KR20180018674A - 중계기 및 표면파 전력선 통신들에서 그와 함께 사용을 위한 방법들 - Google Patents

중계기 및 표면파 전력선 통신들에서 그와 함께 사용을 위한 방법들 Download PDF

Info

Publication number
KR20180018674A
KR20180018674A KR1020187000758A KR20187000758A KR20180018674A KR 20180018674 A KR20180018674 A KR 20180018674A KR 1020187000758 A KR1020187000758 A KR 1020187000758A KR 20187000758 A KR20187000758 A KR 20187000758A KR 20180018674 A KR20180018674 A KR 20180018674A
Authority
KR
South Korea
Prior art keywords
channel signals
electromagnetic waves
wire
wave
guided
Prior art date
Application number
KR1020187000758A
Other languages
English (en)
Inventor
로버트 베넷
폴 살라 헨리
어윈 겔즈버그
파하드 바르제거
도날드 제이. 바르니켈
토마스 엠. 3세 윌리스
Original Assignee
에이티 앤드 티 인텔렉추얼 프라퍼티 아이, 엘.피.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/736,306 priority Critical patent/US9608692B2/en
Priority to US14/736,306 priority
Application filed by 에이티 앤드 티 인텔렉추얼 프라퍼티 아이, 엘.피. filed Critical 에이티 앤드 티 인텔렉추얼 프라퍼티 아이, 엘.피.
Priority to PCT/US2016/028395 priority patent/WO2016200491A1/en
Publication of KR20180018674A publication Critical patent/KR20180018674A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/36Repeater circuits
    • H04B3/38Repeater circuits for signals in two different frequency ranges transmitted in opposite directions over the same transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/36Repeater circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/52Systems for transmission between fixed stations via waveguides
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15507Relay station based processing for cell extension or control of coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K999/00PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS dummy group
    • H05K999/99PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS dummy group dummy group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Abstract

본 개시의 양태들은, 예를 들면, 가이드파 통신 시스템의 송신 매체에 바운드된 제 1 가이드된 전자기파들로부터 다운스트림 채널 신호들을 추출하기 위해 제 1 커플러를 갖는 중계기 디바이스를 포함할 수 있다. 증폭기는 증폭된 다운스트림 채널 신호들을 생성하기 위해 다운스트림 채널 신호들을 증폭시킨다. 채널 선택 필터는 안테나를 통해 적어도 하나의 클라이언트 디바이스로 무선으로 송신할 하나 이상의 증폭된 다운스트림 채널 신호들을 선택한다. 제 2 커플러는 제 2 가이드된 전자기파들로서 전파시킬 증폭된 다운스트림 채널 신호들을 가이드파 통신 시스템의 송신 매체로 가이드한다. 다른 실시예들이 개시된다.

Description

중계기 및 표면파 전력선 통신들에서 그와 함께 사용을 위한 방법들

관련 출원들에 대한 상호 참조

본 출원은 2015년 6월 11일에 출원된 미국 특허 출원 제 14/736,306 호에 대한 우선권을 주장한다. 상기 전술한 내용들은 여기에 전체적으로 설명된 것처럼 본 출원으로 참조로서 여기에 통합된다.

본 개시는 통신 네트워크에서 마이크로파 송신을 통한 통신들에 관한 것이다.

스마트폰들 및 다른 휴대용 디바이스들이 점점 유비쿼터스화되고 데이터 사용량이 증가함에 따라, 매크로셀 기지국 디바이스들 및 기존 무선 기반 구조는 결국 증가된 수요를 처리하기 위해 더 높은 대역폭 능력을 요구한다. 추가의 이동 대역폭을 제공하기 위해, 종래 매크로셀들보다 훨씬 작은 영역들에 대한 커버리지를 제공하기 위한 마이크로셀들 및 피코셀들에 의한 소형 셀 배치가 계속되고 있다.

또한, 대부분의 가정들 및 사업장들은 음성, 영상 및 인터넷 브라우징 등과 같은 서비스들에 대한 광대역 데이터 액세스에 의존하게 되었다. 광대역 액세스 네트워크들은 위성, 4G 또는 5G 무선, 전력선 통신, 파이버, 케이블, 및 전화 네트워크들을 포함한다.

본 발명의 목적은 중계기 및 그와 함께 사용을 위한 방법들을 제공하는 것이다.

하나 이상의 실시예들이 지금 도면들을 참조하여 설명되고, 유사한 참조 번호들은 전체적으로 유사한 요소들을 지칭하기 위해 사용된다. 다음의 설명에서, 설명의 목적들을 위해, 다수의 상세들이 다양한 실시예들의 완전한 이해를 제공하기 위해 설명된다. 그러나, 다양한 실시예들이 이들 상세들 없이(및 임의의 특정 네트워킹된 환경 또는 표준에 적용하지 않고) 실행될 수 있다는 것이 명백하다.

일 실시예에서, 가이드파 통신 시스템은 가이드된 전자기파들을 통해 데이터 또는 다른 시그널링과 같은 통신 신호들을 전송 및 수신하기 위해 제시된다. 가이드된 전자기파들은, 예를 들면, 송신 매체에 바운딩되거나 그에 의해 가이드되는 표면파들 또는 다른 전자기파들을 포함한다. 다양한 송신 매체가 예시적인 실시예들로부터 벗어나지 않고 가이드파 통신들과 함께 이용될 수 있다는 것이 이해될 것이다. 이러한 송신 매체들의 예들은 다음 중 하나 이상, 단독 또는 하나 이상의 조합들로 포함할 수 있다: 절연되거나 절연되지 않은 및 단선 또는 다중선인 와이어들; 와이어 번들들, 케이블들, 로드들(rods), 레일들(rails), 파이프들을 포함하는 구성들 또는 다른 형상들의 도전체들; 유전체 파이프들, 로드들, 레일들, 또는 다른 유전체 부재들과 같은 비도전체들; 도전체들 및 유전체 재료들의 조합들; 또는 다른 가이드파 송신 매체.

송신 매체상에 가이드된 전자기파들의 유도는 주입되거나 그와 달리 전기 회로의 일부로서 송신 매체를 통해 송신되는 임의의 전위, 전하 또는 전류와 무관할 수 있다. 예를 들면, 송신 매체가 와이어일 경우에, 와이어 내 작은 전류가 와이어를 따르는 가이드파들의 전파에 응답하여 형성될 수 있지만, 이는 와이어 표면을 따르는 전자기파의 전파에 의한 것일 수 있고, 전기 회로의 부분으로서 와이어에 주입되는 전위, 전하 또는 전류에 응답하여 형성되지 않는 것임이 이해될 것이다. 따라서, 와이어상으로 이동하는 전자기파들은 와이어 표면을 따라 전파하기 위해 회로를 요구하지 않는다. 따라서, 와이어는 회로의 일부가 아닌 단일 와이어 송전선이다. 또한, 일부 실시예들에서, 와이어가 필요하지 않고, 전자기파들은 와이어가 아닌 단일 회선 송신 매체를 따라 전파할 수 있다.

더 일반적으로, 본 개시에 의해 설명되는 "가이드된 전자기파들" 또는 "가이드파들"은 물리적 객체에 적어도 부분적으로 바운드되거나 그에 의해 가이드되도록 및 물리적 객체의 송신 경로를 따라 전파하도록 송신 매체(예를 들면, 나선 또는 다른 도전체, 유전체, 절연된 와이어, 도관 또는 다른 공동 요소, 유전체 또는 절연체에 의해 코팅되거나, 커버되거나 둘러싸인 절연된 와이어들의 번들 또는 다른 와이어 번들, 또는 고체, 액체, 또는 그와 다른 가스가 아닌 송신 매체의 다른 형태)의 적어도 일부인 물리적 객체의 존재에 의해 영향받는다. 이러한 물리적 객체는, 송신 매체(예를 들면, 외부 표면, 내부 표면, 외부 및 내부 표면들 사이의 내부 또는 송신 매체의 요소들 사이의 다른 경계)의 인터페이스에 의해, 결국 전송 디바이스로부터 수신 디바이스로의 송신 경로를 따라 에너지, 데이터, 및/또는 다른 신호들을 전달할 수 있는 가이드된 전자기파들의 전파를 가이드하는 송신 매체의 적어도 일부로서 동작할 수 있다.

가이드되지 않은 전자기파들에 의해 이동되는 거리의 제곱만큼 세기에서 역비례하여 감소하는 가이드되지 않은(또는 바운드되지 않은) 전자기파들과 같은 무선 신호들의 자유 공간 전파와 달리, 가이드된 전자기파들은 가이드되지 않은 전자기파들에 의해 경험되는 것보다 단위 거리당 크기에서 적은 손실을 갖는 송신 매체를 따라 전파할 수 있다.

전기 신호들과 달리, 가이드된 전자기파들은 전송 디바이스와 수신 디바이스 사이의 별개의 전기 리턴 경로를 요구하지 않고 전송 디바이스로부터 수신 디바이스로 전파할 수 있다. 결과로서, 가이드된 전자기파들은 도전성 구성 요소들(예를 들면, 유전체 스트립)을 갖지 않는 송신 매체를 따라, 또는 단지 단일 도전체(예를 들면, 단일 나선 또는 절연된 와이어)를 갖는 송신 매체를 통해 전송 장치로부터 수신 장치로 전파할 수 있다. 송신 매체가 하나 이상의 도전성 구성 요소들을 포함하고 송신 매체를 따라 전파하는 가이드된 전자기파들은 가이드된 전자기파들의 방향으로 하나 이상의 도전성 구성 요소들에서 흐르는 전류를 생성하지만, 이러한 가이드된 전자기파들은 전송 디바이스와 수신 디바이스 사이에 전기 리턴 경로상에 반대 전류들의 흐름을 요구하지 않고 전송 디바이스로부터 수신 디바이스로 송신 매체를 따라 전파할 수 있다.

비제한적인 예시에서, 도전성 매체들에 의해 전송 디바이스와 수신 디바이스 사이에 전기 신호들을 송신 및 수신하는 전기 시스템들을 고려하자. 이러한 시스템들은 일반적으로 전기적으로 별개의 포워드 및 리턴 경로들에 의존한다. 예를 들면, 절연체에 의해 분리되는 접지 차폐 및 중심 도전체를 갖는 동축 케이블을 고려하자. 일반적으로, 전기 시스템에서, 전송(또는 수신) 디바이스의 제 1 단자는 중심 도전체에 접속될 수 있고, 전송(또는 수신) 디바이스의 제 2 단자는 접지 차폐에 접속될 수 있다. 전송 디바이스가 제 1 단자를 통해 중심 도전체에 전기 신호를 주입하는 경우, 전기 신호는 중심 도전체를 따라 전파하여 중심 도전체에 포워드 전류들을 야기하고, 접지 차폐로 전류들을 리턴할 것이다. 동일한 조건들이 두 개의 단자 수신 장치에 적용한다.

반대로, 전기 리턴 경로 없이 가이드된 전자기파들의 송신 및 수신을 위해 송신 매체의 상이한 실시예들(여러가지 중에서 동축 케이블을 포함하여)을 이용할 수 있는 본 개시에 설명된 바와 같은 가이드파 통신 시스템을 고려하자. 일 실시예에서, 예를 들면, 본 개시의 가이드파 통신 시스템은 동축 케이블의 외부 표면을 따라 전파하는 가이드된 전자기파들을 유도하도록 구성될 수 있다. 가이드된 전자기파들은 접지 차폐부상에 순방향 전류들을 야기할 것이지만, 가이드된 전자기파들은 가이드된 전자기파들이 동축 케이블의 외부 표면을 따라 전파하게 하기 위해 리턴 전류들을 요구하지 않는다. 가이드된 전자기파들의 송신 및 수신을 위해 가이드파 통신 시스템에 의해 사용된 상기의 다른 송신 매체들에 대해서도 동일할 수 있다. 예를 들면, 나선 또는 절연된 와이어의 외부 표면상에 가이드파 통신 시스템에 의해 유도된 가이드된 전자기파들은 전기 리턴 경로 없이 나선 또는 절연된 나선을 따라 전파할 수 있다.

결과적으로, 전송 디바이스에 의해 주입된 전기 신호들의 전파를 가능하게 하기 위해 개별적인 도전체들상에 순방향 및 역방향 전류들을 전달하기 위해 두 개 이상의 도전체들을 요구하는 전기 시스템들은 송신 매체의 인터페이스를 따라 가이드된 전자기파들의 전파를 가능하게 하기 위한 전기 리턴 경로의 필요 없이 송신 매체의 인터페이스상에 가이드된 전자기파들을 유도하는 가이드파 시스템들과 별개이다.

본 개시에 설명되는 가이드된 전자기파들이 송신 매체에 바운드되거나 그에 의해 가이드되도록 및 송신 매체의 외부 표면상 또는 그를 따라 비자명한 거리들을 전파하도록 주로 또는 실질적으로 송신 매체의 외부에 놓인 전자기장 구조를 가질 수 있다는 것이 또한 주의된다. 다른 실시예들에서, 가이드된 전자기파들은 송신 매체에 바운드되거나 그에 의해 가이드되도록 및 송신 매체내 비자명한 거리들을 전파하도록 주로 또는 실질적으로 송신 매체 내에 놓이는 전자기장 구조를 가질 수 있다. 다른 실시예들에서, 가이드된 전자기파들은 송신 매체에 의해 바운드되거나 가이되도록 및 송신 매체를 따라 비자명한 거리들을 전파하도록 송신 매체 내부에 부분적으로 및 그 외부에 부분적으로 놓이는 전자기장 구조를 가질 수 있다. 일 실시예에서 바람직한 전기장 구조는 원하는 송신 거리, 송신 매체 자체의 특성들, 및 송신 매체의 외부의 환경 상태들/특성들(예를 들면, 비, 안개, 대기 상태들 등의 존재)을 포함하여 다양한 요인들에 기초하여 변할 수 있다.

여기에 설명된 다양한 실시예들은 송신 매체로 및 송신 매체로부터 가이드된 전자기파들을 밀리미터파 주파수들(예를 들면, 30 내지 300 ㎓)에서 론칭 및/또는 추출하기 위한 "도파관 결합 디바이스들", "도파관 커플러들" 또는 더 간단하게는 "커플러들", "결합 디바이스들" 또는 "론처들(launchers)"이라고 지칭할 수 있는 결합 디바이스들에 관한 것이고, 파장은 와이어의 둘레 또는 다른 단면 크기, 또는 300㎒ 내지 30㎓와 같은 하위 마이크로파 주파수들과 같은 결합 디바이스 및/또는 송신 매체의 하나 이상의 크기들에 비해 작을 수 있다. 송신들은 유전체의 스트립, 아크, 또는 다른 길이; 혼(horn), 단극, 로드(rod), 슬롯 또는 다른 안테나; 안테나들의 어레이; 자기 공진 캐비티, 또는 다른 공진 커플러; 코일, 스트립 라인, 도파관 또는 다른 결합 디바이스와 같은 결합 디바이스에 의해 가이드된 파들로서 전파하도록 생성될 수 있다. 동작시, 결합 디바이스는 송신기 또는 송신 매체로부터 전자기파를 수신한다. 전자기파의 전자기장 구조는 결합 디바이스의 내부, 결합 디바이스의 외부 또는 그의 일부 조합으로 전달될 수 있다. 결합 디바이스가 송신 매체 근처에 있을 때, 전자기파의 적어도 일부는 송신 매체에 결합되거나 그에 바운드되고, 가이드된 전자기파들로서 전파를 계속한다. 상호 방식으로, 결합 디바이스는 송신 매체로부터 가이드파들을 추출하고 이들 전자기파들을 수신기로 전달할 수 있다.

일 예시적인 실시예에 따라, 표면파는 와이어의 외부 또는 외부 표면과 같은 송신 매체의 표면, 또는 상이한 속성들(예를 들면, 유전체 속성들)을 갖는 매체의 다른 형태에 인접하거나 그에 노출된 와이어의 다른 표면에 의해 가이드된 가이드파의 일 형태이다. 사실상, 일 예시적인 실시예에서, 표면파를 가이드하는 와이어의 표면은 두 개의 상이한 형태들의 매체들 사이에 전이 표면을 나타낼 수 있다. 예를 들면, 나선 또는 비절연된 와이어의 경우, 와이어의 표면은 공기 또는 자유 공간에 노출되는 나선 또는 비절연된 와이어의 외부 또는 외부 도전성 표면일 수 있다. 다른 예로서, 절연된 와이어의 경우, 와이어의 표면은 와이어의 절연체 부분에 닿는 와이어의 도전성 부분일 수 있거나, 그와 달리 공기 또는 자유 공간에 노출되는 와이어의 절연체 표면일 수 있거나, 또는 그와 달리 절연체, 공기, 및/또는 도전체의 속성들(예를 들면, 유전체 속성들)의 상대적인 차이들에 의존하고 가이드파의 주파수 및 전파 모드 또는 모드들에 또한 의존하여, 와이어의 절연체 부분에 닿는 와이어의 도전성 부분과 와이어의 절연체 표면 사이의 임의의 재료 영역일 수 있다.

일 예시적인 실시예에 따라, 가이드파와 함께 사용된 와이어 또는 다른 송신 매체 "근처"라는 용어는 적어도 부분적으로 와이어 또는 다른 송신 매체 주위의 원형 또는 실질적으로 원형 필드 분포, 대칭적 전자기장 분포(예를 들면, 전기장, 자기장, 전자기장, 등), 또는 다른 기본 모드 패턴을 갖는 가이드파들과 같은 기본 가이드파 전파 모드들을 포함할 수 있다. 또한, 가이드파가 와이어 또는 다른 송신 매체 "근처에" 전파할 때, 기본파 전파 모드들(예를 들면, 제로 차수 모드들)뿐만 아니라, 추가로 또는 대안적으로, 고차 가이드파 모드들(예를 들면, 1차 모드들, 2차 모드들, 등), 비대칭 모드들 및/또는 와이어 또는 다른 송신 매체 주위의 원형이 아닌 필드 분포들을 갖는 다른 가이드(예를 들면, 표면)파들과 같은 비기본파 전파 모드들을 포함하는 가이드파 전파 모드에 따라 그렇게 수행할 수 있다. 여기에 사용된 바와 같이, 용어 "가이드파 모드"는 송신 매체, 결합 디바이스 또는 가이드파 통신 시스템의 다른 시스템 구성 요소의 가이드파 전파 모드를 지칭한다.

예를 들면, 이러한 원형이 아닌 필드 분포들은 비교적 큰 필드 세기를 특징으로 하는 하나 이상의 축 방향 로브들 및/또는 비교적 작은 필드 세기, 제로-필드 세기, 또는 실질적으로 제로-필드 세기를 특징으로 하는 하나 이상의 널들 또는 널 영역들을 갖는 일측성(unilateral) 또는 다측성(multi-lateral)일 수 있다. 또한, 필드 분포는 그와 달리 와이어 주위의 하나 이상의 각도 방향들이 일 예시적인 실시예에 따라, 방위각 방향의 하나 이상의 다른 각도 영역들보다 큰 전기장 또는 자기장 세기(또는 그의 조합)를 갖도록 와이어 주위의 방위각 방향의 함수로서 변할 수 있다. 가이드파 고차 모드들 또는 비대칭 모드들의 상대적인 방향들 또는 위치들이 가이드파가 와이어를 따라 이동함에 따라 변할 수 있다는 것이 이해될 것이다.

여기에 사용된 바와 같이, 용어 "밀리미터파"는 30 ㎓ 내지 300 ㎓의 "밀리미터파 주파수 대역" 내에 포함되는 전자기파들/신호들을 지칭할 수 있다. 용어 "마이크로파"는 300 ㎒ 내지 300 ㎓의 "마이크로파 주파수 대역" 내에 포함되는 전자기파들/신호들을 지칭할 수 있다. 용어 "라디오 주파수" 즉 "RF"는 10 ㎑ 내지 1 ㎔의 "라디오 주파수 대역" 내에 포함되는 전자기파들/신호들을 지칭할 수 있다. 본 개시에 설명되는 무선 신호들, 전기 신호들, 및 가이드된 전자기파들이, 예를 들면, 밀리미터파 및/또는 마이크로파 주파수 대역들 내, 이상 또는 이하의 주파수들에서와 같이, 임의의 바람직한 주파수 범위에서 동작하도록 구성될 수 있다는 것이 이해될 것이다. 특히, 결합 디바이스 또는 송신 매체가 도전성 요소를 포함할 때, 결합 디바이스에 의해 전달되고 및/또는 송신 매체를 따라 전파하는 가이드된 전자기파들의 주파수는 도전성 요소에서 전자들의 평균 충돌 주파수 이하일 수 있다. 또한, 결합 디바이스에 의해 전달되고 및/또는 송신 매체를 따라 전파하는 가이드된 전자기파들의 주파수는 비광학적 주파수, 예를 들면, 1 ㎔에서 시작하는 광학 주파수들의 범위 이하인 라디오 주파수일 수 있다.

여기에 사용되는, 용어 "안테나"는 무선 신호들을 송신/방출 또는 수신할 송신 또는 수신 시스템의 일부인 디바이스를 지칭할 수 있다.

하나 이상의 실시예들에 따라, 네트워크 종단은 통신 네트워크로부터 다운스트림 데이터를 수신하고 업스트림 데이터를 통신 네트워크로 전송하도록 구성된 네트워크 인터페이스를 포함한다. 다운스트림 채널 변조기는 가이드파 통신 시스템의 다운스트림 주파수 채널들에 대응하여 다운스트림 데이터를 다운스트림 채널 신호들로 변조한다. 호스트 인터페이스는 다운스트림 채널 신호들을 가이드파 통신 시스템으로 전송하고 가이드파 통신 시스템으로부터 업스트림 주파수 채널들에 대응하는 업스트림 채널 신호들을 수신하기 위한 것이다. 업스트림 채널 복조기는 업스트림 채널 신호들을 업스트림 데이터로 복조한다.

하나 이상의 실시예들에 따라, 방법은 통신 네트워크로부터 다운스트림 데이터를 수신하는 단계; 다운스트림 데이터를 가이드파 통신 시스템의 다운스트림 주파수 채널들에 대응하는 업스트림 채널 신호들로 변조하는 단계; 유선 접속을 통해 다운스트림 채널 신호들을 가이드파 통신 시스템으로 전송하는 단계; 유선 접속을 통해 가이드파 통신 시스템으로부터 업스트림 주파수 채널들에 대응하는 업스트림 채널 신호들을 수신하는 단계; 업스트림 채널 신호들을 업스트림 데이터로 복조하는 단계; 및 업스트림 데이터를 통신 네트워크로 전송하는 단계를 포함한다.

하나 이상의 실시예들에 따라, 네트워크 종단은 가이드파 통신 시스템의 송신 매체에 바운드되는 가이드된 전자기파를 통해 다운스트림 데이터를 전달하기 위해 다운스트림 데이터를 다운스트림 채널 신호들로 변조하도록 구성된 다운스트림 채널 변조기를 포함한다. 호스트 인터페이스는 다운스트림 채널 신호들을 가이드파 통신 시스템으로 전송하고 가이드파 통신 시스템으로부터 업스트림 주파수 채널들에 대응하는 업스트림 채널 신호들을 수신하기 위한 것이다. 업스트림 채널 복조기는 업스트림 채널 신호들을 업스트림 데이터로 복조한다.

하나 이상의 실시예들에 따라, 호스트 노드 디바이스는 가이드파 통신 시스템을 통해 통신하도록 구성된 적어도 하나의 액세스 포인트 중계기(access point repeater; APR)를 포함한다. 단말 인터페이스는 통신 네트워크로부터 다운스트림 채널 신호들을 수신한다. 제 1 채널 듀플렉서는 다운스트림 채널 신호들을 적어도 하나의 APR로 전달한다. 적어도 하나의 APR은 다운스트림 채널 신호들을 가이드된 전자기파들로서 가이드파 통신 시스템상에 론칭한다.

하나 이상의 실시예들에 따라, 방법은 통신 네트워크로부터 다운스트림 채널 신호들을 수신하는 단계; 다운스트림 채널 신호들을 가이드된 전자기파들로서 가이드파 통신 시스템상에 론칭하는 단계; 및 다운스트림 채널 신호들을 적어도 하나의 클라이언트 노드 디바이스로 무선으로 송신하는 단계를 포함한다.

하나 이상의 실시예들에 따라, 호스트 노드 디바이스는 통신 네트워크로부터 다운스트림 채널 신호들을 수신하고 업스트림 채널 신호들을 통신 네트워크로 전송하도록 구성된 단말 인터페이스를 포함한다. 적어도 하나의 액세스 포인트 중계기(APR)는 다운스트림 채널 신호들을 가이드된 전자기파들로서 가이드파 통신 시스템상에 론칭하고 가이드파 통신 시스템으로부터 업스트림 채널 신호들의 제 1 서브세트를 추출하기 위한 것이다. 무선 장치는 다운스트림 채널 신호들을 적어도 하나의 클라이언트 노드 디바이스로 무선으로 송신하고 적어도 하나의 클라이언트 노드 디바이스로부터 업스트림 채널 신호들의 제 2 서브세트를 무선으로 수신하기 위한 것이다.

하나 이상의 실시예들에 따라, 클라이언트 노드 디바이스는 통신 네트워크로부터 다운스트림 채널 신호들을 무선으로 수신하도록 구성된 무선 장치를 포함한다. 액세스 포인트 중계기(APR)는 다운스트림 채널 신호들을 송신 매체를 따라 전파하는 가이드된 전자기파들로서 가이드파 통신 시스템상에 론칭하고 다운스트림 채널 신호들을 적어도 하나의 클라이언트 디바이스로 무선으로 송신하기 위한 것이다.

하나 이상의 실시예들에 따라, 방법은 통신 네트워크로부터 다운스트림 채널 신호들을 무선으로 수신하는 단계; 다운스트림 채널 신호들을 송신 매체를 따라 전파하는 가이드된 전자기파들로서 가이드파 통신 시스템상에 론칭하는 단계; 및 다운스트림 채널 신호들을 적어도 하나의 클라이언트 디바이스로 무선으로 송신하는 단계를 포함한다.

하나 이상의 실시예들에 따라, 클라이언트 노드 디바이스는 통신 네트워크로부터 다운스트림 채널 신호들을 무선으로 수신하고 제 1 업스트림 채널 신호들 및 제 2 업스트림 신호들을 통신 네트워크로 무선으로 송신하도록 구성된 무선 장치를 포함한다. 액세스 포인트 중계기(APR)는 다운스트림 채널 신호들을 송신 매체를 따라 전파하는 가이드된 전자기파들로서 가이드파 통신 시스템상에 론칭하고, 가이드파 통신 시스템으로부터 제 1 업스트림 채널 신호들을 추출하고, 다운스트림 채널 신호들을 적어도 하나의 클라이언트 디바이스로 무선으로 송신하고, 제 2 업스트림 채널 신호들을 통신 네트워크로부터 무선으로 수신하기 위한 것이다.

하나 이상의 실시예들에 따라, 중계기 디바이스는 가이드파 통신 시스템의 송신 매체에 바운드된 제 1 가이드된 전자기파들로부터 다운스트림 채널 신호들을 추출하도록 구성된 제 1 커플러를 포함한다. 증폭기는 다운스트림 채널 신호들을 증폭하여 증폭된 다운스트림 채널 신호들을 생성한다. 채널 선택 필터는 안테나를 통해 적어도 하나의 클라이언트 디바이스로 무선으로 송신하기 위해 하나 이상의 증폭된 다운스트림 채널 신호들을 선택한다. 제 2 커플러는 증폭된 다운스트림 채널 신호들을 가이드파 통신 시스템의 송신 매체로 가이드하여 제 2 가이드된 전자기파들로서 전파한다. 채널 듀플렉서는 증폭된 다운스트림 채널 신호들을 커플러 및 채널 선택 필터로 전달한다.

하나 이상의 실시예들에 따라, 방법은 가이드파 통신 시스템의 송신 매체에 바운드된 제 1 가이드된 전자기파들로부터 다운스트림 채널 신호들을 추출하는 단계; 증폭된 다운스트림 채널 신호들을 생성하기 위해 다운스트림 채널 신호들을 증폭하는 단계; 안테나를 통해 적어도 하나의 클라이언트 디바이스로 무선으로 송신하기 위해 하나 이상의 증폭된 다운스트림 채널 신호들을 선택하는 단계; 및 가이드파 통신 시스템의 송신 매체로 증폭된 다운스트림 채널 신호들을 가이드하여 제 2 가이드된 전자기파들로서 전파하는 단계를 포함한다.

하나 이상의 실시예들에 따라, 중계기 디바이스는 가이드파 통신 시스템의 송신 매체에 바운드된 제 1 가이드된 전자기파들로부터 다운스트림 채널 신호들을 추출하도록 구성된 제 1 커플러를 포함한다. 증폭기는 증폭된 다운스트림 채널 신호들을 생성하기 위해 다운스트림 채널 신호들을 증폭시킨다. 채널 선택 필터는 안테나를 통해 적어도 하나의 클라이언트 디바이스로 무선으로 송신하기 위해 하나 이상의 증폭된 다운스트림 채널 신호들을 선택한다. 제 2 커플러는 제 2 가이드된 전자기파들로서 전파하기 위해 가이드파 통신 시스템의 송신 매체로 증폭된 다운스트림 채널 신호들을 가이드한다.

도 1은 여기에 설명된 다양한 양태들에 따라 가이드파 통신 시스템의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 2는 여기에 설명된 다양한 양태들에 따라 송신 디바이스의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 3은 여기에 설명된 다양한 양태들에 따라 전자기장 분포의 일 예시적인, 비제한적인 실시예를 도시하는 그래픽도.
도 4는 여기에 설명된 다양한 양태들에 따라 전자기장 분포의 일 예시적인, 비제한적인 실시예를 도시하는 그래픽도.
도 5a는 여기에 설명된 다양한 양태들에 따라 주파수 응답의 일 예시적인, 비제한적인 실시예를 도시하는 그래픽도.
도 5b는 여기에 설명된 다양한 양태들에 따라 다양한 동작 주파수들에서 가이드된 전자기파들의 필드들을 표시하는 절연된 와이어의 길이 방향의 단면의 예시적인, 비제한적인 실시예들을 도시하는 그래픽도.
도 6은 여기에 설명된 다양한 양태들에 따라 전자기장 분포의 일 예시적인, 비제한적인 실시예를 도시하는 그래픽도.
도 7은 여기에 설명된 다양한 양태들에 따라 아크 커플러(arc coupler)의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 8는 여기에 설명된 다양한 양태들에 따라 아크 커플러의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 9a는 여기에 설명된 다양한 양태들에 따라 스터브 커플러(stub coupler)의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 9b는 여기에 설명된 다양한 양태들에 따라 전자기 분포의 일 예시적인, 비제한적인 실시예를 도시하는 도면.
도 10a 및 도 10b는 여기에 설명된 다양한 양태들에 따라 커플러들 및 송수신기들의 예시적인, 비제한적인 실시예들을 도시하는 블록도들.
도 11은 여기에 설명된 다양한 양태들에 따라 이중 스터브 커플러의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 12는 여기에 설명된 다양한 양태들에 따라 중계기 시스템의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 13은 여기에 설명된 다양한 양태들에 따라 양방향 중계기의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 14는 여기에 설명된 다양한 양태들에 따라 도파관 시스템의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 15는 여기에 설명된 다양한 양태들에 따라 가이드파 통신 시스템의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 16a 및 도 16b는 여기에 설명된 다양한 양태들에 따라 전력 그리드 통신 시스템을 관리하기 위한 시스템의 일 예시적인, 비제한적인 실시예를 도시하는 블록도들.
도 17a는 도 16a 및 도 16b의 시스템의 통신 네트워크에서 발생하는 교란을 검출 및 완화하기 위한 방법의 일 예시적인, 비제한적인 실시예의 흐름도.
도 17b는 도 16a 및 도 16b의 시스템의 통신 네트워크에서 발생하는 교란들을 검출 및 완화하기 위한 방법의 일 예시적인, 비제한적인 실시예의 흐름도.
도 18a는 여기에 설명된 다양한 양태들에 따라 통신 시스템의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 18b는 여기에 설명된 다양한 양태들에 따라 네트워크 종단의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 18c는 여기에 설명된 다양한 양태들에 따라 주파수 스펙트럼의 일 예시적인, 비제한적인 실시예를 도시하는 그래픽도.
도 18d는 여기에 설명된 다양한 양태들에 따라 주파수 스펙트럼의 일 예시적인, 비제한적인 실시예를 도시하는 그래픽도.
도 18e는 여기에 설명된 다양한 양태들에 따라 호스트 노드 디바이스의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 18f는 여기에 설명된 다양한 양태들에 따라 다운스트림 데이터 플로우의 일 예시적인, 비제한적인 실시예를 도시하는 조합 사진 및 블록도.
도 18g는 여기에 설명된 다양한 양태들에 따라 업스트림 데이터 플로우의 일 예시적인, 비제한적인 실시예를 도시하는 조합 사진 및 블록도.
도 18h는 여기에 설명된 다양한 양태들에 따라 클라이언트 노드 디바이스의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 19a는 여기에 설명된 다양한 양태들에 따라 액세스 포인트 중계기의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 19b는 여기에 설명된 다양한 양태들에 따라 미니-중계기의 일 예시적인, 비제한적인 실시예를 도시하는 블록도.
도 19c는 여기에 설명된 다양한 양태들에 따라 미니-중계기의 일 예시적인, 비제한적인 실시예를 도시하는 조합 사진 및 블록도.
도 19d는 여기에 설명된 다양한 양태들에 따라 주파수 스펙트럼의 일 예시적인, 비제한적인 실시예를 도시하는 그래픽도.
도 20a 내지 도 20d는 여기에 설명된 다양한 양태들에 따라 방법들의 예시적인, 비제한적인 실시예들의 흐름도들.
도 21은 여기에 설명된 다양한 양태들에 따라 컴퓨팅 환경의 일 예시적인, 비제한적인 실시예의 블록도.
도 22는 여기에 설명된 다양한 양태들에 따라 이동 네트워크 플랫폼의 일 예시적인, 비제한적인 실시예의 블록도.
도 23은 여기에 설명된 다양한 양태들에 따라 통신 디바이스의 일 예시적인, 비제한적인 실시예의 블록도.

반드시 비례적으로 도시되지 않은 첨부하는 도면들에 대한 참조가 이제 행해질 것이다.

지금 도 1을 참조하면, 가이드파 통신 시스템의 일 예시적인, 비제한적인 실시예를 예시하는 블록도(100)가 도시된다. 동작시, 송신 디바이스(101)는 통신 네트워크 또는 다른 통신 디바이스로부터 데이터를 포함하는 하나 이상의 통신 신호들(110)을 수신하고 송신 매체(125)를 통해 데이터를 송신 디바이스(102)에 전달하기 위해 가이드파들(120)을 생성한다. 송신 디바이스(102)는 가이드파들(120)을 수신하고 이들을 통신 네트워크 또는 다른 통신 디바이스로 송신을 위한 데이터를 포함하는 통신 신호들(112)로 변환한다. 가이드파들(120)은 위상 시프트 키잉, 주파수 시프트 키잉, 직교 진폭 변조, 진폭 변조, 직교 주파수 분할 다중화와 같은 다중 반송파 변조와 같은 변조 기술을 통해 및 주파수 분할 다중화, 시분할 다중화, 코드 분할 다중화, 상이한 파 전파 모드들을 통해 및 다른 변조 및 액세스 전략들을 통한 다중화와 같은 다중 액세스 기술들을 통해 데이터를 전달하도록 변조될 수 있다.

통신 네트워크 또는 네트워크들은 이동 데이터 네트워크, 셀룰러 음성 및 데이터 네트워크, 무선 로컬 영역 네트워크(예를 들어, WiFi 또는 802.xx 네트워크), 위성 통신 네트워크, 개인 영역 네트워크 또는 다른 무선 네트워크와 같은 무선 통신 네트워크를 포함할 수 있다. 통신 네트워크 또는 네트워크들은 또한 전화 네트워크, 이더넷 네트워크, 근거리 네트워크, 인터넷과 같은 광역 네트워크, 광대역 액세스 네트워크, 케이블 네트워크, 광섬유 네트워크, 또는 다른 유선 네트워크와 같은 유선 통신 네트워크를 포함할 수 있다. 통신 디바이스는 네트워크 에지 디바이스, 브리지 디바이스 또는 홈 게이트웨이, 셋톱 박스, 광대역 모뎀, 전화 어댑터, 액세스 포인트, 기지국, 또는 다른 고정식 통신 디바이스, 자동차 게이트웨이 또는 자동차와 같은 이동 통신 디바이스, 랩톱 컴퓨터, 태블릿, 스마트폰, 휴대 전화, 또는 다른 통신 디바이스를 포함할 수 있다.

일 예시적인 실시예에서, 도면(100)의 가이드파 통신 시스템은 송신 디바이스(102)가 다른 데이터를 포함하는 하나 이상의 통신 신호들(112)을 통신 네트워크 또는 디바이스로부터 수신하고 송신 매체(125)를 통해 다른 데이터를 송신 디바이스(101)에 전달하기 위한 가이드파들(122)을 생성하는 양방향 방식으로 동작할 수 있다. 이러한 동작 모드에서, 송신 디바이스(101)는 가이드파들(122)을 수신하고 이들을 통신 네트워크 또는 디바이스로의 송신을 위해 다른 데이터를 포함하는 통신 신호들(110)로 변환한다. 가이드파들(122)은 위상 시프트 키잉, 주파수 시프트 키잉, 직교 진폭 변조, 진폭 변조, 직교 주파수 분할 다중화와 같은 다중 반송파 변조를 통해 및 주파수 분할 다중화, 시분할 다중화, 코드 분할 다중화, 상이한 파 전파 모드들을 통한 다중화와 같은 다중 액세스 기술을 통해 및 다른 변조 및 액세스 전략들을 통해 데이터를 전달하도록 변조될 수 있다.

송신 매체(125)는 절연체 또는 다른 유전체 커버, 코팅 또는 다른 유전체 재료와 같은 유전체 재료로 둘러싸인 적어도 하나의 내부 부분을 갖는 케이블을 포함할 수 있고, 유전체 재료는 외부 표면 및 대응하는 둘레를 갖는다. 일 예시적인 실시예에서, 송신 매체(125)는 전자기파의 송신을 가이드하기 위한 단선 송전선(single-wire transmission line)으로서 동작한다. 송신 매체(125)가 단선 송신 시스템으로서 구현될 때, 송신 매체(125)는 와이어를 포함할 수 있다. 와이어는 절연되거나 비절연될 수 있고, 단선 또는 다중 선(예: 편복선(braided))일 수 있다. 다른 실시예들에서, 송신 매체(125)는 와이어 번들들, 케이블들, 로드들, 레일들, 파이프들을 포함하는 다른 형상들 또는 구성들의 도전체들을 포함할 수 있다. 또한, 송신 매체(125)는 유전체 파이프들, 로드들, 레일들, 또는 다른 유전체 부재들과 같은 비도전체들; 도전체들 및 유전체 재료들의 조합들, 유전체 재료들 없는 도전체들, 또는 다른 가이드파 송신 매체들을 포함할 수 있다. 송신 매체(125)는 그와 달리 이전에 논의된 송신 매체 중 임의의 것을 포함할 수 있다는 것을 주의되어야 한다.

또한, 이전에 논의된 바와 같이, 가이드파들(120, 122)은 자유 공간/공기를 통한 라디오 송신들 또는 전기 회로를 통한 와이어의 도전체를 통한 전력 또는 신호의 종래 전파와 대조될 수 있다. 가이드파들(120 및 122)의 전파 이외에, 송신 매체(125)는 선택적으로 하나 이상의 전기 회로들의 일부로서 종래의 방식으로 전력 또는 다른 통신 신호들을 전파하는 하나 이상의 와이어들을 포함할 수 있다.

이제 도 2를 참조하면, 송신 디바이스의 일 예시적인, 비제한적인 실시예를 도시하는 블록도(200)가 도시된다. 송신 디바이스(101 또는 102)는 통신 인터페이스(I/F)(205), 송수신기(210) 및 커플러(220)를 포함한다.

동작의 일 예에서, 통신 인터페이스(205)는 데이터를 포함하는 통신 신호(110 또는 112)를 수신한다. 다양한 실시예들에서, 통신 인터페이스(205)는 LTE 또는 다른 셀룰러 음성 및 데이터 프로토콜, WiFi 또는 802.11 프로토콜, WIMAX 프로토콜, 초광대역 프로토콜, 블루투스 프로토콜, 지그비 프로토콜, 직접 방송 위성(DBS) 또는 다른 위성 통신 프로토콜 또는 다른 무선 프로토콜과 같은 무선 표준 프로토콜에 따라 무선 통신 신호를 수신하기 위한 무선 인터페이스를 포함할 수 있다. 부가적으로 또는 대안적으로, 통신 인터페이스(205)는 이더넷 프로토콜, 범용 직렬 버스(USB; universal serial bus) 프로토콜, 케이블 데이터 서비스 인터페이스 규격(data over cable service interface specification; DOCSIS) 프로토콜, 디지털 가입자 회선(DSL; Digital subscriber line) 프로토콜, 방화벽 (IEEE 1394) 프로토콜, 또는 다른 유선 프로토콜에 따라 동작하는 유선 인터페이스를 포함한다. 표준 기반 프로토콜들 외에, 통신 인터페이스(205)는 예를 들면, 가이드파 통신 시스템을 통합하는 네트워크와 함께 동작을 위해 변경된, 상기 표준 프로토콜들 또는 완전히 상이한 프로토콜의 현재 또는 계획된 변동들 중 임의의 것을 포함하여 다른 유선 또는 무선 프로토콜과 함께 동작할 수 있다. 또한, 통신 인터페이스(205)는 MAC 프로토콜, 전송 프로토콜, 애플리케이션 프로토콜 등을 포함하는 다중 프로토콜 계층들을 포함하는 프로토콜 스택과 함께 선택적으로 동작할 수 있다.

동작의 일 예에서, 송수신기(210)는 데이터를 전달하기 위해 통신 신호(110 또는 112)에 기초하여 전자기파를 생성한다. 전자기파는 적어도 하나의 반송파 주파수 및 적어도 하나의 대응하는 파장을 갖는다. 반송파 주파수는 30㎓ 내지 300㎓의 밀리미터파 주파수 대역, 예컨대 60㎓ 또는 30 내지 40㎓ 범위의 반송파 주파수 또는 26㎒ 내지 30㎓, 11㎓, 6㎓ 또는 3㎓와 같은 마이크로파 주파수 범위의 300㎒ 내지 30㎓의 더 낮은 주파수 대역 내에 있을 수 있지만, 다른 실시예들에서 다른 반송파 주파수들이 가능하다는 것이 이해될 것이다. 하나의 동작 모드에서, 송수신기(210)는 마이크로파 또는 밀리미터파 대역의 전자기 신호의 송신을 위해 통신 신호 또는 신호들(110 또는 112)을 송신 매체(125)에 의해 가이드되거나 송신 매체(125)에 바운드된 전자기파로서 단순히 업컨버트한다. 다른 동작 모드에서, 통신 인터페이스(205)는 통신 신호(110 또는 112)를 기저 대역 또는 근접한 기저 대역 신호로 변환하거나 통신 신호(110 또는 112)로부터 데이터를 추출하고 송수신기(210)는 송신을 위해 데이터, 기저 대역 또는 근접한 기저 대역 신호로 고주파 반송파를 변조한다. 송수신기(210)는 통신 신호(110 또는 112)를 통해 수신된 데이터를 변조하여 상이한 프로토콜의 페이로드에서의 캡슐화에 의해 또는 간단한 주파수 시프팅에 의해 통신 신호(110 또는 112)의 하나 이상의 데이터 통신 프로토콜들을 보존하는 것이 이해되어야 한다. 대안적으로, 송수신기(210)는 그와 달리 통신 신호(110 또는 112)를 통해 수신된 데이터를 통신 신호(110 또는 112)의 데이터 통신 프로토콜 또는 프로토콜들과 다른 프로토콜로 변환할 수 있다.

동작의 일 예에서, 커플러(220)는 전자기파를 가이드된 전자기파로서 송신 매체(125)에 결합시켜 통신 신호 또는 신호들(110 또는 112)을 전달한다. 이전의 설명은 송신기로서의 송수신기(210)의 동작에 집중되지만, 송수신기(210)는 또한 커플러(220)를 통해 단선 송신 매체로부터 다른 데이터를 전달하는 전자기파를 수신하고 다른 데이터를 포함하는 통신 인터페이스(205)를 통해 통신 신호들(110 또는 112)을 생성하도록 동작할 수 있다. 추가의 가이드된 전자기파가 송신 매체(125)를 따라 또한 전파하는 다른 데이터를 전달하는 실시예들을 고려하자. 커플러(220)는 또한 수신을 위해 송신 매체(125)로부터 송수신기(210)로 이러한 추가 전자기파를 결합할 수 있다.

송신 디바이스(101, 102)는 선택적인 훈련 제어기(230)를 포함한다. 일 예시적인 실시예에서, 훈련 제어기(230)는 독립형 프로세서 또는 송신 디바이스(101 또는 102)의 하나 이상의 다른 구성 요소들과 공유되는 프로세서에 의해 구현된다. 훈련 제어기(230)는 가이드된 전자기파를 수신하도록 결합된 적어도 하나의 원격 송신 디바이스로부터 송수신기(210)에 의해 수신된 피드백 데이터에 기초하여 가이드된 전자기파들에 대한 반송 주파수들, 변조 방식들 및/또는 가이드파 모드들을 선택한다.

일 예시적인 실시예에서, 원격 송신 디바이스(101 또는 102)에 의해 송신된 가이드된 전자기파는 송신 매체(125)를 따라 또한 전파하는 데이터를 전달한다. 원격 송신 디바이스(101 또는 102)로부터의 데이터는 피드백 데이터를 포함하도록 생성될 수 있다. 동작시, 커플러(220)는 또한 송신 매체(125)로부터 가이드된 전자기파를 결합시키고 송수신기는 전자기파를 수신하고 전자기파를 처리하여 피드백 데이터를 추출한다.

일 예시적인 실시예에서, 훈련 제어기(230)는 피드백 데이터에 기초하여 처리율, 신호 세기와 같은 성능을 향상시키고 전파 손실을 감소시키는 등을 위해 반송 주파수, 변조 방식 및/또는 송신 모드를 선택하기 위한 복수의 후보 주파수들, 변조 방식들 및/또는 송신 모드들을 평가하도록 동작한다.

다음의 예를 고려하자: 송신 디바이스(101)는 복수의 가이드파들을 파일럿 파들과 같은 테스트 신호들 또는 송신 매체(125)에 결합된 원격 송신 디바이스(102)로 지향된 대응하는 복수의 후보 주파수들 및/또는 후보 모드들에서의 다른 테스트 신호들을 전송함으로써 훈련 제어기(230)의 제어하에 동작을 시작한다. 가이드파들은 추가로 또는 대안적으로 테스트 데이터를 포함할 수 있다. 테스트 데이터는 신호의 특정 후보 주파수 및/또는 가이드파 모드를 나타낼 수 있다. 일 실시예에서, 원격 송신 디바이스(102)의 훈련 제어기(230)는 적절하게 수신된 임의의 가이드파들로부터 테스트 신호들 및/또는 테스트 데이터를 수신하고 최상의 후보 주파수 및/또는 가이드파 모드, 허용 가능한 후보 주파수들 및/또는 가이드파 모드들의 세트, 또는 후보 주파수들 및/또는 가이드파 모드들의 랭킹 순서를 결정한다. 후보 주파수(들) 및/또는 가이드 모드(들)의 이러한 선택은 수신된 신호 세기, 비트 에러율, 패킷 에러율, 신호대 잡음비, 전파 손실 등과 같은 하나 이상의 최적화 기준들에 기초하여 훈련 제어기(230)에 의해 생성된다. 훈련 제어기(230)는 후보 주파수(들) 및/또는 가이드파 모드(들)의 선택을 나타내는 피드백 데이터를 생성하고, 송신 디바이스(101)로의 송신을 위해 송수신기(210)에 피드백 데이터를 전송한다. 송신 디바이스(101, 102)는 이후 후보 주파수(들) 및/또는 가이드파 모드(들)의 선택에 기초하여 서로 데이터를 통신할 수 있다.

다른 실시예들에서, 테스트 신호들 및/또는 테스트 데이터를 포함하는 가이드된 전자기파들은 이들 파들을 개시한 송신 디바이스(101)의 훈련 제어기(230)에 의한 수신 및 분석을 위해 송신 디바이스(101)로 원격 송신 디바이스(102)에 의해 다시 반사되거나, 다시 중계되거나 그렇지 않으면 루프백된다. 예를 들어, 송신 디바이스(101)는 원격 송신 디바이스(102)에 신호를 전송하여 테스트 모드를 개시하고, 물리적 반사기가 회선상에서 스위치되고, 종단 임피던스가 반사들을 야기하도록 변경되고, 루프백 모드가 전자기파들을 다시 소스 송신 디바이스(102)로 결합하도록 스위칭되거나 및/또는 중계기 모드가 전자기파들을 증폭하여 소스 송신 디바이스(102)로 다시 재전송하도록 인에이블된다. 소스 전송 디바이스(102)의 훈련 제어기(230)는 적절하게 수신된 가이드파들 중 어느 하나로부터 테스트 신호들 및/또는 테스트 데이터를 수신하고 후보 주파수(들) 또는/및 가이드파 모드(들)의 선택을 결정한다.

상기 절차가 동작의 개시 또는 초기화 모드에서 설명되었지만, 각각의 송신 디바이스(101 또는 102)는 테스트 신호들을 전송하거나, 정규 송신들과 같은 비테스트를 통해 후보 주파수들 또는 가이드파 모드들을 평가하거나, 그렇지 않으면 다른 시간들에서 또는 연속적으로 또한 가이드파 모드들 또는 후보 주파수들을 평가할 수 있다. 일 예시적인 실시예에서, 송신 디바이스들(101, 102) 간의 통신 프로토콜은 온-리퀘스트(on-request) 또는 주기적 테스트 모드를 포함할 수 있으며, 여기서 후보 주파수들 및 가이드파 모드들의 서브세트의 전체 검사 또는 보다 제한된 검사가 테스트 및 평가된다. 동작의 다른 모드들에서, 이러한 테스트 모드로의 재진입은 교란, 날씨 조건 등으로 인한 성능의 열화에 의해 트리거될 수 있다. 일 예시적인 실시예에서, 송수신기(210)의 수신기 대역폭은 충분히 넓거나 모든 후보 주파수들을 수신하기 위해 스위프되거나 훈련 제어기(230)에 의해 송수신기(210)의 수신기 대역폭이 모든 후보 주파수들을 수신하기에 충분히 넓거나 스위프되는 훈련 모드로 선택적으로 조정될 수 있다.

이제 도 3을 참조하면, 전자기장 분포의 예시적이고 비제한적인 실시예를 도시하는 그래프도(300)가 도시된다. 이러한 실시예에서, 공기 중의 송신 매체(125)는 단면도에 도시된 바와 같이, 유전체 재료의 내부 컨덕터(301) 및 절연 재킷(302)을 포함한다. 도면(300)은 비대칭 및 비기본 가이드파 모드를 갖는 가이드파의 전파에 의해 생성된 상이한 전자기장 세기들을 나타내는 상이한 그레이-스케일들을 포함한다.

특히, 전자기장 분포는 절연된 송신 매체를 따라 가이드된 전자기파 전파를 향상시키고 단-대-단 송신 손실을 감소시키는 모드의 "스윗 스팟(sweet spot)"에 대응한다. 이러한 특정 모드에서, 전자기파들은 송신 매체의 외부 표면(이 경우에는 절연 재킷(302)의 외부 표면)을 따라 전파하기 위해 송신 매체(125)에 의해 가이드된다. 전자기파들은 절연체에 부분적으로 매립되고 절연체의 외부 표면상에 부분적으로 방출하고 있다. 이러한 방식으로, 전자기파들은 낮은 전파 손실로 장거리에서 전자기파 전파를 가능하게 하기 위하여 절연체에 "가볍게" 결합된다.

도시된 바와 같이, 가이드파는 전자기파들을 가이드하는 역할을 하는 송신 매체(125)의 주로 또는 실질적으로 외부에 놓이는 필드(field) 구조를 갖는다. 도전체(301) 내부의 영역들은 거의 또는 전혀 전계를 갖지 않는다. 마찬가지로, 절연 재킷(302) 내의 영역들은 낮은 전계 세기를 갖는다. 전자기장 세기의 대부분은 절연 재킷(302)의 외부 표면에서 로브들(304)에 및 그에 근접하게 분포된다. 비대칭 가이드파 모드의 존재는 절연 자켓(302)의 외부 표면의 상부 및 하부에서 높은 전자기장 세기들로(도면의 방향으로)-절연 자켓(302)의 다른 측면들상의 매우 작은 필드 세기들과 반대되는 것으로 도시된다.

도시된 예는 직경 1.1㎝, 두께 0.36㎝의 유전체 절연을 갖는 와이어에 의해 가이드된 38㎓ 전자기파에 대응한다. 전자기파가 송신 매체(125)에 의해 가이드되고 필드 세기의 대부분이 외부 표면의 제한된 거리 내에서 절연 재킷(302) 외부의 공기에 집중되기 때문에, 가이드파는 매우 낮은 손실을 갖고 송신 매체(125) 아래에 길이 방향으로 전파할 수 있다. 도시된 예에서, 이러한 "제한된 거리"는 송신 매체(125)의 가장 큰 단면 치수의 절반보다 작은 외부 표면으로부터의 거리에 대응한다. 이러한 경우, 와이어의 가장 큰 단면 치수는 1.82㎝의 총 직경에 대응하지만, 이러한 값은 송신 매체(125)의 크기 및 형상에 따라 변할 수 있다. 예를 들어, 송신 매체(125)가 높이가 0.3㎝이고 폭이 0.4㎝인 직사각형인 경우, 가장 큰 단면 치수는 0.5㎝의 대각선이고 대응하는 제한 거리는 0.25㎝일 것이다. 전계 세기의 대부분을 포함하는 영역의 치수들은 또한 주파수에 따라 다양하며, 일반적으로 반송파 주파수가 감소함에 따라 증가한다.

또한, 커플러들 및 송신 매체들과 같은, 가이드파 통신 시스템의 구성 요소들이 각각의 가이드파 모드에 대해 그들 자신의 차단 주파수들을 가질 수 있음이 주의되어야 한다. 차단 주파수는 일반적으로 특정 가이드파 모드가 특정 구성 요소에 의해 지원되도록 설계된 최저 주파수를 말한다. 일 예시적인 실시예에서, 도시된 특정 비대칭 모드의 전파는 이러한 특정 비대칭 모드에 대하여 낮은 차단 주파수(Fc)의 제한된 범위(예를 들어, Fc에서 2Fc) 내에 속하는 주파수를 갖는 전자기파에 의해 송신 매체(125)상에 유도된다. 낮은 차단 주파수(Fc)는 송신 매체(125)의 특징들에 대해 특정하다. 절연 재킷(302)에 의해 둘러싸인 내부 도체(301)를 포함하는 도시된 실시예들에 대해, 이러한 차단 주파수는 절연 재킷(302)의 치수들 및 속성들 및 잠재적으로는 내부 도전체(301)의 치수들 및 속성들에 기초하여 변할 수 있고 원하는 모드 패턴을 갖도록 실험적으로 결정될 수 있다. 그러나, 내부 도전체가 없는 중공 유전체 또는 절연체에 대해서도 유사한 효과들이 발견될 수 있음이 주의되어야 한다. 이러한 경우, 차단 주파수는 중공 유전체 또는 절연체의 치수들 및 속성들에 기초하여 변할 수 있다.

낮은 차단 주파수보다 낮은 주파수들에서, 비대칭 모드는 송신 매체(125)에서 유도하기 어렵고, 모든 사소한 거리에 대해 전파하지 못한다. 주파수가 차단 주파수에 대한 제한된 주파수 범위를 넘어서 증가함에 따라, 비대칭 모드는 절연 재킷(302)의 내부로 더욱 더 이동한다. 차단 주파수보다 훨씬 큰 주파수들에서, 필드 세기는 절연 재킷의 외부에 더 이상 외부에 집중되지 않고 주로 절연 재킷(302)의 내부에 집중된다. 송신 매체(125)가 전자기파에 대한 강한 유도를 제공하고 전파가 여전히 가능하지만, 범위들은 주변 공기에 반대로서 절연 재킷(302) 내에서의 전파로 인한 증가된 손실들에 의해 더 제한된다.

이제 도 4를 참조하면, 전자기장 분포의 일 예시적이고 비제한적인 실시예를 도시한 그래픽도(400)가 도시된다. 특히, 도 3과 유사한 단면도(400)는 유사한 요소를 지칭하기 위해 사용된 공통 참조 번호들과 함께 도시된다. 도시된 예는 1.1㎝의 직경 및 0.36㎝의 두께의 유전체 절연을 갖는 와이어에 의해 가이드되는 60㎓ 파에 대응한다. 가이드파의 주파수가 이러한 특정 비대칭 모드의 차단 주파수의 제한된 범위를 초과하기 때문에, 필드 세기의 대부분이 절연 재킷(302)의 안쪽으로 시프트된다. 특히, 필드 세기는 주로 절연 재킷(302)의 내부에 집중된다. 송신 매체(125)가 전자기파에 대한 강한 안내를 제공하고 전파가 여전히 가능하지만, 절연 재킷(302) 내에서의 전파로 인한 증가된 손실에 의해 도 3의 실시예와 비교할 때 범위들이 더 제한된다.

이제 도 5a를 참조하면, 주파수 응답의 일 예시적이고 비제한적인 실시예를 도시하는 그래픽도가 도시된다. 특히, 도표(500)는 200㎝ 절연 고압선에 대해 3 개의 지점들에서 전자기장 분포들(510, 520, 530)로 중첩된 주파수의 함수로서 단대단 손실(dB 단위)의 그래프를 나타낸다. 절연체와 주변 공기 사이의 경계는 각각의 전자기장 분포에서 참조 번호 525로 표시된다.

도 3과 관련하여 논의된 바와 같이, 도시된 원하는 비대칭 모드의 전파의 일 예는 이러한 특정 비대칭 모드에 대한 송신 매체의 하위 차단 주파수(Fc)의 제한된 범위(예컨대, Fc 내지 2Fc) 내에 속하는 주파수를 갖는 전자기파에 의해 송신 매체(125)상에 유도된다. 특히, 6 ㎓에서의 전자기장 분포(520)는 절연된 송신 매체를 따라 전자기파 전파를 향상시키고 단대단 송신 손실을 감소시키는 이러한 모드의 "스위트 스팟(sweet spot)" 내에 속한다. 이러한 특정 모드에서, 가이드파들은 부분적으로 절연체 내에 매립되고 부분적으로 절연체의 외부 표면상에 방출한다. 이러한 방식으로, 전자기파들은 낮은 전파 손실로 장거리들에서 가이드된 전자기파 전파를 가능하게 하기 위해 절연체에 "가볍게" 결합된다.

3 ㎓에서의 전자기장 분포(510)로 표현된 하위 주파수들에서, 비대칭 모드는 더 크게 생성된 전파 손실들을 방출한다. 9 ㎓에서 전자기장 분포(530)로 표현되는 상위 주파수들에서, 비대칭 모드는 절연 재킷의 안쪽으로 더욱 더 이동하여 너무 많은 흡수를 제공하고, 다시 더 높은 전파 손실들을 발생시킨다.

이제 도 5b를 참조하면, 다양한 동작 주파수들에서 가이드된 전자기파들의 필드들을 도시하는, 절연된 와이어와 같은, 송신 매체(125)의 종단면의 예시적인, 비제한적인 실시예들을 도시하는 그래픽도(550)가 도시된다. 도표(556)에 도시된 바와 같이, 가이드된 전자기파들이 모드의 "스위트 스팟"에 대응하는 대략적으로 차단 주파수(fc)에 있을 때, 가이드된 전자기파들은 절연된 와이어에 느슨하게 결합되어 흡수가 감소되고, 가이드된 전자기파들의 필드들은 환경(예를 들면, 공기)으로 방출되는 양을 줄이기에 충분하게 결합된다. 가이드된 전자기파들의 필드들의 흡수 및 방출은 적기 때문에, 전파 손실들이 결과적으로 적어 가이드된 전자기파들이 더 먼 거리들에 대해 전파할 수 있게 한다.

도표(554)에 도시된 바와 같이, 가이드 전자기파들의 동작 주파수가 차단 주파수(fc)의 약 2 배를 초과하여- 또는 말하자면, "스위트 스팟(sweet spot)"의 범위를 초과하여 증가할 때 전파 손실들이 증가한다. 전자기파의 필드 세기 중 많은 것이 절연층 내부에 드라이빙되어, 전파 손실들이 증가한다. 차단 주파수(fc)보다 훨씬 높은 주파수들에서, 가이드된 전자기파들은 도표(552)에 도시된 바와 같이, 가이드된 전자기파에 의해 방출된 필드들이 와이어의 절연층에 집중되어 있기 때문에 절연된 와이어에 강하게 결합된다. 이것은 차례로 절연층에 의해 가이드된 전자기파들의 흡수로 인한 전파 손실들을 더욱 증가시킨다. 유사하게, 전파 손실들은 도표(558)에 도시된 바와 같이 가이드된 전자기파들의 동작 주파수가 차단 주파수(fc)보다 실질적으로 낮을 때 증가한다. 차단 주파수(fc)보다 훨씬 낮은 주파수들에서, 가이드된 전자기파들은 절연된 와이어에 약하게(또는 명목상으로) 결합되어 그에 의해 환경(예를 들면, 공기)으로 방출되는 경향이 있으며, 이는 차례로 가이드된 전자기파들의 방출로 인한 전파 손실들을 증가시킨다.

이제 도 6을 참조하면, 전자기장 분포의 일 예시적인, 비제한적인 실시예를 도시하는 그래픽도(600)가 도시된다. 이러한 실시예에서, 송신 매체(602)는 단면으로 도시된 바와 같이 나선이다. 도표(600)는 단일 반송파 주파수에서 대칭적이고 기본적인 가이드파 모드를 갖는 가이드파의 전파에 의해 생성된 상이한 전자기장 세기들을 나타내는 상이한 그레이-스케일들을 포함한다.

이러한 특정 모드에서, 전자기파들은 송신 매체(602)에 의해 가이드되어 송신 매체의 외부 표면-이러한 경우, 나선의 외부 표면을 따라 전파한다. 전자기파들은 낮은 전파 손실로 장거리들에서 전자기파 전파를 가능하게 하기 위해 와이어에 "약하게" 결합된다. 도시된 바와 같이, 가이드파는 전자기파들을 가이드하는 역할을 하는 송신 매체(602)의 실질적으로 외부에 놓이는 필드(field) 구조를 갖는다. 도전체(625) 내부의 영역들은 거의 또는 전혀 전계를 갖지 않는다.

이제 도 7을 참조하면, 아크 커플러의 일 예시적인, 비제한적인 실시예를 도시한 블록도(700)가 도시된다. 특히, 결합 디바이스는 도 1과 함께 제시된 송신 디바이스(101 또는 102)와 같은 송신 디바이스에 사용하기 위해 제시된다. 결합 디바이스는 송신기 회로(712) 및 종단 또는 댐퍼(714)에 결합된 아크 커플러(704)를 포함한다. 아크 커플러(704)는 유전체 재료 또는 다른 저손실 절연체(예를 들어, 테플론, 폴리에틸렌 등)로 만들어질 수 있거나, 또는 도전성(예를 들면, 금속성, 비금속성 등) 재료 또는 상기 재료들의 임의의 조합으로 만들어질 수 있다. 도시된 바와 같이, 아크 커플러(704)는 도파관으로서 동작하고 아크 커플러(704)의 도파관 표면 주위에 가이드파로서 전파하는 파(706)를 갖는다. 도시된 실시예에서, 아크 커플러(704)의 적어도 일 부분은 아크 커플러(704)와 와이어(702) 또는 와이어상에 가이드파(708)를 론칭하기 위해 여기에 설명되는 다른 송신 매체 사이에 결합을 가능하게 하기 위해, 와이어(702) 또는 다른 송신 매체(예컨대 송신 매체(125)) 근처에 배치될 수 있다. 아크 커플러(704)는 곡선형 아크 커플러(704)의 일부가 와이어(702)에 접선 방향이고 평행하거나 실질적으로 평행하도록 배치될 수 있다. 와이어에 평행한 아크 커플러(704)의 부분은 곡선의 정점, 또는 곡선의 접선이 와이어(702)에 평행한 임의의 지점일 수 있다. 아크 커플러(704)가 이와 같이 위치되거나 배치될 때, 아크 커플러(704)를 따라 이동하는 파(706)는 적어도 부분적으로 와이어(702)에 결합하고, 와이어(702)의 와이어 표면 주위 또는 근처 및 와이어(702)를 따라 길이 방향으로 가이드파(708)로서 전파한다. 가이드파(708)는 와이어(702) 또는 다른 송신 매체에 의해 가이드되거나 그에 속박되는 표면파 또는 다른 전자기파를 특징으로 할 수 있다.

와이어(702)에 결합하지 않는 파(706)의 일부는 아크 커플러(704)를 따라 파(710)로서 전파한다. 아크 커플러(704)는 와이어(702)에 대한 파(706)의 결합 또는 비결합의 원하는 레벨을 달성하기 위해 와이어(702)와 관련하여 다양한 위치들에서 구성 및 정렬될 수 있음이 이해될 것이다. 예를 들어, 평행하거나 실질적으로 평행한 아크 커플러(704)의 곡률 및/또는 길이, 뿐만 아니라 와이어(702)에 대한 그의 이격 거리(일 실시예에서 제로 이격 거리를 포함할 수 있는)는 예시적인 실시예들로부터 벗어나지 않고 변경될 수 있다. 마찬가지로, 와이어(702)에 관한 아크 커플러(704)의 정렬은 와이어(702) 및 아크 커플러(704)의 각 고유 특성들(예를 들어, 두께, 조성, 전자기 속성들 등), 뿐만 아니라 파들(706, 708)의 특성들(예를 들어, 주파수, 에너지 레벨 등)의 고려에 기초하여 변경될 수 있다.

가이드파(708)는 와이어(702)가 구부러지고 휘는 경우에도 와이어(702)와 평행하거나 실질적으로 평행하게 유지된다. 와이어(702)에서의 굴곡은 송신 손실들을 증가시킬 수 있으며, 송신 손실들은 또한 와이어 직경들, 주파수, 및 재료들에 의존한다. 아크 커플러(704)의 크기들이 효율적인 전력 전송을 위해 선택되는 경우, 파(706)의 대부분의 출력은 와이어(702)로 전송되고, 파(710)에 거의 출력이 남지 않는다. 가이드파(708)는 여전히 기본 전송 모드의 유무에 관계없이, 와이어(702)에 평행하거나 실질적으로 평행한 경로를 따라 이동하면서, 비-기본 또는 비대칭인 모드들을 갖는 것을 포함하는 본질적으로 여전히 다중-모드(본 명세서에서 논의됨)일 수 있다는 것이 이해될 것이다. 일 실시예에서, 송신 손실들을 최소화하고 및/또는 증가된 전파 거리들을 획득하기 위해 비-기본 또는 비대칭 모드들이 이용될 수 있다.

평행이라는 용어는 일반적으로 실제 시스템들에서 종종 정확히 달성할 수 없는 기하학적 구조라는 점이 주의된다. 따라서, 본 개시에 이용되는 평행이라는 용어는 본 개시에 개시된 실시예들을 설명하기 위해 사용될 때 정확한 구성보다는 근사를 나타낸다. 일 실시예에서, 실질적으로 평행은 모든 차원들에서 참 평행의 30도 이내인 근사들을 포함할 수 있다.

일 실시예에서, 파(706)는 하나 이상의 파 전파 모드들을 나타낼 수 있다. 아크 커플러 모드들은 커플러(704)의 형상 및/또는 설계에 의존할 수 있다. 파(706)의 하나 이상의 아크 커플러 모드들은 와이어(702)를 따라 전파하는 가이드파(708)의 하나 이상의 파 전파 모드들을 생성하거나, 영향을 미치거나, 또는 영향을 줄 수 있다. 그러나, 가이드파(706)에 존재하는 가이드파 모드들이 가이드파(708)의 가이드파 모드들과 동일하거나 상이할 수 있다는 것이 특히 주의되어야 한다. 이러한 방식으로, 가이드파(706)의 하나 이상의 가이드파 모드들은 가이드파(708)로 전달되지 않을 수 있고, 또한 가이드파(708)의 하나 이상의 가이드파 모드들이 가이드파(706)에 존재하지 않을 수 있다. 특정한 가이드파 모드에 대한 아크 커플러(704)의 차단 주파수가 와이어(702) 또는 상기 동일한 모드에 대한 다른 송신 매체의 차단 주파수와 다를 수 있다는 것이 또한 주의되어야 한다. 예를 들어, 와이어(702) 또는 다른 송신 매체가 특정 가이드파 모드에 대해 그의 차단 주파수보다 약간 위에서 동작될 수 있지만, 아크 커플러(704)는 저손실을 위해 상기 동일한 모드에 대해 그의 차단 주파수보다 높게, 예를 들면, 더 큰 결합 및 출력 전달을 유도하기 위해 상기 동일한 모드에 대해 그의 차단 주파수보다 약간 낮게, 또는 상기 모드에 대한 아크 커플러의 차단 주파수와 관련된 몇몇 다른 지점에서 잘 동작될 수 있다.

일 실시예에서, 와이어(702)상의 파 전파 모드들은 아크 커플러 모드들과 유사할 수 있는데, 그 이유는 파들(706 및 708) 모두가 아크 커플러(704) 및 와이어(702)의 외측 주변에 각각 전파하기 때문이다. 일부 실시예들에서, 파(706)가 와이어(702)에 결합될 때, 모드들은 형태를 변화시킬 수 있거나, 아크 커플러(704)와 와이어(702) 사이의 결합으로 인해 새로운 모드들이 생성되거나 발생될 수 있다. 예를 들어, 아크 커플러(704) 및 와이어(702)의 크기, 재료 및/또는 임피던스들의 차이들은 아크 커플러 모드들에 존재하지 않는 추가 모드들을 생성하고 및/또는 아크 커플러 모드들의 일부를 억제할 수 있다. 파 전파 모드들은 기본 횡방향 전자기 모드(Quasi-TEM00)를 포함할 수 있고, 여기서 단지 작은 전기 및/또는 자기장들만이 전파 방향으로 연장되고, 자기 및 전기장들은 가이드파가 와이어를 따라 전파하는 동안 바깥쪽으로 방사형으로 연장된다. 이러한 가이드파 모드는 도넛형일 수 있고, 전자기장들이 아크 커플러(704) 또는 와이어(702) 내에 거의 존재하지 않는다.

파들(706, 708)은 필드들이 반경 방향 바깥으로 연장하는 기본 TEM 모드를 포함할 수 있고, 다른 비기본(예를 들어, 비대칭, 상위 레벨 등) 모드들을 또한 포함할 수 있다. 특정 파 전파 모드들이 상기 논의되지만, 채용된 주파수들, 아크 커플러(704)의 설계, 와이어의 치수들 및 조성, 뿐만 아니라 그의 표면 특성들, 존재하는 경우 그의 절연, 및 주변 환경의 전자기 속성들 등에 기초하여 횡방향 전기(TE) 및 횡방향 자기(TM) 모드들과 같은 다른 파 전파 모드들이 마찬가지로 가능하다. 주파수, 와이어(702)의 전기적 및 물리적 특성들 및 생성되는 특정 파 전파 모드들에 따라, 가이드파(708)가 산화된 비절연 와이어, 산화되지 않은 비절연 와이어, 절연 와이어의 도전성 표면을 따라 및/또는 절연 와이어의 절연 표면을 따라 이동할 수 있다는 것이 주의되어야 한다.

일 실시예에서, 아크 커플러(704)의 직경은 와이어(702)의 직경보다 작다. 사용되는 밀리미터 대역 파장에 대해, 아크 커플러(704)는 파(706)를 구성하는 단일 도파관 모드를 지원한다. 이러한 단일 도파관 모드는 그가 가이드파로서 와이어(702)에 결합하기 때문에 변할 수 있다. 아크 커플러(704)가 더 큰 경우, 하나보다 많은 도파관 모드가 지원될 수 있지만, 이러한 추가 도파관 모드들은 효율적으로 와이어(702)에 결합되지 않을 수 있고, 더 높은 결합 손실들이 초래될 수 있다. 그러나, 일부 대안적인 실시예들에서, 아크 커플러(704)의 직경은, 예를 들어, 더 높은 결합 손실들이 바람직하거나 그와 달리 결합 손실들을 줄이기 위해 다른 기술들(예를 들면, 테이퍼링과 매칭하는 임피던스 등)과 함께 사용될 때, 와이어(702)의 직경과 같거나 클 수 있다.

일 실시예에서, 파들(706, 708)의 파장은 아크 커플러(704) 및 와이어(702)의 원주보다 크기가 작거나 유사하다. 일 예에서, 와이어(702)가 0.5㎝의 직경, 및 약 1.5㎝의 대응하는 둘레 길이를 갖는 경우, 송신 파장은 약 1.5㎝ 이하이며, 70㎓ 이상의 주파수에 대응한다. 다른 실시예에서, 송신 및 반송파 신호의 적절한 주파수는 일 예에서 30 내지 100㎓의 범위, 아마도 약 30 내지 60㎓, 및 약 38㎓이다. 일 실시예에서, 아크 커플러(704) 및 와이어(702)의 둘레 길이가 송신 파장보다 크거나 유사할 때, 파들(706, 708)은 여기에 설명된 다양한 통신 시스템들을 지원하기 위해 충분한 거리들에 걸쳐 전파하는 기본 및/또는 비기본(대칭 및/또는 비대칭) 모드들을 포함하는 다중파 전파 모드들을 나타낼 수 있다. 따라서, 파들(706, 708)은 하나보다 많은 형태의 전기 및 자기장 구성들을 포함할 수 있다. 일 실시예에서, 가이드파(708)가 와이어(702) 아래로 전파할 때, 전기장 및 자기장 구성들은 와이어(702)의 단부로부터 단부까지 동일하게 유지될 것이다. 다른 실시예들에서, 가이드파(708)가 간섭(왜곡 또는 방해들)을 받거나 또는 송신 손실들 또는 산란으로 인해 에너지를 잃기 때문에, 가이드파(708)가 와이어(702) 아래로 전파할 때 전기장 및 자기장 구성이 변할 수 있다.

일 실시예에서, 아크 커플러(704)는 나일론, 테프론, 폴리에틸렌, 폴리아미드 또는 다른 플라스틱들로 구성될 수 있다. 다른 실시예들에서, 다른 유전체 재료들이 가능하다. 와이어(702)의 와이어 표면은 노출된 금속성 표면을 갖는 금속성일 수 있거나, 플라스틱, 유전체, 절연체 또는 다른 코팅, 재킷 또는 외장(sheathing)을 사용하여 절연될 수 있다. 일 실시예에서, 유전체 또는 그와 달리 비도전성/절연된 도파관은 노출된/금속 와이어 또는 절연 와이어와 쌍을 이룰 수 있다. 다른 실시예들에서, 금속성 및/또는 도전성 도파관은 노출된/금속성 와이어 또는 절연 와이어와 쌍을 이룰 수 있다. 일 실시예에서, 와이어(702)의 노출된/금속성 표면상의 산화층(예를 들어, 산소/공기에 노출된 금속 표면의 노출에 기인함)은 또한 일부 절연체들 또는 외장들에 의해 제공된 것들과 유사한 절연 또는 유전체 속성들을 또한 제공할 수 있다.

파들(706, 708, 710)의 그래픽 표현들이 파(706)가 예를 들어 단선 송전선으로서 동작하는 와이어(702)상의 가이드파(708)를 유도하거나 그와 다르게 론칭하는 원리들을 예시하기 위해 단순히 나타낸 것임이 주의되어야 한다. 파(710)는 가이드파(708)의 생성 후에 아크 커플러(704) 상에 남아있는 파(706)의 부분을 나타낸다. 그러한 파 전파의 결과로서 생성된 실제의 전기장 및 자기장은 채용된 주파수들, 특정 파 전파 모드 또는 모드들, 아크 커플러(704)의 설계, 와이어(702)의 크기들 및 조성, 뿐만 아니라 그의 표면 특성들, 그의 선택적인 절연, 주변 환경의 전자기 속성들 등에 따라 변할 수 있다.

아크 커플러(704)는 파(710)로부터 남은 방출 또는 에너지를 흡수할 수 있는 아크 커플러(704)의 단부에 종단 회로 또는 댐퍼(714)를 포함할 수 있다는 것이 주의된다. 종단 회로 또는 댐퍼(714)는 송신 회로(712)로 다시 반사하는 파(710)로부터 남은 방출 또는 에너지를 방지 및/또는 최소화할 수 있다. 일 실시예에서, 종단 회로 또는 댐퍼(714)는 종단 저항들, 및/또는 반사를 감쇠시키기 위해 임피던스 매칭을 수행하는 다른 구성 요소들을 포함할 수 있다. 일부 실시예들에서, 결합 효율들이 충분히 높고 및/또는 파(710)가 충분히 작은 경우, 종단 회로 또는 댐퍼(714)를 사용할 필요가 없을 수 있다. 간략화를 위해, 이들 송신기(712) 및 종단 회로들 또는 댐퍼들(714)은 다른 도면들에 묘사되지 않을 수 있지만, 이들 실시예에서는, 송신기 및 종단 회로들 또는 댐퍼들이 가능하게 사용될 수 있다.

또한, 단일 가이드파(708)를 생성하는 단일 아크 커플러(704)가 제공되지만, 와이어(702)를 따라 상이한 지점들 및/또는 와이어 주위의 상이한 방위각 배향들에 배치된 다수의 아크 커플러들(704)은 동일한 또는 상이한 주파수들에서, 동일한 또는 상이한 위상들에서, 동일한 또는 상이한 파 전파 모드들에서 다수의 가이드파들(708)을 생성 및 수신하기 위해 채용될 수 있다.

도 8을 참조하면, 아크 커플러의 일 예시적인 비제한적인 실시예를 도시한 블록도(800)가 도시된다. 도시된 실시예에서, 커플러(704)의 적어도 일부는 여기에 설명된 바와 같이 가이드파(806)의 일부를 가이드파(808)로서 추출하기 위해 아크 커플러(704)와 와이어(702) 또는 다른 송신 매체 사이의 결합을 가능하게 하기 위해 와이어(702) 또는 다른 송신 매체(예컨대 송신 매체(125)) 근처에 배치될 수 있다. 아크 커플러(704)는 곡선형 아크 커플러(704)의 일부가 와이어(702)에 접선 방향이고 평행하거나 실질적으로 평행하도록 배치될 수 있다. 와이어에 평행한 아크 커플러(704)의 부분은 곡선의 정점, 또는 곡선의 접선이 와이어(702)에 평행한 임의의 지점일 수 있다. 아크 커플러(704)가 이와 같이 위치되거나 배치될 때, 와이어(702)를 따라 이동하는 파(806)는 적어도 부분적으로 아크 커플러(704)에 결합하고, 아크 커플러(704)를 따라 가이드파(808)로서 수신 장치(명확히 도시되지 않음)로 전파한다. 아크 커플러에 결합하지 않는 파(806)의 부분은 와이어(702) 또는 다른 송신 매체를 따라 파(810)로서 전파한다.

일 실시예에서, 파(806)는 하나 이상의 파 전파 모드들을 나타낼 수 있다. 아크 커플러 모드들은 커플러(704)의 형상 및/또는 설계에 의존할 수 있다. 가이드파(806)의 하나 이상의 모드들은 아크 커플러(704)를 따라 전파하는 가이드파(808)의 하나 이상의 가이드파 모드들을 생성하거나, 영향을 미치거나, 영향을 줄 수 있다. 그러나, 가이드파(806)에 존재하는 가이드파 모드들이 가이드파(808)의 가이드파 모드들과 동일하거나 상이할 수 있다는 것이 특히 주의되어야 한다. 이러한 방식으로, 가이드파(806)의 하나 이상의 가이드파 모드들이 가이드파(808)로 전달되지 않을 수 있고, 또한 가이드파(808)의 하나 이상의 가이드파 모드들이 가이드파(806)에 존재하지 않을 수 있다.

이제 도 9a를 참조하면, 스터브 커플러의 일 예시적인, 비제한적인 실시예를 나타내는 블록도(900)가 도시된다. 특히 스터브 커플러(904)를 포함하는 결합 디바이스는 도 1과 관련하여 제시된 송신 디바이스(101 또는 102)와 같은 송신 디바이스에서 사용하기 위해 제시된다. 스터브 커플러(904)는 유전체 재료 또는 다른 저손실 절연체(예를 들어, 테프론, 폴리에틸렌 등)로 만들어지거나, 도전성(예를 들어, 금속성, 비금속성 등) 재료로 만들어질 수 있거나, 상기 재료들의 임의의 조합으로 만들어질 수 있다. 도시된 바와 같이, 스터브 커플러(904)는 도파관으로서 동작하고 스터브 커플러(904)의 도파관 표면 주변에 가이드파로서 전파하는 파(906)를 갖는다. 도시된 실시예에서, 스터브 커플러(904)의 적어도 일부는 와이어 상에 가이드파(908)를 론칭하기 위해 여기에 설명된 바와 같이, 스터브 커플러(904)와 와이어(702) 또는 다른 송신 매체 사이의 결합을 가능하게 하기 위해 와이어(702) 또는 다른 송신 매체(예컨대 송신 매체(125)) 근처에 배치될 수 있다.

일 실시예에서, 스터브 커플러(904)는 구부러지고, 스터브 커플러(904)의 단부는 와이어(702)에 매이거나, 고정되거나, 또는 그와 달리 그에 기계적으로 결합될 수 있다. 스터브 커플러(904)의 단부가 와이어(702)에 고정될 때, 스터브 커플러(904)의 단부는 와이어(702)에 평행하거나 실질적으로 평행하다. 대안적으로, 단부를 넘어서는 유전체 도파관의 다른 부분은 고정되거나 결합된 부분이 와이어에 평행하거나 실질적으로 평행하도록 와이어(702)에 고정되거나 결합될 수 있다. 파스너(910)는 스터브 커플러(904)로부터 분리되거나 스터브 커플러(904)의 통합된 구성 요소로서 구성된 나일론 케이블 타이 또는 다른 유형의 비도전성/유전체 재료일 수 있다. 스터브 커플러(904)는 와이어(702)를 감싸지 않고 와이어(702)에 인접할 수 있다.

도 7과 관련하여 설명된 아크 커플러(704)와 마찬가지로, 스터브 커플러(904)가 와이어(702)에 평행한 단부와 함께 배치될 때, 스터브 커플러(904)를 따라 이동하는 가이드파(906)는 와이어(702)에 결합하고, 와이어(702)의 와이어 표면에 대한 가이드파(908)로서 전파한다. 일 예시적인 실시예에서, 가이드파(908)는 표면파 또는 다른 전자기파로서 특징될 수 있다.

파들(906, 908)의 그래픽 표현은 파(906)가 예를 들어 단선 송전선으로 동작하는 와이어(702)상에 가이드파(908)를 유도하거나 그와 달리 론칭하는 원리들을 단순히 예시하기 위해 제공되는 것이 주의된다. 이러한 파 전파의 결과로서 생성된 실제 전기장 및 자기장은 커플러의 형상 및/또는 설계, 와이어에 대한 유전체 도파관의 상대적 위치, 채용된 주파수들, 스터브 커플러(904)의 설계, 와이어(702)의 치수들 및 조성, 뿐만 아니라 그의 표면 특성들, 그의 선택적인 절연, 주변 환경의 전자기 속성들 등에 따라 변할 수 있다.

일 실시예에서, 스터브 커플러(904)의 단부는 결합 효율들을 증가시키기 위해 와이어(702)를 향해 테이퍼링될 수 있다. 실제로, 스터브 커플러(904)의 단부의 테이퍼링은 본 개시의 일 예시적인 실시예에 따라 와이어(702)에 임피던스 매칭을 제공하고 반사를 감소시킬 수 있다. 예를 들어, 스터브 커플러(904)의 단부는 도 9a에 도시된 바와 같이 파들(906, 908) 사이의 원하는 레벨의 결합을 얻기 위해 점차적으로 테이퍼링될 수 있다.

일 실시예에서, 파스너(910)는 파스너(910)와 스터브 커플러(904)의 단부 사이에 스터브 커플러(904)의 짧은 길이가 있도록 배치될 수 있다. 최대 결합 효율들은 본 실시예에서 파스너(910)를 넘어서는 스터브 커플러(904)의 단부의 길이가 주파수가 송신되고 있는 적어도 수 개의 파장들 길이를 가질 때 실현된다.

이제 도 9b를 참조하면, 본 명세서에 설명된 다양한 양태들에 따른 전자기 분포의 예시적이고 비제한적인 실시예를 도시하는 도면(950)이 도시된다. 특히, 전자기 분포는 유전체 재료로 구성된 예시적인 스터브 커플러에 도시된 커플러(952)를 포함하는 송신 디바이스에 대한 2차원으로 제공된다. 커플러(952)는 와이어(702) 또는 다른 송신 매체의 외부 표면을 따라 가이드파로서 전파를 위해 전자기파를 결합시킨다.

커플러(952)는 대칭적 가이드파 모드를 통해 전자기파를 x0에서의 접합점으로 가이드한다. 커플러(952)를 따라 전파하는 전자기파의 에너지의 일부는 커플러(952)의 외부에 있지만, 이러한 전자기파의 에너지의 대부분은 커플러(952) 내에 포함된다. x0에서의 접합은 송신 매체의 바닥부에 대응하는 방위각으로 전자기파를 와이어(702) 또는 다른 송신 매체에 결합할 수 있다. 이러한 결합은 방향(956)으로 적어도 하나의 가이드파 모드를 통해 와이어(702) 또는 다른 송신 매체의 외부 표면을 따라 전파하도록 가이드되는 전자기파를 유도한다. 가이드된 전자기파의 에너지의 대부분은 와이어(702) 또는 다른 송신 매체의 외부 표면 외부에 있거나, 그에 근접할 수 있다. 도시된 예에서, x0에서의 접합은 도 3과 관련하여 제시된 1차 모드와 같은 적어도 하나의 비대칭 표면 모드 및 대칭 모드 양쪽 모두를 통해 전파하는 전자기파를 형성하고, 이는 와이어(702) 또는 다른 송신 매체의 표면을 스킴(skim)한다.

가이드파들의 그래픽 표현들은 단지 가이드파 결합 및 전파의 예를 예시하기 위해 제시된 것임이 주의된다. 이러한 파 전파의 결과로서 생성된 실제 전기장 및 자기장은 채용된 주파수들, 커플러(952)의 설계 및/또는 구성, 와이어(702) 또는 다른 송신 매체의 치수들 및 조성, 뿐만 아니라 그의 표면 특성들, 존재할 경우 그의 절연, 주변 환경의 전자기 속성들 등에 따라 변할 수 있다.

이제 도 10a를 참조하면, 여기에 설명된 다양한 양태들에 따른 커플러 및 송수신기 시스템의 일 예시적인, 비제한적인 실시예의 블록도(1000)가 도시된다. 시스템은 송신 디바이스(101, 102)의 일 예이다. 특히, 통신 인터페이스(1008)는 통신 인터페이스(205)의 일 예이고, 스터브 커플러(1002)는 커플러(220)의 일 예이고, 송신기/수신기 디바이스(1006), 다이플렉서(1016), 전력 증폭기(1014), 저잡음 증폭기(1018), 주파수 믹서들(1010, 1020) 및 국부 발진기(1012)는 집합적으로 송수신기(210)의 일 예를 형성한다.

동작 중에, 송신기/수신기 디바이스(1006)는 파들(예를 들어, 스터브 커플러(1002) 상으로의 가이드파(1004))을 론칭 및 수신한다. 가이드파들(1004)은 통신 인터페이스(1008)에 의해 호스트 디바이스, 기지국, 이동 디바이스들, 빌딩 또는 다른 디바이스로부터 수신되고 그에 전송된 신호들을 전송하는 데 사용될 수 있다. 통신 인터페이스(1008)는 시스템(1000)의 통합부일 수 있다. 대안적으로, 통신 인터페이스(1008)는 시스템(1000)에 테더링될 수 있다. 통신 인터페이스(1008)는 호스트 디바이스, 기지국, 이동 디바이스들, 빌딩 또는 적외선 통신 협회(IrDA) 프로토콜 또는 다른 송수신자간에 교신 가능한 광학 프로토콜과 같은 적외선 프로토콜을 포함하는 다양한 무선 시그널링 프로토콜들(예를 들어, LTE, WiFi, WiMAX, IEEE 802.11x 등) 중 어느 하나를 이용하여 호스트 디바이스, 기지국, 이동 디바이스들, 빌딩 또는 다른 디바이스와 인터페이스하기 위한 무선 인터페이스를 포함할 수 있다. 통신 인터페이스(1008)는 이더넷 프로토콜, 범용 직렬 버스(USB) 프로토콜, 케이블 데이터 서비스 인터페이스 규격(DOCSIS) 프로토콜, 디지털 가입자 회선(DSL) 프로토콜, 방화벽 (IEEE 1394) 프로토콜, 또는 다른 유선 또는 광학 프로토콜과 같은 프로토콜을 통해 호스트 디바이스, 기지국, 이동 디바이스들, 건물 또는 다른 디바이스와 통신하기 위해 광섬유 라인, 동축 케이블, 연선 쌍, 카테고리 5(CAT-5) 케이블 또는 다른 적절한 유선 또는 광학 매체들과 같은 유선 인터페이스를 또한 포함할 수 있다. 시스템(1000)이 중계기로서 기능하는 실시예들에 대하여, 통신 인터페이스(1008)는 필요하지 않을 수 있다.

통신 인터페이스(1008)의 출력 신호들(예를 들어, Tx)은 주파수 믹서(1010)에서 국부 발진기(1012)에 의해 생성된 반송파(예를 들어, 밀리미터파 반송파)와 조합될 수 있다. 주파수 믹서(1010)는 통신 인터페이스(1008)로부터 출력 신호들을 주파수 시프트하기 위해 헤테로다이닝 기술들 또는 다른 주파수 시프팅 기술들을 사용할 수 있다. 예를 들어, 통신 인터페이스(1008)로/로부터 전송된 신호들은 장기간 진화(LTE) 무선 프로토콜 또는 다른 무선 3G, 4G, 5G 이상의 음성 및 데이터 프로토콜, Zigbee, WIMAX, UltraWideband 또는 IEEE 802.11 무선 프로토콜; 이더넷 프로토콜, 범용 직렬 버스(USB) 프로토콜, 케이블 데이터 서비스 인터페이스 규격(DOCSIS) 프로토콜, 디지털 가입자 회선(DSL) 프로토콜, 방화벽 (IEEE 1394) 프로토콜 또는 다른 유선 또는 무선 프로토콜에 따라 포맷된 직교 주파수 분할 멀티플렉싱(OFDM) 신호들과 같은 변조된 신호들일 수 있다. 일 예시적인 실시예에서, 이러한 주파수 변환은 아날로그 도메인에서 행해질 수 있고, 결과적으로, 주파수 시프팅은 기지국, 이동 디바이스들, 또는 빌딩내 디바이스들에 의해 사용된 통신 프로토콜의 형태에 관계없이 수행될 수 있다. 새로운 통신 기술들이 개발됨에 따라, 통신 인터페이스(1008)는 업그레이드(예를 들어, 소프트웨어, 펌웨어, 및/또는 하드웨어로 업데이트)되거나 교체될 수 있으며, 주파수 시프팅 및 송신 장치가 유지되어 업그레이드를 단순화할 수 있다. 이후, 반송파는 전력 증폭기("PA")(1014)로 전송될 수 있고, 다이플렉서(1016)를 통해 송신기 수신기 디바이스(1006)를 통해 송신될 수 있다.

통신 인터페이스(1008)를 향하여 지향되는 송신기/수신기 디바이스(1006)로부터 수신된 신호들은 다이플렉서(1016)를 통해 다른 신호들로부터 분리될 수 있다. 수신된 신호는 이후 증폭을 위해 저잡음 증폭기("LNA")(1018)로 전송될 수 있다. 국부 발진기(1012)로부터의 도움으로 주파수 믹서(1020)는 수신된 신호(일부 실시예들에서 밀리미터파 대역 내 또는 약 38㎓에 있는)를 고유 주파수로 다운시프트할 수 있다. 통신 인터페이스(1008)는 이후 입력 포트(Rx)에서 송신을 수신할 수 있다.

일 실시예에서, 송신기/수신기 디바이스(1006)는 원통형 또는 비원통형 금속(예를 들어, 일 실시예에서는 중공형일 수 있지만, 반드시 비례하여 도시되지는 않음) 또는 다른 도전성 또는 비전도성 도파관을 포함할 수 있고, 스터브 커플러(1002)의 단부는 송신기/수신기 디바이스(1006)가 송신을 생성할 때, 가이드파가 스터브 커플러(1002)에 결합하고, 스터브 커플러(1002)의 도파관 표면 주위에 가이드파(1004)로서 전파하도록 도파관 또는 송신기/수신기 디바이스(1006)에 또는 그 근방에 배치될 수 있다. 몇몇 실시예들에서, 가이드파(1004)는 부분적으로 스터브 커플러(1002)의 외부 표면상에 및 부분적으로 스터브 커플러(1002) 내부에서 전파할 수 있다. 다른 실시예들에서, 가이드파(1004)는 스터브 커플러의 외부 표면상에 실질적으로 또는 완전하게 전파할 수 있다. 또 다른 실시예들에서, 가이드파(1004)는 스터브 커플러(1002) 내부에서 실질적으로 또는 완전하게 전파할 수 있다. 이 후자의 실시예에서, 가이드파(1004)는 도 7의 와이어(702)와 같은 송신 매체에 결합하기 위한 스터브 커플러(1002)의 단부(예컨대 도 4에 도시된 테이퍼링된 단부)에서 방출할 수 있다. 마찬가지로, 가이드파(1004)가 들어오는 경우(와이어(702)로부터 스터브 커플러(1002)에 결합되는 경우), 가이드파(1004)는 송신기/수신기 디바이스(1006)에 진입하여 원통형 도파관 또는 도전성 도파관에 결합한다. 송신기/수신기 디바이스(1006)가 별개의 도파관을 포함하는 것으로 도시되지만--안테나, 캐비티 공진기, 클라이스트론(klystron), 마그네트론, 진행파관(travelling wave tube) 또는 다른 방출 소자가 별개의 도파관과 함께 또는 별개의 도파관 없이 커플러(1002) 상에 가이드파를 유도하기 위해 채용될 수 있다.

일 실시예에서, 스터브 커플러(1002)는 그 안에 임의의 금속성 또는 그와 다른 도전성 재료들 없이 유전체 재료(또는 다른 적절한 절연 재료)로 전체적으로 구성될 수 있다. 스터브 커플러(1002)는 비도전성이고 이러한 재료들의 외부 표면상에 적어도 부분적으로 전자기파들의 송신을 가능하게 하기 위해 적절한 나일론, 테프론, 폴리에틸렌, 폴리아미드, 다른 플라스틱들, 또는 다른 재료들로 구성될 수 있다. 다른 실시예에서, 스터브 커플러(1002)는 도전성/금속성이고 외부 유전체 표면을 갖는 코어를 포함할 수 있다. 유사하게, 스터브 커플러(1002)에 의해 유도된 전자기파들을 전파시키기 위해 또는 스터브 커플러(1002)에 전자기파들을 공급하기 위해 스터브 커플러(1002)에 결합하는 송신 매체는 나선 또는 절연된 와이어 외에 내부에 임의의 금속성 또는 그와 다른 도전성 재료들 없이 유전체 재료(또는 다른 적절한 절연 재료)로 전체적으로 구성될 수 있다.

또한, 도 10a는 송신기 수신기 디바이스(1006)의 개구가 스터브 커플러(1002)보다 훨씬 넓지만, 이는 비례적이지 않고, 다른 실시예들에서, 스터브 커플러(1002)의 폭은 중공 도파관(hollow waveguide)의 개구와 유사하거나 약간 작다는 것이 주의된다. 또한 도시되지는 않았지만, 일 실시예에서, 송신기/수신기 디바이스(1006)로 삽입되는 커플러(1002)의 단부는 반사를 감소시키고 결합 효율을 증가시키기 위해 점점 가늘어진다.

스터브 커플러(1002)에 결합되기 전에, 송신기/수신기 디바이스(1006)에 의해 생성된 가이드파의 하나 이상의 도파관 모드들은 가이드파(1004)의 하나 이상의 전파 모드들을 유도하기 위해 스터브 커플러(1002)에 결합할 수 있다. 가이드파(1004)의 파 전파 모드들은 중공 금속 도파관 및 유전체 도파관의 상이한 특성들로 인해 중공 금속 도파관 모드들과 상이할 수 있다. 예를 들어, 가이드파(1004)의 파 전파 모드들은 단지 작은 전기장 및/또는 자기장만이 전파 방향으로 연장되는 기본 횡방향 전자기 모드(Quasi-TEM00)를 포함할 수 있으며, 전기장 및 자기장은 스터브 커플러(1002)로부터 바깥으로 방사상으로 연장하고 가이드파들은 스터브 커플러(1002)를 따라 전파한다. 기본 횡방향 전자기 모드 파 전파 모드는 속이 빈 도파관 내에 존재하거나 존재하지 않을 수 있다. 따라서, 송신기/수신기 디바이스(1006)에 의해 사용되는 중공 금속 도파관 모드들은 스터브 커플러(1002)의 파 전파 모드들에 효과적으로 및 효율적으로 결합할 수 있는 도파관 모드들이다.

송신기/수신기 디바이스(1006)와 스터브 커플러(1002)의 다른 구성들 또는 조합들이 가능하다는 것이 이해될 것이다. 예를 들어, 스터브 커플러(1002')는 도 10b의 참조 번호(1000')로 표시되는 송신기/수신기 디바이스(1006')의 중공 금속 도파관(대응하는 회로는 도시되지 않음)의 외부 표면에 대해 접선 방향으로 또는 평행하게(갭을 갖거나 갭 없이) 배치될 수 있다. 참조 번호(1000')로 도시되지 않은 다른 실시예에서, 스터브 커플러(1002')는 송신기/수신기 디바이스(1006')의 중공 금속 도파관의 축과 동축으로 정렬된 스터브 커플러(1002')의 축 없이 송신기/수신기 디바이스(1006')의 중공 금속 도파관 내에 배치될 수 있다. 이들 실시예들 중 어느 하나에서, 송신기/수신기 디바이스(1006')에 의해 생성된 가이드파는 스터브 커플러(1002')의 표면에 결합되어 기본 모드(예를 들면, 대칭 모드) 및/또는 비기본 모드(예를 들면, 비대칭 모드)를 포함하는 스터브 커플러(1002')상에 가이드파(1004')의 하나 이상의 전파 모드들을 유도할 수 있다.

일 실시예에서, 가이드파(1004')는 부분적으로 스터브 커플러(1002')의 외부 표면상에 및 부분적으로 스터브 커플러(1002') 내부에서 전파할 수 있다. 다른 실시예에서, 가이드파(1004')는 스터브 커플러(1002')의 외부 표면상에 실질적으로 또는 완전하게 전파할 수 있다. 또 다른 실시예들에서, 가이드파(1004')는 스터브 커플러(1002') 내부에서 실질적으로 또는 완전하게 전파할 수 있다. 이러한 후자의 실시예에서, 가이드파(1004')는 도 9의 와이어(702)와 같은 송신 매체에 결합하기 위해 스터브 커플러(1002')의 단부(예컨대 도 9에 도시된 테이퍼형 단부)에서 방출될 수 있다.

다른 구성들은 송신기/수신기 디바이스(1006)가 가능하다는 것이 또한 이해될 것이다. 예를 들어, 도 10b에 참조 번호(1000'')로서 도시된 송신기/수신기 디바이스(1006'')(대응하는 회로는 도시되지 않음)의 중공 금속 도파관은 스터브 커플러(1002)의 사용 없이 도 4의 와이어(702)와 같은 송신 매체의 외부 표면에 대해 접선 방향으로 또는 평행하게(갭을 갖거나 갭 없이) 배치될 수 있다. 이러한 실시예에서, 송신기/수신기 디바이스(1006'')에 의해 생성된 가이드파는 와이어(702)의 표면에 결합되어, 기본 모드(예를 들어, 대칭 모드) 및/또는 비기본 모드(예컨대, 비대칭 모드)를 포함하여 와이어(702)상에 가이드파(908)의 하나 이상의 파 전파 모드들을 유도할 수 있다. 다른 실시예에서, 와이어(702)는 와이어(702)의 축이 스터브 커플러(1002)의 사용 없이 중공 금속 도파관의 축과 동축으로(또는 동축이 아니게) 정렬되도록 송신기/수신기 디바이스(1006''')(대응하는 회로는 도시되지 않음)의 중공 금속 도파관 내부에 위치될 수 있다-도 10b 참조번호 1000'''를 참조하라. 이러한 실시예에서, 송신기/수신기 디바이스(1006''')에 의해 생성된 가이드파는 와이어(702)의 표면에 결합되어, 기본 모드(예를 들어, 대칭 모드) 및/또는 비기본 모드(예를 들어, 비대칭 모드)를 포함하는 와이어상의 가이드파(908)의 하나 이상의 파 전파 모드들을 유도할 수 있다.

1000''및 1000'''의 실시예들에서, 절연된 외부 표면을 갖는 와이어(702)에 대해, 가이드파(908)는 부분적으로 절연체의 외부 표면상에 및 부분적으로 절연체 내부에 전파할 수 있다. 실시예들에서, 가이드파(908)는 절연체의 외부 표면상에 실질적으로 또는 완전하게 또는 절연체의 내부에 실질적으로 또는 완전하게 전파할 수 있다. 1000''및 1000'''의 실시예에서, 노출된 도전체인 와이어(702)에 대해, 가이드파(908)는 도전체의 외부 표면상에 부분적으로 및 도전체 내부에 부분적으로 전파할 수 있다. 다른 실시예에서, 가이드파(908)는 도체의 외부 표면상에 실질적으로 또는 완전하게 전파할 수 있다.

이제 도 11을 참조하면, 이중 스터브 커플러의 일 예시적인, 비제한적인 실시예가 도시된 블록도(1100)가 도시된다. 특히, 이중 커플러 설계는 도 1과 관련하여 제시된 송신기 디바이스(101 또는 102)와 같은 송신 디바이스에 사용하기 위해 제시된다. 일 실시예에서, 두 개 이상의 커플러들은 가이드파(1108)를 수신하기 위해 와이어(1102) 주변에 위치될 수 있다. 일 실시예에서, 하나의 커플러는 가이드파(1108)를 수신하기에 충분하다. 이 경우, 가이드파(1108)는 커플러(1104)에 결합하여 가이드파(1110)로서 전파한다. 가이드파(1108)의 필드 구조가 특정 가이드파 모드(들) 또는 다양한 외부 요인들에 의해 와이어(1102) 주위에서 진동 또는 물결치는 경우, 커플러(1106)는 가이드파(1108)가 커플러(1106)에 결합되도록 배치될 수 있다. 일부 실시예들에서, 4 개 이상의 커플러들이 상이한 방위각 배향에서 유도되는 또는 예를 들면, 로브들 및/또는 널들 또는 배향에 의존하는 다른 비대칭들을 갖는 비기본 또는 고차 모드들을 갖는 와이어(1102) 주위에 진동 또는 회전할 수 있는 가이드파들을 수신하기 위해 와이어(1102)의 일부분 주위에, 예를 들어 서로에 관하여 90° 또는 다른 간격으로 배치될 수 있다. 그러나, 예시적인 실시예들로부터 벗어나지 않고 와이어(1102)의 일 부분 주위에 배치된 네 개보다 적거나 많은 커플러들이 존재하는 것이 이해될 것이다.

커플러들(1106, 1104)은 스터브 커플러들로서 도시되었지만, 아크 커플러들, 안테나 또는 혼 커플러들, 자기 커플러들 등을 포함하여 여기에 설명된 임의의 다른 커플러 설계들도 마찬가지로 사용될 수 있다는 것이 주의되어야 한다. 일부 예시적인 실시예들이 와이어(1102)의 적어도 일부 주위에 복수의 커플러들을 제시하였지만, 이러한 복수의 커플러들은 또한 다수의 커플러 서브 구성 요소들을 갖는 단일 커플러 시스템의 일부로 간주될 수 있음이 또한 이해될 것이다. 예를 들면, 2 개 이상의 커플러들이 단일 설비에서 와이어 둘레에 설치될 수 있는 단일 시스템으로 제조될 수 있어서, 커플러들이 사전 위치 설정되거나 또는 서로에 대해 조정 가능하다(모터 또는 다른 액추에이터와 같은 제어 가능한 메커니즘에 의해 수동 또는 자동으로).

커플러들(1106, 1104)에 결합된 수신기들은 신호 품질을 최대화하기 위해 다이버시티 결합을 이용하여 두 커플러들(1106, 1104)로부터 수신된 신호들을 조합할 수 있다. 다른 실시예들에서, 커플러들(1104, 1106) 중 하나 또는 다른 하나가 미리 결정된 임계값을 초과하는 송신을 수신하는 경우, 수신기들은 어느 신호를 사용할지를 결정할 때 선택 다이버시티를 사용할 수 있다. 또한, 복수의 커플러들(1106, 1104)에 의한 수신이 예시되지만, 동일한 구성의 커플러들(1106, 1104)에 의한 송신이 마찬가지로 수행될 수 있다. 특히, 넓은 범위의 다중-입력 다중-출력(MIMO) 송신 및 수신 기술들이 도 1과 관련하여 제시된 송신 디바이스(101 또는 102)와 같은 송신 디바이스가 다수의 송수신기들 및 다수의 커플러들을 포함하는 송신들을 위해 채용될 수 있다.

파들(1108 및 1110)의 그래픽 표현들은 단지 가이드파(1108)가 커플러(1104)상에 파(1110)를 유도하거나 그와 달리 론칭하는 원리들을 예시하기 위해 제시된다는 것이 주의된다. 이러한 파 전파의 결과로서 생성된 실제 전기장 및 자기장은 채용된 주파수들, 커플러(1104)의 설계, 와이어(1102)의 치수들 및 조성, 뿐만 아니라 그의 표면 특성들, 만약 존재하는 경우 그의 절연, 주변 환경의 전자기 속성들 등에 따라 변할 수 있다.

이제 도 12를 참조하면, 중계기 시스템의 일 예시적인, 비제한적인 실시예를 나타내는 블록도(1200)가 도시된다. 특히, 중계기 디바이스(1210)는 도 1과 관련하여 제시된 송신 디바이스(101 또는 102)와 같은 송신 디바이스에서 사용하기 위해 제시된다. 이러한 시스템에서, 와이어(1202)를 따라 전파하는 가이드파(1205)가 파(1206)로서(예를 들어, 가이드파로서) 커플러(1204)에 의해 추출되고, 이후 중계기 디바이스(1210)에 의해 부스팅되거나 반복되고, 커플러(1214)상에 파(1216)(예를 들어, 가이드파로서)로서 론칭되도록 2개의 커플러들(1204, 1214)이 와이어(1202) 또는 다른 송신 매체 근처에 배치될 수 있다. 파(1216)는 이후 와이어(1202)상에서 론칭될 수 있고 가이드파(1217)로서 와이어(1202)를 따라 계속 전파할 수 있다. 일 실시예에서, 중계기 디바이스(1210)는, 예를 들어, 와이어(1202)가 전력선이거나 그와 달리 전력 전달 도전체를 포함할 때, 와이어(1202)와의 자기 결합을 통해 부스팅 또는 반복을 위해 이용되는 전력의 적어도 일부를 수신할 수 있다. 커플러들(1204, 1214)이 스터브 커플러들로서 도시되었지만, 아크 커플러들, 안테나 또는 혼 커플러들, 자기 커플러들 등을 포함하는 여기에 설명된 임의의 다른 커플러 설계들도 마찬가지로 사용될 수 있다는 것이 주의되어야 한다.

일부 실시예들에서, 중계기 디바이스(1210)는 파(1206)와 연관된 송신을 반복할 수 있고, 다른 실시예들에서, 중계기 디바이스(1210)는 파(1206)로부터 데이터 또는 다른 신호들을 추출하여 이러한 데이터 또는 신호들을 다른 네트워크 및/또는 하나 이상의 다른 디바이스들로 통신 신호들(110 또는 112)로서 공급하고 및/또는 다른 네트워크 및/또는 하나 이상의 다른 디바이스들로부터 통신 신호들(110 또는 112)을 수신하기 위한 통신 인터페이스(205)를 포함하고 수신된 통신 신호들(110 또는 112)이 그 안에 임베딩된 가이드파(1216)를 론칭할 수 있다. 중계기 구성에서, 수신기 도파관(1208)은 커플러(1204)로부터 파(1206)를 수신할 수 있고, 송신기 도파관(1212)은 커플러(1214)상에 가이드파(1216)를 가이드파(1217)로서 론칭할 수 있다. 수신기 도파관(1208)과 송신기 도파관(1212) 사이에서, 가이드파(1216)에 임베딩된 신호 및/또는 가이드파(1206) 자체는 가이드파 통신들과 연관된 신호 손실 및 다른 비효율성들에 대해 정정하기 위해 증폭될 수 있거나 또는 신호는 송신을 위해 그 안에 포함되고 재생성되는 데이터를 추출하기 위해 수신 및 처리될 수 있다. 일 실시예에서, 수신기 도파관(1208)은 신호로부터 데이터를 추출하고, 예를 들어 에러 정정 코드들을 이용하여 데이터 에러들을 정정하기 위해 데이터를 처리하고, 정정된 데이터로 업데이트된 신호를 재생성하도록 구성될 수 있다. 송신기 도파관(1212)은 이후 내부에 임베딩된 업데이트된 신호를 갖는 가이드파(1216)를 송신할 수 있다. 일 실시예에서, 가이드파(1206)에 임베딩된 신호는 송신으로부터 추출될 수 있고 통신 신호들(110 또는 112)로서 통신 인터페이스(205)를 통해 다른 네트워크 및/또는 하나 이상의 다른 디바이스들과의 통신을 위해 처리될 수 있다. 유사하게, 통신 인터페이스(205)에 의해 수신된 통신 신호들(110 또는 112)은 송신기 도파관(1212)에 의해 생성되어 커플러(1214) 상에 론칭되는 가이드파(1216)의 송신에 삽입될 수 있다.

또한, 도 12는 각각 좌측으로부터 들어와서 오른쪽으로 빠져나오는 가이드파 송신들(1206, 1216)을 도시하지만, 이것은 단지 단순화일 뿐 제한이 의도되지 않는다는 것이 주의된다. 다른 실시예들에서, 수신기 도파관(1208) 및 송신기 도파관(1212)은 송신기들 및 수신기들로서 각각 기능하여, 중계기 디바이스(1210)가 양방향이 되게 할 수 있다.

일 실시예에서, 중계기 디바이스(1210)는 와이어(1202) 또는 다른 송신 매체상의 불연속성들 또는 장애물들이 있는 위치에 배치될 수 있다. 와이어(1202)가 전력선인 경우, 이들 장애물들은 변압기들, 연결부들, 전신주들, 및 다른 이러한 전력선 디바이스들을 포함할 수 있다. 중계기 디바이스(1210)는 가이드(예를 들어, 표면)파들이 회선상의 이들 장애물들을 뛰어 넘어서 동시에 송신 출력을 부스팅하는 것을 도울 수 있다. 다른 실시예들에서, 커플러는 중계기 디바이스를 사용하지 않고 장애물을 뛰어 넘는 데 사용될 수 있다. 상기 실시예에서, 커플러의 양 단부들은 와이어에 묶이거나 고정될 수 있어서, 가이드파가 장애물에 의해 차단되지 않고 이동하기 위한 경로를 제공한다.

이제 도 13로 돌아오면, 여기에 설명된 다양한 양태들에 따른 양방향 중계기의 일 예시적인, 비제한적인 실시예의 블록도(1300)가 도시된다. 특히, 양방향 중계기 디바이스(1306)는 도 1과 관련하여 제시된 송신 디바이스(101 또는 102)와 같은 송신 디바이스에서 사용하기 위해 제시된다. 커플러들이 스터브 커플러들로 도시되어 있지만, 아크 커플러들, 안테나 또는 혼 커플러들, 자기 커플러들 등을 포함하여 여기에 설명된 커플러 설계들 중 임의의 다른 것이 유사하게 사용될 수 있음이 주의되어야 한다. 양방향 중계기(1306)는 둘 이상의 와이어들 또는 다른 송신 매체들이 존재할 때의 경우 다이버시티 경로들을 채용할 수 있다. 가이드파 송신들은 절연된 와이어들, 절연되지 않은 와이어들 또는 다른 형태들의 송신 매체들과 같은 상이한 형태들의 송신 매체에 대해 상이한 송신 효율들 및 결합 효율들을 가지며, 또한, 요소들에 노출되는 경우, 날씨 및 기타 대기 상태들에 의해 영향을 받을 수 있기 때문에, 특정 시간에 상이한 송신 매체들상에 선택적으로 송신하는 것이 이로울 수 있다. 다양한 실시예들에서, 다양한 송신 매체들은 이러한 지정이 다른 것보다 하나의 송신 매체의 선호를 나타내든 아니든 1 차, 2 차, 3 차 등으로 지정될 수 있다.

도시된 실시예에서, 송신 매체들은 절연 또는 비절연 와이어(1302) 및 절연 또는 비절연 와이어(1304)(본 명세서에서 와이어들(1302, 1304)로 각각 지칭됨)를 포함한다. 중계기 디바이스(1306)는 와이어(1302)를 따라 이동하는 가이드파를 수신하기 위해 수신기 커플러(1308)를 사용하고, 송신기 도파관(1310)을 사용하여 와이어(1304)를 따라 가이드파로서 송신을 반복한다. 다른 실시예들에서, 중계기 디바이스(1306)는 와이어(1304)로부터 와이어(1302)로 스위칭하거나, 또는 동일한 경로들을 따라 송신들을 반복할 수 있다. 중계기 디바이스(1306)는 센서들을 포함할 수 있거나, 또는 송신에 영향을 줄 수 있는 조건들을 나타내는 센서들(또는 도 16a에 도시된 네트워크 관리 시스템(1601))과 통신할 수 있다. 센서들로부터 수신된 피드백에 기초하여, 중계기 디바이스(1306)는 동일한 와이어를 따라 송신을 유지할 것인지 또는 다른 와이어로 송신을 전송할 것인지에 관한 결정을 할 수 있다.

이제 도 14로 돌아오면, 양방향 중계기 시스템의 일 예시적인, 비제한적인 실시예를 나타내는 블록도(1400)가 도시된다. 특히, 양방향 중계기 시스템은 도 1과 관련하여 제시된 송신 디바이스(101 또는 102)와 같은 송신 디바이스에서 사용하기 위해 제시된다. 양방향 중계기 시스템은 분산형 안테나 시스템 또는 백홀 시스템에 위치된 다른 결합 디바이스들로부터의 송신들을 수신 및 송신하는 도파관 결합 디바이스들(1402, 1404)을 포함한다.

다양한 실시예들에서, 도파관 결합 디바이스(1402)는 다른 도파관 결합 디바이스로부터 송신을 수신할 수 있고, 여기서 송신은 복수의 부반송파들을 갖는다. 다이플렉서(1406)는 송신을 다른 송신들로부터 분리할 수 있고, 송신을 저잡음 증폭기("LNA")(1408)로 지향시킬 수 있다. 주파수 믹서(1428)는 국부 발진기(1412)로부터 도움을 받아 송신(일부 실시예들에서 밀리미터파 대역 또는 약 38 ㎓에 있는)을 분산 안테나 시스템에 대하여 셀룰러 대역(~1.9 ㎓), 본래 주파수, 또는 백홀 시스템에 대한 다른 주파수와 같은 하위 주파수로 다운시프트할 수 있다. 추출기(또는 디멀티플렉서)(1432)는 부반송파상의 신호를 추출할 수 있고, 통신 인터페이스(205)에 결합하기 위해 전력 증폭기(1424)에 의한 선택적 증폭, 버퍼링 또는 격리를 위해 출력 구성 요소(1422)로 신호를 지향시킬 수 있다. 통신 인터페이스(205)는 또한 전력 증폭기(1424)로부터 수신된 신호들을 처리하거나 이러한 신호들을 무선 또는 유선 인터페이스를 통해 기지국, 이동 디바이스들, 빌딩 등과 같은 다른 디바이스들로 송신할 수 있다. 이 위치에서 추출되지 않은 신호들에 대해, 추출기(1432)는 이들을 다른 주파수 믹서(1436)에 재지향시키고, 여기서 신호들이 국부 발진기(1414)에 의해 생성된 반송파를 변조하는데 사용된다. 그의 부반송파들과 함께 반송파는 전력 증폭기("PA")(1416)로 지향되고, 다이플렉서(1420)를 통해, 도파관 결합 디바이스(1404)에 의해 다른 시스템으로 재송신될 수 있다.

LNA(1426)는 통신 인터페이스(205)에 의해 수신된 신호들을 증폭, 버퍼링 또는 분리하고 이후 신호를 도파관 결합 디바이스(1404)로부터 수신된 신호들과 병합하는 멀티플렉서(1434)로 전송하기 위해 사용될 수 있다. 결합 디바이스(1404)로부터 수신된 신호들은 다이플렉서(1420)에 의해 분할되고, 이후 LNA(1418)를 통과하고, 주파수 믹서(1438)에 의해 주파수가 다운시프트된다. 신호들이 멀티플렉서(1434)에 의해 조합될 때, 그들은 주파수 믹서(1430)에 의해 주파수가 업시프트되고, 이후 PA(1410)에 의해 부스팅되고, 도파관 결합 디바이스(1402)에 의해 다른 시스템으로 송신된다. 일 실시예에서, 양방향 중계기 시스템은 단순히 출력 디바이스(1422)가 없는 중계기일 수 있다. 이러한 실시예에서, 멀티플렉서(1434)는 이용되지 않을 것이고 LNA(1418)로부터의 신호들은 이전에 설명되는 믹서(1430)로 지향된다. 일부 실시예들에서, 양방향 중계기 시스템은 또한 2 개의 별개의 및 개별적인 단방향 중계기들을 사용하여 구현될 수 있다는 것이 이해될 것이다. 대안적인 실시예에서, 양방향 중계기 시스템은 또한 부스터(booster)일 수 있거나 그렇지 않으면 다운시프팅 및 업시프팅 없이 재전송들을 수행할 수 있다. 실제로 예시적인 실시예에서, 재송신들은 신호 또는 가이드파를 수신하는 것 및 신호 또는 가이드파의 재송신에 앞서 일부 신호 또는 가이드파 처리 또는 재성형, 필터링 및/또는 증폭을 수행하는 것에 기초할 수 있다.

이제 도 15를 참조하면, 가이드파 통신 시스템의 일 예시적인, 비제한적인 실시예를 도시한 블록도(1500)가 도시된다. 이러한 도면은 도 1과 관련하여 제시된 가이드파 통신 시스템과 같은, 가이드파 통신 시스템이 사용될 수 있는 일 예시적인 환경을 도시한다.

추가의 기지국 디바이스들에 네트워크 접속성을 제공하기 위해, 통신 셀들(예를 들어, 마이크로셀들 및 매크로셀들)을 코어 네트워크의 네트워크 디바이스들에 링크하는 백홀 네트워크가 대응하여 확장된다. 유사하게, 분산 안테나 시스템에 네트워크 접속성을 제공하기 위해, 기지국 디바이스들 및 그들의 분산 안테나들을 링크하는 확장된 통신 시스템이 바람직하다. 도 15에 도시된 바와 같은 가이드파 통신 시스템(1500)은 대안적인, 증가된 또는 추가의 네트워크 접속을 가능하게 하기 위해 제공될 수 있고, 도파관 결합 시스템은 단선 송전선(예를 들면, 전력선)으로서 동작하고, 도파관으로서 사용될 수 있고 및/또는 그와 달리 전자기파의 송신을 가이드하기 위해 동작하는 와이어와 같은 송신 매체상에 가이드파(예를 들어, 표면파) 통신들을 송신 및/또는 수신하기 위해 제공될 수 있다.

가이드파 통신 시스템(1500)은 중앙 기지국(1501) 및/또는 매크로셀 사이트(1502)에 통신 가능하게 결합되는 하나 이상의 기지국 디바이스들(예를 들어, 기지국 디바이스(1504))를 포함하는 분배 시스템(1550)의 제 1 경우를 포함할 수 있다. 기지국 디바이스(1504)는 매크로셀 사이트(1502) 및 중앙 기지국(1501)에 유선(예를 들어, 파이버 및/또는 케이블) 또는 무선(예를 들어, 마이크로파 무선) 접속으로 연결될 수 있다. 분배 시스템(1560)의 제 2 경우는 이동 디바이스(1522) 및 주거 및/또는 상업 시설들(1542)(여기서 시설들(1542)이라 칭해짐)에 무선 음성 및 데이터 서비스들을 제공하는 데 사용될 수 있다. 시스템(1500)은 도 15에 도시된 바와 같이 음성 및/또는 데이터 서비스들을 이동 디바이스들(1522 내지 1524) 및 시설들(1542)에 제공하기 위한 분배 시스템들(1550, 1560)의 추가의 경우들을 가질 수 있다.

매크로셀 사이트(1502)와 같은 매크로셀들은 모바일 네트워크 및 기지국 디바이스(1504)에 대한 전용 접속들을 가질 수 있거나 다른 접속을 공유 및/또는 그와 다르게 사용할 수 있다. 중앙 기지국(1501)은 미디어 콘텐트를 분배하고 및/또는 이동 장치들(1522 내지 1524) 및 설비들(1542)에 인터넷 서비스 제공자(ISP) 서비스들을 제공하는 데 사용될 수 있다. 중앙 기지국(1501)은 위성들(1530)의 성상도 또는 컨텐츠의 다른 소스들로부터 미디어 콘텐트를 수신하고, 분배 시스템(1550 및 1560)의 제 1 및 제 2 경우들을 통해 이러한 컨텐트를 이동 디바이스들(1522 내지 1524) 및 설비들(1542)에 분배할 수 있다. 중앙 기지국(1501)은 이동 디바이스들(1522 내지 1524) 및 시설들(1542)에 인터넷 데이터 서비스들을 제공하기 위한 인터넷(1503)에 또한 통신 가능하게 결합될 수 있다.

기지국 디바이스(1504)는 전신주(1516) 상에 장착되거나 부착될 수 있다. 다른 실시예들에서, 기지국 디바이스(1504)는 변압기들 및/또는 전력선 근처에 위치된 다른 위치들 근처에 있을 수 있다. 기지국 디바이스(1504)는 이동 디바이스들(1522, 1524)에 대하여 이동 네트워크로의 접속을 가능하게 할 수 있다. 각각 전신주들(1518 및 1520) 상에 또는 그 근처에 장착된 안테나들(1512, 1514)은 기지국 디바이스(1504)로부터 신호들을 수신하고, 안테나들(1512, 1514)이 기지국 디바이스(1504)에 또는 기지국 디바이스(1504) 근처에 위치하는 경우보다 훨씬 넓은 영역에 걸쳐서 이동 디바이스들(1522, 1524)로 이들 신호들을 송신할 수 있다.

도 15는 간략함을 위해 하나의 기지국 디바이스를 갖는 분배 시스템들(1550 및 1560)의 각각의 경우에서 3개의 전신주들을 표시하는 것이 주의된다. 다른 실시예들에서, 전신주(1516)는 분산된 안테나들 및/또는 설비들(1542)에 대한 테더링된 접속들을 갖는 더 많은 전신주들 및/또는 더 많은 기지국 디바이스들을 가질 수 있다.

도 1과 관련하여 제시된 송신 디바이스(101 또는 102)와 같은 송신 디바이스(1506)는 전신주들(1516, 1518, 1520)에 연결하는 송전선 또는 전력선(들)을 통해 기지국 디바이스(1504)로부터 안테나들(1512, 1514)에 신호를 송신할 수 있다. 신호를 송신하기 위해, 무선 소스 및/또는 송신 디바이스(1506)는 기지국 디바이스(1504)로부터의 신호(예를 들어, 주파수 믹싱을 통해)를 업컨버팅하거나 그렇지 않으면 기지국 디바이스(1504)로부터의 신호를 마이크로파 대역 신호로 변환하고, 송신 디바이스(1506)는 이전 실시예들에서 설명되는 송전선 또는 다른 와이어를 따라 이동하는 가이드파로서 전파하는 마이크로파 대역 파를 론칭한다. 전신주(1518)에서, 다른 송신 디바이스(1508)는 가이드파를 수신하고(선택적으로 필요에 따라 또는 원하는대로 증폭할 수 있거나 그를 수신하고 그를 재생하기 위한 중계기로서 동작할 수 있고), 이를 송전선 또는 다른 와이어상에 가이드파로서 포워드로 전송한다. 송신 디바이스(1508)는 또한 마이크로파 대역 가이드파로부터 신호를 추출하고 이를 주파수에서 하향 시프트하거나 그렇지 않으면 그를 그의 원래의 셀룰러 대역 주파수(예를 들어, 1.9 ㎓ 또는 다른 규정된 셀룰러 주파수) 또는 다른 셀룰러(또는 비-셀룰러) 대역 주파수로 변환한다. 안테나(1512)는 다운시프트된 신호를 이동 디바이스(1522)에 무선 송신할 수 있다. 프로세스는 필요에 따라 또는 바람직하게 송신 디바이스(1510), 안테나(1514) 및 이동 디바이스(1524)에 의해 반복될 수 있다.

이동 디바이스들(1522, 1524)로부터의 송신들은 또한 안테나들(1512, 1514) 각각에 의해 수신될 수 있다. 송신 디바이스들(1508, 1510)은 업시프트하거나 그와 다르게 셀룰러 대역 신호들을 마이크로파 대역으로 변환할 수 있고, 신호들을 전력선(들)을 통해 가이드파(예를 들어, 표면파 또는 다른 전자기파) 송신들로서 기지국 디바이스(1504)로 송신할 수 있다.

중앙 기지국(1501)에 의해 수신된 미디어 콘텐트는 이동 디바이스들(1522) 및 설비들(152)로 분배를 위해 기지국 디바이스(1504)를 통해 분배 시스템(1560)의 제 2 경우에 공급될 수 있다. 송신 장치(1510)는 하나 이상의 유선 접속들 또는 무선 인터페이스에 의해 설비들(1542)에 테더링될 수 있다. 하나 이상의 유선 접속들은 전력선, 동축 케이블, 광섬유 케이블, 연선 쌍 케이블, 가이드파 송신 매체 또는 미디어 콘텐츠의 분배 및/또는 인터넷 서비스들을 제공하기 위한 다른 적합한 유선 매체를 제한 없이 포함할 수 있다. 일 예시적인 실시예에서, 송신 디바이스(1510)로부터의 유선 접속들은 하나 이상의 대응하는 서비스 영역 인터페이스들(SAI들-도시되지 않음) 또는 페디스탈들에 위치한 하나 이상의 초고속 비트 레이트 디지털 가입자 회선(VDSL) 모뎀에 통신 가능하게 연결될 수 있으며, 각각의 SAI 또는 페디스탈은 설비들(1542)의 일부에 서비스들을 제공한다. VDSL 모뎀들은 미디어 콘텐트를 선택적으로 분배하고 및/또는 설비들(1542)에 위치한 게이트웨이들(도시되지 않음)에 인터넷 서비스들을 제공하는 데 사용될 수 있다. SAI들 또는 페디스탈들은 또한 전력선, 동축 케이블, 광섬유 케이블, 연선 쌍 케이블, 가이드파 송신 매체 또는 다른 적절한 유선 매체와 같은 유선 매체를 통해 설비들(1542)에 통신 가능하게 결합될 수 있다. 다른 예시적인 실시예들에서, 송신 디바이스(1510)는 SAI들 또는 페디스탈들과 같은 중간 인터페이스들 없이 설비들(1542)에 직접 통신 가능하게 결합될 수 있다.

다른 예시적인 실시예들에서, 시스템(1500)은 2개 이상의 송전선들 또는 다른 와이어들이 전신주들(1516, 1518, 1520)(예를 들어, 전신주들(1516, 1520) 사이의 2개 이상의 와이어들) 사이에 이어져 있는 다이버시티 경로들을 채용할 수 있고 기지국/매크로 셀 사이트(1502)로부터의 중복된 송신들은 송전선들 또는 다른 와이어들의 표면 아래로 가이드파들로서 송신된다. 송전선들 또는 다른 와이어들은 절연 또는 비절연될 수 있고, 송신 손실들을 야기하는 환경 조건들에 따라, 결합 디바이스들은 절연 또는 비절연 송전선들 또는 다른 와이어들로부터 신호들을 선택적으로 수신할 수 있다. 선택은 와이어들의 신호대 잡음비의 측정치들에 기초하여 또는 결정된 날씨/환경 조건들(예를 들면, 습도 검출기들, 일기 예보 등)에 기초할 수 있다. 시스템(1500)과 함께 다이버시티 경로들의 사용은 대체 라우팅 기능들, 부하 밸런싱, 증가된 부하 조절, 동시 양방향 또는 동기식 통신들, 확산 스펙트럼 통신들 등을 가능하게 할 수 있다.

도 15의 송신 디바이스들(1506, 1508, 1510)의 사용이 단지 예일 뿐이고, 다른 실시예에서는 다른 용도도 가능하다는 것이 주의된다. 예를 들어, 송신 디바이스들은 백홀 통신 시스템에서 사용될 수 있고, 기지국 디바이스들에 네트워크 접속성을 제공한다. 송신 디바이스들(1506, 1508, 1510)은 절연된 또는 비절연된 와이어를 통해 가이드파 통신들을 송신하는 것이 바람직한 많은 환경들에서 사용될 수 있다. 송신 디바이스들(1506, 1508, 1510)은 고전압들을 전달할 수 있는 와이어들과의 접촉이 없거나 제한된 물리적 및/또는 전기적 접촉으로 인해 다른 결합 디바이스들에 비해 개선된 것들이다. 송신 디바이스는 유전체가 절연체의 역할을 하기 때문에 와이어와 전기적으로 접촉하지 않는 한 와이어로부터 떨어져 위치되고(예를 들면, 와이어로부터 이격되어) 및/또는 와이어상에 위치할 수 있고, 값싸게 쉽고 간단하게 설치할 수 있다. 그러나, 예를 들어 와이어들이 전화 네트워크, 케이블 텔레비전 네트워크, 광대역 데이터 서비스, 광섬유 통신 시스템 또는 저전압을 채용하거나 절연된 송전선들을 갖는 다른 네트워크에 대응하는 구성들에서 이전에 언급된 도전성 또는 비유전성 커플러들이 채용될 수 있다.

기지국 디바이스(1504) 및 매크로셀 사이트(1502)가 일 실시예에 도시되어 있지만, 다른 네트워크 구성들도 마찬가지로 가능하다는 것이 또한 주의된다. 예를 들어, 액세스 포인트들 또는 다른 무선 게이트웨이들과 같은 디바이스들이 무선 로컬 영역 네트워크, 무선 개인 영역 네트워크 또는 802.11 프로토콜, WIMAX 프로토콜, UltraWideband 프로토콜, 블루투스 프로토콜, Zigbee 프로토콜 또는 다른 무선 프로토콜과 같은 통신 프로토콜에 따라 동작하는 다른 무선 네트워크와 같은 다른 네트워크들의 도달 범위를 확장하기 위해 유사한 방식으로 채용될 수 있다.

이제 도 16a 및 도 16b를 참조하면, 전력 그리드 통신 시스템을 관리하기 위한 시스템의 예시적인, 비제한적인 실시예들을 예시하는 블록도들(1600, 1650)이 도시된다. 도 16a를 고려하면, 도파관 시스템(1602)은 도 15와 관련하여 제시된 시스템과 같은 가이드파 통신 시스템에서 사용을 위해 제시된다. 도파관 시스템(1602)은 센서(1604), 전력 관리 시스템(1605), 적어도 하나의 통신 인터페이스(205), 송수신기(210) 및 커플러(220)를 포함하는 송신 디바이스(101 또는 102)를 포함할 수 있다.

도파관 시스템(1602)은 본 개시에 설명된 실시예들에 따라 가이드파 통신들을 가능하게 하기 위해 전력선(1610)에 결합될 수 있다. 일 예시적인 실시예에서, 송신 디바이스(101 또는 102)는 본 개시에서 설명된 바와 같이 전력선(1610)의 표면을 따라 길이 방향으로 전파하는 전력선(1610)의 표면상에 전자기파들을 유도하기 위한 커플러(220)를 포함한다. 송신 디바이스(101 또는 102)는 또한 도 12 및 도 13에 도시되는 바와 같이 동일한 전력선(1610)상에서 전자기파들을 재전송하거나 전력선들(1610) 사이에서 전자기파들을 라우팅하기 위한 중계기의 역할을 할 수 있다.

송신 디바이스(101 또는 102)는, 예를 들어, 전력선(1610)의 표면을 따라 전파하는 대응하는 가이드된 전자기파들을 유도하기 위해 커플러를 따라 전파하는 반송파 주파수에서 동작하거나, 나타나거나, 그와 연관된 전자기파들로 원래 주파수 범위에서 동작하는 신호를 업컨버트하도록 구성된 송수신기(210)를 포함한다. 반송파 주파수는 전자기파들의 대역폭을 규정하는 상부 및 하부 차단 주파수들을 갖는 중심 주파수로 나타낼 수 있다. 전력선(1610)은 도전성 표면 또는 절연된 표면을 갖는 와이어(예를 들어, 단선 또는 다중선)일 수 있다. 송수신기(210)는 또한 커플러(220)로부터 신호들을 수신하고 반송파 주파수에서 동작하는 전자기파들을 그들의 원래 주파수의 신호들로 다운 컨버트할 수 있다.

업컨버트를 위해 송신 디바이스(101 또는 102)의 통신 인터페이스(205)에 의해 수신된 신호들은 통신 인터페이스(205)의 유선 또는 무선 인터페이스를 통해 중앙 기지국(1611), 통신 인터페이스(205)의 유선 또는 무선 인터페이스를 통해 기지국(1614)에 의해 공급된 신호들, 통신 인터페이스(205)의 유선 또는 무선 인터페이스를 통한 전달을 위해 이동 디바이스들(1620)에 의해 기지국(1614)에 송신된 무선 신호들, 통신 인터페이스(205)의 유선 또는 무선 인터페이스를 통해 빌딩 내 통신 디바이스들(1618)에 의해 공급된 신호들, 및/또는 통신 인터페이스(205)의 무선 통신 범위에서 로밍하는 이동 디바이스들(1612)에 의해 통신 인터페이스(205)에 공급된 무선 신호들을 제한 없이 포함할 수 있다. 도 12 및 도 13에서 도시된 바와 같이, 도파관 시스템(205)이 중계기로서 기능하는 실시예들에서, 통신 인터페이스(205)는 도파관 시스템(1602)에 포함되거나 포함되지 않을 수 있다.

전력선(1610)의 표면을 따라 전파하는 전자기파들은 데이터 페이로드를 포함하고 네트워킹 정보(하나 이상의 목적지 도파관 시스템들(1602)을 식별하기 위한 헤더 정보와 같은)를 더 포함하는 데이터의 패킷들 또는 프레임들을 포함하도록 변조 및 포맷될 수 있다. 네트워킹 정보는 도파관 시스템(1602) 또는 중앙 기지국(1611), 기지국(1614), 이동 디바이스들(1620) 또는 빌딩 내 디바이스들(1618), 또는 그의 조합과 같은 발신 디바이스에 의해 제공될 수 있다. 추가로, 변조된 전자기파들은 신호 교란들을 완화하기 위한 에러 정정 데이터를 포함할 수 있다. 네트워킹 정보 및 에러 정정 데이터는 목적지 도파관 시스템(1602)에 지향된 송신들을 검출하기 위해 및 목적지 도파관 시스템(1602)에 통신 가능하게 결합된 수신자 통신 디바이스들로 지향되는 음성 및/또는 데이터 신호들을 포함하는 에러 정정 데이터 송신들에 의해 다운 컨버팅 및 처리하기 위해 목적지 도파관 시스템(1602)에 의해 사용될 수 있다.

이제 도파관 시스템(1602)의 센서들(1604)을 참조하면, 센서들(1604)은 온도 센서(1604a), 교란 검출 센서(1604b), 에너지 손실 센서(1604c), 잡음 센서(1604d), 진동 센서(1604e), 환경(예를 들어, 날씨) 센서(1604f), 및/또는 이미지 센서(1604g) 중 하나 이상을 포함할 수 있다. 온도 센서(1604a)는 주변 온도, 송신 디바이스(101 또는 102)의 온도, 전력선(1610)의 온도, 온도차들(예를 들어, 설정점 또는 기저선과 비교하여, 송신 디바이스(101 또는 102) 및 전력선(1610) 사이 등), 또는 그의 임의의 조합을 측정하기 위해 사용될 수 있다. 일 실시예에서, 온도 메트릭들은 수집되어 기지국(1614)에 의해 네트워크 관리 시스템(1601)에 주기적으로 보고될 수 있다.

교란 검출 센서(1604b)는 전력선(1610)상에서 전자기파들의 전파를 방해할 수 있는 다운스트림 교란의 존재를 나타낼 수 있는 신호 반사들과 같은 교란들을 검출하기 위해 전력선(1610)에 대한 측정들을 수행할 수 있다. 신호 반사는 예를 들어, 송신 디바이스(101 또는 102)로부터 다운스트림에 위치된 전력선(1610)에서 교란으로부터 송신 디바이스(101 또는 102)로 전체로 또는 부분적으로 다시 반사하는 송신기 디바이스(101 또는 102)에 의해 전력선(1610)상에 송신된 전자기파로부터 기인한 왜곡을 나타낼 수 있다.

신호 반사들은 전력선(1610)상의 장애물들에 의해 야기될 수 있다. 예를 들어, 나뭇가지는 나뭇가지가 전력선(1610)상에 있을 때 또는 코로나 방전을 야기할 수 있는 전력선(1610)에 근접할 때 전자기파 반사들을 야기할 수 있다. 전자기파 반사들을 야기할 수 있는 다른 방해물들은 전력선(1610)에 얽힌 물체(예를 들어, 의류, 신발 줄과 함께 전력선(1610)을 감싸는 신발 등), 전력선(1610)상에 부식된 축적물 또는 얼음이 쌓이는 것을 제한 없이 포함할 수 있다. 전력 그리드 구성 요소들은 또한 전력선(1610)의 표면상의 전자기파들의 전파를 방해하거나 막을 수 있다. 신호 반사들을 야기할 수 있는 전력 그리드 구성 요소들의 예시들은 변압기 및 슬라이스된 전력선을 연결하기 위한 접합부(joint)를 제한 없이 포함한다. 전력선(1610)상의 예각은 또한 전자기파 반사들을 야기할 수 있다.

교란 검출 센서(1604b)는 전력선(1610)의 다운스트림 교란이 송신들을 얼마나 감쇠시키지를 결정하기 위해 송신 디바이스(101 또는 102)에 의해 송신된 원래의 전자기파들의 크기들에 대해 전자기파 반사들의 크기들을 비교하기 위한 회로를 포함할 수 있다. 교란 검출 센서(1604b)는 반사파들에 대한 스펙트럼 분석을 수행하기 위한 스펙트럼 분석기 회로를 더 포함할 수 있다. 스펙트럼 분석기 회로에 의해 생성된 스펙트럼 데이터는 패턴 인식, 전문가 시스템, 곡선 피팅(curve fitting), 매칭된 필터링 또는 다른 인공 지능, 예를 들면 스펙트럼 데이터와 가장 근접하게 매칭하는 스펙트럼 프로파일에 기초하여 교란의 형태를 식별하기 위한 분류 또는 비교 기술을 통해 스펙트럼 프로파일들과 비교될 수 있다. 스펙트럼 프로파일들은 교란 검출 센서(1604b)의 메모리에 저장될 수 있거나 교란 검출 센서(1604b)에 의해 원격으로 액세스 가능할 수 있다. 프로파일들은 교란 검출 센서(1604b)가 교란을 국부적으로 식별하게 할 수 있도록 전력선들(1610)상에서 마주칠 수 있는 상이한 교란들을 모델링하는 스펙트럼 데이터를 포함할 수 있다. 알려진 경우 교란의 식별은 기지국(1614)에 의해 네트워크 관리 시스템(1601)에 보고될 수 있다. 교란 검출 센서(1604b)는 전자기파 반사에 대한 왕복 시간을 결정하기 위해 전자기파들을 테스트 신호들로서 송신하기 위해 송신 디바이스(101 또는 102)를 또한 이용할 수 있다. 교란 검출 센서(1604b)에 의해 측정된 왕복 시간은 반사가 일어나는 지점까지 전자기파에 의해 이동된 거리를 계산하는 데 사용될 수 있고, 이는 교란 검출 센서(1604b)가 송신 디바이스(101, 102)로부터 전력선(1610)상의 다운스트림 교란으로의 거리를 계산할 수 있게 한다.

계산된 거리는 기지국(1614)에 의해 네트워크 관리 시스템(1601)에 보고될 수 있다. 일 실시예에서, 전력선(1610)상의 도파관 시스템(1602)의 위치는 네트워크 관리 시스템(1601)에 알려지고, 네트워크 관리 시스템(1601)은 전력 그리드의 알려진 토폴로지에 기초하여 전력선(1610)상의 교란 위치를 결정하는 데 사용될 수 있다. 다른 실시예에서, 도파관 시스템(1602)은 그의 위치를 네트워크 관리 시스템(1601)에 제공하여 전력선(1610)상의 교란 위치의 결정을 도울 수 있다. 도파관 시스템(1602)의 위치는 도파관 시스템(1602)의 메모리에 저장된 도파관 시스템(1602)의 사전 프로그램된 위치로부터 도파관 시스템(1602)에 의해 획득되거나 도파관 시스템(1602)은 도파관 시스템(1602)에 포함된 GPS 수신기(도시되지 않음)를 사용하여 그의 위치를 결정할 수 있다.

전력 관리 시스템(1605)은 도파관 시스템(1602)의 전술한 구성 요소들에 에너지를 제공한다. 전력 관리 시스템(1605)은 태양 전지로부터 또는 전력선(1610)에 연결된 변압기(도시되지 않음)로부터, 또는 전력선(1610) 또는 다른 인접한 전력선에 대한 유도 결합에 의해 에너지를 수신할 수 있다. 전력 관리 시스템(1605)은 도파관 시스템(1602)에 임시 전원을 제공하기 위한 백업 배터리 및/또는 수퍼 커패시터 또는 다른 커패시터 회로를 또한 포함할 수 있다. 에너지 손실 센서(1604c)는 도파관 시스템(1602)이 전력 손실의 조건 및/또는 일부 다른 오작동의 발생을 가질 때를 검출하는 데 사용될 수 있다. 예를 들어, 에너지 손실 센서(1604c)는 결함이 있는 태양 전지들로 인한 전력 손실, 태양 전지들에 오작동을 야기하는 그들상의 장애물, 전력선(1610)상의 전력 손실이 존재할 때, 및/또는 백업 배터리의 만료 또는 수퍼 커패시터의 감지 가능한 결함으로 인해 백업 전력 시스템이 오작동할 때를 검출할 수 있다. 오작동 및/또는 전력 손실이 발생할 때, 에너지 손실 센서(1604c)는 기지국(1614)에 의해 네트워크 관리 시스템(1601)에 통지할 수 있다.

잡음 센서(1604d)는 전력선(1610)상의 전자기파들의 송신에 악영향을 미칠 수 있는 전력선(1610)상의 잡음을 측정하는 데 사용될 수 있다. 잡음 센서(1604d)는 전력선(1610)의 표면상에 변조된 전자기파들의 수신을 방해할 수 있는 예기치 않은 전자기 간섭, 잡음 버스트들, 또는 다른 교란들의 소스들을 감지할 수 있다. 잡음 버스트는 예를 들어, 코로나 방전 또는 다른 잡음 소스에 의해 야기될 수 있다. 잡음 센서(1604d)는 패턴 인식, 전문가 시스템, 곡선 피팅, 매칭된 필터링 또는 다른 인공 지능, 분류 또는 비교 기술을 통해 잡음 프로파일들의 내부 데이터베이스로부터 또는 잡음 프로파일들을 저장하는 원격으로 위치된 데이터베이스로부터 도파관 시스템(1602)에 의해 얻어진 잡음 프로파일에 대해 측정된 잡음을 비교할 수 있다. 비교로부터, 잡음 센서(1604d)는, 예를 들어, 측정된 잡음에 가장 근접한 매칭을 제공하는 잡음 프로파일에 기초하여 잡음 소스(예를 들어, 코로나 방전 또는 기타)를 식별할 수 있다. 잡음 센서(1604d)는 비트 에러 레이트, 패킷 손실 레이트, 지터, 패킷 재송신 요청들 등과 같은 송신 메트릭들을 측정함으로써 잡음이 송신들에 어떻게 영향을 미치는지를 또한 검출할 수 있다. 잡음 센서(1604d)는 여러 가지들 중에서 잡음 소스들의 아이덴티티, 그들의 발생 시간, 및 송신 메트릭들을 기지국(1614)에 의해 네트워크 관리 시스템(1601)에 보고할 수 있다.

진동 센서(1604e)는 전력선(1610)상의 2D 또는 3D 진동들을 검출하기 위한 가속도계들 및/또는 자이로스코프들을 포함할 수 있다. 진동들은 도파관 시스템(1602)에 국부적으로 저장되거나 또는 패턴 인식, 전문가 시스템, 곡선 피팅, 매칭 필터링 또는 다른 인공 지능, 분류 또는 비교 기술을 통해 원격 데이터베이스로부터 도파관 시스템(1602)에 의해 획득될 수 있는 진동 프로파일들과 비교될 수 있다. 진동 프로파일들은 예를 들어, 측정된 진동에 가장 근접한 매칭을 제공하는 진동 프로파일에 기초하여 돌풍으로 쓰러진 나무를 구별하기 위해 사용될 수 있다. 이러한 분석의 결과들은 진동 센서(1604e)에 의해 기지국(1614)에 의해 네트워크 관리 시스템(1601)에 보고될 수 있다.

환경 센서(1604f)는 여러 가지 중에서 대기압, 주위 온도(온도 센서(1604a)에 의해 제공될 수 있음), 풍속, 습도, 풍향 및 강우량을 측정하기 위한 기압계를 포함할 수 있다. 환경 센서(1604f)는 미가공 정보를 수집하고 패턴 인식, 전문가 시스템, 지식 기반 시스템 또는 다른 인공 지능, 분류 또는 다른 기상 모델링 및 예측 기술을 통해 기상 상태들이 발생하기 전에 그들을 예측하기 위해 도파관 시스템(1602) 또는 원격 데이터베이스의 메모리로부터 얻을 수 있는 환경 프로파일들과 그를 비교함으로써 이러한 정보를 처리할 수 있다. 환경 센서(1604f)는 원래 데이터뿐만 아니라 그의 분석을 네트워크 관리 시스템(1601)에 보고할 수 있다.

이미지 센서(1604g)는 도파관 시스템(1602)의 부근에서 이미지들을 캡처하기 위한 디지털 카메라(예를 들어, 전하 결합 소자 또는 CCD 이미저, 적외선 카메라 등)일 수 있다. 이미지 센서(1604g)는 다수의 관점들(예를 들어, 상부면, 하부면, 좌측면, 우측면 등)로부터 전력선(1610)을 검사하기 위해 카메라의 움직임(예를 들어, 실제 위치 또는 초점들/줌들)을 제어하기 위한 전자기 메커니즘을 포함할 수 있다. 대안적으로, 이미지 센서(1604g)는 다수의 관점들을 얻기 위해 어떠한 전자기 메커니즘도 필요하지 않도록 설계될 수 있다. 이미지 센서(1604g)에 의해 생성된 이미징 데이터의 수집 및 검색은 네트워크 관리 시스템(1601)에 의해 제어되거나 이미지 센서(1604g)에 의해 자동으로 수집되고 네트워크 관리 시스템(1601)에 보고될 수 있다.

전력선(1610)(또는 임의의 다른 형태의 전자기파들의 송신 매체)상의 전자기파 송신들의 전파를 방해할 수 있는 교란들을 검출, 예측 및/또는 완화하는 목적들을 위해 도파관 시스템(1602) 및/또는 전력선(1610)과 연관된 원격 측정 정보를 수집하는 데 적합할 수 있는 다른 센서들이 도파관 시스템(1602)에 의해 이용될 수 있다.

이제 도 16b를 참조하면, 블록도(1650)는 여기에 설명된 다양한 양태들에 따라 그에 임베딩되거나 그와 연관된 통신 시스템(1655) 및 전력 그리드(1653)를 관리하기 위한 시스템의 일 예시적인, 비제한적인 실시예를 도시한다. 통신 시스템(1655)은 전력 그리드(1653)의 전력선들(1610)에 결합된 복수의 도파관 시스템들(1602)을 포함한다. 통신 시스템(1655)에 사용되는 도파관 시스템들(1602)의 적어도 일부는 기지국(1614) 및/또는 네트워크 관리 시스템(1601)에 직접 통신일 수 있다. 기지국(1614) 또는 네트워크 관리 시스템(1601)에 직접 접속되지 않은 도파관 시스템들(1602)은 기지국(1614) 또는 네트워크 관리 시스템(1601)에 접속된 다른 다운스트림 도파관 시스템들(1602)에 의해 기지국(1614) 또는 네트워크 관리 시스템(1601)과 통신 세션들에 참여할 수 있다.

네트워크 관리 시스템(1601)은 각각의 엔티티, 전력 그리드(1653) 및 통신 시스템(1655) 각각과 관련된 상태 정보를 각각 제공하기 위해 통신 서비스 제공자(1654)의 장비 및 유틸리티 회사(1652)의 장비에 통신 가능하게 결합될 수 있다. 네트워크 관리 시스템(1601), 유틸리티 회사의 장비(1652), 및 통신 서비스 제공자(1654)는 상태 정보를 제공하는 목적들을 위해 및/또는 전력 그리드(1653) 및/또는 통신 시스템(1655)의 관리에서 그러한 직원에게 지시하기 위해 유틸리티 회사 직원(1656)에 의해 이용되는 통신 디바이스들 및/또는 통신 서비스 제공자의 직원(1658)에 의해 이용되는 통신 디바이스들에 액세스할 수 있다.

도 17a는 도 16a 및 도 16b의 시스템들의 통신 네트워크에서 발생하는 교란들을 검출 및 완화하기 위한 방법(1700)의 일 예시적인, 비제한적인 실시예의 흐름도를 도시한다. 방법(1700)은 도파관 시스템(1602)이 변조된 전자기파들 또는 전력선(1610)의 표면을 따라 이동하는 다른 형태의 전자기파들에 임베딩되거나 그의 일부를 형성하는 메시지들을 송신 및 수신하는 단계(1702)로 시작할 수 있다. 메시지들은 음성 메시지들, 스트리밍 비디오, 및/또는 통신 시스템(1655)에 통신 가능하게 결합된 통신 디바이스들 사이에서 교환되는 다른 데이터/정보일 수 있다. 단계(1704)에서, 도파관 시스템(1602)의 센서들(1604)은 감지 데이터를 수집할 수 있다. 일 실시예에서, 감지 데이터는 단계(1702)에서 메시지들의 송신 및/또는 수신 전, 또는 송신 및/또는 수신 동안, 또는 송신 및/또는 수신 후 단계(1704)에서 수집될 수 있다. 단계(1706)에서 도파관 시스템(1602)(또는 센서(1604)들 그들 자신들)은 도파관 시스템(1602)으로부터 발생하거나(예를 들면, 그에 의해 송신되는) 그에 의해 수신되는 통신들에 영향을 줄 수 있는 통신 시스템(1655)에 교란의 실제 또는 예측된 발생을 감지 데이터로부터 결정할 수 있다. 도파관 시스템(1602)(또는 센서들(1604))은 이러한 결정을 행하기 위해 온도 데이터, 신호 반사 데이터, 에너지 손실 데이터, 잡음 데이터, 진동 데이터, 환경 데이터, 또는 그의 임의의 조합을 처리할 수 있다. 도파관 시스템(1602)(또는 센서들(1604))은 또한 교란의 소스 및/또는 통신 시스템(1655)에서 그의 위치를 검출, 식별, 추정 또는 예측할 수 있다. 교란이 단계(1708)에서 검출/식별되지 않고 예측/추정되지 않을 경우, 도파관 시스템(1602)은 단계(1702)로 진행하여, 전력선(1610)의 표면을 따라 이동하는 변조된 전자기파들에 내장되거나 그의 일부를 형성하는 메시지들을 송신 및 수신하는 것을 계속할 수 있다.

단계(1708)에서 교란이 검출/식별되거나 발생할 것이 예측/추정된 경우, 교란이 통신 시스템(1655)에서 메시지들의 송신 또는 수신에 악영향을 미치는지(또는 대안적으로 악영향을 미칠 가능성이 있는지 또는 악영향을 미칠 수있는 정도)를 결정하기 위해 단계(1710)로 진행한다. 일 실시예에서, 지속 기간 임계치 및 발생 빈도 임계치는 교란이 통신 시스템(1655)에서 통신들에 악영향을 미칠 때를 결정하기 위해 단계(1710)에서 사용될 수 있다. 설명 목적만을 위해, 지속 기간 임계치는 500 ㎳이고, 발생 빈도 임계치는 10초의 관찰 기간에 발생하는 5 회의 교란들로 설정된다고 가정하자. 따라서, 500 ㎳보다 큰 지속 시간을 갖는 교란은 지속 시간 임계값을 트리거링할 것이다. 추가로, 10초 시간 간격에서 5 회 이상 발생하는 임의의 교란은 발생 빈도의 임계치를 트리거링할 것이다.

일 실시예에서, 지속 시간 임계치만이 초과할 때, 교란은 통신 시스템들(1655)에서 신호 무결성에 악영향을 미치는 것으로 고려될 수 있다. 다른 실시예에서, 지속 기간 임계치 및 발생 빈도 임계치 둘 모두가 초과될 때, 교란은 통신 시스템들(1655)에서 신호 무결성에 악영향을 미치는 것으로 고려될 수 있다. 따라서, 후자의 실시예는 통신 시스템(1655)에서 신호 무결성에 악영향을 미치는 교란들을 분류하기 위한 전자의 실시예보다 더 보수적이다. 예시적인 실시예들에 따라 많은 다른 알고리즘 및 연관된 파라미터들 및 임계값들이 단계(1710) 동안 이용될 수 있다는 것이 인식될 것이다.

방법(1700)을 다시 참조하면, 단계(1710)에서 단계(1708)에서 검출된 교란이 역효과가 있는 통신들에 대한 조건을 만족하지 않는 경우(예를 들어, 지속 기간 임계치도 발생 빈도 임계치도 초과하지 않은 경우), 도파관 시스템(1602)은 단계(1702)로 진행하고 메시지들을 계속 처리할 수 있다. 예를 들어, 단계(1708)에서 검출된 교란이 10초 시간 기간에서 단일 발생으로 1msec의 지속 기간을 갖는 경우, 어떠한 임계치도 초과되지 않을 것이다. 결과적으로, 이러한 교란은 통신 시스템(1655)에서 신호 무결성에 대한 명목상의 영향을 갖는 것으로 고려될 수 있고, 따라서 완화를 요구하는 교란으로 표시되지 않을 것이다. 플래그되어 있지 않지만, 교란의 발생, 그의 발생 시간, 그의 발생 빈도, 스펙트럼 데이터 및/또는 다른 유용한 정보는 모니터링 목적을 위한 원격 측정 데이터로서 네트워크 관리 시스템(1601)에 보고될 수 있다.

다시, 단계(1710)를 참조하면, 다른 한편으로 교란이 악영향을 받는 통신(예를 들어, 임계치들 중 하나 또는 양자를 초과)에 대한 조건을 만족하는 경우, 도파관 시스템(1602)은 단계(1712)로 진행하여 사건을 네트워크 관리 시스템(1601)에 보고할 수 있다. 보고는 센서들(1604)에 의해 수집된 원래의 감지 데이터, 도파관 시스템(1602)에 의해 알려진 경우의 교란의 설명, 교란의 발생 빈도, 교란과 연관된 위치, 비트 에러 레이트, 패킷 손실 레이트, 재송신 요청들, 지터, 레이턴시 등과 같은 파라미터 판독값들을 포함할 수 있다. 교란이 도파관 시스템(1602)의 하나 이상의 센서들에 의한 예측에 기초하는 경우, 보고는 예상된 교란의 일 형태를 포함할 수 있고, 예측 가능한 경우, 교란 발생의 예상 시간, 및 예측이 도파관 시스템(1602)의 센서들(1604)에 의해 수집된 과거의 감지 데이터에 기초할 때 예측된 교란 발생의 예상된 빈도를 포함할 수 있다.

단계(1714)에서, 네트워크 관리 시스템(1601)은 교란의 위치가 결정될 수 있는 경우 교란을 회피하기 위해 트래픽을 재라우팅하도록 도파관 시스템(1602)에 지시하는 것을 포함할 수 있는 완화, 회피 또는 정정 기술을 결정할 수 있다. 일 실시예에서, 교란을 검출하는 도파관 결합 디바이스(1402)는 도파관 시스템(1602)이 상이한 송신 매체에 트래픽을 재라우팅하고 교란을 회피하게 하기 위해 도파관 시스템(1602)을 교란에 의해 영향을 받는 1차 전력선으로부터 2차 전력선으로 연결하도록 도 13 및 도 14에 도시된 것과 같은 중계기에 지시할 수 있다. 도파관 시스템(1602)이 중계기로서 구성되는 일 실시예에서, 도파관 시스템(1602)은 그 자체가 1 차 전력선으로부터 2 차 전력선으로 트래픽의 재라우팅을 수행할 수 있다. 양방향 통신들(예를 들어, 전이중 통신 또는 반이중 통신)에 대하여, 중계기는 도파관 시스템(1602)에 의한 처리를 위해 트래픽을 2차 전력선으로부터 1차 전력선으로 다시 재라우팅하도록 구성될 수 있음이 또한 주의된다.

다른 실시예에서, 도파관 시스템(1602)은 교란을 피할 수 있는 방식으로 트래픽을 1차 전력선으로부터 일시적으로 2차 전력선으로 및 다시 1차 전력선으로 재지향시키도록 교란의 업스트림에 위치된 제 1 중계기 및 교란의 다운스트림에 위치된 제 2 중계기에 지시함으로써 트래픽을 재지향시킬 수 있다. 또한, 양방향 통신들(예를 들어, 전이중 또는 반이중 통신들)에 대하여, 중계기들은 트래픽을 2차 전력선으로부터 다시 1차 전력선으로 재라우팅하도록 구성될 수 있음이 또한 주의된다.

2차 전력선상에서 발생하는 기존 통신 세션들을 방해하지 않기 위해, 네트워크 관리 시스템(1601)은 교란을 회피하기 위해 데이터 및/또는 음성 트래픽을 1차 전력선으로부터 멀리 재지향시키기 위해 2차 전력선의 미사용된 타임 슬롯(들) 및/또는 주파수 대역(들)을 이용할 것을 중계기들에게 명령하도록 도파관 시스템(1602)에 지시할 수 있다.

단계(1716)에서, 트래픽이 교란을 피하기 위해 재라우팅되고 있는 동안, 네트워크 관리 시스템(1601)은 유틸리티 회사(1656)의 장비 및/또는 통신 서비스 제공자(1654)의 장비에 통지할 수 있고, 차례로 검출된 교란 및 알려진 경우 그의 위치를 유틸리티 회사의 직원(1656) 및/또는 통신 서비스 제공자의 직원(1658)에게 통지할 수 있다. 일방의 현장 직원은 교란의 결정된 위치에서 교란의 해결을 처리할 수 있다. 통신 회사의 직원 및/또는 통신 서비스 제공자의 직원에 의해 교란이 제거되거나 그와 다르게 완화되면, 그러한 직원은 네트워크 관리 시스템(1601)에 통신 가능하게 결합된 필드 장비(예를 들면, 랩톱 컴퓨터, 스마트폰 등) 및/또는 유틸리티 회사 및/또는 통신 서비스 제공자의 장비를 이용항 그들의 각각의 회사들 및/또는 네트워크 관리 시스템(1601)에 통지할 수 있다. 상기 통지는 통신 시스템(1655)의 토폴로지를 변경할 수 있는 전력선들(1610)에 대한 임의의 변경 및 교란이 어떻게 완화되었는지에 대한 설명을 포함할 수 있다.

교란이 해결되면(결정(1718)에서 결정된 바와 같이), 네트워크 관리 시스템(1601)은 도파관 시스템(1602)에 의해 사용된 이전의 라우팅 구성을 복원하거나 재구성 전략이 통신 시스템(1655)의 새로운 네트워크 토폴로지에서 초래된 교란을 완화하기 위해 사용된 경우 새로운 라우팅 구성에 따라 트래픽을 라우팅하도록 단계(1720)에서 도파관 시스템(1602)에 지시할 수 있다. 다른 실시예에서, 도파관 시스템(1602)은 교란이 제거될 때를 결정하기 위해 전력선(1610)상에 테스트 신호들을 송신함으로써 교란의 완화를 모니터링하도록 구성될 수 있다. 도파관 시스템(1602)이 교란의 부재를 검출하면, 통신 시스템(1655)의 네트워크 토폴로지가 변경되지 않았다고 결정되는 경우, 네트워크 관리 시스템(1601)에 의한 보조 없이 그의 라우팅 구성을 자동으로 복원할 수 있거나, 또는 검출된 새로운 네트워크 토폴로지에 적응하는 새로운 라우팅 구성을 이용할 수 있다.

도 17b는 도 16a 및 도 16b의 시스템의 통신 네트워크에서 발생하는 교란들을 검출하고 완화하기 위한 방법(1750)의 일 예시적인, 비제한적인 실시예의 흐름도를 도시한다. 일 실시예에서, 방법(1750)은 네트워크 관리 시스템(1601)이 유틸리티 회사(1652)의 장비 또는 통신 서비스 제공자(1654)의 장비로부터 유지 보수 스케줄과 연관된 유지 보수 정보를 수신하는 단계(1752)로 시작할 수 있다. 네트워크 관리 시스템(1601)은 단계(1754)에서 유지 보수 정보로부터 유지 보수 스케줄 동안 수행될 유지 보수 활동들을 식별할 수 있다. 이들 활동들로부터, 네트워크 관리 시스템(1601)은 유지 보수(예를 들어, 전력선(1610)의 스케줄링된 교체, 전력선(1610)상의 도파관 시스템(1602)의 스케줄링된 교체, 전력 그리드(1653)에서 전력선들(1610)의 스케줄링된 재구성 등)로부터 초래하는 교란을 검출할 수 있다.

다른 실시예에서, 네트워크 관리 시스템(1601)은 단계(1755)에서 하나 이상의 도파관 시스템들(1602)로부터 원격 측정 정보를 수신할 수 있다. 원격 측정 정보는 여러 가지 중에서 원격 측정 정보를 제출하는 각각의 도파관 시스템(1602)의 아이덴티티, 각각의 도파관 시스템(1602)의 센서들(1604)에 의해 취해진 측정들, 각각의 도파관 시스템(1602)의 센서들(1604)에 의해 검출된 예측된, 추정된, 또는 실제의 교란들에 관한 정보, 각각의 도파관 시스템(1602)과 연관된 위치 정보, 검출된 교란의 추정된 위치, 교란의 식별 등을 포함할 수 있다. 네트워크 관리 시스템(1601)은 원격 측정 정보로부터 도파관의 동작들에 불리할 수 있는 교란의 형태, 와이어 표면을 따른 전자기파들의 송신 또는 둘 모두를 결정할 수 있다. 네트워크 관리 시스템(1601)은 또한 교란을 분리 및 식별하기 위해 다수의 도파관 시스템들(1602)로부터의 원격 측정 정보를 사용할 수 있다. 추가로, 네트워크 관리 시스템(1601)은 교란의 위치를 삼각법으로 측정하고 및/또는 다른 도파관 시스템들(1602)로부터 유사한 원격 측정 정보를 수신함으로써 교란의 식별을 확인하기 위해 영향을 받은 도파관 시스템(1602) 부근의 도파관 시스템들(1602)로부터 원격 측정 정보를 요청할 수 있다 .

또 다른 실시예에서, 네트워크 관리 시스템(1601)은 단계(1756)에서 유지 보수 현장 직원으로부터 스케줄링되지 않은 활동 보고를 수신할 수 있다. 스케줄링되지 않은 유지 보수는 계획되지 않은 현장 통화들의 결과로서 또는 현장 통화들 또는 스케줄링된 유지 보수 활동들 동안 발견된 예기치 않은 현장 문제들의 결과로서 발생할 수 있다. 활동 보고는 통신 시스템(1655) 및/또는 전력 그리드(1653)에서 발견된 문제를 처리하는 현장 직원으로부터 초래된 전력 그리드(1653)의 토폴로지 구성에 대한 변경들, 하나 이상의 도파관 시스템들(1602)에 대한 변경들(예컨대 교체 또는 그의 수리), 존재하는 경우 수행된 교란들의 완화 등을 식별할 수 있다.

단계(1758)에서, 네트워크 관리 시스템(1601)은, 교란이 유지 보수 스케줄에 기초하여 발생할 경우, 또는 교란이 원격 측정 데이터에 기초하여 발생했거나 그에 기초하여 발생할 것이 예측되는 경우, 또는 교란이 필드 활성 보고에서 식별된 계획되지 않은 유지 보수에 의해 발생한 경우 단계들(1752 내지 1756)에 따라 수신된 보고들로부터 결정될 수 있다. 이들 보고들 중 어느 하나로부터, 네트워크 관리 시스템(1601)은 검출되거나 예측된 교란이 통신 시스템(1655)의 영향받은 도파관 시스템들(1602) 또는 다른 도파관 시스템들(1602)에 의해 트래픽의 재라우팅을 요구하는지의 여부를 결정할 수 있다.

교란이 단계(1758)에서 검출되거나 예측될 때, 네트워크 관리 시스템(1601)은 단계(1760)로 진행할 수 있고, 하나 이상의 도파관 시스템들(1602)에 교란을 피하기 위해 트래픽을 재라우팅하도록 지시할 수 있다. 교란이 전력 그리드(1653)의 영구적인 토폴로지 변화에 의해 영구적일 때, 네트워크 관리 시스템(1601)은 단계(1770)로 진행하고 단계들(1762, 1764, 1766, 1772)을 스킵한다. 단계(1770)에서, 네트워크 관리 시스템(1601)은 하나 이상의 도파관 시스템들(1602)에게 새로운 토폴로지를 적응시키는 새로운 라우팅 구성을 사용할 것을 지시할 수 있다. 그러나, 교란이 하나 이상의 도파관 시스템들(1602)에 의해 공급된 원격 측정 정보로부터 검출될 때, 네트워크 관리 시스템(1601)은 유틸리티 회사(1656) 또는 통신 서비스 제공자(1658)의 유지 보수 직원에게, 교란의 위치, 알려진 경우 교란의 형태, 및 교란을 완화하기 위해 이러한 직원에게 도움이 될 수 있는 관련 정보를 통지할 수 있다. 교란이 유지 보수 활동들에 의해 예상될 때, 네트워크 관리 시스템(1601)은 유지 보수 스케줄 동안 유지 보수 활동들에 의해 야기된 교란들을 피하기 위해 주어진 스케줄(유지 보수 스케줄과 일치하는)에서 트래픽 루트들을 재구성할 것을 하나 이상의 도파관 시스템들(1602)에게 지시할 수 있다.

단계(1760)로 다시 돌아와서 그의 완료시, 프로세스는 단계(1762)로 계속할 수 있다. 단계(1762)에서, 네트워크 관리 시스템(1601)은 교란(들)이 현장 직원에 의해 완화되었을 때를 모니터링할 수 있다. 교란의 완화는 현장 장비(예를 들면, 랩탑 컴퓨터 또는 휴대용 컴퓨터/디바이스)를 이용하여 통신 네트워크(예를 들면, 셀룰러 통신 시스템)을 통해 현장 직원에 의해 네트워크 관리 시스템(1601)에 제출된 현장 보고들을 분석함으로써 단계(1762)에서 검출될 수 있다. 현장 직원이 교란이 완화된 것을 보고한 경우, 네트워크 관리 시스템(1601)은 단계(1764)로 진행하여 토폴로지 변경이 교란을 완화시키기 위해 요구되는지의 여부를 현장 보고로부터 결정할 수 있다. 토폴로지 변경은 전력선(1610)을 재라우팅하는 것, 상이한 전력선(1610)을 이용하기 위해 도파관 시스템(1602)을 재구성하는 것, 그와 달리 교란을 회피하기 위해 대체 링크를 이용하는 것 등을 포함할 수 있다. 토폴로지 변경이 발생할 경우, 네트워크 관리 시스템(1601)은 단계(1770)에서 하나 이상의 도파관 시스템들(1602)에 새로운 토폴로지에 적응하는 새로운 라우팅 구성을 사용할 것을 지시할 수 있다.

그러나, 토폴로지 변경이 현장 직원에 의해 보고되지 않은 경우, 네트워크 관리 시스템(1601)은 단계(1766)로 진행하여 여기서 검출된 교란(들) 전에 사용된 라우팅 구성을 테스트하기 위해 테스트 신호들을 전송할 것을 하나 이상의 도파관 시스템들(1602)에 지시할 수 있다. 테스트 신호들은 교란 근처에서 영향받은 도파관 시스템들(1602)로 전송될 수 있다. 테스트 신호들은 신호 교란들(예를 들면, 전자기파 반사들)이 도파관 시스템들(1602) 중 어느 것에 의해 검출되는지를 결정하기 위해 사용될 수 있다. 테스트 신호들이 이전 라우팅 구성이 이전에 검출된 교란(들)을 더 이상 겪지 않는 것을 확인한 경우, 네트워크 관리 시스템(1601)은 단계(1772)에서 영향받은 도파관 시스템들(1602)에 이전 라우팅 구성을 복구할 것을 지시한다. 그러나, 하나 이상의 도파관 결합 디바이스(1402)에 의해 분석되고 영향받은 도파관 시스템들(1602)에 보고된 테스트 신호들이 교란(들) 또는 새로운 교란(들)이 존재한다는 것을 나타내는 경우, 네트워크 관리 시스템(1601)은 단계(1768)로 진행하고 현장 문제들을 또한 처리하기 위해 이러한 정보를 현장 직원에게 보고할 것이다. 네트워크 관리 시스템(1601)은 단계(1762)에서 이러한 상황에서 교란(들)의 완화를 계속 모니터링할 수 있다.

전술한 실시예들에서, 도파관 시스템들(1602)은 전력 그리드(1653)에서 변경들에 대해 및/또는 교란들의 완화에 대해 자체 적응되도록 구성될 수 있다. 즉, 하나 이상의 영향받은 도파관 시스템들(1602)은 교란들의 완화를 자체 모니터링하고 네트워크 관리 시스템(1601)에 의해 그들에게 전송될 명령들을 요구하지 않고 트래픽 루트들을 재구성하도록 구성될 수 있다. 이러한 실시예에서, 자체 구성 가능한 하나 이상의 도파관 시스템들(1602)은 네트워크 관리 시스템(1601)이 통신 시스템(1655)의 통신 토폴로지의 매크로-레벨 뷰를 유지할 수 있도록 네트워크 관리 시스템(1601)에 그의 라우팅 선택들을 알릴 수 있다.

설명의 간략화를 목적으로 하여, 각각의 프로세스들은 도 17a 및 도 17b에 각각 일련의 블록들로서 도시 및 설명되지만, 청구된 요지는, 일부 블록들이 여기에 도시 및 설명된 다른 블록들과 동시에 및/또는 상이한 순서들로 발생할 수 있기 때문에, 블록들의 순서에 의해 제한되지 않는 것이 이해되고 인식될 것이다. 더욱이, 모든 예시된 블록들이 여기에 설명된 방법들을 구현하기 위해 요구되지는 않을 수 있다.

이제 도 18a로 돌아와서, 여기에 설명된 다양한 양태들에 따라 통신 시스템의 일 예시적인, 비제한적인 실시예를 도시하는 블록도(1800)가 도시된다. 특히, 클라이언트 노드 디바이스들(1802), 호스트 노드 디바이스(1804), 미니-중계기들(MR)(1806)을 포함하는 가이드파 통신 시스템들(1810), 클라이언트 디바이스들(1812), 및 네트워크 종단(1815)을 포함하는 통신 시스템이 도시된다. 네트워크 종단(1815)은 인터넷, 패킷 교환 전화 네트워크, 보이스 오버 인터넷 프로토콜(VoIP) 네트워크, 인터넷 프로토콜(IP) 기반 텔레비전 네트워크, 케이블 네트워크, 수동 또는 능동 광학 네트워크, 4G 또는 고차 무선 액세스 네트워크, WIMAX 네트워크, 초광대역 네트워크, 개인 영역 네트워크 또는 다른 무선 액세스네트워크, 방송 위성 네트워크 및/또는 다른 통신 네트워크와 같은 네트워크(1818)와 업스트림 및 다운스트림 데이터(1816)를 통신한다. 업스트림 및 다운스트림 데이터(1816)는 음성, 데이터 또는 텍스트 통신들, 오디오, 비디오, 그래픽들, 및/또는 다른 미디어를 포함할 수 있다. 클라이언트 디바이스들(1812)은 이동 전화들, e-판독기들, 태블릿들, 패블릿들(phablets), 무선 모뎀들, 이동 무선 게이트웨이들, 홈 게이트웨이 디바이스들, 및/또는 다른 정지 또는 이동 컴퓨팅 디바이스들을 포함할 수 있다.

특히, 네트워크 종단(1815)로부터의 다운스트림 데이터는 무선 링크(1814)를 통해 범위 내의 클라이언트 디바이스들(1812)로 다운스트림 데이터를 직접 전달하는 호스트 노드 디바이스(1804)로 전송한다. 호스트 노드 디바이스(1804)는 또한 호스트 노드 디바이스(1804)로부터 더 멀리 있는 무선 링크들(1814')을 통해 미니-중계기들(1806)를 통해 다운스트림 데이터를 클라이언트 디바이스들(1812)로 전송하기 위해 하나 이상의 가이드파 통신 시스템들(1810)에 결합한다. 또한, 호스트 노드 디바이스(1804)는 다운스트림 데이터를 무선 링크들(1808)을 통해 가이드파 통신 시스템들(1810)의 범위를 넘어서 존재할 수 있는 하나 이상의 클라이언트 노드 디바이스들(1802)로 전송한다. 클라이언트 노드 디바이스들(1802)은 무선 링크들(1814'')을 통해 다운스트림 데이터를 클라이언트 디바이스들(1812)로 전송한다. 클라이언트 노드 디바이스들(1802)은 추가의 가이드파 통신 시스템들(1810') 및 무선 링크들(1808')에 대한 다운스트림 데이터를 더 멀리 있는 서비스 클라이언트 디바이스들(1812)로 MR들(1806) 및/또는 명확하게 도시되지 않은 추가의 클라이언트 노드 디바이스들을 통해 반복한다.

또한, 무선 링크들(1814'')을 통해 클라이언트 디바이스들(1812)로부터 수신된 업스트림 데이터는 클라이언트노드 디바이스들(1802), 무선 링크들(1808), 및 호스트 노드 디바이스(1804)를 통해 네트워크 단말(1815)로 다시 전달될 수 있다. 무선 링크들(1814')을 통해 클라이언트 디바이스들(1812)로부터 수신된 업스트림 데이터는 가이드파 통신 시스템(1810) 및 호스트 노드 디바이스(1804)를 통해 네트워크 단말(1815)로 다시 전달될 수 있다. 무선 링크들(1814)을 통해 클라이언트 디바이스들(1812)로부터 수신된 업스트림 데이터는 호스트 노드 디바이스(1804)를 통해 네트워크 단말(1815)로 다시 전달될 수 있다. 더 멀리 있는 클라이언트 디바이스들(1812)로부터의 업스트림 데이터는 무선 링크들(1808') 및/또는 가이드파 통신 시스템들(1810'), 클라이언트 노드 디바이스들(1802), 무선 링크들(1808) 및 호스트 노드 디바이스(1804) 등을 통해 네트워크 단말(1815)로 다시 전달될 수 있다. 도시된 통신 시스템이 업스트림 및 다운스트림 데이터(1816)를 다수의 업스트림 및 다운스트림 채널들로 분리할 수 있고 최소의 간섭을 갖고 인접한 영역들에서 서비스 이동 클라이언트 디바이스들(1812)에 대해 공간 채널 재사용 방식을 동작시킨다는 것이 주의되어야 한다.

다양한 실시예들에서, 도시된 통신 시스템은 전력 회사 분배 시스템과 같은 공공 유틸리티와 함께 사용된다. 이러한 경우, 호스트 노드 디바이스(1804), 클라이언트 노드 디바이스들(1802) 및/또는 미니-중계기들(1806)은 분배 시스템의 전신주들에 의해 지지되고 가이드파 통신 시스템들(1810)은 분배 시스템의 절연되거나 노출 매체 전력선 및/또는 다른 송신 회선 또는 지지 와이어의 세그먼트들을 포함하는 송신 매체를 통해 동작시킬 수 있다. 특히, 가이드파 통신 시스템들(1810)은 나선 또는 절연 와이어의 외부 표면에 의해 가이드되거나 바운드되는 가이드된 전자기파들을 통해 업스트림 및 다운스트림 데이터(1816)의 하나 이상의 채널들을 전달할 수 있다.

클라이언트 노드 디바이스들(1802), 호스트 노드 디바이스들(1804), 및 MR들(1806)이 무선 링크들(1814, 1814', 1814'')을 통해 클라이언트 디바이스들(1812)과 통신하는 것으로 설명되었지만, 하나 이상의 유선 링크들이 마찬가지로 채용될 수 있다는 것이 주의되어야 한다. 이러한 경우, 클라이언트 디바이스들(1812)은 개인용 컴퓨터들, 랩탑 컴퓨터들, 넷북 컴퓨터들, 태블릿들 또는 디지털 가입자 회선(DSL) 모뎀들, 데이터 오버 동축 케이블 서비스 인터페이스 규격(DOCSIS) 모뎀들 또는 다른 케이블 모뎀들, 전화들, 미디어 플레이어들, 텔레비전들, 광학 모뎀, 셋 탑 박스 또는 홈 게이트웨이 및/또는 다른 액세스 디바이스들과 함께 다른 컴퓨팅 디바이스들을 더 포함할 수 있다.

다양한 실시예들에서, 네트워크 종단(1815)은 클라이언트 디바이스들(1812)과 통신하기 위해 물리적 계층 처리를 수행한다. 이러한 경우, 네트워크 종단은 업스트림 데이터의 필요한 복조 및 추출 및 다운스트림 데이터의 변조 및 다른 포맷팅을 수행하고, 호스트 노드 디바이스(1814), 클라이언트 노드 디바이스들(1802) 및 미니-중계기들(1806)이 간단한 아날로그 신호 처리를 동작하게 둔다. 여기에 사용된 바와 같이, 아날로그 신호 처리는 필터링, 스위칭, 듀플렉싱, 듀플렉싱, 증폭, 주파수 업 및 다운 변환, 및 아날로그 대 디지털 변환 또는 디지털 대 아날로그 변환을 요구하지 않는 다른 아날로그 처리를 포함한다. 다른 실시예들에 따라, 네트워크 단말은 다수의 목적지들로부터 수신되고 그로 전송될 패킷 스트림에서 패킷들의 스위칭, 라우팅 또는 다른 선택을 포함할 수 있는 간단한 신호 처리 및/또는 예를 들면, 낮은 전력 디바이스들 및/또는 저렴한 하드웨어에 의해 구현될 수 있는 데이터 도메인에서 동작하는 다른 빠른 프로세스들을 통해 동작하는 호스트 노드 디바이스(1804), 클라이언트 노드 디바이스들(1802) 및 미니-중계기들(1806)로 데이터의 스트림들을 전송하는 공통 공중 무선 인터페이스(CPRI)와 함께 동작한다.

많은 동작 기능들 및 특징들을 포함하는, 도면(1800)에 도시된 통신 시스템에 관한 다른 구현은 후속하는 도 18b 내지 도 18h, 도 19a 내지 도 19d, 및 도 20a 내지 도 20d와 함께 제공된다.

이제 도 18b로 돌아오면, 여기에 설명된 다양한 양태들에 따른 네트워크 종단(1815)의 일 예시적인, 비제한적인 실시예를 예시하는 블록도(1820)가 도시된다. 도 18a와 함께 논의된 바와 같이, 네트워크 종단(1815)은 클라이언트 디바이스들(1812)과 통신을 위해 물리적 계층 처리를 수행한다. 이러한 경우, 네트워크 종단(1815)은 업스트림 데이터의 필요한 복조 및 추출 및 다운스트림 데이터의 변조 및 다른 포맷팅을 수행한다.

특히, 네트워크 종단(1815)은 통신 네트워크로부터 다운스트림 데이터(1826)를 수신하고 업스트림 데이터(1836)를 네트워크(1818)와 같은 통신 네트워크로 전송하도록 구성된 네트워크 인터페이스(1835)를 포함한다. 다운스트림 채널 변조기(1830)는 다운스트림 데이터(1826)를 가이드파 통신 시스템(1810)과 같은 가이드파 통신 시스템의 다운스트림 주파수 채널들에 대응하는 다운스트림 채널 신호들(1828)로 변조하도록 구성된다. 호스트 인터페이스(1845)는 예를 들면, 호스트 노드 디바이스(1804), 및/또는 클라이언트 노드 디바이스(1802)를 통해, 다운스트림 채널 신호들(1828)을 하나 이상의 가이드파 통신 시스템(1810 또는 1810')으로 전송하도록 구성된다. 호스트 인터페이스(1845)는 또한, 예를 들면, 호스트 노드 디바이스(1804), 및/또는 클라이언트 노드 디바이스(1802)를 통해, 가이드파 통신 시스템(1810, 1810')으로부터 업스트림 주파수 채널들에 대응하는 업스트림 채널 신호들(1838)을 수신한다. 업스트림 채널 복조기(1840)는 호스트 노드 디바이스(1804)를 통해 수신된 업스트림 채널 신호들(1838)을 업스트림 데이터(1836)로 복조하도록 구성된다.

다양한 실시예들에서, 다운스트림 채널 변조기(1830)는 도 1과 함께 논의된 송신 매체(125)에 바운드되는 가이드파들(120)과 같은 가이드된 전자기파들로서 가이드파 통신 시스템(1810)를 통해 다운스트림 데이터(1826)를 전달하기 위해 하나 이상의 다운스트림 채널 신호들(1828)를 변조한다. 업스트림 채널 복조기(1840)는 도 1과 함께 논의된 송신 매체(125)에 바운드되는 가이드파들(120)과 같은 가이드된 전자기파들로서 가이드파 통신 시스템(1810)을 통해 수신된 업스트림 데이터(1836)를 전달하는 하나 이상의 업스트림 채널 신호들(1838)을 복조한다.

다양한 실시예들에서, 네트워크 인터페이스(1835)는 하나 이상의 광 케이블 인터페이스들, 전화 케이블 인터페이스들, 동축 케이블 인터페이스들, 이더넷 인터페이스들 또는 통신 네트워크(1818)와 통신하기 위한 유선 또는 무선인 다른 인터페이스들을 포함할 수 있다. 호스트 노드 인터페이스(1845)는 호스트 노드 디바이스(1804)와 통신하기 위해 파이버 광 케이블 인터페이스를 포함할 수 있다; 그러나, 다른 유선 또는 무선 인터페이스들이 마찬가지로 이러한 목적을 위해 사용될 수 있다.

다양한 실시예들에서, 업스트림 주파수 채널들의 수는 비대칭 통신 시스템에 따라 다운스트림 주파수 채널들의 수보다 작지만, 업스트림 주파수 채널들의 수는 대칭 통신 시스템이 구현되는 경우에 다운스트림 주파수 채널들의 수보다 크거나 같을 수 있다.

업스트림 채널 신호들 및 다운스트림 채널 신호들은 변조되고 그와 달리 DOCSIS 2.0 또는 상위 표준 프로토콜, WiMAX 표준 프로토콜, 802.11 표준 프로토콜, 4G 또는 상위 무선 음성 및 데이터 프로토콜 예컨대 LTE 프로토콜 및/또는 다른 표준 통신 프로토콜에 따라 포맷된다. 현재 표준들에 따른 프로토콜들 외에, 이들 프로토콜들 중 어느 하나가 도시되는 통신 네트워크와 함께 동작하도록 변경될 수 있다. 예를 들면, 802.11 프로토콜 또는 다른 프로토콜은 더 넓은 영역(예를 들면, 특정 주파수 채널을 통해 통신하고 있는 디바이스들이 다른 하나로부터 듣게 하는)에 걸쳐 충돌 검출/다수의 액세스를 제공하기 위해 추가의 안내들 및/또는 개별적인 데이터 채널을 포함하도록 변경될 수 있다. 다양한 실시예들에서, 업스트림 채널 신호들(1838) 및 다운스트림 채널 신호들(1828) 모두는 동일한 통신 프로토콜에 따라 포맷된다. 그러나, 대안적으로, 두 개 이상의 상이한 프로토콜들은, 예를 들면, 클라이언트 디바이스들의 더 넓은 범위와 호환되고 및/또는 상이한 주파수 대역들에서 동작하도록 채용될 수 있다.

두 개 이상의 상이한 프로토콜들이 채용될 때, 다운스트림 채널 신호들(1828)의 제 1 서브세트는 제 1 표준 프로토콜에 따라 다운스트림 채널 변조기(1830)에 의해 변조되고 다운스트림 채널 신호들(1828)의 제 2 서브세트는 제 1 표준 프로토콜과 상이한 제 2 표준 프로토콜에 따라 변조될 수 있다. 마찬가지로 업스트림 채널 신호들(1838)의 제 1 서브세트는 제 1 표준 프로토콜에 따라 업스트림 채널 복조기(1840)에 의해 복조를 위해 제 1 표준 프로토콜에 따라 호스트 인터페이스(1845)를 통해 수신될 수 있고 업스트림 채널 신호들(1838)의 제 2 서브세트는 제 1 표준 프로토콜과 상이한 제 2 표준 프로토콜에 따라 업스트림 채널 복조기(1840)에 의해 복조를 위해 제 2 표준 프로토콜에 따라 호스트 인터페이스(1845)를 통해 수신될 수 있다.

이제 도 18c로 돌아오면, 여기에 설명된 다양한 양태들에 따라 주파수 스펙트럼의 일 예시적인, 비제한적인 실시예를 예시하는 그래픽도(1850)가 도시된다. 특히, 다운스트림 채널 대역(1844)은 개별적인 스펙트럼 심볼들에 의해 나타내진 복수의 다운스트림 주파수 채널들을 포함한다. 마찬가지로 업스트림 채널 대역(1846)은 개별적인 스펙트럼 심볼에 의해 나타내진 복수의 업스트림 주파수 채널들을 포함한다. 이들 개별적인 스펙트럼 심볼들은 각각의 개별적인 채널 신호의 주파수 할당에 대해 플레이스홀더들을 의미한다. 실제 스펙트럼 응답은 채용된 프로토콜 및 변조에 기초하여 및 또한 시간의 함수로서 변할 것이다.

이전에 논의된 바와 같이, 업스트림 주파수 채널들의 수는 비대칭 통신 시스템에 따라 다운스트림 주파수 채널들의 수보다 적거나 클 수 있다. 이러한 경우, 업스트림 채널 대역(1846)은 다운스트림 채널 대역(1844)보다 더 좁거나 더 넓을 수 있다. 대안적으로, 업스트림 주파수 채널들의 수는 대칭 통신 시스템이 구현되는 경우에 다운스트림 주파수 채널들의 수와 같을 수 있다. 이러한 경우, 업스트림 채널 대역(1846)의 폭은 다운스트림 채널 대역(1844)의 폭과 같을 수 있고, 비트 스터핑 또는 다른 데이터 파일링 기술들은 업스트림 트래픽에서 변동들에 대해 보상하도록 채용될 수 있다.

다운스트림 채널 대역(1844)이 업스트림 채널 대역(1846)보다 낮은 주파수에서 보여지지만, 다른 실시예들에서, 다운스트림 채널 대역(1844)은 업스트림 채널 대역(1846)보다 높은 주파수에 있을 수 있다. 또한, 다운스트림 채널 대역(1844) 및 업스트림 채널 대역(1846)은 단일의 인접한 주파수 대역을 차지하는 것으로 보여지지만, 다른 실시예들에서, 이용 가능한 스펙트럼 및/또는 채용된 통신 표준들에 따라 두 개 이상의 업스트림 및/또는 두 개 이상의 다운스트림 채널 대역들이 채용될 수 있다.

이제 도 18d로 돌아와서, 여기에 설명된 다양한 양태들에 따라 주파수 스펙트럼의 일 예시적인, 비제한적인 실시예를 예시하는 그래픽도(1852)가 도시된다. 이전에 논의된 바와 같이 두 개 이상의 상이한 통신 프로토콜들이 업스트림 및 다운스트림 데이터를 전달하기 위해 채용될 수 있다. 도시된 예에서, 다운스트림 채널 대역(1844)은 제 1 통신 프로토콜의 사용을 나타내는 제 1 형태의 개별적인 스펙트럼 심볼들로 나타내진 제 1 복수의 다운스트림 주파수를 포함한다. 다운스트림 채널 대역(1844')은 제 2 통신 프로토콜의 사용을 나타내는 제 2 형태의 개별적인 스펙트럼 심볼들로 나타내진 제 2 복수의 다운스트림 주파수 채널들을 포함한다. 마찬가지로 업스트림 채널 대역(1846)은 제 1 통신 프로토콜의 사용을 나타내는 제 1 형태의 개별적인 스펙트럼 심볼들로 나타내진 제 1 복수의 업스트림 주파수 채널들을 포함한다. 업스트림 채널 대역(1846')은 제 2 통신 프로토콜의 사용을 나타내는 제 2 형태의 개별적인 스펙트럼 심볼들로 나타내진 제 2 복수의 업스트림 주파수 채널들을 포함한다.

개별적인 채널 대역폭은 제 1 및 제 2 형태의 채널들에 대해 대략 동일한 것으로 보여지지만, 업스트림 및 다운스트림 주파수 채널들은 상이한 대역폭들일 수 있고 제 1 및 제 2 형태의 제 1 주파수 채널들은 이용 가능한 스펙트럼 및/또는 채용된 통신 표준들에 따라 상이한 대역폭들일 수 있다는 것이 주의되어야 한다.

이제 도 18e로 돌아오면, 여기에 설명된 다양한 양태들에 따라 호스트 노드 디바이스(1804)의 일 예시적인, 비제한적인 실시예를 도시하는 블록도(1860)가 도시된다. 특히, 호스트 노드 디바이스(1804)는 단말 인터페이스(1855), 듀플렉서/트리플렉서 어셈블리(1858), 두 개의 액세스 포인트 중계기들(APR)(1862), 및 무선 장치(1865)를 포함한다.

액세스 포인트 중계기들(1862)은 가이드파 통신 시스템(GWSC)(1810)을 통해 전달하기 위해 송신 매체(125)에 결합한다. 단말 인터페이스(1855)는 네트워크(1818)와 같은 통신 네트워크로부터 네트워크 단말(1815)을 통해 다운스트림 채널 신호들(1828)을 수신하도록 구성된다. 듀플렉서/트리플렉서 어셈블리(1858)는 다운스트림 채널 신호들(1828)을 APR들(1862)로 전달하도록 구성된다. APR들은 다운스트림 채널 신호들(1828)을 가이드된 전자기파들로서 가이드파 통신 시스템(1810)상에 론칭한다. 도시된 예에서, APR들(1862)은 다운스트림 채널 신호들(1828)을 가이드된 전자기파들로서 가이드파 통신 시스템(1810)의 송신 매체(125)상에 상이한 방향들(지정된 방향A 및 방향B)로 론칭한다.

송신 매체가 나선 또는 절연된 와이어인 예를 고려하자. 하나의 APR(1862)은 와이어를 따라 하나의 길이 방향으로 다운스트림 채널 신호들(1828)을 론칭할 수 있고, 다른 APR(1862)은 와이어를 따라 반대 길이 방향으로 다운스트림 채널 신호들을 론칭한다. 수 개의 송신 매체들(125)이 호스트 노드 디바이스(1804)에 집중하는 다른 네트워크 구성들에서, 세 개 이상의 APR들(1862)은 각각의 송신 매체를 따라 바깥으로 다운스트림 채널 신호들(1828)을 전달하는 가이드파들을 론칭하기 위해 포함될 수 있다. 가이드파 통신들을 론칭하는 것 외에, 하나 이상의 APR들(1862)은 또한 무선 링크들(1814)을 통해 호스트 노드 디바이스(1804)의 범위 내의 클라이언트 디바이스들에 하나 이상의 선택된 다운스트림 채널 신호들(1828)을 전달한다.

듀플렉서/트리플렉서 어셈블리(1858)는 다운스트림 채널 신호들(1828)을 무선 장치(1865)에 전달하도록 또한 구성된다. 무선 장치(1865)는 호스트 노드 디바이스(1804)의 범위내의 하나 이상의 클라이언트 노드 디바이스들(1802)과 무선으로 통신하도록 구성된다. 다양한 실시예들에서, 무선 장치(1865)는 하나 이상의 클라이언트 노드 디바이스들(1802)에 전달되는 업컨버팅된 다운스트림 채널 신호들을 생성하기 위해 믹싱 또는 다른 헤테로다인 동작을 통해 다운스트림 채널 신호들(1828)을 업컨버트하는 아날로그 무선 장치이다. 무선 장치(1865)는 클라이언트 노드 디바이스들(1802)과 통신하기 위한 다수의 개별 안테나들, 위상 안테나 어레이 또는 상이한 위치들에서 다수의 디바이스들과 통신하기 위한 조정가능한 빔 또는 멀티-빔 안테나 시스템을 포함할 수 있다. 일 실시예에서, 다운스트림 채널 신호들(1828)은 약간 거리가 떨어진 클라이언트 노드 디바이스(1802)에 대해 송수신 직결선(line-of-sight) 통신들에 대한 60 ㎓ 대역에서 업컨버팅된다. 듀플렉서/트리플렉서 어셈블리(1858)는 다수의 통신 경로들을 통해 양방향 통신들을 제공하기 위해 "채널 듀플렉서"로서 동작하는 듀플렉서, 트리플렉서, 스플리터, 스위치, 라우터 및/또는 다른 어셈블리를 포함할 수 있다.

클라이언트 디바이스들(1812)에 대해 지정된 다운스트림 통신들 외에, 호스트 노드 디바이스(1804)는 클라이언트 디바이스들(1812)로부터 발생하는 업스트림 통신들을 조작할 수 있다. 동작시, APR들(1862)은 무선 링크들(1814')로부터 미니-중계기들(1806) 및/또는 무선 링크들(1814'')로부터 또는 더 멀리 있는 다른 디바이스들로부터 클라이언트 노드 디바이스들(1802)을 통해 수신된 가이드파 통신 시스템(1810)으로부터 업스트림 채널 신호들(1838)을 추출한다. 다른 업스트림 채널 신호들(1838)은 무선 링크들(1814'')을 통해 클라이언트 디바이스들(1812)과 직접 통신하여 또는 가이드파 통신 시스템들(1810') 또는 다른 클라이언트 노드 디바이스들(1802)을 통한 간접 통신에서 클라이언트 노드 디바이스들(1802)로부터 무선 장치(1865)를 통해 및 무선 링크(1814)를 거친 통신을 통해 APR들(1862)을 통해 수신될 수 있다. 무선 장치(1865)가 더 높은 주파수 대역에서 동작하는 상황들에서, 무선 장치(1865)는 업컨버팅된 업스트림 채널 신호들을 다운컨버트한다. 듀플렉서/트리플렉서 어셈블리(1858)는 APR들(1862)에 의해 수신되고 무선 장치(1865)에 의해 다운컨버팅된 업스트림 채널 신호들(1838)을 네트워크 종단(1815)을 통해 네트워크(1818)로 전송되도록 단말 인터페이스(1855)로 전달한다.

호스트 노드 디바이스(1804)가 전력 회사 분배 시스템과 같은 공공 유틸리티와 함께 사용되는 예를 고려하자. 이러한 경우, 호스트 노드 디바이스(1804), 클라이언트 노드 디바이스들(1802) 및/또는 미니-중계기들(1806)은 전신주들, 분배 시스템의 다른 구조들 또는 전력선들에 의해 지지될 수 있고, 가이드파 통신 시스템들(1810)은 절연되거나 노출된 매체 전압 전력선의 세그먼트들을 포함하는 송신 매체(125) 및/또는 분배 시스템의 다른 송신선 또는 지지 와이어를 통해 동작할 수 있다.

특정 예에서, 호스트 노드 디바이스(1804)를 지원하는 전신주로부터의 전력선으로 따라 두 개의 방향들에서 2n 개의 전신주들상의 2n 개의 미니-중계기들(1806)은 예를 들면, 호스트 노드 디바이스(1804)로부터 각각의 방향에서 (n+1)st 전신주에 의해 지원될 수 있는 클라이언트 노드 디바이스들(1802)의 방향에서 다운스트림 채널 신호들(1828)을 각각 수신 및 반복할 수 있다. 미니-중계기들(1806)은 무선 링크들(1814')을 통해 범위 내의 클라이언트 디바이스들(1812)과 하나 이상의 선택된 다운스트림 채널 신호들을 각각 전달할 수 있다. 또한, 호스트 노드 디바이스(1804)는 무선 링크들(1814'')을 통해 클라이언트 노드 디바이스들(1802)의 범위 내의 클라이언트 디바이스들(1812)로 무선 통신을 위해 및 유사한 방식으로 동작하는 다른 추가의 클라이언트 노드 디바이스들(1802) 및 미니-중계기들(1806)을 통해 또한 다운스트림으로-무선 링크(1808)를 통해 클라이언트 디바이스들(1812)에 직접 다운스트림 채널 신호들(1828)을 전달한다. 호스트 노드 디바이스(1804)는 클라이언트 디바이스들(1812)로부터 업스트림 채널 신호들(1838)을 수신하기 위해 상호적인 방식으로 동작하고, 어느 것은 무선 링크(1814)로 직접, 또는 가이드파 통신 시스템들(1810, 1810') 및 미니-중계기들(1806), 클라이언트 노드 디바이스들(1802), 무선 링크들(1814', 1814'') 및 그의 조합들을 통해 간접적으로.

이제 도 18f로 돌아오면, 여기에 설명된 다양한 양태들에 따라 다운스트림 데이터 플로우의 일 예시적인, 비제한적인 실시예를 예시하는 조합 사진 및 블록도(1870)가 도시된다. 도면은 비례하도록 도시되지 않는 것이 주의되어야 한다. 특히, 통신 시스템이 전력 회사 분배 시스템과 같은 공공 유틸리티와 함께 구현되는 예를 다시 고려하자. 이러한 경우, 호스트 노드 디바이스(1804), 클라이언트 노드 디바이스들(1802) 및 미니-중계기들(1806)은 분배 시스템의 전신주들(1875)에 의해 지지되고 도 18a의 가이드파 통신 시스템들(1810)은 전신주들(1875)에 의해 지지되는 절연된 또는 노출된 매체 전압 전력선의 세그먼트들을 포함하는 송신 매체(125)를 통해 동작한다. 네트워크 종단(1815)으로부터의 다운스트림 채널 신호들(1828)은 호스트 노드 디바이스(1804)에 의해 수신된다. 호스트 노드 디바이스(1804)는 호스트 노드 디바이스(1804)의 범위 내에서 다운스트림 채널 신호들(1828)의 선택된 채널들을 하나 이상의 클라이언트 디바이스들(1812-4)로 무선으로 송신한다. 호스트 노드 디바이스(1804)는 다운스트림 채널 신호들(1828)을 송신 매체(125)에 바운드된 가이드파들로서 미니-중계기들(1806-1, 1806-2)로 또한 전송한다. 또한, 호스트 노드 디바이스(1804)는 다운스트림 채널들 신호들(1828)을 다운스트림 채널 신호들(1828')로서 선택적으로 업컨버트하고 다운스트림 채널 신호들(1828')은 클라이언트 노드 디바이스들(1802-1, 1802-2)로 무선으로 전송한다.

미니-중계기들(1806-1, 1806-2)은 범위 안에 있는 클라이언트 디바이스들(1812-3, 1812-5)과 선택된 다운스트림 채널 신호들(1828)을 통신하고 다운스트림 채널들 신호들(1828)을 미니-중계기들(1806-3, 1806-4)에 전송된 가이드파들로서 반복한다. 미니-중계기들(1806-3, 1806-4)은 범위 안에 있는 클라이언트 디바이스들(1812-2, 1812-6)과 선택된 다운스트림 채널 신호들(1828)을 통신한다. 클라이언트 노드 디바이스들(1802-1, 1802-2)은 다운스트림 채널 신호들(1828'')을 가이드파들로서 또한 명확하게 도시되지 않은 추가의 클라이언트 노드 디바이스들로 또한 다운스트림 채널 신호들(1828')로서 또한 다운스트림 및 무선으로 미니-중계기들로 반복하도록 구성한다. 클라이언트 노드 디바이스들(1802-1, 1802-2)은 선택된 다운스트림 채널 신호들(1828)을 범위 내에 있는 클라이언트 디바이스들(1812-1, 1812-7)과 통신하도록 또한 동작한다.

다운스트림 채널 신호들(1828)은 또한 다른 방식들로 플로우할 수 있다는 것이 주의되어야 한다. 호스트 노드 디바이스(1804)와 미니-중계기(1806-1) 사이의 가이드파 통신 경로가 회선상의 파손 또는 차단, 장비 장애 또는 환경 상태들에 의해 손상되는 경우를 고려하자. 다운스트림 채널 신호들(1828)은 보상을 위해 클라이언트 노드 디바이스(1802-1)로부터 미니-중계기(1806-3)로 및 미니 중계기(1803-6)로 가이드파들로서 흐를 수 있다.

이제 도 18g로 돌아오면, 여기에 설명된 다양한 양태들에 따라 업스트림 데이터 플로우의 일 예시적인, 비제한적인 실시예를 예시하는 조합 사진 및 블록도(1878)가 도시된다. 통신 시스템이 전력 회사 분배 시스템과 같은 공공 유틸리티와 함께 구현되는 일 예를 다시 고려하자. 이러한 경우, 호스트 노드 디바이스(1804), 클라이언트 노드 디바이스들(1802), 및 미니-중계기들(1806)은 분배 시스템의 전신주들(1875)에 의해 지지되고 도 18a의 가이드파 통신 시스템들(1810)은 전신주들(1875)에 의해 지지되는 절연되거나 노출된 매체 전압 전력선의 세그먼트들을 포함하는 송신 매체(125)를 통해 동작한다. 이전에 논의된 바와 같이, 호스트 노드 디바이스(1804)는 네트워크 종단(1815)으로 전달을 위해 다양한 소스들로부터 업스트림 채널 신호들(1838)을 수집한다.

특히, 클라이언트 디바이스들(1812-4)로부터 선택된 채널들에서 업스트림 채널 신호들(1838)은 호스트 노드 디바이스(1804)로 무선으로 전달된다. 클라이언트 디바이스들(1812-3, 1812-5)로부터 선택된 채널들에서 업스트림 채널 신호들(1838)은 이들 업스트림 채널 신호들(1838)을 호스트 노드 디바이스(1804)로 가이드파들로서 전달하는 미니-중계기들(1806-1, 1806-2)에 무선으로 전달된다. 클라이언트 디바이스들(1812-2, 1812-6)로부터 선택된 채널들에서 업스트림 채널 신호들(1838)은 미니-중계기들(1806-1, 1806-2)을 통해 이들 업스트림 채널 신호들(1838)을 호스트 노드 디바이스(1804)로 가이드파들로서 전달하는 미니-중계기들(1806-3, 1806-4)에 무선으로 전달된다. 클라이언트 노드 디바이스들(1802-1, 1802-2)에 무선으로 전달되는 클라이언트 디바이스들(1812-1, 1812-7)로부터 선택된 채널들에서 업스트림 채널 신호들(1838)은 선택적으로 업컨버트되고 추가의 클라이언트 노드 디바이스들로부터 무선으로 수신된 다른 업스트림 채널 신호들(1838')에 추가되고 다른 미니-중계기들로부터 가이드파들로서 수신된 다른 업스트림 채널 신호들(1838'')은 또한 호스트 노드 디바이스(1804)로 무선 송신을 위해 선택적으로 업컨버트될 수 있다.

업스트림 채널 신호들(1838)은 또한 다른 방식들로 플로우할 수 있다는 것이 주의되어야 한다. 호스트 노드 디바이스(1804)와 미니-중계기(1806-1) 사이의 가이드파 통신 경로가 회선상의 파손 또는 장애물, 장비 장애 또는 환경 상태들에 의해 손상되는 경우를 고려하자. 클라이언트 디바이스들(1812-3)로부터의 업스트림 채널 신호들(1838)은 보상을 위해 호스트 노드 디바이스(1804)에 대한 무선 전달을 위해 미니-중계기(1806-1)로부터 미니-중계기(1806-3)로 및 클라이언트 노드 디바이스(1802-1)로 가이드파들로서 플로우할 수 있다.

이제 도 18h로 돌아오면, 여기에 설명된 다양한 양태들에 따라 클라이언트 노드 디바이스(1802)의 일 예시적인, 비제한적인 실시예를 예시하는 블록도(1880)가 도시된다. 클라이언트 노드 디바이스(1802)는, 예를 들면, 호스트 노드 디바이스(1804) 또는 다른 클라이언트 노드 디바이스(1802)를 통해 통신 네트워크로부터 다운스트림 채널 신호들(1828)을 무선으로 수신하도록 구성된 무선 장치(1865)를 포함한다. 액세스 포인트 중계기(1862)는 가이드파 통신 시스템(1810)상에 다운스트림 채널 신호들(1828)을 송신 매체(125)를 따라 전파하는 가이드된 전자기파들로서 론칭하고 무선 링크(1814'')를 통해 하나 이상의 선택된 다운스트림 채널 신호들(1828)을 하나 이상의 클라이언트 디바이스들로 무선으로 송신하도록 구성된다.

다양한 실시예들에서, 무선 장치(1865)는 다운스트림 채널 신호들(1828)의 반송 주파수들과 비교될 때 더 높은 반송 주파수들을 갖는 RF 신호들로 다운컨버팅함으로써 다운스트림 채널 신호들(1828)을 생성하는 아날로그 무선 장치이다. 예를 들면, 무선 장치(1865)는 다운스트림 채널 신호들(1828)을 생성하기 위해 믹싱 또는 다른 헤테로다인 동작을 통해 호스트 노드 디바이스(1804) 또는 다른 클라이언트 노드 디바이스(1802)로부터 업컨버트된 다운스트림 채널 신호들을 다운컨버팅한다. 무선 장치(1865)는 호스트 노드 디바이스(1804) 또는 다른 클라이언트 노드 디바이스들(1802)과 통신하기 위한 다수의 개별적인 안테나들, 상이한 위치들에서 다수의 디바이스들과 통신하기 위한 위상 안테나 어레이 또는 조정 가능한 빔 또는 멀티빔 안테나 시스템을 포함할 수 있다. 일 실시예에서, 다운스트림 채널 신호들(1828)은 송수신 직결된 통신들에 대해 60 ㎓ 대역으로부터 다운컨버팅된다. 또한, 무선 장치(1865)는 호스트 노드 디바이스(1804)로부터 무선 링크(1808)를 통해 다운스트림 채널 신호들(1828)을 수신하기 위해 중계기로서 동작하고 다른 클라이언트 노드 디바이스들(1802)로의 송신을 위해 무선 링크(1808')상에 그들을 반복할 수 있다.

클라이언트 디바이스들(1812)에 대해 지정된 다운스트림 통신들 외에, 클라이언트 노드 디바이스(1802)는 클라이언트 디바이스들(1812)로부터 발생하는 업스트림 통신들을 또한 조정할 수 있다. 동작시, APR들(1862)은 가이드파 통신 시스템들(1810, 1810')의 미니-중계기들(1806)을 통해 수신된 가이드파 통신 시스템(1810)으로부터 업스트림 채널 신호들(1838)을 추출한다. 다른 업스트림 채널 신호들(1838)은 클라이언트 디바이스들(1812)과 직접 통신하여 무선 링크들(1814'')을 거친 통신을 통해 APR(1862)를 통해 수신될 수 있다. 무선 장치(1865)가 상위 주파수 대역에서 동작하는 상황들에서, 무선 장치(1865)는 링크(1808)를 통해 호스트 노드 디바이스로의 통신을 위해 APR(1862)를 통해 수신된 업스트림 채널 신호들(1838)을 업컨버트한다. 또한, 무선 장치(1865)는 다른 클라이언트 노드 디바이스들(1802)로부터 무선 링크(1808')을 통해 업스트림 채널 신호들(1838)을 수신하고 호스트 노드 디바이스(1804)로 송신을 위해 무선 링크(1808)상에 그들을 반복하기 위한 중계기로서 동작할 수 있다.

지금 도 19a로 돌아오면, 여기에 설명된 다양한 양태들에 따라 액세스 포인트 중계기(1862)의 일 예시적인, 비제한적인 실시예를 예시하는 블록도(1900)가 도시된다. 도 18e 및 도 18h와 함께 논의된 바와 같이, 액세스 포인트 중계기(1862)는 가이드파 통신 시스템(GWCS)(1810)을 통해 업스트림 채널 신호들(1838) 및 다운스트림 채널 신호들(1828)을 클라이언트 노드 디바이스(1802)의 무선 장치(1865) 또는 호스트 노드 디바이스(1804)의 듀플렉서(1858)로 및 그로부터 통신하기 위해 송신 매체(125)에 결합한다. 또한, APR(1862)는 무선 링크(1814 또는 1814')를 통해 선택된 업스트림 및 다운스트림 채널들을 클라이언트 디바이스들(1812)와 통신한다.

실시예에서, APR(1862)은 증폭된 다운스트림 채널 신호들을 생성하기 위해 무선 장치(1865)(클라이언트 노드 디바이스(1802)에서 구현될 때) 또는 듀플렉서/트리플렉서 어셈블리(1858)(호스트 노드 디바이스(1804)에서 구현될 때)로부터 다운스트림 채널 신호들(1828)을 증폭하는 양방향 증폭기(1914)와 같은 증폭기를 포함한다. 양방향(2:1) 듀플렉서/다이플렉서(1912)는 증폭된 다운스트림 채널 신호들(1828)을 커플러(1916)로 및 채널 선택 필터(1910)로 전달한다. 채널 선택 필터(1910)는 안테나(1918) 및 무선 링크(1814)를 통해 범위 내의 클라이언트 디바이스들(1812)과 무선으로 통신하기 위해 하나 이상의 증폭된 다운스트림 채널 신호들을 선택하도록 구성된다. 특히, 채널 선택 필터(1910)는 호스트 노드 디바이스(1804) 또는 클라이언트 노드 디바이스(1802)의 물리적 위치에 따라하나 이상의 상이한 채널들 및 상이한 위치들의 클라이언트들(1812)과 통신하는 무선 링크들(1814)에 대한 공간 채널 재사용 방식에 따라 상이한 APR들(1862)을 동작하도록 구성될 수 있다. 다양한 실시예들에서, 채널 선택 필터(1910)는 다른 주파수 채널들을 필터링 아웃 또는 감쇠시키면서 하나 이상의 선택된 주파수 채널들을 전달하는 아날로그 또는 디지털 필터와 같은 필터를 포함한다. 대안으로, 채널 선택 필터(1910)는 다른 채널 스트림들을 필터링 또는 차단하면서 하나 이상의 선택된 채널 스트림들을 전달하는 패킷 필터 또는 데이터 필터를 포함할 수 있다. 커플러(1916)는 가이드된 전자기파들로서 론칭하기 위해 가이드파 통신 시스템(1810 또는 1810')의 송신 매체(125)로 증폭된 다운스트림 채널 신호들을 가이드한다.

상기에 논의된 바와 같이, APR(1862)은 또한 상호적인 방식으로 업스트림 채널 신호들(1838)을 처리할 수 있다. 이러한 동작 모드에서, 커플러(1916)는 가이드파 통신 시스템(1810 또는 1810')의 송신 매체(125)로부터 업스트림 채널 신호들을 포함하는 가이드된 전자기파들을 추출한다. 다른 업스트림 채널 신호들(1838)은 안테나(1918) 및 채널 선택 필터(1910)를 통해 수신된다. 이들 매체들의 각각으로부터 업스트림 채널 신호들(1838)은 듀플렉서/다이플렉서(1912)에 의해 조합되고 APR(1862)의 구현에 따라 무선 장치(1865) 또는 듀플렉서/트리플렉서 어셈블리(1858)로의 전달을 위해 양방향 증폭기(1914)에 의해 증폭된다. 듀플렉서/다이플렉서(1912)는 다수의 통신 경로들을 거쳐 양방향 통신들을 제공하기 위해 "채널 듀플렉서"로서 동작하는 듀플렉서, 다이플렉서, 스필리터, 스위치, 라우터 및/또는 다른 어셈블리를 포함할 수 있다.

지금 도 19b로 돌아오면, 여기에 설명된 다양한 양태들에 따라 미니-중계기의 일 예시적인, 비제한적인 실시예를 예시하는 블록도(1925)가 도시된다. 특히, 미니-중계기(1806)와 같은 중계기 디바이스는 가이드파 통신 시스템(1810 또는 1810')의 송신 매체)(125)에 바운드되는 어느 방향(A 또는 B)으로 가이드된 전자기파들로부터 다운스트림 채널 신호들(1828)을 추출하도록 구성된 커플러(1946)를 포함한다. 양방향 증폭기(1944)와 같은 증폭기는 증폭된 다운스트림 채널 신호들을 생성하기 위해 다운스트림 채널 신호들(1828)을 증폭한다. 양방향(2:1) 채널 듀플렉서(1942)는 증폭된 다운스트림 채널 신호들(1828)을 커플러(1946)로 및 채널 선택 필터(1940)로 전달한다. 채널 선택 필터(1940)는 안테나(1948) 및 무선 링크(1814)를 통해 범위 내의 클라이언트 디바이스들(1812)과 무선으로 통신할 하나 이상의 증폭된 다운스트림 채널 신호들을 선택하도록 구성된다. 특히, 채널 선택 필터(1940)는 미니-중계기들(1806)의 물리적 위치에 따른 하나 이상의 상이한 채널들 및 상이한 위치들의 클라이언트 디바이스들(1812)과 통신하는 무선 링크들(1814)에 대한 공간 채널 재사용 방식에 따라 상이한 미니-중계기들(1806)을 동작하도록 구성될 수 있다. 커플러(1946')는 송신 매체(125)상에 가이드된 전자기파들로서 론칭될 증폭된 다운스트림 채널 신호들을 가이드파 통신 시스템(1810 또는 1810')의 송신 매체(125)로 가이드한다.

상기에 논의된 바와 같이, 미니-중계기(1806)는 또한 상호적인 방식으로 업스트림 채널 신호들(1838)을 처리할 수 있다. 이러한 동작 모드에서, 커플러(1946')는 가이드파 통신 시스템(1810 또는 1810')의 송신 매체(125)로부터 업스트림 채널 신호들을 포함하는 가이드된 전자기파들을 추출한다. 다른 업스트림 채널 신호들(1838)이 안테나(1948) 및 채널 선택 필터(1940)를 통해 수신된다. 이들 매체들의 각각으로부터 업스트림 채널 신호들(1838)은 양방향 채널 듀플렉서(1942)에 의해 조합되고 어느 방향(A 또는 B)에 대해 가이드파 통신 시스템(1810)상에 론칭되도록 커플러(1946)로 전달을 위해 양방향 증폭기(1944)에 의해 증폭된다.

지금 도 19c로 돌아오면, 여기에 설명된 다양한 양태들에 따라 미니-중계기의 일 예시적인, 비제한적인 실시예를 예시하는 조합 사진 및 블록도(1950)가 도시된다. 특히, 미니-증폭기(1806)는 전력 회사의 전신주상에 절연체(1952)를 브릿지하는 것으로 도시된다. 도시된 바와 같이 미니 중계기(1806)는 송신 매체, 이러한 경우에, 절연체(1952)의 양측상의 전력선에 결합된다. 그러나, 미니-증폭기(1806)의 다른 설비들이 마찬가지로 가능하다는 것이 주의되어야 한다. 다른 전력 회사 설비들은 다른 유틸리티 구조들에 의해 또는 시스템의 전력선 또는 지지 와이어에 의해 지지되는 것을 포함한다. 또한, 미니-증폭기(1806)는 다른 송신 매체들(125) 또는 다른 송신 매체들(125)에 대한 지지 구조들에 의해 지지될 수 있다.

지금 도 19d로 돌아오면, 여기에 설명된 다양한 양태들에 따라 주파수 스펙트럼의 일 예시적인, 비제한적인 실시예를 예시하는 그래픽도(1975)가 도시된다. 특히, 주파수 채널 선택은 어느 하나의 채널 선택 필터(1910 또는 1040)와 함께 논의되는 것으로 제시된다. 도시된 바와 같이, 업스트림 주파수 채널 대역(1846)의 특정 업스트림 주파수 채널(1978) 및 다운스트림 채널 주파수 대역(1844)의 특정 다운스트림 주파수 채널(1976)은 채널 선택 필터(1910 또는 1940)에 의해 전달되도록 선택되고, 업스트림 주파수 채널 대역(1846) 및 다운스트림 채널 주파수 대역(1844)의 나머지 부분들은 필터링된다 - 즉, 채널 선택 필터(1910 또는 1940)에 의해 절단되는 원하는 주파수 채널들의 아날로그 처리의 역효과들을 완화하기 위해 감쇠됨. 단일의 특정한 업스트림 주파수 채널(1978) 및 특정한 다운스트림 주파수 채널(1976)이 채널 선택 필터(1910 또는 1940)에 의해 선택되는 것으로 도시되지만, 두 개 이상의 업스트림 및/또는 다운스트림 주파수 채널들이 다른 실시예들에서 전달될 수 있다는 것이 주의되어야 한다.

전술한 것은 단일 전력선과 같은 단일 송신 매체상에 작동하는 호스트 노드 디바이스(1804), 클라이언트 노드 디바이스들(1802), 및 미니-중계기들(1810)에 집중되었지만, 이들 디바이스들의 각각은 두 개 이상의 통신 경로들, 예컨대 더 복잡한 송신 네트워크의 부분으로서 상이한 방향들에서 개별적인 세그먼트들 또는 송신 매체들의 브랜치들상에 전송 및 수신하도록 동작할 수 있다는 것이 주의되어야 한다. 예를 들면, 공공 유틸리티의 제 1 및 제 2 전력선 세그먼트들이 확장하는 노드에서, 호스트 노드 디바이스(1804), 클라이언트 노드 디바이스들(1802), 및 미니-중계기들(1810)은 제 1 전력선 세그먼트를 따라 가이드된 전자기파들을 추출 및/또는 론칭하기 위해 제 1 커플러 및 제 2 전력선 세그먼트를 따라 가이드된 전자기파들을 추출 및/또는 론칭하기 위해 제 2 커플러를 포함할 수 있다.

지금 도 20a로 돌아오면, 방법들의 예시적인, 비제한적인 실시예의 흐름도(2000)가 도시된다. 특히, 방법들은 도 1 내지 도 19와 함께 제시된 하나 이상의 기능들 및 특징들과 함께 사용을 위한 방법들이 제시된다. 이들 방법들은 개별적이거나 동시적으로 수행될 수 있다. 단계(2002)는 통신 네트워크로부터 다운스트림 데이터를 수신하는 단계를 포함한다. 단계(2004)는 다운스트림 데이터를 가이드파 통신 시스템의 다운스트림 주파수 채널들에 대응하는 업스트림 채널 신호들로 변조하는 단계를 포함한다. 단계(2006)는 유선 접속을 통해 다운스트림 채널 신호들을 가이드파 통신 시스템으로 전송하는 단계를 포함한다. 단계(2008)는 유선 접속을 통해 가이드파 통신 시스템으로부터 업스트림 주파수 채널들에 대응하는 업스트림 채널 신호들을 수신하는 단계를 포함한다. 단계(2010)는 업스트림 채널 신호들을 업스트림 데이터로 복조하는 단계를 포함한다. 단계(2012)는 업스트림 데이터를 통신 네트워크로 전송하는 단계를 포함한다.

다양한 실시예들에서, 다운스트림 채널 변조기는 가이드파 통신 시스템의 송신 매체에 의해 가이드되는 가이드된 전자기파를 통해 다운스트림 데이터를 전달하기 위해 다운스트림 채널 신호들을 변조한다. 송신 매체는 와이어를 포함할 수 있고 가이드된 전자기파는 와이어의 외부 표면에 바운드될 수 있다.

다양한 실시예들에서, 업스트림 주파수 채널의 수는 다운스트림 주파수 채널들의 수보다 작거나, 크거나 또는 같다. 업스트림 채널 신호들의 제 1 서브세트는 제 1 표준 프로토콜에 따라 복조될 수 있고 업스트림 채널 신호들의 제 2 서브세트는 제 1 표준 프로토콜과 상이한 제 2 표준 프로토콜에 따라 복조될 수 있다. 마찬가지로 다운스트림 채널 신호들의 제 1 서브세트는 제 1 표준 프로토콜에 따라 변조될 수 있고, 다운스트림 채널 신호들의 제 2 서브세트는 제 1 표준 프로토콜과 상이한 제 2 표준 프로토콜에 따라 변조될 수 있다.

다양한 실시예들에서, 호스트 인터페이스는 다운스트림 채널 신호들을 전송하고 업스트림 채널 신호들을 수신하기 위해 제 1 광 케이블을 통해 가이드파 통신 시스템의 호스트 노드 디바이스에 결합한다. 업스트림 채널 신호들의 적어도 일부 및 다운스트림 채널 신호들의 적어도 일부는 데이터 오버 케이블 시스템 인터페이스 규격 프로토콜 또는 802.11 프로토콜에 따라 포맷된다.

이제 도 20b로 돌아오면, 방법의 일 예시적인, 비제한적인 실싱의 흐름도(2020)가 도시된다. 특히, 도 1 내지 도 19와 함께 제시된 하나 이상의 기능들 및 특징들과 함께 사용하기 위한 방법이 제시된다. 단계(2022)는 통신 네트워크로부터 다운스트림 채널 신호들을 론칭하는 단계를 포함한다. 단계(2024)는 가이드파 통신 시스템상의 다운스트림 채널 신호들을 가이드된 전자기파들로서 론칭하는 단계를 포함한다. 단계(2026)는 다운스트림 채널 신호를 적어도 하나의 클라이언트 노드 디바이스로 무선으로 송신하는 단계를 포함한다.

다양한 실시예들에서, 다운스트림 채널 신호들을 무선으로 송신하는 단계는: 업컨버트된 다운스트림 채널 신호들을 생성하기 위해 다운스트림 채널 신호들을 업컨버트하는 단계; 및 업컨버트된 다운스트림 채널 신호들을 적어도 하나의 클라이언트 노드 디바이스로 송신하는 단계를 포함한다. 다운스트림 채널 신호들을 가이드파 통신 시스템상에 가이드된 전자기파들로서 론칭하는 단계는: 송신 매체를 따라 제 1 방향으로 제 1 가이드된 전자기파들로서 제 1 다운스트림 채널 신호들을 가이드파 통신 시스템상에 론칭하는 단계; 및 송신 매체를 따라 제 2 방향으로 제 2 가이드된 전자기파들로서 가이드파 통신 시스템상에 다운스트림 채널 신호들을 론칭하는 단계를 포함할 수 있다.

다양한 실시예들에서, 송신 매체는 와이어를 포함하고, 제 1 가이드된 전자기파들로서 가이드파 통신 시스템상에 다운스트림 채널 신호들을 론칭하는 단계는 제 1 방향으로 전파하기 위해 와이어의 외부 표면에 다운스트림 채널 신호들을 결합하는 단계를 포함하고, 제 2 가이드된 전자기파들로서 가이드파 통신 시스템상에 다운스트림 채널 신호들을 론칭하는 단계는 제 2 방향으로 전파하기 위해 와이어의 외부 표면에 다운스트림 채널 신호들을 결합하는 단계를 포함한다.

방법은: 증폭된 다운스트림 채널 신호들을 생성하기 위해 다운스트림 채널 신호들을 증폭하는 단계; 증폭된 다운스트림 채널 신호들의 서브세트를 생성하기 위해 하나 이상의 증폭된 다운스트림 채널 신호들을 선택적으로 필터링하는 단계; 및 안테나를 통해 증폭된 다운스트림 채널 신호들의 서브세트를 복수의 클라이언트 디바이스들로 무선으로 송신하는 단계를 더 포함할 수 있다. 가이드된 전자기파들로서 가이드파 통신 시스템상에 다운스트림 채널 신호들을 론칭하는 단계는: 증폭된 다운스트림 채널 신호들을 생성하기 위해 다운스트림 채널 신호들을 증폭하는 단계; 및 가이드된 전자기파들로서 전파하기 위해 송신 매체의 외부 표면에 증폭된 다운스트림 채널 신호들을 결합하는 단계를 포함할 수 있다.

방법은 또한 가이드파 통신 시스템으로부터 제 1 업스트림 채널 신호들을 추출하는 단계; 및 제 1 업스트림 채널 신호들을 통신 네트워크로 전송하고 및/또는 적어도 하나의 클라이언트 노드 디바이스로부터 제 2 업스트림 채널 신호들을 무선으로 수신하고 제 2 업스트림 채널 신호들을 통신으로 전송하는 단계를 포함할 수 있다.

이제 도 20c로 돌아오면, 방법의 일 예시적인, 비제한적인 실시예의 흐름도(2040)가 도시된다. 특히, 방법은 도 1 내지 도 19와 함께 제시된 하나 이상의 기능들 및 특징들과 함께 사용을 위해 제시된다. 단계(2042)는 통신 네트워크로부터 다운스트림 채널 신호들을 무선으로 수신하는 단계를 포함한다. 단계(2044)는 송신 매체를 따라 전파하는 가이드된 전자기파들로서 가이드파 통신 시스템상에 다운스트림 채널 신호들을 론칭하는 단계를 포함한다. 단계(2046)는 다운스트림 채널 신호들을 적어도 하나의 클라이언트 디바이스로 무선으로 송신하는 단계를 포함한다.

다양한 실시예들에서, 송신 매체는 와이어를 포함하고, 가이드된 전자기파들은 와이어의 외부 표면에 바운드된다. 다운스트림 채널 신호들을 적어도 하나의 클라이언트 디바이스로 무선으로 송신하는 단계는: 증폭된 다운스트림 채널 신호들을 생성하기 위해 다운스트림 채널 신호들을 증폭하는 단계; 하나 이상의 증폭된 다운스트림 채널 신호들을 선택하는 단계; 및 안테나를 통해 하나 이상의 증폭된 다운스트림 채널 신호들을 적어도 하나의 클라이언트 디바이스로 무선으로 송신하는 단계를 포함할 수 있다. 송신 매체를 따라 전파하는 가이드된 전자기파들로서 가이드파 통신 시스템상에 다운스트림 채널 신호들을 론칭하는 단계는: 증폭된 다운스트림 채널 신호들을 생성하기 위해 다운스트림 채널 신호들을 증폭하는 단계; 및 증폭된 다운스트림 채널 신호들을 가이드파 통신 시스템의 송신 매체로 가이드하는 단계를 포함할 수 있다.

다양한 실시예들에서, 통신 네트워크로부터 다운스트림 채널 신호들을 무선으로 수신하는 단계는: 다운스트림 채널 신호들의 반송 주파수들과 비교될 때 더 높은 반송 주파수들을 갖는 RF 신호들을 다운컨버트하는 단계를 포함할 수 있다. 방법은: 가이드파 통신 시스템으로부터 제 1 업스트림 채널 신호들을 추출하는 단계; 및 제 1 업스트림 채널 신호들을 통신 네트워크로 무선으로 송신하는 단계를 더 포함할 수 있다. 방법은: 적어도 하나의 클라이언트 디바이스로부터 제 2 업스트림 채널 신호들을 무선으로 수신하는 단계; 및 제 2 업스트림 채널 신호들을 통신 네트워크로 무선으로 송신하는 단계를 더 포함할 수 있다. 송신 매체는 공공 유틸리티의 전력선을 포함할 수 있다.

이제 도 20d로 돌아오면, 방법의 일 예시적인, 비제한적인 실시예의 흐름도(2060)가 도시된다. 특히, 도 1 내지 도 19와 함께 제시된 하나 이상의 기능들 및 특징들과 함께 사용을 위한 방법이 제시된다. 단계(2062)는 가이드파 통신 시스템의 송신 매체에 바운드된 제 1 가이드된 전자기파들로부터 다운스트림 채널 신호들을 추출하는 단계를 포함한다. 단계(2064)는 증폭된 다운스트림 채널 신호들을 생성하기 위해 다운스트림 채널 신호들을 증폭하는 단계를 포함한다. 단계(2066)는 안테나를 통해 적어도 하나의 클라이언트 디바이스를 무선으로 송신할 하나 이상의 증폭된 다운스트림 채널 신호들을 선택하는 단계를 포함한다. 단계(2068)는 제 2 가이드된 전자기파들로서 전파할 증폭된 다운스트림 채널 신호들을 가이드파 통신 시스템의 송신 매체로 가이드하는 단계를 포함한다.

다양한 실시예들에서, 송신 매체는 와이어를 포함하고 제 1 가이드된 전자기파들 및 제 2 가이드된 전자기파들은 와이어의 외부 표면에 의해 가이드된다. 다운스트림 또는 업스트림 채널 신호들의 적어도 일부는 데이터 오버 케이블 시스템 인터페이스 규격 프로토콜에 따라 포맷될 수 있다. 다운스트림 또는 업스트림 채널 신호들의 적어도 일부는 802.11 프로토콜 또는 4 세대 또는 상위 모바일 무선 프로토콜에 따라 포맷될 수 있다.

다양한 실시예들에서, 방법은 안테나를 통해 적어도 하나의 클라이언트 디바이스로부터 업스트림 채널 신호들을 무선으로 수신하는 단계; 증폭된 업스트림 채널 신호들을 생성하기 위해 업스트림 채널 신호들을 증폭하는 단계; 및 제 3 가이드된 전자기파들로서 전파하도록 가이드파 통신 시스템의 송신 매체로 증폭된 업스트림 채널 신호들을 가이드하는 단계를 포함한다. 다운스트림 채널 신호들은 다운스트림 주파수 채널들의 수에 대응할 수 있고, 업스트림 채널 신호들은 다운스트림 주파수 채널들의 수 이하인 업스트림의 수에 대응할 수 있다. 업스트림 채널 신호들의 적어도 일부는 데이터 오버 케이블 시스템 인터페이스 규격 프로토콜, 802.11 프로토콜 또는 제 4 세대 이상의 이동 무선 프로토콜에 따라 포맷될 수 있다.

설명의 간단함을 위해, 각각의 프로세스들은 도 20a, 도 20b, 도 20c, 및 도 20d에서 일련의 블록들로서 도시 및 설명되지만, 청구된 요지는, 일부 블록들이 상이한 순서들 및/또는 여기에 도시 및 설명된 것과 다른 블록들과 동시에 발생할 수 있기 때문에, 블록들의 순서로 제한되지 않는다는 것이 이해 및 인식될 것이다. 더욱이, 모든 도시된 블록들이 여기에 설명된 방법들을 구현하기 위해 요구되지는 않을 수 있다.

지금 도 21을 참조하면, 여기에 설명된 다양한 양태들에 따라 컴퓨팅 환경의 블록도가 도시된다. 여기에 설명된 실시예들의 다양한 실시예들에 대해 추가의 환경을 제공하기 위해, 도 21 및 다음의 논의는 본 개시의 다양한 실시예들이 구현될 수 있는 적절한 컴퓨팅 환경(2100)의 간략한, 일반적인 설명을 제공하도록 의도된다. 실시예들이 하나 이상의 컴퓨터들상에 구동할 수 있는 컴퓨터 실행 가능한 명령들의 일반적인 환경에서 상기에 설명되었지만, 당업자들은 실시예들이 또한 다른 프로그램 모듈들과 조합하여 및/또는 하드웨어 및 소프트웨어의 조합으로서 구현될 수 있다는 것을 인식할 것이다.

일반적으로, 프로그램 모듈들은 특정 태스크들을 수행하거나 특정 추상 데이터형들을 구현하는 루틴들, 프로그램들, 구성 요소들, 데이터 구조들 등을 포함한다. 더욱이, 당업자들은 본 발명의 방법들이 단일-프로세서 또는 다중 프로세서 컴퓨터 시스템들, 미니 컴퓨터들, 메인프레임 컴퓨터들, 뿐만 아니라 개인용 컴퓨터들, 휴대용 컴퓨팅 디바이스들, 마이크로프로세서 기반 또는 프로그램 가능한 소비자 전자 장치들, 등을 포함하는 다른 컴퓨터 시스템 구성들에 의해 실시될 수 있고, 그의 각각은 하나 이상의 연관된 디바이스들에 동작 가능하게 결합될 수 있다는 것을 인식할 것이다.

여기에서 사용된 바와 같이, 처리 회로는 프로세서뿐만 아니라 주문형 집적 회로, 디지털 논리 회로, 상태 머신, 프로그램 가능한 게이트 어레이 또는 입력 신호들 또는 데이터를 처리하고 그에 응답하여 출력 신호들 또는 데이터를 생성하는 다른 회로와 같은 다른 애플리케이션 특정 회로들을 포함한다. 프로세서의 동작과 연관하여 여기에 설명된 임의의 기능들 및 특징들이 처리 회로에 의해 유사하게 수행될 수 있다는 것이 주의되어야 한다.

청구항들에 사용된 용어들 "제 1", "제 2", "제 3" 등은, 문맥에 의해 달리 명확하지 않으면, 단지 명확성을 위한 것이고 그와 다르게 시간상 임의의 순서를 나타내거나 암시하지 않는다. 예를 들면, "제 1 결정", "제 2 결정", 및 "제 3 결정"은 제 1 결정이 제 2 결정 전에 행해진 것을 나타내거나 암시하지 않고, 그 반대도 동일한 것 등이다.

여기에서의 실시예들 중 예시된 실시예들은 또한 특정 태스크들이 통신 네트워크를 통해 링크되는 원격 처리 디바이스들에 의해 수행되는 분산 컴퓨팅 환경들에서 실시될 수 있다. 분산 컴퓨팅 환경에서, 프로그램 모듈들은 로컬 및 원격 메모리 저장 디바이스들 양쪽 모두에 위치될 수 있다.

컴퓨팅 디바이스들은 일반적으로 두 개의 용어들이 다음과 같이 서로 상이하게 여기에서 사용되는 컴퓨터 판독 가능 저장 매체들 및/또는 통신 매체들을 포함할 수 있는 다양한 미디어를 포함한다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있고 휘발성 및 비휘발성 매체들, 제거 가능한 및 제거가능하지 않은 매체들 둘 모두일 수 있는 임의의 이용 가능한 저장 매체들일 수 있다. 예로서, 및 제한 없이, 컴퓨터 판독 가능 저장 매체들은 컴퓨터 판독 가능 명령들, 프로그램 모듈들, 구조화된 데이터 또는 구조화되지 않은 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술과 관련하여 구현될 수 있다.

컴퓨터 판독 가능 저장 매체는 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 전기적 소거 가능한 프로그램 가능 판독 전용 메모리(EEPROM), 플래시 메모리 또는 다른 메모리 기술, 컴팩트 디스크 판독 전용 메모리(CD-ROM), 디지털 다목적 디스크(DVD) 또는 다른 광 디스크 저장 장치, 자기 카세트, 자기 테이프, 자기 디스크 저장 장치 또는 다른 자기적 저장 디바이스들 또는 원하는 정보를 저장하기 위해 사용될 수 있는 다른 유형의 및/또는 비일시적 매체들을 포함할 수 있지만, 그로 제한되지 않는다. 이에 관하여, 저장 장치, 메모리 또는 컴퓨터 판독 가능 매체에 적용되는 여기에서의 용어 "유형의" 또는 "비일시적"은 한정어들로서 일시적 신호들 자체를 전파하는 것만을 제외하는 것으로 이해될 것이고 일시적 신호들 자체를 전파하는 것만이 아닌 모든 표준 저장 장치, 메모리 또는 컴퓨터 판독 가능 매체에 대한 권리들을 포기하지 않는다.

컴퓨터 판독 가능 저장 매체들은 매체에 의해 저장된 정보에 관하여 다양한 동작들을 위해 하나 이상의 국부 또는 원격 컴퓨팅 디바이스들에 의해, 예를 들면, 액세스 요청들, 질의들 또는 다른 데이터 검색 프로토콜들을 통해 액세스될 수 있다.

통신 매체들은 일반적으로 컴퓨터 판독 가능 명령들, 데이터 구조들, 프로그램 모듈들 또는 데이터 신호에서 다른 구조화된 또는 구조화되지 않은 데이터, 예컨대 변조된 데이터 신호, 예를 들면, 반송파 또는 다른 전송 메커니즘을 구현하고, 임의의 정보 전달 또는 전송 매체들을 포함한다. 용어 "변조된 데이터 신호" 또는 신호들은 하나 이상의 그의 특징 세트들을 갖고 하나 이상의 신호들에 정보를 인코딩하는 것에 관하여 그러한 방식으로 변경되는 신호를 말한다. 예로서, 및 제한 없이, 통신 매체들은 유선 네트워크 또는 직결 접속과 같은 유선 매체들, 및 음향, RF, 적외선 및 다른 무선 매체와 같은 무선 매체들을 포함한다.

다시 도 21을 참조하면, 기지국(예를 들면, 기지국 디바이스들(1504), 매크로셀 사이트(1502), 또는 기지국들(1614)) 또는 중앙 기지국(예를 들면, 중앙 기지국(1501, 1611)) 중 적어도 일부를 통해 또는 그를 형성하는 신호들을 송신 및 수신하기 위한 예시적인 환경(2100). 예시적인 환경(2100)의 적어도 일부는 또한 송신 디바이스들(101 또는 102)을 위해 사용될 수 있다. 예시적인 환경은 컴퓨터(2102)를 포함하고, 컴퓨터(2102)는 처리 유닛(2104), 시스템 메모리(2106), 및 시스템 버스(2108)를 포함한다. 시스템 버스(2108)는 시스템 메모리(2106)를 포함하지만 그로 제한되지 않는 시스템 구성 요소들을 처리 유닛(2104)에 결합시킨다. 처리 유닛(2104)은 다양한 상업적으로 이용 가능한 프로세서들 중 임의의 것일 수 있다. 이중 마이크로프로세서들 및 다른 다중프로세서 아키텍처들이 또한 처리 유닛(2104)으로서 채용될 수 있다.

시스템 버스(2108)는 메모리 버스(메모리 제어기와 함께 또는 메모리 제어기 없이), 주변 장치 버스, 및 다양한 상업적으로 이용 가능한 버스 아키텍처들 중 임의의 것을 사용하는 로컬 버스에 또한 상호 접속할 수 있는 여러 형태들의 버스 구조 중 임의의 것일 수 있다. 시스템 메모리(2106)는 ROM(2110) 및 RAM(2112)을 포함한다. 기본 입/출력 시스템(BIOS)은 ROM, 삭제 가능한 프로그램 가능 판독 전용 메모리(EPROM), EEPROM과 같은 비휘발성 메모리에 저장될 수 있고, BIOS는 시동 동안과 같은 컴퓨터(2102) 내 요소들 사이에 정보를 전달하기 위해 도움을 주는 기본 루틴들을 포함한다. RAM(2112)은 또한 데이터를 캐싱하기 위한 정적 RAM과 같은 고속 RAM을 포함할 수 있다.

컴퓨터(2102)는 내부 하드 디스크 드라이브(HDD)(2114)(예를 들면, EIDE, SATA)를 더 포함하고, 내부 하드 디스크 드라이브(2114)는 또한 적절한 섀시(도시되지 않음), 자기 플로피 디스크 드라이브(FDD; 2116)(예를 들면, 제거 가능한 디스켓(2118)으로부터 판독하거나 그로 기록하기 위해) 및 광 디스크 드라이브(2120)(예를 들면, CD-ROM 디스크(2122)를 판독 또는 DVD와 같은 다른 고용량 광 매체로부터 판독하거나 그로 기록하기 위해)에서 외부 사용을 위해 구성될 수 있다. 하드 디스크 드라이브(2114), 자기 디스크 드라이브(2116) 및 광 디스크 드라이브(2120)는 하드 디스크 드라이브 인터페이스(2124), 자기 디스크 드라이브 인터페이스(2126), 및 광 드라이브 인터페이스(2128) 각각에 의해 시스템 버스(2108)에 접속될 수 있다. 외부 드라이브 구현들을 위한 인터페이스(2124)는 범용 직렬 버스(USB) 및 전기 전자 학회(IEEE) 1394 인터페이스 기술들 중 적어도 하나 또는 그 둘 모두를 포함한다. 다른 외부 드라이브 접속 기술들은 여기에 설명된 실시예들의 예상 내에 있다.

드라이브들 및 그들의 연관된 컴퓨터 판독 가능 저장 매체들은 데이터, 데이터 구조들, 컴퓨터 실행 가능 명령들 등의 비휘발성 저장 장치를 제공한다. 컴퓨터(2102)에 대하여, 드라이브들 및 저장 매체들은 적절한 디지털 포맷으로 임의의 데이터의 저장을 수용한다. 상기에서 컴퓨터 판독 가능 저장 매체의 설명이 하드 디스크 드라이브(HDD), 제거 가능한 자기 디스켓, 및 제거 가능한 광 매체들 예컨대 CD 또는 DVD를 지칭하지만, 컴퓨터에 의해 판독 가능한 다른 형태들의 저장 매체들, 예컨대 짚 드라이브들, 자기 카세트들, 플래시 메모리 카드들, 카트리지들 등이 또한 예시적인 운영 환경에서 사용될 수 있고, 또한 임의의 이러한 저장 매체들은 여기에 설명된 방법들을 수행하기 위한 컴퓨터 실행 가능 명령들을 포함할 수 있다는 것이 당업자들에 의해 이해되어야 한다.

다수의 프로그램 모듈들은 드라이브들 및 RAM(2112)에 저장될 수 있고, 운영 시스템(2130), 하나 이상의 애플리케이션 프로그램들(2132), 다른 프로그램 모듈들(2134) 및 프로그램 데이터(2136)를 포함한다. 운영 시스템, 애플리케이션들, 모듈들, 및/또는 데이터의 모두 또는 일부들은 또한 RAM(2112)에 캐싱될 수 있다. 여기에 설명된 시스템들 및 방법들은 다양한 상업적으로 이용 가능한 운영 시스템들 또는 운영 시스템들의 조합들을 이용하여 구현될 수 있다. 처리 유닛(2104)에 의해 구현되고 그와 달리 실행될 수 있는 애플리케이션 프로그램들(2132)의 예들은 송신 디바이스(101 또는 102)에 의해 수행된 다이버시티 선택 결정을 포함한다.

사용자는 하나 이상의 유선/무선 입력 디바이스들, 예를 들면, 키보드(2138) 및 포인팅 디바이스, 예컨대 마우스(2140)를 통해 명령들 및 정보를 컴퓨터(2102)로 입력할 수 있다. 다른 입력 디바이스들(도시되지 않음)은 마이크로폰, 적외선(IR) 원격 제어, 조이스틱, 게임 패드, 스타일러스 펜, 터치 스트린 등을 포함할 수 있다. 이들 및 다른 입력 디바이스들은 시스템 버스(2108)에 결합될 수 있는 입력 디바이스 인터페이스(2142)를 통해 처리 유닛(2104)에 종종 접속되지만, 다른 인터페이스들, 예컨대 병렬 포트, IEEE 1394 직렬 포트, 게임 포트, 범용 직렬 버스(USB) 포트, IR 인터페이스 등에 의해 접속될 수 있다.

모니터(2144) 또는 다른 형태의 디스플레이 디바이스는 또한 비디오 어댑터(2146)와 같은 인터페이스를 통해 시스템 버스(2108)에 접속될 수 있다. 대안적인 실시예들에서, 모니터(2144)가 또한 인터넷 및 클라우드 기반 네트워크들을 통해서를 포함하여 임의의 통신 수단을 통해 컴퓨터(2102)와 연관된 디스플레이 정보를 수신하기 위해 임의의 디스플레이 디바이스(예를 들면, 디스플레이, 스마트 폰, 태블릿 컴퓨터 등을 갖는 다른 컴퓨터)일 수 있다. 모니터(2144) 외에, 컴퓨터는 일반적으로 스피커들, 프린터들 등과 같은 다른 주변 출력 디바이스들(도시되지 않음)을 포함한다.

컴퓨터(2102)는 유선 및/또는 무선 통신들을 통해 하나 이상의 원격 컴퓨터들, 예컨대 원격 컴퓨터(들)(2148)에 논리 접속들을 사용하여 네트워킹된 환경에서 동작할 수 있다. 원격 컴퓨터(들)(2148)는 워크스테이션, 서버 컴퓨터, 라우터, 개인용 컴퓨터, 이동식 컴퓨터, 마이크로프로세서 기반 엔터테인먼트 기기, 피어 디바이스 또는 다른 공통 네트워크 노드일 수 있고, 간단함을 위해, 메모리/저장 디바이스(2150)만이 도시되지만, 컴퓨터(2102)에 관해 설명된 다수의 요소들 및 모든 요소들을 일반적으로 포함한다. 도시된 논리 접속들은 근거리 네트워크(LAN)(2152) 및/또는 대규모 네트워크들, 예를 들면, 광역 네트워크(WAN)(2154)에 대한 유선/무선 접속을 포함한다. 이러한 LAN 및 WAN 네트워킹 환경들은 사무실 및 회사들에서 아주 흔하고, 인트라넷들과 같은 전사적 컴퓨터 네트워크들을 가능하게 하고, 이들 모두는 글로벌 통신 네트워크, 예를 들면, 인터넷에 접속할 수 있다.

LAN 네트워킹 환경에서 사용될 때, 컴퓨터(2102)는 유선 및/또는 무선 통신 네트워크 인터페이스 또는 어댑터(2156)를 통해 로컬 네트워크(2152)에 접속될 수 있다. 어댑터(2156)는 무선 어댑터(2156)와 통신하기 위해 그 위에 배치된 무선 AP를 또한 포함할 수 있는 LAN(2152)에 유선 또는 무선 통신을 가능하게 할 수 있다.

WAN 네트워킹 환경에서 사용될 때, 컴퓨터(2102)는 모뎀(2158)을 포함할 수 있거나 WAN(2154)상에 통신 서버에 접속될 수 있거나 인터넷에 의해서와 같이 WAN(2154)를 통해 통신들을 확립하기 위한 다른 수단을 갖는다. 내부 또는 외부 및 유선 또는 무선 디바이스일 수 있는 모뎀(2158)은 입력 디바이스 인터페이스(2142)를 통해 시스템 버스(2108)에 접속될 수 있다. 네트워킹된 환경에서, 컴퓨터(2102) 또는 그의 부분들에 관하여 도시된 프로그램 모듈들은 원격 메모리/저장 디바이스(2150)에 저장될 수 있다. 도시된 네트워크 접속들이 예이고 컴퓨터들 사이에 통신 링크를 확립하기 위한 다른 수단이 사용될 수 있다는 것이 이해될 것이다.

컴퓨터(2102)는 무선 통신에 동작 가능하게 배치된 임의의 무선 디바이스들 또는 엔티티들, 예를 들면, 프린터, 스캐너, 데스크탑 및/또는 이동식 컴퓨터, 개인용 휴대 정보 단말, 통신 위성, 무선으로 검출 가능한 태그와 연관된 장비 또는 위치의 임의의 부분(예를 들면, 키오스크, 신문 가판대, 화장실), 및 전화와 통신하기 위해 동작 가능할 수 있다. 이는 무선 충실도(Wi-Fi) 및 블루투스® 무선 기술들을 포함할 수 있다. 따라서, 통신은 종래 네트워크 또는 간단하게 적어도 두 개의 디바이스들 사이의 애드 혹 통신과 같은 미리 규정된 구조일 수 있다.

Wi-Fi는 와이어들 없이 가정의 소파, 호텔 룸의 침대 또는 직장의 회의실로부터 인터넷에 대한 접속을 허용할 수 있다. Wi-Fi는 실내 및 외부; 기지국의 범위 내 어디에서든 이러한 디바이스들, 예를 들면 컴퓨터들이 데이터를 전송 및 수신하게 하는 휴대 전화에서 사용되는 무선 기술과 유사한 무선 기술이다. Wi-Fi 네트워크들은 안전한, 신뢰할 수 있는, 빠른 무선 접속을 제공하기 위해 IEEE 802.11(a, b, g, n, ac, ag 등)이라 불리는 무선 기술들을 사용한다. Wi-Fi 네트워크는 컴퓨터들을 서로, 인터넷에, 및 유선 네트워크들(IEEE 802.3 또는 이더넷을 사용할 수 있는)에 접속하기 위해 사용될 수 있다. Wi-Fi 네트워크들은 예를 들면, 비허가된 2.4 및 5 ㎓ 무선 대역들에서 또는 두 개의 대역들(이중 대역)을 포함하는 제품들에 의해 동작해서, 네트워크들은 많은 사무실들에서 사용된 기본 10BaseT 유선 이더넷 네트워크들과 유사한 실세계 성능을 제공할 수 있다.

도 22는 여기에 설명된 개시된 요지의 하나 이상의 양태들을 구현 및 이용할 수 있는 이동 네트워크 플랫폼(2210)의 일 예시적인 실시예(2200)를 나타낸다. 하나 이상의 실시예들에서, 이동 네트워크 플랫폼(2210)은 기지국들(예를 들면, 기지국 디바이스들(1504), 매크로셀 사이트(1502), 또는 기지국들(1614)), 중앙 기지국(예를 들면, 중앙 기지국(1501 또는 1611)), 또는 개시된 요지와 연관된 송신 디바이스(101 또는 102)에 의해 송신된 및 수신된 신호들을 생성 및 수신할 수 있다. 일반적으로, 무선 네트워크 플랫폼(2210)은 구성 요소들, 예를 들면, 노드들, 게이트웨이들, 인터페이스들, 서버들, 또는 패킷 교환(packet-switched; PS)(예를 들면, 인터넷 프로토콜(IP), 프레임 중계, 비동기 전송 모드(ATM)) 및 회로 교환(circuit-switched; CS) 트래픽(예를 들면, 음성 및 데이터) 양쪽, 뿐만 아니라 네트워킹된 무선 원격 통신을 위한 제어 생성을 가능하게 하는 별개의 플랫폼들을 포함할 수 있다. 비제한적 예로서, 무선 네트워크 플랫폼(2210)은 원격 통신 반송파 네트워크들에 포함될 수 있고 여기서 다른 경우에 논의되는 고려된 반송파측 구성 요소들일 수 있다. 이동 네트워크 플랫폼(2210)은 전화 네트워크(들)(2240), 예를 들면, 공중 교환 전화 네트워크(PSTN), 또는 공중 육상 이동 네트워크(PLMN) 또는 시그널링 시스템 #7(SS7) 네트워크(2270)와 같은 레거시 네트워크들로부터 수신된 CS 트래픽을 인터페이스할 수 있는 CS 게이트웨이 노드(들)(2222)를 포함한다. 회로 교환 게이트웨이 노드(들)(2222)는 이러한 네트워크들로부터 발생하는 트래픽(예를 들면, 음성)을 허가 및 인증할 수 있다. 추가로, CS 게이트웨이 노드(들)(2222)는 SS7 네트워크(2270)를 통해 생성된 이동성 또는 로밍 데이터에 액세스할 수 있다; 예를 들면, 메모리(2230)에 상주할 수 있는 방문 위치 레지스터(VLR)에 저장된 이동성 데이터. 더욱이, CS 게이트웨이 노드(들)(2222)는 CS 기반 트래픽 및 시그널링 및 PS 게이트웨이 노드(들)(2218)을 인터페이스한다. 일 예로서, 3GPP UMTS 네트워크에서, CS 게이트웨이 노드(들)(2222)는 게이트웨이 GPPRS 지원 노드(들)(GGSN)에서 적어도 부분적으로 실현될 수 있다. CS 게이트웨이 노드(들)(2222), PS 게이트웨이 노드(들)(2218), 및 서빙 노드(들)(2216)의 기능 및 특정 동작이 원격 통신을 위한 이동 네트워크 플랫폼(2210)에 의해 이용된 무선 기술(들)로 제공 및 조정된다는 것이 이해되어야 한다.

CS 교환 트래픽을 수신 및 처리하는 것 외에, PS 게이트웨이 노드(들)(2218)는 서빙된 이동 디바이스들과의 PS 기반 데이터 세션들을 허가 및 인증할 수 있다. 데이터 세션들은 PS 게이트웨이 노드(들)(2218)를 통해 이동 네트워크 플랫폼(2210)과 또한 인터페이스할 수 있는, 근거리 네트워크(들)(LANs)에서 구현될 수 있는 광역 네트워크(들)(WANs)(2250), 기업 내 네트워크(들)(2270), 및 서비스 네트워크(들)(2280)와 같은 무선 네트워크 플랫폼(2210) 외부의 네트워크들과 교환된 트래픽 또는 콘텐트(들)를 포함할 수 있다. WANs(2250) 및 기업 내 네트워크(들)(2260)가 IP 멀티미디어 서브시스템(IMS)과 같은 서비스 네트워크(들)를 적어도 부분적으로 구현할 수 있다. 기술 자원(들)(2217)에서 이용 가능한 무선 기술 계층(들)에 기초하여, 패킷 교환 게이트웨이 노드(들)(2218)는 데이터 세션이 확립될 때 패킷 데이터 프로토콜 콘텍스트들을 생성할 수 있다; 패킷화된 데이터의 라우팅을 가능하게 하는 다른 데이터 구조들이 또한 생성될 수 있다. 이를 위하여, 일 양태에서, PS 게이트웨이 노드(들)(2218)는 Wi-Fi 네트워크들과 같은 이종의 무선 네트워크(들)와 패킷화된 통신을 가능하게 할 수 있는 터널 인터페이스(3GPP UMTS 네트워크(들)(도시하지 않음)에서 터널 종단 게이트웨이(tunnel termination gateway; TTG))를 포함할 수 있다.

실시예(2200)에서, 무선 네트워크 플랫폼(2210)은, 기술 자원(들)(2217) 내 이용 가능한 무선 기술 계층(들)에 기초하여, PS 게이트웨이 노드(들)(2218)을 통해 수신된 데이터 스트림들의 다양한 패킷화된 흐름들을 전달하는 서빙 노드(들)(2216)를 또한 포함한다. CS 통신에 대해 주로 의존하는 기술 자원(들)(2217)에 대하여, 서버 노드(들)는 PS 게이트웨이 노드(들)(2218)에 대한 의존 없이 트래픽을 전달할 수 있다는 것이 주의되어야 한다; 예를 들면, 서버 노드(들)는 이동 교환 센터를 적어도 부분적으로 구현할 수 있다. 일 예로서, 3GPP UMTS 네트워크에서, 서빙 노드(들)(2216)는 서빙 GPRS 지원 노드(들)(SGSN)에서 구현될 수 있다.

패킷화된 통신을 이용하는 무선 기술들에 대하여, 무선 네트워크 플랫폼(2210)에서 서버(들)(2214)는 다수의 이종의 패킷화된 데이터 스트림들 또는 플로우들을 생성하고 이러한 플로우들을 관리(예를 들면, 스케줄링, 대기 행렬에 넣기, 포맷팅 ...)할 수 있는 다수의 애플리케이션들을 실행할 수 있다. 이러한 애플리케이션(들)은 무선 네트워크 플랫폼(2210)에 의해 제공된 표준 서비스들(예를 들면, 권한 설정, 청구, 고객 지원 ...)에 대한 추가 특징들을 포함할 수 있다. 데이터 스트림들(예를 들면, 음성 호 또는 데이터 세션의 부분인 콘텐트(들))은 데이터 세션의 허가/인증 및 개시를 위해 PS 게이트웨이 노드(들)(2218) 및 이후 통신을 위해 서빙 노드(들)(2216)로 전달될 수 있다. 애플리케이션 서버 외에, 서버(들)(2214)는 유틸리티 서버(들)를 포함할 수 있고, 유틸리티 서버는 권한 설정, 운영 및 유지 보수 서버, 인증 기관 및 방화벽들뿐만 아니라 다른 보안 메커니즘들을 적어도 부분적으로 구현할 수 있는 보안 서버 등을 포함할 수 있다. 일 양태에서, 보안 서버(들)는 CS 게이트웨이 노드(들)(2222) 및 PS 게이트웨이 노드(들)(2218)가 수행할 수 있는 허가 및 인증 절차들 외에 네트워크의 운영 및 데이터 무결성을 보장하기 위해 무선 네트워크 플랫폼(2210)을 통해 서빙된 통신을 보호한다. 더욱이, 권한 설정 서버(들)가 이종 서비스 제공자에 의해 운영된 네트워크들; 예를 들면, WAN(2250) 또는 전지구적 위치 확인 시스템(GPS) 네트워크(들)(도시되지 않음)와 같은 외부 네트워크(들)로부터의 서비스들을 공급할 수 있다. 권한 설정 서버(들)는 더 많은 네트워크 커버리지를 제공함으로써 무선 서비스 커버리지를 향상시키는 도 1(s)에 도시된 분산 안테나 네트워크들과 같은 무선 네트워크 플랫폼(2210)(예를 들면, 동일한 서비스 제공자에 의해 배치 및 운영된)에 연관된 네트워크들을 통해 커버리지를 또한 제공할 수 있다. 도 7, 도 8, 및 도 9에 도시된 것들과 같은 중계기 디바이스들은 UE(2275)에 의한 가입자 서비스 경험을 향상시키기 위해 네트워크 커버리지를 또한 개선한다.

서버(들)(2214)가 매크로 네트워크 플랫폼(2210)의 기능을 적어도 부분적으로 부여하도록 구성된 하나 이상의 프로세서들을 포함할 수 있다. 이를 위하여, 하나 이상의 프로세서는 예를 들면, 메모리(2230)에 저장된 코드 명령들을 실행할 수 있다. 서버(들)(2214)가 상기에 설명된 바와 동일한 방식으로 실질적으로 동작하는 콘텐트 관리자(2215)를 포함할 수 있다는 것이 이해되어야 한다.

예시적인 실시예(2200)에서, 메모리(2230)는 무선 네트워크 플랫폼(2210)의 동작에 관한 정보를 저장할 수 있다. 다른 동작 정보는 무선 플랫폼 네트워크(2210)를 통해 서빙된 이동 디바이스들의 권한 설정 정보, 가입자 데이터 베이스들; 애플리케이션 정보, 가격 책정 방식들, 예를 들면, 프로모션 비율들, 고정 요금 프로그램들, 쿠폰 캠페인들; 이종 무선 또는 무선, 기술 계층들의 동작에 대한 원격 통신 프로토콜들과 일치하는 기술 규격(들) 등을 포함할 수 있다. 메모리(2230)는 전화 네트워크(들)(2240), WAN(2250), 기업 내 네트워크(들)(2270), 또는 SS7 네트워크(2260) 중 적어도 하나로부터의 정보를 또한 저장할 수 있다. 일 양태에서, 메모리(2230)는 예를 들면, 데이터 저장 구성 요소의 부분 또는 원격으로 접속된 메모리 저장소로서 액세스될 수 있다.

개시된 요지의 다양한 양태들에 대한 환경을 제공하기 위하여, 도 22 및 후속 논의는 개시된 요지의 다양한 양태들이 구현될 수 있는 적절한 환경의 간단한, 일반적인 설명을 제공하도록 의도된다. 요지는 컴퓨터 및/또는 컴퓨터들상에 구동하는 컴퓨터 프로그램의 컴퓨터 실행 가능한 명령들의 일반적인 환경에서 상기에 설명되었지만, 당업자들은 개시된 요지가 또한 다른 프로그램 모듈들과 함께 구현될 수 있다는 것을 이해할 것이다. 일반적으로, 프로그램 모듈들은 특정 태스크들을 수행하고 및/또는 특정 추상 데이터형들을 구현하는 루틴들, 프로그램들, 구성 요소들, 데이터 구조들 등을 포함한다.

도 23은 통신 디바이스(2300)의 예시적인 실시예를 도시한다. 통신 디바이스(2300)는 요지(예를 들면, 도 15, 도 16a, 및 도 16b)에 의해 참조된 빌딩 내 디바이스들 및 이동 디바이스들과 같은 디바이스들의 일 예시적인 실시예의 역할을 할 수 있다.

통신 디바이스(2300)는 그의 동작들을 관리하기 위해 유선 및/또는 무선 송수신기(2302)(여기서 송수신기(2302)), 사용자 인터페이스(UI)(2304), 전원(2314), 위치 수신기(2316), 움직임 센서(2318), 방향 센서(2320), 및 제어기(2306)를 포함할 수 있다. 송수신기(2302)는 몇번 언급한, Bluetooth®, ZigBee®, WiFi, DECT, 또는 셀룰러 통신 기술들과 같은 단거리 또는 장거리 무선 액세스 기술들을 지원할 수 있다(Bluetooth® 및 ZigBee®는 각각 Bluetooth® Special Interest Group 및 ZigBee® Alliance에 의해 등록된 상표들이다). 셀룰러 기술들은, 예를 들면, CDMA-1X, UMTS/HSDPA, GSM/GPRS, TDMA/EDGE, EV/DO, WiMAX, SDR, LTE, 뿐만 아니라 그들이 발달함에 따른 다른 차세대 무선 통신 기술들을 포함할 수 있다. 송수신기(2302)는 회로 교환 유선 액세스 기술들(예컨대 PSTN), 패킷 교환 유선 액세스 기술들(예컨대 TCP/IP, VoIP 등), 및 그의 조합들을 지원하도록 또한 적응될 수 있다.

UI(2304)는 통신 디바이스(2300)의 동작들을 조작하기 위한 롤러 볼, 조이스틱, 마우스, 또는 내비게이션 디스크와 같은 내비게이션 메커니즘과 함께 누를 수 있거나 터치 감응형 키패드(2308)를 포함할 수 있다. 키패드(2308)는 통신 디바이스(2300) 또는 테더링된 와이어라인 인터페이스(예컨대 USB 케이블) 또는 예를 들면 Bluetooth®를 지원하는 무선 인터페이스에 의해 그에 동작 가능하게 결합된 독립 디바이스의 통합부일 수 있다. 키패드(2308)는 전화들에 의해 공통으로 사용된 숫자 키패드, 및/또는 영숫자 키들을 갖는 QWERTY 키패드를 나타낼 수 있다. UI(2304)는 흑백 또는 컬러 LCD(액정 디스플레이), OLED(유기 발광 다이오드) 또는 통신 디바이스(2300)의 최종 사용자에게 이미지들을 전달하기 위한 다른 적절한 디스플레이 기술과 같은 디스플레이(2310)를 더 포함할 수 있다. 디스플레이(2310)가 터치 감응형인 일 실시예에서, 키패드(2308)의 일부 또는 전부는 내비게이션 특징들을 갖는 디스플레이(2310)에 의해 나타내질 수 있다.

디스플레이(2310)는 사용자 입력을 검출하기 위한 사용자 인터페이스의 역할을 또한 하기 위해 터치 스크린 기술을 사용할 수 있다. 터치 스크린 디스플레이로서, 통신 디바이스(2300)는 손가락의 터치로 사용자에 의해 선택될 수 있는 그래픽 사용자 인터페이스(GUI) 요소를 갖는 사용자 인터페이스를 나타내도록 적응될 수 있다. 터치 스크린 디스플레이(2310)는 사용자의 손가락의 얼마나 많은 표면적이 터치 스크린 디스프레이의 일 부분 상에 놓였는지를 검출하기 위해 용량형, 저항형, 또는 감지 기술의 다른 형태들이 갖춰질 수 있다. 이러한 감지 정보는 GUI 요소들의 조작 또는 사용자 인터페이스의 다른 기능들을 제어하기 위해 사용될 수 있다. 디스플레이(2310)는 통신 디바이스(2300) 또는 테더링된 와이어라인 인터페이스(예컨대 케이블) 또는 무선 인터페이스에 의해 그에 통신 가능하게 결합된 독립 디바이스의 하우징 어셈블리의 통합부일 수 있다.

UI(2304)는 낮은 볼륨 오디오(예컨대 인간 귀에 근접하게 들리는 오디오) 및 높은 볼륨 오디오(예컨대 핸즈 프리 동작을 위한 스피커폰)을 전달하기 위한 오디오 기술을 이용하는 오디오 시스템(2312)을 또한 포함할 수 있다. 오디오 시스템(2312)은 최종 사용자의 가청의 신호들을 수신하기 위한 마이크로폰을 더 포함할 수 있다. 오디오 시스템(2312)은 음성 인식 애플리케이션들을 위해 또한 사용될 수 있다. UI(2304)는 정지 또는 움직이는 이미지들을 캡처하기 위해 전하 결합 소자(charge coupled device; CCD) 카메라와 같은 이미지 센서(2313)를 더 포함할 수 있다.

전원(2314)은 교체 가능 및 충전 가능한 배터리들과 같은 공통 전력 관리 기술들, 공급 규제 기술들, 및/또는 장거리 또는 단거리 이동 가능한 통신들을 가능하게 하는 통신 디바이스(2300)의 구성 요소들에 에너지를 공급하기 위한 충전 시스템 기술들을 이용할 수 있다. 대안적으로, 또는 조합하여, 충전 시스템은 USB 포트 또는 다른 적절한 테더링 기술들과 같은 물리적 인터페이스를 통해 공급된 DC 전력과 같은 외부 전원들을 이용할 수 있다.

위치 수신기(2316)는 GPS 위성들의 성상에 의해 생성된 신호들에 기초하여 통신 디바이스(2300)의 위치를 식별하기 위해 GPS 지원 측위(assisted GPS)가 가능한 전지구적 위치 확인 시스템(GPS) 수신기와 같은 위치 기술을 이용할 수 있고, 이는 내비게이션과 같은 위치 서비스들을 가능하게 하기 위해 사용될 수 있다. 움직임 센서(2318)는 가속도계, 자이로스코프와 같은 움직임 감지 기술, 또는 3차원 공간에서 통신 디바이스(2300)의 움직임을 검출하기 위한 다른 적절한 움직임 감지 기술을 이용할 수 있다. 방향 센서(2320)는 통신 디바이스(2300)의 방향(북쪽, 남쪽, 서쪽, 및 동쪽, 뿐만 아니라 도, 분, 또는 다른 적절한 방향 측정 기준으로 조합된 방향들)을 검출하기 위해 자력계와 같은 방향 감지 기술을 이용할 수 있다.

통신 디바이스(2300)는 수신된 신호 강도 표시자(RSSI) 및/또는 신호 도착 시간(TOA; time of arrival) 또는 전파 시간(TOF; time of flight) 측정들을 이용하는 것과 같은 감지 기술들에 의해 셀룰러, WiFi, Bluetooth®, 또는 다른 무선 액세스 포인트들에 대한 근접성을 또한 결정하기 위해 송수신기(2302)를 사용할 수 있다. 제어기(2306)는 마이크로프로세서, 디지털 신호 프로세서(DSP), 프로그램 가능한 게이트 어레이들, 주문형 집적 회로들, 및/또는 플래시, ROM, RAM, SRAM, DRAM과 같은 연관된 저장 메모리를 갖는 비디오 프로세서와 같은 컴퓨팅 기술들, 또는 컴퓨터 명령들을 실행하고 통신 디바이스(2300)의 전술한 구성 요소들에 의해 공급된 데이터를 제어 및 처리하기 위한 다른 저장 기술들을 이용할 수 있다.

도 23에 도시되지 않은 다른 구성 요소들은 요지의 하나 이상의 실시예들에서 사용될 수 있다. 예를 들면, 통신 디바이스(2300)는 가입자 식별 모듈(SIM) 카드 또는 범용 집적 회로 카드(UICC)와 같은 식별 모듈을 추가 또는 제거하기 위한 슬롯을 포함할 수 있다. SIM 및 UICC 카드들은 가입자 서비스들을 식별하고, 프로그램들을 실행하고 가입자 데이터를 저장하는 등을 위해 사용될 수 있다.

본 명세서에서, "저장소", "저장 장치", "데이터 저장소", "데이터 저장 장치", "데이터베이스", 및 구성 요소의 동작 및 기능에 관련된 실질적으로 임의의 다른 정보 저장 구성 요소와 같은 용어들은 "메모리 구성 요소들", 또는 "메모리"에서 구현된 엔티티들 또는 메모리를 포함하는 구성 요소들을 말한다. 여기에 설명된 메모리 구성 요소들이 휘발성 메모리 또는 비휘발성 메모리일 수 있거나, 휘발성 및 비휘발성 메모리 둘 모두, 휘발성 메모리, 비휘발성 메모리, 디스크 저장 장치, 및 메모리 저장 장치를 예로서 및 제한 없이 포함할 수 있다는 것이 인식될 것이다. 또한, 비휘발성 메모리는 판독 전용 메모리(ROM), 프로그램 가능 ROM(PROM), 전기적 프로그램 가능 ROM(EPROM), 전기적 소거 가능한 ROM(EEPROM), 또는 플래시 메모리에 포함될 수 있다. 휘발성 메모리는 외부 캐시 메모리의 역할을 하는 랜덤 액세스 메모리(RAM)를 포함할 수 있다. 예로서 및 제한 없이, RAM은 동기 RAM(SRAM), 동적 RAM(DRAM), 동기 DRAM(SDRAM), 2배속 SDRAM(DDR SDRAM), 향상된 SDRAM(ESDRAM), 싱크링크 DRAM(SLDRAM), 및 직접 램버스 RAM(DRRAM)과 같은 많은 형태들로 이용 가능하다. 추가로, 여기에서의 시스템들의 개시된 메모리 구성 요소들 또는 방법들은 메모리의 이들 및 임의의 다른 적절한 형태들을 포함하도록 제한되지 않고 포함하도록 의도된다.

더욱이, 개시된 요지는 단일 프로세서 또는 다수 프로세서 컴퓨터 시스템들, 미니-컴퓨팅 디바이스들, 메인프레임 컴퓨터들, 뿐만 아니라 개인용 컴퓨터들, 핸드-헬드 컴퓨팅 디바이스들(예를 들면, PDA, 전화, 스마트폰, 시계, 태블릿 컴퓨터들, 넷북 컴퓨터들 등), 마이크로프로세서 기반 또는 프로그램 가능한 소비자 또는 산업 전자 장치들 등을 포함하는 다른 컴퓨터 시스템 구성들과 함께 실시될 수 있다는 것이 주의될 것이다. 예시된 양태들은 태스크들이 통신 네트워크를 통해 링크되는 원격 처리 디바이스들에 의해 수행되는 분산 컴퓨팅 환경들에서 또한 실행될 수 있다; 그러나, 요지의 전부는 아니더라도 일부 양태들은 독립형 컴퓨터들상에 실시될 수 있다. 분산 컴퓨팅 환경에서, 프로그램 모듈들은 로컬 및 원격 메모리 저장 디바이스들 양쪽 모두에 위치될 수 있다.

여기에 설명된 실시예들의 일부는 여기에 설명된 하나 이상의 특징들을 자동화하는 것을 가능하게 하기 위해 인공 지능(artificial intelligence; AI)을 또한 채용할 수 있다. 예를 들면, 인공 지능은 선택적인 훈련 제어기(230)에서 사용될 수 있고, 전송 효율을 최대화하기 위해 후보 주파수들, 변조 방식들, MIMO 모드들, 및/또는 가이드파 모드들을 평가 및 선택할 수 있다. 실시예들(예를 들면, 기존 통신 네트워크에 추가 후 최대값/이익을 제공하는 자동으로 식별하는 획득된 셀 사이트들과 관련하여)은 그의 다양한 실시예들을 수행하기 위해 다양한 AI 기반 방식들을 채용할 수 있다. 더욱이, 분류자는 획득된 네트워크의 각각의 셀 사이트의 등급 매김 또는 우선 순위를 결정하기 위해 채용될 수 있다. 분류자는 입력이 클래스, 즉, f(x) = 신뢰도(클래스)에 속하는 신뢰도에 대해 입력 속성 벡터, x = (x1, x2, x3, x4, ..., xn)를 맵핑하는 함수이다. 이러한 분류는 사용자가 자동으로 수행되기를 바라는 동작을 예측 또는 추론하기 위해 확률적 및/또는 통계적 기반 분석(예를 들면, 분석 유틸리티들 및 비용들을 고려함)을 채용할 수 있다. 지원 벡터 머신(SVM)은 채용될 수 있는 분류자의 일 예이다. SVM은 가능한 입력들의 공간에서 초곡면을 찾음으로써 동작하고, 초곡면은 비트리거링 이벤트로부터 트리거링 기준들을 분리하기를 시도한다. 직관적으로, 이는 가깝지만, 훈련 데이터와 동일하지 않은 데이터를 테스트하기 위해 올바른 분류를 행한다. 다른 직접 및 간접 모델 분류 방식들은, 예를 들면, 나이브 베이즈, 베이지안 네트워크들, 결정 트리들, 신경망들, 퍼지 로직 모델들, 및 채용될 수 있는 독립의 상이한 패턴들을 제공하는 확률적 분류 모델들을 포함한다. 여기에 사용된 분류는 우선 순위의 모델들을 개발하기 위해 이용되는 통계적 회귀를 또한 포함한다.

쉽게 인식되는 바와 같이, 하나 이상의 실시예들은 (예를 들면, 관찰 UE 거동, 운영자 선호들, 이력 정보, 수신한 외부 정보를 통해) 암시적으로 훈련될 뿐만 아니라 (예를 들면, 포괄적인 훈련 데이터를 통해) 명시적으로 훈련되는 분류자들을 채용할 수 있다. 예를 들면, SVM들은 분류자 제작자 및 특징 선택 모듈 내에 학습 또는 훈련 단계를 통해 구성될 수 있다. 따라서, 분류자(들)는 획득된 셀 사이트들 중 어느 것이 최대 수의 가입자들에게 이익을 줄 것인지 및/또는 획득된 셀 사이트들 중 어느 것이 기존 통신 네트워크 커버리지에 최소값을 추가할지 등의 미리 결정된 기준들에 따라 결정하는 것을 포함하지만 그로 제한되지 않는 다수의 함수들을 자동으로 학습 및 수행하기 위해 사용될 수 있다.

일부 실시예들에서, 본 출원에서 일부 환경에서 사용되는, 용어들 "구성 요소", "시스템" 등은 컴퓨터 관련 엔티티 또는 하나 이상의 특정 기능들을 갖는 선택적인 장치에 관련된 엔티티를 말하거나 포함하도록 의도되고, 엔티티는 하드웨어, 하드웨어 및 소프트웨어의 조합, 소프트웨어, 또는 실행중인 소프트웨어일 수 있다. 일 예로서, 구성 요소는 프로세서상에 구동하는 프로세스, 프로세서, 객체, 실행가능한, 실행의 스레드, 컴퓨터 실행 가능한 명령들, 프로그램, 및/또는 컴퓨터일 수 있지만, 그로 제한되지 않는다. 예로서 및 제한 없이, 서버상에 구동하는 애플리케이션 및 서버 양쪽 모두는 구성 요소일 수 있다. 하나 이상의 구성 요소들은 프로세스 및/또는 실행의 스레드 내에 상주할 수 있고, 구성 요소는 하나의 컴퓨터상에 위치될 수 있고 및/또는 두 개 이상의 컴퓨터들 사이에 분산될 수 있다. 또한, 이들 구성 요소들은 그에 저장된 다양한 데이터 구조들을 갖는 다수의 컴퓨터 판독 가능한 매체들로부터 실행할 수 있다. 구성 요소들은 하나 이상의 데이터 패킷들을 갖는 신호에 따라서와 같이 로컬 및/또는 원격 프로세스들을 통해 통신할 수 있다(예를 들면, 로컬 시스템, 분산된 시스템에서 다른 구성 요소와 인터페이스하는 하나의 구성 요소로부터, 및/또는 신호를 통해 다른 시스템들과 인터넷과 같은 네트워크를 통한 데이터). 다른 예로서, 구성 요소는 프로세서에 의해 실행된 소프트웨어 또는 펌웨어 애플리케이션에 의해 동작되는 전기 또는 전자 회로에 의해 동작된 기계 부분들에 의해 제공된 특정 기능을 갖는 장치일 수 있고, 프로세서는 장치의 내부 또는 외부에 있을 수 있고 소프트웨어 또는 펌웨어 애플리케이션의 적어도 일부를 실행한다. 또 다른 예로서, 구성 요소는 기계 부분들 없이 전자 구성 요소들을 통해 특정 기능을 제공하는 장치일 수 있고, 전자 구성 요소들은 전자 구성 요소들의 기능을 적어도 부분적으로 부여하는 소프트웨어 또는 펌웨어를 실행하기 위해 내부에 프로세서를 포함할 수 있다. 다양한 구성 요소들이 개별적인 구성 요소들로서 도시되었지만, 다수의 구성 요소들이 단일 구성요소로서 구현될 수 있거나, 단일 구성 요소가 예시적인 실시예들로부터 벗어나지 않고 다수의 구성 요소들로서 구현될 수 있다는 것이 인식될 것이다.

또한, 다양한 실시예들은 개시된 요지를 구현하도록 컴퓨터를 제어하기 위한 소프트웨어, 펌웨어, 하드웨어 또는 그의 임의의 조합을 생성하기 위해 표준 프로그래밍 및/또는 엔지니어링 기술들을 사용하는 방법, 장치 또는 제작 물품으로서 구현될 수 있다. 여기에 사용된 용어 "제작 물품"은 임의의 컴퓨터 판독 가능 디바이스 또는 컴퓨터 판독 가능 저장/통신 매체들로부터 액세스 가능한 컴퓨터 프로그램을 포함하도록 의도된다. 예를 들면, 컴퓨터 판독 가능 저장 매체들은 자기 저장 디바이스들(예를 들면, 하드 디스크, 플로피 디스크, 자기 스트립들), 광 디스크들(예를 들면, 컴팩트 디스크(CD), 디지털 다목적 디스크(DVD)), 스마트 카드들, 및 플래시 메모리 디바이스들(예를 들면, 카드, 스틱, 키 드라이브)를 포함할 수 있지만 그로 제한되지 않는다. 물론, 당업자들은 많은 변형들이 다양한 실시예들의 범위 또는 정신으로부터 벗어나지 않고 이러한 구성에 대해 행해질 수 있다는 것을 인식할 것이다.

또한, 단어들 "예" 및 "예시적인"은 경우 또는 예시의 역할을 하는 것을 의미하도록 여기에 사용된다. "예" 및 "예시적인"으로 여기에 설명된 임의의 실시예 또는 설계가 반드시 다른 실시예들 또는 설계들을 통해 바람직하거나 이로운 것으로 해석되는 것은 아니다. 오히려, 단어 예 또는 예시적인의 사용은 구체적인 방식으로 개념들을 나타내도록 의도딘다. 본 출원에서 사용되는, 용어 "또는"은 배타적인 "또는"보다는 오히러 포괄적인 "또는"을 의미하도록 의도된다. 즉, 문맥으로부터 명확하거나 달리 특정되지 않으면, "X는 A 또는 B를 채용한다"는 본래의 포괄적인 치환들 중 어느 하나를 의미하도록 의도된다. 즉, X가 A를 채용하는 경우; X가 B를 채용하는 경우; 또는 X가 A 및 B 둘 모두를 채용하는 경우, "X는 A 또는 B를 채용한다"는 전술한 경우들 중 어느 하나 하에서 만족된다. 또한, 본 출원에서 사용되고 첨부된 청구항들에서 사용되는 단수 표현은 일반적으로 다르게 특정되거나 단수 형태로 지시되도록 문맥으로부터 명확하지 않으면 "하나 이상"을 의미하는 것으로 해석되어야 한다.

더욱이, "사용자 장비", "이동국", "모바일", "가입자국", "액세스 단말", "단말", "핸드셋", "이동 디바이스"(및/또는 유사한 용어를 나타내는 용어)와 같은 용어들은 데이터, 제어, 음성, 비디오, 사운드, 게이밍 또는 실질적으로 임의의 데이터-스트림 또는 시그널링-스트림을 수신하거나 전달하기 위해 무선 통신 서비스의 가입자 또는 사용자에 의해 이용된 무선 디바이스를 말할 수 있다. 전술한 용어들은 관련된 도면들을 참조하여 여기에서 교환 가능하게 이용된다.

또한, 용어들 "사용자", "가입자", "고객", "소비자" 등은 문맥이 용어들 사이에 특정한 구별들을 보증하지 않으면 전체에서 교환 가능하게 채용된다. 이러한 용어들이 시뮬레이션된 비전, 사운드 인식 등을 제공할 수 있는 인공 지능(예를 들면, 적어도 복소 수학식들에 기초하여 추론을 행하기 위한 능력)을 통해 지원된 자동화된 구성 요소들 또는 인간 본체들을 지칭할 수 있다는 것이 인식되어야 한다.

여기에 채용된 바와 같이, 용어 "프로세서"는 단일-코어 프로세서들; 소프트웨어 멀티스레드 실행 능력을 갖는 단일-프로세서들; 멀티-코어 프로세서들; 소프트웨어 멀티스레드 실행 능력을 갖는 멀티-코어 프로세서들; 하드웨어 멀티스레드 기술에 의한 멀티-코어 프로세서들; 병렬 플랫폼들; 및 분산형 공유 메모리를 갖는 병렬 플랫폼들을 포함하지만 그를 포함하는 것으로 제한되지 않는 실질직으로 임의의 컴퓨팅 처리 유닛 또는 디바이스를 지칭할 수 있다. 추가로, 프로세서는 집적 회로, 주문형 집적 회로(ASIC), 디지털 신호 프로세서(DSP), 필드 프로그램 가능 게이트어레이(FPGA), 프로그램 가능 로직 제어기(PLC), 복합 프로그램 가능 로직 디바이스(CPLD), 이종 게이트 또는 트랜지스터 로직, 이종 하드웨어 구성 요소들 또는 여기에 설명된 기능들을 수행하도록 설계된 그의 임의의 조합을 지칭할 수 있다. 프로세서들은 공간 사용을 최적화하거나 사용자 장비의 성능을 향상시키기 위해 분자 및 양자점 기반 트랜지스터들, 스위치들 및 게이트들과 같은 그러나 그에 제한되지 않는 나노-스케일 아키텍처들을 이용할 수 있다. 프로세서는 컴퓨팅 처리 유닛들의 조합으로서 또한 구현될 수 있다.

여기에 사용된 바와 같이, "데이터 저장 장치", "데이터 저장 장치", "데이터 베이스", 및 구성 요소의 동작 및 기능에 관련된 실질적으로 임의의 다른 정보 저장 구성 요소와 같은 용어들은 "메모리 구성 요소들", 또는 "메모리" 내 구현된 엔티티들 또는 메모리를 포함하는 구성 요소들을 지칭한다. 여기에 설명된 메모리 구성 요소들 또는 컴퓨터 판독 가능 저장 매체들이 휘발성 메모리 또는 비휘발성 메모리일 수 있거나 휘발성 및 비휘발성 메모리 양쪽 모두를 포함할 수 있다는 것이 인식될 것이다.

상기에 설명된 것들은 다양한 실시예들의 단순한 예들을 포함한다. 물론, 이들 예들을 설명의 목적들을 위해 구성 요소들 또는 방법론들의 모든 이해 가능한 조합을 설명하는 것이 가능하지 않고, 당업자들은 본 실시예들의 많은 다른 조합들 및 치환들이 가능하다는 것을 인식할 수 있다. 따라서, 여기에 개시된 및/또는 청구된 실시예들은 첨부된 청구항들의 정신 및 범위 내에 속하는 모든 이러한 대체들, 변형들 및 변동들을 수용하도록 의도된다. 또한, 용어 "포함하다"는 상세한 설명 또는 청구항들에서 사용되는 범위 내에서, 이러한 용어는 청구항에서 전이어로서 채용될 때 "포함하는"과 용어 "포함하는"을 유사한 방식으로 포괄하도록 의도된다.

또한, 흐름도는 "시작" 및/또는 "계속" 표시를 포함할 수 있다. "시작" 및/또는 "계속" 표시들은 나타낸 단계들이 선택적으로 다른 루틴들에 통합되거나 그렇지 않으면 그와 함께 사용될 수 있다는 것을 반영한다. 본 문맥에서, "시작"은 나타낸 제 1 단계의 시작을 나타내고 구체적으로 도시되지 않은 다른 활동들에 의해 선행될 수 있다. 또한, "계속" 표시는 나타낸 단계들이 다수 회 수행될 수 있고 및/또는 구체적으로 도시되지 않은 다른 활동들로 계속될 수 있다는 것을 반영한다. 또한, 흐름도가 단계들의 특정 순서를 나타내지만, 인과 관계의 원리들이 유지된다면 다른 순서들이 유사하게 가능하다.

여기에 또한 사용될 수 있는 바와 같이, 용어(들) "에 동작 가능하게 결합된", "에 결합된", 및/또는 "결합하는"은 아이템들 사이에 직접 결합 및/또는 하나 이상의 개재 아이템들을 통해 아이템들 사이의 간접 결합을 포함한다. 이러한 아이템들 및 개재 아이템들은 접합들, 통신 경로들, 구성 요소들, 회로 요소들, 회로들, 기능 블록들, 및/또는 디바이스들을 포함하지만, 그로 제한되지 않는다. 간접 결합의 일 예로서, 제 1 아이템으로부터 제 2 아이템으로 전달된 신호는 하나 이상의 개재 아이템들에 의해 신호에서 형태, 특성 또는 정보의 포맷을 변경함으로써 변경될 수 있지만, 신호에서 정보의 하나 이상의 요소들은 그럼에도 불구하고 제 2 아이템에 의해 인식될 수 있는 방식으로 전달된다. 간접 결합의 다른 예에서, 제 1 아이템의 동작은 하나 이상의 개재 아이템들에서 동작들 및/또는 반응들의 결과로서 제 2 아이템에 대한 반응을 야기할 수 있다.

특정 실시예들이 여기에 예시 및 설명되었지만, 동일하거나 유사한 목적을 달성하는 임의의 장치가 본 개시에 의해 설명되거나 도시된 실시예들에 대해 대체될 수 있다는 것이 이해되어야 한다. 본 개시는 다양한 실시예들의 임의의 모든 적응들 또는 변동들을 포함하도록 의도된다. 상기 실시예들의 조합들 및 여기에 구체적으로 설명되지 않은 다른 실시예들은 본 개시에서 사용될 수 있다. 예를 들면, 하나 이상의 실시예들로부터 하나 이상의 특징들은 하나 이상의 다른 실시예들의 하나 이상의 특징들과 조합될 수 있다. 하나 이상의 실시예들에서, 긍정적으로 인용되는 특징들은 또한 다른 구조적 및/또는 기능적 특성과 교체하여 또는 그와 교체 없이 실시예로부터 부정적으로 인용 및 배제될 수 있다. 본 개시의 실시예들에 관하여 설명된 단계들 또는 기능들은 임의의 순서로 수행될 수 있다. 본 개시의 실시예들에 관하여 설명된 단계들 또는 기능들은 단독으로 또는 본 개시의 다른 단계들 또는 기능들과 조합하여, 뿐만 아니라 본 개시에 기술되지 않은 다른 단계들로부터 또는 다른 실시예들로부터 수행될 수 있다. 또한, 실시예에 관하여 설명된 모든 특징들보다 많거나 적은 것이 또한 이용될 수 있다.

Claims (15)

  1. 중계기 디바이스에 있어서,
    가이드파 통신 시스템의 송신 매체에 바운드된 제 1 가이드된 전자기파들로부터 제 1 채널 신호들을 추출하도록 구성된 제 1 커플러;
    증폭된 제 1 채널 신호들을 생성하기 위해 상기 제 1 채널 신호들을 증폭시키도록 구성된 증폭기;
    적어도 하나의 디바이스로 무선으로 송신할 하나 이상의 상기 증폭된 제 1 채널 신호들을 선택하도록 구성된 채널 선택 필터;
    제 2 가이드된 전자기파들로서 전파시키기 위해 상기 가이드파 통신 시스템의 상기 송신 매체로 상기 증폭된 제 1 채널 신호들을 가이드하도록 구성된 제 2 커플러; 및
    상기 증폭된 제 1 채널 신호들을 상기 제 2 커플러 및 상기 채널 선택 필터로 전달하도록 구성된 채널 듀플렉서를 포함하는, 중계기 디바이스.
  2. 제 1 항에 있어서,
    상기 송신 매체는 와이어를 포함하고, 상기 제 1 가이드된 전자기파들 및 상기 제 2 가이드된 전자기파들은 상기 와이어의 외부 표면에 의해 가이드되는, 중계기 디바이스.
  3. 제 1 항에 있어서,
    상기 제 1 채널 신호들의 적어도 일 부분은 데이터 오버 케이블 시스템 인터페이스 규격(DOCSIS) 프로토콜에 따라 포맷되는, 중계기 디바이스.
  4. 제 1 항에 있어서,
    상기 제 1 채널 신호들의 적어도 일 부분은 802.11 프로토콜 또는 제 4 세대 이상의 모바일 무선 프로토콜에 따라 포맷되는, 중계기 디바이스.
  5. 제 1 항에 있어서,
    상기 채널 선택 필터는 또한 상기 적어도 하나의 디바이스로부터 제 2 채널 신호들을 무선으로 수신하도록 구성되고,
    상기 채널 듀플렉서는 상기 제 2 채널 신호들을 상기 증폭기로 전달하고,
    상기 증폭기는 증폭된 제 2 채널 신호들을 생성하기 위해 상기 제 2 채널 신호들을 증폭시키고,
    상기 제 1 커플러는 제 3 가이드된 전자기파들로서 전파하기 위해 상기 가이드파 통신 시스템의 상기 송신 매체로 상기 증폭된 제 2 채널 신호들을 가이드하는, 중계기 디바이스.
  6. 제 5 항에 있어서,
    상기 증폭기는 양방향 증폭기인, 중계기 디바이스.
  7. 제 5 항에 있어서,
    상기 제 1 채널 신호들은 제 1 주파수 채널들의 수에 대응하고, 상기 제 2 채널 신호들은 상기 제 1 주파수 채널들의 수보다 적은 제 2 주파수 채널들의 수에 대응하는, 중계기 디바이스.
  8. 제 5 항에 있어서,
    상기 하나 이상의 상기 증폭된 제 1 채널 신호들은 제 1 주파수 채널들의 수에 대응하고, 상기 제 2 채널 신호들은 상기 제 1 주파수 채널들의 수와 같은 제 2 주파수 채널들의 수에 대응하는, 중계기 디바이스.
  9. 제 5 항에 있어서,
    상기 제 2 채널 신호들의 적어도 일 부분은 데이터 오버 케이블 시스템 인터페이스 규격(DOCSIS) 프로토콜, 802.11 프로토콜 또는 제 4 세대 이상의 무선 프로토콜에 따라 포맷되는, 중계기 디바이스.
  10. 제 1 항에 있어서,
    상기 채널 듀플렉서는 아날로그 신호 처리를 통해 동작하는 다이플렉서를 포함하는, 중계기 디바이스.
  11. 방법에 있어서,
    가이드파 통신 시스템의 송신 매체에 바운드된 제 1 가이드된 전자기파들로부터 제 1 채널 신호들을 중계기 디바이스의 제 1 커플러에 의해 추출하는 단계;
    증폭된 제 1 채널 신호들을 생성하기 위해 상기 제 1 채널 신호들을 상기 중계기 디바이스의 증폭기에 의해 증폭시키는 단계;
    적어도 하나의 디바이스로 무선으로 송신할 하나 이상의 상기 증폭된 제 1 채널 신호들을 상기 중계기 디바이스의 채널 선택 필터에 의해 선택하는 단계; 및
    제 2 가이드된 전자기파들로서 전파하기 위해 상기 가이드파 통신 시스템의 상기 송신 매체로 상기 하나 이상의 상기 증폭된 제 1 채널 신호들을 상기 중계기 디바이스의 제 2 커플러에 의해 가이드하는 단계를 포함하는, 방법.
  12. 제 11 항에 있어서,
    상기 송신 매체는 와이어를 포함하고, 상기 제 1 가이드된 전자기파들 및 상기 제 2 가이드된 전자기파들은 상기 와이어의 외부 표면에 의해 가이드되는, 방법.
  13. 제 11 항에 있어서,
    상기 제 1 채널 신호들의 적어도 일 부분은 데이터 오버 케이블 시스템 인터페이스 규격(DOCSIS) 프로토콜에 따라 포맷되는, 방법.
  14. 제 11 항에 있어서,
    상기 제 1 채널 신호들의 적어도 일 부분은 802.11 프로토콜 또는 제 4 세대 이상의 모바일 무선 프로토콜에 따라 포맷되는, 방법.
  15. 제 11 항에 있어서,
    상기 채널 선택 필터는 또한 상기 적어도 하나의 디바이스로부터 제 2 채널 신호들을 무선으로 수신하도록 구성되는, 방법.
KR1020187000758A 2015-06-11 2016-04-20 중계기 및 표면파 전력선 통신들에서 그와 함께 사용을 위한 방법들 KR20180018674A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/736,306 US9608692B2 (en) 2015-06-11 2015-06-11 Repeater and methods for use therewith
US14/736,306 2015-06-11
PCT/US2016/028395 WO2016200491A1 (en) 2015-06-11 2016-04-20 Repeater and methods for use therewith in surface wave power line communications

Publications (1)

Publication Number Publication Date
KR20180018674A true KR20180018674A (ko) 2018-02-21

Family

ID=55863238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187000758A KR20180018674A (ko) 2015-06-11 2016-04-20 중계기 및 표면파 전력선 통신들에서 그와 함께 사용을 위한 방법들

Country Status (9)

Country Link
US (6) US9608692B2 (ko)
EP (1) EP3308473A1 (ko)
JP (1) JP2018524878A (ko)
KR (1) KR20180018674A (ko)
CN (1) CN107810608A (ko)
BR (1) BR112017026305A2 (ko)
CA (1) CA2987732A1 (ko)
MX (1) MX2017016043A (ko)
WO (1) WO2016200491A1 (ko)

Families Citing this family (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011128065A2 (en) 2010-04-12 2011-10-20 Golden Crab, S.L. Automatic release control system for controlling the connection between two elements
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
CN104700592A (zh) * 2013-12-06 2015-06-10 上海诺司纬光电仪器有限公司 一种扫平仪控制系统
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US10411920B2 (en) 2014-11-20 2019-09-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing electromagnetic waves within pathways of a cable
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10505249B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a cable with a plurality of stranded uninsulated conductors forming interstitial areas for guiding electromagnetic waves therein and method of use
US10505252B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a coupler for guiding electromagnetic waves through interstitial areas formed by a plurality of stranded uninsulated conductors and method of use
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10505250B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a cable with a plurality of stranded uninsulated conductors forming interstitial areas for propagating guided wave modes therein and methods of use
US10554454B2 (en) 2014-11-20 2020-02-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing electromagnetic waves in a cable
US10505248B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication cable having a plurality of uninsulated conductors forming interstitial areas for propagating electromagnetic waves therein and method of use
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10516555B2 (en) 2014-11-20 2019-12-24 At&T Intellectual Property I, L.P. Methods and apparatus for creating interstitial areas in a cable
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10756805B2 (en) 2015-06-03 2020-08-25 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) * 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10742243B2 (en) 2015-07-14 2020-08-11 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10511346B2 (en) 2015-07-14 2019-12-17 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on an uninsulated conductor
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10439290B2 (en) 2015-07-14 2019-10-08 At&T Intellectual Property I, L.P. Apparatus and methods for wireless communications
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10129057B2 (en) 2015-07-14 2018-11-13 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10218325B2 (en) * 2016-04-27 2019-02-26 California Institute Of Technology Spatial power combining mechanism (SPCM) for the generation and amplification of electromagnetic radiation
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10205212B2 (en) 2016-12-06 2019-02-12 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting a phase of electromagnetic waves
US10096883B2 (en) 2016-12-06 2018-10-09 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting a wavelength electromagnetic waves
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10136255B2 (en) 2016-12-08 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing on a communication device
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10027427B2 (en) 2016-12-08 2018-07-17 At&T Intellectual Property I, L.P. Apparatus and methods for measuring signals
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
WO2018125228A1 (en) * 2016-12-30 2018-07-05 Intel Corporation Waveguides with active or passive repeaters for range extension
CN106712856A (zh) * 2017-01-24 2017-05-24 北京电子工程总体研究所 一种可自适应调整输出功率的微波信号源
US10110274B2 (en) 2017-01-27 2018-10-23 At&T Intellectual Property I, L.P. Method and apparatus of communication utilizing waveguide and wireless devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10523388B2 (en) 2017-04-17 2019-12-31 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna having a fiber optic link
US10630341B2 (en) 2017-05-11 2020-04-21 At&T Intellectual Property I, L.P. Method and apparatus for installation and alignment of radio devices
US10419072B2 (en) 2017-05-11 2019-09-17 At&T Intellectual Property I, L.P. Method and apparatus for mounting and coupling radio devices
US10468744B2 (en) 2017-05-11 2019-11-05 At&T Intellectual Property I, L.P. Method and apparatus for assembly and installation of a communication device
US10103777B1 (en) 2017-07-05 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for reducing radiation from an external surface of a waveguide structure
US10389403B2 (en) 2017-07-05 2019-08-20 At&T Intellectual Property I, L.P. Method and apparatus for reducing flow of currents on an outer surface of a structure
US10374277B2 (en) 2017-09-05 2019-08-06 At&T Intellectual Property I, L.P. Multi-arm dielectric coupling system and methods for use therewith
US10062970B1 (en) 2017-09-05 2018-08-28 At&T Intellectual Property I, L.P. Dual mode communications device and methods for use therewith
US10374278B2 (en) 2017-09-05 2019-08-06 At&T Intellectual Property I, L.P. Dielectric coupling system with mode control and methods for use therewith
US10446899B2 (en) 2017-09-05 2019-10-15 At&T Intellectual Property I, L.P. Flared dielectric coupling system and methods for use therewith
US10673116B2 (en) 2017-09-06 2020-06-02 At&T Intellectual Property I, L.P. Method and apparatus for coupling an electromagnetic wave to a transmission medium
US10608312B2 (en) 2017-09-06 2020-03-31 At&T Intellectual Property I, L.P. Method and apparatus for generating an electromagnetic wave that couples onto a transmission medium
US10305179B2 (en) 2017-09-06 2019-05-28 At&T Intellectual Property I, L.P. Antenna structure with doped antenna body
US10205231B1 (en) 2017-09-06 2019-02-12 At&T Intellectual Property I, L.P. Antenna structure with hollow-boresight antenna beam
US10305197B2 (en) 2017-09-06 2019-05-28 At&T Intellectual Property I, L.P. Multimode antenna system and methods for use therewith
US10230426B1 (en) 2017-09-06 2019-03-12 At&T Intellectual Property I, L.P. Antenna structure with circularly polarized antenna beam
US10291286B2 (en) 2017-09-06 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for guiding an electromagnetic wave to a transmission medium
US10469228B2 (en) 2017-09-12 2019-11-05 At&T Intellectual Property I, L.P. Apparatus and methods for exchanging communications signals
US9998172B1 (en) 2017-10-04 2018-06-12 At&T Intellectual Property I, L.P. Apparatus and methods for processing ultra-wideband electromagnetic waves
US10123217B1 (en) 2017-10-04 2018-11-06 At&T Intellectual Property I, L.P. Apparatus and methods for communicating with ultra-wideband electromagnetic waves
US10498589B2 (en) 2017-10-04 2019-12-03 At&T Intellectual Property I, L.P. Apparatus and methods for mitigating a fault that adversely affects ultra-wideband transmissions
US10454151B2 (en) 2017-10-17 2019-10-22 At&T Intellectual Property I, L.P. Methods and apparatus for coupling an electromagnetic wave onto a transmission medium
US10051488B1 (en) 2017-10-19 2018-08-14 At&T Intellectual Property I, L.P. Dual mode communications device with remote device feedback and methods for use therewith
US10244408B1 (en) 2017-10-19 2019-03-26 At&T Intellectual Property I, L.P. Dual mode communications device with null steering and methods for use therewith
US10553959B2 (en) 2017-10-26 2020-02-04 At&T Intellectual Property I, L.P. Antenna system with planar antenna and directors and methods for use therewith
US10553960B2 (en) 2017-10-26 2020-02-04 At&T Intellectual Property I, L.P. Antenna system with planar antenna and methods for use therewith
US10554235B2 (en) 2017-11-06 2020-02-04 At&T Intellectual Property I, L.P. Multi-input multi-output guided wave system and methods for use therewith
US10355745B2 (en) 2017-11-09 2019-07-16 At&T Intellectual Property I, L.P. Guided wave communication system with interference mitigation and methods for use therewith
US10003364B1 (en) 2017-11-09 2018-06-19 At&T Intellectual Property I, L.P. Guided wave communication system with interference cancellation and methods for use therewith
US10555318B2 (en) 2017-11-09 2020-02-04 At&T Intellectual Property I, L.P. Guided wave communication system with resource allocation and methods for use therewith
US10555249B2 (en) 2017-11-15 2020-02-04 At&T Intellectual Property I, L.P. Access point and methods for communicating resource blocks with guided electromagnetic waves
US10230428B1 (en) 2017-11-15 2019-03-12 At&T Intellectual Property I, L.P. Access point and methods for use in a radio distributed antenna system
US10284261B1 (en) 2017-11-15 2019-05-07 At&T Intellectual Property I, L.P. Access point and methods for communicating with guided electromagnetic waves
US10469192B2 (en) 2017-12-01 2019-11-05 At&T Intellectual Property I, L.P. Methods and apparatus for controllable coupling of an electromagnetic wave
US10374281B2 (en) 2017-12-01 2019-08-06 At&T Intellectual Property I, L.P. Apparatus and method for guided wave communications using an absorber
US10424845B2 (en) 2017-12-06 2019-09-24 At&T Intellectual Property I, L.P. Method and apparatus for communication using variable permittivity polyrod antenna
US10680308B2 (en) 2017-12-07 2020-06-09 At&T Intellectual Property I, L.P. Methods and apparatus for bidirectional exchange of electromagnetic waves
US10171158B1 (en) 2018-03-26 2019-01-01 At&T Intellectual Property I, L.P. Analog surface wave repeater pair and methods for use therewith
US10616056B2 (en) 2018-03-26 2020-04-07 At&T Intellectual Property I, L.P. Modulation and demodulation of signals conveyed by electromagnetic waves and methods thereof
US10326495B1 (en) 2018-03-26 2019-06-18 At&T Intellectual Property I, L.P. Coaxial surface wave communication system and methods for use therewith
US10340979B1 (en) 2018-03-26 2019-07-02 At&T Intellectual Property I, L.P. Surface wave communication system and methods for use therewith
US10200106B1 (en) 2018-03-26 2019-02-05 At&T Intellectual Property I, L.P. Analog surface wave multipoint repeater and methods for use therewith
US10581275B2 (en) 2018-03-30 2020-03-03 At&T Intellectual Property I, L.P. Methods and apparatus for regulating a magnetic flux in an inductive power supply
US10547545B2 (en) 2018-03-30 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching of data channels provided in electromagnetic waves
US10419074B1 (en) 2018-05-16 2019-09-17 At&T Intellectual Property I, L.P. Method and apparatus for communications using electromagnetic waves and an insulator
US10305192B1 (en) 2018-08-13 2019-05-28 At&T Intellectual Property I, L.P. System and method for launching guided electromagnetic waves with impedance matching
US10629995B2 (en) 2018-08-13 2020-04-21 At&T Intellectual Property I, L.P. Guided wave launcher with aperture control and methods for use therewith
US10749570B2 (en) 2018-09-05 2020-08-18 At&T Intellectual Property I, L.P. Surface wave launcher and methods for use therewith
US10405199B1 (en) 2018-09-12 2019-09-03 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting or receiving electromagnetic waves
US10587310B1 (en) 2018-10-10 2020-03-10 At&T Intellectual Property I, L.P. Methods and apparatus for selectively controlling energy consumption of a waveguide system
US10693667B2 (en) 2018-10-12 2020-06-23 At&T Intellectual Property I, L.P. Methods and apparatus for exchanging communication signals via a cable of twisted pair wires
US10516197B1 (en) 2018-10-18 2019-12-24 At&T Intellectual Property I, L.P. System and method for launching scattering electromagnetic waves
US10505584B1 (en) 2018-11-14 2019-12-10 At&T Intellectual Property I, L.P. Device with resonant cavity for transmitting or receiving electromagnetic waves
US10523269B1 (en) 2018-11-14 2019-12-31 At&T Intellectual Property I, L.P. Device with configurable reflector for transmitting or receiving electromagnetic waves
US10681611B1 (en) * 2018-11-16 2020-06-09 At&T Intellectual Property I, L.P. Method and apparatus for managing communication routings in a communication system
US10686649B2 (en) 2018-11-16 2020-06-16 At&T Intellectual Property I, L.P. Method and apparatus for managing a local area network
US10623033B1 (en) 2018-11-29 2020-04-14 At&T Intellectual Property I, L.P. Methods and apparatus to reduce distortion between electromagnetic wave transmissions
US10371889B1 (en) 2018-11-29 2019-08-06 At&T Intellectual Property I, L.P. Method and apparatus for providing power to waveguide systems
US10623057B1 (en) 2018-12-03 2020-04-14 At&T Intellectual Property I, L.P. Guided wave directional coupler and methods for use therewith
US10623056B1 (en) 2018-12-03 2020-04-14 At&T Intellectual Property I, L.P. Guided wave splitter and methods for use therewith
US10581522B1 (en) 2018-12-06 2020-03-03 At&T Intellectual Property I, L.P. Free-space, twisted light optical communication system
US10637535B1 (en) 2018-12-10 2020-04-28 At&T Intellectual Property I, L.P. Methods and apparatus to receive electromagnetic wave transmissions
US10469156B1 (en) 2018-12-13 2019-11-05 At&T Intellectual Property I, L.P. Methods and apparatus for measuring a signal to switch between modes of transmission
US10666323B1 (en) 2018-12-13 2020-05-26 At&T Intellectual Property I, L.P. Methods and apparatus for monitoring conditions to switch between modes of transmission
US10560322B1 (en) * 2019-07-11 2020-02-11 Synap Technologies Ltd. Network protocol for mesh capability in narrow-band wireless networks

Family Cites Families (2385)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US529290A (en) 1894-11-13 Sealing-cap for air-brake couplings
US395814A (en) 1889-01-08 Support for aerial electric conductors
GB175489A (en) 1920-12-21 1922-02-23 Alfred Mills Taylor Means for and methods of superposing electric currents of different frequencies uponexisting alternating current systems
US1721785A (en) 1924-11-22 1929-07-23 Meyer Ulfilas Electric conductor with artificially increased self-inductance
US1860123A (en) 1925-12-29 1932-05-24 Rca Corp Variable directional electric wave generating device
US2129711A (en) 1933-03-16 1938-09-13 American Telephone & Telegraph Guided transmission of ultra high frequency waves
US1953940A (en) 1934-01-09 1934-04-10 Kingman Self-filling fountain pen
BE417436A (ko) 1935-10-03
US2147717A (en) 1935-12-31 1939-02-21 Bell Telephone Labor Inc Guided wave transmission
US2187908A (en) 1936-06-15 1940-01-23 Harold J Mccreary Electromagnetic wave transmission
US2199083A (en) 1937-09-04 1940-04-30 Bell Telephone Labor Inc Transmission of guided waves
US2232179A (en) 1938-02-05 1941-02-18 Bell Telephone Labor Inc Transmission of guided waves
US2283935A (en) 1938-04-29 1942-05-26 Bell Telephone Labor Inc Transmission, radiation, and reception of electromagnetic waves
US2207845A (en) 1938-05-28 1940-07-16 Rca Corp Propagation of waves in a wave guide
US2461005A (en) 1940-04-05 1949-02-08 Bell Telephone Labor Inc Ultra high frequency transmission
US2540839A (en) 1940-07-18 1951-02-06 Bell Telephone Labor Inc Wave guide system
US2398095A (en) 1940-08-31 1946-04-09 Rca Corp Electromagnetic horn radiator
US2402622A (en) 1940-11-26 1946-06-25 Univ Leland Stanford Junior Radiating electromagnetic wave guide
US2415807A (en) 1942-01-29 1947-02-18 Sperry Gyroscope Co Inc Directive electromagnetic radiator
US2415089A (en) 1942-05-28 1947-02-04 Bell Telephone Labor Inc Microwave antennas
US2407069A (en) 1942-09-15 1946-09-03 Gen Electric Dielectric wave guide system
US2407068A (en) 1942-09-15 1946-09-03 Gen Electric Wave transmitting system
FR961961A (ko) 1943-08-16 1950-05-26
US2513205A (en) 1943-11-19 1950-06-27 Us Navy Rotatable joint for radio wave guide systems
GB588159A (en) 1944-01-15 1947-05-15 Western Electric Co Improvements in directive antennas
US2562281A (en) 1944-06-14 1951-07-31 Bell Telephone Labor Inc Directive pickup for transmission lines
US2514679A (en) 1944-06-16 1950-07-11 Bell Telephone Labor Inc Wave transmission
US2432134A (en) 1944-06-28 1947-12-09 American Telephone & Telegraph Directional radio system
US2411338A (en) 1944-07-24 1946-11-19 Roberts Shepard Wave guide
US2471021A (en) 1944-08-15 1949-05-24 Philco Corp Radio wave guide
US2420007A (en) 1944-09-30 1947-05-06 Rca Corp Flexible joint for waveguides
US2557110A (en) 1945-02-17 1951-06-19 Sperry Corp Wave guide attenuator apparatus
US2519603A (en) 1945-03-17 1950-08-22 Reber Grote Navigational instrument
US2599864A (en) 1945-06-20 1952-06-10 Robertson-Shersby-Ha Rob Bruce Wave front modifying wave guide system
US2671855A (en) 1945-09-19 1954-03-09 Lester C Van Atta Antenna
US2761137A (en) 1946-01-05 1956-08-28 Lester C Van Atta Solid dielectric waveguide with metal plating
US2691766A (en) 1946-01-29 1954-10-12 Roger E Clapp Waveguide mode transformer
US2706279A (en) 1946-02-01 1955-04-12 Walter A Aron Flexible joint for wave guides
US2542980A (en) 1946-02-19 1951-02-27 Sperry Corportation Electromagnetic horn
US2556094A (en) 1946-09-24 1951-06-05 Rca Corp High-frequency apparatus
US2596190A (en) 1947-09-05 1952-05-13 Wiley Carl Atwood Dielectric horn
US2711514A (en) 1948-10-27 1955-06-21 Rines Robert Harvey Wave guide modulation system
US2488400A (en) 1948-12-17 1949-11-15 Westinghouse Electric Corp Toroidal coil-terminal bushing coupling power line and telephone circuit
US2659817A (en) 1948-12-31 1953-11-17 Bell Telephone Labor Inc Translation of electromagnetic waves
US2912695A (en) 1948-12-31 1959-11-10 Bell Telephone Labor Inc Corrugated wave guide devices
GB667290A (en) 1949-03-04 1952-02-27 Nat Res Dev Improvements in microwave circuits
US2688732A (en) 1949-05-05 1954-09-07 Bell Telephone Labor Inc Wave guide
US2677055A (en) 1949-10-06 1954-04-27 Philip J Allen Multiple-lobe antenna assembly
NL89862C (ko) 1950-03-21
BE502150A (ko) 1950-03-27 1900-01-01
GB682817A (en) 1950-08-17 1952-11-19 Standard Telephones Cables Ltd Improvements in or relating to electric signalling lines
US2810111A (en) 1950-11-25 1957-10-15 Sperry Rand Corp Wave guide corner
US2769148A (en) 1951-03-07 1956-10-30 Bell Telephone Labor Inc Electrical conductors
US2769147A (en) 1951-05-05 1956-10-30 Bell Telephone Labor Inc Wave propagation in composite conductors
GB705192A (en) 1951-05-18 1954-03-10 Gen Electric Co Ltd Improvements in or relating to couplings for electromagnetic waves between coaxial transmission lines and wire waveguides
US2819451A (en) 1951-07-12 1958-01-07 Gen Electric Co Ltd Electromagnetic-wave generating system
NL171400B (nl) 1951-07-26 Western Electric Co Automatische voorspanningsbesturingsketen voor een injectielaser.
US2749545A (en) 1951-08-01 1956-06-05 Itt Electromagnetic horn
US2748350A (en) 1951-09-05 1956-05-29 Bell Telephone Labor Inc Ultra-high frequency selective mode directional coupler
US2754513A (en) 1951-12-04 1956-07-10 Georg J E Goubau Antenna
NL97161C (ko) 1952-03-01
US2740826A (en) 1952-07-09 1956-04-03 Product Dev Company Low capacity high temperature coaxial cables
US2727232A (en) 1952-07-19 1955-12-13 North American Aviation Inc Antenna for radiating elliptically polarized electromagnetic waves
US2805415A (en) 1952-08-02 1957-09-03 Sperry Rand Corp Microwave antenna system
GB725187A (en) 1953-03-20 1955-03-02 Standard Telephones Cables Ltd Improvements in or relating to high frequency transmission line systems
BE528384A (ko) 1953-04-29
US2835871A (en) 1953-08-07 1958-05-20 Herbert P Raabe Two-channel rotary wave guide joint
GB767506A (en) 1953-08-17 1957-02-06 Standard Telephones Cables Ltd Improvements in or relating to travelling wave tubes
FR1096456A (fr) 1953-12-14 1955-06-21 Antenne et dispositif d'alimentation diélectrique
GB746111A (en) 1954-02-01 1956-03-07 Lewis August Bonden Low capacity coaxial electric cable
US2915270A (en) 1954-03-01 1959-12-01 Gladsden David Adjustable support for post-mounted lamps
US2825060A (en) 1954-10-18 1958-02-25 Gabriel Co Dual-polarization antenna
US2806972A (en) 1954-12-08 1957-09-17 Hughes Aircraft Co Traveling-wave tube
US2867776A (en) 1954-12-31 1959-01-06 Rca Corp Surface waveguide transition section
US2949589A (en) 1955-05-20 1960-08-16 Surface Conduction Inc Microwave communication lines
US2820083A (en) 1955-06-02 1958-01-14 William L Hendrix Aerial cable
US2993205A (en) 1955-08-19 1961-07-18 Litton Ind Of Maryland Inc Surface wave antenna array with radiators for coupling surface wave to free space wave
LU35086A1 (ko) 1956-04-11
GB859951A (en) 1956-07-13 1961-01-25 Surface Conduction Inc Improvements in or relating to launching and receiving of surface waves of electro-magnetic energy
US2921277A (en) 1956-07-13 1960-01-12 Surface Conduction Inc Launching and receiving of surface waves
US2981949A (en) 1956-09-04 1961-04-25 Hughes Aircraft Co Flush-mounted plural waveguide slot antenna
FR1168564A (fr) 1957-02-08 1958-12-10 Lignes Telegraph Telephon Perfectionnements aux lignes de transmission d'ondes de surface
US2925458A (en) 1957-04-01 1960-02-16 Crouse Hinds Co Traffic signal disconnecting hanger
DE1071168B (ko) 1957-08-29
US3047822A (en) 1957-12-23 1962-07-31 Thompson Ramo Wooldridge Inc Wave communicating device
US2960670A (en) 1958-03-28 1960-11-15 Bell Telephone Labor Inc Microwave devices for wave guides of circular cross section
US2972148A (en) 1958-06-11 1961-02-14 Bendix Corp Multi-channel horn antenna
US3040278A (en) 1958-06-30 1962-06-19 Polytechnic Inst Brooklyn Broad-band single-wire transmission line
US3028565A (en) 1958-09-05 1962-04-03 Atomic Energy Authority Uk Microwave propagating structures
NL244999A (ko) 1958-11-21
US2974297A (en) 1959-04-28 1961-03-07 Sperry Rand Corp Constant phase shift rotator
US3025478A (en) 1959-05-27 1962-03-13 Bell Telephone Labor Inc Microwave devices for waveguides of circular cross section
US3129356A (en) 1959-05-28 1964-04-14 Gen Electric Fast electromagnetic wave and undulating electron beam interaction structure
US3146453A (en) 1959-08-24 1964-08-25 Deco Electronics Inc Shortened horn antenna with multiple phased feed
US3077569A (en) 1959-11-03 1963-02-12 Ikrath Kurt Surface wave launcher
FR1250667A (fr) 1959-12-04 1961-01-13 Dispositif de couplage pour ondes électromagnétiques guidées
DE1096441B (de) 1960-02-25 1961-01-05 Felten & Guilleaume Carlswerk Konzentrisches, luftraumisoliertes Hochfrequenzkabel mit schraubenlinien-foermig gewelltem Aussenleiter und wendelfoermigem Abstandhalter aus Isoliermaterial zwischen Innen- und Aussenleiter
US3234559A (en) 1960-05-07 1966-02-08 Telefunken Patent Multiple horn feed for parabolic reflector with phase and power adjustments
US3109175A (en) 1960-06-20 1963-10-29 Lockheed Aircraft Corp Rotating beam antenna utilizing rotating reflector which sequentially enables separate groups of directors to become effective
US3072870A (en) 1960-07-21 1963-01-08 Microwave Ass Rectangular waveguide bend
FR1273956A (fr) 1960-09-08 1961-10-20 Thomson Houston Comp Francaise Perfectionnements aux aériens pour ondes ultra-courtes
NL272285A (ko) 1960-12-19
US3392395A (en) 1961-05-22 1968-07-09 Hazeltine Research Inc Monopulse antenna system providing independent control in a plurality of modes of operation
DE1140246B (de) 1961-09-28 1962-11-29 Rohde & Schwarz Kopplungsanordnung fuer eine Oberflaechenwellenleitung
DE1158597B (de) 1962-02-23 1963-12-05 Telefunken Patent Verlustarmer Hohlleiter zur UEbertragung der H-Welle
US3218384A (en) 1962-03-29 1965-11-16 Int Nickel Co Temperature-responsive transmission line conductor for de-icing
US3296685A (en) 1962-05-31 1967-01-10 Sylvania Electric Prod Method of making dielectric foam antenna
GB1076772A (en) 1963-03-15 1967-07-19 Central Electr Generat Board Improvements in or relating to electrical conductors for alternating current
US3725937A (en) 1963-05-25 1973-04-03 Telefunken Patent Radar system for determining the angular deviation of a target from a reference line
US3427573A (en) 1963-11-26 1969-02-11 Gen Electric Low-pass non-reactive frequency selective filter in which high frequencies are absorbed in dissipative material
US3524192A (en) 1963-12-09 1970-08-11 Motorola Inc Scanning apparatus for antenna arrays
US3201724A (en) 1964-01-07 1965-08-17 Hafner Theodore Suspension system for surface wave transmission line
US3255454A (en) 1964-02-06 1966-06-07 Carlton H Walter Surface wave luneberg lens antenna system
FR1419597A (fr) 1964-03-20 1965-12-03 Thomson Houston Comp Francaise Perfectionnements aux antennes pour ondes ultra-courtes
GB1034765A (en) 1964-06-08 1966-07-06 Int Nickel Ltd Electrical conductors and alloys for use therein
US3329958A (en) 1964-06-11 1967-07-04 Sylvania Electric Prod Artificial dielectric lens structure
GB1119481A (en) 1964-12-28 1968-07-10 Sumitomo Electric Industries Improved system for combined obstacle detection and communication for track-borne vehicles
US3321763A (en) 1965-01-27 1967-05-23 Ikrath Kurt Inflatable microwave antenna with variable parameters
US3351947A (en) 1965-02-17 1967-11-07 Mark Products Company Shrouded parabolic antenna structure
US3420596A (en) 1965-03-05 1969-01-07 American Optical Corp Apparatus including guide plate means and multiple internal reflective prism means for launching and transmitting surface-guided optical waves
US3414903A (en) 1965-03-10 1968-12-03 Radiation Inc Antenna system with dielectric horn structure interposed between the source and lens
US3316344A (en) 1965-04-26 1967-04-25 Central Electr Generat Board Prevention of icing of electrical conductors
US3316345A (en) 1965-04-26 1967-04-25 Central Electr Generat Board Prevention of icing of electrical conductors
US3318561A (en) 1965-05-12 1967-05-09 Antenna Specialists Co Antenna support bracket
US3389394A (en) 1965-11-26 1968-06-18 Radiation Inc Multiple frequency antenna
US3411112A (en) 1966-04-15 1968-11-12 Loral Corp Ferrimagnetic couplers employing a transition from air dielectric waveguide to solid dielectric waveguide
US3531803A (en) 1966-05-02 1970-09-29 Hughes Aircraft Co Switching and power phasing apparatus for automatically forming and despinning an antenna beam for a spinning body
US3413642A (en) 1966-05-05 1968-11-26 Bell Telephone Labor Inc Dual mode antenna
GB1207491A (en) 1966-10-07 1970-10-07 Harold Everard Monteagl Barlow Improvements relating to transmission line systems
US3500422A (en) 1966-11-03 1970-03-10 Us Navy Sub-array horn assembly for phased array application
US3530481A (en) 1967-01-09 1970-09-22 Hitachi Ltd Electromagnetic horn antenna
US3459873A (en) 1967-02-16 1969-08-05 Gen Electric Shielded connector for movable lines
US3609247A (en) 1967-04-21 1971-09-28 Carrier Communication Inc Inductive carrier communication systems
GB1141390A (en) 1967-04-24 1969-01-29 Mullard Ltd An improved method of preventing the formation of ice on an overhead power transmission line
US3454951A (en) 1967-05-05 1969-07-08 North American Rockwell Spiral antenna with zigzag arms to reduce size
US3522560A (en) 1967-10-06 1970-08-04 Western Electric Co Solid dielectric waveguide filters
US3509463A (en) 1967-12-29 1970-04-28 Sylvania Electric Prod Surface wave transmission system
US3487158A (en) 1968-05-01 1969-12-30 Interpace Corp Power line support system using bushing insulators for narrow right-of-way
US3566317A (en) 1968-05-24 1971-02-23 Theodore Hafner Extensible surface wave transmission line
US3557341A (en) 1968-08-09 1971-01-19 Vero Zap Otdel Vg Proektino Iz Apparatus for protecting ac switches and electrical equipment against low temperatures and icing
US3529205A (en) 1968-10-21 1970-09-15 Bell Telephone Labor Inc Spatially periodic coupling for modes having differing propagation constants and traveling wave tube utilizing same
US3599219A (en) 1969-01-29 1971-08-10 Andrew Corp Backlobe reduction in reflector-type antennas
US3555553A (en) 1969-01-31 1971-01-12 Us Navy Coaxial-line to waveguide transition for horn antenna
US3588754A (en) 1969-04-21 1971-06-28 Theodore Hafner Attachment of surface wave launcher and surface wave conductor
US3558213A (en) 1969-04-25 1971-01-26 Bell Telephone Labor Inc Optical frequency filters using disc cavity
US3603904A (en) 1969-06-04 1971-09-07 Theodore Hafner Temperature controlled surface wave feeder lines
US3589121A (en) 1969-08-01 1971-06-29 Gen Electric Method of making fluid-blocked stranded conductor
US3623114A (en) 1969-08-11 1971-11-23 Nasa Conical reflector antenna
US3699574A (en) 1969-10-16 1972-10-17 Us Navy Scanned cylindrical array monopulse antenna
GB1338384A (en) 1969-12-17 1973-11-21 Post Office Dielectric waveguides
US3693922A (en) 1970-03-02 1972-09-26 Michel M F Gueguen Support for antenna device
US3660673A (en) 1970-04-16 1972-05-02 North American Rockwell Optical parametric device
US3668459A (en) 1970-09-08 1972-06-06 Varian Associates Coupled cavity slow wave circuit and tube using same
FR2119804B1 (ko) 1970-09-15 1974-05-17 Poitevin Jean Pierre
US3672202A (en) 1970-09-15 1972-06-27 Microwave Dev Lab Inc Method of making waveguide bend
JPS5119742B1 (ko) 1970-10-17 1976-06-19
GB1364264A (en) 1970-11-16 1974-08-21 Sits Soc It Telecom Siemens Transmission system including a monitoring system
US3753086A (en) 1970-12-09 1973-08-14 W Shoemaker Method and apparatus for locating and measuring wave guide discontinuities
US3686596A (en) 1971-03-08 1972-08-22 Bunker Ramo Double mitered compensated waveguide bend
GB1392452A (en) 1971-08-02 1975-04-30 Nat Res Dev Waveguides
US3806931A (en) 1971-10-26 1974-04-23 Us Navy Amplitude modulation using phased-array antennas
GB1389554A (en) 1972-05-26 1975-04-03 Coal Industry Patents Ltd Radiating line transmission system
GB1383549A (en) 1972-07-28 1974-02-12 Post Office Optical communications systems
US5926128A (en) 1972-11-01 1999-07-20 The Marconi Company Limited Radar systems
GB1422956A (en) 1972-11-10 1976-01-28 Bicc Ltd Optical guides
DE2302114B2 (ko) 1973-01-13 1975-05-28 Aeg-Telefunken Kabelwerke Ag, Rheydt, 4070 Rheydt
US3952984A (en) 1973-02-12 1976-04-27 Dracos Alexander Dimitry Mid-tower rotary antenna mount
US3796970A (en) 1973-04-04 1974-03-12 Bell Telephone Labor Inc Orthogonal resonant filter for planar transmission lines
US3833909A (en) 1973-05-07 1974-09-03 Sperry Rand Corp Compact wide-angle scanning antenna system
US3835407A (en) 1973-05-21 1974-09-10 California Inst Of Techn Monolithic solid state travelling wave tunable amplifier and oscillator
US3911415A (en) 1973-12-18 1975-10-07 Westinghouse Electric Corp Distribution network power line carrier communication system
JPS5237941B2 (ko) 1974-02-04 1977-09-26
US3888446A (en) 1974-04-02 1975-06-10 Valmont Industries Pole mounting bracket attachment
US3899759A (en) 1974-04-08 1975-08-12 Microwave Ass Electric wave resonators
US3936838A (en) 1974-05-16 1976-02-03 Rca Corporation Multimode coupling system including a funnel-shaped multimode coupler
US3983560A (en) 1974-06-06 1976-09-28 Andrew Corporation Cassegrain antenna with improved subreflector for terrestrial communication systems
US3935577A (en) 1974-09-11 1976-01-27 Andrew Corporation Flared microwave horn with dielectric lens
US3973240A (en) 1974-12-05 1976-08-03 General Electric Company Power line access data system
US3973087A (en) 1974-12-05 1976-08-03 General Electric Company Signal repeater for power line access data system
US4125768A (en) 1974-12-18 1978-11-14 Post Office Apparatus for launching or detecting waves of selected modes in an optical dielectric waveguide
GB1527228A (en) 1974-12-18 1978-10-04 Post Office Apparatus for launching or detecting waves of selected modes in an optical dielectric waveguide
US4274097A (en) 1975-03-25 1981-06-16 The United States Of America As Represented By The Secretary Of The Navy Embedded dielectric rod antenna
US4010799A (en) 1975-09-15 1977-03-08 Petro-Canada Exploration Inc. Method for reducing power loss associated with electrical heating of a subterranean formation
US3959794A (en) 1975-09-26 1976-05-25 The United States Of America As Represented By The Secretary Of The Army Semiconductor waveguide antenna with diode control for scanning
US4035054A (en) 1975-12-05 1977-07-12 Kevlin Manufacturing Company Coaxial connector
US4026632A (en) 1976-01-07 1977-05-31 Canadian Patents And Development Limited Frequency selective interwaveguide coupler
US4020431A (en) 1976-01-15 1977-04-26 Rockwell International Corporation Multiaxis rotary joint for guided em waves
GB1531553A (en) 1976-04-20 1978-11-08 Marconi Co Ltd Mode couplers
US4080600A (en) 1976-05-20 1978-03-21 Tull Aviation Corporation Scanning beam radio navigation method and apparatus
US4047180A (en) 1976-06-01 1977-09-06 Gte Sylvania Incorporated Broadband corrugated horn antenna with radome
DE2628713C2 (ko) 1976-06-25 1987-02-05 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4030048A (en) 1976-07-06 1977-06-14 Rca Corporation Multimode coupling system including a funnel-shaped multimode coupler
US4099184A (en) 1976-11-29 1978-07-04 Motorola, Inc. Directive antenna with reflectors and directors
FR2372442B1 (ko) 1976-11-30 1981-11-06 Thomson Csf
US4149170A (en) 1976-12-09 1979-04-10 The United States Of America As Represented By The Secretary Of The Army Multiport cable choke
CH613565A5 (ko) 1977-02-11 1979-09-28 Patelhold Patentverwertung
US4123759A (en) 1977-03-21 1978-10-31 Microwave Associates, Inc. Phased array antenna
US4156241A (en) 1977-04-01 1979-05-22 Scientific-Atlanta, Inc. Satellite tracking antenna apparatus
JPS5445040A (en) 1977-09-16 1979-04-10 Nissan Motor Co Ltd Rear warning radar device
US4175257A (en) 1977-10-05 1979-11-20 United Technologies Corporation Modular microwave power combiner
GB2010528B (en) 1977-12-16 1982-05-19 Post Office Underwater cables
US4155108A (en) 1977-12-27 1979-05-15 Telcom, Inc. Pole-mounted equipment housing assembly
US4190137A (en) 1978-06-22 1980-02-26 Dainichi-Nippon Cables, Ltd. Apparatus for deicing of trolley wires
DE2828662C2 (ko) 1978-06-29 1980-02-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen
US4463329A (en) 1978-08-15 1984-07-31 Hirosuke Suzuki Dielectric waveguide
US4319074A (en) 1978-08-15 1982-03-09 Trw Inc. Void-free electrical conductor for power cables and process for making same
US4188595A (en) 1978-08-21 1980-02-12 Sperry Corporation Shielded surface wave transmission line
US4250489A (en) 1978-10-31 1981-02-10 Westinghouse Electric Corp. Distribution network communication system having branch connected repeaters
US4329690A (en) 1978-11-13 1982-05-11 International Telephone And Telegraph Corporation Multiple shipboard antenna configuration
JPS55124303U (ko) 1979-02-24 1980-09-03
US4259103A (en) 1979-03-12 1981-03-31 Dow Corning Corporation Method of reducing the number of microorganisms in a media and a method of preservation
JPS55138902U (ko) 1979-03-26 1980-10-03
US4234753A (en) 1979-05-18 1980-11-18 A. B. Chance Company Electrical insulator and conductor cover
US4307938A (en) 1979-06-19 1981-12-29 Andrew Corporation Dielectric waveguide with elongate cross-section
CA1136267A (en) 1979-07-25 1982-11-23 Bahman Azarbar Array of annular slots excited by radial waveguide modes
US4246584A (en) 1979-08-22 1981-01-20 Bell Telephone Laboratories, Incorporated Hybrid mode waveguide or feedhorn antenna
DE2938810A1 (de) 1979-09-25 1981-04-09 Siemens Ag Vorrichtung zum einkoppeln von strahlung in einen optischen wellenleiter
US4293833A (en) 1979-11-01 1981-10-06 Hughes Aircraft Company Millimeter wave transmission line using thallium bromo-iodide fiber
US4238974A (en) 1979-11-09 1980-12-16 Cablecraft, Inc. Universal seal and support guide for push-pull cable terminals
US4316646A (en) 1980-02-04 1982-02-23 Amerace Corporation Laterally flexible electrical connector assembly
US4278955A (en) 1980-02-22 1981-07-14 The United States Of America As Represented By The Secretary Of The Air Force Coupler for feeding extensible transmission line
DE3011868A1 (de) 1980-03-27 1981-10-01 Kabel Metallwerke Ghh Feuchtigkeitsgeschuetztes elektrisches energiekabel
US4333082A (en) 1980-03-31 1982-06-01 Sperry Corporation Inhomogeneous dielectric dome antenna
JPS574601A (en) 1980-06-10 1982-01-11 Nippon Telegr & Teleph Corp <Ntt> Simple rock compensating device for antenna mounted on traveling object
US4336719A (en) 1980-07-11 1982-06-29 Panametrics, Inc. Ultrasonic flowmeters using waveguide antennas
US4366565A (en) 1980-07-29 1982-12-28 Herskowitz Gerald J Local area network optical fiber data communication
JPS5744107A (en) 1980-08-29 1982-03-12 Nippon Telegr & Teleph Corp <Ntt> Optical fiber cable and its manufacture
US4345256A (en) 1980-12-15 1982-08-17 Sperry Corporation Steerable directional antenna
US8830112B1 (en) 1981-01-16 2014-09-09 The Boeing Company Airborne radar jamming system
US4384289A (en) 1981-01-23 1983-05-17 General Electric Company Transponder unit for measuring temperature and current on live transmission lines
US4398121A (en) 1981-02-05 1983-08-09 Varian Associates, Inc. Mode suppression means for gyrotron cavities
JPS618251Y2 (ko) 1981-03-12 1986-03-14
CA1194957A (en) 1981-09-14 1985-10-08 Hitoshi Fukagawa Data transmission system utilizing power line
US4829310A (en) 1981-10-02 1989-05-09 Eyring Research Institute, Inc. Wireless communication system using current formed underground vertical plane polarized antennas
US4447811A (en) 1981-10-26 1984-05-08 The United States Of America As Represented By The Secretary Of The Navy Dielectric loaded horn antennas having improved radiation characteristics
US4468672A (en) 1981-10-28 1984-08-28 Bell Telephone Laboratories, Incorporated Wide bandwidth hybrid mode feeds
US4482899A (en) 1981-10-28 1984-11-13 At&T Bell Laboratories Wide bandwidth hybrid mode feeds
US4495498A (en) 1981-11-02 1985-01-22 Trw Inc. N by M planar configuration switch for radio frequency applications
SE429160B (sv) 1981-11-13 1983-08-15 Philips Svenska Ab Tvaaxlig vridupphengningsanordning for returbar projektil som tal accelerationskrafter
US4488156A (en) 1982-02-10 1984-12-11 Hughes Aircraft Company Geodesic dome-lens antenna
US4516130A (en) 1982-03-09 1985-05-07 At&T Bell Laboratories Antenna arrangements using focal plane filtering for reducing sidelobes
US4475209A (en) 1982-04-23 1984-10-02 Westinghouse Electric Corp. Regenerator for an intrabundle power-line communication system
JPH0113761B2 (ko) 1982-05-01 1989-03-08 Junkosha Co Ltd
US4567401A (en) 1982-06-12 1986-01-28 The United States Of America As Represented By The Secretary Of The Navy Wide-band distributed rf coupler
US4533875A (en) 1982-06-16 1985-08-06 Lau Yue Ying Wide-band gyrotron traveling-wave amplifier
US4525432A (en) 1982-06-21 1985-06-25 Fujikura Ltd. Magnetic material wire
US4477814A (en) 1982-08-02 1984-10-16 The United States Of America As Represented By The Secretary Of The Air Force Dual mode radio frequency-infrared frequency system
EP0102846A1 (en) 1982-09-07 1984-03-14 Andrew Corporation Dual reflector microwave antenna
GB2133240B (en) 1982-12-01 1986-06-25 Philips Electronic Associated Tunable waveguide oscillator
US4566012A (en) 1982-12-30 1986-01-21 Ford Aerospace & Communications Corporation Wide-band microwave signal coupler
US5138325A (en) * 1983-04-01 1992-08-11 The United States Of America As Represented By The Secretary Of The Navy Shipboard sensor exerciser apparatus
US4660050A (en) 1983-04-06 1987-04-21 Trw Inc. Doppler radar velocity measurement horn
US4788553A (en) 1983-04-06 1988-11-29 Trw Inc. Doppler radar velocity measurement apparatus
US4689752A (en) 1983-04-13 1987-08-25 Niagara Mohawk Power Corporation System and apparatus for monitoring and control of a bulk electric power delivery system
US4746241A (en) 1983-04-13 1988-05-24 Niagara Mohawk Power Corporation Hinge clamp for securing a sensor module on a power transmission line
US4886980A (en) 1985-11-05 1989-12-12 Niagara Mohawk Power Corporation Transmission line sensor apparatus operable with near zero current line conditions
US5153676A (en) 1983-04-26 1992-10-06 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for reducing phase errors in an interferometer
AU565039B2 (en) 1983-05-23 1987-09-03 Hazeltine Corp. Resonant waveguide aperture manifold
US4553112A (en) 1983-05-31 1985-11-12 Andrew Corporation Overmoded tapered waveguide transition having phase shifted higher order mode cancellation
US4598262A (en) 1983-06-08 1986-07-01 Trw Inc. Quasi-optical waveguide filter
JPS59232302A (en) 1983-06-15 1984-12-27 Nippon Telegr & Teleph Corp <Ntt> Fiber for optical transmission
US4550271A (en) 1983-06-23 1985-10-29 The United States Of America As Represented By The Secretary Of The Navy Gyromagnetron amplifier
US4589424A (en) 1983-08-22 1986-05-20 Varian Associates, Inc Microwave hyperthermia applicator with variable radiation pattern
EP0136818A1 (en) 1983-09-06 1985-04-10 Andrew Corporation Dual mode feed horn or horn antenna for two or more frequency bands
US4575847A (en) 1983-09-26 1986-03-11 International Business Machines Corp. Hot carrier detection
US4556271A (en) 1983-10-14 1985-12-03 M/A-Com Omni Spectra, Inc. Hermetically sealed connector
BR8305993A (pt) 1983-10-25 1985-06-04 Brasilia Telecom Aciplador direcional usando guia corrugado para separacao de duas faixas de frequencias mantendo as caracteristicas de polarizacao
BR8307286A (pt) 1983-12-27 1985-08-06 Brasilia Telecom Transicao entre guia liso e corrugado,para operacao em duas faixas de frequencias distintas
DE3400605A1 (de) 1984-01-10 1985-08-29 Siemens Ag Optisches uebertragungselement
US4604627A (en) 1984-01-11 1986-08-05 Andrew Corporation Flared microwave feed horns and waveguide transitions
CA1226914A (en) 1984-01-26 1987-09-15 Peter K. Van Der Gracht Modem for pseudo noise communication on a.c. lines
US4638322A (en) 1984-02-14 1987-01-20 The Boeing Company Multiple feed antenna
US4573215A (en) 1984-02-21 1986-02-25 Westinghouse Electric Corp. Optical data distribution network with listen-while-talk capabilities
US4636753A (en) 1984-05-15 1987-01-13 Communications Satellite Corporation General technique for the integration of MIC/MMIC'S with waveguides
US4704611A (en) 1984-06-12 1987-11-03 British Telecommunications Public Limited Company Electronic tracking system for microwave antennas
US5341088A (en) 1984-06-22 1994-08-23 Davis Murray W System for rating electric power transmission lines and equipment
US4673943A (en) 1984-09-25 1987-06-16 The United States Of America As Represented By The Secretary Of The Air Force Integrated defense communications system antijamming antenna system
US4672384A (en) 1984-12-31 1987-06-09 Raytheon Company Circularly polarized radio frequency antenna
JPS61163704A (en) 1985-01-16 1986-07-24 Junkosha Co Ltd Dielectric line
US4644365A (en) 1985-02-08 1987-02-17 Horning Leonard A Adjustable antenna mount for parabolic antennas
DE3504546C2 (ko) 1985-02-11 1988-10-20 Bernhard Dipl.-Ing. 2875 Ganderkesee De Scheele
NO157480C (no) 1985-02-28 1988-03-30 Sintef Hybridmodus hornantenne.
JPS61178682U (ko) 1985-04-27 1986-11-07
NL8501233A (nl) 1985-05-01 1986-12-01 Hollandse Signaalapparaten Bv Alzijdig beweegbare golfpijpverbinding, aandrijfbare golfpijpkoppeling en opstelling voor een rondzoekradarantenne.
JPS61260702A (en) 1985-05-15 1986-11-18 Hitachi Ltd Microwave changeover switch
US4800350A (en) 1985-05-23 1989-01-24 The United States Of America As Represented By The Secretary Of The Navy Dielectric waveguide using powdered material
US4818963A (en) 1985-06-05 1989-04-04 Raytheon Company Dielectric waveguide phase shifter
US4665660A (en) 1985-06-19 1987-05-19 The United States Of America As Represented By The Secretary Of The Navy Millimeter wavelength dielectric waveguide having increased power output and a method of making same
US4735097A (en) 1985-08-12 1988-04-05 Panametrics, Inc. Method and apparatus for measuring fluid characteristics using surface generated volumetric interrogation signals
DE3533204A1 (de) 1985-09-18 1987-03-19 Standard Elektrik Lorenz Ag Antenne mit einem hauptreflektor und einem hilfsreflektor
DE3533211A1 (de) 1985-09-18 1987-03-19 Standard Elektrik Lorenz Ag Parabolantenne fuer richtfunkanlagen
US4792812A (en) 1985-09-30 1988-12-20 Rinehart Wayne R Microwave earth station with embedded receiver/transmitter and reflector
DE3540900C2 (ko) 1985-11-18 1988-05-19 Rudolf Dr.-Ing. 5300 Bonn De Wohlleben
US4694599A (en) 1985-11-27 1987-09-22 Minelco, Inc. Electromagnetic flip-type visual indicator
US4849611A (en) 1985-12-16 1989-07-18 Raychem Corporation Self-regulating heater employing reactive components
FR2592233B1 (fr) 1985-12-20 1988-02-12 Radiotechnique Compelec Antenne plane hyperfrequences recevant simultanement deux polarisations.
US4743916A (en) 1985-12-24 1988-05-10 The Boeing Company Method and apparatus for proportional RF radiation from surface wave transmission line
US4897663A (en) 1985-12-25 1990-01-30 Nec Corporation Horn antenna with a choke surface-wave structure on the outer surface thereof
US4730888A (en) 1986-02-20 1988-03-15 American Telephone And Telegraph Company, At&T Bell Laboratories Optimized guided wave communication system
CA1218122A (en) 1986-02-21 1987-02-17 David Siu Quadruple mode filter
US4731810A (en) 1986-02-25 1988-03-15 Watkins Randy W Neighborhood home security system
GB2188784B (en) 1986-03-25 1990-02-21 Marconi Co Ltd Wideband horn antenna
US4845508A (en) 1986-05-01 1989-07-04 The United States Of America As Represented By The Secretary Of The Navy Electric wave device and method for efficient excitation of a dielectric rod
US4717974A (en) 1986-05-19 1988-01-05 Eastman Kodak Company Waveguide apparatus for coupling a high data rate signal to and from a rotary head scanner
US4801937A (en) 1986-06-16 1989-01-31 Fernandes Roosevelt A Line mounted apparatus for remote measurement of power system or environmental parameters beyond line-of-site distanc
US4730172A (en) 1986-09-30 1988-03-08 The Boeing Company Launcher for surface wave transmission lines
CA1280487C (en) 1986-11-06 1991-02-19 Senstar-Stellar Corporation Intrusion detection system
US5003318A (en) 1986-11-24 1991-03-26 Mcdonnell Douglas Corporation Dual frequency microstrip patch antenna with capacitively coupled feed pins
US4749244A (en) 1986-11-28 1988-06-07 Ford Aerospace & Communications Corporation Frequency independent beam waveguide
DE3641086C1 (de) 1986-12-02 1988-03-31 Spinner Gmbh Elektrotech Hohlleiterabsorber oder -daempfungsglied
FR2607968B1 (fr) 1986-12-09 1989-02-03 Alcatel Thomson Faisceaux Source d'illumination pour antenne de telecommunications
US4915468A (en) 1987-02-20 1990-04-10 The Board Of Trustees Of The Leland Stanford Junior University Apparatus using two-mode optical waveguide with non-circular core
EP0280379A3 (en) 1987-02-27 1990-04-25 Shigekazu Kimura Dielectric or magnetic medium loaded antenna
US4866454A (en) 1987-03-04 1989-09-12 Droessler Justin G Multi-spectral imaging system
US4831346A (en) 1987-03-26 1989-05-16 Andrew Corporation Segmented coaxial transmission line
US4764738A (en) 1987-03-26 1988-08-16 D. L. Fried Associates, Inc. Agile beam control of optical phased array
US4745377A (en) 1987-06-08 1988-05-17 The United States Of America As Represented By The Secretary Of The Army Microstrip to dielectric waveguide transition
GB2208969B (en) 1987-08-18 1992-04-01 Arimura Inst Technology Slot antenna
JP2639531B2 (ja) 1987-08-20 1997-08-13 発紘電機株式会社 送電線用着雪防止装置
US4832148A (en) 1987-09-08 1989-05-23 Exxon Production Research Company Method and system for measuring azimuthal anisotropy effects using acoustic multipole transducers
US4818990A (en) 1987-09-11 1989-04-04 Fernandes Roosevelt A Monitoring system for power lines and right-of-way using remotely piloted drone
US4772891A (en) 1987-11-10 1988-09-20 The Boeing Company Broadband dual polarized radiator for surface wave transmission line
US5006846A (en) 1987-11-12 1991-04-09 Granville J Michael Power transmission line monitoring system
GB8727846D0 (en) 1987-11-27 1987-12-31 British Telecomm Optical communications network
CA1320634C (en) 1988-05-27 1993-07-27 Hiroshi Kajioka Method of producing elliptic core type polarization-maintaining optical fiber
US5166698A (en) 1988-01-11 1992-11-24 Innova, Inc. Electromagnetic antenna collimator
US4904996A (en) 1988-01-19 1990-02-27 Fernandes Roosevelt A Line-mounted, movable, power line monitoring system
GB8804242D0 (en) 1988-02-24 1988-07-13 Emi Plc Thorn Improvements relating to aerials
NL8800538A (nl) 1988-03-03 1988-08-01 Hollandse Signaalapparaten Bv Antennesysteem met variabele bundelbreedte en bundelorientatie.
US4977618A (en) 1988-04-21 1990-12-11 Photonics Corporation Infrared data communications
US5082349A (en) 1988-04-25 1992-01-21 The Board Of Trustees Of The Leland Stanford Junior University Bi-domain two-mode single crystal fiber devices
US5018180A (en) 1988-05-03 1991-05-21 Jupiter Toy Company Energy conversion using high charge density
DE3816496A1 (de) 1988-05-10 1989-11-23 Bergmann Kabelwerke Ag Kunststoffisolierter elektrischer leiter
US5440660A (en) 1988-05-23 1995-08-08 The United States Of America As Represented By The Secretary Of Navy Fiber optic microcable produced with fiber reinforced ultraviolet light cured resin and method for manufacturing same
US4851788A (en) 1988-06-01 1989-07-25 Varian Associates, Inc. Mode suppressors for whispering gallery gyrotron
GB2219439A (en) 1988-06-06 1989-12-06 Gore & Ass Flexible housing
US4881028A (en) 1988-06-13 1989-11-14 Bright James A Fault detector
US5134965A (en) 1989-06-16 1992-08-04 Hitachi, Ltd. Processing apparatus and method for plasma processing
US5389442A (en) 1988-07-11 1995-02-14 At&T Corp. Water blocking strength members
GB2222725A (en) 1988-09-07 1990-03-14 Philips Electronic Associated Microwave antenna
US5682256A (en) 1988-11-11 1997-10-28 British Telecommunications Public Limited Company Communications system
US4952012A (en) 1988-11-17 1990-08-28 Stamnitz Timothy C Electro-opto-mechanical cable for fiber optic transmission systems
US5044722A (en) 1988-12-05 1991-09-03 Kupferdraht-Isolierwerk Ag Self-supporting optical cable
US5592183A (en) 1988-12-06 1997-01-07 Henf; George Gap raidated antenna
US5015914A (en) 1988-12-09 1991-05-14 Varian Associates, Inc. Couplers for extracting RF power from a gyrotron cavity directly into fundamental mode waveguide
JP2595339B2 (ja) 1988-12-23 1997-04-02 松下電工株式会社 平面アンテナ
US4931808A (en) 1989-01-10 1990-06-05 Ball Corporation Embedded surface wave antenna
CA1302527C (en) 1989-01-24 1992-06-02 Thomas Harry Legg Quasi-optical stripline devices
KR900017050A (ko) 1989-04-05 1990-11-15 도모 마쓰 겐고 발열성 전선
US4946202A (en) 1989-04-14 1990-08-07 Vincent Perricone Offset coupling for electrical conduit
US4932620A (en) 1989-05-10 1990-06-12 Foy Russell B Rotating bracket
US5107231A (en) 1989-05-25 1992-04-21 Epsilon Lambda Electronics Corp. Dielectric waveguide to TEM transmission line signal launcher
US5086467A (en) 1989-05-30 1992-02-04 Motorola, Inc. Dummy traffic generation
US5065969A (en) 1989-06-09 1991-11-19 Bea-Bar Enterprises Ltd. Apparatus for mounting an antenna for rotation on a mast
US5043538A (en) 1989-07-03 1991-08-27 Southwire Company Water resistant cable construction
US5066958A (en) 1989-08-02 1991-11-19 Antenna Down Link, Inc. Dual frequency coaxial feed assembly
EP0417689B1 (en) 1989-09-11 1995-04-26 Nec Corporation Phased array antenna with temperature compensating capability
US5045820A (en) 1989-09-27 1991-09-03 Motorola, Inc. Three-dimensional microwave circuit carrier and integral waveguide coupler
US5019832A (en) 1989-10-18 1991-05-28 The United States Of America As Represented By The Department Of Energy Nested-cone transformer antenna
DE3935082C1 (ko) 1989-10-20 1991-01-31 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
DE3935986A1 (de) 1989-10-28 1991-05-02 Rheydt Kabelwerk Ag Flexibles optisches kabel
US5142767A (en) 1989-11-15 1992-09-01 Bf Goodrich Company Method of manufacturing a planar coil construction
JPH03167906A (en) 1989-11-28 1991-07-19 Nippon Telegr & Teleph Corp <Ntt> Dielectric focus horn
US5109232A (en) 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
JPH03274802A (en) 1990-03-26 1991-12-05 Toshiba Corp Waveguide and gyrotron device using the same
US5006859A (en) 1990-03-28 1991-04-09 Hughes Aircraft Company Patch antenna with polarization uniformity control
GB9008359D0 (en) 1990-04-12 1990-06-13 Mcguire Geoff Data communication network system for harsh environments
US5214438A (en) 1990-05-11 1993-05-25 Westinghouse Electric Corp. Millimeter wave and infrared sensor in a common receiving aperture
US5042903A (en) 1990-07-30 1991-08-27 Westinghouse Electric Corp. High voltage tow cable with optical fiber
JPH0787445B2 (ja) 1990-08-01 1995-09-20 三菱電機株式会社 アンテナ選択ダイバーシティ受信装置
US5043629A (en) 1990-08-16 1991-08-27 General Atomics Slotted dielectric-lined waveguide couplers and windows
US5298911A (en) 1990-09-18 1994-03-29 Li Ming Chang Serrated-roll edge for microwave antennas
US5182427A (en) 1990-09-20 1993-01-26 Metcal, Inc. Self-regulating heater utilizing ferrite-type body
US5126750A (en) 1990-09-21 1992-06-30 The United States Of America As Represented By The Secretary Of The Air Force Magnetic hybrid-mode horn antenna
JPH04154242A (en) 1990-10-17 1992-05-27 Nec Corp Network failure recovery system
US5245404A (en) 1990-10-18 1993-09-14 Physical Optics Corportion Raman sensor
GB9023394D0 (en) 1990-10-26 1990-12-05 Gore W L & Ass Uk Segmented flexible housing
US5134423A (en) 1990-11-26 1992-07-28 The United States Of America As Represented By The Secretary Of The Air Force Low sidelobe resistive reflector antenna
DK285490D0 (da) 1990-11-30 1990-11-30 Nordiske Kabel Traad Fremgangsmaade og apparat til forstaerkning af et optisk signal
US5513176A (en) 1990-12-07 1996-04-30 Qualcomm Incorporated Dual distributed antenna system
US5132968A (en) 1991-01-14 1992-07-21 Robotic Guard Systems, Inc. Environmental sensor data acquisition system
US5148509A (en) 1991-03-25 1992-09-15 Corning Incorporated Composite buffer optical fiber cables
US5265266A (en) 1991-04-02 1993-11-23 Rockwell International Corporation Resistive planar star double-balanced mixer
US5214394A (en) 1991-04-15 1993-05-25 Rockwell International Corporation High efficiency bi-directional spatial power combiner amplifier
JP2978585B2 (ja) 1991-04-17 1999-11-15 本多通信工業株式会社 光ファイバコネクタ用フェルール
US5276455A (en) 1991-05-24 1994-01-04 The Boeing Company Packaging architecture for phased arrays
US5488380A (en) 1991-05-24 1996-01-30 The Boeing Company Packaging architecture for phased arrays
US5329285A (en) 1991-07-18 1994-07-12 The Boeing Company Dually polarized monopulse feed using an orthogonal polarization coupler in a multimode waveguide
JPH0653894A (ja) 1991-08-23 1994-02-25 Nippon Steel Corp 移動通信用無線基地局
US5266961A (en) 1991-08-29 1993-11-30 Hughes Aircraft Company Continuous transverse stub element devices and methods of making same
US5174164A (en) 1991-09-16 1992-12-29 Westinghouse Electric Corp. Flexible cable
CA2121675A1 (en) 1991-11-08 1993-05-13 Asu Ram Jha Terrestrial antennas for satellite communication system
CA2098580C (en) 1991-11-11 1999-05-11 Reuven Meidan Method and apparatus for reducing interference in a radio communication link of a cellular communication system
US5304999A (en) 1991-11-20 1994-04-19 Electromagnetic Sciences, Inc. Polarization agility in an RF radiator module for use in a phased array
US5198823A (en) 1991-12-23 1993-03-30 Litchstreet Co. Passive secondary surveillance radar using signals of remote SSR and multiple antennas switched in synchronism with rotation of SSR beam
US5235662A (en) 1992-01-02 1993-08-10 Eastman Kodak Company Method to reduce light propagation losses in optical glasses and optical waveguide fabricated by same
CN2116969U (zh) 1992-03-03 1992-09-23 机械电子工业部石家庄第五十四研究所 一种改型背射天线
US6725035B2 (en) * 1992-03-06 2004-04-20 Aircell Inc. Signal translating repeater for enabling a terrestrial mobile subscriber station to be operable in a non-terrestrial environment
US5280297A (en) 1992-04-06 1994-01-18 General Electric Co. Active reflectarray antenna for communication satellite frequency re-use
EP0566090A1 (en) 1992-04-14 1993-10-20 Ametek Aerospace Products, Inc. Repairable cable assembly
US5248876A (en) 1992-04-21 1993-09-28 International Business Machines Corporation Tandem linear scanning confocal imaging system with focal volumes at different heights
US5241321A (en) 1992-05-15 1993-08-31 Space Systems/Loral, Inc. Dual frequency circularly polarized microwave antenna
US5327149A (en) 1992-05-18 1994-07-05 Hughes Missile Systems Company R.F. transparent RF/UV-IR detector apparatus
US5351272A (en) 1992-05-18 1994-09-27 Abraham Karoly C Communications apparatus and method for transmitting and receiving multiple modulated signals over electrical lines
FR2691602B1 (fr) 1992-05-22 2002-12-20 Cgr Mev Accélérateur linéaire de protons à focalisation améliorée et impédance shunt élevée.
US5193774A (en) 1992-05-26 1993-03-16 Rogers J W Mounting bracket apparatus
US5212755A (en) 1992-06-10 1993-05-18 The United States Of America As Represented By The Secretary Of The Navy Armored fiber optic cables
US5371623A (en) 1992-07-01 1994-12-06 Motorola, Inc. High bit rate infrared communication system for overcoming multipath
US5299773A (en) 1992-07-16 1994-04-05 Ruston Bertrand Mounting assembly for a pole
DE4225595C1 (en) 1992-08-03 1993-09-02 Siemens Ag, 80333 Muenchen, De Cable segment test method for locating resistance variations in local area network - supplying measuring pulses and evaluating reflected pulses using analogue=to=digital converter and two separate channels, with memory storing values
US5311596A (en) 1992-08-31 1994-05-10 At&T Bell Laboratories Continuous authentication using an in-band or out-of-band side channel
US5345522A (en) 1992-09-02 1994-09-06 Hughes Aircraft Company Reduced noise fiber optic towed array and method of using same
US6768456B1 (en) 1992-09-11 2004-07-27 Ball Aerospace & Technologies Corp. Electronically agile dual beam antenna system
US5787673A (en) 1992-09-14 1998-08-04 Pirod, Inc. Antenna support with multi-direction adjustability
EP0687031A3 (ko) 1992-10-19 1996-01-24 Northern Telecom Ltd
US5339058A (en) 1992-10-22 1994-08-16 Trilogy Communications, Inc. Radiating coaxial cable
US5352984A (en) 1992-11-04 1994-10-04 Cable Repair Systems Corporation Fault and splice finding system and method
JPH06326510A (ja) 1992-11-18 1994-11-25 Toshiba Corp ビーム走査アンテナ及びアレーアンテナ
US5291211A (en) 1992-11-20 1994-03-01 Tropper Matthew B A radar antenna system with variable vertical mounting diameter
US5642121A (en) 1993-03-16 1997-06-24 Innova Corporation High-gain, waveguide-fed antenna having controllable higher order mode phasing
US5451969A (en) 1993-03-22 1995-09-19 Raytheon Company Dual polarized dual band antenna
US5576721A (en) 1993-03-31 1996-11-19 Space Systems/Loral, Inc. Composite multi-beam and shaped beam antenna system
US5494301A (en) 1993-04-20 1996-02-27 W. L. Gore & Associates, Inc. Wrapped composite gasket material
JP2800636B2 (ja) 1993-05-12 1998-09-21 日本電気株式会社 フレキシブル導波管
AT250809T (de) 1993-05-27 2003-10-15 Univ Griffith Antennen für tragbare kommunikationsgeräte
IL105990A (en) 1993-06-11 1997-04-15 Uri Segev And Benjamin Machnes Infra-red communication system
FR2706681B1 (fr) 1993-06-15 1995-08-18 Thomson Tubes Electroniques Coupleur quasi-optique à diffraction réduite et tube électronique utilisant un tel coupleur.
GB9315473D0 (en) 1993-07-27 1993-09-08 Chemring Ltd Treatment apparatus
US5402140A (en) 1993-08-20 1995-03-28 Winegard Company Horizon-to-horizon TVRO antenna mount
JP3095314B2 (ja) 1993-08-31 2000-10-03 日立通信システム株式会社 パス切替方式
EP0651487B1 (en) 1993-10-28 1997-09-03 Daido Tokushuko Kabushiki Kaisha Snow-melting member for power transmission line
GB9322920D0 (en) 1993-11-06 1993-12-22 Bicc Plc Device for testing an electrical line
US5455589A (en) 1994-01-07 1995-10-03 Millitech Corporation Compact microwave and millimeter wave radar
US5412654A (en) 1994-01-10 1995-05-02 International Business Machines Corporation Highly dynamic destination-sequenced destination vector routing for mobile computers
JP2545737B2 (ja) 1994-01-10 1996-10-23 郵政省通信総合研究所長 ガウシアンビーム型アンテナ装置
US5434575A (en) 1994-01-28 1995-07-18 California Microwave, Inc. Phased array antenna system using polarization phase shifting
US5515059A (en) 1994-01-31 1996-05-07 Northeastern University Antenna array having two dimensional beam steering
JP3001844U (ja) 1994-03-09 1994-09-06 ダイソー株式会社 不溶性電極板の取付け部
JP3022181B2 (ja) 1994-03-18 2000-03-15 日立電線株式会社 導波路型光合分波器
US5410318A (en) 1994-03-25 1995-04-25 Trw Inc. Simplified wide-band autotrack traveling wave coupler
JP3336733B2 (ja) 1994-04-07 2002-10-21 株式会社村田製作所 移動手段用通信モジュール
US5495546A (en) 1994-04-13 1996-02-27 Bottoms, Jr.; Jack Fiber optic groundwire with coated fiber enclosures
GB9407934D0 (en) 1994-04-21 1994-06-15 Norweb Plc Transmission network and filter therefor
US5677909A (en) 1994-05-11 1997-10-14 Spectrix Corporation Apparatus for exchanging data between a central station and a plurality of wireless remote stations on a time divided commnication channel
SE502811C2 (sv) 1994-05-11 1996-01-22 Allgon Ab Repeater
US6011524A (en) 1994-05-24 2000-01-04 Trimble Navigation Limited Integrated antenna system
US6208308B1 (en) 1994-06-02 2001-03-27 Raytheon Company Polyrod antenna with flared notch feed
CN1155354A (zh) 1994-06-09 1997-07-23 闭合型“鲁桑特”股份公司 平面天线阵及其微带辐射器
US5586054A (en) 1994-07-08 1996-12-17 Fluke Corporation time-domain reflectometer for testing coaxial cables
US5481268A (en) 1994-07-20 1996-01-02 Rockwell International Corporation Doppler radar system for automotive vehicles
DE4425867C2 (de) 1994-07-21 1999-06-10 Daimler Chrysler Aerospace Komponente eines Schutzschlauchsystems mit einem Endgehäuse
US5559359A (en) 1994-07-29 1996-09-24 Reyes; Adolfo C. Microwave integrated circuit passive element structure and method for reducing signal propagation losses
US5486839A (en) 1994-07-29 1996-01-23 Winegard Company Conical corrugated microwave feed horn
GB9417450D0 (en) 1994-08-25 1994-10-19 Symmetricom Inc An antenna
US6107897A (en) 1998-01-08 2000-08-22 E*Star, Inc. Orthogonal mode junction (OMJ) for use in antenna system
US5512906A (en) 1994-09-12 1996-04-30 Speciale; Ross A. Clustered phased array antenna
US5621421A (en) 1994-10-03 1997-04-15 The United States Of America As Represented By The Secretary Of Agriculture Antenna and mounting device and system
US5724168A (en) 1994-10-11 1998-03-03 Spectrix Corporation Wireless diffuse infrared LAN system
US5479176A (en) 1994-10-21 1995-12-26 Metricom, Inc. Multiple-element driven array antenna and phasing method
US5566196A (en) 1994-10-27 1996-10-15 Sdl, Inc. Multiple core fiber laser and optical amplifier
JPH08213833A (ja) 1994-11-29 1996-08-20 Murata Mfg Co Ltd 誘電体ロッドアンテナ
US5630223A (en) 1994-12-07 1997-05-13 American Nucleonics Corporation Adaptive method and apparatus for eliminating interference between radio transceivers
JP3239030B2 (ja) 1994-12-14 2001-12-17 シャープ株式会社 パラボラアンテナ用一次放射器
GB2298547B (en) 1994-12-14 1998-12-16 Northern Telecom Ltd Communications System
US5499311A (en) 1994-12-16 1996-03-12 International Business Machines Corporation Receptacle for connecting parallel fiber optic cables to a multichip module
US5920032A (en) 1994-12-22 1999-07-06 Baker Hughes Incorporated Continuous power/signal conductor and cover for downhole use
US6944555B2 (en) 1994-12-30 2005-09-13 Power Measurement Ltd. Communications architecture for intelligent electronic devices
JPH08196022A (ja) 1995-01-13 1996-07-30 Furukawa Electric Co Ltd:The 融雪電線
DE19501448A1 (de) 1995-01-19 1996-07-25 Media Tech Vertriebs Gmbh Antenneneinrichtung für Satellitenempfang
US5729279A (en) 1995-01-26 1998-03-17 Spectravision, Inc. Video distribution system
US5784683A (en) 1995-05-16 1998-07-21 Bell Atlantic Network Services, Inc. Shared use video processing systems for distributing program signals from multiplexed digitized information signals
JP2782053B2 (ja) 1995-03-23 1998-07-30 本田技研工業株式会社 レーダーモジュール及びアンテナ装置
GB2299494B (en) 1995-03-30 1999-11-03 Northern Telecom Ltd Communications Repeater
US5768689A (en) 1995-04-03 1998-06-16 Telefonaktiebolaget Lm Ericsson Transceiver tester
KR960038686A (ko) 1995-04-13 1996-11-21 김광호 단일 주파수에 의한 신호 송수신회로
JPH08316918A (ja) 1995-05-15 1996-11-29 Tokyo Gas Co Ltd 管内電波の送信方法
JPH11507723A (ja) 1995-06-07 1999-07-06 パナメトリクス インコーポレイテッド 超音波行路バンドル及びシステム
US5769879A (en) 1995-06-07 1998-06-23 Medical Contouring Corporation Microwave applicator and method of operation
US6198450B1 (en) 1995-06-20 2001-03-06 Naoki Adachi Dielectric resonator antenna for a mobile communication
IT1276762B1 (it) 1995-06-21 1997-11-03 Pirelli Cavi S P A Ora Pirelli Composizione polimerica per il rivestimento di cavi elettrici avente una migliorata resistenza al"water treeing"e cavo elettrico
US5646936A (en) 1995-06-22 1997-07-08 Mci Corporation Knowledge based path set up and spare capacity assignment for distributed network restoration
WO1997002496A1 (de) 1995-07-01 1997-01-23 Robert Bosch Gmbh Monostatischer fmcw-radarsensor
AT217455T (de) 1995-07-17 2002-05-15 Dynex Semiconductor Ltd Antennenanordnungen
US5890055A (en) 1995-07-28 1999-03-30 Lucent Technologies Inc. Method and system for connecting cells and microcells in a wireless communications network
US5640168A (en) 1995-08-11 1997-06-17 Zircon Corporation Ultra wide-band radar antenna for concrete penetration
US5590119A (en) 1995-08-28 1996-12-31 Mci Communications Corporation Deterministic selection of an optimal restoration route in a telecommunications network
US5684495A (en) 1995-08-30 1997-11-04 Andrew Corporation Microwave transition using dielectric waveguides
US7176589B2 (en) 1995-09-22 2007-02-13 Input/Output, Inc. Electrical power distribution and communication system for an underwater cable
JP3411428B2 (ja) 1995-09-26 2003-06-03 日本電信電話株式会社 アンテナ装置
US6095820A (en) 1995-10-27 2000-08-01 Rangestar International Corporation Radiation shielding and range extending antenna assembly
JP3480153B2 (ja) 1995-10-27 2003-12-15 株式会社村田製作所 誘電体レンズおよびその製造方法
US5838866A (en) 1995-11-03 1998-11-17 Corning Incorporated Optical fiber resistant to hydrogen-induced attenuation
US6058307A (en) 1995-11-30 2000-05-02 Amsc Subsidiary Corporation Priority and preemption service system for satellite related communication using central controller
US5889449A (en) 1995-12-07 1999-03-30 Space Systems/Loral, Inc. Electromagnetic transmission line elements having a boundary between materials of high and low dielectric constants
US5905949A (en) 1995-12-21 1999-05-18 Corsair Communications, Inc. Cellular telephone fraud prevention system using RF signature analysis
US5671304A (en) 1995-12-21 1997-09-23 Universite Laval Two-dimensional optoelectronic tune-switch
US6023619A (en) 1995-12-22 2000-02-08 Airtouch Communications, Inc. Method and apparatus for exchanging RF signatures between cellular telephone systems
US6005694A (en) 1995-12-28 1999-12-21 Mci Worldcom, Inc. Method and system for detecting optical faults within the optical domain of a fiber communication network
JP3257383B2 (ja) 1996-01-18 2002-02-18 株式会社村田製作所 誘電体レンズ装置
US5848054A (en) 1996-02-07 1998-12-08 Lutron Electronics Co. Inc. Repeater for transmission system for controlling and determining the status of electrical devices from remote locations
US5867763A (en) 1996-02-08 1999-02-02 Qualcomm Incorporated Method and apparatus for integration of a wireless communication system with a cable T.V. system
KR970071945A (ko) 1996-02-20 1997-11-07 가나이 쯔도무 플라즈마처리방법 및 장치
US5898133A (en) 1996-02-27 1999-04-27 Lucent Technologies Inc. Coaxial cable for plenum applications
US5867292A (en) 1996-03-22 1999-02-02 Wireless Communications Products, Llc Method and apparatus for cordless infrared communication
US5786923A (en) 1996-03-29 1998-07-28 Dominion Communications, Llc Point-to-multipoint wide area telecommunications network via atmospheric laser transmission through a remote optical router
US5675673A (en) 1996-03-29 1997-10-07 Crystal Technology, Inc. Integrated optic modulator with segmented electrodes and sloped waveguides
CA2173679A1 (en) 1996-04-09 1997-10-10 Apisak Ittipiboon Broadband nonhomogeneous multi-segmented dielectric resonator antenna
US6144633A (en) 1996-04-23 2000-11-07 Hitachi, Ltd. Self-healing network, method for transmission line switching thereof, and transmission equipment thereof
US5870060A (en) 1996-05-01 1999-02-09 Trw Inc. Feeder link antenna
US5948044A (en) 1996-05-20 1999-09-07 Harris Corporation Hybrid GPS/inertially aided platform stabilization system
JP2817714B2 (ja) 1996-05-30 1998-10-30 日本電気株式会社 レンズアンテナ
US5986331A (en) 1996-05-30 1999-11-16 Philips Electronics North America Corp. Microwave monolithic integrated circuit with coplaner waveguide having silicon-on-insulator composite substrate
US5767807A (en) 1996-06-05 1998-06-16 International Business Machines Corporation Communication system and methods utilizing a reactively controlled directive array
US6211703B1 (en) 1996-06-07 2001-04-03 Hitachi, Ltd. Signal transmission system
US5784033A (en) 1996-06-07 1998-07-21 Hughes Electronics Corporation Plural frequency antenna feed
US5637521A (en) 1996-06-14 1997-06-10 The United States Of America As Represented By The Secretary Of The Army Method of fabricating an air-filled waveguide on a semiconductor body
US5838472A (en) 1996-07-03 1998-11-17 Spectrix Corporation Method and apparatus for locating a transmitter of a diffuse infrared signal within an enclosed area
WO1998001921A1 (en) 1996-07-04 1998-01-15 Skygate International Technology Nv A planar dual-frequency array antenna
US5872547A (en) 1996-07-16 1999-02-16 Metawave Communications Corporation Conical omni-directional coverage multibeam antenna with parasitic elements
US5805983A (en) 1996-07-18 1998-09-08 Ericsson Inc. System and method for equalizing the delay time for transmission paths in a distributed antenna network
US5959590A (en) 1996-08-08 1999-09-28 Endgate Corporation Low sidelobe reflector antenna system employing a corrugated subreflector
US5818396A (en) 1996-08-14 1998-10-06 L-3 Communications Corporation Launcher for plural band feed system
US5793334A (en) 1996-08-14 1998-08-11 L-3 Communications Corporation Shrouded horn feed assembly
JP2933021B2 (ja) 1996-08-20 1999-08-09 日本電気株式会社 通信網障害回復方式
DE19641036C2 (de) 1996-10-04 1998-07-09 Endress Hauser Gmbh Co Mit Mikrowellen arbeitendes Füllstandsmeßgerät
US7035661B1 (en) 1996-10-11 2006-04-25 Arraycomm, Llc. Power control with signal quality estimation for smart antenna communication systems
US6463295B1 (en) 1996-10-11 2002-10-08 Arraycomm, Inc. Power control with signal quality estimation for smart antenna communication systems
US6842430B1 (en) 1996-10-16 2005-01-11 Koninklijke Philips Electronics N.V. Method for configuring and routing data within a wireless multihop network and a wireless network for implementing the same
US5898830A (en) 1996-10-17 1999-04-27 Network Engineering Software Firewall providing enhanced network security and user transparency
EP0840464A1 (de) 1996-10-29 1998-05-06 Siemens Aktiengesellschaft Basisstation für ein Mobilfunksystem
US5878047A (en) 1996-11-15 1999-03-02 International Business Machines Corporation Apparatus for provision of broadband signals over installed telephone wiring
US5873324A (en) 1996-11-27 1999-02-23 Kaddas; John G. Bird guard wire protector
US5859618A (en) 1996-12-20 1999-01-12 At&T Corp Composite rooftop antenna for terrestrial and satellite reception
CN1161726C (zh) 1996-12-25 2004-08-11 埃罗接触系统公司 声学触摸传感装置,基底及探测触摸的方法
US6222503B1 (en) 1997-01-10 2001-04-24 William Gietema System and method of integrating and concealing antennas, antenna subsystems and communications subsystems
US5850199A (en) 1997-01-10 1998-12-15 Bei Sensors & Systems Company, Inc. Mobile tracking antenna made by semiconductor technique
US5872544A (en) 1997-02-04 1999-02-16 Gec-Marconi Hazeltine Corporation Electronic Systems Division Cellular antennas with improved front-to-back performance
US6567573B1 (en) 1997-02-12 2003-05-20 Digilens, Inc. Switchable optical components
US6151145A (en) 1997-02-13 2000-11-21 Lucent Technologies Inc. Two-wavelength WDM Analog CATV transmission with low crosstalk
GB9703748D0 (en) 1997-02-22 1997-04-09 Fortel International Limited Microwave antennas
DE19714386C1 (de) 1997-03-27 1998-10-08 Berliner Kraft & Licht Verfahren und Anordnung zur Datenübertragung in Niederspannungsnetzen
US6061035A (en) 1997-04-02 2000-05-09 The United States Of America As Represented By The Secretary Of The Army Frequency-scanned end-fire phased-aray antenna
CA2234314C (en) 1997-04-09 2002-06-04 Nec Corporation Fault recovery system and transmission path autonomic switching system
JP3214548B2 (ja) 1997-04-09 2001-10-02 日本電気株式会社 レンズアンテナ
US6014110A (en) 1997-04-11 2000-01-11 Hughes Electronics Corporation Antenna and method for receiving or transmitting radiation through a dielectric material
US6074503A (en) 1997-04-22 2000-06-13 Cable Design Technologies, Inc. Making enhanced data cable with cross-twist cabled core profile
DE19718476A1 (de) 1997-04-30 1998-11-05 Siemens Ag Lichtwellenleiter mit mindestens zwei aus Kunststoffmaterialien bestehenden Beschichtungen
US6204810B1 (en) 1997-05-09 2001-03-20 Smith Technology Development, Llc Communications system
US5994998A (en) 1997-05-29 1999-11-30 3Com Corporation Power transfer apparatus for concurrently transmitting data and power over data wires
US6229327B1 (en) 1997-05-30 2001-05-08 Gregory G. Boll Broadband impedance matching probe
DE19723880A1 (de) 1997-06-06 1998-12-10 Endress Hauser Gmbh Co Vorrichtung zur Befestigung eines Erregerelements in einem metallischen Hohlleiter einer Antenne und zum elektrischen Anschluß desselben an eine außerhalb des Hohlleiters angeordnete Koaxialleitung
US6101300A (en) 1997-06-09 2000-08-08 Massachusetts Institute Of Technology High efficiency channel drop filter with absorption induced on/off switching and modulation
US5948108A (en) 1997-06-12 1999-09-07 Tandem Computers, Incorporated Method and system for providing fault tolerant access between clients and a server
JPH116928A (ja) 1997-06-18 1999-01-12 Nippon Telegr & Teleph Corp <Ntt> アレイ導波路格子型波長合分波器
US6154448A (en) 1997-06-20 2000-11-28 Telefonaktiebolaget Lm Ericsson (Publ) Next hop loopback
US5952964A (en) 1997-06-23 1999-09-14 Research & Development Laboratories, Inc. Planar phased array antenna assembly
AU8055098A (en) 1997-06-24 1999-01-04 Intelogis, Inc. Improved universal lan power line carrier repeater system and method
JP3356653B2 (ja) 1997-06-26 2002-12-16 日本電気株式会社 フェーズドアレーアンテナ装置
US6142434A (en) 1997-07-01 2000-11-07 Trost; Michael D. Utility pole clamp
US6026173A (en) 1997-07-05 2000-02-15 Svenson; Robert H. Electromagnetic imaging and therapeutic (EMIT) systems
JP3269448B2 (ja) 1997-07-11 2002-03-25 株式会社村田製作所 誘電体線路
US6239379B1 (en) 1998-07-29 2001-05-29 Khamsin Technologies Llc Electrically optimized hybrid “last mile” telecommunications cable system
US6063234A (en) 1997-09-10 2000-05-16 Lam Research Corporation Temperature sensing system for use in a radio frequency environment
EP0902307B1 (en) 1997-09-12 2006-11-15 Corning Incorporated Low attenuation optical waveguide
US5917977A (en) 1997-09-16 1999-06-29 Siecor Corporation Composite cable
US6049647A (en) 1997-09-16 2000-04-11 Siecor Operations, Llc Composite fiber optic cable
US6009124A (en) 1997-09-22 1999-12-28 Intel Corporation High data rate communications network employing an adaptive sectored antenna
US6154488A (en) 1997-09-23 2000-11-28 Hunt Technologies, Inc. Low frequency bilateral communication over distributed power lines
SE511911C2 (sv) 1997-10-01 1999-12-13 Ericsson Telefon Ab L M Antennenhet med en flerskiktstruktur
US6111553A (en) 1997-10-07 2000-08-29 Steenbuck; Wendel F. Adjustable antenna bracket
US5994984A (en) 1997-11-13 1999-11-30 Carnegie Mellon University Wireless signal distribution in a building HVAC system
US6445774B1 (en) 1997-11-17 2002-09-03 Mci Communications Corporation System for automated workflow in a network management and operations system
SE512166C2 (sv) 1997-11-21 2000-02-07 Ericsson Telefon Ab L M Mikrostripanordning
DE69814921T2 (de) 1997-12-22 2004-03-11 Pirelli S.P.A. Elektrisches kabel mit eine halbleitende wasserblockierende expandierte schicht
US5861843A (en) 1997-12-23 1999-01-19 Hughes Electronics Corporation Phase array calibration orthogonal phase sequence
US6363079B1 (en) 1997-12-31 2002-03-26 At&T Corp. Multifunction interface facility connecting wideband multiple access subscriber loops with various networks
US6510152B1 (en) 1997-12-31 2003-01-21 At&T Corp. Coaxial cable/twisted pair fed, integrated residence gateway controlled, set-top box
JP3828652B2 (ja) 1998-01-09 2006-10-04 株式会社アドバンテスト 差動信号伝送回路
US5959578A (en) 1998-01-09 1999-09-28 Motorola, Inc. Antenna architecture for dynamic beam-forming and beam reconfigurability with space feed
JP3267228B2 (ja) 1998-01-22 2002-03-18 住友電気工業株式会社 発泡電線
US7430257B1 (en) 1998-02-12 2008-09-30 Lot 41 Acquisition Foundation, Llc Multicarrier sub-layer for direct sequence channel and multiple-access coding
US6011520A (en) 1998-02-18 2000-01-04 Ems Technologies, Inc. Geodesic slotted cylindrical antenna
JPH11239085A (ja) 1998-02-20 1999-08-31 Bosai Engineering Kk 誘導式通信方式及びその装置
CN1186852C (zh) 1998-02-23 2005-01-26 高通股份有限公司 同平面的双带状天线
US6320509B1 (en) 1998-03-16 2001-11-20 Intermec Ip Corp. Radio frequency identification transponder having a high gain antenna configuration
US6311288B1 (en) 1998-03-13 2001-10-30 Paradyne Corporation System and method for virtual circuit backup in a communication network
GB2335335A (en) 1998-03-13 1999-09-15 Northern Telecom Ltd Carrying speech-band signals over power lines
US6008923A (en) 1998-03-16 1999-12-28 Netschools Corporation Multiple beam communication network with beam selectivity
GB2336746A (en) 1998-03-17 1999-10-27 Northern Telecom Ltd Transmitting communications signals over a power line network
US6195395B1 (en) 1998-03-18 2001-02-27 Intel Corporation Multi-agent pseudo-differential signaling scheme
US6078297A (en) 1998-03-25 2000-06-20 The Boeing Company Compact dual circularly polarized waveguide radiating element
JP4116143B2 (ja) 1998-04-10 2008-07-09 株式会社東芝 超音波診断装置
JPH11297532A (ja) 1998-04-15 1999-10-29 Murata Mfg Co Ltd 電子部品及びその製造方法
US