DE102005010790A1 - Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial - Google Patents

Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial Download PDF

Info

Publication number
DE102005010790A1
DE102005010790A1 DE102005010790A DE102005010790A DE102005010790A1 DE 102005010790 A1 DE102005010790 A1 DE 102005010790A1 DE 102005010790 A DE102005010790 A DE 102005010790A DE 102005010790 A DE102005010790 A DE 102005010790A DE 102005010790 A1 DE102005010790 A1 DE 102005010790A1
Authority
DE
Germany
Prior art keywords
semiconductor material
metal halide
photovoltaic cell
layer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102005010790A
Other languages
English (en)
Inventor
Hans-Josef Dr. Sterzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE102005010790A priority Critical patent/DE102005010790A1/de
Priority to US11/817,167 priority patent/US20080163928A1/en
Priority to EP06708672A priority patent/EP1859487A2/de
Priority to JP2008500185A priority patent/JP2008533712A/ja
Priority to PCT/EP2006/060522 priority patent/WO2006094980A2/de
Priority to CA002599412A priority patent/CA2599412A1/en
Publication of DE102005010790A1 publication Critical patent/DE102005010790A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Die Erfindung bezieht sich auf eine photovoltaische Zelle und auf ein Verfahren zur Herstellung einer photovoltaischen Zelle mit einem photovoltaisch aktiven Halbleitermaterial der Formel (I) oder (II): DOLLAR A ZnTe (I) DOLLAR A Zn¶1-x¶Mn¶x¶Te (II) DOLLAR A mit x - Zahl von 0,01 bis 0,7, wobei das photovoltaisch aktive Halbleitermaterial ein Metallhalogenid enthält, das ein Metall, ausgewählt aus der Gruppe Germanium, Zinn, Antimon, Bismut und Kupfer, und ein Halogen, ausgewählt aus der Gruppe Fluor, Chlor, Brom und Iod, enthält.

Description

  • Die Erfindung betrifft photovoltaische Zellen und das darin enthaltene photovoltaisch aktive Halbleitermaterial.
  • Photovoltaisch aktive Materialien sind Halbleiter, welche Licht in elektrische Energie umsetzen. Die Grundlagen hierzu sind lange bekannt und werden technisch genutzt. Die meisten der technisch genutzten Solarzellen basieren auf kristallinem Silizium (ein- oder polykristallin). In einer Grenzschicht zwischen p- und n-leitendem Silizium regen einfallende Photonen Elektronen des Halbleiters an, so dass sie vom Valenzband in das Leitungsband gehoben werden.
  • Die Höhe der Energielücke zwischen dem Valenzband und dem Leitungsband limitiert den maximal möglichen Wirkungsgrad der Solarzelle. Beim Silizium ist dies circa 30% bei Bestrahlung mit Sonnenlicht. In der Praxis erreicht man dagegen einen Wirkungsgrad von circa 15%, weil ein Teil der Ladungsträger durch verschiedene Prozesse rekombiniert und so der Nutzung entzogen wird.
  • Aus DE 102 23 744 A1 sind alternative photovoltaisch aktive Materialien und diese enthaltende Photovoltaikzellen bekannt, die den Wirkungsgrad herabsetzende Verlustmechanismen in einem verringerten Maße aufweisen.
  • Mit einer Energielücke um 1,1 eV weist Silizium einen für die Nutzung recht guten Wert auf. Durch ein Verkleinern der Energielücke werden zwar mehr Ladungsträger ins Leitungsband befördert, die Zellspannung wird jedoch niedriger. Entsprechend werden bei größeren Energielücken zwar höhere Zellspannungen erreicht, da aber weniger Photonen zur Anregung vorhanden sind, stehen niedrigere nutzbare Ströme zur Verfügung.
  • Viele Anordnungen wie die Serienanordnung von Halbleitern mit verschiedenen Energielücken, in so genannten Tandemzellen wurden vorgeschlagen, um höhere Wirkungsgrade zu erreichen. Diese sind wegen ihres komplexen Aufbaus jedoch wirtschaftlich kaum zu realisieren.
  • Ein neues Konzept besteht darin, innerhalb der Energielücke ein Zwischenniveau zu generieren (Up-Conversion). Dieses Konzept ist beispielsweise beschrieben in Proceedings of the 14th Workshop on Quantum Solar Energy Conversion-Quantasol 2002, March, 17-23, 2002, Rauris, Salzburg, Österreich, "Improving solar cells efficiencies by the up-conversion", Tl. Trupke, M.A. Green, P. Würfel oder "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Tranisitions at intermediate Levels", A. Luque and A. Marti, Phys. Rev. Letters, Vol. 78, Nr. 26, June 1997, 5014-5017. Für eine Bandlücke von 1,995 eV und eine Energie des Zwischenniveaus bei 0,713 eV ergibt sich rechnerisch ein maximaler Wirkungsgrad von 63,17%.
  • Spektroskopisch wurden derartige Zwischenniveaus beispielsweise am System Cd1-yMnyOxTe1-x oder an Zn1-xMnxOyTe1-y nachgewiesen. Dies ist beschrieben in "Band anticrossing in group II-OxVI1-x highly mismatched alloys: Cd1-yMnyOxTe1-x quaternaries synthesized by O ion implantation", W. Walukiewicz et al., Appl. Phys. Letters, Vol 80, Nr. 9, March 2002, 1571-1573 und in "Synthesis and optical properties of II-O-VI highly mismatched alloys", W. Walukiewicz et al., J. Appl. Phys. Vol. 95, Nr. 11, June 2004, 6232-6238. Demnach wird das erwünschte energetische Zwischenniveau in der Bandlücke dadurch erhöht, dass im Anionengitter ein Teil der Telluranionen durch das wesentlich elektronegativere Sauerstoffion ersetzt wird. Dabei wurde Tellur durch Ionenimplantation in dünnen Filmen durch Sauerstoff ersetzt. Ein wesentlicher Nachteil dieser Stoffklasse besteht darin, dass die Löslichkeit des Sauerstoffs im Halbleiter äußerst gering ist. Daraus folgt, dass beispielsweise die Verbindungen Zn1-xMnxTe1-yOy mit y größer als 0,001 thermodynamisch nicht stabil sind. Bei Bestrahlung über längere Zeit zerfallen sie in die stabilen Telluride und Oxide. Ein Einsatz von bis zu 10 At-% Tellur durch Sauerstoff wäre erwünscht, wobei solche Verbindungen jedoch nicht stabil sind.
  • Zinktellurid, das bei Raumtemperatur eine direkte Bandlücke von 2,25 eV aufweist, wäre wegen dieser großen Bandlücke ein idealer Halbleiter für die Zwischenniveautechnologie. Zink lässt sich gut in Zinktellurid kontinuierlich durch Mangan substituieren, wobei die Bandlücke auf circa 2,8 eV bei MnTe anwächst („Optical Properties of epitaxial Zn Mn Te and ZnMgTe films for a wide range of alloy compostions", X. Liu et al., J. Appl. Phys. Vol. 91, Nr. 5, March 2002, 2859-2865; „Bandgap of Zn1-xMnxTe: non linear dependence on compostion and temperature", H.C. Mertins et al., Semicond. Sci. Technol. 8 (1993) 1634-1638).
  • Zn1-xMnxTe lässt sich mit bis zu 0,2 Mol-% Phosphor p-leitend dotieren, wobei eine elektrische Leitfähigkeit zwischen 10 und 30 Ω–1cm–1 erreicht wird („Electrical and Magnetic Properties of Phosphorus Doped Bulk Zn1-xMnxTe", Le Van Khoi et al., Moldavian Journal of Physical Sciences, Nr. 1, 2002, 11-14). Durch partielles Ersetzen von Zink durch Aluminium werden n-leitende Spezies erhalten („Aluminium-doped n-type ZnTe layers grown by molecular-beam epitaxy", J.H. Chang et al., Appl. Phys. Letters, Vol 79, Nr. 6, august 2001, 785-787; "Aluminium doping of ZnTe grown by MOPVE", S.I. Gheyas et al., Appl. Surface Science 100/101 (1996) 634-638; "Electrical Transport and Photoelectronic Properties of ZnTe: Al Crystals", T.L. Lausen et al., J. Appl. Phys., Vol 43, Nr. 1, Jan 1972, 172-182). Mit Dotierungsgraden um 4·1018 Al/cm3 können elektrische Leitfähigkeiten um 50 bis 60 Ω–1cm–1 erreicht werden.
  • Eine photovoltaische Zelle mit einem hohen Wirkungsgrad und einer hohen elektrischen Leistung enthält zum Beispiel ein photovoltaisch aktives Halbleitermaterial, wobei das photovoltaisch aktive Halbleitermaterial ein p- oder ein n-dotiertes Halbleitermaterial mit einer binären Verbindung der Formel (A) oder mit einer ternären Verbindung der Formel (B) ist: ZnTe (A) Zn1-xMnxTe (B)mit x = Zahl von 0,01 bis 0,99, wobei in dem photovoltaisch aktiven Halbleitermaterial zu einem bestimmten Anteil Tellurionen durch Halogenionen und Stickstoffionen substituiert sind und die Halogenionen ausgewählt sind aus der Gruppe bestehend aus Fluorid, Chlorid und Bromid oder einer Mischung daraus. Dabei ist es notwendig, im ZnTe Tellurionen durch sowohl Stickstoffionen als auch Halogenionen zu substituieren.
  • Das Einbringen von Stickstoff und Halogen kann zum Beispiel durch Behandeln von Zn1-xMnxTe-Schichten mit NH4Cl bei erhöhter Temperatur erreicht werden. Dies hat jedoch den Nachteil, dass festes NH4Cl an den relativ kälteren Reaktorwänden aufwächst und der Reaktor somit in unkontrollierbarer Weise mit NH4Cl kontaminiert wird.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, eine photovoltaische Zelle mit einem hohen Wirkungsgrad und einer hohen elektrischen Leistung bereitzustellen, die die Nachteile des Standes der Technik vermeidet. Weiterhin ist es Aufgabe der vorliegenden Erfindung, insbesondere eine photovoltaische Zelle mit einem thermodynamisch stabilen photovoltaisch aktiven Halbleitermaterial bereitzustellen, wobei das Halbleitermaterial ein Zwischenniveau in der Energielücke enthält.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch eine photovoltaische Zelle mit einem photovoltaisch aktiven Halbleitermaterial der Formel (I) oder (II): ZnTe (I) Zn1-xMnxTe (II) mit x = Zahl von 0,01 bis 0,7, wobei das photovoltaisch aktive Halbleitermaterial Ionen mindestens eines Metallhalogenids enthält, das ein Metall ausgewählt aus der Gruppe Germanium, Zinn, Antimon, Bismut und Kupfer und ein Halogen ausgewählt aus der Gruppe Fluor, Chlor, Brom und Iod enthält.
  • Es wurde gefunden, dass es möglich ist, in das Halbleitermaterial der Formel (I) oder (II) Halogenidionen so einzubringen, wobei eine gleichzeitige Dotierung mit Stickstoffionen nicht notwendig ist. Damit besteht auch nicht die Notwendigkeit, einen Teil des Zinks durch Mangan zu ersetzen, was letztendlich zu einem einfacheren System führt. In der erfindungsgemäßen photovoltaischen Zelle wird demnach besonders bevorzugt ein photovoltaisch aktives Halbleitermaterial der Formel (I) oder bevorzugt ein photovoltaisch aktives Halbleitermaterial der Formel (II) verwendet, das die Halogenidionen enthält.
  • Völlig überraschend wurde gefunden, dass die in der erfindungsgemäßen photovoltaischen Zelle eingesetzten Halbleitermaterialien enthaltend Metallhalogenide bei hoher elektrischer Leitfähigkeit hohe Seebeck-Koeffizienten bis zu 100 μV/Grad aufweisen. Ein derartiges Verhalten ist bisher bei Halbleitern mit Bandlücken oberhalb 1,5 eV noch nicht beschrieben worden. Dieses Verhalten zeigt, dass die neuen Halbleiter nicht nur optisch, sondern auch thermisch aktiviert werden können und damit zur besseren Nutzung von Lichtquanten beitragen.
  • Die erfindungsgemäße photovoltaische Zelle hat den Vorteil, dass das verwendete photovoltaisch aktive Halbleitermaterial mit den Metallhalogenidionen thermodynamisch stabil ist. Ferner weisen die erfindungsgemäßen photovoltaischen Zellen hohe Wirkungsgrade oberhalb 15% auf, da durch die in dem Halbleitermaterial enthaltenen Metallhalogenidionen ein Zwischenniveau in der Energielücke des photovoltaisch aktiven Halbleitermaterials erzeugt wird. Ohne Zwischenniveau können nur solche Photonen Elektronen oder Ladungsträger vom Valenzband in das Leitungsband heben, die mindestens die Energie der Energielücke aufweisen. Photonen höherer Energie tragen auch zum Wirkungsgrad bei, wobei der Überschuss an Energie bezüglich der Bandlücke als Wärme verloren geht. Mit dem Zwischenniveau, das bei dem für die vorliegende Erfindung verwendeten Halbleitermaterial vorhanden ist und das teilweise besetzt werden kann, können mehr Photonen zur Anregung beitragen.
  • Vorzugsweise umfasst das in dem photovoltaisch aktiven Halbleitermaterial enthaltende Metallhalogenid Ionen mindestens eines Metallhalogens aus der Gruppe CuF2, BiF3, BiCl3, BiBr3, BiI3, SbF3, SbCl3, SbBr3, GeI4, SnBr2, SnF4, SnCl2 und SnI2.
  • Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung ist in dem photovoltaisch aktiven Halbleitermaterial das Metallhalogenid in einer Konzentration von 0,001 bis 0,1 Mol pro Mol Tellurid, besonders bevorzugt von 0,005 bis 0,05 Mol pro Mol Telllurid enthalten.
  • Die erfindungsgemäße photovoltaische Zelle ist so aufgebaut, dass sie zum Beispiel eine p-leitende Absorberschicht aus dem das Metallhalogenid enthaltenden Halbleitermaterial enthält. An diese Absorberschicht aus dem p-leitenden Halbleitermaterial grenzt eine n-leitende, das einfallende Licht möglichst nicht absorbierende Kontaktschicht, beispielsweise n-leitende transparente Metalloxide wie Indium-Zinn-Oxid, fluordotiertes Zinndioxid oder mit Al, Ga oder In dotiertes Zinkoxid. Einfallendes Licht erzeugt eine positive und eine negative Ladung in der p-leitenden Halbleiterschicht. Die Ladungen diffundieren im p-Gebiet. Nur wenn die negative Ladung die p-n-Grenzschicht erreicht, kann sie das p-Gebiet verlassen. Ein Strom fließt, wenn die negative Ladung den an der Kontaktschicht angebrachten Frontkontakt erreicht hat.
  • Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die erfindungsgemäße photovoltaische Zelle eine p-leitende Kontaktschicht aus dem die Ionen des Metallhalogenids enthaltenden Halbleitermaterial. Vorzugsweise ist diese p-leitende Kontaktschicht auf einem n-leitenden Absorber angeordnet, der zum Beispiel ein Germanium-dotiertes Bismutsulfid enthält. Beispiele für Germanium-dotiertes Bismutsulfid (BixGeySz) sind Bi1,98Ge0,02S3 oder Bi1,99Ge0,02S3. Es sind aber auch andere, dem Fachmann bekannte n-leitende Absorber mit möglich.
  • Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen photovoltaischen Zelle umfasst diese ein elektrisch leitfähiges Substrat, eine p- oder eine n-Schicht aus dem Metallhalogenide enthaltenden Halbleitermaterial der Formel (I) oder (II) mit einer Dicke von 0,1 bis 20 μm, bevorzugt von 0,1 bis 10 μm, besonders bevorzugt von 0,3 bis 3 μm, und eine n-Schicht beziehungsweise eine p-Schicht aus einem n- beziehungsweise p-leitenden Halbleitermaterial mit einer Dicke von 0,1 bis 20 μm, bevorzugt 0,1 bis 10 μm, besonders bevorzugt 0,3 bis 3 μm. Vorzugsweise ist das Substrat eine flexible Metallfolie oder ein flexibles Metallblech. Durch die Kombination aus einem flexiblen Substrat mit dünnen photovoltaisch aktiven Schichten ergibt sich der Vorteil, dass keine aufwendigen und damit teuren Auflager zur Halterung der die erfindungsgemäßen photovoltaischen Zellen enthaltenden Solarmodule eingesetzt werden müssen. Bei unflexiblen Substraten wie Glas oder Silicium müssen Windkräfte durch aufwendige Tragekonstruktionen abgefangen werden, um ein Brechen der Solarmodule zu vermeiden. ist dagegen eine Verwindung durch Flexibilität möglich, so können sehr einfache und preiswerte Tragekonstruktionen eingesetzt werden, die nicht verwin dungssteif sein müssen. Als bevorzugtes flexibles Substrat wird bei der vorliegenden Erfindung insbesondere ein Edelstahlblech verwendet.
  • Die Erfindung bezieht sich weiterhin auf ein Verfahren zur Herstellung einer erfindungsgemäßen photovoltaischen Zelle enthaltend die Schritte:
    • – Erzeugen einer Schicht aus dem Halbleitermaterial der Formel (I) oder (II) und
    • – Einbringen eines Metallhalogenids, das ein Metall ausgewählt aus der Gruppe Kupfer, Bismut, Germanium und Zinn und ein Halogen ausgewählt aus der Gruppe Fluor, Chlor, Brom oder Iod enthält, in die Schicht.
  • Die aus dem Halbleitermaterial der Formel (I) oder (II) erzeugte Schicht weist dabei vorzugsweise eine Dicke von 0,1 bis 20 μm, bevorzugt von 0,1 bis 10 μm, besonders bevorzugt von 0,3 bis 3 μm auf. Diese Schicht wird vorzugsweise durch mindestens ein Abscheidungsverfahren ausgewählt aus der Gruppe Sputtern, elektrochemisches Abscheiden oder stromloses Abscheiden erzeugt. Sputtern bezeichnet das Herausschlagen von Clustern, die etwa 1.000 bis 10.000 Atome umfassen, aus einem als Elektrode dienenden Sputtertarget durch beschleunigte Ionen und die Deposition des herausgeschlagenen Materials auf einem Substrat. Die gemäß dem erfindungsgemäßen Verfahren hergestellten Schichten aus dem Halbleitermaterial der Formel (I) oder (II) werden besonders bevorzugt durch Sputtern hergestellt, weil gesputterte Schichten erhöhte Qualitäten aufweisen. Möglich ist aber auch die Abscheidung von Zink auf einem geeigneten Substrat und die nachträgliche Reaktion mit einem Te-Dampf bei Temperaturen unterhalb von 400°C und in Gegenwart von Wasserstoff. Ferner ist auch die elektrochemische Abscheidung von ZnTe zum Erzeugen einer Schicht aus dem Halbleitermaterial der Formel (I) oder (II) geeignet.
  • Das Einbringen eines Metallhalogenids, das ein Metall ausgewählt aus der Gruppe Kupfer, Antimon, Bismut, Germanium und Zinn und ein Halogen ausgewählt aus der Gruppe Fluor, Chlor, Brom und Iod enthält, in die Schicht aus dem Halbleitermaterial erfolgt erfindungsgemäß durch das Kontaktieren der Schicht mit einem Dampf des Metallhalogenids. Dabei wird die Schicht aus dem Halbleitermaterial gemäß Formel (I) oder (II) mit dem Dampf des Metallhalogenids vorzugsweise bei Temperaturen von 200 bis 1000°C, besonders bevorzugt von 500 bis 900°C in Kontakt gebracht.
  • Besonders bevorzugt ist das Einbringen des Metallhalogenids während der Synthese des Zinktellurids in evakuierten Quarzgefäßen. Dabei werden Zink, ggf. Mangan, Tellur sowie das Metallhalogenid oder Mischungen der Metallhalogenide in das Quarzgefäß eingefüllt, das Quarzgefäß evakuiert und im Vakuum abgeschmolzen. Danach wird das Quarzgefäß in einem Ofen erhitzt, zunächst rasch auf ca. 400°C, weil unterhalb der Schmelzpunkte von Zn und Te keine Reaktion stattfindet. Sodann wird die Temperatur langsamer erhöht mit Raten von 20 bis 100 °C/h bis auf 800 bis 1200 °C, vorzugsweise auf 1000 bis 1100 °C. Sei dieser Temperatur findet die Ausbildung des Festkörpergefüges statt. Die dazu notwendige Zeit beträgt 1 bis 20 h, bevorzugt 2 bis 10 h. Danach findet das Erkalten statt. Der Inhalt des Quarzgefäßes wird unter Feuchteausschluss auf Teilchengrößen von 0,1 bis 1 mm zerbrochen und diese Teilchen werden dann z.B. in einer Kugelmühle auf Teilchengrößen von 1 bis 30 μm, bevorzugt von 2 bis 20 μm zerkleinert. Aus dem so erhaltenen Pulver werden durch Heißpressen bei 400 bis 1200°C, bevorzugt bei 800 bis 800 °C und Drucken von 100 bis 5000kp/cm2, vorzugsweise 200 bis 2000 kp/cm2 Sputtertargets hergestellt.
  • Bei dem erfindungsgemäßen Verfahren werden vorzugsweise Metallhalogenide in einer Konzentration von 0,001 bis 0,1 Mol pro Mol Tellurid, besonders bevorzugt von 0,005 bis 0,05 Mol pro Mol Tellurid in die Schicht aus dem Halbleitermaterial der Formel (I) oder (II) eingebracht.
  • In weiteren, dem Fachmann bekannten Verfahrensschritten wird die erfindungsgemäße photovoltaische Zelle durch das erfindungsgemäße Verfahren fertiggestellt.
  • Die Beispiele werden nicht an dünnen Schichten, sondern an Pulvern durchgeführt. Die gemessenen Eigenschaften der Halbleitermaterialien mit Metallhalogeniden wie Energielücke, Leitfähigkeit oder Seebeck-Koeffizient sind nicht dickeabhängig und deshalb genauso aussagekräftig.
  • Die in der Ergebnistabelle angegebenen Zusammensetzungen werden in evakuierten Quarzröhren durch Reaktion der Elemente in Gegenwart der Metallhalogenide hergestellt. Dazu wurden die Elemente mit einer Reinheit jeweils besser als 99,99 % in Quarzröhren eingewogen, die Restfeuchte durch Erwärmen im Vakuum entfernt und die Röhren im Vakuum abgeschmolzen. In einem schräg stehenden Rohrofen wurden die Röhren innerhalb von 20 h von Raumtemperatur auf 1.100°C erwärmt und die Temperatur sodann 5 h lang bei 1.100°C belassen. Danach wurde der Ofen abgeschaltet und abkühlen gelassen.
  • Nach dem Erkalten wurden die so hergestellten Telluride in einem Achatmörser zu Pulver mit Korngrößen unterhalb 30 μm zerkleinert. Diese Pulver werden bei Raum temperatur unter einem Druck von 3000 kp/cm2 zu Scheiben mit 13 mm Durchmesser gepresst.
  • Es wurde jeweils eine Scheibe von grauschwarzer Farbe erhalten, die einen schwachen rötlichen Schimmer aufwies.
  • In einem Seebeck-Experiment wurden die Materialien auf der einen Seite auf 130°C erhitzt, die andere wurde auf 30°C gehalten. Mit einem Voltmeter wurde die Leerlaufspannung gemessen. Dieser Wert dividiert durch 100 ergibt den mittleren in der Ergebnistabelle angegebenen Seebeck-Koeffizienten.
  • In einem zweiten Experiment wurde die elektrische Leitfähigkeit gemessen. Aus den Absorptionen im optischen Reflexionsspektrum ergaben sich die Werte der Bandlücke zwischen Valenz- und Leitungsband zu 2,2 bis 2,3 eV und jeweils ein Zwischenniveau bei 0,3 bis 0,95 eV.
  • Figure 00080001
    Ergebnistabelle

Claims (10)

  1. Photovoltaische Zelle mit einem photovoltaisch aktiven Halbleitermaterial der Formel (I) oder (II): ZnTe (I) Zn1-xMnxTe (II)mit x = Zahl von 0,01 bis 0,7, wobei das photovoltaisch aktive Halbleitermaterial ein Metallhalogenid enthält, das ein Metall ausgewählt aus der Gruppe Germanium, Zinn, Antimon, Bismut und Kupfer und ein Halogen ausgewählt aus der Gruppe Fluor, Chlor, Brom und Iod enthält.
  2. Photovoltaische Zelle gemäß Anspruch 1, dadurch gekennzeichnet, dass das Metallhalogenid Ionen mindestens eines Metallhalogens aus der Gruppe CuF2, BiF3, BiCl3, BiBr3, BiI3, SbF3, SbCl3, SbBr3, GeI4, SnBr2, SnF4, SnCl2 und SnI2 umfasst.
  3. Photovoltaische Zelle gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass in dem photovoltaisch aktiven Halbleitermaterial das Metallhalogenid in einer Konzentration von 0,001 bis 0,1 Mol pro Mol Tellurid enthalten ist.
  4. Photovoltaische Zelle gemäß einem der Ansprüche 1 bis 3, gekennzeichnet durch eine p-leitende Absorberschicht aus dem das Metallhalogenid enthaltenden Halbleitermaterial.
  5. Photovoltaische Zelle gemäß einem der Ansprüche 1 bis 3, gekennzeichnet durch eine p-leitende Kontaktschicht aus dem das Metallhalogenid enthaltenden Halbleitermaterial.
  6. Photovoltaische Zelle gemäß Anspruch 5, dadurch gekennzeichnet, dass die p-leitende Kontaktschicht auf einem n-leitenden Absorber angeordnet ist, der ein Germanium-dotiertes Bismutsulfid enthält.
  7. Verfahren zur Herstellung einer photovoltaischen Zelle gemäß einem der Ansprüche 1 bis 6, gekennzeichnet durch das Erzeugen einer Schicht aus dem Halbleitermaterial der Formel (I) oder (II) und Einbringen eines Metallhalogenids, das ein Metall ausgewählt aus der Gruppe Kupfer, Bismut, Germanium und Zinn und ein Halogen ausgewählt aus der Gruppe Fluor, Chlor, Brom und Iod enthält, in die Schicht.
  8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass eine Schicht aus dem Halbleitermaterial der Formel (I) oder (II) erzeugt wird, die eine Dicke von 0,1 bis 20 μm aufweist.
  9. Verfahren gemäß einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die Schicht durch mindestens ein Abscheidungsverfahren ausgewählt aus der Gruppe Sputtern, elektrochemisches Abscheiden oder stromloses Abscheiden erzeugt wird.
  10. Verfahren gemäß einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das Einbringen des Metallhalogenids durch das Kontaktieren der Schicht mit einem Dampf des Metallhalogenids bei einer Temperatur zwischen 200°C und 1000°C erfolgt.
DE102005010790A 2005-03-09 2005-03-09 Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial Withdrawn DE102005010790A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102005010790A DE102005010790A1 (de) 2005-03-09 2005-03-09 Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial
US11/817,167 US20080163928A1 (en) 2005-03-09 2006-03-07 Photovoltaic Cell Containing a Semiconductor Photovoltaically Active Material
EP06708672A EP1859487A2 (de) 2005-03-09 2006-03-07 Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial
JP2008500185A JP2008533712A (ja) 2005-03-09 2006-03-07 光電活性半導体材料を含む光電池
PCT/EP2006/060522 WO2006094980A2 (de) 2005-03-09 2006-03-07 Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial
CA002599412A CA2599412A1 (en) 2005-03-09 2006-03-07 Photovoltaic cell containing a semiconductor photovoltaically active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005010790A DE102005010790A1 (de) 2005-03-09 2005-03-09 Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial

Publications (1)

Publication Number Publication Date
DE102005010790A1 true DE102005010790A1 (de) 2006-09-14

Family

ID=36677215

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102005010790A Withdrawn DE102005010790A1 (de) 2005-03-09 2005-03-09 Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial

Country Status (6)

Country Link
US (1) US20080163928A1 (de)
EP (1) EP1859487A2 (de)
JP (1) JP2008533712A (de)
CA (1) CA2599412A1 (de)
DE (1) DE102005010790A1 (de)
WO (1) WO2006094980A2 (de)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036015A1 (en) 2000-10-30 2002-05-10 The General Hospital Corporation Optical methods and systems for tissue analysis
EP1388597B1 (de) * 2001-04-04 2013-02-13 Nippon Mining & Metals Co., Ltd. VERFAHREN ZUR HERSTELLUNG VON n-type ZnTe-VERBINDUNGSHALBLEITER-EINKRISTALL AUF EINEM ZNTE-SUBSTRAT UND HALBLEITERVORRICHTUNG
CA2519937C (en) 2003-03-31 2012-11-20 Guillermo J. Tearney Speckle reduction in optical coherence tomography by path length encoded angular compounding
WO2006014392A1 (en) 2004-07-02 2006-02-09 The General Hospital Corporation Endoscopic imaging probe comprising dual clad fibre
WO2006024015A1 (en) 2004-08-24 2006-03-02 The General Hospital Corporation Method and apparatus for imaging of vessel segments
EP1816949A1 (de) 2004-11-29 2007-08-15 The General Hospital Corporation Anordnungen, vorrichtungen, endoskope, katheter und verfahren für die optische bilddarstellung durch gleichzeitige beleuchtung und nachweis von mehreren punkten auf einer probe
EP2085929A1 (de) 2005-04-28 2009-08-05 The General Hospital Corporation Beurteilung von optischen Kohärenztomographieinformationen für eine anatomische Struktur
JP5702049B2 (ja) 2005-06-01 2015-04-15 ザ ジェネラル ホスピタル コーポレイション 位相分解光学周波数領域画像化を行うための装置、方法及びシステム
EP2207008A1 (de) 2005-08-09 2010-07-14 The General Hospital Corporation Gerät und Verfahren zur Durchführung von polarisationsbasierter Quadraturdemulation bei optischer Kohärenztomographie
EP1928306B1 (de) 2005-09-29 2021-01-13 General Hospital Corporation OPTISCHES KOHÄRENZTOMOGRAFIESYSTEME UND VERFAHREN MIT MIKROSKOPISCHER Fluoreszensbildgebung VON EINER ODER MEHR BIOLOGISCHEN STRUKTUREN
US8145018B2 (en) 2006-01-19 2012-03-27 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
EP2289398A3 (de) 2006-01-19 2011-04-06 The General Hospital Corporation Verfahren und Systeme zur optischen Bildgebung von epithelialen Luminalorganen durch Strahlenabtastung dieser
JP5524487B2 (ja) 2006-02-01 2014-06-18 ザ ジェネラル ホスピタル コーポレイション コンフォーマルレーザ治療手順を用いてサンプルの少なくとも一部分に電磁放射を放射する方法及びシステム。
EP2659851A3 (de) 2006-02-01 2014-01-15 The General Hospital Corporation Vorrichtung zur Anwendung mehrerer elektromagnetischer Strahlungen auf einer Probe
EP1987318B1 (de) 2006-02-24 2015-08-12 The General Hospital Corporation Verfahren und systeme zur durchführung von winkelaufgelöster optischer kohärenztomografie im fourier-bereich
EP3150110B1 (de) 2006-05-10 2020-09-02 The General Hospital Corporation Verfahren, anordnungen und systeme zur bereitstellung von frequenzbereichsabbildung einer probe
WO2008049118A2 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample and effecting such portion(s)
WO2009137701A2 (en) 2008-05-07 2009-11-12 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
EP2309923B1 (de) 2008-07-14 2020-11-25 The General Hospital Corporation Vorrichtung und verfahren für eine farbendoskopie
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
CN104134928A (zh) 2009-02-04 2014-11-05 通用医疗公司 利用高速光学波长调谐源的设备和方法
CN102469943A (zh) 2009-07-14 2012-05-23 通用医疗公司 用于测量脉管内流动和压力的设备、系统和方法
PT2542154T (pt) 2010-03-05 2020-11-25 Massachusetts Gen Hospital Aparelho para proporcionar radiação eletromagnética a uma amostra
WO2011131801A1 (es) * 2010-04-22 2011-10-27 Bermudez Benito Veronica Material semiconductor para utilizar como capa activa/absorbedor de dispositivos fotovoltaicos, metodo para formar dicha capa activa, asi como celula fotovoltaica que incorpora dicha capa
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
WO2011150069A2 (en) 2010-05-25 2011-12-01 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
WO2011149972A2 (en) 2010-05-25 2011-12-01 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
EP2632324A4 (de) 2010-10-27 2015-04-22 Gen Hospital Corp Vorrichtungen, systeme und verfahren zur blutdruckmessung in mindestens einem gefäss
WO2013013049A1 (en) 2011-07-19 2013-01-24 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
WO2013066631A1 (en) 2011-10-18 2013-05-10 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
EP2833776A4 (de) 2012-03-30 2015-12-09 Gen Hospital Corp Abbildungssystem, verfahren und distaler anschluss zur multidirektionalen sichtfeldendoskopie
WO2013177154A1 (en) 2012-05-21 2013-11-28 The General Hospital Corporation Apparatus, device and method for capsule microscopy
EP2888616A4 (de) 2012-08-22 2016-04-27 Gen Hospital Corp System, verfahren, und über computer zugängliches medium zur herstellung eines miniaturendoskops mit weicher lithografie
EP2948758B1 (de) 2013-01-28 2024-03-13 The General Hospital Corporation Vorrichtung zur bereitstellung von gemeinsam mit optischer frequenzdomänenbildgebung aufgezeichneter diffuser spektroskopie
WO2014120791A1 (en) 2013-01-29 2014-08-07 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
WO2014121082A1 (en) 2013-02-01 2014-08-07 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
WO2014186353A1 (en) 2013-05-13 2014-11-20 The General Hospital Corporation Detecting self-interefering fluorescence phase and amplitude
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
EP4349242A2 (de) 2013-07-19 2024-04-10 The General Hospital Corporation Bildgebungsvorrichtung und verfahren mit multidirektionaler sichtfeldendoskopie
WO2015013651A2 (en) 2013-07-26 2015-01-29 The General Hospital Corporation System, apparatus and method utilizing optical dispersion for fourier-domain optical coherence tomography
WO2015105870A1 (en) 2014-01-08 2015-07-16 The General Hospital Corporation Method and apparatus for microscopic imaging
WO2015116986A2 (en) 2014-01-31 2015-08-06 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
WO2015153982A1 (en) 2014-04-04 2015-10-08 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
ES2907287T3 (es) 2014-07-25 2022-04-22 Massachusetts Gen Hospital Aparato para imagenología y diagnóstico in vivo

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950615A (en) * 1989-02-06 1990-08-21 International Solar Electric Technology, Inc. Method and making group IIB metal - telluride films and solar cells
JPH1154773A (ja) * 1997-08-01 1999-02-26 Canon Inc 光起電力素子及びその製造方法

Also Published As

Publication number Publication date
EP1859487A2 (de) 2007-11-28
US20080163928A1 (en) 2008-07-10
CA2599412A1 (en) 2006-09-14
WO2006094980A2 (de) 2006-09-14
JP2008533712A (ja) 2008-08-21
WO2006094980A3 (de) 2006-12-07

Similar Documents

Publication Publication Date Title
DE102005010790A1 (de) Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial
DE2639841C3 (de) Solarzelle und Verfahren zu ihrer Herstellung
EP1972014A1 (de) Photovoltaisch aktives halbleitermaterial und photovoltaische zelle
DE69727655T2 (de) Verfahren zur herstellung einer cdte-schicht
DE202008009492U1 (de) Halbleitermaterial und dessen Verwendung als Absorptionsmaterial für Solarzellen
DE102011054716A1 (de) Gemischtes Sputtertarget aus Cadmiumsulfid und Cadmiumtellurid und Verfahren zu ihrer Verwendung
WO2007039562A2 (de) Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial
DE3308598A1 (de) Rueckreflektorsystem fuer sperrschicht-fotoelemente
DE102012218265B4 (de) Rückseitenfeld-Strukturen für Mehrfachübergang-III-V-Photovoltaikeinheiten und Verfahren zum Herstellen einer Mehrfachübergang-III-V-Photovoltaikeinheit
EP1807872B1 (de) Photovoltaische zelle mit einem photovoltaisch aktiven halbleitermaterial
EP2865011B1 (de) Schichtsystem für dünnschicht-solarzellen mit einer naxinisyclz-pufferschicht
Kolhe et al. Study of physico-chemical properties of Cu2NiSnS4 thin films
EP2887405A1 (de) Schichtsystem für Dünnschichtsolarzellen
DE3049226A1 (de) "solarzelle"
WO2005114756A2 (de) Antimonide mit neuen eigenschaftskombinationen
DE102010004359B4 (de) Optoelektronisches Funktionsmaterial, seine Herstellung und Verwendung
EP2865012A1 (de) Schichtsystem für dünnschichtsolarzellen
DE102004052014A1 (de) Photovoltaische Zelle
EP0173641A2 (de) Halbleiterschicht auf einem Übergangsmetalldichalcogenid, Verfahren zu deren Herstellung und Verwendung derartiger Halbleiterschichten für Solarzellen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee