EP0435334A2 - Farbphotographisches Silberhalogenidmaterial, das einen gelb gefärbten Cyan-Kuppler enthält - Google Patents

Farbphotographisches Silberhalogenidmaterial, das einen gelb gefärbten Cyan-Kuppler enthält Download PDF

Info

Publication number
EP0435334A2
EP0435334A2 EP90125708A EP90125708A EP0435334A2 EP 0435334 A2 EP0435334 A2 EP 0435334A2 EP 90125708 A EP90125708 A EP 90125708A EP 90125708 A EP90125708 A EP 90125708A EP 0435334 A2 EP0435334 A2 EP 0435334A2
Authority
EP
European Patent Office
Prior art keywords
group
silver halide
photographic material
coupler
color photographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90125708A
Other languages
English (en)
French (fr)
Other versions
EP0435334B1 (de
EP0435334A3 (en
Inventor
Keiji C/O Fuji Photo Film Co. Ltd. Mihayashi
Takayoshi C/O Fuji Photo Film Co. Ltd. Kamio
Atsuhiro C/O Fuji Photo Film Co. Ltd. Ohkawa
Masuzi C/O Fuji Photo Film Co. Ltd. Motoki
Hidetoshi C/O Fuji Photo Film Co. Ltd. Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP27202490A external-priority patent/JPH03223751A/ja
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Publication of EP0435334A2 publication Critical patent/EP0435334A2/de
Publication of EP0435334A3 publication Critical patent/EP0435334A3/en
Application granted granted Critical
Publication of EP0435334B1 publication Critical patent/EP0435334B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/32Colour coupling substances
    • G03C7/3225Combination of couplers of different kinds, e.g. yellow and magenta couplers in a same layer or in different layers of the photographic material

Definitions

  • This invention relates to a silver halide color photographic material. More particularly, it relates to a silver halide color photographic material comprising a novel yellow colored cyan coupler and a development inhibitor-releasing compound which has excellent color reproducibility and sharpness over the whole exposure range and whose color reproducibility and sharpness are scarcely affected by changes in processing.
  • JP-A-60-185950 As means for improving color reproducibility and sharpness, the compounds of formula (I) according to the present invention have been proposed in JP-A-60-185950 (the term "JP-A” as used herein means an "unexamined published Japanese patent application"), JP-A-61-233741 (corresponding to U.S. Patent 4,618,571), JP-A-62-151850,JP-A-63-163454 (corresponding to U.S. Patent 4,824,772) and JP-A-63-281160. Interlaminar and edge effects are improved, and color reproducibility and sharpness are also improved to some degree by these compounds.
  • the red-sensitive layer and the blue-sensitive layer are far away from each other, so that there are problems in that a sufficient interlaminar effect between these layerscannot be obtained by use of these compounds and a lowering in the sensitivity of the green-sensitive layer is caused.
  • Afirst object of the present invention is to provide a photographic material which has excellent color reproducibility, and particularly red color reproducibility, over the whole exposure range.
  • a second object of the present invention is to provide a photographic material having excellent sharpness.
  • a third object of the present invention is to provide a photographic material which is less processing- dependent.
  • a fourth object of the present invention is to provide a photographic material which is highly sensitive.
  • a silver halide color photographic material comprising a support having thereon at least one red-sensitive silver halide emulsion layer containing a cyan coupler, at least one green-sensitive silver halide emulsion layer containing a magenta coupler and at least one blue-sensitive silver halide emulsion layer containing a yellow coupler, wherein the photographic material contains at least one compound represented by the following general formula (I) and at least one yellow colored cyan coupler: wherein A represents a group which is cleaved from (L 1 ) v -B(L 2 )w-DI by a reaction of the compound of formula (I) with an oxidation product of a developing agent; L 1 represents a bonding group which is cleaved from B after the cleavage of the bond between A and Li; B represents a group which reacts with an oxidation product of a developing agent to release (L 2 ) w- Dl; L 2 represents
  • aliphatic group means an aliphatic hydrocarbon group which may be a saturated or unsaturated hydrocarbon group or a straight-chain, branched or cyclic hydrocarbon group such as an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, etc.
  • aryl group means at least a substituted or unsubstituted phenyl and naphthyl groups.
  • An acyl moiety (in acyl group, acylamino group, etc.) means an aliphatic and aromatic acyl moiety.
  • a sulfonyl moiety (in sulfonyl group, sulfonamido group) means an aliphatic and aromatic sulfonyl moieties.
  • a carbamoyl group, sulfamoyl group, amino group and ureido group include unsubstituted and substituted groups thereof.
  • a heterocyclic group is a 3- to 8-membered having at least one of N, 0 and S atoms as hetero atom.
  • the compounds represented by general formula (I) are cleaved through the following reaction route during development to release DI: wherein A, Li, v, B, L 2 , w and DI have the same meaning as in formula (I); and QDI represents an oxidation product of a developing agent.
  • a in formula (I) represents a coupler moiety for color development or a moiety which is cleaved during development, and which is able to reduce the oxidation product of a developing agent, which exists during development.
  • Coupler moiety represented by A can be used as the coupler moiety represented by A, including yellow coupler moieties (e.g., open chain ketomethylene couplers moieties), magenta coupler moieties (e.g., 5-pyrazolone, pyrazoloimidazole and pyrazolotriazole coupler moieties), cyan coupler moieties (e.g., phenol and naphthol coupler moieties) and non-color forming coupler moieties (e.g., indanone and acetophenone coupler moieties).
  • Heterocyclic coupler moieties described in U.S. Patent 4,315,070, 4,183,752, 3,961,959 or 4,171,223 can be used.
  • Preferred examples of A include coupler moieties represented by formulas (Cp-1), (Cp-2), (Cp-3), (Cp-4), (Cp-5), (Cp-6), (Cp-7), (Cp-8), (Cp-9), and (Cp-10).
  • coupler moieties are preferred, because they have a high coupling rate.
  • the free bonds at the coupling positions represent the bonding positions of the groups which are eliminated by coupling.
  • the total number of carbon atoms in the group is 8 to 40, preferably 10 to 30. In other cases, the total number of carbon atoms is preferably not more than 15.
  • the couplers are bis type, telomer type or polymer type, any one of the above substituent groups is a bivalent group bonded to a repeating unit. In this case, the total numbers of carbon atoms may be beyond the above range.
  • R 41 represents an aliphatic group, an aromatic group or a heterocyclic group
  • R 42 represents an aromatic group or a heterocyclic group
  • R 43 , R44, and R 4 s which may be the same or different, each represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group.
  • R 51 has the same meaning as R 41 ; b is 0 or 1; R 52 and R 53 each has the same meaning as R 42 ; R 54 represents R 41 , R 41 S-, R 43 O-,
  • R 55 has the same meaning as R 41 ; R 56 and R 57 each repersents R 43 , R 41 S-, R 43 O-,
  • R 58 has the same meaning as R 41 ;
  • R 59 represents R 41 ,
  • R 41 0-, R 41 S-, a halogen atom or d is 0 or an integer of from 1 to 3 and when d is 2 or 3, plural R 59 groups may be the same or different, or each R 59 is a divalent group and these divalent groups may be linked to form a ring structure.
  • Typical examples of the divalent groups which form a ring structure include the following groups. wherein f is 0 or an integer of 1 to 4 and g is 0, 1 or 2.
  • R 60 has the same meaning as R 41 ;
  • R 61 has the same meaning as R 41 ;
  • R 62 represents R 41 , R 41 0CONH-, R 41 S0 2 NH-,
  • R 63 represents R 41 .
  • R 62 or R 63 groups When two or more R 62 or R 63 groups are present, they may be the same or different.
  • the aliphatic group is a saturated or unsaturated linear or cyclic straight-chain or branched chain, substituted or unsubstituted aliphatic hydrocarbon group having 1 to 32 carbon atoms, preferably 1 to 22 carbon atoms.
  • Typical examples thereof include a methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, i-butyl group, t-amyl group, hexyl group, cyclohexyl group, 2-ethylhexyl group, octyl group, 1,1,3,3-tetramethylbutyl group, decyl group, dodecyl group, hexadecyl group and octadecyl group.
  • the aromatic group is a substituted or unsubstituted phenyl or naphthyl group having 6 to 20 carbon atoms.
  • the heterocyclic group is preferably a 3-membered to 8-membered a substituted or unsubstituted heterocyclic group having 1 to 20 carbon atoms, preferably 1 to 7 carbon atoms wherein the hetero-atom is selected from a nitrogen, oxygen and sulfur atom.
  • heterocyclic group examples include a 2-pyridyl group, 2-thienyl group, 2-furyl group, 1-imidazolyl group, 1-indolyl group, phthalimido group, 1,3,4-thiadiazole-2-yl group, 2-quinolyl group, 2,4-dioxo-1,3-imidazolidine-5-yl group, 2,4-dioxo-1,3-imidazolidine-3-yl group, succinimido group, 1,2,4-triazole-2-yl group and 1-pyrazolyl group.
  • aliphatic hydrocarbon group, aromatic group and heterocyclic group may optionally have one or more substituent groups.
  • substituent groups include a halogen atom, R 47 O-, R 46 S-,
  • R 46 COO-, R 47 OSO 2 -, a cyano group and a nitro group, wherein R 46 represents an aliphatic group, an aromatic group or a heterocyclic group and R 47 , R 48 and R 49 each represents an aliphatic group, an aromatic group, a heterocyclic group or a hydrogen atom.
  • the aliphatic group, the aromatic group and the heterocyclic group have the same meanings as those described above.
  • R 51 to R 63 and d and e are as follows.
  • R 51 is an aliphatic group or an aromatic group.
  • R 52 , R 53 and R 55 are each an aromatic group.
  • R 54 is preferably R 41 CONH- or
  • R 56 and R 57 are each preferably an aliphatic group, an aromatic gorup, R 41 O- or R 41 S-; and R 58 is preferably an aliphatic group or an aromatic group.
  • R 59 is preferably a chlorine atom, an aliphatic group or 41 CONH-; d is preferably 1 or 2; and R 60 is preferably an aromatic group.
  • R 59 is preferably R 41 CONH-; d is preferably 1; and R 6 , is preferably an aliphatic group or an aromatic group.
  • e is preferably 0 or 1;
  • R 62 is preferably R 41 OCONH-, R 41 CONH- or R 41 SO 2 NH-and these groups are preferably attached to the 5-position of the naphthol ring.
  • R 63 is preferably R 41 CONH-, R 41 SO 2 NH-, a nitro group or a cyano group.
  • R 63 is preferably R 43 OCO- or a R 43 CO-.
  • P and Q represent independently an oxygen atom or a substituted or unsubstituted imino group; at least one of the n X groups and the n Y groups represents a methine group having a group of -(Li ) v -B(L 2 )w-DI as a substituent group and the other X and Y groups represent independently a substituted or unsubstituted methine group or a nitrogen atom; n represents an integer of 1 to 3 (when n is 2 or greater, the n X groups or n Y groups may be the same or different groups); and A 1 and A 2 each represents a hydrogen atom or a group which can be eliminated by an alkali.
  • any two substituents of P, X, Y, Q, A 1 and A 2 may be bivalent groups and may be combined together to form a ring structure. All such ring structures are included within the scope of the present invention.
  • P and Q are each a substituted or unsubstituted imino group, a sulfonyl or acyl group-substituted imino group is preferred, and P and Q can be represented by the following formulas:
  • the group represented by G is preferably a straight-chain or branched, linear or cyclic, saturated or unsaturated, substituted or unsubstituted aliphatic hydrocarbon group having 1 to 32 carbon atoms (containing carbon atoms of substituent), preferably 1 to 22 carbon atoms (e.g., methyl, ethyl, benzyl, phenoxybutyl, isopropyl), a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms (e.g., phenyl, 4-methylphenyl, 1-naphthyl, 4-dodecyloxyphenyl), a 4-membered to 7-membered substituted or unsubstituted heterocyclic group containing at least one of a nitrogen atom, a sulfur atom and an oxygen atom as hetero atom and the gorup may be condensed with a benzene ring (e.g., 1-phen
  • substituent for G or G' include a halogen atom, a hydroxy group, a carboxy group, a sulfo group, a phospono group, a phosphino group, a cyano group, an alkoxy group, an aryl group, an aryloxy group, an alkoxycarbonyl group, an amino group, an ammoniumyl group, an acyl group, a carbonamido group, a sulfonamido group, a carbamoyl group, a sulfamoyl group and a sulfonyl group.
  • P and G are preferably independently an oxygen atom or a group represented by formula (N-1).
  • a 1 and A 2 are each a group which can be eliminated by an alkali (hereinafter referred to as a precursor group)
  • a hydrolyzable group such as an acyl, alkoxycarbonyl, aryloxycarbonyl, carbamoyl, imidoyl, oxazolyl and sulfonyl groups (which are preferably have 1 to 6 carbon atoms and which may be substituted with a substituent such as those cited in the definition of G); a precursor group which utilizes reverse Michael reactions as described in U.S.
  • Patent 4,009,029 a precursor group which utilizes, as an intramolecular nucleophilic group, an anion formed after a ring cleavage reaction as described in U.S. Patent 4,310,612; a precursor group which causes a cleavage reaction by the electron transfer of an anion through a conjugated system as described in U.S. Patents 3,674,478, 3,932,480 and 3,993,681; a precursor group which causes a cleavage reaction by the electron transfer of an anion reacted after ring cleavage as described in U.S. Patent 4,335,200; and a precursor group which utilizes an imidomethyl group as described in U.S. Patents 4,363,865 and 4,410,618.
  • the X and Y groups which do not represent a methine group having a group of -(Li)v-B-(L 2 ) w -DI as a substituent preferably represent substituted or unsubstituted methine groups.
  • the mark * represents a position at which a group of -(L 1 ) v -B-(L 2 ) w -DI is attached; P, Q, A 1 and A 2 have the same meaning as in formula (II); R 64 is a substituent group; and q is 0 or an integer of 1 to 3. When q is 2 or greater, the two or more R 64 groups may be the same or different groups. When two R 64 groups are substituent groups attached to adjoining carbon atoms, they each may be a bivalent group and may be combined together to form a ring structure. All such ring structures are included within the scope of the present invention.
  • benzene condensed rings which include such ring structures as naphthanenes, benzonorbornenes, chromans, benzothiophenes, benzofurans, 2,3-dihydrobenzofurans or indenes. These condensed rings may have one or more substituent groups.
  • Preferred examples of the substituent groups for these condensed rings when two R 64 groups form a condensed ring and preferred examples of R 64 when the R 64 groups do not form a condensed ring include an R 41 group, a halogen atom, R 43 0-, R 43 S-, R 43 (R 44 )NCO-, R 43 00C-, R 43 SO 2 -, R 43 (R 44 )NSO 2 -, R 43 CON(R 43 )-, R 41 SO 2 (R 43 )-, R 43 CO-, R 41 COO-, R 41 SO-, a nitro group, R 43 (R 44 )NCON-(R 4 s)-, a cyano group, R 41 OCON(R 43 )-, R430S02-, R43(R44)N-, R 43 (R 44 )NSO 2 N(R 45 )-, and wherein R 41 , R 43 , R 44 and R 45 are as defined above.
  • a 1 and A 2 are preferably hydrogen atom.
  • the groups represented by L, and L 2 in formula (I) may be used or may not be used according to purpose.
  • Examples of the groups represented by L 1 and L 2 when used include the following bonding groups. In the following formulas, either the mark * represents a position at which A is bonded and the mark ** represents a position at which B is bonded, or the mark * represents a position at which B is bonded and the mark ** represents a position at which DI is bonded.
  • R 10 is a group which can be substituted to a benzene ring (typical substituents thereof being those already described above in the definition of R 64 );
  • R 11 has the same meaning as R4i;
  • R 12 is a hydrogen atom or one of the groups already described above in the definition of R ⁇ 4 ;
  • t is an integer of 0 to 4.
  • the group represented by B in formula (I) is preferably a group which can be oxidized and is capable of reducing an oxidation product of a developing agent, or a group which forms a substantially colorless compound by a coupling reaction with an oxidation product of a developing agent.
  • B is preferably a group represented by the following general formula (V): wherein the mark * represents a position at which the group of formula (V) is bonded to the left side in formula (I); A 2' , P', Q' and n' have the same meaning as A 2 , P, Q and n in formula (II), respectively, with the proviso that at least one of the n' X' groups and the n' Y' groups is a methine group having an (L 2 ) w -DI group as a substituent group and the other X' and Y' groups are a substituted (examples of the substituent include the same group as those in the definition for R 64 and a hydroxy gorup) or unsubstituted methine group or a nitrogen atom.
  • V general formula
  • a 2' , P', Q', X' and Y' When any two of A 2' , P', Q', X' and Y' are a bivalent group, they may be combined together to form a ring structure. All such ring structures are included within the scope of the present invention. Examples of the ring structures include a benzene ring, an imidazole ring and a pyridine ring.
  • P' is preferably an oxygen atom and Q' is preferably an oxygen atom or a group represented by any one of the following formulas.
  • G is as defined in formulas (N-1) and (N-2).
  • Q' is an oxygen atom or an group.
  • Typical examples of the group represented by B in formula (I) include the following groups wherein the mark * represents a position where each group is bonded to A-(L 1 ) n in formula (I) and the mark ** represents a position where each group is bonded to (L 2 ) w -DI in formula (I).
  • R 13 has the same meaning as R 64 , R 14 and R 15 each have the same meaning as R 4 i, l is an integer of 0 to 2, m is an integer of 0 to 3, and a is an integer of 0 or 1.
  • B which is released and forms a compound exhibiting a reducing action
  • B include the reducing agents described in U.S. Patents 4,741,994 and 4,477,560, JP-A-61-102646, JP-A-61-107245, JP-A-61-113060, JP-A-64-13547, JP-A-64-13548 and JP-A-64-73346.
  • the group represented by B in formula (I) is a group which forms a substantially colorless compound by a coupling reaction with an oxidation product of a developing agent
  • examples of the group include phenol and naphthol coupler moieties, pyrazolone coupler moieties and indanone coupler moieties. These moieties are bonded to A-(Li ) v through an oxygen atom. These coupler moieties become couplers after release from A-(L 1 ) v and are coupled with oxidation products of developing agents.
  • colored dyes are formed, but when diffusibility is properly increased without any nondiffusing group, the dyes are dissolved into processing solutions during development and hence the dyes are substantially not left behind in the photographic material.
  • the dyes formed are diffusing dyes, they react with alkaline ingredients (e.g., hydroxyl ion, sulfite ion) in developing solutions during development; the dyes are decomposed and are made colorless; and hence the dyes are substantially not left behind in the photographic material even when colored dyes are formed.
  • alkaline ingredients e.g., hydroxyl ion, sulfite ion
  • B include the following groups wherein the mark * represents a position where each group is bonded to A-(L 1 ) v and the mark ** represents a position where each group is bonded to (L 2 ) w- Di
  • R 13 , R i4 and m are as defined above and R 16 has the same meaning as R 43 .
  • the group represented by B in formula (I) is preferably a group which reduces an oxidation product of a developing agent after release from A-(Li ) " .
  • the compounds represented by formula (I) according to the present invention may be in the form of a polymer. All such polymers are included within the scope of the present invention. Namely, the polymers are derived from a monomer compound represented by the following general formula (P-1) and composed of a repeating unit represented by the following general formula (P-II), or copolymers of the monomer compound with at least one non-color forming monomer which has at least one ethylene group and is incapable of coupling with oxidation products of aromatic primary amine developing agents. Two or more members of the above monomer compounds may be polymerized simultaneously.
  • RR represents a hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms or a chlorine atom
  • a 11 represents -CONH-, -NHCONH-, -NHCOO-, -COO- -S0 2 -, -CO-, -NHCO-, -S0 2 NH-, -NHS0 2 -, -OCO-, -OCONH-, -NH- or -0-
  • a 12 represents -CONH- or -COO-
  • a 13 represents a substituted or unsubstituted alkylene or an aralkylene group preferably having 1 to 10 carbon atoms, or an unsubstituted or substituted arylene group.
  • the alkylene group or alkylene moiety in the aralkylene group may be straight-chain or branched.
  • QQ represents a moiety of a compound represented by formula (I) and may be bonded to any site of A, Li, B and L 2 .
  • i, j, and k each represents 0 or 1, but there is no case where i, j and k are 0 simultaneously.
  • substituent groups for the alkylene group, the aralkylene group or the arylene group represented by A 13 include aryl (e.g., phenyl, naphthyl), nitro, hydroxyl, cyano, sulfo, alkoxy (e.g., methoxy), aryloxy (e.g., phenoxy), acyloxy (e.g., acetoxy), acylamino (e.g., acetylamino), sulfonamido (e.g., methanesulfonamido), sulfamoyl (e.g., methylsulfamoyl), halogen (e.g., fluorine, chlorine, bromine), carboxy, carbamoyl (e.g., methylcarbamoyl), alkoxycarbonyl (e.g., methoxycarbonyl) and sulfonyl (e.g., methylsulf
  • These non-color forming ethylenic unsaturated monomers may be used either alone or as a mixture of two or more of them.
  • moieties of conventional development inhibitors can be used.
  • a heterocyclic mercapto group, a 1-indazolyl group and a triazolyl group can be preferably used. More specifically, examples thereof include a tetrazolylthio group, a thiadiazolylthio group, an oxadiazolylthio group, a triazolylthio group, a benzoxazolylthio group, a benzothiazolylthio group, a benzimidazolylthio group, a 1-(or 2-)benztriazolyl group, a 1,2,4-triazole-1-(or 4-)yl group and a 1-indazolyl group.
  • substituent groups include aliphatic groups, aromatic groups, heterocyclic groups and those groups already described above in the definition of the substituent groups for the aromatic group.
  • the compounds of formula (I) according to the present invention can be synthesized by the methods described in U.S. Patents 4,618,571 and 4,770,982, JP-A-63-284159, JP-A-60-203943 and JP-A-63-23152.
  • the compounds of formula (I) according to the present invention be added to sensitive silver halide emulsion layers or adjoining layers in the photographic materials. It is particularly preferred that the compounds be added to the red-sensitive silver halide emulsion layer.
  • the compounds are used in an amount of 1x10- 6 to 1x10- 3 mol/m 2 , preferably 3x10- 6 to 5x10- 4 mol/m 2 , more preferably 1x10 -5 to 2x10- 6 mol/m 2 .
  • the yellow colored cyan couplers of the present invention refer to cyan couplers which have an absorption maximum at 400 nm to 500 nm in the visible absorption region of the couplers and which form cyan dyes having an absorption maximum at 630 nm to 750 nm in the visible absorption region by the coupling thereof with the oxidation product of an aromatic primary amine developing agent.
  • cyan couplers of the present invention there are preferred cyan couplers which release a moiety of a water-soluble compound.
  • the moiety include a 6-hydroxy-2-pyridone-5-ylazo group, a pyrazolone-4-ylazo group, a 2-acylaminophenylazo group or a 2-sulfonamidophenylazo group, and a 5-aminopyrazol-4-ylazo- gorup by a coupling reaction with the oxidation product of an aromatic primary amine developing agent.
  • the water soluble compound should be dissolved out from the photographic material during development processing.
  • the compound is preferably soluble in a developing solution of pH 9 to 12 in an amount of at least 1 g/l , more preferably at least 3 g/l]at 25 C.
  • the colored cyan couplers of the present invention can be represented by the following general formulas (CI) to (CIV).
  • Cp represents a cyan coupler moiety (T is bonded to the coupling site thereof); T represents a timing group; k represents an integer of 0 or 1; X represents an N-, 0- or S-containing bivalent group which is bonded to (T) k through the N, 0 or S atom and which also is bonded to Q; and Q represents an arylene group or a bivalent heterocyclic group (preferably containing 6 to 12 carbon atoms, e.g., phenylene, naphthylene).
  • R 1 and R 2 are independently a hydrogen atom, a carboxyl group, a sulfo group, a cyano group, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aryl group, a heterocyclic group, a carbamoyl group, a sulfamoyl group, a carbonamido group, a sulfonamido group or an alkylsulfonyl group;
  • R 3 is a hydrogen atom, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aryl group or a heterocyclic group; and at least one of T, X, Q, Ri, R 2 and R 3 has a water-soluble group (e.g., hydroxyl, carboxyl, sulfo, amino, ammoniumyl, phosphono, phosphino, hydroxysulfonyloxy).
  • a water-soluble group e.g., hydroxyl
  • R4 is an acyl group or a sulfonyl group
  • R 5 is a group which can be attached to the benzene ring
  • j is an integer of 0 to 4; when j is 2 or greater, the two or more R 5 groups may be the same or different
  • at least one of T, X, Q, R4 and R 5 has a water-soluble group (e.g., hydroxyl, carboxyl, sulfo, phosphono, phosphino, hydroxysulfonyloxy, amino, ammoniumyl).
  • R 9 is a hydrogen atom, a carboxyl group, a sulfo group, a cyano group, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aryl group, an alkoxy group, a cycloalkyloxy group, an aryloxy group, a heterocyclic group, a carbamoyl group, a sulfamoyl group, a carbonamido group, a sulfonamido group, an alkylsulfonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group or a sulfonyl group; Rio is a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a heterocyclic group; and at least one of T, X, Q, R 9 and R 10 has a water-soluble group (e.g., hydroxyl, carboxyl, methylurea compound, a
  • Examples of the coupler moiety represented by Cp include conventional cyan coupler moiety (e.g., phenol and naphthol couplers).
  • Cp coupler moiety represented by general formulas (Cp-6), (Cp-7) and (Cp-8) among those exemplified in the description of the compounds of formula (I).
  • the timing group represented by T in formulas (CI) to (CIV) is a group which is cleaved from X after the cleavage of the bond between Cp and T by the coupling reaction of the couplers with an oxidation product of an aromatic primary amine developing agent.
  • the timing group is used for various purposes, e.g., stabilizing the couplers, controlling the release timing of X, etc.
  • Examples of the timing group include conventional timing groups represented by formulas (T-1) to (T-7) exemplified in the description of the compounds of formula (I).
  • k may be an integer of 0 or 1, it is generally preferred the case where k is 0, that is, Cp is directly bonded to X.
  • X is a bivalent group which is bonded to (T) k through an N, 0 or S atom.
  • X is -0-, -S-, -OS0 2 -, -OS0 2 NH- or a bivalent group which is bonded to (T) k through N, such as a heterocyclic group (e.g., a group derived from pyrrolidine, piperidine, morpholine, piperazine, pyrrole, pyrazole, imidazole, 1,2,4-triazole, benztriazole, succinimide, phthalimide, oxazolidine-2,4-dione, imidazolidine-2,4-dione, 1,2,4-triazolidine-3,5-dione or the like) or a composite group derived from these groups and an alkylene group (e.g., methylene, ethylene, propylene), a cycloalkylene group (e.g., 1,4-cyclo
  • the mark represents the position where the group is bonded to (T) k ; the mark ** represents the position where the group is bonded to Q;
  • X 1 represents -0- or -S-;
  • L represents an alkylene group;
  • X 2 represents a single bond, -0-, -S-, -CO-, -S0 2 -, -S0 2 NH-, -NHS0 2 -, -S0 2 0-, -OS0 2 -, -NHS0 2 NH-, -OS0 2 NH- or NHS0 2 0-; and
  • m represents an integer of 0 to 3.
  • the sum total of carbon atoms (hereinafter referred to as the carbon number) in X is preferably 0 to 12, more preferably 0 to 8. Most preferably, X is -OCH 2 CH 2 0-.
  • Q is an arylene group or a bivalent heterocyclic group.
  • the arylene group may be a condensed ring and may have one or more substituent groups (examples of the substituent groups include halogen atom, hydroxyl, carboxyl, sulfo, nitro, cyano, amino, ammonium, phosphono, phosphino, alkyl, cycloalkyl, aryl, carbonamido, sulfonamido, alkoxy, aryloxy, acyl, sulfonyl, carboxyl, cabamoyl and sulfamoyl).
  • the arylene group has preferably 6 to 15 carbon atoms, more preferably 6 to 10 carbon atoms.
  • the heterocyclic group is a 3-membered to 8- membered, preferably 5-membered to 7-membered, monocyclic or condensed ring heterocyclic group containing at least one hetero-atom selected from the group consisting of N, 0, S, P, Se and Te as a member of the heterocyclic ring (e.g., a group derived from pyridine, thiophene, furan, pyrrole, pyrazole, imidazole, thiazole, oxazole, benzthiazole, benzoxazole, benzofuran, benzothiophene, 1,3,4-th- iodiazole,indole, and quinoline) and may have one or more substituent groups (examples of the substituent groups being the same as those for the arylene group of Q).
  • the carbon number is a group derived from pyr
  • the aliphatic hydrocarbon group represented by Ri, R 2 or R 3 may be any of a straight-chain and branched (e.g., alkyl), and may contain unsaturated bonds and may have one or more substituent groups (examples of the substituent groups include halogen atom, hydroxyl, carboxyl, sulfo, phosphono, phosphino, cyano, alkoxy, aryl, alkoxycarbonyl, amino, ammoniumyl, acyl, carbonamido, sulfonamido, carbamoyl, sulfamoyl, and sulfonyl).
  • substituent groups include halogen atom, hydroxyl, carboxyl, sulfo, phosphono, phosphino, cyano, alkoxy, aryl, alkoxycarbonyl, amino, ammoniumyl, acyl, carbonamido, sulfonamido, carbamoyl
  • Ri, R 2 or R 3 is an alicyclic hydrocarbon group
  • the group is a 3-membered to 8-membered group which may have crosslinking groups, unsaturated bonds or substituent groups (examples of the substituent groups being the same as those described above in the definition of the substituent groups for the aliphatic hydrocarbon group of Ri, R 2 or R 3 ).
  • R i , R 2 or R 3 is an aryl group
  • the aryl group may be a condensed ring and may have one or more substituent groups (examples of the substituent groups being an alkyl group, a cycloalkyl group and those described above in the definition of the substituent groups for the aliphatic hydrocarbon group of R i , R 2 or R 3 ).
  • the heterocyclic group is a 3-membered to 8-membered, preferably 5-membered to 7-membered, monocyclic or condensed ring heterocyclic group containing at least one hetero-atom selected from the group consisting of N, S, 0, P, Se and Te as a member of the heterocyclic ring (e.g., imidazolyl, thienyl, pyrazolyl, thiazolyl, pyridyl, quinolynyl) and may have one or more substituent groups (examples of the substituent groups being the same as those described above in the definition of the substituent groups for the aryl group of Ri, R 2 or R 3 ).
  • carboxyl group may include carboxylato group
  • sulfo group may include sulfonato group
  • phosphino group may include phosphinato group
  • phosphono group may include phosphonato group.
  • Counter ions are Li , Na , K , ammonium, etc.
  • R 1 is a hydrogen atom, a carboxyl group, an alkyl group having 1 to 10 carbon atoms (e.g., methyl, t-butyl, sulfomethyl, 2-sulfomethyl, carboxymethyl,2-carboxymethyl, 2-hydroxymethyl, benzyl, ethyl, isopropyl) or an aryl group having 6 to 12 carbon atoms (e.g., phenyl, 4-methoxyphenyl, 4-sulfophenyl) with a hydrogen atom, a methyl group or a carboxyl group being particularly preferred.
  • an alkyl group having 1 to 10 carbon atoms e.g., methyl, t-butyl, sulfomethyl, 2-sulfomethyl, carboxymethyl,2-carboxymethyl, 2-hydroxymethyl, benzyl, ethyl, isopropyl
  • an aryl group having 6 to 12 carbon atoms e.g., pheny
  • R 2 is a cyano group, a carboxyl group, a carbamoyl group having 1 to 10 carbon atoms, a sulfamoyl group having 0 to 10 carbon atoms, a sulfo group, an alkyl group having 1 to 10 carbon atoms (e.g., methyl, sulfomethyl), a sulfonyl group having 1 to 10 carbon atoms (e.g., methylsulfonyl, phenylsulfonyl), a carbonamido group having 1 to 10 carbon atoms (e.g., acetamido, benzamido) or a sulfonamido group having 1 to 10 carbon atoms (e.g., methanesulfonamido, toluenesulfonamido) with a cyano group, a carbamoyl group or a carboxyl group being particularly preferred.
  • R 3 is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms (e.g., methyl, sulfomethyl, carboxymethyl, ethyl, n-butyl, benzyl, 4-sulfobenzyl) or an aryl group having 6 to 15 carbon atoms (e.g., phenyl, 4-carboxyphenyl, 3-carboxyphenyl, 4-methoxyphenyl, 2,4-dicarboxyphenyl, 2-sulfophenyl, 3-sulfophenyl, 4-sulfophenyl, 2,4-disulfophenyl, 2,5-disulfophenyl) among which an alkyl group having 1 to 7 carbon atoms or an aryl group having 6 to 10 carbon atoms is more preferred.
  • an alkyl group having 1 to 12 carbon atoms e.g., methyl, sulfomethyl, carboxymethyl, ethyl,
  • R4 preferably is an acyl group represented by the following general formula (III) or a sulfonyl group represented by the following general formula (IV):
  • R 11 is an aliphatic hydrocarbon group
  • the group includes both straight-chain and branched groups (preferably having1 to 6 carbon atoms), and may contain unsaturated bonds and may have one or more substituent groups (examples of the substituent groups include halogen atom, hydroxyl, carboxyl, sulfo, phosphono, phosphino, cyano, alkoxy, aryl, alkoxycarbonyl, amino, ammoniumyl, acyl, carbonamido, sulfonamido, carbamoyl, sulfamoyl, and sulfonyl).
  • R 11 is an alicyclic hydrocarbon group
  • the group is a 3-membered to 8-membered group which may contain crosslinking groups and unsaturated bonds and may have one or more substituent groups (examples of the substituent groups being those described above in the definition of the substituent groups for the aliphatic hydrocarbon group of R 11 ).
  • R 11 is an aryl group
  • the aryl group may be a condensed ring and may have one or more substituent groups (examples of the substituent groups include an alkyl group, a cycloalkyl group and those described above in the definition of the substituent groups for the aliphatic hydrocarbon group of R 11 ).
  • the heterocyclic group is a 3-membered to 8-membered (preferably 5-membered to 7-membered) monocyclic or condensed ring heterocyclic group containing at least one hetero-atom selected from the group consisting of N, S, 0, P, Se and Te as a member of the heterocyclic ring (e.g., imidazolyl, thienyl, pyrazolyl, thiazolyl, pyridyl, quinolyl) and may have one or more substituent groups (examples of the substituent groups being those described above in the definition of the substituent groups for the aryl group of R 11 ).
  • carboxyl group may include carboxylato group
  • sulfo group may include sulfonato group
  • phosphino group may include phosphinato group
  • phosphono group may include phosphonato group.
  • Counter ions are Li + , Na + , K + , ammonium, etc.
  • R 11 is an alkyl group having 1 to 10 carbon atoms (e.g., methyl, carboxymethyl, sulfoethyl, cyanoethyl), a cycloalkyl group having 5 to 8 carbon atoms (e.g., cyclohexyl, 2-carboxycyclohexyl) or an aryl group having 6 to 10 carbon atoms (e.g., phenyl, 1-naphthyl, 4-sulfophenyl) among which an alkyl group having 1 to 3 carbon atoms and an aryl group having 6 carbon atoms are particularly preferred.
  • a cycloalkyl group having 5 to 8 carbon atoms e.g., cyclohexyl, 2-carboxycyclohexyl
  • an aryl group having 6 to 10 carbon atoms e.g., phenyl, 1-naphthyl, 4-sulfophenyl
  • R 5 is a group which can be attached to the benzene ring and is preferably an electron donative group. Particularly preferably, R 5 is a group of -NR 12 R 13 or -OR 14 which is preferably attached to the 4-position of the ring.
  • R 12 , R 13 and Pit are each a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a heterocyclic group and each has the same meaning as R 11 .
  • R 12 and R 13 may be combined together to form a ring.
  • a nitrogen-containing heterocyclic ring wherein atoms other than the nitrogen all are carbon atoms is preferred.
  • j is an integer of 0 to 4, preferably 1 to 2, particularly preferably 1.
  • R 9 or R 10 is an aliphatic hydrocarbon group
  • the group may be any of a straight chain group and a branched group, may contain unsaturated bonds and may have one or more substituent groups (e.g., halogen atom, hydroxyl, carboxyl, sulfo, phosphono, phosphino, cyano, alkoxy, aryl, alkoxycarbonyl, amino, ammonium, acyl, carbonamido, sulfonamido, carbamoyl, sulfamoyl, sulfonyl).
  • substituent groups e.g., halogen atom, hydroxyl, carboxyl, sulfo, phosphono, phosphino, cyano, alkoxy, aryl, alkoxycarbonyl, amino, ammonium, acyl, carbonamido, sulfonamido, carbamoyl, sulfamoyl,
  • R 9 or R 10 is an alicyclic hydrocarbon group
  • the group is a 3-membered to 8-membered group which may have crosslinking groups, unsaturated bonds or substituent groups (examples of the substituent groups being those described above in the definition of the substituent groups for the aliphatic hydrocarbon group of R 9 or Rio).
  • R 9 or R 10 is an aryl group
  • the aryl group may be a condensed ring and may have one or more substituent groups (examples of the substituent groups being an alkyl group, a cycloalkyl group and those described above in the definition of the substituent groups for the alipahtic hydrocarbon group of R 9 or R 10 ).
  • the heterocyclic group is a 3-membered to 8-membered (preferably 5-membered to 7-membered) monocyclic or condensed ring heterocyclic group containing at least one hetero-atom selected from the group consisting of N, S, 0, P, Se and Te as a member of the heterocyclic ring (e.g., imidazolyl, thienyl, pyrazolyl, thiazolyl, pyridyl, quinolynyl) and may have one or more substituent groups (examples of the substituent groups being those described above in the definition of the substituent groups for the aryl group of R 9 or Rio).
  • carboxyl group may include carboxylato group
  • sulfo group may include sulfonato group
  • phosphino group may include phosphinato group
  • phosphono group may include phosphonato group.
  • Counter ions are Li Na , K , ammonium, etc.
  • R 9 is a cyano group, a carboxyl group, a carbamoyl group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, an aryloxycarbonyl group having 7 to 11 carbon atoms, a sulfamoyl group having 0 to 10 carbon atoms, a sulfo group, an alkyl group having 1 to 10 carbon atoms (e.g., methyl, carboxymethyl, sulfomethyl), a sulfonyl group having 1 to 10 carbon atoms (e.g., methylsulfonyl, phenylsulfonyl), a carbonamido group having 1 to 10 carbon atoms (e.g., acetamido, benzamido), a sulfonamido group having 1 to 10 carbon atoms (e.g., methanesulfonamido, toluene
  • R 10 is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms (e.g., methyl, sulfomethyl, carboxymethyl, ethyl, 2-sulfoethyl, 2-carboxyethyl, 3-sulfopropyl, 3-carboxypropyl, 5-sulfopen- tyl, 5-carboxypentyl, 4-sulfobenzyl) or an aryl group having 6 to 15 carbon atoms (e.g., phenyl, 4-carboxyphenyl, 3-carboxyphenyl, 2,4-dicarboxyphenyl, 4-sulfophenyl, 3-sulfophenyl, 2,5-disulfophenyl, 2,4- disulfophenyl) among which an alkyl group having 1 to 7 carbon atoms or an aryl group having 6 to 10 carbon atoms is more preferred.
  • an alkyl group having 1 to 12 carbon atoms
  • Cp, X, Q, in formulas (CI) to (CIV) include the following groups.
  • the colored couplers represented by formula (CI) of the present invention can be generally synthesized by the diazo coupling reaction of a 6-hydroxy-2-pyridone compound with an aromatic diazonium salt or heterocyclic diazonium salt having a coupler structure.
  • the former 6-hydroxy-2-pyridone compounds can be synthesized by methods described in Klinsberg, Heterocyclic Compound - Pyridine and Its Derivatives, Part 3 (Interscience 1962); J. Am. Chem. Soc., Vol. 65, page 449 (1943); J. Chem. Tech. Biotechnol., Vol. 36, page 410 (1986); Tetrahedron, Vol. 22, page 445 (1966); JP-B-61-52827 (the term "JP-B” as used herein means an "examined Japanese patent publication”); West German Patents 2,162,612, 2,349,709 and 2,902,486; and U.S. Patent 3,763,170.
  • the latter diazonium salts can be synthesized according to the methods described in U.S. Patents 4,004,929 and 4,138,258, JP-A-61-72244 and JP-A-61-273543.
  • the diazo coupling reaction of the 6-hydroxy-2-pyridone compounds with the diazonium salts can be carried out in a solvent such as methanol, ethanol, methyl cellosolve, acetic acid, N,N-dimethylformamide, N,N-dimethylacetamide, tetrahydrofuran, dioxane, water or the like or a mixture thereof.
  • reaction temperature is generally from -78 to +60° C, preferably from -20 to + 30 C.
  • the resulting crude crystal was purified from hot methanol in the same manner as in Synthesis Example 1 to give 14.8 g of the desired coupler (YC-3) with a melting point of 246 to 251 C (decomposition).
  • the structure of the compound was confirmed by 1 HNMR spectrum, mass spectrum and elemental analysis.
  • the compound exhibited a maximum absorption wavelength in methanol at 457.6 nm and had a molecular extinction coefficient of 42700.
  • the compound was found to have good spectral absorption characteristics as a yellow colored coupler.
  • the coupler (YC-30) had a melting point of 154-6°C. The structure thereof was confirmed by 1 HNMR spectrum, mass spectrum and elemental analysis. The compound exhibited a maximum absorption wavelength in methanol at 458.2 nm and had a molecular extinction coefficient of 42800. The compound was found to have good spectral absorption characteristics as a yellow colored coupler.
  • the yellow colored cyan couplers represented by formulas (CII) to (CIV) can be synthesized by methods described in JP-B-58-6939 (the term "JP-B” as used herein means an "examined published Japanese patent publication") and JP-A-1-197563.
  • the couplers represented by general formula (CI) can be synthesized by the methods described in patent specifications cited above.
  • the couplers represented by formulas (CI) and (CII) are more preferred, and the couplers of formula (CI) are particularly preferred.
  • the yellow colored cyan couplers of the present invention be added to sensitive silver halide emulsion layers or adjoining layers in the photographic materials. It is particularly preferred that the yellow colored cyan couplers be added to the red-sensitive emulsion layer.
  • the total amount of the couplers to be added to the photographic material is 0.005 to 0.30 g/m 2 , preferably 0.02 to 0.20 g/m 2 , more preferably 0.03 to 0.15 g / m 2 .
  • the yellow colored couplers of the present invention can be added in the same manner as in the addition of conventional couplers described hereinafter.
  • a polymer coupler obtained from a monomer represented by the following general formula (P) be used in the green-sensitive layer of the silver halide color photographic material (especially, the order of layers from the support is red-, green- and blue-sensitive layers, and the yellow colored coupler of the present invention and the compound represented by formula (I) are incorporated to the red-sensitive layer) of the present invention:
  • R 121 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a chlorine atom; -D- represents -COO-, -CONR 122 - or a substituted or unsubstituted phenylene group; -E-represents a substituted or unsubstituted alkylene, phenylene or aralkylene group; -F- represents - CONR 122 -, -NR 122CONR122 -, -NR 122COO -, -NR 122 CO-, -OCONR 122 -, -NR 122 -, -COO-, -OCO-, -CO-, -0-, -S-, -S0 2 -, -NR 122 S0 2 -, or -SO 2 NR 122 -; R 122 represents a hydrogen atom or a substituted or unsubstituted, saturated or unsaturated aliphatic
  • substituents for groups represented by D, E, R 122 include a halogen atom, a hydroxy group, a carboxy group, a sulfo group, a phospono group, a phosphino group, a cyano group, an alkoxy group, an aryl group, an aryloxy group, an alkoxycarbonyl group, an amino group, an ammoniumyl group, an acyl group, a carbonamido group, a sulfonamido group, a carbamoyl group, a sulfamoyl group and a sulfonyl group.
  • T in formula (P) represents a magenta coupler moiety (which is bonded to -(F ⁇ r - at any one site of Ar, Z and R133) represented by the following general formula (Q)
  • Ar represents known substituent groups at the 1-position of 2-pyrazoline-5-one couplers, such as an alkyl group, a substituted alkyl group (e.g., haloalkyl such as fluoroalkyl, cyanoalkyl, benzylal- kyl), a substituted or unsubstituted heterocyclic group (e.g., 4-pyridyl group, 2-thiazolyl group), a substituted or unsubstituted aryl group (an example of a substituent group for the heterocyclic group and the aryl group includes an alkyl group, e.g., methyl and ethyl), an alkoxy group (e.g., methoxy, ethoxy), an aryloxy group (e.g., phenyloxy), an alkoxycarbonyl group (e.g., methoxycarbonyl), an acylamino group (e.g., acetylamino),
  • an alkylsulfamoyl group e.g., ethylsulfamoyl
  • a dialkylsulfamoyl group e.g., dimethylsulfamoyl
  • an alkylthio group e.g., methylthio
  • an arylthio group e.g., phenylthio
  • a cyano group e.g., fluorine, chlorine, bromine.
  • substituent groups are a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group and a cyano group.
  • R 133 represents a substituted or unsubstituted anilino group, an acylamino group (e.g., alkylcar- bonamido, phenylcarbonamido, alkoxycarbonamido, phenyloxycarbonamido), a ureido group (e.g., alkylureido, phenylureido) or a sulfonamido group. These groups may be substituted.
  • an acylamino group e.g., alkylcar- bonamido, phenylcarbonamido, alkoxycarbonamido, phenyloxycarbonamido
  • a ureido group e.g., alkylureido, phenylureido
  • sulfonamido group e.g., sulfonamido group.
  • substituent groups include a halogen atom (e.g., fluorine, chlorine, bromine), a straight-chain or branched alkyl group (e.g., methyl, t-butyl, octyl, tetradecyl), an alkoxy group (e.g., methoxy, ethoxy, 2-ethylhexyloxy, tetradecyloxy), an acylamino group (e.g., acetamido, benzamido, butaneamido, octaneamido, tetradecaneamido, a-(2,4-di-tert-amylphenoxy)acetamido,a-(2,4-di-tert-amylphenoxy)butylamido, a-(3-pen- tadecylphenoxy)hexaneamido, a-(4-hydroxy-3-tert-butyt
  • the alkyl group and alkyl moiety has 1 to 36 carbon atoms and the aryl group has 6 to 38 carbon atoms.
  • Z represents a halogen atom (e.g., chlorine atom, bromine atom), a group which is bonded through an oxygen atom and eliminated by a coupling reaction (e.g., acetoxy, propanoyloxy, benzoyloxy, ethoxyox- aloyloxy, pyruvvinyloxy, cinnamoyloxy, phenoxy, 4-cyanophenoxy, 4-titanium sulfonamidophenoxy, a-naphthoxy, 4-cyanoxy, 4-methanesulfonamidophenoxy, 0-naphthoxy, 3-pentadecylph- enoxy,benzyioxycarbonyloxy, ethoxy, 2-cyanoethoxy, benzyloxy, 2-phenethyloxy, 2-phenoxyethoxy, 5-phenyltetrazolyloxy, and 2-benzothiazolyloxy), a coupling eliminating group which is bonded through a
  • Preferred coupling eliminating groups are those which are bonded through a nitrogen atom, and an especially preferred coupling eliminating group is a pyrazolyl gorup.
  • E represents a substituted or unsubstituted alkylene, aralkylene, or phenylene group having 1 to 10 carbon atoms.
  • the alkylene group may be a straight-chain or branched-chain.
  • Examples of the alkylene group include a methylene group, a methylmethylene group, a dimethylmethylene group, a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and a decylmethylene group.
  • An example of the aralkylene group include a benzylidene group.
  • An example of the phenylene group include a p-phenylene group, a m-phenylene group and a methylphenylene group.
  • substituents for the alkylene group, the aralkylene group or the phenylene group represented by E include an aryl group (e.g., phenyl), a nitro group, a hydroxyl group, a cyano group, a sulfo group, an alkoxy group (e.g., methoxy), an aryloxy group (e.g., phenoxy), an acyloxy gorup (e.g., acetoxy), an acylamino group (e.g., acetylamino), a sulfonamido group (e.g., methanesulfonamido), a sulfamoyl group (e.g., methylsulfamoyl), a halogen atom (e.g., fluorine, chlorine, and bormine), a carboxy group, a carbamoyl group (e.g., methylcarbamoyl), an al
  • Examples of the non-color forming ethylene monomer which are capable of copolymerizing with a coupler monomer represented by formula (P) and are incapable of coupling with an oxidized product of an aromatic primary amine developing agent include an acrylic acid ester, a methacrylic acid ester, a crotonic acid ester, a vinyl ester, a maleic acid diester, a fumaric acid diester, an itaconic acid diester, an acrylamide, a methacrylamide, a vinyl ether and a styrene.
  • acrylic acid ester examples include methylacrylate, ethylacrylate, n-propylacrylate, isopropylacrylate, n-butylacrylate, isobutylacrylate, terbutylacrylate, hexylacrylate, 2-ethylhexyl acrylate, acetoxyethyl acrylate, phenyl acrylate, 2-methoxy acrylate, 2-ethoxy acrylate and 2-(2-methoxyethoxy)ethyl acrylate.
  • methacrylic esters examples include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, 2-hydroxyethyl methacrylate and 2-ethoxyethyl methacrylate.
  • crotonic esters examples include butyl crotonate and hexyl crotonate.
  • vinyl esters examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinylmethoxy acetate and vinyl benzoate.
  • maleic diesters examples include diethyl maleate, dimethyl maleate and dibutyl maleate.
  • Examples of fumaric diesters include diethyl fumarate, dimethyl fumarate and dibutyl fumarate.
  • Examples of itaconic diesters include diethyl itaconate, dimethyl itaconate and dibutyl itaconate.
  • Examples of acrylamides include acrylamide, methyl acrylamide, ethyl acrylamide, propyl acrylamide, n-butyl acrylamide, tert-butyl acrylamide, cyclohexyl acrylamide, 2-methoxyethyl acrylamide, dimethyl acrylamide, diethyl acrylamide and phenyl acrylamide.
  • methacrylamides include methyl methacrylamide, ethyl methacrylamide, n-butyl methacrylamide, tert-butyl methacrylamide, 2-methoxy methacrylamide, dimethyl methacrylamide and diethyl methacrylamide.
  • vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxyethyl vinyl ether and dimethylaminoethyl vinyl ether.
  • styrenes examples include styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, chloromethylstyrene, methoxystyrene, butoxystyrene, acetox- ystyrene, chlorostyrene, dichlorostyrene, bromostyrene, methyl vinylbenzoate and 2-methylstyrene.
  • Examples of other monomers include allyl compounds (e.g., allyl acetate), vinyl ketones (e.g., methyl vinyl ketone), vinyl heterocyclic compounds (e.g., vinylpyridine), glycidyl esters (e.g., glycidyl acrylate), unsaturated nitriles (e.g., acrylonitrile), acrylic acid, methacrylic acid, itaconic acid, maleic acid, monoalkyl itaconates (e.g., monomethyl itaconate), monoalkyl maleates (e.g., monomethyl maleate), citraconic acid, vinylsulfonic acid, acryloyloxyalkylsulfonic acids (e.g., cryloyloxymethylsulfonic acid) and acrylamidoalkyl- sulfonic acids (e.g., 2-acrylamido-2-methylethanesulfonic acid).
  • These acids may be in the form of a salt such as
  • preferred comonomers are acrylic esters, methacrylic esters, styrenes, maleic esters, acrylamides and methacrylamides.
  • These monomers may be used either alone or in a combination of two or more of them.
  • a combination of n-butyl acrylate and styrene, a combination of n-butyl acrylate and butylstyrene and a combination of t-butyl methacrylamide and n-butyl acrylamide can be used.
  • the color forming moiety corresponding to formula (P) account for 5 to 80% by weight of the above magenta coupler.
  • the ratio of the color forming moiety in the coupler be 30 to 70% by weight.
  • the equimolecular weight grams of polymer containing one mol of monomer coupler is about 250 to 4,000, but is not limited thereto.
  • the above polymer couplers are added to silver halide emulsion layers or adjoining light-insensitive layers thereto.
  • magenta polymer couplers when used in the emulsion layers are used in an amount of 0.005 to 0.5 mol, preferably 0.03 to 0.25 mol (in terms of coupler monomer) per mol of silver used in the same layer.
  • the polymer couplers are used in the light-insensitive layers, the polymer couplers are used in a coating weight of 0.01 to 1.0 g/m 2 , preferably 0.1 to 0.5 g/m 2 .
  • the polymer couplers may be prepared by emulsifying and dispersing a solution of a lipophilic polymer coupler in the form of latex in an organic solvent in an aqueous gelatin solution, said polymer coupler being obtained by polymerizing a monomer coupler in the manner mentioned above.
  • the polymer coupler may be prepared directly by an emulsion polymerization method.
  • a method for emulsifying and dispersing the lipophilic polymer coupler in the form of a latex in an aqueous gelatin solution is described in U.S. Patent 3,451,820.
  • Emulsion polymerization can be carried out by using the methods described in U.S. Patents 4,080,211 and 3,370,952.
  • the syntheses of the above magenta polymer couplers are carried out by using the compounds described in JP-A-56-5543, JP-A-57-94752, JP-A-57-176038, JP-A-57-204038, JP-A-58-28745, JP-A-58-10738, JP-A-58-42044 and JP-A-58-145944 as polymerization initiators and solvents.
  • the polymerization temperature is set depending on the molecular weights of polymers to be synthesized, the types of initiators, etc.
  • the polymerization can be conducted at a temperature of from below 0 C to higher than 100° C, but polymerization is usually conducted at a temperature of 30 to 100° C.
  • magenta polymer couplers which can be used in the present invention include, but are not limited to, the following compounds (the suffix of parenthesis represents molar ratio).
  • the photographic material of the present invention has a support having thereon at least one blue-sensitive silver halide emulsion layer, green-sensitive silver halide emulsion layer and red-sensitive silver halide emulsion layer.
  • a support having thereon at least one blue-sensitive silver halide emulsion layer, green-sensitive silver halide emulsion layer and red-sensitive silver halide emulsion layer.
  • a typical example is a silver halide photographic material having at least one sensitive layer composed of a plurality of silver halide emulsion layers having substantially the same color sensitivity, but different light sensitivity, the sensitive layer being a unit sensitive layer having color sensitivity to any one of blue light, green light and red light.
  • the unit sensitive layers are generally arranged in the order of a red-sensitive layer, a green-sensitive layer and a blue-sensitive layer from the support.
  • the arrangement may be in the reverse order to that described above according to purpose. Further, the arrangement may be such that a different light-sensitive layer is inserted into the same color sensitive layers.
  • Non-sensitive layers such as various interlayers may be provided between silver halide sensitive layers, or on the uppermost layer or lowermost layer thereof.
  • the interlayers may contain couplers, or DIR compounds described in JP-A-61-43748, JP-A-59-113438, JP-A-59-113440, JP-A-61-20037 and JP-A-61-20038.
  • the inter layers may also contain color mixing inhibitors as used conventionally.
  • a plurality of silver halide emulsion layers which constitute each unit sensitive layer preferably include a two-layer structure consisting of a high-sensitivity emulsion layer and a low-sensitivity emulsion layer as described in West German Patent 1,121,470 and U.K. Patent 923,045. It is preferred that the layers are disposed such that light sensitivity is lower toward the support.
  • a non-sensitive layer may be provided between silver halide emulsion layers.
  • the low-sensitivity emulsion layer may be provided on the farther side from the support and the high-sensitivity emulsion layer may be provided on the side nearer to the support as described in JP-A-57-112751, JP-A-62-200350, JP-A-62-206541 and JP-A-62-206543.
  • the layer may be arranged in order of low-sensitivity blue-sensitive layer (BL)-/high-sensitivity blue-sensitive layer (BH)/ high-sensitivity green-sensitive layer (GH)/low-sensitivity green-sensitive layer (GL)/high-sensitivity red-sensitive layer (RH)/low-sensitivity red-sensitive layer (RL) from the outermost layer, or in order of BH/BUGUGH/RH/RL, or in order of BH/BUGH/GURURH.
  • BL low-sensitivity blue-sensitive layer
  • BH high-sensitivity blue-sensitive layer
  • GH high-sensitivity green-sensitive layer
  • GL low-sensitivity red-sensitive layer
  • RL high-sensitivity red-sensitive layer
  • the arrangement may be made in order of blue-sensitive layer/GH/RH/GURL from the outermost layer as described in JP-B-55-34932. Further, the arrangement may be made in order of blue-sensitive layer/GURUGH/RH from the outermost layer as described in JP-A-56-25738 and JP-A-62-63936.
  • the layer structure contains three layers having different light sensitivity in such an arrangement that the upper layer is a silver halide emulsion layer having the highest light sensitivity, the medium layer is a silver halide emulsion layer having a light sensitivity lower than that of the upper layer and the lower layer is a silver halide emulsion layer having a light sensitivity lower than that of the medium layer so that light sensitivity becomes lower toward the support in order as described in JP-B-49-15495.
  • the arrangement may be made in order of medium-sensitive emulsion layer/high-sensitivity emulsion layer/low-sensitivity emulsion layer from the outermost layer as described in JP-A-59-202464.
  • the arrangement may be made in order of high-sensitivity emulsion layer/low sensitivity emulsion layer/medium-sensitivity emulsion layer or in order of low sensitivity emulsion layer/medium-sensitivity emulsion layer/high-sensitivity emulsion layer.
  • the layer structure is composed of four or more layers, the above-described various arrangements can be made.
  • a donor layer (CL) having a multilayer effect and different in spectral sensitivity distribution from the principal sensitive layers such as BL, GL and RL are provided adjacent to or near the principal sensitive layers to improve color reproducibility, said donor layer being described in U.S. Patents 4,663,271, 4,705,744 and 4,707,436, JP-A-62-160448 and JP-A-63-89850.
  • the preferred silver halide contained in the photographic emulsions of the photographic materials of the present invention is silver iodobromide, silver iodochloride or silver iodochlorobromide, each having a silver iodide content of not higher than about 30 mol%. Particularly preferred is silver iodobromide or silver iodochlorobromide, each having a silver iodide content of about 2 mol% to about 25 mol%.
  • Silver halide grains in the photographic emulsions may have a regular crystal form such as cube, octahedron or tetradecahedron, an irregular crystal form such as a sphere or tabular form, a crystal having a defect such as a twinning plane or a composite form thereof.
  • the size of silver halide grains may be in the range of from fine grains having a grain size of not larger than about 0.2 lim to large-size grains having a grain size of about 10 ⁇ rn in terms of the diameter of projected area. Any of a polydisperse emulsion and monodisperse emulsion may be used.
  • the silver halide photographic emulsions of the present invention can be prepared according to the methods described in Research Disclosure (RD) No. 17643 (December 1978) pp 22-23 I. Emulsion Preparation and Types; ibid. No. 18716 (November 1979), p. 648; ibid. No. 307105 (November 1989), pp 863-865; P. Glafkides, Chimie et Phisique Photographique (Paul Montel 1967), G.F. Duffin, Photographic Emulsion Chemistry (Focal Press 1966) and V.L. Zelikman et al, Making and Coating Photographic Emulsion (Focal Press 1964).
  • Tabular grains having an aspect ratio of not lower than about 5 can be used in the present invention.
  • the tabular grains can be easily prepared by the methods described in Gutoff, Photographic Science and Engineering, Vol. 14, pp 248-257 (1970), U.S. Patents 4,434,226, 4,414,310, 4,433,048 and 4,439,520 and U.K. Patent 2,112,157.
  • Grains having a uniform crystal structure or a crystal structure different in halogen composition between the interior thereof and the surface thereof can be used.
  • Grains having a laminar crystal structure may be used.
  • Silver halide having a different composition may be joined to the grains by epitaxial growth.
  • a compound such as silver rhodanide or lead oxide other than silver halide may be joined to the grains.
  • a mixture of grains having various crystal forms may be used.
  • Silver halide emulsions are usually subjected to physical ripening, chemical ripening and spectral sensitization and then used. Additives used for these stages are described in Research Disclosure No. 17643, ibid. No. 18716 and ibid. No. 30716 and listed in a Table below.
  • non-light-sensitive finely divided silver halide grains are used in the present invention.
  • non-sensitive finely divided silver halide grains refers to finely divided silver halide grains which are not light-sensitive during imagewise exposure for obtaining a dye image and are substantially not developed in the processing stage. Grains which are previously not fogged are preferable.
  • Finely divided silver halide grains have a silver bromide content of 0 to 100 mol% and may optionally contain silver chloride and/or silver iodide. Grains containing 0.5 to 10 mol% of silver iodide are preferred.
  • Finely divided silver halide grains have a mean grain size (the mean value of diameters of the circles having areas corresponding to projected areas) of preferably 0.01 to 0.5 ⁇ rn, more preferably 0.02 to 0.2 ⁇ m.
  • Finely divided silver halide grains can be prepared in the same manner as in the preparation of usual light-sensitive silver halides. In the preparation of finely divided silver halide grains, it is not necessary that the surfaces of silver halide grains be optically sensitized or spectrally-sensitized. However, it is preferred that a conventional stabilizer such as triazole, azaindene, benzthiazolium, a mercapto compound or a zinc compound be added before the finely divided silver halide grains are added to coating solutions. Colloidal silver is preferably incorporated in layers containing the finely divided silver halide grains.
  • color couplers can be used in the present invention. Examples thereof are described in patent specifications cited in the above-described Research Disclosure No. 17643, VII-C to G and ibid. No. 307105, VII-C to G.
  • yellow couplers include those described in U.S. Patents 3,933,501, 4,022,620, 4,326,024, 4,401,752 and 4,248,961, JP-B-58-10739, U.K. Patents 1,425,020 and 1,476,760, U.S. Patents 3,973,968, 4,314,023 and 4,511,649 and European Patent 249,473A.
  • magenta couplers are preferred as magenta couplers. Particularly preferred are magenta couplers described in U.S. Patents 4,310,619 and 4,351,897, European Patent 73,636, U.S. Patents 3,061,432 and 3,725,067, Research Disclosure No. 24220 (June 1984), JP-A-60-33552, Research Disclosure No. 24230 (June 1984), JP-A-60-43659, JP-A-61-72238, JP-A-60-35730, JP-A-55-118034, JP-A-60-185951, U.S. Patents 4,500,630, 4,540,654 and 4,556,630 and W088/04795.
  • cyan couplers phenol coupelrs and naphthol couplers may be used.
  • Preferred cyan couplers include those described in U.S. Patents 4,052,212, 4,146,396, 4,228,233, 4,296,200, 2,369,929, 2,801,171, 2,772,162, 2,895,826, 3,772,002, 3,758,308, 4,334,011 and 4,327,173, West German Patent Application (Laid-Open) No. 3,329,729, European Patents 121,365A and 249,453A, U.S. Patents 3,446,622, 4,333,999, 4,775,616, 4,451,559, 4,427,767, 4,690,889, 4,254,212 and 4,296,199 and JP-A-61-42658.
  • couplers which release imagewise nucleating agents or development accelerators during development there are preferred those described in U.K. Patents 2,097,140 and 2,131,188, JP-A-59-157638 and JP-A-59-170840.
  • Couplers used in the present invention can be introduced into photographic materials by various known dispersion methods.
  • Examples of the high-boiling organic solvents which have a boiling point of not lower than 175°C at normal pressure used in the oil-in-water dispersion method include phthalic esters (e.g., dibutyl phthalate, dicyclohexyl phthalate, di-2-ethylhexyl phthalate, decyl phthalate, bis(2,4-di-t-amylphenyl) phthalate, bis(2,4-di-t-amylphenyl) isophthalate, bis(1,1-diethylpropyl) phthalate), phosphoric or phosphonic esters (e.g., triphenyl phosphate, tricresyl phosphate, 2-ethylhexyl diphenyl phosphate, tricyclohexyl phosphate, tri-2-ethylhexyl phosphate, tridodecyl phosphate, tributoxyethyl phosphate,
  • Organic solvents having a boiling point of not lower than about 30 C, preferably not lower than about 50 C, but not higher than about 160° C can be used as co-solvents.
  • the co-solvents include ethyl acetate, butyl acetate, ethyl propionate, methyl ethyl ketone, cyclohexanone, 2-ethoxyethyl acetate and dimethylformamide.
  • antiseptic and antifungal agents such as 1,2-benzoisothiazoline-3-one, n-butyl p-hydroxybenzoate, phenol, 4-chloro-3,5-dimethylphenol, 2-phenoxyethanol and 2-(4-thiazolyl)benzimidazole described in JP-A-63-257747, JP-A-62-272248 and JP-A-1-80941 and phenethyl alcohol are added to the color photographic materials of the present invention.
  • antiseptic and antifungal agents such as 1,2-benzoisothiazoline-3-one, n-butyl p-hydroxybenzoate, phenol, 4-chloro-3,5-dimethylphenol, 2-phenoxyethanol and 2-(4-thiazolyl)benzimidazole described in JP-A-63-257747, JP-A-62-272248 and JP-A-1-80941 and phenethyl alcohol are added to the color photographic materials of the present invention.
  • the present invention can be applied to various color photographic materials.
  • Typical examples of the color photographic materials according to the present invention include general-purpose and movie color negative films, reversal color films for slide or TV, color paper, color positive films and reversal color paper.
  • Examples of supports which can be used in the present invention include those described in the above-described RD No. 17643 (page 28), RD No. 18716 (right column of page 647 to left column of page 648) and RD No. 307105 (page 879).
  • the total of the layer thicknesses of the entire hydrophilic colloid layers on the emulsion layer side thereof is preferably not more than 28 pm, more preferably not more than 23 pm, still more preferably not more than 18 pm, particularly preferably not more than 16 pm.
  • the layer-swelling rate T 1/2 is preferably not longer than 30 seconds, more preferably not longer than 20 seconds.
  • the layer thickness refers to a layer thickness obtained by measuring the thickness of a layer at 25 C and 55% RH under air conditioning (2 days).
  • the layer-swelling rate T 1/2 can be measured by known method in the field of photography, for example, by using a swellometer described in A. Green et al., Photogr. Sci. Eng., Vol. 19, No.
  • T 1/2 is defined as the time taken until layer thickness reaches 1/2 of saturated layer thickness when processing is conducted with a color developing solution at 30 C for 3 min 15 sec and 90% of the attainable maximum swollen layer thickness is referred to as saturated layer thickness.
  • the layer-swelling rate T 112 can be controlled by adding a hardening agent to gelatin as a binder or by changing conditions with time after coating.
  • a swelling ratio of 150 to 400% is preferred.
  • the swelling ratio can be calculated from the maximum swollen layer thickness under the above conditions by using the formula (maximum swollen layer thickness - layer thickness)/layer thickness.
  • the color photographic materials of the present invention can be developed according to conventional methods described in RD No. 17643 (pp 28-29), RD No. 18716 (left column to right column of page 651) and RD No. 307105 (pp 880-881).
  • Color developing solutions which can be used in the processing of the photographic materials of the present invention are preferably aqueous alkaline solutions mainly composed of aromatic primary amine color developing agents. Aminophenol compounds are useful as the color developing agents and p-phenylenediamine compounds are preferred as the color developing agents.
  • Typical examples thereof include 3-methyl-4-amino-N,N-diethylaniline, 3-methyl-4-amino-N-ethyl-N- ⁇ -hydroxyethylaniline, 3-methyl-4-amino-N-ethyl-N- ⁇ -methanesulfonamidoethylaniline, 3-methyl-4-amino-N-ethyl-N- ⁇ -methoxyethylaniline and salts thereof such as sulfate, hydrochloride and p-toluenesulfonate.
  • 3-methyl-4-amino-N-ethyl-N- ⁇ -hydroxyethylaniline sulfate is particularly preferred. These compounds may be used either alone or in combination of two or more of them according to purpose.
  • the color developing solutions contain pH buffering agents such as alkali metal carbonates, borates and phosphates, developed restrainers such as chlorides, bromides, iodides, benzimidazoles, benzothiazoles and mercapto compounds and anti-fogging agents.
  • pH buffering agents such as alkali metal carbonates, borates and phosphates
  • developed restrainers such as chlorides, bromides, iodides, benzimidazoles, benzothiazoles and mercapto compounds and anti-fogging agents.
  • the color developing solutions may optionally contain preservatives such as hydroxylamine, diethylhydroxylamine, sulfites, hydrazine such as N,N-biscarboxymethylhydrazine, phenylsemicarbazides, triethanolamine, catecholsulfonic acids; organic solvents such as ethylene glycol and diethylene glycol; development accelerators such as benzyl alcohol, polyethylene glycol, quaternary ammonium salts and amines; color forming couplers, competitive couplers; auxiliary developing agents such as 1-phenyl-3-pyrazolidone; tackifiers; and chelating agents such as aminopolycarboxylic acids, aminopolyphosphonic acids, alkylphosphonic acids and phosphonocarboxylic acids, for example, ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, cyclohexanediaminetetraacetic acid, hydroxyeth
  • Black-and-white developing solutions may contain conventional developing agents such as dihydroxybenzenes (e.g., hydroquinone), 3-pyrazolidones (e.g., 1-phenyl-3-pyrazolidone) and aminophenols (e.g., N-methyl-p-aminophenol). These developing agents may be used either alone or in combination of two or more of them.
  • dihydroxybenzenes e.g., hydroquinone
  • 3-pyrazolidones e.g., 1-phenyl-3-pyrazolidone
  • aminophenols e.g., N-methyl-p-aminophenol
  • the pH of the color developing solutions and the black-and-white developing solutions is generally in the range of 9 to 12.
  • the replenishment rate of these developing solutions varies depending on the types of the color photographic materials, but is usually not more than 3 1 per m 2 of the photographic material.
  • the replenishment rate can be reduced to 500 ml or less when the concentration of bromide ion in the replenisher is reduced.
  • the contact area of the photographic processing solution with air in the processing tank is represented by opening ratio defined below.
  • the opening ratio is preferably not higher than 0.1, more preferably 0.001 to 0.05.
  • Methods for reducing the opening ratio include a method wherein a cover such as a floating lid is provided on the surface of the photographic processing solution in the processing tank; a method wherein a movable lid is used as described in JP-A-1-82033; and a slit development method described in JP-A-63-216050. It is preferred the opening ratio be reduced not only for color development and black and white development stages, but also all of the subsequent stages such as bleaching, bleaching-fixing, fixing, rinsing and stabilization stages. The replenishment rate can be reduced by inhibiting the accumulation of bromide ion in the developing solution.
  • Color development is usually 2 to 5 minutes. However, when a higher temperature and a higher pH are used and the color developing agents are used at a higher concentration, processing time can be shortened.
  • the photographic emulsion layer is generally bleached.
  • Bleaching may be carried out simultaneously with fixing (bleaching-fixing treatment) or separately carried out.
  • a bleaching-fixing treatment may be conducted to expedite processing. Processing may be conducted with a bleaching-fixing bath composed of two consecutive baths. Fixing may be conducted before the bleaching-fixing treatment.
  • bleaching may be conducted according to purpose. Examples of bleaching agents include compounds of polyvalent metals such as iron(III), peracids, quinones and nitro compounds.
  • Typical examples of the bleaching agents include organic complex salts of iron(III) such as complex salts of aminopolycarboxylic acids (e.g., ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, cyclohexanediaminetetraacetic acid, methyliminodiacetic acid, 1,3-diaminopropanetetraacetic acid, glycol ether diaminetetraacetic acid), citric acid, tartaric acid, and malic acid.
  • aminopolycarboxylic acids e.g., ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, cyclohexanediaminetetraacetic acid, methyliminodiacetic acid, 1,3-diaminopropanetetraacetic acid, glycol ether diaminetetraacetic acid
  • citric acid tartaric acid
  • malic acid e.g., citric acid, tartaric acid, and malic acid
  • iron(III) complex salts of aminopolycarboxylic acids such as (ethylenediaminetetraacetonato)-iron(III) complex and (1,3-diaminopropanetetraacetonato)iron(III) complex are preferred for rapid processing and prevention of environmental pollution.
  • iron(III) complex salts of aminopolycarboxylic acids are useful for bleaching solutions and bleaching-fixing solutions.
  • the pH of the bleaching solutions containing the iron(III) complex salts of aminopolycarboxylic acids and the bleaching-fixing solutions containing the iron(III) complex salts is generally in the range of 4.0 to 8. A lower pH may be used to expedite processing.
  • the bleaching solution, the bleaching-fixing solution and the pre-bath thereof may contain bleaching accelerators.
  • the bleaching accelerators include compounds having a mercapto group or disulfide group described in U.S. Patent 3,893,858, West German Patents 1,290,812 and 2,059,988, JP-A-53-32736, JP-A-53-57831, JP-A-53-37418, JP-A-53-72623, JP-A-53-95630, JP-A-53-95631, JP-A-53-104232, JP-A-53-124424, JP-A-53-141623, JP-A-53-28426 and Research Disclosure No.
  • the compounds having a mercapto group or disulfide group are preferred for their high accelerating effect.
  • Patent 3,893,858, West German Patent 1,290,812 and JP-A-53-95630 are preferred. Further, the compounds described in U.S. Patent 4,552,834 are preferred. These bleaching accelerators may be incorporated in the photographic materials. These bleaching accelerators are particularly effective in conducting bleaching-fixing of the color photographic materials for photographing.
  • the bleaching solution and the bleaching-fixing solution contain organic acids to prevent stain from being caused by bleaching.
  • organic acids are compounds having an acid dissociation constant (pKa) of 2 to 5.
  • the organic acids include acetic acid and propionic acid.
  • fixing agents used in the fixing solution and the bleaching-fixing solution include thiosulfates, thiocyanates, thioether compounds, thioureas and a large amount of an iodide.
  • the thiosulfates are widely used as the fixing agents. Particularly, ammonium thiosulfate is most widely used.
  • a combination of a thiosulfate with a thiocyanate, a thioether compound or a thiourea is also preferred.
  • Sulfites, bisulfites, carbonyl bisulfite adducts and sulfinic acid compounds described in European Patent 294769A are preferred as preservatives for the fixing solution and the bleaching-fixing solution. It is also preferred that aminopolycarboxylic acids or organic phosphonic acids are added to the fixing solution or the bleaching-fixing solution to stabilize the solution.
  • compounds having a pKa of 6.0 to 9.0 preferably imidazoles such as imidazole, 1-methylimidazole, 1-ethylimidazole and 2-methylimidazole, in an amount of 0.1 to 10 mol/I are added to the fixing solution or the bleaching-fixing solution to adjust the pH.
  • imidazoles such as imidazole, 1-methylimidazole, 1-ethylimidazole and 2-methylimidazole
  • Desilvering time is preferably 1 to 3 min, more preferably 1 to 2 min.
  • Processing temperature is 25 to 50 C, preferably 35 to 45 C. When desilvering is carried out at a temperature within the preferred range, the desilvering rate is increased and stain is effectively prevented from being formed after processing.
  • agitation .in the desilvering stage be intensified as much as possible.
  • Methods for intensifying agitation include a method wherein a jet of the processing solution collides with the surfaces of the emulsions of photographic materials as described in JP-A-62-183460; a method wherein stirring is improved by a rotating means as described in JP-A-62-183461; a method wherein a wiper blade provided in the solution is brought into contact with the surfaces of the emulsions, the photographic material is transferred to thereby form a turbulent flow, whereby a stirring effect is improved; and a method wherein the whole amount of the processing solution circulated is increased.
  • Such means for improving agitation are effectively applicable to any of the bleaching solution, the bleaching-fixing solution and the fixing solution. It is believed that an improvement agitation accelerates the feed of the bleaching solution and the fixing solution into the emulsion layers and as a result, the desilvering rate is enhanced.
  • the above-described means for improving agitation is more effective when the bleaching accelerators are used. The accelerating effect can be greatly increased and the problem of inhibiting fixation caused by the bleaching accelerators can be solved.
  • automatic processors for use in the processing of the photographic materials of the present invention be provided with photographic material conveying means described in JP-A-60-191257, JP-A-60-191258 and JP-A-60-191259.
  • the conveying means can greatly reduce the amount of the processing solution brought over from the previous bath to the subsequent bath so that preservation of the performance of the processing solution is very high. This is particularly effective in shortening the processing time in each stage or reducing the replenishment rate of the processing solution.
  • the silver halide color photographic materials of the present invention are subjected to washing and/or stabilization after desilvering.
  • the amount of rinsing water in the washing stage varies widely depending on the characteristics (e.g., depending on materials used such as couplers) of the photographic materials, their use, the temperature of rinsing water, the number of rinsing tanks (the number of stages), replenishing system (countercurrent, direct flow) and other conditions.
  • the relationship between the amount of water and the number of rinsing tanks in the multi-stage countercurrent system can be determined by the method described in Journal of the Society of Motion Picture and Television Engineers, Vol. 64, p. 248-253 (May 1955).
  • isothiazolone compounds thiabendazole compounds
  • chlorine-containing germicides such as sodium chlorinated isocyanurate and benztriazole described in JP-A-57-8542 and germicides described in Chemistry of Germicidal Antifungal Agent, (1986) written by Hiroshi Horiguchi (Sankyo Shuppan), Sterilization, Disinfection, Antifungal Technique, edited by Sanitary Technique Society and Antibacterial and Antifungal Cyclopedie, (1986) edited by Nippon Antibacterial Antifungal Society, can be used.
  • the pH of rinsing water in the treatment of the photographic materials of the present invention is in the range of 4 to 9, preferably 5 to 8.
  • the temperature of rinsing water and washing time vary depending on the characteristics of the photographic materials and use, but the temperature and time of washing are generally 15 to 45 C for 20 seconds to 10 minutes, preferably 25 to 40 C for 30 seconds to 5 minutes.
  • the photographic materials of the present invention may be processed directly with stabilizing solutions in place of rinsing water. Such stabilizing treatment can be carried out by conventional methods described in JP-A-57-8543, JP-A-58-14834 and JP-A-60-220345.
  • a stabilizing treatment subsequent to rinsing may be conducted.
  • the stabilizing treatment may be used as the final bath for the color photographic materials for photographing.
  • An example thereof include a stabilizing bath containing a dye stabilizer and a surfactant.
  • the dye stabilizer include aldehydes such as formalin and glutaraldehyde, N-methylol compounds, hexamethylenetetramine and aldehydesulfite adducts.
  • the stabilizing bath may contain various chelating agents and antifungal agents.
  • Overflow solution from the replenishment of rinsing water and/or stabilizing can be reused in other stages such as desilvering stage.
  • the color developing agents may be incorporated in the silver halide color photographic materials of the present invention for the purpose of simplifying and expediting processing. It is preferred that precursors for the color developing agents are used for the incorporation thereof in the photographic materials. Examples of the precursors include indoaniline compounds described in U.S. Patent 3,342,597; Schiff base compounds described in U.S. Patent 3,342,599 Research Disclosure No. 14850 and ibid., No. 15159; aldol compounds described in Research Disclosure No. 13924; metal complex salts described in U.S. Patent 3,719,492; and urethane compounds described in JP-A-53-135628.
  • 1-phenyl-3-pyrazolidones may be incorporated in the silver halide color photographic materials of the present invention for the purpose of accelerating color development.
  • Typical examples of the compounds include those described in JP-A-56-64339, JP-A-57-144547 and JP-A-58-115438.
  • various processing solutions are used at a temperature of 10 to 50 C.
  • a temperature of 33 to 38° C is used.
  • a higher temperature can be used to accelerate processing and to shorten processing time, while a lower temperature is used to improve image quality and to improve the stability of the processing solutions.
  • the silver halide photographic materials of the present invention include heat developable photo sensitive materials described in U.S. Patent 4,500,626, JP-A-60-133449, JP-A-59-218443, JP-A-61-238056 and European Patent 210,660A2.
  • the coating weights of silver halide and colloidal silver are represented by g/m 2 in terms of silver.
  • the coating weights of couplers, additives and gelatin are represented by g/m 2.
  • the amounts of sensitizing dyes are represented by moles per mole of silver halide in the same layer.
  • E xM - 1 7 (DIR coupler similar to DC-3 in West German Patent Laid-Open No. 3815469)
  • Each of Samples 102 and 103 was prepared in the same way as Sample 101, except that ExY-16 in an amount of twice by mol that of ExC-4 or ExM-17 in an amount of 1.4 times by mol that of ExC-4 was used in place of ExC-4 in each of the third and fourth layers of the Sample 101.
  • Each of Samples 104, 105 and 106 was prepared in the same way as Sample 101 except that Compound (5) of the present invention in an amount of 4 times by mol that of ExC-4, Compound (7) of the present invention in an amount of 3 times by mol that of ExC-4, or Compound (14) of the present invention in an amount of 4 times by mol ExC-4 was used in place of ExC-4 in each of the third and fourth layers of Sample 101.
  • Each of Samples 107 to 124 was prepared by adding the yellow colored coupler (YC-26) of the present invention in an amount of 0.025 g/m 2 and 0.008 g/m 2 to the fourth and fifth layers of each of the Samples 101 to 106, respectively. Similarly, (YC-32) and (YC-47) were added to prepare Samples 113 to 124.
  • Each of Samples 125 to 131. was prepared in the same way as Sample 101 except that each of (YC-3), (YC-24), (YC-25), (YC-1). )YC-85), (YC-86), and (YC-89) was used in place of (YC-26).
  • Sample 132 was prepared in the same way as Sample 110, except that ExM-9 in an amount of twice by weight that of the preferred Coupler (P-13) of the present invention was used in place of Coupler (P-13) in each of the seventh and eighth layers of Sample 110, the amount of Solv-1 was increased to 1.8 times that used in Sample 110 and the amount of gelatin was increased to 1.5 times that used in Sample 110.
  • a sample 133 was prepared in the same way as Sample 132 except that an equimolar amount of ExM-11 was used in place of ExM-9.
  • Relative sensitivity was determined from the logarithm of the reciprocal of exposure amount giving a density of (Fog + 0.2) under the Condition A.
  • Color turbidity was determined from a value obtained by subtracting the yellow density in the red unexposed area from the yellow density in an exposure amount giving a cyan density of (Fog + 0.3) and (Fog + 0.1) under the Conditions A and B.
  • Each processing solution used in each stage had the following composition.
  • Sample 110 obtained by using the polymer coupler (P-13) is highly sensitive and has good sharpness and color reproducibility in comparison with Samples 132 and 133 obtained by using ExM-9 and ExM-11, respectively. Accordingly, it is clear that the use of the polymer coupler in the present invention is preferable.
  • a yellow colored coupler (YC-3) of the present invention in an amount of 0.004 g/m 2 , 0.013 g/m 2 and 0.008 g/m 2 was added to the third layer, the fourth layer and the fifth layer of Sample 105 (Compound (26) being the same as Compound (4) of the present invention and containing no any yellow colored cyan coupler) of JP-A-1-214849 to prepare Sample 201.
  • (YC-26), (YC-28) and (YC-59) were added to prepare Samples 202, 203 and 204.
  • Samples 201 to 204 of the present invention are highly sensitive, exhibit low color turbidity under any exposure conditions and are excellent in sharpness in comparison with Sample 105 of JP-A-1-214849.
  • the replenishment rate of each processing solution was such that the replenishment rate in the color development was 1200 ml per m 2 of photographic material and that in each of the other stages including rinse was 800 ml.
  • the amount of the processing solution brought over from the previous bath to the rinse stage was 50 ml per m 2 of photographic material.
  • Tap water containing calcium ions (32 mg/l) and magnesium ions (7.3 mg/t) was passed through a column packed with an H-type strongly acidic cation exchange resin and an OH-type strongly basic anion exchange resin to reduce calcium ion concentration to 1.2 mg/l and magnesium ion concentration to 0.4 mg/l.
  • Sodium isocyanurate dichloride in an amount of 20 mg/l was then added to the treated water.
  • Drying temperature was 50°C.
  • the yellow colored cyan coupler (YC-31) of the present invention in an amount of 0.012 g/m 2 and the compound (12) of formula (I) according to the present invention in an amount of 0.010 g/m 2 were added to the fourth layer of Sample 108 (containing no compound represented by formula (I) and yellow colored coupler of the present invention) of JP-A-61-51146.
  • the sample was processed in the same manner as in Example 1 of JP-A-61-51146.
  • the yellow color turbidity of the resulting sample was small in comparison with Sample 108 of JP-61-51146.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
EP90125708A 1989-12-29 1990-12-28 Farbphotographisches Silberhalogenidmaterial, das einen gelb gefärbten Cyan-Kuppler enthält Expired - Lifetime EP0435334B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP343586/89 1989-12-29
JP34358689 1989-12-29
JP27202490A JPH03223751A (ja) 1989-12-29 1990-10-09 ハロゲン化銀カラー写真感光材料
JP272024/90 1990-10-09

Publications (3)

Publication Number Publication Date
EP0435334A2 true EP0435334A2 (de) 1991-07-03
EP0435334A3 EP0435334A3 (en) 1991-09-04
EP0435334B1 EP0435334B1 (de) 1997-11-05

Family

ID=26549997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90125708A Expired - Lifetime EP0435334B1 (de) 1989-12-29 1990-12-28 Farbphotographisches Silberhalogenidmaterial, das einen gelb gefärbten Cyan-Kuppler enthält

Country Status (2)

Country Link
EP (1) EP0435334B1 (de)
DE (1) DE69031679T2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306603A (en) * 1991-06-06 1994-04-26 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material, and method of processing the same
EP0704758A1 (de) 1994-09-12 1996-04-03 Fuji Photo Film Co., Ltd. Farbphotographisches Silberhalogenid-Material
EP0516830B1 (de) * 1990-12-19 1998-03-18 Eastman Kodak Company Azoanilinmaskierkuppler für photographische materialien
CN113866303A (zh) * 2021-09-28 2021-12-31 中国农业科学院农业质量标准与检测技术研究所 一种甲氧基丙烯酸酯类物质的检测方法

Citations (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2322027A (en) 1940-02-24 1943-06-15 Eastman Kodak Co Color photography
US2369929A (en) 1943-03-18 1945-02-20 Eastman Kodak Co Acylamino phenol couplers
US2772162A (en) 1954-11-03 1956-11-27 Eastman Kodak Co Diacylaminophenol couplers
US2801171A (en) 1954-12-20 1957-07-30 Eastman Kodak Co Photographic color former dispersions
DE966410C (de) 1953-05-13 1957-08-01 Agfa Ag Verfahren zum Bleichfixieren von photographischen Silberbildern
US2895826A (en) 1956-10-08 1959-07-21 Eastman Kodak Co Photographic color couplers containing fluoroalkylcarbonamido groups
DE1121470B (de) 1960-07-16 1962-01-04 Agfa Ag Farbenphotographisches Mehrschichtenmaterial mit diffusionsfest eingelagerten Kupplungskomponenten
DE1127715B (de) 1960-03-23 1962-04-12 Agfa Ag Verfahren zum gleichzeitigen Bleichen und Fixieren von photographischen Farbbildern
US3061432A (en) 1958-06-21 1962-10-30 Agfa Ag Pyrazolino benzimidazole color coupler
US3342599A (en) 1965-06-07 1967-09-19 Eastman Kodak Co Schiff base developing agent precursors
US3342597A (en) 1964-06-08 1967-09-19 Eastman Kodak Co Color developer precursor
US3370952A (en) 1964-09-23 1968-02-27 Du Pont Color formers
DE1290812B (de) 1965-06-11 1969-03-13 Agfa Gevaert Ag Verfahren zum Bleichfixieren von photographischen Silberbildern
GB1146368A (en) 1966-07-25 1969-03-26 Fuji Photo Film Co Ltd New monoazo dye colour couplers and their use in photographic compositions
US3446622A (en) 1966-01-11 1969-05-27 Ferrania Spa Process for the preparation of color images using 2 - ureido phenolic couplers
US3451820A (en) 1965-12-01 1969-06-24 Du Pont Dispersions of lipophilic colorcoupling copolymers
US3574628A (en) 1968-01-29 1971-04-13 Eastman Kodak Co Novel monodispersed silver halide emulsions and processes for preparing same
US3655394A (en) 1965-10-21 1972-04-11 Eastman Kodak Co Preparation of silver halide grains
DE2059988A1 (de) 1970-12-05 1972-06-15 Schranz Karl Heinz Dr Fotografisches Farbentwicklungsverfahren Agfa-Gevaert AG,5090 Leverkusen
US3674478A (en) 1970-12-17 1972-07-04 Polaroid Corp Novel products and processes
DE2162612A1 (de) 1970-12-22 1972-07-13 Ciba-Geigy Ag, Basel (Schweiz) Azoverbindungen, deren Herstellung und Verwendung
US3706561A (en) 1970-03-23 1972-12-19 Eastman Kodak Co Compositions for making blixes
US3719492A (en) 1971-03-05 1973-03-06 Eastman Kodak Co Complexed p-phenylenediamine containing photographic element and development process therefor
US3725067A (en) 1970-01-15 1973-04-03 Eastman Kodak Co Silver halide emulsion containing 1-h-pyrazolo(3,2-c)-s-triazole color couplers
US3758308A (en) 1971-02-18 1973-09-11 Eastman Kodak Co Silver halide emulsion containing para fluoro phenols
US3763170A (en) 1971-09-20 1973-10-02 Ici Ltd 1 or 4 sulphoaryl-6-hydroxy-2-pyridones
US3772002A (en) 1971-10-14 1973-11-13 Minnesota Mining & Mfg Phenolic couplers
DE2349709A1 (de) 1972-10-05 1974-04-11 Ciba Geigy Ag Azoverbindungen, deren herstellung und verwendung
JPS4915495B1 (de) 1969-04-17 1974-04-15
JPS4940943A (de) 1972-08-24 1974-04-17
JPS4959644A (de) 1972-10-05 1974-06-10
US3893858A (en) 1973-03-26 1975-07-08 Eastman Kodak Co Photographic bleach accelerators
JPS50140219A (de) 1974-04-26 1975-11-10
GB1413748A (en) 1972-02-21 1975-11-12 Eastman Kodak Co Method of making a photographic silver halide emulsion
US3932480A (en) 1972-02-28 1976-01-13 Polaroid Corporation Benzylthiosulfuric acid salts
US3933501A (en) 1973-11-28 1976-01-20 Eastman Kodak Company Photographic elements containing color-forming couplers having and inhibiting effect upon the reactivity of competing couplers
GB1425020A (en) 1971-12-17 1976-02-18 Konishiroku Photo Ind Photographic yellow coupler
DE2541274A1 (de) 1974-09-17 1976-04-01 Eastman Kodak Co Verfahren zur herstellung eines waessrigen latex sowie verwendung desselben
DE2541230A1 (de) 1974-09-17 1976-05-26 Eastman Kodak Co Verfahren zur herstellung eines polymer-latex
US3973968A (en) 1971-04-26 1976-08-10 Konishiroku Photo Industry Co., Ltd. Photographic acyl acetanilide color couplers with 2,5-dioxo-1-imidazolidinyl coupling off groups
US3993681A (en) 1975-04-04 1976-11-23 W. R. Grace & Co. Process for preparing iminodiacetonitrile
US4004929A (en) 1974-03-04 1977-01-25 Eastman Kodak Company Color corrected photographic elements
JPS5220832A (en) 1975-08-09 1977-02-17 Konishiroku Photo Ind Co Ltd Color photography processing method
US4009029A (en) 1973-06-05 1977-02-22 Eastman Kodak Company Cyanoethyl-containing blocked development restrainers
US4022620A (en) 1974-04-03 1977-05-10 Fuji Photo Film Co., Ltd. Method of forming color photographic images
GB1476760A (en) 1973-06-09 1977-06-16 Agfa Gevaert Ag Photographic silver halide material and colour developer containing 2-equivalent yellow couplers
US4052212A (en) 1974-02-08 1977-10-04 Konishiroku Photo Industry Co., Ltd. Photographic silver halide emulsion containing 2-equivalent cyan coupler
JPS5328426A (en) 1976-08-27 1978-03-16 Fuji Photo Film Co Ltd Color photographic processing method
US4080211A (en) 1964-06-23 1978-03-21 Agfa-Gevaert N.V. Polymerization of monomeric color couplets
JPS5332736A (en) 1976-09-07 1978-03-28 Konishiroku Photo Ind Co Ltd Processing method for use in silver halide color photographic light sensitive material
JPS5332735A (en) 1976-09-07 1978-03-28 Konishiroku Photo Ind Co Ltd Processing method for use in silver halide color photographic light sensitive material
JPS5337418A (en) 1976-09-17 1978-04-06 Konishiroku Photo Ind Co Ltd Processing method for silver halide color photographic light sensitive material
JPS5357831A (en) 1976-11-05 1978-05-25 Konishiroku Photo Ind Co Ltd Treatment process for silver halide photographic material
JPS5372623A (en) 1976-12-10 1978-06-28 Konishiroku Photo Ind Co Ltd Color photographic treatment
JPS5394927A (en) 1977-01-28 1978-08-19 Fuji Photo Film Co Ltd Color photographic processing method
JPS5395631A (en) 1977-02-01 1978-08-22 Fuji Photo Film Co Ltd Color photograph processing method
JPS5395630A (en) 1977-02-01 1978-08-22 Fuji Photo Film Co Ltd Color photograph processing method
JPS53104232A (en) 1977-02-23 1978-09-11 Konishiroku Photo Ind Co Ltd Processing method for silver halide color photographic material
JPS53124424A (en) 1977-04-06 1978-10-30 Konishiroku Photo Ind Co Ltd Processing method for silver halide color photographic material
JPS53135628A (en) 1977-05-02 1978-11-27 Fuji Photo Film Co Ltd Color potographic material
JPS53141623A (en) 1977-05-16 1978-12-09 Konishiroku Photo Ind Co Ltd Treating method for silver halide color photographic material
US4130427A (en) 1976-06-09 1978-12-19 Agfa-Gevaert, N.V. Silver halide emulsion containing two-equivalent color couplers for yellow
US4138258A (en) 1974-08-28 1979-02-06 Fuji Photo Film Co., Ltd. Multi-layered color photographic materials
JPS5435727A (en) 1977-08-25 1979-03-16 Fuji Photo Film Co Ltd Color photography processing method
US4146396A (en) 1976-01-26 1979-03-27 Fuji Photo Film Co., Ltd. Method of forming color photographic images
DE2748430A1 (de) 1977-10-28 1979-05-03 Agfa Gevaert Ag Photographische bleichzusammensetzungen mit bleichungsbeschleunigenden verbindungen
DE2902486A1 (de) 1978-01-25 1979-07-26 Ciba Geigy Ag Azofarbstoffe, deren herstellung und verwendung
US4163670A (en) 1973-04-21 1979-08-07 Fuji Photo Film Co., Ltd. Color photographic material
US4171223A (en) 1977-06-29 1979-10-16 Agfa-Gevaert, A.G. Light-sensitive color photographic material
US4183752A (en) 1977-02-21 1980-01-15 Agfa-Gevaert Aktiengesellschaft Light-sensitive photographic material
JPS5526506A (en) 1978-08-14 1980-02-26 Fuji Photo Film Co Ltd Bleaching method of color photographic material
US4199363A (en) 1974-09-17 1980-04-22 Eastman Kodak Company Processes for achieving uniform, efficient distribution of hydrophobic materials through hydrophilic colloid layers and loaded latex compositions
JPS55118034A (en) 1979-03-05 1980-09-10 Fuji Photo Film Co Ltd Color image forming method
JPS5534932B2 (de) 1974-07-09 1980-09-10
US4228233A (en) 1977-09-22 1980-10-14 Fuji Photo Film Co., Ltd. Photographic silver halide light-sensitive material
JPS565543A (en) 1979-06-26 1981-01-21 Fuji Photo Film Co Ltd Silver halide color photosensitive material
US4248961A (en) 1976-12-24 1981-02-03 Ciba-Geigy Ag Material for color photography
US4248962A (en) 1977-12-23 1981-02-03 Eastman Kodak Company Photographic emulsions, elements and processes utilizing release compounds
US4254212A (en) 1978-08-29 1981-03-03 Fuji Photo Film Co., Ltd. Photographic silver halide light-sensitive material and color image-forming process
JPS5625738A (en) 1979-08-07 1981-03-12 Fuji Photo Film Co Ltd Multilayered color photosensitive material
JPS5664339A (en) 1979-10-29 1981-06-01 Konishiroku Photo Ind Co Ltd Silver halide color phtographic material
US4283472A (en) 1980-02-26 1981-08-11 Eastman Kodak Company Silver halide elements containing blocked pyrazolone magenta dye-forming couplers
US4296200A (en) 1979-08-13 1981-10-20 Fuji Photo Film Co., Ltd. Silver halide photographic light-sensitive material
US4296199A (en) 1979-06-19 1981-10-20 Fuji Photo Film Co., Ltd. Silver halide photographic light-sensitive material
US4310612A (en) 1978-10-10 1982-01-12 Eastman Kodak Company Blocked photographically useful compounds in photographic compositions, elements and processes employing them
US4310618A (en) 1980-05-30 1982-01-12 Eastman Kodak Company Silver halide photographic material and process utilizing blocked dye-forming couplers
JPS578542A (en) 1980-06-18 1982-01-16 Konishiroku Photo Ind Co Ltd Processing method for photographic sensitive silver halide material
JPS578543A (en) 1980-06-18 1982-01-16 Konishiroku Photo Ind Co Ltd Processing method for color photographic sensitive silver halide material
US4326024A (en) 1979-05-31 1982-04-20 Fuji Photo Film Co., Ltd. Silver halide emulsion containing yellow-dye-forming coupler
US4327173A (en) 1980-01-23 1982-04-27 Fuji Photo Film Co., Ltd. Color photographic light-sensitive material
US4334011A (en) 1979-12-05 1982-06-08 Fuji Photo Film Co., Ltd. Color photographic light sensitive materials
US4333999A (en) 1979-10-15 1982-06-08 Eastman Kodak Company Cyan dye-forming couplers
JPS5794752A (en) 1980-12-05 1982-06-12 Fuji Photo Film Co Ltd Color photographic sensitive silver halide material
US4335200A (en) 1980-10-30 1982-06-15 Mitsubishi Paper Mills, Ltd. Silver halide photographic materials
US4338393A (en) 1980-02-26 1982-07-06 Eastman Kodak Company Heterocyclic magenta dye-forming couplers
JPS57112751A (en) 1980-12-29 1982-07-13 Fuji Photo Film Co Ltd Multilayered photosnsitive color reversal material
JPS5739413B2 (de) 1975-09-30 1982-08-21
JPS57144547A (en) 1981-03-03 1982-09-07 Fuji Photo Film Co Ltd Silver halide color photosensitive material and its processing method
JPS57151944A (en) 1981-03-16 1982-09-20 Fuji Photo Film Co Ltd Color photosensitive silver halide material
JPS57154234A (en) 1981-03-19 1982-09-24 Konishiroku Photo Ind Co Ltd Phtotographic sensitive silver halide material
US4351897A (en) 1980-08-12 1982-09-28 Fuji Photo Film Co., Ltd. Color photographic light-sensitive material
GB2097140A (en) 1981-03-13 1982-10-27 Fuji Photo Film Co Ltd Silver halide photographic light-sensitive materials
JPS57176038A (en) 1981-04-21 1982-10-29 Fuji Photo Film Co Ltd Silver halide color photographic material
US4363865A (en) 1981-03-04 1982-12-14 Eastman Kodak Company Imido methyl blocked photographic dyes and dye releasing compounds
JPS57204038A (en) 1981-06-10 1982-12-14 Fuji Photo Film Co Ltd Color photosensitive silver halide material
US4366237A (en) 1980-07-04 1982-12-28 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material
JPS5810738A (ja) 1981-07-13 1983-01-21 Fuji Photo Film Co Ltd ハロゲン化銀カラ−感光材料
JPS5814834A (ja) 1981-07-21 1983-01-27 Konishiroku Photo Ind Co Ltd ハロゲン化銀カラ−写真感光材料の安定化処理方法
JPS5816235A (ja) 1981-07-23 1983-01-29 Konishiroku Photo Ind Co Ltd 撮影用透過型ハロゲン化銀カラー写真感光材料の処理方法
JPS586939B2 (ja) 1974-08-28 1983-02-07 富士写真フイルム株式会社 カラ−シヤシンカンコウザイリヨウ
JPS5828745A (ja) 1981-05-08 1983-02-19 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS5810739B2 (ja) 1979-06-06 1983-02-26 富士写真フイルム株式会社 ハロゲン化銀カラ−写真感光材料
EP0073636A1 (de) 1981-08-25 1983-03-09 EASTMAN KODAK COMPANY (a New Jersey corporation) Fotografische Elemente, die Ballastgruppen aufweisende Kuppler enthalten
JPS5842044A (ja) 1981-09-07 1983-03-11 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS58115438A (ja) 1981-12-28 1983-07-09 Fuji Photo Film Co Ltd ハロゲン化銀カラ−感光材料の処理方法
GB2112157A (en) 1981-11-12 1983-07-13 Eastman Kodak Co Photographic elements having sensitized high aspect ratio silver halide tabular grain emulsions
US4401752A (en) 1981-11-23 1983-08-30 Eastman Kodak Company Aryloxy substituted photographic couplers and photographic elements and processes employing same
JPS58145944A (ja) 1982-02-25 1983-08-31 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS58163940A (ja) 1982-03-25 1983-09-28 Fuji Photo Film Co Ltd カラ−写真感光材料の処理法
US4410618A (en) 1982-06-11 1983-10-18 Eastman Kodak Company Blocked photographic reagents
US4411987A (en) 1981-11-06 1983-10-25 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material
US4414310A (en) 1981-11-12 1983-11-08 Eastman Kodak Company Process for the preparation of high aspect ratio silver bromoiodide emulsions
EP0096570A1 (de) 1982-06-05 1983-12-21 Olympus Optical Co., Ltd. Optische Einrichtung zur Messung des Brennpunktes
DE3324533A1 (de) 1982-07-07 1984-01-12 Fuji Photo Film Co., Ltd., Minami Ashigara, Kanagawa Farbphotographische silberhalogenidmaterialien mit einem diffusionsfaehigen farbstoff zur verbesserung ihrer koernigkeit
US4427767A (en) 1981-12-07 1984-01-24 Fuji Photo Film Co., Ltd. Color photographic sensitive materials
US4433048A (en) 1981-11-12 1984-02-21 Eastman Kodak Company Radiation-sensitive silver bromoiodide emulsions, photographic elements, and processes for their use
DE3329729A1 (de) 1982-08-17 1984-02-23 Konishiroku Photo Industry Co., Ltd., Tokyo Lichtempfindliches farbphotographisches silberhalogenidmaterial
US4434226A (en) 1981-11-12 1984-02-28 Eastman Kodak Company High aspect ratio silver bromoiodide emulsions and processes for their preparation
GB2125570A (en) 1982-05-24 1984-03-07 Fuji Photo Film Co Ltd 2-equivalent magenta-forming coupler
US4451559A (en) 1981-06-11 1984-05-29 Konishiroku Photo Industry Co., Ltd. Silver halide photosensitive materials for color photography
JPS5999437A (ja) 1982-10-28 1984-06-08 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
GB2131188A (en) 1982-09-16 1984-06-13 Fuji Photo Film Co Ltd Silver halide photographic material
JPS59113438A (ja) 1982-12-18 1984-06-30 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
JPS59113440A (ja) 1982-12-20 1984-06-30 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
JPS59157638A (ja) 1983-02-25 1984-09-07 Fuji Photo Film Co Ltd ハロゲン化銀カラ−感光材料
JPS59170840A (ja) 1983-02-25 1984-09-27 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
EP0121365A2 (de) 1983-03-14 1984-10-10 Fuji Photo Film Co., Ltd. Lichtempfindliches farbphotographisches Silberhalogenidmaterial
US4477560A (en) 1981-12-16 1984-10-16 Konishiroku Photo Industry Co., Ltd. Light-sensitive silver halide color photographic material
JPS59202464A (ja) 1983-04-30 1984-11-16 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
JPS59218443A (ja) 1983-05-26 1984-12-08 Fuji Photo Film Co Ltd 画像形成方法
US4500626A (en) 1981-10-02 1985-02-19 Fuji Photo Film Co., Ltd. Heat-developable color photographic material
US4500630A (en) 1983-02-15 1985-02-19 Fuji Photo Film Co., Ltd. Method for forming magenta color image
JPS6033552A (ja) 1983-08-04 1985-02-20 Fuji Photo Film Co Ltd カラ−画像形成方法
JPS6035730A (ja) 1983-08-08 1985-02-23 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6043659A (ja) 1983-08-19 1985-03-08 Fuji Photo Film Co Ltd カラ−画像形成方法
US4511649A (en) 1983-05-20 1985-04-16 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material
JPS60133449A (ja) 1983-12-22 1985-07-16 Konishiroku Photo Ind Co Ltd 熱現像カラ−感光材料
US4540654A (en) 1983-03-18 1985-09-10 Fuji Photo Film Co., Ltd. Method of forming color image comprising heterocyclic magenta dye-forming coupler
JPS60184248A (ja) 1984-03-01 1985-09-19 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPS60185950A (ja) 1984-02-23 1985-09-21 Fuji Photo Film Co Ltd ハロゲン化銀カラ−感光材料
JPS60185951A (ja) 1984-02-07 1985-09-21 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS60191258A (ja) 1984-03-13 1985-09-28 Fuji Photo Film Co Ltd 現像装置用フイルムリ−ダの搬送機構
JPS60191257A (ja) 1984-03-13 1985-09-28 Fuji Photo Film Co Ltd 現像装置用フイルム搬送機構
JPS60191259A (ja) 1984-03-13 1985-09-28 Fuji Photo Film Co Ltd 現像装置用フイルム蛇行防止機構
JPS60220345A (ja) 1984-04-17 1985-11-05 Konishiroku Photo Ind Co Ltd ハロゲン化銀カラ−写真感光材料の処理方法
US4552834A (en) 1984-08-06 1985-11-12 Eastman Kodak Company Enhanced bleaching of photographic elements containing silver halide and adsorbed dye
US4555477A (en) 1985-01-02 1985-11-26 Eastman Kodak Company Photographic element and process utilizing metal complex color masking dyes
US4556630A (en) 1983-06-20 1985-12-03 Fuji Photo Film Co., Ltd. Color photographic light-sensitive material
JPS6120037A (ja) 1984-07-09 1986-01-28 Konishiroku Photo Ind Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6120038A (ja) 1984-07-09 1986-01-28 Konishiroku Photo Ind Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6142658A (ja) 1984-08-03 1986-03-01 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6143748A (ja) 1984-08-08 1986-03-03 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
EP0173302A2 (de) 1984-08-27 1986-03-05 Fuji Photo Film Co., Ltd. Farbphotographisches Silberhalogenidmaterial
JPS6151146A (ja) 1984-08-21 1986-03-13 Fuji Photo Film Co Ltd 高感度ハロゲン化銀カラ−写真感光材料
JPS6172244A (ja) 1984-09-17 1986-04-14 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6172238A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd ハロゲン化銀カラ−写真感光材料
JPS61107245A (ja) 1984-10-30 1986-05-26 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS61201247A (ja) 1985-02-28 1986-09-05 イーストマン コダック カンパニー ハロゲン化銀写真要素
JPS61233741A (ja) 1985-04-05 1986-10-18 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS61238056A (ja) 1985-04-15 1986-10-23 Fuji Photo Film Co Ltd 画像形成方法
JPS6152827B2 (de) 1979-07-12 1986-11-14 Nippon Kayaku Kk
JPS61273543A (ja) 1985-05-29 1986-12-03 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
EP0210660A2 (de) 1985-07-31 1987-02-04 Fuji Photo Film Co., Ltd. Verfahren zur Bildung eines Bildes
JPS6263936A (ja) 1985-09-14 1987-03-20 Konishiroku Photo Ind Co Ltd 多色写真要素
JPS6285242A (ja) 1985-10-09 1987-04-18 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
US4663271A (en) 1985-03-04 1987-05-05 Fuji Photo Film Co., Ltd. Color photographic light-sensitive materials
JPS62151850A (ja) 1985-12-26 1987-07-06 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS62160448A (ja) 1986-01-08 1987-07-16 Fuji Photo Film Co Ltd カラ−写真感光材料
JPS62183460A (ja) 1986-02-07 1987-08-11 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料の処理方法
JPS62183461A (ja) 1986-02-07 1987-08-11 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料の処理方法
US4690889A (en) 1984-05-10 1987-09-01 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material containing novel cyan dye forming coupler
JPS62200350A (ja) 1986-02-28 1987-09-04 Konishiroku Photo Ind Co Ltd 新規な層構成のハロゲン化銀カラ−写真感光材料
JPS62206543A (ja) 1986-03-07 1987-09-11 Konishiroku Photo Ind Co Ltd 新規な層構成のハロゲン化銀カラ−写真感光材料
JPS62206541A (ja) 1986-03-07 1987-09-11 Konishiroku Photo Ind Co Ltd 新規な層構成のハロゲン化銀カラ−写真感光材料
US4705744A (en) 1984-07-06 1987-11-10 Fuji Photo Film Co., Ltd. Color photographic materials having red color saturation and improved discrimination of green colors
US4707436A (en) 1985-02-28 1987-11-17 Fuji Photo Film Co., Ltd. Color photographic material
JPS62272248A (ja) 1986-05-20 1987-11-26 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料の処理方法
JPS62288838A (ja) 1986-06-06 1987-12-15 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料の処理方法及び装置
EP0249453A2 (de) 1986-06-13 1987-12-16 Konica Corporation Farbphotographisches lichtempfindliches Silberhalogenidmaterial mit verbesserten Cyanbildeigenschaften
EP0249473A2 (de) 1986-06-11 1987-12-16 EASTMAN KODAK COMPANY (a New Jersey corporation) Photographische Acetanilidkuppler und photographische Elemente, die diese enthalten
JPS6323152A (ja) 1986-06-16 1988-01-30 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6337346A (ja) 1986-07-30 1988-02-18 イ−ストマン コダツク カンパニ− 写真要素
JPS6337350A (ja) 1986-08-01 1988-02-18 Konica Corp ハロゲン化銀カラ−写真感光材料
JPS6375747A (ja) 1986-09-15 1988-04-06 イーストマン コダック カンパニー 像形成要素
JPS6389850A (ja) 1986-10-03 1988-04-20 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
WO1988004795A1 (en) 1986-12-22 1988-06-30 Eastman Kodak Company Photographic silver halide element and process
JPS63163454A (ja) 1986-12-26 1988-07-06 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS63216050A (ja) 1987-03-05 1988-09-08 Fuji Photo Film Co Ltd ハロゲン化銀感光材料の水洗・安定化処理方法及びその装置
US4774181A (en) 1987-06-25 1988-09-27 Eastman Kodak Company Imaging element containing fluorescent dye-releasing coupler compound
US4775616A (en) 1986-12-12 1988-10-04 Eastman Kodak Company Cyan dye-forming couplers and photographic materials containing same
US4777120A (en) 1987-05-18 1988-10-11 Eastman Kodak Company Photographic element and process comprising a masking coupler
JPS63257747A (ja) 1987-04-15 1988-10-25 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
US4782012A (en) 1987-07-17 1988-11-01 Eastman Kodak Company Photographic material containing a novel dir-compound
JPS63281160A (ja) 1987-05-14 1988-11-17 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS63284159A (ja) 1987-05-15 1988-11-21 Fuji Photo Film Co Ltd チオエ−テル基を有するカテコ−ル類の合成方法
EP0294769A2 (de) 1987-06-08 1988-12-14 Fuji Photo Film Co., Ltd. Verfahren zur Behandlung von farbphotographischen lichtempfindlichen Silberhalogenidmaterialien
JPS6413547A (en) 1987-07-08 1989-01-18 Konishiroku Photo Ind Silver halide color photographic sensitive material containing novel coupler
JPS6473346A (en) 1987-09-16 1989-03-17 Konishiroku Photo Ind Silver halide color photographic sensitive material containing novel coupler
JPS6480941A (en) 1987-09-22 1989-03-27 Fuji Photo Film Co Ltd Silver halide photographic sensitive material
JPS6482033A (en) 1987-09-25 1989-03-28 Fuji Photo Film Co Ltd Photosensitive material processing device
EP0313308A2 (de) 1987-10-19 1989-04-26 EASTMAN KODAK COMPANY (a New Jersey corporation) Photographisches Element und Verfahren, das eine farbliefernde Gruppe enthält
JPH01197563A (ja) 1988-02-02 1989-08-09 Fuji Photo Film Co Ltd アゾ化合物の製造方法
JPH01214849A (ja) 1988-02-23 1989-08-29 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料の処理方法
DE3815469A1 (de) 1988-05-06 1989-11-16 Agfa Gevaert Ag Farbfotografisches aufzeichnungsmaterial mit neuen farbigen blaugruenkupplern

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254260A (ja) * 1985-05-27 1987-03-09 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS63304242A (ja) * 1987-06-04 1988-12-12 Fuji Photo Film Co Ltd 熱現像カラ−感光材料
JPH026945A (ja) * 1987-12-01 1990-01-11 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料
EP0423727B1 (de) * 1989-10-16 1995-01-11 Fuji Photo Film Co., Ltd. Farbfotografisches Silberhalogenidmaterial, das einen gefärbten Kuppler enthält
EP0436938B1 (de) * 1989-12-29 1996-06-19 Fuji Photo Film Co., Ltd. Farbphotographisches Silberhalogenidmaterial, das einen gelbgefärbten Cyan-Kuppler enthält
JP3120620B2 (ja) * 1993-03-04 2000-12-25 株式会社セガ 家庭用ゲーム機を用いた自動デモシステム

Patent Citations (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2322027A (en) 1940-02-24 1943-06-15 Eastman Kodak Co Color photography
US2369929A (en) 1943-03-18 1945-02-20 Eastman Kodak Co Acylamino phenol couplers
DE966410C (de) 1953-05-13 1957-08-01 Agfa Ag Verfahren zum Bleichfixieren von photographischen Silberbildern
US2772162A (en) 1954-11-03 1956-11-27 Eastman Kodak Co Diacylaminophenol couplers
US2801171A (en) 1954-12-20 1957-07-30 Eastman Kodak Co Photographic color former dispersions
US2895826A (en) 1956-10-08 1959-07-21 Eastman Kodak Co Photographic color couplers containing fluoroalkylcarbonamido groups
US3061432A (en) 1958-06-21 1962-10-30 Agfa Ag Pyrazolino benzimidazole color coupler
DE1127715B (de) 1960-03-23 1962-04-12 Agfa Ag Verfahren zum gleichzeitigen Bleichen und Fixieren von photographischen Farbbildern
DE1121470B (de) 1960-07-16 1962-01-04 Agfa Ag Farbenphotographisches Mehrschichtenmaterial mit diffusionsfest eingelagerten Kupplungskomponenten
GB923045A (en) 1960-07-16 1963-04-10 Agfa Ag Colour photographic multi-layer material
US3342597A (en) 1964-06-08 1967-09-19 Eastman Kodak Co Color developer precursor
US4080211A (en) 1964-06-23 1978-03-21 Agfa-Gevaert N.V. Polymerization of monomeric color couplets
US3370952A (en) 1964-09-23 1968-02-27 Du Pont Color formers
US3342599A (en) 1965-06-07 1967-09-19 Eastman Kodak Co Schiff base developing agent precursors
DE1290812B (de) 1965-06-11 1969-03-13 Agfa Gevaert Ag Verfahren zum Bleichfixieren von photographischen Silberbildern
US3655394A (en) 1965-10-21 1972-04-11 Eastman Kodak Co Preparation of silver halide grains
US3451820A (en) 1965-12-01 1969-06-24 Du Pont Dispersions of lipophilic colorcoupling copolymers
US3446622A (en) 1966-01-11 1969-05-27 Ferrania Spa Process for the preparation of color images using 2 - ureido phenolic couplers
GB1146368A (en) 1966-07-25 1969-03-26 Fuji Photo Film Co Ltd New monoazo dye colour couplers and their use in photographic compositions
US3574628A (en) 1968-01-29 1971-04-13 Eastman Kodak Co Novel monodispersed silver halide emulsions and processes for preparing same
JPS4915495B1 (de) 1969-04-17 1974-04-15
US3725067A (en) 1970-01-15 1973-04-03 Eastman Kodak Co Silver halide emulsion containing 1-h-pyrazolo(3,2-c)-s-triazole color couplers
US3706561A (en) 1970-03-23 1972-12-19 Eastman Kodak Co Compositions for making blixes
DE2059988A1 (de) 1970-12-05 1972-06-15 Schranz Karl Heinz Dr Fotografisches Farbentwicklungsverfahren Agfa-Gevaert AG,5090 Leverkusen
US3674478A (en) 1970-12-17 1972-07-04 Polaroid Corp Novel products and processes
DE2162612A1 (de) 1970-12-22 1972-07-13 Ciba-Geigy Ag, Basel (Schweiz) Azoverbindungen, deren Herstellung und Verwendung
US3758308A (en) 1971-02-18 1973-09-11 Eastman Kodak Co Silver halide emulsion containing para fluoro phenols
US3719492A (en) 1971-03-05 1973-03-06 Eastman Kodak Co Complexed p-phenylenediamine containing photographic element and development process therefor
US3973968A (en) 1971-04-26 1976-08-10 Konishiroku Photo Industry Co., Ltd. Photographic acyl acetanilide color couplers with 2,5-dioxo-1-imidazolidinyl coupling off groups
US3763170A (en) 1971-09-20 1973-10-02 Ici Ltd 1 or 4 sulphoaryl-6-hydroxy-2-pyridones
US3772002A (en) 1971-10-14 1973-11-13 Minnesota Mining & Mfg Phenolic couplers
US4314023A (en) 1971-12-17 1982-02-02 Konishiroku Photo Industry Co., Ltd. Photographic silver halide materials containing yellow coupler
GB1425020A (en) 1971-12-17 1976-02-18 Konishiroku Photo Ind Photographic yellow coupler
GB1413748A (en) 1972-02-21 1975-11-12 Eastman Kodak Co Method of making a photographic silver halide emulsion
US3932480A (en) 1972-02-28 1976-01-13 Polaroid Corporation Benzylthiosulfuric acid salts
JPS4940943A (de) 1972-08-24 1974-04-17
DE2349709A1 (de) 1972-10-05 1974-04-11 Ciba Geigy Ag Azoverbindungen, deren herstellung und verwendung
JPS4959644A (de) 1972-10-05 1974-06-10
US3893858A (en) 1973-03-26 1975-07-08 Eastman Kodak Co Photographic bleach accelerators
US4163670A (en) 1973-04-21 1979-08-07 Fuji Photo Film Co., Ltd. Color photographic material
US4009029A (en) 1973-06-05 1977-02-22 Eastman Kodak Company Cyanoethyl-containing blocked development restrainers
GB1476760A (en) 1973-06-09 1977-06-16 Agfa Gevaert Ag Photographic silver halide material and colour developer containing 2-equivalent yellow couplers
US3933501A (en) 1973-11-28 1976-01-20 Eastman Kodak Company Photographic elements containing color-forming couplers having and inhibiting effect upon the reactivity of competing couplers
US4052212A (en) 1974-02-08 1977-10-04 Konishiroku Photo Industry Co., Ltd. Photographic silver halide emulsion containing 2-equivalent cyan coupler
US4004929A (en) 1974-03-04 1977-01-25 Eastman Kodak Company Color corrected photographic elements
US4022620A (en) 1974-04-03 1977-05-10 Fuji Photo Film Co., Ltd. Method of forming color photographic images
JPS50140219A (de) 1974-04-26 1975-11-10
JPS5534932B2 (de) 1974-07-09 1980-09-10
JPS586939B2 (ja) 1974-08-28 1983-02-07 富士写真フイルム株式会社 カラ−シヤシンカンコウザイリヨウ
US4138258A (en) 1974-08-28 1979-02-06 Fuji Photo Film Co., Ltd. Multi-layered color photographic materials
US4199363A (en) 1974-09-17 1980-04-22 Eastman Kodak Company Processes for achieving uniform, efficient distribution of hydrophobic materials through hydrophilic colloid layers and loaded latex compositions
DE2541230A1 (de) 1974-09-17 1976-05-26 Eastman Kodak Co Verfahren zur herstellung eines polymer-latex
DE2541274A1 (de) 1974-09-17 1976-04-01 Eastman Kodak Co Verfahren zur herstellung eines waessrigen latex sowie verwendung desselben
US3993681A (en) 1975-04-04 1976-11-23 W. R. Grace & Co. Process for preparing iminodiacetonitrile
JPS5220832A (en) 1975-08-09 1977-02-17 Konishiroku Photo Ind Co Ltd Color photography processing method
JPS5739413B2 (de) 1975-09-30 1982-08-21
US4146396A (en) 1976-01-26 1979-03-27 Fuji Photo Film Co., Ltd. Method of forming color photographic images
US4130427A (en) 1976-06-09 1978-12-19 Agfa-Gevaert, N.V. Silver halide emulsion containing two-equivalent color couplers for yellow
JPS5328426A (en) 1976-08-27 1978-03-16 Fuji Photo Film Co Ltd Color photographic processing method
JPS5332735A (en) 1976-09-07 1978-03-28 Konishiroku Photo Ind Co Ltd Processing method for use in silver halide color photographic light sensitive material
JPS5332736A (en) 1976-09-07 1978-03-28 Konishiroku Photo Ind Co Ltd Processing method for use in silver halide color photographic light sensitive material
JPS5337418A (en) 1976-09-17 1978-04-06 Konishiroku Photo Ind Co Ltd Processing method for silver halide color photographic light sensitive material
JPS5357831A (en) 1976-11-05 1978-05-25 Konishiroku Photo Ind Co Ltd Treatment process for silver halide photographic material
JPS5372623A (en) 1976-12-10 1978-06-28 Konishiroku Photo Ind Co Ltd Color photographic treatment
US4248961A (en) 1976-12-24 1981-02-03 Ciba-Geigy Ag Material for color photography
JPS5394927A (en) 1977-01-28 1978-08-19 Fuji Photo Film Co Ltd Color photographic processing method
JPS5395630A (en) 1977-02-01 1978-08-22 Fuji Photo Film Co Ltd Color photograph processing method
JPS5395631A (en) 1977-02-01 1978-08-22 Fuji Photo Film Co Ltd Color photograph processing method
US4183752A (en) 1977-02-21 1980-01-15 Agfa-Gevaert Aktiengesellschaft Light-sensitive photographic material
JPS53104232A (en) 1977-02-23 1978-09-11 Konishiroku Photo Ind Co Ltd Processing method for silver halide color photographic material
JPS53124424A (en) 1977-04-06 1978-10-30 Konishiroku Photo Ind Co Ltd Processing method for silver halide color photographic material
JPS53135628A (en) 1977-05-02 1978-11-27 Fuji Photo Film Co Ltd Color potographic material
JPS53141623A (en) 1977-05-16 1978-12-09 Konishiroku Photo Ind Co Ltd Treating method for silver halide color photographic material
US4171223A (en) 1977-06-29 1979-10-16 Agfa-Gevaert, A.G. Light-sensitive color photographic material
JPS5435727A (en) 1977-08-25 1979-03-16 Fuji Photo Film Co Ltd Color photography processing method
US4228233A (en) 1977-09-22 1980-10-14 Fuji Photo Film Co., Ltd. Photographic silver halide light-sensitive material
DE2748430A1 (de) 1977-10-28 1979-05-03 Agfa Gevaert Ag Photographische bleichzusammensetzungen mit bleichungsbeschleunigenden verbindungen
US4248962A (en) 1977-12-23 1981-02-03 Eastman Kodak Company Photographic emulsions, elements and processes utilizing release compounds
DE2902486A1 (de) 1978-01-25 1979-07-26 Ciba Geigy Ag Azofarbstoffe, deren herstellung und verwendung
JPS5526506A (en) 1978-08-14 1980-02-26 Fuji Photo Film Co Ltd Bleaching method of color photographic material
US4254212A (en) 1978-08-29 1981-03-03 Fuji Photo Film Co., Ltd. Photographic silver halide light-sensitive material and color image-forming process
US4310612A (en) 1978-10-10 1982-01-12 Eastman Kodak Company Blocked photographically useful compounds in photographic compositions, elements and processes employing them
JPS55118034A (en) 1979-03-05 1980-09-10 Fuji Photo Film Co Ltd Color image forming method
US4310619A (en) 1979-03-05 1982-01-12 Fuji Photo Film Co., Ltd. Color photographic material and process incorporating a novel magenta coupler
US4326024A (en) 1979-05-31 1982-04-20 Fuji Photo Film Co., Ltd. Silver halide emulsion containing yellow-dye-forming coupler
JPS5810739B2 (ja) 1979-06-06 1983-02-26 富士写真フイルム株式会社 ハロゲン化銀カラ−写真感光材料
US4296199A (en) 1979-06-19 1981-10-20 Fuji Photo Film Co., Ltd. Silver halide photographic light-sensitive material
JPS565543A (en) 1979-06-26 1981-01-21 Fuji Photo Film Co Ltd Silver halide color photosensitive material
JPS6152827B2 (de) 1979-07-12 1986-11-14 Nippon Kayaku Kk
JPS5625738A (en) 1979-08-07 1981-03-12 Fuji Photo Film Co Ltd Multilayered color photosensitive material
US4296200A (en) 1979-08-13 1981-10-20 Fuji Photo Film Co., Ltd. Silver halide photographic light-sensitive material
US4333999A (en) 1979-10-15 1982-06-08 Eastman Kodak Company Cyan dye-forming couplers
JPS5664339A (en) 1979-10-29 1981-06-01 Konishiroku Photo Ind Co Ltd Silver halide color phtographic material
US4334011A (en) 1979-12-05 1982-06-08 Fuji Photo Film Co., Ltd. Color photographic light sensitive materials
US4327173A (en) 1980-01-23 1982-04-27 Fuji Photo Film Co., Ltd. Color photographic light-sensitive material
US4338393A (en) 1980-02-26 1982-07-06 Eastman Kodak Company Heterocyclic magenta dye-forming couplers
US4283472A (en) 1980-02-26 1981-08-11 Eastman Kodak Company Silver halide elements containing blocked pyrazolone magenta dye-forming couplers
US4310618A (en) 1980-05-30 1982-01-12 Eastman Kodak Company Silver halide photographic material and process utilizing blocked dye-forming couplers
JPS578543A (en) 1980-06-18 1982-01-16 Konishiroku Photo Ind Co Ltd Processing method for color photographic sensitive silver halide material
JPS578542A (en) 1980-06-18 1982-01-16 Konishiroku Photo Ind Co Ltd Processing method for photographic sensitive silver halide material
US4366237A (en) 1980-07-04 1982-12-28 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material
US4351897A (en) 1980-08-12 1982-09-28 Fuji Photo Film Co., Ltd. Color photographic light-sensitive material
US4351897B1 (de) 1980-08-12 1988-06-14
US4335200A (en) 1980-10-30 1982-06-15 Mitsubishi Paper Mills, Ltd. Silver halide photographic materials
JPS5794752A (en) 1980-12-05 1982-06-12 Fuji Photo Film Co Ltd Color photographic sensitive silver halide material
JPS57112751A (en) 1980-12-29 1982-07-13 Fuji Photo Film Co Ltd Multilayered photosnsitive color reversal material
JPS57144547A (en) 1981-03-03 1982-09-07 Fuji Photo Film Co Ltd Silver halide color photosensitive material and its processing method
US4363865A (en) 1981-03-04 1982-12-14 Eastman Kodak Company Imido methyl blocked photographic dyes and dye releasing compounds
GB2097140A (en) 1981-03-13 1982-10-27 Fuji Photo Film Co Ltd Silver halide photographic light-sensitive materials
JPS57151944A (en) 1981-03-16 1982-09-20 Fuji Photo Film Co Ltd Color photosensitive silver halide material
JPS57154234A (en) 1981-03-19 1982-09-24 Konishiroku Photo Ind Co Ltd Phtotographic sensitive silver halide material
JPS57176038A (en) 1981-04-21 1982-10-29 Fuji Photo Film Co Ltd Silver halide color photographic material
JPS5828745A (ja) 1981-05-08 1983-02-19 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS57204038A (en) 1981-06-10 1982-12-14 Fuji Photo Film Co Ltd Color photosensitive silver halide material
US4451559A (en) 1981-06-11 1984-05-29 Konishiroku Photo Industry Co., Ltd. Silver halide photosensitive materials for color photography
JPS5810738A (ja) 1981-07-13 1983-01-21 Fuji Photo Film Co Ltd ハロゲン化銀カラ−感光材料
US4435503A (en) 1981-07-13 1984-03-06 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material
JPS5814834A (ja) 1981-07-21 1983-01-27 Konishiroku Photo Ind Co Ltd ハロゲン化銀カラ−写真感光材料の安定化処理方法
JPS5816235A (ja) 1981-07-23 1983-01-29 Konishiroku Photo Ind Co Ltd 撮影用透過型ハロゲン化銀カラー写真感光材料の処理方法
EP0073636A1 (de) 1981-08-25 1983-03-09 EASTMAN KODAK COMPANY (a New Jersey corporation) Fotografische Elemente, die Ballastgruppen aufweisende Kuppler enthalten
JPS5842044A (ja) 1981-09-07 1983-03-11 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
US4500626A (en) 1981-10-02 1985-02-19 Fuji Photo Film Co., Ltd. Heat-developable color photographic material
US4411987A (en) 1981-11-06 1983-10-25 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material
US4434226A (en) 1981-11-12 1984-02-28 Eastman Kodak Company High aspect ratio silver bromoiodide emulsions and processes for their preparation
US4433048A (en) 1981-11-12 1984-02-21 Eastman Kodak Company Radiation-sensitive silver bromoiodide emulsions, photographic elements, and processes for their use
GB2112157A (en) 1981-11-12 1983-07-13 Eastman Kodak Co Photographic elements having sensitized high aspect ratio silver halide tabular grain emulsions
US4414310A (en) 1981-11-12 1983-11-08 Eastman Kodak Company Process for the preparation of high aspect ratio silver bromoiodide emulsions
US4439520A (en) 1981-11-12 1984-03-27 Eastman Kodak Company Sensitized high aspect ratio silver halide emulsions and photographic elements
US4401752A (en) 1981-11-23 1983-08-30 Eastman Kodak Company Aryloxy substituted photographic couplers and photographic elements and processes employing same
US4427767A (en) 1981-12-07 1984-01-24 Fuji Photo Film Co., Ltd. Color photographic sensitive materials
US4477560A (en) 1981-12-16 1984-10-16 Konishiroku Photo Industry Co., Ltd. Light-sensitive silver halide color photographic material
JPS58115438A (ja) 1981-12-28 1983-07-09 Fuji Photo Film Co Ltd ハロゲン化銀カラ−感光材料の処理方法
JPS58145944A (ja) 1982-02-25 1983-08-31 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS58163940A (ja) 1982-03-25 1983-09-28 Fuji Photo Film Co Ltd カラ−写真感光材料の処理法
GB2125570A (en) 1982-05-24 1984-03-07 Fuji Photo Film Co Ltd 2-equivalent magenta-forming coupler
EP0096570A1 (de) 1982-06-05 1983-12-21 Olympus Optical Co., Ltd. Optische Einrichtung zur Messung des Brennpunktes
US4410618A (en) 1982-06-11 1983-10-18 Eastman Kodak Company Blocked photographic reagents
DE3324533A1 (de) 1982-07-07 1984-01-12 Fuji Photo Film Co., Ltd., Minami Ashigara, Kanagawa Farbphotographische silberhalogenidmaterialien mit einem diffusionsfaehigen farbstoff zur verbesserung ihrer koernigkeit
DE3329729A1 (de) 1982-08-17 1984-02-23 Konishiroku Photo Industry Co., Ltd., Tokyo Lichtempfindliches farbphotographisches silberhalogenidmaterial
GB2131188A (en) 1982-09-16 1984-06-13 Fuji Photo Film Co Ltd Silver halide photographic material
JPS5999437A (ja) 1982-10-28 1984-06-08 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS59113438A (ja) 1982-12-18 1984-06-30 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
JPS59113440A (ja) 1982-12-20 1984-06-30 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
US4500630A (en) 1983-02-15 1985-02-19 Fuji Photo Film Co., Ltd. Method for forming magenta color image
JPS59170840A (ja) 1983-02-25 1984-09-27 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS59157638A (ja) 1983-02-25 1984-09-07 Fuji Photo Film Co Ltd ハロゲン化銀カラ−感光材料
EP0121365A2 (de) 1983-03-14 1984-10-10 Fuji Photo Film Co., Ltd. Lichtempfindliches farbphotographisches Silberhalogenidmaterial
US4540654A (en) 1983-03-18 1985-09-10 Fuji Photo Film Co., Ltd. Method of forming color image comprising heterocyclic magenta dye-forming coupler
JPS59202464A (ja) 1983-04-30 1984-11-16 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
US4511649A (en) 1983-05-20 1985-04-16 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material
JPS59218443A (ja) 1983-05-26 1984-12-08 Fuji Photo Film Co Ltd 画像形成方法
US4556630A (en) 1983-06-20 1985-12-03 Fuji Photo Film Co., Ltd. Color photographic light-sensitive material
JPS6033552A (ja) 1983-08-04 1985-02-20 Fuji Photo Film Co Ltd カラ−画像形成方法
JPS6035730A (ja) 1983-08-08 1985-02-23 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6043659A (ja) 1983-08-19 1985-03-08 Fuji Photo Film Co Ltd カラ−画像形成方法
JPS60133449A (ja) 1983-12-22 1985-07-16 Konishiroku Photo Ind Co Ltd 熱現像カラ−感光材料
JPS60185951A (ja) 1984-02-07 1985-09-21 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS60185950A (ja) 1984-02-23 1985-09-21 Fuji Photo Film Co Ltd ハロゲン化銀カラ−感光材料
US4618571A (en) 1984-02-23 1986-10-21 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material
JPS60184248A (ja) 1984-03-01 1985-09-19 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPS60191259A (ja) 1984-03-13 1985-09-28 Fuji Photo Film Co Ltd 現像装置用フイルム蛇行防止機構
JPS60191257A (ja) 1984-03-13 1985-09-28 Fuji Photo Film Co Ltd 現像装置用フイルム搬送機構
JPS60191258A (ja) 1984-03-13 1985-09-28 Fuji Photo Film Co Ltd 現像装置用フイルムリ−ダの搬送機構
JPS60220345A (ja) 1984-04-17 1985-11-05 Konishiroku Photo Ind Co Ltd ハロゲン化銀カラ−写真感光材料の処理方法
US4690889A (en) 1984-05-10 1987-09-01 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material containing novel cyan dye forming coupler
US4705744A (en) 1984-07-06 1987-11-10 Fuji Photo Film Co., Ltd. Color photographic materials having red color saturation and improved discrimination of green colors
JPS6120037A (ja) 1984-07-09 1986-01-28 Konishiroku Photo Ind Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6120038A (ja) 1984-07-09 1986-01-28 Konishiroku Photo Ind Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6142658A (ja) 1984-08-03 1986-03-01 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
US4552834A (en) 1984-08-06 1985-11-12 Eastman Kodak Company Enhanced bleaching of photographic elements containing silver halide and adsorbed dye
JPS6143748A (ja) 1984-08-08 1986-03-03 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6151146A (ja) 1984-08-21 1986-03-13 Fuji Photo Film Co Ltd 高感度ハロゲン化銀カラ−写真感光材料
EP0173302A2 (de) 1984-08-27 1986-03-05 Fuji Photo Film Co., Ltd. Farbphotographisches Silberhalogenidmaterial
JPS6172238A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6172244A (ja) 1984-09-17 1986-04-14 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS61107245A (ja) 1984-10-30 1986-05-26 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
US4555477A (en) 1985-01-02 1985-11-26 Eastman Kodak Company Photographic element and process utilizing metal complex color masking dyes
JPS61201247A (ja) 1985-02-28 1986-09-05 イーストマン コダック カンパニー ハロゲン化銀写真要素
US4707436A (en) 1985-02-28 1987-11-17 Fuji Photo Film Co., Ltd. Color photographic material
US4663271A (en) 1985-03-04 1987-05-05 Fuji Photo Film Co., Ltd. Color photographic light-sensitive materials
JPS61233741A (ja) 1985-04-05 1986-10-18 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS61238056A (ja) 1985-04-15 1986-10-23 Fuji Photo Film Co Ltd 画像形成方法
JPS61273543A (ja) 1985-05-29 1986-12-03 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
EP0210660A2 (de) 1985-07-31 1987-02-04 Fuji Photo Film Co., Ltd. Verfahren zur Bildung eines Bildes
JPS6263936A (ja) 1985-09-14 1987-03-20 Konishiroku Photo Ind Co Ltd 多色写真要素
US4837136A (en) 1985-10-09 1989-06-06 Fuji Photo Film Co., Ltd. Silver halide photographic materials comprising non-diffusible photographically useful compounds
JPS6285242A (ja) 1985-10-09 1987-04-18 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPS62151850A (ja) 1985-12-26 1987-07-06 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS62160448A (ja) 1986-01-08 1987-07-16 Fuji Photo Film Co Ltd カラ−写真感光材料
JPS62183461A (ja) 1986-02-07 1987-08-11 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料の処理方法
JPS62183460A (ja) 1986-02-07 1987-08-11 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料の処理方法
JPS62200350A (ja) 1986-02-28 1987-09-04 Konishiroku Photo Ind Co Ltd 新規な層構成のハロゲン化銀カラ−写真感光材料
JPS62206541A (ja) 1986-03-07 1987-09-11 Konishiroku Photo Ind Co Ltd 新規な層構成のハロゲン化銀カラ−写真感光材料
JPS62206543A (ja) 1986-03-07 1987-09-11 Konishiroku Photo Ind Co Ltd 新規な層構成のハロゲン化銀カラ−写真感光材料
JPS62272248A (ja) 1986-05-20 1987-11-26 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料の処理方法
JPS62288838A (ja) 1986-06-06 1987-12-15 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料の処理方法及び装置
EP0249473A2 (de) 1986-06-11 1987-12-16 EASTMAN KODAK COMPANY (a New Jersey corporation) Photographische Acetanilidkuppler und photographische Elemente, die diese enthalten
EP0249453A2 (de) 1986-06-13 1987-12-16 Konica Corporation Farbphotographisches lichtempfindliches Silberhalogenidmaterial mit verbesserten Cyanbildeigenschaften
JPS6323152A (ja) 1986-06-16 1988-01-30 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS6337346A (ja) 1986-07-30 1988-02-18 イ−ストマン コダツク カンパニ− 写真要素
JPS6337350A (ja) 1986-08-01 1988-02-18 Konica Corp ハロゲン化銀カラ−写真感光材料
JPS6375747A (ja) 1986-09-15 1988-04-06 イーストマン コダック カンパニー 像形成要素
JPS6389850A (ja) 1986-10-03 1988-04-20 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
US4775616A (en) 1986-12-12 1988-10-04 Eastman Kodak Company Cyan dye-forming couplers and photographic materials containing same
WO1988004795A1 (en) 1986-12-22 1988-06-30 Eastman Kodak Company Photographic silver halide element and process
JPS63163454A (ja) 1986-12-26 1988-07-06 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS63216050A (ja) 1987-03-05 1988-09-08 Fuji Photo Film Co Ltd ハロゲン化銀感光材料の水洗・安定化処理方法及びその装置
JPS63257747A (ja) 1987-04-15 1988-10-25 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPS63281160A (ja) 1987-05-14 1988-11-17 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPS63284159A (ja) 1987-05-15 1988-11-21 Fuji Photo Film Co Ltd チオエ−テル基を有するカテコ−ル類の合成方法
US4777120A (en) 1987-05-18 1988-10-11 Eastman Kodak Company Photographic element and process comprising a masking coupler
EP0294769A2 (de) 1987-06-08 1988-12-14 Fuji Photo Film Co., Ltd. Verfahren zur Behandlung von farbphotographischen lichtempfindlichen Silberhalogenidmaterialien
US4774181A (en) 1987-06-25 1988-09-27 Eastman Kodak Company Imaging element containing fluorescent dye-releasing coupler compound
JPS6413547A (en) 1987-07-08 1989-01-18 Konishiroku Photo Ind Silver halide color photographic sensitive material containing novel coupler
US4782012A (en) 1987-07-17 1988-11-01 Eastman Kodak Company Photographic material containing a novel dir-compound
JPS6473346A (en) 1987-09-16 1989-03-17 Konishiroku Photo Ind Silver halide color photographic sensitive material containing novel coupler
JPS6480941A (en) 1987-09-22 1989-03-27 Fuji Photo Film Co Ltd Silver halide photographic sensitive material
JPS6482033A (en) 1987-09-25 1989-03-28 Fuji Photo Film Co Ltd Photosensitive material processing device
EP0313308A2 (de) 1987-10-19 1989-04-26 EASTMAN KODAK COMPANY (a New Jersey corporation) Photographisches Element und Verfahren, das eine farbliefernde Gruppe enthält
JPH01197563A (ja) 1988-02-02 1989-08-09 Fuji Photo Film Co Ltd アゾ化合物の製造方法
JPH01214849A (ja) 1988-02-23 1989-08-29 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料の処理方法
DE3815469A1 (de) 1988-05-06 1989-11-16 Agfa Gevaert Ag Farbfotografisches aufzeichnungsmaterial mit neuen farbigen blaugruenkupplern

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
A. GREEN ET AL., PHOTOQR. SCI. ENQ., vol. 19, no. 2, pages 124 - 129
GUTOFF, PHOTOQRAPHIC SCIENCE AND ENQINEERINQ, vol. 14, 1970, pages 248 - 257
HIROSHI HORIGUCHI, CHEMISTRY OF GERMICIDAL ANTIFUNQAL AQENT, 1986
J. AM. CHEM. SOC., vol. 65, 1943, pages 449
J. CHEM. TECH. BIOTECHNOL., vol. 36, 1986, pages 410
JOURNAL OF THE SOCIETY OF MOTION PICTURE AND TELEVISION ENQINEERS, vol. 64, May 1955 (1955-05-01), pages 248 - 253
KLINSBERG: "Heterocyclic Compound - Pyridine and Its Derivatives", 1962, INTERSCIENCE
TETRAHEDRON, vol. 22, 1966, pages 445

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0516830B1 (de) * 1990-12-19 1998-03-18 Eastman Kodak Company Azoanilinmaskierkuppler für photographische materialien
US5306603A (en) * 1991-06-06 1994-04-26 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material, and method of processing the same
EP0704758A1 (de) 1994-09-12 1996-04-03 Fuji Photo Film Co., Ltd. Farbphotographisches Silberhalogenid-Material
CN113866303A (zh) * 2021-09-28 2021-12-31 中国农业科学院农业质量标准与检测技术研究所 一种甲氧基丙烯酸酯类物质的检测方法
CN113866303B (zh) * 2021-09-28 2023-08-08 中国农业科学院农业质量标准与检测技术研究所 一种甲氧基丙烯酸酯类物质的检测方法

Also Published As

Publication number Publication date
DE69031679T2 (de) 1998-06-04
EP0435334B1 (de) 1997-11-05
DE69031679D1 (de) 1997-12-11
EP0435334A3 (en) 1991-09-04

Similar Documents

Publication Publication Date Title
EP0482552A1 (de) Farbphotographische lichtempfindliche Silberhalogenidmaterialien
EP0502424B1 (de) Farbphotographisches Silberhalogenid-Material
EP0464612A1 (de) Photographische Silberhalogenidmaterialien
US5306609A (en) Silver halide color photographic material
US5112730A (en) Silver halide color photographic material comprising a yellow-colored cyan coupler
EP0362870A2 (de) Farbphotographisches Silberhalogenidmaterial
US5192651A (en) Silver halide color photographic photosensitive materials containing at least two types of cyan dye forming couplers
US5631122A (en) Silver halide color photographic material
EP0456257A1 (de) Farbphotographisches Silberhalogenidmaterial
EP0435334B1 (de) Farbphotographisches Silberhalogenidmaterial, das einen gelb gefärbten Cyan-Kuppler enthält
US5534399A (en) Silver halide color photographic photosensitive material
EP0456181B1 (de) Farbphotographisches Silberhalogenidmaterial und Verfahren zu dessen Verarbeitung
EP0451526B1 (de) Farbfotografische Silberhalogenidmaterialien
EP0436938B1 (de) Farbphotographisches Silberhalogenidmaterial, das einen gelbgefärbten Cyan-Kuppler enthält
EP0446863B1 (de) Farbphotographisches Silberhalogenidmaterial
EP0423727B1 (de) Farbfotografisches Silberhalogenidmaterial, das einen gefärbten Kuppler enthält
US5063145A (en) Silver halide color photographic material
US5376513A (en) Silver halide color photographic light-sensitive materials
US5112729A (en) Silver halide color photographic photosensitive materials
JP2729690B2 (ja) ハロゲン化銀カラー写真感光材料
US5476759A (en) Silver halide color photographic material
JP2699218B2 (ja) ハロゲン化銀カラー写真感光材料
JP2903091B2 (ja) カラー画像形成方法
JP2926418B2 (ja) ハロゲン化銀カラー写真感光材料
EP0313083A2 (de) Farbphotographisches Silberhalogenidmaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19911121

17Q First examination report despatched

Effective date: 19941220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): DE GB

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69031679

Country of ref document: DE

Date of ref document: 19971211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071227

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071220

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081228