JP5837584B2 - クロロヒドリン類の製造方法及びその方法によって製造されたクロロヒドリン類を使用するエピクロロヒドリンの製造方法 - Google Patents

クロロヒドリン類の製造方法及びその方法によって製造されたクロロヒドリン類を使用するエピクロロヒドリンの製造方法 Download PDF

Info

Publication number
JP5837584B2
JP5837584B2 JP2013518226A JP2013518226A JP5837584B2 JP 5837584 B2 JP5837584 B2 JP 5837584B2 JP 2013518226 A JP2013518226 A JP 2013518226A JP 2013518226 A JP2013518226 A JP 2013518226A JP 5837584 B2 JP5837584 B2 JP 5837584B2
Authority
JP
Japan
Prior art keywords
reactor
chlorohydrins
water
producing
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013518226A
Other languages
English (en)
Other versions
JP2013535417A (ja
Inventor
ウォン ソ ソン
ウォン ソ ソン
スン ユ ウ
スン ユ ウ
ブ ウェン ソン
ブ ウェン ソン
ソン ハン パク
ソン ハン パク
ミュン ス ウォン
ミュン ス ウォン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lotte Fine Chemical Co Ltd
Original Assignee
Samsung Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Fine Chemicals Co Ltd filed Critical Samsung Fine Chemicals Co Ltd
Publication of JP2013535417A publication Critical patent/JP2013535417A/ja
Application granted granted Critical
Publication of JP5837584B2 publication Critical patent/JP5837584B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/64Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by simultaneous introduction of -OH groups and halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/62Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/34Halogenated alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、クロロヒドリン類の製造方法及びその方法によって製造されたクロロヒドリン類を使用するエピクロロヒドリンの製造方法に係り、さらに詳細には、触媒の存在下で、多水酸基脂肪族炭化水素を塩素化剤と反応させることにより、複数の反応工程、及び前記複数の反応工程間に介在する水除去工程を含み、前記複数の反応工程のうち最終反応工程で排出された混合物からクロロヒドリン類を精製する工程をさらに含むクロロヒドリン類の製造方法、及び該方法によって製造されたクロロヒドリン類をアルカリ剤と反応させる工程を含むエピクロロヒドリンの製造方法に関する。
現在、バイオディーゼル(bio-diesel)は、全世界的に競争して開発されて生産されており、韓国でもすでに生産が開始され、ディーゼル油の添加原料として商業的に使用されている。
このようなバイオディーゼルを生産する過程で、バイオディーゼル生産量の約10%に該当する膨大な量のグリセロールが生産されている。しかし、このようなグリセロールは、需要に比べて供給が過剰になっており、その価値が持続的に下落しているので、これを付加価置の高いジクロロプロパノール(dichloropropanol)等のクロロヒドリン類に転換させることによって、グリセロールの高付加価値化を果たすのが望ましい。
一方、ジクロロプロパノール等のクロロヒドリン類(chlorohydrins)は、エピクロロヒドリン(epichlorohydrin)を製造するための原料として使用されるが、現在市場に供給されるほとんどのクロロヒドリン類は、プロピレンから製造される。具体的には、クロロヒドリン類の製造方法は、プロピレンの高温塩素化反応によって、塩化アリル(allyl chloride)を製造する工程、及び過剰の工業用水を使用して前記塩化アリルを塩素化剤とさらに反応させて、クロロヒドリン類を製造する工程の2工程から構成される。しかしながら、プロピレンを使用するクロロヒドリン類の製造方法は、プロピレンの価格上昇によるプロピレンの需給不安定さ、多量の廃水及び廃棄物の発生、2段階の製造プロセスによる過多な初期投資コスト、及びこれによる製造装置の新増設/修繕の困難さ等の問題点を有する。
したがって、触媒の存在下で、バイオディーゼル副産物であるグリセロール等の多水酸基脂肪族炭化水素を塩素化剤と反応させる1段階製造方法によってクロロヒドリン類を直接製造する工程は、より経済性である。グリセロール等の多水酸基脂肪族炭化水素を反応原料として使用する、このような1工程クロロヒドリン類の製造方法は、安価である多水酸基脂肪族炭化水素を使用するので、原料費を節減できるだけではなく、工程中で工業用水を必要としないため、廃水及び廃棄物の発生量を画期的に低減させることができるので、環境的に有利であり、かつ、製造及び環境に関連する初期投資額を減らすことができるという利点がある。
しかし、前記クロロヒドリン類の製造方法は、副産物として水を生成し、該生成した水が、グリセロール等の多水酸基脂肪族炭化水素の塩素化反応を阻害し、反応が進行するにつれて反応速度が徐々に遅くなって反応時間が長くなり、クロロヒドリン類の選択性が低下するという問題点がある。
本発明は、触媒の存在下で、多水酸基脂肪族炭化水素を塩素化剤と反応させる工程を含むクロロヒドリン類の製造方法であって、複数の反応工程と、前記複数の反応工程間に介在された水除去工程とを含み、前記複数の反応工程のうち最終反応工程で排出された反応混合物からクロロヒドリン類を精製する工程をさらに含む、クロロヒドリン類の製造方法を提供する。
本発明はまた、前記クロロヒドリン類の製造方法によって製造されたクロロヒドリン類をアルカリ剤と反応させる工程を含む、エピクロロヒドリンの製造方法を提供する。
本発明の一態様は、触媒の存在下で、多水酸基脂肪族炭化水素を塩素化剤と反応させてクロロヒドリン類を製造する方法であって、複数の反応工程及び水除去工程を下記に規定される順で含む一連の単位操作の組み合わせを少なくとも1つ含み、
多水酸基脂肪族炭化水素を塩素化剤と反応させる第1反応工程;
前記第1反応工程で排出された反応混合物から、副産物である水を除去する工程;
水が除去された前記反応混合物の少なくとも1つの構成成分を、前記塩素化剤及び追加塩素化剤のうち少なくとも1つと反応させる第2反応工程;
前記複数の反応工程のうち、最終工程で排出された反応混合物を精製し、クロロヒドリン類濃縮物を得る工程をさらに含む、クロロヒドリン類の製造方法を提供する。
前記クロロヒドリン類の製造方法は、前記複数の反応工程のうち、少なくとも1つの反応工程で排出された反応混合物の少なくとも一部を追加塩素化剤と混合した後、前記反応混合物が排出された反応工程に再循環させる工程をさらに含む。
本発明の他の態様は、多水酸基脂肪族炭化水素、触媒及び塩素化剤を、50〜200℃の温度に維持される第1反応器に注入する工程と、
副産物である水を含む第1反応器流出物を、前記第1反応器から排出させる工程と、
前記第1反応器流出物のうち少なくとも一部を水除去装置に注入する工程と、
前記水が除去された第1反応器流出物を、80〜200℃の温度に維持される第2反応器に注入する工程と、
前記第2反応器流出物中の少なくとも一部をクロロヒドリン類の精製装置に注入し、クロロヒドリン類濃縮物を得る工程と、を含むクロロヒドリン類の製造方法を提供する。
前記クロロヒドリン類の製造方法は、前記第1反応器流出物中の少なくとも一部及び追加塩素化剤を第1混合装置に注入して混合させた後、該混合物を前記第1反応器に再循環させる工程と、前記第2反応器流出物中の少なくとも一部及び追加塩素化剤を第2混合装置に注入して混合させた後、該混合物を前記第2反応器に再循環させる工程と、のうち少なくとも1つの工程をさらに含んでもよい。
前記多水酸基脂肪族炭化水素は、それぞれ異なる炭素原子に結合された2以上の水酸基を含む、C−C20化合物であってもよい。
前記多水酸基脂肪族炭化水素は、1,2−エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、3−クロロ−1,2−プロパンジオール、2−クロロ−1,3−プロパンジオール、グリセロール、1,2,4−ブタントリオール、1,4−ブタンジオール、及び前記各化合物のエステルからなる群から選ばれる少なくとも1種の化合物を含んでもよい。
前記クロロヒドリン類濃縮物中のクロロヒドリン類は、それぞれ異なる炭素原子と結合された少なくとも1つの水酸基と、少なくとも1つの塩素原子とを含む化合物であってもよい。
前記クロロヒドリン類は、3−クロロ−1,2−プロパンジオール、2−クロロ−1,3−プロパンジオール、1,3−ジクロロプロパン−2−オール及び2,3−ジクロロプロパン−1−オールからなる群から選ばれる少なくとも1種の化合物を含んでもよい。
前記触媒は、有機酸触媒、カルボン酸系触媒、ニトリル系触媒及び固体触媒からなる群から選ばれる少なくとも1つを含んでもよい。
前記第1反応器では、中間生成物として、前記触媒と、前記多水酸基脂肪族炭化水素との反応生成物が生成され、前記中間生成物は、前記多水酸基脂肪族炭化水素の塩素化反応において触媒として作用することができる。
前記多水酸基脂肪族炭化水素は、グリセロールを含み、前記触媒は、酢酸を含み、前記中間生成物は、グリセロールアセテート類を含んでもよい。
前記塩素化剤及び/または追加塩素化剤は、塩化水素ガスまたは塩酸水溶液を含んでもよい。
前記水除去装置に注入される前記第1反応器流出物は、前記第1反応器で、多水酸基脂肪族炭化水素の転換率が30〜100%であり、クロロヒドリン類の収率が30〜95%であるときに排出されたものであってもよい。
前記水除去装置に注入される前記第1反応器流出物は、記水除去装置に注入される前記第1反応器流出物は、多水酸基脂肪族炭化水素0〜90重量部と、クロロヒドリン類5〜95重量部と、中間生成物5〜12重量部と、を含んでもよい。
前記水除去装置に注入される前記第1反応器流出物は、塩素化剤10〜25重量部と、水75〜90重量部と、を含んでもよい。
前記クロロヒドリン類の精製装置は、蒸留装置を含んでもよい。
前記クロロヒドリン類の精製装置は、前記蒸留装置の後端に、ストリッピング装置をさらに含んでもよい。
前記第1反応器で、反応器内容物の滞留時間は、20分〜1時間であり、前記第2反応器で、反応器内容物の滞留時間は、1時間〜3時間である。
前記水除去装置は、前記第1反応器流出物の構成成分間の沸点差を利用する蒸溜操作によって作動される。
前記第1反応器及び第2反応器は、大気圧以上の圧力に維持され、前記水除去装置は、大気圧以下の圧力に維持されてもよい。
前記第1反応器及び第2反応器は、1〜20気圧に維持され、前記水除去装置は、10〜760mmHgに維持されてもよい。
前記水除去装置は、理論段数が2〜50である減圧蒸溜塔を含んでもよい。
前記第1反応器流出物は、減圧装置で減圧された後、前記水除去装置に注入されてもよい。
前記減圧装置は、減圧弁を含んでもよい。
前記第1反応器及び第2反応器は、互いに独立して、連続撹拌タンク式反応器(continuous stirred tank reactor)、回分式反応器(batch reactor)、半回分式反応器(semi-batch reactor)または管型反応器(plug flow reactor)であってもよい。
前記水除去装置に注入された前記第1反応器流出物は、水豊潤層及び水不足層に分離される。
前記第2反応器流出物のうち、前記クロロヒドリン類の精製装置に注入される部分は、多水酸基脂肪族炭化水素0〜10重量部と、クロロヒドリン類80〜98重量部と、塩素化剤0〜10重量部と、水1〜20重量部とを含んでもよい。
本発明の他の態様は、前記クロロヒドリン類の製造方法によって製造されたクロロヒドリン類を含むクロロヒドリン類組成物をアルカリ剤に20〜100℃で接触させる工程を含み、前記クロロヒドリン類組成物は、多水酸基脂肪族炭化水素0〜5重量部、クロロヒドリン類10〜40重量部、塩素化剤0〜5重量部及び水50〜90重量部を含む、エピクロロヒドリンの製造方法を提供する。
前記クロロヒドリン類組成物は触媒をさらに含み、前記触媒は、前記アルカリ剤と反応して、アルカリ金属塩を形成することができる。
本発明の一実施形態によれば、クロロヒドリン類の選択性が向上した、クロロヒドリン類の製造方法が提供される。
本発明の他の実施形態によれば、前記クロロヒドリン類の製造方法によって製造されたクロロヒドリン類をアルカリ剤と反応させる工程を含む、エピクロロヒドリンの製造方法が提供される。
本発明の一実施形態に係るクロロヒドリン類の製造方法及び該製造方法を用いて製造されたクロロヒドリンを用いるエピクロロヒドリンの製造方法を説明する工程フロー図である。
以下、図面を参照しつつ、本発明の一実施形態に係るクロロヒドリン類の製造方法及びエピクロロヒドリンの製造方法について詳細に説明する。本明細書において、「クロロヒドリン類の製造方法」は、場合によっては、クロロヒドリン類組成物(composition of chlorohydrins)の製造方法を意味することもある。
本発明の一実施形態によるクロロヒドリン類の製造方法は、触媒の存在下で、多水酸基脂肪族炭化水素を塩素化剤と反応させる。
前記クロロヒドリン類の製造方法は、多水酸基脂肪族炭化水素を塩素化剤と反応させる第1反応工程、前記第1反応工程で排出される、副産物である水を含む反応混合物を脱水させる水除去工程、及び前記脱水された反応混合物の少なくとも一構成成分を、前記塩素化剤及び追加塩素化剤のうち少なくとも1つと反応させる第2反応工程を、前記手順で含む一連の単位操作の組み合わせを、少なくとも1つ含む。また、前記水除去工程において、塩素化剤は追加して投入されない。
また、前記クロロヒドリン類の製造方法は、前記複数の反応工程のうち、最終反応工程で排出された反応混合物を精製して、クロロヒドリン類濃縮物を得る工程をさらに含む。
以下、図1を参照しつつ、本発明の一実施形態に係るクロロヒドリン類の製造方法について詳細に説明する。
本明細書で、「クロロヒドリン類(chlorohydrins)」は、クロロヒドリン、クロロヒドリンのエステル、またはそれらの混合物を意味する。
前記クロロヒドリン類は、少なくとも1つの水酸基と、少なくとも1つの塩素原子とを有し、該少なくとも1つの水酸基と該少なくとも1つの塩素原子とがそれぞれ異なる炭素原子に結合されている化合物である。例えば、前記クロロヒドリン類は、3−クロロ−1,2−プロパンジオール、2−クロロ−1,3−プロパンジオール、1,3−ジクロロプロパン−2−オール及び2,3−ジクロロプロパン−1−オールからなる群から選ばれる少なくとも1種の化合物を含む。本明細書では、3−クロロ−1,2−プロパンジオール及び2−クロロ−1,3−プロパンジオールを通称して、「モノクロロプロパンジオール」といい、1,3−ジクロロプロパン−2−オール及び2,3−ジクロロプロパン−1−オールを通称して、「ジクロロプロパノール」という。
本発明の一実施形態に係るクロロヒドリン類の製造方法によって、1,3−ジクロロプロパン−2−オールが主に生成されるが、1,3−ジクロロプロパン−2−オールは、エピクロロヒドリンの製造のための反応原料として特に適している。
図1を参照すれば、多水酸基脂肪族炭化水素及び触媒は、ライン1を介して、第1反応器110に導入される。また、塩素化剤も、ライン2及び/またはその他の経路を介して、第1反応器110に導入される。
前記多水酸基脂肪族炭化水素は、それぞれ異なる炭素原子と結合された2以上の水酸基を有するC−C20化合物である。例えば、前記多水酸基脂肪族炭化水素は、1,2−エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、3−クロロ−1,2−プロパンジオール、2−クロロ−1,3−プロパンジオール、グリセロール、1,2,4−ブタントリオール、1,4−ブタンジオール、及び前記各化合物のエステルからなる群から選ばれる少なくとも1種の化合物を含んでいてもよい。
前記触媒は、有機酸触媒、カルボン酸系触媒、ニトリル系触媒、固体触媒及びそれらの混合物であってもよい。
前記有機酸触媒は、例えば、モノカルボン酸、ジカルボン酸、ポリカルボン酸、マロン酸、レブリン酸、クエン酸、コハク酸、プロピオン酸及び前記各有機酸の誘導体からなる群から選ばれる少なくとも1種の化合物を含んでいてもよい。
前記カルボン酸系触媒は、例えば、モノカルボン酸エステル、ポリカルボン酸エステル、モノカルボン酸無水物、ポリカルボン酸無水物、モノカルボン酸塩化物、ポリカルボン酸塩化物、モノカルボン酸塩、ポリカルボン酸塩、及び前記各カルボン酸系化合物の誘導体からなる群から選ばれる少なくとも1種の化合物を含んでいてもよい。
前記ニトリル系触媒は、例えば、アセトニトリル、プロピオニトリル、アクリロニトリル、バレロニトリル、イソブチロニトリル、ヒドロキシアセトニトリル、クロロアセトニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル及びフェニルアセトニトリルからなる群から選ばれる少なくとも1種の化合物を含んでいてもよい。
前記固体触媒は、例えば、無機酸化物、無機ハロゲン化物、強酸性有機化合物及びそれらのうち2以上の混合物を含んでいてもよい。
前記無機酸化物は、金属酸化物、複合酸化物、オキシ酸及びオキシ酸塩からなる群から選ばれる少なくとも1種の化合物を含んでいてもよい。前記金属酸化物は、例えば、SiO、Al、TiO、Fe、ZrO、SnO、CeO、Ga、Laである。前記複合酸化物は、例えば、SiO−Al、SiO−TiO、TiO−ZrO、SiO−ZrO、MoO−ZrO、ゼオライト、ヘテロポリ酸(すなわち、P、Mo、V、W、Siなどの元素を含むポリ酸)及びヘテロポリ酸塩であってもよい。前記オキシ酸及びオキシ酸塩は、例えば、BPO、AlPO、ポリリン酸、酸性リン酸塩、HBO、酸性ホウ酸塩、ニオブ酸である。
前記無機ハロゲン化物は、例えば、スカンジウム、イットリウム、ランタン、アクチニウム等の周期律表上の第3A族元素;チタン、ジルコニウム、ハフニウム等の周期律表上の第4A族元素;バナジウム、ニオブ、タンタル等の周期律表上の第5A族元素;鉄、コバルト、ニッケル、パラジウム、白金等の周期律表上の第8族元素;亜鉛等の周期律表上の第2B族元素;アルミニウム、ガリウム等の周期律表上の第3B族元素;ゲルマニウム、スズ等の周期律表上の第4B族元素の金属フッ化物、金属塩化物、金属臭化物及び金属ヨード化物等の金属ハロゲン化物であってもよい。
前記強酸性有機化合物は、例えば、スルホン酸基含有イオン交換樹脂、及び炭素縮合環(condensed carbon ring)を含むスルホン酸化合物等の有機スルホン酸化合物であってもよい。前記無機酸化物は、SiOを含んでいてもよい。
前記触媒の導入量は、前記多水酸基脂肪族炭化水素100重量部に対して、1〜10重量部である。前記触媒の導入量が前記範囲内である場合、適する触媒量で、良好な反応速度向上効果を得ることができる。
本発明の一実施形態に係るクロロヒドリン類の製造方法で、第1反応器110は、50〜200℃の温度に維持されてもよい。第1反応器110の温度が前記範囲内である場合、適するレベルのエネルギーの投入によって、高い反応速度を得ることができる。また、第1反応器110は、大気圧以上の圧力、例えば、1〜20気圧に維持されてもよい。第1反応器110の圧力が前記範囲内である場合、比較的高い反応活性を得ることができる。その場合、第1反応器110の圧力が20気圧を超えても、圧力上昇による反応活性の増加効果が大きくない。また、第1反応器110は、連続撹拌タンク式反応器(CSTR:continuous stirred tank reactor)であってもよい。しかし、本発明は、これに限定されるものではなく、第1反応器110は、回分式反応器(batch reactor)、半回分式反応器(semi-batch reactor)または管型反応器(plug flow reactor)であってもよい。このような第1反応器110では、主生成物であるクロロヒドリン類だけではなく、中間生成物として、前記触媒と前記多水酸基脂肪族炭化水素との反応生成物が生成され、前記中間生成物は、前記多水酸基脂肪族炭化水素の塩素化反応(例えば、第1反応器110及び/または第2反応器150で起こるクロロヒドリン類生成反応)で、触媒として作用することができる。例えば、前記多水酸基脂肪族炭化水素がグリセロールを含み、前記触媒が酢酸を含む場合、前記中間生成物は、グリセロールアセテート類(glycerol acetates/glycerin acetate)を含む。本明細書で、「グリセロールアセテート類」は、置換または非置換のグリセロールモノアセテート、置換または非置換のグルリセロールジアセテート、置換または非置換のグリセロールトリアセテート、またはそれらの混合物を意味する。また本明細書で、「置換」とは、化合物中の水素原子が、ハロゲン基、水酸基、アルキル基、アルコキシ基、アミン基、またはそれらが組み合わされた置換基で置換されたものを意味する。また、第1反応器110における反応器内容物の滞留時間は、20分〜1時間である。第1反応器内容物の滞留時間が前記範囲内である場合、適する時間内に、多水酸基脂肪族炭化水素の高い転換率を得ることができる。
前記塩素化剤は、塩化水素ガスまたは塩酸水溶液を含んでいてもよい。
第1反応器110で起こる反応の一例は、下記反応式1で表現される多水酸基脂肪族炭化水素(例えば、グリセロール)の塩素化反応である。
Figure 0005837584
前記反応において、グリセロールの転換率、モノクロロプロパンジオール(MCP)の収率、ジクロロプロパノール(DCP)の収率、モノクロロプロパンジオール(MCP)の選択性及びジクロロプロパノール(DCP)の選択性は、下記の式1ないし5によってそれぞれ算出することができる。
(式1)
グリセロールの転換率(%)=(反応したグリセロールのモル数/導入されたグリセロールのモル数)×100
(式2)
モノクロロプロパンジオール(MCP)の収率(%)=(生成されたモノクロロプロパンジオールのモル数)/(導入されたグリセロールのモル数)×100
(式3)
ジクロロプロパノール(DCP)の収率(%)=(生成されたジクロロプロパノールのモル数)/(導入されたグリセロールのモル数)×100
(式4)
モノクロロプロパンジオール(MCP)の選択性(%)=(生成されたモノクロロプロパンジオールのモル数)/(反応生成物の総モル数)×100
(式5)
ジクロロプロパノール(DCP)の選択性(%)=(生成されたジクロロプロパノールのモル数)/(反応生成物の総モル数)×100
前記滞留時間の経過後、第1反応器110の流出物は、第1反応器110から排出され、ライン3及び/またはライン4に導入される。すなわち、前記第1反応器110の流出物のうち少なくとも一部は、ライン3を介して、第1混合装置120に導入され、前記第1反応器110の流出物のうち残りの部分は、減圧装置131で減圧された後、ライン4を介して、水除去装置140に導入される。ここで、第1反応器110の流出物は、触媒、クロロヒドリン類、グリセロールアセテート類等の中間生成物、水、未反応多水酸基脂肪族炭化水素及び/または塩素化剤を含んでいてもよい。また、塩素化剤は、ライン2を介して、第1混合装置120に導入される。第1混合装置120では、前記第1反応器110の流出物が前記塩素化剤と混合された後、第1反応器110に再循環される。
第1混合装置120は、エジェクター、インラインミキサー、超音波ミキサー、またはそれらのうち2以上を含んでいてもよい。第1混合装置120がエジェクターである場合、前記第1反応器110の流出物は、駆動流体(motive fluid)として作用し、前記塩素化剤は、吸入流体(suction fluid)として作用することができる。
減圧装置131は、減圧弁を含んでいてもよい。
前記追加塩素化剤は、塩化水素ガスまたは塩酸水溶液を含んでいてもよい。
水除去装置140は、前記第1反応器110の流出物の構成成分間の沸点差を利用する蒸溜操作によって作動させてもよい。
また、水除去装置140は、大気圧以下の圧力、例えば、10〜760mmHgに維持させてもよい。水除去装置140の圧力が前記範囲内である場合、下部流出物(すなわち、水不足層)の温度が適当になるので、高沸点物質の発生量が減少し、水除去装置140及び配管の詰まり現象を防止することができる。このような水除去装置140は、理論段数が2〜50である減圧蒸溜塔(すなわち、脱水塔141)を含んでいてもよい。前記減圧蒸溜塔の理論段数が前記範囲内である場合、前記水不足層内の水分残留量を最小化することができる。本明細書で、「理論段数」とは、前記減圧蒸溜塔を利用した分離工程で、気相及び液相等の二相が、互いに平衡をなす仮想的な領域または段数を意味する。
水除去装置140に導入される前記第1反応器110の流出物は、第1反応器110において、前記多水酸基脂肪族炭化水素の転換率が30〜100%であり、前記クロロヒドリン類の収率が30〜95%であるときに排出されたものである。水除去装置140に導入される前記第1反応器110の流出物において、前記多水酸基脂肪族炭化水素の転換率及び前記クロロヒドリン類の収率が、それぞれ前記範囲内である場合、第1反応器110では、反応速度が低下するという問題がほとんど発生せず、水除去装置140では、高い水除去効果を得ることができる。また、第1反応器110では、高いクロロヒドリン類の選択性を得ることができる。例えば、水除去装置140に導入される前記第1反応器110の流出物は、前記多水酸基脂肪族炭化水素、前記クロロヒドリン類及び前記中間生成物を、前記多水酸基脂肪族炭化水素0〜90重量部:前記クロロヒドリン類5〜95重量部:前記中間生成物(例えば、グリセロールアセテート類)5〜12重量部の比率で含んでいてもよい。
また、水除去装置140に導入される前記第1反応器110の流出物は、前記塩素化剤及び水を、前記塩素化剤10〜25重量部:水75〜90重量部の比率で含んでいてもよい。前記塩素化剤及び前記水の比率が前記範囲内である場合、前記第1反応器110の流出物が共沸混合物を形成することによって、前記塩素化剤の水に対する溶解度が上昇し、塩素化剤の損失を最小化することができる。
ライン4を介して、水除去装置140に導入された第1反応器110の流出物は、脱水塔141で、気相物質とその他の物質(すなわち、液相物質及び固相物質)とに分離された後、気相物質は、第1濃縮器143で凝縮されてライン5に導入され、その他の物質は、リボイラー142で蒸溜され、気相物質とその他の物質とに再び分離される。その後、気相物質は、脱水塔141に再循環され、その他の物質は、ライン6を介して、第2反応器150に導入される。具体的には、脱水塔141の上部から排出された後、第1濃縮器143で凝縮されてライン5に流入する物質(以下、水豊潤層とする)は、水及び塩素化剤を含んでいてもよく、脱水塔141の下部から排出された後、第1リボイラー142で気化されずに、ライン6に流入する物質(以下、水不足層とする)は、未反応の多水酸基脂肪族炭化水素、クロロヒドリン類及び/または前述の中間生成物を含んでいてもよい。前記中間生成物は、第2反応器150に導入され、前記反応式1で表現される塩素化反応の触媒として作用するため、第2反応器150では、触媒の追加投入を行わずに反応を円滑に生じさせることができる。
第1リボイラー142及び第1濃縮器143は、それぞれ100〜200℃及び0〜60℃の温度に維持されてもよい。
第2反応器150は、70〜200℃の温度に維持されてもよい。第2反応器150の温度が前記範囲内である場合、適するエネルギーレベルで、クロロヒドリン類を高収率にて得ることができる。また、第2反応器150は、大気圧以上の圧力、例えば、1〜20気圧に維持されてもよい。第2反応器150の圧力が前記範囲内である場合、第2反応器150の内容物に対する前記塩素化剤の溶解度が向上する。また、第2反応器150は、連続撹拌タンク式反応器(CSTR:continuous stirred tank reactor)であってもよい。しかし、本発明は、これらに限定されるものではなく、第2反応器150は、回分式反応器、半回分式反応器または管型反応器であってもよい。このような第2反応器150では、前述の中間生成物と、第2反応器150に別途に添加された塩素化剤とが接触し、クロロヒドリン類がさらに生成する。また、第2反応器150における反応器内容物の滞留時間は1時間〜3時間である。第2反応器における反応器内容物の滞留時間が前記範囲内である場合、適する時間内で、クロロヒドリン類を高収率で得ることができる。
第2反応器150で起こる反応は、第1反応器110で起こる反応と同一であるか、または類似している。
前記滞留時間の経過後、第2反応器150の流出物は、第2反応器150から排出され、ライン7及び/またはライン9に導入される。すなわち、第2反応器150の流出物のうち少なくとも一部は、ライン7を介して、第2混合装置160に導入され、第2反応器150の流出物のうち残りの部分は、第2減圧装置132で減圧された後、ライン9を介して、第1蒸溜装置170に導入される。ここで、第2反応器150の流出物は、触媒、クロロヒドリン類、グリセロールアセテート類等の中間生成物、水、未反応の多水酸基脂肪族炭化水素及び/または塩素化剤を含んでいてもよい。また、追加塩素化剤は、ライン8を介して、第2混合装置160に導入される。第2混合装置160では、前記第2反応器150の流出物が、前記追加塩素化剤と混合した後、第2反応器150に再循環される。追加塩素化剤は、ライン8に加えて、その他の経路を介して第2反応器150に導入されてもよい。
第2混合装置160は、エジェクター、インラインミキサー、超音波ミキサー、またはこれらのうち2以上を含んでいてもよい。第2混合装置160がエジェクターである場合、前記第2反応器150の流出物は、駆動流体(motive fluid)として作用することができ、前記塩素化剤は、吸入流体(suction fluid)として作用することができる。
減圧装置132は、減圧弁を含んでいてもよい。
第1蒸溜装置170は、前記第2反応器150の流出物の構成成分間の沸点差を利用する蒸溜操作によって作動させてもよい。
また、第1蒸溜装置170は、大気圧以下の圧力、例えば、10〜760mmHgに維持されてもよい。第1蒸溜装置170の圧力が前記範囲内である場合、クロロヒドリン類を高効率で分離することができる。このような第1蒸溜装置170は、理論段数が2〜50である減圧蒸溜塔(すなわち、分離塔171)を含んでいてもよい。前記減圧蒸溜塔の理論段数が前記範囲内である場合、クロロヒドリン類を高効率で分離することができる。
第1蒸溜装置170に導入される前記第2反応器150の流出物は、多水酸基脂肪族炭化水素0〜10重量部、クロロヒドリン類80〜98重量部、塩素化剤0〜10重量部及び水1〜20重量部を含んでいてもよい。前記第2反応器150の流出物の構成成分比が、前記範囲内である場合、反応が終結し、これによりクロロヒドリン類の収率が極大化された状態であるということを意味する。
ライン9を介して、第1蒸溜装置170に導入された第2反応器150の流出物は、分離塔171で、気相物質と液相物質とに分離された後、気相物質は、第2濃縮器173で凝縮されてライン10に流入し、液相物質は、第2リボイラー172で蒸溜され、気相物質と液相物質とに再び分離された後、気相物質は、分離塔171に再循環され、液相物質は、ライン11を介して、ストリッピング装置180に導入される。具体的には、分離塔171の上部から排出された後、第2濃縮器173で凝縮されてライン10に流入する物質は、クロロヒドリン類、水及び/または塩素化剤を含み、分離塔171の下部から排出された後、第2リボイラー172で気化されずに、ライン11に流入する高沸点物質は、グリセロールアセテート類等の中間生成物を含んでいてもよい。このとき、相当量のクロロヒドリン類が、前記中間生成物と共にライン11に導入されてもよい。ここで、第2リボイラー172及び第2濃縮器173は、それぞれ100〜200℃及び0〜60℃の温度に維持されてもよい。
このような第1蒸溜装置170では、多水酸基脂肪族炭化水素の塩素化反応、すなわち、クロロヒドリン類の生成反応が追加して起こることがある。
ストリッピング装置180は、ライン12を介して導入されたスチームを利用して、ライン11を介して高沸点物質と共に導入されたクロロヒドリン類等の低沸点物質を分離する。ストリッピング装置180で回収された低沸点物質は、ライン13に流入し、高沸点物質は、ライン14を介して外部に排出される。
第1蒸溜装置170と、ストリッピング装置180とを通称して、クロロヒドリン類の精製装置という。
ライン10及びライン13に導入される物質を通称して、クロロヒドリン類濃縮物という。
ライン5、ライン10及びライン13に導入される物質は、一地点で合わさり、第1クロロヒドリン類組成物(first composition of chlorohydrins)を形成することができる。
前記第1クロロヒドリン類組成物は、多水酸基脂肪族炭化水素0〜10重量部、クロロヒドリン類60〜96重量部、塩素化剤0〜20重量部及び水0〜30重量部を含んでいてもよい。
前記のような構成を有するクロロヒドリン類の製造方法は、塩素化剤及び/または触媒の損失なしに、反応副産物である水を除去することにより、反応速度の低下を防止して、クロロヒドリン類の選択性を上昇させることができる。
前記第1クロロヒドリン類組成物は、エピクロロヒドリンの製造に使用されてもよい。ただし、前記第1クロロヒドリン類組成物は、エピクロロヒドリンの製造に使用される前に水に希釈され、第2クロロヒドリン類組成物を形成することができる。具体的には、図1を参照すると、ライン15に導入された第1クロロヒドリン類組成物は、ライン16に導入された水と混合して、第2クロロヒドリン類組成物を形成することができる。このように、前記第1クロロヒドリン類組成物を、エピクロロヒドリンの製造に使用される前に水に希釈し、第2クロロヒドリン類組成物を形成する理由は、高濃度のクロロヒドリン類を使用してエピクロロヒドリンを製造すると、副産物の生成量が多くなり、その結果、エピクロロヒドリンの選択性が低くなるからである。前記希釈時、添加される前記水の量は、前記第1クロロヒドリン類組成物100重量部に対して100〜500重量部であってもよい。前記水の添加量が前記範囲内である場合、適正量の水で副産物の生産量を減少させることができ、これにより、エピクロロヒドリンの収率を極大化することができる。
前記第2クロロヒドリン類組成物は、アルカリ剤と共にエピクロロヒドリン製造の反応原料として使用されてもよい。前記第2クロロヒドリン類組成物は、多水酸基脂肪族炭化水素0〜5重量部、クロロヒドリン類10〜40重量部、塩素化剤0〜5重量部及び水50〜90重量部を含んでいてもよい。
前記第2クロロヒドリン類組成物の構成成分比が前記範囲内である場合、副産物の生産量が減少し、これにより、エピクロロヒドリンの収率を極大化させることができる。
インライン反応器190では、前記第2クロロヒドリン類組成物が、ライン17を介して導入されたアルカリ剤(例えば、水酸化ナトリウム水溶液)と接触し、下記のような2種の反応が起こる。すなわち、前記第2クロロヒドリン類組成物が、前記アルカリ剤と接触する間、接触時間が経過するにつれて、前記第2クロロヒドリン類組成物と前記アルカリ剤との混合物のpHが徐々に上昇する。このとき、前記混合物のpHが7以上である場合、前記第2クロロヒドリン類組成物中の触媒が前記アルカリ剤と反応し、アルカリ金属塩を形成することがある。前記形成されたアルカリ金属塩は沈澱した後、後述する第2蒸溜装置200で除去されてもよい。一方、前記pHが7を超える場合、前記第2クロロヒドリン類組成物中のクロロヒドリン類(例えば、ジクロロプロパノール)が前記アルカリ剤と反応し、エピクロロヒドリンを形成することがある。ここで、インライン反応器190は、20〜100℃の温度及び1〜2気圧の圧力に維持されてもよい。インライン反応器190の温度及び圧力がそれぞれ前記範囲内である場合、適するエネルギーの付加によって、反応を円滑に進行させることができる。
また、前記第1クロロヒドリン類組成物は、前述の触媒を含んでいてもよく、これによって、前記第2クロロヒドリン類組成物も、前記触媒を含んでいてもよい。したがって、インライン反応器190では、主生成物であるエピクロロヒドリンを形成する反応だけではなく、前記アルカリ剤と前記触媒とが接触することにより、アルカリ金属塩を形成する反応も生じる。
図1を参照して上述したように、前記第1クロロヒドリン類組成物(すなわち、ライン15を介して導入される組成物)に水を添加することにより、第2クロロヒドリン類組成物が形成され、前記形成された第2クロロヒドリン類組成物にアルカリ剤を添加するが、本発明は、ここに限定されるものではない。例えば、前記第1クロロヒドリン類組成物に直接アルカリ剤を添加して触媒をまず除去した後、前記触媒が除去された第1クロロヒドリン類組成物に水を添加して、第2クロロヒドリン類組成物を製造することもできる。すなわち、図1において、ライン16およびライン17の位置を入れ替えてもよい。
インライン反応器190から排出されたエピクロロヒドリン及びアルカリ金属塩含有物質は、ライン18を介して、第2蒸溜装置200に導入される。
第2蒸溜装置200は、前記エピクロロヒドリン及びアルカリ金属塩含有物質の構成成分間の沸点差を利用する蒸溜操作によって作動させることができる。
また、第2蒸溜装置200は、大気圧以下の圧力、例えば、10〜760mmHgに維持されてもよい。第2蒸溜装置200の圧力が前記範囲内である場合、エピクロロヒドリンを、高効率で分離することができる。このような第2蒸溜装置200は、理論段数が2〜50である減圧蒸溜塔(すなわち、分離塔201)を含んでいてもよい。前記減圧蒸溜塔の理論段数が前記範囲内である場合、エピクロロヒドリンを高効率で分離することができる。
ライン18を介して、第2蒸溜装置200に導入されたインライン反応器190の流出物は、分離塔201で、気相物質と液相物質とに分離される。その後、気相物質は、第3濃縮器203で凝縮されて、ライン19に導入された後で回収され、また、液相物質は、第3リボイラー202で蒸溜され、気相物質と液相物質とに再び分離される。次いで、気相物質は、第2分離塔201に再循環され、液相物質は、ライン20を介して外部に排出される。具体的には、第2分離塔201の上部から排出された後、第3濃縮器203で凝縮されてライン19に導入される物質は、エピクロロヒドリン及び水を含んでいてもよく、第2分離塔201の下部から排出された後、第3リボイラー202で気化されずに、ライン20を介して外部に排出される高沸点物質は、アルカリ金属塩を含んでいてもよい。ここで、第3リボイラー202及び第3濃縮器203は、それぞれ60〜110℃及び0〜60℃の温度に維持されてもよい。
このような第2蒸溜装置200では、エピクロロヒドリンの生成反応が追加して起こることがある。
以下、実施例を挙げて、本発明についてさらに詳細に説明するが、本発明がこのような実施例に限定されるものではない。
(酢酸触媒の存在下における、グリセロール及び塩化水素ガスからのクロロヒドリン類及びエピクロロヒドリンの製造)
図1のような構成を有する製造工程を使用し、酢酸触媒の存在下で、グリセロールと塩化水素ガスとを反応させ、クロロヒドリン類及びエピクロロヒドリンを製造した。前記製造工程に使用された各装置のスペック及び運転条件は、下記表1の通りである:
Figure 0005837584
また、前記製造工程の各ラインを介して移送される物質の全流速、前記物質の構成成分及び前記各構成成分の流速をそれぞれ測定し、下記表2に示した。前記各構成成分の流速は、各ラインを介して移送される物質の全流速を測定し、各ラインから採取した物質の成分比をガスクロマトグラフィーで分析した後、前記全流速と前記物質の成分比とを互いに乗じることにより算出された。
Figure 0005837584
Figure 0005837584
(評価例)
反応が進められる最中に、5分間隔でライン4及びライン15から試料をそれぞれ採取した後、ガスクロマトグラフィーを用いて、前記各試料の構成成分及び各構成成分の含有量を分析した。前記分析データにおいて、定常状態に達した後に得られたデータを用いて、前記数学式1ないし数学式5にしたがって、グリセロールの転換率、モノクロロプロパンジオールの収率、ジクロロプロパノールの収率、モノクロロプロパンジオールの選択性及びジクロロプロパノールの選択性をそれぞれ計算した後、その結果を下記表3に示す。
Figure 0005837584
前記表3を参照すると、ライン15から採取された試料は、クロロヒドリン類の収率(94.8%)及び選択性(94.8%)が非常に高いことが分かった。また、ジクロロプロパノールの収率及び選択性は、モノクロロプロパンジオールの収率及び選択性よりそれぞれはるかに高いことが分かった。
以上、例示的な実施形態を参照しながら本発明について特別に図示および説明したが、下記の特許請求の範囲で定義されるような本発明の意図および範囲を逸脱することなく多様な変形が可能であることは、当業者に理解されるだろう。

Claims (23)

  1. 触媒の存在下で、多水酸基脂肪族炭化水素を塩素化剤と反応させてクロロヒドリン類を製造する方法であって、複数の反応工程及び水除去工程を下記に規定される順で含む一連の単位操作の組み合わせを少なくとも1つ含み、
    多水酸基脂肪族炭化水素を塩素化剤と反応させる第1反応工程;
    前記第1反応工程で排出された流出物から、副産物である水を除去する水除去工程;
    水が除去された前記流出物の少なくとも1つの構成成分を、前記塩素化剤及び追加塩素化剤のうち少なくとも1つと反応させる第2反応工程;
    前記複数の反応工程のうち、最終工程で排出された反応混合物を精製し、クロロヒドリン類濃縮物を得る工程をさらに含み、
    前記水除去工程に導入される前記流出物が共沸混合物を形成するように、前記水除去工程に導入される前記流出物は、前記塩素化剤および前記水を、前記塩素化剤10〜25重量部:前記水75〜90重量部の比率で含み、
    前記第1反応工程から排出される前記触媒および前記中間生産物以外の追加触媒は、前記第2反応工程に添加されない、クロロヒドリン類の製造方法。
  2. 多水酸基脂肪族炭化水素、触媒及び塩素化剤を、50〜200℃の温度に維持される第1反応器に導入する工程と、
    副産物である水を含む第1反応器流出物を、前記第1反応器から排出させる工程と、
    前記第1反応器流出物のうち少なくとも一部を水除去装置に導入する工程と、
    前記水が除去された第1反応器流出物を、80〜200℃の温度に維持される第2反応器に導入する工程と、
    前記第2反応器から排出される第2反応器流出物中の少なくとも一部をクロロヒドリン類の精製装置に導入し、クロロヒドリン類濃縮物を得る工程と、
    を含み、
    前記水除去装置に導入される前記第1反応器流出物が共沸混合物を形成するように、前記水除去装置に導入される前記第1反応器流出物は、前記塩素化剤および前記水を、前記塩素化剤10〜25重量部:前記水75〜90重量部の比率で含み、
    前記第1反応器から排出される前記触媒および前記中間生産物以外の追加触媒は、前記第2反応器に添加されない、クロロヒドリン類の製造方法。
  3. 前記多水酸基脂肪族炭化水素は、それぞれ異なる炭素原子に結合された2以上の水酸基を含むC2−C20化合物である、請求項1または請求項に記載のクロロヒドリン類の製造方法。
  4. 前記多水酸基脂肪族炭化水素は、1,2−エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、3−クロロ−1,2−プロパンジオール、2−クロロ−1,3−プロパンジオール、グリセロール、1,2,4−ブタントリオール、1,4−ブタンジオール、及び前記各化合物のエステルからなる群から選ばれる少なくとも1種の化合物を含む、請求項に記載のクロロヒドリン類の製造方法。
  5. 前記クロロヒドリン類濃縮物中のクロロヒドリン類は、それぞれ異なる炭素原子と結合された少なくとも1つの水酸基と、少なくとも1つの塩素原子とを含む化合物である、請求項1または請求項に記載のクロロヒドリン類の製造方法。
  6. 前記クロロヒドリン類は、3−クロロ−1,2−プロパンジオール、2−クロロ−1,3−プロパンジオール、1,3−ジクロロプロパン−2−オール及び2,3−ジクロロプロパン−1−オールからなる群から選ばれる少なくとも1種の化合物を含む、請求項に記載のクロロヒドリン類の製造方法。
  7. 前記触媒は、有機酸触媒、カルボン酸系触媒、ニトリル系触媒及び固体触媒からなる群から選ばれる少なくとも1つを含む、請求項1または請求項に記載のクロロヒドリン類の製造方法。
  8. 前記第1反応器では、中間生成物として、前記触媒と、前記多水酸基脂肪族炭化水素との反応生成物が生成され、
    前記中間生成物は、前記多水酸基脂肪族炭化水素の塩素化反応において触媒として作用する、請求項に記載のクロロヒドリン類の製造方法。
  9. 前記多水酸基脂肪族炭化水素は、グリセロールを含み、
    前記触媒は、酢酸を含み、
    前記中間生成物は、グリセロールアセテート類を含む、請求項に記載のクロロヒドリン類の製造方法。
  10. 前記水除去装置に導入される前記第1反応器流出物は、前記第1反応器において、多水酸基脂肪族炭化水素の転換率が30〜100%であり、かつ、クロロヒドリン類の収率が30〜95%であるときに排出されたものである、請求項に記載のクロロヒドリン類の製造方法。
  11. 前記水除去装置に導入される前記第1反応器流出物は、
    多水酸基脂肪族炭化水素0〜90重量部と、
    クロロヒドリン類5〜95重量部と、
    中間生成物5〜12重量部と、
    を含む、請求項に記載のクロロヒドリン類の製造方法。
  12. 前記クロロヒドリン類の精製装置は、蒸留装置を含む、請求項に記載のクロロヒドリン類の製造方法。
  13. 前記クロロヒドリン類の精製装置は、前記蒸留装置の後端に、ストリッピング装置をさらに含む、請求項12に記載のクロロヒドリン類の製造方法。
  14. 前記第1反応器における反応器内容物の滞留時間は、20分〜1時間であり、
    前記第2反応器における反応器内容物の滞留時間は、1時間〜3時間である、請求項に記載のクロロヒドリン類の製造方法。
  15. 前記水除去装置は、前記第1反応器流出物の構成成分間の沸点差を利用する蒸溜操作によって作動する、請求項に記載のクロロヒドリン類の製造方法。
  16. 前記第1反応器及び第2反応器は、大気圧以上の圧力に維持され、
    前記水除去装置は、大気圧以下の圧力に維持される、請求項に記載のクロロヒドリン類の製造方法。
  17. 前記第1反応器及び第2反応器は、1〜20気圧に維持され、前記水除去装置は、10〜760mmHgに維持される、請求項16に記載のクロロヒドリン類の製造方法。
  18. 前記水除去装置は、理論段数が2〜50である減圧蒸溜塔を含む、請求項17に記載のクロロヒドリン類の製造方法。
  19. 前記第1反応器流出物は、減圧装置で減圧された後、前記水除去装置に導入される、請求項16に記載のクロロヒドリン類の製造方法。
  20. 前記減圧装置は、減圧弁を含む、請求項19に記載のクロロヒドリン類の製造方法。
  21. 前記第1反応器及び第2反応器は、互いに独立して、連続撹拌タンク式反応器、回分式反応器、半回分式反応器または管型反応器である、請求項に記載のクロロヒドリン類の製造方法。
  22. 前記水除去装置に導入された前記第1反応器流出物は、水豊潤層及び水不足層に分離される、請求項に記載のクロロヒドリン類の製造方法。
  23. 前記第2反応器流出物のうち前記クロロヒドリン類の精製装置に導入される部分は、
    多水酸基脂肪族炭化水素0〜10重量部と、
    クロロヒドリン類80〜98重量部と、
    塩素化剤0〜10重量部と、
    水1〜20重量部と、
    を含む、請求項に記載のクロロヒドリン類の製造方法。
JP2013518226A 2010-06-30 2011-06-08 クロロヒドリン類の製造方法及びその方法によって製造されたクロロヒドリン類を使用するエピクロロヒドリンの製造方法 Expired - Fee Related JP5837584B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2010-0063157 2010-06-30
KR1020100063157A KR101705206B1 (ko) 2010-06-30 2010-06-30 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
PCT/KR2011/004168 WO2012002648A2 (ko) 2010-06-30 2011-06-08 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법

Publications (2)

Publication Number Publication Date
JP2013535417A JP2013535417A (ja) 2013-09-12
JP5837584B2 true JP5837584B2 (ja) 2015-12-24

Family

ID=45402510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013518226A Expired - Fee Related JP5837584B2 (ja) 2010-06-30 2011-06-08 クロロヒドリン類の製造方法及びその方法によって製造されたクロロヒドリン類を使用するエピクロロヒドリンの製造方法

Country Status (6)

Country Link
US (1) US8969630B2 (ja)
EP (1) EP2589584B1 (ja)
JP (1) JP5837584B2 (ja)
KR (1) KR101705206B1 (ja)
CN (1) CN103038200A (ja)
WO (1) WO2012002648A2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101705205B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
KR101705208B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705210B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
US9711014B2 (en) 2013-09-06 2017-07-18 Immersion Corporation Systems and methods for generating haptic effects associated with transitions in audio signals
CN104370857A (zh) * 2014-11-11 2015-02-25 常州大学 一种环氧氯丙烷的合成方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ294890B6 (cs) * 2003-09-01 2005-04-13 Spolek Pro Chemickou A Hutní Výrobu,A.S. Způsob přípravy dichlorpropanolů z glycerinu
BRPI0416756B1 (pt) * 2003-11-20 2015-05-05 Solvay Processos para produzir dicloropropanol
KR100907123B1 (ko) * 2003-11-20 2009-07-09 솔베이(소시에떼아노님) 디클로로프로판올의 제조 방법
ATE454370T1 (de) 2004-07-21 2010-01-15 Dow Global Technologies Inc Umwandlung eines mehrfach hydroxylierten aliphatischen kohlenwasserstoffes oder esters daraus in ein chlorhydrin
MX2007014532A (es) * 2005-05-20 2008-02-07 Solvay Proceso de elaboracion de una clorhidrina por cloracion de un hidrocarburo alifatico polihidroxilado.
US8067645B2 (en) * 2005-05-20 2011-11-29 Solvay (Societe Anonyme) Process for producing a chlorhydrin from a multihydroxylated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts
EP1762556A1 (en) * 2005-05-20 2007-03-14 SOLVAY (Société Anonyme) Process for producing dichloropropanol from glycerol
FR2913684B1 (fr) * 2007-03-14 2012-09-14 Solvay Procede de fabrication de dichloropropanol
KR101410019B1 (ko) * 2007-09-28 2014-06-26 한화케미칼 주식회사 다가알코올과 염화수소의 반응에 의한 클로로히드린화합물의 제조방법
WO2009066327A1 (en) * 2007-11-19 2009-05-28 Conser S.P.A. Conversion of glycerine to dichlorohydrins and epichlorohydrin
KR101705210B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705208B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705205B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법

Also Published As

Publication number Publication date
EP2589584A4 (en) 2015-08-05
JP2013535417A (ja) 2013-09-12
US20130096327A1 (en) 2013-04-18
WO2012002648A2 (ko) 2012-01-05
US8969630B2 (en) 2015-03-03
WO2012002648A3 (ko) 2012-05-03
EP2589584A2 (en) 2013-05-08
KR20120002334A (ko) 2012-01-05
CN103038200A (zh) 2013-04-10
EP2589584B1 (en) 2020-04-15
KR101705206B1 (ko) 2017-02-09

Similar Documents

Publication Publication Date Title
JP5837584B2 (ja) クロロヒドリン類の製造方法及びその方法によって製造されたクロロヒドリン類を使用するエピクロロヒドリンの製造方法
JP5837588B2 (ja) クロロヒドリン類組成物の製造方法及びその方法によって製造されたクロロヒドリン類組成物を使用するエピクロロヒドリンの製造方法
JP5837586B2 (ja) クロロヒドリン類組成物の製造方法及びその方法によって製造されたクロロヒドリン類組成物を使用するエピクロロヒドリンの製造方法
JP5837587B2 (ja) クロロヒドリン類組成物の製造方法及びその方法によって製造されたクロロヒドリン類組成物を使用するエピクロロヒドリンの製造方法
JP5837585B2 (ja) クロロヒドリン類の製造方法及びその方法によって製造されたクロロヒドリン類を使用するエピクロロヒドリンの製造方法
JP5837583B2 (ja) クロロヒドリン類の製造方法及びその方法によって製造されたクロロヒドリン類を使用するエピクロロヒドリンの製造方法
JP2008214290A (ja) クロロヒドリン類の製造方法
JP2009215246A (ja) クロロヒドリンの製造触媒

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151105

R150 Certificate of patent or registration of utility model

Ref document number: 5837584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees