US11224474B2 - System for managing high impedance changes in a non-thermal ablation system for BPH - Google Patents

System for managing high impedance changes in a non-thermal ablation system for BPH Download PDF

Info

Publication number
US11224474B2
US11224474B2 US16/287,551 US201916287551A US11224474B2 US 11224474 B2 US11224474 B2 US 11224474B2 US 201916287551 A US201916287551 A US 201916287551A US 11224474 B2 US11224474 B2 US 11224474B2
Authority
US
United States
Prior art keywords
power source
electrodes
ablation therapy
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/287,551
Other versions
US20200022748A1 (en
Inventor
Mark W. Kroll
Kai Kroll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prostacare Pty Ltd
Original Assignee
Prostacare Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prostacare Pty Ltd filed Critical Prostacare Pty Ltd
Priority to US16/287,551 priority Critical patent/US11224474B2/en
Publication of US20200022748A1 publication Critical patent/US20200022748A1/en
Application granted granted Critical
Publication of US11224474B2 publication Critical patent/US11224474B2/en
Assigned to PROSTACARE PTY LTD reassignment PROSTACARE PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KROLL, KAI, KROLL, MARK
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B18/1233Generators therefor with circuits for assuring patient safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1485Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00547Prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00755Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/124Generators therefor switching the output to different electrodes, e.g. sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1266Generators therefor with DC current output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/143Needle multiple needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/1432Needle curved

Definitions

  • Embodiments generally relate to circuit protection for electrical systems, and more particularly to an overload protection circuit for monitoring high impedance changes in a non-thermal DC ablation system for prostate treatment.
  • Benign prostatic hyperplasia is a common ailment among older men in which the prostate gland becomes enlarged. As the prostate enlarges, it can compress the urethra which in turn can cause extreme discomforts such as excessive urination, uncontrollable urination, incomplete emptying of the bladder, weak urine streams, or painful or bloody urination.
  • the level of treatment can vary relative to the extent of discomfort or symptoms experienced. For example, such treatment could include lifestyle changes, drug therapy, non-surgical procedures, or surgical procedures. Surgical treatments of BPH may or may not be minimally invasive. For the surgical methods, access to the prostate may be via the urethra, the perineum, or other route.
  • Non-minimally invasive surgical treatments include Trans Urethral Resection of the Prostate (TURP). Conducted in an operating room under general or spinal anesthetic, a probe is passed through the urethra which scrapes away prostate tissue causing the blockage. Side effects may include retrograde ejaculation, impotence, and a repeat of the procedure if the blockage regrows.
  • TURP Trans Urethral Resection of the Prostate
  • Minimally invasive surgical treatments usually offer the incentives of less pain, faster recovery, lower costs, and use of local anesthesia and a mild sedative.
  • minimally invasive surgical treatments destroy prostate tissue through one of various mechanisms. The destroyed prostate tissue may be reabsorbed by the body and/or discharged into the urine over a period of time.
  • Minimally-invasive surgical treatment options include generation of heat, freezing, chemical means, ultrasound, and non-thermal ablation to destroy prostate tissue. Examples of non-thermal ablation therapies and systems for treatment of BPH are described in U.S. Pat. Nos. 9,211,155 and 9,597,145, and U.S. Publ. Appl. Nos. 2010/0049192 and 2011/0106072, all of which are commonly owned by the assignee of the present application, and the disclosures of each of which are hereby incorporated by reference.
  • Embodiments are directed to systems for controlling impedance swings for a DC ablation non-thermal BPH therapy system that delivers an essentially constant current to electrodes inside the prostate tissue to be removed.
  • a gas bubble can largely enclose an electrode leading to a sudden short term impedance rise due to the nonconductance of the gas.
  • the tissue near the electrode can become desiccated leading to a gradual increase in impedance.
  • the sudden increase in impedance leads to a rapid voltage increase which can be painful to the patient.
  • the increased impedance reduces the effectiveness of the process by reducing or eliminating the current.
  • a protection circuit is provided as part of a DC ablation non-thermal BPH therapy system and includes a power source configured to supply power to the circuit and an overload protection device configured to limit the peak voltage.
  • a capacitor circuit is used to prevent sudden voltage spikes.
  • the protection circuit further includes a switching circuit configured to selectively control a supply path from the power source and the overload protection device.
  • the protection circuit may also include a monitoring circuit comprising a reference unit, wherein the reference unit is configured to provide a reference signal.
  • the protection circuit may further include a controller coupled to the monitoring circuit, wherein the controller is configured to activate the switching circuit based on the reference signal.
  • the protection circuitry may be configured to modify the pathways for current delivery for the non-thermal BPH therapy.
  • Some embodiments are directed to a method of restricting excess voltage via a protection circuit.
  • the method generally includes receiving a reference signal characterizing an event of the protection circuit, enabling an overload protection device, and selectively utilizing the overload protection device.
  • An embodiment is directed to a direct current (DC) prostate ablation therapy system including: a catheter; a power source; an overload protection device; a monitoring circuit; a switching circuit; and a controller.
  • the catheter includes a plurality of electrodes configured to deliver a DC ablation therapy to prostate tissue.
  • the power source is configured to supply a DC current to the plurality of electrodes.
  • the overload protection device is configured to buffer energy from the power source.
  • the monitoring circuit is configured to monitor a voltage of the DC ablation therapy.
  • the switching circuit is configured to selectively control a path of the DC current from the power source to the plurality of electrodes and the overload protection device.
  • the controller is configured to selectively activate the switching circuit in response to the monitoring circuit detecting an undesirable increase in the voltage delivered for the DC ablation therapy.
  • the power source is configured to selectively supply the DC current as a constant current of between 10 to 50 mA of direct current.
  • the overload protection device comprises at least one capacitor.
  • each of the plurality of electrodes comprises at least one anode and at least one cathode. In some cases, each anode of each of the plurality of electrodes is electrically coupled to the power source via the switching circuit.
  • An embodiment is directed to a direct current (DC) prostate ablation therapy system including: a catheter; a power source; an overload protection device; a monitoring circuit; a switching circuit; and a controller.
  • the catheter includes a plurality of electrodes configured to deliver a DC ablation therapy to prostate tissue.
  • the power source is configured to supply a DC current to the plurality of electrodes.
  • the overload protection device is configured to buffer energy from the power source.
  • the monitoring circuit is configured to monitor an impedance of the DC ablation therapy.
  • the switching circuit is configured to selectively control a path of the DC current from the power source to the plurality of electrodes and the overload protection device.
  • the controller is configured to selectively activate the switching circuit in response to the monitoring circuit detecting an undesirable change in the impedance for the DC ablation therapy.
  • An embodiment is directed to a direct current (DC) prostate ablation therapy system including: a catheter; a power source; an overload protection device; a monitoring circuit; a switching circuit; and a controller.
  • the catheter includes a plurality of electrodes configured to deliver a DC ablation therapy to prostate tissue.
  • the power source is configured to supply a DC current to the plurality of electrodes.
  • the overload protection device is configured to buffer energy from the power source.
  • the monitoring circuit is configured to monitor a parameter of the DC ablation therapy.
  • the switching circuit is configured to selectively control a path of the DC current from the power source to the plurality of electrodes and the overload protection device.
  • the controller is configured to selectively activate the switching circuit in response to the monitoring circuit detecting a change in the parameter for the DC ablation therapy indicative of an undesirable increase in an energy being delivered by the DC ablation therapy.
  • FIG. 1 shows a system for treating tissue, according to an embodiment
  • FIG. 2 shows a generator circuit, according to an embodiment with overvoltage protection
  • FIG. 3A shows a schematic diagram of an overload protection device, according to a capacitor embodiment
  • FIG. 3B shows a capacitor embodiment
  • FIG. 4A shows a voltage spike with a gas bubble, according to an embodiment
  • FIG. 4B shows a voltage spike with a gas bubble being reduced with the capacitor embodiment
  • FIG. 5A shows two cathodes in parallel and two anodes in parallel and the associated treatment zones with moderate resistance, according to an embodiment
  • FIG. 5B shows an electrical diagram of FIG. 4A , according to an embodiment.
  • system 100 includes a generator 102 , electrodes 108 , and a catheter 104 , which is electrically coupled to generator 102 via cable 160 .
  • the catheter 104 may be inserted in the body to a desired location for tissue treatment. Once positioned, the electrodes 108 may be deployed through the catheter 104 , while the position of the catheter 104 is maintained utilizing a fixation element.
  • generator 102 provides power to electrodes 108 , which then apply a DC current to a treatment area of the tissue. The tissue is thus treated by DC ablation in a non-thermal manner.
  • the electrodes 108 deploy outwardly from the catheter 104 . Such outward deployment may be, for example, radial or may be linear. Generally, the electrodes 108 may be coupled to the catheter 104 or to a support structure in the catheter 104 . The electrodes 108 further are configured to resist corrosion. In some embodiments, the electrodes 108 may comprise a Nitinol wire with a corrosion resistant coating. The corrosion resistant coating may be, for example, platinum or platinum-iridium. Additionally, as will be discussed in further detail with reference to FIG. 2 , generator 102 comprises a load protection circuit 206 , to detect and manage increases in impedance at the electrodes that can be caused by gas bubble formations at the surface of electrodes 108 .
  • generator circuit 200 can comprise a power source 202 , a controller 204 , and a load protection circuit 206 operably coupled to drive an electrode load circuit 208 .
  • Power source 202 can comprise a direct current (DC) power source or an alternating current (AC) power source coupled to a converter that converts the AC power to DC power.
  • Controller 204 which is electrically coupled to power source 202 and load protection circuit 206 , can comprise analog circuitry, a microprocessor, a field programmable gate array, a programmable logic controller (PLC), and/or other suitable processing components in various embodiments.
  • PLC programmable logic controller
  • load protection circuit 206 can comprise a monitoring circuit 210 , a switching circuit 212 , and an overload protection device 214 (or other buffer device configured to provide buffer energy to the circuit), which act together to monitor and protect against high impedance load conditions that can arise during treatment. For example, during treatment, as charge is delivered to the electrodes 108 , gas formation at the electrode surface or local dehydration, thus leading to increased impedances at the electrode/tissue interface.
  • Monitoring circuit 210 is connected to the electrode load circuit 208 to detect the conditions of load and generate a detection signal VL based on the load condition.
  • monitoring circuit 210 can be configured to detect the output voltage (V OUT ) of the electrical load circuit 208 , while in other embodiments it can be configured to detect load impedance. In still other embodiments, monitoring circuit 210 can be configured to detect other parameters related to the load current. In embodiments, monitoring circuit 210 can comprise a comparator that compares the output voltage with a predetermined threshold voltage, and generates a control signal to controller 204 based upon the measured condition. For example, when the monitoring circuit 210 detects that the output voltage is above the predetermined threshold (e.g., if gas bubbles have formed at the electrode surface or the treated tissue has become dehydrated), the monitoring circuit 210 sends a control signal to the controller 204 to activate the switching circuit 212 . In various embodiments, the comparator can include an operational amplifier, a multiplier, a subtractor, a digital microprocessor, or other suitable detection devices. Additionally, circuit 200 can comprise two or more comparator circuits in other embodiments.
  • monitoring circuit 210 can be coupled to an output of electrode load circuit 208 and an input of switching circuit 212 .
  • monitoring circuit 210 can comprise a comparator or other suitable detection device to monitor high impedance conditions at the electrode load circuit 208 .
  • monitoring circuit 210 may further comprise a filtering circuit having resistive-capacitive elements to stabilize the output signal received by load circuit 208 .
  • Switching circuit 212 selectively enables and disables power flow to overload protection device 214 (i.e. buffer) and load circuit 208 based on an output signal of monitoring circuit 210 , which generates an overload signal in response to an overload condition.
  • switching circuit 212 can comprise at least one switch 220 as shown in FIG. 3A .
  • the at least one switch 220 may include, for example, metal-oxide-semiconductor field-effect-transistors (MOSFETs), insulated-gate bipolar transistors (IGBTs), gallium arsenide field-effect transistors (GaAsFETs), Gallium Nitride transistors (GaNFETs), bipolar junction transistors (BJTs), or other suitable active devices.
  • MOSFETs metal-oxide-semiconductor field-effect-transistors
  • IGBTs insulated-gate bipolar transistors
  • GaAsFETs gallium arsenide field-effect transistors
  • GaNFETs Gallium Nitride transistors
  • overload protection device 214 can comprise a capacitor 240 coupled in parallel to power source 202 (see FIG. 3A ).
  • switching circuit 212 couples capacitor 240 to power source 202 in a charging position for charging the capacitor, and to an open discharging position for discharging capacitor 240 .
  • capacitor 240 can be sized between approximately 250 ⁇ F to 125 mF.
  • a filter circuit including resistive-capacitive elements may be incorporated into the protection circuit to reduce the electrical noise at the output.
  • FIG. 3B shows the preferred embodiment in which two electrolytic capacitors are connected in series with back biased diodes and anti-parallel configuration. This allows the use of large capacitance values and positive and negative voltages.
  • a typical ablation current is 25 mA and the duration of a gas bubble is 100 ms-10 s.
  • the capacitance values will be between:
  • FIG. 4A shows a typical voltage being delivered during DC ablation with a sudden increase during gas bubble formation. Since the conventional circuitry delivers a constant current, this voltage will be proportional to the impedance. If the impedance suddenly jumps to a very high value then the output voltage will go to the maximum available from the conventional circuitry.
  • FIG. 4B shows the output voltage being delivered during DC ablation with a smaller and slower increase during gas bubble formation with the instant invention.
  • protection circuit 206 can comprise a series of electrodes electrically coupled in parallel.
  • at least one anode pair and at least one cathode pair may be provided in parallel.
  • FIG. 5A illustrates a first anode 422 , a second anode 426 , a first cathode 420 , and a second cathode 424 .
  • two anodes and two cathodes are illustrated in FIGS. 5A and 5B , it should be noted that, in other embodiments, three or more electrodes may be placed in parallel.
  • FIG. 5A further illustrates the treatment areas 423 and 427 associated with the anodes and the cathodes.
  • each electrode of an anode pair or cathode pair may be at approximately the same potential and be placed in close proximity. Providing electrodes in parallel and in close proximity can ensure continued treatment even if one electrode has a high impedance due to local dehydration. More specifically, if one anode (or cathode) of an anode (or cathode) pair loses contact, the area will continue to be treated by the other anode (or cathode) in parallel. Additionally, arranging each electrode pair in parallel allows for each to be independently controlled.
  • a power source such as power source 202
  • monitoring circuit 210 monitors the rate of change of voltage (dV/dt) of electrode load circuit 208 and prevents the voltage from rising in the event of a voltage spike in one embodiment.
  • dV/dt of the electrode load circuit is greater than a threshold level, a high impedance condition (i.e., bubble formation) is indicated and switching circuit 212 enables a discharge of the overload protection device 214 , thereby limiting the voltage rise (dV/dt) at the output in relation to the discharge rate of the overload protection capacitor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

A protection circuit for a direct-current (DC) ablation prostate therapy system. The protection circuit is selectively coupled to a power source that provides DC constant current to a plurality of electrodes in a catheter configured to deliver DC ablation therapy to prostate tissue. The protection circuit is controlled by a controller and a switching circuit to buffer energy from the power source in response to a monitoring circuit that monitors at least one parameter of the DC ablation therapy, such as voltage or impedance. The controller is configured to selectively activate the switching circuit based on the monitoring circuit detecting an undesirable increase in the energy delivered for the DC ablation therapy.

Description

RELATED APPLICATION
This application claims the benefit of U.S. Provisional Application No. 62/636,636 filed Feb. 28, 2018, which is hereby fully incorporated herein by reference.
TECHNICAL FIELD
Embodiments generally relate to circuit protection for electrical systems, and more particularly to an overload protection circuit for monitoring high impedance changes in a non-thermal DC ablation system for prostate treatment.
BACKGROUND
Benign prostatic hyperplasia (BPH) is a common ailment among older men in which the prostate gland becomes enlarged. As the prostate enlarges, it can compress the urethra which in turn can cause extreme discomforts such as excessive urination, uncontrollable urination, incomplete emptying of the bladder, weak urine streams, or painful or bloody urination. Currently, there are various treatment options available for BPH. The level of treatment, however, can vary relative to the extent of discomfort or symptoms experienced. For example, such treatment could include lifestyle changes, drug therapy, non-surgical procedures, or surgical procedures. Surgical treatments of BPH may or may not be minimally invasive. For the surgical methods, access to the prostate may be via the urethra, the perineum, or other route.
Non-minimally invasive surgical treatments include Trans Urethral Resection of the Prostate (TURP). Conducted in an operating room under general or spinal anesthetic, a probe is passed through the urethra which scrapes away prostate tissue causing the blockage. Side effects may include retrograde ejaculation, impotence, and a repeat of the procedure if the blockage regrows.
Minimally invasive surgical treatments usually offer the incentives of less pain, faster recovery, lower costs, and use of local anesthesia and a mild sedative. In general, minimally invasive surgical treatments destroy prostate tissue through one of various mechanisms. The destroyed prostate tissue may be reabsorbed by the body and/or discharged into the urine over a period of time. Minimally-invasive surgical treatment options include generation of heat, freezing, chemical means, ultrasound, and non-thermal ablation to destroy prostate tissue. Examples of non-thermal ablation therapies and systems for treatment of BPH are described in U.S. Pat. Nos. 9,211,155 and 9,597,145, and U.S. Publ. Appl. Nos. 2010/0049192 and 2011/0106072, all of which are commonly owned by the assignee of the present application, and the disclosures of each of which are hereby incorporated by reference.
While providing advantages over conventional surgical treatments for BPH, minimally invasive surgical treatments have other issues that must be addressed. Care must be taken to avoid inadvertent nerve stimulation during minimally invasive treatment. For non-thermal ablation, for example, gas bubbles can form within the prostate tissue, thereby inducing voltage spikes which cause temporary unpleasant sensations to occur within patients. It would be desirable to provide improvements to non-thermal BPH treatment systems that could address these issues.
SUMMARY
Embodiments are directed to systems for controlling impedance swings for a DC ablation non-thermal BPH therapy system that delivers an essentially constant current to electrodes inside the prostate tissue to be removed.
There are two issues that occur with present DC ablation systems involving impedance increases. First, a gas bubble can largely enclose an electrode leading to a sudden short term impedance rise due to the nonconductance of the gas. Second, the tissue near the electrode can become desiccated leading to a gradual increase in impedance. In cases of the first issue, the sudden increase in impedance leads to a rapid voltage increase which can be painful to the patient. In cases of the second issue, the increased impedance reduces the effectiveness of the process by reducing or eliminating the current.
In various embodiments, a protection circuit is provided as part of a DC ablation non-thermal BPH therapy system and includes a power source configured to supply power to the circuit and an overload protection device configured to limit the peak voltage. A capacitor circuit is used to prevent sudden voltage spikes.
In certain embodiments, the protection circuit further includes a switching circuit configured to selectively control a supply path from the power source and the overload protection device. The protection circuit may also include a monitoring circuit comprising a reference unit, wherein the reference unit is configured to provide a reference signal. The protection circuit may further include a controller coupled to the monitoring circuit, wherein the controller is configured to activate the switching circuit based on the reference signal.
In the case of gradual impedance rises from desiccation, the protection circuitry may be configured to modify the pathways for current delivery for the non-thermal BPH therapy.
Some embodiments are directed to a method of restricting excess voltage via a protection circuit. The method generally includes receiving a reference signal characterizing an event of the protection circuit, enabling an overload protection device, and selectively utilizing the overload protection device.
An embodiment is directed to a direct current (DC) prostate ablation therapy system including: a catheter; a power source; an overload protection device; a monitoring circuit; a switching circuit; and a controller. The catheter includes a plurality of electrodes configured to deliver a DC ablation therapy to prostate tissue. The power source is configured to supply a DC current to the plurality of electrodes. The overload protection device is configured to buffer energy from the power source. The monitoring circuit is configured to monitor a voltage of the DC ablation therapy. The switching circuit is configured to selectively control a path of the DC current from the power source to the plurality of electrodes and the overload protection device. The controller is configured to selectively activate the switching circuit in response to the monitoring circuit detecting an undesirable increase in the voltage delivered for the DC ablation therapy.
In certain embodiments, the power source is configured to selectively supply the DC current as a constant current of between 10 to 50 mA of direct current.
In some embodiments, the overload protection device comprises at least one capacitor.
In some embodiments, each of the plurality of electrodes comprises at least one anode and at least one cathode. In some cases, each anode of each of the plurality of electrodes is electrically coupled to the power source via the switching circuit.
An embodiment is directed to a direct current (DC) prostate ablation therapy system including: a catheter; a power source; an overload protection device; a monitoring circuit; a switching circuit; and a controller. The catheter includes a plurality of electrodes configured to deliver a DC ablation therapy to prostate tissue. The power source is configured to supply a DC current to the plurality of electrodes. The overload protection device is configured to buffer energy from the power source. The monitoring circuit is configured to monitor an impedance of the DC ablation therapy. The switching circuit is configured to selectively control a path of the DC current from the power source to the plurality of electrodes and the overload protection device. The controller is configured to selectively activate the switching circuit in response to the monitoring circuit detecting an undesirable change in the impedance for the DC ablation therapy.
An embodiment is directed to a direct current (DC) prostate ablation therapy system including: a catheter; a power source; an overload protection device; a monitoring circuit; a switching circuit; and a controller. The catheter includes a plurality of electrodes configured to deliver a DC ablation therapy to prostate tissue. The power source is configured to supply a DC current to the plurality of electrodes. The overload protection device is configured to buffer energy from the power source. The monitoring circuit is configured to monitor a parameter of the DC ablation therapy. The switching circuit is configured to selectively control a path of the DC current from the power source to the plurality of electrodes and the overload protection device. The controller is configured to selectively activate the switching circuit in response to the monitoring circuit detecting a change in the parameter for the DC ablation therapy indicative of an undesirable increase in an energy being delivered by the DC ablation therapy.
The above summary is not intended to describe each illustrated embodiment or every implementation of the present invention. The detailed description and claims that follow more particularly exemplify these embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a system for treating tissue, according to an embodiment;
FIG. 2 shows a generator circuit, according to an embodiment with overvoltage protection;
FIG. 3A shows a schematic diagram of an overload protection device, according to a capacitor embodiment;
FIG. 3B shows a capacitor embodiment;
FIG. 4A shows a voltage spike with a gas bubble, according to an embodiment;
FIG. 4B shows a voltage spike with a gas bubble being reduced with the capacitor embodiment;
FIG. 5A shows two cathodes in parallel and two anodes in parallel and the associated treatment zones with moderate resistance, according to an embodiment; and
FIG. 5B shows an electrical diagram of FIG. 4A, according to an embodiment.
While embodiments are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
DETAILED DESCRIPTION OF THE DRAWINGS
Referring to FIG. 1, an ablation therapy system comprising a load protection circuit is depicted, according to an embodiment. As shown, system 100 includes a generator 102, electrodes 108, and a catheter 104, which is electrically coupled to generator 102 via cable 160. The catheter 104 may be inserted in the body to a desired location for tissue treatment. Once positioned, the electrodes 108 may be deployed through the catheter 104, while the position of the catheter 104 is maintained utilizing a fixation element. To treat tissue, generator 102 provides power to electrodes 108, which then apply a DC current to a treatment area of the tissue. The tissue is thus treated by DC ablation in a non-thermal manner. As illustrated, the electrodes 108 deploy outwardly from the catheter 104. Such outward deployment may be, for example, radial or may be linear. Generally, the electrodes 108 may be coupled to the catheter 104 or to a support structure in the catheter 104. The electrodes 108 further are configured to resist corrosion. In some embodiments, the electrodes 108 may comprise a Nitinol wire with a corrosion resistant coating. The corrosion resistant coating may be, for example, platinum or platinum-iridium. Additionally, as will be discussed in further detail with reference to FIG. 2, generator 102 comprises a load protection circuit 206, to detect and manage increases in impedance at the electrodes that can be caused by gas bubble formations at the surface of electrodes 108.
In FIG. 2, a block diagram of a generator circuit 200 is shown according to an embodiment. In embodiments, generator circuit 200 can comprise a power source 202, a controller 204, and a load protection circuit 206 operably coupled to drive an electrode load circuit 208. Power source 202 can comprise a direct current (DC) power source or an alternating current (AC) power source coupled to a converter that converts the AC power to DC power. Controller 204, which is electrically coupled to power source 202 and load protection circuit 206, can comprise analog circuitry, a microprocessor, a field programmable gate array, a programmable logic controller (PLC), and/or other suitable processing components in various embodiments.
In embodiments, load protection circuit 206 can comprise a monitoring circuit 210, a switching circuit 212, and an overload protection device 214 (or other buffer device configured to provide buffer energy to the circuit), which act together to monitor and protect against high impedance load conditions that can arise during treatment. For example, during treatment, as charge is delivered to the electrodes 108, gas formation at the electrode surface or local dehydration, thus leading to increased impedances at the electrode/tissue interface. Monitoring circuit 210 is connected to the electrode load circuit 208 to detect the conditions of load and generate a detection signal VL based on the load condition. In one embodiment, monitoring circuit 210 can be configured to detect the output voltage (VOUT) of the electrical load circuit 208, while in other embodiments it can be configured to detect load impedance. In still other embodiments, monitoring circuit 210 can be configured to detect other parameters related to the load current. In embodiments, monitoring circuit 210 can comprise a comparator that compares the output voltage with a predetermined threshold voltage, and generates a control signal to controller 204 based upon the measured condition. For example, when the monitoring circuit 210 detects that the output voltage is above the predetermined threshold (e.g., if gas bubbles have formed at the electrode surface or the treated tissue has become dehydrated), the monitoring circuit 210 sends a control signal to the controller 204 to activate the switching circuit 212. In various embodiments, the comparator can include an operational amplifier, a multiplier, a subtractor, a digital microprocessor, or other suitable detection devices. Additionally, circuit 200 can comprise two or more comparator circuits in other embodiments.
As depicted, monitoring circuit 210 can be coupled to an output of electrode load circuit 208 and an input of switching circuit 212. In embodiments, monitoring circuit 210 can comprise a comparator or other suitable detection device to monitor high impedance conditions at the electrode load circuit 208. In some embodiments, monitoring circuit 210 may further comprise a filtering circuit having resistive-capacitive elements to stabilize the output signal received by load circuit 208.
Switching circuit 212 selectively enables and disables power flow to overload protection device 214 (i.e. buffer) and load circuit 208 based on an output signal of monitoring circuit 210, which generates an overload signal in response to an overload condition. In some embodiments, switching circuit 212 can comprise at least one switch 220 as shown in FIG. 3A. The at least one switch 220 may include, for example, metal-oxide-semiconductor field-effect-transistors (MOSFETs), insulated-gate bipolar transistors (IGBTs), gallium arsenide field-effect transistors (GaAsFETs), Gallium Nitride transistors (GaNFETs), bipolar junction transistors (BJTs), or other suitable active devices. An output of switching circuit 212 is coupled to an input terminal of overload protection device 214 and operates to activate device 214 in response to a detected increase in impedance. In one embodiment, overload protection device 214 can comprise a capacitor 240 coupled in parallel to power source 202 (see FIG. 3A). In particular, switching circuit 212 couples capacitor 240 to power source 202 in a charging position for charging the capacitor, and to an open discharging position for discharging capacitor 240. Those of skill in the art will understand that the specific type and values of capacitor 240 and power source 202 may vary according to design and specification. For example, in various embodiments, capacitor 240 can be sized between approximately 250 μF to 125 mF. In some embodiments, a filter circuit including resistive-capacitive elements may be incorporated into the protection circuit to reduce the electrical noise at the output.
Steady state DC voltage is generally not painful like AC voltage stimulate is as the use of DC voltage tends to not stimulate nerves. However, a sudden increase or decrease in a DC voltage can be painful. Dalziel C F, Massoglia F P, “Let-go currents and voltages,” Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry. 1956; 75(2):49-56.
FIG. 3B shows the preferred embodiment in which two electrolytic capacitors are connected in series with back biased diodes and anti-parallel configuration. This allows the use of large capacitance values and positive and negative voltages.
Δ V = I Δ t C C = I Δ t Δ V
A typical ablation current is 25 mA and the duration of a gas bubble is 100 ms-10 s. In order to limit the maximum voltage increase to 2 volts the capacitance values will be between:
1250 μF = 25 mA · 100 ms 2 V and 125 mF = 25 mA · 10 s 2 V
Because the primary factor for the pain is dV/dt, even smaller capacitors may be helpful for reducing the pain. To reduce the dV/dt below 100 volts per second, a capacitor of 250 μF will suffice.
FIG. 4A shows a typical voltage being delivered during DC ablation with a sudden increase during gas bubble formation. Since the conventional circuitry delivers a constant current, this voltage will be proportional to the impedance. If the impedance suddenly jumps to a very high value then the output voltage will go to the maximum available from the conventional circuitry.
FIG. 4B shows the output voltage being delivered during DC ablation with a smaller and slower increase during gas bubble formation with the instant invention.
In other embodiments, referring now to FIGS. 5A and 5B, protection circuit 206 can comprise a series of electrodes electrically coupled in parallel. For example, as shown in FIGS. 5A and 5B, at least one anode pair and at least one cathode pair may be provided in parallel. FIG. 5A illustrates a first anode 422, a second anode 426, a first cathode 420, and a second cathode 424. Although two anodes and two cathodes are illustrated in FIGS. 5A and 5B, it should be noted that, in other embodiments, three or more electrodes may be placed in parallel.
FIG. 5A further illustrates the treatment areas 423 and 427 associated with the anodes and the cathodes. Generally, each electrode of an anode pair or cathode pair may be at approximately the same potential and be placed in close proximity. Providing electrodes in parallel and in close proximity can ensure continued treatment even if one electrode has a high impedance due to local dehydration. More specifically, if one anode (or cathode) of an anode (or cathode) pair loses contact, the area will continue to be treated by the other anode (or cathode) in parallel. Additionally, arranging each electrode pair in parallel allows for each to be independently controlled. In other words, a power source, such as power source 202, may be used to deliver the current for each electrode pair in order to control the charge passing through each electrode and thus the size of the treatment zone. If multiple electrode pairs are placed on a single current source, the treatment zones may be controlled by putting a coulomb counter on each electrode and directing the desired amount of charge to each electrode.
The method of this embodiment will be explained with an example. Imagine that anode 1 422 has local desiccation and its impedance slowly rises. The circuitry will note that the voltage is increasing in pathway 1 (anode 1 to cathode 1) and thus diagnose a desiccation in that pathway. Circuitry must now determine which of the two electrodes is the culprit. A test “cross-current” is now passed from anode 1 to cathode 2. If this is passed with atypical voltage then it is verified that anode 1 is not the culprit and that cathode 1 is the problem. The output circuit is then reconfigured so that anode 1 is ignored and only anode 2 is used for current delivery while cathodes 1 and 2 are used in parallel for the return. In a similar manner, anode 1 will be tested for impedance every 1-10 seconds so it can be reused as soon as there is a re-infiltration of bodily fluids.
Note that during the temporary current delivery scheme of this embodiment, about ¾ of the tissue is still receiving DC ablation since three of the four electrodes are active.
Referring now back to FIG. 2, in operation, monitoring circuit 210 monitors the rate of change of voltage (dV/dt) of electrode load circuit 208 and prevents the voltage from rising in the event of a voltage spike in one embodiment. In other words, if dV/dt of the electrode load circuit is greater than a threshold level, a high impedance condition (i.e., bubble formation) is indicated and switching circuit 212 enables a discharge of the overload protection device 214, thereby limiting the voltage rise (dV/dt) at the output in relation to the discharge rate of the overload protection capacitor.
Various embodiments of systems, devices and methods have been described herein. These embodiments are given only by way of example and are not intended to limit the scope of the invention. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments. Moreover, while various materials, dimensions, shapes, configurations and locations, etc. have been described for use with disclosed embodiments, others besides those disclosed may be utilized without exceeding the scope of the invention.
Persons of ordinary skill in the relevant arts will recognize that the invention may comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features of the invention may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the invention can comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art. Moreover, elements described with respect to one embodiment can be implemented in other embodiments even when not described in such embodiments unless otherwise noted. Although a dependent claim may refer in the claims to a specific combination with one or more other claims, other embodiments can also include a combination of the dependent claim with the subject matter of each other dependent claim or a combination of one or more features with other dependent or independent claims. Such combinations are proposed herein unless it is stated that a specific combination is not intended. Furthermore, it is intended also to include features of a claim in any other independent claim even if this claim is not directly made dependent to the independent claim.
Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.
For purposes of interpreting the claims for the present invention, it is expressly intended that the provisions of Section 112(f) of 35 U.S.C. are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.

Claims (7)

The invention claimed is:
1. A direct current (DC) prostate ablation therapy system comprising:
a catheter including a plurality of electrodes configured to deliver a DC ablation therapy to prostate tissue;
a power source configured to supply a DC current to the plurality of electrodes;
an overload protection device configured to buffer energy from the power source;
a monitoring circuit configured to monitor a voltage of the DC ablation therapy;
a switching circuit configured to selectively control a path of the DC current from the power source to the plurality of electrodes and the overload protection device; and
a controller configured to selectively activate the switching circuit in response to the monitoring circuit detecting an undesirable increase in the voltage delivered for the DC ablation therapy.
2. The system of claim 1, wherein the power source is configured to selectively supply the DC current as a constant current of between 10 to 50 mA of direct current.
3. The system of claim 1, wherein the overload protection device comprises at least one capacitor.
4. The system of claim 1, wherein each of the plurality of electrodes comprises at least one anode and at least one cathode.
5. The system of claim 4, wherein each anode of each of the plurality of electrodes is electrically coupled to the power source via the switching circuit.
6. A direct current (DC) prostate ablation therapy system comprising:
a catheter including a plurality of electrodes configured to deliver a DC ablation therapy to prostate tissue;
a power source configured to supply a DC current to the plurality of electrodes;
an overload protection device configured to buffer energy from the power source;
a monitoring circuit configured to monitor an impedance of the DC ablation therapy;
a switching circuit configured to selectively control a path of the DC current from the power source to the plurality of electrodes and the overload protection device; and
a controller configured to selectively activate the switching circuit in response to the monitoring circuit detecting an undesirable change in the impedance for the DC ablation therapy.
7. A direct current (DC) prostate ablation therapy system comprising:
a catheter including a plurality of electrodes configured to deliver a DC ablation therapy to prostate tissue;
a power source configured to supply a DC current to the plurality of electrodes;
an overload protection device configured to buffer energy from the power source;
a monitoring circuit configured to monitor a parameter of the DC ablation therapy;
a switching circuit configured to selectively control a path of the DC current from the power source to the plurality of electrodes and the overload protection device; and
a controller configured to selectively activate the switching circuit in response to the monitoring circuit detecting a change in the parameter for the DC ablation therapy indicative of an undesirable increase in an energy being delivered by the DC ablation therapy.
US16/287,551 2018-02-28 2019-02-27 System for managing high impedance changes in a non-thermal ablation system for BPH Active 2039-12-19 US11224474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/287,551 US11224474B2 (en) 2018-02-28 2019-02-27 System for managing high impedance changes in a non-thermal ablation system for BPH

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862636636P 2018-02-28 2018-02-28
US16/287,551 US11224474B2 (en) 2018-02-28 2019-02-27 System for managing high impedance changes in a non-thermal ablation system for BPH

Publications (2)

Publication Number Publication Date
US20200022748A1 US20200022748A1 (en) 2020-01-23
US11224474B2 true US11224474B2 (en) 2022-01-18

Family

ID=67805589

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/287,551 Active 2039-12-19 US11224474B2 (en) 2018-02-28 2019-02-27 System for managing high impedance changes in a non-thermal ablation system for BPH

Country Status (2)

Country Link
US (1) US11224474B2 (en)
WO (1) WO2019168949A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9597145B2 (en) 2008-08-20 2017-03-21 Prostacare Pty Ltd Non-thermal ablation system for treating tissue
WO2019104326A1 (en) 2017-11-27 2019-05-31 Prostacare Pty Ltd An apparatus and a method for the treatment of a prostatic disease

Citations (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3698394A (en) 1971-06-14 1972-10-17 William S Piper Electrically heated hypodermic needle
US3933616A (en) 1967-02-10 1976-01-20 Chemnor Corporation Coating of protected electrocatalytic material on an electrode
US4003379A (en) 1974-04-23 1977-01-18 Ellinwood Jr Everett H Apparatus and method for implanted self-powered medication dispensing
US4026304A (en) 1972-04-12 1977-05-31 Hydro Med Sciences Inc. Bone generating method and device
US4289135A (en) 1978-11-23 1981-09-15 Tekniska Rontgencentralen Ab Apparatus for destroying a selected part of biological tissue
US4572214A (en) 1980-04-11 1986-02-25 Ursus Konsult Ab Electrode device
US4639244A (en) 1983-05-03 1987-01-27 Nabil I. Rizk Implantable electrophoretic pump for ionic drugs and associated methods
US4679561A (en) 1985-05-20 1987-07-14 The United States Of America As Represented By The United States Department Of Energy Implantable apparatus for localized heating of tissue
US4682596A (en) 1984-05-22 1987-07-28 Cordis Corporation Electrosurgical catheter and method for vascular applications
US4721123A (en) 1986-10-23 1988-01-26 Minntech Corporation Catheter reprocessing system
US4919138A (en) 1987-11-13 1990-04-24 Nordenstrooem Bjoern Method and apparatus for supplying electric energy to biological tissue for simulating the physiological healing process
US4974595A (en) 1987-11-13 1990-12-04 Nordenstroem Bjoern Electrode device intended to be introduced into the body of a living being
US5002558A (en) 1989-08-23 1991-03-26 The Beth Israel Hospital Association Adjustable urethral catheter and method for treating obstructive prostatism
US5026371A (en) 1990-10-01 1991-06-25 Everest Medical Corporation Handle for polypectome snare with bipolar electrodes
US5058605A (en) 1989-02-22 1991-10-22 Ceske Vysoke Uceni Technicke Method and device for the controlled local, non-invasive application of dc pulses to human and animal tissues
US5084154A (en) 1989-08-18 1992-01-28 Asahi Kasei Kogyo Kabushiki Kaisha Hydrogen-evolution electrode having high durability and stability
US5098843A (en) 1987-06-04 1992-03-24 Calvin Noel M Apparatus for the high efficiency transformation of living cells
US5281218A (en) 1992-06-05 1994-01-25 Cardiac Pathways Corporation Catheter having needle electrode for radiofrequency ablation
US5304214A (en) 1992-01-21 1994-04-19 Med Institute, Inc. Transurethral ablation catheter
US5314457A (en) 1993-04-08 1994-05-24 Jeutter Dean C Regenerative electrical
US5314451A (en) 1993-01-15 1994-05-24 Medtronic, Inc. Replaceable battery for implantable medical device
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US5431625A (en) 1991-02-01 1995-07-11 Empi, Inc. Iontophoresis electronic device having a ramped output current
US5458627A (en) 1992-10-15 1995-10-17 Electro-Biology, Inc. Electrochemically controlled faradic stimulation of osteogenesis
US5482054A (en) 1990-05-10 1996-01-09 Symbiosis Corporation Edoscopic biopsy forceps devices with selective bipolar cautery
US5501662A (en) 1992-05-22 1996-03-26 Genetronics, Inc. Implantable electroporation method and apparatus for drug and gene delivery
US5507724A (en) 1992-07-01 1996-04-16 Genetronics, Inc. Electroporation and iontophoresis apparatus and method for insertion of drugs and genes into cells
US5529574A (en) 1992-08-21 1996-06-25 Frackelton; James P. Method and apparatus for treatment of the prostate
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5558673A (en) 1994-09-30 1996-09-24 Vidamed, Inc. Medical probe device and method having a flexible resilient tape stylet
US5584872A (en) 1992-11-13 1996-12-17 Scimed Life Systems, Inc. Electrophysiology energy treatment devices and methods of use
US5611350A (en) 1996-02-08 1997-03-18 John; Michael S. Method and apparatus for facilitating recovery of patients in deep coma
US5630426A (en) 1995-03-03 1997-05-20 Neovision Corporation Apparatus and method for characterization and treatment of tumors
US5672153A (en) 1992-08-12 1997-09-30 Vidamed, Inc. Medical probe device and method
US5674267A (en) 1993-03-30 1997-10-07 Centre National De La Recherche Scientifique Electric pulse applicator using pairs of needle electrodes for the treatment of biological tissue
WO1997036632A1 (en) 1996-03-29 1997-10-09 Iotek, Inc. Catheter and method for generating axial tension along catheter body
US5680860A (en) 1994-07-07 1997-10-28 Cardiac Pathways Corporation Mapping and/or ablation catheter with coilable distal extremity and method for using same
US5701895A (en) 1995-11-13 1997-12-30 Sulzer Intermedics Inc. Subcutaneous electrical data port
US5718686A (en) 1996-07-02 1998-02-17 Urocath Corporation Anchoring system and method for indwelling urethral catheter
US5807306A (en) 1992-11-09 1998-09-15 Cortrak Medical, Inc. Polymer matrix drug delivery apparatus
US5810764A (en) 1992-01-07 1998-09-22 Arthrocare Corporation Resecting loop electrode and method for electrosurgical cutting and ablation
US5820548A (en) 1996-01-17 1998-10-13 Micronas Intermetall Gmbh Apparatus for treating malignant tissue changes
WO1998047562A1 (en) 1997-04-24 1998-10-29 Ichor Medical Systems, Inc. Electrodes and electrode arrays
US5868741A (en) 1997-05-21 1999-02-09 Irvine Biomedical, Inc. Ablation catheter system having fixation tines
US5869326A (en) 1996-09-09 1999-02-09 Genetronics, Inc. Electroporation employing user-configured pulsing scheme
US5919187A (en) 1990-03-13 1999-07-06 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
US5931858A (en) 1998-01-12 1999-08-03 Cardiac Pacemakers, Inc. Implantable device for monitoring aerobic capacity of patients
US5983131A (en) 1995-08-11 1999-11-09 Massachusetts Institute Of Technology Apparatus and method for electroporation of tissue
US5985305A (en) 1996-02-02 1999-11-16 Alza Corporation Sustained delivery of an active agent using an implantable system
US5993434A (en) 1993-04-01 1999-11-30 Genetronics, Inc. Method of treatment using electroporation mediated delivery of drugs and genes
US6009345A (en) 1992-08-17 1999-12-28 Genetronics, Inc. Method and apparatus for a combination of electroporation and iontophoresis for the delivery of drugs and genes
US6016452A (en) 1996-03-19 2000-01-18 Kasevich; Raymond S. Dynamic heating method and radio frequency thermal treatment
US6021347A (en) 1996-12-05 2000-02-01 Herbst; Ewa Electrochemical treatment of malignant tumors
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US6049733A (en) 1994-04-08 2000-04-11 Alza Corporation Electrotransport system with ion exchange material competitive ion capture
US6051017A (en) 1996-02-20 2000-04-18 Advanced Bionics Corporation Implantable microstimulator and systems employing the same
US6162219A (en) 1997-10-21 2000-12-19 Akzo Nobel N.V. Electrode
US6165206A (en) 1998-03-06 2000-12-26 Tu; Hosheng Apparatus for medical ablation use and methods thereof
US6169924B1 (en) 1999-04-27 2001-01-02 T. Stuart Meloy Spinal cord stimulation
US6171787B1 (en) 1997-06-26 2001-01-09 Abbott Laboratories Member of the TNF family useful for treatment and diagnosis of disease
US6174309B1 (en) 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
US6179833B1 (en) 1995-06-09 2001-01-30 Engineering & Research Associates, Inc. Apparatus for thermal ablation
EP1080731A2 (en) 1999-09-01 2001-03-07 Hisamitsu Pharmaceutical Co. Inc. Composition and device structure for iontophoresis
US20010001314A1 (en) 1997-06-13 2001-05-17 Arthrocare Corporation Electrosurgical systems and methods for recanalization of occluded body lumens
US6238393B1 (en) 1998-07-07 2001-05-29 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6245068B1 (en) 1994-08-08 2001-06-12 Scimed Life Systems, Inc. Resilient radiopaque electrophysiology electrodes and probes including the same
WO2001052931A1 (en) 2000-01-21 2001-07-26 Impulse Dynamics Nv Blood flow controller
US6269270B1 (en) 1998-10-26 2001-07-31 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of Dementia and Alzheimer's disease utilizing an implantable lead and external stimulator
US6273886B1 (en) 1998-02-19 2001-08-14 Curon Medical, Inc. Integrated tissue heating and cooling apparatus
WO2001062336A1 (en) 2000-02-23 2001-08-30 The Trustees Of The University Of Pennsylvania Regulation of genes via application of specific and selective electrical and electromagnetic signals
US20010021868A1 (en) 1999-12-10 2001-09-13 Ewa Herbst Electrochemical treatment of tissues, especially tumors
US20010034518A1 (en) 1994-06-24 2001-10-25 Curon Medical, Inc. Sphincter treatment apparatus
US20020002329A1 (en) 1993-12-03 2002-01-03 Boaz Avitall Mapping and ablation catheter system
US20020026188A1 (en) 2000-03-31 2002-02-28 Balbierz Daniel J. Tissue biopsy and treatment apparatus and method
US6366808B1 (en) 2000-03-13 2002-04-02 Edward A. Schroeppel Implantable device and method for the electrical treatment of cancer
US6379353B1 (en) 1997-05-19 2002-04-30 Radiotherapeutics Corporation Apparatus and method for treating tissue with multiple electrodes
US6387075B1 (en) 1998-10-23 2002-05-14 Scimed Life Systems, Inc. Catheter having improved proximal shaft design
US6391026B1 (en) 1998-09-18 2002-05-21 Pro Duct Health, Inc. Methods and systems for treating breast tissue
US6402745B1 (en) 2000-02-23 2002-06-11 Peter J. Wilk Intravenous whip electrode for vein ablation
US20020077676A1 (en) * 1999-04-09 2002-06-20 Schroeppel Edward A. Implantable device and method for the electrical treatment of cancer
US6419673B1 (en) 1996-05-06 2002-07-16 Stuart Edwards Ablation of rectal and other internal body structures
US20020111618A1 (en) 1999-04-05 2002-08-15 Stewart Mark T. Ablation catheter assembly with radially decreasing helix and method of use
US20020115957A1 (en) 1998-08-31 2002-08-22 Ying Sun Electrotransort device comprising blades
US6464699B1 (en) 1997-10-10 2002-10-15 Scimed Life Systems, Inc. Method and apparatus for positioning a diagnostic or therapeutic element on body tissue and mask element for use with same
WO2002098501A2 (en) 2001-06-07 2002-12-12 Ramot At Tel Aviv University Ltd. Method and apparatus for treating tumors using low strength electric fields
US20030002123A1 (en) 2001-07-02 2003-01-02 Jorg Worner Optoelectronic device
US6591133B1 (en) 2000-11-27 2003-07-08 Microlin Llc Apparatus and methods for fluid delivery using electroactive needles and implantable electrochemical delivery devices
US20030130711A1 (en) 2001-09-28 2003-07-10 Pearson Robert M. Impedance controlled tissue ablation apparatus and method
US6595989B1 (en) 1999-05-11 2003-07-22 Atrionix, Inc. Balloon anchor wire
US6600953B2 (en) 2000-12-11 2003-07-29 Impulse Dynamics N.V. Acute and chronic electrical signal therapy for obesity
US6599274B1 (en) 2000-01-20 2003-07-29 John Kucharczyk Cell delivery catheter and method
US6607528B1 (en) 1999-06-22 2003-08-19 Senorx, Inc. Shapeable electrosurgical scalpel
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US20030191504A1 (en) 1999-07-30 2003-10-09 Meadows Paul M. Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US6638275B1 (en) 2000-10-05 2003-10-28 Medironic, Inc. Bipolar ablation apparatus and method
US6638273B1 (en) 1996-03-05 2003-10-28 Vnus Medical Technologies, Inc. Expandable catheter having improved electrode design, and method for applying energy
US20040010290A1 (en) 1999-04-09 2004-01-15 Schroeppel Edward A. Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US20040059326A1 (en) 2001-05-02 2004-03-25 Jesse Flores Dual-profile steerable catheter
US6713291B2 (en) 1999-01-28 2004-03-30 Alan D. King Electrodes coated with treating agent and uses thereof
US6733485B1 (en) 2001-05-25 2004-05-11 Advanced Bionics Corporation Microstimulator-based electrochemotherapy methods and systems
US20040172089A1 (en) 2001-01-30 2004-09-02 Whitehurst Todd K. Fully implantable miniature neurostimulator for stimulation as a therapy for epilepsy
US20040254618A1 (en) 2000-03-13 2004-12-16 Schroeppel Edward A. Implantable device and method for the electrical treatment of cancer
US20050004507A1 (en) 2000-03-13 2005-01-06 Oncostim. Inc. Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US20050000443A1 (en) 2003-07-01 2005-01-06 Dong-Hyun Kim Apparatus for processing a substrate using plasma
US20050054994A1 (en) 2002-09-25 2005-03-10 Iulian Cioanta Catheters with suction capability and related methods and systems for obtaining biosamples in vivo
US20050080409A1 (en) 2003-10-10 2005-04-14 Scimed Life Systems, Inc. Multi-zone bipolar ablation probe assembly
US6901296B1 (en) 2001-05-25 2005-05-31 Advanced Bionics Corporation Methods and systems for direct electrical current stimulation as a therapy for cancer and other neoplastic diseases
US20050131508A1 (en) 2003-12-11 2005-06-16 Scimed Life Systems, Inc. Ablation probe with temperature sensitive electrode array
US20050159742A1 (en) 1997-05-09 2005-07-21 Lesh Michael D. Tissue ablation device and method of use
US20050182449A1 (en) 2001-05-26 2005-08-18 Map Technologies, Llc Methods for electrosurgical electrolysis
US20050197657A1 (en) 2004-03-02 2005-09-08 Goth Paul R. Thermokeratoplasty system with a regulated power generator
WO2005086683A2 (en) 2004-03-05 2005-09-22 Arthrocare Corporation Tip reinforced electrosurgical device
US6952615B2 (en) 2001-09-28 2005-10-04 Shutaro Satake Radiofrequency thermal balloon catheter
US20050222623A1 (en) 2004-04-06 2005-10-06 Oncostim Inc., A Minnesota Corporation Partially implantable system for the electrical treatment of cancer
US20050222646A1 (en) 2004-04-06 2005-10-06 Kai Kroll Method and device for treating cancer with modified output electrical therapy
US20050228373A1 (en) 2003-03-13 2005-10-13 Scimed Life Systems, Inc. Surface electrode multiple mode operation
US20050245923A1 (en) 2004-04-29 2005-11-03 Medtronic, Inc. Biopolar virtual electrode for transurethral needle ablation
US20050283125A1 (en) 2003-01-17 2005-12-22 Susanne Barkhahn Flexible injection needle
US20050288730A1 (en) 2002-04-08 2005-12-29 Mark Deem Methods and apparatus for renal neuromodulation
US20060025756A1 (en) 2000-01-19 2006-02-02 Francischelli David E Methods of using high intensity focused ultrasound to form an ablated tissue area
WO2006042117A2 (en) 2004-10-06 2006-04-20 Sherwood Services Ag Systems and methods for thermally profiling radiofrequency electrodes
US20060095032A1 (en) 1999-11-16 2006-05-04 Jerome Jackson Methods and systems for determining physiologic characteristics for treatment of the esophagus
US7079890B2 (en) 2003-03-19 2006-07-18 Solco Biomedical Co., Ltd. Electrochemical therapy apparatus
US20060235286A1 (en) 2005-03-28 2006-10-19 Minnow Medical, Llc Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures
US20060259027A1 (en) 2005-03-25 2006-11-16 Harry Kwan Cavity ablation apparatus and method
US20070016067A1 (en) 2005-05-19 2007-01-18 The Johns Hopkins University Distal bevel-tip needle control device and algorithm
US20070073391A1 (en) 2005-09-28 2007-03-29 Henry Bourang System and method for delivering a mitral valve repair device
US20070179491A1 (en) 2006-01-31 2007-08-02 Medtronic, Inc. Sensing needle for ablation therapy
US20070191925A1 (en) 2003-11-24 2007-08-16 Angiomed Gmbh & Co.Medizintechn Kg Catheter device
US20070255207A1 (en) 2003-12-11 2007-11-01 Masanori Hangai Balloon Catheter
US20070260234A1 (en) 2006-05-03 2007-11-08 Mccullagh Orla Diamond-like carbon electrode coating
US20080021445A1 (en) 2004-10-13 2008-01-24 Medtronic, Inc. Transurethral needle ablation system
US20080021275A1 (en) 2006-01-19 2008-01-24 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US20080027379A1 (en) 2006-07-28 2008-01-31 Taylor Medical, Inc. Catheter components formed of polymer with particles or fibers
US20080071262A1 (en) 2006-09-14 2008-03-20 Larry Azure Tissue ablation and removal
US20080132885A1 (en) 2006-12-01 2008-06-05 Boris Rubinsky Methods for treating tissue sites using electroporation
US20080161804A1 (en) 2006-12-27 2008-07-03 Boston Scientific Scimed, Inc. Rf ablation probe array advancing device
WO2008083407A1 (en) 2007-01-02 2008-07-10 Aquabeam Llc Minimally invasive methods and devices for the treatment of prostate diseases
US20080243116A1 (en) 2006-09-21 2008-10-02 Anderson Neil L Catheter assembly
US7556624B2 (en) 1997-04-07 2009-07-07 Asthmatx, Inc. Method of increasing gas exchange of a lung
US20100049188A1 (en) 2008-08-20 2010-02-25 Ionix Medical, Inc. Non-Thermal Ablation System for Treating Tissue
WO2010022278A1 (en) 2008-08-20 2010-02-25 Ionix Medical, Inc. Catheter for treating tissue with non-thermal ablation
WO2010022275A1 (en) 2008-08-20 2010-02-25 Ionix Medical, Inc. Non-thermal ablation system for treating tissue
US20100168777A1 (en) 2008-12-29 2010-07-01 Stangenes Todd R Tissue puncture assemblies and methods for puncturing tissue
WO2010081730A1 (en) 2009-01-16 2010-07-22 Oncotherm Kft. Intraluminar oncothermia catheter
US7837670B2 (en) 2005-03-22 2010-11-23 Boston Scientific Scimed, Inc. Methods and devices for delivering therapeutic agents into the prostate gland
US20110166569A1 (en) 1996-12-19 2011-07-07 Whayne James G Structures For Supporting Multiple Electrode Elements
US20110208022A1 (en) 2008-09-16 2011-08-25 Intersect Partners ,LLC a Limited Liability Corporation Device and methods for sampling prostate fluid
US20110224663A1 (en) * 2008-04-23 2011-09-15 Tornier, Inc. Control circuitry for a tissue ablation system
US20140005676A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US20160018403A1 (en) 2014-07-15 2016-01-21 Temple University Of The Commonwealth System Of Higher Education Stabilized peptide fragments from redoxin proteins as cancer biomarkers
US10004551B2 (en) 2009-06-01 2018-06-26 Channel Medsystems, Inc. Methods and apparatus for treatment of a body cavity or lumen
US20190021779A1 (en) * 2017-07-21 2019-01-24 Biosense Webster (Israel) Ltd. Ablation power supply
US20190159834A1 (en) 2017-11-27 2019-05-30 Prostacare Pty Ltd. Apparatus and a method for the treatment of a prostatic disease

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837001A (en) * 1995-12-08 1998-11-17 C. R. Bard Radio frequency energy delivery system for multipolar electrode catheters

Patent Citations (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933616A (en) 1967-02-10 1976-01-20 Chemnor Corporation Coating of protected electrocatalytic material on an electrode
US3698394A (en) 1971-06-14 1972-10-17 William S Piper Electrically heated hypodermic needle
US4026304A (en) 1972-04-12 1977-05-31 Hydro Med Sciences Inc. Bone generating method and device
US4003379A (en) 1974-04-23 1977-01-18 Ellinwood Jr Everett H Apparatus and method for implanted self-powered medication dispensing
US4289135A (en) 1978-11-23 1981-09-15 Tekniska Rontgencentralen Ab Apparatus for destroying a selected part of biological tissue
US4572214A (en) 1980-04-11 1986-02-25 Ursus Konsult Ab Electrode device
US4639244A (en) 1983-05-03 1987-01-27 Nabil I. Rizk Implantable electrophoretic pump for ionic drugs and associated methods
US4682596A (en) 1984-05-22 1987-07-28 Cordis Corporation Electrosurgical catheter and method for vascular applications
US4679561A (en) 1985-05-20 1987-07-14 The United States Of America As Represented By The United States Department Of Energy Implantable apparatus for localized heating of tissue
US4721123A (en) 1986-10-23 1988-01-26 Minntech Corporation Catheter reprocessing system
US5098843A (en) 1987-06-04 1992-03-24 Calvin Noel M Apparatus for the high efficiency transformation of living cells
US4919138A (en) 1987-11-13 1990-04-24 Nordenstrooem Bjoern Method and apparatus for supplying electric energy to biological tissue for simulating the physiological healing process
US4974595A (en) 1987-11-13 1990-12-04 Nordenstroem Bjoern Electrode device intended to be introduced into the body of a living being
US5058605A (en) 1989-02-22 1991-10-22 Ceske Vysoke Uceni Technicke Method and device for the controlled local, non-invasive application of dc pulses to human and animal tissues
US5084154A (en) 1989-08-18 1992-01-28 Asahi Kasei Kogyo Kabushiki Kaisha Hydrogen-evolution electrode having high durability and stability
US5002558A (en) 1989-08-23 1991-03-26 The Beth Israel Hospital Association Adjustable urethral catheter and method for treating obstructive prostatism
US5919187A (en) 1990-03-13 1999-07-06 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
US5482054A (en) 1990-05-10 1996-01-09 Symbiosis Corporation Edoscopic biopsy forceps devices with selective bipolar cautery
US5026371A (en) 1990-10-01 1991-06-25 Everest Medical Corporation Handle for polypectome snare with bipolar electrodes
US5431625A (en) 1991-02-01 1995-07-11 Empi, Inc. Iontophoresis electronic device having a ramped output current
US5810764A (en) 1992-01-07 1998-09-22 Arthrocare Corporation Resecting loop electrode and method for electrosurgical cutting and ablation
US5304214A (en) 1992-01-21 1994-04-19 Med Institute, Inc. Transurethral ablation catheter
US5501662A (en) 1992-05-22 1996-03-26 Genetronics, Inc. Implantable electroporation method and apparatus for drug and gene delivery
US5281218A (en) 1992-06-05 1994-01-25 Cardiac Pathways Corporation Catheter having needle electrode for radiofrequency ablation
US5507724A (en) 1992-07-01 1996-04-16 Genetronics, Inc. Electroporation and iontophoresis apparatus and method for insertion of drugs and genes into cells
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US5536240A (en) 1992-08-12 1996-07-16 Vidamed, Inc. Medical probe device and method
US5672153A (en) 1992-08-12 1997-09-30 Vidamed, Inc. Medical probe device and method
US20050010203A1 (en) 1992-08-12 2005-01-13 Medtronic Vidamed, Inc. Medical probe device and method
US6009345A (en) 1992-08-17 1999-12-28 Genetronics, Inc. Method and apparatus for a combination of electroporation and iontophoresis for the delivery of drugs and genes
US5529574A (en) 1992-08-21 1996-06-25 Frackelton; James P. Method and apparatus for treatment of the prostate
US5458627A (en) 1992-10-15 1995-10-17 Electro-Biology, Inc. Electrochemically controlled faradic stimulation of osteogenesis
US5807306A (en) 1992-11-09 1998-09-15 Cortrak Medical, Inc. Polymer matrix drug delivery apparatus
US5584872A (en) 1992-11-13 1996-12-17 Scimed Life Systems, Inc. Electrophysiology energy treatment devices and methods of use
US5314451A (en) 1993-01-15 1994-05-24 Medtronic, Inc. Replaceable battery for implantable medical device
US5674267A (en) 1993-03-30 1997-10-07 Centre National De La Recherche Scientifique Electric pulse applicator using pairs of needle electrodes for the treatment of biological tissue
US5993434A (en) 1993-04-01 1999-11-30 Genetronics, Inc. Method of treatment using electroporation mediated delivery of drugs and genes
US5314457A (en) 1993-04-08 1994-05-24 Jeutter Dean C Regenerative electrical
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US20020002329A1 (en) 1993-12-03 2002-01-03 Boaz Avitall Mapping and ablation catheter system
US6049733A (en) 1994-04-08 2000-04-11 Alza Corporation Electrotransport system with ion exchange material competitive ion capture
US20010034518A1 (en) 1994-06-24 2001-10-25 Curon Medical, Inc. Sphincter treatment apparatus
US5680860A (en) 1994-07-07 1997-10-28 Cardiac Pathways Corporation Mapping and/or ablation catheter with coilable distal extremity and method for using same
US6245068B1 (en) 1994-08-08 2001-06-12 Scimed Life Systems, Inc. Resilient radiopaque electrophysiology electrodes and probes including the same
US5558673A (en) 1994-09-30 1996-09-24 Vidamed, Inc. Medical probe device and method having a flexible resilient tape stylet
US5630426A (en) 1995-03-03 1997-05-20 Neovision Corporation Apparatus and method for characterization and treatment of tumors
US6179833B1 (en) 1995-06-09 2001-01-30 Engineering & Research Associates, Inc. Apparatus for thermal ablation
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US5983131A (en) 1995-08-11 1999-11-09 Massachusetts Institute Of Technology Apparatus and method for electroporation of tissue
US5701895A (en) 1995-11-13 1997-12-30 Sulzer Intermedics Inc. Subcutaneous electrical data port
US5820548A (en) 1996-01-17 1998-10-13 Micronas Intermetall Gmbh Apparatus for treating malignant tissue changes
US5985305A (en) 1996-02-02 1999-11-16 Alza Corporation Sustained delivery of an active agent using an implantable system
US5611350A (en) 1996-02-08 1997-03-18 John; Michael S. Method and apparatus for facilitating recovery of patients in deep coma
US6051017A (en) 1996-02-20 2000-04-18 Advanced Bionics Corporation Implantable microstimulator and systems employing the same
US6638273B1 (en) 1996-03-05 2003-10-28 Vnus Medical Technologies, Inc. Expandable catheter having improved electrode design, and method for applying energy
US6016452A (en) 1996-03-19 2000-01-18 Kasevich; Raymond S. Dynamic heating method and radio frequency thermal treatment
WO1997036632A1 (en) 1996-03-29 1997-10-09 Iotek, Inc. Catheter and method for generating axial tension along catheter body
US6419673B1 (en) 1996-05-06 2002-07-16 Stuart Edwards Ablation of rectal and other internal body structures
US5718686A (en) 1996-07-02 1998-02-17 Urocath Corporation Anchoring system and method for indwelling urethral catheter
US5869326A (en) 1996-09-09 1999-02-09 Genetronics, Inc. Electroporation employing user-configured pulsing scheme
US6021347A (en) 1996-12-05 2000-02-01 Herbst; Ewa Electrochemical treatment of malignant tumors
US20110166569A1 (en) 1996-12-19 2011-07-07 Whayne James G Structures For Supporting Multiple Electrode Elements
US7556624B2 (en) 1997-04-07 2009-07-07 Asthmatx, Inc. Method of increasing gas exchange of a lung
WO1998047562A1 (en) 1997-04-24 1998-10-29 Ichor Medical Systems, Inc. Electrodes and electrode arrays
US6278895B1 (en) 1997-04-24 2001-08-21 Ichor Medical Systems, Inc. Electrodes and electrode arrays for generating electroporation inducing electrical fields
US20050159742A1 (en) 1997-05-09 2005-07-21 Lesh Michael D. Tissue ablation device and method of use
US6379353B1 (en) 1997-05-19 2002-04-30 Radiotherapeutics Corporation Apparatus and method for treating tissue with multiple electrodes
US5868741A (en) 1997-05-21 1999-02-09 Irvine Biomedical, Inc. Ablation catheter system having fixation tines
US20010001314A1 (en) 1997-06-13 2001-05-17 Arthrocare Corporation Electrosurgical systems and methods for recanalization of occluded body lumens
US6171787B1 (en) 1997-06-26 2001-01-09 Abbott Laboratories Member of the TNF family useful for treatment and diagnosis of disease
US6464699B1 (en) 1997-10-10 2002-10-15 Scimed Life Systems, Inc. Method and apparatus for positioning a diagnostic or therapeutic element on body tissue and mask element for use with same
US6162219A (en) 1997-10-21 2000-12-19 Akzo Nobel N.V. Electrode
US5931858A (en) 1998-01-12 1999-08-03 Cardiac Pacemakers, Inc. Implantable device for monitoring aerobic capacity of patients
US6273886B1 (en) 1998-02-19 2001-08-14 Curon Medical, Inc. Integrated tissue heating and cooling apparatus
US6165206A (en) 1998-03-06 2000-12-26 Tu; Hosheng Apparatus for medical ablation use and methods thereof
US6238393B1 (en) 1998-07-07 2001-05-29 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US20020115957A1 (en) 1998-08-31 2002-08-22 Ying Sun Electrotransort device comprising blades
US6391026B1 (en) 1998-09-18 2002-05-21 Pro Duct Health, Inc. Methods and systems for treating breast tissue
US6387075B1 (en) 1998-10-23 2002-05-14 Scimed Life Systems, Inc. Catheter having improved proximal shaft design
US6269270B1 (en) 1998-10-26 2001-07-31 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of Dementia and Alzheimer's disease utilizing an implantable lead and external stimulator
US6713291B2 (en) 1999-01-28 2004-03-30 Alan D. King Electrodes coated with treating agent and uses thereof
US6174309B1 (en) 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
US20020111618A1 (en) 1999-04-05 2002-08-15 Stewart Mark T. Ablation catheter assembly with radially decreasing helix and method of use
US20020077676A1 (en) * 1999-04-09 2002-06-20 Schroeppel Edward A. Implantable device and method for the electrical treatment of cancer
US7412285B2 (en) 1999-04-09 2008-08-12 Oncostim, Inc. Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US20090024075A1 (en) 1999-04-09 2009-01-22 Schroeppel Edward A Method and Device for Treating Abnormal Tissue Growth With Electrical Therapy
US20120203307A1 (en) 1999-04-09 2012-08-09 Schroeppel Edward A Method and device for treating abnormal tissue growth with electrical therapy
US6738663B2 (en) 1999-04-09 2004-05-18 Oncostim, A Minnesota Corporation Implantable device and method for the electrical treatment of cancer
US8014854B2 (en) 1999-04-09 2011-09-06 Ionix Medical Inc. Method and device for treating abnormal tissue growth with electrical therapy
US20040010290A1 (en) 1999-04-09 2004-01-15 Schroeppel Edward A. Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US6169924B1 (en) 1999-04-27 2001-01-02 T. Stuart Meloy Spinal cord stimulation
US6595989B1 (en) 1999-05-11 2003-07-22 Atrionix, Inc. Balloon anchor wire
US20040030334A1 (en) 1999-06-22 2004-02-12 Senorx, Inc. Shapeable electrosurgical scalpel
US6607528B1 (en) 1999-06-22 2003-08-19 Senorx, Inc. Shapeable electrosurgical scalpel
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US20030191504A1 (en) 1999-07-30 2003-10-09 Meadows Paul M. Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
EP1080731A2 (en) 1999-09-01 2001-03-07 Hisamitsu Pharmaceutical Co. Inc. Composition and device structure for iontophoresis
US20060095032A1 (en) 1999-11-16 2006-05-04 Jerome Jackson Methods and systems for determining physiologic characteristics for treatment of the esophagus
US20010021868A1 (en) 1999-12-10 2001-09-13 Ewa Herbst Electrochemical treatment of tissues, especially tumors
US6708066B2 (en) 1999-12-10 2004-03-16 Ewa Herbst Electrochemical treatment of tissues, especially tumors
US20060025756A1 (en) 2000-01-19 2006-02-02 Francischelli David E Methods of using high intensity focused ultrasound to form an ablated tissue area
US6599274B1 (en) 2000-01-20 2003-07-29 John Kucharczyk Cell delivery catheter and method
WO2001052931A1 (en) 2000-01-21 2001-07-26 Impulse Dynamics Nv Blood flow controller
US6402745B1 (en) 2000-02-23 2002-06-11 Peter J. Wilk Intravenous whip electrode for vein ablation
WO2001062336A1 (en) 2000-02-23 2001-08-30 The Trustees Of The University Of Pennsylvania Regulation of genes via application of specific and selective electrical and electromagnetic signals
US8024048B2 (en) 2000-03-13 2011-09-20 Ionix Medical Inc. Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US20040254618A1 (en) 2000-03-13 2004-12-16 Schroeppel Edward A. Implantable device and method for the electrical treatment of cancer
US20050004507A1 (en) 2000-03-13 2005-01-06 Oncostim. Inc. Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US6366808B1 (en) 2000-03-13 2002-04-02 Edward A. Schroeppel Implantable device and method for the electrical treatment of cancer
US7742811B2 (en) 2000-03-13 2010-06-22 Onco Stim Implantable device and method for the electrical treatment of cancer
US20020026188A1 (en) 2000-03-31 2002-02-28 Balbierz Daniel J. Tissue biopsy and treatment apparatus and method
US20020183735A1 (en) 2000-04-25 2002-12-05 Edwards Stuart D. Ablation of rectal and other internal body structures
US6638275B1 (en) 2000-10-05 2003-10-28 Medironic, Inc. Bipolar ablation apparatus and method
US6591133B1 (en) 2000-11-27 2003-07-08 Microlin Llc Apparatus and methods for fluid delivery using electroactive needles and implantable electrochemical delivery devices
US6600953B2 (en) 2000-12-11 2003-07-29 Impulse Dynamics N.V. Acute and chronic electrical signal therapy for obesity
US20040172089A1 (en) 2001-01-30 2004-09-02 Whitehurst Todd K. Fully implantable miniature neurostimulator for stimulation as a therapy for epilepsy
US20040059326A1 (en) 2001-05-02 2004-03-25 Jesse Flores Dual-profile steerable catheter
US6901296B1 (en) 2001-05-25 2005-05-31 Advanced Bionics Corporation Methods and systems for direct electrical current stimulation as a therapy for cancer and other neoplastic diseases
US6733485B1 (en) 2001-05-25 2004-05-11 Advanced Bionics Corporation Microstimulator-based electrochemotherapy methods and systems
US20050182449A1 (en) 2001-05-26 2005-08-18 Map Technologies, Llc Methods for electrosurgical electrolysis
WO2002098501A2 (en) 2001-06-07 2002-12-12 Ramot At Tel Aviv University Ltd. Method and apparatus for treating tumors using low strength electric fields
US20030002123A1 (en) 2001-07-02 2003-01-02 Jorg Worner Optoelectronic device
US20030130711A1 (en) 2001-09-28 2003-07-10 Pearson Robert M. Impedance controlled tissue ablation apparatus and method
US6952615B2 (en) 2001-09-28 2005-10-04 Shutaro Satake Radiofrequency thermal balloon catheter
US20050288730A1 (en) 2002-04-08 2005-12-29 Mark Deem Methods and apparatus for renal neuromodulation
US20050054994A1 (en) 2002-09-25 2005-03-10 Iulian Cioanta Catheters with suction capability and related methods and systems for obtaining biosamples in vivo
US20050283125A1 (en) 2003-01-17 2005-12-22 Susanne Barkhahn Flexible injection needle
US20050228373A1 (en) 2003-03-13 2005-10-13 Scimed Life Systems, Inc. Surface electrode multiple mode operation
US7079890B2 (en) 2003-03-19 2006-07-18 Solco Biomedical Co., Ltd. Electrochemical therapy apparatus
US20050000443A1 (en) 2003-07-01 2005-01-06 Dong-Hyun Kim Apparatus for processing a substrate using plasma
US20050080409A1 (en) 2003-10-10 2005-04-14 Scimed Life Systems, Inc. Multi-zone bipolar ablation probe assembly
US20070191925A1 (en) 2003-11-24 2007-08-16 Angiomed Gmbh & Co.Medizintechn Kg Catheter device
US20070255207A1 (en) 2003-12-11 2007-11-01 Masanori Hangai Balloon Catheter
US20050131508A1 (en) 2003-12-11 2005-06-16 Scimed Life Systems, Inc. Ablation probe with temperature sensitive electrode array
US20050197657A1 (en) 2004-03-02 2005-09-08 Goth Paul R. Thermokeratoplasty system with a regulated power generator
WO2005086683A2 (en) 2004-03-05 2005-09-22 Arthrocare Corporation Tip reinforced electrosurgical device
US7720549B2 (en) 2004-04-06 2010-05-18 Oncostim, Inc. Partially implantable system for the electrical treatment of abnormal tissue growth
US20050222623A1 (en) 2004-04-06 2005-10-06 Oncostim Inc., A Minnesota Corporation Partially implantable system for the electrical treatment of cancer
US20050222646A1 (en) 2004-04-06 2005-10-06 Kai Kroll Method and device for treating cancer with modified output electrical therapy
US20050245923A1 (en) 2004-04-29 2005-11-03 Medtronic, Inc. Biopolar virtual electrode for transurethral needle ablation
WO2006042117A2 (en) 2004-10-06 2006-04-20 Sherwood Services Ag Systems and methods for thermally profiling radiofrequency electrodes
US20080021445A1 (en) 2004-10-13 2008-01-24 Medtronic, Inc. Transurethral needle ablation system
US7837670B2 (en) 2005-03-22 2010-11-23 Boston Scientific Scimed, Inc. Methods and devices for delivering therapeutic agents into the prostate gland
US20060259027A1 (en) 2005-03-25 2006-11-16 Harry Kwan Cavity ablation apparatus and method
US20060235286A1 (en) 2005-03-28 2006-10-19 Minnow Medical, Llc Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures
US20070016067A1 (en) 2005-05-19 2007-01-18 The Johns Hopkins University Distal bevel-tip needle control device and algorithm
US20070073391A1 (en) 2005-09-28 2007-03-29 Henry Bourang System and method for delivering a mitral valve repair device
US20080021275A1 (en) 2006-01-19 2008-01-24 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US20070179491A1 (en) 2006-01-31 2007-08-02 Medtronic, Inc. Sensing needle for ablation therapy
US20070260234A1 (en) 2006-05-03 2007-11-08 Mccullagh Orla Diamond-like carbon electrode coating
US20080027379A1 (en) 2006-07-28 2008-01-31 Taylor Medical, Inc. Catheter components formed of polymer with particles or fibers
US20080071262A1 (en) 2006-09-14 2008-03-20 Larry Azure Tissue ablation and removal
US20080243116A1 (en) 2006-09-21 2008-10-02 Anderson Neil L Catheter assembly
US20080132885A1 (en) 2006-12-01 2008-06-05 Boris Rubinsky Methods for treating tissue sites using electroporation
US20080161804A1 (en) 2006-12-27 2008-07-03 Boston Scientific Scimed, Inc. Rf ablation probe array advancing device
WO2008083407A1 (en) 2007-01-02 2008-07-10 Aquabeam Llc Minimally invasive methods and devices for the treatment of prostate diseases
US20110224663A1 (en) * 2008-04-23 2011-09-15 Tornier, Inc. Control circuitry for a tissue ablation system
US20170231693A1 (en) 2008-08-20 2017-08-17 Prostacare Pty Ltd Non-Thermal Ablation System for Treating Tissue
US20160206370A1 (en) 2008-08-20 2016-07-21 Prostacare Pty Ltd Non-Thermal Ablation System for Treating BPH and Other Growths
US20110106072A1 (en) 2008-08-20 2011-05-05 Ionix Medical, Inc. Low-Corrosion Electrode for Treating Tissue
EP2326273A1 (en) 2008-08-20 2011-06-01 Ionix Medical, Inc. Non-thermal ablation system for treating tissue
US10939957B2 (en) 2008-08-20 2021-03-09 Prostacare Pty Ltd Non-thermal ablation system for treating tissue
US10842555B2 (en) 2008-08-20 2020-11-24 Prostacare Pty Ltd Catheter for treating tissue with non-thermal ablation
EP2326274B1 (en) 2008-08-20 2019-10-09 Ionix Medical, Inc. Catheter for treating tissue with non-thermal ablation
US20100049192A1 (en) 2008-08-20 2010-02-25 Ionix Medical, Inc. Catheter for Treating Tissue with Non-Thermal Ablation
WO2010022275A1 (en) 2008-08-20 2010-02-25 Ionix Medical, Inc. Non-thermal ablation system for treating tissue
US20100049031A1 (en) 2008-08-20 2010-02-25 Ionix Medical, Inc. Non-Thermal Ablation System for Treating BPH and Other Growths
US10736689B2 (en) 2008-08-20 2020-08-11 Prostacare Pty Ltd Low-corrosion electrode for treating tissue
US9211155B2 (en) 2008-08-20 2015-12-15 Prostacare Pty Ltd. Non-thermal ablation system for treating BPH and other growths
US10575899B2 (en) 2008-08-20 2020-03-03 Prostacare Pty Ltd Non-thermal ablation system for treating BPH and other growths
WO2010022278A1 (en) 2008-08-20 2010-02-25 Ionix Medical, Inc. Catheter for treating tissue with non-thermal ablation
US9597145B2 (en) 2008-08-20 2017-03-21 Prostacare Pty Ltd Non-thermal ablation system for treating tissue
US20100049188A1 (en) 2008-08-20 2010-02-25 Ionix Medical, Inc. Non-Thermal Ablation System for Treating Tissue
US20190105103A1 (en) 2008-08-20 2019-04-11 Prostacare Pty Ltd Non-Thermal Ablation System for Treating Tissue
US10085800B2 (en) 2008-08-20 2018-10-02 Prostacare Pty Ltd Non-thermal ablation system for treating tissue
US20110208022A1 (en) 2008-09-16 2011-08-25 Intersect Partners ,LLC a Limited Liability Corporation Device and methods for sampling prostate fluid
US20100168777A1 (en) 2008-12-29 2010-07-01 Stangenes Todd R Tissue puncture assemblies and methods for puncturing tissue
WO2010081730A1 (en) 2009-01-16 2010-07-22 Oncotherm Kft. Intraluminar oncothermia catheter
US10004551B2 (en) 2009-06-01 2018-06-26 Channel Medsystems, Inc. Methods and apparatus for treatment of a body cavity or lumen
US20140005676A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US20160018403A1 (en) 2014-07-15 2016-01-21 Temple University Of The Commonwealth System Of Higher Education Stabilized peptide fragments from redoxin proteins as cancer biomarkers
US20190021779A1 (en) * 2017-07-21 2019-01-24 Biosense Webster (Israel) Ltd. Ablation power supply
US20190159834A1 (en) 2017-11-27 2019-05-30 Prostacare Pty Ltd. Apparatus and a method for the treatment of a prostatic disease

Non-Patent Citations (95)

* Cited by examiner, † Cited by third party
Title
A. Plesnicar, G. Sersa, L. Vodovnik, J. Jancar, L. Zaletel-Kragelj and S. Plesnicar. Electric Treatment of Human Melanoma Skin Lesions with Low Level Direct Electric Current: An Assessment of Clinical Experience Following a Preliminary Study in Five Patients, European Journal of Surgery 1994; Suppl 574:45-49.
A.L. Vandenbogaerde, E.M. Delaey, A.M. Vantieghem, B.E. Himpens, W.J. Merlevede, P. A. de Witte, Abstract of Cytotoxicity and Antiproliferative Effect of Hypericin and Derivatives After Photosensitization. Photochem Photobiol Jan. 1998;67(1):119-25.
Application and File history for U.S. Appl. No. 12/544,112, filed Aug. 19, 2009. Inventors: Fruland et al.
Application and File history for U.S. Appl. No. 12/544,119, filed Aug. 19, 2009. Inventors: Sundquist et al.
Application and File history for U.S. Appl. No. 12/544,127, filed Aug. 19, 2009. Inventors: Holtz et al.
Application and File history for U.S. Appl. No. 12/544,134, filed Aug. 19, 2009. Inventors: Nelson et al.
Application and File history for U.S. Appl. No. 14/969,889, filed Dec. 15, 2015. Inventors: Fruland et al.
Application and File history for U.S. Appl. No. 15/455,358, filed Mar. 10, 2016. Inventors: Nelson et al.
Application and File history for U.S. Appl. No. 16/148,756, filed Oct. 1, 2018. Inventors: Nelson et al.
Application and File history for U.S. Appl. No. 16/201,642, filed Nov. 27, 2018. Inventors: Gilmour et al.
B. Wolf, M. Brischwein, W. Baumann, R. Ehret, T. Henning, M. Lehmann, A. Schwinde. Microsensor-Aided Measurements of Cellular Signalling and Metabolism on Tumor Cells, Tumor Biology 1998; 19:374-383.
B.N. Singh and C. Dwivedi. Antitumor Drug Delivery by Tissue Electroporation, Anti-Cancer Drugs 1999, 10, pp. 139-146.
Belehradek, J.J., Orlowski, S., Raimiriz, L.H., Pron, G., Poddevin, B. and Mir, L.M., "Electropermeabilization of cells and tissues assessed by the qualitative and quantitative electroloading of bleomycin", Biochem. Biophys. Acta, vol. 1190, pp. 155-163, 1994.
Berendson J. Simonsson D. Electrochemical aspects of treatment of tissue with direct current. Eur J Surg 1994: Suppl 574: 111-115.
Buchwald H, Rohde TD. Implantable pumps. Recent progress and anticipated future advances. ASAIO J 1992; 38 No. 4: 772-778.
C. Hauton, M. Charbonnier, L. Cara and J.P. Salles, A New Type of Liposome for Electrochemical Treatment of Cancer: The Lipogelosomes, European Journal of Surgery 1994; Suppl 574: 117-119.
C.E. Humphrey, E.H. Seal. Biophysical Approach toward Tumor Regression in Mice, Science, vol. 130, 1959.
Chen B, Xie Z, Zhu F. Experimental study on electrochemical treatment of cancer in mice. Eur J Surg 1994; Suppl 574: 75-77.
Chou C, McDougall JA, Ahn C, Vora N. Electrochemical treatment of mouse and rat fibrosarcomas with direct current. Bioelectromagnetics 1997; 18: 14-24.
D. Liu, Y.L. Xin, B. Ge, F. Zhao, H.C. Zhso. Experimental Studies on Electrolytic Dosage of ECT for Dog's Oesophageal Injury and Clinical Effects of ECT for Oesopohageal Anastomotic Opening Stenosis and Oesophageal Carcinoma, European Journal of Surgery 1994; Suppl 574: 71-72.
D. Miklavcic, D. An, J. Belehradek, Jr., L.M. Mir. Abstract of Host's Immune Response in Electrotherapy of Murine Tumors by Direct Current, European Cytokine Network Sep. 1997;8(3):275-9.
D.M. Morris, M.D., A.A. Marino, Ph. D., and E. Gonzalez, M.D. Electrochemical Modification of Tumor Growth in Mice, Journal of Surgical Research 53, 306-309 (1992).
Dalziel et al., "Let-Go Currents and Voltages," Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 75(2): pp. 49-56, 1956.
Damascelli B, Patelli G, Frigerio LF, Lanocita R, Di Tolla GD, Marchiano A., Spreafico C, Garbagnati F, Bonalumi MG, Monfardini L Ticha V, Prino A. First clinical experience with a high-capacity implantable infusion pump for continuous intravenous chemotherapy. Cardiovasc Intervent Radiol 1999; 22: 37-43.
E. Nilsson. Modelling of the Electrochemical Treatment of Tumours. Dissertation, Department of Chemical Engineering and Technology, Applied Electrochemistry, Royal Institute of Technology, Stockholm 2000.
Electro-Cancer Treatment, http://www.st-georg.com/ect.html, retrieved Oct. 25, 1999.
G. Sersa, M. Cemazar, D. Miklavcic and D. J. Chaplin, Tumor Blood Flow Modifying Effect of Electrochemotherapy with Bleomycin, Anticancer Research 19: 4017-4022 (1999).
G.D. O'Clock, Ph. D. (E.E.), P.E. The Effects of In Vitro Electrical Stimulation on Eukaryotic Cells: Suppression of Malignant Cell Proliferation, Journal of Orthomolecular Medicine, vol. 12, No. 3, 1997.
Gravante et al., "Experimental Application of Electrolysis in the Treatment of Liver and Pancreatic Tumours: Principles, Preclinical and Clinical Observations and Future Perspectives," Elsevier Ltd., ScienceDirect, dated Dec. 7, 2009, 15 pages.
H. Gong, G. Liu. Effect of Electrochemical Therapy on Immune Functions of Normal and Tumour-Bearing Mice, European Journal of Surgery, Suppl 1994; (574): 73-74.
H. von Euler, Electrochemical Treatment of Tumours, Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala 2002.
Habal and Schauble. An implantable DC power unit for control of experimental tumor growth in hamsters. Medical Instrumentation 7 No. 5: 305-306. (1973).
Heruth KT, Medtronic SynchroMed drug administration system. Ann NY Acad Sci 1988; 531: 72-75.
Hofmann, Dev, Nanda, and Rabussay. electroporation therapy of solid tumors. Critical Reviews in therapeutic Drug Carrier Systems 16(6):523-569 (1999).
Hofmann, G.A., Dev. S.B., Dimmer, S. and Nanda, G.S., "Electroporation Therapy: A new approach to the treatment of head and neck cancer, IEEE Transactions on Biomedical Engineering", vol. 46, No. 6, pp. 752-759, 1999.
http://www.genetronics, retrieved Jul. 29, 2003.
J.C. Weaver. Electroporation: A General Phenomenom for Manipulating Cells and Tissues. J Cell Biochem 1993; 51 No. 4: 426-435.
K. Brandisky, I. Daskalov. Abstract of Electrical Field and Current Distributions in Electrochemotherapy, Biolectrochemistry and Bioenergetics Feb. 1999; 48(1):201-8.
Kirsch DL, Lerner FN. Electromedicine: the other side of physiology. In: Innovations in pain management: a practical guide for clinicians. Winter Park, FL: GR Press, 1995.
L. Vodovnik, D. Miklavcic, G. Sersa. Modified Cell Proliferation Due to Electrical Currents, Medical and Biological Engineering and Computing, 1992, 30, CE21-CE28.
L.F. Glass, N.A. Fenske, M. Jaroszeski, R. Perrott, D.T. Harvey, D.S. Reintgen, R. Heller. Abstract of Bleomycin-Mediated Electrochemotherapy of Basal Cell Carcinoma, Journal of the American Academy of Dermatology Jan. 1996; 34(1):82-6.
L.H. Ramirez, S. Orlowski, D. An, G. Bindoula, R. Dzodic, P. Ardouin, C. Bognel, J. Belehradek Jr., J-N Munck, and L.M. Mir. Electrochemotherapy on Liver Tumours in Rabbits, British Journal of Cancer (1998) 77(12). 2104-2111.
Lao, Y., Ge, T., Zheng, X., Zhang, J. Hua, Y., Mao, S., Feng, X. Electrochemical therapy for intermediate and advanced liver cancer: a report of 50 cases. Eur J Surg 1994; Suppl 574: 51-53.
Li K, Xin Y, Gu Y, Xu B, Fan D. Ni B. Effects of direct current on dog liver: possible mechanisms for tumor electrochemical treatment. Bioelectromagnetics 1997; 18: 2-7.
M. Belehradek, C. Domenge, B. Luboinski, S. Orlowski, J. Belehradek, Jr., L.M. Mir. Abstract of Electrochemotherapy, A new antitumor treatment. First clinical phase I-II trial. Cancer Dec. 15, 1993; 72(12):3694-700.
M. Cemazar, G. Sersa and D. Miklavcic. Electrochemotherapy with Cisplatin in the Treatment of Tumor Cells Resistant to Cisplatin, Anticancer Research 18: 4463-4466 (1998).
M. Kraus and B. Wolf. Implications of Acidic Tumor Microenvironment for Neoplastic Growth and Cancer Treatment: A Computer Analysis, Tumor Biology 1996; 17: 133-154.
M. Kraus and B. Wolf. Physicochemical Microenvironment as Key Regulator for Tumor Microevolution, Invasion, and Immune Response: Targets for Endocytotechnological Approaches in Cancer Treatment, Endocytobiosis & Cell Research, 12, 133-156 (1998).
M. Wojcicki, R. Kostyrka, B. Kaczmarek, J. Kordowski, M. Romanowski, M. Kaminski, J. Klonek, S. Zielinski. Abstract of Electrochemical Therapy in Palliative Treatment of Malignant Dysphagia: A Pilot Study, Hepatogastroenterology Jan.-Feb. 1999;46(25):278-84.
M.A. Hamza, P.F. White, H.E. Ahmed, E.A. Ghoname. Abstract of Effect of the Frequency of Transcutaneous Electrical Nerve Stimulation on the Postoperative Opioid Analgesic Requirement and Recovery Profile, Anesthesiology Nov. 1999;91(5):1232-8.
M.B. Habal. Abstract of Effect of Applied DC Currents on Experimental Tumor Growth in Rats, Journal of Biomedical Materials Research, vol. 14, 789-801 (1980).
M.K. Schauble, M.B. Habal. Electropotentials of Tumor Tissues. Journal of Surgical Research 9: 9, 1969.
Matsushima Y, Takahashi E, Hagiwara K, Konaka C, Miura H, Kato H, Koshiishi Y. Clinical and experimental studies of anti-tumoural effects of electrochemical therapy (ECT) alone or in combination with chemotherapy. Eur J Surg 1994; Suppl 574: 59-67.
Mir LM, Orlowski S, Belehradek Jr J, Paoletti C. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 1991; 27:68-72.
N. Raghunand. Abstract of pH and Chemotherapy, Symposium 240: The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity, p. 5-6, held at the Novartis Foundation, London, 240 Oct. 10-12, 2000.
Nordenstrom B. Biologically closed electric circuits: activation of vascular interstitial closed electric circuits for treatment of inoperable cancer. Journal of Bioelectricity 1984; 3(162): 137-153.
Nordenstrom B. Preliminary clinical trials of electrophoretic ionization in the treatment of malignant tumors. IRCS Med Sc 1978; 6: 537.
Nordenstrom BEW, Eksborg, S., Beving, H. Electrochemical treatment of cancer. II: effect of electrophoretic influence on adriamycin. Am J Clin Oncol (CCT)1990; 13(1): 75-88.
Nordenstrom BEW. Biologically closed electric circuits: clinical, experimental and theoretical evidence for an additional circulatory system. Stockholm: Nordic Medical Publications, 1983.
Nordenstrom BEW. Electrochemical treatment of cancer. I: variable response to anodic and cathodic fields. Am J Clin Oncol (CCT) 1989; 12(6): 530-536.
Nordenstrom BEW. Survey of mechanisms in electrochemical treatment (ECT) of cancer. Eur J Surg 1994: Suppl 574: 93-109.
Okino, M. and Mohri, H. Effects of a high voltage electrical impulse and an anti-cancer drug on In Vivo growing tumors. Japanese Journal of Cancer Research, vol. 78, pp. 1319-1321, 1987.
Orlowski, S., Belehradek, J.J., Paoletti,C. and Mir, L.M. "Transient electropermeabilization of cells in culture increase of the cytotoxicity of anti-cancer drugs", Biochem, vol. 37, No. 24, pp. 4727-4733, 1988.
P. Vaupel, D.K. Kelleher, M. Hockel. Abstract of Oxygen Status of Malignant tumors: Pathogenesis of Hypoxia and Significance for Tumor Therapy. Semin Oncol Apr. 2001; 28(2 Suppl 8):29-35.
PCT/US2019/019788, PCT International Search Report and Written Opinion dated May 14, 2019, 6 pages.
Quan, K. Analysis of the clinical effectiveness of 144 cases of soft tissue and superficial malignant tumors treated with electrochemical therapy. Eur J Surg 1994; Suppl 574: 37-40.
R.A. Gatenby. Abstract of Mathematical Models of Tumour Invasion Mediated by Transformation-Induced Alteration of Microenvironment pH, Symposium 240: The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity, p. 2-3, held at the Novartis Foundation, London, 240 Oct. 10-12, 2000.
Ranade VV. Drug delivery systems. 4. Implants in drug delivery. J Clin Pharmacol 1990; 30 No. 10: 871-889.
Reis A, Henninger T. Zerstorung maligner Wachstumsenergie durch anodische Oxydation, Kim Wochenschrift 1951; _: 39.
S. Seguchi, S. Kawauchi, Y. Morimoto, T. Arai, H. Asanuma, M. Hayakawa, M. Kikuchi. Abstract of Critical Parameters in the Cytotoxicity of Photodynamic Therapy Using a Pulsed Laser. Lasers Med Sci 2002, 17(4):265-71.
S.A. Grossman, P.S. Staats, Abstract of Current Management of Pain in Patients with Cancer. Oncology (Huntingt) Mar. 1994; 8(3):93-107.
S.L. David, D.R. Absolom, C.R. Smith, J. Gams, and M.A. Herbert. Effect of Low Level Direct Current on In Vivo Tumor Growth in Hamsters, Cancer Research 45, 5625-5631, Nov. 1985.
Samuelsson, Harnek, Ewers, Jonsson. Electrochemical and megavolt treatment of rat tumors. Eur J Surg Suppl 574:69-70. (1994).
Schauble MK, Mutaz HB, Gallick HD. Inhibition of experimental tumor growth in hamsters by small direct currents. Arch Pathol Lab Med 1977; 101: 294.
Schecter, DC. "Containment of Tumors Through Electricity." PACE 1979. vol. 2, pp. 100-114.
Semrov and Miklacic. Calculation of the electrical parameters in electrochemistry of solid tumors in mice. Comp Biol Med 28:439-448. (2000).
Sersa, et al. Improvement of Combined modality therapy with cisplatin and radiation using electroporation of tumors. Int J. Radiation Oncology Biol. Phys. vol. 46, No. 4:1037-1041. (2000).
Song Y, Li C, Li Y, Song Q. Chang B, Song L. Liu C. Wang T. Electrochemical therapy in the treatment of malignant tumors on the body surface. Eur J Surg 1994; Suppl 574: 41-43.
Song, L., Liu, C., Zhang, B., Wang, T., Song, Y., Li, Y. Electrochemical therapy (ECT) for thyroid adenoma during acupuncture anaesthesia: analysis of 46 patients. Eur J Surg 1994; Suppl 574: 79-81.
Srinivasan S, Gahen Jr. GL, Stoner GE. Electrochemistry in the biomedical sciences. In: Bloom H, Gutmann F (eds): Electrochemistry the last thirty and the next thirty years. New York: Plenum Press, 1977.
T. Nishi, S.B. Dev., K. Yoshizato, J. Kuratsu, Y. Ushio. Abstract of Treatment of Cancer Using Pulsed Electric Field in Combination With Chemotherapeutic Agents or Genes, Human Cell Mar. 1997;10(1):81-6.
T.V. Taylor, P. Engler, B.R. Pullan and S. Holt. Ablation of Neoplasia by Direct Current, British Journal of Cancer (1994), 70, 342-345.
Turler, Schaefer, et al. Local treatment of hepatic metastases with low level direct electric current: experimental results. Scand J Gastroenterol. 3:322-328. (2000).
Vogelzang NJ, Ruane M, DeMeester TR. Phase I trial of an implanted battery-powered, programmable drug delivery system for continuous doxorubicin administration. J Clin Oncol 1985; 3 No. 3: 407-414.
W.R. Panje, M.P. Hier, G.R. Garman, E. Harrell, A. Goldman, I. Bloch. Abstract of Electroporation Therapy of Head and Neck Cancer, Annals of Otology, Rhinology and Laryngology Sep. 1998; 107(9 Pt 1): 779-85.
Wang, H. Electrochemical therapy of 74 cases of liver cancer. Eur J Surg 1994; Suppl 574: 55-57.
Wigness BD, Dorman FD, Robinson Jr HJ, Arendt EA, Oegema Jr TR,Rohde TD, Buchwald H. Catheter with an anchoring tip for chronic joint capsule perfusion. ASAIO Trans. 1991; 37 No. 3: M290-292.
Wolf B, Kraus M, and Sieben U, "Potential of microsensor-based feedback bioactuators for biophysical cancer treatment," Biosensors and Bioelectronics, vol. 12, No. 4, pp. 301-309, 1997.
X.Z. Lin, C.M. Jen, C.K. Choud, D.S. Chou, M.J. Sung, T.C. Chou. Saturated Saline Enhances the Effect of Electrochemical Therapy. Digestive Diseases and Sciences 2000: 45(3): 509-514.
Xin Y, Xue F, Ge B, Zhao F, Shi B, Zhang W. Electrochemical treatment of lung cancer. Bioelectromagnetics 1997; 18: 8-13.
Xin, Y. Organisation and spread of electrochemical therapy (ECT) in China. Eur J Surg 1994; Suppl 577: 25-30.
Y. Yen, J.R. Li, B.S. Zhou, F. Rojas, J. Yu and C.K. Chou. Electrochemical Treatment of Human KB Cells In Vitro, Bioelectromagnetics 20:34-41 (1999).
Y.L. Xin, D. Liu. Electrostatic Therapy (EST) of Lung Cancer and Pulmonary Metastasis: Report of 15 Cases. European Journal of Surgery 1994; Suppl 574: 91-92.
Y.L. Xin, F.Z. Xue, F.G. Zhao. Effectiveness of Electrochemical Therapy in the Treatment of Lung Cancers of Middle and Late Stage, Chinese Medical Journal 1997 110(5): 379-383.
Yokoyama, M., Itaoka, T., Nakajima, H., Ikeda, T., Ishikura, T., Nitta, S. [The use of direct current in the local destruction of cancer tissues]. Gan To Kagaku Ryoho Apr. 1989; 16(4 Pt 2-2): 1412-1417.

Also Published As

Publication number Publication date
US20200022748A1 (en) 2020-01-23
WO2019168949A1 (en) 2019-09-06

Similar Documents

Publication Publication Date Title
JP2022525344A (en) Spatial multiplexed waveform for selective cell resection
JP4364443B2 (en) Charge-based defibrillation method and apparatus
US11224474B2 (en) System for managing high impedance changes in a non-thermal ablation system for BPH
US9839470B2 (en) Electrosurgical generator for minimizing neuromuscular stimulation
US6980856B2 (en) Circuit for performing external pacing and biphasic defibrillation
US8428735B2 (en) Electrotherapy apparatus
EP3937812A1 (en) Waveform generator and control for selective cell ablation
JP2014097424A (en) System and method for adjusting electrical therapy on the basis of impedance change
JP2000515798A (en) Electrosurgical system and method for recanalization of an occluded body lumen
WO2008053532A1 (en) High frequency cautery electric power source device
Lipscomb et al. Preventing electrosurgical energy–related injuries
US11623091B2 (en) Portable electrical stimulation system and method
AU2019204642B2 (en) Method for reducing overactive bladder syndrome and computer-readable medium thereof
CH710651A2 (en) A control system of an electrotherapy device.
US11617619B2 (en) System and method for detecting application of grounding pad for ablation devices
US10086197B2 (en) Method for reducing overactive bladder syndrome and computer-readable medium thereof
KR20200094909A (en) High frequency treatment device and treatment method based on power value difference based control
US20240156477A1 (en) Control of ivl systems, devices and methods thereof
US11564731B2 (en) Method for detecting presence of tubing in pump assembly

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: EX PARTE QUAYLE ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: PROSTACARE PTY LTD, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KROLL, MARK;KROLL, KAI;REEL/FRAME:059112/0208

Effective date: 20211223