ES2847854T3 - Catéter de globo de obtención de imágenes - Google Patents
Catéter de globo de obtención de imágenes Download PDFInfo
- Publication number
- ES2847854T3 ES2847854T3 ES07718117T ES07718117T ES2847854T3 ES 2847854 T3 ES2847854 T3 ES 2847854T3 ES 07718117 T ES07718117 T ES 07718117T ES 07718117 T ES07718117 T ES 07718117T ES 2847854 T3 ES2847854 T3 ES 2847854T3
- Authority
- ES
- Spain
- Prior art keywords
- balloon
- imaging
- catheter
- imaging catheter
- inner core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0068—Confocal scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6852—Catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0247—Pressure sensors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10101—Optical tomography; Optical coherence tomography [OCT]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Endoscopes (AREA)
- Instructional Devices (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Camera Bodies And Camera Details Or Accessories (AREA)
Abstract
Un catéter de obtención de imágenes de globo (120) para obtener datos para al menos una parte dentro de al menos una muestra luminal o hueca, que comprende: un núcleo interno (125, 830, 1000) configurado para transmitir al menos una radiación electromagnética hacia y desde la al menos una parte; una cubierta ópticamente transparente (130, 520, 650, 800, 810, 900, 1070) que encierra al menos parcialmente el núcleo interno; elementos ópticos de enfoque (140, 840, 850, 950, 1060) proporcionados en un extremo distal del núcleo interno y configurados para enfocar y dirigir la al menos una radiación electromagnética a la al menos una parte; y un globo inflable (135, 515, 630, 700, 910, 1040) que está configurado para accionarse de modo que centre el núcleo interno dentro de la al menos una muestra luminal o hueca, rodeando el globo inflable la cubierta ópticamente transparente, en el que los elementos ópticos de enfoque (140) incluyen un prisma (850) para reflejar un haz de la radiación electromagnética desde el extremo distal del núcleo interno en aproximadamente 90 grados para dirigir la al menos una radiación electromagnética a través del globo inflable a la al menos una parte, caracterizado porque los elementos ópticos de enfoque (140, 840, 850, 950, 970, 1060) están configurados para compensar al menos una aberración provocada por la cubierta ópticamente transparente (130, 520, 650, 800, 810, 900, 1070) cuando se infla el globo inflable (135, 515, 630, 700, 910, 1040).
Description
DESCRIPCIÓN
Catéter de globo de obtención de imágenes
Campo de la invención
La presente invención se refiere a un sistema para obtención de imágenes ópticas y, más particularmente, a la obtención de imágenes ópticas de órganos luminales epiteliales mediante exploración de haz de los mismos.
Antecedentes de la invención
La detección de enfermedades es un proceso mediante el cual una persona que no se sabe que tiene una o más posibles enfermedades se somete a una prueba para determinar si la persona padece o no alguna de tales enfermedades. La detección se realiza a menudo en una población numerosa y, por lo tanto, es probable que sea económica y mínimamente invasiva. La vigilancia de un paciente con una enfermedad en particular es una prueba que se realiza en una persona con la enfermedad para determinar la gravedad de tal enfermedad, por ejemplo, un grado de displasia en un paciente con una condición precancerosa conocida. La detección y vigilancia eficaces de la enfermedad (por ejemplo, displasia, cáncer, etc.) de los sistemas de órganos luminales epiteliales, tales como el tracto gastrointestinal, el tracto urinario, el sistema pancreatobiliar, el tracto ginecológico, la orofaringe, el sistema pulmonar, etc. utilizan una evaluación integral de una parte sustancial de la mucosa. Determinadas técnicas ópticas de exploración de haz, que incluyen tomografía de coherencia óptica de dominio de tiempo (“OCT”), tomografía de coherencia óptica de dominio espectral (“SD-OCT”), obtención de imágenes de dominio de frecuencia óptica (“OFDI”), espectroscopía de Raman, espectroscopía de reflectancia, microscopía confocal, espectroscopía de dispersión de luz, etc., las técnicas han demostrado proporcionar información crítica que puede usarse para el diagnóstico de una enfermedad de la mucosa, incluida la displasia y el cáncer precoz. Sin embargo, estas técnicas se consideran métodos de exploración puntual, que son generalmente capaces de obtener datos de imagen solamente en un lugar a la vez. Con el fin de examinar exhaustivamente los órganos luminales grandes, un haz enfocado puede explorarse rápidamente por el área de interés del órgano, por ejemplo, por un área grande, mientras que se obtienen mediciones ópticas. Por tanto, catéteres, sondas y dispositivos capaces de realizar esta función de exploración de haz se usan generalmente para una aplicación apropiada de estas y otras tecnologías ópticas para examinar grandes áreas mucosas.
El examen descrito anteriormente también debe ser económico de modo que permita la realización de pruebas a una población numerosa. Con el fin de reducir el coste del examen, puede ser preferible proporcionar un dispositivo o sistemas que sean capaces de hacerse funcionar en un modo de obtención de imágenes independiente. Tal obtención de imágenes independiente puede realizarse en pacientes sin sedar, lo que reduce significativamente el coste del procedimiento y la tasa de complicación en relación con la videoendoscopia. Para la vigilancia, el procedimiento de obtención de imágenes integral puede utilizarse para dirigir biopsias a las ubicaciones que contienen la enfermedad más grave. Dado que tanto la obtención de imágenes como la intervención pueden producirse durante la misma sesión de obtención de imágenes, la interpretación y obtención de imágenes integral de grandes conjuntos de datos volumétricos deben llevarse a cabo en poco tiempo.
Existen determinados desafíos cuando se usa luz enfocada de exploración para obtener imágenes de manera integral de órganos luminales. Los puntos enfocados generalmente permanecen en el foco durante un determinado rango de distancias desde la sonda hasta la superficie de tejido. Para determinados sistemas de obtención de imágenes de órganos, esta distancia focal (por ejemplo, una métrica de la cual es el rango de Rayleigh) es significativamente menor que el diámetro del órgano luminal. Como resultado, el examen de la mucosa de órgano luminal normalmente se realiza centrando los elementos ópticos distales/de enfoque de la sonda de obtención de imágenes dentro del lumen del órgano, de modo que el haz permanece enfocado durante toda la exploración integral. Se han descrito sistemas convencionales que emplean un globo de centrado para la obtención de imágenes por OCT del esófago. (Véase G. Tearney, “ Improving Screening and Surveillance in Barrett's Patients”, NIH Grant n.° R01- CA103769; y Boppart et al., “Optical Coherence Tomography: Advanced Technology for the Endoscopic Imaging of Barrett's Esophagus”, Endoscopy 2000; 32 (12), págs. 921 - 930).
Se sabe que estudios clínicos previos han adquirido imágenes probablemente solo de ubicaciones esofágicas distintas. El uso de estos dispositivos convencionales usó una disposición de guía endoscópica para identificar las regiones de interés a lo largo de la pared esofágica y dirigir la sonda de obtención de imágenes a estas ubicaciones. Deben tenerse en cuenta determinados componentes de la disposición para proporcionar una exploración de alta resolución del haz enfocado. Para cada sistema de órganos, determinados tipos de catéter/sonda y modos de entrada al interior del paciente pueden ser deseables para una operación menos invasiva. Son posibles diferentes mecanismos de centrado y los diseños son específicos para la anatomía. Los elementos ópticos de sonda de exploración de haz deben situarse con respecto al área de interés antes de realizar la obtención de imágenes sin una intervención costosa o compleja. El mecanismo de enfoque de haz debe contener una disposición para corregir aberraciones provocadas por los mecanismos de cubierta/centrado de sonda. Con el fin de obtener imágenes bidimensionales y tridimensionales de gran área precisas del órgano, la posición del haz debe conocerse con precisión para cada punto de adquisición de datos.
El documento US 2005/0165303 A1 da a conocer un catéter intravascular para la inserción en un área que está examinándose, teniendo un área de la punta del catéter un dispositivo para emitir luz de excitación para excitar ópticamente por luz el área que está examinándose que rodea la punta del catéter, y un dispositivo para recoger luz de respuesta emitida por el área que está examinándose.
Por consiguiente, es necesario superar las deficiencias descritas anteriormente en el presente documento.
Objetos y sumario de la invención
Para abordar y/o superar los problemas y/o deficiencias descritos anteriormente, pueden proporcionarse realizaciones a modo de ejemplo de disposiciones y procesos para la obtención de imágenes ópticas de órganos luminales epiteliales mediante exploración de haz de los mismos. Estas realizaciones a modo de ejemplo de las disposiciones y procesos pueden utilizar una sonda y/o parte desechable de la misma o de otro dispositivo que pueda utilizar los siguientes elementos y/o componentes para la obtención de imágenes ópticas de órganos luminales epiteliales mediante exploración de haz. En particular, estas realizaciones a modo de ejemplo pueden utilizar una o más guías de ondas ópticas, uno o más elementos ópticos en el extremo distal para enfocar el haz, uno o más elementos ópticos en el extremo distal para redirigir el haz, uno o más elementos ópticos en el extremo distal para corregir aberraciones ópticas, una o más disposiciones para exploración de haz por la superficie de órgano luminal, un mecanismo de centrado y un aparato de aguja guía.
Por tanto, según la presente invención, se proporciona una disposición para la obtención de datos para al menos una parte dentro de al menos una muestra luminal o hueca, tal como se define por las reivindicaciones adjuntas. La disposición, el sistema o el aparato pueden insertarse a través de al menos una de la boca o la nariz de un paciente. Se configura una disposición óptica para transmitir al menos una radiación electromagnética (por ejemplo, visible) hacia y desde la parte. Se proporciona una disposición de cubierta que encierra al menos parcialmente la disposición óptica. Además, se configura una disposición expandible que va a accionarse de modo que sitúe la disposición óptica en una ubicación predeterminada dentro de la muestra luminal o hueca. La disposición óptica se configura para transmitir al menos una primera radiación electromagnética hacia y desde la al menos una parte, y transmitir al menos una segunda radiación electromagnética de modo que produzca un cambio estructural en la al menos una parte. La disposición óptica puede configurarse para compensar al menos una aberración (por ejemplo, astigmatismo) provocada por la disposición de cubierta y/o la disposición expandible. La disposición de cubierta puede incluir al menos una parte, que habilita un disposición de guiado que va a insertarse en la misma.
También se da a conocer en el presente documento una disposición configurada para medir una presión dentro de la al menos una parte. Los datos pueden incluir una posición y/o una orientación de la primera disposición con respecto a la muestra luminal o hueca. La disposición adicional puede incluir una disposición de exploración, detectando la disposición adicional la posición y el ángulo de rotación mediante el recuento digital de señales de codificador obtenidas de la disposición de exploración durante al menos una exploración de la al menos una muestra. Puede proporcionarse una disposición adicional que esté configurada para recibir la posición y el ángulo de rotación, y generar al menos una imagen asociada con la parte usando la posición y el ángulo de rotación. La disposición adicional puede configurarse además para corregir al menos una distorsión espacial de la al menos una imagen.
Puede proporcionarse una disposición de procesamiento, también dada a conocer en el presente documento, que es capaz de controlarse para recibir una pluralidad de imágenes de la muestra durante al menos dos traslados axiales de la disposición óptica con respecto a la muestra. Cada uno de los traslados axiales puede proporcionarse en un ángulo de rotación. Los datos pueden ser datos interferométricos asociados con la muestra. Los datos interferométricos pueden ser datos de tomografía de coherencia óptica de dominio espectral, datos de tomografía de coherencia óptica de dominio de tiempo y/o datos de obtención de imágenes de dominio de frecuencia óptica.
Estas y otras características y ventajas de objetos de la presente invención se volverán aparentes tras leer la siguiente descripción detallada de realizaciones de la invención, cuando se toman conjuntamente con las reivindicaciones adjuntas.
Breve descripción de los dibujos
Objetos, características y ventajas adicionales de la presente invención se volverán aparentes a partir de la siguiente descripción detallada tomada conjuntamente con las figuras adjuntas que muestran realizaciones ilustrativas de la presente invención, en las que:
la figura 1 es un diagrama esquemático y de partes separadas de una realización a modo de ejemplo de un catéter de micromotor según la presente invención que puede excluir incluir un mecanismo de centrado;
la figura 2 es una imagen visual de un catéter lineal de empuje-tracción que puede lograr solo una obtención de imágenes de área grande limitada de un área diana de una estructura anatómica;
la figura 3 es un diagrama esquemático general de una realización a modo de ejemplo de la disposición según la presente invención, que puede incluir la provisión de aguja guía, elementos ópticos de corrección de aberraciones, mecanismo de centrado y mecanismos de exploración de haz rápidos con retroalimentación;
la figura 4 es un diagrama esquemático de una realización a modo de ejemplo de un catéter de obtención de imágenes de la disposición mostrada en la figura 3 en uso en un área diana de una estructura anatómica;
la figura 5 es un diagrama de bloques y flujo de conexiones eléctricas y de datos a modo de ejemplo entre componentes de un mecanismo de control y registro de datos de la disposición a modo de ejemplo según la presente invención mostrada en la figura 4, incluyendo la adquisición de datos y unidad de control, datos de obtención de imágenes, controladores de motor de explorador de sonda y motores de explorador de sonda;
la figura es 6 es un diagrama esquemático que ilustra una realización a modo de ejemplo de un proceso según la presente invención, que posibilita adquirir datos por la unidad de adquisición de datos mostrada en la figura 5, y puede proporcionar una posición de sonda para cada línea a medida;
la figura 7A es una ilustración de una realización a modo de ejemplo de un método de exploración de sonda según la presente invención en la que el haz se hace rotar de manera acelerada y se desplaza de manera lenta y axial para crear un patrón de obtención de imágenes en espiral;
la figura 7B es una ilustración de una realización a modo de ejemplo de un método de exploración de sonda en la que el haz se hace que explore axialmente de manera acelerada, y luego vuelve a situarse de manera rotacional y se repite;
la figura 8A es una ilustración esquemática/funcional de una primera realización a modo de ejemplo de un catéter de globo de intercambio rápido según la presente invención que incluye la provisión de guía ubicada en la punta; la figura 8B es una ilustración esquemática/funcional de una segunda realización a modo de ejemplo del catéter de globo de intercambio rápido según la presente invención que incluye la provisión de guía ubicada en la punta como un canal secundario;
la figura 8C es una ilustración esquemática/funcional de una tercera realización a modo de ejemplo de un catéter de globo de intercambio rápido según la presente invención que incluye la provisión de guía ubicada antes del globo como un canal secundario;
la figura 9A es una vista en despiece ordenado del uso de una realización a modo de ejemplo de un catéter de globo coaxial según la presente invención durante la inserción de una aguja guía;
la figura 9B es una vista en despiece ordenado del uso de la realización a modo de ejemplo del catéter de globo coaxial según la presente invención durante la colocación de un catéter de globo sobre la aguja guía;
la figura 9C es una vista en despiece ordenado del uso de la realización a modo de ejemplo del catéter de globo coaxial según la presente invención durante la retirada de la aguja guía;
la figura 9D es una vista en despiece ordenado del uso de la realización a modo de ejemplo del catéter de globo coaxial según la presente invención durante la colocación de los elementos ópticos en el globo;
la figura 10 es un diagrama esquemático de una realización a modo de ejemplo de una disposición de globo según la presente invención que usa dos cubiertas y guía el material de inflado (por ejemplo, aire o solución salina) desde un canal de inflado en la parte distal hasta el globo entre estas cubiertas;
la figura 11 es un diagrama esquemático de una realización a modo de ejemplo de un catéter de globo que permite que la ventana de obtención de imágenes contenga una sola cubierta;
la figura 12 son vistas lateral y frontal de un diagrama esquemático de una realización a modo de ejemplo de elementos ópticos de sonda según la presente invención que incluye elementos ópticos de corrección de aberración (por ejemplo, una lente microcilíndrica);
la figura 13 es una vista lateral esquemática de otra realización a modo de ejemplo de un catéter de globo según la presente invención que usa un motor de catéter orientado hacia atrás para rotar el haz de obtención de imágenes; la figura 14 es una vista lateral esquemática de otra realización más a modo de ejemplo del catéter de globo según la presente invención que usa un motor de catéter orientado hacia delante para rotar el haz de obtención de imágenes; la figura 15 es una vista lateral esquemática de una variante a modo de ejemplo del catéter de globo mostrado en la figura 14 modificado para permitir que se genere una señal de medición de posición del motor (por ejemplo,
codificador);
la figura 16A es un diagrama de bloques de una realización a modo de ejemplo de un sistema según la presente invención configurado para ajustar el retardo de brazo de referencia en respuesta a la posición de globo medida con el fin de mantener el tejido en el rango de obtención de imágenes de sistema;
la figura 16B es un gráfico de la salida del sistema de la figura 16A que se proporciona como un gráfico de reflectividad frente a profundidad;
la figura 17A es una ilustración general de una realización a modo de ejemplo de una píldora en una disposición de cuerda según la presente invención en la que una unidad de obtención de imágenes se ingiere por un paciente y está conectada por una “cuerda” que contiene conexiones eléctricas y/o de fibra óptica a la unidad de obtención de imágenes;
la figura 17B es una ilustración de la disposición de la figura 17A en funcionamiento mientras que está ingiriéndose por el paciente;
la figura 17C es un diagrama detallado esquemático de la disposición de la figura 17A;
la figura 18A es una ilustración de una colocación transoral de una realización a modo de ejemplo del catéter según la presente invención;
la figura 18B es una ilustración de una colocación transnasal de una realización a modo de ejemplo de un catéter transoral según la presente invención;
la figura 19A es un diagrama esquemático de una realización a modo de ejemplo de una disposición de centrado de jaula de alambre según la presente invención en un modo cerrado;
la figura 19B es un diagrama esquemático de una realización a modo de ejemplo de la disposición de centrado de jaula de alambre según la presente invención durante la apertura desde una parte distal de la misma;
la figura 20 es un diagrama de bloques de un dispositivo de examen por tomografía de coherencia óptica combinado con una disposición de obtención de imágenes óptica adicional que funciona en una segunda banda de longitud de onda según una realización a modo de ejemplo de la presente invención;
la figura 21 es un diagrama de bloques, un sistema de obtención de imágenes por tomografía de coherencia óptica configurado para permitir la combinación de un haz de ablación con el haz de obtención de imágenes en un brazo de muestra según otra realización a modo de ejemplo de la presente invención;
la figura 22 es un diagrama de bloques, un sistema de obtención de imágenes por tomografía de coherencia óptica configurado para permitir una ablación sobre la marcha según otra realización más a modo de ejemplo de la presente invención;
la figura 23A es un diagrama de flujo de una realización a modo de ejemplo de un proceso para marcar la ablación según la presente invención para la ablación sobre la marcha;
la figura 23B es un diagrama de flujo de una realización a modo de ejemplo de un proceso para marcar la ablación según la presente invención para detención y ablación;
la figura 24 es una imagen endoscópica que muestra la visibilidad de marcas de ablación en un esófago porcino para la obtención de imágenes mediante las realizaciones a modo de ejemplo de las disposiciones y procesos según la presente invención;
la figura 25A es un diagrama de bloques de una realización a modo de ejemplo de la disposición según la presente invención que incluye una fuente de láser de ablación que usa múltiples láseres de longitudes de onda en el rango de 1400-1499 nm que se multiplexan junto con un conmutador óptico como un obturador, con el conmutador óptico después del multiplexor (MUX);
la figura 25B es un diagrama de bloques de la realización a modo de ejemplo de la disposición según la presente invención que incluye una fuente de láser de ablación que usa múltiples láseres de longitudes de onda en el rango de 1400-1499 nm que se multiplexan junto con un conmutador óptico como un obturador, con conmutadores ópticos independientes para cada láser ubicado antes del multiplexor (MUX);
la figura 26 es un diagrama de flujo de un proceso a modo de ejemplo realizado por un sistema de obtención de imágenes según la presente invención que marca áreas de interés identificadas en una sesión de obtención de imágenes completada;
la figura 27 es un diagrama de flujo de un procedimiento a modo de ejemplo para la colocación de realizaciones a modo de ejemplo del catéter coaxial o del catéter de intercambio rápido según la presente invención;
las figuras 28A-C son ilustraciones de múltiples colocaciones de sonda para obtener imágenes en un área mayor que el área de la ventana de obtención de imágenes de la sonda en diversas fases, según la realización a modo de ejemplo de la presente invención;
la figura 29 es un diagrama de flujo de un procedimiento de colocación a modo de ejemplo según la presente invención en el que el globo se infla en el estómago y se tira del mismo hacia atrás hasta encontrar resistencia, localizando de ese modo el extremo proximal del globo con una junta gastroesofágica; y
las figuras 30A-30C son las etapas a modo de ejemplo realizadas por la disposición a modo de ejemplo que usan el método a modo de ejemplo de la figura 29.
A lo largo de las figuras, los mismos números y caracteres de referencia, a menos que se indique lo contrario, se usan para indicar características, elementos, componentes o partes iguales de las realizaciones ilustradas. Además, aunque la invención objeto se describirá ahora en detalle con referencia a las figuras, se hace así en conexión con las realizaciones ilustrativas. Se pretende que los cambios y modificaciones puedan hacerse a las realizaciones descritas sin apartarse del verdadero alcance de la invención objeto definida por las reivindicaciones adjuntas.
Descripción detallada de realizaciones a modo de ejemplo
Se construyó una realización a modo de ejemplo de una sonda esofágica prototipo 1 según la presente invención para investigar la viabilidad de obtener imágenes de todo el esófago distal, el diagrama esquemático de esta sonda a modo de ejemplo se ilustra en la figura 1. Tal sonda de examen esofágica prototipo 1 a modo de ejemplo se diseñó para posibilitar la adquisición de imágenes de todo el esófago distal al tiempo que funciona independientemente de la endoscopia, en modo autónomo. Sin embargo, obtener imágenes de todo el esófago distal puede ser una tarea difícil, ya que la distancia entre el catéter y la pared esofágica puede variar significativamente, incluso en condiciones óptimas. Dado que el rango de Rayleigh sobre el cual las imágenes permanecen enfocadas es de aproximadamente 1 mm (~35 |im de diámetro de punto), el lumen esofágico debe hacerse lo más circular posible, y la sonda debe centrarse generalmente dentro del lumen esofágico.
En tal sonda de examen prototipo a modo de ejemplo 1, se usó un catéter de centrado de globo esofágico (por ejemplo, Eclipse 18x8, Wilson-Cook Medical, Inc.) para lograr estas tareas. La sonda incorporaba un núcleo interno que contenía una fibra óptica. La fibra terminaba en el extremo distal del núcleo interno y la luz se enfocaba por una lente de índice de gradiente en miniatura (GRIN) y se redirigía a la superficie esofágica mediante un microprisma tal como se muestra en la figura 1. El núcleo interno se insertó en el lumen central del catéter de globo (tal como también se muestra en la figura 1). Al usar esta sonda, se obtuvieron imágenes volumétricas del esófago distal rotando rápidamente el núcleo interno para obtener imágenes en sección transversal circunferenciales al tiempo que se trasladaba el núcleo interno longitudinalmente. Los datos volumétricos de un esófago porcino de 2 cm de diámetro se obtuvieron ex vivo en una extensión longitudinal de 3 cm usando la sonda prototipo. Las secciones longitudinales y transversales únicas del conjunto de datos 3D demuestran la capacidad de este dispositivo para obtener imágenes de alta resolución en todo el volumen. Al adquirir imágenes a una velocidad de 4 fotogramas por segundo con una velocidad de retirada de 100 |im por segundo, se obtuvo todo el conjunto de datos volumétricos en 5 minutos (véase la figura 2). Este prototipo a modo de ejemplo según la presente invención demostró que puede construirse una sonda de OCT de pequeño diámetro para obtener imágenes de alta calidad y alta resolución de todo el esófago distal.
Puede proporcionarse una realización a modo de ejemplo de un aparato para la realización de obtención de imágenes de área grande de órganos luminales epiteliales mediante exploración de haz según la presente invención. Tal realización a modo de ejemplo del aparato puede incluir un sistema de obtención de imágenes, un catéter de obtención de imágenes y un explorador de catéter. El sistema de obtención de imágenes proporciona luz al catéter de obtención de imágenes y recupera la luz que regresa desde el catéter para generar la imagen. El catéter de obtención de imágenes dirige la luz generada por el sistema de obtención de imágenes hacia el órgano luminal, y enfoca esta luz como un haz dirigido a la superficie luminal del órgano. El explorador de catéter se usa para dirigir la exploración de este haz a través de un área grande de la superficie luminal.
La figura 3 muestra un diagrama esquemático general de una realización a modo de ejemplo de una disposición según la presente invención que puede incluir un sistema de obtención de imágenes. El sistema de obtención de imágenes puede incluir un sistema de obtención de imágenes de dominio de frecuencia óptica (“OFDI”) 100 (por ejemplo, tal como se describe en la solicitud de patente internacional PCT/US2004/029148, presentada el 8 de septiembre de 2004), el explorador de catéter es un acoplador óptico de fibra óptica rotatorio con un elemento de retirada 110 (por ejemplo, tal como se describe en la solicitud de patente estadounidense n.° 11/266.779, presentada el 2 de noviembre de 2005), y el catéter de obtención de imágenes es una sonda de catéter de globo 120. La OFDI es una tecnología de obtención de imágenes de alta velocidad similar a la tomografía de coherencia óptica (“OCT”). El sistema de obtención de imágenes 100 mostrado en la figura 3 también puede ser un sistema de tomografía de coherencia óptica de dominio
espectral (“SD-OCT”) (por ejemplo, tal como se describe en la solicitud de patente estadounidense n.° 10/501.276, presentada el 9 de julio de 2004) o un sistema de tomografía de coherencia óptica de dominio de tiempo (“TD-OCT”). La luz del sistema de obtención de imágenes 100 puede dirigirse al explorador de catéter 110 que puede formar parte de un catéter de obtención de imágenes de globo 120.
La figura 4 muestra un diagrama esquemático de una realización a modo de ejemplo del catéter de obtención de imágenes de globo 120 de la disposición mostrada en la figura 3 en uso en un área diana de una estructura anatómica. Por ejemplo, el explorador de catéter 110 puede proporcionar luz (u otra radiación electromagnética) a un núcleo interno 125 que puede estar encerrado por cubiertas ópticamente transparentes 130. En un extremo distal del núcleo interno 125, los elementos ópticos de enfoque 140 pueden enfocar y dirigir la luz a la superficie de un órgano luminal 145 del que van a obtenerse imágenes. Un globo 135 puede inflarse a un centro del núcleo interno 125 en el órgano 145. El núcleo interno 125 puede configurarse para rotar y trasladarse axialmente a través del explorador de catéter 110, lo que permite explorar el haz de obtención de imágenes por una área grande del órgano 145. El núcleo interno 125 puede incluir un cable de fibra óptica que puede guiar esta luz hacia el extremo distal del núcleo interno 125. Al registrar la señal (por ejemplo, la señal de OFDI) a medida que se hace que el haz explore, pueden obtenerse imágenes de un área grande del órgano luminal 145.
La figura 5 un diagrama de bloques y flujo de conexiones eléctricas y de datos a modo de ejemplo entre componentes mecanismo de registro de datos y de control la disposición a modo de ejemplo según la presente invención mostrada en la figura 4. El flujo de los datos, señales y/o información tal como se muestra en la figura 5 permite registrar la posición de haz simultáneamente con el registro de los datos de obtención de imágenes para permitir, por ejemplo, un registro espacial sustancialmente exacto de datos de obtención de imágenes. Tal como se muestra en la figura 5, los datos de obtención de imágenes obtenidos por el sistema de OFDI pueden adquirirse mediante una unidad de adquisición y control de datos 210. El explorador de catéter 110 puede lograr una exploración de haz usando un motor 240 proporcionado para rotación y un motor 250 proporcionado para retirada. Cada motor 240, 250 puede controlarse por un controlador de motor 220, 230, respectivamente, en una operación de bucle cerrado. La unidad de adquisición y control de datos 210 puede dar órdenes a las unidades de controlador de motor 220, 230 para lograr determinadas posiciones y/o velocidades de motor. Las señales de codificador reenviadas desde los motores 240, 250 pueden configurarse para estar disponibles tanto para las unidades de controlador de motor 220, 230 como para la unidad de adquisición y control de datos 210. Como tal, cada vez que se adquiere una exploración de profundidad en la entrada de datos de obtención de imágenes, las señales de codificador pueden registrarse para cada motor 240, 250 y, por tanto, puede registrarse aproximadamente la posición de haz exacta para esa exploración de profundidad.
La figura 6 muestra un diagrama esquemático que ilustra una realización a modo de ejemplo de un proceso según la presente invención que posibilita que se adquieran datos por la unidad de adquisición de datos 210 mostrada en la figura 5, y proporcionar una posición de sonda para cada línea a medida. Por ejemplo, una señal de activación 300 puede usarse para activar una única adquisición de una exploración de profundidad en un convertidor de analógico a digital (A-D) 311, y también para registrar el valor de un contador digital 321 y un contador digital 331 capaz de recibir la señal de codificador de motor rotativo 320 y la señal de codificador de motor de retirada 330, respectivamente. Las señales de codificador 320, 330 pueden ser trenes de impulsos TTL que pueden conmutar a una velocidad definida por revolución de motor. Por tanto, contando con estos conmutadores que usan contadores digitales, pueden medirse las posiciones de motor actuales. El convertidor de A-D 311 y los contadores digitales 321, 331 pueden contenerse en la unidad de adquisición de datos 340.
La figura 7A muestra una ilustración de una realización a modo de ejemplo de un método de exploración de sonda 350 según la presente invención en la que el haz se hace rotar de manera acelerada y se desplaza de manera lenta y axial para crear un patrón de obtención de imágenes en espiral. Por ejemplo, la exploración rotacional puede producirse como primera prioridad, y la exploración axial (por ejemplo, retirada) puede producirse como segunda prioridad. Esto puede dar como resultado un conjunto de datos helicoidal.
La figura 7B muestra una ilustración de otra realización a modo de ejemplo del método de exploración de sonda 360 según la presente invención en la que el haz se hace que explore axialmente de manera acelerada, y luego se reposiciona rotacionalmente y se repite. En (B), la exploración axial (retirada) se produce como primera prioridad y la exploración rotacional como segunda prioridad. Dado que la calidad de obtención de imágenes puede ser la mejor cuando se visualiza a lo largo de la primera prioridad de exploración, la elección de la prioridad de exploración puede depender de si se necesitan imágenes transversales (rotacionales) o axiales.
La figura 8A es una ilustración esquemática/funcional de una variante de la realización a modo de ejemplo de un catéter de globo de intercambio rápido 120 tal como se describió anteriormente con referencia a la figura 3, que incluye la provisión de aguja guía ubicada en la punta. En esta realización a modo de ejemplo es posible incluir una colocación de intercambio rápido de la misma sobre una aguja guía. En particular, para la colocación de intercambio rápido, puede colocarse en primer lugar una aguja guía 400 en el órgano del que van a obtenerse imágenes, y luego el catéter puede enhebrarse a lo largo de la aguja guía 400. Esta técnica a modo de ejemplo según la presente invención facilita significativamente la colocación del catéter en un número de aplicaciones. Por ejemplo, tal como se muestra en la figura 8A, una provisión de aguja guía puede ubicarse colocando un agujero pasante 410 en el extremo distal de la cubierta del catéter de globo 120. La figura 8B muestra una ilustración esquemática/funcional, otra variante a modo
de ejemplo del catéter de globo de intercambio rápido 120 según la presente invención que incluye una provisión de aguja guía que se ubica mediante la unión de un segundo tubo 420 al extremo distal del catéter de globo 120. La figura 8C muestra una ilustración esquemática/funcional, otra variante más a modo de ejemplo del catéter de globo de intercambio rápido 120 según la presente invención, en la que un tubo 430 se ubica en el lado proximal del globo.
Las figuras 9A-9D son vistas en despiece ordenado del uso de una realización a modo de ejemplo de un catéter de globo coaxial que usa una aguja guía 510 en un lumen central del mismo según la presente invención durante la inserción de una aguja guía. En la Figura 9A, la aguja guía 510 está colocada en el órgano 500. Luego, en la figura 9B, el catéter se enrosca sobre la aguja guía 510 de manera que la aguja guía 510 está encerrada en el lumen central 520 del catéter. A continuación, la aguja guía 510 se retira en la figura 9C. Además, en la figura 9D, los elementos ópticos de núcleo interno 530 se enhebran en el lumen central de catéter 520 y se inicia la obtención de imágenes.
La figura 10 muestra una vista lateral de un diagrama esquemático de una realización a modo de ejemplo de un catéter de globo que incluye un dispositivo 600 que puede usarse para inflar el globo. Por ejemplo, la presión del globo 650 puede monitorizarse usando un manómetro 620. Esta presión puede usarse para optimizar el inflado del globo 630, así como para evaluar la colocación del catéter monitorizando la presión del órgano.
La figura 11 muestra un diagrama esquemático de una realización a modo de ejemplo de una parte de un catéter de globo que permite que la ventana de obtención de imágenes contenga una sola cubierta. Por ejemplo, el globo 700, su unión proximal 720 y su unión distal 710 a unas cubiertas internas de catéter 705 se muestran en esta figura. En la unión distal 710 mostrada en detalle en la sección B, puede incluirse un orificio en la cubierta 715 para aceptar una aguja guía para su uso en catéteres de intercambio rápido (tal como se describió anteriormente y se muestra en las figuras 8A-8C). El globo 700 puede unirse a la cubierta interna 722, que se extiende por la extensión del globo. Los detalles de la unión proximal 720 del globo 720 se muestran en la sección C. El globo 720 se une a una cubierta externa 721, que termina poco después de entrar en el globo 720. Esta cubierta externa 721 puede adherirse a la cubierta interna 722. Dos orificios 724 y 725 pueden proporcionarse en la cubierta externa 721 de manera que el globo puede inflarse a través del canal creado por las cubiertas interna y externa 721, 722. Una de las ventajas a modo de ejemplo de este diseño a modo de ejemplo del catéter de globo es que hay una única cubierta que se extiende a lo largo de y en la mayor parte del globo 720. Debido a que estas cubiertas pueden introducir aberraciones en el haz de obtención de imágenes y degradan la calidad de la obtención de imágenes, la capacidad de tener una en lugar de dos cubiertas en el globo puede mejorar la calidad de la imagen.
La figura 12 muestra la vista en sección lateral y frontal de los elementos ópticos de enfoque en el extremo distal de un núcleo interno de una realización a modo de ejemplo del catéter según la presente invención. La luz u otra radiación electromagnética proporcionada a través de una fibra óptica 830 puede expandirse y enfocarse por una lente GRIN 840. Las propiedades focales de esta lente 840 pueden seleccionarse para colocar el punto focal del haz cerca del lumen de órgano. Un microprisma 850 refleja el haz por aproximadamente 90 grados. Una pequeña lente cilíndrica 860 puede unirse al microprisma 850 para compensar el astigmatismo del haz inducido por las cubiertas 800 y 810. Alternativamente, el propio microprisma 850 puede pulirse para tener una curvatura cilíndrica en un lado para lograr esta corrección del astigmatismo.
La figura 13 es un diagrama esquemático de una implementación a modo de ejemplo y otra realización a modo de ejemplo de la disposición según la presente invención, por ejemplo, exploración de haz en la sonda de catéter de globo a modo de ejemplo. En particular, la exploración rotacional puede lograrse colocando un micromotor 930 en el interior del propio catéter. Tal como se muestra en la figura 13, el motor 930 puede colocarse en el extremo distal del catéter, y la fibra óptica 950 puede dirigirse a un prisma 960 montado en el árbol de motor 965. Las conexiones eléctricas a modo de ejemplo 940 al motor 930 pueden pasarse a través de la trayectoria de obtención de imágenes al motor 930, provocando posiblemente una ligera obstrucción del haz de obtención de imágenes. Puede usarse un globo para centrar este núcleo óptico en el órgano luminal. Una lente cilíndrica u otros elementos ópticos de corrección de astigmatismo 970 pueden proporcionarse sobre o en el prisma para compensar las aberraciones astigmáticas provocadas por el paso a través de una cubierta transparente 900. La exploración axial puede lograrse mediante el traslado de todo el núcleo óptico, incluyendo los elementos ópticos de enfoque y el motor 930, dentro de la cubierta transparente de catéter 900. Este traslado puede verse afectado por un dispositivo de retirada en el extremo distal del catéter.
La figura 14 muestra una realización a modo de ejemplo de un catéter según la presente invención similar al de la figura 13, pero modificado para evitar el bloqueo del haz de obtención de imágenes por conexiones eléctricas de motor. En esta realización a modo de ejemplo, una fibra óptica 1000 puede dirigirse más allá de un motor 1010, y reflejarse por una tapa de reflexión 1080 hacia un microprisma 1050 montado en un árbol de motor 1055. Una elemento óptico de corrección de aberración 1060 puede proporcionarse sobre o en el prisma 1050. Todo el dispositivo se puede trasladarse para lograr la exploración axial.
La figura 15 muestra una vista lateral de otra realización más a modo de ejemplo de un catéter que es similar a la de la figura 14, pero modificada para permitir el uso de una señal óptica adicional que puede usarse como señal de codificador de motor. En esta realización a modo de ejemplo, una segunda fibra óptica 1100 dirige la luz u otra radiación electromagnética más allá del motor 1100. Esta luz/radiación puede enfocarse y reflejarse por los elementos
ópticos 1110 hacia un codificador reflectante 1120, que puede ubicarse en un árbol de transmisión de motor 1111. El codificador reflectante 1120 puede incluir áreas alternas de alta y baja reflectividad. Cuando el árbol de motor 1111 rota, la luz reflejada en esta fibra puede variar según la información proporcionada por el codificador 1120. Al detectar la potencia óptica reflejada, puede medirse la posición, la velocidad y la dirección de rotación del motor 1100. Esta información puede usarse para controlar el motor 1100 y/o para registrar la imagen con la posición de haz.
La figura 16A es un diagrama de bloques de una realización a modo de ejemplo de un sistema (por ejemplo, un sistema de OCT) según la presente invención configurado para ajustar el retardo de brazo de referencia en respuesta a la posición de globo medida con el fin de mantener el tejido en el rango de obtención de imágenes de sistema. Este sistema de obtención de imágenes de OCT a modo de ejemplo puede implementar determinación de rango automática. Por ejemplo, en los sistemas OCT, OFDI o SDOCT, la reflectividad puede medirse en un rango de profundidad limitado. Si la muestra no está ubicada dentro de este rango de profundidad, no podrá medirse generalmente. El catéter de globo puede centrar la sonda óptica en el lumen, y por tanto mantener la superficie luminal de órgano a aproximadamente una profundidad constante (radio de globo) desde la sonda. Sin embargo, si esto es imperfecto debido a la presión sobre el globo distorsionando su forma, el órgano puede caer fuera del rango de obtención de imágenes. En la realización a modo de ejemplo mostrado en figura 16A, la disposición de rango automática puede usarse para ajustar el rango de profundidad de obtención de imágenes para rastrear la posición del órgano luminal. Esto puede efectuarse ubicando la posición 1210 de la superficie de la muestra (por ejemplo, la superficie de globo) mediante su señal de reflectividad grande (tal como se muestra en la figura 16B), y ajustando el retardo de brazo de referencia 1220 para reposicionar el rango de obtención de imágenes en consecuencia. El ajuste de brazo de referencia puede implicar una modificación del retardo de trayectoria óptica de brazo de referencia.
Las figuras 17A y 17C muestran ilustraciones de una realización a modo de ejemplo de una disposición de “píldora sobre cuerda” según la presente invención en la que una unidad de obtención de imágenes se ingiere por un paciente, y está conectada por una “cuerda” 1310 que contiene conexiones eléctricas y/o de fibra óptica a un sonda de obtención de imágenes 1300, por ejemplo, la sonda de obtención de imágenes 1300 (por ejemplo, “píldora”) que contiene un micromotor 1320 se ingiere por el paciente (véase la figura 17B). El micromotor a modo de ejemplo mostrado en la figura 14 puede usarse como el motor 1320. La sonda 1300 puede conectarse al sistema mediante una “cuerda” 1310 que contiene conexiones eléctricas y de fibra óptica. Al usar esta “cuerda” 1310, puede controlarse la posición de la sonda 1300, y la sonda 1300 puede colocarse, por ejemplo, en el esófago de un paciente. Después de la obtención de imágenes, la sonda 1300 puede recuperarse usando esta “cuerda” 1310.
Las figuras 18A y 18B muestran una ilustración de la colocación transoral y la colocación transnasal, respectivamente, de una realización a modo de ejemplo del catéter según la presente invención, por ejemplo, para la obtención de imágenes de tracto gastrointestinal superior. En la figura 18B, el catéter 1410 puede colocarse a través de la boca 1400, es decir, transoralmente. En la figura 18B, el catéter 1410 puede colocarse a través del orificio nasal 1420, es decir, transnasalmente. Los diseños transnasales pueden tener la ventaja de no requerir sedación de paciente, pero deben ser de diámetro pequeño. Un tamaño relativamente pequeño del núcleo de obtención de imágenes de fibra óptica según la realización a modo de ejemplo de la presente invención puede permitir su implementación transnasalmente.
Las figuras 19A y 19B muestran diagramas esquemáticos de una realización a modo de ejemplo de una disposición de centrado de jaula de alambre de un catéter a modo de ejemplo según la presente invención en un modo cerrado, y durante el comienzo de apertura desde una parte distal de la misma, respectivamente. Por ejemplo, el catéter puede usar hilos de alambre en lugar de un globo para expandir y centrar el núcleo óptico interno en el órgano luminal. El catéter puede incluir una cubierta externa 1510, un conjunto de stents de alambre expandibles 1500 y un núcleo interno 1530. Después de la colocación del catéter, la otra cubierta puede retraerse para permitir que el stent de alambre 1500 expanda el órgano. Después de la obtención de imágenes, la cubierta externa 1510 puede extenderse para colapsar el stent de alambre, y el catéter puede retirarse.
La figura 20 ilustra un diagrama de bloques de una realización a modo de ejemplo de un sistema de obtención de imágenes según la presente invención en la que puede multiplexarse una segunda banda de longitud de onda en el catéter para lograr una segunda modalidad de obtención de imágenes. Esta modalidad podría, por ejemplo, ser obtención de imágenes de reflectancia de luz visible u obtención de imágenes de fluorescencia. En esta disposición a modo de ejemplo, puede acoplarse una fuente de luz visible 1600 al catéter de obtención de imágenes (por ejemplo, como la mostrada en la figura 3) mediante un multiplexor de división de longitud de onda 1630 que combinaba la segunda banda de longitud de onda con una banda de longitud de onda de obtención de imágenes primaria, por ejemplo, normalmente infrarrojos. La luz visible reflejada desde la muestra puede separarse de una banda de longitud de onda de obtención de imágenes primaria mediante este multiplexor de división de longitud de onda 1630, y dirigirse hacia un fotorreceptor 1620 mediante un divisor 1610.
Una funcionalidad adicional ventajosa para un sistema de obtención de imágenes de órgano luminal epitelial puede ser la capacidad de dirigir la inspección posterior a una región de interés identificada en el conjunto de datos de obtención de imágenes. Por ejemplo, si se detecta un área de displasia en una región del esófago, puede desearse dirigir un endoscopio para que tome una biopsia de tejido en esa área para confirmar ese diagnóstico. Pueden usarse un método y un sistema para colocar una marca visible en el tejido en una ubicación de interés identificada en el
conjunto de datos de obtención de imágenes. La figura 21 muestra un diagrama de bloques de otra realización más a modo de ejemplo de la disposición según la presente invención para lograrlo mediante el acoplamiento de un láser de ablación 1700 a través de un multiplexor de división de longitud de onda de fibra óptica 1710 al catéter de obtención de imágenes. El láser de ablación 1700 puede configurarse para incluir una potencia óptica y una longitud de onda suficiente para crear lesiones superficiales en el órgano luminal. Estas lesiones pueden observarse endoscópicamente, y pueden usarse como marcadores para una investigación adicional, por ejemplo, biopsia. Tal como se muestra en la figura 21, el catéter puede apuntar a un área que va a marcarse y hacerse estacionaria. El láser de ablación se enciende entonces durante una duración suficiente para crear la lesión visible.
La figura 22 muestra una realización alternativa a modo de ejemplo de la disposición según la presente invención en la que el explorador de catéter no se detiene, sino que la ablación se realiza sobre la marcha. La unidad de adquisición de datos 1720 se programa para abrir un obturador óptico 1730 cuando el catéter apunta a la región de interés. El obturador óptico 1730 puede transmitir la luz de ablación cuando está abierta, y se bloquea cuando se cierra. Por ejemplo, el catéter puede permanecer en movimiento.
La figura 23A muestra un diagrama de flujo de una realización a modo de ejemplo de un proceso para marcar la ablación según la presente invención para la ablación sobre la marcha en el área de interés. En particular, se identifica un punto a extirpar en la etapa 1810. En la etapa 1820, el obturador está configurado para abrirse en tal punto. En la etapa 1830, se habilitan el obturador y el láser de ablación, y luego, en la etapa 1840, el obturador y/o el láser de ablación se deshabilitan.
La figura 23B muestra un diagrama de flujo de una realización a modo de ejemplo de un proceso para marcar la ablación según la presente invención para detener y extirpar en el área de interés. En particular, un punto a extirpar se identifica en la etapa 1850. En la etapa 1860, se dan órdenes al catéter para que se detenga en ese punto. En la etapa 1870, se habilitan el obturador y el láser de ablación, y luego, en la etapa 1880, el obturador y/o el láser de ablación se deshabilitan. El giro del catéter se reinicia en la etapa 1890.
La figura 24 muestra una imagen a modo de ejemplo (generada usando las realizaciones a modo de ejemplo de la presente invención) que incluye las regiones de marcado de ablación de interés. Por ejemplo, se muestran las marcas de ablación 1900 que se crean en el esófago usando una serie de láseres de longitudes de onda de 1440nm a 1480 nm y una potencia óptica de aproximadamente 300 mW para una duración de aproximadamente 1 segundo.
Las figuras 25A y 25B muestran diagramas de flujo y bloques de interconexiones de unas realizaciones a modo de ejemplo de la disposición según la presente invención, e implementaciones de un método a modo de ejemplo de la presente invención que puede combinar múltiples láseres de ablación y un conmutador óptico (obturador) de la disposición a modo de ejemplo. En la figura 25A, múltiples láseres 2000, 2010 y 2020 pueden combinarse usando un multiplexor (MUX) 2030, que puede ser un multiplexor de división de longitud de onda, un multiplexor de polarización, y/o una combinación de ambos, seguido de un solo obturador 2040. En la figura 25B, cada láser 2000, 2010, 2020 puede usar un obturador independiente 2050, 2060, 2070, que posteriormente puede combinarse usando un MUX 2080.
La figura 26 muestra un diagrama de bloques de una realización a modo de ejemplo de un método de examen de un órgano luminal y marcado posterior de áreas de interés. En la etapa 2100, el área del lumen se somete a obtención de imágenes en su totalidad. Luego, en la etapa 2110, se identifican áreas de interés usando o bien algoritmos automatizados o bien inspección por un operario. En la etapa 2120, el catéter se dirige al área de la primera región de interés. Opcionalmente, se comienza la obtención de imágenes y la posición de catéter se ajusta de forma interactiva para volver a encontrar la región de interés en la etapa 2130. Este procedimiento de reencuentro puede compensar el desplazamiento del catéter debido, por ejemplo, al movimiento peristáltico en el esófago. A continuación, en la etapa 2140, una sola o una serie de marcas de ablación pueden hacerse adyacentes a o alrededor de la región de interés. Este procedimiento se repite para cada área de interés (etapas 2150, 2130, 2140, etcétera). En la etapa 2160, se retira entonces el catéter y adicionalmente se realiza la inspección o biopsia como esas áreas marcadas en la etapa 2170.
La figura 27 muestra una realización a modo de ejemplo de un procedimiento según la presente invención para la colocación del catéter de obtención de imágenes usando colocación endoscópica de la aguja guía. En particular, la aguja guía se inserta a través de un canal de endoscopio en la etapa 2200. En la etapa 2210, se retira entonces el endoscopio, dejando la aguja guía. En la etapa 2220, el catéter se coloca a lo largo de la aguja guía tal como se describió anteriormente con referencia a diversas realizaciones a modo de ejemplo de la presente invención. En la etapa 2230, se retira entonces la aguja guía. Además, en la etapa 2240, el globo se infla, y comienza la obtención de imágenes en la etapa 2250.
Las figuras 28A-28C muestran etapas a modo de ejemplo de un funcionamiento que utiliza la disposición a modo de ejemplo de la presente invención para obtener imágenes por un área mayor que la longitud del globo mediante múltiples colocaciones del globo. Los conjuntos de obtención de imágenes obtenidos con el globo en las posiciones mostradas en las figuras 28A-28C pueden combinarse para producir la obtención de imágenes en un área grande.
La figura 29 muestra una realización a modo de ejemplo de un método para la colocación de una sonda de obtención
de imágenes en la unión entre el esófago tubular y el estómago. Las figuras 30A-30C muestran las etapas a modo de ejemplo realizadas por la disposición a modo de ejemplo de la presente invención usando el método de la figura 29. En la etapa 2400, el catéter se inserta con el globo desinflado y se coloca en el estómago. En la etapa 2410, el globo se infla (figura 30A), y en la etapa 2420, se tira del mismo hasta que se siente resistencia, ubicando de ese modo el lado proximal del globo en la unión gastroesofágica (unión entre el estómago y el esófago). A continuación, en la etapa 2430, el globo se desinfla parcialmente (figura 30B), y el catéter se retira una cantidad predefinida tal como la longitud del globo. Además, en la etapa 2440, el globo se infla, y la obtención de imágenes avanza con el catéter ubicado en la unión gastroesofágica (figura 30C).
En una realización adicional a modo de ejemplo de la presente invención, el sistema de obtención de imágenes puede hacerse funcionar en un modo de obtención de imágenes abreviado (por ejemplo, obtención de imágenes simple) para determinar si el catéter está correctamente ubicado en el órgano. Una obtención de imágenes integral completa puede comenzar después de confirmarse la colocación adecuada del catéter. En otra realización más a modo de ejemplo de la presente invención, el catéter de centrado de globo puede inflarse con materiales que sean ópticamente transparentes distintos del aire, tales como el agua, pero sin limitarse al agua pesada (D2O) o aceite. En otra realización más a modo de ejemplo de la presente invención, el marcado de láser puede utilizar agentes exógenos previamente aplicados en el órgano para proporcionar absorción del láser de marcado. En una realización adicional a modo de ejemplo de la presente invención, puede usarse un agente lubricante para ayudar a la inserción del catéter. En otra realización a modo de ejemplo de la presente invención, puede usarse un agente de retirada de mucosa antes de la obtención de imágenes para reducir la mucosa en el órgano, lo que puede reducir la calidad de la obtención de imágenes.
Lo anterior simplemente ilustra los principios de la invención. Diversas modificaciones y alteraciones a las realizaciones descritas serán evidentes para los expertos en la técnica en vista de las enseñanzas en el presente documento. De hecho, las disposiciones, sistemas y métodos según las realizaciones a modo de ejemplo de la presente invención pueden usarse con y/o implementar cualquier sistema de OCT, sistema de OFDI, sistema de SD-OCT u otros sistemas de obtención de imágenes, y por ejemplo con los descritos en la solicitud de patente internacional PCT/US2004/029148, presentada el 8 de septiembre de 2004, la solicitud de patente estadounidense n.° 11/266.779, presentada el 2 de noviembre de 2005, y la solicitud de patente estadounidense n.° 10/501.276, presentada el 9 de julio de 2004.
Se apreciará, por tanto, que los expertos en la técnica podrán idear numerosos sistemas, disposiciones y métodos que, aunque no se muestran o se describen explícitamente en el documento, encarnan los principios de la invención y se encuentran, por tanto, dentro del alcance de la presente invención.
Claims (12)
- REIVINDICACIONESi. Un catéter de obtención de imágenes de globo (120) para obtener datos para al menos una parte dentro de al menos una muestra luminal o hueca, que comprende:un núcleo interno (125, 830, 1000) configurado para transmitir al menos una radiación electromagnética hacia y desde la al menos una parte;una cubierta ópticamente transparente (130, 520, 650, 800, 810, 900, 1070) que encierra al menos parcialmente el núcleo interno;elementos ópticos de enfoque (140, 840, 850, 950, 1060) proporcionados en un extremo distal del núcleo interno y configurados para enfocar y dirigir la al menos una radiación electromagnética a la al menos una parte; yun globo inflable (135, 515, 630, 700, 910, 1040) que está configurado para accionarse de modo que centre el núcleo interno dentro de la al menos una muestra luminal o hueca, rodeando el globo inflable la cubierta ópticamente transparente,en el que los elementos ópticos de enfoque (140) incluyen un prisma (850) para reflejar un haz de la radiación electromagnética desde el extremo distal del núcleo interno en aproximadamente 90 grados para dirigir la al menos una radiación electromagnética a través del globo inflable a la al menos una parte, caracterizado porquelos elementos ópticos de enfoque (140, 840, 850, 950, 970, 1060) están configurados para compensar al menos una aberración provocada por la cubierta ópticamente transparente (130, 520, 650, 800, 810, 900, 1070) cuando se infla el globo inflable (135, 515, 630, 700, 910, 1040).
- 2. El catéter de obtención de imágenes de globo según la reivindicación 1, en el que la al menos una aberración es un astigmatismo.
- 3. El catéter de obtención de imágenes de globo según la reivindicación 1, en el que los elementos ópticos de enfoque (140, 840, 850, 950, 970, 1070) incluyen al menos uno de:al menos una superficie cilíndrica (860, 970, 1060) que está configurada para compensar la al menos una aberración; yal menos una lente de bola elipsoidal que está configurada para compensar la al menos una aberración.
- 4. El catéter de obtención de imágenes de globo según la reivindicación 1, en el que el globo inflable es capaz de llenarse con al menos uno de un gas o un líquido.
- 5. El catéter de obtención de imágenes de globo según la reivindicación 1, en el que la cubierta ópticamente transparente incluye al menos una parte que habilita una disposición de guía que va a insertarse a través de la misma.
- 6. El catéter de obtención de imágenes de globo según la reivindicación 1, que comprende además:una disposición adicional (620) que está configurada para medir una presión dentro de la al menos una parte.
- 7. El catéter de obtención de imágenes de globo según la reivindicación 1, en el que los datos incluyen al menos una de una posición o una orientación del núcleo interno con respecto a la al menos una muestra luminal o hueca.
- 8. El catéter de obtención de imágenes de globo según la reivindicación 1, en el que la al menos una radiación electromagnética es visible.
- 9. El catéter de obtención de imágenes de globo según la reivindicación 1, en el que el núcleo interno está configurado para transmitir al menos una segunda radiación electromagnética de modo que produzca un cambio estructural en la al menos una parte.
- 10. El catéter de obtención de imágenes de globo según la reivindicación 1, que comprende además una disposición de procesamiento que es capaz de controlarse para recibir una pluralidad de imágenes de la al menos una muestra durante al menos dos traslados axiales del núcleo interno con respecto a la al menos una muestra, en el que cada uno de los traslados axiales se proporciona en un ángulo de rotación.
- 11. El catéter de obtención de imágenes de globo según la reivindicación 1, en el que los datos son datos interferométricos asociados con la al menos una muestra y en el que los datos interferométricos son al menos uno de datos de tomografía de coherencia óptica de dominio espectral, datos de tomografía de coherencia óptica de dominio de tiempo o datos de obtención de imágenes de dominio de frecuencia óptica.
- 12. El catéter de obtención de imágenes de globo según la reivindicación 1, en el que el aparato está estructurado para poder insertarse a través de al menos una de la boca o nariz de un paciente.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76100406P | 2006-01-19 | 2006-01-19 | |
PCT/US2007/060787 WO2007084995A2 (en) | 2006-01-19 | 2007-01-19 | Methods and systems for optical imaging of epithelial luminal organs by beam scanning thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2847854T3 true ES2847854T3 (es) | 2021-08-04 |
Family
ID=38288410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES07718117T Active ES2847854T3 (es) | 2006-01-19 | 2007-01-19 | Catéter de globo de obtención de imágenes |
Country Status (8)
Country | Link |
---|---|
US (4) | US9087368B2 (es) |
EP (5) | EP1973466B1 (es) |
JP (7) | JP5384944B2 (es) |
CN (2) | CN104257348A (es) |
DK (1) | DK1973466T3 (es) |
ES (1) | ES2847854T3 (es) |
PL (1) | PL1973466T3 (es) |
WO (1) | WO2007084995A2 (es) |
Families Citing this family (195)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4241038B2 (ja) | 2000-10-30 | 2009-03-18 | ザ ジェネラル ホスピタル コーポレーション | 組織分析のための光学的な方法及びシステム |
US9897538B2 (en) * | 2001-04-30 | 2018-02-20 | The General Hospital Corporation | Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating |
DE10297689B4 (de) | 2001-05-01 | 2007-10-18 | The General Hospital Corp., Boston | Verfahren und Gerät zur Bestimmung von atherosklerotischem Belag durch Messung von optischen Gewebeeigenschaften |
US7355716B2 (en) | 2002-01-24 | 2008-04-08 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
AU2003299471A1 (en) | 2002-05-07 | 2004-05-13 | Kai Kroll | Method and device for treating concer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy |
EP1426411A1 (en) * | 2002-12-06 | 2004-06-09 | KRATON Polymers Research B.V. | Styrenic block copolymer compositions to be used for the manufacture of transparent, gel free films |
AU2004206998B2 (en) * | 2003-01-24 | 2009-12-17 | The General Hospital Corporation | System and method for identifying tissue using low-coherence interferometry |
US8054468B2 (en) | 2003-01-24 | 2011-11-08 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
AU2004225188B2 (en) | 2003-03-31 | 2010-04-15 | The General Hospital Corporation | Speckle reduction in optical coherence tomography by path length encoded angular compounding |
US7519096B2 (en) | 2003-06-06 | 2009-04-14 | The General Hospital Corporation | Process and apparatus for a wavelength tuning source |
CN103181753B (zh) | 2003-10-27 | 2016-12-28 | 通用医疗公司 | 用于使用频域干涉测量法进行光学成像的方法和设备 |
EP1754016B1 (en) | 2004-05-29 | 2016-05-18 | The General Hospital Corporation | Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging |
JP4995720B2 (ja) | 2004-07-02 | 2012-08-08 | ザ ジェネラル ホスピタル コーポレイション | ダブルクラッドファイバを有する内視鏡撮像プローブ |
WO2006017837A2 (en) | 2004-08-06 | 2006-02-16 | The General Hospital Corporation | Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography |
KR20120062944A (ko) | 2004-08-24 | 2012-06-14 | 더 제너럴 하스피탈 코포레이션 | 혈관절편 영상화 방법 및 장치 |
EP1989997A1 (en) * | 2004-08-24 | 2008-11-12 | The General Hospital Corporation | Process, System and Software Arrangement for Measuring a Mechanical Strain and Elastic Properties of a Sample |
JP5215664B2 (ja) | 2004-09-10 | 2013-06-19 | ザ ジェネラル ホスピタル コーポレイション | 光学コヒーレンス撮像のシステムおよび方法 |
EP2329759B1 (en) | 2004-09-29 | 2014-03-12 | The General Hospital Corporation | System and method for optical coherence imaging |
EP1825214A1 (en) | 2004-11-24 | 2007-08-29 | The General Hospital Corporation | Common-path interferometer for endoscopic oct |
WO2006058346A1 (en) * | 2004-11-29 | 2006-06-01 | The General Hospital Corporation | Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample |
JP2008538612A (ja) * | 2005-04-22 | 2008-10-30 | ザ ジェネラル ホスピタル コーポレイション | スペクトルドメイン偏光感受型光コヒーレンストモグラフィを提供することの可能な構成、システム、及び方法 |
EP1875436B1 (en) | 2005-04-28 | 2009-12-09 | The General Hospital Corporation | Evaluation of image features of an anatomical structure in optical coherence tomography images |
US9060689B2 (en) | 2005-06-01 | 2015-06-23 | The General Hospital Corporation | Apparatus, method and system for performing phase-resolved optical frequency domain imaging |
ES2354287T3 (es) * | 2005-08-09 | 2011-03-11 | The General Hospital Corporation | Aparato y método para realizar una desmodulación en cuadratura por polarización en tomografía de coherencia óptica. |
WO2007022220A2 (en) * | 2005-08-16 | 2007-02-22 | The General Hospital Corporation | Arrangements and methods for imaging in vessels |
US7843572B2 (en) | 2005-09-29 | 2010-11-30 | The General Hospital Corporation | Method and apparatus for optical imaging via spectral encoding |
JP5680826B2 (ja) | 2006-01-10 | 2015-03-04 | ザ ジェネラル ホスピタル コーポレイション | 1以上のスペクトルを符号化する内視鏡技術によるデータ生成システム |
EP1973466B1 (en) | 2006-01-19 | 2021-01-06 | The General Hospital Corporation | Ballon imaging catheter |
US8145018B2 (en) | 2006-01-19 | 2012-03-27 | The General Hospital Corporation | Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements |
WO2007100935A2 (en) * | 2006-01-20 | 2007-09-07 | The General Hospital Corporation | Systems, arrangement and process for providing speckle reductions using a wave front modulation for optical coherence tomography |
JP5680829B2 (ja) | 2006-02-01 | 2015-03-04 | ザ ジェネラル ホスピタル コーポレイション | 複数の電磁放射をサンプルに照射する装置 |
JP5524487B2 (ja) | 2006-02-01 | 2014-06-18 | ザ ジェネラル ホスピタル コーポレイション | コンフォーマルレーザ治療手順を用いてサンプルの少なくとも一部分に電磁放射を放射する方法及びシステム。 |
JP2009527770A (ja) | 2006-02-24 | 2009-07-30 | ザ ジェネラル ホスピタル コーポレイション | 角度分解型のフーリエドメイン光干渉断層撮影法を遂行する方法及びシステム |
WO2007103721A2 (en) * | 2006-03-01 | 2007-09-13 | The General Hospital Corporation | System and method for providing cell specific laser therapy of atherosclerotic plaques by targeting light absorbers in macrophages |
WO2007133961A2 (en) | 2006-05-10 | 2007-11-22 | The General Hospital Corporation | Processes, arrangements and systems for providing frequency domain imaging of a sample |
US20100165335A1 (en) * | 2006-08-01 | 2010-07-01 | The General Hospital Corporation | Systems and methods for receiving and/or analyzing information associated with electro-magnetic radiation |
US9867530B2 (en) | 2006-08-14 | 2018-01-16 | Volcano Corporation | Telescopic side port catheter device with imaging system and method for accessing side branch occlusions |
EP2077753B1 (en) * | 2006-09-12 | 2012-12-19 | The General Hospital Corporation | Apparatus, probe and method for providing depth assessment in an anatomical structure |
US8838213B2 (en) * | 2006-10-19 | 2014-09-16 | The General Hospital Corporation | Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s) |
EP2662674A3 (en) | 2007-01-19 | 2014-06-25 | The General Hospital Corporation | Rotating disk reflection for fast wavelength scanning of dispersed broadbend light |
US20080234567A1 (en) * | 2007-03-19 | 2008-09-25 | The General Hospital Corporation | Apparatus and method for providing a noninvasive diagnosis of internal bleeding |
JP5558839B2 (ja) * | 2007-03-23 | 2014-07-23 | ザ ジェネラル ホスピタル コーポレイション | 角度走査及び分散手順を用いて波長掃引レーザを利用するための方法、構成及び装置 |
US10534129B2 (en) | 2007-03-30 | 2020-01-14 | The General Hospital Corporation | System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque |
US8045177B2 (en) | 2007-04-17 | 2011-10-25 | The General Hospital Corporation | Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy |
US10219780B2 (en) | 2007-07-12 | 2019-03-05 | Volcano Corporation | OCT-IVUS catheter for concurrent luminal imaging |
US9596993B2 (en) | 2007-07-12 | 2017-03-21 | Volcano Corporation | Automatic calibration systems and methods of use |
JP5524835B2 (ja) * | 2007-07-12 | 2014-06-18 | ヴォルカノ コーポレイション | 生体内撮像用カテーテル |
US9375158B2 (en) * | 2007-07-31 | 2016-06-28 | The General Hospital Corporation | Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging |
EP2207469A4 (en) * | 2007-10-12 | 2012-07-11 | Gen Hospital Corp | SYSTEMS AND METHODS FOR OPTICAL IMAGING OF LUMINOUS ANATOMICAL STRUCTURES |
WO2009059034A1 (en) | 2007-10-30 | 2009-05-07 | The General Hospital Corporation | System and method for cladding mode detection |
US20090225324A1 (en) * | 2008-01-17 | 2009-09-10 | The General Hospital Corporation | Apparatus for providing endoscopic high-speed optical coherence tomography |
JP2011519692A (ja) * | 2008-05-07 | 2011-07-14 | ヴォルカノ コーポレイション | 収差を相殺する光学撮像カテーテル |
JP5607610B2 (ja) | 2008-05-07 | 2014-10-15 | ザ ジェネラル ホスピタル コーポレイション | 構造の特徴を決定する装置、装置の作動方法およびコンピュータアクセス可能な媒体 |
US8861910B2 (en) | 2008-06-20 | 2014-10-14 | The General Hospital Corporation | Fused fiber optic coupler arrangement and method for use thereof |
WO2010009136A2 (en) | 2008-07-14 | 2010-01-21 | The General Hospital Corporation | Apparatus and methods for color endoscopy |
WO2010022278A1 (en) * | 2008-08-20 | 2010-02-25 | Ionix Medical, Inc. | Catheter for treating tissue with non-thermal ablation |
US9597145B2 (en) | 2008-08-20 | 2017-03-21 | Prostacare Pty Ltd | Non-thermal ablation system for treating tissue |
US8937724B2 (en) * | 2008-12-10 | 2015-01-20 | The General Hospital Corporation | Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling |
JP2012515576A (ja) * | 2009-01-20 | 2012-07-12 | ザ ジェネラル ホスピタル コーポレイション | 内視鏡生検装置、システム、及び方法 |
US9788728B2 (en) * | 2009-01-23 | 2017-10-17 | Beth Israel Deaconess Medical Center, Inc. | Endoscopic polarized multispectral light scattering scanning method |
JP2012515930A (ja) | 2009-01-26 | 2012-07-12 | ザ ジェネラル ホスピタル コーポレーション | 広視野の超解像顕微鏡を提供するためのシステム、方法及びコンピューターがアクセス可能な媒体 |
CN102308444B (zh) * | 2009-02-04 | 2014-06-18 | 通用医疗公司 | 利用高速光学波长调谐源的设备和方法 |
US9351642B2 (en) | 2009-03-12 | 2016-05-31 | The General Hospital Corporation | Non-contact optical system, computer-accessible medium and method for measurement at least one mechanical property of tissue using coherent speckle technique(s) |
US20100249588A1 (en) * | 2009-03-31 | 2010-09-30 | Boston Scientific Scimed, Inc. | Systems and methods for making and using intravascular imaging systems with multiple pullback rates |
BR112012001042A2 (pt) | 2009-07-14 | 2016-11-22 | Gen Hospital Corp | equipamento e método de medição do fluxo de fluído dentro de estrutura anatômica. |
WO2011027821A1 (ja) * | 2009-09-04 | 2011-03-10 | テルモ株式会社 | カテーテル |
JP5373527B2 (ja) * | 2009-09-30 | 2013-12-18 | テルモ株式会社 | 光干渉断層像形成装置及びその作動方法 |
EP2485641A4 (en) * | 2009-10-06 | 2015-10-14 | Gen Hospital Corp | APPARATUS AND METHODS FOR IMAGING PARTICULAR CELLS INCLUDING EOSINOPHILES |
US20110224541A1 (en) * | 2009-12-08 | 2011-09-15 | The General Hospital Corporation | Methods and arrangements for analysis, diagnosis, and treatment monitoring of vocal folds by optical coherence tomography |
JP5407896B2 (ja) * | 2010-01-25 | 2014-02-05 | コニカミノルタ株式会社 | 診断補助装置及び光プローブ |
RS61066B1 (sr) | 2010-03-05 | 2020-12-31 | Massachusetts Gen Hospital | Sistemi koji obezbeđuju mikroskopske slike najmanje jedne anatomske strukture na određenoj rezoluciji |
WO2011130536A2 (en) * | 2010-04-14 | 2011-10-20 | Northwestern University | Triple balloon occlusion and infusion catheter |
US9069130B2 (en) | 2010-05-03 | 2015-06-30 | The General Hospital Corporation | Apparatus, method and system for generating optical radiation from biological gain media |
US9795301B2 (en) | 2010-05-25 | 2017-10-24 | The General Hospital Corporation | Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images |
EP2575597B1 (en) | 2010-05-25 | 2022-05-04 | The General Hospital Corporation | Apparatus for providing optical imaging of structures and compositions |
US10285568B2 (en) | 2010-06-03 | 2019-05-14 | The General Hospital Corporation | Apparatus and method for devices for imaging structures in or at one or more luminal organs |
EP2632324A4 (en) | 2010-10-27 | 2015-04-22 | Gen Hospital Corp | DEVICES, SYSTEMS AND METHOD FOR MEASURING BLOOD PRESSURE IN AT LEAST ONE VESSEL |
US11141063B2 (en) | 2010-12-23 | 2021-10-12 | Philips Image Guided Therapy Corporation | Integrated system architectures and methods of use |
US11040140B2 (en) | 2010-12-31 | 2021-06-22 | Philips Image Guided Therapy Corporation | Deep vein thrombosis therapeutic methods |
US9330092B2 (en) | 2011-07-19 | 2016-05-03 | The General Hospital Corporation | Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography |
WO2013029047A1 (en) | 2011-08-25 | 2013-02-28 | The General Hospital Corporation | Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures |
US9360630B2 (en) | 2011-08-31 | 2016-06-07 | Volcano Corporation | Optical-electrical rotary joint and methods of use |
AU2012312066C1 (en) | 2011-09-22 | 2016-06-16 | 460Medical, Inc. | Systems and methods for visualizing ablated tissue |
EP2769491A4 (en) | 2011-10-18 | 2015-07-22 | Gen Hospital Corp | DEVICE AND METHOD FOR PRODUCING AND / OR PROVIDING RECIRCULATING OPTICAL DELAY (DE) |
US9237851B2 (en) | 2012-02-03 | 2016-01-19 | Ninepoint Medical, Inc. | Imaging system producing multiple registered images of a body lumen |
WO2013148306A1 (en) | 2012-03-30 | 2013-10-03 | The General Hospital Corporation | Imaging system, method and distal attachment for multidirectional field of view endoscopy |
WO2013177154A1 (en) | 2012-05-21 | 2013-11-28 | The General Hospital Corporation | Apparatus, device and method for capsule microscopy |
EP2888616A4 (en) | 2012-08-22 | 2016-04-27 | Gen Hospital Corp | SYSTEM, METHOD AND COMPUTER-ACCESSIBLE MEDIA FOR MANUFACTURING MINIATURE ENDOSCOPES USING SOFT LITHOGRAPHY |
US10070827B2 (en) | 2012-10-05 | 2018-09-11 | Volcano Corporation | Automatic image playback |
US9367965B2 (en) | 2012-10-05 | 2016-06-14 | Volcano Corporation | Systems and methods for generating images of tissue |
US9292918B2 (en) | 2012-10-05 | 2016-03-22 | Volcano Corporation | Methods and systems for transforming luminal images |
US9286673B2 (en) | 2012-10-05 | 2016-03-15 | Volcano Corporation | Systems for correcting distortions in a medical image and methods of use thereof |
JP2015532536A (ja) | 2012-10-05 | 2015-11-09 | デイビッド ウェルフォード, | 光を増幅するためのシステムおよび方法 |
US11272845B2 (en) | 2012-10-05 | 2022-03-15 | Philips Image Guided Therapy Corporation | System and method for instant and automatic border detection |
US9324141B2 (en) | 2012-10-05 | 2016-04-26 | Volcano Corporation | Removal of A-scan streaking artifact |
US9858668B2 (en) | 2012-10-05 | 2018-01-02 | Volcano Corporation | Guidewire artifact removal in images |
US10568586B2 (en) | 2012-10-05 | 2020-02-25 | Volcano Corporation | Systems for indicating parameters in an imaging data set and methods of use |
US9307926B2 (en) | 2012-10-05 | 2016-04-12 | Volcano Corporation | Automatic stent detection |
US9840734B2 (en) | 2012-10-22 | 2017-12-12 | Raindance Technologies, Inc. | Methods for analyzing DNA |
EP2931132B1 (en) | 2012-12-13 | 2023-07-05 | Philips Image Guided Therapy Corporation | System for targeted cannulation |
US10942022B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Manual calibration of imaging system |
JP6785554B2 (ja) | 2012-12-20 | 2020-11-18 | ボルケーノ コーポレイション | 平滑遷移カテーテル |
US11406498B2 (en) | 2012-12-20 | 2022-08-09 | Philips Image Guided Therapy Corporation | Implant delivery system and implants |
US10939826B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Aspirating and removing biological material |
EP2934282B1 (en) | 2012-12-20 | 2020-04-29 | Volcano Corporation | Locating intravascular images |
CA2895989A1 (en) | 2012-12-20 | 2014-07-10 | Nathaniel J. Kemp | Optical coherence tomography system that is reconfigurable between different imaging modes |
US10413317B2 (en) | 2012-12-21 | 2019-09-17 | Volcano Corporation | System and method for catheter steering and operation |
JP2016502884A (ja) | 2012-12-21 | 2016-02-01 | ダグラス メイヤー, | 延在カテーテル本体テレスコープを有する回転可能超音波撮像カテーテル |
US9612105B2 (en) | 2012-12-21 | 2017-04-04 | Volcano Corporation | Polarization sensitive optical coherence tomography system |
EP2934323A4 (en) | 2012-12-21 | 2016-08-17 | Andrew Hancock | SYSTEM AND METHOD FOR MULTI-PASS PROCESSING OF IMAGE SIGNALS |
JP2016508757A (ja) | 2012-12-21 | 2016-03-24 | ジェイソン スペンサー, | 医療データのグラフィカル処理のためのシステムおよび方法 |
CA2895990A1 (en) | 2012-12-21 | 2014-06-26 | Jerome MAI | Ultrasound imaging with variable line density |
US9486143B2 (en) | 2012-12-21 | 2016-11-08 | Volcano Corporation | Intravascular forward imaging device |
US10058284B2 (en) | 2012-12-21 | 2018-08-28 | Volcano Corporation | Simultaneous imaging, monitoring, and therapy |
JP2016508233A (ja) | 2012-12-21 | 2016-03-17 | ナサニエル ジェイ. ケンプ, | 光学スイッチを用いた電力効率のよい光学バッファリング |
US9383263B2 (en) | 2012-12-21 | 2016-07-05 | Volcano Corporation | Systems and methods for narrowing a wavelength emission of light |
WO2014117130A1 (en) | 2013-01-28 | 2014-07-31 | The General Hospital Corporation | Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging |
US10893806B2 (en) | 2013-01-29 | 2021-01-19 | The General Hospital Corporation | Apparatus, systems and methods for providing information regarding the aortic valve |
US11179028B2 (en) | 2013-02-01 | 2021-11-23 | The General Hospital Corporation | Objective lens arrangement for confocal endomicroscopy |
US10226597B2 (en) | 2013-03-07 | 2019-03-12 | Volcano Corporation | Guidewire with centering mechanism |
US9770172B2 (en) | 2013-03-07 | 2017-09-26 | Volcano Corporation | Multimodal segmentation in intravascular images |
US11154313B2 (en) | 2013-03-12 | 2021-10-26 | The Volcano Corporation | Vibrating guidewire torquer and methods of use |
WO2014164696A1 (en) | 2013-03-12 | 2014-10-09 | Collins Donna | Systems and methods for diagnosing coronary microvascular disease |
WO2014159819A1 (en) | 2013-03-13 | 2014-10-02 | Jinhyoung Park | System and methods for producing an image from a rotational intravascular ultrasound device |
US11026591B2 (en) | 2013-03-13 | 2021-06-08 | Philips Image Guided Therapy Corporation | Intravascular pressure sensor calibration |
US9301687B2 (en) | 2013-03-13 | 2016-04-05 | Volcano Corporation | System and method for OCT depth calibration |
WO2014152365A2 (en) | 2013-03-14 | 2014-09-25 | Volcano Corporation | Filters with echogenic characteristics |
US10292677B2 (en) | 2013-03-14 | 2019-05-21 | Volcano Corporation | Endoluminal filter having enhanced echogenic properties |
US10219887B2 (en) | 2013-03-14 | 2019-03-05 | Volcano Corporation | Filters with echogenic characteristics |
JP6378311B2 (ja) | 2013-03-15 | 2018-08-22 | ザ ジェネラル ホスピタル コーポレイション | 物体を特徴付ける方法とシステム |
JP6500774B2 (ja) * | 2013-03-29 | 2019-04-17 | ソニー株式会社 | レーザ走査型内視鏡装置 |
EP2997354A4 (en) | 2013-05-13 | 2017-01-18 | The General Hospital Corporation | Detecting self-interefering fluorescence phase and amplitude |
US10117576B2 (en) | 2013-07-19 | 2018-11-06 | The General Hospital Corporation | System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina |
WO2015009932A1 (en) | 2013-07-19 | 2015-01-22 | The General Hospital Corporation | Imaging apparatus and method which utilizes multidirectional field of view endoscopy |
EP3910282B1 (en) | 2013-07-26 | 2024-01-17 | The General Hospital Corporation | Method of providing a laser radiation with a laser arrangement utilizing optical dispersion for applications in fourier-domain optical coherence tomography |
CN105722445B (zh) * | 2014-01-06 | 2018-04-24 | 安达满纳米奇精密宝石有限公司 | 光学成像用探测器 |
WO2015105870A1 (en) | 2014-01-08 | 2015-07-16 | The General Hospital Corporation | Method and apparatus for microscopic imaging |
US10736494B2 (en) | 2014-01-31 | 2020-08-11 | The General Hospital Corporation | System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device |
WO2015153982A1 (en) | 2014-04-04 | 2015-10-08 | The General Hospital Corporation | Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s) |
KR102513779B1 (ko) | 2014-07-25 | 2023-03-24 | 더 제너럴 하스피탈 코포레이션 | 생체 내 이미징 및 진단을 위한 장치, 디바이스 및 방법 |
US20170265745A1 (en) * | 2014-07-29 | 2017-09-21 | Collage Medical Imaging Ltd. | Integrated optical coherence tomography (oct) scanning and/or therapeutic access tools and methods |
US10206581B2 (en) * | 2014-10-29 | 2019-02-19 | Zoll Medical Corporation | Transesophageal or transtracheal cardiac monitoring by optical spectroscopy |
CN104545872B (zh) * | 2015-01-12 | 2017-04-19 | 南京理工大学 | 基于线性相关系数来重构三维微血流分布的方法及装置 |
JP2016202866A (ja) * | 2015-04-16 | 2016-12-08 | 住友電気工業株式会社 | 光プローブ |
EP3282921B1 (en) | 2015-04-16 | 2022-02-16 | Gentuity LLC | Micro-optic probes for neurology |
CN104799802B (zh) * | 2015-05-08 | 2017-09-12 | 南京微创医学科技股份有限公司 | 自动充放气设备在oct内窥扫描成像系统中的应用 |
KR101731728B1 (ko) * | 2015-05-12 | 2017-05-02 | 한국과학기술원 | 관상동맥 혈관 고속 스캐닝 장치 및 방법 |
US10542961B2 (en) | 2015-06-15 | 2020-01-28 | The Research Foundation For The State University Of New York | System and method for infrasonic cardiac monitoring |
US10779904B2 (en) | 2015-07-19 | 2020-09-22 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
EP3344126A4 (en) | 2015-08-31 | 2019-05-08 | Gentuity LLC | IMAGING SYSTEM COMPRISING IMAGING PROBE AND DELIVERY DEVICES |
WO2017049085A1 (en) | 2015-09-16 | 2017-03-23 | The General Hospital Corporation | Apparatus and methods for mirror tunnel imaging device and for providing pseudo-bessel beams in a miniaturized optical system for imaging |
US11147503B2 (en) * | 2015-09-30 | 2021-10-19 | The General Hospital Corporation | Systems and methods for an actively controlled optical imaging device |
US10799280B2 (en) * | 2015-10-22 | 2020-10-13 | Medtronic Cryocath Lp | Post ablation tissue analysis technique |
WO2017139760A1 (en) | 2016-02-12 | 2017-08-17 | The General Hospital Corporation | Apparatus and methods for high-speed and long depth range imaging using optical coherence tomography |
JP2019511010A (ja) | 2016-03-24 | 2019-04-18 | キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc | マルチチャネル光ファイバ回転接合器 |
CN105769112A (zh) * | 2016-03-30 | 2016-07-20 | 中国科学院上海光学精密机械研究所 | 一种用于内窥成像的光学探头 |
US10436572B2 (en) | 2016-03-30 | 2019-10-08 | Hitachi, Ltd. | Three-dimensional shape measuring apparatus, three-dimensional shape measuring probe |
US10578422B2 (en) | 2016-06-08 | 2020-03-03 | Canon U.S.A., Inc. | Devices, systems, methods and storage mediums using full range optical coherence tomography |
US10952702B2 (en) | 2016-06-21 | 2021-03-23 | Canon U.S.A., Inc. | Non-uniform rotational distortion detection catheter system |
WO2018009529A1 (en) | 2016-07-05 | 2018-01-11 | The General Hospital Corporation | Systems and methods for an actively controlled optical imaging device |
WO2018026951A1 (en) * | 2016-08-02 | 2018-02-08 | Parto Inc. | Rapid real-time large depth of field, whole body, multi-spectral optical imaging for skin surveillance and photography |
US10602989B2 (en) | 2016-09-02 | 2020-03-31 | Canon U.S.A., Inc. | Capacitive sensing and encoding for imaging probes |
CN106691385A (zh) * | 2016-12-29 | 2017-05-24 | 天津恒宇医疗科技有限公司 | 一种支撑架oct成像导管 |
US10895692B2 (en) | 2017-06-01 | 2021-01-19 | Canon U.S.A., Inc. | Fiber optic rotary joints and methods of using and manufacturing same |
US10323926B2 (en) | 2017-06-21 | 2019-06-18 | Canon U.S.A., Inc. | Crosstalk elimination or mitigation in optical coherence tomography |
US10678044B2 (en) | 2017-08-23 | 2020-06-09 | Canon U.S.A., Inc. | Beam-steering devices employing electrowetting prisms |
US11259702B2 (en) | 2017-08-29 | 2022-03-01 | Canon U.S.A., Inc. | Fiber optic imaging probe having cladding mode pullback trigger, and control method therefor |
US10621748B2 (en) | 2017-10-03 | 2020-04-14 | Canon U.S.A., Inc. | Detecting and displaying stent expansion |
US11571129B2 (en) | 2017-10-03 | 2023-02-07 | Canon U.S.A., Inc. | Detecting and displaying stent expansion |
US11224336B2 (en) | 2017-11-17 | 2022-01-18 | Canon U.S.A., Inc. | Rotational extender and/or repeater for rotating fiber based optical imaging systems, and methods and storage mediums for use therewith |
DE202018106744U1 (de) | 2017-11-27 | 2019-05-13 | Prostacare Pty Ltd | Vorrichtung für die Behandlung einer Prostataerkrankung |
EP3700406A4 (en) | 2017-11-28 | 2021-12-29 | Gentuity LLC | Imaging system |
US10806329B2 (en) | 2018-01-24 | 2020-10-20 | Canon U.S.A., Inc. | Optical probes with optical-correction components |
US10606064B2 (en) | 2018-01-24 | 2020-03-31 | Canon U.S.A., Inc. | Optical probes with astigmatism correction |
US10234676B1 (en) | 2018-01-24 | 2019-03-19 | Canon U.S.A., Inc. | Optical probes with reflecting components for astigmatism correction |
US10561303B2 (en) | 2018-01-24 | 2020-02-18 | Canon U.S.A., Inc. | Optical probes with correction components for astigmatism correction |
US10816789B2 (en) | 2018-01-24 | 2020-10-27 | Canon U.S.A., Inc. | Optical probes that include optical-correction components for astigmatism correction |
US11224474B2 (en) | 2018-02-28 | 2022-01-18 | Prostacare Pty Ltd | System for managing high impedance changes in a non-thermal ablation system for BPH |
US10952616B2 (en) | 2018-03-30 | 2021-03-23 | Canon U.S.A., Inc. | Fluorescence imaging apparatus |
US11406327B2 (en) | 2018-04-17 | 2022-08-09 | Canon U.S.A., Inc. | Imaging catheter assembly |
JP7075371B2 (ja) | 2018-05-03 | 2022-05-25 | キヤノン ユーエスエイ,インコーポレイテッド | マルチプルイメージングモダリティにわたって関心領域を強調するためのデバイス、システム、および方法 |
US11382516B2 (en) | 2018-06-08 | 2022-07-12 | Canon U.S.A., Inc. | Apparatuses, methods, and storage mediums for lumen and artifacts detection in one or more images, such as in optical coherence tomography images |
US10743749B2 (en) | 2018-09-14 | 2020-08-18 | Canon U.S.A., Inc. | System and method for detecting optical probe connection |
US10791923B2 (en) | 2018-09-24 | 2020-10-06 | Canon U.S.A., Inc. | Ball lens for optical probe and methods therefor |
US12076177B2 (en) | 2019-01-30 | 2024-09-03 | Canon U.S.A., Inc. | Apparatuses, systems, methods and storage mediums for performance of co-registration |
US11175126B2 (en) | 2019-04-08 | 2021-11-16 | Canon U.S.A., Inc. | Automated polarization control |
US12109056B2 (en) | 2019-09-17 | 2024-10-08 | Canon U.S.A., Inc. | Constructing or reconstructing 3D structure(s) |
EP4030996A4 (en) | 2019-09-20 | 2023-10-25 | Canon U.S.A. Inc. | ARTIFICIAL INTELLIGENCE-BASED MARKER REGISTRATION AND DETECTION, INCLUDING MACHINE LEARNING AND USE OF ITS RESULTS |
JP2023510326A (ja) | 2020-01-08 | 2023-03-13 | 460メディカル・インコーポレイテッド | アブレーション焼灼巣の光学的探索のためのシステム及び方法 |
US11922633B2 (en) | 2020-06-30 | 2024-03-05 | Canon U.S.A., Inc. | Real-time lumen distance calculation based on three-dimensional (3D) A-line signal data |
US12112488B2 (en) * | 2020-08-06 | 2024-10-08 | Canon U.S.A., Inc. | Methods and systems for image synchronization |
US11944778B2 (en) | 2020-08-06 | 2024-04-02 | Canon U.S.A., Inc. | Methods and systems for automatic pullback trigger |
US11972561B2 (en) | 2020-08-06 | 2024-04-30 | Canon U.S.A., Inc. | Auto-pullback triggering method for intracoronary imaging apparatuses or systems using blood clearing |
JP7520132B2 (ja) | 2020-09-09 | 2024-07-22 | ジェネシス・メドテック・ジャパン株式会社 | 光プローブ及びそれを含む光断層撮影装置 |
CN114159029B (zh) * | 2021-11-30 | 2022-10-21 | 深圳先进技术研究院 | 光学相干层析扫描系统及其成像导管 |
Family Cites Families (624)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2339754A (en) * | 1941-03-04 | 1944-01-25 | Westinghouse Electric & Mfg Co | Supervisory apparatus |
US3090753A (en) | 1960-08-02 | 1963-05-21 | Exxon Research Engineering Co | Ester oil compositions containing acid anhydride |
GB1257778A (es) | 1967-12-07 | 1971-12-22 | ||
US3601480A (en) | 1968-07-10 | 1971-08-24 | Physics Int Co | Optical tunnel high-speed camera system |
JPS559417B2 (es) | 1971-10-09 | 1980-03-10 | ||
JPS4932484U (es) | 1972-06-19 | 1974-03-20 | ||
US3872407A (en) * | 1972-09-01 | 1975-03-18 | Us Navy | Rapidly tunable laser |
JPS584481Y2 (ja) * | 1973-06-23 | 1983-01-26 | オリンパス光学工業株式会社 | ナイシキヨウシヤヘンカンコウガクケイ |
FR2253410A5 (es) | 1973-12-03 | 1975-06-27 | Inst Nat Sante Rech Med | |
US3941121A (en) | 1974-12-20 | 1976-03-02 | The University Of Cincinnati | Focusing fiber-optic needle endoscope |
US3983507A (en) | 1975-01-06 | 1976-09-28 | Research Corporation | Tunable laser systems and method |
US3973219A (en) | 1975-04-24 | 1976-08-03 | Cornell Research Foundation, Inc. | Very rapidly tuned cw dye laser |
US4030831A (en) | 1976-03-22 | 1977-06-21 | The United States Of America As Represented By The Secretary Of The Navy | Phase detector for optical figure sensing |
US4141362A (en) | 1977-05-23 | 1979-02-27 | Richard Wolf Gmbh | Laser endoscope |
US4224929A (en) | 1977-11-08 | 1980-09-30 | Olympus Optical Co., Ltd. | Endoscope with expansible cuff member and operation section |
GB2047894B (en) | 1978-03-09 | 1982-11-03 | Nat Res Dev | Speckle interferometric measurement of small oscillatory movements |
GB2030313A (en) | 1978-06-29 | 1980-04-02 | Wolf Gmbh Richard | Endoscopes |
US4217045A (en) | 1978-12-29 | 1980-08-12 | Ziskind Stanley H | Capsule for photographic use in a walled organ of the living body |
FR2448728A1 (fr) | 1979-02-07 | 1980-09-05 | Thomson Csf | Dispositif joint tournant pour liaison par conducteurs optiques et systeme comportant un tel dispositif |
US4295738A (en) | 1979-08-30 | 1981-10-20 | United Technologies Corporation | Fiber optic strain sensor |
US4300816A (en) | 1979-08-30 | 1981-11-17 | United Technologies Corporation | Wide band multicore optical fiber |
US4428643A (en) | 1981-04-08 | 1984-01-31 | Xerox Corporation | Optical scanning system with wavelength shift correction |
US5065331A (en) | 1981-05-18 | 1991-11-12 | Vachon Reginald I | Apparatus and method for determining the stress and strain in pipes, pressure vessels, structural members and other deformable bodies |
GB2106736B (en) | 1981-09-03 | 1985-06-12 | Standard Telephones Cables Ltd | Optical transmission system |
US4479499A (en) | 1982-01-29 | 1984-10-30 | Alfano Robert R | Method and apparatus for detecting the presence of caries in teeth using visible light |
US5302025A (en) | 1982-08-06 | 1994-04-12 | Kleinerman Marcos Y | Optical systems for sensing temperature and other physical parameters |
US4601036A (en) | 1982-09-30 | 1986-07-15 | Honeywell Inc. | Rapidly tunable laser |
HU187188B (en) | 1982-11-25 | 1985-11-28 | Koezponti Elelmiszeripari | Device for generating radiation of controllable spectral structure |
CH663466A5 (fr) | 1983-09-12 | 1987-12-15 | Battelle Memorial Institute | Procede et dispositif pour determiner la position d'un objet par rapport a une reference. |
US4639999A (en) * | 1984-11-02 | 1987-02-03 | Xerox Corporation | High resolution, high efficiency I.R. LED printing array fabrication method |
US4763977A (en) | 1985-01-09 | 1988-08-16 | Canadian Patents And Development Limited-Societe | Optical fiber coupler with tunable coupling ratio and method of making |
EP0590268B1 (en) | 1985-03-22 | 1998-07-01 | Massachusetts Institute Of Technology | Fiber Optic Probe System for Spectrally Diagnosing Tissue |
US5318024A (en) | 1985-03-22 | 1994-06-07 | Massachusetts Institute Of Technology | Laser endoscope for spectroscopic imaging |
DE3610165A1 (de) * | 1985-03-27 | 1986-10-02 | Olympus Optical Co., Ltd., Tokio/Tokyo | Optisches abtastmikroskop |
US4607622A (en) | 1985-04-11 | 1986-08-26 | Charles D. Fritch | Fiber optic ocular endoscope |
US4631498A (en) | 1985-04-26 | 1986-12-23 | Hewlett-Packard Company | CW Laser wavemeter/frequency locking technique |
US4650327A (en) * | 1985-10-28 | 1987-03-17 | Oximetrix, Inc. | Optical catheter calibrating assembly |
JPH0664683B2 (ja) | 1986-02-13 | 1994-08-22 | 松下電器産業株式会社 | 回転磁気ヘツド記録装置 |
JPS62188001U (es) | 1986-05-20 | 1987-11-30 | ||
US5040889A (en) | 1986-05-30 | 1991-08-20 | Pacific Scientific Company | Spectrometer with combined visible and ultraviolet sample illumination |
CA1290019C (en) | 1986-06-20 | 1991-10-01 | Hideo Kuwahara | Dual balanced optical signal receiver |
US4770492A (en) | 1986-10-28 | 1988-09-13 | Spectran Corporation | Pressure or strain sensitive optical fiber |
JPH0824665B2 (ja) | 1986-11-28 | 1996-03-13 | オリンパス光学工業株式会社 | 内視鏡装置 |
US4744656A (en) | 1986-12-08 | 1988-05-17 | Spectramed, Inc. | Disposable calibration boot for optical-type cardiovascular catheter |
JPS63158363A (ja) | 1986-12-22 | 1988-07-01 | Daikin Mfg Co Ltd | エア回転継手のシ−ル装置 |
US4751706A (en) | 1986-12-31 | 1988-06-14 | The United States Of America As Represented By The Secretary Of The Army | Laser for providing rapid sequence of different wavelengths |
US4834111A (en) | 1987-01-12 | 1989-05-30 | The Trustees Of Columbia University In The City Of New York | Heterodyne interferometer |
GB2209221B (en) | 1987-09-01 | 1991-10-23 | Litton Systems Inc | Hydrophone demodulator circuit and method |
US5202931A (en) | 1987-10-06 | 1993-04-13 | Cell Analysis Systems, Inc. | Methods and apparatus for the quantitation of nuclear protein |
US4909631A (en) * | 1987-12-18 | 1990-03-20 | Tan Raul Y | Method for film thickness and refractive index determination |
US4890901A (en) * | 1987-12-22 | 1990-01-02 | Hughes Aircraft Company | Color corrector for embedded prisms |
US4892406A (en) | 1988-01-11 | 1990-01-09 | United Technologies Corporation | Method of and arrangement for measuring vibrations |
FR2626367B1 (fr) | 1988-01-25 | 1990-05-11 | Thomson Csf | Capteur de temperature multipoints a fibre optique |
FR2626383B1 (fr) | 1988-01-27 | 1991-10-25 | Commissariat Energie Atomique | Procede de microscopie optique confocale a balayage et en profondeur de champ etendue et dispositifs pour la mise en oeuvre du procede |
US4925302A (en) | 1988-04-13 | 1990-05-15 | Hewlett-Packard Company | Frequency locking device |
US5730731A (en) * | 1988-04-28 | 1998-03-24 | Thomas J. Fogarty | Pressure-based irrigation accumulator |
US4998972A (en) * | 1988-04-28 | 1991-03-12 | Thomas J. Fogarty | Real time angioscopy imaging system |
US4905169A (en) * | 1988-06-02 | 1990-02-27 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation |
US5242437A (en) | 1988-06-10 | 1993-09-07 | Trimedyne Laser Systems, Inc. | Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium |
DE02012428T1 (de) | 1988-07-13 | 2005-12-15 | Optiscan Pty. Ltd., Toorak | Konfokales Rastermikroskop |
US5214538A (en) | 1988-07-25 | 1993-05-25 | Keymed (Medical And Industrial Equipment) Limited | Optical apparatus |
GB8817672D0 (en) | 1988-07-25 | 1988-09-01 | Sira Ltd | Optical apparatus |
US4868834A (en) | 1988-09-14 | 1989-09-19 | The United States Of America As Represented By The Secretary Of The Army | System for rapidly tuning a low pressure pulsed laser |
DE3833602A1 (de) * | 1988-10-03 | 1990-02-15 | Krupp Gmbh | Spektrometer zur gleichzeitigen intensitaetsmessung in verschiedenen spektralbereichen |
US4940328A (en) | 1988-11-04 | 1990-07-10 | Georgia Tech Research Corporation | Optical sensing apparatus and method |
US4966589A (en) | 1988-11-14 | 1990-10-30 | Hemedix International, Inc. | Intravenous catheter placement device |
WO1990006718A1 (en) | 1988-12-21 | 1990-06-28 | Massachusetts Institute Of Technology | A method for laser induced fluorescence of tissue |
US5046501A (en) | 1989-01-18 | 1991-09-10 | Wayne State University | Atherosclerotic identification |
US5085496A (en) * | 1989-03-31 | 1992-02-04 | Sharp Kabushiki Kaisha | Optical element and optical pickup device comprising it |
US5317389A (en) | 1989-06-12 | 1994-05-31 | California Institute Of Technology | Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography |
JPH0330760A (ja) * | 1989-06-29 | 1991-02-08 | Fujitsu Ltd | レーザ光照射ヘッド |
US4965599A (en) | 1989-11-13 | 1990-10-23 | Eastman Kodak Company | Scanning apparatus for halftone image screen writing |
US5133035A (en) | 1989-11-14 | 1992-07-21 | Hicks John W | Multifiber endoscope with multiple scanning modes to produce an image free of fixed pattern noise |
US4984888A (en) * | 1989-12-13 | 1991-01-15 | Imo Industries, Inc. | Two-dimensional spectrometer |
KR930003307B1 (ko) | 1989-12-14 | 1993-04-24 | 주식회사 금성사 | 입체용 프로젝터 |
US5251009A (en) | 1990-01-22 | 1993-10-05 | Ciba-Geigy Corporation | Interferometric measuring arrangement for refractive index measurements in capillary tubes |
DD293205B5 (de) | 1990-03-05 | 1995-06-29 | Zeiss Carl Jena Gmbh | Lichtleiterfuehrung fuer ein medizinisches Beobachtungsgeraet |
US5039193A (en) | 1990-04-03 | 1991-08-13 | Focal Technologies Incorporated | Fibre optic single mode rotary joint |
JPH0456907A (ja) | 1990-06-26 | 1992-02-24 | Fujikura Ltd | 光ファイバカプラ |
US5262644A (en) | 1990-06-29 | 1993-11-16 | Southwest Research Institute | Remote spectroscopy for raman and brillouin scattering |
US5197470A (en) * | 1990-07-16 | 1993-03-30 | Eastman Kodak Company | Near infrared diagnostic method and instrument |
GB9015793D0 (en) | 1990-07-18 | 1990-09-05 | Medical Res Council | Confocal scanning optical microscope |
US5127730A (en) | 1990-08-10 | 1992-07-07 | Regents Of The University Of Minnesota | Multi-color laser scanning confocal imaging system |
US5845639A (en) | 1990-08-10 | 1998-12-08 | Board Of Regents Of The University Of Washington | Optical imaging methods |
US5305759A (en) | 1990-09-26 | 1994-04-26 | Olympus Optical Co., Ltd. | Examined body interior information observing apparatus by using photo-pulses controlling gains for depths |
JPH04135551A (ja) | 1990-09-27 | 1992-05-11 | Olympus Optical Co Ltd | 光三次元像観察装置 |
JP3104984B2 (ja) | 1990-09-27 | 2000-10-30 | オリンパス光学工業株式会社 | 断層像観察用光走査装置 |
US5241364A (en) | 1990-10-19 | 1993-08-31 | Fuji Photo Film Co., Ltd. | Confocal scanning type of phase contrast microscope and scanning microscope |
US5250186A (en) | 1990-10-23 | 1993-10-05 | Cetus Corporation | HPLC light scattering detector for biopolymers |
US5202745A (en) | 1990-11-07 | 1993-04-13 | Hewlett-Packard Company | Polarization independent optical coherence-domain reflectometry |
US5275594A (en) | 1990-11-09 | 1994-01-04 | C. R. Bard, Inc. | Angioplasty system having means for identification of atherosclerotic plaque |
JP3035336B2 (ja) * | 1990-11-27 | 2000-04-24 | 興和株式会社 | 血流測定装置 |
US5228001A (en) | 1991-01-23 | 1993-07-13 | Syracuse University | Optical random access memory |
US5784162A (en) | 1993-08-18 | 1998-07-21 | Applied Spectral Imaging Ltd. | Spectral bio-imaging methods for biological research, medical diagnostics and therapy |
US6198532B1 (en) | 1991-02-22 | 2001-03-06 | Applied Spectral Imaging Ltd. | Spectral bio-imaging of the eye |
US5293872A (en) * | 1991-04-03 | 1994-03-15 | Alfano Robert R | Method for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy |
US5465147A (en) | 1991-04-29 | 1995-11-07 | Massachusetts Institute Of Technology | Method and apparatus for acquiring images using a ccd detector array and no transverse scanner |
US6485413B1 (en) | 1991-04-29 | 2002-11-26 | The General Hospital Corporation | Methods and apparatus for forward-directed optical scanning instruments |
US6501551B1 (en) * | 1991-04-29 | 2002-12-31 | Massachusetts Institute Of Technology | Fiber optic imaging endoscope interferometer with at least one faraday rotator |
US6564087B1 (en) | 1991-04-29 | 2003-05-13 | Massachusetts Institute Of Technology | Fiber optic needle probes for optical coherence tomography imaging |
DE69227902T3 (de) | 1991-04-29 | 2010-04-22 | Massachusetts Institute Of Technology, Cambridge | Vorrichtung für optische abbildung und messung |
US5748598A (en) | 1995-12-22 | 1998-05-05 | Massachusetts Institute Of Technology | Apparatus and methods for reading multilayer storage media using short coherence length sources |
US6134003A (en) * | 1991-04-29 | 2000-10-17 | Massachusetts Institute Of Technology | Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope |
US5956355A (en) | 1991-04-29 | 1999-09-21 | Massachusetts Institute Of Technology | Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser |
US6111645A (en) | 1991-04-29 | 2000-08-29 | Massachusetts Institute Of Technology | Grating based phase control optical delay line |
US5441053A (en) | 1991-05-03 | 1995-08-15 | University Of Kentucky Research Foundation | Apparatus and method for multiple wavelength of tissue |
US5281811A (en) * | 1991-06-17 | 1994-01-25 | Litton Systems, Inc. | Digital wavelength division multiplex optical transducer having an improved decoder |
US5208651A (en) | 1991-07-16 | 1993-05-04 | The Regents Of The University Of California | Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes |
WO1993003672A1 (en) | 1991-08-20 | 1993-03-04 | Redd Douglas C B | Optical histochemical analysis, in vivo detection and real-time guidance for ablation of abnormal tissues using a raman spectroscopic detection system |
DE4128744C1 (es) * | 1991-08-29 | 1993-04-22 | Siemens Ag, 8000 Muenchen, De | |
ATE150573T1 (de) | 1991-12-30 | 1997-04-15 | Philips Electronics Nv | Optische einrichtung und mit einer solchen optischen einrichtung versehenes gerät zum abtasten einer informationsebene |
US5353790A (en) | 1992-01-17 | 1994-10-11 | Board Of Regents, The University Of Texas System | Method and apparatus for optical measurement of bilirubin in tissue |
US5212667A (en) | 1992-02-03 | 1993-05-18 | General Electric Company | Light imaging in a scattering medium, using ultrasonic probing and speckle image differencing |
US5217456A (en) | 1992-02-24 | 1993-06-08 | Pdt Cardiovascular, Inc. | Device and method for intra-vascular optical radial imaging |
US5283795A (en) * | 1992-04-21 | 1994-02-01 | Hughes Aircraft Company | Diffraction grating driven linear frequency chirped laser |
US5248876A (en) | 1992-04-21 | 1993-09-28 | International Business Machines Corporation | Tandem linear scanning confocal imaging system with focal volumes at different heights |
US5486701A (en) * | 1992-06-16 | 1996-01-23 | Prometrix Corporation | Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness |
US5716324A (en) | 1992-08-25 | 1998-02-10 | Fuji Photo Film Co., Ltd. | Endoscope with surface and deep portion imaging systems |
US5348003A (en) | 1992-09-03 | 1994-09-20 | Sirraya, Inc. | Method and apparatus for chemical analysis |
US5772597A (en) | 1992-09-14 | 1998-06-30 | Sextant Medical Corporation | Surgical tool end effector |
US5698397A (en) | 1995-06-07 | 1997-12-16 | Sri International | Up-converting reporters for biological and other assays using laser excitation techniques |
US5383467A (en) * | 1992-11-18 | 1995-01-24 | Spectrascience, Inc. | Guidewire catheter and apparatus for diagnostic imaging |
US5439000A (en) | 1992-11-18 | 1995-08-08 | Spectrascience, Inc. | Method of diagnosing tissue with guidewire |
US5785663A (en) | 1992-12-21 | 1998-07-28 | Artann Corporation | Method and device for mechanical imaging of prostate |
US5400771A (en) | 1993-01-21 | 1995-03-28 | Pirak; Leon | Endotracheal intubation assembly and related method |
JPH06222242A (ja) | 1993-01-27 | 1994-08-12 | Shin Etsu Chem Co Ltd | 光ファイバカプラおよびその製造方法 |
US5987346A (en) | 1993-02-26 | 1999-11-16 | Benaron; David A. | Device and method for classification of tissue |
US5414509A (en) | 1993-03-08 | 1995-05-09 | Associated Universities, Inc. | Optical pressure/density measuring means |
JP3112595B2 (ja) * | 1993-03-17 | 2000-11-27 | 安藤電気株式会社 | 光周波数シフタを用いる光ファイバ歪位置測定装置 |
FI93781C (fi) | 1993-03-18 | 1995-05-26 | Wallac Oy | Biospesifinen multiparametrinen määritysmenetelmä |
DE4309056B4 (de) | 1993-03-20 | 2006-05-24 | Häusler, Gerd, Prof. Dr. | Verfahren und Vorrichtung zur Ermittlung der Entfernung und Streuintensität von streuenden Punkten |
US5485079A (en) | 1993-03-29 | 1996-01-16 | Matsushita Electric Industrial Co., Ltd. | Magneto-optical element and optical magnetic field sensor |
DE4310209C2 (de) * | 1993-03-29 | 1996-05-30 | Bruker Medizintech | Optische stationäre Bildgebung in stark streuenden Medien |
DE4314189C1 (de) | 1993-04-30 | 1994-11-03 | Bodenseewerk Geraetetech | Vorrichtung zur Untersuchung von Lichtleitfasern aus Glas mittels Heterodyn-Brillouin-Spektroskopie |
SE501932C2 (sv) | 1993-04-30 | 1995-06-26 | Ericsson Telefon Ab L M | Anordning och förfarande för dispersionskompensering i ett fiberoptiskt transmissionssystem |
US5424827A (en) | 1993-04-30 | 1995-06-13 | Litton Systems, Inc. | Optical system and method for eliminating overlap of diffraction spectra |
US5454807A (en) | 1993-05-14 | 1995-10-03 | Boston Scientific Corporation | Medical treatment of deeply seated tissue using optical radiation |
DE69418248T2 (de) | 1993-06-03 | 1999-10-14 | Hamamatsu Photonics Kk | Optisches Laser-Abtastsystem mit Axikon |
JP3234353B2 (ja) | 1993-06-15 | 2001-12-04 | 富士写真フイルム株式会社 | 断層情報読取装置 |
US5840031A (en) | 1993-07-01 | 1998-11-24 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials and ablating tissue |
US5995645A (en) | 1993-08-18 | 1999-11-30 | Applied Spectral Imaging Ltd. | Method of cancer cell detection |
US5803082A (en) | 1993-11-09 | 1998-09-08 | Staplevision Inc. | Omnispectramammography |
US5983125A (en) | 1993-12-13 | 1999-11-09 | The Research Foundation Of City College Of New York | Method and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy |
US5450203A (en) | 1993-12-22 | 1995-09-12 | Electroglas, Inc. | Method and apparatus for determining an objects position, topography and for imaging |
US5411016A (en) | 1994-02-22 | 1995-05-02 | Scimed Life Systems, Inc. | Intravascular balloon catheter for use in combination with an angioscope |
US5590660A (en) * | 1994-03-28 | 1997-01-07 | Xillix Technologies Corp. | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
DE4411017C2 (de) | 1994-03-30 | 1995-06-08 | Alexander Dr Knuettel | Optische stationäre spektroskopische Bildgebung in stark streuenden Objekten durch spezielle Lichtfokussierung und Signal-Detektion von Licht unterschiedlicher Wellenlängen |
TW275570B (es) * | 1994-05-05 | 1996-05-11 | Boehringer Mannheim Gmbh | |
ATE242999T1 (de) * | 1994-07-14 | 2003-07-15 | Washington Res Found | Vorrichtung zum nachweis der barrett metaplasie in der speiseröhre |
US5459325A (en) | 1994-07-19 | 1995-10-17 | Molecular Dynamics, Inc. | High-speed fluorescence scanner |
US6159445A (en) | 1994-07-20 | 2000-12-12 | Nycomed Imaging As | Light imaging contrast agents |
ES2233727T3 (es) | 1994-08-18 | 2005-06-16 | Carl Zeiss Meditec Ag | Aparato quirurgico asistido por tomografia de coherencia optica. |
US5491524A (en) * | 1994-10-05 | 1996-02-13 | Carl Zeiss, Inc. | Optical coherence tomography corneal mapping apparatus |
US5740808A (en) | 1996-10-28 | 1998-04-21 | Ep Technologies, Inc | Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions |
US5817144A (en) | 1994-10-25 | 1998-10-06 | Latis, Inc. | Method for contemporaneous application OF laser energy and localized pharmacologic therapy |
US6033721A (en) * | 1994-10-26 | 2000-03-07 | Revise, Inc. | Image-based three-axis positioner for laser direct write microchemical reaction |
JPH08136345A (ja) | 1994-11-10 | 1996-05-31 | Anritsu Corp | 複単色計 |
US5566267A (en) | 1994-12-15 | 1996-10-15 | Ceram Optec Industries Inc. | Flat surfaced optical fibers and diode laser medical delivery devices |
US5600486A (en) * | 1995-01-30 | 1997-02-04 | Lockheed Missiles And Space Company, Inc. | Color separation microlens |
US5648848A (en) | 1995-02-01 | 1997-07-15 | Nikon Precision, Inc. | Beam delivery apparatus and method for interferometry using rotatable polarization chucks |
DE19506484C2 (de) | 1995-02-24 | 1999-09-16 | Stiftung Fuer Lasertechnologie | Verfahren und Vorrichtung zur selektiven nichtinvasiven Lasermyographie (LMG) |
RU2100787C1 (ru) * | 1995-03-01 | 1997-12-27 | Геликонов Валентин Михайлович | Оптоволоконный интерферометр и оптоволоконный пьезоэлектрический преобразователь |
US5868731A (en) | 1996-03-04 | 1999-02-09 | Innotech Usa, Inc. | Laser surgical device and method of its use |
WO1996028212A1 (en) | 1995-03-09 | 1996-09-19 | Innotech Usa, Inc. | Laser surgical device and method of its use |
US5526338A (en) | 1995-03-10 | 1996-06-11 | Yeda Research & Development Co. Ltd. | Method and apparatus for storage and retrieval with multilayer optical disks |
US5697373A (en) | 1995-03-14 | 1997-12-16 | Board Of Regents, The University Of Texas System | Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies |
US5735276A (en) | 1995-03-21 | 1998-04-07 | Lemelson; Jerome | Method and apparatus for scanning and evaluating matter |
CA2215975A1 (en) | 1995-03-24 | 1996-10-03 | Optiscan Pty. Ltd. | Optical fibre confocal imager with variable near-confocal control |
US5565983A (en) | 1995-05-26 | 1996-10-15 | The Perkin-Elmer Corporation | Optical spectrometer for detecting spectra in separate ranges |
US5785651A (en) | 1995-06-07 | 1998-07-28 | Keravision, Inc. | Distance measuring confocal microscope |
US5621830A (en) | 1995-06-07 | 1997-04-15 | Smith & Nephew Dyonics Inc. | Rotatable fiber optic joint |
WO1997001167A1 (en) | 1995-06-21 | 1997-01-09 | Massachusetts Institute Of Technology | Apparatus and method for accessing data on multilayered optical media |
ATA107495A (de) | 1995-06-23 | 1996-06-15 | Fercher Adolf Friedrich Dr | Kohärenz-biometrie und -tomographie mit dynamischem kohärentem fokus |
US6104945A (en) | 1995-08-01 | 2000-08-15 | Medispectra, Inc. | Spectral volume microprobe arrays |
AU1130797A (en) * | 1995-08-24 | 1997-03-19 | Purdue Research Foundation | Fluorescence lifetime-based imaging and spectroscopy in tissues and other random media |
US6016197A (en) * | 1995-08-25 | 2000-01-18 | Ceramoptec Industries Inc. | Compact, all-optical spectrum analyzer for chemical and biological fiber optic sensors |
FR2738343B1 (fr) | 1995-08-30 | 1997-10-24 | Cohen Sabban Joseph | Dispositif de microstratigraphie optique |
DE69622764T2 (de) | 1995-09-20 | 2003-04-24 | California Institute Of Technology, Pasadena | yNZEIGE VON THERMISCHEN UNSTETIGKEITEN AN GEFÄSSWÄNDEN |
US6615071B1 (en) | 1995-09-20 | 2003-09-02 | Board Of Regents, The University Of Texas System | Method and apparatus for detecting vulnerable atherosclerotic plaque |
US6763261B2 (en) * | 1995-09-20 | 2004-07-13 | Board Of Regents, The University Of Texas System | Method and apparatus for detecting vulnerable atherosclerotic plaque |
US5742419A (en) | 1995-11-07 | 1998-04-21 | The Board Of Trustees Of The Leland Stanford Junior Universtiy | Miniature scanning confocal microscope |
DE19542955C2 (de) | 1995-11-17 | 1999-02-18 | Schwind Gmbh & Co Kg Herbert | Endoskop |
US5719399A (en) * | 1995-12-18 | 1998-02-17 | The Research Foundation Of City College Of New York | Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough |
JP3699761B2 (ja) * | 1995-12-26 | 2005-09-28 | オリンパス株式会社 | 落射蛍光顕微鏡 |
US5748318A (en) | 1996-01-23 | 1998-05-05 | Brown University Research Foundation | Optical stress generator and detector |
US5840023A (en) | 1996-01-31 | 1998-11-24 | Oraevsky; Alexander A. | Optoacoustic imaging for medical diagnosis |
US5642194A (en) | 1996-02-05 | 1997-06-24 | The Regents Of The University Of California | White light velocity interferometer |
US5862273A (en) * | 1996-02-23 | 1999-01-19 | Kaiser Optical Systems, Inc. | Fiber optic probe with integral optical filtering |
US5843000A (en) | 1996-05-07 | 1998-12-01 | The General Hospital Corporation | Optical biopsy forceps and method of diagnosing tissue |
ATA84696A (de) * | 1996-05-14 | 1998-03-15 | Adolf Friedrich Dr Fercher | Verfahren und anordnungen zur kontrastanhebung in der optischen kohärenztomographie |
US6020963A (en) * | 1996-06-04 | 2000-02-01 | Northeastern University | Optical quadrature Interferometer |
US5795295A (en) | 1996-06-25 | 1998-08-18 | Carl Zeiss, Inc. | OCT-assisted surgical microscope with multi-coordinate manipulator |
US5842995A (en) | 1996-06-28 | 1998-12-01 | Board Of Regents, The Univerisity Of Texas System | Spectroscopic probe for in vivo measurement of raman signals |
US6296608B1 (en) | 1996-07-08 | 2001-10-02 | Boston Scientific Corporation | Diagnosing and performing interventional procedures on tissue in vivo |
US6245026B1 (en) | 1996-07-29 | 2001-06-12 | Farallon Medsystems, Inc. | Thermography catheter |
US6396941B1 (en) | 1996-08-23 | 2002-05-28 | Bacus Research Laboratories, Inc. | Method and apparatus for internet, intranet, and local viewing of virtual microscope slides |
US5840075A (en) | 1996-08-23 | 1998-11-24 | Eclipse Surgical Technologies, Inc. | Dual laser device for transmyocardial revascularization procedures |
US6544193B2 (en) * | 1996-09-04 | 2003-04-08 | Marcio Marc Abreu | Noninvasive measurement of chemical substances |
JPH1090603A (ja) | 1996-09-18 | 1998-04-10 | Olympus Optical Co Ltd | 内視鏡光学系 |
US5801831A (en) | 1996-09-20 | 1998-09-01 | Institute For Space And Terrestrial Science | Fabry-Perot spectrometer for detecting a spatially varying spectral signature of an extended source |
US6249349B1 (en) | 1996-09-27 | 2001-06-19 | Vincent Lauer | Microscope generating a three-dimensional representation of an object |
DE19640495C2 (de) | 1996-10-01 | 1999-12-16 | Leica Microsystems | Vorrichtung zur konfokalen Oberflächenvermessung |
US5843052A (en) | 1996-10-04 | 1998-12-01 | Benja-Athon; Anuthep | Irrigation kit for application of fluids and chemicals for cleansing and sterilizing wounds |
US5752518A (en) | 1996-10-28 | 1998-05-19 | Ep Technologies, Inc. | Systems and methods for visualizing interior regions of the body |
US5904651A (en) | 1996-10-28 | 1999-05-18 | Ep Technologies, Inc. | Systems and methods for visualizing tissue during diagnostic or therapeutic procedures |
US6044288A (en) * | 1996-11-08 | 2000-03-28 | Imaging Diagnostics Systems, Inc. | Apparatus and method for determining the perimeter of the surface of an object being scanned |
US5872879A (en) | 1996-11-25 | 1999-02-16 | Boston Scientific Corporation | Rotatable connecting optical fibers |
US6517532B1 (en) * | 1997-05-15 | 2003-02-11 | Palomar Medical Technologies, Inc. | Light energy delivery head |
US6437867B2 (en) | 1996-12-04 | 2002-08-20 | The Research Foundation Of The City University Of New York | Performing selected optical measurements with optical coherence domain reflectometry |
US6249630B1 (en) | 1996-12-13 | 2001-06-19 | Imra America, Inc. | Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power |
US5871449A (en) * | 1996-12-27 | 1999-02-16 | Brown; David Lloyd | Device and method for locating inflamed plaque in an artery |
US5991697A (en) | 1996-12-31 | 1999-11-23 | The Regents Of The University Of California | Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media |
WO1998029768A1 (en) | 1996-12-31 | 1998-07-09 | Corning Incorporated | Optical couplers with multilayer fibers |
US5760901A (en) | 1997-01-28 | 1998-06-02 | Zetetic Institute | Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation |
JP3213250B2 (ja) | 1997-01-29 | 2001-10-02 | 株式会社生体光情報研究所 | 光計測装置 |
US5801826A (en) | 1997-02-18 | 1998-09-01 | Williams Family Trust B | Spectrometric device and method for recognizing atomic and molecular signatures |
US5836877A (en) | 1997-02-24 | 1998-11-17 | Lucid Inc | System for facilitating pathological examination of a lesion in tissue |
US6120516A (en) | 1997-02-28 | 2000-09-19 | Lumend, Inc. | Method for treating vascular occlusion |
US6010449A (en) * | 1997-02-28 | 2000-01-04 | Lumend, Inc. | Intravascular catheter system for treating a vascular occlusion |
US5968064A (en) | 1997-02-28 | 1999-10-19 | Lumend, Inc. | Catheter system for treating a vascular occlusion |
EP0971626A1 (en) * | 1997-03-06 | 2000-01-19 | Massachusetts Institute Of Technology | Instrument for optically scanning of living tissue |
US6201989B1 (en) * | 1997-03-13 | 2001-03-13 | Biomax Technologies Inc. | Methods and apparatus for detecting the rejection of transplanted tissue |
US6078047A (en) | 1997-03-14 | 2000-06-20 | Lucent Technologies Inc. | Method and apparatus for terahertz tomographic imaging |
US5994690A (en) | 1997-03-17 | 1999-11-30 | Kulkarni; Manish D. | Image enhancement in optical coherence tomography using deconvolution |
JPH10267631A (ja) | 1997-03-26 | 1998-10-09 | Kowa Co | 光学測定装置 |
JPH10267830A (ja) | 1997-03-26 | 1998-10-09 | Kowa Co | 光学測定装置 |
GB9707414D0 (en) | 1997-04-11 | 1997-05-28 | Imperial College | Anatomical probe |
ES2213899T3 (es) | 1997-04-29 | 2004-09-01 | Amersham Health As | Agentes de contraste utilizados en tecnicas de formacion de imagen en base a la luz. |
AU7221698A (en) | 1997-04-29 | 1998-11-24 | Nycomed Imaging As | Light imaging contrast agents |
US6117128A (en) | 1997-04-30 | 2000-09-12 | Kenton W. Gregory | Energy delivery catheter and method for the use thereof |
US5887009A (en) * | 1997-05-22 | 1999-03-23 | Optical Biopsy Technologies, Inc. | Confocal optical scanning system employing a fiber laser |
US6002480A (en) | 1997-06-02 | 1999-12-14 | Izatt; Joseph A. | Depth-resolved spectroscopic optical coherence tomography |
AU7711498A (en) * | 1997-06-02 | 1998-12-21 | Joseph A. Izatt | Doppler flow imaging using optical coherence tomography |
US6208415B1 (en) * | 1997-06-12 | 2001-03-27 | The Regents Of The University Of California | Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography |
US5920390A (en) | 1997-06-26 | 1999-07-06 | University Of North Carolina | Fiberoptic interferometer and associated method for analyzing tissue |
US6048349A (en) | 1997-07-09 | 2000-04-11 | Intraluminal Therapeutics, Inc. | Systems and methods for guiding a medical instrument through a body |
US6058352A (en) | 1997-07-25 | 2000-05-02 | Physical Optics Corporation | Accurate tissue injury assessment using hybrid neural network analysis |
US5921926A (en) | 1997-07-28 | 1999-07-13 | University Of Central Florida | Three dimensional optical imaging colposcopy |
US6014214A (en) * | 1997-08-21 | 2000-01-11 | Li; Ming-Chiang | High speed inspection of a sample using coherence processing of scattered superbroad radiation |
US5892583A (en) | 1997-08-21 | 1999-04-06 | Li; Ming-Chiang | High speed inspection of a sample using superbroad radiation coherent interferometer |
JP4021975B2 (ja) * | 1997-08-28 | 2007-12-12 | オリンパス株式会社 | 光走査プローブ装置 |
JPH1172431A (ja) | 1997-08-28 | 1999-03-16 | Olympus Optical Co Ltd | 光断層イメージング装置 |
US6069698A (en) | 1997-08-28 | 2000-05-30 | Olympus Optical Co., Ltd. | Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object |
US6297018B1 (en) | 1998-04-17 | 2001-10-02 | Ljl Biosystems, Inc. | Methods and apparatus for detecting nucleic acid polymorphisms |
US5920373A (en) | 1997-09-24 | 1999-07-06 | Heidelberg Engineering Optische Messysteme Gmbh | Method and apparatus for determining optical characteristics of a cornea |
US6193676B1 (en) * | 1997-10-03 | 2001-02-27 | Intraluminal Therapeutics, Inc. | Guide wire assembly |
US5951482A (en) | 1997-10-03 | 1999-09-14 | Intraluminal Therapeutics, Inc. | Assemblies and methods for advancing a guide wire through body tissue |
US6091984A (en) | 1997-10-10 | 2000-07-18 | Massachusetts Institute Of Technology | Measuring tissue morphology |
US5955737A (en) | 1997-10-27 | 1999-09-21 | Systems & Processes Engineering Corporation | Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture |
US6134010A (en) | 1997-11-07 | 2000-10-17 | Lucid, Inc. | Imaging system using polarization effects to enhance image quality |
US20040260333A1 (en) * | 1997-11-12 | 2004-12-23 | Dubrul William R. | Medical device and method |
US6037579A (en) * | 1997-11-13 | 2000-03-14 | Biophotonics Information Laboratories, Ltd. | Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media |
US6107048A (en) | 1997-11-20 | 2000-08-22 | Medical College Of Georgia Research Institute, Inc. | Method of detecting and grading dysplasia in epithelial tissue |
JP4662622B2 (ja) * | 1998-01-28 | 2011-03-30 | イマージョン メディカル,インコーポレイティド | 医療処置シミュレーションシステムに器械をインタフェース接続するためのインタフェース装置及び方法 |
US6165170A (en) | 1998-01-29 | 2000-12-26 | International Business Machines Corporation | Laser dermablator and dermablation |
US6341036B1 (en) * | 1998-02-26 | 2002-01-22 | The General Hospital Corporation | Confocal microscopy with multi-spectral encoding |
US6831781B2 (en) | 1998-02-26 | 2004-12-14 | The General Hospital Corporation | Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy |
US6134033A (en) | 1998-02-26 | 2000-10-17 | Tyco Submarine Systems Ltd. | Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems |
US6048742A (en) | 1998-02-26 | 2000-04-11 | The United States Of America As Represented By The Secretary Of The Air Force | Process for measuring the thickness and composition of thin semiconductor films deposited on semiconductor wafers |
RU2148378C1 (ru) | 1998-03-06 | 2000-05-10 | Геликонов Валентин Михайлович | Устройство для оптической когерентной томографии, оптоволоконное сканирующее устройство и способ диагностики биоткани in vivo |
US6174291B1 (en) * | 1998-03-09 | 2001-01-16 | Spectrascience, Inc. | Optical biopsy system and methods for tissue diagnosis |
US6066102A (en) | 1998-03-09 | 2000-05-23 | Spectrascience, Inc. | Optical biopsy forceps system and method of diagnosing tissue |
JPH11259617A (ja) | 1998-03-12 | 1999-09-24 | Alps Electric Co Ltd | ソケット付きicカード |
US6151522A (en) | 1998-03-16 | 2000-11-21 | The Research Foundation Of Cuny | Method and system for examining biological materials using low power CW excitation raman spectroscopy |
US5984860A (en) | 1998-03-25 | 1999-11-16 | Shan; Yansong | Pass-through duodenal enteroscopic device |
US6384915B1 (en) | 1998-03-30 | 2002-05-07 | The Regents Of The University Of California | Catheter guided by optical coherence domain reflectometry |
DE19814057B4 (de) | 1998-03-30 | 2009-01-02 | Carl Zeiss Meditec Ag | Anordnung zur optischen Kohärenztomographie und Kohärenztopographie |
US6175669B1 (en) * | 1998-03-30 | 2001-01-16 | The Regents Of The Universtiy Of California | Optical coherence domain reflectometry guidewire |
AU3781799A (en) | 1998-05-01 | 1999-11-23 | Board Of Regents, The University Of Texas System | Method and apparatus for subsurface imaging |
US6996549B2 (en) * | 1998-05-01 | 2006-02-07 | Health Discovery Corporation | Computer-aided image analysis |
JPH11326826A (ja) | 1998-05-13 | 1999-11-26 | Sony Corp | 照明方法及び照明装置 |
US6053613A (en) | 1998-05-15 | 2000-04-25 | Carl Zeiss, Inc. | Optical coherence tomography with new interferometer |
FR2778838A1 (fr) | 1998-05-19 | 1999-11-26 | Koninkl Philips Electronics Nv | Procede de detection de variations d'elasticite et appareil echographique pour mettre en oeuvre ce procede |
US5995223A (en) | 1998-06-01 | 1999-11-30 | Power; Joan Fleurette | Apparatus for rapid phase imaging interferometry and method therefor |
JPH11352409A (ja) | 1998-06-05 | 1999-12-24 | Olympus Optical Co Ltd | 蛍光検出装置 |
US6549801B1 (en) | 1998-06-11 | 2003-04-15 | The Regents Of The University Of California | Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity |
WO2000003651A1 (en) | 1998-07-15 | 2000-01-27 | Corazon Technologies, Inc. | Methods and devices for reducing the mineral content of vascular calcified lesions |
US6166373A (en) | 1998-07-21 | 2000-12-26 | The Institute For Technology Development | Focal plane scanner with reciprocating spatial window |
JP2000046729A (ja) | 1998-07-31 | 2000-02-18 | Takahisa Mitsui | 波長分散を用いた高速光断層像計測装置および計測方法 |
CA2343401C (en) | 1998-09-11 | 2009-01-27 | Spectrx, Inc. | Multi-modal optical tissue diagnostic system |
JP4037538B2 (ja) * | 1998-09-21 | 2008-01-23 | オリンパス株式会社 | 光イメージング装置 |
AU6417599A (en) | 1998-10-08 | 2000-04-26 | University Of Kentucky Research Foundation, The | Methods and apparatus for (in vivo) identification and characterization of vulnerable atherosclerotic plaques |
JP2000121961A (ja) | 1998-10-13 | 2000-04-28 | Olympus Optical Co Ltd | 共焦点光走査プローブシステム |
US6274871B1 (en) | 1998-10-22 | 2001-08-14 | Vysis, Inc. | Method and system for performing infrared study on a biological sample |
US6324419B1 (en) | 1998-10-27 | 2001-11-27 | Nejat Guzelsu | Apparatus and method for non-invasive measurement of stretch |
JP2000126116A (ja) | 1998-10-28 | 2000-05-09 | Olympus Optical Co Ltd | 光診断システム |
US6516014B1 (en) * | 1998-11-13 | 2003-02-04 | The Research And Development Institute, Inc. | Programmable frequency reference for laser frequency stabilization, and arbitrary optical clock generator, using persistent spectral hole burning |
EP1002497B1 (en) | 1998-11-20 | 2006-07-26 | Fuji Photo Film Co., Ltd. | Blood vessel imaging system |
US5975697A (en) | 1998-11-25 | 1999-11-02 | Oti Ophthalmic Technologies, Inc. | Optical mapping apparatus with adjustable depth resolution |
US6352502B1 (en) | 1998-12-03 | 2002-03-05 | Lightouch Medical, Inc. | Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities |
US6191862B1 (en) | 1999-01-20 | 2001-02-20 | Lightlab Imaging, Llc | Methods and apparatus for high speed longitudinal scanning in imaging systems |
US6272376B1 (en) | 1999-01-22 | 2001-08-07 | Cedars-Sinai Medical Center | Time-resolved, laser-induced fluorescence for the characterization of organic material |
US6445944B1 (en) | 1999-02-01 | 2002-09-03 | Scimed Life Systems | Medical scanning system and related method of scanning |
US6615072B1 (en) * | 1999-02-04 | 2003-09-02 | Olympus Optical Co., Ltd. | Optical imaging device |
US6185271B1 (en) * | 1999-02-16 | 2001-02-06 | Richard Estyn Kinsinger | Helical computed tomography with feedback scan control |
DE19908883A1 (de) | 1999-03-02 | 2000-09-07 | Rainer Heintzmann | Verfahren zur Erhöhung der Auflösung optischer Abbildung |
JP4932993B2 (ja) | 1999-03-29 | 2012-05-16 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 単一モード光ファイバーカップリングシステム |
US6859275B2 (en) | 1999-04-09 | 2005-02-22 | Plain Sight Systems, Inc. | System and method for encoded spatio-spectral information processing |
US6264610B1 (en) | 1999-05-05 | 2001-07-24 | The University Of Connecticut | Combined ultrasound and near infrared diffused light imaging system |
JP4262355B2 (ja) * | 1999-05-14 | 2009-05-13 | オリンパス株式会社 | 光イメージング装置 |
JP2000329534A (ja) * | 1999-05-18 | 2000-11-30 | Olympus Optical Co Ltd | 光イメージング装置 |
US6353693B1 (en) * | 1999-05-31 | 2002-03-05 | Sanyo Electric Co., Ltd. | Optical communication device and slip ring unit for an electronic component-mounting apparatus |
US6611833B1 (en) | 1999-06-23 | 2003-08-26 | Tissueinformatics, Inc. | Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population |
JP2001004447A (ja) | 1999-06-23 | 2001-01-12 | Yokogawa Electric Corp | 分光器 |
US6993170B2 (en) | 1999-06-23 | 2006-01-31 | Icoria, Inc. | Method for quantitative analysis of blood vessel structure |
US6208887B1 (en) * | 1999-06-24 | 2001-03-27 | Richard H. Clarke | Catheter-delivered low resolution Raman scattering analyzing system for detecting lesions |
US7426409B2 (en) | 1999-06-25 | 2008-09-16 | Board Of Regents, The University Of Texas System | Method and apparatus for detecting vulnerable atherosclerotic plaque |
GB9915082D0 (en) | 1999-06-28 | 1999-08-25 | Univ London | Optical fibre probe |
US6359692B1 (en) | 1999-07-09 | 2002-03-19 | Zygo Corporation | Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry |
AU6093400A (en) | 1999-07-13 | 2001-01-30 | Chromavision Medical Systems, Inc. | Automated detection of objects in a biological sample |
DE60020566T2 (de) | 1999-07-30 | 2006-05-04 | Boston Scientific Ltd., St. Michael | Katheter mit antrieb und kupplung zur dreh- und längsverschiebung |
EP1284672B1 (en) | 1999-07-30 | 2006-12-27 | CeramOptec GmbH | Dual wavelength medical diode laser system |
US6445939B1 (en) | 1999-08-09 | 2002-09-03 | Lightlab Imaging, Llc | Ultra-small optical probes, imaging optics, and methods for using same |
JP2001046321A (ja) | 1999-08-09 | 2001-02-20 | Asahi Optical Co Ltd | 内視鏡装置 |
US6725073B1 (en) | 1999-08-17 | 2004-04-20 | Board Of Regents, The University Of Texas System | Methods for noninvasive analyte sensing |
JP3869589B2 (ja) | 1999-09-02 | 2007-01-17 | ペンタックス株式会社 | ファイババンドル及び内視鏡装置 |
US6687010B1 (en) * | 1999-09-09 | 2004-02-03 | Olympus Corporation | Rapid depth scanning optical imaging device |
JP4464519B2 (ja) | 2000-03-21 | 2010-05-19 | オリンパス株式会社 | 光イメージング装置 |
US6198956B1 (en) * | 1999-09-30 | 2001-03-06 | Oti Ophthalmic Technologies Inc. | High speed sector scanning apparatus having digital electronic control |
JP2001174744A (ja) | 1999-10-06 | 2001-06-29 | Olympus Optical Co Ltd | 光走査プローブ装置 |
US6393312B1 (en) | 1999-10-13 | 2002-05-21 | C. R. Bard, Inc. | Connector for coupling an optical fiber tissue localization device to a light source |
US6308092B1 (en) | 1999-10-13 | 2001-10-23 | C. R. Bard Inc. | Optical fiber tissue localization device |
WO2001027679A1 (en) | 1999-10-15 | 2001-04-19 | Cellavision Ab | Microscope and method for manufacturing a composite image with a high resolution |
US6538817B1 (en) | 1999-10-25 | 2003-03-25 | Aculight Corporation | Method and apparatus for optical coherence tomography with a multispectral laser source |
JP2001125009A (ja) | 1999-10-28 | 2001-05-11 | Asahi Optical Co Ltd | 内視鏡装置 |
IL132687A0 (en) | 1999-11-01 | 2001-03-19 | Keren Mechkarim Ichilov Pnimit | System and method for evaluating body fluid samples |
CA2392228A1 (en) | 1999-11-19 | 2001-05-25 | Ming Xiao | Compact spectrofluorometer |
US7236637B2 (en) | 1999-11-24 | 2007-06-26 | Ge Medical Systems Information Technologies, Inc. | Method and apparatus for transmission and display of a compressed digitized image |
DE50005933D1 (de) | 1999-11-24 | 2004-05-06 | Haag Streit Ag Koeniz | Verfahren und vorrichtung zur messung optischer eigenschaften wenigstens zweier voneinander distanzierter bereiche in einem transparenten und/oder diffusiven gegenstand |
EP1240476A1 (en) | 1999-12-09 | 2002-09-18 | Oti Ophthalmic Technologies Inc. | Optical mapping apparatus with adjustable depth resolution |
JP2001174404A (ja) | 1999-12-15 | 2001-06-29 | Takahisa Mitsui | 光断層像計測装置および計測方法 |
US6738144B1 (en) | 1999-12-17 | 2004-05-18 | University Of Central Florida | Non-invasive method and low-coherence apparatus system analysis and process control |
US6680780B1 (en) * | 1999-12-23 | 2004-01-20 | Agere Systems, Inc. | Interferometric probe stabilization relative to subject movement |
US6445485B1 (en) | 2000-01-21 | 2002-09-03 | At&T Corp. | Micro-machine polarization-state controller |
AU2001229916A1 (en) | 2000-01-27 | 2001-08-07 | National Research Council Of Canada | Visible-near infrared spectroscopy in burn injury assessment |
JP3660185B2 (ja) | 2000-02-07 | 2005-06-15 | 独立行政法人科学技術振興機構 | 断層像形成方法及びそのための装置 |
US6475210B1 (en) | 2000-02-11 | 2002-11-05 | Medventure Technology Corp | Light treatment of vulnerable atherosclerosis plaque |
US6556305B1 (en) | 2000-02-17 | 2003-04-29 | Veeco Instruments, Inc. | Pulsed source scanning interferometer |
US6618143B2 (en) | 2000-02-18 | 2003-09-09 | Idexx Laboratories, Inc. | High numerical aperture flow cytometer and method of using same |
US6751490B2 (en) | 2000-03-01 | 2004-06-15 | The Board Of Regents Of The University Of Texas System | Continuous optoacoustic monitoring of hemoglobin concentration and hematocrit |
US6687013B2 (en) | 2000-03-28 | 2004-02-03 | Hitachi, Ltd. | Laser interferometer displacement measuring system, exposure apparatus, and electron beam lithography apparatus |
AU2001251114A1 (en) | 2000-03-28 | 2001-10-08 | Board Of Regents, The University Of Texas System | Enhancing contrast in biological imaging |
US6567585B2 (en) | 2000-04-04 | 2003-05-20 | Optiscan Pty Ltd | Z sharpening for fibre confocal microscopes |
US6692430B2 (en) | 2000-04-10 | 2004-02-17 | C2Cure Inc. | Intra vascular imaging apparatus |
US6540391B2 (en) | 2000-04-27 | 2003-04-01 | Iridex Corporation | Method and apparatus for real-time detection, control and recording of sub-clinical therapeutic laser lesions during ocular laser photocoagulation |
US6889075B2 (en) * | 2000-05-03 | 2005-05-03 | Rocky Mountain Biosystems, Inc. | Optical imaging of subsurface anatomical structures and biomolecules |
US6301048B1 (en) | 2000-05-19 | 2001-10-09 | Avanex Corporation | Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array |
US6441959B1 (en) | 2000-05-19 | 2002-08-27 | Avanex Corporation | Method and system for testing a tunable chromatic dispersion, dispersion slope, and polarization mode dispersion compensator utilizing a virtually imaged phased array |
US6560259B1 (en) | 2000-05-31 | 2003-05-06 | Applied Optoelectronics, Inc. | Spatially coherent surface-emitting, grating coupled quantum cascade laser with unstable resonance cavity |
JP2002005822A (ja) * | 2000-06-21 | 2002-01-09 | Olympus Optical Co Ltd | 光プローブ装置 |
JP4460117B2 (ja) | 2000-06-29 | 2010-05-12 | 独立行政法人理化学研究所 | グリズム |
JP2002035005A (ja) | 2000-07-21 | 2002-02-05 | Olympus Optical Co Ltd | 治療装置 |
US6757467B1 (en) | 2000-07-25 | 2004-06-29 | Optical Air Data Systems, Lp | Optical fiber system |
US6441356B1 (en) * | 2000-07-28 | 2002-08-27 | Optical Biopsy Technologies | Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes |
US6882432B2 (en) | 2000-08-08 | 2005-04-19 | Zygo Corporation | Frequency transform phase shifting interferometry |
AU2001279603A1 (en) | 2000-08-11 | 2002-02-25 | Crystal Fibre A/S | Optical wavelength converter |
US7625335B2 (en) | 2000-08-25 | 2009-12-01 | 3Shape Aps | Method and apparatus for three-dimensional optical scanning of interior surfaces |
DE10042840A1 (de) * | 2000-08-30 | 2002-03-14 | Leica Microsystems | Vorrichtung und Verfahren zur Anregung von Fluoreszenzmikroskopmarkern bei der Mehrphotonen-Rastermikroskopie |
US6459487B1 (en) | 2000-09-05 | 2002-10-01 | Gang Paul Chen | System and method for fabricating components of precise optical path length |
US6451009B1 (en) * | 2000-09-12 | 2002-09-17 | The Regents Of The University Of California | OCDR guided laser ablation device |
JP2002095663A (ja) | 2000-09-26 | 2002-04-02 | Fuji Photo Film Co Ltd | センチネルリンパ節光断層画像取得方法および装置 |
JP2002113017A (ja) | 2000-10-05 | 2002-04-16 | Fuji Photo Film Co Ltd | レーザ治療装置 |
US7294333B1 (en) | 2000-10-20 | 2007-11-13 | Genegrafts Ltd. | Nucleic acid constructs and cells, and methods utilizing same for modifying the electrophysiological function of excitable tissues |
JP4241038B2 (ja) | 2000-10-30 | 2009-03-18 | ザ ジェネラル ホスピタル コーポレーション | 組織分析のための光学的な方法及びシステム |
JP3842101B2 (ja) | 2000-10-31 | 2006-11-08 | 富士写真フイルム株式会社 | 内視鏡装置 |
EP1356250B1 (en) | 2000-10-31 | 2009-07-22 | Danmarks Tekniske Universitet | Optical amplification in coherent optical frequency modulated continuous wave reflectometry |
US6687036B2 (en) | 2000-11-03 | 2004-02-03 | Nuonics, Inc. | Multiplexed optical scanner technology |
JP2002148185A (ja) | 2000-11-08 | 2002-05-22 | Fuji Photo Film Co Ltd | Oct装置 |
US9295391B1 (en) | 2000-11-10 | 2016-03-29 | The General Hospital Corporation | Spectrally encoded miniature endoscopic imaging probe |
AU2002216035A1 (en) | 2000-11-13 | 2002-05-21 | Gnothis Holding Sa | Detection of nucleic acid polymorphisms |
US6665075B2 (en) | 2000-11-14 | 2003-12-16 | Wm. Marshurice University | Interferometric imaging system and method |
DE10057539B4 (de) | 2000-11-20 | 2008-06-12 | Robert Bosch Gmbh | Interferometrische Messvorrichtung |
JP2002153419A (ja) | 2000-11-22 | 2002-05-28 | Sanguroo:Kk | 内視鏡 |
US6558324B1 (en) | 2000-11-22 | 2003-05-06 | Siemens Medical Solutions, Inc., Usa | System and method for strain image display |
US6856712B2 (en) | 2000-11-27 | 2005-02-15 | University Of Washington | Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition |
US7027633B2 (en) | 2000-11-30 | 2006-04-11 | Foran David J | Collaborative diagnostic systems |
JP4786027B2 (ja) | 2000-12-08 | 2011-10-05 | オリンパス株式会社 | 光学系及び光学装置 |
US6687007B1 (en) * | 2000-12-14 | 2004-02-03 | Kestrel Corporation | Common path interferometer for spectral image generation |
US6501878B2 (en) | 2000-12-14 | 2002-12-31 | Nortel Networks Limited | Optical fiber termination |
WO2002054046A1 (fr) | 2000-12-28 | 2002-07-11 | Dmitri Olegovich Lapotko | Procede et dispositif d'examen phototermique d'irregularites microscopique |
US6997923B2 (en) | 2000-12-28 | 2006-02-14 | Palomar Medical Technologies, Inc. | Method and apparatus for EMR treatment |
US6515752B2 (en) | 2000-12-28 | 2003-02-04 | Coretek, Inc. | Wavelength monitoring system |
EP1221581A1 (en) | 2001-01-04 | 2002-07-10 | Universität Stuttgart | Interferometer |
JP2002205434A (ja) | 2001-01-10 | 2002-07-23 | Seiko Epson Corp | 画像出力装置及びプリンティングシステム |
CA2433797A1 (en) | 2001-01-11 | 2002-07-18 | The Johns Hopkins University | Assessment of tooth structure using laser based ultrasonics |
US7177491B2 (en) | 2001-01-12 | 2007-02-13 | Board Of Regents The University Of Texas System | Fiber-based optical low coherence tomography |
JP3628615B2 (ja) | 2001-01-16 | 2005-03-16 | 独立行政法人科学技術振興機構 | ヘテロダインビート画像同期測定装置 |
US6697652B2 (en) * | 2001-01-19 | 2004-02-24 | Massachusetts Institute Of Technology | Fluorescence, reflectance and light scattering spectroscopy for measuring tissue |
EP1358443A2 (en) | 2001-01-22 | 2003-11-05 | Jonathan E. Roth | Method and apparatus for polarization-sensitive optical coherence tomography |
US7973936B2 (en) | 2001-01-30 | 2011-07-05 | Board Of Trustees Of Michigan State University | Control system and apparatus for use with ultra-fast laser |
US20020140942A1 (en) | 2001-02-17 | 2002-10-03 | Fee Michale Sean | Acousto-optic monitoring and imaging in a depth sensitive manner |
GB0104378D0 (en) | 2001-02-22 | 2001-04-11 | Expro North Sea Ltd | Improved tubing coupling |
US6654127B2 (en) | 2001-03-01 | 2003-11-25 | Carl Zeiss Ophthalmic Systems, Inc. | Optical delay line |
US6721094B1 (en) | 2001-03-05 | 2004-04-13 | Sandia Corporation | Long working distance interference microscope |
US7244232B2 (en) | 2001-03-07 | 2007-07-17 | Biomed Solutions, Llc | Process for identifying cancerous and/or metastatic cells of a living organism |
IL142773A (en) | 2001-03-08 | 2007-10-31 | Xtellus Inc | Fiber optic damper |
JP2002263055A (ja) * | 2001-03-12 | 2002-09-17 | Olympus Optical Co Ltd | 内視鏡先端フード |
US6563995B2 (en) | 2001-04-02 | 2003-05-13 | Lightwave Electronics | Optical wavelength filtering apparatus with depressed-index claddings |
US6552796B2 (en) | 2001-04-06 | 2003-04-22 | Lightlab Imaging, Llc | Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography |
US7139598B2 (en) | 2002-04-04 | 2006-11-21 | Veralight, Inc. | Determination of a measure of a glycation end-product or disease state using tissue fluorescence |
WO2002083003A1 (en) | 2001-04-11 | 2002-10-24 | Clarke Dana S | Tissue structure identification in advance of instrument |
US20020158211A1 (en) | 2001-04-16 | 2002-10-31 | Dakota Technologies, Inc. | Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures |
DE10118760A1 (de) | 2001-04-17 | 2002-10-31 | Med Laserzentrum Luebeck Gmbh | Verfahren zur Ermittlung der Laufzeitverteilung und Anordnung |
US9897538B2 (en) | 2001-04-30 | 2018-02-20 | The General Hospital Corporation | Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating |
US7616986B2 (en) | 2001-05-07 | 2009-11-10 | University Of Washington | Optical fiber scanner for performing multimodal optical imaging |
JP2003028791A (ja) * | 2001-05-09 | 2003-01-29 | Olympus Optical Co Ltd | 光イメージング装置 |
US6615062B2 (en) | 2001-05-31 | 2003-09-02 | Infraredx, Inc. | Referencing optical catheters |
US6701181B2 (en) | 2001-05-31 | 2004-03-02 | Infraredx, Inc. | Multi-path optical catheter |
DE60219627T2 (de) * | 2001-06-04 | 2008-02-07 | The General Hospital Corp., Boston | Nachweis und therapie von empfindlichem plaque mit photodynamischen verbindungen |
US6879851B2 (en) | 2001-06-07 | 2005-04-12 | Lightlab Imaging, Llc | Fiber optic endoscopic gastrointestinal probe |
EP1191321B1 (en) | 2001-06-07 | 2002-12-11 | Agilent Technologies, Inc. (a Delaware corporation) | Determination of properties of an optical device |
DE10129651B4 (de) | 2001-06-15 | 2010-07-08 | Carl Zeiss Jena Gmbh | Verfahren zur Kompensation der Dispersion in Signalen von Kurzkohärenz- und/oder OCT-Interferometern |
US6702744B2 (en) * | 2001-06-20 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery |
US20040166593A1 (en) | 2001-06-22 | 2004-08-26 | Nolte David D. | Adaptive interferometric multi-analyte high-speed biosensor |
US6685885B2 (en) * | 2001-06-22 | 2004-02-03 | Purdue Research Foundation | Bio-optical compact dist system |
WO2003003903A2 (en) | 2001-07-02 | 2003-01-16 | Palomar Medical Technologies, Inc. | Laser device for medical/cosmetic procedures |
DE10137530A1 (de) | 2001-08-01 | 2003-02-13 | Presens Prec Sensing Gmbh | Anordnung und Verfahren zur Mehrfach-Fluoreszenzmessung |
AU2002337666A1 (en) | 2001-08-03 | 2003-02-17 | Joseph A. Izatt | Aspects of basic oct engine technologies for high speed optical coherence tomography and light source and other improvements in oct |
US20030030816A1 (en) | 2001-08-11 | 2003-02-13 | Eom Tae Bong | Nonlinearity error correcting method and phase angle measuring method for displacement measurement in two-freqency laser interferometer and displacement measurement system using the same |
US6900899B2 (en) | 2001-08-20 | 2005-05-31 | Agilent Technologies, Inc. | Interferometers with coated polarizing beam splitters that are rotated to optimize extinction ratios |
US20030045798A1 (en) | 2001-09-04 | 2003-03-06 | Richard Hular | Multisensor probe for tissue identification |
JP4754743B2 (ja) | 2001-09-18 | 2011-08-24 | オリンパス株式会社 | 内視鏡装置 |
EP1293925A1 (en) | 2001-09-18 | 2003-03-19 | Agfa-Gevaert | Radiographic scoring method |
JP4643089B2 (ja) | 2001-09-27 | 2011-03-02 | オリンパス株式会社 | カプセル型医療装置 |
US6961123B1 (en) | 2001-09-28 | 2005-11-01 | The Texas A&M University System | Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography |
JP2003102672A (ja) | 2001-10-01 | 2003-04-08 | Japan Science & Technology Corp | 病変等の対象部位を自動的に検知かつ治療または採取する方法およびその装置 |
DE10150934A1 (de) | 2001-10-09 | 2003-04-10 | Zeiss Carl Jena Gmbh | Verfahren und Anordnung zur tiefenaufgelösten Erfassung von Proben |
US7822470B2 (en) | 2001-10-11 | 2010-10-26 | Osypka Medical Gmbh | Method for determining the left-ventricular ejection time TLVE of a heart of a subject |
US6980299B1 (en) | 2001-10-16 | 2005-12-27 | General Hospital Corporation | Systems and methods for imaging a sample |
US6658278B2 (en) | 2001-10-17 | 2003-12-02 | Terumo Cardiovascular Systems Corporation | Steerable infrared imaging catheter having steering fins |
US7006231B2 (en) * | 2001-10-18 | 2006-02-28 | Scimed Life Systems, Inc. | Diffraction grating based interferometric systems and methods |
US6749344B2 (en) | 2001-10-24 | 2004-06-15 | Scimed Life Systems, Inc. | Connection apparatus for optical coherence tomography catheters |
JP4081259B2 (ja) | 2001-10-30 | 2008-04-23 | オリンパス株式会社 | 内視鏡装置及び内視鏡離脱方法 |
US6661513B1 (en) | 2001-11-21 | 2003-12-09 | Roygbiv, Llc | Refractive-diffractive spectrometer |
IL162420A0 (en) | 2001-12-11 | 2005-11-20 | C2Cure Inc | Apparatus, method and system for intravascular ph otographic imaging |
US20030216719A1 (en) | 2001-12-12 | 2003-11-20 | Len Debenedictis | Method and apparatus for treating skin using patterns of optical energy |
US7208290B2 (en) | 2001-12-14 | 2007-04-24 | Senomyx, Inc. | Methods of co-expressing umami taste receptors and chimeric Gα15 variants |
WO2003052883A2 (en) | 2001-12-14 | 2003-06-26 | Agilent Technologies, Inc. | Retro-reflecting device in particular for tunable lasers |
US7736301B1 (en) * | 2001-12-18 | 2010-06-15 | Advanced Cardiovascular Systems, Inc. | Rotatable ferrules and interfaces for use with an optical guidewire |
US7365858B2 (en) | 2001-12-18 | 2008-04-29 | Massachusetts Institute Of Technology | Systems and methods for phase measurements |
US6975891B2 (en) | 2001-12-21 | 2005-12-13 | Nir Diagnostics Inc. | Raman spectroscopic system with integrating cavity |
US6947787B2 (en) | 2001-12-21 | 2005-09-20 | Advanced Cardiovascular Systems, Inc. | System and methods for imaging within a body lumen |
EP1324051A1 (en) | 2001-12-26 | 2003-07-02 | Kevin R. Forrester | Motion measuring device |
US20080154090A1 (en) | 2005-01-04 | 2008-06-26 | Dune Medical Devices Ltd. | Endoscopic System for In-Vivo Procedures |
AU2003207507A1 (en) | 2002-01-11 | 2003-07-30 | Gen Hospital Corp | Apparatus for oct imaging with axial line focus for improved resolution and depth of field |
US7072045B2 (en) | 2002-01-16 | 2006-07-04 | The Regents Of The University Of California | High resolution optical coherence tomography with an improved depth range using an axicon lens |
US7355716B2 (en) | 2002-01-24 | 2008-04-08 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
JP2005516187A (ja) | 2002-01-24 | 2005-06-02 | ザ ジェネラル ホスピタル コーポレーション | スペクトル帯域の並列検出による測距並びに低コヒーレンス干渉法(lci)及び光学コヒーレンス断層撮影法(oct)信号の雑音低減のための装置及び方法 |
EP1475606A4 (en) | 2002-02-14 | 2007-04-04 | Imalux Corp | OBJECT EXAMINATION METHOD AND OPTICAL INTERFEROMETER FOR CARRYING OUT SAID METHOD |
US20030165263A1 (en) | 2002-02-19 | 2003-09-04 | Hamer Michael J. | Histological assessment |
US7116887B2 (en) | 2002-03-19 | 2006-10-03 | Nufern | Optical fiber |
US7006232B2 (en) * | 2002-04-05 | 2006-02-28 | Case Western Reserve University | Phase-referenced doppler optical coherence tomography |
US7113818B2 (en) | 2002-04-08 | 2006-09-26 | Oti Ophthalmic Technologies Inc. | Apparatus for high resolution imaging of moving organs |
US7016048B2 (en) | 2002-04-09 | 2006-03-21 | The Regents Of The University Of California | Phase-resolved functional optical coherence tomography: simultaneous imaging of the stokes vectors, structure, blood flow velocity, standard deviation and birefringence in biological samples |
JP2003307487A (ja) * | 2002-04-12 | 2003-10-31 | Olympus Optical Co Ltd | 光走査プローブ |
US20030236443A1 (en) | 2002-04-19 | 2003-12-25 | Cespedes Eduardo Ignacio | Methods and apparatus for the identification and stabilization of vulnerable plaque |
JP4135551B2 (ja) | 2002-05-07 | 2008-08-20 | 松下電工株式会社 | ポジションセンサ |
JP3834789B2 (ja) * | 2002-05-17 | 2006-10-18 | 独立行政法人科学技術振興機構 | 自律型超短光パルス圧縮・位相補償・波形整形装置 |
US7160248B2 (en) * | 2002-06-06 | 2007-01-09 | Optiscope Technologies Ltd. | Optical device for viewing of cavernous and/or inaccessible spaces |
US7272252B2 (en) | 2002-06-12 | 2007-09-18 | Clarient, Inc. | Automated system for combining bright field and fluorescent microscopy |
US7364296B2 (en) | 2002-06-12 | 2008-04-29 | University Of Rochester | Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy |
US20040002914A1 (en) | 2002-06-26 | 2004-01-01 | Jacques Munro | Method for extended term financing using time drafts |
US20040039252A1 (en) | 2002-06-27 | 2004-02-26 | Koch Kenneth Elmon | Self-navigating endotracheal tube |
JP3621693B2 (ja) | 2002-07-01 | 2005-02-16 | フジノン株式会社 | 干渉計装置 |
WO2004006751A2 (en) | 2002-07-12 | 2004-01-22 | Volker Westphal | Method and device for quantitative image correction for optical coherence tomography |
JP3950378B2 (ja) | 2002-07-19 | 2007-08-01 | 新日本製鐵株式会社 | 同期機 |
JP4258015B2 (ja) | 2002-07-31 | 2009-04-30 | 毅 椎名 | 超音波診断システム、歪み分布表示方法及び弾性係数分布表示方法 |
US7283247B2 (en) | 2002-09-25 | 2007-10-16 | Olympus Corporation | Optical probe system |
WO2004029566A1 (en) | 2002-09-26 | 2004-04-08 | Bio Techplex Corporation | Method and apparatus for screening using a waveform modulated led |
US6842254B2 (en) | 2002-10-16 | 2005-01-11 | Fiso Technologies Inc. | System and method for measuring an optical path difference in a sensing interferometer |
JP2006502784A (ja) * | 2002-10-18 | 2006-01-26 | シア アリー | 撮像案内ワイヤを備えるアテローム切除システム |
US20040092829A1 (en) | 2002-11-07 | 2004-05-13 | Simon Furnish | Spectroscope with modified field-of-view |
JP4246986B2 (ja) | 2002-11-18 | 2009-04-02 | 株式会社町田製作所 | 振動物体観察システム及び声帯観察用処理装置 |
US6847449B2 (en) | 2002-11-27 | 2005-01-25 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for reducing speckle in optical coherence tomography images |
EP1426799A3 (en) | 2002-11-29 | 2005-05-18 | Matsushita Electric Industrial Co., Ltd. | Optical demultiplexer, optical multi-/demultiplexer, and optical device |
DE10260256B9 (de) | 2002-12-20 | 2007-03-01 | Carl Zeiss | Interferometersystem und Meß-/Bearbeitungswerkzeug |
GB0229734D0 (en) * | 2002-12-23 | 2003-01-29 | Qinetiq Ltd | Grading oestrogen and progesterone receptors expression |
JP4148771B2 (ja) | 2002-12-27 | 2008-09-10 | 株式会社トプコン | 医療機械のレーザ装置 |
US7123363B2 (en) | 2003-01-03 | 2006-10-17 | Rose-Hulman Institute Of Technology | Speckle pattern analysis method and system |
US7075658B2 (en) * | 2003-01-24 | 2006-07-11 | Duke University | Method for optical coherence tomography imaging with molecular contrast |
AU2004206998B2 (en) | 2003-01-24 | 2009-12-17 | The General Hospital Corporation | System and method for identifying tissue using low-coherence interferometry |
US8054468B2 (en) | 2003-01-24 | 2011-11-08 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
US6943892B2 (en) | 2003-01-29 | 2005-09-13 | Sarnoff Corporation | Instrument having a multi-mode optical element and method |
US7818053B2 (en) * | 2003-02-21 | 2010-10-19 | Dtherapeutics, Llc | Devices, systems and methods for plaque type determination |
JP4338412B2 (ja) | 2003-02-24 | 2009-10-07 | Hoya株式会社 | 共焦点プローブおよび共焦点顕微鏡 |
US20040180174A1 (en) | 2003-03-04 | 2004-09-16 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer and its production method |
US7271918B2 (en) | 2003-03-06 | 2007-09-18 | Zygo Corporation | Profiling complex surface structures using scanning interferometry |
AU2004225188B2 (en) | 2003-03-31 | 2010-04-15 | The General Hospital Corporation | Speckle reduction in optical coherence tomography by path length encoded angular compounding |
JP4135550B2 (ja) | 2003-04-18 | 2008-08-20 | 日立電線株式会社 | 半導体発光デバイス |
JP2004317437A (ja) | 2003-04-18 | 2004-11-11 | Olympus Corp | 光イメージング装置 |
US7110109B2 (en) | 2003-04-18 | 2006-09-19 | Ahura Corporation | Raman spectroscopy system and method and specimen holder therefor |
JP2004321696A (ja) | 2003-04-28 | 2004-11-18 | Olympus Corp | 光イメージング装置 |
US7347548B2 (en) | 2003-05-01 | 2008-03-25 | The Cleveland Clinic Foundation | Method and apparatus for measuring a retinal sublayer characteristic |
JP4571625B2 (ja) | 2003-05-05 | 2010-10-27 | ディーフォーディー テクノロジーズ エルエルシー | 光断層映像法による画像化 |
CN100522043C (zh) | 2003-05-12 | 2009-08-05 | 富士能株式会社 | 气囊式内窥镜 |
SE527164C2 (sv) | 2003-05-14 | 2006-01-10 | Spectracure Ab | Anordning och metod för terapi och diagnostik innefattande optiska komponenter för distribution av strålning |
US7376455B2 (en) | 2003-05-22 | 2008-05-20 | Scimed Life Systems, Inc. | Systems and methods for dynamic optical imaging |
WO2004111929A2 (en) | 2003-05-28 | 2004-12-23 | Duke University | Improved system for fourier domain optical coherence tomography |
WO2004106985A2 (en) * | 2003-05-29 | 2004-12-09 | The Regents Of The University Of Michigan | Double-clad fiber scanning microscope |
EP1644697A4 (en) | 2003-05-30 | 2006-11-29 | Univ Duke | SYSTEM AND METHOD FOR BROADBAND QUADRATURE INTERFEROMETRY WITH LOW COHERENCE |
US6943881B2 (en) | 2003-06-04 | 2005-09-13 | Tomophase Corporation | Measurements of optical inhomogeneity and other properties in substances using propagation modes of light |
US7263394B2 (en) | 2003-06-04 | 2007-08-28 | Tomophase Corporation | Coherence-gated optical glucose monitor |
US7519096B2 (en) * | 2003-06-06 | 2009-04-14 | The General Hospital Corporation | Process and apparatus for a wavelength tuning source |
US7458683B2 (en) | 2003-06-16 | 2008-12-02 | Amo Manufacturing Usa, Llc | Methods and devices for registering optical measurement datasets of an optical system |
US7170913B2 (en) | 2003-06-19 | 2007-01-30 | Multiwave Photonics, Sa | Laser source with configurable output beam characteristics |
US20040260182A1 (en) | 2003-06-23 | 2004-12-23 | Zuluaga Andres F. | Intraluminal spectroscope with wall contacting probe |
JP4677208B2 (ja) | 2003-07-29 | 2011-04-27 | オリンパス株式会社 | 共焦点顕微鏡 |
US7307734B2 (en) | 2003-08-14 | 2007-12-11 | University Of Central Florida | Interferometric sensor for characterizing materials |
US7539530B2 (en) | 2003-08-22 | 2009-05-26 | Infraredx, Inc. | Method and system for spectral examination of vascular walls through blood during cardiac motion |
US20050083534A1 (en) | 2003-08-28 | 2005-04-21 | Riza Nabeel A. | Agile high sensitivity optical sensor |
JP2005077964A (ja) | 2003-09-03 | 2005-03-24 | Fujitsu Ltd | 分光装置 |
US20050059894A1 (en) | 2003-09-16 | 2005-03-17 | Haishan Zeng | Automated endoscopy device, diagnostic method, and uses |
US20050057680A1 (en) | 2003-09-16 | 2005-03-17 | Agan Martin J. | Method and apparatus for controlling integration time in imagers |
US7935055B2 (en) | 2003-09-19 | 2011-05-03 | Siemens Medical Solutions Usa, Inc. | System and method of measuring disease severity of a patient before, during and after treatment |
US6949072B2 (en) | 2003-09-22 | 2005-09-27 | Infraredx, Inc. | Devices for vulnerable plaque detection |
US8172747B2 (en) | 2003-09-25 | 2012-05-08 | Hansen Medical, Inc. | Balloon visualization for traversing a tissue wall |
US7142835B2 (en) | 2003-09-29 | 2006-11-28 | Silicon Laboratories, Inc. | Apparatus and method for digital image correction in a receiver |
US7292792B2 (en) | 2003-09-30 | 2007-11-06 | Lucent Technologies Inc. | High speed modulation of optical subcarriers |
US20050124875A1 (en) | 2003-10-01 | 2005-06-09 | Olympus Corporation | Vivo observation device |
CN103181753B (zh) | 2003-10-27 | 2016-12-28 | 通用医疗公司 | 用于使用频域干涉测量法进行光学成像的方法和设备 |
DE10351319B4 (de) | 2003-10-31 | 2005-10-20 | Med Laserzentrum Luebeck Gmbh | Interferometer für die optische Kohärenztomographie |
US7130320B2 (en) | 2003-11-13 | 2006-10-31 | Mitutoyo Corporation | External cavity laser with rotary tuning element |
EP1687587B1 (en) | 2003-11-28 | 2020-01-08 | The General Hospital Corporation | Method and apparatus for three-dimensional spectrally encoded imaging |
US7359062B2 (en) | 2003-12-09 | 2008-04-15 | The Regents Of The University Of California | High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure |
DE10358735B4 (de) * | 2003-12-15 | 2011-04-21 | Siemens Ag | Kathetereinrichtung umfassend einen Katheter, insbesondere einen intravaskulären Katheter |
WO2005058129A2 (en) * | 2003-12-17 | 2005-06-30 | Check-Cap, Llc | Intra-lumen polyp detection |
JP4414771B2 (ja) | 2004-01-08 | 2010-02-10 | オリンパス株式会社 | 共焦点顕微分光装置 |
JP4462959B2 (ja) | 2004-02-25 | 2010-05-12 | 富士通株式会社 | 顕微鏡画像撮影システム及び方法 |
EP1722669A4 (en) * | 2004-02-27 | 2009-05-27 | Optiscan Pty Ltd | OPTICAL ELEMENT |
JP2005288085A (ja) | 2004-03-31 | 2005-10-20 | Tsunehiro Maehara | カプセル内視鏡 |
US20050251116A1 (en) | 2004-05-05 | 2005-11-10 | Minnow Medical, Llc | Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter |
US7242480B2 (en) | 2004-05-14 | 2007-07-10 | Medeikon Corporation | Low coherence interferometry for detecting and characterizing plaques |
US7190464B2 (en) | 2004-05-14 | 2007-03-13 | Medeikon Corporation | Low coherence interferometry for detecting and characterizing plaques |
EP1754016B1 (en) | 2004-05-29 | 2016-05-18 | The General Hospital Corporation | Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging |
JP4995720B2 (ja) | 2004-07-02 | 2012-08-08 | ザ ジェネラル ホスピタル コーポレイション | ダブルクラッドファイバを有する内視鏡撮像プローブ |
DE102004035269A1 (de) * | 2004-07-21 | 2006-02-16 | Rowiak Gmbh | Laryngoskop mit OCT |
WO2006017837A2 (en) * | 2004-08-06 | 2006-02-16 | The General Hospital Corporation | Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography |
WO2006020605A2 (en) | 2004-08-10 | 2006-02-23 | The Regents Of The University Of California | Device and method for the delivery and/or elimination of compounds in tissue |
JP5215664B2 (ja) | 2004-09-10 | 2013-06-19 | ザ ジェネラル ホスピタル コーポレイション | 光学コヒーレンス撮像のシステムおよび方法 |
EP2329759B1 (en) | 2004-09-29 | 2014-03-12 | The General Hospital Corporation | System and method for optical coherence imaging |
US7113625B2 (en) | 2004-10-01 | 2006-09-26 | U.S. Pathology Labs, Inc. | System and method for image analysis of slides |
SE0402435L (sv) | 2004-10-08 | 2006-04-09 | Trajan Badju | Förfarande och system för alstring av tredimensionella bilder |
EP1819270B1 (en) * | 2004-10-29 | 2012-12-19 | The General Hospital Corporation | Polarization-sensitive optical coherence tomography |
US7382949B2 (en) | 2004-11-02 | 2008-06-03 | The General Hospital Corporation | Fiber-optic rotational device, optical system and method for imaging a sample |
US8409191B2 (en) * | 2004-11-04 | 2013-04-02 | Boston Scientific Scimed, Inc. | Preshaped ablation catheter for ablating pulmonary vein ostia within the heart |
US7417740B2 (en) | 2004-11-12 | 2008-08-26 | Medeikon Corporation | Single trace multi-channel low coherence interferometric sensor |
US8617152B2 (en) | 2004-11-15 | 2013-12-31 | Medtronic Ablation Frontiers Llc | Ablation system with feedback |
GB0425419D0 (en) | 2004-11-18 | 2004-12-22 | Sira Ltd | Interference apparatus and method and probe |
WO2006058187A2 (en) | 2004-11-23 | 2006-06-01 | Robert Eric Betzig | Optical lattice microscopy |
GB0426609D0 (en) | 2004-12-03 | 2005-01-05 | Ic Innovations Ltd | Analysis |
JP2006162366A (ja) | 2004-12-06 | 2006-06-22 | Fujinon Corp | 光断層映像装置 |
US7450242B2 (en) * | 2004-12-10 | 2008-11-11 | Fujifilm Corporation | Optical tomography apparatus |
US7336366B2 (en) * | 2005-01-20 | 2008-02-26 | Duke University | Methods and systems for reducing complex conjugate ambiguity in interferometric data |
US7342659B2 (en) | 2005-01-21 | 2008-03-11 | Carl Zeiss Meditec, Inc. | Cross-dispersed spectrometer in a spectral domain optical coherence tomography system |
US7330270B2 (en) * | 2005-01-21 | 2008-02-12 | Carl Zeiss Meditec, Inc. | Method to suppress artifacts in frequency-domain optical coherence tomography |
HU227859B1 (en) | 2005-01-27 | 2012-05-02 | E Szilveszter Vizi | Real-time 3d nonlinear microscope measuring system and its application |
US7267494B2 (en) | 2005-02-01 | 2007-09-11 | Finisar Corporation | Fiber stub for cladding mode coupling reduction |
US7664300B2 (en) * | 2005-02-03 | 2010-02-16 | Sti Medical Systems, Llc | Uterine cervical cancer computer-aided-diagnosis (CAD) |
WO2006090320A1 (en) * | 2005-02-23 | 2006-08-31 | Lyncee Tec S.A. | Wave front sensing method and apparatus |
JP4628820B2 (ja) | 2005-02-25 | 2011-02-09 | サンテック株式会社 | 波長走査型ファイバレーザ光源 |
US7530948B2 (en) | 2005-02-28 | 2009-05-12 | University Of Washington | Tethered capsule endoscope for Barrett's Esophagus screening |
DE102005010790A1 (de) | 2005-03-09 | 2006-09-14 | Basf Ag | Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial |
US20060224053A1 (en) | 2005-03-30 | 2006-10-05 | Skyline Biomedical, Inc. | Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels |
JP2008538612A (ja) * | 2005-04-22 | 2008-10-30 | ザ ジェネラル ホスピタル コーポレイション | スペクトルドメイン偏光感受型光コヒーレンストモグラフィを提供することの可能な構成、システム、及び方法 |
WO2006116362A2 (en) * | 2005-04-25 | 2006-11-02 | The Trustees Of Boston University | Structured substrates for optical surface profiling |
JP2008541096A (ja) | 2005-05-13 | 2008-11-20 | ザ ジェネラル ホスピタル コーポレイション | 化学的試料および生体試料の高感度検出用スペクトル領域光コヒーレンス反射計測を実行可能な装置、システム、および方法 |
EP2453237B1 (en) | 2005-05-23 | 2016-12-21 | Harald F. Hess | Optical microscopy with phototransformable optical labels |
EP1887926B1 (en) | 2005-05-31 | 2014-07-30 | The General Hospital Corporation | System and method which use spectral encoding heterodyne interferometry techniques for imaging |
US9060689B2 (en) | 2005-06-01 | 2015-06-23 | The General Hospital Corporation | Apparatus, method and system for performing phase-resolved optical frequency domain imaging |
US20080218696A1 (en) | 2005-07-01 | 2008-09-11 | Jose Mir | Non-Invasive Monitoring System |
US7391520B2 (en) | 2005-07-01 | 2008-06-24 | Carl Zeiss Meditec, Inc. | Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver |
DE102005034443A1 (de) | 2005-07-22 | 2007-02-22 | Carl Zeiss Jena Gmbh | Auflösungsgesteigerte Lumineszenz-Mikroskopie |
US7312410B2 (en) | 2005-07-25 | 2007-12-25 | Research In Motion Limited | Reduced qwerty keyboard system that provides better accuracy and associated method |
JP4811405B2 (ja) | 2005-08-24 | 2011-11-09 | コニカミノルタエムジー株式会社 | カプセル型医療機器及び診断システム |
US7668342B2 (en) | 2005-09-09 | 2010-02-23 | Carl Zeiss Meditec, Inc. | Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues |
US8357917B2 (en) | 2005-09-10 | 2013-01-22 | Baer Stephen C | High resolution microscopy using an optically switchable fluorophore |
US8114581B2 (en) | 2005-09-15 | 2012-02-14 | The Regents Of The University Of California | Methods and compositions for detecting neoplastic cells |
KR100743591B1 (ko) | 2005-09-23 | 2007-07-27 | 한국과학기술원 | 사이드 로브가 제거된 공초점 자가 간섭 현미경 |
US7843572B2 (en) | 2005-09-29 | 2010-11-30 | The General Hospital Corporation | Method and apparatus for optical imaging via spectral encoding |
US7450241B2 (en) * | 2005-09-30 | 2008-11-11 | Infraredx, Inc. | Detecting vulnerable plaque |
US7400410B2 (en) | 2005-10-05 | 2008-07-15 | Carl Zeiss Meditec, Inc. | Optical coherence tomography for eye-length measurement |
WO2007044612A2 (en) | 2005-10-07 | 2007-04-19 | Bioptigen, Inc. | Imaging systems using unpolarized light and related methods and controllers |
EP1934567B1 (en) | 2005-10-11 | 2013-01-16 | Duke University | Systems and method for endoscopic angle-resolved low coherence interferometry |
WO2007044786A2 (en) | 2005-10-11 | 2007-04-19 | Zygo Corporation | Interferometry method and system including spectral decomposition |
US7408649B2 (en) | 2005-10-26 | 2008-08-05 | Kla-Tencor Technologies Corporation | Method and apparatus for optically analyzing a surface |
US8145018B2 (en) | 2006-01-19 | 2012-03-27 | The General Hospital Corporation | Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements |
WO2007084945A1 (en) | 2006-01-19 | 2007-07-26 | The General Hospital Corporation | Systems and methods for performing rapid fluorescense lifetime, excitation and emission spectral measurements |
EP1973466B1 (en) | 2006-01-19 | 2021-01-06 | The General Hospital Corporation | Ballon imaging catheter |
GB0601183D0 (en) | 2006-01-20 | 2006-03-01 | Perkinelmer Ltd | Improvements in and relating to imaging |
WO2007090147A2 (en) | 2006-01-31 | 2007-08-09 | The Board Of Trustees Of The University Of Illinois | Method and apparatus for measurement of optical properties in tissue |
EP3143926B1 (en) | 2006-02-08 | 2020-07-01 | The General Hospital Corporation | Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy |
US8184367B2 (en) | 2006-02-15 | 2012-05-22 | University Of Central Florida Research Foundation | Dynamically focused optical instrument |
DE102006008990B4 (de) | 2006-02-23 | 2008-05-21 | Atmos Medizintechnik Gmbh & Co. Kg | Verfahren und Anordnung zur Erzeugung eines dem Öffnungszustand der Stimmlippen des Kehlkopfes entsprechenden Signals |
JP2007271761A (ja) | 2006-03-30 | 2007-10-18 | Fujitsu Ltd | 分光装置および波長分散制御装置 |
WO2007118129A1 (en) | 2006-04-05 | 2007-10-18 | The General Hospital Corporation | Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample |
WO2007127395A2 (en) | 2006-04-28 | 2007-11-08 | Bioptigen, Inc. | Methods, systems and computer program products for optical coherence tomography (oct) using automatic dispersion compensation |
US7782464B2 (en) | 2006-05-12 | 2010-08-24 | The General Hospital Corporation | Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images |
EP1859727A1 (en) | 2006-05-26 | 2007-11-28 | Stichting voor de Technische Wetenschappen | optical triggering system for stroboscopy and a stroboscopic system |
US7599074B2 (en) | 2006-06-19 | 2009-10-06 | The Board Of Trustees Of The Leland Stanford Junior University | Grating angle magnification enhanced angular sensor and scanner |
US20070291277A1 (en) | 2006-06-20 | 2007-12-20 | Everett Matthew J | Spectral domain optical coherence tomography system |
US7496220B2 (en) | 2006-08-28 | 2009-02-24 | Thermo Electron Scientific Instruments Llc | Spectroscopic microscopy with image-driven analysis |
US8838213B2 (en) | 2006-10-19 | 2014-09-16 | The General Hospital Corporation | Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s) |
WO2008052155A2 (en) | 2006-10-26 | 2008-05-02 | Cornell Research Foundation, Inc. | System for producing optical pulses of a desired wavelength using cherenkov radiation |
EP2079363B1 (en) | 2006-10-30 | 2020-06-10 | Elfi-Tech Ltd | Method for in vivo measurement of biological parameters |
DE102006054556A1 (de) | 2006-11-20 | 2008-05-21 | Zimmer Medizinsysteme Gmbh | Vorrichtung und Verfahren zum nicht-invasiven, optischen Erfassen von chemischen und physikalischen Blutwerten und Körperinhaltsstoffen |
US20080204762A1 (en) | 2007-01-17 | 2008-08-28 | Duke University | Methods, systems, and computer program products for removing undesired artifacts in fourier domain optical coherence tomography (FDOCT) systems using integrating buckets |
JP5507258B2 (ja) | 2007-01-19 | 2014-05-28 | ザ ジェネラル ホスピタル コーポレイション | 光周波数領域イメージングにおける測定深度を制御するための装置及び方法 |
JP5227525B2 (ja) | 2007-03-23 | 2013-07-03 | 株式会社日立製作所 | 生体光計測装置 |
AU2008241974B2 (en) | 2007-03-26 | 2013-09-12 | Nippon Suisan Kaisha, Ltd. | Germ cell marker using fish Vasa gene |
BRPI0810177A2 (pt) * | 2007-04-10 | 2014-12-30 | Univ Southern California | Métodos e sistemas para medição de fluxo sanguíneo usando tomografia de coerência doppler |
US8115919B2 (en) | 2007-05-04 | 2012-02-14 | The General Hospital Corporation | Methods, arrangements and systems for obtaining information associated with a sample using optical microscopy |
US8166967B2 (en) | 2007-08-15 | 2012-05-01 | Chunyuan Qiu | Systems and methods for intubation |
WO2009033064A2 (en) | 2007-09-05 | 2009-03-12 | The General Hospital Corporation | Systems, methods and computer-accessible medium for providing spectral-domain optical coherence phase microscopy for cell and deep tissue imaging |
EP2207469A4 (en) | 2007-10-12 | 2012-07-11 | Gen Hospital Corp | SYSTEMS AND METHODS FOR OPTICAL IMAGING OF LUMINOUS ANATOMICAL STRUCTURES |
US9332942B2 (en) | 2008-01-28 | 2016-05-10 | The General Hospital Corporation | Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging |
JP5192247B2 (ja) | 2008-01-29 | 2013-05-08 | 並木精密宝石株式会社 | Octプローブ |
US7898656B2 (en) | 2008-04-30 | 2011-03-01 | The General Hospital Corporation | Apparatus and method for cross axis parallel spectroscopy |
US8184298B2 (en) | 2008-05-21 | 2012-05-22 | The Board Of Trustees Of The University Of Illinois | Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization |
JP5324839B2 (ja) | 2008-06-19 | 2013-10-23 | 株式会社トプコン | 光画像計測装置 |
JP5546112B2 (ja) | 2008-07-07 | 2014-07-09 | キヤノン株式会社 | 眼科撮像装置および眼科撮像方法 |
US8133127B1 (en) | 2008-07-21 | 2012-03-13 | Synder Terrance W | Sports training device and methods of use |
US8457715B2 (en) | 2009-04-08 | 2013-06-04 | Covidien Lp | System and method for determining placement of a tracheal tube |
US20120228523A1 (en) | 2009-11-09 | 2012-09-13 | Tata Institute Of Fundamental Research | Biological laser plasma x-ray point source |
KR101522850B1 (ko) | 2010-01-14 | 2015-05-26 | 삼성전자주식회사 | 움직임 벡터를 부호화, 복호화하는 방법 및 장치 |
-
2007
- 2007-01-19 EP EP07718117.0A patent/EP1973466B1/en active Active
- 2007-01-19 WO PCT/US2007/060787 patent/WO2007084995A2/en active Search and Examination
- 2007-01-19 CN CN201410356166.7A patent/CN104257348A/zh active Pending
- 2007-01-19 EP EP10193534A patent/EP2289399A3/en not_active Withdrawn
- 2007-01-19 ES ES07718117T patent/ES2847854T3/es active Active
- 2007-01-19 EP EP10193514A patent/EP2289396A3/en not_active Withdrawn
- 2007-01-19 PL PL07718117T patent/PL1973466T3/pl unknown
- 2007-01-19 EP EP10193526A patent/EP2289398A3/en not_active Withdrawn
- 2007-01-19 EP EP10193521A patent/EP2289397A3/en not_active Withdrawn
- 2007-01-19 DK DK07718117.0T patent/DK1973466T3/da active
- 2007-01-19 JP JP2008551555A patent/JP5384944B2/ja active Active
- 2007-01-19 US US11/625,135 patent/US9087368B2/en active Active
- 2007-01-19 CN CNA2007800059499A patent/CN101384212A/zh active Pending
-
2013
- 2013-02-07 JP JP2013022740A patent/JP5681220B2/ja active Active
- 2013-08-05 JP JP2013162371A patent/JP2013255822A/ja active Pending
-
2014
- 2014-04-02 US US14/243,508 patent/US9646377B2/en active Active
- 2014-09-08 JP JP2014181866A patent/JP6121958B2/ja active Active
-
2017
- 2017-01-11 JP JP2017002748A patent/JP2017060887A/ja active Pending
- 2017-05-08 US US15/589,029 patent/US10987000B2/en active Active
-
2019
- 2019-12-06 JP JP2019221148A patent/JP2020039931A/ja active Pending
-
2020
- 2020-12-22 US US17/130,585 patent/US11660001B2/en active Active
-
2021
- 2021-11-25 JP JP2021190870A patent/JP2022016610A/ja active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2847854T3 (es) | Catéter de globo de obtención de imágenes | |
US11304596B2 (en) | Apparatus, device and method for capsule microscopy | |
US7952718B2 (en) | High resolution optical coherence tomography based imaging for intraluminal and interstitial use implemented with a reduced form factor | |
ES2925725T3 (es) | Método y aparato para la obtención de imágenes ópticas mediante codificación espectral | |
JP6066901B2 (ja) | 1つまたは複数の管腔器官内または管腔器官にある構造を撮像するための装置およびデバイスのための方法 | |
US9615748B2 (en) | Endoscopic biopsy apparatus, system and method | |
US10182791B2 (en) | Integrated ultrasound, OCT, PA and/or florescence imaging endoscope for diagnosing cancers in gastrointestinal, respiratory, and urogenital tracts | |
US20130190565A1 (en) | System, method and apparatus for optical imaging of luminal organs, and for centering within and contacting a luminal organ | |
KR101440109B1 (ko) | 위장관암의 림프절 전이 검출용 광음향 단층촬영 시스템 | |
US10646109B1 (en) | Device and method of balloon endoscopy | |
Li et al. | Endoscopic optical coherence tomography: Technologies and applications | |
CN115581437B (zh) | 光学相干层析成像引导激光微创诊疗内窥探头 | |
JP2012050487A (ja) | プローブ | |
JP2010142496A (ja) | 光プローブ用オーバーチューブ |