US3833909A - Compact wide-angle scanning antenna system - Google Patents

Compact wide-angle scanning antenna system Download PDF

Info

Publication number
US3833909A
US3833909A US00358242A US35824273A US3833909A US 3833909 A US3833909 A US 3833909A US 00358242 A US00358242 A US 00358242A US 35824273 A US35824273 A US 35824273A US 3833909 A US3833909 A US 3833909A
Authority
US
United States
Prior art keywords
wave
guides
electromagnetic wave
energy
energy exchanging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00358242A
Inventor
A Schaufelberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SP-MICROWAVE Inc
Original Assignee
Sperry Rand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sperry Rand Corp filed Critical Sperry Rand Corp
Priority to US00358242A priority Critical patent/US3833909A/en
Priority to CA193,632A priority patent/CA1014263A/en
Priority to JP49028448A priority patent/JPS5011351A/ja
Priority to GB1556574A priority patent/GB1415994A/en
Priority to IT50540/74A priority patent/IT1008461B/en
Priority to DE2421494A priority patent/DE2421494A1/en
Priority to FR7415512A priority patent/FR2229149A1/fr
Application granted granted Critical
Publication of US3833909A publication Critical patent/US3833909A/en
Assigned to SP-MICROWAVE, INC. reassignment SP-MICROWAVE, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SPERRY CORPORATION, SPERRY HOLDING COMPANY, INC., SPERRY RAND CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/245Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching in the focal plane of a focussing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/14Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device

Definitions

  • the invention pertains to scannable directional antennas for operation at high or microwave frequencies in such applications as radiometers and radar object detection systems and more particularly concerns an antenna system for rapid wide-angle scanning in one or in mutually perpendicular directions and having a configuration which is mechanically simple and electrically practical.
  • a series of feeds may be located along the aforementioned line or circle, which feeds are successively connected to a transmitter or a receiver by a complex switching commutator
  • Both alternatives require that the effective center of rotation of the feed element be at the vertex of the collimator, and both alternatives produce serious beam shape deterioration when approaching large scan angles.
  • Even for scanning in a single plane the mechanical difficulties encountered in attempting high-speed, wide angle scanning with such prior art devices are severe and excessive weight and size problems are encountered.
  • FIG. 1 is a plan view partly in cross section, of one embodiment of the invention.
  • FIG. 2 is a plan view, partially in cross section, of an alternative embodiment of the apparatus of FIG. 1.
  • FIG. 3 is an elevation view of a wave guide array for use in the embodiment of FIG. 2.
  • the novel scanning antenna system may comprise as three major cooperating elements a scanning distributor element 1, a scan direction reversal or inversion element 2, and an energy collimating element 3.
  • the apparatus may be constructed in the form of particular embodiments suited for scanning a radiation or reception pattern in a single plane or for scanning in mutually perpendicular or other planes.
  • the single plane scanning energy distribution element I will comprise a feed, such as a pyramidal horn 4, for propagating a plane electromagnetic wave front, with respect to an aperture cyclically and continuously movable along a sector of a circle or arc 5 in successive positions such as locations 6 and 7.
  • Horn 4 is supported on a wave guide it with respect to a conventional transmission line rotary joint 9 in such a manner that the aperture of horn 4- may be rotated along are 5 about the operational axis 10 of transmission line rotary joint 9.
  • the arc 5 is defined in the single plane scanning system by the ends of a plurality of wave guides which make up the body of the scan inversion element 2; element 2 has planar symmetry about the system plane of symmetry indicated by dotvdash line Element 2 may consist of a stack of rectangular wave guides including a first pair of side by side central guides 16 contiguous with a successive wave guide pair 17 followed in a similar manner by guides 18, 19, 20, 21, and 22.
  • the plurality of wave guide'pairs 16 through 22 terminate in an are shaped surface 23 at their ends opposite are 5, the centers of arcs-5 and 23 both preferably falling in the system plane of symmetry 15.
  • Each of the ends of wave guides 16 through 22 is provided with an impedance matching element such as elements 24 and 25 shown within the opposed ends of wave guides 22.
  • these impedance matching transformers are illustrated by way of example as blocks of dielectric material, although other known types of impedance matching devices may be used.
  • the guides preferably support waves whose electric vector E lies in the plane of the drawing as shown in connection with guide 22.
  • the objective of the scan inversion element 2 is to reorient the direction of propagation of the plane wave propagated within horn feed 4.
  • the energy traversing the guides is to be redirected to flow as indicated by the dot-dash line so as to form radiation or receptivity pattern 33.
  • Pattern 32 is formed when the horn 4 is at location 6 on the system plane of symmetry 15.
  • Pattern 33 is similarly to be formed when horn 4 is at location 7.
  • Redirection of energy flow is aided in the scan arc inversion system 2 by a system of pairs of wave guide delay elements 36 through 41 respectively associated with the wave guide pairs 16 through 21.
  • the delay elements also assume that the scan inversion system is relatively short and permit the total system to be compact and simple in structure.
  • the guides 16 through 21 are respectively loaded with dielectric delay elements 36 through 41 so that each electrical path length is equal to the electrical path length of the outermost guides 22. A relatively smaller delay is thus required for each of the delay lines in pair 21 than is required for each of the central delay lines 16.
  • the wave guide pair 21 requires relatively short delay elements which may be constructed of relatively low dielectric constant material.
  • the same material may be used to form the progressively longer delay elements 39 and 40 respectively found in wave guide pairs 19 and 20.
  • the same progression may continue to the central pair of guides 16, but it is alternatively found convenient to select a material having a greater dielectric constant for delay element pairs 36, 37, and 38, as seen in FIG. 1.
  • the dielectric materials are selected from those readily found on the market which exhibit relatively low loss characteristics at high or microwave frequencies.
  • the energy collimator 3 may in one embodiment be formed of a solid dielectric material, also of low loss characteristics, in the shape of a right circular cylinder.
  • the curvature of the cylindric surface matches that of the are 23 of the scan inversion element 2. In operation, therefore, the feed horn 4 cyclically traverses the arc 5. Because of the aforementioned equality of path lengths in the wave guides 16 through 23, the phases of the energy at the wave guide apertures on arcs 5 and 23 are not relatively shifted.
  • a phase front directed in the illustrated position of horn 4 away from the axis of rotation is redirected at surface 23, as along dot-dashed line 30, through the center 42 of the circularly cylindric lens forming energy collimator 3 as is required for aberration free scanning, to form the desired undistorted radiation or reception pattern 31, for example.
  • the travel of horn 4 may by cylically reversed at its extreme positions, or that horn 4 may travel continuously in a circle, being switched to an inactive status when the aperture of horn 4 is not on are 5.
  • FIG. 1, as well as the other figures is drawn in proportions intended to illustrate the invention with good clarity, and that the proportions shown do not necessarily represent proportions which would be selected for use by those skilled in the art.
  • the novel scanning antenna system may comprise a feed horn 4 arranged as in FIG. 2 for solid angle scanning about two mutually perpendicular axes, such as azimuth and elevation axes.
  • the scanning distributor element 1 may employ a conventional gimbal system including scan axes 1.11 and 45.
  • Horn 4 may be supported with respect to a radar or radiometer receiver 46 gimballed for movement in a prescribed azimuth pattern about the shaft at axis 10 by motor 47 when the latter is excited in a conventional manner by azimuth scan voltages coupled to motor leads 48.
  • the shaft associated with axis 10 may be journaled in a gimbal 58, in turn, mounted for rotation on a shaft at axis 45 within trunnions 40, 511 by operation of motor 51.
  • Motor 51 may be operated according to a prescribed pattern by the application of appropriate elevation scan voltages applied to leads 53 of motor 51. Scanning about the axes 1t and 43 may be regular and in a cyclic synchronized manner according to methods well known in the art for achieving raster and related solid angle types of scan of a directive antenna.
  • the aperture of feed horn 4 is designed to move in two dimensions adjacent a spherical surface 55 made up of the multiplicity of apertures of a two dimensional stacked array using a plurality of planar arrays of guides 16 through 23 like the planar array shown in FIG. 1.
  • the several wave guide delay elements employed are similarly arranged to provide equal propagation times for energy traversing scan inversion device 2 for any azimuth or elevation positional offset horn 4 with respect the axis 56 of the antenna system.
  • the latter now has an axis of symmetry 56, replacing the plane of symmetry 15 of the FIG. 1 antenna scan system.
  • Each ed of the scan inversion element is in the form of a concave spherical surface, so that surface 55 has opposed to it a concave spherical end surface 57 which matches the curvature of the spherical dielectric lens forming energy collimator 3.
  • the major elements 1, 2, and 3 of the solid-angle scanning system of FIG. 2 operate in a manner analogous to the components of the FIG. 1 system, but yield scanning of radiation or reception patterns such as patterns 31, 32, and 33 in elevation as well as in azimuth.
  • FIG. 2 may be made to operate satisfactorily with a two dimensional array of rectangular wave guides
  • other guide shapes which represent minor variations of rectangular shapes may also be employed in the FIG. 2 system.
  • the two-dimensional array of generally hexagonal guides formed by a standard aluminum honeycomb panel may be employed, as in FIG. 3.
  • the hexagonal wave guide 60 may form the sole centrally located guide and is then equipped with a maximum delay element (not shown).
  • Guides 61 immediately surrounding the central guide 60 require a slightly lesser delay element.
  • Guides 62 immediately surrounding guides 61 require a lesser delay element than guides 61, and so on to the outermost circle of guides 64 which may be devoid of dielectric delay elements, if desired.
  • the energy collimator 3 employed in the single axis scanning system of FIG. 1 may take the form of a cylindrical lens which is a microwave analog of the conventional circularly cylindric Luneberg optical lens wherein the low loss dielectric medium has an effective index of refraction which varies radially outward from the axis of the cylinder.
  • the index 11 therefore varies with the normalized radius r according to the relation:
  • the ribbon may be composed of low loss artifical dielectric material consisting of a controlled-density array of randomly oriented metallic par ticles supported within a low density foam dielectric bead matrix.
  • the particles may be insulated silver or aluminum needles having a length less than one eight of the operating wave length and supported in foamed polystyrene.
  • Such spherical lenses have the desired property of focusing a plane wave such as that produced by feed horn 4 accurately to a point on the sphere located diametrically opposite to the point of tangency of the plane phase front upon entering the sphere.
  • the invention provides novel means for the rapid wide-angle scanning of space with minimum distortion of a directive radiation or receptivity pattern.
  • Operation of the scanning feature may be in one or in two mutually perpendicular directions by employing a simple, light-weight feed chamber mechanism in an antenna system occupying a minimum of space and low in weight and cost.
  • Antenna apparatus comprising: dielectric electromagnetic wave collimating means having substantially spherical boundary means,
  • electromagnetic wave distributor means having energy exhanging aperture means movable along spherical sector means
  • multiple transmission line means extending in energy exchanging relation between a portion of said spherical boundary means and a portion of said spherical sector means, said multiple transmission line means including:
  • each of said wave guides having wall means in contiguous relation with wallmeans of an adjacent one of said wave guides, and
  • delay means within said array of wave guides adapted for making the electromagneticwave propagation times through all of said wave guides substantially equal.
  • said first energy exchanging end being disposed in energy exchanging relation with said dielectric electromagnetic wave collimating means
  • said electromagnetic wave distributor means comprises wave guide means journalled for movement about at least one axis.
  • dielectric electromagnetic wave collimating means is a solid sphere of low loss dielectric material.
  • said electromagnetic wave distribution means comprises wave guide means journalled for movement about first and second mutually perpendicular axes.

Abstract

A compact, rapidly scannable, high frequency directional antenna system provides wide-angle space scanning in one or more dirctions by employing a moving feed for commutating energy flow through a wave guide array illuminating or receiving high frequency energy from a cylindrical or spherical energy collimator.

Description

343-75m SR United States Patent 'l l i v [1 11 3,833,909 Schaufelberger I Sept, 3, 1974 [54] COMPACT WIDE-ANGLE SCANNING 7 2,720,589 10/1955 Proctor 343/754 ANTENNA SYSTEM 3,230,535 I 1/1966 Ferrante et al. 343/754 3,404,405 10/1968 Young 343/754 [75] Inventor: Arthur H. Schauielberger, Crystal Beach, Fla. Primary Examiner-Ell Lieberman Asslgneei gl l'z'ylgg Corporation New Attorney, Agent, or Firm-Howard P. Terry [22] Filed: May 7, 1973 [21] Appl. No.2 358,242 [57] ABSTRACT A compact, rapidly scannable, high frequency direc- 52] CL 343/754 L tional antenna system provides wide-angle space scan- [51] rm. Cl. .IIIIIIIIIIIIIIIIIIIIIIIIIII irm 19/06 dimim by empbying 58 Field of Search 3437754, 761, 839, 911 L i 3 energy Pl f a w guide array illuminating or receiving high frequency [56] References Cited I energy from a cylindrical or spherical energy collimav UNITED STATES PATENTS or v 1 I 2,566,703 9/1951 Iams .343/753 9 Claims, 3 Drawing Figures I 8 5 4a 56 4 K W i I l0 I! L J r 55 M all (IOMPACT WIDE-ANGLE SCANNING ANTENNA SYSTEM The invention herein described was made in the course of or under a contract or a subcontract thereunder with the United States Air Force.
BACKGROUND OF THE INVENTION 1. Field of the Invention The invention pertains to scannable directional antennas for operation at high or microwave frequencies in such applications as radiometers and radar object detection systems and more particularly concerns an antenna system for rapid wide-angle scanning in one or in mutually perpendicular directions and having a configuration which is mechanically simple and electrically practical.
2. Description of the Prior Art In the past, there have been many applications for directive antennas which permit the scanning of a radiation or receptivity pattern over an angular sector of space somewhat greater than one beam width. In some applications, it has been found convenient to move the entire antenna (both its feed and its collimation elements) in integral manner over the desired scan angle. When the latter method may not be used because of the relatively large size and inertia of an antenna, scanning has been achieved by moving the feed with respect to the collimator, as along a line including the focus of the collimator, or around a small circle centered at that focus, for example. Alternatively, a series of feeds may be located along the aforementioned line or circle, which feeds are successively connected to a transmitter or a receiver by a complex switching commutator Both alternatives require that the effective center of rotation of the feed element be at the vertex of the collimator, and both alternatives produce serious beam shape deterioration when approaching large scan angles. Even for scanning in a single plane, the mechanical difficulties encountered in attempting high-speed, wide angle scanning with such prior art devices are severe and excessive weight and size problems are encountered.
SUMMARY OF THE INVENTION BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view partly in cross section, of one embodiment of the invention.
FIG. 2 is a plan view, partially in cross section, of an alternative embodiment of the apparatus of FIG. 1.
FIG. 3 is an elevation view of a wave guide array for use in the embodiment of FIG. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The novel scanning antenna system, as seen in FIG. 1, may comprise as three major cooperating elements a scanning distributor element 1, a scan direction reversal or inversion element 2, and an energy collimating element 3. As will be explained, the apparatus may be constructed in the form of particular embodiments suited for scanning a radiation or reception pattern in a single plane or for scanning in mutually perpendicular or other planes. In general, the single plane scanning energy distribution element I will comprise a feed, such as a pyramidal horn 4, for propagating a plane electromagnetic wave front, with respect to an aperture cyclically and continuously movable along a sector of a circle or arc 5 in successive positions such as locations 6 and 7. Horn 4 is supported on a wave guide it with respect to a conventional transmission line rotary joint 9 in such a manner that the aperture of horn 4- may be rotated along are 5 about the operational axis 10 of transmission line rotary joint 9.
The arc 5 is defined in the single plane scanning system by the ends of a plurality of wave guides which make up the body of the scan inversion element 2; element 2 has planar symmetry about the system plane of symmetry indicated by dotvdash line Element 2 may consist of a stack of rectangular wave guides including a first pair of side by side central guides 16 contiguous with a successive wave guide pair 17 followed in a similar manner by guides 18, 19, 20, 21, and 22. The plurality of wave guide'pairs 16 through 22 terminate in an are shaped surface 23 at their ends opposite are 5, the centers of arcs-5 and 23 both preferably falling in the system plane of symmetry 15. Each of the ends of wave guides 16 through 22 is provided with an impedance matching element such as elements 24 and 25 shown within the opposed ends of wave guides 22.. In the drawing, these impedance matching transformers are illustrated by way of example as blocks of dielectric material, although other known types of impedance matching devices may be used. The guides preferably support waves whose electric vector E lies in the plane of the drawing as shown in connection with guide 22.
The objective of the scan inversion element 2 is to reorient the direction of propagation of the plane wave propagated within horn feed 4. For example, when horn 4 is in the position shown in FIG. I. for feeding the wave guides 21 and 22 at the extreme left side of scan inverter 2, the energy traversing the guides is to be redirected to flow as indicated by the dot-dash line so as to form radiation or receptivity pattern 33. Pattern 32 is formed when the horn 4 is at location 6 on the system plane of symmetry 15. Pattern 33 is similarly to be formed when horn 4 is at location 7.
Redirection of energy flow is aided in the scan arc inversion system 2 by a system of pairs of wave guide delay elements 36 through 41 respectively associated with the wave guide pairs 16 through 21. The delay elements also assume that the scan inversion system is relatively short and permit the total system to be compact and simple in structure. With the exception of the outermost wave guide pair 22, the guides 16 through 21 are respectively loaded with dielectric delay elements 36 through 41 so that each electrical path length is equal to the electrical path length of the outermost guides 22. A relatively smaller delay is thus required for each of the delay lines in pair 21 than is required for each of the central delay lines 16.
Thus, the wave guide pair 21 requires relatively short delay elements which may be constructed of relatively low dielectric constant material. The same material may be used to form the progressively longer delay elements 39 and 40 respectively found in wave guide pairs 19 and 20. The same progression may continue to the central pair of guides 16, but it is alternatively found convenient to select a material having a greater dielectric constant for delay element pairs 36, 37, and 38, as seen in FIG. 1. The dielectric materials are selected from those readily found on the market which exhibit relatively low loss characteristics at high or microwave frequencies.
In the single plane scanning system of FIG. 1, the energy collimator 3 may in one embodiment be formed of a solid dielectric material, also of low loss characteristics, in the shape of a right circular cylinder. The curvature of the cylindric surface matches that of the are 23 of the scan inversion element 2. In operation, therefore, the feed horn 4 cyclically traverses the arc 5. Because of the aforementioned equality of path lengths in the wave guides 16 through 23, the phases of the energy at the wave guide apertures on arcs 5 and 23 are not relatively shifted. Because of the physical geometry of the system, a phase front directed in the illustrated position of horn 4 away from the axis of rotation is redirected at surface 23, as along dot-dashed line 30, through the center 42 of the circularly cylindric lens forming energy collimator 3 as is required for aberration free scanning, to form the desired undistorted radiation or reception pattern 31, for example. It will be understood that the travel of horn 4 may by cylically reversed at its extreme positions, or that horn 4 may travel continuously in a circle, being switched to an inactive status when the aperture of horn 4 is not on are 5. It will also be understood by those skilled in the art that FIG. 1, as well as the other figures, is drawn in proportions intended to illustrate the invention with good clarity, and that the proportions shown do not necessarily represent proportions which would be selected for use by those skilled in the art.
As suggested in the foregoing, the novel scanning antenna system may comprise a feed horn 4 arranged as in FIG. 2 for solid angle scanning about two mutually perpendicular axes, such as azimuth and elevation axes. For this purpose, the scanning distributor element 1 may employ a conventional gimbal system including scan axes 1.11 and 45. Horn 4 may be supported with respect to a radar or radiometer receiver 46 gimballed for movement in a prescribed azimuth pattern about the shaft at axis 10 by motor 47 when the latter is excited in a conventional manner by azimuth scan voltages coupled to motor leads 48. The shaft associated with axis 10 may be journaled in a gimbal 58, in turn, mounted for rotation on a shaft at axis 45 within trunnions 40, 511 by operation of motor 51. Motor 51 may be operated according to a prescribed pattern by the application of appropriate elevation scan voltages applied to leads 53 of motor 51. Scanning about the axes 1t and 43 may be regular and in a cyclic synchronized manner according to methods well known in the art for achieving raster and related solid angle types of scan of a directive antenna.
In the solid angle scanning system of FIG. 2, the aperture of feed horn 4 is designed to move in two dimensions adjacent a spherical surface 55 made up of the multiplicity of apertures of a two dimensional stacked array using a plurality of planar arrays of guides 16 through 23 like the planar array shown in FIG. 1. The several wave guide delay elements employed are similarly arranged to provide equal propagation times for energy traversing scan inversion device 2 for any azimuth or elevation positional offset horn 4 with respect the axis 56 of the antenna system. The latter now has an axis of symmetry 56, replacing the plane of symmetry 15 of the FIG. 1 antenna scan system.
Each ed of the scan inversion element is in the form of a concave spherical surface, so that surface 55 has opposed to it a concave spherical end surface 57 which matches the curvature of the spherical dielectric lens forming energy collimator 3. It will be readily understood by those skilled in the art that the major elements 1, 2, and 3 of the solid-angle scanning system of FIG. 2 operate in a manner analogous to the components of the FIG. 1 system, but yield scanning of radiation or reception patterns such as patterns 31, 32, and 33 in elevation as well as in azimuth.
While the embodiment of FIG. 2 may be made to operate satisfactorily with a two dimensional array of rectangular wave guides, other guide shapes which represent minor variations of rectangular shapes may also be employed in the FIG. 2 system. For example, the two-dimensional array of generally hexagonal guides formed by a standard aluminum honeycomb panel may be employed, as in FIG. 3. In this instance, the hexagonal wave guide 60 may form the sole centrally located guide and is then equipped with a maximum delay element (not shown). Guides 61 immediately surrounding the central guide 60 require a slightly lesser delay element. Guides 62 immediately surrounding guides 61 require a lesser delay element than guides 61, and so on to the outermost circle of guides 64 which may be devoid of dielectric delay elements, if desired.
The energy collimator 3 employed in the single axis scanning system of FIG. 1 may take the form of a cylindrical lens which is a microwave analog of the conventional circularly cylindric Luneberg optical lens wherein the low loss dielectric medium has an effective index of refraction which varies radially outward from the axis of the cylinder. The index 11 therefore varies with the normalized radius r according to the relation:
( l such cylindric lenses have been fabricated in the prior art by forming a long, constant width ribbon of a material having progressively varying dielectric characteristics and then winding the ribbon into a spiral to form the desired cylinder. The ribbon may be composed of low loss artifical dielectric material consisting of a controlled-density array of randomly oriented metallic par ticles supported within a low density foam dielectric bead matrix. The particles may be insulated silver or aluminum needles having a length less than one eight of the operating wave length and supported in foamed polystyrene. Sperical lenses suitable for use as energy collimator 3 in FIG. 2 and having a radially varying index of refraction have been similarly made in the prior art by stacking a plurality of such short cylinders to approximate the desired spherical shape or by making an assembly of pyramidal sectors each having radially graded dielectric characteristics and each being assembled with an apex at the center of the sphere which they form in total. Such spherical lenses have the desired property of focusing a plane wave such as that produced by feed horn 4 accurately to a point on the sphere located diametrically opposite to the point of tangency of the plane phase front upon entering the sphere. v
Accordingly, it is seen that the invention provides novel means for the rapid wide-angle scanning of space with minimum distortion of a directive radiation or receptivity pattern. Operation of the scanning feature may be in one or in two mutually perpendicular directions by employing a simple, light-weight feed chamber mechanism in an antenna system occupying a minimum of space and low in weight and cost.
While the inventionhas been described in its preferred embodiments, it is to be understood that the words which have been used are words of description rather than of limitation and that changes within the purview of the appended claims may be made without departing from the true scope and spirit of the invention in its broader aspects.
I claim: 1. Antenna apparatus comprising: dielectric electromagnetic wave collimating means having substantially spherical boundary means,
electromagnetic wave distributor means having energy exhanging aperture means movable along spherical sector means, and
multiple transmission line means extending in energy exchanging relation between a portion of said spherical boundary means and a portion of said spherical sector means, said multiple transmission line means including:
an array of wave guides in parallel alignment, each of said wave guides having wall means in contiguous relation with wallmeans of an adjacent one of said wave guides, and
delay means within said array of wave guides adapted for making the electromagneticwave propagation times through all of said wave guides substantially equal.
2. Apparatus as described in claim 1 wherein said array of wave guides has first and second opposed concave energy exchanging ends.
said first energy exchanging end being disposed in energy exchanging relation with said dielectric electromagnetic wave collimating means, and
said second energy exchanging end forming said portion of said circular sector means.
3. Apparatus as described in claim 2 wherein said array of wave guides is equipped with impedance matching means at said first and second opposed energy exchanging ends.
4. Apparatus as described in claim 2 wherein said delay means comprise dielectric phase delay means.
5. Apparatus as described in claim 2 wherein said electromagnetic wave distributor means comprises wave guide means journalled for movement about at least one axis.
6. Apparatus as described in claim 2 wherein said first andsecond opposed concave energy exchanging ends are each in the forms of segments of spherical surfaces. v
7. Apparatus as described in claim 6 wherein said dielectric electromagnetic wave collimating means is a solid sphere of low loss dielectric material.
8. Apparatus as described in claim 7 wherein said solid sphere of low loss dielectricmaterial has an effective' index of refraction n which varies with the normalized sphere radius r as:
9. Apparatus as described in claim 7 wherein said electromagnetic wave distribution means comprises wave guide means journalled for movement about first and second mutually perpendicular axes.

Claims (9)

1. Antenna apparatus comprising: dielectric electromagnetic wave collimating means having substantially spherical boundary means, electromagnetic wave distributor means having energy exhanging aperture means movable along spherical sector means, and multiple transmission line means extending in energy exchanging relation between a portion of said spherical boundary means and a portion of said spherical sector means, said multiple transmission line means including: an array of wave guides in parallel alignment, each of said wave guides having wall means in contiguous relation with wall means of an adjacent one of said wave guides, and delay means within said array of wave guides adapted for making the electromagnetic wave propagation times through all of said wave guides substantially equal.
2. Apparatus as described in claim 1 wherein said array of wave guides has first and second opposed concave energy exchanging ends. said first energy exchanging end being disposed in energy exchanging relation with said dielectric electromagnetic wave collimating means, and said second energy exchanging end forming said portion of said circular sector means.
3. Apparatus as described in claim 2 wherein said array of wave guides is equipped with impedance matching means at said first and second opposed energy exchanging ends.
4. Apparatus as described in claim 2 wherein said delay means comprise dielectric phase delay means.
5. Apparatus as described in claim 2 wherein said electromagnetic wave distributor means comprises wave guide means journalled for movement about at least one axis.
6. Apparatus as described in claim 2 wherein said first and second opposed concave energy exchanging ends are each in the forms of segments of spherical surfaces.
7. Apparatus as described in claim 6 wherein said dielectric electromagnetic wave collimating means is a solid sphere of low loss dielectric material.
8. Apparatus as described in claim 7 wherein said solid sphere of low loss dielectric material has an effective index of refraction n which varies with the normalized sphere radius r as: n Square Root 2 - r2
9. Apparatus as described in claim 7 wherein said electromagnetic wave distribution means comprises wave guide means journalled for movement about first and second mutually perpendicular axes.
US00358242A 1973-05-07 1973-05-07 Compact wide-angle scanning antenna system Expired - Lifetime US3833909A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US00358242A US3833909A (en) 1973-05-07 1973-05-07 Compact wide-angle scanning antenna system
CA193,632A CA1014263A (en) 1973-05-07 1974-02-27 Compact wide-angle scanning antenna system
JP49028448A JPS5011351A (en) 1973-05-07 1974-03-12
GB1556574A GB1415994A (en) 1973-05-07 1974-04-09 Antenna apparatus
IT50540/74A IT1008461B (en) 1973-05-07 1974-04-22 IMPROVEMENT OF RADAR RADIOMETERS AND SIMILAR ANTENNAS
DE2421494A DE2421494A1 (en) 1973-05-07 1974-05-03 ANTENNA DEVICE
FR7415512A FR2229149A1 (en) 1973-05-07 1974-05-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00358242A US3833909A (en) 1973-05-07 1973-05-07 Compact wide-angle scanning antenna system

Publications (1)

Publication Number Publication Date
US3833909A true US3833909A (en) 1974-09-03

Family

ID=23408869

Family Applications (1)

Application Number Title Priority Date Filing Date
US00358242A Expired - Lifetime US3833909A (en) 1973-05-07 1973-05-07 Compact wide-angle scanning antenna system

Country Status (7)

Country Link
US (1) US3833909A (en)
JP (1) JPS5011351A (en)
CA (1) CA1014263A (en)
DE (1) DE2421494A1 (en)
FR (1) FR2229149A1 (en)
GB (1) GB1415994A (en)
IT (1) IT1008461B (en)

Cited By (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001835A (en) * 1975-05-12 1977-01-04 Texas Instruments Incorporated Scanning antenna with extended off broadside scanning capability
US4156878A (en) * 1978-01-25 1979-05-29 The United States Of America As Represented By The Secretary Of The Air Force Wideband waveguide lens
US4531129A (en) * 1983-03-01 1985-07-23 Cubic Corporation Multiple-feed luneberg lens scanning antenna system
FR2582157A1 (en) * 1985-05-15 1986-11-21 Snecma Antenna with reduced scanning step over a wide angular sector
US4626858A (en) * 1983-04-01 1986-12-02 Kentron International, Inc. Antenna system
US5948038A (en) * 1996-07-31 1999-09-07 American Traffic Systems, Inc. Traffic violation processing system
US6111523A (en) * 1995-11-20 2000-08-29 American Traffic Systems, Inc. Method and apparatus for photographing traffic in an intersection
US6362795B2 (en) * 1997-01-07 2002-03-26 Murata Manufacturing Co., Ltd. Antenna apparatus and transmission and receiving apparatus using the same
US6426814B1 (en) 1999-10-13 2002-07-30 Caly Corporation Spatially switched router for wireless data packets
US6789744B2 (en) 2002-01-29 2004-09-14 Valeo Electrical Systems, Inc. Fluid heater with a variable mass flow path
US20040197094A1 (en) * 2003-04-04 2004-10-07 Amberg Michael T. Fluid heater with compressible cover freeze protection
US20110102098A1 (en) * 2007-06-04 2011-05-05 Helsinki University Of Technology Structure for reducing scattering of electromagnetic waves
US9119127B1 (en) 2012-12-05 2015-08-25 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9154966B2 (en) 2013-11-06 2015-10-06 At&T Intellectual Property I, Lp Surface-wave communications and methods thereof
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9525210B2 (en) 2014-10-21 2016-12-20 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9531427B2 (en) 2014-11-20 2016-12-27 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US20170084994A1 (en) * 2015-09-22 2017-03-23 Qualcomm Incorporated Low-cost satellite user terminal antenna
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9755697B2 (en) 2014-09-15 2017-09-05 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
CN109378585A (en) * 2018-10-19 2019-02-22 电子科技大学 The circular polarisation Luneberg lens antenna of half space wave cover
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10396887B2 (en) 2015-06-03 2019-08-27 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US11362433B2 (en) * 2017-10-27 2022-06-14 Robert Bosch Gmbh Radar sensor having a plurality of main beam directions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388679A (en) * 1977-01-14 1978-08-04 Yamato Shokaki Kk Toxic gas adsorbing and neutralizing agent
DE2738549A1 (en) * 1977-08-26 1979-03-01 Licentia Gmbh Microwave antenna with homogeneous dielectric lens - uses two concentric hemi-spheres with different radii as lens, with specified radius relation
GB8711271D0 (en) * 1987-05-13 1987-06-17 British Broadcasting Corp Microwave lens & array antenna
US9979459B2 (en) * 2016-08-24 2018-05-22 The Boeing Company Steerable antenna assembly utilizing a dielectric lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566703A (en) * 1947-05-14 1951-09-04 Rca Corp Radio wave focusing device
US2720589A (en) * 1951-07-27 1955-10-11 Sperry Rand Corp Rapid scanning radar antenna
US3230535A (en) * 1961-12-26 1966-01-18 Sylvania Electric Prod Microwave scanning apparatus employing feed horn coupled to spaced lens by coaxial transmission lines
US3404405A (en) * 1965-04-30 1968-10-01 Navy Usa Luneberg lens with staggered waveguide feed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566703A (en) * 1947-05-14 1951-09-04 Rca Corp Radio wave focusing device
US2720589A (en) * 1951-07-27 1955-10-11 Sperry Rand Corp Rapid scanning radar antenna
US3230535A (en) * 1961-12-26 1966-01-18 Sylvania Electric Prod Microwave scanning apparatus employing feed horn coupled to spaced lens by coaxial transmission lines
US3404405A (en) * 1965-04-30 1968-10-01 Navy Usa Luneberg lens with staggered waveguide feed

Cited By (238)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001835A (en) * 1975-05-12 1977-01-04 Texas Instruments Incorporated Scanning antenna with extended off broadside scanning capability
US4156878A (en) * 1978-01-25 1979-05-29 The United States Of America As Represented By The Secretary Of The Air Force Wideband waveguide lens
US4531129A (en) * 1983-03-01 1985-07-23 Cubic Corporation Multiple-feed luneberg lens scanning antenna system
US4626858A (en) * 1983-04-01 1986-12-02 Kentron International, Inc. Antenna system
FR2582157A1 (en) * 1985-05-15 1986-11-21 Snecma Antenna with reduced scanning step over a wide angular sector
US6111523A (en) * 1995-11-20 2000-08-29 American Traffic Systems, Inc. Method and apparatus for photographing traffic in an intersection
US5948038A (en) * 1996-07-31 1999-09-07 American Traffic Systems, Inc. Traffic violation processing system
US6563477B2 (en) * 1997-01-07 2003-05-13 Murata Manufacturing Co. Ltd. Antenna apparatus and transmission and receiving apparatus using same
US6362795B2 (en) * 1997-01-07 2002-03-26 Murata Manufacturing Co., Ltd. Antenna apparatus and transmission and receiving apparatus using the same
US6426814B1 (en) 1999-10-13 2002-07-30 Caly Corporation Spatially switched router for wireless data packets
US6789744B2 (en) 2002-01-29 2004-09-14 Valeo Electrical Systems, Inc. Fluid heater with a variable mass flow path
US20040197094A1 (en) * 2003-04-04 2004-10-07 Amberg Michael T. Fluid heater with compressible cover freeze protection
US20110102098A1 (en) * 2007-06-04 2011-05-05 Helsinki University Of Technology Structure for reducing scattering of electromagnetic waves
US8164505B2 (en) 2007-06-04 2012-04-24 Aalto University Foundation Structure for reducing scattering of electromagnetic waves
US9119127B1 (en) 2012-12-05 2015-08-25 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9699785B2 (en) 2012-12-05 2017-07-04 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9788326B2 (en) 2012-12-05 2017-10-10 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10194437B2 (en) 2012-12-05 2019-01-29 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10091787B2 (en) 2013-05-31 2018-10-02 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9467870B2 (en) 2013-11-06 2016-10-11 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9154966B2 (en) 2013-11-06 2015-10-06 At&T Intellectual Property I, Lp Surface-wave communications and methods thereof
US9661505B2 (en) 2013-11-06 2017-05-23 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9479266B2 (en) 2013-12-10 2016-10-25 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9794003B2 (en) 2013-12-10 2017-10-17 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9876584B2 (en) 2013-12-10 2018-01-23 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US10096881B2 (en) 2014-08-26 2018-10-09 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9755697B2 (en) 2014-09-15 2017-09-05 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9998932B2 (en) 2014-10-02 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9596001B2 (en) 2014-10-21 2017-03-14 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9525210B2 (en) 2014-10-21 2016-12-20 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9577307B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9571209B2 (en) 2014-10-21 2017-02-14 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9531427B2 (en) 2014-11-20 2016-12-27 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9712350B2 (en) 2014-11-20 2017-07-18 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10396887B2 (en) 2015-06-03 2019-08-27 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142010B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9882657B2 (en) 2015-06-25 2018-01-30 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10090601B2 (en) 2015-06-25 2018-10-02 At&T Intellectual Property I, L.P. Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9947982B2 (en) 2015-07-14 2018-04-17 At&T Intellectual Property I, Lp Dielectric transmission medium connector and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US10074886B2 (en) 2015-07-23 2018-09-11 At&T Intellectual Property I, L.P. Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10938123B2 (en) 2015-07-31 2021-03-02 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10225842B2 (en) 2015-09-16 2019-03-05 At&T Intellectual Property I, L.P. Method, device and storage medium for communications using a modulated signal and a reference signal
US10349418B2 (en) 2015-09-16 2019-07-09 At&T Intellectual Property I, L.P. Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10553943B2 (en) * 2015-09-22 2020-02-04 Qualcomm Incorporated Low-cost satellite user terminal antenna
US20170084994A1 (en) * 2015-09-22 2017-03-23 Qualcomm Incorporated Low-cost satellite user terminal antenna
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US11362433B2 (en) * 2017-10-27 2022-06-14 Robert Bosch Gmbh Radar sensor having a plurality of main beam directions
CN109378585B (en) * 2018-10-19 2019-07-26 电子科技大学 The circular polarisation Luneberg lens antenna of half space wave cover
CN109378585A (en) * 2018-10-19 2019-02-22 电子科技大学 The circular polarisation Luneberg lens antenna of half space wave cover

Also Published As

Publication number Publication date
IT1008461B (en) 1976-11-10
FR2229149A1 (en) 1974-12-06
DE2421494A1 (en) 1974-11-28
CA1014263A (en) 1977-07-19
GB1415994A (en) 1975-12-03
JPS5011351A (en) 1975-02-05

Similar Documents

Publication Publication Date Title
US3833909A (en) Compact wide-angle scanning antenna system
US3936835A (en) Directive disk feed system
US3852762A (en) Scanning lens antenna
US3267472A (en) Variable aperture antenna system
US2978702A (en) Antenna polarizer having two phase shifting medium
US3487413A (en) Wide angle electronic scan luneberg antenna
US3045237A (en) Antenna system having beam control members consisting of array of spiral elements
CN110612638B (en) Quasi-plane wave generator based on array antenna
CN108155483B (en) Polarization tracking device
CN102122762A (en) Millimeter-wave 360-DEG omnidirectional-scan dielectric cylinder lens antenna
US3189907A (en) Zone plate radio transmission system
US3354461A (en) Steerable antenna array
US2977594A (en) Spiral doublet antenna
US3213454A (en) Frequency scanned antenna array
US3419870A (en) Dual-plane frequency-scanned antenna array
US3881178A (en) Antenna system for radiating multiple planar beams
US3317912A (en) Plural concentric parabolic antenna for omnidirectional coverage
US4574287A (en) Fixed aperture, rotating feed, beam scanning antenna system
US2764756A (en) Microwave lobe shifting antenna
US3386099A (en) Multiple luneberg lens antenna
US3363251A (en) Wire grid antenna exhibiting luneberg lens properties
US4146895A (en) Geodesic lens aerial
US3795004A (en) Cassegrain radar antenna with selectable acquisition and track modes
US4214248A (en) Transreflector scanning antenna
US3277490A (en) Broadband conical scan feed for parabolic antennas

Legal Events

Date Code Title Description
AS Assignment

Owner name: SP-MICROWAVE, INC., ONE BURROUGHS PLACE, DETROIT,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SPERRY CORPORATION;SPERRY HOLDING COMPANY, INC.;SPERRY RAND CORPORATION;REEL/FRAME:004759/0204

Effective date: 19861112

Owner name: SP-MICROWAVE, INC.,MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SPERRY CORPORATION;SPERRY HOLDING COMPANY, INC.;SPERRY RAND CORPORATION;REEL/FRAME:004759/0204

Effective date: 19861112