication de la chlorhydrine n'est pas altéré par l'utilisation de cet agent de chloration non traité.
De plus, une alimentation au moins partielle du procédé de fabrication de chorhydrine par l'agent de chloration issu d'un procédé de fabrication de chlorure d'allyle et/ou d'un procédé de chlorinolyse et/ou d'un procédé de fabrication de chlorométhane et/ou d'un procédé d'oxydation de composés chlorés à une température supérieure ou égale à 800 °C, outre une limitation de transports de matières dangereuses avec suppression des coûts liés à ces transports, permet une valorisation alternative intéressante des acides co -produits dans ces procédés. De plus, un partage d'installation entre divers procédés de fabrication d'un même produit peut être envisagé, ce qui contribue également à une réduction des coûts de ces procédés.
Dans le procédé de fabrication d'une chlorhydrine selon l'invention, l 'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, peut être un produit brut ou un produit épuré, tels que spécifiquement divulgués dans la demande WO 2005/054167 de SOLVAY SA, de la page 2, ligne 8, à la page 4, ligne 2. Dans le procédé de fabrication d'une chglorhdyrine selon l'invention, l 'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, peut présenter une teneur en métaux alcalin et/ou alcalino -terreux peut être inférieure ou égale à 5 g/kg tel que décrit dans la demande intitulée « Procédé de fabrication d'une chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxylé » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence. Les métaux alcalins peuvent être sélectionnés parmi le lithium, le sodium, le potassium, le rubidium et le césium et les métaux alcalino - terreux peuvent être sélectionnés parmi le magnésium, le calcium, le strontium et le barium. Dans le procédé selon l'invention, la teneur en métaux alcalins et/ou alcalino -terreux de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est inférieure ou égale à 5 g/kg, souvent inférieure ou égale à 1 g/kg, plus particulièrement inférieure ou égale à 0,5 g/kg et dans certains cas inférieure ou égale à 0,01 g/kg. La teneur métaux alcalins et/ou alcalino-terreux du glycérol est généralement supérieure ou égale à 0,1 μg/kg.
Dans le procédé selon l'invention, les métaux alcalins sont généralement le lithium, le sodium, le potassium et le césium, souvent le sodium et le potassium, et fréquemment le sodium.
Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en lithium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg. Dans le procédé selon l'invention, la teneur en sodium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg.
Dans le procédé selon l'invention, la teneur en potassium de l 'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg.
Dans le procédé selon l'invention, la teneur en rubidium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg.
Dans le procédé selon l'invention, la teneur en césium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg.
Dans le procédé selon l'invention, les éléments alcalino-terreux sont généralement le magnésium, le calcium, le strontium et le barium, souvent le magnésium et le calcium et fréquemment le calcium.
Dans le procédé selon l'invention, la teneur en magnésium de l 'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg.
Dans le procédé selon l'invention, la teneur en calcium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg.
Dans le procédé selon l'invention, la teneur en strontium de l 'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg.
Dans le procédé selon l'invention, la teneur en barium de l 'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg. Dans le procédé selon l'invention, les métaux alcalins et/ou alcalino- terreux sont généralement présents sous la forme de sels, fréquemment sous la forme de chlorures, de sulfates et de leurs mélanges. Le chlorure de sodium est le plus souvent rencontré.
Dans le procédé de fabrication d'une chlorhdydrine selon l'invention, l'agent de chloration peut être tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, de la page 4, ligne 25, à la page 6, ligne 2. Dans le procédé de fabrication d'une chlorhdyrine selon l'invention, l'agent de chloration peut être du chlorure d'hydrogène peut être tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, de la page 4, ligne 30, à la page 6, ligne 2. Dans un mode de réalisation avantageux du procédé de fabrication d'une chlorhdyrine selon l'invention, l'agent de chloration est du chlorure d'hydrogène gazeux ou une solution aqueuse de chlorure d'hydrogène ou une combinaison des deux.
Cet agent de chloration est particulièrement avantageux, puisqu'il est souvent obtenu comme sous-produit en synthèse organique de chloration, d'élimination ou de substitution, ou encore par combustion. La présente invention permet une valorisation de ce sous-produit.
Dans un premier mode de réalisation du procédé selon l'invention, l'agent de chloration provient au moins partiellement d'un procédé de fabrication de chlorure d'allyle.
Dans une première variante de ce premier mode de réalisation, le chlorure d'allyle peut être obtenu par chloration du propylène. Le procédé de fabrication de chlorure d'allyle est alors alimenté avec au moins du propylène et du chlore. D'autres composés peuvent être également présents dans l'alimentation comme par exemples des hydrocarbures non chlorés autres que le propylène, des hydrocarbures partiellement chlorés, des hydrocarbures totalement chlorés ou leurs mélanges.
Dans une deuxième variante de ce premier mode de réalisation, le chlorure d'allyle peut être obtenu par déshydrochloration de dichloropropane. Le procédé de fabrication de chlorure d'allyle est alors alimenté avec au moins des hydrocarbures partiellement chlorés, contenant de préférence du dichloropropane, en particulier du 1,2-dichloropropane.
Une description des procédés de fabrication du chlorure d'allyle peut être trouvée à la référence « Ullmann's Encyclopedia of Industrial Chemistry, Fifth, Completely Revised Edition, 1985, Volume Al , pages 427-429 ».
Dans un deuxième mode de réalisation du procédé selon l'invention, l'agent de chloration provient au moins partiellement d'un procédé de fabrication de chlorométhanes.
Dans ce deuxième mode de réalisation, le procédé de fabrication est alimenté avec du méthane et/ou du chlorure de méthyle et du chlore. Le procédé de chloration peut être thermique, photochimique ou catalytique. Les procédés thermique et photochimique sont préférés.
Une description des procédés de fabrication des chlorométhanes peut être trouvée à la référence « Ullmann's Encyclopedia of Industrial Chemistry, Fifth, Completely Revised Edition, 1986, Volume A6, pages 240-252 ».
Dans un troisième mode de réalisation du procédé selon l'invention, l'agent de chloration provient au moins partiellement d'un procédé de chlorinolyse. Par chlorinolyse, on entend désigner toute réaction de décomposition par le chlore et plus particulièrement les réactions de décompositions de composés organiques, effectuées à des températures supérieures ou égales à 300 °C, de préférence supérieures ou égales à 350 °C. Dans ce troisième mode réalisation, le procédé de chlorinolyse est alimenté avec au moins du chlore et des hydrocarbures aliphatiuqes ou aromatiques, saturés ou insaturés, de préférence aliphatiques et choisis parmi les hydrocarbures aliphatiques non chlorés, comprenant de 1 à 6 atomes de carbone, les hydrocarbures aliphatiques partiellement et/ou totalement chlorés comprenant de 1 à 6 atomes de carbone et de 1 à 14 atomes de chlore, et leurs mélanges. Les hydrocarbures non chlorés sont par exemple du propane, du propylène, du méthyl acétylène, du méthane et de l'éthylène. Les hydrocarbures partiellement chlorés sont par exemple du chloroforme, des trichloropropanes, des chloropropènes, des tétrachloréthanes, des trichloroéthanes, du chlorure d'acétylène et des tétrachloropentane. Les hydrocarbures totalement chlorés peuvent être sélectionnés parmi le tétrachlorure de carbone, l'hexachloroéthane, et le perchloroéthylène. Un exemple d'un tel procédé est le procédé de pyrolyse d'hydrocarbures chlorés contenant de un à trois atomes de carbone en présence de chlore pour la production de perchloroéthylène et de tétrachlorure de carbone. Généralement, ces hydrocarbures ne contiennent pas d'autres hétéroatomes que le chlore.
Une description des procédés de chlorinolyse peut être trouvée à la référence « Propylène and its Industrial Derivatives, Hancock E.G., 1973, pages 298-332».
Dans un quatrième mode de réalisation du procédé selon l'invention, l'agent de chloration provient au moins partiellement d'un procédé d'oxydation de composés chlorés à une température supérieure ou égale à 800 °C. Cette température est souvent supérieure ou égale à 900 °C et plus particulièrement supérieure ou égale à 1000 °C. Par la suite, on désignera ce procédé par procédé d'oxy dation à haute température dans ce mode réalisation, le procédé d'oxydation est alimenté avec au moins un agent oxydant et au moins un composé chloré.
Dans ce quatrième mode de réalisation, l'agent oxydant peut être sélectionné parmi l'oxygène, les oxydes de chlore, les oxydes d'azote, leurs mélanges et leurs mélanges avec l'azote. De l'eau peut être utilement ajoutée à l'agent oxydant en particulier pour faciliter l'oxydation des composés chlorés.
Dans ce quatrième mode réalisation, les composés chlorés peuvent être des composés inorganiques ou organiques. Les composés organiques chlorés sont préférés. Ces composés organiques chlorés sont des hydrocarbures choisis parmi les hydrocarbures partiellement chlorés comprenant de 1 à 10 atomes de carbone et de 1 à 21 atomes de chlore, les hydrocarbures totalement chlorés comprenant de 1 à 4 atomes de carbones et leurs mélanges.
Un exemple d'un tel procédé d'oxydation de composés chlorés est celui dans lequel on oxyde des composés organiques chlorés et oxygénés sous forme de gaz carbonique. Dans un tel procédé, on oxyde à haute température des composés chlorés issus des procédés de fabrication de chlorure d'allyle, d'épichlorhydrine, de dichloroéthane, d'oxyde de propylène, de chlorure de vinylidène, de chlorure de vinyle, 1,1,1-trichloréthane, de chlorométhanes, de trichloroéthylène et de procédé de chlorinolyse, permettant de valoriser le contenu énergétique des composés chlorés sous forme de CO2 et générant du chlorure d'hydrogène sous forme de solutions aqueuses de chlorure d'hydrogène (acide chlorhydrique « technique ») pouvant être épurées ou non.
Une description des procédés d'oxydation à haute température peut être trouvée à la référence « « Ullmann's Encyclopedia of Industrial Chemistry, Fifth, Completely Revised Edition, 1985, Volume Al 3, pages 292-293 ».
Dans un premier aspect préféré du procédé selon l'invention, l'agent de chloration issu d'un procédé de fabrication de chlorure d'allyle et/ou d'un procédé de fabrication de chlorométhanes et/ou d'un procédé de chlorinolyse et/ou d'un procédé d'oxydation à haute température qui alimente la fabrication du dichloropropanol, contient du chlorure d'hydrogène, liquide ou gazeux, de préférence gazeux. Le chlorure d'hydrogène est de manière particulièrement préférée substantiellement anhydre. Par chlorure d'hydrogène « substantiellement anhydre », on entend désigner du chlorure d'hydrogène dont la teneur en eau est généralement inférieure ou égale à 15 % en mole, de préférence inférieure ou égale à 10 % en mole et de manière particulièrement préférée inférieure ou égale à 8 % en mole. Cette teneur en eau est généralement supérieure ou égale à 0,01 ppm en mole.
Dans ce premier aspect du procédé selon l'invention, la teneur en azote de l'agent de chloration est généralement supérieure ou égale à 0,1 ppm vol, souvent supérieure ou égale à 10 ppm vol et en particulier supérieure ou égale à 20 ppm vol . Cette teneur est généralement inférieure ou égale à 50 000 ppm vol, souvent inférieure ou égale à 40 000 ppm vol et en particulier inférieure ou égale à 30 000 ppm vol.
Dans ce premier aspect du procédé selon l'invention, la teneur en oxygène de l'agent de chloration en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm volume et souvent supérieure ou égale à 0,5 ppm vol. Cette teneur est généralement inférieure ou égale à 5 % vol, souvent inférieure ou égale à 2 % vol et en particulier inférieure ou égale à 1 % vol. Dans ce premier aspect du procédé selon l'invention, la teneur en hydrogène de l'agent de chloration en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm vol et souvent supérieure ou égale à 0,5 ppm vol. Cette teneur est généralement inférieure ou égale à 0,1 % vol et souvent inférieure ou égale à 500 ppm vol.
Dans ce premier aspect du procédé selon l'invention, la teneur en chlore de l'agent de chloration en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm vol et souvent supérieure ou égale à 0,5 ppm vol. Cette teneur est généralement inférieure ou égale à 2 000 ppm vol, souvent inférieure ou égale à 1 000 ppm vol et en particulier inférieure ou égale à 500 ppm vol.
Dans ce premier aspect du procédé selon l'invention, la teneur en méthane de l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm vol, souvent supérieure ou égale à 1 ppm vol et en particulier supérieure ou égale à 5 ppm vol . Cette teneur est généralement inférieure ou égale à 10 000 ppm vol, souvent inférieure ou égale à 5 000 ppm vol et en particulier inférieure ou égale à 40 000 ppm vol.
Dans ce premier aspect du procédé selon l'invention, la teneur en monoxyde de carbone de l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration,est généralement supérieure ou égale à 0,1 ppm vol, souvent supérieure ou égale à 0,5 ppm vol et en particulier supérieure ou égale à 1 ppm vol . Cette teneur est généralement inférieure ou égale à 10 000 ppm vol, souvent inférieure ou égale à 5 000 ppm vol et en particulier inférieure ou égale à 4 000 ppm vol. Dans ce premier aspect du procédé selon l'invention, la teneur en dioxyde de carbone de l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm vol, souvent supérieure ou égale à 0,5 ppm vol et en particulier supérieure ou égale à 1 ppm vol. Cette teneur est généralement inférieure ou égale à 10 000 ppm vol, souvent inférieure ou égale à 5 000 ppm vol et en particulier inférieure ou égale à 4 000 ppm vol.
Dans ce premier aspect du procédé selon l'invention, la teneur globale en produits organiques chlorés comme par exemple, les chlorométhanes, le chlorure d'éthyle, le dichloroéthane, le chlorure de vinyle et le chlorobenzène, dans l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm vol, souvent supérieure ou égale à 1 ppm vol et en particulier supérieure ou égale à 5 ppm vol . Cette teneur est généralement inférieure ou égale à 50 000 ppm vol, souvent inférieure ou égale à 20 000 ppm vol et en particulier inférieure ou égale à 10 000 ppm vol.
Dans ce premier aspect du procédé selon l'invention, la teneur globale en produits organiques non chlorés comme par exemple, l'éthylène, l'acétylène, l'éthane, le propylène, le méthylacétylène et le propane, dans l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm vol, souvent supérieure ou égale à 1 ppm vol et en particulier supérieure ou égale à 5 ppm vol . Cette teneur est généralement inférieure ou égale à 50 000 ppm vol, souvent inférieure ou égale à 20 000 ppm vol et en particulier inférieure ou égale à 10 000 ppm vol. Dans ce premier aspect du procédé selon l'invention, la teneur globale en produits organiques fluorés, comme par exemple, le fluorure de vinyle, le fluoroéthane, le fluorure de vinylidène et les fluorométhanes, dans l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm vol, souvent supérieure ou égale à 1 ppm vol et en particulier supérieure ou égale à 5 ppm vol. Cette teneur est généralement inférieure ou égale à 500 ppm vol, souvent inférieure ou égale à 20 000 ppm vol et en particulier inférieure ou égale à lO OOO ppm vol.
Dans ce premier aspect du procédé selon l'invention, la teneur globale en produits organiques comprenant des hétéroatomes autres que le chlore et le fluoré comme par exemple, des alcools et des acides, dans l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0, 1 ppm vol, souvent supérieure ou égale à 1 ppm vol et en particulier supérieure ou égale à 5 ppm vol . Cette teneur est généralement inférieure ou égale à 50 000 ppm vol, souvent inférieure ou égale à 20 000 ppm vol et en particulier inférieure ou égale à 10 000 ppm vol. Dans ce premier aspect du procédé selon l'invention, la teneur en propylène de l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm vol, souvent supérieure ou égale à 1 ppm vol et en particulier supérieure ou égale à 5 ppm vol. Cette teneur est généralement inférieure ou égale à
15 000 ppm vol, souvent inférieure ou égale à 10 000 ppm volet en particulier inférieure ou égale à 5 000 ppm vol.
Dans ce premier aspect du procédé selon l'invention, la teneur en monochloropropène de l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm vol, souvent supérieure ou égale à 1 ppm vol et en particulier supérieure ou égale à 5 ppm vol . Cette teneur est généralement inférieure ou égale à 5 000 ppm vol, souvent inférieure ou égale à 1 000 ppm vol et en particulier inférieure ou égale à 500 ppm vol. Dans ce premier aspect du procédé selon l'invention, la somme des teneurs en chloropropane de l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm vol, souvent supérieure ou égale à 1 ppm vol et en particulier supérieure ou égale à 5 ppm vol . Cette teneur est généralement inférieure ou égale à 10 000 ppm vol, souvent inférieure ou égale à 4 000 ppm vol et en particulier inférieure ou égale à 3 000 ppm vol.
Dans ce premier aspect du procédé selon l'invention, la teneur en isopropanol, chloroalcools et chloroéthers de l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote présents dans l'agent de chloration, est généralement supérieure ou égale à 0,1 ppm vol, souvent supérieure ou égale à 1 ppm vol et en particulier supérieure ou égale à 5 ppm vol. Cette teneur est généralement inférieure ou égale à 5 000 ppm vol, souvent inférieure ou égale à 4 000 ppm vol et en particulier inférieure ou égale à 3 000 ppm vol.
Dans un deuxième aspect préféré du procédé selon l'invention, le chlorure d'hydrogène est une solution aqueuse de chlorure d'hydrogène. Dans ce cas, la teneur de la solution en chlorure d'hydrogène est généralement d'au moins 10 % en poids. De préférence, cette teneur est supérieure ou égale à 15 % en poids. Dans ce cas, la teneur de la solution en chlorure d'hydrogène est généralement d'au plus 37 % en poids.
Ce deuxième aspect permet la valorisation de solutions aqueuses de chlorure d'hydrogène de basses qualités, issu par exemple de la pyrolyse de composés organiques chlorés ou ayant été utilisé pour le décapage de métaux.
Dans une première variante de ce deuxième aspect, on utilise une solution aqueuse concentrée de chlorure d'hydrogène, comprenant généralement de 28 à 37 % en poids de chlorure d'hydrogène comme source primaire de l'agent de chloration et on sépare ladite solution concentrée, par exemple par évaporation, en au moins deux fractions, la première étant constituée essentiellement de chlorure d'hydrogène anhydre et la deuxième comprenant du chlorure d'hydrogène et de l'eau dans des proportions dans lesquelles ils forment un azéotrope, ledit azéotrope étant constitué, à une pression de 101,3 kPa de 19 à 25 % de chlorure d'hydrogène, et de 75 à 81 % en poids d'eau, en particulier d'environ 20 % en poids de chlorure d'hydrogène et d'environ 80 % d'eau. La solution aqueuse de chlorure d'hydrogène à 20 % peut éventuellement être mise en œuvre pour absorber du chlorure d'hydrogène produit par le procédé de fabrication de chlorure d'allyle, le procédé de chlorinolyse, le procédé de fabrication de chlorométhane et le procédé d'oxydation à haute température, de façon à générer une solution aqueuse de chlorure d'hydrogène à 33 % en poids de chlorure d'hydrogène.
Lorsqu'une solution aqueuse de chlorure d'hydrogène est utilisée comme agent de chloration, cet aspect permet l'utilisation d'un agent de chloration transportable de manière aisée tout en permettant un contrôle efficace de la teneur en eau dans le milieu réactionnel, en particulier lorsque la réaction entre le glycérol et l'agent de chloration est effectuée en plusieurs étapes.
La solution aqueuse de chlorure d'hydrogène utilisée dans ce deuxième aspect du procédé selon l'invention peut contenir d'autres composés que l'eau et le chlorure d'hydrogène. Ces composés peuvent être entre autres des composés inorganiques chlorés ou non chlorés et des composés organiques saturés ou insaturés, non chlorés, partiellement chlorés ou totalement chlorés. Ces composés peuvent être différents selon le procédé de fabrication dont la solution aqueuse de chlorure d'hydrogène est issue.
Dans ce deuxième aspect du procédé selon l'invention, les teneurs en oxygène, en hydrogène, en chlore, en méthane, en monoxyde de carbone, en dioxyde de carbone, en composés organiques chlorés, en composés organiques non chlorés, en composés organiques fluorés, en composés organiques comprenant des hétéroatomes autres que le chlore et le fluor, en propylène, en monochoropropènes, en choropropanes, en isopropanol, chloroalcools et chloroéthers, dans l'agent de chloration, en ne tenant pas compte de l'eau présente dans l'agent de chloration, sont identiques aux valeurs données plus haut, pour le premier aspect du procédé selon l'invention.
Dans ce deuxième aspect du procédé selon l'invention, les teneurs individuelles en métaux et en particulier en métaux alcalins, en métaux alcalino- terreux, en fer, en nickel, en cuivre, en plomb, en arsenic, en cobalt, en titane, an cadmium, en antimoine, en mercure, en zinc, en sélénium en aluminium et en bismuth sont généralement supérieures ou égales à 0,03 ppb en poids, souvent supérieures ou égales à 0,3 ppb en poids et fréquemment supérieures à 1 ppb en poids. Ces teneurs sont généralement inférieures ou égales à 5 ppm en poids et de préférence inférieures ou égales à 1 ppm en poids.
Dans le procédé selon l'invention, la fraction d'agent de chloration qui alimente la fabrication de dichloropropanol et qui est issu d'un procédé de fabrication de chlorure d'allyle et/ou d'un procédé de chlorinolyse et/ou d'un procédé de fabrication de chlorométhane et/ou d'un procédé d'oxydation à haute température est généralement supérieure ou égale à 0 % en poids de l'agent de chloration, souvent supérieure ou égale à 10 % en poids et fréquemment supérieure ou égale à 20 % en poids. Cette fraction est généralement inférieure ou égale à 100 % en poids de l'agent de chloration, souvent inférieure ou égale à 90 % en poids et fréquemment inférieure à 80 % en poids. Dans le procédé de fabrication d'un produit organique chloré selon l'invention, la réaction entre l 'hydrocarbure aliphatique poly hydroxylé, l'ester de l 'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration, peut être effectuée dans un réacteur tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, à la page 6, lignes 3 à 23. Dans le procédé de fabrication d'un produit organique chloré selon l'invention, la réaction entre l 'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration, peut être effectuée dans des équipements, réalisés en ou recouverts de, matériaux résistant aux agents de chloration, tels que décrit dans la demande intitulée « Procédé de fabrication d'une chlorhydrine dans des équipements résistant à la corrosion » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.
Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine comprenant une étape dans laquelle on soumet un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, à une réaction avec un agent de chloration contenant du chlorure d'hydrogène et au moins une autre étape effectuée dans un équipement, réalisé en ou recouvert de, matériaux résistant à l'agent de chloration, dans les conditions de réalisation de cette étape. Mention est plus particulièrement faite de matériaux métalliques tels que l'acier émaillé, l'or et le tantale et de matériaux ,non-métalliques tels que le polyéthylène haute densité, le polypropylène, le poly(fluorure-de-vinylidène), le polytétrafluoroéthylène, les perfluoro alcoxyalcanes et le poly(perfluoropropylvinyléther), les polysulfones et les polysulfures, le graphite et le graphite imprégné.
Dans le procédé de fabrication d'un produit organique chloré selon l'invention, la réaction entre l 'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration, peut être effectuée dans un milieu réactionnel, tel que décrit dans la demande intitulée « Procédé continu de fabrication de chlorhydrines » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.
Mention particulière est faite d'un procédé continu de production de chlorhydrine dans lequel on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, avec un agent de chloration et un acide organique dans un milieu réactionnel liquide dont la composition à l'état stationnaire comprend de l 'hydrocarbure aliphatique poly hydroxylé et des esters de l 'hydrocarbure aliphatique poly hydroxylé dont la somme des teneurs exprimée en mole d'hydrocarbure aliphatique poly hydroxylé est supérieure à 1,1 mol % et inférieure ou égale à 30 mol %, le pourcentage étant rapporté à la partie organique du milieu réactionnel liquide. La partie organique du milieu réactionnel liquide consiste en l'ensemble des composés organiques du milieu réactionnel liquide c'est-à-dire les composés dont la molécule contient au moins 1 atome de carbone.
Dans le procédé de fabrication d'un produit organique chloré selon l'invention, la réaction entre l 'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et agent de chloration, peut être effectuée en présence d'un catalyseur tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, de la page 6, ligne 28, à la page 8, ligne 5. Mention est particulièrement faite d'un catalyseur basé sur un acide carboxylique ou sur un dérivé d'acide carboxylique ayant un point d'ébullition atmosphérique supérieur ou égal à 200 °C, en particulier l'acide adipique et les dérivés de l'acide adipique.
Dans le procédé de fabrication d'un produit organique chloré selon l'invention, la réaction entre l 'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration peut être effectuée à une concentration en catalyseur, une température, à une pression et pour des temps de séjour tels que décrits dans la demande WO 2005/054167 de SOLVAY SA, de la page 8, ligne 6 à la page 10, ligne 10.
Mention est particulièrement faite d'une température d'au moins 20 °C et d'au plus 160 °C, d'une pression d'au moins 0,3 bar et d'au plus, 100 bar, et d'un temps de séjour d'au moins 1 h et d'au plus 50 h.
Dans le procédé de fabrication d'un produit organique chloré selon l'invention, la réaction entre l 'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration peut être effectuée en présence d'un solvant tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, à la page 11, lignes 12 à 36.
Mention est particulièrement faite d'un solvant organique tel qu'un solvant organique chloré, un alcool, une cétone, un ester ou un éther, un solvant non aqueux miscible avec l'hydrocarbure aliphatique polyhydroxylé tel que le chlroéthanol, le chloropropanol, le chloropropanediol, le dichloropropanol, le dioxanne, le phénol, le crésol, et les mélanges de chloropropanediol et de dichloropropanol, ou des produits lourds de la réaction tels que les oligomères de l 'hydrocarbure aliphatique poly hydroxylé au moins partiellement chlorés et ou estérifiés. Dans le procédé de fabrication d'un produit organique chloré selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé et l'agent de chloration peut être effectuée en présence d'une phase liquide comprenant des composés lourds autres que l'hydrocarbure aliphatique poly hydroxylé, comme décrit dans la demande intitulée « Procédé de fabrication d'une chlorhydrine dans une phase liquide » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.
Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine, dans lequel on soumet un hydrocarbure aliphatique poly hydroxylé, un ester d'hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, à une réaction avec un agent de chloration, en présence d'une phase liquide comprenant des composés lourds autres que l 'hydrocarbure aliphatique poly hydroxylé et dont la température d'ébullition sous une pression de 1 bar absolu est d'au moins 15 °C supérieure à la température d'ébullition de la chlorhydrine sous une pression de 1 bar absolu.
Dans le procédé de fabrication d'un produit organique chloré selon l'invention, la réaction entre l 'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration est préférentiellement effectuée dans un milieu réactionnel liquide. Le milieu réactionnel liquide peut être mono- ou multiphasique.
Le milieu réactionnel liquide est constitué par l'ensemble des composés solides dissous ou dispersés, liquides dissous ou dispersés et gazeux dissous ou dispersés, à la température de la réaction.
Le milieu réactionnel comprend les réactifs, le catalyseur, le solvant, les impuretés présentes dans les réactifs, dans le solvant et dans le catalyseur, les intermédiaires de réaction, les produits et les sous-produits de la réaction.
Par réactifs, on entend désigner l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, et l'agent de chloration.
Parmi les impuretés présentes dans l'hydrocarbure aliphatique poly hydroxylé, on peut citer les acides carboxyliques, les sels d'acides carboxyliques, les esters d'acide gras avec l'hydrocarbure aliphatique poly hydroxylé, les esters d'acides gras avec les alcools utilisés lors de la trans-estérification, les sels inorganiques tels que les chlorures et les sulfates alcalins ou alcalino-terreux.
Lorsque l'hydrocarbure aliphatique poly hydroxylé est le glycérol, on peut citer parmi les impuretés du glycérol les acides carboxyliques, les sels d'acides carboxyliques, les esters d'acide gras tels que les mono-, les di- et les triglycérides, les esters d'acides gras avec les alcools utilisés lors de la trans- estérification, les sels inorganiques tels que les chlorures et les sulfates alcalins ou alcalino -terreux.
Parmi les intermédiaires réactionnels on peut citer les monochlorhydrines de l'hydrocarbure aliphatique poly hydroxylé et leurs esters et/ou polyesters, les esters et/ou polyesters de l'hydrocarbure aliphatique poly hydroxylé et les esters des polychlorhydrines.
Lorsque la chlorhydrine est le dichloropropanol, on peut citer parmi les intermédiaires réactionnels, la monochlorhydrine de glycérol et ses esters et/ou polyesters, les esters et/ou polyesters de glycérol et les esters de dichloropropanol.
L'ester d'hydrocarbure aliphatique poly hydroxylé peut donc être selon le cas, un réactif, une impureté de l'hydrocarbure aliphatique poly hydroxylé ou un intermédiaire réactionnel. Par produits de la réaction, on entend désigner la chlorhydrine et l'eau.
L'eau peut être l'eau formée dans la réaction de chloration et/ou de l'eau introduite dans le procédé, par exemple via l'hydrocarbure aliphatique poly hydroxylé et/ou l'agent de chloration, tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, à la page 2, lignes 22 à 28, à la page 3, lignes 20 à 25, à la page 5, lignes 7 à 31 et à la page 12, lignes 14 à 19. Parmi les sous-produits, on peut citer par exemple, les oligomères l 'hydrocarbure aliphatique poly hydroxylé partiellement chlorés et/ou estérifiés. Lorsque l 'hydrocarbure aliphatique poly hydroxylé est le glycérol, parmi les sous-produits, on peut citer par exemple, les oligomères du glycérol partiellement chlorés et/ou estérifiés.
Les intermédiaires réactionnels et les sous-produits peuvent être formés dans les différentes étapes du procédé comme par exemple, au cours de l'étape de fabrication de la chlorhydrine et au cours des étapes de séparation de la chlorhydrine. Le milieu réactionnel liquide peut ainsi contenir l'hydrocarbure aliphatique poly hydroxylé, l'agent de chloration dissous ou dispersé sous forme de bulles, le catalyseur, le solvant, les impuretés présentes dans les réactifs, le solvant et le catalyseur, comme des sels dissous ou solides par exemple, le solvant, le catalyseur, les intermédiaires réactionnels, les produits et les sous-produits de la réaction. La séparation de la chlorhydrine et des autres composés du milieu réactionnel peut être effectuée selon les modes tels que décrits dans la demande WO 2005/054167 de SOLVAY SA, de la page 12, ligne 1, à la page 16, ligne 35 et à la page 18, lignes 6 à 13. Ces autres composés sont ceux mentionnés ci-dessus et comprennent les réactifs non consommés, les impuretés présentes dans les réactifs, le catalyseur, le solvant, les intermédiaires réactionnels, l'eau et les sous produits de la réaction.
Mention particulière est faite d'une séparation par distillation azéotropique d'un mélange eau/chlorhydrine/agent de chloration dans des conditions minimisant les pertes en agent de chloration suivie d'une séparation de la chlorhydrine par décantation.
Dans le procédé de fabrication d'un produit organique chloré selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel, peut être effectuée selon des modes tels que décrits dans la demande de brevet EP 05104321.4 déposée au nom de SOLVAY SA le 20/05/2005 dont le contenu est ici incorporé par référence. Mention particulière est faite d'un mode de séparation comprenant au moins une opération de séparation destinée à enlever le sel de la phase liquide.
Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, et un agent de chloration dans lequel l'hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, utilisé contient au moins un sel métallique solide ou dissous, le procédé comprenant une opération de séparation destinée à enlever une partie du sel métallique. Mention est plus particulièrement est faite d'un procédé de fabrication d'une chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, et un agent de chloration dans lequel l'hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, utilisé contient au moins un chlorure et/ou un sulfate de sodium et/ou potassium et dans lequel l'opération de séparation destinée à enlever une partie du sel métallique est un opération de filtration. Mention est aussi particulièrement faite d'un procédé de fabrication d'une chlorhydrine dans lequel (a) on soumet un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, à une réaction avec un agent de chloration dans un milieu réactionnel, (b) on prélève en continu ou périodiquement une fraction du milieu réactionnel contenant au moins de l'eau et la chlorhydrine, (c) au moins une partie de la fraction obtenue à l'étape (b) est introduite dans une étape de distillation et (d) le taux de reflux de l'étape de distillation est contrôlé en fournissant de l'eau à ladite étape de distillation. Mention est tout particulièrement faite d'un procédé de fabrication d'une chlorhydrine dans lequel (a) on soumet un hydrocarbure aliphatique poly hydroxylé,un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, à une réaction avec du chlorure d'hydrogène dans un milieu réactionnel, (b) on prélève en continu ou périodiquement une fraction du milieu réactionnel contenant au moins de l'eau et la chlorhydrine, (c) au moins une partie de la fraction obtenue à l'étape (b) est introduite dans une étape de distillation, dans lequel le rapport entre la concentration en chlorure d'hydrogène et la concentration en eau dans la fraction introduite dans l'étape de distillation est plus petit que le rapport de concentrations chlorure d'hydrogène/eau dans la composition binaire azéotropique chlorure d'hydrogène/eau à la température et à la pression de distillation.
Dans le procédé de fabrication de l'époxyde selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel de chloration de l 'hydrocarbure aliphatique polyhydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, peut être effectuée selon les modes tels que décrits dans la demande intitulée « Procédé de fabrication d'une chlorhydrine » déposée au nom de SOLVAY SA, le même jour que la présente demande, et dont le contenu est ici incorporé par référence.
Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine comprenant les étapes suivantes (a) on fait réagir un hydrocarbure aliphatique polyhydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, ou un mélange d'entre eux, avec un agent de chloration et un acide organique de façon à obtenir un mélange contenant de la chlorhydrine et des esters de la chlorhydrine, (b) on soumet au moins une partie du mélange obtenu à l'étape (a) à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a)et (c) on ajoute de l 'hydrocarbure aliphatique polyhydroxylé à au moins une des étapes ultérieures à l'étape (a), pour qu'il réagisse à une température supérieure ou égale à 20 °C, avec les esters de la chlorhydrine de façon à former au moins partiellement des esters de l'hydrocarbure aliphatique polyhydroxylé. Mention est plus particulièrement faite d'un procédé dans lequel l'hydrocarbure aliphatique polyhydroxylé est le glycérol et la chlorhydrine est le dichloropropanol.
Dans le procédé de fabrication de l'époxyde selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel de chloration de l'hydrocarbure aliphatique polyhydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, peut être effectuée selon les modes tels que décrits dans la demande intitulée « Procédé de fabrication d'une chlorhydrine au départ d'un hydrocarbure aliphatique poly hydroxylé » déposée au nom de SOLVAY SA le même jour que la présente demande, et dont le contenu est ici incorporé par référence.
Mention particulière est faite d'un procédé de fabrication de chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, ou un mélange d'entre eux, et un agent de chloration dans un réacteur qui est alimenté en un ou plusieurs flux liquides contenant moins de 50 % en poids de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique polyhydroxylé, ou du mélange d'entre eux, par rapport au poids de la totalité des flux liquides introduits dans le réacteur. Mention plus particulière est faite d'un procédé comprenant les étapes suivantes : (a) on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, ou un mélange d'entre eux, avec un agent de chloration de façon à obtenir au moins un milieu contenant du de la chlorhydrine, de l'eau et de l'agent de chloration, (b) on prélève au moins une fraction du milieu formé à l'étape (a) et (c) on soumet la fraction prélevée à l'étape (b) à une opération de distillation et/ou de stripping dans laquelle on ajoute de l 'hydrocarbure aliphatique poly hydroxylé de façon à séparer de la fraction prélevée à l'étape (b) un mélange contenant de l'eau et de la chlorhydrine présentant une teneur réduite en agent de chloration comparée à celle de la fraction prélevée à l'étape (b). Dans le procédé de fabrication de l'époxyde selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel de chloration de l 'hydrocarbure aliphatique polyhydroxylé peut être effectuée selon les modes tels que décrits dans la demande intitulée « Procédé de conversion d'hydrocarbures aliphatiques poly hydroxylés en chlorhydrines » déposée au nom de SOLVAY SA le même jour que la présente demande et dont les contenus sont ici incorporés par référence. Mention particulière est faite d'un procédé de préparation d'une chlorhydrine comprenant les étapes suivantes : (a) on fait réagir un hydrocarbure aliphatique polyhydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé , ou un mélange d'entre eux, avec un agent de chloration de façon à obtenir un mélange contenant de la chlorhydrine, des esters de chlorhydrine et de l'eau, (b) on soumet au moins une fraction du mélange obtenu à l'étape (a) à un traitement de distillation et/ou de stripping de façon à obtenir une partie concentrée en eau, en chlorhydrine et en esters de chlorhydrine et (c) on soumet au moins une fraction de la partie obtenue à l'étape (b) à une opération de séparation en présence d'au moins un additif de façon à obtenir une portion concentrée en chlorhydrine et en esters de chlorhydrine et qui contient moins de 40 % en poids d'eau.
L'opération de séparation est plus particulièrement une décantation. Dans le procédé de fabrication d'un produit organique chloré selon l'invention, la séparation et le traitement des autres composés du milieu réactionnel peuvent être effectués selon des modes tels que décrits dans la demande intitulée « Procédé de fabrication d'une chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxylé » déposée au nom de SOLVAY SA le même jour que la présente demande. Un traitement préféré consiste à soumettre une fraction des sous-produits de la réaction à une oxydation à haute température.
Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine comprenant les étapes suivantes (a) on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, dont la teneur en métaux alcalins et/ou alcalino -terreux est inférieure ou égale à 5 g/kg, un agent oxydant et un acide organique de façon à obtenir un mélange contenant au moins de la chlorhydrine et des sous-produits, (b) on soumet au moins une partie du mélange obtenu à l'étape (a) à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a) et (c) au moins une des étapes ultérieures à l'étape (a) consiste en une oxydation à une température supérieure ou égale à 800 °C. Mention plus particulière est faite d'un procédé dans lequel dans l'étape ultérieure, on prélève une partie du mélange obtenu à l'étape (a) et on soumet cette partie à une oxydation à une température supérieure ou égale à 800 °C, pendant le prélèvement. Mention particulière est aussi faite d'un procédé dans lequel le traitement de l'étape (b) est une opération de séparation choisie parmi les opérations de décantation, de filtration, de centrifugation, d'extraction, de lavage, d'évaporation, de stripping, de distillation, d'adsorption ou les combinaisons d'au moins deux d'entre-elles.
Dans le procédé selon l'invention, lorsque la chlorhydrine est le chloropropanol, celui-ci est généralement mis en œuvre sous la forme d'un mélange de composés comprenant les isomères de 1 -chloropropane-2-ol et de 2-chloropropane-l-ol. Ce mélange contient généralement plus de 1 % en poids des deux isomères, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids des deux isomères, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du chloropropanol, tels que des réactifs résiduels, des sous-produits de réaction, des solvants et notamment de l'eau.
Le rapport massique entre les isomères l-chloropropane-2-ol et 2-chloropropane- 1 -ol est usuellement supérieur ou égal à 0,01 , de préférence supérieur ou égal 0,4. Ce rapport est usuellement inférieur ou égal à 99 et de préférence inférieur ou égal à 25.
Dans le procédé selon l'invention, lorsque la chlorhydrine est le chloroéthanol, celui-ci est généralement mis en œuvre sous la forme d'un mélange de composés comprenant l'isomère 2-chloroéthanol. Ce mélange contient généralement plus de 1 % en poids de l'isomère, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids de l'isomère, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du chloroéthanol, tels que des réactifs résiduels, des sous-produits de réaction, des solvants et notamment de l'eau.
Dans le procédé selon l'invention, lorsque la chlorhydrine est le chloropropanediol, celui-ci est généralement mis en œuvre sous la forme d'un mélange de composés comprenant les isomères de l-chloropropane-2,3-diol et de 2-chloropropane-l,3-diol. Ce mélange contient généralement plus de 1 % en poids des deux isomères, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids des deux isomères, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du chloropropanediol, tels que des réactifs résiduels, des sous-produits de réaction, des solvants et notamment de l'eau.
Le rapport massique entre les isomères l-chloropropane-2,3-diol et 2-chloropropane-l,3-diol est usuellement supérieur ou égal à 0,01, de préférence supérieur ou égal 0,4. Ce rapport est usuellement inférieur ou égal à 99 et de préférence inférieur ou égal à 25. Dans le procédé selon l'invention, lorsque la chlorhydrine est le dichloropropanol, celui-ci est généralement mis en œuvre sous la forme d'un mélange de composés comprenant les isomères de l,3-dichloropropane-2-ol et de 2,3-dichloropropane-l-ol. Ce mélange contient généralement plus de 1 % en poids des deux isomères, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids des deux isomères, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du dichloropropanol, tels que des réactifs résiduels, des sous-produits de réaction, des solvants et notamment de l'eau.
Le rapport massique entre les isomères l,3-dichloropropane-2-ol et 2,3-dichloropropane-l-ol est usuellement supérieur ou égal à 0,01, souvent, supérieur ou égal 0,4, fréquemment supérieur ou égal à 1,5, de préférence supérieur à ou égal à 3,0, de manière plus préférée supérieur ou égal à 7,0 et de manière tout particulièrement préférée supérieur ou égal à 20,0. Ce rapport est usuellement inférieur ou égal à 99 et de préférence inférieur ou égal à 25.
Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l 'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration peut se faire en présence d'un acide organique. L'acide organique peut être un produit provenant du procédé de fabrication de l 'hydrocarbure aliphatique poly hydroxylé ou un produit ne provenant pas de ce procédé. Dans ce dernier cas, il peut s'agir d'un acide organique utilisé pour catalyser la réaction entre l 'hydrocarbure aliphatique poly hydroxylé et l'agent de chloration. L'acide organique peut aussi être un mélange d'acide organique provenant du procédé de fabrication de l 'hydrocarbure aliphatique poly hydroxylé et d'un acide organique ne provenant pas du procédé de fabrication l 'hydrocarbure aliphatique poly hydroxylé. Dans le procédé selon l'invention, les esters de l 'hydrocarbure aliphatique polyhydroxylé peuvent provenir de la réaction entre l'hydrocarbure aliphatique polyhydroxylé et l'acide organique, avant, pendant ou dans les étapes qui suivent la réaction avec l'agent de chloration.
La chlorhydrine obtenue dans le procédé selon l'invention peut contenir une teneur élevée en cétones halogénées, en particulier en chloroacétone, comme décrit dans la demande de brevet FR 05.05120 du 20/05/2005 déposée au nom de la demanderesse, et dont le contenu est ici incorporé par référence. La teneur en cétone halogénée peut être réduite en soumettant la chlorhydrine obtenue dans le procédé selon l'invention à une distillation azéotropique en présence d'eau ou en soumettant la chlorhydrine à un traitement de déshydrochloration comme décrit dans cette demande, de la page 4, ligne 1, à la page 6, ligne 35.
Mention particulière est faite d'un procédé de fabrication d'un époxyde dans lequel des cétones halogénées sont formées comme sous-produits et qui comprend au moins un traitement d'élimination d'au moins au moins une partie des cétones halogénées formées. Mention est plus particulièrement faite d'un procédé de fabrication d'un époxyde par déshydrochloration d'une chlorhydrine dont au moins une fraction est fabriquée par chloration d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux, d'un traitement de déshydrochloration et d'un traitement par distillation azéotropique d'un mélange eau-cétone halogénée destinés à éliminer au moins une partie des cétones halogénées formées et d'un procédé de fabrication d'épichlorhydrine dans lequel la cétone halogénée formée est la chloroacétone.
La chlorhydrine obtenue dans le procédé selon l'invention peut être soumise à une réaction de déshydrochloration pour produire un époxyde comme décrit dans les demandes de brevet WO 2005/054167 et FR 05.05120 déposées au nom de SOLVAY SA.
La déshydrochloration de la chlorhydrine peut être effectuée comme décrit dans la demande intitulée « Procédé de fabrication d'un époxyde au départ d'un hydrocarbure aliphatique poly hydroxylé et d'un agent de chloration » déposée au nom de SOLVAY SA le même jour que la présente demande, et dont le contenu est ici incorporé par référence.
Mention particulière est faite d'un procédé de fabrication d'un époxyde dans lequel on soumet un milieu réactionnel résultant de la réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, et un agent de chloration, le milieu réactionnel contenant au moins 10 g de chlorhydrine par kg de milieu réactionnel, à une réaction chimique ultérieure sans traitement intermédiaire.
Mention est également faite de fabrication d'un époxyde comprenant les étapes suivantes : (a) on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, avec un agent de chloration et un acide organique de façon à former de la chlorhydrine et des esters de chlorhydrine dans un milieu réactionnel contenant de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, de l'eau, l'agent de chloration et l'acide organique, le milieu réactionnel contenant au moins 10 g de chlorhydrine par kg de milieu réactionnel, (b) on soumet au moins une fraction du milieu réactionnel obtenu à l'étape (a), fraction qui a la même composition que le milieu réactionnel obtenu à l'étape (a), à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a) et (c) on ajoute un composé basique à au moins une des étapes ultérieures à l'étape (a) pour qu'il réagisse au moins partiellement avec la chlorhydrine, les esters de chlorhydrine, l'agent de chloration et l'acide organique de façon à former de l'époxyde et des sels.
Dans le procédé de fabrication d'un produit organique chloré selon l'invention, le procédé de fabrication de la chlorhydrine peut être intégré dans un schéma global de fabrication d'un époxyde tel que décrit dans la demande intitulée « Procédé de fabrication d'un époxyde au départ d'une chlorhydrine » déposée au nom de SOLVAY SA le même jour que la présente demande, et dont le contenu est ici incorporé par référence.
Mention particulière est faite d'un procédé de fabrication d'un époxyde comprenant au moins une étape de purification de l'époxyde formé, l'époxyde étant au moins en partie fabriqué par un procédé de déshydrochloration d'une chlorhydrine, celle-ci étant au moins en partie fabriquée par un procédé de chloration d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux. Les différents procédés intervenant dans le procédé de fabrication d'une chlorhydrine selon l'invention peuvent ou non faire partie d'un procédé intégré de fabrication de produits organiques chlorés. Un procédé intégré est préféré. L'invention concerne également une installation pour la mise en œuvre d'un procédé intégré comprenant : (a) une unité de fabrication de chlorure d'allyle et/ou une unité de fabrication de chlorométhanes et/ou une unité de chlorinolyse et/ou une unité d'oxydation de composés chlorés dont sort un agent de chloration contenant du chlorure d'hydrogène,
(b) une unité de fabrication d'une chlorhydrine par chloration d'un hydrocarbure poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux, alimentée avec l'agent de chloration de l'unité (a) et dont sort de la chlorhydrine,
(c) une unité de fabrication d'un époxyde par déshydrochloration de la chlorhydrine alimentée en chlorhydrine de l'unité (b) et dont sort de l'époxyde. Cette installation peut comporter :
(d) une unité de fabrication de résines époxy alimentée avec de l'époxyde de l'unité (c).
Les différentes unités de fabrication sont de préférence réparties sur un même site industriel ou sur des sites proches, et de manière plus particulièrement préférée sur un même site. Le schéma industriel comprenant ces unités sur un même site ou sur des sites proches est particulièrement avantageux, comme par exemple, une unité selon le procédé de fabrication de chlorhydrine susmentionné à proximité d'unités de fabrication de chlorure d'allyle et d'époxydes auxquelles s'ajoutent éventuellement une unité de chlorinolyse et/ou une unité de fabrication de chlorométhane et/ou une unité d'oxydation à haute température de composés chlorés. Par sites proches, on entend désigner en particulier des sites industriels suffisamment proches pour que le transport des matières entre les installations puisse se faire économiquement par des collecteurs.
Dans le procédé et l'installation selon l'invention, l'hydrocarbure aliphatique polyhydroxylé est de préférence le glycérol, la chlorhydrine est de préférence le dichloropropanol et l'époxyde est de préférence l'épichlorhydrine.
Lorsque l'époxyde est l'épichlorhdyrine, celui-ci peut entrer dans la fabrication de résines époxy.
La Figure 1 montre un schéma particulier d'installation utilisable pour mettre en œuvre le procédé selon l'invention, dans le cas où l'hydrocarbure aliphatique poly hydroxylé est le glycérol, la chlorhydrine est le dichloropropanol et l'époxyde est l'épichlorhydrine.
Une unité de déshydrochloration de dichloropropanol (1) est alimentée en dichloropropanol via la ligne (2) et en agent de déshydrochloration via la ligne (3). On soutire de l'épichlorhydrine via la ligne (4) et des composés organiques autres que l'épichlorhydrine via la ligne (5). Au moins une fraction de ces composés peuvent alimenter une installation de chlorinolyse (21) via la ligne (33) et/ou une installation d'oxydation à haute température de composés chlorés (23) via la ligne (34). L'épichlorhydrine alimente une unité de fabrication de résines époxy (8) via la ligne (6) et/ou une unité de fabrication de polyglycérols (9) via la ligne (7). Le dichloropropanol provient d'une unité d'hypochloration de chlorure d'allyle (10) via la ligne (11) et/ou d'une unité de chloration de glycérol (12) via la ligne (13). L'unité de chloration de glycérol (12) est alimentée en glycérol brut et/ou épuré via la ligne (14). Le glycérol brut/et ou épuré provient d'une unité de fabrication de biodiesel (15) dont on soutire également du biodiesel via la ligne (37) et qui est alimentée en graisses et/ou huiles végétales et/ou animales via la ligne (16) et en alcool, de préférence du méthanol via la ligne (17). L'unité de chloration du glycérol (12) est alimentée en chlorure d'hydrogène et/ou en solution aqueuse de chlorure d'hydrogène via la ligne (18). Le chlorure d'hydrogène et/ou la solution aqueuse de chlorure d'hydrogène proviennent d'une unité de fabrication de chlorure d'allyle par chloration du propylène (19) via la ligne (20) et/ou d'une unité de fabrication de chlorométhanes (35) via la ligne (36) et/ou d'une unité de chlorinolyse (21) via la ligne (22) et/ou d'une unité d'oxydation à haute température (23) via la ligne (24). On soutire de l'unité (19) du chlorure d'allyle et on alimente au moins une fraction de ce chlorure d'allyle dans l'unité d'hypochloration (10) via la ligne (25). On soutire de l'unité de fabrication de chlorure d'allyle (19) des composés organiques autres que le chlorure d'allyle via la ligne (26) dont au moins une fraction sert à alimenter l'unité de chlorinolyse (21) via la ligne (27) et/ou l'unité d'oxydation à haute température de composés chlorés (23) via la ligne (28). On soutire de l'unité de chlorinolyse (21) du perchloroéthylène et du tétrachlorure de carbone via la ligne (29) et des composés organiques autres que le perchlororéthylène et le tétrachlorure de carbone via la ligne (30) et au moins une fraction de ces composés peuvent être recyclés dans l'unité de chlorinolyse via la ligne (31) et/ou alimenter l' unité d'oxydation à haute température de composés chlorés (23) via la ligne (32). Les unités de chlorinolyse et d'oxydation à haute température de composés chlorés peuvent être alimentées avec des produits organiques issus d'autres unité de fabrication que celles mentionnées. L'unité de fabrication de dichloropropanol peut être alimentée avec du chlorure d'hydrogène et/ou de l'acide chlorhydrique issus de procédés de fabrication autres que ceux mentionnés ci-dessus. Les avantages retirés de ce schéma sont entre autres les suivants :
(a) Une valorisation intéressante des acides et produits organiques co-produits dans les divers procédés de fabrication,
(b) Une limitation de transports de matières dangereuses avec suppression des coûts liés à ces transports,
(c) Un partage d'installations entre les deux procédés de synthèse de l'épichlorhydrine comme par exemple l'étape de déshydrochloration,
(d) Une réutilisation des eaux issues des procédés, souillées par des organiques ou des eaux de radiers de ces installations soit à l'unité d'hypochloration du chlorure d'allyle en dichloropropanol (19) ou à l'unité de déshydrochloration (1). Les eaux issues des procédés sont par exemple, les eaux issues des pompes ou des éjecteurs servant à maintenir le vide dans les installations. Il peut aussi s'agir des eaux obtenues après décantation des organiques.

Claims

R E V E N D I C A T I O N S
1. Procédé de iàbrication d'une chlorhydrine à partir d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux, et d'un agent de chloration, l'agent de chloration contenant au moins un des composés suivants : azote, oxygène, hydrogène, chlore, un composé organique hydrocarboné, un composé organique halogène, un composé organique oxygéné et un métal.
2. Procédé selon la revendication 1 dans lequel le composé organique hydrocarboné est choisi parmi les hydrocarbures hydrocarbures aromatiques, aliphatiques saturés ou insaturés, et leurs mélanges.
3. Procédé selon la revendication 2 dans lequel l'hydrocarbure aliphatique insaturé est choisi parmi l'acétylène, l'éthylène, le propylène, le butène, le propadiène et le méthylacétylène, l'hydrocarbure aliphatique saturé est choisi parmi le méthane, l'éthane, le propane et le butane et l'hydrocarbure aromatique est le benzène.
4. Procédé selon l'une quelconque des revendications 1 à 3 dans lequel le composé organique halogène est un composé organique chloré choisi parmi les chlorométhanes, les chloroéthanes, les chloropropanes, les chlorobutanes, le chlorure de vinyle, le chlorure de vinylidène, les monochloropropènes, le perchloroéthylène, le trichloréthylène, les chlorobutadiène, les chlorobenzènes et leurs mélanges.
5. Procédé selon l'une quelconque des revendications 1 à 4 dans lequel le composé organique halogène est un composé organique fluoré choisi parmi les fluorométhanes, les fluoroéthanes, le fluorure de vinyle, le fluorure de vinylidène, et leurs mélanges.
6. Procédé selon l'une quelconque des revendications 1 à 5 dans lequel le composé organique oxygéné est choisi parmi les alcools, les chloroalcools, les chloroéthers et leurs mélanges
7. Procédé selon l'une quelconque des revendications 1 à 6 dans lequel le métal est choisi parmi les métaux alcalins, les métaux alcalino-terreux, le fer, le nickel, le cuivre, le plomb, l'arsenic, le cobalt, le titane, le cadmium, l'antimoine, le mercure, le zinc, le sélénium, l'aluminium, le bismuth et leurs mélanges.
8. Procédé selon l'une quelconque des revendications 1 à 7 dans lequel l'agent de chloration est issu au moins partiellement d'un procédé de fabrication de chlorure d'allyle et/ou d'un procédé de fabrication de chlorométhanes et/ou d'un procédé de chlorinolyse et/ou d'un procédé d'oxydation de composés chlorés à une température supérieure ou égale à 800 °C.
9. Procédé selon l'une quelconque des revendications 1 à 8 dans lequel l'agent de chloration contient du chlorure d'hydrogène.
10. Procédé selon la revendication 9, dans lequel le chlorure d'hydrogène est une combinaison de chlorure d'hydrogène gazeux et d'une solution aqueuse de chlorure d'hydrogène, ou une solution aqueuse de chlorure d'hydrogène.
11. Procédé selon la revendication 9 ou 10 dans lequel le chlorure d'hydrogène est du chlorure d'hydrogène gazeux contenant au plus 15 % vol d'eau et au plus 5 % vol d'azote, et contient au moins une des substances suivantes en teneur dans l'agent de chloration, en ne tenant pas compte de l'eau et de l'azote dans l'agent de chloration :
(a) oxygène en une teneur inférieure ou égale à 5 % vol
(b) hydrogène en une teneur inférieure ou égale à 0,1 % vol
(c) chlore en une teneur inférieure ou égale à 2000 ppm vol
(d) méthane en une teneur et inférieure ou égale à 10 000 ppm vol
(e) monoxyde de carbone en une teneur inférieure ou égale à 10 000 ppm vol
(f) dioxyde de carbone en une teneur inférieure ou égale à 10 000 ppm vol
(g) produits organiques hydrocarbonés en une teneur inférieure ou égale à 50 000 ppm vol
(h) produits organiques chlorés en une teneur inférieure ou égale à 50 000 ppm vol (i) produits organiques fluorés en une teneur inférieure ou égale à 50 000 ppm vol
(j) produits organiques oxygénés en une teneur inférieure ou égale à 50 000 ppm vol
(k) propylène en une teneur inférieure ou égale à 10 000 ppm vol
(1) monochloropropènes en une teneur inférieure ou égale à 15 000 ppm vol
(m) chloropropane en une teneur inférieure ou égale à 10 000 ppm vol
(n) composés organiques oxygénés en une teneur inférieure ou égale à 5 000 ppm vol
12. Procédé selon la revendication 9 ou 10 dans lequel le chlorure d'hydrogène est une solution aqueuse de chlorure d'hydrogène et contient au moins une des substances suivantes en teneur dans l'agent de chloration en ne tenant pas compte de l'eau dans l'agent de chloration :
(a) oxygène en une teneur inférieure ou égale à 5 % vol
(b) hydrogène en une teneur inférieure ou égale à 0,1 % vol
(c) chlore en une teneur inférieure ou égale à 2000 ppm vol
(d) méthane en une teneur inférieure ou égale à 10 000 ppm vol
(e) monoxyde de carbone en une teneur inférieure ou égale à 10 000 ppm vol
(f) dioxyde de carbone en une teneur inférieure ou égale à 10 000 ppm vol
(g) produits organiques hydrocarbonés en une teneur inférieure ou égale à 50 000 ppm vol
(h) produits organiques chlorés en une teneur inférieure ou égale à 50 000 ppm vol
(i) produits organiques fluorés en une teneur inférieure ou égale à 50 000 ppm vol (j) eproduits organiques oxygénés en une teneur inférieure ou égale à 50 000 ppm vol
(k) propylène en une teneur t inférieure ou égale à 10 000 ppm vol
(1) monochloropropènes en une teneur inférieure ou égale à 15 000 ppm vol
(m) chloropropane en une teneur inférieure ou égale à 10 000 ppm vol
(n) composés organiques oxygénés en une teneur inférieure ou égale à 5 000 ppm vol
(o) métaux pris individuellement en une teneur inférieure ou égale à 5 ppm en poids.
13. Procédé selon l'une quelconque des revendications 1 à 12 suivi d'une fabrication d'un époxyde.
14. Procédé selon la revendication 13 suivi d'un procédé de fabrication de résines époxy.
15. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel l'hydrocarbure aliphatique polyhydroxylé est choisi parmi l'éthylène glycol, le propylène glycol, le chloropropanediol, le glycérol et les mélanges d'au moins deux d'entre-eux.
16. Procédé selon l'une quelconque des revendications 1 à 15, dans lequel la chlorhydrine est choisie parmi le chloroéthanol, le chloropropanol, le chloropropanediol, le dichloropropanol et les mélanges d'au moins deux d'entre- eux..
17. Procédé selon l'une quelconque des revendications 13 à 16, selon lequel l'époxyde est choisi parmi l'oxyde d'éthylène, l'oxyde de propylène, le glycidol, Fépichlorhydrine et les mélanges d'au moins deux d'entre-eux.
18. Procédé selon l'une quelconque des revendications 13 à 17 selon lequel l'hydrocarbure aliphatique polyhydroxylé est le glycérol, la chlorhydrine est le dichloropropanol et l'époxyde est Fépichlorhydrine.
19. Procédé selon la revendication 18 dans lequel l'épichlorhdyrine entre dans la fabrication de résines époxy.
20. Installation pour la mise en œuvre d'un procédé intégré comprenant :
(a) une unité de fabrication de chlorure d'allyle et/ou une unité de fabrication de chlorométhanes et/ou une unité de chlorinolyse et/ou une unité d'oxydation de composés chlorés dont sort un agent de chloration contenant du chlorure d'hydrogène
(b) une unité de fabrication d'une chlorhydrine par chloration d'un hydrocarbure poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux, alimentée avec l'agent de chloration de l'unité (a) et dont sort de la chlorhydrine
(c) une unité de fabrication d'un époxyde par déshydrochloration de la chlorhydrine alimentée en chlorhydrine de l'unité (b) et dont sort de l'époxyde.
21. Installation selon la revendication 20 comprenant :
(d) une unité de fabrication de résines époxy alimentée avec de l'époxyde de l'unité (c).
22. Installation selon la revendication 21 dans laquelle les unités de fabrication (a), (b), (c) et (d) sont situées sur un même site.
23. Installation selon la revendication 21 ou 22 dans laquelle l 'hydrocarbure aliphatique polyhydroxylé est le glycérol, la chlorhydrine est le dichloropropanol et l'époxyde est Fépichlorhydrine.
24. Procédé de fabrication de produits organiques chlorés comprenant au moins un procédé de fabrication de dichloropropanol à partir de glycérol et d'un agent de chloration choisi parmi l'acide chlorhydrique aqueux et le chlorure d'hydrogène de préférence anhydre, le procédé de fabrication de dichloropropanol étant alimenté au moins partiellement par de l'agent de chloration issu d'un procédé de fabrication de chlorure d'allyle et/ou de chlorinolyse et/ou d'oxydation de composés chlorés à une température supérieure ou égale à 1000 °C.
PCT/EP2006/062448 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration WO2006106153A2 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EA200702555A EA200702555A1 (ru) 2005-05-20 2006-05-19 Способ получения хлоргидрина реакцией между полигидроксилированным алифатическим углеводородом и агентом хлорирования
CA002608816A CA2608816A1 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration
CN2006800005352A CN1993307B (zh) 2005-05-20 2006-05-19 通过多羟基脂肪烃与氯化剂反应制备氯醇的方法
BRPI0610799-0A BRPI0610799A2 (pt) 2005-05-20 2006-05-19 processos de fabricação de uma cloridrina e de produtos orgánicos clorados e instalação para a execução de um processo integrado
EP06763189A EP1885677A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration
JP2008511721A JP2008545643A (ja) 2005-05-20 2006-05-19 ポリヒドロキシル化脂肪族炭化水素と塩素化剤との反応によるクロロヒドリンの調製方法
MX2007014516A MX2007014516A (es) 2005-05-20 2006-05-19 Proceso de elaboracion de una clorhidrina por reaccion entre un hidrocarburo alifatico polihidroxilado y un agente de cloracion.
US11/914,868 US8344185B2 (en) 2005-05-20 2006-05-19 Method for making a chlorhydrine by reaction between a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
EP05104321.4 2005-05-20
FR0505120A FR2885903B1 (fr) 2005-05-20 2005-05-20 Procede de fabrication d'epichlorhydrine
FR0505120 2005-05-20
EP05104321A EP1762556A1 (fr) 2005-05-20 2005-05-20 -Procédé de fabrication de dichloropropanol à partir de glycérol
US73463405P 2005-11-08 2005-11-08
US73463705P 2005-11-08 2005-11-08
US73462705P 2005-11-08 2005-11-08
US73463605P 2005-11-08 2005-11-08
US73465805P 2005-11-08 2005-11-08
US73465705P 2005-11-08 2005-11-08
US73463505P 2005-11-08 2005-11-08
US73465905P 2005-11-08 2005-11-08
US60/734,658 2005-11-08
US60/734,635 2005-11-08
US60/734,636 2005-11-08
US60/734,634 2005-11-08
US60/734,657 2005-11-08
US60/734,637 2005-11-08
US60/734,627 2005-11-08
US60/734,659 2005-11-08

Publications (2)

Publication Number Publication Date
WO2006106153A2 true WO2006106153A2 (fr) 2006-10-12
WO2006106153A3 WO2006106153A3 (fr) 2006-12-28

Family

ID=39543862

Family Applications (13)

Application Number Title Priority Date Filing Date
PCT/EP2006/062438 WO2006100312A2 (fr) 2005-05-20 2006-05-19 Procede pour la production d'un compose organique
PCT/EP2006/062466 WO2006106155A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'un epoxyde au depart d'une chlorhydrine
PCT/EP2006/062442 WO2006100314A1 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine au depart d'un hydrocarbure aliphatique poly hydroxyle
PCT/EP2006/062445 WO2006100316A1 (fr) 2005-05-20 2006-05-19 Fabrication de chlorhydrine en phase liquide en presence de composes lourds
PCT/EP2006/062461 WO2006100319A1 (fr) 2005-05-20 2006-05-19 Procede de preparation de chlorhydrine par conversion d'hydrocarbures aliphatiques poly hydroxyles
PCT/EP2006/062447 WO2006100317A1 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine dans des equipements resistant a la corrosion
PCT/EP2006/062439 WO2006100313A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine
PCT/EP2006/062462 WO2006100320A2 (fr) 2005-05-20 2006-05-19 Procede de conversion d'hydrocarbures aliphatiques poly hydroxyles en chlorhydrines
PCT/EP2006/062463 WO2006106154A1 (fr) 2005-05-20 2006-05-19 Procede continu de fabrication de chlorhydrines
PCT/EP2006/062448 WO2006106153A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration
PCT/EP2006/062444 WO2006100315A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxyle
PCT/EP2006/062437 WO2006100311A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'un epoxyde
PCT/EP2006/062459 WO2006100318A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'un epoxyde au depart d'un hydrocarbure aliphatique poly hydroxyle et d'un agent de chloration

Family Applications Before (9)

Application Number Title Priority Date Filing Date
PCT/EP2006/062438 WO2006100312A2 (fr) 2005-05-20 2006-05-19 Procede pour la production d'un compose organique
PCT/EP2006/062466 WO2006106155A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'un epoxyde au depart d'une chlorhydrine
PCT/EP2006/062442 WO2006100314A1 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine au depart d'un hydrocarbure aliphatique poly hydroxyle
PCT/EP2006/062445 WO2006100316A1 (fr) 2005-05-20 2006-05-19 Fabrication de chlorhydrine en phase liquide en presence de composes lourds
PCT/EP2006/062461 WO2006100319A1 (fr) 2005-05-20 2006-05-19 Procede de preparation de chlorhydrine par conversion d'hydrocarbures aliphatiques poly hydroxyles
PCT/EP2006/062447 WO2006100317A1 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine dans des equipements resistant a la corrosion
PCT/EP2006/062439 WO2006100313A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine
PCT/EP2006/062462 WO2006100320A2 (fr) 2005-05-20 2006-05-19 Procede de conversion d'hydrocarbures aliphatiques poly hydroxyles en chlorhydrines
PCT/EP2006/062463 WO2006106154A1 (fr) 2005-05-20 2006-05-19 Procede continu de fabrication de chlorhydrines

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/EP2006/062444 WO2006100315A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxyle
PCT/EP2006/062437 WO2006100311A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'un epoxyde
PCT/EP2006/062459 WO2006100318A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'un epoxyde au depart d'un hydrocarbure aliphatique poly hydroxyle et d'un agent de chloration

Country Status (12)

Country Link
US (12) US8106245B2 (fr)
EP (16) EP1885705B1 (fr)
JP (13) JP5280842B2 (fr)
KR (7) KR100982605B1 (fr)
CN (13) CN1993307B (fr)
BR (8) BRPI0610799A2 (fr)
CA (13) CA2608937A1 (fr)
EA (14) EA013681B1 (fr)
MX (7) MX2007014516A (fr)
MY (4) MY158842A (fr)
TW (16) TWI332940B (fr)
WO (13) WO2006100312A2 (fr)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935699A1 (fr) * 2008-09-10 2010-03-12 Solvay Procede de fabrication d'un produit chimique
JP2010523704A (ja) * 2007-04-12 2010-07-15 ダウ グローバル テクノロジーズ インコーポレイティド ポリヒドロキシ脂肪族炭化水素化合物の塩化水素処理中の蒸気相精製の方法および装置
US7930651B2 (en) 2007-01-18 2011-04-19 Research In Motion Limited Agenda display in an electronic device
US7939696B2 (en) 2005-11-08 2011-05-10 Solvay Societe Anonyme Process for the manufacture of dichloropropanol by chlorination of glycerol
WO2011054770A1 (fr) 2009-11-04 2011-05-12 Solvay Sa Procédé de fabrication d'une résine époxy
WO2011054769A2 (fr) 2009-11-04 2011-05-12 Solvay Sa Procédé de fabrication d'un produit dérivé de l'épichlorohydrine
WO2012016872A1 (fr) 2010-08-02 2012-02-09 Solvay Sa Procédé d'électrolyse
US8124814B2 (en) 2006-06-14 2012-02-28 Solvay (Societe Anonyme) Crude glycerol-based product, process for its purification and its use in the manufacture of dichloropropanol
WO2012025468A1 (fr) 2010-08-27 2012-03-01 Solvay Sa Procédé de purification de saumure
WO2012041816A1 (fr) 2010-09-30 2012-04-05 Solvay Sa Dérivé d'épichlorhydrine d'origine naturelle
WO2012056005A1 (fr) 2010-10-29 2012-05-03 Solvay Sa Procédé de fabrication d'épichlorhydrine
US8197665B2 (en) 2007-06-12 2012-06-12 Solvay (Societe Anonyme) Aqueous composition containing a salt, manufacturing process and use
US8258350B2 (en) 2007-03-07 2012-09-04 Solvay (Societe Anonyme) Process for the manufacture of dichloropropanol
US8273923B2 (en) 2007-06-01 2012-09-25 Solvay (Societe Anonyme) Process for manufacturing a chlorohydrin
US8314205B2 (en) 2007-12-17 2012-11-20 Solvay (Societe Anonyme) Glycerol-based product, process for obtaining same and use thereof in the manufacturing of dichloropropanol
US8378130B2 (en) 2007-06-12 2013-02-19 Solvay (Societe Anonyme) Product containing epichlorohydrin, its preparation and its use in various applications
US8415509B2 (en) 2003-11-20 2013-04-09 Solvay (Societe Anonyme) Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel
US8471074B2 (en) 2007-03-14 2013-06-25 Solvay (Societe Anonyme) Process for the manufacture of dichloropropanol
WO2013092338A1 (fr) 2011-12-19 2013-06-27 Solvay Sa Procédé pour la réduction du carbone organique total de compositions aqueuses
US8507643B2 (en) 2008-04-03 2013-08-13 Solvay S.A. Composition comprising glycerol, process for obtaining same and use thereof in the manufacture of dichloropropanol
US8536381B2 (en) 2008-09-12 2013-09-17 Solvay Sa Process for purifying hydrogen chloride
EP2669247A1 (fr) 2012-06-01 2013-12-04 Solvay Sa Procédé de fabrication de dichloropropanol
EP2669306A1 (fr) 2012-06-01 2013-12-04 Solvay Sa Procédé de fabrication d'une résine époxy
EP2669308A1 (fr) 2012-06-01 2013-12-04 Solvay Sa Procédé de fabrication d'une résine époxy
EP2669305A1 (fr) 2012-06-01 2013-12-04 Solvay Sa Procédé de fabrication d'une résine époxy
EP2669307A1 (fr) 2012-06-01 2013-12-04 Solvay Sa Processus de fabrication dýune époxyde
US8715568B2 (en) 2007-10-02 2014-05-06 Solvay Sa Use of compositions containing silicon for improving the corrosion resistance of vessels
US8795536B2 (en) 2008-01-31 2014-08-05 Solvay (Societe Anonyme) Process for degrading organic substances in an aqueous composition
TWI461390B (zh) * 2007-06-28 2014-11-21 Solvay 二氯丙醇之製備
WO2015074684A1 (fr) 2013-11-20 2015-05-28 Solvay Sa Procédé de fabrication d'une résine époxyde
US9850190B2 (en) 2015-12-18 2017-12-26 Chang Chun Plastics Co., Ltd. Process for preparing dichloropropanol

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838708B2 (en) 2001-06-20 2010-11-23 Grt, Inc. Hydrocarbon conversion process improvements
US20050171393A1 (en) 2003-07-15 2005-08-04 Lorkovic Ivan M. Hydrocarbon synthesis
CA2532367C (fr) 2003-07-15 2013-04-23 Grt, Inc. Synthese d'hydrocarbures
US7244867B2 (en) 2004-04-16 2007-07-17 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US7674941B2 (en) 2004-04-16 2010-03-09 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US20060100469A1 (en) 2004-04-16 2006-05-11 Waycuilis John J Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US20080275284A1 (en) 2004-04-16 2008-11-06 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US8642822B2 (en) 2004-04-16 2014-02-04 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US20080005956A1 (en) * 2004-05-14 2008-01-10 Tran Bo L Methods and compositions for controlling bulk density of coking coal
US7910781B2 (en) * 2004-07-21 2011-03-22 Dow Global Technologies Llc Process for the conversion of a crude glycerol, crude mixtures of naturally derived multihydroxylated aliphatic hydrocarbons or esters thereof to a chlorohydrin
US7906690B2 (en) * 2004-07-21 2011-03-15 Dow Global Technologies Inc. Batch, semi-continuous or continuous hydrochlorination of glycerin with reduced volatile chlorinated hydrocarbon by-products and chloracetone levels
MX2007014516A (es) * 2005-05-20 2008-02-05 Solvay Proceso de elaboracion de una clorhidrina por reaccion entre un hidrocarburo alifatico polihidroxilado y un agente de cloracion.
KR20080037618A (ko) * 2005-05-20 2008-04-30 솔베이(소시에떼아노님) 폴리히드록실화 지방족 탄화수소 및 염소화제 간의 반응에의한 클로로히드린 제조 방법
NZ588129A (en) 2006-02-03 2012-06-29 Grt Inc Continuous process for converting natural gas to liquid hydrocarbons
EP1993951B1 (fr) 2006-02-03 2014-07-30 GRT, Inc. Séparation de gaz légers à partir de brome
US20100032617A1 (en) * 2007-02-20 2010-02-11 Solvay (Societe Anonyme) Process for manufacturing epichlorohydrin
WO2008121158A1 (fr) * 2007-04-02 2008-10-09 Inphase Technologies, Inc. Filtre angulaire plan sans transformée de fourier
TWI426066B (zh) * 2007-04-12 2014-02-11 Dow Global Technologies Llc 經共蒸餾用於二氯丙醇回收之方法與裝置
TW200906776A (en) * 2007-04-12 2009-02-16 Dow Global Technologies Inc Conversion of a multihydroxylated-aliphatic hydrocarbon or ester thereof to a chlorohydrin
CN101657405A (zh) * 2007-04-12 2010-02-24 陶氏环球技术公司 用于二氯代醇的共沸回收的方法和设备
JP2010523698A (ja) * 2007-04-12 2010-07-15 ダウ グローバル テクノロジーズ インコーポレイティド ジクロロヒドリンを回収するための多段方法及び装置
JP2010528054A (ja) 2007-05-24 2010-08-19 ジーアールティー インコーポレイテッド 可逆的なハロゲン化水素の捕捉及び放出を組み込んだ領域反応器
FR2919609A1 (fr) * 2007-07-30 2009-02-06 Solvay Procede de fabrication de glycidol
EP2183189A2 (fr) 2007-08-23 2010-05-12 Dow Global Technologies Inc. Procédés, microbes adaptés, composition et appareil pour la purification de saumure industrielle
PL2183188T3 (pl) 2007-08-23 2014-03-31 Dow Global Technologies Llc Sposób i aparatura do oczyszczania solanki przemysłowej
US8343328B2 (en) 2007-08-23 2013-01-01 Dow Global Technologies Llc Brine purification
KR101410019B1 (ko) 2007-09-28 2014-06-26 한화케미칼 주식회사 다가알코올과 염화수소의 반응에 의한 클로로히드린화합물의 제조방법
JP2011516552A (ja) * 2008-04-09 2011-05-26 ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー ジクロロヒドリン類の効率的回収のための方法及び装置
KR20100135290A (ko) * 2008-04-16 2010-12-24 다우 글로벌 테크놀로지스 인크. 다중하이드록실화된 지방족 탄화수소 또는 이의 에스테르의 클로로하이드린으로의 전환
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
US8415517B2 (en) 2008-07-18 2013-04-09 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
AT507260B1 (de) 2008-08-25 2010-10-15 Kanzler Walter Verfahren zur herstellung von epichlorhydrin aus glyzerin
ITMI20081535A1 (it) * 2008-08-26 2010-02-26 Biocompany Srl Processo per la preparazione di 1,3-dicloro-2-propanolo
FR2939434B1 (fr) * 2008-12-08 2012-05-18 Solvay Procede de traitement de glycerol.
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
CN103025719B (zh) * 2010-03-10 2016-01-20 陶氏环球技术有限责任公司 制备二乙烯基芳烃二氧化物的方法
KR101705208B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705205B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
KR101705210B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705209B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705207B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
KR101705206B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
WO2012015553A1 (fr) 2010-07-28 2012-02-02 Dow Global Technologies, Llc Équipement de traitement de chlorohydrine comprenant de l'acier inoxydable
JP2012116920A (ja) * 2010-11-30 2012-06-21 Polyplastics Co ポリオキシメチレン樹脂の製造方法
PL215730B1 (pl) 2011-01-10 2014-01-31 Inst Ciezkiej Syntezy Orga Sposób wytwarzania dichloropropanoli z gliceryny
US8815050B2 (en) 2011-03-22 2014-08-26 Marathon Gtf Technology, Ltd. Processes and systems for drying liquid bromine
PL218074B1 (pl) 2011-04-11 2014-10-31 Inst Ciężkiej Syntezy Organicznej Blachownia Sposób suchego chlorowodorowania masy z chlorowodorowania gliceryny kwasem solnym i urządzenie do suchego chlorowodorowania masy z chlorowodorowania gliceryny kwasem solnym
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8829256B2 (en) 2011-06-30 2014-09-09 Gtc Technology Us, Llc Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems
CN104341271B (zh) * 2013-08-02 2016-05-18 中国石油化工股份有限公司 一种盐酸和甘油连续制备二氯丙醇的方法
CN106630083B (zh) * 2015-10-29 2021-05-14 中国石油化工股份有限公司 一种环氧化废水的无害化处理方法
TWI592392B (zh) * 2016-05-31 2017-07-21 國立清華大學 改善二氯丙醇的產率的製造裝置及其製造方法
TWI585072B (zh) * 2016-05-31 2017-06-01 國立清華大學 二氯丙醇的製造裝置及其製造方法
KR102058483B1 (ko) 2017-02-27 2019-12-23 중앙대학교 산학협력단 높은 단맛을 가지는 신규한 브라제인 다중 변이체 및 이의 제조방법
CN112368289B (zh) 2018-05-01 2024-02-20 锐新医药公司 作为mtor抑制剂的c26-连接的雷帕霉素类似物
CN111875477A (zh) * 2020-08-03 2020-11-03 岳阳隆兴实业公司 一种邻氯醇共沸提纯方法
CN115583869B (zh) * 2022-09-13 2024-04-23 安徽海华科技集团有限公司 一种酚类化合物选择性氧化氯化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191314767A (en) * 1913-06-26 1914-01-08 Henry Fairbrother Process for Directly Producing Glycerol-halogen-hydrins and Poly-oxy Fatty Acid Esters.
GB404938A (en) * 1932-07-15 1934-01-15 Henry Dreyfus Manufacture of chlorhydrins and ethers thereof
US2144612A (en) * 1936-09-10 1939-01-24 Dow Chemical Co Preparation of glycerol dichlorohydrin
GB984633A (en) * 1960-11-07 1965-03-03 Electro Chimie Metal Manufacture of epoxy resins
US3865886A (en) * 1973-06-20 1975-02-11 Lummus Co Production of allyl chloride

Family Cites Families (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1075103B (de) 1960-02-11 VEB Leuna-Werke "Walter Ulbricht", Leuna (Kr. Merseburg) Verfahren zur kontinuierlichen Herstellung von Epichlorhydrin aus Glyzerin
US449255A (en) * 1891-03-31 Watch-bow fastener
DE58396C (de) Dr. P. FRITSCH in Rostock i. M., Augustenstr. 40 Verfahren zur Darstellung von Glyceriden aromatischer Säuren
US3061615A (en) 1962-10-30 Process for the production of alpha-epichlorhydrin
DE238341C (fr)
DE197308C (fr)
US280893A (en) 1883-07-10 Treating waters containing glycerine obtained by the decomposition of fatty matters
DE216471C (fr)
DE180668C (fr)
DE197309C (fr)
US865727A (en) * 1907-08-09 1907-09-10 Augustin L J Queneau Method of making and utilizing gas.
GB405345A (en) 1931-05-08 1934-01-29 Boston Blacking Company Ltd Improvements in or relating to the compounding of latex and to compounded latex
GB406345A (en) 1931-08-24 1934-02-26 Du Pont Improvements in or relating to the production of formic acid
US2063891A (en) 1932-07-15 1936-12-15 Dreyfus Henry Manufacture of chlorhydrins and their ethers
US2060715A (en) 1933-01-13 1936-11-10 Du Pont Synthetic resins
GB467481A (en) 1935-09-12 1937-06-14 Eastman Kodak Co Processes of removing water from aqueous aliphatic acids
US2198600A (en) * 1936-09-10 1940-04-30 Dow Chemical Co Glycerol dichlorohydrin
BE422877A (fr) 1937-07-28 1937-08-31
US2319876A (en) 1937-12-04 1943-05-25 Celanese Corp Preparation of aromatic sulphonamide-phenol-dihalide reaction products
GB541357A (en) 1939-02-24 1941-11-24 Du Pont Improvements in or relating to the production of glycerol
US2248635A (en) * 1939-06-20 1941-07-08 Shell Dev Treatment of halogenated polyhydric alcohols
BE456650A (fr) * 1943-06-16
DE869193C (de) 1944-08-22 1953-03-05 Chloberag Chlor Betr Rheinfeld Verfahren zum Reinigen von Chlorwasserstoff
GB679536A (en) 1947-06-11 1952-09-17 Devoe & Raynolds Co Improvements in epoxide preparation
US2505735A (en) * 1948-05-22 1950-04-25 Harshaw Chem Corp Purufication of crude glycerine
DE848799C (de) 1948-12-23 1956-08-02 Elektrochemische Werke Rheinfe Vorrichtung zur Absorption von Gasen durch Fluessigkeiten, insbesondere zur Erzeugung von Salzsaeure
GB702143A (en) 1949-10-25 1954-01-13 Hoechst Ag Cold-hardening compositions containing phenol-formaldehyde condensation products, and a process for making such compositions
NL98389C (fr) 1952-07-05 1900-01-01
DE1041488B (de) 1954-03-19 1958-10-23 Huels Chemische Werke Ag Verfahren zur Herstellung von Oxidoalkoholen
US2875217A (en) 1954-07-14 1959-02-24 Upjohn Co Producing 17-hydroxy 20-keto steroids by the use of osmium tetroxide and an organicpolyvalent iodo oxide
US2811227A (en) 1955-01-20 1957-10-29 Houdaille Industries Inc Flutter damper
US2860146A (en) * 1955-04-14 1958-11-11 Shell Dev Manufacture of epihalohydrins
US2829124A (en) 1955-12-23 1958-04-01 Borden Co Epoxide resin
GB799567A (en) * 1956-04-30 1958-08-13 Solvay Process for the production of alpha-epichlorhydrin
US2945004A (en) 1956-05-29 1960-07-12 Devoe & Raynolds Co Epoxide resins reacted with polyhydric phenols
US2876217A (en) * 1956-12-31 1959-03-03 Corn Products Co Starch ethers containing nitrogen and process for making the same
US2960447A (en) 1957-07-15 1960-11-15 Shell Oil Co Purification of synthetic glycerol
US3135705A (en) * 1959-05-11 1964-06-02 Hercules Powder Co Ltd Polymeric epoxides
US3026270A (en) * 1958-05-29 1962-03-20 Hercules Powder Co Ltd Cross-linking of polymeric epoxides
SU123153A3 (ru) 1958-11-18 1958-11-30 Словак Гельмут Способ непрерывного получени эпихлоргидрина
US3052612A (en) 1959-02-16 1962-09-04 Olin Mathieson Recovery of chlorine from electrol ysis of brine
US3158580A (en) 1960-03-11 1964-11-24 Hercules Powder Co Ltd Poly (epihalohydrin) s
GB984446A (en) 1960-07-05 1965-02-24 Pfaudler Permutit Inc Improvements relating to semicrystalline glass and to the coating of metal therewith
US3158581A (en) * 1960-07-27 1964-11-24 Hercules Powder Co Ltd Polymeric epoxides
FR1306231A (fr) 1960-10-17 1962-10-13 Shell Int Research Procédé de préparation de polyéthers glycidiques
BE609222A (fr) * 1960-10-17
US3247227A (en) 1962-04-24 1966-04-19 Ott Chemical Company Epoxidation of organic halohydrins
US3260259A (en) 1962-10-08 1966-07-12 S H Camp & Company Abduction splint
US3328331A (en) 1963-01-22 1967-06-27 Hoechst Ag Epoxy resin masses and process for preparing them
US3341491A (en) 1963-09-10 1967-09-12 Hercules Inc Vulcanized epihalohydrin polymers
FR1417388A (fr) 1963-10-21 1965-11-12 Hooker Chemical Corp Purification de l'acide chlorhydrique
NL129282C (fr) * 1963-10-21
CH460734A (de) 1963-11-19 1968-08-15 Shell Int Research Herstellung von neuen Epoxyäthern
JPS3927230Y1 (fr) 1963-12-30 1964-09-15
DE1226554B (de) 1964-06-06 1966-10-13 Henkel & Cie Gmbh Verfahren zur Herstellung von Glycid aus Glycerinmonochlorhydrin
FR1417386A (fr) 1964-10-21 1965-11-12 Radyne Ltd Perfectionnement à la spectrométrie
FR1476073A (fr) 1965-04-09 1967-04-07 Shell Int Research Résine époxyde retardant la propagation des flammes
US3355511A (en) 1965-04-09 1967-11-28 Shell Oil Co Flame retardant epoxy compositions containing polyglycidyl ethers of hexahalo bicycloheptadiene bisphenols
US3445197A (en) * 1966-05-27 1969-05-20 Continental Oil Co Removing benzene from aqueous muriatic acid using a liquid paraffin
US3457282A (en) 1966-06-01 1969-07-22 Olin Mathieson Glycidol recovery process
US3455197A (en) * 1966-11-21 1969-07-15 Ppg Industries Inc Adjustable guillotine and table for severing sheet plastic
DE1643497C3 (de) 1967-09-02 1979-06-21 Hoechst Ag, 6000 Frankfurt Verfahren zur Herstellung von Glycidyläthern ein- und mehrwertiger Phenole
US3968178A (en) * 1967-11-08 1976-07-06 Stauffer Chemical Company Chlorination of hydrocarbons
DE2007867B2 (de) * 1970-02-20 1978-11-02 Hoechst Ag, 6000 Frankfurt Verfahren zur kontinuierlichen Herstellung von Dichlorpropanolen
DE1809607C3 (de) * 1968-11-19 1974-01-10 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Verfahren zur absorptiven Trennung von bei der Gasphasenreaktion von Chlor und Cyanwasserstoff anfallenden Gemischen aus Chlorcyan und Chlorwasserstoff
BE744659A (fr) 1969-01-27 1970-07-01 Haveg Industries Inc Article metallique revetu et procede pour le fabriquer
US3867166A (en) * 1969-01-27 1975-02-18 Tycon Spa Coated metal article and method of making the same
CH544801A (de) * 1970-03-16 1973-11-30 Reichhold Albert Chemie Ag Verfahren zum Herstellen von Glycidyläthern
US3711388A (en) 1970-12-11 1973-01-16 Dow Chemical Co Oxidation step in electrolysis of aqueous hci
CH545778A (fr) 1971-03-26 1974-02-15
US3839169A (en) 1971-08-11 1974-10-01 Dow Chemical Co Photooxidizing organic contaminants in aqueous brine solutions
BE792326A (fr) 1971-12-07 1973-03-30 Degussa Procede pour la preparation d'halogenohydrines
DE2163096B2 (de) * 1971-12-18 1974-02-14 Gutehoffnungshuette Sterkrade Ag, 4200 Oberhausen Verfahren zur Wiederaufwärmung eines verdichteten Gasstromes über dem Taupunkt
US4173710A (en) * 1972-05-15 1979-11-06 Solvay & Cie Halogenated polyether polyols and polyurethane foams produced therefrom
LU67005A1 (fr) 1973-02-12 1974-10-01
DE2241393A1 (de) 1972-08-23 1974-02-28 Bayer Ag Glycidylaether mehrwertiger phenole
CH575405A5 (fr) 1973-02-15 1976-05-14 Inventa Ag
JPS5037714A (fr) * 1973-08-15 1975-04-08
CH593272A5 (fr) 1974-05-24 1977-11-30 Inventa Ag
LU70739A1 (fr) * 1974-08-14 1976-08-19
US4011251A (en) * 1975-03-13 1977-03-08 Boris Konstantinovich Tjurin Method of preparing esters of glycerol and polyglycerols and C5-C9 monocarboxylic fatty acids
US4024301A (en) * 1975-05-02 1977-05-17 The B. F. Goodrich Company Internally coated reaction vessel for use in olefinic polymerization
DE2522286C3 (de) * 1975-05-20 1978-05-18 Hoechst Ag, 6000 Frankfurt Verfahren zur Reinigung von Rohchlorwasserstoff
US3954581A (en) 1975-07-22 1976-05-04 Ppg Industries, Inc. Method of electrolysis of brine
FR2321455A1 (fr) 1975-08-22 1977-03-18 Ugine Kuhlmann Nouveau procede d'epuration oxydante des eaux
US4255470A (en) * 1977-07-15 1981-03-10 The B. F. Goodrich Company Process for preventing polymer buildup in a polymerization reactor
US4127594A (en) * 1978-02-21 1978-11-28 Shell Oil Company Selective hydrogenation of olefinic impurities in epichlorohydrin
FR2455580A1 (fr) 1979-05-04 1980-11-28 Propylox Sa Procede pour l'epuration de solutions organiques de peracides carboxyliques
JPS55157607A (en) * 1979-05-25 1980-12-08 Ryonichi Kk Suspension polymerization of vinyl chloride
US4240885A (en) 1979-07-30 1980-12-23 The Lummus Company Oxidation of organics in aqueous salt solutions
US4415460A (en) * 1979-07-30 1983-11-15 The Lummus Company Oxidation of organics in aqueous salt solutions
JPS5699432A (fr) 1979-12-28 1981-08-10 Sorutan Ogurii Shiyarif Gabiru
CA1119320A (fr) 1980-01-15 1982-03-02 James P. Mcmullan Lit a matelas d'eau
DE3003819A1 (de) 1980-02-02 1981-08-13 Basf Ag, 6700 Ludwigshafen Elektroden
US4309394A (en) * 1980-04-09 1982-01-05 Monsanto Company Method of preparing ultraphosphoric acid
US4609751A (en) * 1981-12-14 1986-09-02 General Electric Company Method of hydrolyzing chlorosilanes
US4390680A (en) 1982-03-29 1983-06-28 The Dow Chemical Company Phenolic hydroxyl-containing compositions and epoxy resins prepared therefrom
US4405465A (en) * 1982-06-30 1983-09-20 Olin Corporation Process for the removal of chlorate and hypochlorite from spent alkali metal chloride brines
US4499255B1 (en) * 1982-09-13 2000-01-11 Dow Chemical Co Preparation of epoxy resins
SU1125226A1 (ru) 1982-10-15 1984-11-23 Башкирский государственный научно-исследовательский и проектный институт нефтяной промышленности Способ обработки глинистых буровых и цементных растворов
DE3243617A1 (de) 1982-11-25 1984-05-30 Hermetic-Pumpen Gmbh, 7803 Gundelfingen Pumpe zum foerdern hochkorrosiver medien
US4595469A (en) 1983-05-31 1986-06-17 Chevron Research Company Electrolytic process for production of gaseous hydrogen chloride and aqueous alkali metal hydroxide
DD216471A1 (de) 1983-06-30 1984-12-12 Leuna Werke Veb Verfahren zur aufarbeitung von epoxidharzhaltigen reaktionsgemischen
SU1159716A1 (ru) 1983-07-13 1985-06-07 Чувашский государственный университет им.И.Н.Ульянова Св зующее дл изготовлени литейных форм и стержней теплового отверждени
DE3339051A1 (de) 1983-10-28 1985-05-09 Henkel KGaA, 4000 Düsseldorf Verfahren zur verbesserten destillativen aufarbeitung von glycerin
JPS60258171A (ja) * 1984-06-04 1985-12-20 Showa Denko Kk エピクロルヒドリンの製造方法
US4599178A (en) * 1984-07-16 1986-07-08 Shell Oil Company Recovery of glycerine from saline waters
EP0180668B1 (fr) 1984-11-09 1988-06-01 Agfa-Gevaert N.V. Eléments photographiques comprenant des couches protectrices contenant des agents antistatiques
US4560812A (en) * 1984-12-10 1985-12-24 Shell Oil Company Recovery of glycerine from saline waters
GB2173496B (en) 1985-04-04 1989-01-05 Inst Ciezkiej Syntezy Orga Method for producing epichlorohydrin
DD238341B1 (de) 1985-06-20 1988-06-22 Thaelmann Schwermaschbau Veb Verfahren zur regenerierung von altsanden
JPS62242638A (ja) * 1986-04-14 1987-10-23 Nisso Yuka Kogyo Kk 塩素化エ−テル化合物の製造方法
CN1025432C (zh) * 1987-05-29 1994-07-13 三井石油化学工业株式会社 一种制备环氧化合物的方法
DE3811826A1 (de) 1987-06-25 1989-10-19 Solvay Werke Gmbh Verfahren zur herstellung von polyglycerinen
DE3721003C1 (en) 1987-06-25 1988-12-01 Solvay Werke Gmbh Process for the preparation of polyglycerols
DE3809882A1 (de) * 1988-03-24 1989-10-05 Solvay Werke Gmbh Verfahren zur herstellung von polyglycerinen
DE3811524A1 (de) * 1988-04-06 1989-10-19 Solvay Werke Gmbh Verfahren und vorrichtung zur herstellung von reinst-epichlorhydrin
DE3816783A1 (de) * 1988-05-17 1989-11-30 Wacker Chemie Gmbh Verfahren zur reinigung von rohem, gasfoermigem chlorwasserstoff
US4882098A (en) 1988-06-20 1989-11-21 General Signal Corporation Mass transfer mixing system especially for gas dispersion in liquids or liquid suspensions
KR900006513Y1 (ko) 1988-07-06 1990-07-26 주식회사 불티나종합상사 라이터의 잠금장치
CA1329782C (fr) 1988-08-09 1994-05-24 Thomas Buenemann Procede pour purifier du glycerol brut
DE3842692A1 (de) * 1988-12-19 1990-06-21 Solvay Werke Gmbh Verfahren zur herstellung von polyglycerinen
JPH0798763B2 (ja) 1989-06-09 1995-10-25 鐘淵化学工業株式会社 1,2―ジクロルエタンの熱分解方法
SU1685969A1 (ru) 1989-07-26 1991-10-23 Всесоюзный научно-исследовательский и проектный институт галургии Способ пылеподавлени водорастворимых солей
KR910007854A (ko) 1989-10-04 1991-05-30 리챠드 지. 워터만 모노에폭사이드의 제조방법
WO1991009924A1 (fr) * 1989-12-29 1991-07-11 The Procter & Gamble Company Agent tensio-actif tres doux pour savon a fort pouvoir moussant
DE4000104A1 (de) 1990-01-04 1991-07-11 Dallmer Gmbh & Co Ablaufarmatur fuer eine brausewanne
JPH0625196B2 (ja) * 1990-01-29 1994-04-06 ダイソー株式会社 エピクロルヒドリンの製造方法
US5146011A (en) * 1990-03-05 1992-09-08 Olin Corporation Preparation of chlorohydrins
US5278260A (en) 1990-04-12 1994-01-11 Ciba-Geigy Corporation Process for the preparation of epoxy resins with concurrent addition of glycidol and epihalohydrin
KR0168057B1 (ko) 1990-04-12 1999-03-20 베르너 발데크 에폭시 수지의 제조방법
JPH085821B2 (ja) * 1990-08-01 1996-01-24 昭和電工株式会社 塩素化反応器
DE4039750A1 (de) * 1990-12-13 1992-06-17 Basf Ag Verfahren zur entfernung von phosgen aus abgasen
FR2677643B1 (fr) 1991-06-12 1993-10-15 Onidol Procede pour l'obtention de polyglycerols et d'esters de polyglycerols.
IT1248564B (it) 1991-06-27 1995-01-19 Permelec Spa Nora Processo di decomposizione elettrochimica di sali neutri senza co-produzione di alogeni o di acido e cella di elettrolisi adatta per la sua realizzazione.
DE4131938A1 (de) * 1991-09-25 1993-04-01 Krupp Koppers Gmbh Verfahren zur aufarbeitung des sumpfproduktes einer extraktivdestillation zur gewinnung reiner kohlenwasserstoffe
US5139622A (en) 1991-10-03 1992-08-18 Texaco Chemical Company Purification of propylene oxide by extractive distillation
BE1005719A3 (fr) 1992-03-17 1993-12-28 Solvay Procede de production d'epichlorhydrine.
DE4210997C1 (fr) 1992-04-02 1993-01-14 Krupp Vdm Gmbh, 5980 Werdohl, De
US5393724A (en) 1992-04-30 1995-02-28 Tosoh Corporation Process for removing oxidizable substance or reducible substance, composite containing metal oxide or hydroxide, and process for production thereof
DE4225870A1 (de) 1992-08-05 1994-02-10 Basf Ag Verfahren zur Herstellung von Glycerincarbonat
EP0586998B1 (fr) 1992-09-06 1998-01-07 Solvay Deutschland GmbH Procédé pour le traitement des eaux usées contenant des composés organiques, en particulier des composés chloroorganiques lors de la fabrication de l'épichlorhydrine
US5286354A (en) * 1992-11-30 1994-02-15 Sachem, Inc. Method for preparing organic and inorganic hydroxides and alkoxides by electrolysis
DE4244482A1 (de) * 1992-12-30 1994-07-07 Solvay Deutschland Verfahren zur Abwasserbehandlung
DE4302306A1 (de) 1993-01-28 1994-08-04 Erdoelchemie Gmbh Verfahren zur Verminderung des AOX-Gehaltes von AOX-haltigen Abwässern
DE4309741A1 (de) 1993-03-25 1994-09-29 Henkel Kgaa Verfahren zum Herstellen von Diglycerin
EP0618170B1 (fr) 1993-03-31 1996-09-04 Basf Corporation Procédé de préparation d'acide chlorhydrique appropriée comme réactif à partir de la fabrication d'isocyanates organiques
DE4314108A1 (de) 1993-04-29 1994-11-03 Solvay Deutschland Verfahren zur Behandlung von organische und anorganische Verbindungen enthaltenden Abwässern, vorzugsweise aus der Epichlorhydrin-Herstellung
DE4335311A1 (de) 1993-10-16 1995-04-20 Chema Balcke Duerr Verfahrenst Begasungsrührsystem
US5532389A (en) * 1993-11-23 1996-07-02 The Dow Chemical Company Process for preparing alkylene oxides
DE4401635A1 (de) 1994-01-21 1995-07-27 Bayer Ag Substituierte 1,2,3,4-Tetrahydro-5-nitro-pyrimidine
JPH083087A (ja) * 1994-06-22 1996-01-09 Mitsubishi Chem Corp α−位にトリフルオロメチル基を有するアルコールの製造方法
US5779915A (en) 1994-09-08 1998-07-14 Solvay Umweltchemie Gmbh Method of removing chlorine and halogen-oxygen compounds from water by catalytic reduction
US5486627A (en) * 1994-12-02 1996-01-23 The Dow Chemical Company Method for producing epoxides
US5578740A (en) 1994-12-23 1996-11-26 The Dow Chemical Company Process for preparation of epoxy compounds essentially free of organic halides
US5731476A (en) * 1995-01-13 1998-03-24 Arco Chemical Technology, L.P. Poly ether preparation
US6177599B1 (en) * 1995-11-17 2001-01-23 Oxy Vinyls, L.P. Method for reducing formation of polychlorinated aromatic compounds during oxychlorination of C1-C3 hydrocarbons
JP3827358B2 (ja) 1996-03-18 2006-09-27 株式会社トクヤマ 塩酸水溶液の製造方法
US5763630A (en) * 1996-03-18 1998-06-09 Arco Chemical Technology, L.P. Propylene oxide process using alkaline earth metal compound-supported silver catalysts
US5744655A (en) 1996-06-19 1998-04-28 The Dow Chemical Company Process to make 2,3-dihalopropanols
FR2752242B1 (fr) 1996-08-08 1998-10-16 Inst Francais Du Petrole Procede de fabrication d'esters a partir d'huiles vegetales ou animales et d'alcools
CA2281819C (fr) 1997-02-20 2009-01-06 Solvay Deutschland Gmbh Procede d'elimination des ions chlorate dans des solutions
BE1011456A3 (fr) * 1997-09-18 1999-09-07 Solvay Procede de fabrication d'un oxiranne.
EP0916624B1 (fr) 1997-11-11 2001-07-25 Kawasaki Steel Corporation Tôles d'acier revêtues d'un porcelaine-émail et frittes pour émaillage
BE1011576A3 (fr) 1997-11-27 1999-11-09 Solvay Produit a base d'epichlorhydrine et procede de fabrication de ce produit.
JP5192617B2 (ja) * 1997-12-22 2013-05-08 ダウ グローバル テクノロジーズ エルエルシー 価値の低いハロゲン化物質からの1種以上の有効な製品の製造
JP3223267B2 (ja) 1997-12-25 2001-10-29 独立行政法人物質・材料研究機構 蛍石型またはその派生構造の酸化物焼結体とその製造方法
US6080897A (en) * 1998-03-19 2000-06-27 Mitsubishi Chemical Corporation Method for producing monoethylene glycol
JP4122603B2 (ja) * 1998-03-31 2008-07-23 昭和電工株式会社 ジクロロアセトキシプロパン及びその誘導体の製造方法
BE1011880A4 (fr) 1998-04-21 2000-02-01 Solvay Procede d'epuration de saumures.
DE19817656B4 (de) 1998-04-21 2007-08-02 Scintilla Ag Handwerkzeugmaschine, insbesondere Stichsäge
US6103092A (en) * 1998-10-23 2000-08-15 General Electric Company Method for reducing metal ion concentration in brine solution
US6142458A (en) * 1998-10-29 2000-11-07 General Signal Corporation Mixing system for dispersion of gas into liquid media
DE69915878T2 (de) * 1998-12-18 2005-03-03 Dow Global Technologies, Inc., Midland Verfahren zur herstellung von 2,3-dihalogenpropanolen
DE60014831T2 (de) 1999-05-17 2005-10-13 Mitsubishi Heavy Industries, Ltd. Verfahren zur behandlung der abwässer einer abgasenentschwefelungsanlage
US6111153A (en) * 1999-06-01 2000-08-29 Dow Corning Corporation Process for manufacturing methyl chloride
ATE283833T1 (de) 1999-06-08 2004-12-15 Showa Denko Kk Verfahren zur herstellung von epichlorohydrin und zwischenprodukt davon
US6333420B1 (en) * 1999-06-08 2001-12-25 Showa Denko K.K. Process for producing epichlorohydrin and intermediate thereof
JP2001037469A (ja) 1999-07-27 2001-02-13 Nissan Chem Ind Ltd エピクロロヒドリンの微生物分解
CN1119320C (zh) 1999-11-10 2003-08-27 中国石化集团齐鲁石油化工公司 3-氯-2-羟丙基三甲基氯化铵有机副产物的分离方法
HU230441B1 (hu) 2000-01-19 2016-06-28 Sumitomo Chemical Co Eljárás klór elõállítására
JP3712903B2 (ja) 2000-01-28 2005-11-02 花王株式会社 グリセリンの製造方法
JP4389327B2 (ja) 2000-03-16 2009-12-24 東亞合成株式会社 塩酸の回収方法
JP2001276572A (ja) 2000-04-04 2001-10-09 Nkk Corp 有害ポリハロゲン化化合物の分解方法及び装置
US6613127B1 (en) 2000-05-05 2003-09-02 Dow Global Technologies Inc. Quench apparatus and method for the reformation of organic materials
JP5407100B2 (ja) 2000-05-08 2014-02-05 東ソー株式会社 有機物含有無機塩の精製方法及び食塩電解用精製塩
US6740633B2 (en) 2000-05-09 2004-05-25 Basf Aktiengesellschaft Polyelectrolyte complexes and a method for production thereof
JP3825959B2 (ja) 2000-06-16 2006-09-27 キヤノン株式会社 汚染物質分解方法及び装置
JP2002020333A (ja) * 2000-07-06 2002-01-23 Toagosei Co Ltd 水酸基の塩素化方法
JP2002038195A (ja) 2000-07-27 2002-02-06 Closs Co Ltd 洗浄剤、この洗浄剤の製造方法、この洗浄剤の製造装置、及び、この洗浄剤を用いた洗浄方法
WO2002046339A2 (fr) * 2000-12-04 2002-06-13 Dr. Frische Gmbh Procede de pretraitement d'huiles brutes et de graisses brutes pour la production d'esters d'acides gras
EP1231189B2 (fr) 2001-02-08 2018-03-07 Pfaudler GmbH Composition d'émail exempte de métaux lourds à haute résistance à la corrosion, méthode de sa production, utilisation et corps revêtus
JP2002265985A (ja) 2001-03-06 2002-09-18 Kanegafuchi Chem Ind Co Ltd アポリポ蛋白質b分泌抑制性脂質組成物
JP2002265986A (ja) * 2001-03-15 2002-09-18 Akio Kobayashi 脂肪酸アルキルエステル及びグリセリンの製造方法
US6588287B2 (en) * 2001-04-02 2003-07-08 Daimlerchrysler Multiple stage system for aerodynamic testing of a vehicle on a static surface and related method
JP4219608B2 (ja) 2001-04-05 2009-02-04 日本曹達株式会社 ジフェニルスルホン化合物の製造方法
DE10124386A1 (de) 2001-05-18 2002-11-28 Basf Ag Verfahren zur Destillation oder Reaktivdestillation eines Gemisches, das mindestens eine toxische Komponente enthält
JP2003081891A (ja) * 2001-06-28 2003-03-19 Sumitomo Chem Co Ltd 1,2―ジクロロエタンの製造方法
WO2003002453A1 (fr) * 2001-06-28 2003-01-09 Sumitomo Chemical Company, Limited Methode de purification de chlore et procede de production de 1,2-dichloroethane
JP2003026791A (ja) * 2001-07-11 2003-01-29 Mitsubishi Gas Chem Co Inc 芳香族ポリカーボネート樹脂の製造方法
SG106098A1 (en) 2001-09-28 2004-09-30 Dainippon Ink & Chemicals Process for preparing epoxy resin
WO2003031343A1 (fr) * 2001-10-09 2003-04-17 The C & M Group, Llc Oxydation electrochimique induite de dechets alimentaires
US6806396B2 (en) * 2001-12-18 2004-10-19 E. I. Du Pont De Nemours And Company Disposal of fluoroform (HFC-23)
JP3981556B2 (ja) 2001-12-20 2007-09-26 株式会社トクヤマ 塩化メチルの製造方法
JP2003206473A (ja) 2002-01-15 2003-07-22 Mitsubishi Heavy Ind Ltd シール材ならびに該シール材を適用した有機ハロゲン化合物の分解装置
DE10203914C1 (de) 2002-01-31 2003-10-02 Degussa Verfahren zur Reinigung eines HCI-haltigen Abgases aus der Organosilanesterherstellung und dessen Verwendung
DE10207442A1 (de) * 2002-02-22 2003-09-11 Bayer Ag Aufbereitung von Kochsalz enthaltenden Abwässern zum Einsatz in der Chlor-Alkali-Elektrolyse
US6719957B2 (en) * 2002-04-17 2004-04-13 Bayer Corporation Process for purification of anhydrous hydrogen chloride gas
US6802976B2 (en) 2002-05-13 2004-10-12 E. I. Du Pont De Nemours And Company Organic sulfur reduction in wastewater
US6745726B2 (en) 2002-07-29 2004-06-08 Visteon Global Technologies, Inc. Engine thermal management for internal combustion engine
DE10235476A1 (de) * 2002-08-02 2004-02-12 Basf Ag Integriertes Verfahren zur Herstellung von Isocyanaten
US7037481B2 (en) * 2002-09-09 2006-05-02 United Brine Services Company, Llc Production of ultra pure salt
DE10254709A1 (de) 2002-11-23 2004-06-09 Reinhold Denz Elektrolyse-Vorrichtung
DE10260084A1 (de) * 2002-12-19 2004-07-01 Basf Ag Auftrennung eines Stoffgemisches aus Clorwasserstoff und Phosgen
JP2004216246A (ja) 2003-01-14 2004-08-05 Toshiba Corp 高周波プラズマ処理装置及び高周波プラズマ処理方法
KR200329740Y1 (ko) 2003-04-21 2003-10-10 심구일 건축용 외장 복합판넬
KR100514819B1 (ko) 2003-05-12 2005-09-14 주식회사 알에스텍 키랄 글리시딜 유도체의 제조방법
JP2005007841A (ja) * 2003-06-18 2005-01-13 Nittetu Chemical Engineering Ltd 耐食性の良好なフッ素樹脂ライニング方法
CZ294890B6 (cs) * 2003-09-01 2005-04-13 Spolek Pro Chemickou A Hutní Výrobu,A.S. Způsob přípravy dichlorpropanolů z glycerinu
JP2005097177A (ja) 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの精製方法
EP1687248B1 (fr) 2003-11-20 2011-06-01 SOLVAY (Société Anonyme) Procédé de production de dichloropropanol à partir de glycérol et d'un agent chlorant en la présence d'un catalyseur choisit parmi l' acide adipique ou glutarique
FR2862644B1 (fr) 2003-11-20 2007-01-12 Solvay Utilisation de ressources renouvelables
FR2868419B1 (fr) 2004-04-05 2008-08-08 Solvay Sa Sa Belge Procede de fabrication de dichloropropanol
ES2354712T3 (es) 2003-11-20 2011-03-17 Solvay (Société Anonyme) Proceso para producir un compuesto orgánico.
FR2865903A1 (fr) 2004-02-05 2005-08-12 Michel Jean Robert Larose Produit alimentaire fourre pour la restauration rapide.
FR2869613B1 (fr) 2004-05-03 2008-08-29 Inst Francais Du Petrole Procede de transesterification d'huiles vegetales ou animales au moyen de catalyseurs heterogenes a base de bismuth, de titane et d'aluminium
FR2869612B1 (fr) 2004-05-03 2008-02-01 Inst Francais Du Petrole Procede de transesterification d'huiles vegetales ou animales au moyen de catalyseurs heterogenes a base de zinc, de titane et d'aluminium
EP1593732A1 (fr) 2004-05-03 2005-11-09 Institut Français du Pétrole Procede de transesterification d'huiles vegezales ou animales au moyen de catalyseurs heterogenes a base de zinc ou de bismuth de titane et d'aluminium
FR2872504B1 (fr) 2004-06-30 2006-09-22 Arkema Sa Purification de l'acide chlorhydrique sous-produit de la synthese de l'acide methane sulfonique
CN102516205B (zh) * 2004-07-21 2016-05-04 兰科知识产权有限责任公司 多羟基化脂族烃或其酯向氯醇的转化
US7910781B2 (en) * 2004-07-21 2011-03-22 Dow Global Technologies Llc Process for the conversion of a crude glycerol, crude mixtures of naturally derived multihydroxylated aliphatic hydrocarbons or esters thereof to a chlorohydrin
EP1632558A1 (fr) * 2004-09-06 2006-03-08 The Procter & Gamble Composition comprenant un polymère cationique favorisant le dépot superficiel
DE102004044592A1 (de) 2004-09-13 2006-03-30 Basf Ag Verfahren zur Trennung von Chlorwasserstoff und Phosgen
JP2008516048A (ja) 2004-10-08 2008-05-15 ザ プロクター アンド ギャンブル カンパニー オリゴマーアルキルグリセリルスルホネート及び/又はサルフェート界面活性剤混合物、並びにそれを含む洗剤組成物
FR2881732B1 (fr) 2005-02-08 2007-11-02 Solvay Procede pour la purification de chlorure d'hydrogene
TW200630385A (en) * 2005-02-09 2006-09-01 Vinnolit Gmbh & Co Kg Process for the polymerisation of vinyl-containing monomers
FR2885903B1 (fr) 2005-05-20 2015-06-26 Solvay Procede de fabrication d'epichlorhydrine
EP1762556A1 (fr) 2005-05-20 2007-03-14 SOLVAY (Société Anonyme) -Procédé de fabrication de dichloropropanol à partir de glycérol
MX2007014516A (es) * 2005-05-20 2008-02-05 Solvay Proceso de elaboracion de una clorhidrina por reaccion entre un hidrocarburo alifatico polihidroxilado y un agente de cloracion.
JP4904730B2 (ja) 2005-07-04 2012-03-28 住友化学株式会社 芳香族化合物と塩化水素の分離回収方法
CN102249859A (zh) 2005-11-08 2011-11-23 索尔维公司 通过甘油的氯化制备二氯丙醇的方法
US7126032B1 (en) 2006-03-23 2006-10-24 Sunoco, Inc. (R&M) Purification of glycerin
FR2913683A1 (fr) 2007-03-15 2008-09-19 Solvay Produit brut a base de glycerol, procede pour sa purification et son utilisation dans la fabrication de dichloropropanol
WO2007144335A1 (fr) * 2006-06-14 2007-12-21 Solvay (Societe Anonyme) Produit à base de glycérol brut, procédé pour sa purification et son utilisation dans la fabrication de dichloropropanol
DE102006041465A1 (de) * 2006-09-02 2008-03-06 Bayer Materialscience Ag Verfahren zur Herstellung von Diarylcarbonat
FR2912743B1 (fr) 2007-02-20 2009-04-24 Solvay Procede de fabrication d'epichlorhydrine
CN101041421A (zh) 2007-03-22 2007-09-26 广东富远稀土新材料股份有限公司 萃取提纯工业盐酸的方法
FR2917411B1 (fr) 2007-06-12 2012-08-03 Solvay Epichlorhydrine, procede de fabrication et utilisation
FR2918058A1 (fr) 2007-06-28 2009-01-02 Solvay Produit a base de glycerol, procede pour sa purification et son utilisation dans la fabrication de dichloropropanol
DE102007058701A1 (de) * 2007-12-06 2009-06-10 Bayer Materialscience Ag Verfahren zur Herstellung von Diarylcarbonat
FR2925046A1 (fr) 2007-12-14 2009-06-19 Rhodia Poliamida E Especialidades Ltda Procede d'obtention d'alcool a partir d'un aldehyde
FR2925045B1 (fr) 2007-12-17 2012-02-24 Solvay Produit a base de glycerol, procede pour son obtention et son utilisation dans la fabrication de dichloropropanol
EP2085364A1 (fr) 2008-01-31 2009-08-05 SOLVAY (Société Anonyme) Procédé pour la dégradation de substances organiques dans une composition aqueuse
US20090196041A1 (en) * 2008-02-05 2009-08-06 Joseph Peter D Energy efficient light
JP2009263338A (ja) 2008-03-12 2009-11-12 Daiso Co Ltd エピクロロヒドリンの新規な製造方法
FR2929611B3 (fr) 2008-04-03 2010-09-03 Solvay Composition comprenant du glycerol, procede pour son obtention et son utilisation dans la fabrication de dichloropropanol
TWI368616B (en) * 2008-08-01 2012-07-21 Dow Global Technologies Llc Process for producing epoxides
FR2935699A1 (fr) 2008-09-10 2010-03-12 Solvay Procede de fabrication d'un produit chimique
FR2935968B1 (fr) 2008-09-12 2010-09-10 Solvay Procede pour la purification de chlorure d'hydrogene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191314767A (en) * 1913-06-26 1914-01-08 Henry Fairbrother Process for Directly Producing Glycerol-halogen-hydrins and Poly-oxy Fatty Acid Esters.
GB404938A (en) * 1932-07-15 1934-01-15 Henry Dreyfus Manufacture of chlorhydrins and ethers thereof
US2144612A (en) * 1936-09-10 1939-01-24 Dow Chemical Co Preparation of glycerol dichlorohydrin
GB984633A (en) * 1960-11-07 1965-03-03 Electro Chimie Metal Manufacture of epoxy resins
US3865886A (en) * 1973-06-20 1975-02-11 Lummus Co Production of allyl chloride

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAUCONNIER M A: "PREPARATION DE L'EPICHLORHYDRINE" BULL.SOC.CHIM.FRANCE, vol. 50, no. 50, 1888, pages 212-214, XP009046846 *
GIBSON G P: "THE PREPARATION, PROPERTIES AND USES OF GLYCEROL DERIVATIVES. Part III. THE CHLOROHYDRINS" CHEMISTRY AND INDUSTRY, CHEMICAL SOCIETY, LECHWORTH, GB, 1931, pages 949-970, XP009042263 ISSN: 0009-3068 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9663427B2 (en) 2003-11-20 2017-05-30 Solvay (Société Anonyme) Process for producing epichlorohydrin
US8415509B2 (en) 2003-11-20 2013-04-09 Solvay (Societe Anonyme) Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel
US7939696B2 (en) 2005-11-08 2011-05-10 Solvay Societe Anonyme Process for the manufacture of dichloropropanol by chlorination of glycerol
US8124814B2 (en) 2006-06-14 2012-02-28 Solvay (Societe Anonyme) Crude glycerol-based product, process for its purification and its use in the manufacture of dichloropropanol
US7930651B2 (en) 2007-01-18 2011-04-19 Research In Motion Limited Agenda display in an electronic device
US8258350B2 (en) 2007-03-07 2012-09-04 Solvay (Societe Anonyme) Process for the manufacture of dichloropropanol
US8471074B2 (en) 2007-03-14 2013-06-25 Solvay (Societe Anonyme) Process for the manufacture of dichloropropanol
JP2010523704A (ja) * 2007-04-12 2010-07-15 ダウ グローバル テクノロジーズ インコーポレイティド ポリヒドロキシ脂肪族炭化水素化合物の塩化水素処理中の蒸気相精製の方法および装置
US8273923B2 (en) 2007-06-01 2012-09-25 Solvay (Societe Anonyme) Process for manufacturing a chlorohydrin
US8378130B2 (en) 2007-06-12 2013-02-19 Solvay (Societe Anonyme) Product containing epichlorohydrin, its preparation and its use in various applications
US8399692B2 (en) 2007-06-12 2013-03-19 Solvay (Societe Anonyme) Epichlorohydrin, manufacturing process and use
US8197665B2 (en) 2007-06-12 2012-06-12 Solvay (Societe Anonyme) Aqueous composition containing a salt, manufacturing process and use
TWI461390B (zh) * 2007-06-28 2014-11-21 Solvay 二氯丙醇之製備
US8715568B2 (en) 2007-10-02 2014-05-06 Solvay Sa Use of compositions containing silicon for improving the corrosion resistance of vessels
US8314205B2 (en) 2007-12-17 2012-11-20 Solvay (Societe Anonyme) Glycerol-based product, process for obtaining same and use thereof in the manufacturing of dichloropropanol
US8795536B2 (en) 2008-01-31 2014-08-05 Solvay (Societe Anonyme) Process for degrading organic substances in an aqueous composition
US8507643B2 (en) 2008-04-03 2013-08-13 Solvay S.A. Composition comprising glycerol, process for obtaining same and use thereof in the manufacture of dichloropropanol
FR2935699A1 (fr) * 2008-09-10 2010-03-12 Solvay Procede de fabrication d'un produit chimique
WO2010029039A1 (fr) * 2008-09-10 2010-03-18 Solvay Sa Procédé de production de chlorohydrines, d’époxydes, de diols, de dérivés de diols ou de dérivés d’époxy
US8536381B2 (en) 2008-09-12 2013-09-17 Solvay Sa Process for purifying hydrogen chloride
WO2011054770A1 (fr) 2009-11-04 2011-05-12 Solvay Sa Procédé de fabrication d'une résine époxy
WO2011054769A2 (fr) 2009-11-04 2011-05-12 Solvay Sa Procédé de fabrication d'un produit dérivé de l'épichlorohydrine
WO2012016872A1 (fr) 2010-08-02 2012-02-09 Solvay Sa Procédé d'électrolyse
WO2012025468A1 (fr) 2010-08-27 2012-03-01 Solvay Sa Procédé de purification de saumure
WO2012041816A1 (fr) 2010-09-30 2012-04-05 Solvay Sa Dérivé d'épichlorhydrine d'origine naturelle
US9309209B2 (en) 2010-09-30 2016-04-12 Solvay Sa Derivative of epichlorohydrin of natural origin
WO2012056005A1 (fr) 2010-10-29 2012-05-03 Solvay Sa Procédé de fabrication d'épichlorhydrine
WO2013092338A1 (fr) 2011-12-19 2013-06-27 Solvay Sa Procédé pour la réduction du carbone organique total de compositions aqueuses
EP2669307A1 (fr) 2012-06-01 2013-12-04 Solvay Sa Processus de fabrication dýune époxyde
EP2669305A1 (fr) 2012-06-01 2013-12-04 Solvay Sa Procédé de fabrication d'une résine époxy
EP2669308A1 (fr) 2012-06-01 2013-12-04 Solvay Sa Procédé de fabrication d'une résine époxy
EP2669306A1 (fr) 2012-06-01 2013-12-04 Solvay Sa Procédé de fabrication d'une résine époxy
EP2669247A1 (fr) 2012-06-01 2013-12-04 Solvay Sa Procédé de fabrication de dichloropropanol
WO2015074684A1 (fr) 2013-11-20 2015-05-28 Solvay Sa Procédé de fabrication d'une résine époxyde
US9850190B2 (en) 2015-12-18 2017-12-26 Chang Chun Plastics Co., Ltd. Process for preparing dichloropropanol

Also Published As

Publication number Publication date
EP1885673A1 (fr) 2008-02-13
EA200702553A1 (ru) 2008-06-30
EA200702549A1 (ru) 2008-06-30
US7893193B2 (en) 2011-02-22
JP5551359B2 (ja) 2014-07-16
EA200702551A1 (ru) 2008-06-30
EP1890988A2 (fr) 2008-02-27
TWI313261B (en) 2009-08-11
TWI332942B (en) 2010-11-11
EP1885675A1 (fr) 2008-02-13
JP2008540617A (ja) 2008-11-20
US20080200642A1 (en) 2008-08-21
KR100979371B1 (ko) 2010-08-31
US20080194848A1 (en) 2008-08-14
MX2007014525A (es) 2008-02-05
EA200702552A1 (ru) 2008-06-30
KR20080037616A (ko) 2008-04-30
TW200700361A (en) 2007-01-01
CN102690168A (zh) 2012-09-26
EP2284162B1 (fr) 2016-11-02
WO2006100319A1 (fr) 2006-09-28
TWI332940B (en) 2010-11-11
WO2006100315A3 (fr) 2006-11-16
EA018478B1 (ru) 2013-08-30
CA2608725A1 (fr) 2006-10-12
US20080194849A1 (en) 2008-08-14
TWI333945B (en) 2010-12-01
MX2007014514A (es) 2008-02-05
CN101098843A (zh) 2008-01-02
JP5777268B2 (ja) 2015-09-09
WO2006100320A3 (fr) 2006-12-28
TWI320037B (en) 2010-02-01
TW200940488A (en) 2009-10-01
CN101006068A (zh) 2007-07-25
EA018479B1 (ru) 2013-08-30
EA200702546A1 (ru) 2008-04-28
BRPI0610799A2 (pt) 2010-11-09
BRPI0610744A2 (pt) 2012-10-30
EA013681B1 (ru) 2010-06-30
CN101107208A (zh) 2008-01-16
CN102659511A (zh) 2012-09-12
TWI388542B (zh) 2013-03-11
TW200700359A (en) 2007-01-01
TWI332493B (en) 2010-11-01
CA2608723A1 (fr) 2006-09-28
JP2008540614A (ja) 2008-11-20
CN1993307A (zh) 2007-07-04
US8106245B2 (en) 2012-01-31
EP1885677A2 (fr) 2008-02-13
EA200702550A1 (ru) 2008-06-30
KR20080019009A (ko) 2008-02-29
TW200700403A (en) 2007-01-01
TW200700367A (en) 2007-01-01
TWI323249B (en) 2010-04-11
CA2608937A1 (fr) 2006-09-28
CN1993306B (zh) 2012-07-04
TWI321129B (en) 2010-03-01
EA200702548A1 (ru) 2008-06-30
WO2006106154A1 (fr) 2006-10-12
CA2608720A1 (fr) 2006-09-28
US20080194851A1 (en) 2008-08-14
CN101031532B (zh) 2010-11-10
WO2006106155A2 (fr) 2006-10-12
KR20080019008A (ko) 2008-02-29
TW200700402A (en) 2007-01-01
EA200702561A1 (ru) 2008-04-28
CA2608946C (fr) 2014-03-25
MX2007014527A (es) 2008-02-07
BRPI0610748A2 (pt) 2013-04-02
JP2008540616A (ja) 2008-11-20
JP5280842B2 (ja) 2013-09-04
KR20080036554A (ko) 2008-04-28
JP5419446B2 (ja) 2014-02-19
CN101107208B (zh) 2012-01-11
BRPI0610791A2 (pt) 2010-11-03
TW200700360A (en) 2007-01-01
EP2284162A2 (fr) 2011-02-16
CN102603474A (zh) 2012-07-25
EA201300253A1 (ru) 2013-11-29
EP2284163A3 (fr) 2011-03-09
MX2007014523A (es) 2008-02-05
KR20080019010A (ko) 2008-02-29
US20080214848A1 (en) 2008-09-04
EP1885671A1 (fr) 2008-02-13
EP1904427A2 (fr) 2008-04-02
EA200702565A1 (ru) 2008-04-28
US7615670B2 (en) 2009-11-10
TWI332941B (en) 2010-11-11
WO2006100312A9 (fr) 2007-05-18
JP5259390B2 (ja) 2013-08-07
WO2006106153A3 (fr) 2006-12-28
US7557253B2 (en) 2009-07-07
CN101006037A (zh) 2007-07-25
EP1885706A2 (fr) 2008-02-13
KR20080019006A (ko) 2008-02-29
EP2275417A3 (fr) 2011-03-09
WO2006100318A3 (fr) 2007-03-22
WO2006100312A3 (fr) 2006-11-02
MX2007014530A (es) 2008-02-05
TWI349657B (en) 2011-10-01
CA2608961A1 (fr) 2006-09-28
KR101331367B1 (ko) 2013-11-19
TWI322142B (en) 2010-03-21
EP1885673B1 (fr) 2015-08-12
KR101337048B1 (ko) 2013-12-05
WO2006100313A2 (fr) 2006-09-28
MX2007014516A (es) 2008-02-05
JP2008540611A (ja) 2008-11-20
WO2006100313A3 (fr) 2006-11-09
WO2006100316A1 (fr) 2006-09-28
TW200938519A (en) 2009-09-16
WO2006100315A2 (fr) 2006-09-28
CN102603475A (zh) 2012-07-25
JP2008545640A (ja) 2008-12-18
JP2008540610A (ja) 2008-11-20
WO2006100320A2 (fr) 2006-09-28
TW200700364A (en) 2007-01-01
KR100982618B1 (ko) 2010-09-15
EA200702554A1 (ru) 2008-06-30
TWI320036B (en) 2010-02-01
TW200700366A (en) 2007-01-01
JP5179351B2 (ja) 2013-04-10
WO2006100318A2 (fr) 2006-09-28
JP2008540613A (ja) 2008-11-20
JP2008545642A (ja) 2008-12-18
US20080194850A1 (en) 2008-08-14
MY148295A (en) 2013-03-29
JP2008540609A (ja) 2008-11-20
MY148378A (en) 2013-04-15
TW200642999A (en) 2006-12-16
TW200700401A (en) 2007-01-01
US20080194847A1 (en) 2008-08-14
CA2608722A1 (fr) 2006-09-28
CA2608956A1 (fr) 2006-09-28
US20080161613A1 (en) 2008-07-03
CA2608715A1 (fr) 2006-09-28
MY148345A (en) 2013-03-29
JP2008540608A (ja) 2008-11-20
US20080200701A1 (en) 2008-08-21
KR101345965B1 (ko) 2014-01-02
EA200702564A1 (ru) 2008-04-28
TW200700363A (en) 2007-01-01
JP5405821B2 (ja) 2014-02-05
CA2608946A1 (fr) 2006-09-28
CN101031532A (zh) 2007-09-05
CN102531841A (zh) 2012-07-04
CA2608816A1 (fr) 2006-10-12
US7906691B2 (en) 2011-03-15
US20090131631A1 (en) 2009-05-21
CN101098843B (zh) 2012-04-11
KR100978436B1 (ko) 2010-08-26
US20080194884A1 (en) 2008-08-14
CN101006037B (zh) 2010-11-10
US7906692B2 (en) 2011-03-15
WO2006100317A1 (fr) 2006-09-28
CA2608719A1 (fr) 2006-09-28
CN101006068B (zh) 2011-06-08
CN1993307B (zh) 2012-04-11
BRPI0610746A2 (pt) 2012-10-30
EP2284163A2 (fr) 2011-02-16
TWI335323B (en) 2011-01-01
CN101052606A (zh) 2007-10-10
WO2006100314A1 (fr) 2006-09-28
JP2008545641A (ja) 2008-12-18
EP1885672A2 (fr) 2008-02-13
EP1885676A2 (fr) 2008-02-13
KR100982605B1 (ko) 2010-09-15
EA200702562A1 (ru) 2008-04-28
CN1993306A (zh) 2007-07-04
WO2006100311A2 (fr) 2006-09-28
EP1885705A2 (fr) 2008-02-13
WO2006100311A3 (fr) 2006-11-23
KR20080019007A (ko) 2008-02-29
EA014241B1 (ru) 2010-10-29
US20080154050A1 (en) 2008-06-26
JP2008545643A (ja) 2008-12-18
US8389777B2 (en) 2013-03-05
WO2006106155A3 (fr) 2006-12-28
CA2608961C (fr) 2014-09-30
EP1885705B1 (fr) 2019-02-13
TW200700365A (en) 2007-01-01
BRPI0610789A2 (pt) 2010-11-09
EP1885674A1 (fr) 2008-02-13
MX2007014532A (es) 2008-02-07
WO2006100312A2 (fr) 2006-09-28
MY158842A (en) 2016-11-15
BRPI0610745A2 (pt) 2012-10-30
TW200940489A (en) 2009-10-01
EA017149B1 (ru) 2012-10-30
CA2608732A1 (fr) 2006-10-12
EP2284162A3 (fr) 2011-03-16
JP2008540615A (ja) 2008-11-20
US8344185B2 (en) 2013-01-01
TW200700362A (en) 2007-01-01
CN101052606B (zh) 2011-12-21
WO2006100318A9 (fr) 2006-11-16
EP1885678A1 (fr) 2008-02-13
EP1891032A2 (fr) 2008-02-27
BRPI0610751A2 (pt) 2010-11-09
EA200702555A1 (ru) 2008-06-30
EP2275417A2 (fr) 2011-01-19
US8173823B2 (en) 2012-05-08
CA2608953A1 (fr) 2006-09-28

Similar Documents

Publication Publication Date Title
WO2006106153A2 (fr) Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration
JP6373554B2 (ja) エポキシドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680000535.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2608816

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11914868

Country of ref document: US

Ref document number: 2006763189

Country of ref document: EP

Ref document number: 2008511721

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/014516

Country of ref document: MX

Ref document number: 12007502609

Country of ref document: PH

Ref document number: 5263/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077029672

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200702555

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006763189

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0610799

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071119