WO2010016287A1 - イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ - Google Patents

イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ Download PDF

Info

Publication number
WO2010016287A1
WO2010016287A1 PCT/JP2009/052906 JP2009052906W WO2010016287A1 WO 2010016287 A1 WO2010016287 A1 WO 2010016287A1 JP 2009052906 W JP2009052906 W JP 2009052906W WO 2010016287 A1 WO2010016287 A1 WO 2010016287A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical fiber
ytterbium
doped optical
clad
Prior art date
Application number
PCT/JP2009/052906
Other languages
English (en)
French (fr)
Inventor
谷川 庄二
映乃 中熊
智史 荒井
健太郎 市井
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41663513&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010016287(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to PCT/JP2009/003728 priority Critical patent/WO2010016245A1/ja
Priority to EP09804732.7A priority patent/EP2312348B1/en
Priority to DK09804732.7T priority patent/DK2312348T3/da
Priority to JP2009550181A priority patent/JP5436226B2/ja
Priority to CN200980101352.3A priority patent/CN101896845B/zh
Publication of WO2010016287A1 publication Critical patent/WO2010016287A1/ja
Priority to US13/020,604 priority patent/US8941912B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06737Fibre having multiple non-coaxial cores, e.g. multiple active cores or separate cores for pump and gain
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0283Graded index region external to the central core segment, e.g. sloping layer or triangular or trapezoidal layer
    • G02B6/0285Graded index layer adjacent to the central core segment and ending at the outer cladding index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/0672Non-uniform radial doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1693Solid materials characterised by additives / sensitisers / promoters as further dopants aluminium

Definitions

  • the present invention relates to an ytterbium-doped optical fiber in which photodarkening is suppressed, and a fiber laser and a fiber amplifier having the optical fiber.
  • This application claims priority based on Japanese Patent Application No. 2008-201171 for which it applied to Japan on August 04, 2008, and uses the content here.
  • An optical amplification fiber in which a rare earth element or the like is added to the core and / or clad of an optical fiber having an axially symmetric waveguide structure is used as a photoactive medium such as a fiber amplifier or a fiber laser.
  • a Yb-doped optical fiber containing ytterbium (Yb) as a rare earth element can provide high power output light with good beam quality.
  • the oscillation wavelength of this output light is about 1 ⁇ m, which is almost the same as that of Nd-YAG, which is one of existing high-power lasers. Therefore, it is expected to be put to practical use as a laser medium for a high-output light source for material processing applications such as welding, marking, and cutting.
  • FIG. 12 is a diagram illustrating a cross section in the radial direction and a refractive index distribution of a conventional Yb-doped optical fiber.
  • the Yb-doped optical fiber 11 shown here is a single clad fiber, in which a clad 112 is provided on the outer periphery of the core 111 and a protective coating layer 113 is provided on the outer periphery of the clad 112.
  • the refractive index of the core 111 is higher than the refractive index of the cladding 112 in order to confine the guided light.
  • a refractive index increasing dopant such as germanium (Ge), aluminum (Al), or phosphorus (P) is usually added to the core 111.
  • Yb is added to the core 111 as a dopant having an optical amplification function. Yb is usually added so as to have a substantially uniform concentration distribution in the core 111, but may have a concentration distribution, and may be added to a part of the cladding 112. High power signal light can be obtained by making excitation light incident on such a Yb-doped optical fiber and making signal light incident or by forming a cavity using a fiber Bragg grating or the like.
  • a Yb-doped optical fiber as an optical amplifying medium for fiber lasers or fiber amplifiers, it is possible to use a substantially single mode in order to take advantage of a fiber-type optical amplifying medium capable of limited mode excitation and high cooling efficiency.
  • a Yb-doped optical fiber is often used under certain conditions.
  • the conditions of the optical waveguide for substantially single mode propagation are determined by conditions such as the refractive index of the core, the core diameter (in other words, the refractive index distribution in the radial direction of the core), and the winding diameter. At this time, it is necessary that the refractive index of the core is low or the core diameter is small.
  • the performance as an optical amplification medium it is desired that higher power light can be output. That is, it is a condition for a better amplification optical fiber that high power light can be propagated into the optical fiber.
  • the former has a light transmission cross-sectional area larger than that of the latter. Since (mode field diameter) is small, the power density of light propagating through the core is increased. As a result, it is easy to induce damage to the core glass and optical nonlinear phenomenon due to light. Alternatively, the amplification power during optical transmission is limited. Therefore, from this point of view, a larger core diameter is desirable. From the above, in order to increase the core diameter and propagate the single mode, it is necessary to lower the refractive index of the core.
  • Non-Patent Documents 1 and 2 One factor that deteriorates the characteristics of fiber amplifiers and fiber lasers is an increase in optical fiber loss (photodarkening) caused by pumping light and signal light propagating in the fiber (see Non-Patent Documents 1 and 2). Due to this increase in loss, the optical amplification efficiency of the rare earth-doped optical fiber, which is an optical amplification medium, gradually decreases. As a result, the output of the fiber amplifier or the fiber laser decreases with time and the life is shortened.
  • Non-Patent Document 1 discloses that photodarkening is suppressed by applying a special manufacturing method called DND (Direct Nanoparticle Deposition).
  • Non-Patent Document 2 discloses that photodarkening is suppressed by adding aluminum at a high concentration during the production of an optical fiber.
  • Patent Document 1 discloses that photodarkening is suppressed by adding hydrogen to an optical fiber. S. Tammela et al., The Potential of Direct Nanoparticle Deposition for the Next Generation of Optical Fibers, The Proceeding of SPIE Photonics West 2006, Vol. 6116-16 (2006) T.
  • Non-Patent Document 1 the photodarkening can surely be suppressed as compared with the case of manufacturing by the conventional method, but the suppression effect is still insufficient. Further, since the manufacturing method is special, OH groups are mixed in the optical fiber more than the conventional MCVD method and VAD method. Therefore, the loss due to the OH group becomes large. Furthermore, since the size of the fiber preform used for manufacture is limited, the manufacturing cost increases. Therefore, an optical fiber for optical amplification in which photodarkening is suppressed cannot be manufactured at low cost. The method described in Non-Patent Document 2 requires a large amount of aluminum in order to sufficiently suppress photodarkening. As a result, the refractive index of the core of the optical fiber becomes high.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an optical fiber that can be manufactured by a conventional method and in which photodarkening is suppressed.
  • the present invention employs the following means in order to solve the above problems and achieve the object.
  • the ytterbium-doped optical fiber of the present invention includes a core containing at least ytterbium, aluminum, and phosphorus, and a clad surrounding the core, and the aluminum oxide equivalent concentration of the aluminum in the core is 0.2. It is mol% or more, and the phosphorous pentoxide equivalent concentration of the phosphorus is higher than the aluminum oxide equivalent concentration.
  • the core and the clad are preferably made of silica glass.
  • the diphosphorus pentoxide equivalent concentration is larger than the sum of the ytterbium oxide equivalent concentration and the aluminum oxide equivalent concentration of ytterbium in the core.
  • the ratio of the ytterbium oxide equivalent concentration and the aluminum oxide equivalent concentration in the core is preferably 0.01-2.
  • the ytterbium oxide equivalent concentration in the core is preferably 0.01 to 1.0 mol%.
  • the diphosphorus pentoxide equivalent concentration in the core is preferably 20 mol% or less.
  • concentration in the said core is 2 times or less of the said aluminum oxide conversion density
  • the relative refractive index difference between the core and the clad is preferably 0.05 to 0.65%.
  • the relative refractive index difference between the core and the clad is preferably 0.05 to 0.25%. (10) It is preferable that the core further contains germanium.
  • the core further contains fluorine and / or boron.
  • the core further contains at least one selected from the group consisting of rare earth elements other than ytterbium and transition metal elements.
  • at least two layers of the clad are provided, and the refractive index of the radially inner clad is higher than the refractive index of the outer clad.
  • the clad is provided with at least three layers, the refractive index nc1 of the innermost cladding in the radial direction, the refractive index nc3 of the outermost cladding, and between the innermost and outermost claddings.
  • a fiber laser of the present invention has the ytterbium-doped optical fiber described in (1) above as an optical amplification medium.
  • a fiber amplifier of the present invention has the ytterbium-doped optical fiber described in (1) above as an optical amplification medium.
  • the aluminum equivalent concentration of aluminum in the core is 0.2 mol% or more, and the phosphorous pentoxide equivalent concentration of phosphorus is higher than the aluminum oxide equivalent concentration. Is also high. Therefore, crystallization of glass is suppressed and photodarkening is suppressed. As a result, it is possible to provide a large amount of inexpensive optical fibers that can provide an excellent optical amplification effect. Further, by using such an optical fiber as an optical amplifying medium, it is possible to provide a fiber laser and a fiber amplifier having low optical output and good optical characteristics at low cost.
  • FIG. 1 is a diagram illustrating a radial cross section and a refractive index distribution of a Yb-doped optical fiber manufactured in Example 1.
  • FIG. FIG. 2 is a graph showing the relationship between the amount of loss before and after excitation light irradiation and the difference wavelength in Example 1.
  • FIG. 3 is a graph showing the relationship between the amount of loss before and after excitation light irradiation and the difference wavelength in Example 2.
  • FIG. 4 is a graph showing the relationship between the loss amount before and after the excitation light irradiation and the difference between the wavelengths in Example 3.
  • FIG. 5 is a graph showing the relationship between the amount of loss before and after excitation light irradiation and the difference wavelength in Example 4.
  • FIG. 6 is a graph showing the relationship between the amount of loss before and after excitation light irradiation and the difference in wavelength in Example 5.
  • FIG. 7 is a graph showing the relationship between the amount of loss before and after excitation light irradiation and the difference in wavelength in Example 6.
  • FIG. 8 is a graph showing the relationship between the loss amount before and after the excitation light irradiation and the difference between the wavelengths in Example 7.
  • FIG. 9 is a graph showing the relationship between the amount of loss before and after excitation light irradiation and the difference in wavelength in Example 8.
  • FIG. 10 is a graph showing the relationship between the loss amount before and after excitation light irradiation and the difference wavelength in Example 9.
  • FIG. 11 is a graph showing the relationship between the amount of loss before and after excitation light irradiation and the difference wavelength in Comparative Example 1.
  • FIG. 12 is a diagram illustrating a cross section in the radial direction and a refractive index distribution of a conventional Yb-doped optical fiber.
  • the concentration of the additive component shown in the unit of “mol%” is an average value unless otherwise specified in an optical fiber having a refractive index distribution.
  • “Core diameter” refers to “a diameter having a relative refractive index difference of 1 / e of the maximum relative refractive index difference of the core”.
  • the Yb-doped optical fiber of the present invention includes a core and a clad surrounding the core.
  • the core contains at least Yb, Al, and P.
  • the concentration of Al in terms of aluminum oxide (Al 2 O 3 ) is 0.2 mol% or more
  • the concentration of P in terms of diphosphorus pentoxide (P 2 O 5 ) is the concentration in terms of Al 2 O 3.
  • P is a dopant having a photodarkening suppressing action and a refractive index raising action.
  • Al is a dopant having a refractive index increasing action and a glass crystallization inhibiting action.
  • Yb is a dopant having an optical amplification effect.
  • P in the core has an action of suppressing photodarkening.
  • the glass in which the core contains only Yb and P, when the refractive index of the core is set to a desired low value, the glass is crystallized. Therefore, this optical fiber cannot be used as an amplification optical fiber.
  • Al by further containing Al in the core, crystallization of the glass can be suppressed even when the refractive index of the core is set to a desired low value while suppressing photodarkening. It is presumed that Al has an action of suppressing crystallization of glass because Yb and P are dispersed in the glass.
  • the present invention relates to a P 2 O 5 equivalent concentration of P in the core containing Yb (hereinafter, sometimes simply abbreviated as “P 2 O 5 equivalent concentration”), an Al 2 O 3 equivalent concentration of Al ( Hereinafter, “sometimes abbreviated as“ Al 2 O 3 equivalent concentration ”” is set to a predetermined range. Thereby, suppression of photodarkening and suppression of crystallization of glass can be achieved at a high level. Furthermore, the present invention sets the Yb ytterbium oxide (Yb 2 O 3 ) equivalent concentration in the core (hereinafter sometimes simply referred to as “Yb 2 O 3 equivalent concentration”) within a preferable predetermined range. A more excellent light amplification effect can be obtained without impairing the effect of suppressing photodarkening and the effect of suppressing crystallization of glass.
  • the Al 2 O 3 equivalent concentration in the core is 0.2 mol% or more. Further, the Al 2 O 3 equivalent concentration is preferably 0.2 to 12 mol%, and more specifically, a range of 0.23 to 11.82 mol% can be selected.
  • the Al 2 O 3 equivalent concentration is 0.2 mol% or more, even if the refractive index of the core is lowered, a higher effect of suppressing crystallization of the glass can be obtained.
  • the terms of Al 2 O 3 concentration by 12 mol% or less higher effect of suppressing the transmission loss of the optical fiber is obtained.
  • the Al 2 O 3 equivalent concentration of “0.2 to 12 mol%” corresponds to 0.08 to 4.8 mol% as the concentration of Al in the core.
  • the terms of P 2 O 5 concentration in the core is set higher than the terms of Al 2 O 3 concentration.
  • the P 2 O 5 equivalent concentration is preferably 19 times or less of the Al 2 O 3 equivalent concentration, more preferably 12 times or less, and particularly preferably 5.5 times or less. Most preferably, it is less than 2 times. By setting it as such a range, the still higher effect which suppresses the raise of the refractive index of a core is acquired.
  • the P 2 O 5 equivalent concentration is preferably 20 mol% or less, more preferably 0.5 to 20 mol%, particularly preferably 1.5 to 20 mol%, more preferably Specifically, a range of 1.85 to 19.83 mol% can be selected.
  • a range of 1.85 to 19.83 mol% can be selected.
  • the P 2 O 5 equivalent concentration of “1.5 to 20 mol%” corresponds to 0.43 to 5.7 mol% as the concentration of P in the core.
  • the Yb 2 O 3 equivalent concentration in the core is preferably 0.01 to 1.0 mol%, and more specifically, a range of 0.01 to 0.99 mol% can be selected.
  • a higher light amplification effect can be obtained.
  • the Yb 2 O 3 equivalent concentration of “0.01 to 1.0 mol%” corresponds to 0.004 to 0.4 mol% as the concentration of Yb in the core.
  • the Yb 2 O 3 ratio of the concentration in terms of said terms of Al 2 O 3 concentration preferably 0.01 to 2.
  • the ratio is 0.01 or more, even if the Al content is decreased to reduce the refractive index, the Yb content is not insufficient, and the optical characteristics and the light amplification effect are obtained. Even better. Further, even if the Yb content is increased in order to obtain a sufficient light amplification effect, the Al content is maintained in an appropriate range, so that the refractive index does not increase more than necessary.
  • the P 2 O 5 equivalent concentration in the core is preferably larger than the sum of the Yb 2 O 3 equivalent concentration and the Al 2 O 3 equivalent concentration, and is 1.05 to 11.5 times the sum. Is more preferable. By setting it as such a range, the still higher effect which suppresses photodarkening, suppressing crystallization of glass is acquired.
  • the core and the clad are preferably made of silica glass.
  • Silica glass is not only widely used in general transmission optical fibers, but also can reduce transmission loss and is advantageous for amplifying light with high efficiency.
  • the core may further contain other elements.
  • the function of the Yb-doped optical fiber can be enhanced or different functions can be imparted.
  • a fiber Bragg grating can be easily formed in the Yb-doped optical fiber.
  • the control of the refractive index distribution of the core is facilitated by containing one or both of fluorine (hereinafter sometimes abbreviated as F) and boron (hereinafter sometimes abbreviated as B).
  • F fluorine
  • B boron
  • the rare earth element may be a known element used in a conventional Yb-doped optical fiber. Specifically, erbium (Er), thulium (Tm), yttrium (Y), holmium (Ho), samarium (Sm ), Praseodymium (Pr), neodymium (Nd), and the like. What is necessary is just to select the said transition element suitably from a well-known thing according to the objective.
  • the other elements to be contained in the core may be one type or two or more types. These elements may be added to the core by a known method such as an immersion method.
  • the other elements to be contained in the core may be appropriately selected depending on the purpose. And what is necessary is just to set the density
  • the germanium dioxide (GeO 2 ) equivalent concentration is preferably 0.1 to 1.1 mol%, more preferably 0.5 to 1 mol%. By setting it to be equal to or less than the upper limit of the above range, the relative refractive index difference between the core and the clad does not become too large.
  • the concentration in terms of diboron trioxide (B 2 O 3 ) is preferably 0.01 to 5 mol%, and more preferably 0.05 to 1 mol%.
  • the erbium (Er) is contained as a rare earth element or a transition metal element
  • the erbium oxide (Er 2 O 3 ) equivalent concentration is preferably 0.01 to 1 mol%, preferably 0.05 to 0. More preferably, it is 5 mol%.
  • the element in the core such as Yb, may have a concentration distribution in the core, but in order to obtain good optical properties, it is preferable that the concentration be almost uniform.
  • the clad may have a single layer structure or a multi-layer structure such as a two-layer structure or a three-layer structure.
  • a multi-clad fiber such as a double-clad fiber or a triple-clad fiber
  • the excitation light is guided to the cladding, so that the concentration of the excitation light on the core can be suppressed. Therefore, damage to the core glass and optical nonlinear phenomenon can be suppressed, and a higher-power fiber laser or fiber amplifier can be manufactured.
  • a triple clad fiber having higher excitation light utilization efficiency is preferable to a double clad fiber.
  • the shape of the cladding is not particularly limited, and may be appropriately selected according to the purpose.
  • the radial cross-sectional shape is a non-circular shape such as a polygonal shape or a D shape.
  • the stress applying portion can be formed from, for example, a material obtained by adding B 2 O 3 or the like to quartz glass.
  • the refractive index distribution of the core may be adjusted as appropriate according to the purpose.
  • a single-peak step type as illustrated in FIG. 12 may be used.
  • a bell-shaped, concave, dual-shaped, segmented core, double-concave, W-shaped, etc. Any refractive index distribution may be used.
  • the refractive indexes of the core and the clad are preferably adjusted in consideration of the structure of the Yb-doped optical fiber, the desired relative refractive index difference, and the like.
  • the refractive index of the core is preferably higher than the refractive index of the cladding.
  • the refractive index of the radially inner cladding is higher than the refractive index of the radially outer cladding. By doing so, higher output light can be obtained.
  • “radially inner” and “radially outer” refer to the relative positional relationship in the radial direction of the two-layer clad.
  • radially inner cladding and “radially outer cladding” do not necessarily indicate only two-layer cladding of a double-cladding fiber, but any of multi-cladding fibers having three or more claddings.
  • a two-layer clad is shown.
  • the refractive index nc1 of the radially innermost cladding, the refractive index nc3 of the outermost cladding, and the intermediate cladding between the innermost and outermost claddings The refractive index nc2 preferably satisfies the relationship of nc1>nc2> nc3. By doing in this way, higher output light can be obtained efficiently.
  • the “intermediate cladding” may be any one disposed between the innermost and outermost claddings.
  • the intermediate cladding may be any one disposed between the innermost and outermost claddings.
  • the triple-clad fiber only the intermediate cladding between the innermost and outermost claddings is shown. It is not a thing.
  • the relative refractive index difference between the core and the clad is preferably 0.05 to 0.65%, more preferably 0.05 to 0.25%.
  • the relative refractive index difference between the core and the clad refers to a refractive index of the core n 1, the refractive index of the cladding in the case of the n 0, the formula: (n 1 -n 0) / n 1 ⁇ 100 Is a value calculated by.
  • the core diameter is preferably set as appropriate according to the refractive index of the core, but is usually preferably 3 to 50 ⁇ m, more preferably 4 to 43 ⁇ m.
  • the Yb-doped optical fiber of the present invention can be manufactured by a known method except that a predetermined amount of Yb, Al, and P is added to the core.
  • it can be manufactured by producing a fiber preform by MCVD method, VAD method or the like, spinning the fiber preform so as to have a desired outer diameter, and forming a protective coating layer with UV curable resin or the like on the outer periphery.
  • Yb can be added by a technique of adding to the soot by a liquid immersion method or a technique of spraying droplets in the fiber preform manufacturing process. Further, for example, when the clad shape is non-circular, the fiber preform after the addition of Yb is cut off into a desired shape and then spun.
  • a hole is provided in the central axis direction, and preferably the inner surface is ground and polished to be mirror-finished, A stress applying member made of B 2 O 3 —SiO 2 glass produced by MCVD or the like may be inserted here, followed by spinning.
  • the fiber laser or the fiber amplifier of the present invention has the Yb-doped optical fiber of the present invention as an optical amplification medium. And it can manufacture by the method similar to a well-known fiber laser or fiber amplifier except using the said Yb addition optical fiber of this invention as an amplification medium.
  • a Yb-doped optical fiber that is excellent in the effect of suppressing photodarkening and obtains desired high-output light by applying a known method such as the MCVD method or the VAD method.
  • the size of the fiber preform used at the time of manufacture is not limited. Therefore, Yb-doped optical fibers having excellent characteristics as described above can be provided at low cost and in large quantities. Further, by using such an optical fiber as an optical amplifying medium, it is possible to provide a fiber laser and a fiber amplifier having low optical output and good optical characteristics at low cost.
  • the increase in loss due to photodarkening of the Yb-doped optical fiber was evaluated by the following method. This makes it possible to compare the amount of increase in loss relatively even with optical fibers having different uses and structures.
  • evaluation method of loss increase by photodarkening A Yb-doped optical fiber having a length in the central axis direction such that the Yb absorption amount of the core is 340 dB was used, and the core was irradiated with excitation light having a wavelength of 976 nm for 100 minutes so that the incident light amount was 400 mW. The difference in loss before and after irradiation at a wavelength of 800 nm was defined as “loss increase due to photodarkening”.
  • FIG. 1 is a diagram showing a radial cross section and a refractive index distribution of a Yb-doped optical fiber 1.
  • the Yb-doped optical fiber 1 is a single clad fiber, in which a clad 12 is provided on the outer periphery of the core 11 and a protective coating layer 13 is provided on the outer periphery of the clad 12.
  • the fiber preform was produced by the MCVD method. Yb was added by a liquid immersion method. The fiber preform was spun until the glass outer diameter was about 125 ⁇ m, and a protective coating layer was provided on the outer periphery.
  • FIG. 2 is a graph showing the relationship between the amount of loss before and after excitation light irradiation and the difference wavelength. In FIG. 2, noise is observed in the loss amount data in the vicinity of the wavelength of 1000 nm because the Yb light absorption band exists in this wavelength band.
  • FIG. 3 is a diagram showing a radial section and a refractive index distribution of the Yb-doped optical fiber 2.
  • the Yb-doped optical fiber 2 is a single clad fiber, in which a clad 22 is provided on the outer periphery of the core 21 and a protective coating layer 23 is provided on the outer periphery of the clad 22.
  • the fiber preform was produced by the VAD method. Yb was added by a liquid immersion method. The fiber preform was spun until the glass outer diameter was about 125 ⁇ m, and a protective coating layer was provided on the outer periphery.
  • the core Al 2 O 3 was 0.84 mol%, Yb 2 O 3 was 0.15 mol%, and P 2 O 5 was 3.85 mol%.
  • the core diameter was about 7 ⁇ m, and the relative refractive index difference ( ⁇ ) of the core was about 0.25%. Almost no increase in loss due to photodarkening was observed in the obtained Yb-doped optical fiber, and the loss increase by the evaluation method was 0.01 dB or less. Further, using the obtained Yb-doped optical fiber, a fiber laser was produced, and the temporal change in light output was evaluated. As a result, the decrease in output after 100 hours was 3% or less with a fiber laser having an initial output of 3 W.
  • This output reduction amount includes not only an increase in optical fiber loss but also a cause due to temperature change and measurement variation. Therefore, it was considered that the output decrease due to the increase in loss due to photodarkening was 1% or less.
  • Table 1 shows the obtained Yb-doped optical fiber and the evaluation results.
  • FIG. 4 is a diagram showing a radial section and a refractive index distribution of the Yb-doped optical fiber 3.
  • the Yb-doped optical fiber 3 is a single clad fiber having a core 31 having a three-layer structure, in which a clad 32 is provided on the outer periphery of the core 31 and a protective coating layer 33 is provided on the outer periphery of the clad 32.
  • the core 31 includes a center core 31a, a ring groove 31b provided on the outer periphery of the center core 31a, and a ring core 31c provided on the outer periphery of the ring groove 31b.
  • the fiber preform was produced by the MCVD method. Yb was added by a liquid immersion method. The fiber preform was spun until the glass outer diameter was about 125 ⁇ m, and a protective coating layer was provided on the outer periphery.
  • the core Al 2 O 3 was 0.80 mol%
  • Yb 2 O 3 was 0.17 mol%
  • P 2 O 5 was 3.53 mol%.
  • the core diameter was about 10.3 ⁇ m
  • the relative refractive index difference ( ⁇ ) of the core was about 0.15%.
  • FIG. 5 is a diagram showing a radial section and a refractive index distribution of the Yb-doped optical fiber 4.
  • the Yb-doped optical fiber 4 is a double-clad fiber having a clad 42 having a two-layer structure.
  • An inner clad 42a is provided on the outer circumference of the core 41
  • an outer clad 42b is provided on the outer circumference of the inner clad 42a
  • the protective coating layer 43 is provided on the outer periphery of 42b.
  • the cross-sectional shape of the inner cladding 42a is a D shape.
  • the fiber preform was produced by the MCVD method. Yb was added by spraying droplets during soot production. At this point, the cylindrical fiber preform was cut off so that the cross-sectional shape was a D shape as shown in FIG. Then, the obtained fiber preform was spun until the diameter of the circumscribed circle of the glass became about 250 ⁇ m. At this time, a polymer clad material having a refractive index lower than that of the glass was applied and cured on the outer periphery of the glass so that excitation light was confined in the glass clad. Further, the outer periphery was coated with a protective UV curable resin.
  • the core Al 2 O 3 was 0.92 mol%, Yb 2 O 3 was 0.19 mol%, and P 2 O 5 was 2.09 mol%.
  • the core diameter was about 18.7 ⁇ m, and the relative refractive index difference ( ⁇ ) of the core was about 0.10%.
  • the clad NA obtained from the difference in refractive index between the glass clad for guiding the excitation light and the polymer clad for confining the light was about 0.41. Almost no increase in loss due to photodarkening was observed in the obtained Yb-doped optical fiber, and the loss increase by the evaluation method was 0.01 dB or less. Further, using the obtained Yb-doped optical fiber, a fiber laser was produced, and the temporal change in light output was evaluated.
  • FIG. 6 is a diagram illustrating a radial section and a refractive index distribution of the Yb-doped optical fiber 5.
  • the Yb-doped optical fiber 5 is a double-clad fiber having a clad 52 having a two-layer structure, and an inner cladding 52a is provided on the outer periphery of the core 51, an outer cladding 52b is provided on the outer periphery of the inner cladding 52a, and an outer cladding.
  • a protective coating layer 53 is provided on the outer periphery of 52b.
  • a pair of stress applying portions 54 and 54 are provided at positions symmetrical to the core 51.
  • the fiber preform was produced by the VAD method.
  • Yb was added by spraying droplets during soot production.
  • a pair of holes are provided in the central axis direction of the fiber preform so as to be symmetrical with respect to the core, and stress-applied glass prepared by adding boron or the like is inserted therein, and the outer diameter of the glass is about 125 ⁇ m. Spinning until.
  • a polymer clad material having a refractive index lower than that of the glass was applied and cured on the outer periphery of the glass so that excitation light was confined in the glass clad. Further, the outer periphery was coated with a protective UV curable resin.
  • a polarization-maintaining optical fiber having a core Al 2 O 3 of 5.32 mol%, Yb 2 O 3 of 0.33 mol%, and P 2 O 5 of 6.86 mol% was obtained.
  • the core diameter was about 10.3 ⁇ m, and the relative refractive index difference ( ⁇ ) of the core was about 0.15%.
  • the clad NA obtained from the difference in refractive index between the glass clad for guiding the excitation light and the polymer clad for confining the light was about 0.46. Almost no increase in loss due to photodarkening was observed in the obtained Yb-doped optical fiber, and the loss increase by the evaluation method was 0.01 dB or less.
  • FIG. 7 is a diagram showing a radial section and a refractive index distribution of the Yb-doped optical fiber 6.
  • the Yb-doped optical fiber 6 is a double-clad fiber having a clad 62 having a two-layer structure.
  • An inner clad 62a is provided on the outer circumference of the core 61
  • an outer clad 62b is provided on the outer circumference of the inner clad 62a
  • a protective coating layer 63 is provided on the outer periphery of 62b.
  • the cross-sectional shape of the inner cladding 62a is a regular octagon, and the core 61, the inner cladding 62a, and the outer cladding 62b are arranged concentrically.
  • the fiber preform was produced by the VAD method. Yb was added by a liquid immersion method. At this time, the cylindrical fiber preform was cut off so that the cross-sectional shape was a regular octagon as shown in FIG. Then, the obtained fiber preform was spun until the diameter of the circumscribed circle of the glass became about 400 ⁇ m. At this time, a polymer clad material having a refractive index lower than that of the glass was applied and cured on the outer periphery of the glass so that excitation light was confined in the glass clad. Further, the outer periphery was coated with a protective UV curable resin.
  • the core Al 2 O 3 was 0.78 mol%, Yb 2 O 3 was 0.14 mol%, and P 2 O 5 was 1.85 mol%.
  • the core diameter was about 35 ⁇ m, and the relative refractive index difference ( ⁇ ) of the core was about 0.09%.
  • the clad NA obtained from the difference in refractive index between the glass clad for guiding the excitation light and the polymer clad for confining the light was about 0.43. Almost no increase in loss due to photodarkening was observed in the obtained Yb-doped optical fiber, and the loss increase by the evaluation method was 0.01 dB or less. Further, using the obtained Yb-doped optical fiber, a fiber laser was produced, and the temporal change in light output was evaluated.
  • FIG. 8 is a diagram illustrating a radial section and a refractive index distribution of the Yb-doped optical fiber 7.
  • the Yb-doped optical fiber 7 is a triple-clad fiber having a clad 72 having a three-layer structure, an innermost cladding 72a is provided on the outer periphery of the core 71, and an intermediate cladding 72b is provided on the outer periphery of the innermost cladding 72a.
  • the outermost cladding 72c is provided on the outer periphery of the intermediate cladding 72b, and the protective coating layer 73 is provided on the outer periphery of the outermost cladding 72c.
  • the cross section of the intermediate clad 72b is a regular heptagon, and the core 71, the innermost clad 72a, the intermediate clad 72b, and the outermost clad 72c are arranged concentrically.
  • the fiber preform was produced by the MCVD method. Yb was added by a liquid immersion method. At this point, the cylindrical fiber preform was cut off so that the cross-sectional shape was a regular heptagon as shown in FIG. The obtained fiber preform was spun until the diameter of the circumscribed circle of the glass cross section was about 380 ⁇ m. At this time, a polymer clad material having a refractive index lower than that of the glass was applied and cured on the outer periphery of the glass so that excitation light was confined in the glass clad. Further, the outer periphery was coated with a protective UV curable resin.
  • the core Al 2 O 3 was 10.49 mol%, Yb 2 O 3 was 0.36 mol%, and P 2 O 5 was 14.96 mol%.
  • the core diameter was about 24 ⁇ m, and the relative refractive index difference ( ⁇ ) of the core was about 0.11%.
  • the clad NA obtained from the difference in refractive index between the glass clad for guiding the excitation light and the polymer clad for confining the light was about 0.47. Almost no increase in loss due to photodarkening was observed in the obtained Yb-doped optical fiber, and the loss increase by the evaluation method was 0.01 dB or less. Further, using the obtained Yb-doped optical fiber, a fiber laser was produced, and the temporal change in light output was evaluated.
  • the output decrease after 100 hours was 3% or less with the pulse fiber laser having an initial output of 22 W.
  • This output reduction amount includes not only an increase in optical fiber loss but also a cause due to temperature change and measurement variation. Therefore, it was considered that the output decrease due to the loss increase due to photodarkening was 1% or less.
  • Table 2 shows the obtained Yb-doped optical fibers and the evaluation results.
  • FIG. 9 is a diagram showing a radial section and a refractive index distribution of the Yb-doped optical fiber 8.
  • the Yb-doped optical fiber 8 is a triple clad fiber having a two-layer core 81 and a three-layer clad 82.
  • the ring groove 81b is provided on the outer periphery of the center core 81a
  • the innermost cladding 82a is provided on the outer periphery of the ring groove 81b
  • the intermediate cladding 82b is provided on the outer periphery of the innermost cladding 82a
  • the outer periphery of the intermediate cladding 82b is provided on the outer periphery of the intermediate cladding 82b.
  • the outermost clad 82c is provided on the upper surface
  • the protective coating layer 83 is provided on the outer periphery of the outermost clad 82c.
  • the cross-sectional shape of the intermediate clad 82b is a regular heptagon, and the center core 81a, ring groove 81b, innermost clad 82a, intermediate clad 82b, and outermost clad 82c are arranged concentrically.
  • the fiber preform was produced by the MCVD method. Yb was added by a liquid immersion method. At this time, the cylindrical fiber preform was cut off so that the cross-sectional shape was a regular heptagon as shown in FIG. The obtained fiber preform was spun until the diameter of the circumscribed circle of the glass became about 420 ⁇ m. At this time, a polymer clad material having a refractive index lower than that of the glass was applied and cured on the outer periphery of the glass so that excitation light was confined in the glass clad. Further, the outer periphery was coated with a protective UV curable resin.
  • the core Al 2 O 3 was 11.03 mol%, Yb 2 O 3 was 0.71 mol%, and P 2 O 5 was 14.43 mol%.
  • the core diameter was about 34 ⁇ m, and the relative refractive index difference ( ⁇ ) of the core was about 0.10%.
  • the clad NA obtained from the difference in refractive index between the glass clad for guiding the excitation light and the polymer clad for confining the light was about 0.46. Almost no increase in loss due to photodarkening was observed in the obtained Yb-doped optical fiber, and the loss increase by the evaluation method was 0.01 dB or less. Further, using the obtained Yb-doped optical fiber, a fiber laser was produced, and the temporal change in light output was evaluated.
  • the output decrease after 100 hours was 3% or less with the pulse fiber laser having an initial output of 50 W.
  • This output reduction amount includes not only an increase in optical fiber loss but also a cause due to temperature change and measurement variation. Therefore, it was considered that the output decrease due to the loss increase due to photodarkening was 1% or less.
  • Table 2 shows the obtained Yb-doped optical fibers and the evaluation results.
  • FIG. 10 is a diagram showing a radial section and a refractive index distribution of the Yb-doped optical fiber 9.
  • the Yb-doped optical fiber 9 is a double clad fiber having a clad 92 having a two-layer structure.
  • An inner clad 92a is provided on the outer circumference of the core 91
  • an outer clad 92b is provided on the outer circumference of the inner clad 92a
  • the outer clad is provided on the outer periphery of 92b.
  • a pair of stress applying portions 94 and 94 are provided at positions symmetrical to the core 91. Furthermore, the cross-sectional shape of the inner cladding 92a is a regular octagon, and the core 91, the inner cladding 92a, and the outer cladding 92b are arranged concentrically.
  • the fiber preform was produced by the MCVD method.
  • Yb was added by a liquid immersion method.
  • the cylindrical fiber preform was cut off so that the cross-sectional shape was a regular octagon as shown in FIG.
  • a pair of holes were provided in the direction of the central axis of the fiber preform so as to be symmetrical with respect to the core, and stress-applied glass prepared by adding boron or the like was inserted therein.
  • the obtained fiber preform was spun until the diameter of the circumscribed circle of the glass became about 250 ⁇ m.
  • a polymer clad material having a refractive index lower than that of the glass was applied and cured on the outer periphery of the glass so that excitation light was confined in the glass clad. Further, the outer periphery was coated with a protective UV curable resin.
  • the core Al 2 O 3 was 1.72 mol%
  • Yb 2 O 3 was 0.26 mol%
  • P 2 O 5 was 2.35 mol%
  • GeO 2 was 0.83 mol%
  • F was 0
  • the core diameter was about 9.3 ⁇ m
  • the relative refractive index difference ( ⁇ ) of the core was about 0.22%.
  • the clad NA obtained from the difference in refractive index between the glass clad for guiding the excitation light and the polymer clad for confining the light was about 0.46. Almost no increase in loss due to photodarkening was observed in the obtained Yb-doped optical fiber, and the loss increase by the evaluation method was 0.01 dB or less.
  • a fiber laser was produced, and the temporal change in light output was evaluated.
  • the amount of decrease in output after 100 hours was 1% or less with a pulse fiber laser having an initial output of 11.3 W.
  • This output reduction amount includes not only an increase in optical fiber loss but also a cause due to temperature change and measurement variation. For this reason, it was considered that there was almost no decrease in output due to increased loss due to photodarkening.
  • a grating structure was formed by excimer exposure in the core of the obtained Yb-doped optical fiber.
  • Example 10 The cross-sectional shape is the same as in FIG.
  • Example 11 The cross-sectional shape is the same as in FIG.
  • Example 12 The cross-sectional shape is the same as in FIG.
  • Example 13 The cross-sectional shape is the same as in FIG.
  • Example 14 The cross-sectional shape is the same as in FIG.
  • Example 15 The cross-sectional shape is the same as in FIG.
  • Example 16 The cross-sectional shape is the same as in FIG. Example 17: The cross-sectional shape is the same as in FIG. Example 18: The cross-sectional shape is the same as in FIG. Example 19: The cross-sectional shape is the same as in FIG. Example 20: The cross-sectional shape is the same as in FIG. Example 21: The cross-sectional shape is the same as in FIG. Example 22: The cross-sectional shape is the same as in FIG. Example 23: The cross-sectional shape is the same as in FIG. Example 24: The cross-sectional shape is the same as in FIG. Example 25: The cross-sectional shape is the same as in FIG. Example 26: The cross-sectional shape is the same as in FIG. Comparative Example 1; the cross-sectional shape is the same as in FIG. Comparative Example 2; the cross-sectional shape is the same as in FIG.
  • the Yb-doped optical fiber of Comparative Example 1 is the same as the example except that it contains Ge in the core and does not contain P.
  • the Yb of the example having the same refractive index, Yb concentration, etc. It has substantially the same initial optical amplification characteristics as the doped optical fiber.
  • FIG. 11 is a graph showing the relationship between the loss amount before and after the excitation light irradiation and the difference wavelength when evaluating the loss increase amount of Comparative Example 1. From FIG. 11, it can be confirmed that the loss increases monotonously toward the short wavelength side after the excitation light irradiation. In FIG. 11, noise is observed in the loss amount data in the vicinity of the wavelength of 1000 nm because a light absorption band of Yb exists in this wavelength band as in the graph of FIG. 2.
  • the Yb-doped optical fiber of Comparative Example 2 is the same as the example except that the P 2 O 5 equivalent concentration in the core is lower than the Al 2 O 3 equivalent concentration. As is clear from Table 5, it was confirmed that the Yb-doped optical fiber of Comparative Example 2 did not have sufficient suppression of loss increase.
  • the present invention can be used as a laser medium for a high-power light source for material processing applications such as welding, marking, and cutting.

Abstract

 本発明のイッテルビウム添加光ファイバは、イッテルビウム、アルミニウム及びリンを少なくとも含有するコアと、このコアを囲むクラッドと、を備え、前記コア中の、前記アルミニウムの酸化アルミニウム換算濃度が0.2モル%以上であり、前記リンの五酸化二リン換算濃度が、前記酸化アルミニウム換算濃度よりも高い。

Description

イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ
 本発明は、フォトダークニングが抑制されたイッテルビウム添加光ファイバ、並びにこの光ファイバを有するファイバレーザ及びファイバアンプに関する。
 本願は、2008年08月04日に、日本国に出願された特願2008-201171号に基づき優先権を主張し、その内容をここに援用する。
 軸対称な導波構造を有する光ファイバのコア及び/又はクラッドに希土類元素等を添加した光増幅用ファイバは、ファイバアンプやファイバレーザ等の光活性媒質として使用されている。特に、希土類元素としてイッテルビウム(Yb)を含有するYb添加光ファイバは、ビーム品質の良い高パワー出力光が得られる。この出力光の発振波長は、既存の高出力レーザの一つであるNd-YAGとほぼ同じ1μm付近である。そのため、溶接、マーキング、切断等の材料加工用途の高出力光源用レーザ媒体としての実用化が期待されている。
 図12は、従来のYb添加光ファイバの径方向の断面及び屈折率分布を例示する図である。
 ここに示すYb添加光ファイバ11は、シングルクラッドファイバであり、コア111の外周上にクラッド112を設け、このクラッド112の外周上に保護被覆層113を設けたものである。Yb添加光ファイバ11では、導波する光を閉じ込めるために、コア111の屈折率がクラッド112の屈折率よりも高くなっている。コア111の屈折率を高くするためには、通常、ゲルマニウム(Ge)、アルミニウム(Al)、リン(P)等の屈折率上昇ドーパントがコア111に添加される。さらに、コア111には光増幅作用を有するドーパントとして、Ybが添加される。Ybは、通常、コア111中にほぼ均一な濃度分布となるように添加されるが、濃度分布があっても良く、さらにクラッド112の一部に添加されても良い。
 このようなYb添加光ファイバに励起光を入射させ、信号光を入射させるか又はファイバブラッググレーティング等を使用してキャビティを組むことで、高パワーの信号光が得られる。
 通常、ファイバレーザやファイバアンプの光増幅媒体としてYb添加光ファイバを使用する場合には、限定モード励振が可能で冷却効率が高いファイバ型光増幅媒体の利点を生かすために、実質的なシングルモード条件でYb添加光ファイバを使用することが多い。
 実質的にシングルモード伝播させるための光導波路の条件は、コアの屈折率とコア径(換言すれば、コアの径方向における屈折率分布)、巻き径等の条件によって決定される。この際、コアの屈折率が低いか、又はコア径が小さいことが必要となる。
 一方、光増幅媒体としての性能を考慮すると、より高パワーの光が出力できることが望まれる。すなわち、高パワーの光を光ファイバ中に伝播可能なことが、より良い増幅用光ファイバの条件である。しかし、光量が同等な光を、コア径が小さい光ファイバに入射させた場合と、コア径が大きい光ファイバに入射させた場合とで比較すると、前者の方が後者よりも光の伝送断面積(モードフィールド径)が小さいので、コアを伝播する光のパワー密度が高くなる。その結果、光によるコアガラスの損傷や光学的非線形現象を誘発し易い。あるいは、光伝送時の増幅パワーが制限されてしまう。したがって、このような観点からは、コア径が大きい方が望ましい。以上より、コア径を大きくし、かつシングルモード伝播させるためには、コアの屈折率を低くすることが必要となる。
 ファイバアンプやファイバレーザの特性を悪化させる要因の一つに、ファイバ中を伝播する励起光や信号光によって生じる光ファイバの損失増加(フォトダークニング)がある(非特許文献1及び2参照)。この損失増加によって、光増幅媒体である希土類添加光ファイバの光増幅効率が徐々に低下する。その結果、ファイバアンプやファイバレーザは、経時に伴い出力が低下して、寿命が短くなってしまう。
 そこで、これまでにフォトダークニングを抑制するための手法が種々開示されている。
 例えば、非特許文献1には、DND(Direct Nanoparticle Deposition)と呼ばれる特殊な製造方法を適用することで、フォトダークニングを抑制することが開示されている。
 また、非特許文献2には、光ファイバの製造時にアルミニウムを高濃度に添加することによって、フォトダークニングを抑制することが開示されている。
 また、特許文献1には、光ファイバに水素を添加することで、フォトダークニングを抑制することが開示されている。
S.Tammela et al.,  The Potential of Direct Nanoparticle Deposition for the Next Generation of Optical Fibers, The Proceeding of SPIE Photonics West 2006, Vol.6116-16 (2006) T. Kitabayashi et. al., Population Inversion Factor Dependence of Photodarkening of Yb-doped Fibers and Its Suppression by Highly Aluminum Doping, The Proceedings of OFC 2006, OThC5(2006) 特開2007-114335号公報
 しかし、非特許文献1に記載の方法によれば、従来法で製造した場合よりも確かにフォトダークニングは抑制できるが、その抑制効果はまだ不十分である。また、製造方法が特殊なため、従来法であるMCVD法やVAD法と比較して、光ファイバにはOH基の混入が多くなる。そのため、このOH基に起因する損失が大きくなってしまう。さらに、製造に使用するファイバプリフォームのサイズが制限されてしまうので、製造コストが上昇する。そのため、フォトダークニングが抑制された光増幅用光ファイバを安価に製造できない。
 非特許文献2に記載の方法では、フォトダークニングを十分抑制するために、多量のアルミニウムが必要となる。その結果、光ファイバのコアの屈折率が高くなってしまう。この場合、光ファイバをシングルモード動作させるために、コア径を小さくする必要があるが、上記のように、所望の出力光が得られなくなってしまう。
 特許文献1に記載の方法によれば、フォトダークニングを抑制できるが、水素含浸工程と光照射工程が必要となる。そのため、製造工程が煩雑となり、大量の光ファイバを製造することが困難である。
 本発明は、上記事情に鑑みてなされたものであり、従来法で製造可能な、フォトダークニングが抑制された光ファイバの提供を課題とする。
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。
 (1)本発明のイッテルビウム添加光ファイバは、イッテルビウム、アルミニウム及びリンを少なくとも含有するコアと、このコアを囲むクラッドと、を備え、前記コア中の、前記アルミニウムの酸化アルミニウム換算濃度が0.2モル%以上であり、前記リンの五酸化二リン換算濃度が、前記酸化アルミニウム換算濃度よりも高い。
 (2)前記コア及びクラッドがシリカガラスで構成されているのが好ましい。
 (3)前記コア中の、イッテルビウムの酸化イッテルビウム換算濃度及び前記酸化アルミニウム換算濃度の総和よりも、前記五酸化二リン換算濃度が大きいのが好ましい。
 (4)前記コア中の、前記酸化イッテルビウム換算濃度と前記酸化アルミニウム換算濃度との比が0.01~2であるのが好ましい。
 (5)前記コア中の、前記酸化イッテルビウム換算濃度が0.01~1.0モル%であるのが好ましい。
 (6)前記コア中の、前記五酸化二リン換算濃度が20モル%以下であるのが好ましい。
 (7)前記コア中の、前記五酸化二リン換算濃度が、前記酸化アルミニウム換算濃度の2倍以下であるのが好ましい。
 (8)前記コアとクラッドとの比屈折率差が0.05~0.65%であるのが好ましい。
 (9)前記コアとクラッドとの比屈折率差が0.05~0.25%であるのが好ましい。
 (10)前記コアが、さらにゲルマニウムを含有するのが好ましい。
 (11)前記コアが、さらにフッ素及び/又はホウ素を含有するのが好ましい。
 (12)前記コアが、さらにイッテルビウム以外の希土類元素及び遷移金属元素からなる群から選択される少なくとも一種を含有するのが好ましい。
 (13)前記クラッドを少なくとも二層備え、径方向内側のクラッドの屈折率が外側のクラッドの屈折率よりも高いのが好ましい。
 (14)前記(13)の場合、前記クラッドを少なくとも三層備え、径方向最内側のクラッドの屈折率nc1と、最外側のクラッドの屈折率nc3と、前記最内側及び前記最外側のクラッド間の中間クラッドの屈折率nc2とが、nc1>nc2>nc3の関係を満たすのが好ましい。
 (15)本発明のファイバレーザは、上記(1)に記載のイッテルビウム添加光ファイバを光増幅媒体として有する。
 (16)本発明のファイバアンプは、上記(1)に記載のイッテルビウム添加光ファイバを光増幅媒体として有する。
 上記(1)に記載のイッテルビウム添加光ファイバでは、コア中の、アルミニウムの酸化アルミニウム換算濃度が0.2モル%以上であって、リンの五酸化二リン換算濃度が、前記酸化アルミニウム換算濃度よりも高くなっている。そのため、ガラスの結晶化が抑制されると共に、フォトダークニングが抑制される。その結果、優れた光増幅効果が得られる光ファイバを、安価かつ大量に提供できる。また、このような光ファイバを光増幅媒体として使用することで、経時に伴う出力低下が抑制され、光学特性が良好なファイバレーザ及びファイバアンプを安価に提供できる。
図1は、実施例1で作製したYb添加光ファイバの径方向の断面及び屈折率分布を示す図である。 図2は、実施例1における、励起光照射前後での損失量とその差分の波長との関係を示すグラフである。 図3は、実施例2における、励起光照射前後での損失量とその差分の、波長との関係を示すグラフである。 図4は、実施例3における、励起光照射前後での損失量とその差分の、波長との関係を示すグラフである。 図5は、実施例4における、励起光照射前後での損失量とその差分の、波長との関係を示すグラフである。 図6は、実施例5における、励起光照射前後での損失量とその差分の、波長との関係を示すグラフである。 図7は、実施例6における、励起光照射前後での損失量とその差分の、波長との関係を示すグラフである。 図8は、実施例7における、励起光照射前後での損失量とその差分の、波長との関係を示すグラフである。 図9は、実施例8における、励起光照射前後での損失量とその差分の、波長との関係を示すグラフである。 図10は、実施例9における、励起光照射前後での損失量とその差分の、波長との関係を示すグラフである。 図11は、比較例1における、励起光照射前後での損失量とその差分の波長との関係を示すグラフである。 図12は、従来のYb添加光ファイバの径方向の断面及び屈折率分布を例示する図である。
符号の説明
 1,2,3,4,5,6,7,8,9 イッテルビウム添加光ファイバ
 11,21,31,41,51,61,71,81,91 コア
 12,22,32,42,52,62,72,82,92 クラッド
 42a,52a,62a,92a 内側クラッド
 42b,52b,62b,92b 外側クラッド
 72a,82a 最内側クラッド
 72b,82b 中間クラッド
 72c,82c 最外側クラッド
 以下、本発明について詳しく説明する。
 以下で「モル%」の単位で示す添加成分の濃度は、屈折率分布を有する光ファイバにおいては、特に断りのない限り平均値である。
 「コア径」とは、「コアの最大比屈折率差の1/eの比屈折率差を有する径」のことを指す。
<Yb添加光ファイバ>
 本発明のYb添加光ファイバは、コアとこのコアを囲むクラッドとを備える。前記コアは、少なくともYb、Al及びPを含有する。前記コア中の、Alの酸化アルミニウム(Al)換算濃度は0.2モル%以上であり、Pの五酸化二リン(P)換算濃度が、前記Al換算濃度よりも高い。
 Pはフォトダークニング抑制作用及び屈折率上昇作用を有するドーパントである。
 Alは屈折率上昇作用及びガラスの結晶化抑制作用を有するドーパントである。
 Ybは光増幅作用を有するドーパントである。
 コア中のPは、フォトダークニングの抑制作用を有する。しかしながら、コアがYb及びPのみを含有する光ファイバは、コアの屈折率を所望の低い値とした場合、ガラスが結晶化してしまう。そのため、この光ファイバは、増幅用光ファイバとして使用できない。しかし、さらにAlをコアに含有させることにより、フォトダークニングを抑制しつつ、コアの屈折率を所望の低い値にしても、ガラスの結晶化を抑制できる。Alがガラスの結晶化抑制作用を有するのは、Yb及びPをガラス中に分散させるからであると推測される。
 本発明は、Ybを含有するコア中の、PのP換算濃度(以下、単に「P換算濃度」と略記することがある)と、AlのAl換算濃度(以下、単に「Al換算濃度」と略記することがある)とが、それぞれ所定の範囲に設定されている。これにより、フォトダークニングの抑制とガラスの結晶化抑制とを高いレベルで両立できる。
 さらに本発明は、コア中の、Ybの酸化イッテルビウム(Yb)換算濃度(以下、単に「Yb換算濃度」と略記することがある)を好ましい所定の範囲に設定することで、フォトダークニングの抑制効果とガラスの結晶化抑制効果とを損なうことなく、より優れた光増幅効果が得られる。
 上記のような観点から、本発明においては、コア中の前記Al換算濃度を0.2モル%以上とする。さらに、前記Al換算濃度は0.2~12モル%であることが好ましく、より具体的には、0.23~11.82モル%の範囲を選択できる。Al換算濃度を0.2モル%以上とすることで、コアの屈折率を低くしても、ガラスの結晶化を抑制する一層高い効果が得られる。また、Al換算濃度を12モル%以下とすることで、光ファイバの伝送損失を抑制する一層高い効果が得られる。前記の「0.2~12モル%」というAl換算濃度は、コア中のAlの濃度として0.08~4.8モル%に相当する。
 また、本発明においては、コア中のP換算濃度を、前記Al換算濃度よりも高くする。このようにすることで、ガラスの結晶化を抑制しつつフォトダークニングを抑制する高い効果が得られる。
 さらに、前記P換算濃度は、Al換算濃度の19倍以下であることが好ましく、12倍以下であることがより好ましく、5.5倍以下であることが特に好ましく、2倍以下であることが最も好ましい。このような範囲とすることで、コアの屈折率上昇を抑制する一層高い効果が得られる。
 また、前記P換算濃度は、20モル%以下であることが好ましく、0.5~20モル%であることがより好ましく、1.5~20モル%であることが特に好ましく、より具体的には、1.85~19.83モル%の範囲を選択できる。Pの含有量が必要以上に多くなると、光ファイバの伝送損失が高くなってしまうが、このような範囲とすることで、伝送損失が抑制され、一層高い光の増幅効果が得られる。前記の「1.5~20モル%」というP換算濃度は、コア中のPの濃度として0.43~5.7モル%に相当する。
 コア中の、前記Yb換算濃度は、0.01~1.0モル%であることが好ましく、より具体的には、0.01~0.99モル%の範囲を選択できる。Yb換算濃度を0.01モル%以上とすることで、一層高い光の増幅効果が得られる。また、1.0モル%以下とすることで、Ybをガラス中に安定して固溶させることができると共に、フォトダークニングを抑制した上で光を増幅する高い効果が得られる。なお、前記の「0.01~1.0モル%」というYb換算濃度は、コア中のYbの濃度として0.004~0.4モル%に相当する。
 コア中の、前記Yb換算濃度と前記Al換算濃度との比(Yb換算濃度/Al換算濃度)は0.01~2であることが好ましい。前記比を2以下とすることで、Alによるガラスの結晶化を抑制する一層高い効果が得られる。一方、前記比を0.01以上とすることで、屈折率を低くするためにAlの含有量を低下させても、Ybの含有量が不足することがなく、光学特性及び光の増幅効果が一層良好となる。また、十分な光の増幅効果を得るためにYbの含有量を増加させても、Alの含有量が適正な範囲に保持されるので、屈折率が必要以上に上昇することがない。
 コア中の、前記P換算濃度は、前記Yb換算濃度及びAl換算濃度の総和よりも大きいことが好ましく、前記総和の1.05~11.5倍であることがより好ましい。このような範囲とすることで、ガラスの結晶化を抑制しつつフォトダークニングを抑制する一層高い効果が得られる。
 コア及びクラッドは、シリカガラスで構成されていることが好ましい。シリカガラスは、一般的な伝送用光ファイバで汎用されているのに加え、伝送損失の低減が可能であり、光を高効率で増幅するのに有利である。
 コアには、Yb、Al及びP以外に、さらにその他の元素を含有させても良い。その他の元素を含有させることで、Yb添加光ファイバの機能を高めたり、異なる機能を付与できる。
 例えば、コアにGeを含有させることで、Yb添加光ファイバにファイバブラッググレーティングを容易に形成できる。
 また、フッ素(以下、Fと略記することがある)及びホウ素(以下、Bと略記することがある)のいずれか一方又は双方を含有させることで、コアの屈折率分布の制御が容易になり、所望の光学特性を有する光ファイバが容易に得られる。
 また、コアに、イッテルビウム以外の希土類元素及び遷移金属元素からなる群から選択される少なくとも一種を含有させることで、共添加増感作用を発現させたり、励起波長を変化させたり、特定波長で発振させたりすることが可能となる。
 前記希土類元素は、従来のYb添加光ファイバで使用されている公知のもので良く、具体的には、エルビウム(Er)、ツリウム(Tm)、イットリウム(Y)、ホルミウム(Ho)、サマリウム(Sm)、プラセオジム(Pr)及びネオジム(Nd)等が例示できる。
 前記遷移元素も、公知のものから目的に応じて適宜選択すれば良い。
 コアに含有させるその他の元素は一種類でも良いし、二種類以上でも良い。そして、これら元素は、液浸法等、公知の方法でコアに添加すれば良い。
 コアに含有させるその他の元素は、目的に応じて適宜その種類を選択すれば良い。そして、元素の種類に応じてその濃度を適宜設定すれば良い。
 例えば、Geを含有させる場合には、二酸化ゲルマニウム(GeO)換算濃度が0.1~1.1モル%であることが好ましく、0.5~1モル%であることがより好ましい。
 上記範囲の上限値以下とすることで、コアとクラッドとの比屈折率差が大きくなり過ぎることがない。
 また、Bを含有させる場合には、三酸化二ホウ素(B)換算濃度が0.01~5モル%であることが好ましく、0.05~1モル%であることがより好ましい。上記範囲の上限値以下とすることで、残留応力の増大が抑制され、十分な強度の光ファイバが得られる。
 また、Fを含有させる場合には、0.05~3モル%であることが好ましく、0.1~1モル%であることがより好ましい。上記範囲の上限値以下とすることで、コストが低減できる。
 また、希土類元素又は遷移金属元素としてエルビウム(Er)を含有させる場合には、酸化エルビウム(Er)換算濃度が0.01~1モル%であることが好ましく、0.05~0.5モル%であることがより好ましい。上記範囲の上限値以下とすることで、濃度消光等の問題を抑制できる。
 Yb等、コア中の元素は、コア中で濃度分布があっても良いが、良好な光学特性を得るためには、ほぼ均一な濃度であることが好ましい。
 クラッドは、一層構造でも良いし、二層構造又は三層構造等、複数層構造でも良い。
 例えば、ダブルクラッドファイバ又はトリプルクラッドファイバ等、マルチクラッドファイバとすることで、シングルクラッドファイバよりも高出力の光が得られる。マルチクラッドファイバでは、励起光をクラッドに導波させることで、励起光のコアへの集中を抑制できる。そのため、コアガラスの損傷や光学的非線形現象を抑制して、一層高出力のファイバレーザやファイバアンプを作製できる。このような観点からは、ダブルクラッドファイバよりも、励起光の利用効率が高いトリプルクラッドファイバが好ましい。
 また、クラッドの形状は特に限定されず、目的に応じて適宜選択すれば良い。例えば、スキューモードを抑制するためには、例えば図5や図7~10に示すように、径方向断面形状を多角形状、D型状等の非円形状にすることが好ましい。
 また、コアの近傍に応力付与部を設けても良い。応力付与部は、例えば、石英ガラスにB等を添加した材料から形成できる。
 コアの屈折率分布は、目的に応じて適宜調整すれば良い。例えば、図12で例示したような単峰ステップ型でも良いし、例えば図1や図3~10に示すように釣鐘型、凹型、デュアルシェイプ、セグメントコア、二重凹型、W型等、公知の如何なる屈折率分布でも良い。
 コア及びクラッドの屈折率は、Yb添加光ファイバの構造や、所望の比屈折率差等を考慮して、調整することが好ましい。
 例えば、導波する光を閉じ込めるためには、コアの屈折率がクラッドの屈折率よりも高いことが好ましい。
 また、クラッドを少なくとも二層備えるマルチクラッドファイバの場合には、径方向内側のクラッドの屈折率が、径方向外側のクラッドの屈折率よりも高いことが好ましい。このようにすることで、より高出力の光が得られる。なお、ここで「径方向内側」及び「径方向外側」とは、二層のクラッドの径方向における相対的な位置関係を示すものである。
 したがって、「径方向内側のクラッド」及び「径方向外側のクラッド」とは、必ずしもダブルクラッドファイバの二層のクラッドのみを示すものではなく、三層以上のクラッドを備えるマルチクラッドファイバにおける、いずれか二層のクラッドを示すものである。
 また、クラッドを少なくとも三層備えるマルチクラッドファイバの場合には、径方向最内側のクラッドの屈折率nc1と、最外側のクラッドの屈折率nc3と、前記最内側及び最外側のクラッド間の中間クラッドの屈折率nc2とが、nc1>nc2>nc3の関係を満たすことが好ましい。このようにすることで、より高出力な光を効率的に得られる。
 ここで「中間クラッド」とは、最内側及び最外側のクラッド間に配置されたものであればいずれでも良く、例えば、トリプルクラッドファイバにおける、最内側及び最外側のクラッド間の中間クラッドのみを示すものではない。
 コアとクラッドとの比屈折率差は、0.05~0.65%であることが好ましく、0.05~0.25%であることがより好ましい。前記比屈折率差を0.65%以下とすることで、光ファイバを実質的にシングルモード条件で使用する場合に、コア径が小さくなり過ぎず、光のパワー密度が高くなり過ぎない。ゆえに、光によるコアガラスの損傷や光学的非線形現象を抑制する高い効果が得られる。これにより、高出力光が容易に得られる。また、0.25%以下とすることで、一層高出力の光が得られる。一方、前記比屈折率差を0.05%以上とすることで、光を閉じ込める十分な効果が得られ、光ファイバの曲げや側圧に対しても、光を一層安定して導波できる。
 ここで「コアとクラッドとの比屈折率差」とは、コアの屈折率をn、クラッドの屈折率をnとした場合に、式:(n-n)/n×100で算出される値である。
 コア径は、コアの屈折率に応じて適宜設定することが好ましいが、通常は、3~50μmであることが好ましく、4~43μmであることがより好ましい。
 本発明のYb添加光ファイバは、コアにYb、Al及びPを所定量添加すること以外は、公知の手法で製造できる。
 例えば、MCVD法、VAD法等でファイバプリフォームを作製し、これを所望の外径となるように紡糸して、その外周上にUV硬化樹脂等で保護被覆層を形成することで製造できる。Ybは、ファイバプリフォーム作製過程において、スートに液浸法で添加する手法や、液滴を噴霧する手法で添加できる。
 また、例えば、クラッドの形状を非円形状とする場合には、Yb添加後のファイバプリフォームを所望の形状に外削し、これを紡糸すれば良い。
 また、例えば、クラッド中に応力付与部を設ける場合には、Yb添加後のファイバプリフォームにおいて、その中心軸方向に孔を設け、好ましくはその内表面を研削及び研磨して鏡面化した後、ここにMCVD法等で作製したB-SiOガラス製の応力付与部材を挿入し、次いで紡糸すれば良い。
<ファイバレーザ、ファイバアンプ>
 本発明のファイバレーザ又はファイバアンプは、上記本発明のYb添加光ファイバを光増幅媒体として有することを特徴とする。
 そして、増幅媒体として上記本発明のYb添加光ファイバを使用すること以外は、公知のファイバレーザ又はファイバアンプと同様の方法で製造できる。
 本発明によれば、フォトダークニングの抑制効果に優れ、所望の高出力光が得られるYb添加光ファイバを、MCVD法やVAD法等の公知の手法を適用して製造できる。また、製造時に使用するファイバプリフォームのサイズも制限されることがない。したがって、上記のような優れた特性を有するYb添加光ファイバを、安価かつ大量に提供できる。
 また、このような光ファイバを光増幅媒体として使用することで、経時に伴う出力低下が抑制され、光学特性が良好なファイバレーザ及びファイバアンプを安価に提供できる。
 以下、具体的実施例により、本発明についてさらに詳細に説明する。ただし、本発明は、以下の実施例に何ら限定されるものではない。
 以下の実施例において、Yb添加光ファイバのフォトダークニングによる損失増加量は、以下の方法で評価した。これにより用途や構造が異なる光ファイバでも、相対的に損失増加量を比較できる。
(フォトダークニングによる損失増加量の評価方法)
 コアのYb吸収量が340dBとなるような中心軸方向における長さのYb添加光ファイバを使用し、そのコアに、波長976nmの励起光を入射光量が400mWとなるように100分間照射した。そして、波長800nmにおける照射前後の損失の差分を「フォトダークニングによる損失増加量」とした。
[実施例1]
 図1に示す構造のYb添加光ファイバを作製した。図1は、Yb添加光ファイバ1の径方向の断面及び屈折率分布を示す図である。Yb添加光ファイバ1はシングルクラッドファイバであり、コア11の外周上にクラッド12が設けられ、クラッド12の外周上に保護被覆層13が設けられたものである。
 ファイバプリフォームは、MCVD法で作製した。また、Ybは液浸法で添加した。そして、ファイバプリフォームをガラス外径が約125μmになるまで紡糸し、外周上に保護被覆層を設けた。
 コアのAlは1.67モル%、Ybは0.54モル%、Pは8.37モル%であった。また、コア径は約4.9μm、コアの比屈折率差(Δ)は約0.64%であった。
 得られたYb添加光ファイバのフォトダークニングによる損失増加はほとんど見られず、前記評価方法による損失増加量は、0.01dB以下であった。この時の励起光照射前後での損失量とその差分の波長との関係を図2にグラフとして示す。図2中、波長1000nm付近で損失量のデータにノイズが見られるのは、この波長帯にYbの光吸収帯が存在するためである。
 また、得られたYb添加光ファイバを使用して、ファイバアンプを作製し、光出力の経時変化を評価した。その結果、初期出力1.5Wのファイバアンプで100時間経過後の出力低下量は3%以下であった。この出力低下量は、光ファイバの損失増加以外に、温度変化や測定ばらつきに起因するものも含んでいる。そのため、フォトダークニングによる損失増加起因の出力低下は、1%以下であると考えられた。
 得られたYb添加光ファイバと、その評価結果を表1に示す。
[実施例2]
 図3に示す構造のYb添加光ファイバを作製した。図3は、Yb添加光ファイバ2の径方向の断面及び屈折率分布を示す図である。Yb添加光ファイバ2はシングルクラッドファイバであり、コア21の外周上にクラッド22が設けられ、クラッド22の外周上に保護被覆層23が設けられたものである。
 ファイバプリフォームは、VAD法で作製した。また、Ybは液浸法で添加した。そして、ファイバプリフォームをガラス外径が約125μmになるまで紡糸し、外周上に保護被覆層を設けた。
 コアのAlは0.84モル%、Ybは0.15モル%、Pは3.85モル%であった。また、コア径は約7μm、コアの比屈折率差(Δ)は約0.25%であった。
 得られたYb添加光ファイバのフォトダークニングによる損失増加はほとんど見られず、前記評価方法による損失増加量は、0.01dB以下であった。
 また、得られたYb添加光ファイバを使用して、ファイバレーザを作製し、光出力の経時変化を評価した。その結果、初期出力3Wのファイバレーザで100時間経過後の出力低下量は3%以下であった。この出力低下量は、光ファイバの損失増加以外に、温度変化や測定ばらつきに起因するものも含んでいる。そのため、フォトダークニングによる損失増加起因の出力低下は、1%以下であると考えられた。
 得られたYb添加光ファイバと、その評価結果を表1に示す。
[実施例3]
 図4に示す構造のYb添加光ファイバを作製した。図4は、Yb添加光ファイバ3の径方向の断面及び屈折率分布を示す図である。Yb添加光ファイバ3は、三層構造のコア31を有するシングルクラッドファイバであり、コア31の外周上にクラッド32が設けられ、クラッド32の外周上に保護被覆層33が設けられたものである。そして、コア31は、センタコア31aと、センタコア31aの外周上に設けられたリンググルーヴ31bと、リンググルーヴ31bの外周上に設けられたリングコア31cとからなる。
 ファイバプリフォームは、MCVD法で作製した。また、Ybは液浸法で添加した。そして、ファイバプリフォームをガラス外径が約125μmになるまで紡糸し、外周上に保護被覆層を設けた。
 コアのAlは0.80モル%、Ybは0.17モル%、Pは3.53モル%であった。また、コア径は約10.3μm、コアの比屈折率差(Δ)は約0.15%であった。
 得られたYb添加光ファイバのフォトダークニングによる損失増加はほとんど見られず、前記評価方法による損失増加量は、0.01dB以下であった。
 また、得られたYb添加光ファイバを使用して、ファイバレーザを作製し、光出力の経時変化を評価した。その結果、初期出力4.5Wのファイバレーザで100時間経過後の出力低下量は4%以下であった。なお、この出力低下量は、光ファイバの損失増加以外に、温度変化や測定ばらつきに起因するものも含んでいる。そのため、フォトダークニングによる損失増加起因の出力低下は2%以下であると考えられた。
 得られたYb添加光ファイバと、その評価結果を表1に示す。
[実施例4]
 図5に示す構造のYb添加光ファイバを作製した。図5は、Yb添加光ファイバ4の径方向の断面及び屈折率分布を示す図である。Yb添加光ファイバ4は、二層構造のクラッド42を有するダブルクラッドファイバであり、コア41の外周上に内側クラッド42aが設けられ、内側クラッド42aの外周上に外側クラッド42bが設けられ、外側クラッド42bの外周上に保護被覆層43が設けられたものである。また、内側クラッド42aの断面形状はD型状である。
 ファイバプリフォームは、MCVD法で作製した。また、Ybは、スート作製中に液滴を噴霧する手法で添加した。この時点で円柱形状のファイバプリフォームを、断面形状が図5に示すようなD型状となるように外削した。そして、得られたファイバプリフォームをガラスの断面外接円の直径が約250μmになるまで紡糸した。この時、ガラスの外周上にガラスよりも屈折率が低いポリマークラッド材を塗布及び硬化させ、ガラスクラッドに励起光が閉じ込められる構造とした。さらに、その外周上を保護UV硬化樹脂で被覆した。
 コアのAlは0.92モル%、Ybは0.19モル%、Pは2.09モル%であった。また、コア径は約18.7μm、コアの比屈折率差(Δ)は約0.10%であった。また、励起光を導波するガラスクラッドと光を閉じ込めるポリマークラッドとの屈折率差から得られるクラッドNAは、約0.41であった。
 得られたYb添加光ファイバのフォトダークニングによる損失増加はほとんど見られず、前記評価方法による損失増加量は、0.01dB以下であった。
 また、得られたYb添加光ファイバを使用して、ファイバレーザを作製し、光出力の経時変化を評価した。その結果、初期出力14.8Wのパルス出力ファイバレーザで100時間経過後の出力低下量は1%以下であった。この出力低下量は、光ファイバの損失増加以外に、温度変化や測定ばらつきに起因するものも含んでいる。そのため、フォトダークニングによる損失増加起因の出力低下はほとんどないと考えられた。
 得られたYb添加光ファイバと、その評価結果を表1に示す。
[実施例5]
 図6に示す構造のYb添加光ファイバを作製した。図6は、Yb添加光ファイバ5の径方向の断面及び屈折率分布を示す図である。Yb添加光ファイバ5は、二層構造のクラッド52を有するダブルクラッドファイバであり、コア51の外周上に内側クラッド52aが設けられ、内側クラッド52aの外周上に外側クラッド52bが設けられ、外側クラッド52bの外周上に保護被覆層53が設けられたものである。また、内側クラッド52a中には、コア51に対して対称な位置に一対の応力付与部54,54が設けられている。
 ファイバプリフォームは、VAD法で作製した。また、Ybは、スート作製中に液滴を噴霧する手法で添加した。このファイバプリフォームの中心軸方向に、コアに対して対称な配置となるように一対の孔を設け、そこにボロン等を添加して作製した応力付与ガラスを挿入し、ガラス外径が約125μmになるまで紡糸した。この時、ガラスの外周上にガラスよりも屈折率が低いポリマークラッド材を塗布及び硬化させ、ガラスクラッドに励起光が閉じ込められる構造とした。さらに、その外周上を保護UV硬化樹脂で被覆した。
 その結果、コアのAlは5.32モル%、Ybは0.33モル%、Pは6.86モル%の偏波保持型光ファイバが得られた。また、コア径は約10.3μm、コアの比屈折率差(Δ)は約0.15%であった。また、励起光を導波するガラスクラッドと光を閉じ込めるポリマークラッドとの屈折率差から得られるクラッドNAは、約0.46であった。
 得られたYb添加光ファイバのフォトダークニングによる損失増加はほとんど見られず、前記評価方法による損失増加量は、0.01dB以下であった。
 また、得られたYb添加光ファイバを使用して、ファイバレーザを作製し、光出力の経時変化を評価した。その結果、初期出力10.8Wのファイバレーザで100時間経過後の出力低下量は4%以下であった。この出力低下量は、光ファイバの損失増加以外に、温度変化や測定ばらつきに起因するものも含んでいる。そのため、フォトダークニングによる損失増加起因の出力低下は2%以下であると考えられた。
 得られたYb添加光ファイバと、その評価結果を表1に示す。
[実施例6]
 図7に示す構造のYb添加光ファイバを作製した。図7は、Yb添加光ファイバ6の径方向の断面及び屈折率分布を示す図である。Yb添加光ファイバ6は、二層構造のクラッド62を有するダブルクラッドファイバであり、コア61の外周上に内側クラッド62aが設けられ、内側クラッド62aの外周上に外側クラッド62bが設けられ、外側クラッド62bの外周上に保護被覆層63が設けられたものである。また、内側クラッド62aの断面形状は正八角形状であり、コア61、内側クラッド62a及び外側クラッド62bは同心状に配置されている。
 ファイバプリフォームは、VAD法で作製した。また、Ybは液浸法で添加した。この時点で円柱形状のファイバプリフォームを、断面形状が図7に示すような正八角形状となるように外削した。そして、得られたファイバプリフォームをガラスの断面外接円の直径が約400μmになるまで紡糸した。この時、ガラスの外周上にガラスよりも屈折率が低いポリマークラッド材を塗布及び硬化させ、ガラスクラッドに励起光が閉じ込められる構造とした。
 さらに、その外周上を保護UV硬化樹脂で被覆した。
 コアのAlは0.78モル%、Ybは0.14モル%、Pは1.85モル%であった。また、コア径は約35μm、コアの比屈折率差(Δ)は約0.09%であった。また、励起光を導波するガラスクラッドと光を閉じ込めるポリマークラッドとの屈折率差から得られるクラッドNAは、約0.43であった。
 得られたYb添加光ファイバのフォトダークニングによる損失増加はほとんど見られず、前記評価方法による損失増加量は、0.01dB以下であった。
 また、得られたYb添加光ファイバを使用して、ファイバレーザを作製し、光出力の経時変化を評価した。その結果、初期出力122Wのファイバレーザで100時間経過後の出力低下量は6%以下であった。この出力低下量は、光ファイバの損失増加以外に、温度変化や測定ばらつきに起因するものも含んでいる。そのため、フォトダークニングによる損失増加起因の出力低下は3%以下であると考えられた。
 得られたYb添加光ファイバと、その評価結果を表1に示す。
[実施例7]
 図8に示す構造のYb添加光ファイバを作製した。図8は、Yb添加光ファイバ7の径方向の断面及び屈折率分布を示す図である。Yb添加光ファイバ7は、三層構造のクラッド72を有するトリプルクラッドファイバであり、コア71の外周上に最内側クラッド72aが設けられ、最内側クラッド72aの外周上に中間クラッド72bが設けられ、中間クラッド72bの外周上に最外側クラッド72cが設けられ、最外側クラッド72cの外周上に保護被覆層73が設けられたものである。また、中間クラッド72bの断面形状は正七角形状であり、コア71、最内側クラッド72a、中間クラッド72b及び最外側クラッド72cは同心状に配置されている。
 ファイバプリフォームは、MCVD法で作製した。また、Ybは液浸法で添加した。この時点で円柱形状のファイバプリフォームを、断面形状が図8に示すような正七角形状となるように外削した。そして、得られたファイバプリフォームをガラスの断面外接円の直径が約380μmになるまで紡糸した。この時、ガラスの外周上にガラスよりも屈折率が低いポリマークラッド材を塗布及び硬化させ、ガラスクラッドに励起光が閉じ込められる構造とした。さらに、その外周上を保護UV硬化樹脂で被覆した。
 コアのAlは10.49モル%、Ybは0.36モル%、Pは14.96モル%であった。また、コア径は約24μm、コアの比屈折率差(Δ)は約0.11%であった。また、励起光を導波するガラスクラッドと光を閉じ込めるポリマークラッドとの屈折率差から得られるクラッドNAは、約0.47であった。
 得られたYb添加光ファイバのフォトダークニングによる損失増加はほとんど見られず、前記評価方法による損失増加量は、0.01dB以下であった。
 また、得られたYb添加光ファイバを使用して、ファイバレーザを作製し、光出力の経時変化を評価した。その結果、初期出力22Wのパルスファイバレーザで100時間経過後の出力低下量は3%以下であった。この出力低下量は、光ファイバの損失増加以外に、温度変化や測定ばらつきに起因するものも含んでいる。そのため、フォトダークニングによる損失増加起因の出力低下は1%以下であると考えられた。
 得られたYb添加光ファイバと、その評価結果を表2に示す。
[実施例8]
 図9に示す構造のYb添加光ファイバを作製した。図9は、Yb添加光ファイバ8の径方向の断面及び屈折率分布を示す図である。Yb添加光ファイバ8は、二層構造のコア81及び三層構造のクラッド82を有するトリプルクラッドファイバである。すなわち、センタコア81aの外周上にリンググルーヴ81bが設けられ、リンググルーヴ81bの外周上に最内側クラッド82aが設けられ、最内側クラッド82aの外周上に中間クラッド82bが設けられ、中間クラッド82bの外周上に最外側クラッド82cが設けられ、最外側クラッド82cの外周上に保護被覆層83が設けられたものである。また、中間クラッド82bの断面形状は正七角形状であり、センタコア81a、リンググルーヴ81b、最内側クラッド82a、中間クラッド82b及び最外側クラッド82cは同心状に配置されている。
 ファイバプリフォームは、MCVD法で作製した。また、Ybは液浸法で添加した。この時点で円柱形状のファイバプリフォームを、断面形状が図9に示すような正七角形状となるように外削した。そして、得られたファイバプリフォームをガラスの断面外接円の直径が約420μmになるまで紡糸した。この時、ガラスの外周上にガラスよりも屈折率が低いポリマークラッド材を塗布及び硬化させ、ガラスクラッドに励起光が閉じ込められる構造とした。さらに、その外周上を保護UV硬化樹脂で被覆した。
 コアのAlは11.03モル%、Ybは0.71モル%、Pは14.43モル%であった。また、コア径は約34μm、コアの比屈折率差(Δ)は約0.10%であった。また、励起光を導波するガラスクラッドと光を閉じ込めるポリマークラッドとの屈折率差から得られるクラッドNAは、約0.46であった。
 得られたYb添加光ファイバのフォトダークニングによる損失増加はほとんど見られず、前記評価方法による損失増加量は、0.01dB以下であった。
 また、得られたYb添加光ファイバを使用して、ファイバレーザを作製し、光出力の経時変化を評価した。その結果、初期出力50Wのパルスファイバレーザで100時間経過後の出力低下量は3%以下であった。この出力低下量は、光ファイバの損失増加以外に、温度変化や測定ばらつきに起因するものも含んでいる。そのため、フォトダークニングによる損失増加起因の出力低下は1%以下であると考えられた。
 得られたYb添加光ファイバと、その評価結果を表2に示す。
[実施例9]
 図10に示す構造のYb添加光ファイバを作製した。図10は、Yb添加光ファイバ9の径方向の断面及び屈折率分布を示す図である。Yb添加光ファイバ9は、二層構造のクラッド92を有するダブルクラッドファイバであり、コア91の外周上に内側クラッド92aが設けられ、内側クラッド92aの外周上に外側クラッド92bが設けられ、外側クラッド92bの外周上に保護被覆層93が設けられたものである。また、内側クラッド92a中には、コア91に対して対称な位置に一対の応力付与部94,94が設けられている。さらに、内側クラッド92aの断面形状は正八角形状であり、コア91、内側クラッド92a及び外側クラッド92bは同心状に配置されている。
 コアにはAl、P、Yb以外にGe、Fを添加した。ファイバプリフォームは、MCVD法で作製した。また、Ybは液浸法で添加した。この時点で円柱形状のファイバプリフォームを、断面形状が図10に示すような正八角形状となるように外削した。さらに、このファイバプリフォームの中心軸方向に、コアに対して対称な配置となるように一対の孔を設け、そこにボロン等を添加して作製した応力付与ガラスを挿入した。次いで、得られたファイバプリフォームをガラスの断面外接円の直径が約250μmになるまで紡糸した。
 この時、ガラスの外周上にガラスよりも屈折率が低いポリマークラッド材を塗布及び硬化させ、ガラスクラッドに励起光が閉じ込められる構造とした。さらに、その外周上を保護UV硬化樹脂で被覆した。
 その結果、コアのAlは1.72モル%、Ybは0.26モル%、Pは2.35モル%、GeOは0.83モル%、Fは0.35モル%の偏波保持型光ファイバが得られた。また、コア径は約9.3μm、コアの比屈折率差(Δ)は約0.22%であった。また、励起光を導波するガラスクラッドと光を閉じ込めるポリマークラッドとの屈折率差から得られるクラッドNAは、約0.46であった。
 得られたYb添加光ファイバのフォトダークニングによる損失増加はほとんど見られず、前記評価方法による損失増加量は、0.01dB以下であった。
 また、得られたYb添加光ファイバを使用して、ファイバレーザを作製し、光出力の経時変化を評価した。その結果、初期出力11.3Wのパルスファイバレーザで100時間経過後の出力低下量は1%以下であった。この出力低下量は、光ファイバの損失増加以外に、温度変化や測定ばらつきに起因するものも含んでいる。そのため、フォトダークニングによる損失増加起因の出力低下はほとんどないと考えられた。
 また、得られたYb添加光ファイバのコア中に、エキシマ露光によりグレーティング構造を形成した。その結果、波長1064nmの光で、反射率が100%、10%及び4%のファイバグレーティングをいずれも作製でき、反射率を任意に調整できることが確認できた。
 得られたYb添加光ファイバと、その評価結果を表2に示す。
[実施例10~26、比較例1~2]
 実施例1~9と同様の手順で、表2~5に示すYb添加光ファイバを作製し、フォトダークニングによる損失増加量を評価した。なお、それぞれのYb添加光ファイバの径方向断面のコア及びクラッドの形状は、以下の通りである。
 実施例10;断面形状は図6と同様である。
 実施例11;断面形状は図6と同様である。
 実施例12;断面形状は図1と同様である。
 実施例13;断面形状は図5と同様である。
 実施例14;断面形状は図6と同様である。
 実施例15;断面形状は図7と同様である。
 実施例16;断面形状は図8と同様である。
 実施例17;断面形状は図6と同様である。
 実施例18;断面形状は図9と同様である。
 実施例19;断面形状は図9と同様である。
 実施例20;断面形状は図7と同様である。
 実施例21;断面形状は図3と同様である。
 実施例22;断面形状は図6と同様である。
 実施例23;断面形状は図5と同様である。
 実施例24;断面形状は図7と同様である。
 実施例25;断面形状は図5と同様である。
 実施例26;断面形状は図1と同様である。
 比較例1;断面形状は図1と同様である。
 比較例2;断面形状は図1と同様である。
 比較例1のYb添加光ファイバは、コアにGeを含有し、Pを含有しない点以外は、実施例と同様のものであり、例えば、屈折率やYb濃度等が同等である実施例のYb添加光ファイバと、ほぼ同様の初期光増幅特性を有する。
 比較例1の損失増加量評価時における、励起光照射前後での損失量とその差分の波長との関係を図11にグラフとして示す。図11より、励起光照射後において、短波長側へ単調増加する損失増加が確認できる。図11中、波長1000nm付近で損失量のデータにノイズが見られるのは、図2のグラフと同様に、この波長帯にYbの光吸収帯が存在するためである。
 比較例2のYb添加光ファイバは、コア中のP換算濃度がAl換算濃度よりも低い点以外は、実施例と同様のものである。そして、表5から明らかなように、比較例2のYb添加光ファイバは、損失増加の抑制が十分ではないことが確認された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明は、溶接、マーキング、切断等の材料加工用途の高出力光源用レーザ媒体として利用可能である。

Claims (16)

  1.  イッテルビウム、アルミニウム及びリンを少なくとも含有するコアと、このコアを囲むクラッドと、を備え、
     前記コア中の、前記アルミニウムの酸化アルミニウム換算濃度が0.2モル%以上であり、
     前記リンの五酸化二リン換算濃度が、前記酸化アルミニウム換算濃度よりも高い
     ことを特徴とするイッテルビウム添加光ファイバ。
  2.  前記コア及び前記クラッドが、シリカガラスで構成されている
     ことを特徴とする請求項1に記載のイッテルビウム添加光ファイバ。
  3.  前記コア中の、前記イッテルビウムの酸化イッテルビウム換算濃度と前記酸化アルミニウム換算濃度との総和よりも、前記五酸化二リン換算濃度が大きい
     ことを特徴とする請求項2に記載のイッテルビウム添加光ファイバ。
  4.  前記コア中の、前記酸化イッテルビウム換算濃度と前記酸化アルミニウム換算濃度との比が、0.01~2である
     ことを特徴とする請求項2に記載のイッテルビウム添加光ファイバ。
  5.  前記コア中の、前記酸化イッテルビウム換算濃度が0.01~1.0モル%である
     ことを特徴とする請求項2に記載のイッテルビウム添加光ファイバ。
  6.  前記コア中の、前記五酸化二リン換算濃度が20モル%以下である
     ことを特徴とする請求項2に記載のイッテルビウム添加光ファイバ。
  7.  前記コア中の、前記五酸化二リン換算濃度が、前記酸化アルミニウム換算濃度の2倍以下である
     ことを特徴とする請求項2に記載のイッテルビウム添加光ファイバ。
  8.  前記コアと前記クラッドとの比屈折率差が0.05~0.65%である
     ことを特徴とする請求項1に記載のイッテルビウム添加光ファイバ。
  9.  前記コアと前記クラッドとの比屈折率差が0.05~0.25%である
     ことを特徴とする請求項8に記載のイッテルビウム添加光ファイバ。
  10.  前記コアが、さらにゲルマニウムを含有する
     ことを特徴とする請求項1に記載のイッテルビウム添加光ファイバ。
  11.  前記コアが、さらにフッ素及び/又はホウ素を含有する
     ことを特徴とする請求項1に記載のイッテルビウム添加光ファイバ。
  12.  前記コアが、さらにイッテルビウム以外の希土類元素及び遷移金属元素からなる群から選択される少なくとも一種を含有する
     ことを特徴とする請求項1に記載のイッテルビウム添加光ファイバ。
  13.  前記クラッドを少なくとも二層備え、径方向内側のクラッドの屈折率が外側のクラッドの屈折率よりも高い
     ことを特徴とする請求項1に記載のイッテルビウム添加光ファイバ。
  14.  前記クラッドを少なくとも三層備え、径方向最内側のクラッドの屈折率nc1と、最外側のクラッドの屈折率nc3と、前記最内側及び前記最外側のクラッド間の中間クラッドの屈折率nc2とが、nc1>nc2>nc3の関係を満たす
     ことを特徴とする請求項13に記載のイッテルビウム添加光ファイバ。
  15.  請求項1に記載のイッテルビウム添加光ファイバを光増幅媒体として有することを特徴とするファイバレーザ。
  16.  請求項1に記載のイッテルビウム添加光ファイバを光増幅媒体として有することを特徴とするファイバアンプ。
PCT/JP2009/052906 2008-08-04 2009-02-19 イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ WO2010016287A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2009/003728 WO2010016245A1 (ja) 2008-08-04 2009-08-04 イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ
EP09804732.7A EP2312348B1 (en) 2008-08-04 2009-08-04 Ytterbium-doped optical fiber, fiber laser, and fiber amplifier
DK09804732.7T DK2312348T3 (da) 2008-08-04 2009-08-04 Ytterbium-doteret optisk fiber, fiberlaser, og fiberforstærker
JP2009550181A JP5436226B2 (ja) 2008-08-04 2009-08-04 イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ
CN200980101352.3A CN101896845B (zh) 2008-08-04 2009-08-04 添加有镱的光纤、光纤激光器和光纤放大器
US13/020,604 US8941912B2 (en) 2008-08-04 2011-02-03 Ytterbium-doped optical fiber, fiber laser and fiber amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-201171 2008-08-04
JP2008201171 2008-08-04

Publications (1)

Publication Number Publication Date
WO2010016287A1 true WO2010016287A1 (ja) 2010-02-11

Family

ID=41663513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052906 WO2010016287A1 (ja) 2008-08-04 2009-02-19 イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ

Country Status (6)

Country Link
US (1) US8941912B2 (ja)
EP (1) EP2312348B1 (ja)
JP (1) JP5436226B2 (ja)
CN (1) CN101896845B (ja)
DK (1) DK2312348T3 (ja)
WO (1) WO2010016287A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2971245A1 (fr) * 2011-02-04 2012-08-10 Commissariat Energie Atomique Dissolution des clusters d'ions terres rares dans les fibres optiques a base de silice

Families Citing this family (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110110605A (ko) * 2010-04-01 2011-10-07 엘에스전선 주식회사 저손실 비영분산천이 광섬유 및 그 제조방법
FR2971640B1 (fr) * 2011-02-16 2014-04-04 Univ Bordeaux 1 Dispositif de pompage optique.
CN102776568B (zh) * 2011-05-13 2015-09-16 中国科学院物理研究所 一种激光晶体及其制备方法和用途
US8737778B2 (en) * 2011-12-23 2014-05-27 Jds Uniphase Corporation Small form factor variable optical attenuator with cladding mode suppressing fiber
JP5815844B2 (ja) * 2012-03-28 2015-11-17 株式会社フジクラ ファイバ光学系、及び、その製造方法
JP6038484B2 (ja) * 2012-05-01 2016-12-07 三菱電線工業株式会社 Yb添加光ファイバ
CN102769243A (zh) * 2012-07-30 2012-11-07 中国人民解放军国防科学技术大学 掺钕光纤激光器泵浦的高功率掺镱光纤激光器的方法
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
GB2516088A (en) * 2013-07-11 2015-01-14 Fibercore Ltd Optical Fiber
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
JP2016171208A (ja) * 2015-03-12 2016-09-23 株式会社フジクラ 光ファイバ、ファイバアンプ、及びファイバレーザ
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
CN106116136B (zh) * 2016-06-29 2019-04-19 中国科学院上海光学精密机械研究所 镱铝磷氟掺杂的石英光纤预制棒芯棒及其制备方法
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
JP7042823B2 (ja) * 2016-12-02 2022-03-28 テラダイオード, インコーポレーテッド レーザビームに関連する方法およびレーザシステム
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN110651209B (zh) * 2017-04-21 2021-09-24 努布鲁有限公司 多包层光纤
CN107515205B (zh) * 2017-08-22 2020-04-10 中国工程物理研究院激光聚变研究中心 石英玻璃光纤组分浓度计算方法及系统
CN107698140B (zh) * 2017-09-22 2020-08-28 中国科学院上海光学精密机械研究所 高均匀性、低折射率F-Yb掺杂石英芯棒玻璃及其制备方法
CN111025459B (zh) * 2019-12-27 2021-02-02 中国科学院上海光学精密机械研究所 三包层掺镱石英光纤及高浓度氟层石英管套棒方法
EP3993182A4 (en) * 2020-03-27 2023-08-16 Fujikura Ltd. OPTICAL FIBER WITH ONE ACTIVE ELEMENT, BASE MATERIAL FOR OPTICAL FIBER WITH ONE ACTIVE ELEMENT, RESONATOR AND FIBER LASER DEVICE
CN115166893A (zh) * 2022-08-02 2022-10-11 苏州国顺激光技术有限公司 一种用于激光器件的环形纤芯光纤

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298043A (ja) * 1988-02-08 1989-12-01 American Teleph & Telegr Co <Att> アルミニウムおよびリン含有シリカ系ガラスを含む物品
JPH09194225A (ja) * 1995-11-22 1997-07-29 Lucent Technol Inc クラッディングポンプファイバとその製造方法
JPH11112070A (ja) * 1997-08-07 1999-04-23 Lucent Technol Inc ファイバレーザ
JP2002043660A (ja) * 2000-07-26 2002-02-08 Furukawa Electric Co Ltd:The 光増幅用光ファイバ
JP2003124547A (ja) * 2001-08-21 2003-04-25 Lucent Technol Inc 光ファイバ増幅器
JP2006519495A (ja) * 2003-01-27 2006-08-24 セラムオプテック ゲーエムベーハー マルチクラッド光ファイバーレーザーおよびそれらの製造

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411762B1 (en) * 1997-12-09 2002-06-25 Scientific-Atlanta, Inc. Optical fiber with irregularities at cladding boundary
US6603598B1 (en) * 1999-09-29 2003-08-05 Corning O.T.I. Inc. Optical amplifying unit and optical transmission system
JP2002009376A (ja) * 2000-06-23 2002-01-11 Furukawa Electric Co Ltd:The 光増幅用光ファイバ
US6636347B1 (en) * 2000-11-08 2003-10-21 Corning Incorporated Phosphorus-silicate fibers suitable for extended band amplification
US20030142395A1 (en) * 2002-01-30 2003-07-31 Jds Uniphase Corporation Coolerless pump wavelength optimization for Er/Yb-doped optical fiber amplifiers
ATE437378T1 (de) * 2002-03-15 2009-08-15 Crystal Fibre As Mikrostrukturierte optische faser mit mantelungsaussparung, verfahren zu ihrer herstellung und vorrichtung damit
JP3910486B2 (ja) * 2002-05-17 2007-04-25 株式会社フジクラ 光ファイバ及び光伝送路
US7079749B2 (en) * 2003-01-27 2006-07-18 Peter Dragic Waveguide configuration
US7006752B2 (en) * 2004-03-23 2006-02-28 Peter Dragic Codoped Al-Yb waveguide and method of manufacturing same
JP4732120B2 (ja) 2005-10-19 2011-07-27 株式会社フジクラ 光増幅用光ファイバの製造方法
WO2007132182A2 (en) * 2006-05-11 2007-11-22 Spi Lasers Uk Limited Apparatus for providing optical radiation
WO2008061530A1 (en) * 2006-11-20 2008-05-29 Crystal Fibre A/S Optical fibre material comprising silica-based glass with reduced photo darkening
US8055115B2 (en) * 2007-07-05 2011-11-08 Coractive High-Tech Inc. Optically active glass and optical fiber with reduced photodarkening and method for reducing photodarkening

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298043A (ja) * 1988-02-08 1989-12-01 American Teleph & Telegr Co <Att> アルミニウムおよびリン含有シリカ系ガラスを含む物品
JPH09194225A (ja) * 1995-11-22 1997-07-29 Lucent Technol Inc クラッディングポンプファイバとその製造方法
JPH11112070A (ja) * 1997-08-07 1999-04-23 Lucent Technol Inc ファイバレーザ
JP2002043660A (ja) * 2000-07-26 2002-02-08 Furukawa Electric Co Ltd:The 光増幅用光ファイバ
JP2003124547A (ja) * 2001-08-21 2003-04-25 Lucent Technol Inc 光ファイバ増幅器
JP2006519495A (ja) * 2003-01-27 2006-08-24 セラムオプテック ゲーエムベーハー マルチクラッド光ファイバーレーザーおよびそれらの製造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D.J. DIGIOVANNIA ET AL.: "Structure and properties of silica containing aluminum and phosphorus near the A1P04 join", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 113, no. ISS.1, 2 November 1989 (1989-11-02), pages 58 - 64 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2971245A1 (fr) * 2011-02-04 2012-08-10 Commissariat Energie Atomique Dissolution des clusters d'ions terres rares dans les fibres optiques a base de silice

Also Published As

Publication number Publication date
JP5436226B2 (ja) 2014-03-05
JPWO2010016245A1 (ja) 2012-01-19
DK2312348T3 (da) 2014-07-07
EP2312348B1 (en) 2014-04-16
US8941912B2 (en) 2015-01-27
CN101896845B (zh) 2016-06-08
US20110142083A1 (en) 2011-06-16
EP2312348A4 (en) 2011-07-27
CN101896845A (zh) 2010-11-24
EP2312348A1 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP5436226B2 (ja) イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ
JP5436426B2 (ja) イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ
US8660396B2 (en) Multi-cladding optical fiber, optical fiber module, fiber laser, and fiber amplifier
WO2010016245A1 (ja) イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ
US8731358B2 (en) Multi-cladding fiber
JP6306624B2 (ja) シングルモード動作を維持したままクラッド吸収を増加させたダブルクラッドの利得をもたらすファイバ
US20100067860A1 (en) Rare earth-doped core optical fiber
JP5470266B2 (ja) イッテルビウム添加光ファイバ
WO2010055696A1 (ja) イッテルビウム添加光ファイバ、ファイバレーザ及びファイバアンプ
JP6306636B2 (ja) シングルモード動作を維持したままクラッド吸収を増加させた利得をもたらすファイバ
US8116607B2 (en) Rare-earth doped optical fiber, method of producing the same, and fiber laser
WO2010052907A1 (ja) イッテルビウム添加光ファイバ
CA3162288A1 (en) Active lma optical fiber with enhanced transverse mode stability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804774

Country of ref document: EP

Kind code of ref document: A1