KR101705206B1 - 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법 - Google Patents

클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법 Download PDF

Info

Publication number
KR101705206B1
KR101705206B1 KR1020100063157A KR20100063157A KR101705206B1 KR 101705206 B1 KR101705206 B1 KR 101705206B1 KR 1020100063157 A KR1020100063157 A KR 1020100063157A KR 20100063157 A KR20100063157 A KR 20100063157A KR 101705206 B1 KR101705206 B1 KR 101705206B1
Authority
KR
South Korea
Prior art keywords
reactor
water
chlorohydrins
chlorohydrin
chlorinating agent
Prior art date
Application number
KR1020100063157A
Other languages
English (en)
Other versions
KR20120002334A (ko
Inventor
송원섭
우성률
송부원
박성한
권명숙
Original Assignee
롯데정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데정밀화학 주식회사 filed Critical 롯데정밀화학 주식회사
Priority to KR1020100063157A priority Critical patent/KR101705206B1/ko
Priority to EP11801055.2A priority patent/EP2589584B1/en
Priority to JP2013518226A priority patent/JP5837584B2/ja
Priority to PCT/KR2011/004168 priority patent/WO2012002648A2/ko
Priority to US13/805,750 priority patent/US8969630B2/en
Priority to CN2011800320911A priority patent/CN103038200A/zh
Publication of KR20120002334A publication Critical patent/KR20120002334A/ko
Application granted granted Critical
Publication of KR101705206B1 publication Critical patent/KR101705206B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/64Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by simultaneous introduction of -OH groups and halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/62Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/34Halogenated alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals

Abstract

클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법이 개시된다. 개시된 클로로히드린류의 제조방법은, 촉매의 존재하에 다수산기 지방족 탄화수소를 염소화제와 반응시키는 것으로, 제1 반응단계, 물 제거 단계 및 제2 반응단계를 상기 순서로 포함하는 일련의 단위조작들의 조합을 적어도 하나 포함하며, 또한 상기 복수의 반응단계들 중 최종 반응단계에서 배출된 반응 혼합물로부터 클로로히드린류를 정제하는 단계를 추가로 포함한다. 개시된 에피클로로히드린의 제조방법은 상기 클로로히드린류의 제조방법에 의해 제조된 클로로히드린류를 알칼리제와 반응시키는 단계를 포함한다.

Description

클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법{Method of preparing chlorohydrins and method of preparing epichlorohydrin using chlorohydrins prepared by the same}
클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법이 개시된다. 보다 상세하게는, 촉매의 존재하에 다수산기 지방족 탄화수소를 염소화제와 반응시키는 것으로, 복수의 반응단계들 및 상기 복수의 반응단계들 사이에 개재된 물 제거 단계를 포함하며, 상기 복수의 반응단계들 중 최종 반응단계에서 배출된 반응 혼합물로부터 클로로히드린류를 정제하는 단계를 추가로 포함하는 클로로히드린류의 제조방법, 및 상기 방법에 의해 제조된 클로로히드린류를 알칼리제와 반응시키는 단계를 포함하는 에피클로로히드린의 제조방법이 개시된다.
현재 바이오디젤(bio-diesel)은 전세계적으로 경쟁적으로 개발되어 생산되고 있으며, 한국에서도 이미 생산이 개시되어 디젤유의 첨가원료로 시판되고 있다.
이러한 바이오디젤을 생산하는 과정에서 바이오디젤 생산량의 약 10%에 해당하는 막대한 양의 글리세롤이 생산되고 있다. 그러나, 이러한 글리세롤은 수요에 비해 공급이 과잉으로 이루어져 그 가치가 지속적으로 하락하고 있으므로, 이를 부가가치가 높은 디클로로프로판올과 같은 클로로히드린류로 전환시킴으로써 글리세롤의 고부가가치화를 달성하는 것이 바람직하다.
한편, 디클로로프로판올(dichloropropanol)과 같은 클로로히드린류(chlorohydrins)는 에피클로로히드린(epichlorohydrin)을 제조하기 위한 원료로 사용되는데, 현재 시장에 공급되는 대부분의 클로로히드린류는 프로필렌으로부터 제조된다. 구체적으로, 클로로히드린류의 제조방법은 프로필렌의 고온 염소화 반응에 의해 알릴클로라이드(allyl chloride)를 제조하는 단계 및 과량의 공업용수를 사용하여 상기 알릴클로라이드를 염소화제와 다시 반응시켜 클로로히드린류를 제조하는 단계의 2단계로 구성된다. 그러나, 프로필렌을 사용하는 클로로히드린류의 제조방법은, 프로필렌의 가격 상승으로 인한 수급 불안정, 다량의 폐수와 폐기물의 발생, 2단계 제조방법에 따른 과다한 초기 투자비용과 이로 인한 제조장치의 신증설 곤란 등의 문제점을 가진다.
이에 따라 촉매의 존재하에 바이오디젤 부산물인 글리세롤을 비롯한 다수산기 지방족 탄화수소를 염소화제와 반응시키는 1단계 제조방법에 의해 클로로히드린류를 직접 제조하는 공정이 경제성을 확보하게 되었다. 글리세롤을 비롯한 다수산기 지방족 탄화수소를 반응원료로 사용하는 이러한 1단계 클로로히드린류의 제조방법은 저가의 다수산기 지방족 탄화수소를 사용하므로 원료비를 절감할 수 있을 뿐만 아니라, 공정 중 공업용수를 사용하지 않아 폐수 및 폐기물의 발생량을 획기적으로 저감시킬 수 있으므로 환경적으로 유리하고, 공정 및 환경관련 투자비를 절감할 수 있어 초기투자비가 적게 든다는 잇점이 있다.
그러나, 상기 클로로히드린류의 제조방법은 부산물로서 물을 생성하며, 상기 생성된 물이 글리세롤을 비롯한 다수산기 지방족 탄화수소의 염소화 반응을 저해하여 반응이 진행될수록 반응속도가 점차 느려지고 반응시간이 길어지며 클로로히드린류의 선택도가 저하되는 문제점이 있다.
본 발명의 일 구현예는 촉매의 존재하에 다수산기 지방족 탄화수소를 염소화제와 반응시키는 것으로, 복수의 반응단계들 및 상기 복수의 반응단계들 사이에 개재된 물 제거 단계를 포함하며, 상기 복수의 반응단계들 중 최종 반응단계에서 배출된 반응 혼합물로부터 클로로히드린류를 정제하는 단계를 추가로 포함하는 클로로히드린류의 제조방법을 제공한다.
본 발명의 다른 구현예는 상기 클로로히드린류의 제조방법에 의해 제조된 클로로히드린류를 알칼리제와 반응시키는 단계를 포함하는 에피클로로히드린의 제조방법을 제공한다.
본 발명의 일 측면은,
촉매의 존재하에 다수산기 지방족 탄화수소를 염소화제와 반응시켜 클로로히드린류를 제조하는 방법으로서,
다수산기 지방족 탄화수소를 염소화제와 반응시키는 제1 반응단계;
상기 제1 반응단계에서 배출된 반응 혼합물에서 부산물인 물을 제거하는 단계; 및
상기 단계에서 물이 제거된 반응 혼합물의 적어도 한 구성성분을 상기 염소화제 및 추가 염소화제 중 적어도 하나와 반응시키는 제2 반응단계를 상기 순서로 포함하는 일련의 단위조작들의 조합을 적어도 하나 포함하고,
상기 복수의 반응단계들 중 최종 반응단계에서 배출된 반응 혼합물을 정제하여 클로로히드린류 농축물을 얻는 단계를 추가로 포함하는 클로로히드린류의 제조방법을 제공한다.
상기 클로로히드린류의 제조방법은, 상기 복수의 반응단계들 중 적어도 하나의 반응단계에서 배출된 반응 혼합물의 적어도 일부를 추가 염소화제와 혼합한 후 상기 반응 혼합물이 배출된 반응단계로 재순환시키는 단계를 추가로 포함할 수 있다.
본 발명의 다른 측면은,
다수산기 지방족 탄화수소, 촉매 및 염소화제를 50~200℃의 온도로 유지되는 제1 반응기로 주입하는 단계;
상기 제1 반응기로부터 부산물인 물을 포함하는 제1 반응기 유출물을 배출시키는 단계;
상기 제1 반응기 유출물 중의 적어도 일부를 물 제거 장치로 주입하는 단계;
상기 물이 제거된 제1 반응기 유출물을 80~200℃의 온도로 유지되는 제2 반응기로 주입하는 단계; 및
상기 제2 반응기 유출물 중의 적어도 일부를 클로로히드린류의 정제장치로 주입하여 클로로히드린류 농축물을 얻는 단계를 포함하는 클로로히드린류의 제조방법을 제공한다.
상기 클로로히드린류의 제조방법은, 상기 제1 반응기 유출물 중의 적어도 일부 및 추가 염소화제를 제1 혼합장치로 주입하여 혼합한 후, 이 혼합물을 상기 제1 반응기로 재순환시키는 단계; 및 상기 제2 반응기 유출물 중의 적어도 일부 및 추가 염소화제를 제2 혼합장치로 주입하여 혼합한 후, 이 혼합물을 상기 제2 반응기로 재순환시키는 단계 중 적어도 하나의 단계를 추가로 포함할 수 있다.
상기 다수산기 지방족 탄화수소는, 각기 다른 탄소 원자에 결합된 2 이상의 수산기를 포함하는, 탄소수 2~20의 화합물일 수 있다.
상기 다수산기 지방족 탄화수소는 1,2-에탄디올, 1,2-프로판디올, 1,3-프로판디올, 3-클로로-1,2-프로판디올, 2-클로로-1,3-프로판디올, 글리세롤, 1,2,4-부탄트리올, 1,4-부탄디올 및 상기 각 화합물의 에스테르로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함할 수 있다.
상기 클로로히드린류 농축물 중의 클로로히드린류는 각기 다른 탄소 원자와 결합된 적어도 하나의 수산기와 적어도 하나의 염소 원자를 포함하는 화합물일 수 있다.
상기 클로로히드린류는 3-클로로-1,2-프로판디올, 2-클로로-1,3-프로판디올, 1,3-디클로로프로판-2-올 및 2,3-디클로로 프로판-1-올로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함할 수 있다.
상기 촉매는 유기산 촉매, 카르복실산계 촉매, 니트릴계 촉매 및 고체 촉매로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
상기 제1 반응기에서는 중간생성물로서 상기 촉매와 상기 다수산기 지방족 탄화수소의 반응 생성물이 생성될 수 있으며, 상기 중간생성물은 상기 다수산기 지방족 탄화수소의 염소화 반응에서 촉매작용을 할 수 있다.
상기 다수산기 지방족 탄화수소는 글리세롤을 포함하고, 상기 촉매는 아세트산을 포함하며, 상기 중간생성물은 글리세롤아세테이트류를 포함할 수 있다.
상기 염소화제 및/또는 추가 염소화제는 염화수소 가스 또는 염산 수용액을 포함할 수 있다.
상기 물 제거 장치로 주입되는 상기 제1 반응기 유출물은, 상기 제1 반응기에서 다수산기 지방족 탄화수소의 전환율이 30~100%이고 클로로히드린류의 수율이 30~95%일때 배출된 것일 수 있다.
상기 물 제거 장치로 주입되는 상기 제1 반응기 유출물은, 다수산기 지방족 탄화수소, 클로로히드린류 및 상기 중간생성물을, 상기 다수산기 지방족 탄화수소 0~90중량부:상기 클로로히드린류 5~95중량부:상기 중간생성물 5~12중량부의 비율로 포함할 수 있다.
상기 물 제거 장치로 주입되는 상기 제1 반응기 유출물은, 염소화제 및 물을, 상기 염소화제 10~25중량부:물 75~90중량부의 비율로 포함할 수 있다.
상기 클로로히드린류의 정제장치는 증류장치를 포함할 수 있다.
상기 클로로히드린류의 정제장치는 상기 증류장치의 후단에 스트리핑 장치를 추가로 포함할 수 있다.
상기 제1 반응기에서 반응기 내용물의 체류시간은 20분~1시간이고, 상기 제2 반응기에서 반응기 내용물의 체류시간은 1시간~3시간일 수 있다.
상기 물 제거 장치는 상기 제1 반응기 유출물의 구성성분들 간의 비등점 차이를 이용하는 증류 조작에 의해 작동될 수 있다.
상기 제1 반응기 및 제2 반응기는 대기압 이상의 압력으로 유지되고, 상기 물 제거 장치는 대기압 이하의 압력으로 유지될 수 있다.
상기 제1 반응기 및 제2 반응기는 1~20기압으로 유지되고, 상기 물 제거 장치는 10~760mmHg로 유지될 수 있다.
상기 물 제거 장치는 이론단수가 2~50인 감압증류탑을 포함할 수 있다.
상기 제1 반응기 유출물은 감압장치에서 감압된 후 상기 물 제거 장치로 주입될 수 있다.
상기 감압장치는 감압밸브를 포함할 수 있다.
상기 제1 반응기 및 제2 반응기는, 서로 독립적으로, 연속교반탱크식 반응기(continuous stirred tank reactor), 회분식 반응기(batch reactor), 반회분식 반응기(semi-batch reactor) 또는 관형 반응기(plug flow reactor)일 수 있다.
상기 물 제거 장치로 주입된 상기 제1 반응기 유출물은 물-풍부층 및 물-부족층으로 분리될 수 있다. 
상기 제2 반응기 유출물 중 상기 클로로히드린류의 정제장치로 주입되는 부분은, 다수산기 지방족 탄화수소 0~10중량부, 클로로히드린류 80~98중량부, 염소화제 0~10중량부 및 물 1~20중량부를 포함할 수 있다.
본 발명의 또 다른 측면은,
상기 클로로히드린류의 제조방법에 따라 제조된 클로로히드린류를 포함하는 클로로히드린류 조성물을 알칼리제와 20~100℃에서 접촉시키는 단계를 포함하고,
상기 클로로히드린류 조성물은 다수산기 지방족 탄화수소 0~5중량부, 클로로히드린류 10~40중량부, 염소화제 0~5중량부 및 물 50~90중량부를 포함하는 에피클로로히드린의 제조방법을 제공한다.
상기 클로로히드린류 조성물은 촉매를 추가로 포함하고, 상기 촉매는 상기 알칼리제와 반응하여 알칼리금속염을 형성할 수 있다.
본 발명의 일 구현예에 의하면, 클로로히드린류의 선택도가 향상된 클로로히드린류의 제조방법이 제공될 수 있다.
본 발명의 다른 구현예에 의하면, 상기 클로로히드린류의 제조방법에 의해 제조된 클로로히드린류를 알칼리제와 반응시키는 단계를 포함하는 에피클로로히드린의 제조방법이 제공될 수 있다.
도 1은 본 발명의 일 구현예에 따른 클로로히드린류의 제조방법 및 후속 에피클로로히드린의 제조방법을 구현한 공정도이다.
이어서, 도면을 참조하여 본 발명의 일 구현예에 따른 클로로히드린류의 제조방법 및 에피클로로히드린의 제조방법을 상세히 설명한다. 본 명세서에서, ‘클로로히드린류의 제조방법’은, 경우에 따라, 클로로히드린류 조성물(composition of chlorohydrins)의 제조방법을 의미할 수도 있다.
본 발명의 일 구현예에 따른 클로로히드린류의 제조방법은 촉매의 존재하에 다수산기 지방족 탄화수소를 염소화제와 반응시킨다.
상기 클로로히드린류의 제조방법은 다수산기 지방족 탄화수소를 염소화제와 반응시키는 제1 반응단계, 상기 제1 반응단계에서 배출된 반응 혼합물에서 부산물인 물을 제거하는 단계 및 상기 단계에서 물이 제거된 반응 혼합물의 적어도 한 구성성분을 상기 염소화제 및 추가 염소화제 중 적어도 하나와 반응시키는 제2 반응단계를 상기 순서로 포함하는 일련의 단위조작들의 조합을 적어도 하나 포함한다. 또한, 상기 물 제거 단계에서 염소화제는 추가로 투입되지 않는다.
또한, 상기 클로로히드린류의 제조방법은 상기 복수의 반응단계들 중 최종 반응단계에서 배출된 반응 혼합물을 정제하여 클로로히드린류 농축물을 얻는 단계를 추가로 포함한다.
이하, 도 1을 참조하여 본 발명의 일 구현예에 따른 클로로히드린류의 제조방법을 상세히 설명한다.
본 명세서에서, ‘클로로히드린류’는 클로로히드린, 클로로히드린의 에스테르 또는 이들의 혼합물을 의미한다.
상기 클로로히드린류는 적어도 하나의 수산기와 적어도 하나의 염소 원자가 각기 다른 탄소 원자와 결합되어 있는 화합물일 수 있다. 예를 들어, 상기 클로로히드린류는 3-클로로-1,2-프로판디올, 2-클로로-1,3-프로판디올, 1,3-디클로로프로판-2-올 및 2,3-디클로로프로판-1-올로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함할 수 있다. 본 명세서에서, 3-클로로-1,2-프로판디올 및 2-클로로-1,3-프로판디올을 통칭하여 ‘모노클로로프로판디올’이라고 하고, 1,3-디클로로프로판-2-올 및 2,3-디클로로프로판-1-올을 통칭하여‘디클로로프로판올’이라고 한다.
본 발명의 일 구현예에 따른 클로로히드린류의 제조방법에 의해서는 1,3- 디클로로프로판-2-올이 주로 생성되는데, 이 물질은 에피클로로히드린의 제조를 위한 반응원료로서 특히 적합하다.
도 1을 참조하면, 다수산기 지방족 탄화수소 및 촉매는 라인(1)을 통해 제1 반응기(110)로 주입된다. 또한, 염소화제도 라인(2) 및/또는 기타 경로를 통해 제1 반응기(110)로 주입된다.
상기 다수산기 지방족 탄화수소는 각기 다른 탄소 원자와 결합된 2 이상의 수산기를 포함하는, 탄소수 2~20의 화합물일 수 있다. 예를 들어, 상기 다수산기 지방족 탄화수소는 1,2-에탄디올, 1,2-프로판디올, 1,3-프로판디올, 3-클로로-1,2-프로판디올, 2-클로로-1,3-프로판디올, 글리세롤, 1,2,4-부탄트리올, 1,4-부탄디올 및 상기 각 화합물의 에스테르로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함할 수 있다.
상기 촉매는, 유기산 촉매, 카르복실산계 촉매, 니트릴계 촉매, 고체 촉매 및 이들의 혼합물일 수 있다.
상기 유기산 촉매는, 예를 들어, 모노카르복실산, 디카르복실산, 폴리카르복실산, 말론산, 레불린산, 시트르산, 숙신산, 프로피온산 및 상기 각 유기산의 유도체로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함할 수 있다.
상기 카르복실산계 촉매는, 예를 들어, 모노카르복실산 에스테르, 폴리카르복실산 에스테르, 모노카르복실산 무수물, 폴리카르복실산 무수물, 모노카르복실산 염화물, 폴리카르복실산 염화물, 모노카르복실산염, 폴리카르복실산 염 및 상기 각 카르복실산계 화합물의 유도체로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함할 수 있다.
상기 니트릴계 촉매는 아세토니트릴, 프로피오니트릴, 아크릴로니트릴, 발레로니트릴, 이소부티로니트릴, 히드록시아세토니트릴, 클로로아세토니트릴, 숙시노니트릴, 글루타로니트릴, 아디포니트릴 및 페닐아세토니트릴로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함할 수 있다.
상기 고체 촉매는, 예를 들어, 무기 산화물, 무기 할로겐화물, 강산성 유기 화합물 및 이들 중 2 이상의 혼합물일 수 있다.
상기 무기 산화물은 금속 산화물, 복합 산화물, 옥시산 및 옥시산염으로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함할 수 있다. 상기 금속 산화물은, 예를 들어, SiO2, Al2O3, TiO2, Fe2O3, ZrO2, SnO2, CeO2, Ga2O3, La2O3일 수 있다. 상기 복합 산화물은, 예를 들어, SiO2-Al2O3, SiO2-TiO2, TiO2-ZrO2, SiO2-ZrO2, MoO3-ZrO2, 제올라이트, 헤테로폴리산(즉, P, Mo, V, W, Si 등의 원소를 함유하는 폴리산 등) 및 헤테로폴리산염일 수 있다. 상기 옥시산 및 옥시산염은, 예를 들어, BPO4, AlPO4, 폴리인산, 산성 인산염, H3BO3, 산성 붕산염, 니오브산일 수 있다.
상기 무기 할로겐화물은, 예를 들어, 스칸듐, 이트륨, 란탄, 악티늄과 같은 주기율표상의 제3A족 원소; 티탄, 지르코늄, 하프늄과 같은 주기율표상의 제4A족 원소; 바나듐, 니오브, 탄탈럼과 같은 주기율표상의 제5A족 원소; 철, 코발트, 니켈, 팔라듐, 백금과 같은 주기율표상의 제8족 원소; 아연과 같은 주기율표상의 제2B족 원소; 알루미늄, 갈륨과 같은 주기율표상의 제3B족 원소; 게르마늄, 주석과 같은 주기율표상의 제4B족 원소의 금속 불화물, 염화물, 브롬화물 및 요오드화물과 같은 금속 할로겐화물일 수 있다.
상기 강산성 유기 화합물은, 예를 들어, 술폰산기 함유 이온교환 수지 및 탄소 축합환(condensed carbon ring)을 포함하는 술폰산 화합물과 같은 유기 술폰산 화합물일 수 있다.
상기 촉매의 주입량은 상기 다수산기 지방족 탄화수소 100중량부에 대하여 1~10중량부일 수 있다. 상기 촉매의 주입량이 상기 범위이내이면, 적당한 촉매량으로 양호한 반응속도 향상 효과를 얻을 수 있다.
본 발명의 일 구현예에 따른 클로로히드린류의 제조방법에서 제1 반응기(110)는 50~200℃의 온도로 유지될 수 있다. 제1 반응기(110)의 온도가 상기 범위이내이면, 적당한 에너지 투입으로 높은 반응속도를 얻을 수 있다. 또한, 제1 반응기(110)는 대기압 이상의 압력, 예를 들어, 1~20기압으로 유지될 수 있다. 제1 반응기(110)의 압력이 상기 범위이내이면, 비교적 높은 반응 활성을 얻을 수 있다. 이 경우, 제1 반응기(110)의 압력이 20기압을 초과하더라도, 압력 증가에 따른 반응 활성의 증가 효과가 크지 않다. 또한, 제1 반응기(110)는 연속교반탱크식 반응기(CSTR: continuous stirred tank reactor)일 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 제1 반응기(110)는 회분식 반응기(batch reactor), 반회분식 반응기(semi-batch reactor) 또는 관형 반응기(plug flow reactor)일 수도 있다. 이러한 제1 반응기(110)에서는 주생성물인 클로로히드린류 뿐만 아니라 중간생성물로서 상기 촉매와 상기 다수산기 지방족 탄화수소의 반응 생성물이 생성되며, 상기 중간생성물은 상기 다수산기 지방족 탄화수소의 염소화 반응(예를 들어, 제1 반응기(110) 및/또는 제2 반응기(150)에서 일어나는 클로로히드린류 생성반응)에서 촉매작용을 수행할 수 있다. 예를 들어, 상기 다수산기 지방족 탄화수소가 글리세롤을 포함하고 상기 촉매가 아세트산을 포함할 경우, 상기 중간생성물은 글리세롤아세테이트류를 포함할 수 있다. 본 명세서에서, ‘글리세롤아세테이트류’는 치환 또는 비치환된 글리세롤모노아세테이트, 치환 또는 비치환된 글리세롤디아세테이트, 치환 또는 비치환된 글리세롤트리아세테이트, 또는 이들의 혼합물을 의미한다. 또한 본 명세서에서, ‘치환’이란 화합물 중의 수소 원자가 할로겐기, 히드록시기, 알킬기, 알콕시기, 아민기 또는 이들이 조합된 치환기로 치환된 것을 의미한다. 또한, 제1 반응기(110)에서 반응기 내용물의 체류시간은 20분~1시간일 수 있다. 제1 반응기 내용물의 체류시간이 상기 범위이내이면, 적당한 시간내에 다수산기 지방족 탄화수소의 높은 전환율을 얻을 수 있다.
상기 염소화제는 염화수소 가스 또는 염산 수용액을 포함할 수 있다.
제1 반응기(110)에서 일어나는 반응의 일례는 하기 반응식 1로 표현되는 다수산기 지방족 탄화수소(예를 들어, 글리세롤)의 염소화 반응이다.
[반응식 1]
Figure 112010042546354-pat00001
상기 반응에서 글리세롤의 전환율, 모노클로로프로판디올(MCP)의 수율 디클로로프로판올(DCP)의 수율, 모노클로로프로판디올(MCP)의 선택도 및 디클로로프로판올(DCP)의 선택도는 하기 수학식 1 내지 5에 의해 각각 계산될 수 있다.
[수학식 1]
글리세롤의 전환율(%) = (반응한 글리세롤의 몰수/주입된 글리세롤의 몰수)×100
[수학식 2]
모노클로로프로판디올(MCP)의 수율(%) = (생성된 모노클로로프로판디올의 몰수)/(주입된 글리세롤의 몰수)×100
[수학식 3]
디클로로프로판올(DCP)의 수율(%) = (생성된 디클로로프로판올의 몰수)/(주입된 글리세롤의 몰수)×100
[수학식 4]
모노클로로프로판디올(MCP)의 선택도(%) = (생성된 모노클로로프로판디올의 몰수)/(반응 생성물의 총 몰수)×100
[수학식 5]
디클로로프로판올(DCP)의 선택도(%) = (생성된 디클로로프로판올의 몰수)/(반응 생성물의 총 몰수)×100
상기 체류시간 경과후 제1 반응기 유출물은 제1 반응기(110)로부터 배출되어 라인(3) 및/또는 라인(4)으로 유입된다. 즉, 상기 제1 반응기 유출물 중 적어도 일부는 라인(3)을 통해 제1 혼합장치(120)로 유입되고, 상기 제1 반응기 유출물 중 나머지 부분은 감압장치(131)에서 감압된 후 라인(4)을 통해 물 제거 장치(140)로 유입된다. 여기서, 제1 반응기 유출물은 촉매; 클로로히드린류; 글리세롤아세테이트류와 같은 중간생성물; 물; 미반응 다수산기 지방족 탄화수소; 및/또는 염소화제를 포함할 수 있다. 또한, 염소화제는 라인(2)을 통해 제1 혼합장치(120)로 주입된다. 제1 혼합장치(120)에서는 상기 제1 반응기 유출물이 상기 염소화제와 혼합된 후, 제1 반응기(110)로 재순환된다.
제1 혼합장치(120)는 이젝터, 인라인 믹서, 초음파 믹서 또는 이들 중 2 이상을 포함할 수 있다. 제1 혼합장치(120)가 이젝터일 경우, 상기 제1 반응기 유출물은 구동유체(motive fluid)로 작용하고, 상기 염소화제는 흡입유체(suction fluid)로 작용할 수 있다.
감압장치(131)는 감압밸브를 포함할 수 있다.
상기 추가 염소화제는 염화수소 가스 또는 염산 수용액을 포함할 수 있다.
물 제거 장치(140)는 상기 제1 반응기 유출물의 구성성분들 간의 비등점 차이를 이용하는 증류 조작에 의해 작동될 수 있다.
또한, 물 제거 장치(140)는 대기압 이하의 압력, 예를 들어, 10~760mmHg로 유지될 수 있다. 물 제거 장치(140)의 압력이 상기 범위이내이면, 하부 유출물(즉, 물-부족층)의 온도가 적당해지므로 고비점 물질의 발생량이 감소되어 물 제거 장치(140) 및 배관의 막힘 현상이 방지될 수 있다. 이러한 물 제거 장치(140)는 이론단수가 2~50인 감압증류탑(즉, 탈수탑(141))을 포함할 수 있다. 상기 감압증류탑의 이론단수가 상기 범위이내이면, 상기 물-부족층내의 수분 잔류량을 최소화할 수 있다. 본 명세서에서, ‘이론단수’란 상기 감압증류탑을 이용한 분리공정에서 기상 및 액상과 같은 2개의 상이 서로 평형을 이루는 가상적인 영역 또는 단의 수를 의미한다.
물 제거 장치(140)로 주입되는 상기 제1 반응기 유출물은, 제1 반응기(110)에서 상기 다수산기 지방족 탄화수소의 전환율이 30~100%이고, 상기 클로로히드린류의 수율이 30~95%일때 배출된 것일 수 있다. 물 제거 장치(140)로 주입되는 상기 제1 반응기 유출물에 있어서, 상기 다수산기 지방족 탄화수소의 전환율 및 상기 클로로히드린류의 수율이 각각 상기 범위이내이면, 제1 반응기(110)에서는 반응속도가 저하되는 문제가 발생하지 않고 물 제거 장치(140)에서는 현저한 물 제거 효과를 얻을 수 있다. 또한, 제1 반응기(110)에서는 높은 클로로히드린류의 선택도를 얻을 수 있다. 예를 들어, 물 제거 장치(140)로 주입되는 상기 제1 반응기 유출물은, 상기 다수산기 지방족 탄화수소, 상기 클로로히드린류 및 상기 중간생성물을, 상기 다수산기 지방족 탄화수소 0~90중량부:상기 클로로히드린류 5~95중량부:상기 중간생성물(e.g. 글리세롤아세테이트류) 5~12중량부의 비율로 포함할 수 있다.
또한, 물 제거 장치(140)로 주입되는 상기 제1 반응기 유출물은, 상기 염소화제 및 물을, 상기 염소화제 10~25중량부:물 75~90중량부의 비율로 포함할 수 있다. 상기 염소화제 및 상기 물의 비율이 상기 범위이내이면, 상기 제1 반응기 유출물이 공비혼합물을 형성함으로써 상기 염소화제의 물에 대한 용해도가 증가하여 염소화제의 손실을 최소화할 수 있다.
라인(4)을 통해 물 제거 장치(140)로 유입된 제1 반응기 유출물은 탈수탑(141)에서 기상물질과 기타물질(즉, 액상물질 및 고상물질)로 분리된 후, 기상물질은 응축기(143)에서 응축되어 라인(5)으로 유입되고, 기타물질은 리보일러(142)에서 증류되어 기상물질과 기타물질로 다시 분리된 후 기상물질은 탈수탑(141)으로 재순환되고 기타물질은 라인(6)을 통해 제2 반응기(150)로 유입된다. 구체적으로, 탈수탑(141)의 상부로 배출된 후 응축기(143)에서 응축되어 라인(5)으로 유입되는 물질(이하, 물-풍부층이라고 함)은 물 및 염소화제를 포함하고, 탈수탑(141)의 하부로 배출된 후 리보일러(142)에서 기화되지 않고 라인(6)으로 유입되는 물질(이하, 물-부족층이라고 함)은 미반응 다수산기 지방족 탄화수소, 클로로히드린류 및/또는 전술한 중간생성물을 포함할 수 있다. 상기 중간생성물은 제2 반응기(150)에 주입되어 상기 반응식 1로 표현되는 반응의 촉매작용을 하므로, 제2 반응기(150)에서는 촉매의 추가 투입 없이도 반응이 원활하게 일어날 수 있다.
리보일러(142) 및 응축기(143)는 각각 100~200℃ 및 0~60℃의 온도로 유지될 수 있다.
제2 반응기(150)는 70~200℃의 온도로 유지될 수 있다. 제2 반응기(150)의 온도가 상기 범위이내이면, 적당한 에너지로 높은 클로로히드린류의 수율을 얻을 수 있다. 또한, 제2 반응기(150)는 대기압 이상의 압력, 예를 들어, 1~20기압으로 유지될 수 있다. 제2 반응기(150)의 압력이 상기 범위이내이면, 제2 반응기 내용물에 대한 상기 염소화제의 용해도가 향상될 수 있다. 또한, 제2 반응기(150)는 연속교반탱크식 반응기(CSTR: continuous stirred tank reactor)일 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 제2 반응기(150)는 회분식 반응기(batch reactor), 반회분식 반응기(semi-batch reactor), 또는 관형 반응기(plug flow reactor)일 수도 있다. 이러한 제2 반응기(150)에서는 전술한 중간생성물과, 제2 반응기(150)에 별도로 주입된 염소화제가 접촉하여 클로로히드린류를 추가로 생성한다. 또한, 제2 반응기(150)에서 반응기 내용물의 체류시간은 1시간~3시간일 수 있다. 제2 반응기 내용물의 체류시간이 상기 범위이내이면, 적당한 시간내에 높은 클로로히드린류의 수율을 얻을 수 있다.
제2 반응기(150)에서 일어나는 반응은 제1 반응기(110)에서 일어나는 반응과 동일하거나 유사하다.
상기 체류시간 경과후 제2 반응기 유출물은 제2 반응기(150)로부터 배출되어 라인(7) 및/또는 라인(9)으로 유입된다. 즉, 제2 반응기 유출물 중 적어도 일부는 라인(7)을 통해 제2 혼합장치(160)로 유입되고, 제2 반응기 유출물 중 나머지 부분은 감압장치(132)에서 감압된 후 라인(9)을 통해 제1 증류장치(170)로 유입된다. 여기서, 제2 반응기 유출물은 촉매; 클로로히드린류; 글리세롤아세테이트류와 같은 중간생성물; 물; 미반응 다수산기 지방족 탄화수소; 및/또는 염소화제를 포함할 수 있다. 또한, 염소화제는 라인(8)을 통해 제2 혼합장치(160)로 주입된다. 제2 혼합장치(160)에서는 상기 제2 반응기 유출물이 상기 염소화제와 혼합된 후, 제2 반응기(150)로 재순환된다. 염소화제는 라인(8)이 아닌 기타 경로를 통해서도 제2 반응기(150)로 주입될 수 있다.
제2 혼합장치(160)는 이젝터, 인라인 믹서, 초음파 믹서 또는 이들 중 2 이상을 포함할 수 있다. 혼합장치(160)가 이젝터일 경우, 상기 제2 반응기 유출물은 구동유체(motive fluid)로 작용하고, 상기 염소화제는 흡입유체(suction fluid)로 작용할 수 있다.
감압장치(132)는 감압밸브를 포함할 수 있다.
제1 증류장치(170)는 상기 제2 반응기 유출물의 구성성분들 간의 비등점 차이를 이용하는 증류 조작에 의해 작동될 수 있다.
또한, 제1 증류장치(170)는 대기압 이하의 압력, 예를 들어, 10~760mmHg로 유지될 수 있다. 제1 증류장치(170)의 압력이 상기 범위이내이면, 클로로히드린류를 고효율로 분리할 수 있다. 이러한 제1 증류장치(170)는 이론단수가 2~50인 감압증류탑(즉, 분리탑(171))을 포함할 수 있다. 상기 감압증류탑의 이론단수가 상기 범위이내이면, 클로로히드린류를 고효율로 분리할 수 있다.
제1 증류장치(170)로 주입되는 상기 제2 반응기 유출물은, 다수산기 지방족 탄화수소 0~10중량부, 클로로히드린류 80~98중량부, 염소화제 0~10중량부 및 물 1~20중량부를 포함할 수 있다. 상기 제2 반응기 유출물의 구성성분비가 상기 범위이내이면, 반응이 종결되어 클로로히드린류의 수율이 극대화된 상태임을 의미한다.
라인(9)을 통해 제1 증류장치(170)로 유입된 제2 반응기 유출물은 분리탑(171)에서 기상물질과 액상물질로 분리된 후, 기상물질은 응축기(173)에서 응축되어 라인(10)으로 유입되고, 액상물질은 리보일러(172)에서 증류되어 기상물질과 액상물질로 다시 분리된 후 기상물질은 분리탑(171)으로 재순환되고 액상물질은 라인(11)을 통해 스트리핑 장치(180)로 유입된다. 구체적으로, 분리탑(171)의 상부로 배출된 후 응축기(173)에서 응축되어 라인(10)으로 유입되는 물질은 클로로히드린류, 물 및/또는 염소화제를 포함하고, 분리탑(171)의 하부로 배출된 후 리보일러(172)에서 기화되지 않고 라인(11)으로 유입되는 고비점 물질은 글리세롤아세테이트류와 같은 중간생성물을 포함할 수 있다. 이때, 상당량의 클로로히드린류가 상기 중간생성물과 함께 라인(11)으로 유입될 수 있다. 여기서, 리보일러(172) 및 응축기(173)는 각각 100~200℃ 및 0~60℃의 온도로 유지될 수 있다.
이러한 제1 증류장치(170)에서는 다수산기 지방족 탄화수소의 염소화 반응, 즉 클로로히드린류의 생성 반응이 추가로 일어날 수 있다.
스트리핑 장치(180)는 라인(12)을 통해 주입된 스팀을 이용하여 라인(11)을 통해 고비점 물질과 함께 유입된 클로로히드린류와 같은 저비점 물질을 분리해낸다. 스트리핑 장치(180)에서 회수된 저비점 물질은 라인(13)으로 유입되고, 고비점 물질은 라인(14)을 통해 외부로 배출된다.
제1 증류장치(170)와 스트리핑 장치(180)를 통칭하여 클로로히드린류의 정제장치라고 한다.
라인(10) 및 라인(13)으로 유입된 물질들을 통칭하여 클로로히드린류 농축물이라고 한다.
라인(5), 라인(10) 및 라인(13)으로 유입된 물질들은 한 지점에서 합쳐져 제1 클로로히드린류 조성물(first composition of chlorohydrins)을 형성할 수 있다.
상기 제1 클로로히드린류 조성물은, 다수산기 지방족 탄화수소 0~10중량부, 클로로히드린류 60~96중량부, 염소화제 0~20중량부 및 물 0~30중량부를 포함할 수 있다.
상기와 같은 구성을 갖는 클로로히드린류의 제조방법은 염소화제 및/또는 촉매의 손실이 없이 반응 부산물인 물을 제거함으로써, 반응속도의 저하를 방지하고 클로로히드린류의 선택도를 증가시킬 수 있다.
상기 제1 클로로히드린류 조성물은 에피클로로히드린의 제조에 사용될 수 있다. 다만, 상기 제1 클로로히드린류 조성물은 에피클로로히드린의 제조에 사용되기 전에 물로 희석되어 제2 클로로히드린류 조성물을 형성할 수 있다. 구체적으로, 도 1을 참조하면, 라인(15)으로 유입된 제1 클로로히드린류 조성물은 라인(16)으로 유입된 물과 혼합되어 제2 클로로히드린류 조성물을 형성할 수 있다. 이와 같이 상기 제1 클로로히드린류 조성물을 에피클로로히드린의 제조에 사용되기 전에 물로 희석하여 제2 클로로히드린류 조성물을 형성하는 이유는, 고농도의 클로로히드린류를 사용하여 에피클로로히드린을 제조하게 되면, 부산물의 생성량이 많아져서 에피클로로히드린의 선택도가 낮아지기 때문이다. 상기 희석시, 상기 물은 상기 제1 클로로히드린류 조성물 100중량부에 대하여 100~500중량부의 비율로 첨가될 수 있다. 상기 물의 첨가량이 상기 범위이내이면, 적정량의 물로 부산물의 생산량을 감소시켜 에피클로로히드린의 수율을 극대화할 수 있다.
상기 제2 클로로히드린류 조성물은 알칼리제와 함께 에피클로로히드린 제조의 반응원료로 사용될 수 있다. 상기 제2 클로로히드린류 조성물은 다수산기 지방족 탄화수소 0~5중량부, 클로로히드린류 10~40중량부, 염소화제 0~5중량부 및 물 50~90중량부를 포함할 수 있다.
상기 제2 클로로히드린류 조성물의 구성성분비가 상기 범위이내이면, 부산물의 생산량이 감소되어 에피클로로히드린의 수율이 극대화될 수 있다.
인라인 반응기(190)에서는 상기 제2 클로로히드린류 조성물이 라인(17)으로 주입된 알칼리제(예를 들어, 수산화나트륨 수용액)와 접촉하여 하기와 같은 2가지 반응이 일어날 수 있다: 즉, 상기 제2 클로로히드린류 조성물이 상기 알칼리제와 접촉한 후 접촉시간이 경과함에 따라, 상기 제2 클로로히드린류 조성물과 상기 알칼리제의 혼합물의 pH가 점진적으로 증가하게 된다. 이때, 상기 pH가 7 이하일 경우에는 상기 제2 클로로히드린류 조성물 중의 촉매가 상기 알칼리제와 반응하여 알칼리금속염을 형성할 수 있다. 상기 형성된 알칼리금속염은 침전되어 후술하는 제2 증류장치(200)에서 제거될 수 있다. 상기 pH가 7을 초과할 경우에는 상기 제2 클로로히드린류 조성물 중의 클로로히드린류(예를 들어, 디클로로프로판올)가 상기 알칼리제와 반응하여 에피클로로히드린을 형성할 수 있다. 여기서, 인라인 반응기(190)는 20~100℃의 온도 및 1~2기압의 압력으로 유지될 수 있다. 인라인 반응기(190)의 온도 및 압력이 각각 상기 범위이내이면, 적당한 에너지의 투입으로 반응이 원활하게 진행될 수 있다.
또한, 상기 제1 클로로히드린류 조성물은 전술한 촉매를 포함할 수 있고, 이에 따라, 상기 제2 클로로히드린류 조성물도 상기 촉매를 포함할 수 있다. 따라서, 인라인 반응기(190)에서는 주생성물인 에피클로로히드린을 형성하는 반응뿐만 아니라 상기 알칼리제와 상기 촉매가 접촉함에 의해 알칼리금속염을 형성하는 반응도 일어날 수 있다.
도 1에는 상기 제1 클로로히드린류 조성물(즉, 라인(15)의 조성물)에 물을 첨가하여 제2 클로로히드린류 조성물을 형성하고, 상기 형성된 제2 클로로히드린류 조성물에 알칼리제를 첨가하는 것으로 도시되어 있으나, 본 발명이 이에 한정되는 것은 아니다. 예를 들어, 상기 제1 클로로히드린류 조성물에 직접 알칼리제를 첨가하여 촉매를 먼저 제거한 후, 상기 촉매가 제거된 제1 클로로히드린류 조성물에 물을 첨가하여 제2 클로로히드린류 조성물을 제조할 수도 있다. 즉, 도 1에서 라인(16)과 라인(17)의 위치가 서로 바뀔 수 있다.
인라인 반응기(190)에서 배출된 에피클로로히드린 및 알칼리금속염 함유 물질은 라인(18)을 통해 제2 증류장치(200)로 유입된다.
제2 증류장치(200)는 상기 에피클로로히드린 및 알칼리금속염 함유 물질의 구성성분들 간의 비등점 차이를 이용하는 증류 조작에 의해 작동될 수 있다.
또한, 제2 증류장치(200)는 대기압 이하의 압력, 예를 들어, 10~760mmHg로 유지될 수 있다. 제2 증류장치(200)의 압력이 상기 범위이내이면, 에피클로로히드린을 고효율로 분리할 수 있다. 이러한 제2 증류장치(200)는 이론단수가 2~50인 감압증류탑(즉, 분리탑(201))을 포함할 수 있다. 상기 감압증류탑의 이론단수가 상기 범위이내이면, 에피클로로히드린을 고효율로 분리할 수 있다.
라인(18)을 통해 제2 증류장치(200)로 유입된 인라인 반응기(190) 유출물은 분리탑(201)에서 기상물질과 액상물질로 분리된 후, 기상물질은 응축기(203)에서 응축되어 라인(19)으로 유입된 후 회수되고, 액상물질은 리보일러(202)에서 증류되어 기상물질과 액상물질로 다시 분리된 후 기상물질은 분리탑(201)으로 재순환되고 액상물질은 라인(20)을 통해 외부로 배출된다. 구체적으로, 분리탑(201)의 상부로 배출된 후 응축기(203)에서 응축되어 라인(19)으로 유입되는 물질은 에피클로로히드린 및 물을 포함하고, 분리탑(201)의 하부로 배출된 후 리보일러(202)에서 기화되지 않고 라인(20)을 통해 외부로 배출되는 고비점 물질은 알칼리금속염을 포함할 수 있다. 여기서, 리보일러(202) 및 응축기(203)는 각각 60~110℃ 및 0~60℃의 온도로 유지될 수 있다.
이러한 제2 증류장치(200)에서는 에피클로로히드린의 생성 반응이 추가로 일어날 수 있다.
이하, 실시예들을 들어 본 발명에 관하여 더욱 상세히 설명하지만, 본 발명이 이러한 실시예들에 한정되는 것은 아니다.
실시예
(아세트산 촉매하에서 글리세롤과 염화수소 가스로부터 클로로히드린류 및 에피클로로히드린의 제조)
도 1과 같은 구성을 갖는 제조공정을 사용하여 아세트산 촉매의 존재하에 글리세롤과 염화수소 가스를 반응시켜 클로로히드린류 및 에피클로로히드린을 제조하였다. 상기 제조공정에 사용된 각 장치의 사양 및 운전조건은 하기 표 1과 같았다:
구분 장치의 사양 운전조건
제1 반응기 CSTR 120℃, 4기압
혼합장치(2개) 진공 이젝터 -
감압장치(2개) 감압밸브 46mmHg
물 제거 장치 감압증류 탈수탑 이론단수: 20단,
압력: 23mmHg
리보일러 114℃, 46mmHg
응축기 49℃, 23mmHg
제2 반응기 CSTR 120℃, 4기압
제1 증류장치
(물 제거 장치 후단)
감압증류 분리탑 이론단수: 20단,
압력: 23mmHg
리보일러 127℃, 46mmHg
응축기 56℃, 23mmHg
스트리핑 장치 스팀 스트리핑 스트리핑 장치 압력: 152mmHg
스팀 143℃, 3기압
인라인 반응기 관형 반응기 70℃, 1기압
제2 증류장치
(인라인 반응기 후단)
감압증류 분리탑 이론단수: 20단,
압력: 1기압
리보일러 104℃, 1기압
응축기 35℃, 1기압
또한, 상기 제조공정의 각 라인을 통해 이송되는 물질의 총 유속, 상기 물질의 구성성분 및 상기 각 구성성분의 유속을 각각 측정하여 하기 표 2에 나타내었다. 상기 각 구성성분의 유속은 각 라인을 통해 이송되는 물질의 총 유속을 측정하고, 각 라인에서 채취한 물질의 성분비를 가스크로마토그래피로 분석한 후, 상기 총 유속과 상기 물질의 성분비를 서로 곱하여 계산하였다.
라인 번호 총 유속
(Kg/hr)
이송 물질의 구성성분 유속(Kg/hr)
1 315 글리세롤 300
아세트산 15
2 228 HCl 228
3 5713 모노클로로프로판디올 555
디클로로프로판올 3444
글리세롤아세테이트류 229
1083
글리세롤 78
HCl 269
아세트산 55
4 543 모노클로로프로판디올 53
디클로로프로판올 327
글리세롤아세테이트류 22
103
글리세롤 7
HCl 26
아세트산 5
5 250 디클로로프로판올 116
103
HCl 26
아세트산 5
6 293 모노클로로프로판디올 53
디클로로프로판올 211
글리세롤아세테이트류 22
글리세롤 7
7 6382 모노클로로프로판디올 268
디클로로프로판올 5431
글리세롤아세테이트류 443
188
글리세롤 6
HCl 46
8 21 HCl 21
9 314 모노클로로프로판디올 13
디클로로프로판올 268
글리세롤아세테이트류 22
9
글리세롤 0
HCl 2
10 254 디클로로프로판올 243
9
HCl 2
11 60 모노클로로프로판디올 13
디클로로프로판올 25
글리세롤아세테이트류 22
글리세롤 0
12 60 스팀 60
13 85 모노클로로프로판디올 2
디클로로프로판올 24
59
14 35 모노클로로프로판디올 11
디클로로프로판올 1
글리세롤아세테이트류 22
1
글리세롤 0
15 589 모노클로로프로판디올 2
디클로로프로판올 383
171
글리세롤 0
HCl 28
아세트산 5
16 2000 2000
17 640 NaOH 160
480
18 3229 디클로로프로판올 8
에피클로로히드린 268
2718
글리세롤 3
아세트산나트륨 7
NaCl 215
NaOH 10
19 274 디클로로프로판올 0
에피클로로히드린 272
2
20 2955 2718
글리세롤 4
아세트산나트륨 7
NaCl 219
NaOH 7
평가예
반응이 진행되는 도중에 5분 간격으로 라인(4) 및 라인(15)에서 시료를 각각 채취한 다음, 가스크로마토그래피를 이용하여 상기 각 시료의 구성성분 및 각 구성성분의 함량비를 분석하였다. 상기 분석데이터 중 정상상태 도달후의 데이터를 이용하여 상기 수학식 1 내지 수학식 5에 따라, 글리세롤의 전환율, 모노클로로프로판디올의 수율, 디클로로프로판올의 수율, 모노클로로프로판디올의 선택도 및 디클로로프로판올의 선택도를 각각 계산한 후, 그 결과를 하기 표 3에 나타내었다.
시료 채취 지점
라인(4) 라인(15)
글리세롤의 전환율(%) 97.5 100
모노클로로프로판디올의 수율(%) 14.6 0.6
디클로로프로판올의 수율(%) 77.9 94.2
클로로히드린류의 수율*1(%) 92.5 94.8
모노클로로프로판디올의 선택도(%) 14.6 0.6
디클로로프로판올의 선택도(%) 77.9 94.2
클로로히드린류의 선택도*2(%) 92.5 94.8
*1: 모노클로로프로판디올의 수율 + 디클로로프로판올의 수율
*2: 모노클로로프로판디올의 선택도 + 디클로로프로판올의 선택도
상기 표 3을 참조하면, 라인(15)에서 채취된 시료에서 클로로히드린류의 수율(94.8%) 및 선택도(94.8%)가 매우 높은 것으로 나타났다. 또한, 디클로로프로판올의 수율 및 선택도가 모노클로로프로판디올의 수율 및 선택도 보다 각각 훨씬 더 높은 것으로 나타났다.
이상에서 도면 및 실시예를 참조하여 본 발명에 따른 바람직한 실시예가 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 보호범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다.
100: 클로로히드린류 및 에피클로로히드린의 제조공정
110: 제1 반응기 120, 160: 혼합장치
131, 132: 감압장치 140: 탈수장치
141: 탈수탑 142, 172, 202: 리보일러
143, 173, 203: 응축기 150: 제2 반응기
170, 200: 증류장치 171, 201: 분리탑
180: 스트리핑 장치 190: 인라인 반응기

Claims (29)

  1. 촉매의 존재하에 다수산기 지방족 탄화수소를 염소화제와 반응시켜 클로로히드린류를 제조하는 방법으로서,
    다수산기 지방족 탄화수소를 염소화제와 반응시키는 제1 반응단계;
    상기 제1 반응단계에서 배출된 반응 혼합물에서 부산물인 물을 제거하는 단계; 및
    상기 단계에서 물이 제거된 반응 혼합물의 적어도 한 구성성분을 상기 염소화제 및 추가 염소화제 중 적어도 하나와 반응시키는 제2 반응단계를 상기 순서로 포함하는 일련의 단위조작들의 조합을 적어도 하나 포함하고,
    상기 복수의 반응단계들 중 최종 반응단계에서 배출된 반응 혼합물을 정제하여 클로로히드린류 농축물을 얻는 단계를 추가로 포함하고,
    상기 물을 제거하는 단계로 주입되는 상기 제1 반응단계에서 배출된 반응 혼합물은, 염소화제 및 물을, 상기 염소화제 10~25중량부:물 75~90중량부의 비율로 포함하여 공비혼합물을 형성하는 클로로히드린류의 제조방법.
  2. 제1항에 있어서,
    상기 복수의 반응단계들 중 적어도 하나의 반응단계에서 배출된 반응 혼합물의 적어도 일부를 추가 염소화제와 혼합한 후 상기 반응 혼합물이 배출된 반응단계로 재순환시키는 단계를 추가로 포함하는 클로로히드린류의 제조방법.
  3. 다수산기 지방족 탄화수소, 촉매 및 염소화제를 50~200℃의 온도로 유지되는 제1 반응기로 주입하는 단계;
    상기 제1 반응기로부터 부산물인 물을 포함하는 제1 반응기 유출물을 배출시키는 단계;
    상기 제1 반응기 유출물 중의 적어도 일부를 물 제거 장치로 주입하는 단계;
    상기 물이 제거된 제1 반응기 유출물을 80~200℃의 온도로 유지되는 제2 반응기로 주입하는 단계; 및
    상기 제2 반응기 유출물 중의 적어도 일부를 클로로히드린류의 정제장치로 주입하여 클로로히드린류 농축물을 얻는 단계를 포함하고,
    상기 물 제거 장치로 주입되는 상기 제1 반응기 유출물은, 염소화제 및 물을, 상기 염소화제 10~25중량부:물 75~90중량부의 비율로 포함하여 공비혼합물을 형성하는 클로로히드린류의 제조방법.
  4. 제3항에 있어서,
    상기 제1 반응기 유출물 중의 적어도 일부 및 추가 염소화제를 제1 혼합장치로 주입하여 혼합한 후, 이 혼합물을 상기 제1 반응기로 재순환시키는 단계; 및 상기 제2 반응기 유출물 중의 적어도 일부 및 추가 염소화제를 제2 혼합장치로 주입하여 혼합한 후, 이 혼합물을 상기 제2 반응기로 재순환시키는 단계 중 적어도 하나의 단계를 추가로 포함하는 클로로히드린류의 제조방법.
  5. 제1항 또는 제3항에 있어서,
    상기 다수산기 지방족 탄화수소는, 각기 다른 탄소 원자에 결합된 2 이상의 수산기를 포함하는, 탄소수 2~20의 화합물인 클로로히드린류의 제조방법.
  6. 제5항에 있어서,
    상기 다수산기 지방족 탄화수소는 1,2-에탄디올, 1,2-프로판디올, 1,3-프로판디올, 3-클로로-1,2-프로판디올, 2-클로로-1,3-프로판디올, 글리세롤, 1,2,4-부탄트리올, 1,4-부탄디올 및 상기 각 화합물의 에스테르로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함하는 클로로히드린류의 제조방법.
  7. 제1항 또는 제3항에 있어서,
    상기 클로로히드린류 농축물 중의 클로로히드린류는 각기 다른 탄소 원자와 결합된 적어도 하나의 수산기와 적어도 하나의 염소 원자를 포함하는 화합물인 클로로히드린류의 제조방법.
  8. 제7항에 있어서,
    상기 클로로히드린류는 3-클로로-1,2-프로판디올, 2-클로로-1,3-프로판디올, 1,3-디클로로프로판-2-올 및 2,3-디클로로 프로판-1-올로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함하는 클로로히드린류의 제조방법.
  9. 제1항 또는 제3항에 있어서,
    상기 촉매는 유기산 촉매, 카르복실산계 촉매, 니트릴계 촉매 및 고체 촉매로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 클로로히드린류의 제조방법.
  10. 제3항에 있어서,
    상기 제1 반응기에서는 중간생성물로서 상기 촉매와 상기 다수산기 지방족 탄화수소의 반응 생성물이 생성되며, 상기 중간생성물은 상기 다수산기 지방족 탄화수소의 염소화 반응에서 촉매작용을 하는 클로로히드린류의 제조방법.
  11. 제10항에 있어서,
    상기 다수산기 지방족 탄화수소는 글리세롤을 포함하고, 상기 촉매는 아세트산을 포함하며, 상기 중간생성물은 글리세롤아세테이트류를 포함하는 클로로히드린류의 제조방법.
  12. 제1항 또는 제4항에 있어서,
    상기 염소화제 및 추가 염소화제는 염화수소 가스 또는 염산 수용액을 포함하는 클로로히드린류의 제조방법.
  13. 제3항에 있어서,
    상기 물 제거 장치로 주입되는 상기 제1 반응기 유출물은, 상기 제1 반응기에서 다수산기 지방족 탄화수소의 전환율이 30~100%이고 클로로히드린류의 수율이 30~95%일때 배출된 것인 클로로히드린류의 제조방법.
  14. 제10항에 있어서,
    상기 물 제거 장치로 주입되는 상기 제1 반응기 유출물은, 다수산기 지방족 탄화수소, 클로로히드린류 및 상기 중간생성물을, 상기 다수산기 지방족 탄화수소 0~90중량부:상기 클로로히드린류 5~95중량부:상기 중간생성물 5~12중량부의 비율로 포함하는 클로로히드린류의 제조방법.
  15. 삭제
  16. 제3항에 있어서,
    상기 클로로히드린류의 정제장치는 증류장치를 포함하는 클로로히드린류의 제조방법.
  17. 제16항에 있어서,
    상기 클로로히드린류의 정제장치는 상기 증류장치의 후단에 스트리핑 장치를 추가로 포함하는 클로로히드린류의 제조방법.
  18. 제3항에 있어서,
    상기 제1 반응기에서 반응기 내용물의 체류시간은 20분~1시간이고, 상기 제2 반응기에서 반응기 내용물의 체류시간은 1시간~3시간인 클로로히드린류의 제조방법.
  19. 제3항에 있어서,
    상기 물 제거 장치는 상기 제1 반응기 유출물의 구성성분들 간의 비등점 차이를 이용하는 증류 조작에 의해 작동되는 클로로히드린류의 제조방법.
  20. 제3항에 있어서,
    상기 제1 반응기 및 제2 반응기는 대기압 이상의 압력으로 유지되고, 상기 물 제거 장치는 대기압 이하의 압력으로 유지되는 클로로히드린류의 제조방법.
  21. 제20항에 있어서,
    상기 제1 반응기 및 제2 반응기는 1~20기압으로 유지되고, 상기 물 제거 장치는 10~760mmHg로 유지되는 클로로히드린류의 제조방법.
  22. 제21항에 있어서,
    상기 물 제거 장치는 이론단수가 2~50인 감압증류탑을 포함하는 클로로히드린류의 제조방법.
  23. 제20항에 있어서,
    상기 제1 반응기 유출물은 감압장치에서 감압된 후 상기 물 제거 장치로 주입되는 클로로히드린류의 제조방법.
  24. 제23항에 있어서,
    상기 감압장치는 감압밸브를 포함하는 클로로히드린류의 제조방법.
  25. 제3항에 있어서,
    상기 제1 반응기 및 제2 반응기는, 서로 독립적으로, 연속교반탱크식 반응기(continuous stirred tank reactor), 회분식 반응기(batch reactor), 반회분식 반응기(semi-batch reactor) 또는 관형 반응기(plug flow reactor)인 클로로히드린류의 제조방법.
  26. 제3항에 있어서,
    상기 물 제거 장치로 주입된 상기 제1 반응기 유출물은 물-풍부층 및 물-부족층으로 분리되는 클로로히드린류의 제조방법. 
  27. 제3항에 있어서,
    상기 제2 반응기 유출물 중 상기 클로로히드린류의 정제장치로 주입되는 부분은, 다수산기 지방족 탄화수소 0~10중량부, 클로로히드린류 80~98중량부, 염소화제 0~10중량부 및 물 1~20중량부를 포함하는 클로로히드린류의 제조방법.
  28. 제1항 또는 제3항에 따른 클로로히드린류의 제조방법을 사용하여 클로로히드린류를 포함하는 클로로히드린류 조성물을 제조하는 단계; 및 상기 클로로히드린류 조성물을 알칼리제와 20~100℃에서 접촉시키는 단계를 포함하고,
    상기 클로로히드린류 조성물은 다수산기 지방족 탄화수소 0~5중량부, 클로로히드린류 10~40중량부, 염소화제 0~5중량부 및 물 50~90중량부를 포함하는 에피클로로히드린의 제조방법.
  29. 제28항에 있어서,
    상기 클로로히드린류 조성물은 촉매를 추가로 포함하고, 상기 촉매는 상기 알칼리제와 반응하여 알칼리금속염을 형성하는 에피클로로히드린의 제조방법.
KR1020100063157A 2010-06-30 2010-06-30 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법 KR101705206B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020100063157A KR101705206B1 (ko) 2010-06-30 2010-06-30 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
EP11801055.2A EP2589584B1 (en) 2010-06-30 2011-06-08 Method for preparing chlorohydrins and method for preparing epichlorohydrin using chlorohydrins prepared thereby
JP2013518226A JP5837584B2 (ja) 2010-06-30 2011-06-08 クロロヒドリン類の製造方法及びその方法によって製造されたクロロヒドリン類を使用するエピクロロヒドリンの製造方法
PCT/KR2011/004168 WO2012002648A2 (ko) 2010-06-30 2011-06-08 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
US13/805,750 US8969630B2 (en) 2010-06-30 2011-06-08 Method for preparing chlorohydrins and method for preparing epichlorohydrin using chlorohydrins prepared thereby
CN2011800320911A CN103038200A (zh) 2010-06-30 2011-06-08 用于制备氯醇的方法以及使用由所述方法制备的氯醇制备表氯醇的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100063157A KR101705206B1 (ko) 2010-06-30 2010-06-30 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법

Publications (2)

Publication Number Publication Date
KR20120002334A KR20120002334A (ko) 2012-01-05
KR101705206B1 true KR101705206B1 (ko) 2017-02-09

Family

ID=45402510

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100063157A KR101705206B1 (ko) 2010-06-30 2010-06-30 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법

Country Status (6)

Country Link
US (1) US8969630B2 (ko)
EP (1) EP2589584B1 (ko)
JP (1) JP5837584B2 (ko)
KR (1) KR101705206B1 (ko)
CN (1) CN103038200A (ko)
WO (1) WO2012002648A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101705208B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705210B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705205B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
US9711014B2 (en) 2013-09-06 2017-07-18 Immersion Corporation Systems and methods for generating haptic effects associated with transitions in audio signals
CN104370857A (zh) * 2014-11-11 2015-02-25 常州大学 一种环氧氯丙烷的合成方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ20032346A3 (cs) * 2003-09-01 2005-04-13 Spolek Pro Chemickou A Hutní Výrobu,A.S. Způsob přípravy dichlorpropanolů z glycerinu
DE602004031895D1 (de) * 2003-11-20 2011-04-28 Solvay Verfahren zur Herstellung von Dichlorpropanol
CA2598667C (en) * 2003-11-20 2012-04-03 Solvay (Societe Anonyme) Process for producing a chlorinated organic compound
WO2006020234A1 (en) * 2004-07-21 2006-02-23 Dow Global Technologies Inc. Conversion of a multihydroxylated-aliphatic hydrocarbon or ester thereof to a chlorohydrin
CA2608722A1 (en) * 2005-05-20 2006-09-28 Solvay (Societe Anonyme) Method for making an epoxide starting with a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent
KR20080036553A (ko) * 2005-05-20 2008-04-28 솔베이(소시에떼아노님) 폴리히드록실화 지방족 탄화수소 및 염소화제로부터 출발한에폭시드의 제조 방법
EP1762556A1 (en) * 2005-05-20 2007-03-14 SOLVAY (Société Anonyme) Process for producing dichloropropanol from glycerol
FR2913684B1 (fr) 2007-03-14 2012-09-14 Solvay Procede de fabrication de dichloropropanol
KR101410019B1 (ko) * 2007-09-28 2014-06-26 한화케미칼 주식회사 다가알코올과 염화수소의 반응에 의한 클로로히드린화합물의 제조방법
PL2219779T3 (pl) * 2007-11-19 2012-10-31 Conser Spa Konwersja gliceryny do dichlorohydryn i epichlorohydryny
KR101705208B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705210B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705205B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법

Also Published As

Publication number Publication date
EP2589584A2 (en) 2013-05-08
KR20120002334A (ko) 2012-01-05
WO2012002648A2 (ko) 2012-01-05
US8969630B2 (en) 2015-03-03
JP2013535417A (ja) 2013-09-12
WO2012002648A3 (ko) 2012-05-03
JP5837584B2 (ja) 2015-12-24
US20130096327A1 (en) 2013-04-18
EP2589584A4 (en) 2015-08-05
CN103038200A (zh) 2013-04-10
EP2589584B1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
KR101705206B1 (ko) 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
KR101705210B1 (ko) 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705208B1 (ko) 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705209B1 (ko) 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705207B1 (ko) 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
KR101705205B1 (ko) 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200120

Year of fee payment: 4