US3454951A - Spiral antenna with zigzag arms to reduce size - Google Patents

Spiral antenna with zigzag arms to reduce size Download PDF

Info

Publication number
US3454951A
US3454951A US3454951DA US3454951A US 3454951 A US3454951 A US 3454951A US 3454951D A US3454951D A US 3454951DA US 3454951 A US3454951 A US 3454951A
Authority
US
United States
Prior art keywords
antenna
conductor
configuration
conductors
sawtooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
William F Patterson
Ernesto T Roland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Priority to US63642267A priority Critical
Priority to US77507868A priority
Application granted granted Critical
Publication of US3454951A publication Critical patent/US3454951A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas

Description

July 8, 1969 w, PATTERSON ET AL 3,454,951

SPIRAL ANTENNA WITH ZIGZAG ARMS TO REDUCE SIZE Filed May 5, 1967 FIG. 4

T T m A ,5 O 5 2 .I O9 7 O 3 4 9 mfiA 55 33 W 0 0 0 0 O 00 O l O 0 0 C 2 2 2 flu 2 lh 2 2 2 2\I9 N 4 2 3 2 2 W l w m R U W F N O C W 0 2 5 6 7 8 9 W 2 2 2 a M. 2 2 2 2 2 m N H l I WI. m J 12 MMN M L m mmm f SS ewS 3 s n S A A Y C f Q v w w A ll E F U I call llll I I 3.2 f 5 O 5 O 5 O 7 m umfimo OEE x H United States Patent 3,454,951 SPIRAL ANTENNA WITH ZIGZAG ARMS TO REDUCE SIZE William F. Patterson, Reynoldsburg, and Ernesto T. Roland, Columbus, Ohio, assignors to North American Rockwell Corporation, a corporation of Delaware Filed May 5, 1967, Ser. No. 636,422 Int. Cl. H01q 1/36 U.S. Cl. 343-895 3 Claims ABSTRACT OF THE DISCLOSURE Summary of the invention The antenna of this invention utilizes surface-mounted electrical-energy conductors such as are typically printed on or otherwise bonded to a dielectric support means. Each conductor is provided with a sawtooth geometrical configuration, in whole or in part, to significantly reduce the dielectric means support area requirement necessary to maintain a given antenna operating bandwidth capability or alternately to effect a low-frequency extension of the antenna operating bandwidth capability achieved within a specified dielectric means support area. The antenna conductors are typically electrically energized from a conventional coxial balun feed. Also, known conductor spacing, perimeter maximizing, end-loading, and dielectric confinement techniques may be utilized in combination with the instant invention, if desired.

Summary of the drawings FIG. 1 is a plan view of a flat double-wound spiral reference antenna having a conventional straight-line conductor configuration;

FIG. 2 is a sectional view taken at line 2--2 of FIG. 1;

FIG. 3 is a plan view of an antenna embodying the instant invention;

FIG. 4 is a plan view of an alternate embodiment of an antenna incorporating the instant invention;

FIG. 5 is an enlarged plan view showing the conductor configuration of the antenna of FIG. 4 in greater detail;

FIG. 6 is a table identifying different wave propagation velocity constants that are obtained with conductors having various illustrated sawtooth conductor configurations; and

FIG. 7 graphically illustrates antenna operating performance advantages that have been obtained by the practice of this invention.

Detailed description FIG. 1 illustrates a reference conventional circularlypolarizing antenna 10 basically comprised of doublewound spiral conductors 11 and 12 secured to fiat dielectric board 13. Conductors 11 and 12 are typically connected at their center terminals 14 to a conventional coaxial feed (not shown). The outer terminals 15 of conductors 11 and 12 frequently are coupled to resistanceloading circuits to improve antenna low frequency operating characteristics in a conventional manner but generally with reduced antenna gain. The reference antenna 10 utilizes conductors 11 and 12 having a conventional straight-line configuration for each leg of the several illustrated turns.

We have discovered that by providing a circularlypolarizing antenna with conductors having, in whole or in part, a sawtooth geometrical configuration rather than just a straight-line or a uniformly-curved configuration, the operating bandwidth capability of the antenna below cut-off may be significantly extended for an available conductor support area. Alternately, the support area requirements for a specific antenna operating bandwidth capability below a given cut-ofi value can be significantly reduced if the antenna conductors are provided, in whole or in. part, with a sawtooth geometrical configuration rather than with just a conventional straight-line or uniformly-curved geometrical configuration. Antenna embodiments 16 and 17 of the drawings involve applications of the instant invention. Details regarding several dilferent sawtooth geometrical configurations 20 through 27 and 29 through 31 having application to the practice of the invention are provided in FIG. 6 and also elsewhere in this description.

Antenna embodiment 16 of FIG. 3 utilizes a doublewound spiral conductor arrangement wherein the conductors 11 and 12 each have a uniform sawtooth configuration such as 20 (FIG. 6) throughout. Corner details 18 for each conductor are provided to maintain uniform spacing between adjacent conductor turns at the antenna corner regions. Antenna 16, having the conductor spacing and number of conductor turns of antenna 10, develop-s a significant extension to the low-frequency end of the antenna Operating bandwidth (see FIG. 7). The FIG. 3 embodiment, however, does not have the highfrequency operating capability associated either with reference antenna 10 or antenna embodiment 17.

FIG. 4 illustrates the relative support area requirement of a flat double-wound spiral antenna 17 in accordance with the invention and having the same acceptable circularly-polarized field and specified operating bandwidth characteristics as antenna 10. The antenna embodiment of FIG. 4 requires only from one-third to one-fourth the corresponding conductor support area as antenna 10 for t e same number of double-wound conductor turns. In order to obtain a high-frequency performance capability similar to that of antenna 10, the innermost conductor turns of conductors 11 and 12 are provided with a straight-line configuration 28 in a conventional manner. The outermost two legs of the outermost turn of each of conductors 11 and 12 may be provided with a sawtooth geometrical configuration such as 20 of FIG. 6. The intermediate legs of the different conductor turns have the difierent sawtooth configurations 21 through 27 with successively decreasing wave propagation velocity constants as indicated by the reference numerals of FIG. 5 and by the cor-responding configurations of FIG. 6. Such intermediate legs in effect provide for a gradual transition in waveform propagation velocity in the conductor region from straight-line configuration 28 through sawtooth geometrical configuration 20. Basically, the outermost turn of each of conductors 11 and 12 in antenna 17 has a total length corresponding to the perimeter length of the corresponding outer-most straight-line conductor turns 11 and 12 in the FIG. 1 antenna. Normally, it is preferred that uniform spacing between conductors be maintained throughout.

Details regarding different sawtooth geometrical configurations for conductors 11 and 12 are provided in FIG. 6. The different sawtooth configurations 20 through 27 vary in slope as to each sawtooth leg. The slope varies from a ratio of 4:2 for configuration 20 of a ratio of 0:2 for configuration 28 in abscissa increments of one-half. Configuration 28 is a straight-line configuration of zero slope. Additional configurations 29 through 31 for the antenna conductors have the basic characteristics of a sawtooth configuration. However, small radii are utilized to join the different sawtooth leg increments. Velocity constant values computed from actual standing wave field measurements made with respect to configurations 20 through 31 correspond closely to the calculated values of the table.

FIG. 7 provides a graphical illustration of the performance capability that may be obtained with an antenna incorporating this invention in comparison to an antenna such as conventional antenna 10. FIG. 7 plate on-axis axial ratio measurements taken for antennas having the conductor configurations of antennas 10 and 16 and having equal support area dimensions of approximately 3%" square. Measurements relating to a base frequency 1 were taken over a frequency range extending to approximately 3.5 An axial ratio of ten decibels or less for the circularlypolarized radiated field was established as acceptable antenna performance. As shown by curve 32 for the antenna 10 conductor configuration, cut-off for a desired axial ratio of less than ten decibels occurs approximately midway between 2.51 and 3.0!, such cut-off frequency essentially being correlated .to a Wavelength determined by the spiral conductor perimeter turn diameter. Curve 33 illustrates the actual performance of an antenna 16 of similar dimensions to the antenna of curve 32 but with a conductor sawtooth geometric configuration throughout. The cut-off frequency has been reduced to approximately 2f by the invention with a reduced axial ratio in comparison to curve 32 throughout the remainder of the operating bandwidth of interest.

The instant invention is illustrated as applied to a flat circularly-polarizing antenna having double-wound spiral conductors of uniform spacing from the point of feed to antenna perimeter. The instant invention is also considered to have application to other conductor arrangements including equiangular, conical, Archimedean spiral, and scimitar configurations. Conventional techniques such as perimeter squaring, lumped or distributed resistance end loading, and conductor dielectric imbedment may be utilized with the invention to further antenna operating performance for a specified operating bandwidth and axial ratio.

We claim:

1. In an antenna capable of radiating a circularly-polarized electromagnetic-energy field at different frequencies in an operating bandwidth extending from minimum frequency f to maximum frequency f in combination:

(a) dielectric support means having a support surface area,

(b) a pair of feed terminals for receiving two equalamplitude electrical currents continuously out A of phase with respect to each other at different frequencies in said operating bandwidth,

(c) a pair of perimeter terminals, and

(d) a pair of spaced-apart multiple-turn spiral conductor elements that are each coupled to a different one of said feed terminals and to a different one of said perimeter terminals, that are each of substantially square-turn configuration secured to said dielectric support means support surface area in each turn from a feed terminal to a perimeter terminal, and that are each provided with a current-conducting path geometric configuration comprised of joined sawteeth of constant amplitude throughout the element length and of constant rate of repetition per unit length throughout the element length, said current-conducting path geometric configurations of constant sawtooth amplitude and rate of repetition propagating traveling Waves along said spiral conductor element turns from said electrical currents at a constant velocity substantially less than a reference traveling wave propagation velocity along a conductor of straight-line geometric configuration to radiate the circularly-polarized electromagnetic energy field.

2. The invention defined by claim 1, wherein said pair of conductor elements has current-conducting paths with geometric configurations of constant sawtooth amplitude and rate of repetition that propagate traveling waves from said electrical currents along said conductor element turns at a constant velocity of approximately 0.45 to 0.55 times said reference traveling wave propagation velocity along a conductor of straight-line geometric configuration.

3. The invention defined by claim 1, wherein said conductor elements are each comprised of spiral t'urns having a substantially square shape formed by joined essentially linear side portions, each said side portion being uniformly spaced apart from each radially adjacent side portion and having said current-conducting path geometric conductor element and with two additional sawteeth relative to the next radially, inward side portion in the same conductor element and with two additional sawteeth relative to the next radially inward side portion in the other conductor element.

References Cited UNITED STATES PATENTS 2,277,826 3/1942 Giroux 343-908 3,039,099 6/1962 Chait et al 343-895 3,106,714 10/1963 Minerva 343-908 2,977,594 3/1961 Marston et al. 343-895 3,019,439 1/1962 Reis et al. 343--895 'ELI LIEBERMAN, Primary Examiner.

US3454951D 1967-05-05 1967-05-05 Spiral antenna with zigzag arms to reduce size Expired - Lifetime US3454951A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US63642267A true 1967-05-05 1967-05-05
US77507868A true 1968-11-12 1968-11-12

Publications (1)

Publication Number Publication Date
US3454951A true US3454951A (en) 1969-07-08

Family

ID=27092593

Family Applications (2)

Application Number Title Priority Date Filing Date
US3454951D Expired - Lifetime US3454951A (en) 1967-05-05 1967-05-05 Spiral antenna with zigzag arms to reduce size
US3465346D Expired - Lifetime US3465346A (en) 1967-05-05 1968-11-12 Circularly-polarizing spiral antenna having sawtooth conductors

Family Applications After (1)

Application Number Title Priority Date Filing Date
US3465346D Expired - Lifetime US3465346A (en) 1967-05-05 1968-11-12 Circularly-polarizing spiral antenna having sawtooth conductors

Country Status (1)

Country Link
US (2) US3454951A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681772A (en) * 1970-12-31 1972-08-01 Trw Inc Modulated arm width spiral antenna
US3795005A (en) * 1972-10-12 1974-02-26 Raytheon Co Broad band spiral antenna
US4243993A (en) * 1979-11-13 1981-01-06 The Boeing Company Broadband center-fed spiral antenna
US4318109A (en) * 1978-05-05 1982-03-02 Paul Weathers Planar antenna with tightly wound folded sections
US4605934A (en) * 1984-08-02 1986-08-12 The Boeing Company Broad band spiral antenna with tapered arm width modulation
US5227807A (en) * 1989-11-29 1993-07-13 Ael Defense Corp. Dual polarized ambidextrous multiple deformed aperture spiral antennas
US5517206A (en) * 1991-07-30 1996-05-14 Ball Corporation Broad band antenna structure
US6023250A (en) * 1998-06-18 2000-02-08 The United States Of America As Represented By The Secretary Of The Navy Compact, phasable, multioctave, planar, high efficiency, spiral mode antenna
US7586462B1 (en) 2007-01-29 2009-09-08 Stephen G. Tetorka Physically small spiral antenna
US8059061B2 (en) * 2005-10-04 2011-11-15 Emw Co., Ltd. Subminiature internal antenna
US8922452B1 (en) 2014-03-21 2014-12-30 University Of South Florida Periodic spiral antennas
US20150173380A1 (en) * 2012-07-06 2015-06-25 Pier RUBESA Method and apparatus for the amplification of electrical charges in biological systems or bioactive matter using an inductive disk with a fixed geometric trace

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69819299T2 (en) * 1997-06-23 2004-07-29 Rohm Co. Ltd. Ic ic module and card
RU2163739C1 (en) 2000-07-20 2001-02-27 Криштопов Александр Владимирович Antenna
US6362796B1 (en) 2000-09-15 2002-03-26 Bae Systems Aerospace Electronics Inc. Broadband antenna
WO2002029928A2 (en) * 2000-10-02 2002-04-11 Israel Aircraft Industries Ltd. Slot spiral miniaturized antenna
US6897822B2 (en) * 2002-06-03 2005-05-24 The Johns Hopkins University Spiral resonator-slot antenna
US8593156B2 (en) * 2010-11-22 2013-11-26 General Electric Company Sensor assembly and microwave emitter for use in a sensor assembly
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
USD841629S1 (en) * 2017-03-29 2019-02-26 Megabyte Limited RFID antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2277826A (en) * 1940-10-31 1942-03-31 F W Sickles Company Antenna
US2977594A (en) * 1958-08-14 1961-03-28 Arthur E Marston Spiral doublet antenna
US3019439A (en) * 1957-09-19 1962-01-30 Martin Marietta Corp Elliptically polarized spiral antenna
US3039099A (en) * 1959-06-25 1962-06-12 Herman N Chait Linearly polarized spiral antenna system
US3106714A (en) * 1960-10-18 1963-10-08 Collins Radio Co Log periodic antenna with accordioned radiators to increase shunt capacitance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1718255A (en) * 1925-08-24 1929-06-25 Ranzini Romeo Apparatus for wireless telephony and telegraphy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2277826A (en) * 1940-10-31 1942-03-31 F W Sickles Company Antenna
US3019439A (en) * 1957-09-19 1962-01-30 Martin Marietta Corp Elliptically polarized spiral antenna
US2977594A (en) * 1958-08-14 1961-03-28 Arthur E Marston Spiral doublet antenna
US3039099A (en) * 1959-06-25 1962-06-12 Herman N Chait Linearly polarized spiral antenna system
US3106714A (en) * 1960-10-18 1963-10-08 Collins Radio Co Log periodic antenna with accordioned radiators to increase shunt capacitance

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681772A (en) * 1970-12-31 1972-08-01 Trw Inc Modulated arm width spiral antenna
US3795005A (en) * 1972-10-12 1974-02-26 Raytheon Co Broad band spiral antenna
US4318109A (en) * 1978-05-05 1982-03-02 Paul Weathers Planar antenna with tightly wound folded sections
US4243993A (en) * 1979-11-13 1981-01-06 The Boeing Company Broadband center-fed spiral antenna
US4605934A (en) * 1984-08-02 1986-08-12 The Boeing Company Broad band spiral antenna with tapered arm width modulation
US5227807A (en) * 1989-11-29 1993-07-13 Ael Defense Corp. Dual polarized ambidextrous multiple deformed aperture spiral antennas
US5517206A (en) * 1991-07-30 1996-05-14 Ball Corporation Broad band antenna structure
US6023250A (en) * 1998-06-18 2000-02-08 The United States Of America As Represented By The Secretary Of The Navy Compact, phasable, multioctave, planar, high efficiency, spiral mode antenna
US8059061B2 (en) * 2005-10-04 2011-11-15 Emw Co., Ltd. Subminiature internal antenna
US7586462B1 (en) 2007-01-29 2009-09-08 Stephen G. Tetorka Physically small spiral antenna
US20150173380A1 (en) * 2012-07-06 2015-06-25 Pier RUBESA Method and apparatus for the amplification of electrical charges in biological systems or bioactive matter using an inductive disk with a fixed geometric trace
US8922452B1 (en) 2014-03-21 2014-12-30 University Of South Florida Periodic spiral antennas

Also Published As

Publication number Publication date
US3465346A (en) 1969-09-02

Similar Documents

Publication Publication Date Title
US3622890A (en) Folded integrated antenna and amplifier
US3569979A (en) Helical launcher
US3665480A (en) Annular slot antenna with stripline feed
US3231894A (en) Zigzag antenna
US4067016A (en) Dual notched/diagonally fed electric microstrip dipole antennas
US3721990A (en) Physically small combined loop and dipole all channel television antenna system
US6133879A (en) Multifrequency microstrip antenna and a device including said antenna
Derneryd Linearly polarized microstrip antennas
US6424317B2 (en) High efficiency broadband antenna
CA2005364C (en) Embedded surface wave antenna
US3509465A (en) Printed circuit spiral antenna having amplifier and bias feed circuits integrated therein
US4638324A (en) Resistive loop angular filter
AU613645B2 (en) Broadband notch antenna
US4475108A (en) Electronically tunable microstrip antenna
Hussain et al. Closely packed millimeter-wave MIMO antenna arrays with dielectric resonator elements
US6133878A (en) Microstrip array antenna
US4922263A (en) Plate antenna with double crossed polarizations
US3967276A (en) Antenna structures having reactance at free end
US2283914A (en) Antenna
US3077569A (en) Surface wave launcher
JP2977893B2 (en) Antenna array
US6057802A (en) Trimmed foursquare antenna radiating element
US4243993A (en) Broadband center-fed spiral antenna
US3654573A (en) Microwave transmission line termination
US3576578A (en) Dipole antenna in which one radiating element is formed by outer conductors of two distinct transmission lines having different characteristic impedances