DE3856559T2 - Multifunktionelle Proteine mit vorbestimmter Zielsetzung - Google Patents

Multifunktionelle Proteine mit vorbestimmter Zielsetzung Download PDF

Info

Publication number
DE3856559T2
DE3856559T2 DE3856559T DE3856559T DE3856559T2 DE 3856559 T2 DE3856559 T2 DE 3856559T2 DE 3856559 T DE3856559 T DE 3856559T DE 3856559 T DE3856559 T DE 3856559T DE 3856559 T2 DE3856559 T2 DE 3856559T2
Authority
DE
Germany
Prior art keywords
polypeptide
amino acid
sequence
binding
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE3856559T
Other languages
English (en)
Other versions
DE3856559D1 (de
Inventor
James S. Newton Huston
Hermann Medway Oppermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Research Munich GmbH
Original Assignee
Micromet GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21979976&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE3856559(T2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Micromet GmbH filed Critical Micromet GmbH
Application granted granted Critical
Publication of DE3856559D1 publication Critical patent/DE3856559D1/de
Publication of DE3856559T2 publication Critical patent/DE3856559T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • C07K16/464Igs containing CDR-residues from one specie grafted between FR-residues from another
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/624Disulfide-stabilized antibody (dsFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/705Fusion polypeptide containing domain for protein-protein interaction containing a protein-A fusion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Materials For Medical Uses (AREA)
  • External Artificial Organs (AREA)
  • Prostheses (AREA)

Description

  • Die Erfindung betrifft neue Stoffzusammensetzungen, die im Folgenden zielgesteuerte multifunktionelle Proteine genannt werden, welche beispielsweise in spezifischen Bindungsassays, zur Affinitätsreinigung, zur Biokatalyse, zur Zielsteuerung von Arzneistoffen, zur Bilderzeugung, zur immunologischen Behandlung von verschiedenen onkogenen und infektiösen Erkrankungen und in anderem Zusammenhang verwendbar sind. Konkreter betrifft die Erfindung biosynthetische Proteine, die von rekombinanter DNA in Form einer einzelnen Polypeptidkette mit mehreren Regionen exprimiert werden, von denen eine eine Struktur aufweist, die einer Antikörperbindungsstelle ähnelt und eine Affinität für eine vorgewählte antigene Determinante hat, während die andere eine andere Funktion hat und biologisch aktiv sein kann, zur Bindung an Ionen ausgelegt ist oder zur Erleichterung der Immobilisierung des Proteins ausgelegt ist. Die Erfindung betrifft auch die Bindungsproteine an sich und Verfahren zu ihrem Aufbau.
  • Es gibt fünf Klassen menschlicher Antikörper. Jede weist die gleiche Grundstruktur (vgl. 1) auf, oder ein Vielfaches davon, die aus zwei identischen Polypeptiden, die schwere (H) Ketten (Molekulargewicht etwa 50000 d) genannt werden, und zwei identischen leichten (L) Ketten (Molekulargewicht etwa 25000 d) besteht. Jede dieser fünf Antikörperklassen weist einen ähnlichen Satz leichte Ketten und einen unterschiedlichen Satz schwere Ketten auf. Eine leichte Kette ist aus einer variablen und einer konstanten Domäne zusammengesetzt, während eine schwere Kette aus einer variablen und drei oder mehr konstanten Domänen zusammengesetzt ist. Die kombinierten variablen Domänen einer gepaarten leichten und schweren Kette sind als die Fv-Region oder einfach "Fv" bekannt. Die Fv bestimmt die Spezifität des Immunglobulins, die konstanten Regionen haben andere Funktionen.
  • Aminosäuresequenzdaten weisen darauf hin, daß jede variable Domäne drei hypervariable Regionen oder Schleifen aufweist, die manchmal komplementaritätsbestimmende Regionen oder "CDRs" genannt werden und von vier verhältnismäßig konservierten Framework-Regionen oder "FRs" flankiert werden (Kabat et al., Sequences of Proteins of Immunological Interest [U. S. Department of Health und Human Services, 3. Aufl., 1983, 4. Aufl. 1987]). Es wird angenommen, daß die hypervariablen Regionen für die Bindungsspezifität der individuellen Antikörper verantwortlich sind und die Verschiedenartigkeit der Bindung von Antikörpern als einer Proteinklasse begründen.
  • Monoklonale Antikörper werden sowohl als diagnostische als auch als therapeutische Mittel verwendet. Sie werden routinemäßig nach etablierten Verfahren durch Hybridome produziert, die durch Fusion von Maus-Lymphoidzellen mit einer geeigneten Maus-Myelomzellinie erzeugt werden.
  • Die Literatur enthält eine Vielzahl von Verweisen auf das Konzept der Zielsteuerung von bioaktiven Substanzen wie Arzneistoffen, Toxinen und Enzymen zu bestimmten Stellen im Körper, um bösartige Zellen zu zerstören oder zu lokalisieren oder um eine lokalisierte Arzneistoff- oder Enzymwirkung hervorzurufen. Es ist vorgeschlagen worden, diese Wirkung durch die Konjugation der bioaktiven Substanz an monoklonaler Antikörper zu erzielen (vgl. z.B. Vogel, Immunoconjugates. Antibody Conjugates in Radio imaging and Therapy of Cancer, 1987, N.Y., Oxford University Press; und Ghose et al. (1978), J. Natl. Cancer Inst. 61: 657-676). Nicht menschliche Antikörper rufen jedoch eine Immunantwort hervor, wenn sie Menschen injiziert werden. Menschliche monoklonale Antikörper können dieses Problem mildern, sind aber mit Zellfusionstechniken schwierig herzustellen, weil, abgesehen von anderen Problemen, menschliche Hybridome ziemlich unstabil sind und die Entnahme von immunisierten Milzzellen aus dem Menschen nicht durchführbar ist.
  • Chimäre Antikörper, die aus menschlichen und nichtmenschlichen Aminosäuresequenzen zusammengesetzt sind, haben möglicherweise einen höheren therapeutischen Wert, weil sie wahrscheinlich weniger zirkulierende menschliche Antikörper gegen die nichtmenschlichen Immunglobulinsequenzen hervorrufen. Folglich sind Hybridantikörpermoleküle vorgeschlagen worden, die aus Aminosäuresequenzen verschiedener Säuger bestehen. Die bisher konstruierten Chimären Antikörper weisen variable Regionen von einem Säuger und konstante Regionen vom Menschen oder einem anderen Säuger auf (Morrison et al. (1984), Proc. Natl. Acad. Sci. U.S.A. 81: 851-6855; Neuberger et al. (1984), Nature 312: 604-608; Sahagan et al.(1986), J. Immunol. 137: 1066-1074).
  • Es ist berichtet worden, daß die Bindungsfunktion in den variablen Domänen des Antikörpermoleküls lokalisiert ist, die sich am aminoterminalen Ende sowohl der schweren als auch der leichten Ketten befinden.
  • Die variablen Regionen bleiben, sogar nach proteolytischer Abspaltung vom nativen Antikörpermolekül nichtkovalent miteinander verbunden (als VH/VL-Dimere, die als Fv-Regionen bezeichnet werden) und behalten ihre Fähigkeit zur Antigenerkennung und -bindung zum großen Teil bei (vgl. beispielsweise Inbar et al., Proc. Natl. Acad. Sci. U.S.A. (1972) 69: 2659-2662; Hochuran et al. (1973), Biochem. 12: 1130-1135, und (1976), Biochem.15: 2706-2710; Sharon und Givol (1976), Biochem.15.; 1591-1594; Rosenblatt und Haber (1978), Biochem.17: 3877-3882; Ehrlich et al. (1980), Biochem.19: 4091-40996).
  • Zusammenfassung der beanspruchten Erfindung
  • Nach einem Aspekt der Erfindung wird ein einkettiges multifunktionelles biosynthetisches Protein bereitgestellt. Die einzelne Polypeptidkette weist eine linkende Sequenz auf, deren Länge mindestens 10 Aminosäuren beträgt. Die linkende Sequenz verbindet eine erste und eine zweite Peptidedomäne, die im natürlichen Zustand nicht peptidgebunden ist, und die biologisch aktiv ist, um eine einzelne Polypeptidkette zu bilden. Diese einzelne Polypeptidkette weist mindestens zwei biologisch aktive Domänen auf, die durch die linkende Sequenz verbunden sind. Die linkende Sequenz weist hydrophile, peptidgebundene Aminosäuren auf, die kleine und nichtreaktive Seitenketten aber kein Cystein aufweisen. Die hydrophilen Aminosäuren bilden eine hydrophile Sequenz, die eine flexible, unstrukturierte Konfiguration hat, die in wässriger Lösung im Wesentlichen frei von Sekundärstruktur ist. Die linkende Sequenz enthält mehrere Glycin- oder Serinreste und überbrückt den Abstand zwischen dem C-terminalen Ende der ersten Domäne du dem N-terminalen Ende der zweiten Domäne.
  • Die linkende Sequenz der im vorigen Absatz beschriebenen Polypeptidkette kann Threonin enthalten. Die ersten und zweiten, in ihrem natürlichen Zustand nicht peptidgebundenen Domänen kann derart mit der linkenden Sequenz verbunden sein, dass die linkende Sequenz an seinem N-terminalen Ende mit der ersten biologisch aktiven Domäne und an seinem C-terminalen Ende mit der zweiten biologisch aktiven Domäne verbunden ist. Ferner kann die linkende Sequenz mehrere nacheinanderfolgende Kopien einer Aminosäuresequenz, zum Beispiel die Aminosäuresequenz (GlyGlyGlyGlySer)3, aufweisen, und kann darüber hinaus eine oder ein Paar Aminosäuresequenzen, die von einem stellenspezifischen Spaltungsmittel erkannt wird/werden.
  • Nach einem anderen Aspekt der Erfindung wird ein Polypeptidlinker bereitgestellt. Der Polypeptidlinker hat eine Länge von mindestens 10 Aminosäureresten und linkt zwei in ihrem natürlichen Zustand nicht gelinkte Polypeptiddomänen, um ein multifunktionales Protein zu bilden. Der Linker hat Aminosäuren mit kleinen und nichtreaktiven Seitenketten und weist mehrere hydrophile peptidgebundene Aminosäuren auf, die eine hydrophile Sequenz bilden. Der Linker überbrückt den Abstand zwischen dem C-terminalen Ende einer ersten Domäne und dem N-terminalen Ende einer zweiten Domäne. Jede Domäne weist ein biologisch aktives Polypeptid auf mit einer Konformation, die geeignet ist, unabhängig von der biologischen Aktivität der anderen Domäne biologische Aktivität zu entfalten.
  • Der im vorigen Absatz beschriebene Polypeptidlinker kann unabhängig Threonin aufweisen, frei von Cystein sein, eine Mehrzahl von Glycin- oder Serinresten aufweisen, mehrere nacheinanderfolgende Kopien einer Aminosäuresequenz aufweisen, einen Abstand von mindestens 4 nm (40 Angstrom) überbrücken, die Aminosäuresequenz (GlyGlyGlyGlySer)3 aufweisen, oder eine Aminosäuresequenz oder ein paar von Aminosequenzen aufweisen, die von einem stellenspezifischen Spaltungsmittel erkannt wird/werden. Mindestens eine der Polypeptiddomänen, die durch einen im vorigen Absatz beschriebenen Peptidlinker gelinkt wird, kann ein Enzym, einen Toxin, einen Rezeptor, eine Bindungsstelle, eine biosynthetische Antikörperbindungsstelle, einen Wachtumsfaktor, einen Faktor zur Zelldifferenzierung, ein Lymphokin, ein Zytokin, einen Hormon, einen aus der Ferne detektierbaren Rest oder ein Antimetabolit aufweisen. Die erste Domäne, die mit dem im vorigen Absatz beschriebenen Polypeptidlinker gelinkt ist, kann eine einzelkettige Bindungsstelle aufweisen, und die zweite Domäne, die mit dem im vorigen Absatz beschriebenen Polypeptidlinker gelinkt ist, kann ein Enzym, einen Toxin, einen Rezeptor, eine Bindungsstelle, eine biosynthetische Antikörperbindungsstelle, einen Wachtumsfaktor, einen Faktor zur Zelldifferenzierung, ein Lymphokin, ein Zytokin, einen Hormon, oder ein Antimetabolit aufweisen. Mindestens eine der Domänen, die mit dem im vorigen Absatz beschriebenen Polypeptidlinker gelinkt sind, kann ein Polypeptid aufweisen, das imstande ist, ein Ion zu binden, wie beispielsweise Calmodulin, Methallothionein, ein Fragment davon oder eine Aminosäuresequenz, die einen hohen Anteil an Glutaminsäure, Aspartylsäure, Lysin und Arginin enthält. Die Aminosäuren des im vorigen Absatz beschriebenen Polypeptidlinkers können eine unstrukturierte Polypeptidkonfiguration in wässriger Lösung annehmen.
  • Nach einem anderen Aspekt der Erfindung wird ein Polypeptidlinker bereitgestellt. Der Polypeptidlinker hat eine Länge von mindestens 10 Aminosäureresten und linkt zwei in ihrem natürlichen Zustand nicht gelinkte Polypeptiddomänen, um ein multifunktionales Protein zu bilden. Der Linker hat Aminosäuren mit kleinen und nichtreaktiven Seitenketten und weist mehrere hydrophile peptidgebundene Aminosäuren auf, die eine hydrophile Sequenz bilden. Der Linker überbrückt den Abstand zwischen dem C-terminalen Ende einer ersten Domäne und dem N-terminalen Ende einer zweiten Domäne. Zusammengenommen bilden die Domänen eine immunologisch reaktive Bindungsstelle für ein vorbestimmtes Antigen.
  • Die zwei durch einen im vorigen Absatz beschriebenen Linker gelinkten Polypeptiddomänen können derart geschaffen sein, dass eine VH- und VL-Kette aus einem natürlichen Immunglobulin nachgeahmt wird. Der im vorigen Absatz beschriebene Linker kann unabhängig Threonin aufweisen, frei von Cystein sein, eine Mehrzahl von Glycin- oder Serinresten aufweisen, mehrere nacheinanderfolgende Kopien einer Aminosäuresequenz aufweisen, einen Abstand von mindestens 4 nm (40 Ångstrom) überbrücken, die Aminosäuresequenz (GlyGlyGlyGlySer)3 aufweisen, oder eine Aminosäuresequenz oder ein paar von Aminosequenzen aufweisen, die von einem stellenspezifischen Spaltungsmittel erkannt wird/werden. Die Aminosäuren des im vorigen Absatz beschriebenen Linkers können eine unstrukturierte Polypeptidkonfiguration in wässriger Lösung annehmen.
  • Weitere Aspekte dieser Erfindung stellen bereit: DNA, die die oben beschriebene Polypeptidkette kodiert; DNA, die die oben beschriebenen jeweiligen Polypeptidlinker kodiert; und eine Wirtszelle, die mit der die oben beschriebenen jeweiligen Polypeptidlinker kodierenden DNA transformiert ist oder diese exprimieren kann.
  • Es sei angemerkt, dass die vorliegende Anmeldung eine Teilanmeldung der EP 88905298 .1 ist, die als EP 0 318 554 erteilt ist. Da ein Großteil der Beschreibung der Stammanmeldung zum Verständnis des Gegenstands der vorliegenden Anmeldung in seinem richtigen Zusammenhang notwendig ist, wurden lange Abschnitte der Stammanmeldung bei der Anpassung der Teilanmeldung unberührt gelassen. Man sollte jedoch nicht annehmen, dass Gegenstände in der vorliegenden Beschreibung sowie in den Ansprüchen der EP 0 318 554 Teil der Gegenstände der Ansprüche des vorliegenden Patents ist.
  • Der Begriff biosynthetische Antikörperbindungsstelle oder BABS bedeutet wie vorliegend verwendet synthetische Proteine, die von DNA, die aus rekombinanten Techniken stammt, exprimiert ist. BABS weisen biosynthetisch produzierte Sequenzen von Aminosäuren auf, die Polypeptide definieren, die derart konstruiert sind, dass sie mit einem vorbestimmten antigenen Material binden. Die Definition von BABS gemäß der vorliegenden Teilanmeldung beinhaltet nicht die hier beanspruchten Polypeptidkonstrukte. Die Struktur dieser synthetischen Polypeptide unterscheidet sich von jener natürlich vorkommender Antikörper, Fragmente davon, z.B. Fv, oder bekannter Polypeptide oder „chimerer Antikörper" insoweit, als die Regionen der BABS, die für die Bindungsspezifität und -affinität verantwortlich sind (analog den variablen Domänen aus nativen Antikörpern), über Peptidbindungen gelinkt sind, von einer einzelnen DNA exprimiert sind, und ihrerseits chimär sein können, z.B. sie können Aminosäuresequenzen aufweisen, die den Portionen mindestens zweier verschiedenen Antikörpermoleküle homolog sind. Die BABS sind biosynthetisch in dem Sinne, dass sie in einem zellulären Wirt, der derart geschaffen ist, um eine synthetische DNA exprimieren zu können, synthetisiert sind, d.h. eine rekombinante DNA, die durch das Ligieren zweier, mehrfacher, chemisch synthesierter Oligonukleotide oder durch das Ligieren von DNA-Fragmenten, die aus dem Genom eines Hybridoms, aus einem reifen B-Zellklons oder aus einer cDNA Bibliothek, die aus solchen natürlichen Quellen herstammt, hergestellt ist. Diese einzelne Polypeptidkette und Linker enthaltende multifunktionale Proteine der Erfindung werden insofern korrekterweise als „Bindungsstellen" bezeichnet, als diese synthetische Moleküle so konstruiert sind, um eine spezifische Affinität für einen vorbestimmten antigenen Determinant zu zeigen. Die Polypeptide der Erfindung weisen Strukturen auf, die jenen Regionen nachgebildet werden können, von denen man weiß, dass sie für die Antigenerkennung verantwortlich sind.
  • Kurze Figurenbeschreibung
  • Die vorgenannten und weitere Aufgaben der Erfindung, ihre verschiedenen Merkmale sowie die Erfindung selber werden anhand der folgenden Beschreibung in Zusammenschau mit den Zeichnungen klarer.
  • 1A ist eine schematische Darstellung eines intakten IgG-Antikörpermoleküls, das zwei leichte Ketten, die jeweils aus einer variablen und einer konstanten Domäne bestehen, und zwei schweren Ketten, die jeweils aus einer variablen und drei konstanten Domänen bestehen, enthält. 1B ist eine schematische Darstellung der Struktur von Fv-Proteinen (und der DNA, die diese kodiert), welche die VH- und VL-Domänen veranschaulicht, die jeweils vier Framework(FR)-Regionen und drei komplementaritätsbestimmende (CDR)-Regionen aufweisen. Die Grenzen der CDRs sind angegeben, und zwar beispielsweise für den monoklonalen Antikörper 26-10, einen gut bekannten und charakterisierten monoklonalen Mausantikörper, der für Digoxin spezifisch ist.
  • Die 2A-2E sind schematische Darstellungen einiger erfindungsgemäß konstruierter Reagenzklassen, die jeweils eine biosynthetische Antikörperbindungsstelle aufweisen.
  • 3 offenbart fünf Aminosäuresequenzen (schwere Ketten) im Einbuchstabenkode, die vertikal aufgereiht sind, um das Verständnis der Erfindung zu erleichtern. Sequenz 1 ist die bekannte native VH-Sequenz des monoklonalen Maus-Antikörpers glp-4 (Anti-Lysozym). Sequenz 2 ist die bekannte native VH-Sequenz des monoklonalen Maus-Antikörpers 26-10 (Anti-Digoxin).
  • Sequenz 3 ist eine BABS, welche die FRs der 26-10-VH und die CDRs der glp-4-VH aufweist. Die CDRs sind in Kleinbuchstaben angegeben, und die Restriktionsstellen in der DNA, die zur Herstellung der chimären Sequenz 3 verwendet wurden, sind ebenfalls angegeben. Sequenz 4 ist die bekannte native VH-Sequenz des menschlichen Myelom-Antikörpers NEWM. Sequenz 5 ist eine BABS, welche die FRs der NEWM-VH und die CDRs der glp-4-VH aufweist, d.h. eine "humanisierte" Bindungsstelle mit einer menschlichen Framework-Struktur, aber einer Affinität für Lysozym wie Maus-glp-4 veranschaulicht.
  • Die 4A-4F stellen synthetische Nukleinsäuresequenzen und kodierte Aminosäuresequenzen dar, nämlich (4A) der variablen Domäne der schweren Kette des monoklonalen Maus-Anti-Diogoxin-Antikörpers 26-10; (4B) der variablen Domäne der leichten Kette des monoklonalen Maus Anti-Diogoxin-Antikörpers 26-10; (4C) einer variablen Domäne der schweren Kette einer BABS, die CDRs von glp-4 und FRs von 26-10 aufweist; (4D) einer variablen Region der leichten Kette der gleichen BABS, (4E) einer variablen Region der schweren Kette einer BABS, die CDRs von glp-4 und FRs von NEWM aufweist und (4F) einer variablen Region der leichten Kette, die CDRs von glp-4 und FRs von NEWM aufweist. Die FRs, CDRs und Restriktionsstellen für den Endonuklease-Abbau, von denen die meisten während der Konstruktion der DNA eingeführt wurden, sind dargestellt.
  • 5 stellt die Nukleinsäure und die kodierte Aminosäuresequenz einer Wirts-DNA (VH) dar, die konstruiert wurde, um die Insertion der gewählten CDRs zu erleichtern. Die DNA wurde so konstruiert, daß sie nur einmal vorkommende Restriktionsstellen mit 6 Basen besitzt, welche die CDRs direkt flankieren, so daß verhältnismäßig kleine Oligonukleotide, die Teile von CDRs definieren, ohne weiteres inseriert werden können, und andere Stellen aufweist, um die Manipulation der DNA zur Optimierung der Bindungseigenschaften eines gegebenen Konstrukts zu erleichtern. Die Framework-Regionen des Moleküls entsprechenden Maus-FRs (4A).
  • Die 6A und 6B stellen multifunktionelle Proteine (und die sie kodierende DNA) dar, die eine Einzelketten-BABS mit der Spezifität des monoklonalen Maus-Antikörpers 26-10 aufweisen, die durch einen Spacer an das FB-Fragment von Protein A gebunden ist, welche hier als Leader fusioniert ist und eine Bindungsstelle für Fc bildet. Der Spacer weist die 11 C-terminalen Aminosäuren von FB auf, an die sich Asp-Pro (eine Spaltungsstelle für verdünnte Säure) anschließt. Die Einzelketten-BABS weist Sequenzen auf, welche die VH und VL (6A) und die VL und VH (6B) des monoklonalen Maus-Antikörpers 26-10 nachahmen. Die VL in Konstruktion 6A ist am Rest 4 verändert, und zwar ersetzt Valin das in der 26-10-Elternsequenz vorhandene Methionin. Diese Konstrukte enthalten sowohl Bindungsstellen für Fc als auch für Digoxin. Ihre Struktur kann folgendermaßen zusammengefaßt werden: (6A) FB-Asp-Pro-VH-(Gly4-Ser)3-VL. (6B) FB-Asp-Pro-VL-(Gly,-Ser)3-VH,wobei (Gly4-Ser)3 ein Polypeptidlinker ist.
  • In den 4A-4E und 6A und 6B beginnt die Aminosäuresequenz des Expressionsprodukts nach den GAATTC Sequenzen, die eine EcoRI-Spleißstelle kodieren, welche in den Zeichnungen als Glu-Phe übersetzt wird.
  • 7A ist eine graphische Darstellung der maximalen Zählimpulse von gebundenem radiojodiertem Digoxin in Prozent gegen die Konzentration des an die Platte adsorbierten Bindungsproteins, in der die Bindung von nativem 26-10 (Kurve 1) und die der Konstrukte von 6A und 2B, die unter Anwendung von zwei verschiedenen Verfahren renaturiert wurden (Kurven 2 und 3), verglichen werden. 7B ist eine graphische Darstellung, welche die Bifunktionalität der FB-(26-10)-BABS demonstriert, die an Mikrotiterplatten durch die spezifische Bindung der Bindungsstelle an die Digoxin-BSA-Schicht auf der Platte haftet. 7B zeigt die Inhibition der 125I-Kaninchen-IgG-Bindung an die FB-Domäne der FB-BABS durch die Zugabe von IgG, Protein A, FB, Maus-IgG2a und Maus-IgG1 in Prozent.
  • 8 ist eine schematische Darstellung eines Modells einer zusammengesetzten DNA-Sequenz, die ein multifunktionelles biosynthetisches Protein kodiert, das ein Leaderpeptid (das zur Unterstützung der Expression verwendet und danach abgespalten wird), eine Bindungsstelle, einen Spacer und ein Effektormolekül, das in Form einer Trailersequenz gebunden ist, aufweist.
  • Die 9A-9E sind Beispiele für synthetische Nukleinsäuresequenzen und entsprechende kodierte Aminosäuresequenzen von Bindungsstellen mit unterschiedlichen Spezifitäten: (A) FRs von NEWM und CDRs von 26-10 mit der Digoxin-Spezifität des monoklonalen Maus-Antikörpers 26-10,(B) FRs von 26-10 und CDRs von G-loop-4 (glp-4) mit Lysozym-Spezifität, (C) FRs und CDRs von MOPC-315 mit Dinitrophenol (DNF)-Spezifität; (D) FRs und CDRs eines monoklonalen Rnti-CEA-Antikörpers; (E) FRs in der VH und VL, und CDR1 und CDR3 in der VH und CDR1, CDR2 und CDR3 in der VL eines monoklonalen Anti-CEA-Antikörpers; wobei es sich bei der CDR2 in der VH um eine CDR2-Konsensussequenz handelt, die in den meisten Immunglobulin-VH-Regionen gefunden wird.
  • 10A ist eine schematische Darstellung der DNA- und Aminosäuresequenz eines Leaderpeptid (MLE)-Proteins mit entsprechender DNA-Sequenz und einigen Hauptrestriktionsstellen. 10B zeigt die Konstruktion eines Expressionsplasmids, das zur Expression der MLE-BABS (26-10) verwendet wurde. Während der Konstruktion des Gens wurden die Fusionspartner an der EcoRI-Stelle verbunden, die als Teil der Leadersequenz gezeigt ist. Das an der nur einmal vorkommenden SspI- und PstI-Stelle geöffnete pBR322-Plasmid wurde in einer 3-teiligen Ligation mit einem SspI-EcoRI Fragment, das den trp-Promotor und den MLE-Leader enthält, und mit einem EcoRI-PstI-Fragment, welches das BABS-Gen trägt, kombiniert. Der sich ergebende Expressionsvektor verleiht positiven Transformanten Tetracyclin-Resistenz.
  • 11 zeigt ein SDS-Polyacrylamidgel (15%) der (26-10) BABS bei fortschreitender Reinigung. Bahn 0 zeigt Standards mit niedrigem Molekulargewicht, Bahn 1 ist das MLE-BABS Fusionsprotein, Bahn 2 ist ein saurer Abbau dieses Materials, Bahn 3 ist das auf DE-52 chromatographierte gepoolte Protein, die Bahnen 4 und 5 sind der gleiche Ouabain-Sepharose-Pool der einkettigen BABS, mit dem Unterschied, daß das Protein von Bahn 4 reduziert ist und das Protein von Bahn 5 unreduziert ist.
  • 12 zeigt Inhibitionskurven für 26-10-BABS- und 26-10 Fab-Spezies und gibt die relativen Affinitäten des Antikörperfragments für die angegebenen Herzglycoside an.
  • Die 13A und 13B sind graphische Darstellungen von Digoxin-Bindungskurven. (A) zeigt die 26-10-BABS-Bindungsisotherme und das Sips-Diagramm (Nebenabbildung), und (B) zeigt die 26-10-Fab-Bindungsisotherme und das Sips-Diagramm (Nebenabbildung).
  • 14 stellt eine Nukleinsäuresequenz und die entsprechende Aminosäuresequenz einer modifizierten FB-Dimer Leadersequenz mit verschiedenen Restriktionsstellen dar.
  • Die 15A-15H stellen Nukleinsäuresequenzen und entsprechende Aminosäuresequenzen von biosynthetischen multifunktionellen Proteinen dar, die eine Einzelketten BABS und verschiedene biologisch aktive über eine Spacersequenz gebundene Proteintrailer enthalten. Ferner sind verschiedene Endonuklease-Abbaustellen angegeben. Bei den Trailersequenzen handelt es sich um (A) den epidermalen Wachstumsfaktor (EGF), (B) Streptavidin, (C) den Tumor Nekrosefaktor (TNF), (D) Calmodulin, (E) den aus Blutplättchen stammenden Beta-Wachstumsfaktor (PDGF-beta), (F) Ricin und (G) Interleukin-2 und (H) ein FB-FB-Dimer.
  • Beschreibung
  • Die Erfindung wird zunächst in breitester Form beschrieben und im Folgenden dann detaillierter.
  • Es ist eine Klasse neuer biosynthetischer bi- oder multifunktioneller Proteine entworfen und konstruiert worden, die biosynthetische Antikörperbindungsstellen, d.h. "BABS", oder biosynthetische Polypeptide, die eine Struktur vorgeben, welche selektiv Antigene erkennt und vorzugsweise Antigene bindet, und ein oder mehrere peptidgebundene zusätzliche Protein- oder Polypeptidregionen, die zum Erhalt einer vorgewählten Eigenschaft konstruiert wurden, enthalten. Beispiele für die zweite Region sind Aminosäuresequenzen, die zur Maskierung von Ionen konstruiert sind, wodurch das Protein als Bilderzeugungsmittel verwendet werden kann, und Sequenzen, die zur Erleichterung der Immobilisierung des Proteins für die Affinitätschromatographie und für Festphasenimmunoassays konstruiert sind. Ein weiteres Beispiel für die zweite Region ist ein bioaktives Effektormolekül, d.h. ein Protein mit einer für eine biologische Aktivität geeigneten Konformation, beispielsweise ein Enzym, Toxin, Rezeptor, eine Bindungsstelle, ein Wachstumsfaktor, Zelldifferenzierungsfaktor, Lymphokin, Cytokin, Hormon oder Antimetabolit. Die Erfindung betrifft synthetische multifunktionelle Proteine, welche diese Regionen peptidgebunden an eine oder mehrere biosynthetische Antikörperbindungsstellen aufweisen, synthetische einzelkettige Proteine, die zur Bindung von vorgewählten antigenen Determinanten mit hoher Affinität und Spezifität konstruiert sind, Konstruktionen, die Mehrfachbindungsstellen enthalten, die miteinander verbunden sind, um eine Mehrfachantigenbindung und hohe Nettoaffinität und Spezifität zu ergeben, mit Rekombinationstechniken hergestellte DNA, die diese Proteine kodiert, diese DNAs beherbergende Wirtszellen und Verfahren zur Herstellung dieser Proteine und DNAs.
  • Die Erfindung macht die Herstellung von einzelkettigen Bindungsstellen mit einer Affinität und Spezifität für eine vorbestimmte antigene Determinante durch Rekombination erforderlich. Diese Technologie wurde entwickelt und wird hier offenbart. Aufgrund dieser Offenbarung kann der Fachmann auf dem Gebiet der DNA-Rekombinationstechnik, der Konstruktion von Proteinen und der Proteinchemie derartige Stellen herstellen, die hohe Bindungskonstanten (mindestens 106 vorzugsweise 108 M–1) und ausgezeichnete Spezifität aufweisen, wenn sie in Lösung gebracht werden.
  • Die Konstruktion der BABS beruht auf der Beobachtung, daß drei Unterregionen der variablen Domäne jeder der schweren und leichten Ketten des nativen Immunglobulinmoleküls für die Antigenerkennung und -bindung verantwortlich sind. Jede dieser Unterregionen, hier "komplementaritätsbestimmende Regionen" oder CDRs genannt, besteht aus einer der hypervariablen Regionen oder Schleifen und aus ausgewählten Aminosäuren oder Aminosäuresequenzen, die sich in den Framework-Regionen oder FRs befinden, welche die bestimmte hypervariable Region flankieren. Es wurde nun gefunden, daß FRs von diversen Spezies in der Lage sind, CDRs von diversen anderen Spezies in der richtigen Konformation zu halten, so daß sich in einem biosynthetischen Protein wirkliche immunchemische Bindungseigenschaften ergeben. Ferner wurde gefunden, daß biosynthetische Domänen, welche die Struktur der beiden Ketten einer Immunglobulinbindungsstelle nachahmen, durch einen Polypeptidlinker verbunden sein können, während ihre gemeinsamen Bindungseigenschaften nahezu erreicht, beibehalten und häufig verbessert werden.
  • Die Bindungsstellenregion des multifunktionellen Proteins weist mindestens eine, und vorzugsweise zwei Domänen auf, die jeweils eine Aminosäuresequenz haben, die zu Teilen der CDRs der variablen Domäne einer leichten oder schweren Immunglobulinkette homolog ist, und eine andere Sequenz, die zu den FRs der variablen Domäne der gleichen oder einer zweiten, unterschiedlichen leichten oder schweren Immunglobulinkette homolog ist. Die Bindungsstellenkonstruktion mit zwei Domänen weist auch eine Polypeptidverbindung der Domänen auf. Die so konstruierten Polypeptide binden ein bestimmtes vorgewähltes Antigen, das durch die CDRs festgelegt wird, die durch die FRs und den Linker in der richtigen Konformation gehalten werden. Bevorzugte Strukturen weisen menschliche FRs auf, d.h. ahmen die Aminosäuresequenz mindestens eines Teils der Framework-Regionen eines menschlichen Immunglobulins nach, und besitzen verbundene Domänen, welche zusammen eine Struktur darstellen, die eine zweikettige VH-VL oder VL-VH-Immunglobulinbindungsstelle nachahmt. Die CDR-Regionen eines Säuger-Immunglobulins, beispielsweise der Maus, der Ratte oder menschlichen Ursprungs, sind bevorzugt. In einer bevorzugten Ausführungsform weist die biosynthetische Antikörperbindungsstelle FRs auf, die zu einem Teil der FRs eines menschlichen Immunglobulins homolog sind, und CDRs, die zu CDRs eines Maus oder Ratten-Immunglobulins homolog sind. Dieser Typ eines chimären Polypeptids zeigt die spezifische Antigenbindung des Maus- oder Ratten-Immunglobulins, während seine menschliche Struktur die menschlichen Immunreaktionen minimiert. Außerdem kann das chimäre Polypeptid andere Aminosäuresequenzen aufweisen. Beispielsweise kann es eine Sequenz aufweisen, die homolog zu einem Teil der konstanten Domäne eines Immunglobulins ist, aber vorzugsweise ist es frei von konstanten Regionen (bei denen es sich nicht um FRs handelt).
  • Bei der/den Bindungsstellenregion(en) der chimären Proteine handelt es sich daher um einzelkettige Kompositpolypeptide, die eine Struktur aufweisen, welche sich in Lösung wie eine Antikörperbindungsstelle verhält. Das einzelkettige Kompositpolypeptid mit zwei Domänen hat eine Struktur, die den VH- und VL-Tandemdomänen nachgebildet ist, wobei aber der Carboxyterminus der einen durch eine verbindende Aminosäuresequenz mit dem Aminoterminus der anderen verbunden ist. Die verbindende Aminosäuresequenz kann selber antigen oder biologisch aktiv sein oder auch nicht. Sie überbrückt vorzugsweise einen Abstand von mindestens etwa 40A, d.h. weist mindestens etwa 14 Aminosäuren auf, und sie weist Reste auf, die zusammen eine hydrophile, verhältnismäßig unstrukturierte Region darstellen. Verbindende Aminosäuresequenzen mit geringer oder ohne Sekundärstruktur funktionieren gut. Gegebenenfalls kann eine oder ein Paar nur einmal vorhandener Aminosäuren oder Aminosäuresequenzen, die durch ein ortsspezifisches Spaltungsmittel erkennbar sind, in dem Linker enthalten sein. Dadurch ist es möglich, die VH- und VL-ähnlichen Domänen nach der Expression voneinander zu trennen oder den Linker nach der Rückfaltung der Bindungsstelle auszuschneiden.
  • Entweder das amino- oder das carboxyterminale Ende (oder beide Enden) dieser chimären einkettigen Bindungsstellen ist an eine Aminosäuresequenz gebunden, die selber bioaktiv ist oder eine andere Funktion hat, so daß ein bifunktionelles oder multifunktionelles Protein gebildet wird. Beispielsweise kann die synthetische Bindungsstelle eine Leader- und/oder Trailersequenz aufweisen, die ein Polypeptid definiert, das enzymatische Aktivität hat, unabhängige Affinität für ein Antigen aufweist, das sich von dem Antigen unterscheidet, gegen das die Bingungsteile gerichtet ist, oder andere Funktionen hat, beispielsweise eine geeignete Bindungsstelle für ein radioaktives Ion ergibt oder einen Rest, der zur chemischen Bindung an einen festen Träger ausgelegt ist. Dieser fusionierte funktionell unabhängige Proteinabschnitt sollte von fusionierten Leadern unterschieden werden, die einfach zu Erhöhung der Expression in prokaryontischen Wirtszellen oder Hefen verwendet werden. Die multifunktionellen Proteine sollten auch von den im Stand der Technik offenbarten "Konjugaten" unterschieden werden, welche Antikörper aufweisen, die nach der Expression chemisch an einen zweiten Rest gebunden werden.
  • Häufig ist eine Reihe von Aminosäuren als "Spacer" zwischen den aktiven Regionen des multifunktionellen Proteins eingeschoben. Die Verwendung eines derartigen Spacers kann die unabhängige Rückfaltung der Regionen des Proteins fördern.
  • Der Spacer kann auch eine spezifische Aminosäuresequenz aufweisen, die durch eine Endopeptidase erkannt wird, welche beispielsweise eine zelleigene Zielzelle ist (die beispielsweise ein Oberflächenprotein aufweist, das von der Bindungsstelle erkannt wird), so daß das bioaktive Effektorprotein abgespalten und am Zielort freigesetzt wird. Das zweite funktionelle Protein ist vorzugsweise in Form einer Trailersequenz vorhanden, weil Trailer weniger dazu neigen, das Bindungsverhalten der BABS zu stören.
  • Die therapeutische Anwendung derartiger "sich selbst ins Ziel steuernder" bioaktiver Proteine bietet eine Reihe von Vorteilen gegenüber Konjugaten von Immunglobulinfragmenten oder kompletten Antikörpermolekülen: sie sind stabil, weniger immunogen und haben ein niedrigeres Molekulargewicht, sie können Körpergewebe zur Bilderzeugung oder zur Arzneistoff-Freisetzung rascher penetrieren, weil sie eine geringere Größe haben, und sie können die Clearance von Zielisotopen oder -arzneistoffen beschleunigen. Außerdem ist aufgrund der hier offenbarten Konstruktion derartiger Strukturen auf der DNA-Ebene die einfache Auswahl von Bioeigenschaften und Spezifitäten und eine praktisch unbeschränkte Kombination von Bindungsstellen und bioaktiven Proteinen möglich, die jeweils, wie hier offenbart, verfeinert werden können, um unabhängig die Aktivität jeder Region des synthetischen Proteins zu optimieren. Die synthetischen Proteine können in Prokaryonten wie E. coli exprimiert werden und sind daher billiger herzustellen als Immunglobuline oder Fragmente davon, welche die Expression in kultivierten Tierzellinien erforderlich machen.
  • Die Erfindung stellt somit eine Familie rekombinanter Proteine bereit, die von einem einzelnen DNA-Stück exprimiert werden, und die alle in der Lage sind, spezifisch eine vorbestimmte antigene Determinante zu binden. Die bevorzugten Proteinspezies weisen eine zweite Domäne auf, die unabhängig von der Bindungsregion funktioniert. Unter diesem Aspekt stellt die Erfindung eine Reihe von "sich selbst ins Ziel steuernden" Proteinen bereit, die eine bioaktive Funktion haben und diese Funktion an einem Ort ausüben, der durch die Spezifität der Bindungsstelle bestimmt wird. Sie stellt außerdem biosynthetische Bindungsproteine bereit, an die Polypeptide gebunden sind, die zur Bindung an Immobilisierungsmatrizen geeignet sind, welche zur Affinitätschromatographie oder in Festphasenimmunoassay-Anwendungen verwendet werden können, oder die zur Bindung von Ionen geeignet sind, beispielsweise radioaktiven Ionen, die zur Bilderzeugung in vivo verwendet werden können.
  • Die erfolgreiche Konstruktion und Herstellung der Proteine der Erfindung ist davon abhängig, daß biosynthetische Bindungsstellen hergestellt werden können, und zwar am bevorzugtesten Stellen, die zwei Domänen aufweisen, welche die variablen Immunglobulin-Domänen nachahmen und durch einen Linker verbunden sind. Es ist gut bekannt, daß Fv, das minimale Antikörperfragment, das eine vollständige Antigenerkennungs- und -bindungsstelle aufweist, aus einem Dimer der variablen Domäne einer schweren und einer leichten Kette besteht, die nichtkovalent verbunden sind (1A). Wegen dieser Konfiguration wechselwirken die drei komplementaritätsbestimmenden Regionen jeder variablen Domäne unter Bildung einer Antigenbindungsstelle an der Oberfläche des VH-VL-Dimers. Die sechs komplementaritätsbestimmenden Regionen (vgl. 1B) verleihen zusammen dem Antikörper die Bindungsspezifität für das Antigen. Die FRs, welche die CDRs flankieren, weisen eine Tertiärstruktur auf, die in den nativen Immunglobulinen von so verschiedenen Spezies wie dem Menschen und der Maus im Wesentlichen konserviert ist. Diese FRs dienen dazu, die CDRs in ihrer geeigneten Orientierung zu halten. Die konstanten Domänen werden für die Bindungsfunktion nicht benötigt, können aber die Stabilisierung der VH-VL-Wechselwirkung unterstützen. Sogar eine einzelne variable Domäne (oder die Hälfte eines Fv, die nur drei für ein Antigen spezifische CDRs aufweist) hat die Fähigkeit zur Erkennung und Bindung eines Antigens, obwohl die Affinität geringer ist als bei einer vollständigen Bindungsstelle (Painter et al. (1972), Biochem. 11: 1327-1337) .
  • Diese Kenntnis der Struktur von Immunglobulinproteinen wurde nun ausgenutzt, um multifunktionelle Fusionsproteine zu entwickeln, die biosynthetische Antikörperbindungsstellen und eine oder mehrere andere Domänen aufweisen.
  • Diese biosynthetischen Proteine haben in der Region, die dem Protein die Bindungseigenschaften verleiht, eine Struktur, die der Fv-Region eines natürlichen Antikörpers analog ist. Sie weist mindestens eine, und vorzugsweise zwei Domänen auf, die aus Aminosäuren bestehen, welche durch einen Linker verbundene VH- und VL-ähnliche Polypeptidabschnitte definieren, die zusammen die tertiäre Molekülstruktur bilden, die für die Affinität und Spezifität verantwortlich ist. Jede Domäne weist einen Satz von Aminosäuresequenzen auf, die zu Immunglobulin-CDRs analog sind und durch einen Satz von Sequenzen, die zu den Framework-Regionen (FRs) eines Fv-Fragments eines natürlichen Antikörpers analog sind, in der geeigneten Konformation gehalten werden.
  • Der Begriff CDR bezieht sich hier auf Aminosäuresequenzen, die gemeinsam die Bindungsaffinität und -spezifität der natürlichen Fv-Region einer nativen Immunglobulinbindungsstelle definieren, oder auf ein synthetisches Polypeptid, das diese Funktion nachahmt. Die CDRs sind üblicherweise nicht völlig zu den hypervariablen Regionen natürlicher Fvs homolog, sondern können auch bestimmte Aminosäuren oder Aminosäuresequenzen enthalten, welche die hypervariable Region flankieren und bisher als Framework angesehen wurden, die nicht direkt für die Komplementarität bestimmend ist. Der Begriff FR bezieht sich hier auf Aminosäuresequenzen, die CDRs flankieren oder dazwischen liegen.
  • Die CDR- und FR-Polypeptidabschnitte werden auf der Grundlage einer Sequenzanalyse der Fv-Region von bereits existierenden Antikörpern oder diese kodierender DNA konstruiert. In einer Ausführungsform sind die Aminosäuresequenzen, welche die FR-Regionen der BABS bilden, den FR Sequenzen eines ersten bereits existierenden Antikörpers, beispielsweise ein menschliches IgG, analog. Die Aminosäuresequenzen, welche die CDR-Regionen bilden, sind den Sequenzen eines zweiten, davon verschiedenen, bereits existierenden Antikörpers analog, beispielsweise den CDRs eines Maus-IgG. Alternativ können die CDRs und FRs eines einzelnen, bereits existierenden Antikörpers aus beispielsweise einem unstabilen oder schwer zu kultivierenden Hybridom vollständig kopiert werden. Die Ausführung der Erfindung ermöglicht die Konstruktion und Biosynthese von verschiedenen Reagenzien, die alle durch eine Region mit einer Affinität für eine vorgewählte antigene Determinante gekennzeichnet sind. Die Bindungsstelle und die anderen Regionen des biosynthetischen Proteins werden unter Berücksichtigung der konkreten geplanten Verwendung des Proteins konstruiert. wenn daher das Reagenz zur intravaskulären Anwendung in Säugern bestimmt ist, können die FR-Regionen Aminosäuren aufweisen, die mindestens zum Teil den Aminosäuren der Frameworkregion des nativen Antikörpers der Säugerspezies ähneln oder damit identisch sind. Andererseits können die Aminosäuren, welche die CDRs darstellen, einem Teil der Aminosäuren der hypervariablen Region (und bestimmten flankierenden Aminosäuren) eines Antikörpers mit bekannter Affinität und Spezifität, z.B. ein monoklonaler Maus- oder Ratten Antikörpers, analog sein. Andere Abschnitte der Proteinstruktur des nativen Immunglobulins, z.B. CH und CL müssen nicht vorliegen und sind gewöhnlich in den biosynthetischen Proteinen absichtlich nicht vorgesehen. Die Proteine der Erfindung weisen jedoch gewöhnlich ein zusätzliches Polypeptid oder Proteinregionen auf, das/die eine bioaktive Region definieren, z.B. ein Toxin oder Enzym, oder eine Stelle, an die ein Toxin oder eine durch Fernmessung nachweisbare Substanz gebunden werden kann.
  • Die Erfindung stellt somit intakte biosynthetische Antikörperbindungsstellen bereit, die VH-VL-Dimern analog sind und entweder nichtkovalent verbunden, durch Disulfidbrücken verbunden oder vorzugsweise durch eine Polypeptidsequenz unter Bildung eines VH-VL-Komposits oder VL-VH-Polypeptids verbunden sind, das von der konstanten Region des Antikörpers praktisch frei ist. Die Erfindung stellt außerdem Proteine bereit, die einer unabhängigen VH- oder VL-Domäne oder Dimern davon analog sind. Jedes dieser Proteine kann in einer Form bereitgestellt werden, in der sie beispielsweise an Aminosäuren gebunden sind, die einem bioaktiven Molekül wie einem Hormon oder Toxin analog oder homolog sind.
  • Die funktionell voneinander unabhängigen Regionen des Proteins sind durch einen Spacer verbunden, der sich aus einer kurzen Aminosäuresequenz zusammensetzt und dessen Funktion darin besteht, die funktionellen Regionen zu trennen, so daß sie unabhängig voneinander ihre aktive Tertiärkonformation annehmen können. Der Spacer kann aus einer Aminosäuresequenz bestehen, die sich am Ende eines funktionellen Proteins befindet, wobei die Sequenz für dessen Funktion selber nicht benötigt wird, und/oder es kann sich um spezifische Sequenzen handeln, die auf der DNA Ebene in das Protein eingebaut wurden.
  • Der Spacer kann im Allgemeinen zwischen 5 und 25 Reste aufweisen. Seine optimale Länge kann durch die Verwendung von Konstrukten mit verschiedenen Spacerlängen, die sich beispielsweise durch Einheiten aus 5 Aminosäuren unterscheiden, ermittelt werden. Die konkreten Aminosäuren in dem Spacer können variieren. Cysteine sollte vermieden werden. Hydrophile Aminosäuren sind bevorzugt. Die Spacersequenz kann die Sequenz einer Gelenkregion eines Immunglobulins nachahmen. Sie kann auch so konstruiert sein, daß sie eine Struktur annimmt, beispielsweise eine helikale Struktur. In den Spacer, der die der variablen Region ähnlichen Sequenzen von anderen Seitensequenzen trennt, können proteolytische Spaltungsstellen eingebaut werden, um die Abspaltung der intakten BABS von anderem Protein zu erleichtern, oder um das bioaktive Protein in vivo freizusetzen.
  • Die 2A-2E veranschaulichen 5 Beispiele für Proteinstrukturen nach der Erfindung, die gemäß der hier offenbarten Lehre hergestellt werden können. Sie sind alle durch ein biosynthetisches Polypeptid gekennzeichnet, das eine Bindungsstelle 3 definiert, die CDRs und FRs, welche häufig von verschiedenen Immunglobulinen stammen, enthaltende Aminosäuresequenzen aufweist, oder Sequenzen, die zu einem Teil der CDRs und FRs unterschiedlicher Immunglobuline homolog sind. 2A zeigt ein einkettiges Konstrukt, das eine Polypeptiddomäne 10 mit einer Aminosäuresequenz aufweist, die der variablen Region einer schweren Immunglobulinkette analog ist und über ihr Carboxyende an einen Polypeptidlinker 12 gebunden ist, der wiederum an eine Polypeptiddomäne 14 mit einer Aminosäuresequenz gebunden ist, welche der variablen Region einer leichten Immunglobulinkette analog ist. Selbstverständlich können die leichte und die schwere Kettendomäne in umgekehrter Reihenfolge vorliegen. Alternativ kann die Bindungsstelle zwei im Wesentlichen homologe Aminosäuresequenzen aufweisen, die beide der variablen Region einer schweren oder leichten Immunglobulinkette analog sind. Der Linker 12 sollte lang genug sein (z.B. etwa 15 Aminosäuren oder etwa 40 A), daß die Ketten 10 und 14 ihre richtige Konformation annehmen können. Der Linker 12 kann eine Aminosäuresequenz aufweisen, welche homolog zu einer Sequenz ist, die von der Spezies, in die sie eingeführt wird, als "selbst" erkannt wird, wenn die Verwendung als Arzneistoff beabsichtigt ist. Beispielsweise kann der Linker eine Aminosäuresequenz aufweisen, die einer Gelenkregion eines Immunglobulins nachgebildet ist. Der Linker weist vorzugsweise hydrophile Aminosäuresequenzen auf. Er kann auch ein bioaktives Polypeptid wie ein Zelltoxin aufweisen, das durch die Bindungsstelle zielgesteuert werden soll, oder einen Abschnitt, der leicht durch ein radioaktives Reagenz markiert wird, das beispielsweise zu einem Tumor, der ein von der Bindungsstelle erkennbares Epitop aufweist, befördert werden soll. Der Linker kann außerdem eine oder zwei eingebaute Spaltungsstellen enthalten, d.h. eine Aminosäure oder Aminosäuresequenz, die von einem im Folgenden beschriebenen ortsspezifischen Spaltungsmittel angegriffen werden kann. Diese Strategie erlaubt die Trennung der VH- und VL-ähnlichen Domänen nach der Expression oder das Ausschneiden des Linkers nach der Faltung, während die Bindungsstellenstruktur nichtkovalent verbunden bleibt. Die Aminosäuren des Linkers sind vorzugsweise unter solchen mit verhältnismäßig kleinen, nichtreaktiven Seitenketten ausgewählt. Alanin, Serin und Glycin sind bevorzugt. Im Allgemeinen spielen bei der Konstruktion des Linkers ähnliche Überlegungen eine Rolle wie bei der Konstruktion des Spacers, mit dem Unterschied, daß die Bindungseigenschaften der verbundenen Domänen stark verringert sind, wenn die Linkersequenz kürzer als etwa 20 A ist, d.h. weniger als etwa 10 Reste aufweist. Zwischen dem N-Terminus einer nativen variablen Region und dem C-Terminus ihrer Schwesterkette können Linker verwendet werden, die länger als ungefähr 40 A sind, wodurch aber ebenfalls möglicherweise die Bindungseigenschaften der BABS verringert werden. Linker, die zwischen 12 und 18 Reste aufweisen, sind bevorzugt. Die bevorzugte Länge in konkreten Konstrukten kann ermittelt werden, indem die Länge des Linkers zuerst mit Einheiten aus 5 Resten variiert wird und dann mit Einheiten aus 1–4 Resten, nachdem das beste Vielfache der pentameren Ausgangseinheiten ermittelt wurde. Um multifunktionelle Proteine des in den 2B-2E veranschaulichten Typs herzustellen, können weitere Proteine oder Polypeptide an den Amino- oder Carboxyterminus der Bindungsstelle oder an beide gebunden werden. Beispielsweise weist in 2B eine helikal gewundene Polypeptidstruktur 16 ein Protein-A-Fragment (FB) auf, das über einen Spacer 18 an das aminoterminale Ende einer VH-ähnlichen Domäne 10 gebunden ist. 2C veranschaulicht ein bifunktionelles Protein mit einem Effektorpolypeptid 20, das über einen Spacer 22 an den Carboxyterminus des Polypeptids 14 des bindenden Proteinabschnitts 2 gebunden ist. Dieses Effektorpolypeptid 20 kann beispielsweise aus einem Toxin, einem Arzneistoff, einem Bindungsprotein, einem Enzym oder Enzymfragment, einer Bindungsstelle für ein Bilderzeugungsmittel (z.B. um ein radioaktives Ion wie Indium zu komplexieren) oder einer Stelle zur selektiven Bindung an eine Immobilisierungsmatrix, so daß die BABS zur Affinitätschromatographie oder in einem Festphasenbindungsassay verwendet werden kann, bestehen. Dieser Effektor kann alternativ an den Aminoterminus des Polypeptids 10 gebunden sein, obwohl Trailer bevorzugt sind. 2D zeigt ein trifunktionelles Protein, das ein verbundenes BABS-Paar 2 mit einer weiteren unterschiedlichen Proteindomäne 20, die an den N-Terminus des ersten Bindungsproteinabschnitts gebunden ist, aufweist. Die Verwendung von mehreren BABS in einem einzigen Protein gestattet die Herstellung von Konstrukten mit sehr hoher selektiver Affinität für Multiepitopstellen, wie beispielsweise Zelloberflächenproteine.
  • Die funktionell unabhängigen Domänen sind durch einen Spacer 18 verbunden (2B und 2D), der kovalent den C-Terminus des Proteins 16 oder 20 an den N-Terminus der ersten Domäne 10 des Bindungsproteinabschnitts 2 bindet, oder durch einen Spacer 22, der den C-Terminus der zweiten Bindungsdomäne 14 an den N-Terminus eines weiteren Proteins bindet (2C und 2D). Bei dem Spacer kann es sich um eine Aminosäuresequenz handeln, die zur Linkersequenz 12 analog ist, oder er kann andere Formen annehmen. Wie oben erwähnt, besteht die Hauptfunktion des Spacers darin, die aktiven Proteinregionen zu trennen, um ihre unabhängige Bioaktivität zu fördern und jeder Region zu ermöglichen, ihre bioaktive Konformation unabhängig von Störungen durch ihre benachbarte Struktur anzunehmen.
  • 2E zeigt einen weiteren Reagenztyp, der eine BABS mit nur einem Satz von drei CDRs aufweist, die z.B. einer variablen Region einer schweren Kette analog ist, und einen Teil der Affinität für das Antigen behält. An das Carboxyende des Polypeptids 10 oder 14, das die FR und CDR-Sequenzen aufweist, welche die Bindungsstelle 3 bilden, ist durch den Spacer 22, wie oben beschrieben, das Effektorpolypeptid 20 gebunden.
  • Nach dem Vorerwähnten ist klar, daß die Erfindung eine große Familie Reagenzien zur Verfügung stellt, die Proteine enthalten, in denen mindestens ein Teil eine Bindungsstelle definiert, die der variablen Region eines Immunglobulins nachgebildet ist. Es ist klar, daß die Beschaffenheit der Proteinfragmente, die an die BABS gebunden und für Reagenzien nach der Erfindung verwendet werden, praktisch keinen Beschränkungen unterliegt, denn das Wesentliche der Erfindung ist die Bereitstellung von Bindungsstellen, und zwar entweder alleine oder an andere Proteine gebunden, die für jedes beliebige gewünschte Antigen spezifisch sind.
  • Die klinische Verabreichung von einer BABS aufweisenden multifunktionellen Proteinen, oder einer BABS alleine, hat eine Anzahl von Vorteilen gegenüber der Verwendung von intakten, natürlichen oder chimären Antikörpermolekülen, Fragmenten davon und Konjugaten, die derartige Antikörper an einen zweiten bioaktiven Rest chemisch gebunden aufweisen. Die hier beschriebenen multifunktionellen Proteine haben weniger Spaltungsstellen für zirkulierende proteolytische Enzyme, ihre funktionellen Domänen sind durch Peptidbindungen an Polypeptidlinker- oder -spacersequenzen gebunden, und die Proteine sind daher stabiler. Aufgrund ihrer geringeren Größe und effizienten Konstruktion können die hier beschriebenen multifunktionellen Proteine ihr Zielgewebe rascher erreichen und werden schneller aus dem Körper ausgeschieden. Sie zeigen ferner verringerte Immunogenizität. Außerdem erleichtert ihre Konstruktion die Kupplung an andere Reste zur Zielsteuerung von Arzneistoffen und zur Bilderzeugung. Eine derartige Kupplung kann nach der Expression der BABS chemisch vorgenommen werden, und zwar an einer Bindungsstelle für das Kupplungsprodukt, die auf der DNA-Ebene in das Protein eingebaut wurde. Aktive Effektorproteine mit toxischer, enzymatischer, bindender, modulierender, zelldifferenzierender, hormoneller oder anderer Bioaktivität werden von einer einzelnen DNA als Leader- und/oder Trailersequenz exprimiert, die über Peptidbindungen an die BABS gebunden ist.
  • Konstruktion und Herstellung
  • Die Proteine der Erfindung werden auf der DNA-Ebene konstruiert. Die chimären oder synthetischen DNAs werden dann in einem geeigneten Wirtssystem exprimiert, und die exprimierten Proteine werden gesammelt und erforderlichenfalls renaturiert. Die bevorzugte allgemeine Struktur der die Proteine kodierenden DNA ist in 8 angegeben. Wie dort veranschaulicht, kodiert sie eine optimale Leadersequenz, die zur Förderung der Expression in Prokaryonten verwendet wird, und zwar mit einer eingebauten Spaltstelle, die von einem ortsspezifischen Spaltmittel, wie beispielsweise einer Endopeptidase, erkannt werden kann, das nach der Expression zur Entfernung des Leaders verwendet wird. Daran schließen sich eine DNA, die eine CDRs und FRs aufweisende VH-ähnliche Domäne kodiert, ein Linker, eine VL-ähnliche Domäne, die wiederum CDRs und FRs aufweist, ein Spacer und ein Effektorprotein an. Nach der Expression, der Faltung und der Abspaltung des Leaders ergibt sich ein bifunktionelles Protein mit einer Bindungsregion, deren Spezifität durch die CDRs bestimmt wird, und einer über Peptidbindungen gebundenen funktionell unabhängigen Effektorregion.
  • Die Konstruktion der BABS der Erfindung hängt davon ab, ob die Sequenz der Aminosäuren in der variablen Region der betreffenden monoklonalen Antikörper ermittelt werden kann, oder die der sie kodierenden DNA. Die Hybridom-Technologie ermöglicht die Produktion von Zelllinien, die Antikörper gegen praktisch jede gewünschte Substanz, die eine Immunantwort erzeugt, sekretieren. Die RNA, welche die leichten und schweren Ketten des Immunglobulins kodiert, ist dann aus dem Cytoplasma des Hybridoms erhältlich. Das 5'-Ende der mRNA kann verwendet werden, um cDNA zur anschließenden Sequenzierung zu präparieren, oder die Aminosäuresequenz der hypervariablen und flankierenden Framework-Regionen kann durch Aminosäuresequenzierung der V-Region-Fragmente der H- und L-Ketten ermittelt werden. Eine derartige Sequenzanalyse wird mittlerweile routinemäßig durchgeführt. Diese Kenntnis in Verbindung mit Beobachtungen und Folgerungen aus der verallgemeinerten Struktur der Fvs von Immunglobulinen erlaubt die Konstruktion von synthetischen Genen, die FR- und CDR-Sequenzen kodieren, welche voraussichtlich das Antigen binden werden. Diese synthetischen Gene werden dann unter Anwendung bekannter Techniken oder unter Anwendung der im folgenden offenbarten Technik hergestellt, in einen geeigneten Wirt inseriert und exprimiert, und das exprimierte Protein wird gereinigt. In Abhängigkeit von der Wirtszelle können Renaturierungstechniken erforderlich sein, um die richtige Konformation zu erhalten. Die verschiedenen Proteine werden dann auf das Bindungsvermögen untersucht, und solche mit geeigneter Affinität werden ausgewählt, um sie in ein Reagenz des oben beschriebenen Typs einzuführen. Falls erforderlich, können zur Optimierung der Bindung Punktsubstitutionen in der DNA vorgenommen werden, nämlich unter Anwendung der üblichen Kassettenmutagenese oder anderer Verfahren der Proteintechnik, beispielsweise wie im Folgenden offenbart.
  • Die Herstellung der Proteine der Erfindung ist außerdem von der Kenntnis der Aminosäuresequenz (oder der entsprechenden DNA- oder RNA-Sequenz) von bioaktiven Proteinen wie Enzymen, Toxinen, Wachstumsfaktoren, Zelldifferenzierungsfaktoren, Rezeptoren, Antimetaboliten, Hormonen oder verschiedenen Cytokinen oder Lymphokinen abhängig. Derartige Sequenzen sind in der Literatur beschrieben und über Computerdatenbanken verfügbar.
  • Die DNA-Sequenzen der Bindungsstelle und der zweiten Proteindomäne werden unter Anwendung herkömmlicher Techniken fusioniert, oder aus synthetisierten Oligonukleotiden zusammengesetzt, und dann unter Anwendung entsprechender üblicher Techniken exprimiert.
  • Die Verfahren zur Manipulierung, Amplifizierung und Rekombination von DNA, welche die betreffenden Aminosäuresequenzen kodiert, sind auf dem Fachgebiet wohlbekannt und werden deshalb hier nicht im Detail beschrieben. Verfahren zur Identifizierung und Isolation von Genen, welche die betreffenden Antikörper kodieren, sind gut untersucht und in der Patent- und der übrigen Literatur beschrieben. Im Allgemeinen sind die Verfahren damit verbunden, daß genetisches Material selektiert wird, das dem genetischen Code entsprechend Aminosäuren kodiert, welche die betreffenden Proteine einschließlich der betreffenden CDRs und FRs definieren.
  • Daher kann die Konstruktion von DNAs, welche die hier offenbarten Proteine kodieren, unter Anwendung bekannter Techniken vorgenommen werden, die mit der Ver-/Anwendung von verschiedenen Restriktionsenzymen, die unter Erhalt von stumpfen Enden oder kohäsiven Enden sequenzspezifische Schnitte in DNA machen, DNA-Ligasen, Techniken zur enzymatischen Hinzufügung von klebrigen Enden an DNA mit stumpfen Enden, der Konstruktion von synthetischen DNAs durch Zusammensetzen von Oligonukleotiden mit geringer oder mittlerer Länge, cDNA-Synthesetechniken und synthetischen Sonden zur Isolation von Genen für Immunglobuline oder andere bioaktive Proteine verbunden sind. Ebenfalls bekannt und verfügbar sind verschiedene Promotorsequenzen und andere regulatorische DNA-Sequenzen, die zur Erzielung der Expression verwendet werden, sowie verschiedene Typen von Wirtszellen. Zur Durchführung der Erfindung sind herkömmliche Transfektionstechniken und entsprechende herkömmliche Techniken zur Klonierung und Subklonierung von DNA anwendbar und dem Fachmann bekannt. Es können verschiedene Vektor-Typen verwendet werden, beispielsweise Plasmide und Viren, einschließlich Tierviren und Bakteriophagen. Die Vektoren können verschiedene Markergene enthalten, welche einer erfolgreich transfizierten Zelle eine nachweisbare phänotypische Eigenschaft verleihen, die dazu verwendet werden kann, festzustellen, welcher Klon aus einer Klonfamilie die rekombinante DNA des Vektors erfolgreich aufgenommen hat.
  • Ein Verfahren zum Erhalt von DNA, welche die hier offenbarten Proteine kodiert, ist das Zusammensetzen von synthetischen Oligonukleotiden, die in einem üblichen, automatisierten Polynukleotidsynthesizer hergestellt und anschließend mit geeigneten Ligasen ligiert werden. Beispielsweise können sich überlappende, komplementäre DNA-Fragmente mit 15 Basen halbmanuell unter Anwendung der Phosphoramiditchemie synthetisiert werden, wobei die Endabschnitte unphosphoryliert bleiben, um während des Ligierens die Polymerisation zu verhindern. Ein Ende der synthetischen DNA behält ein "klebriges Ende", das der Angriffsstelle einer bestimmtem Restriktionsendonuklease entspricht, und das andere Ende behält ein Ende, das der Angriffsstelle einer anderen Restriktionsendonuklease entspricht. Dieser Ansatz kann alternativ vollständig automatisiert werden. Die das Protein kodierende DNA kann durch Synthese längerer einsträngiger Fragmente (z.B. 50–100 Nukleotide lang), beispielsweise in einem Biosearch-Oligonukleotidsynthesizer, und anschließendes Ligieren der Fragmente synthetisiert werden.
  • Bei einem Verfahren zur Herstellung der BABS der Erfindung wird eine synthetische DNA hergestellt, die ein Polypeptid kodiert, das beispielsweise menschliche FRs und dazwischenliegende "Dummy"-CDRs oder Aminosäuren, die keine andere Funktion haben, als geeignet festgelegte, nur einmal vorkommende Restriktionsstellen zu definieren, enthält. Diese synthetische DNA wird dann durch DNA-Substitution verändert, indem durch Restriktion und Ligation synthetische Oligonukleotide inseriert werden, die CDRs kodieren, welche eine gewünschte Bindungsspezifität an der richtigen Stelle zwischen den FRs vorgeben. Dieser Ansatz erleichtert die empirische Verbesserung der Bindungseigenschaften der BABS.
  • Diese Technik ist davon abhängig, daß eine DNA, deren Struktur der eines Gens einer variablen Domäne entspricht, an spezifischen Stellen, die CDRs kodierende Nukleotidsequenzen flankieren, gespalten werden kann. Diese Restriktionsstellen werden in einigen Fällen im nativen Gen vorgefunden. Alternativ können nichtnative Restriktionsstellen in die Nukleotidsequenz eingebaut werden, was zu einem synthetischen Gen führt, das eine andere Nukleotidsequenz als das native Gen hat, aufgrund der Degeneriertheit des genetischen Kodes aber die gleichen Aminosäuren der variablen Region kodiert. Die sich durch Endonuklease-Abbau ergebenden Fragmente, welche FR-codierende Sequenzen aufweisen, werden dann an nichtnative CDR-kodierende Sequenzen ligiert, um ein synthetisches Gen für eine variable Domäne mit veränderter Antigen-Bindungsspezifität herzustellen. Dann können zusätzliche Nukleotidsequenzen, die beispielsweise Aminosäuren einer konstanten Region oder eines bioaktiven Moleküls kodieren, zur Bildung eines bifunktionellen Proteins an die Gensequenzen gebunden werden.
  • Die Expression dieser synthetischen DNAs kann sowohl in prokaryontischen als auch eukaryontischen Systemen durch Transfektion mit einem geeigneten Vektor erfolgen. In E. coli und anderen mikrobiellen Wirten können die synthetischen Gene als Fusionsprotein, das anschließend gespalten wird, exprimiert werden. Die Expression in Eukaryonten kann durch die Transfektion von DNA-Sequenzen, die Aminosäuren der CDR- und FR-Region und Aminosäuren, welche eine zweite Funktion definieren, kodiert, in ein Myelom oder in einen anderen Zelllinientyp erreicht werden. Mit Hilfe dieser Strategie können intakte Hybrid-Antikörpermoleküle mit hybriden Fv-Regionen und verschiedenen bioaktiven Proteinen sowie einer biosynthetischen Bindungsstelle hergestellt werden. Im Falle eines in Bakterien exprimierten Fusionsproteins können die isolierten Fusionen anschließend proteolytisch gespalten werden, um die freie BABS zu erhalten, die dann unter Erhalt einer intakten biosynthetischen Hybrid-Antikörperbindungsstelle renaturiert werden kann.
  • Bisher war es nicht möglich, die schwere und die leichte Kettenregion zur Trennung der variablen und konstanten Regionen eines Immunglobulins zu spalten, um ein intaktes Fv herzustellen, von speziellen Fällen ohne wirtschaftlichen Nutzen abgesehen. Nach einem Verfahren zur Herstellung von BABS nach der Erfindung werden jedoch die DNAs, welche die schweren und leichten Ketten eines Immunglobulins kodieren, rekonstruiert, wobei gegebenenfalls dessen Spezifität verändert oder dessen FRs humanisiert werden, und es wird eine Spaltstelle und "Gelenkregion" zwischen den variablen und konstanten Regionen sowohl der schweren als auch der leichten Ketten eingeführt. Derartige chimäre Antikörper können in Transfektomen oder dgl. hergestellt und anschließend unter Verwendung einer vorgewählten Endopeptidase gespalten werden.
  • Bei der Gelenkregion handelt es sich um eine Sequenz von Aminosäuren, die dazu dient, die wirksame Spaltung durch ein vorgewähltes Spaltungsmittel an einer vorgewählten, eingebauten Spaltungsstelle zu fördern. Sie ist so gestaltet, daß die Spaltung vorzugsweise an der Spaltungsstelle gefördert wird, wenn das Polypeptid mit dem Spaltungsmittel in einem geeigneten Milieu behandelt wird. Die Gelenkregion kann viele verschiedene Formen annehmen. Ihre Konstruktion ist mit der Auswahl von Aminosäureresten (und einem diese kodierenden DNA-Fragment) verbunden, die der Region des Fusionsproteins an der Spaltungsstelle eine geeignete Polarität, Ladungsverteilung und Stereochemie verleihen, so daß in der wässrigen Umgebung, in der die Spaltung stattfindet, die Spaltungsstelle, anderen möglichen Spaltstellen, die in dem Polypeptid vorhanden sein können, bevorzugt, wirksam der Einwirkung des Spaltungsmittels ausgesetzt wird und/oder die Kinetik der Spaltungsreaktion verbessert wird. In speziellen Fällen werden die Aminosäuren des Gelenks aufgrund ihrer bekannten Eigenschaften ausgewählt und zur Sequenz zusammengesetzt, und die fusionierte Polypeptidsequenz wird dann exprimiert, geprüft und zur Verbesserung verändert.
  • Die Gelenkregion ist cysteinfrei. Deshalb kann die Spaltungsreaktion unter Bedingungen durchgeführt werden, unter denen das Protein seine Tertiärkonformation annimmt und durch intramolekulare Disulfidbrücken in dieser Konformation gehalten werden kann. Es wurde gefunden, daß unter diesen Bedingungen der Zugang der Protease zu möglichen Spaltungsstellen, die sich in dem Zielprotein befinden können, behindert ist. Die Gelenkregion kann eine Aminosäuresequenz aufweisen, die einen oder mehrere Prolinreste enthält. Dadurch ist die Bildung eines praktisch ungefalteten Molekülabschnitts möglich. Asparaginsäure-, Glutaminsäure-, Arginin-, Lysin-, Serin- und Threoninreste maximieren ionische Wechselwirkungen und können in Mengen und/oder in einer Sequenz vorhanden sein, die den Rest, der das Gelenk aufweist, wasserlöslich macht.
  • Die Spaltungsstelle befindet sich vorzugsweise unmittelbar in Nachbarschaft zu den Fv-Polypeptidketten und weist eine Aminosäure oder eine Sequenz von Aminosäuren auf, die sich nicht in der Aminosäurestruktur der Ketten in dem Fv findet. Die Spaltungsstelle ist vorzugsweise zur eindeutigen oder bevorzugten Spaltung durch ein speziell ausgewähltes Mittel konstruiert. Endopeptidasen sind bevorzugt, obwohl auch nicht enzymatische (chemische) Spaltungsmittel verwendet werden können. Viele verwendbare Spaltungsmittel, beispielsweise Bromcyan, verdünnte Säuren, Trypsin, Staphylococcus-aureus-V-8-Protease, nach Prolin spaltende Enzyme, der Blutgerinnungsfaktor Xa, Enterokinase und Renin, erkennen und spalten bestimmte Spaltungsstellen bevorzugt oder ausschließlich. Ein derzeit bevorzugtes Spaltungsmittel ist die V-8-Protease. Die derzeit bevorzugte Spaltungsstelle ist ein Glu-Rest. Andere verwendbare Enzyme erkennen mehrere Reste als Spaltungsstellen, z.B. der Faktor Xa (Ile-Glu-Gly-Arg) oder die Enterokinase (Asp-Asp-Asp-Asp-Lys). Die Prinzipien dieser selektiven Spaltung können im Prinzip auch bei der Konstruktion der Linker- und Spacersequenzen der multifunktionellen Konstrukte der Erfindung angewendet werden, wenn ein ausschneidbarer Linker oder selektiv spaltbarer Linker oder Spacer erwünscht sind.
  • Konstruktion synthetischer VH- und VL-Nachahmungen
  • Die FRs der schweren und leichten Kette des monoklonalen Maus-Anti-DigoxinAntikörpers 26-10 (4A und 4B) wurden mit den CDRs der schweren Kette (3, Sequenz 1) und der leichten Kette des monoklonalen Maus-Anti-Lysozym-Antikörpers glp-4 durch die gleichen DNAs kodiert, um VH (4C) und VL (4D)-Regionen herzustellen, die zusammen eine für Lysozym spezifische biosynthetische Antikörperbindungsstelle definieren. Die Maus-CDRs sowohl der schweren als auch der leichten Ketten des monoklonalen Antikörpers glp-4 wurden mit den FRs der schweren und leichten Ketten des menschlichen Myelom-Antikörpers NEWM (4E und 4F) durch die gleichen DNAs kodiert. Die sich ergebende chimäre Interspezies-Antikörperbindungs-Domäne hat wegen der menschlichen FRs beim Menschen eine verringerte Immunogenizität und wegen ihren Maus-CDRs Lysozym.
  • Es wurde eine synthetische DNA konstruiert, um CDR-Insertionen in die FR einer menschlichen schweren Kette zu erleichtern und um die empirische Verbesserung der sich ergebenden chimären Aminosäuresequenz zu erleichtern. Diese DNA ist in 5 dargestellt.
  • Ferner wurde ein synthetisches bifunktionelles Protein mit FB-Bindungsstelle auf der DNA-Ebene konstruiert, exprimiert, gereinigt und renaturiert, und es wurde gezeigt, daß es spezifisch ein vorgewähltes Antigen (Digoxin) und Fc bindet. Die genaue Primärstruktur dieser Konstruktion ist in 6 gezeigt, und seine Tertiärstruktur ist in 2B schematisch dargestellt.
  • Die Einzelheiten dieser und anderer Versuche und weitere Konstruktionsprinzipien, auf denen die Erfindung beruht, sind im Folgenden angegeben.
  • Genkonstruktion und Expression
  • Unter der Voraussetzung, daß die DNA-Sequenzen der variablen Regionen bekannt sind, können synthetische VL- und VH-Gene konstruiert werden, die native oder nahezu native FR- und CDR-Aminosäuresequenzen eines Antikörpermoleküls kodieren, welche jeweils durch nur einmal vorkommende Restriktionsstellen, die sich so nah wie möglich an den FR-CDR und CDR-FR-Grenzen befinden, getrennt sind. Alternativ können Gene konstruiert werden, die native FR-Sequenzen kodieren, welche den FRs eines Antikörpermoleküls einer ausgewählten Spezies ähneln oder die damit identisch sind und jeweils durch "Dummy"-CDR-Sequenzen getrennt sind, die strategisch angeordnete Restriktionsstellen enthalten. Diese DNAs dienen als Startmaterialien zur Herstellung von BABS, weil die nativen oder "Dummy"-CDR-Sequenzen ausgeschnitten und durch Sequenzen ersetzt werden können, welche die eine ausgewählte Bindungsstelle definierenden CDR Aminosäuren kodieren. Alternativ können native oder nahezu native FR-Sequenzen eines ersten Antikörpermoleküls und CDR-Sequenzen eines zweiten Antikörpermoleküls konstruiert und direkt synthetisiert werden. Beliebige der oben beschriebenen VH- und VL-Sequenzen können über eine Aminosäurekette oder einen Linker, die/der den C-Terminus der einen Kette mit dem N-Terminus der anderen verbindet, direkt miteinander verbunden werden.
  • Nach der Synthese können diese Gene mit oder ohne zusätzliche DNA-Sequenzen, die beispielsweise eine konstante Antikörperregion, ein Enzym oder Toxin, oder ein Leaderpeptid, das die Sekretion oder intrazelluläre Stabilität eines Fusionspolypeptids fördert, kodieren, kloniert werden. Die Gene können dann direkt in einer geeigneten Wirtszelle exprimiert werden, oder sie können vor der Expression durch den Austausch von FR-, CDR- oder "Dummy"-CDR-Sequenzen gegen neue Sequenzen umkonstruiert werden. Diese Manipulation wird durch das Vorliegen der Restriktionsstellen, die an den FR-CDR- und CDR-FR-Grenzen in das Gen eingebaut wurden, erleichtert.
  • 3 veranschaulicht das allgemeine Verfahren zur Konstruktion einer chimären VH; weitere Einzelheiten beispielhafter Konstruktionen auf der DNA-Ebene sind in den 4A-4F gezeigt. 3, Zeilen 1 und 2, zeigt die Aminosäuresequenzen der variablen Regionen der schweren Ketten der monoklonalen Maus-Antikörper glp-4 (Anti-Lysozym) und 26-10 (Anti-Digoxin) einschließlich der vier FR- und drei CDR-Sequenzen jeder Kette. Zeile 3 zeigt die Sequenz einer chimären VH, die 26-10-FRs und glp-4-CDRs aufweist. Wie dargestellt, ist das Hybridprotein von Zeile 3 mit dem nativen Protein von Zeile 2 identisch, mit dem Unterschied, daß 1) die Sequenz TFTNYYIHWLK die Sequenz IFTDFYMNWVR ersetzt, 2) EWIGWIYPGNGNTKYNENFKG DYIGYISPYSGVTGYNQKFKG ersetzt, 3) RYTHYYF GSSGNKWAM ersetzt und 4) A V als sechste Aminosäure hinter CDR-2 ersetzt. Diese Veränderungen bewirken die Änderung der Spezifität der 26-10-VH, so daß die Spezifität von glp-4 nachgeahmt wird. Der Austausch einer einzelnen Aminosäure, nämlich Ala gegen Val, in der relativ konservierten Frameworkregion von 26-10 ist ein Beispiel für den Austausch einer Aminosäure außerhalb der hypervariablen Region, um die Spezifität durch CDR-Austausch zu ändern. Unterhalb von Sequenz 3 in 3 sind die Restriktionsstellen in der die chimäre VH kodierenden DNA (vgl. 4A-4 F), die an den CDR-FR-Grenzen angeordnet sind, gezeigt.
  • Die Zeilen 4 und 5 von 3 stellen ein weiteres Konstrukt dar. Zeile 4 stellt die VH des menschlichen Antikörpers NEWM in voller Länge dar. Dieser menschliche Antikörper kann durch den in Zeile 5 gezeigten CDR-Austausch lysozymspezifisch gemacht werden. So ersetzt beispielsweise der Abschnitt TFTNYYIHWLK von glp-4 TFSNDYYTWVR von NEWM, und dessen anderen CDRs werden wie gezeigt ausgetauscht. Dies ergibt eine VH, die eine menschliche Framework mit die Spezifität bestimmenden Maus-Sequenzen aufweist.
  • In Anbetracht dieser Offenbarung kann der Fachmann durch Sequenzierung eines beliebigen Antikörpers, oder indem er die Sequenz der Literatur entnimmt, eine BABS mit jeder gewünschten Spezifität, die jede gewünschte Framework-Region aufweist, herstellen. Diagramme wie 3, in denen Aminosäuresequenzen verglichen werden, sind nützlich, weil sie darauf schließen lassen, welche konkreten Aminosäuren ausgetauscht werden sollten, um die gewünschte Komplementarität festzulegen. Die Bindung der exprimierten Sequenzen kann geprüft und durch Austausch von ausgewählten Aminosäuren in den relativ konservierten Regionen verbessert werden, und zwar aufgrund beobachteter Tendenzen der Aminosäuresequenzdaten und/oder Computermodellierungstechniken.
  • Da die Aminosäuresequenzen auf der DNA-Ebene bestimmt werden und die Manipulation von DNA leicht vorgenommen werden kann, ist es möglich die VH- und VL-Konstruktion sehr flexibel zu gestalten.
  • Beispielsweise wurde die DNA-Sequenz für die Maus-26-10-VH und -VL, welche spezifische Restriktionsstellen enthält, die jede der drei CDRs flankieren, mit Hilfe eines käuflich erhältlichen Computerprogramms, das eine kombinierte Suche nach reversen Translations- und Restriktionsstellen durchführt, ("RV.exe" von Compugene Inc.) konstruiert. Die bekannten Aminosäuresequenzen der 26-10-VH- und -VL-Polypeptide wurden eingegeben, und alle möglichen DNA-Sequenzen, welche diese Peptide kodieren, und alle möglichen Restriktionsstellen wurden durch das Programm analysiert. Das Programm kann außerdem DNA-Sequenzen auswählen, die das Peptid nur unter Verwendung von Codons kodieren, die von E.coli bevorzugt werden, wenn dieses Bakterium der gewählte Wirtsorganismus für die Expression ist. Die 4A und 4B zeigen ein Beispiel für die Programmausgabe. Die Nukleinsäuresequenzen des synthetischen Gens und die entsprechenden Aminosäuren sind angegeben. Außerdem sind die Restriktionsendonuklease-Spaltungsstellen angegeben. Die CDRs dieser synthetischen Gene sind unterstrichen.
  • Die DNA-Sequenzen für die synthetische 26-10-VH und VL, sind so konstruiert, daß eine oder beide Restriktionsstellen, die jede der drei CDRs flankieren, nur einmal vorkommen. Eine Stelle mit 6 Basen (wie die, die von BsmI oder BspMI erkannt wird) ist bevorzugt, wenn aber eine Stelle mit sechs Basen nicht möglich ist, werden Stellen mit vier oder fünf Basen verwendet. Diese Stellen werden, wenn sie nicht bereits nur einmal vorkommen, in dem Gen zu Einzigen gemacht, indem die an anderen Stellen in dem Gen auftretenden eliminiert werden, ohne die erforderlichen Aminosäuresequenzen zu verändern. Bevorzugte Spaltungsstellen sind solche, die nach der Spaltung Fragmente mit klebrigen Enden ergeben, die sich gerade außerhalb der Grenze der CDR in der Struktur befinden. Diese idealen Stellen sind jedoch nur gelegentlich möglich, weil die FR-CDR-Grenze nicht absolut ist, und weil es möglich ist, daß die Aminosäuresequenz der FR eine Restriktionsstelle nicht gestattet. In diesen Fällen werden flankierende Stellen in der FR ausgewählt, die von der vorhergesagten Grenze weiter entfernt sind. 5 offenbart die Nukleotid- und entsprechende Aminosäuresequenz (im Standard-Einbuchstadenkode angegeben) einer synthetischen DNA, die ein Haupt-Framework-Gen mit der allgemeinen Struktur: R, -FR, -X, -FR2 -X2 -FR3 -X3 -FR4 -R2 aufweist, in der R1 und R2 restriktionsverdaute Enden darstellen, die in einen Vektor ligiert werden sollen, und X1, X2 und X3 DNA-Sequenzen sind, deren Funktion die Bereitstellung von zweckmäßigen Restriktionsstellen für die CDR-Insertion ist. Diese spezielle DNA weist Maus-FR-Sequenzen und nur einmal vorkommende Restriktionsstellen mit 6 Basen in Nachbarschaft zu den FR-Grenzen auf, so daß die Nukleotidsequenzen, welche die CDRs eines gewünschten monoklonalen Antikörpers kodieren, ohne weiteres insertiert werden können. Die Restriktionsendonuklease-Abbaustellen sind mit ihren Abkürzungen bezeichnet, die Enzyme der Wahl für den CDR-Austausch sind unterstrichen. Der Abbau des Gens mit den folgenden Restriktionsendonukleasen führt zu 3'- und 5'-Enden, die ohne weiteres mit nativen oder synthetischen CDRs der gewünschten Spezifität basengepaart und ligasiert werden können: KpnI und BstXI werden zur Ligation von CDR1 verwendet, XbaI und DraI für CDR2 und BssHII und ClaI für CDR3.
  • Oligonukleotidsynthese
  • Die wie oben beschrieben konstruierten synthetischen Gene und DNA-Fragmente werden vorzugsweise hergestellt, indem chemisch synthetisierte Oligonukleotide zusammengesetzt werden. 15-100mer-Oligonukleotide können mit einem DNA Synthesizer Biosearch Modell 8600 synthetisiert und durch Polyacrylamid-Gelelektrophorese (PAGE) in Tris-Borat-EDTA Puffer (TBE) gereinigt werden. Die DNA wird dann aus dem Gel elektroeluiert. Überlappende Oligomere können mit T4 Polynukleotidkinase phosphoryliert und zu größeren Blöcken ligiert werden, die dann ebenfalls durch PAGE gereinigt werden können.
  • Klonierung von synthetischen Oligonukleotiden
  • Die Blöcke oder die Paare längerer Oligonukleotide können unter Verwendung eines geeigneten Klonierungsvektors, z.B. pUC, in E. coli kloniert werden. Zunächst kann dieser Vektor durch Einzelstrangmutagenese verändert werden, um restliche veränderte Stellen mit sechs Basen zu eliminieren. Beispielsweise kann eine VH synthetisiert und in Form von fünf Hauptblöcken in pUC kloniert werden, welche die folgenden Restriktionsstellen umfassen: 1. EcoRI bis zur ersten NarI-Stelle, 2. erste NarI bis XbaI, 3. XbaI bis SalI, 4. SalI bis NcoI, 5. NcoI bis BamHI. Diese klonierten Fragmente können dann isoliert und in mehreren Drei-Fragment-Ligations- und -klonierschritten zusammengesetzt und zum Plasmid pUCB kloniert werden. Die durch PAGE ausgewählten gewünschten Ligierungen werden dann beispielsweise zur Transformation des E.coli-Stamms JM83 verwendet und dann nach Standardverfahren auf LB-Platten mit Ampicillin + Xgal ausplattiert. Die Gensequenz kann nach der Klonierung durch Überhelix-Sequenzierung oder nach Subklonierung in M13 nach dem Didesoxy-Verfahren von Sänger bestätigt werden.
  • Prinzip des CDR-Austauschs
  • Pro VH oder VL können drei CDRs (oder alternativ vier FRs) ausgetauscht werden. In einfachen Fällen kann dies erfolgen, indem das Shuttleplasmid pUC, das die entsprechenden Gene enthält, an den beiden nur einmal vorkommenden Restriktionsstellen, welche jede CDR oder FR flankieren, geschnitten wird, die ausgeschnittene Sequenz entfernt wird und der Vektor mit einer nativen Nukleinsäuresequenz oder einem synthetischen Oligonukleotid, das die gewünschte CDR oder FR kodiert, ligiert wird. Dieses dreiteilige Verfahren wäre zum vollständigen CDR-Austausch dreimal und zum vollständigen FR-Austausch viermal zu wiederholen. Alternativ kann ein synthetisches Nukleotid, das zwei aufeinanderfolgende CDRs, die durch die geeignete FR getrennt sind, kodiert, an pUC oder ein anderes Plasmid, das ein Gen enthält, dessen entsprechenden CDRs und FR ausgeschnitten wurden, ligiert werden. Dieses Verfahren verringert die Anzahl der Schritte, die erforderlich sind, um den CDR- und/oder FR-Austausch durchzuführen.
  • Expression von Proteinen
  • Die konstruierten Gene können in geeigneten prokaryontischen Wirtszellen wie verschiedenen E. coli-Stämmen und in eukaryontischen Wirtszellen wie Chinahamster-Ovarzellen, Maus-Myelomen und menschlichen Myelom/Transfectomzellen exprimiert werden.
  • Wenn beispielsweise das Gen in E. coli exprimiert werden soll, kann es zuerst in einen Expressionsvektor kloniert werden. Dies geschieht dadurch, daß das konstruierte Gen stromabwärts von einer Promotorsequenz wie trp oder tac und eines ein Leaderpeptid kodierenden Gens angeordnet wird. Das sich ergebende exprimierte Fusionsprotein sammelt sich in den lichtbrechenden Körpern im Cytoplasma der Zellen an und kann nach der Zerstörung der Zellen mit einer Frenchpress oder durch Ultraschall gewonnen werden. Die lichtbrechenden Körper werden solubilisiert, und die exprimierten Proteine werden rückgefaltet und mit den bereits für viele andere rekombinante Proteine eingeführten Verfahren gespalten.
  • Wenn das konstruierte Gen in Myelomzellen, dem üblichen Expressionssystem für Immunglobuline, exprimiert werden soll, wird es zuerst in einen Expressionsvektor inseriert, der beispielsweise den Ig-Promotor, ein Sekretionssignal, Immunglobulin-Enhancer und verschiedene Introns enthält. Dieses Plasmid kann auch Sequenzen enthalten, die vollständig oder zum Teil eine konstante Region kodieren, wodurch es möglich ist, einen kompletten Teil einer schweren oder leichten Kette zu exprimieren. Das Gen wird mit Hilfe der etablierten Elektroporation oder mit Protoplastenfusionsverfahren durch Transfektion in die Myelomzellen transfiziert. Die so transfizierten Zellen können VL- oder VH-Fragmente, VL2- oder VH2- Homodimere, VL-VH-Heterodimere, einkettige VH-VL- oder VL-VH-Polypeptide, komplette schwere oder leichte Immunglobulinketten oder Teile davon exprimieren, die jeweils wie oben diskutiert, auf verschiedene Art und Weise an eine Proteinregion mit einer anderen Funktion (z.B. Cytotoxizität) gebunden sein können.
  • Vektoren, die eine V-Region einer schweren Kette (oder V- und C-Regionen) enthalten, können mit analogen Vektoren kotransfiziert werden, die eine V-Region einer leichten Kette (oder v- und C-Regionen) tragen, wodurch die Expression von nicht kovalent verbundenen Bindungsstellen (oder kompletten Antikörpermolekülen) möglich ist.
  • In den folgenden Beispielen wird ein konkretes Beispiel für die Herstellung einer einzelkettigen Bindungsstelle offenbart, und zwar zusammen mit den zur Beurteilung ihrer Bindungseigenschaften angewendeten Verfahren. Danach wird ein Proteinkonstrukt mit zwei funktionellen Domänen offenbart. Zuletzt wird eine Reihe weiterer zielgesteuerter Proteine offenbart, welche die Erfindung veranschaulichen.
  • I. Beispiel für den CDR-Austausch und die Expression
  • wDas in den 4A und 4B angegebene synthetische Gen, das die Maus-26-10-VH und -VL kodiert, wurde anhand der bekannten Aminosäuresequenz des Proteins mit Hilfe des Softwareprogramms Compugene konstruiert. Diese Gene enthalten, obwohl sie die nativen Aminosäuresequenzen kodieren, auch nichtnative und häufig nur einmal vorkommende Restriktionsstellen, die CDRs kodierende Nukleinsäuresequenzen flankieren, so daß wie oben angemerkt der CDR-Austausch erleichtert ist.
  • Sowohl die 3'- als auch die 5'-Enden der langen synthetischen Oligomere wurden so konstruiert, daß sie Restriktionsstellen mit 6 Basen enthalten, die sich in den Genen und in dem pUC-Vektor befinden. Darüber hinaus wurden diejenigen Restriktionsstellen in den synthetischen Genen, die nur zum Zusammenbau, aber nicht zum Klonieren in pUC geeignet sind, durch "Helfer"-Klonierstellen, die mit Stellen in pUC Basenpaarungen eingehen können, verlängert.
  • Die Klonierung der synthetischen DNA und der spätere Zusammenbau des Gens wird erleichtert, wenn sich entlang des Gens in Abständen nur einmal vorkommende Restriktionsstellen befinden. Dadurch sind durch Kassettenmutagenese an jedem Ort Korrekturen und Modifizierungen möglich. Darunter fallen z. B. Veränderungen in der Nähe der 5'- oder 3'-Enden des Gens, die zur Anpassung an verschiedene Expressionsvektoren erforderlich sind. Beispielsweise befindet sich eine PstI-Stelle in der Nähe des 5'-Endes des VH-Gens. Zwischen dieser Stelle und einer Restriktionsstelle in dem Expressionsplasmid können ohne weiteres synthetische Linker eingefügt werden. Diese Gene wurden, wie oben beschrieben, unter Verwendung eines DNA-Synthesizers Biosearch Modell 8600 durch Zusammensetzen von Oligonukleotiden synthetisiert. Sie wurden zur Transformation von E. coli in den Vektor pUC8 ligiert. Durch Abbau mit den folgenden Restriktionsendonukleasepaaren können konkrete CDRs aus dem synthetischen VH-Gen ausgeschnitten werden: HpHI und BstXI für CDR1, XbaI und DraI für CDR2 und BanII und BanI für CDR3. Nach der Entfernung einer CDR kann eine andere CDR mit der gewünschten Spezifität an deren Stelle direkt in das durch die Restriktionsendonuklease geöffnete Gen ligiert werden, wenn die 3'- und 5'-Enden des durch die Restriktionsendonuklease geöffneten Gens und der neuen CDR komplementäre einzelsträngige DNA-Sequenzen enthalten.
  • In diesem Beispiel wurden die drei CDRs der Maus-26-10-VH und -26-10-VL durch die entsprechenden CDRs von glp-4 ersetzt. Die Nukleinsäuresequenzen und entsprechenden Aminosäuresequenzen der chimären VH- und VL-Gene, welche die FRs von 26-10 und CDRs von glp-4 kodieren, sind in den 4C und 4D gezeigt. Die Positionen der Restriktionsendonuklease-Spaltstellen sind mit ihren Standardabkürzungen angegeben. Die CDR-Sequenzen sind wie die Restriktionsendonukleasen der Wahl für den weiteren CDR-Austausch unterstrichen. Diese Gene wurden in pUC8, ein Shuttleplasmid, kloniert. Um nach dem Klonieren nur einmal vorkommende Restriktionsstellen zu behalten, wurde das VH-ähnliche Gen in die EcoRI- und HindIII- oder BamHI-Stellen des Plasmids gespleißt.
  • Die Gene können in E. coli direkt exprimiert werden. Alternativ kann dem Gen eine Leadersequenz vorausgehen, und es wird in E. coli in Form eines Fusionsprodukts exprimiert, indem das Fusionsgen in das Wirtsgen gespleißt wird, dessen Expression durch die Wechselwirkung eines Repressors mit dem entsprechenden Operator reguliert wird. Das Protein kann durch Aushungern auf Minimalmedium und durch chemische Induktoren induziert werden. Das biosynthetische 26-10-VH-VL-Gen wurde in Form eines derartigen Fusionsproteins hinter dem trp- und tac-Promotor exprimiert.
  • Das betreffende Gentranslationsprodukt kann dann von dem Leader in dem Fusionsprotein beispielsweise durch Bromcyan-Spaltung, Trypsinabbau, Spaltung mit milder Säure und/oder Abbau mit der Protease Faktor Xa abgespalten werden. Daher wurde zu diesem Zweck ein Shuttleplasmid verwendet, welches ein synthetisches Gen enthält, das ein Leaderpeptid mit einer Stelle zum Spalten mit milder Säure kodiert, und in das das synthetische BABS-Gen gespleißt worden war. Außerdem können dem Plasmid synthetische DNA-Sequenzen einverleibt werden, die ein Signalpeptid zur Sekretion des erzeugten Zielproteins in das Periplasma der Wirtszelle kodieren.
  • Nach der Gewinnung des Genprodukts und gegebenenfalls nach seiner Freisetzung aus einem Fusionspeptid wird seine Aktivität als Antikörperbindungsstelle und seine Spezifität für das glp-4 (Lysozym) -Epitop mit etablierten immunologischen Techniken wie beispielsweise der Affinitätschromatographie und dem Radioimmunoassay ermittelt. Die korrekte Faltung des Proteins unter Erhalt der richtigen dreidimensionalen Konformation der Antikörperbindungsstelle ist Voraussetzung für dessen Aktivität. Dazu kommt es in einem Wirt wie einer Myelomzelle, die Immunglobulin Proteine natürlich exprimiert, spontan. Alternativ bildet das Protein bei der Expression durch Bakterien Einschlußkörper, die nach der Gewinnung einer speziellen Abfolge von Lösungsmittelbedingungen ausgesetzt werden müssen (z.B. 20fache Verdünnung aus 8M Harnstoff, 0,1 M Tris-HCl, pH 9 in 0,15 M NaCl, 0,01 M Natriumphosphat, pH 7,4 (Hochuran et al. (1976), Biochem. 15: 2706-2710)), damit es seine korrekte Konformation und somit seine aktive Form annehmen kann.
  • Die 4E und 4F zeigen die DNA- und Aminosäuresequenz chimärer VH und VL, die menschliche FRs von NEWM und Maus-CDRs von glp-4 aufweisen. Die CDRs sind wie die Restriktionsstellen der Wahl für den weiteren CDR-Austausch oder zur empirisch bestimmten Verbesserung unterstrichen.
  • Diese Konstrukte stellen auch Frameworkhauptgene dar, die im vorliegenden Fall aus menschlichen Frameworksequenzen konstruiert sind. Sie können zur Konstruktion von BABS jeder gewünschten Spezifität durch geeigneten CDR-Austausch verwendet werden.
  • Unter Anwendung der hier offenbarten Verfahren wurden auch Bindungsstellen mit anderen Spezifitäten konstruiert. Beispiele dafür sind solche mit FRs vom menschlichen NEWM-Antikörper und CDRs von Maus-26-10 (9A), Maus-26-10-FRs und G-Schleife-CDRs (9B), FRs und CDRs von Maus-MOPC-315 (9C), FRs und CDRs vom monoklonalen Antikörper gegen das menschliche carcinoembryonale Antigen (9D) und FRs und CDRs 1, 2 und 3 der VH und FRs und CDR 1 und 3 der VH des Anti-CEA-Antikörpers, mit CDR 2 von einem Immunglobulin-Konsensgen (9E).
  • II. Modellbindungsstelle
  • Die Digoxin-Bindungsstelle des monoklonalen 26-10-lgG28,k-Antikörpers wurde von Mudgett-Hunter und Kollegen (nichtveröffentlicht) untersucht. Die 26-10-V-Region-Sequenzen wurden sowohl durch Aminosäuresequenzierung als auch durch DNA-Sequenzierung der mRNA-Transkripte der 26-10-H- und -L-Kette (D. Panka, J.N. & M.N.M., unveröffentlichte Daten) bestimmt. Der 26-10-Antikörper zeigt eine hohe Digoxin-Bindungsaffinität [Ko = 5,4 × 109 M–1] und ein gut definiertes Spezifitätsprofil, wodurch sich eine Grundlage zum Vergleich mit den biosynthetischen Bindungsstellen, die seine Struktur nachahmen, ergibt.
  • Proteinkonstruktion
  • Die kristallographisch ermittelten Atomkoordinaten für die Fab-Fragmente von 26-10 wurden von der Brookhaven-Datenbank erhalten. Die Untersuchung der verfügbaren dreidimensionalen Strukturen von Fv-Regionen in ihren Eltern-Fab Fragmenten zeigte, daß der euklidische Abstand zwischen dem C-Terminus der Vx-Domäne und dem N-Terminus der VL-Domäne etwa 35 A beträgt. Unter der Berücksichtigung, daß die Länge der Peptideinheit ungefähr 3,8 A beträgt, wurde ein Linker mit 15 Resten ausgewählt, um diese Lücke zu überbrücken. Der Linker wurde so konstruiert, daß er nur eine geringe Tendenz zur Ausbildung einer Sekundärstruktur zeigt und die Faltung der Domäne nicht stört. Daher wurde die Sequenz (Gly-Gly-Gly-Gly-Ser)3 mit 15 Resten ausgewählt, um den VH-Carboxyterminus und den VL-Aminoterminus zu verbinden.
  • Bindungsstudien mit einkettigen Bindungsstellen mit weniger oder mehr als 15 Resten demonstrieren die Bedeutung des erforderlichen Abstands, durch den VH von VL getrennt sein muß; beispielsweise führt ein (Gly4-Ser)1-Linker nicht zu Bindungsaktivität, und mit den (Gly4-Ser)5-Linkern ergibt sich im Vergleich mit der von (Gly4-Ser)3-Linkern eine sehr niedrige Aktivität.
  • Gensynthese
  • Die Konstruktion der 744-Basen-Sequenz für das synthetische Bindungsstellen-Gen ergab sich aus der Fv-Proteinsequenz von 26-10 durch Auswahl von Codons, die in E. coli häufig verwendet werden. Das Modell dieses repräsentativen synthetischen Gens ist in der oben diskutierten 8 gezeigt. Die synthetischen Gene, welche den trp-Promotor Operator, das modifizierte trp-LE-Leaderpeptid (MLE), dessen Sequenz in 10A gezeigt ist, und die VH kodieren, wurden größtenteils wie oben beschrieben hergestellt. Das die VH kodierende Gen wurde aus 46 chemisch synthetisierten Oligonukleotiden zusammengesetzt, die alle 15 Basen lang waren, die terminalen Fragmente (13 bis 19 Basen), welche die kohäsiven Enden zum Klonieren enthielten, ausgenommen. Zwischen 8 und 15 überlappende Oligonukleotide wurden enzymatisch in doppelsträngige DNA ligiert, an zum Klonieren geeigneten Restriktionsstellen geschnitten (NarI, XbaI, SalI, SacII, SacI), durch PAGE auf 8%igen Gel gereinigt und in pUC kloniert, der durch entsprechende Modifizierung zusätzliche Klonierstellen im Polylinker enthielt. Die klonierten Abschnitte wurden schrittweise durch Ligierung in den pUC-Kloniervektor zu dem die VH nachahmenden kompletten Gen zusammengesetzt.
  • Das die 26-10-VL, nachahmende Gen wurde aus 12 langen synthetischen Polynukleotiden mit einem Größenbereich von 33 bis 88 Basenpaaren, die in automatisierten DNA-Snythesizer (Modell 6500, Biosearch, San Rafael, CA; Modell 380A, Applied Biosystems, Foster City, CA), hergestellt worden waren, zusammengesetzt. Aus Paaren von langen synthetischen Oligonukleotiden, die Restriktionsstellen mit sechs Basen in dem Gen (AatII, BstEII, PpnI, HindIII, Bg1iII und PstI) umfaßten, wurden fünf individuelle doppelsträngige Abschnitte hergestellt. In einem Fall wurden vier lange überlappende Stränge kombiniert und kloniert. Genfragmente, die durch Restriktionsstellen zum Zusammensetzen verbunden waren, die in dem pUC-Polylinker nicht vorhanden waren, beispielsweise AatII und BsfcEII, wurden durch EcoRI- und BamHI-Enden flankiert, um die Klonierung zu erleichtern.
  • Der Linker zwischen der VH und der VL, welcher (Gly-Gly-Gly-Gly-Ser)3 kodiert, wurde mit zwei langen synthetischen Oligonukleotiden, 54 und 62 Basen lang, welche die SacI und Aatll-Stellen umfaßten, wobei sich bei letzterer ein EcoRIklonierende anschloß, kloniert. Das vollständige einkettige Bindungsstellen-Gen wurde aus den VH-, VL- und Linkergenen unter Erhalt eines entsprechenden Aspartyl-Prolyl-VH-<Linker>-VL-Konstrukts, das von EcoRI- und PstI Restriktionsstellen flankiert war, zusammengesetzt.
  • Der trp-Promotor-Operator wurde von seiner SspI-Stelle ausgehend aus 12 sich überlappenden Oligomeren mit 15 Basen zusammengesetzt, und das MLE-Leadergen wurde aus 24 sich überlappenden Oligomeren mit. 15 Basen zusammengesetzt. Diese wurden in pUC kloniert und zusammengesetzt, wobei die Strategie der durch Klonierstellen flankierten Zusammenbaustellen angewendet wurde. Das endgültige Expressionsplasmid wurde durch eine dreiteilige Ligierung unter Verwendung der Stellen SspI, EcoRI und PstI (vgl. 10B) in den Vektor pBR322 konstruiert. Die intermediären DNA-Fragmente und zusammengesetzten Gene wurden nach dem Didesoxy-Verfahren sequenziert.
  • Expression des Fusionsproteins
  • Das einkettige Protein wurde in Form eines Fusionsproteins exprimiert. Das MLE-Leadergen (10A) stammte von der E. coli-trp-LE-Sequenz und wurde unter der Kontrolle eines synthetischen trp-Promotors und -Operators exprimiert. Der E. coli-Stamm JM83 wurde mit dem Expressionsplasmid transformiert, und die Proteinexpression wurde in M9-Minimalmedium bei einer Zelldichte von A600 = l durch Zugabe von Indolacrylsäure (10 μg/ml) induziert. Die Überexpression des Fusionsproteins führte zu seiner Ansammlung in Form von unlöslichen Proteingranula, die aus der Zellpaste gewonnen wurden (11, Bahn 1).
  • Spaltung des Fusionsproteins
  • Der MLE-Leader wurde durch Säurespaltung der Asp-Pro Peptidbindung, die an der Verbindungsstelle zwischen den MLE- und Bindungsstellen-Sequenzen eingebaut worden war, von dem Bindungsstellen-Protein entfernt. Die das Fusionsprotein enthaltenden gewaschenen Proteingranula wurden in 6 M Guanidin-HCl + 10% Essigsäure, pH 2,5 durch 96stündige Inkubation bei 37° C gespalten. Die Reaktion wurde durch Zugabe eines 10-fachen Überschusses Ethanol mit Inkubation bei -20°C über Nacht durch Ausfällen beendet, woraufhin zentrifugiert und bis zur weiteren Reinigung (11, Bahn 2) bei -20°C gelagert wurde.
  • Proteinreinigung
  • sDie durch Säure abgespaltene Bindungsstelle wurde durch Chromatographie an DEAE-Cellulose von den übrigen intakten Fusionsprotein-Spezies abgetrennt. Der aus dem Spaltgemisch erhaltene Niederschlag wurde in 6 M Guanidin-HC1 + 0,2 M Tris-HCl, pH 8,2 + 0,1 M 2-Mercaptoethanol gelöst und erschöpfend gegen 6 M Harnstoff + 2,5 mM TrisHCl, pH 7,5 + 1 mM EDTA dialysiert. Dann wurde 2-Mercaptoethanol auf eine Endkonzentration von 0,1 M zugegeben, und dann wurde die Lösung 2 h bei Raumtemperatur inkubiert und auf eine 2,5 x 45 cm Säule mit DEAE-Cellulose (Whatman DE52), die mit 6 M Harnstoff + 2,5 mM Tris-HCl + 1 mM EDTA, pH 7,5 equilibriert worden war, aufgegeben. Das intakte Fusionsprotein wurde schwach an die DE52-Säule gebunden, so daß seine Elution im Verhältnis zum Bindungsprotein verzögert wurde. Die ersten Proteinfraktionen, die von der Säule nach der Aufgabe und dem Waschen mit Harnstoffpuffer eluiert wurden, enthielten das BABS- Protein ohne intaktes Fusionsprotein. Spätere Fraktionen, die mit etwas Fusionsprotein kontaminiert waren, wurden gesammelt und an DE 52 nochmals chromatographiert, und das gewonnene einkettige Bindungsprotein wurde mit anderem gereinigtem Protein zu einem einzigen Pool vereinigt (11, Bahn 3).
  • Rückfaltung
  • Die Nachahmung der 26-10-Bindungsstelle wurde folgendermaßen rückgefaltet: Der DE-52-Pool, der sich in 6 M Harnstoff + 2,5 mM Tris-HCl + 1 mM EDTA befand, wurde auf pH 8 eingestellt und mit 0,1 M 2-Mercaptoethanol bei 37°C 90 min reduziert. Dies wurde mindestens 100-fach mit 0,01 M Natriumacetat, pH 5,5 auf eine Konzentration unterhalb 10 μg/ml verdünnt und bei 4°C 2 Tage gegen Acetatpuffer dialysiert.
  • Affinitätschromatographie
  • Die Reinigung des aktiven Bindungsproteins durch Affinitätschromatographie wurde bei 4°C auf einer Ouabain-AminSepharose-Säule durchgeführt. Die verdünnte Lösung des rückgefalteten Proteins wurde direkt auf zwei in Reihe geschaltete Säulen aufgegeben, die jeweils 3 ml Harz enthielten, das mit 0,01 M Acetatpuffer, pH 5,5, equilibriert worden war. Die Säulen wurden einzeln mit einem Überschuß des Acetatpuffers gewaschen und dann durch aufeinanderfolgende Zugaben von jeweils 5 ml in dem Acetatpuffer gelösten 1 M NaCl, 20 mM Ouabain und 3 M Kaliumthiocyanat, wobei dazwischen mit Acetatpuffer gewaschen wurde. Da in dem Eluat immer noch Digoxin-bindende Aktivität vorhanden war, wurde das Eluat gesammelt und durch Ultrafiltration (PM-10-Membran, 200 ml Konzentrator, Amicon) 20-fach konzentriert, wieder auf die Affinitätssäulen aufgebracht und wie beschrieben eluiert. Fraktionen mit signifikanter Absorption bei 280 nm wurden gesammelt und gegen PBSA oder den obigen Acetatpuffer dialysiert. Die Proteinmenge in den DE-52- und Ouabain-Sepharose-Pools wurde nach der Dialyse gegen 0,01 M Acetatpuffer durch Aminosäureanalyse quantitativ bestimmt. Die Ergebnisse sind in der folgenden Tabelle 1 angegeben.
  • Tabelle 1
    Figure 00370001
  • Sequenzanalyse des Gens und des Proteins
  • Das vollständige Gen wurde in beiden Richtungen unter Anwendung des Didesoxy-Verfahrens von Sänger sequenziert, wodurch die richtige Zusammensetzung des Gens bestätigt wurde. Die Proteinsequenz wurde durch Proteinsequenzierung ebenfalls bestätigt. Am intakten Protein (Reste 1–40) sowie an zwei CNBr-Hauptfragmenten (Reste 108-129 und 140 159) wurde ein automatisierter Edman-Abbau vorgenommen, und zwar mit einem Gasphasensequenzierer Modell 470A, der mit einem 0n-Line-Phenylthiohydantoin-Aminosäure-Analysator Modell 120A (Applied Biosystems, Foster City, CA) ausgerüstet war. Das homogene Bindungsprotein, das durch SDS PAGE fraktioniert und mit Wasser aus den Gelstreifen eluiert worden war, wurde mit einem 20.000-fachen Überschuß CNBr in 1%igem Trifluoressigsäure-Acetonitril (1:1) 12h bei 25°C (in der Dunkelheit) behandelt. Die sich ergebenden Fragmente wurden durch SDS-PAGE aufgetrennt und elektrophoretisch auf eine Immomobilonmembran (Millipore, Bedford, MA) übertragen, aus der gefärbte Banden ausgeschnitten und sequenziert wurden.
  • Bestimmung der Spezifität
  • Die Spezifitäten des Anti-Digoxin-26-10-Fab und der BABS wurden mit einem Radioimmunoassay beurteilt. Die Vertiefungen von Mikrotiterplatten wurden mit affinitätsgereinigtem Ziegen-Anti-Maus-Fab-Fragment (ICN Immuno Biologicals, Lisle, IL), 10 μg/ml in PBSA, über Nacht bei 4°C beschichtet. Nachdem die Platten gewaschen und mit 1%igem Pferdeserum in PBSA blockiert worden waren, wurden Lösungen (50 μl), die 26-10-Fab oder die BABS in entweder PBSA oder 0,01 M Natriumacetat bei pH 5,5 enthielten, in die Vertiefungen gegeben und bei Raumtemperatur 2-3 h inkubiert. Nachdem die ungebundenen Antikörperfragmente aus den Vertiefungen ausgewaschen worden waren, wurden 25 μl einer Konzentrationsreihe Herzglycoside (10–4 bis 10–11 in PBSA) zugegeben. Die untersuchten Herzglycoside umfaßten Digoxin, Digitoxin, Digoxigenin, Digitoxigenin, Gitoxin, Ouabain und Acetyl-Strophanthidin. Nach der Zugabe von 125I-Digoxin (25 μl, 50.000 cpm, Cambridge Diagnostics, Billerica, MA) in jede Vertiefung, wurden die Platten über Nacht bei 4°C inkubiert, gewaschen und ausgezählt. Die Inhibitionskurven sind in 12 graphisch dargestellt. Die relativen Affinitäten für jedes Digoxin-Analogon wurden berechnet, indem die Konzentration jedes Analogons bei 50%iger Inhibition durch die Konzentration von Digoxin (oder Digoxigenin), die 50%ige Inhibition ergab, dividiert wurde. Für die BABS ergab sich eine Verschiebung der Inhibitonskurven zu niedrigeren Glycosidkonzentrationen als die für das 26-10-Fab beobachteten, weil an die Platte eine BABS gebunden wurde, die weniger aktiv war als das 26-10 Fab. Wenn zu der BABS in 0,01 M Natriumacetat, pH 5,5 25 M Harnstoff gegeben wurde, wurde ein aktiveres sFv an die Ziegen-Anti-Maus-Fab-Beschichtung auf der Platte gebunden. Dadurch wurden die BABS-Inhibitonskurven zu höheren Glycosidkonzentrationen verschoben, und zwar näher zur Lage der für das 26-10-Fab hin, obwohl die relativen Lagen der Kurven für das sFv, die in Acetatpuffer alleine erhalten wurden, beibehalten wurden. Die Ergebnisse, ausgedrückt als normierte Konzentration des Inhibitors, die eine 50%ige Inhibition der 125I-Digoxin-Bindung ergibt, sind in Tabelle 2 angegeben.
  • Tabelle 2
    Figure 00390001
  • Affinitätsbestimmung
  • sDie Assoziierungskonstanten wurden durch Gleichgewichtsbindungsstudien ermittelt. In Immunpräzipitationsversuchen wurden 100 μl 3H-Digoxin (New England Nuclear, Billerica, MA) in einer Konzentrationsreihe (10–7 M bis 10–11 M) zu 100 μl des 26-10-Fab oder der BABS einer konstanten Konzentration gegeben. Nach 2-3 h Inkubation bei Raumtemperatur wurde das Protein durch die Zugabe von 100 μl Ziegen-Antiserum gegen das Maus-Fab-Fragment (ICN Immuno-Biologicals), 50 μl der IgG-Fraktion von Kaninchen-Anti-Ziegen-IgG (ICN Immuno-Biologicals) und 50 μl einer 10%igen Protein-A-Sepharose-Suspension (Sigma) ausgefällt. Nach 2h bei 4°C wurden gebundenes und freies Antigen durch Saugfiltration über Glasfaserfilter (Vakuum Filtration Manifold, Millipore, Bedford, MR.) voneinander getrennt. Die Filterscheiben wurden dann in 5 ml Scintillationsflüssigkeit mit einem Tri-Carb-Flüssigkeits-Scintillations-Analysator Modell 1500 (Packard, Sterling, VA) ausgezählt. Die Assoziationskonstanten, Ko, wurden aus Scatchard-Analysen der untransformierten Radioliganden-Bindungsdaten unter Anwendung von LIGAND, einem auf der Massenwirkung basierenden Programm zur nichtlinearen Kurvenanpassung, berechnet. Die Ko-Werte wurden auch aus Sips-Diagrammen und Bindungsisothermen berechnet, die in 13A für die BABS und in 13B für das Fab angegeben sind. Für die Bindungsisothermen werden die Daten in Form der Konzentration des gebundenen Digoxins gegen den Logarithmus der Konzentration des ungebundenen Digoxins graphisch dargestellt, und die Dissoziationskonstante wird aus der Ligandenkonzentration bei 50%iger Sättigung ermittelt. Diese Bindungsdaten werden auch in linearer Form als Sips-Diagramme (Nebenabbildung), welche die gleiche Abszisse wie die Bindungsisotherme haben, bei denen die Ordinate aber den im Folgenden definierten log r/(n-r) darstellt, graphisch dargestellt. Die mittlere intrinsische Assoziationskonstante (Ko) wurde mit der modifizierten Sips-Gleichung (39) berechnet: log (r/n-r) = a log C – a log Ko, wobei r der Molzahl gebundenen Digoxins pro Mol Antikörper bei einer C entsprechenden Konzentration ungebundenen Digoxins entspricht, n die Anzahl Mole gebundenen Digoxins bei Sättigung der Antikörperbindungsstelle ist, und a ein Heterogenitätsfaktor ist, der die Verteilung der Assoziationskonstanten um die mittlere intrinsische Assoziationskonstante Ko beschreibt. Die lineare Regressionsanalyse der Daten nach der Methode der kleinsten Quadrate ergab für die erhaltenen Geraden Korrelationskoeffizienten von 0.96 für die BABS und von 0,99 für das 26-10-Fab. Eine Zusammenfassung der berechneten Assoziationskonstanten ist in der folgenden Tabelle angegeben.
  • Tabelle 3
    Figure 00400001
  • III. Synthese eines multifunktionellen Proteins
  • Eine die oben beschriebene einkettige Bindungsstellekodierende Nukleinsäuresequenz wurde mit einer Sequenz fusioniert, die das FB-Fragment von Protein A, das die Funktion einer zweiten aktiven Region hat, als Leader kodiert. Als Spacer wurden die nativen Aminosäuren, welche die letzten 11 Aminosäuren des FB-Fragments darstellen, an die Asp-Pro-Spaltstelle für verdünnte Säure gebunden, verwendet. Die FB-Bindungsdomäne von FB besteht aus den unmittelbar vorangehenden 43 Aminosäuren, die eine helikale Konfiguration nehmen (vgl. 2B).
  • Die Genfragmente wurden unter Verwendung eines oben beschriebenen DNA-Synthesizers Biosearch Modell 8600 synthetisiert. Die synthetischen Oligonukleotide wurden gemäß dem oben beschriebenen, etablierten Protokoll unter Verwendung des in E. coli transfizierten Vektors puC8 kloniert. Das in 6A angegebene vervollständigte Fusionsgen wird dann in E. coli exprimiert.
  • Nach der Beschallung wurden die Einschlußkörper durch Zentrifugation gesammelt und in 6 M Guanidin-Hydrochlorid (GuHCl), 0,2 M Tris und 0,1 M 2-Mercaptoethanol (BME), pH 8,2 gelöst. Das Protein wurde denaturiert und über Nacht bei Raumtemperatur in dem Lösungsmittel reduziert. Zur Reinigung des Fusionsproteins von den Einschlußkörpern wurde die Größenausschlußchromatographie angewendet. Eine Sepharose-4B-Säule (1,5 × 80 cm) wurde mit einem Elutionsmittel aus 6 M GuHCl und 0,01 M NaOAc, pH 4,75 betrieben. Die Proteinlösung wurde bei Raumtemperatur in einer Menge von 0,5 – 1,0 ml auf die Säule aufgebracht. Es wurden Fraktionen gesammelt und mit kaltem Ethanol ausgefällt. Diese wurden dann auf SDS-Gelen laufen gelassen, und Fraktionen, die an dem rekombinanten Protein (etwa 34.000 D) reich waren, wurden gesammelt. Dies ist ein einfacher erster Schritt zur Reinigung von Einschlußkörperpräparationen, ohne daß es zu einem signifikanten proteolytischen Abbau kommt.
  • Zur Rückfaltung wurde das Protein gegen 100 ml der gleichen GuHCl-Tris-BME-Lösung dialysiert, und das Dialysat wurde während zwei Tagen 11-fach auf 0,55 M GuHCl, 0,01 M Tris und 0,01 M BME verdünnt. Dann wurden die Dialysebeutel in 0,01 M NaCl überführt, und das Protein wurde erschöpfend dialysiert, bevor die Bindung von 125I-markiertem Digoxin durch RIAs bestimmt wurde. Der Rückfaltungsvorgang kann vereinfacht werden, indem zur Verringerung der GuHCl Konzentration auf 1,1 M rasch mit Wasser verdünnt wird und dann gegen phosphatgepufferte Kochsalzlösung (0,15 M NaCl, 0,05 M Kaliumphosphat, pH 7, 0,03% NaN3 enthaltend) dialysiert wird, so daß innerhalb von 12 h kein GuHCl mehr vorhanden ist. Die Produkte beider Präparationsverfahren zeigten Bindungsaktivität, nämlich wie in 7A angegeben.
  • Demonstration der Bifunktionalität
  • Dieses Protein mit einem FB-Leader und einer fusionierten BABS ist bifunktionell, denn die BABS kann das Antigen binden, und das FB kann die Fc-Regionen von Immunglobulinen binden. Um diese doppelte und gleichzeitige Aktivität zu demonstrieren, wurden mehrere Radioimmunoassays durchgeführt.
  • Die Eigenschaften der Bindungsstelle wurden mit einer modifizierten Variante des von Mudgett-Hunter et al. (J.Immunol. (1982) 129: 1165-1172. Molec. Immunol. (1985) 22: 477-488) entwickelten Assays, so daß dieses mit Mikrotiterplatten in Form eines Festphasen-Sandwich-Assays durchgeführt werden konnte, untersucht. Die Bindungsdaten wurden unter Verwendung von Ziegen-Anti-Maus-Fab-Antiseren (gAmFab) als dem primären Antikörper, mit dem die Vertiefungen der Platte am Anfang beschichtet waren, gesammelt. Hierbei handelt es sich um polyklonale Antiseren, die Epitope erkennen, welche sich meistens an Framework-Regionen befinden. Als nächstes wurden die betreffenden Proben in die beschichteten Vertiefungen gegeben und mit dem gAmFab, das Spezies bindet, die geeignete antigene Stellen aufweisen, inkubiert. Nach dem Wegwaschen von ungebundenem Protein wurden die Vertiefungen der Einwirkung von 125I markierten (radiojodierten) Digoxin-Konjugaten, nämlich entweder 125I-Dig-BSA oder 125I-Dig-Lysin, ausgesetzt.
  • Diese Daten sind in 7A graphisch dargestellt, welche die Ergebnisse eines Verdünnungskurvenexperiments zeigt, bei dem der 26-10-Elternantikörper als Kontrolle vorgesehen war. Die Stellen wurden mit 125I-Dig-BSA wie oben beschrieben mit einer aus Anfangsstammlösungen hergestellten Verdünnungsreihe, die sowohl langsam rückgefaltete (1) als auch schnell verdünnte/rasch rückgefaltete (2) einkettige Proteine enthielt, untersucht. Die Parallelität aller drei Verdünnungskurven zeigt, daß die gAmFab-Bindungsregionen des BABS-Moleküls denen der Fvs authentischer 26-10-Antikörper praktisch gleicht, d.h., die Oberflächenepitope scheinen für beide Proteine gleich zu sein.
  • Die Empfindlichkeit dieser Assays ist derart, daß die Bindungsaffinität der Fv für Digoxin mindestens 106 betragen muß. Experimentelle Daten über die Digoxin-Bindung ergaben Bindungskonstanten im Bereich von 108 bis 109 M–1. Der 26-10-Elternantikörper hat eine Affinität von 5,4 × 109 M 1. Die Inhibitionsassays zeigen auch die Bindung von 125I-Dig-Lysin, und diese kann auf zum 26-10-Eltern-Fab weitgehend parallele Weise durch unmarkiertes Digoxin, Digoxigenin, Digitoxin, Digitoxigenin, Gitoxin, Acetyl, Strophanthidin und Ouabain inhibiert werden. Dies zeigt, daß die Spezifität des biosynthetischen Proteins mit der des monoklonalen Original-Antikörpers praktisch identisch ist.
  • Bei einem zweiten Assay-Typ wird Digoxin-BSA zur Beschichtung von Mikrotiterplatten verwendet. Die renaturierte BABS(FB-BABS) wird auf die beschichteten Platten gegeben, so daß nur Moleküle mit einer kompetenten Bindungsstelle an der Platte haften können. Dann wird 125I-markiertes Kaninchen-IgG (Radioligand) mit der gebundenen FB-BABS auf den Platten gemischt. Die gebundene Radioaktivität reflektiert die Wechselwirkung des IgG mit der FB-Domäne der BABS, und die Spezifität dieser Bindung wird durch ihre Inhibition durch ansteigende Mengen FB, Protein A, Kaninchen-IgG,IgG2a und IgGI demonstriert, nämlich wie in 7B gezeigt.
  • Die folgenden Spezies wurden untersucht, um authentische Bindung zu demonstrieren: Unmarkierter monoklonaler Kaninchen-IgG- und -IgG2a-Antikörper (der kompetitiv an die FB-Domäne der BABS bindet) und Protein A und FB (die kompetitiv an den Radioliganden binden). Wie in 7B gezeigt, inhibieren diese Spezies erwartungsgemäß die Radioligandenbindung vollständig. Ein monoklonaler Antikörper der Igel-Unterklasse bindet erwartungsgemäß schlecht an das FB und inhibiert lediglich etwa 34% der Radioligandenbindung. Diese Daten zeigen, daß die BABS-Domäne und die FB-Domäne eine voneinander unabhängige Aktivität aufweisen.
  • IV. Andere Konstruktionen
  • In den Abbildungen sind andere BABS-haltige Proteine angegeben, die, wie oben beschrieben, erfindungsgemäß konstruiert wurden und in E. coli und anderen Wirtszellen exprimierbar sind. Diese Proteine können bifunktionell oder multifunktionell sein. Jedes Konstrukt enthält eine einkettige BABS, die über eine Spacersequenz an ein Effektormolekül gebunden ist, das Aminosäuren aufweist, die ein biologisch aktives Effektorprotein wie ein Enzym, einen Rezeptor, ein Toxin oder einen Wachstumsfaktor definieren. Einige Beispiele für derartige, in den Abbildungen angegebene Konstruktionen sind Proteine wie der epidermale Wachstumsfaktor (EGF) (15A), das Streptavidin (15B), der Tumornekrosefaktor (TNF) (15C), das Calmodulin (15D), die Beta-Kette des Blutplättchen-Wachstumsfaktors (B-PDGF) (15E), Ricin A (15F), Interleukin 2 (15G) und das FB-Dimer (15H). Diese werden jeweils als Trailer verwendet und an eine vorgewählte BABS über einen Spacer (Gly-Ser-Gly) gebunden, der durch eine DNA kodiert wird, die eine BamHI-Restriktionsstelle definiert. An den Spacer können zur empirischen Verbesserung des Konstrukts zusätzliche Aminosäuren angefügt werden, und zwar erforderlichenfalls durch Öffnung der BamHI-Stelle und Insertion eines Oligonukleotids gewünschter Länge mit klebrigen BamHI-Enden. Jedes Gen endet außerdem mit einer PstI-Stelle, um die Insertion in einen geeigneten Expressionsvektor zu erleichtern.
  • Die BABS der EGF- und PDGF-Konstrukte kann beispielsweise für Fibrin spezifisch sein, so daß der EGF oder der PDGF zu einer Wunde befördert wird. Die BABS für den TNF oder Ricin A kann für ein Tumorantigen, z.B. CEA, spezifisch sein, um ein zur Krebstherapie nützliches Konstrukt herzustellen. Die Calmodulin-Konstruktion bindet radioaktive Ionen und andere Metallionen. Ihre BABS kann beispielsweise für Fibrin oder ein Tumorantigen spezifisch sein, so daß sie als Bilderzeugungsmittel zur Lokalisierung eines Thrombus oder Tumors verwendet werden kann. Die Streptavadin-Konstruktion bindet Biotin mit sehr hoher Affinität. Das Biotin kann mit einem durch Fernmessung nachweisbaren Ion für Bilderzeugungszwecke markiert sein. Alternativ kann das Biotin an einer Affinitätsmatrix oder einem festen Träger immobilisiert sein. Das BABS-Streptavidinprotein könnte dann zur Affinitätschromatographie oder für einen Festphasenimmunoassay an die Matrix oder den Träger gebunden werden. Das Interleukin-2-Konstrukt könnte beispielsweise an eine BABS gebunden werden, die für ein Oberflächenantigen einer T-Zelle spezifisch ist. Das FB-FB-Dimer bindet an Fc und könnte mit einer BABS durch immobilisiertes Immunglobulin an eine feste Phase gebunden in einem Immunoassay oder Affinitätsreinigungsverfahren verwendet werden.
  • 14 gibt ein Beispiel für ein multifunktionelles Protein mit einem Effektorabschnitt als Leader. Es weist ein FB-FB-Dimer auf, das über seinen C-Terminus durch ein Asp-Pro-Dipeptid an eine BABS nach Wahl gebunden ist. Es funktioniert auf sehr ähnliche Weise wie die Konstruktion von 15H. Das Dimer bindet stark an den Fc-Teil eines Immunglobulins. Dieser Konstruktionstyp kann daher ebenfalls zur Affinitätschromatographie, in einem Festphasenimmunoassay und für therapeutische Zwecke verwendet werden, wenn die Kupplung von Immunglobulinen an ein anderes Epitop gewünscht ist.
  • Aufgrund der obigen Ausführungen sollte klar sein, daß die Erfindung hinsichtlich der speziellen BABS- und der zu bindenden Effektorproteintypen nicht beschränkt ist. Daher fallen auch andere Ausführungsformen unter die folgenden Ansprüche.
  • Auch umfasst ist ein biosynthetisches Bindungsprotein, das von einer DNA exprimiert ist, die durch rekombinante Techniken deriviert ist, wobei das Bindungsprotein eine einzelne Polypeptidkette aufweist, die mindestens zwei Peptiddomäne aufweist, die durch einen Polypeptidlinker verbunden sind, wobei die Aminosäuresequenz jeder der Polypeptiddomäne einen Satz von CDRs aufweist, die zwischen einem Satz von FRs liegen, wobei jeder jeweils homolog ist mit mindestens einem Teil von CDRs und FRs aus einem Immunglobulinmolekül, wobei der Polypeptidlinker mehrere peptidgebindene Aminosäuren aufweist, die ein Polypeptid definieren mit einer Länge, die ausreichend ist, um den Abstand zwischen dem C-terminalen Ende einer der Domäne und dem N-terminalen Ende der anderen der Domäne zu überbrücken, wenn das Bindungsprotein eine Kornformation annimmt, die zur Bindung geeignet ist, und aufweisend hydrophile Aminosäuren, die zusammen eine nicht strukturierte Polypeptidkonfiguration in wässriger Lösung annehmen, wobei das Bindungsprotein imstande ist, eine vorbestimmte antigene Stelle zu binden, was durch die kollektive Tertiärstruktur der Sätze von CDRs bestimmt ist, die in wässriger Lösung durch die FRs und den Linkern in der richtigen Konformation gehalten werden.

Claims (18)

  1. Eine einzelne Polypeptid-Kette, umfassend eine verbindende Sequenz mit einer Länge von wenigstens 10 Aminosäure-Resten, wobei die verbindende Sequenz eine erste und zweite nicht-natürliche peptid-gebundene biologisch aktive Polypeptid-Domäne unter Bildung einer einzelnen Polypeptid-Kette verbindet, wobei die einzelne Polypeptid-Kette wenigstens zwei biologisch aktive Domänen, verknüpft über die verbindende Sequenz, umfaßt, wobei die verbindende Sequenz hydrophile peptid-gebundene Aminosäuren mit kleinen und nichtreaktiven Seitenketten, aber kein Cystein umfaßt, und wobei die hydrophilen Aminosäuren eine hydrophile Sequenz mit einer flexiblen unstrukturierten Konfiguration, die in wäßriger Lösung im Wesentlichen frei von Sekundärstrukturen ist, ausbilden, und wobei die verbindende Sequenz eine Vielzahl von Glyzin- oder Serin-Resten enthält und den Abstand zwischen dem C-terminalen Ende der ersten Domäne und dem N-terminalen Ende der zweiten Domäne überbrückt.
  2. Die Polypeptid-Kette nach Anspruch 1, wobei die verbindende Sequenz Threonin umfaßt.
  3. Die Polypeptid-Kette nach Anspruch 1 oder 2, weiterhin umfassend die erste Domäne, mittels Peptid-Bindung verknüpft mit dem N-terminalen Ende der verbindenden Sequenz, und eine zweite Domäne, verknüpft mittels Peptid-Bindung mit dem C-terminalen Ende der verbindenden Sequenz.
  4. Die Polypeptid-Kette nach Anspruch 1, wobei die verbindende Sequenz eine Vielzahl aufeinanderfolgender Kopien einer Aminosäure-Sequenz umfaßt.
  5. Die Polypeptid-Kette nach Anspruch 4, umfassend die Aminosäure-Sequenz (GlyGlyGlyGlySer)3.
  6. Die Polypeptid-Kette nach Anspruch 1, wobei die verbindende Sequenz eine oder ein Paar von Aminosäure-Sequenzen umfaßt, die von einem ortsspezifischen Spaltungsmittel erkannt wird/werden.
  7. DNA, kodierend für die Polypeptid-Kette nach einem der vorhergehenden Ansprüche.
  8. Ein Polypeptid-Linker mit einer Länge von wenigstens zehn Aminosäure-Resten, der zwei natürlicherweise nicht verbundene Polypeptid-Domänen unter Bildung eines multifunktionalen Proteins miteinander verbindet und Aminosäuren mit kleinen und nicht-reaktiven Seitenketten sowie mehrere hydrophile Peptid-gebundene Aminosäuren, die eine hydrophile Sequenz ausbilden, umfaßt, wobei der Linker den Abstand zwischen dem C-terminalen Ende einer ersten Domäne und dem N-terminalen Ende einer zweiten Domäne überbrückt, und wobei jede dieser beiden Domänen ein biologisch aktives Polypeptid mit einer für eine biologische Aktivität unabhängig von der biologischen Aktivität der anderen Domäne geeignete Konformation aufweist.
  9. Ein Polypeptid-Linker mit einer Länge von wenigstens zehn Aminosäure-Resten, der zwei natürlicherweise nicht verbundene Polypeptid-Domänen unter Bildung eines funktionalen Proteins miteinander verbindet und Aminosäuren mit kleinen und nicht-reaktiven Seitenketten sowie mehrere hydrophile Peptid-gebundene Aminosäuren, die eine hydrophile Sequenz ausbilden, umfaßt, wobei der Linker den Abstand zwischen dem C-terminalen Ende einer ersten Domäne und dem N-terminalen Ende einer zweiten Domäne überbrückt, und wobei die Domänen gemeinsam eine immunologisch reaktive Bindungsstelle, spezifisch für ein bestimmtes Antigen, umfassen.
  10. Der Polypeptid-Linker nach Anspruch 9, wobei die beiden Domänen eine VH- bzw. eine VL-Kette eines natürlichen Immunglobulins imitieren.
  11. Der Polypeptid-Linker nach Anspruch 8 oder 9, wobei der Linker (a) Threonin umfaßt, oder (b) frei von Cystein ist, oder (c) eine Vielzahl von Glycin-oder Serin-Resten umfaßt, oder (d) mehrere aufeinander folgende Kopien einer Aminosäure-Sequenz umfaßt, oder (e) einen Abstand von wenigstens 4 nm (40 Åηgström) überbrückt, oder (f) die Aminosäure-Sequenz GlyGlyGlyGlySerGlyGlyGlyGlySerGlyGlyGlyGlySer umfaßt, oder (g) eine Aminosäure-Sequenz oder ein Paar von Aminosäure-Sequenzen, die von einem ortspezifischen Spaltungsmittel erkannt wird/werden, umfaßt.
  12. Der Polypeptid-Linker nach Anspruch 8, wobei mindestens eine der beiden Domänen ein Enzym, ein Toxin, einen Rezeptor, eine Bindungsstelle, eine Bindungsstelle eines biosynthetischen Antikörpers, einen Wachstumsfaktor, einen Zelldifferenzierungsfaktor, ein Lymphokin, ein Cytokin, ein Hormon, eine indirekt nachweisbare Einheit oder einen Anti-Metaboliten umfaßt.
  13. Der Polypeptid-Linker nach Anspruch 8, wobei die erste Domäne eine Einzelketten-Bindungsstelle und die zweite Domäne ein Enzym, ein Toxin, einen Rezeptor, eine Bindungsstelle, eine Bindungsstelle eines biosynthetischen Antikörpers, einen Wachstumsfaktor, einen Zelldifferenzierungsfaktor, ein Lymphokin, ein Cytokin, ein Hormon oder einen Anti-Metaboliten umfassen.
  14. Der Polypeptid-Linker nach Anspruch 8, wobei mindestens eine der beiden Domänen ein Polypeptid umfaßt, das ein Ion maskieren kann.
  15. Der Polypeptid-Linker nach Anspruch 14, wobei das Polypeptid Calmodulin, Methallothionein, ein Fragment davon oder eine Aminosäure-Sequenz umfaßt, die reich ist an zumindest einer der Aminosäuren Glutaminsäure, Asparaginsäure, Lysin und Arginin.
  16. Der Polypeptid-Linker nach Anspruch 8 oder 9, wobei die Aminosäuren des Linkers in wäßriger Lösung gemeinsam eine unstrukturierte Polypeptid-Konfiguration annehmen.
  17. DNA, kodierend für den Polypeptid-Linker nach Anspruch 8 oder 9.
  18. Wirtszelle, transformiert mit und befähigt zur Expression der DNA nach Anspruch 17.
DE3856559T 1987-05-21 1988-05-19 Multifunktionelle Proteine mit vorbestimmter Zielsetzung Expired - Lifetime DE3856559T2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5280087A 1987-05-21 1987-05-21
US52800 1987-05-21

Publications (2)

Publication Number Publication Date
DE3856559D1 DE3856559D1 (de) 2003-07-31
DE3856559T2 true DE3856559T2 (de) 2004-04-29

Family

ID=21979976

Family Applications (2)

Application Number Title Priority Date Filing Date
DE3856559T Expired - Lifetime DE3856559T2 (de) 1987-05-21 1988-05-19 Multifunktionelle Proteine mit vorbestimmter Zielsetzung
DE3853515T Expired - Lifetime DE3853515T3 (de) 1987-05-21 1988-05-19 Multifunktionelle proteine mit vorbestimmter zielsetzung.

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE3853515T Expired - Lifetime DE3853515T3 (de) 1987-05-21 1988-05-19 Multifunktionelle proteine mit vorbestimmter zielsetzung.

Country Status (8)

Country Link
US (2) US5476786A (de)
EP (2) EP0623679B1 (de)
JP (1) JPH02500329A (de)
AT (2) ATE243754T1 (de)
AU (2) AU612370B2 (de)
CA (2) CA1341415C (de)
DE (2) DE3856559T2 (de)
WO (1) WO1988009344A1 (de)

Families Citing this family (665)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5260203A (en) * 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
DE3785186T2 (de) * 1986-09-02 1993-07-15 Enzon Lab Inc Bindungsmolekuele mit einzelpolypeptidkette.
US5869620A (en) * 1986-09-02 1999-02-09 Enzon, Inc. Multivalent antigen-binding proteins
EP0623679B1 (de) 1987-05-21 2003-06-25 Micromet AG Multifunktionelle Proteine mit vorbestimmter Zielsetzung
US6710169B2 (en) 1987-10-02 2004-03-23 Genentech, Inc. Adheson variants
US5336603A (en) * 1987-10-02 1994-08-09 Genentech, Inc. CD4 adheson variants
JP3095168B2 (ja) * 1988-02-05 2000-10-03 エル. モリソン,シェリー ドメイン‐変性不変部を有する抗体
DE68913658T3 (de) 1988-11-11 2005-07-21 Stratagene, La Jolla Klonierung von Immunglobulin Sequenzen aus den variablen Domänen
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US20030229208A1 (en) * 1988-12-28 2003-12-11 Protein Design Labs, Inc. Humanized immunoglobulins
CA2006878A1 (en) * 1988-12-29 1990-06-29 John D. Rodwell Molecular recognition units
US5196510A (en) * 1988-12-29 1993-03-23 Cytogen Corporation Molecular recognition units
US5354554A (en) * 1989-02-10 1994-10-11 Celltech Limited Crosslinked antibodies and processes for their preparation
US6750329B1 (en) * 1989-05-05 2004-06-15 Research Development Foundation Antibody delivery system for biological response modifiers
AU652539B2 (en) * 1989-05-16 1994-09-01 Medical Research Council Co-expression of heteromeric receptors
GR1002158B (en) * 1989-05-16 1996-02-23 Stratagene Inc Method for tapping the immunological repertoire
CA2016841C (en) * 1989-05-16 1999-09-21 William D. Huse A method for producing polymers having a preselected activity
US6680192B1 (en) 1989-05-16 2004-01-20 Scripps Research Institute Method for producing polymers having a preselected activity
US6291159B1 (en) 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
GR1002149B (en) * 1989-05-16 1996-02-20 Scripps Clinic Res Method for producing polymers having a preselected activity
US6291161B1 (en) 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertiore
US6291160B1 (en) 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US6291158B1 (en) 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
US6969586B1 (en) 1989-05-16 2005-11-29 Scripps Research Institute Method for tapping the immunological repertoire
CA2016842A1 (en) * 1989-05-16 1990-11-16 Richard A. Lerner Method for tapping the immunological repertoire
DE3920358A1 (de) * 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
US5980896A (en) * 1989-06-30 1999-11-09 Bristol-Myers Squibb Company Antibodies reactive with human carcinomas
GB8927230D0 (en) * 1989-12-01 1990-01-31 Unilever Plc Reagents
US6274324B1 (en) * 1989-12-01 2001-08-14 Unilever Patent Holdings B.V. Specific binding reagent comprising a variable domain protein linked to a support or tracer
GB8928501D0 (en) * 1989-12-18 1990-02-21 Unilever Plc Reagents
EP0521985B1 (de) * 1990-03-20 1997-09-24 The Trustees Of Columbia University In The City Of New York Chimäre antikörper mit rezeptor-bindenden liganden anstelle ihrer konstanten region
US6416971B1 (en) 1990-05-15 2002-07-09 E.R. Squibb & Sons, Inc. Soluble single chain T cell receptors
GB9012995D0 (en) * 1990-06-11 1990-08-01 Celltech Ltd Multivalent antigen-binding proteins
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
US6916605B1 (en) 1990-07-10 2005-07-12 Medical Research Council Methods for producing members of specific binding pairs
GB9206318D0 (en) * 1992-03-24 1992-05-06 Cambridge Antibody Tech Binding substances
US7063943B1 (en) 1990-07-10 2006-06-20 Cambridge Antibody Technology Methods for producing members of specific binding pairs
GB9015198D0 (en) * 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
GB9016299D0 (en) * 1990-07-25 1990-09-12 Brien Caroline J O Binding substances
GB9019553D0 (en) * 1990-09-07 1990-10-24 Unilever Plc Specific binding agents
GB9020282D0 (en) 1990-09-17 1990-10-31 Gorman Scott D Altered antibodies and their preparation
JPH05255393A (ja) * 1990-09-21 1993-10-05 Ishihara Sangyo Kaisha Ltd ポリペプチド
IL99552A0 (en) * 1990-09-28 1992-08-18 Ixsys Inc Compositions containing procaryotic cells,a kit for the preparation of vectors useful for the coexpression of two or more dna sequences and methods for the use thereof
WO1992008801A1 (en) * 1990-11-09 1992-05-29 Abbott Laboratories Bridging antibody fusion constructs
US5650150A (en) * 1990-11-09 1997-07-22 Gillies; Stephen D. Recombinant antibody cytokine fusion proteins
EP0560807A1 (de) * 1990-11-26 1993-09-22 The Public Health Laboratory Service Board Immunoglobulinbindende proteine und rekombinante dna-molekülen welche dafür codieren
DE4037837A1 (de) * 1990-11-28 1992-06-04 Behringwerke Ag Zellfreie rezeptorbindungsteste, ihre herstellung und verwendung
US6685930B1 (en) * 1991-03-27 2004-02-03 Tanox, Inc. Methods and substances for recruiting therapeutic agents to solid tumors
CA2062582C (en) * 1991-03-27 1996-03-26 Tse-Wen Chang Methods and substances for recruiting therapeutic agents to solid tissues
US6225447B1 (en) 1991-05-15 2001-05-01 Cambridge Antibody Technology Ltd. Methods for producing members of specific binding pairs
US5962255A (en) * 1992-03-24 1999-10-05 Cambridge Antibody Technology Limited Methods for producing recombinant vectors
US5858657A (en) * 1992-05-15 1999-01-12 Medical Research Council Methods for producing members of specific binding pairs
US6492160B1 (en) 1991-05-15 2002-12-10 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US5871907A (en) * 1991-05-15 1999-02-16 Medical Research Council Methods for producing members of specific binding pairs
US6800738B1 (en) 1991-06-14 2004-10-05 Genentech, Inc. Method for making humanized antibodies
EP0940468A1 (de) 1991-06-14 1999-09-08 Genentech, Inc. Änderliches Gebiet einer humanisierter Antikörper
WO1994004679A1 (en) * 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
US5637481A (en) 1993-02-01 1997-06-10 Bristol-Myers Squibb Company Expression vectors encoding bispecific fusion proteins and methods of producing biologically active bispecific fusion proteins in a mammalian cell
US5328985A (en) * 1991-07-12 1994-07-12 The Regents Of The University Of California Recombinant streptavidin-protein chimeras useful for conjugation of molecules in the immune system
US5665539A (en) * 1991-07-12 1997-09-09 The Regents Of The University Of California Immuno-polymerase chain reaction system for antigen detection
JP3024311B2 (ja) * 1991-10-03 2000-03-21 味の素株式会社 Il−2受容体重鎖に結合するポリペプチド
US6391590B1 (en) 1991-10-21 2002-05-21 The Regents Of The University Of California Recombinant streptavidin-metallothionein chimeric protein having biological recognition specificity
US6146850A (en) * 1991-11-04 2000-11-14 Xoma Corporation Proteins encoding gelonin sequences
US5837491A (en) * 1991-11-04 1998-11-17 Xoma Corporation Polynucleotides encoding gelonin sequences
US5621083A (en) * 1991-11-04 1997-04-15 Xoma Corporation Immunotoxins comprising ribosome-inactivating proteins
ATE207080T1 (de) * 1991-11-25 2001-11-15 Enzon Inc Multivalente antigen-bindende proteine
US6025165A (en) * 1991-11-25 2000-02-15 Enzon, Inc. Methods for producing multivalent antigen-binding proteins
US5885793A (en) 1991-12-02 1999-03-23 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
GB9125979D0 (en) * 1991-12-06 1992-02-05 Wellcome Found Antibody
WO1993016185A2 (en) * 1992-02-06 1993-08-19 Creative Biomolecules, Inc. Biosynthetic binding protein for cancer marker
IL104570A0 (en) * 1992-03-18 1993-05-13 Yeda Res & Dev Chimeric genes and cells transformed therewith
US8211422B2 (en) 1992-03-18 2012-07-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Chimeric receptor genes and cells transformed therewith
WO1993019163A1 (en) * 1992-03-18 1993-09-30 Yeda Research And Development Co, Ltd. Chimeric receptor genes and cells transformed therewith
US5733743A (en) * 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993023537A1 (en) * 1992-05-08 1993-11-25 Creative Biomolecules Chimeric multivalent protein analogues and methods of use thereof
US6329507B1 (en) * 1992-08-21 2001-12-11 The Dow Chemical Company Dimer and multimer forms of single chain polypeptides
DE4233152A1 (de) * 1992-10-02 1994-04-07 Behringwerke Ag Antikörper-Enzym-Konjugate zur Prodrug-Aktivierung
WO1994012520A1 (en) * 1992-11-20 1994-06-09 Enzon, Inc. Linker for linked fusion polypeptides
GB9225453D0 (en) 1992-12-04 1993-01-27 Medical Res Council Binding proteins
EP0672142B1 (de) * 1992-12-04 2001-02-28 Medical Research Council Multivalente und multispezifische bindungsproteine, deren herstellung und verwendung
ATE187494T1 (de) * 1992-12-11 1999-12-15 Dow Chemical Co Multivalente einkettige antikörper
US5795572A (en) * 1993-05-25 1998-08-18 Bristol-Myers Squibb Company Monoclonal antibodies and FV specific for CD2 antigen
US6476198B1 (en) * 1993-07-13 2002-11-05 The Scripps Research Institute Multispecific and multivalent antigen-binding polypeptide molecules
EP0720624B1 (de) 1993-09-22 1998-11-25 Medical Research Council Antikoerper mit geaenderter zielrichtung
EP1849802A2 (de) * 1994-02-18 2007-10-31 Laboratoires Serono SA Verfahren zur Änderung der Fruchtbarkeit
US5763733A (en) * 1994-10-13 1998-06-09 Enzon, Inc. Antigen-binding fusion proteins
US20040258688A1 (en) * 1995-01-31 2004-12-23 Daniel Hawiger Enhanced antigen delivery and modulation of the immune response therefrom
US20020187131A1 (en) * 1995-01-31 2002-12-12 Daniel Hawiger Enhanced antigen delivery and modulation of the immune response therefrom
US6103521A (en) * 1995-02-06 2000-08-15 Cell Genesys, Inc. Multispecific chimeric receptors
GB9504344D0 (en) * 1995-03-03 1995-04-19 Unilever Plc Antibody fragment production
US6040431A (en) * 1995-06-07 2000-03-21 Stryker Corporation Single chain analogs of the TGF-β superfamily (morphons)
ATE219517T1 (de) * 1995-08-18 2002-07-15 Morphosys Ag Protein-/(poly)peptidbibliotheken
US6706484B1 (en) 1995-08-18 2004-03-16 Morphosys Ag Protein/(poly)peptide libraries
US7368111B2 (en) 1995-10-06 2008-05-06 Cambridge Antibody Technology Limited Human antibodies specific for TGFβ2
SE9600310D0 (sv) * 1996-01-29 1996-01-29 Pacesetter Ab Hjärtstimulator
WO1997046589A2 (en) * 1996-06-07 1997-12-11 Neorx Corporation Humanized antibodies that bind to the same antigen as bound by antibody nr-lu-13, and their use in pretargeting methods
US6653104B2 (en) 1996-10-17 2003-11-25 Immunomedics, Inc. Immunotoxins, comprising an internalizing antibody, directed against malignant and normal cells
AU5416098A (en) * 1996-11-28 1998-06-22 Universiteit Van Amsterdam Production of (in vivo) labeled single chain synthetic antibody fragments
JPH10234372A (ja) * 1997-02-27 1998-09-08 Boehringer Mannheim Corp キメラ受容体を有する細胞とその作成方法、並びに その利用
US5969102A (en) 1997-03-03 1999-10-19 St. Jude Children's Research Hospital Lymphocyte surface receptor that binds CAML, nucleic acids encoding the same and methods of use thereof
WO1998050435A1 (en) 1997-05-02 1998-11-12 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Immunotoxins, comprising an onc protein, directed against malignant cells
CA2289117A1 (en) * 1997-05-12 1998-11-19 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and construct for inhibition of cell migration
PT1004315E (pt) 1997-08-15 2008-07-09 Chugai Pharmaceutical Co Ltd Profilácticos e/ou medicamentos contendo anticorpos neutralizantes anti-receptor de il-6 para reduzir a excreção de proteínas urinárias no lúpus eritematoso sistémico
GB9718463D0 (en) * 1997-08-29 1997-11-05 Dynal As Biomolecules
US20040185039A1 (en) * 2002-08-30 2004-09-23 Heinz Kohler Therapeutic applications of noncovalent dimerizing antibodies
US7569674B2 (en) * 1998-05-04 2009-08-04 Innexus Biotechnology International Limited Autophilic antibodies
US20050033033A1 (en) * 1998-05-04 2005-02-10 Heinz Kohler Trans-membrane-antibody induced inhibition of apoptosis
AU763719B2 (en) 1997-12-08 2003-07-31 Merck Patent Gmbh Heterodimeric fusion proteins useful for targeted immune therapy and general immune stimulation
US20090208418A1 (en) * 2005-04-29 2009-08-20 Innexus Biotechnology Internaltional Ltd. Superantibody synthesis and use in detection, prevention and treatment of disease
FR2784383B1 (fr) * 1998-10-12 2003-02-07 Aventis Pharma Sa Polypeptides capables d'interagir avec les mutants oncogeniques de la proteine p53
EP1124568B1 (de) * 1998-10-21 2007-08-22 Altor BioScience Corporation Polyspezifische bindemoleküle und deren verwendung
US20040009535A1 (en) 1998-11-27 2004-01-15 Celltech R&D, Inc. Compositions and methods for increasing bone mineralization
CN1360596A (zh) * 1999-02-12 2002-07-24 遗传研究所有限公司 与b7分子发生反应的人源化免疫球蛋白及应用该免疫球蛋白的治疗方法
US6972125B2 (en) * 1999-02-12 2005-12-06 Genetics Institute, Llc Humanized immunoglobulin reactive with B7-2 and methods of treatment therewith
US6492497B1 (en) 1999-04-30 2002-12-10 Cambridge Antibody Technology Limited Specific binding members for TGFbeta1
SK782002A3 (en) 1999-07-21 2003-08-05 Lexigen Pharm Corp FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens
HUP0202442A3 (en) 1999-08-09 2005-01-28 Lexigen Pharmaceuticals Corp L Multiple cytokine-antibody complexes
EP1212422B1 (de) 1999-08-24 2007-02-21 Medarex, Inc. Humane antikörper gegen ctla-4 und deren verwendungen
AU4314801A (en) 2000-02-11 2001-08-20 Lexigen Pharm Corp Enhancing the circulating half-life of antibody-based fusion proteins
AU5345901A (en) 2000-04-13 2001-10-30 Univ Rockefeller Enhancement of antibody-mediated immune responses
US20010046496A1 (en) 2000-04-14 2001-11-29 Brettman Lee R. Method of administering an antibody
US20020168367A1 (en) * 2000-04-28 2002-11-14 Planet Biotechnology Incorporated Novel immunoadhesins for treating and preventing viral and bacterial diseases
CA2408594A1 (en) * 2000-05-08 2001-11-15 Medarex, Inc. Human monoclonal antibodies to dendritic cells
US7560534B2 (en) 2000-05-08 2009-07-14 Celldex Research Corporation Molecular conjugates comprising human monoclonal antibodies to dendritic cells
WO2002022686A2 (en) 2000-09-15 2002-03-21 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services, National Institutes Of Health, Office Of Technology Transfer Defensin-antigen fusion proteins
AU2001291050A1 (en) 2000-09-15 2002-03-26 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Viral chemokine-tumur antigen fusion proteins
ZA200305980B (en) 2001-02-12 2007-01-31 Res Dev Foundation Modified proteins, designer toxins, and methods of making thereof
DK1366067T3 (da) 2001-03-07 2012-10-22 Merck Patent Gmbh Ekspressionsteknologi for proteiner indeholdende en hybrid isotype-antistof-enhed
US6815175B2 (en) * 2001-03-16 2004-11-09 Cornell Research Foundation, Inc. Anti-amyloid peptide antibody based diagnosis and treatment of a neurological disease or disorder
WO2002079415A2 (en) 2001-03-30 2002-10-10 Lexigen Pharmaceuticals Corp. Reducing the immunogenicity of fusion proteins
AU2002254753C1 (en) 2001-05-01 2008-09-18 The Regents Of The University Of California Fusion molecules and methods for treatment of immune diseases
US7265208B2 (en) 2001-05-01 2007-09-04 The Regents Of The University Of California Fusion molecules and treatment of IgE-mediated allergic diseases
DK1383785T3 (da) 2001-05-03 2011-05-23 Merck Patent Gmbh Rekombinant tumorspecifikt antistof og anvendelse deraf
EP1414471B1 (de) 2001-07-17 2012-06-13 Research Development Foundation Therapeutische Mittel mit pro-apoptotischen Proteinen
US6861231B2 (en) * 2001-08-17 2005-03-01 Qiagen Gmbh Suppression of cross-reactivity and non-specific binding by antibodies using protein A
US7270960B2 (en) 2001-08-29 2007-09-18 Pacific Northwest Research Institute Diagnosis of ovarian carcinomas
GB0126378D0 (en) 2001-11-02 2002-01-02 Oxford Biomedica Ltd Antigen
MXPA04005266A (es) 2001-12-04 2004-10-11 Merck Patent Gmbh Inmunocitocinas con selectividad modulada.
US20050069549A1 (en) 2002-01-14 2005-03-31 William Herman Targeted ligands
EP2034009B1 (de) 2002-02-08 2014-01-15 Life Technologies Corporation Zusammensetzungen und Verfahren zur Wiederherstellung der Immunreaktivität in Patienten mit immunologischen Defekten basierend auf CD3/CD28 costimulation
US6869787B2 (en) 2002-02-27 2005-03-22 The United States Of America As Represented By The Secretary Of The Army Ricin vaccine and methods of making and using thereof
CA2477094A1 (en) * 2002-02-27 2003-09-04 Mark A. Olson Ricin vaccine and methods of making and using thereof
ES2362931T3 (es) 2002-03-04 2011-07-15 Imclone Llc Anticuerpos humanos específicos contra kdr y usos de los mismos.
US7217796B2 (en) 2002-05-24 2007-05-15 Schering Corporation Neutralizing human anti-IGFR antibody
WO2003101485A1 (en) * 2002-05-30 2003-12-11 Macrogenics, Inc. Cd16a binding proteins and use for the treatment of immune disorders
GB0213745D0 (en) 2002-06-14 2002-07-24 Univ Edinburgh Enzyme
US9321832B2 (en) 2002-06-28 2016-04-26 Domantis Limited Ligand
US20040151704A1 (en) 2002-06-28 2004-08-05 Xcyte Therapies, Inc. Compositions and methods for restoring immune repertoire in patients with immunological defects related to autoimmunity and organ or hematopoietic stem cell transplantation
US20040132058A1 (en) 2002-07-19 2004-07-08 Schering Corporation NPC1L1 (NPC3) and methods of use thereof
AU2003259751C1 (en) 2002-08-13 2009-09-17 Qiagen Sciences, Llc Devices and methods for detecting amniotic fluid in vaginal secretions
EP3284753B1 (de) 2002-10-17 2019-06-05 Genmab A/S Humane monoklonale antikörper gegen cd20 zur behandlung von multipler sklerose
GEP20084388B (en) * 2002-10-24 2008-06-10 Biogen Idec Inc High expression locus vector based on ferritin heavy chain gene locus
DE10254601A1 (de) 2002-11-22 2004-06-03 Ganymed Pharmaceuticals Ag Differentiell in Tumoren exprimierte Genprodukte und deren Verwendung
EP1660535A2 (de) 2002-11-27 2006-05-31 Minerva Biotechnologies Corporation Verfahren und zusammensetzungen zur diagnose und behandlung von krebs (muc1)
AU2003298187B2 (en) 2002-12-17 2010-09-16 Merck Patent Gmbh Humanized antibody (H14.18) of the mouse 14.18 antibody binding to GD2 and its fusion with IL-2
US9487823B2 (en) 2002-12-20 2016-11-08 Qiagen Gmbh Nucleic acid amplification
GB0230203D0 (en) * 2002-12-27 2003-02-05 Domantis Ltd Fc fusion
WO2004065417A2 (en) 2003-01-23 2004-08-05 Genentech, Inc. Methods for producing humanized antibodies and improving yield of antibodies or antigen binding fragments in cell culture
US9259459B2 (en) * 2003-01-31 2016-02-16 Celldex Therapeutics Inc. Antibody vaccine conjugates and uses therefor
ATE552860T1 (de) * 2003-01-31 2012-04-15 Celldex Res Corp Antikörper-vakzine-konjugate und ihre verwendungen
US8043834B2 (en) 2003-03-31 2011-10-25 Qiagen Gmbh Universal reagents for rolling circle amplification and methods of use
ES2527871T3 (es) 2003-05-01 2015-02-02 Imclone Llc Anticuerpos completamente humanos dirigidos contra el receptor del factor de crecimiento 1 similar a la insulina humana
WO2004103288A2 (en) * 2003-05-13 2004-12-02 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Method of preventing recurrent miscarriages
US7498024B2 (en) 2003-06-03 2009-03-03 Cell Genesys, Inc. Compositions and methods for enhanced expression of immunoglobulins from a single vector using a peptide cleavage site
US7485291B2 (en) 2003-06-03 2009-02-03 Cell Genesys, Inc. Compositions and methods for generating multiple polypeptides from a single vector using a virus derived peptide cleavage site, and uses thereof
ES2354238T3 (es) 2003-07-03 2011-03-11 University Of Medicine And Dentistry Of New Jersey Genes como herramienta de diagnóstico para autismo.
WO2005037235A2 (en) 2003-10-16 2005-04-28 Imclone Systems Incorporated Fibroblast growth factor receptor-1 inhibitors and methods of treatment thereof
JP2005132795A (ja) * 2003-10-31 2005-05-26 Genichiro Soma 抗悪性神経膠腫剤及び動物用抗悪性神経膠腫剤
US8772451B2 (en) * 2003-11-10 2014-07-08 Altor Bioscience Corporation Soluble TCR molecules and methods of use
DK1691833T3 (da) 2003-11-28 2010-05-03 Micromet Ag Præparater der omfatter polypeptider
JP4949038B2 (ja) 2003-12-01 2012-06-06 ダコ デンマーク アクティーゼルスカブ 免疫組織化学的検出のための方法および組成物
DE602004020266D1 (de) 2003-12-05 2009-05-07 Multimmune Gmbh Therapeutische und diagnostische anti-hsp 70-antikörper
SI1711207T1 (sl) 2003-12-10 2013-07-31 Medarex, L.L.C Protitelesa interferona alfa in njihova raba
CA2529694A1 (en) 2003-12-10 2005-07-07 Millennium Pharmaceuticals, Inc. Humanized anti-ccr2 antibodies and methods of use therefor
MXPA06005941A (es) 2003-12-10 2006-08-23 Medarex Inc Anticuerpos ip-10 y sus usos.
US7235641B2 (en) 2003-12-22 2007-06-26 Micromet Ag Bispecific antibodies
PL1699822T3 (pl) 2003-12-30 2008-08-29 Merck Patent Gmbh Białka fuzyjne IL-7 z częściami przeciwciała, ich otrzymywanie oraz ich zastosowanie
EP1706428B1 (de) 2004-01-22 2009-09-23 MERCK PATENT GmbH Antikrebs-antikörper mit reduzierter komplementfixierung
EP2816351A3 (de) * 2004-01-27 2015-03-25 Compugen Ltd. Verfahren und Systeme zur Annotation biomolekularer Sequenzen
WO2005092924A2 (en) 2004-02-24 2005-10-06 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Rab9a, rab11a, and modulators thereof related to infectious disease
WO2005090406A2 (en) 2004-03-12 2005-09-29 Vasgene Therapeutics, Inc. Antibodies binding to ephb4 for inhibiting angiogenesis and tumor growth
CN103007279B (zh) 2004-03-19 2017-01-11 英克隆有限责任公司 人抗表皮生长因子受体抗体
US7473418B2 (en) 2004-03-25 2009-01-06 Cell Genesys, Inc. Pan cancer oncolytic vectors and methods of use thereof
DE102004024617A1 (de) 2004-05-18 2005-12-29 Ganymed Pharmaceuticals Ag Differentiell in Tumoren exprimierte Genprodukte und deren Verwendung
KR100620554B1 (ko) 2004-06-05 2006-09-06 한국생명공학연구원 Tag-72에 대한 인간화 항체
WO2006002177A2 (en) 2004-06-21 2006-01-05 Medarex, Inc. Interferon alpha receptor 1 antibodies and their uses
US7670595B2 (en) 2004-06-28 2010-03-02 Merck Patent Gmbh Fc-interferon-beta fusion proteins
CA2573656A1 (en) * 2004-07-13 2006-02-16 Cell Genesys, Inc. Aav vector compositions and methods for enhanced expression of immunoglobulins using the same
LT2311874T (lt) 2004-07-22 2017-11-27 Erasmus University Medical Center Rotterdam Rišančiosios molekulės
EP1789437A4 (de) * 2004-07-30 2008-11-05 Sinai School Medicine Npc1l1 und npc1l1-inhibitoren und verfahren zu deren anwendung
CA2582683A1 (en) 2004-10-01 2006-04-13 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Novel antibodies directed to the mammalian eag1 ion channel protein
US20090281025A1 (en) * 2004-10-18 2009-11-12 Mount Sinai School Of Medicine Of New York University Inhibition of tumor growth and metastasis by atf2-derived peptides
US7709208B2 (en) * 2004-11-08 2010-05-04 New York University Methods for diagnosis of major depressive disorder
US20060147449A1 (en) * 2004-11-15 2006-07-06 Brass Lawrence F Method of using CD100 (or Sema4D) to mediate platelet activation and inflammatory responses
EP2377555A3 (de) 2004-11-18 2011-11-23 Imclone LLC Antikörper gegen den vaskulären endothelialen Wachstumsfaktorrezeptor-1
WO2006073921A2 (en) * 2004-12-30 2006-07-13 The Rockefeller University Compositions and methods for enhanced dendritic cell maturation and function
JP5089400B2 (ja) 2004-12-30 2012-12-05 エージェンシー フォー サイエンス、テクノロジー アンド リサーチ 遺伝子
CA2595407A1 (en) 2005-01-20 2006-07-27 University Of Rochester Thioredoxin interacting protein (txnip) as regulator of vascular function
EP2481424A1 (de) 2005-03-19 2012-08-01 Medical Research Council Verbesserungen an oder im Zusammenhang mit der Behandlung und Vorbeugung von Hepatitis C Virusinfektionen
IL296666A (en) 2005-03-23 2022-11-01 Genmab As Antibodies against 38cd for the treatment of multiple myeloma
EP1875244B1 (de) 2005-03-30 2019-01-23 Minerva Biotechnologies Corporation Proliferation muc1 exprimierender zellen
DK1875244T3 (en) 2005-03-30 2019-04-29 Minerva Biotechnologies Corp Proliferation of MUC1-Expressing Cells
EP1863908B1 (de) 2005-04-01 2010-11-17 Qiagen GmbH Reverse transkription und amplifikation von rna bei simultaner degradierung von dna
EP1896582A4 (de) 2005-05-09 2009-04-08 Ono Pharmaceutical Co Menschliche monoklonale antikörper gegen programmierten zelltod 1 (pd-1) sowie verfahren zur krebsbehandlung mit anti-pd-1-antikörpern allein oder in kombination mit anderen immuntherapeutika
EP1894006A4 (de) 2005-06-17 2009-02-25 Merck & Co Inc Verfahren zur identifizierung von keah6-modulatoren zur behandlung der alzheimer-erkrankung
US8097703B2 (en) 2005-06-20 2012-01-17 Medarex, Inc. CD19 antibodies and their uses
WO2007002482A1 (en) 2005-06-28 2007-01-04 Merck & Co., Inc. Method for identifying modulators of rufy2 useful for treating alzheimer's disease
CA2612241C (en) 2005-07-01 2018-11-06 Medarex, Inc. Human monoclonal antibodies to programmed death ligand 1 (pd-l1)
WO2007005898A2 (en) * 2005-07-05 2007-01-11 Cornell Research Foundation, Inc. Blocking leukocyte emigration and inflammation by interfering with cd99l2
WO2007028147A2 (en) * 2005-09-01 2007-03-08 Philadelphia Health & Education Corporation D.B.A. Drexel University College Of Medicin Identification of a prostatic intraepithelial neoplasia (pin)-specific gene and protein (pin-1) useful as a diagnostic treatment for prostate cancer
EP1762627A1 (de) 2005-09-09 2007-03-14 Qiagen GmbH Verfahren zur Aktivierung einer Nukleinsäure für eine Polymerase-Reaktion
EP1762575A1 (de) 2005-09-12 2007-03-14 Ganymed Pharmaceuticals AG Identifizierung Tumor-assoziierter Antigene für Diagnoseund Therapie
EP1940881B1 (de) 2005-10-11 2016-11-30 Amgen Research (Munich) GmbH Zusammensetzungen mit spezies-kreuzspezifischen antikörpern und verwendungen davon
AU2006303452B2 (en) 2005-10-21 2011-06-09 Novartis Ag Human antibodies against IL13 and therapeutic uses
EP1790664A1 (de) 2005-11-24 2007-05-30 Ganymed Pharmaceuticals AG Monoklonale Antikörper gegen Claudin-18 zur Behandlung von Krebs
JP5512128B2 (ja) 2005-12-08 2014-06-04 メダレックス・リミテッド・ライアビリティ・カンパニー フコシルgm1に対するヒトモノクローナル抗体および抗フコシルgm1を使用するための方法
RS55181B1 (sr) 2005-12-21 2017-01-31 Amgen Res (Munich) Gmbh Farmaceutske kompozicije sa rezistencijom na rastvorljivi cea
DK1966245T3 (da) 2005-12-30 2011-07-18 Merck Patent Gmbh Anti-CD19-Antistoffer med reduceret immunogenicitet
BRPI0620648B1 (pt) 2005-12-30 2022-12-20 Merck Patent Gesellschaft Mit Beschrãnkter Haftung Variante de il-12 p40, proteínas il-12, il-23 e de fusão, composição farmacêutica e uso da mesma
JP5164855B2 (ja) 2006-01-04 2013-03-21 フジレビオ アメリカ、インク. 子宮内膜または子宮癌を評価するためのhe4及びそのほかの生化学的マーカーの使用
CA2646391A1 (en) 2006-03-22 2007-09-27 Viral Logic Systems Technology Corp. Methods for identifying polypeptide targets and uses thereof for treating immunological diseases
TW200815470A (en) 2006-03-30 2008-04-01 Novartis Ag Compositions and methods of use for antibodies of c-Met
CA2652570A1 (en) * 2006-05-15 2007-11-22 Viral Logic Systems Technology Corp. Cd47 related compositions and methods for treating immunological diseases and disorders
US8377448B2 (en) 2006-05-15 2013-02-19 The Board Of Trustees Of The Leland Standford Junior University CD47 related compositions and methods for treating immunological diseases and disorders
JP4560582B2 (ja) 2006-06-02 2010-10-13 アベオ ファーマシューティカルズ, インコーポレイテッド 肝細胞成長因子(hgf)結合蛋白質
JP5399900B2 (ja) 2006-06-30 2014-01-29 メルク・シャープ・アンド・ドーム・コーポレーション Igfbp2インヒビター
DK2447275T3 (en) 2006-07-13 2015-06-29 Univ Iowa Res Found Methods and reagents for the treatment of age-related macular degeneration
US20110182904A1 (en) 2006-09-05 2011-07-28 Deborah Zimmerman Antibodies to bone morphogenic proteins and receptors therefor and methods for their use
KR20150065959A (ko) 2006-10-02 2015-06-15 메다렉스, 엘.엘.시. Cxcr4에 결합하는 인간 항체 및 이의 용도
GB0620705D0 (en) 2006-10-18 2006-11-29 Opsona Therapeutics Compounds for the modulation of toll-like receptor activity and assay methods for the identification of said compounds
US8618248B2 (en) 2006-10-31 2013-12-31 President And Fellows Of Harvard College Phosphopeptide compositions and anti-phosphopeptide antibody compositions and methods of detecting phosphorylated peptides
AU2007315211B2 (en) 2006-11-03 2013-01-17 U3 Pharma Gmbh FGFR4 antibodies
CA2669921A1 (en) 2006-11-15 2008-06-26 Medarex, Inc. Human monoclonal antibodies to btla and methods of use
MX2009005776A (es) 2006-12-01 2009-06-10 Medarex Inc Anticuerpos humanos que se enlazan al cd 22 y sus usos.
CL2007003622A1 (es) 2006-12-13 2009-08-07 Medarex Inc Anticuerpo monoclonal humano anti-cd19; composicion que lo comprende; y metodo de inhibicion del crecimiento de celulas tumorales.
JP2010513306A (ja) 2006-12-14 2010-04-30 メダレックス インコーポレーティッド Cd70に結合するヒト抗体およびその使用
CN101622275B (zh) 2007-01-05 2013-11-06 苏黎世大学 提供疾患特异性结合分子和靶的方法
CN101652388B (zh) 2007-03-13 2013-12-25 苏黎世大学 单克隆人肿瘤特异性抗体
EP1970384A1 (de) 2007-03-14 2008-09-17 Ganymed Pharmaceuticals AG Monoklonale Antikörper zur Krebsbehandlung
US8455189B2 (en) * 2007-03-29 2013-06-04 Jeffrey W. Allard Use of HE4 for assessment of breast cancers
ES2695047T3 (es) 2007-04-03 2018-12-28 Amgen Research (Munich) Gmbh Dominio de unión específico entre especies
EP4059964A1 (de) 2007-04-03 2022-09-21 Amgen Research (Munich) GmbH Artenübergreifende bindungsdomäne
EP2139916A1 (de) 2007-04-26 2010-01-06 Opsona Therapeutics Limited Bindungsepitop des toll-like-rezeptors und zusammensetzungen zum daran binden
EP1997832A1 (de) 2007-05-29 2008-12-03 Ganymed Pharmaceuticals AG Monoklonale Antikörper gegen Claudin-18 zur Behandlung von Krebs
EP2170366B1 (de) 2007-08-03 2013-11-06 Opsona Therapeutics Limited Verwendung eines tlr-2 antagonisten zur behandlung von reperfusionsverletzungen und gewebeschäden
ES2628395T3 (es) * 2007-08-15 2017-08-02 Bayer Pharma Aktiengesellschaft Anticuerpo regulado por proteasa
EP3492488A1 (de) 2007-08-22 2019-06-05 The Regents of The University of California Aktivierbare bindende polypeptide und verfahren zu deren identifikation und anwendung
CA2698369C (en) 2007-09-04 2018-01-23 Compugen, Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
US8076061B2 (en) * 2007-09-07 2011-12-13 Ascentgene, Inc. Method and composition for cancer diagnosis and treatment
WO2009033743A1 (en) 2007-09-13 2009-03-19 University Of Zurich Prorektorat Forschung Monoclonal amyloid beta (abeta)-specific antibody and uses thereof
CN101836117B (zh) 2007-09-18 2014-07-23 丹麦达科有限公司 用于检测生物靶点的快速和灵敏的方法
TWI489993B (zh) 2007-10-12 2015-07-01 Novartis Ag 骨硬化素(sclerostin)抗體組合物及使用方法
EA201000603A1 (ru) 2007-10-23 2010-12-30 Новартис Аг ПРИМЕНЕНИЕ АНТИТЕЛ К TrkB ДЛЯ ЛЕЧЕНИЯ РЕСПИРАТОРНЫХ НАРУШЕНИЙ
AU2008320823B2 (en) 2007-11-02 2013-01-17 Novartis Ag Molecules and methods for modulating low-density-lipoprotein receptor-related protein 6 (LRP6)
WO2009061996A2 (en) * 2007-11-07 2009-05-14 Celldex Therapeutics Inc. Antibodies that bind human dendritic and epithelial cell 205 (dec-205)
SI2220107T1 (sl) * 2007-11-12 2017-02-28 Chreto Aps Polipeptidi z dvojno afiniteto za čiščenje
SG186000A1 (en) 2007-11-12 2012-12-28 U3 Pharma Gmbh Axl antibodies
AR069393A1 (es) 2007-11-21 2010-01-20 Imclone Systems Inc Inhibicion del receptor para la proteina estimulante del macrofago (ron) y metodos para el tratamiento del mismo
US8815237B2 (en) 2007-12-05 2014-08-26 Massachusetts Institute Of Technology Aglycosylated immunoglobulin mutants
AU2008337517B2 (en) 2007-12-14 2014-06-26 Novo Nordisk A/S Antibodies against human NKG2D and uses thereof
EP2085095B1 (de) 2008-01-17 2012-03-07 Philogen S.p.A. Kombination aus einem Anti-EDb-Fibronectin-Antikörper-IL-2-Fusionsprotein und einem B-Zellen bindenden Molekül, B-Zellen-Vorläufern und/oder deren krebserregendem Gegenspieler
BRPI0907640A2 (pt) * 2008-01-25 2015-11-03 Univ Aarhus inibição exosítio-seletiva da atividade de papp-a contra igfbp-4
EP2240203B1 (de) 2008-02-05 2014-04-09 Bristol-Myers Squibb Company Alpha-5-beta-1-antikörper und ihre verwendungen
WO2009114585A1 (en) 2008-03-12 2009-09-17 Imclone Llc Anti-tyrp1 antibodies
PL2439212T3 (pl) 2008-05-02 2017-06-30 Novartis Ag Ulepszone cząsteczki wiążące na bazie fibronektyny oraz ich zastosowanie
EP2116555A1 (de) 2008-05-08 2009-11-11 Bayer Schering Pharma Aktiengesellschaft Verwendung eines spezifisch an ED-B Fibronectin bindenden radioaktiv markierten Moleküls bei einem Verfahren zur Behandlung von Hodgkin-Lymphom
EP2116618A1 (de) 2008-05-09 2009-11-11 Agency for Science, Technology And Research Diagnose und Behandlung des Kawasaki-Syndroms
AR071891A1 (es) 2008-05-30 2010-07-21 Imclone Llc Anticuerpos humanos anti-flt3 (receptor tirosina cinasa 3 tipo fms humano)
US8093043B2 (en) * 2008-06-04 2012-01-10 New York University β-TrCP1, β-TrCP2 and RSK1 or RSK2 inhibitors and methods for sensitizing target cells to apoptosis
ES2890405T3 (es) 2008-06-25 2022-01-19 Novartis Ag Humanización de anticuerpos de conejo usando un armazón de anticuerpo universal
PT2307457T (pt) * 2008-06-25 2018-10-16 Esbatech Alcon Biomed Res Unit Anticorpos estáveis e solúveis que inibem o tnf
HUE032894T2 (hu) 2008-06-25 2017-11-28 Esbatech Alcon Biomed Res Unit VEGF-gátló, stabilis és oldható antitestek
US8293235B2 (en) 2008-06-25 2012-10-23 ESBATech, an Alcon Biomedical Research Unit, LLC Humanization of rabbit antibodies using a universal antibody framework
DK2732823T3 (da) 2008-06-25 2019-09-16 H Lundbeck As Modulering af TrpV : Vps10p-domæne-receptorsystemet til behandlingen af smerte
WO2010015608A1 (en) 2008-08-05 2010-02-11 Novartis Ag Compositions and methods for antibodies targeting complement protein c5
US8795981B2 (en) 2008-08-08 2014-08-05 Molecular Devices, Llc Cell detection
JP5756014B2 (ja) 2008-08-08 2015-07-29 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ(エイ・スター) がんの診断および治療のためのvhz
WO2010028646A1 (en) 2008-09-12 2010-03-18 Dako Denmark A/S Prostate cancer biomarker
EP2166021A1 (de) 2008-09-16 2010-03-24 Ganymed Pharmaceuticals AG Monoklonale Antikörper zur Krebsbehandlung
US8417011B2 (en) 2008-09-18 2013-04-09 Molecular Devices (New Milton) Ltd. Colony detection
WO2010034779A2 (en) 2008-09-24 2010-04-01 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Composition and method for treatment of preterm labor
ME02485B (me) 2008-10-01 2017-02-20 Amgen Res Munich Gmbh Bispecifično jednolančano protutijelo psmaxcd3 s međuvrsnom specifičnošću
EP3375790A1 (de) 2008-10-01 2018-09-19 Amgen Research (Munich) GmbH Artenübergreifender spezifischer einzeldomänen-bispezifischer einkettiger antikörper
EP2344632B1 (de) 2008-10-09 2022-12-28 Minerva Biotechnologies Corporation Verfahren zur herbeiführung von pluripotenzen in zellen
AR073770A1 (es) 2008-10-20 2010-12-01 Imclone Llc Anticuerpo aislado que se enlaza especificamente con, e induce la degradacion del receptor-3 del factor de crecimiento del fibroblasto humano (fgfr-3), fragmento de enlace fgfr-3 humano del mismo, composicion farmaceutica y producto que lo comprenden
CA2741373A1 (en) 2008-10-30 2010-06-03 Peixuan Guo Membrane-integrated viral dna-packaging motor protein connector biosensor for dna sequencing and other uses
JP2012507299A (ja) 2008-10-31 2012-03-29 バイオジェン・アイデック・エムエイ・インコーポレイテッド Light標的分子およびその使用
JP5677972B2 (ja) 2008-11-18 2015-02-25 メリマック ファーマシューティカルズ インコーポレーティッド ヒト血清アルブミンリンカーおよびそのコンジュゲート
WO2010067308A2 (en) 2008-12-08 2010-06-17 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
EP3165537A1 (de) 2008-12-19 2017-05-10 H. Lundbeck A/S Modulation der vps-10-domänen-rezeptor-familie für die behandlung von psychischen und verhaltensstörungen
BRPI0923157B1 (pt) 2008-12-19 2021-12-28 University Of Zürich Anticorpos anti-alfa-sinucleína e seus fragmentos, seus usos e método de preparação, composição compreendendo-os, bem como kit e métodos para o diagnóstico e monitoramento de uma doença sinucleinopática
JP5851842B2 (ja) 2009-01-12 2016-02-03 サイトムエックス セラピューティクス, インク.CytomX Therapeutics, Inc. 改変した抗体組成物、それを作製および使用する方法
EP2398907B1 (de) 2009-02-19 2014-04-02 Dako Denmark A/S Konjugatmoleküle
US8399219B2 (en) 2009-02-23 2013-03-19 Cytomx Therapeutics, Inc. Protease activatable interferon alpha proprotein
PL2403878T3 (pl) 2009-03-05 2017-12-29 E. R. Squibb & Sons, L.L.C. W pełni ludzkie przeciwciała specyficzne dla CADM1
CA2755686A1 (en) 2009-03-16 2010-09-23 Daniel A. Vallera Methods and compositions for bi-specific targeting of cd19/cd22
US8883153B2 (en) 2009-03-27 2014-11-11 The Research for The State University of New York Methods for preventing and treating angioedema
KR20120057563A (ko) 2009-03-31 2012-06-05 노파르티스 아게 Il-12 수용체 베타l 서부유닛에 대해 특이적인 치료용 항체를 사용하는 조성물 및 방법
WO2010112034A2 (en) 2009-04-02 2010-10-07 Aarhus Universitet Compositions and methods for treatment and diagnosis of synucleinopathies
EP2421898B1 (de) 2009-04-20 2016-03-16 Oxford BioTherapeutics Ltd Cadherin-17-spezifische antikörper
CN102405230A (zh) 2009-04-22 2012-04-04 默克专利有限公司 具有修饰的FcRn结合位点的抗体融合蛋白
NO2424895T3 (de) 2009-04-27 2018-02-03
EP2270053A1 (de) 2009-05-11 2011-01-05 U3 Pharma GmbH Humanisierte AXL-Antikörper
EP3683317A3 (de) 2009-05-13 2020-09-30 Genzyme Corporation Anti-human-cd52-immunglobuline
CN102459591B (zh) 2009-05-20 2015-05-13 诺维莫尼公司 合成性的多肽文库以及用于建立具有天然多样性的多肽变体的方法
PT2435568E (pt) 2009-05-29 2014-10-08 Morphosys Ag Coleção de anticorpos sintéticos para o tratamento de doenças
CA2769473A1 (en) 2009-07-31 2011-02-03 N.V. Organon Fully human antibodies to btla
WO2011017294A1 (en) 2009-08-07 2011-02-10 Schering Corporation Human anti-rankl antibodies
WO2011021146A1 (en) 2009-08-20 2011-02-24 Pfizer Inc. Osteopontin antibodies
WO2011024114A1 (en) 2009-08-25 2011-03-03 Ecole Polytechnique Federale De Lausanne (Epfl) Targeting extracellular matrix molecules for the treatment of cancer
WO2011029823A1 (en) 2009-09-09 2011-03-17 Novartis Ag Monoclonal antibody reactive with cd63 when expressed at the surface of degranulated mast cells
CA2774732A1 (en) 2009-09-18 2011-03-24 Micromet Ag Dosage regimen for administering an epcamxcd3 bispecific antibody
WO2011047083A1 (en) 2009-10-13 2011-04-21 Oxford Biotherapeutics Ltd. Antibodies against epha10
BR112012009492A2 (pt) 2009-10-20 2017-06-13 Dako Denmark As "métodos para visualização e detecção de unidades individuais simples de alvos e para avaliação quantitativa de um alvo imobilizado em uma amostra, bem como ensaio compreendendo uma etapa de detecção de unidades individuais de um alvo".
WO2011051307A1 (en) 2009-10-27 2011-05-05 Micromet Ag Dosage regimen for administering a cd19xcd3 bispecific antibody
WO2011051327A2 (en) 2009-10-30 2011-05-05 Novartis Ag Small antibody-like single chain proteins
WO2011051466A1 (en) 2009-11-02 2011-05-05 Novartis Ag Anti-idiotypic fibronectin-based binding molecules and uses thereof
WO2011054359A2 (en) 2009-11-06 2011-05-12 University Of Copenhagen Method for early detection of cancer
US9428586B2 (en) 2009-12-01 2016-08-30 Compugen Ltd Heparanase splice variant
US9140692B1 (en) 2010-01-08 2015-09-22 Glycozym, Inc. Methods of identifying glycopeptides recognized by disease-associated auto-antibodies
WO2011092233A1 (en) 2010-01-29 2011-08-04 Novartis Ag Yeast mating to produce high-affinity combinations of fibronectin-based binders
WO2011110490A1 (en) 2010-03-09 2011-09-15 Bayer Pharma Aktiengesellschaft Process for the production of radioactively labelled scfv antibody fragments, kits and compositions
EP2371864A1 (de) 2010-03-23 2011-10-05 Ganymed Pharmaceuticals AG Monoklonale Antikörper zur Krebsbehandlung
JP6034283B2 (ja) 2010-03-26 2016-11-30 トラスティーズ・オブ・ダートマス・カレッジ Vista制御性t細胞メディエータタンパク質、vista結合剤、およびその使用
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
US20150231215A1 (en) 2012-06-22 2015-08-20 Randolph J. Noelle VISTA Antagonist and Methods of Use
TWI653333B (zh) 2010-04-01 2019-03-11 安進研究(慕尼黑)有限責任公司 跨物種專一性之PSMAxCD3雙專一性單鏈抗體
BR112012026837B1 (pt) 2010-04-20 2020-04-07 Univ Cornell método in vitro e kit para diagnosticar proliferações melanocíticas
MA34291B1 (fr) * 2010-05-03 2013-06-01 Genentech Inc Compositions et méthodes de diagnostic et de traitement d'une tumeur
EP2566512A1 (de) 2010-05-04 2013-03-13 Merrimack Pharmaceuticals, Inc. Antikörper gegen den epidermalen wachstumsfaktorrezeptor (egfr) und ihre verwendung
WO2011140151A1 (en) 2010-05-04 2011-11-10 Dyax Corp. Antibodies against epidermal growth factor receptor (egfr)
CN103038258B (zh) 2010-05-06 2017-02-15 诺华股份有限公司 用于治疗低密度脂蛋白相关蛋白质6(lrp6)的抗体的组合物及使用方法
EP2566894A1 (de) 2010-05-06 2013-03-13 Novartis AG Zusammensetzungen und verfahren zur verwendung von therapeutischen mehrwertigen antikörpern gegen ldl-assoziiertes protein 6 (lrp6)
WO2011161545A2 (en) 2010-06-04 2011-12-29 The Netherlands Cancer Institute Non-hydrolyzable protein conjugates, methods and compositions related thereto
KR102007045B1 (ko) 2010-07-07 2019-08-05 티유비아이티에이케이 혈관 내피 성장인자 2(vegfr-2/kdr)에 결합하여 그것의 활성을 차단하는 재조합 항체 구조
CN103080134B (zh) 2010-08-20 2015-11-25 诺华股份有限公司 表皮生长因子受体3(her3)的抗体
EP2609431B1 (de) 2010-08-27 2017-05-10 University of Zurich Verfahren für target- und wirkstoffvalidierung bei entzündungs- und/oder herz-kreislauf-erkrankungen
WO2012028697A1 (en) 2010-09-01 2012-03-08 Eth Zürich, Institute Of Molecular Biology And Biophysics Affinity purification system based on donor strand complementation
US8999335B2 (en) 2010-09-17 2015-04-07 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
WO2012038744A2 (en) 2010-09-22 2012-03-29 Genome Research Limited Detecting mutations
US8497138B2 (en) 2010-09-30 2013-07-30 Genetix Limited Method for cell selection
CN103154037A (zh) 2010-10-05 2013-06-12 诺瓦提斯公司 抗IL12Rβ1抗体及它们在治疗自身免疫病和炎性疾病中的用途
EP2627672B1 (de) 2010-10-11 2018-08-01 Biogen Idec International Neuroscience GmbH Menschliche anti-tau-antikörper
UY33679A (es) 2010-10-22 2012-03-30 Esbatech Anticuerpos estables y solubles
EP2632951B1 (de) 2010-10-27 2017-08-02 Amgen Inc. Dkk1-antikörperzusammensetzungen und verfahren zu ihrer verwendung
CN105251003B (zh) 2010-10-27 2019-08-02 安进研发(慕尼黑)股份有限公司 用于治疗dlbcl的装置和方法
WO2012062318A1 (en) 2010-11-08 2012-05-18 Dako Denmark A/S Quantification of single target molecules in histological samples
CN103533943B (zh) 2010-11-10 2018-02-13 安进研发(慕尼黑)股份有限公司 由cd3特异性结合结构域导致的不良作用的预防
AR083847A1 (es) 2010-11-15 2013-03-27 Novartis Ag Variantes de fc (fragmento constante) silenciosas de los anticuerpos anti-cd40
KR101919170B1 (ko) 2010-11-19 2018-11-15 에자이 알앤드디 매니지먼트 가부시키가이샤 중화 항-ccl20 항체
KR101938021B1 (ko) 2010-11-19 2019-01-11 모르포시스 아게 집합 및 집합의 이용방법
CA2817161C (en) 2010-12-06 2019-04-02 Dako Denmark A/S Combined histological stain
CA2818781C (en) 2010-12-17 2019-10-08 Neurimmune Holding Ag Human anti-sod1 antibodies
WO2012104824A1 (en) 2011-02-04 2012-08-09 Ecole polytechnique fédérale de Lausanne (EPFL) Therapeutic antibodies targeting app-c99
EP2678026B1 (de) 2011-02-21 2016-05-18 The University of Zurich Ankyrin-g zur verwendung in der behandlung von neurodegenerativer erkrankungen
WO2012118903A2 (en) 2011-03-01 2012-09-07 Amgen Inc. Bispecific binding agents
SG194099A1 (en) 2011-04-15 2013-11-29 Compugen Ltd Polypeptides and polynucleotides, and uses thereof for treatment of immune related disorders and cancer
KR101338517B1 (ko) 2011-04-18 2013-12-10 연세대학교 산학협력단 인간 간-카르복실에스터라제 1을 특이적으로 인식하는 단일클론 항체, 상기 항체를 생산하는 하이브리도마 세포주 및 이의 용도
US9366675B2 (en) 2011-04-19 2016-06-14 Dako Denmark A/S Method for enzyme-mediated signal amplification
AU2012247762B2 (en) 2011-04-28 2017-07-06 Amgen Research (Munich) Gmbh Dosage regimen for administering a CD19xCD3 bispecific antibody to patients at risk for potential adverse effects
SG10201703425RA (en) 2011-05-21 2017-05-30 Macrogenics Inc Cd3-binding molecules capable of binding to human and non-human cd3
US8691231B2 (en) 2011-06-03 2014-04-08 Merrimack Pharmaceuticals, Inc. Methods of treatment of tumors expressing predominantly high affinity EGFR ligands or tumors expressing predominantly low affinity EGFR ligands with monoclonal and oligoclonal anti-EGFR antibodies
WO2012172495A1 (en) 2011-06-14 2012-12-20 Novartis Ag Compositions and methods for antibodies targeting tem8
PT2723379T (pt) 2011-06-23 2018-11-14 Univ Of Zuerich Moléculas de ligação anti-alfa-sinucleína
UA114478C2 (uk) 2011-06-28 2017-06-26 Берлін-Хемі Аг Антитіло, яке специфічно зв'язується з bst1
WO2013003606A1 (en) 2011-06-29 2013-01-03 Amgen Inc. Predictive biomarker of survival in the treatment of renal cell carcinoma
WO2013001517A1 (en) 2011-06-30 2013-01-03 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
WO2013006437A1 (en) 2011-07-01 2013-01-10 Novartis Ag Method for treating metabolic disorders
DE202011103324U1 (de) 2011-07-12 2012-01-02 Nekonal S.A.R.L. Therapeutische anti-TIRC7 Antikörper für die Verwendung in Immun und anderen Krankheiten
JP2014526886A (ja) 2011-07-15 2014-10-09 モルフォシス・アー・ゲー マクロファージ遊走阻止因子(mif)とd−ドーパクロームトートメラーゼ(d−dt)に交差反応性がある抗体
ME03008B (de) 2011-09-19 2018-10-20 Axon Neuroscience Se Proteinbasierte therapie und diagnose von tau-vermittelter pathologie bei morbus alzheimer
EP2764118A1 (de) 2011-10-05 2014-08-13 University of Bremen Wnt4 und med12 zur verwendung bei der diagnose und behandlung von tumorerkrankungen
JP2014530816A (ja) 2011-10-14 2014-11-20 ノバルティスアーゲー Wnt経路関連疾患のための抗体および方法
CA2852244C (en) 2011-10-17 2023-10-17 Minerva Biotechnologies Corporation Media for stem cell proliferation and induction
CA2856873A1 (en) 2011-11-23 2013-05-30 Igenica, Inc. Anti-cd98 antibodies and methods of use thereof
EP3190186B1 (de) 2011-11-30 2023-12-13 Jörn Bullerdiek Expression von mirnas in plazentagewebe
ES2758433T3 (es) 2011-12-05 2020-05-05 Novartis Ag Anticuerpos contra el receptor 3 del factor de crecimiento epidérmico (HER3)
CN104105709A (zh) 2011-12-05 2014-10-15 诺华股份有限公司 抗her3的结构域ii的表皮生长因子受体3(her3)抗体
AU2012350429A1 (en) 2011-12-09 2013-07-11 Amgen Research (Munich) Gmbh Prevention of adverse effects caused by EpCAMxCD3 bispecific antibodies
CN106831985A (zh) 2011-12-21 2017-06-13 诺华股份有限公司 用于抗体靶定p因子的组合物和方法
US20150030602A1 (en) 2011-12-23 2015-01-29 Phenoquest Ag Antibodies for the treatment and diagnosis of affective and anxiety disorders
EP2797952B1 (de) 2011-12-28 2019-02-27 ImmunoQure AG Verfahren zur bereitstellung von monoklonalen auto-antikörpern mit der gewünschten spezifität
JP2015512616A (ja) 2012-02-01 2015-04-30 コンピュゲン エルティーディー. C1orf32抗体およびがんの治療のためのその使用
EP2820047B1 (de) 2012-03-01 2018-04-25 Amgen Research (Munich) GmbH Langlebige polypeptidbindungsmoleküle
JP6101782B2 (ja) 2012-03-27 2017-03-22 ヴェンタナ メディカル システムズ, インク. シグナリングコンジュゲート及び使用法
WO2013167153A1 (en) 2012-05-09 2013-11-14 Ganymed Pharmaceuticals Ag Antibodies useful in cancer diagnosis
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
WO2014014207A1 (en) 2012-07-20 2014-01-23 University-Industry Cooperation Group Of Kyung Hee University Antibody for epitope tagging, hybridoma cell line and uses thereof
CN105636976A (zh) 2012-07-20 2016-06-01 庆熙大学校产学协力团 新型肽标签以及其用途
NZ730763A (en) 2012-08-16 2018-06-29 Ipierian Inc Methods of treating a tauopathy
US9345766B2 (en) 2012-08-30 2016-05-24 Merrimack Pharmaceuticals, Inc. Combination therapies comprising anti-ERBB3 agents
CN105246507B (zh) 2012-09-07 2019-01-25 达特茅斯大学理事会 用于诊断和治疗癌症的vista调节剂
JOP20200308A1 (ar) 2012-09-07 2017-06-16 Novartis Ag جزيئات إرتباط il-18
EP2903692B1 (de) 2012-10-08 2019-12-25 St. Jude Children's Research Hospital Therapien auf der basis der steuerung der stabilität und funktion regulatorischer t-zellen über eine neuropilin-1:semaphorin-achse
SG11201502757QA (en) 2012-10-09 2015-05-28 Igenica Biotherapeutics Inc Anti-c16orf54 antibodies and methods of use thereof
AU2013334229B2 (en) 2012-10-25 2018-02-15 Bioverativ Usa Inc. Anti-complement C1s antibodies and uses thereof
CA2889197A1 (en) 2012-11-02 2014-05-08 True North Therapeutics, Inc. Anti-complement c1s antibodies and uses thereof
CN104956224B (zh) 2012-11-20 2017-12-12 美国政府卫生与公共服务部 测量中期因子或多效生长因子水平用于诊断生长的测定
WO2014084859A1 (en) 2012-11-30 2014-06-05 Novartis Ag Molecules and methods for modulating tmem16a activities
EP3851454A1 (de) 2012-12-05 2021-07-21 Novartis AG Zusammensetzungen und verfahren für gegen epo gerichtete antikörper
CN104981696B (zh) 2012-12-11 2017-11-24 康奈尔大学 诊断和治疗前列腺癌的方法
EP2935589A1 (de) 2012-12-18 2015-10-28 Novartis AG Zusammensetzungen und verfahren unter verwendung eines an hyaluronan bindenden peptid-tags
CA2896066C (en) 2012-12-21 2022-07-12 Biogen Ma Inc. Human anti-tau antibodies
WO2014102399A1 (en) 2012-12-31 2014-07-03 Neurimmune Holding Ag Recombinant human antibodies for therapy and prevention of polyomavirus-related diseases
CN107727841B (zh) 2013-01-02 2021-05-25 凯杰科学有限责任公司 预测孕妇分娩时间的方法
EP2759602A1 (de) 2013-01-25 2014-07-30 Charité - Universitätsmedizin Berlin Nichtinvasive Verfahren zur pränatalen Gendiagnose
JO3519B1 (ar) 2013-01-25 2020-07-05 Amgen Inc تركيبات أجسام مضادة لأجل cdh19 و cd3
EP2948478B1 (de) 2013-01-25 2019-04-03 Amgen Inc. Antikörper gegen cdh19 für melanome
EP3620468A1 (de) 2013-02-05 2020-03-11 EngMab Sàrl Verfahren zur auswahl von antikörpern gegen bcma
EP2762496A1 (de) 2013-02-05 2014-08-06 EngMab AG Verfahren zur Auswahl von Antikörpern gegen BCMA
WO2015198217A2 (en) 2013-02-08 2015-12-30 Novartis Ag Compositions and methods for long-acting antibodies targeting il-17
US9486475B2 (en) 2013-02-08 2016-11-08 Amgen Research (Munich) Gmbh PPS for the prevention of potential adverse effects caused by CD3 specific binding domains
JO3529B1 (ar) 2013-02-08 2020-07-05 Amgen Res Munich Gmbh مضاد التصاق خلايا الدم البيض من أجل التخفيف من الاثار السلبية الممكنة الناتجة عن مجالات ارتباط cd3- المحدد
PE20151290A1 (es) 2013-02-08 2015-09-17 Novartis Ag Anticuerpos anti-il-17a y su uso en el tratamiento de trastornos autoinmunes e inflamatorios
WO2014127835A1 (en) 2013-02-22 2014-08-28 Christian-Albrechts-Universität Zu Kiel Plant-derived resistance gene
JP2016514130A (ja) 2013-03-14 2016-05-19 ノバルティス アーゲー Notch3に対する抗体
EP2970446A1 (de) 2013-03-15 2016-01-20 Amgen Research (Munich) GmbH Antikörperkonstrukte für influenza m2 und cd3
SI2970449T1 (sl) 2013-03-15 2019-11-29 Amgen Res Munich Gmbh Enoverižne vezavne molekule, ki vsebujejo N-terminalni ABP
WO2014141192A1 (en) 2013-03-15 2014-09-18 Erasmus University Medical Center Generation of heavy chain-only antibodies
KR101453462B1 (ko) 2013-05-16 2014-10-23 앱클론(주) Her2에 특이적으로 결합하는 항체
PL3007726T3 (pl) 2013-06-10 2021-01-11 Ipierian, Inc. Metody leczenia tauopatii
US9562101B2 (en) 2013-06-21 2017-02-07 Novartis Ag Lectin-like oxidized LDL receptor 1 antibodies and methods of use
AR096601A1 (es) 2013-06-21 2016-01-20 Novartis Ag Anticuerpos del receptor 1 de ldl oxidado similar a lectina y métodos de uso
EP4056591A1 (de) 2013-07-03 2022-09-14 ImmunoQure AG Menschliche anti-ifn-alpha antikörper
TN2016000057A1 (en) 2013-08-14 2017-07-05 Novartis Ag Methods of treating sporadic inclusion body myositis
TWI688401B (zh) 2013-09-13 2020-03-21 美商安進公司 用於治療骨髓性白血病的表觀遺傳因子與靶向cd33及cd3之雙特異性化合物的組合
LT3055331T (lt) 2013-10-11 2021-03-25 Oxford Bio Therapeutics Limited Konjuguoti antikūnai prieš ly75, skirti vėžio gydymui
CN111569063A (zh) 2013-11-27 2020-08-25 伊皮埃里安股份有限公司 治疗tau病变的方法
US9309314B2 (en) 2013-12-03 2016-04-12 Agency For Science, Technology And Research (A*Star) Polypeptides, nucleic acids and uses thereof
TWI670283B (zh) 2013-12-23 2019-09-01 美商建南德克公司 抗體及使用方法
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
CA3190821A1 (en) 2013-12-24 2015-07-02 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments
MY191944A (en) 2014-01-24 2022-07-20 Ngm Biopharmaceuticals Inc Binding proteins and methods of use thereof
KR101605421B1 (ko) 2014-03-05 2016-03-23 국립암센터 B 세포 림프종 세포를 특이적으로 인지하는 단일클론항체 및 이의 용도
TW201622746A (zh) 2014-04-24 2016-07-01 諾華公司 改善或加速髖部骨折術後身體復原之方法
PL3531133T3 (pl) 2014-05-30 2024-01-29 Amgen Research (Munich) Gmbh Stratyfikacja ryzyka u pacjentów z ostrą białaczką limfoblastyczną z prekursorów b
WO2015187835A2 (en) 2014-06-06 2015-12-10 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
EP3154585B1 (de) 2014-06-11 2022-02-23 Kathy A. Green Verwendung von vista-agonisten und antagonisten zur unterdrückung oder verbesserung der humoralen immunität
WO2015198243A2 (en) 2014-06-25 2015-12-30 Novartis Ag Compositions and methods for long acting proteins
US20170327553A1 (en) 2014-06-25 2017-11-16 Novartis Ag Compositions and methods for long acting proteins
TW201609812A (zh) 2014-07-31 2016-03-16 安美基研究(慕尼黑)公司 最佳化之跨物種特異性雙特異性單鏈抗體構築體
MX2017001403A (es) 2014-07-31 2017-07-07 Amgen Res (Munich) Gmbh Constructo de anticuerpo de cadena individual biespecifico con distribucion mejorada de tejido.
AR101669A1 (es) 2014-07-31 2017-01-04 Amgen Res (Munich) Gmbh Constructos de anticuerpos para cdh19 y cd3
NZ728425A (en) 2014-08-07 2022-05-27 Novartis Ag Angiopoietin-like 4 antibodies and methods of use
US9988443B2 (en) 2014-08-07 2018-06-05 Novartis Ag Angiopoetin-like 4 (ANGPTL4) antibodies and methods of use
EP3201228A2 (de) 2014-09-30 2017-08-09 Neurimmune Holding AG Vom menschen abgeleitete antikörper gegen dipeptid-repeats (dprs)
MA41044A (fr) 2014-10-08 2017-08-15 Novartis Ag Compositions et procédés d'utilisation pour une réponse immunitaire accrue et traitement contre le cancer
US11566082B2 (en) * 2014-11-17 2023-01-31 Cytiva Bioprocess R&D Ab Mutated immunoglobulin-binding polypeptides
CN107108743B (zh) 2014-12-03 2021-05-04 (株)爱恩德生物 结合神经毡蛋白1的抗体及其用途
JP2018505911A (ja) 2014-12-05 2018-03-01 イミュネクスト,インコーポレーテッド 推定上のvista受容体としてのvsig8の同定と、vista/vsig8調節剤を産生するためのその使用
UY36449A (es) 2014-12-19 2016-07-29 Novartis Ag Composiciones y métodos para anticuerpos dirigidos a bmp6
UY36471A (es) 2014-12-23 2016-06-30 Bristol Myers Squibb Company Una Corporación Del Estado De Delaware Anticuerpos contra el inmunorreceptor (tigit) de linfocitos t con dominios ig y motivos de inhibición del inmunorreceptor basados en tirosina (itim)
WO2016149621A1 (en) 2015-03-18 2016-09-22 The Johns Hopkins University Novel monoclonal antibody inhibitors targeting potassium channel kcnk9
IL254670B2 (en) 2015-04-06 2023-04-01 Bioverativ Usa Inc Human anti-c1s antibodies and methods of using them
JP6907124B2 (ja) 2015-04-17 2021-07-21 アムゲン リサーチ (ミュンヘン) ゲーエムベーハーAMGEN Research(Munich)GmbH Cdh3及びcd3に対する二重特異性抗体構築物
KR102462811B1 (ko) 2015-04-27 2022-11-04 에이비온 주식회사 항체에 덴드론이 접합된 면역접합체 및 이의 용도
MY188049A (en) 2015-05-29 2021-11-12 Bristol Myers Squibb Co Antibodies against ox40 and uses thereof
WO2016193872A2 (en) 2015-06-05 2016-12-08 Novartis Ag Antibodies targeting bone morphogenetic protein 9 (bmp9) and methods therefor
EP3954394A1 (de) 2015-06-19 2022-02-16 Centurion BioPharma Corporation Abgabesystem zur kontrollierten arzneimittelfreisetzung
WO2016207717A1 (en) 2015-06-24 2016-12-29 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments
JOP20200312A1 (ar) 2015-06-26 2017-06-16 Novartis Ag الأجسام المضادة للعامل xi وطرق الاستخدام
JP2018526977A (ja) 2015-06-29 2018-09-20 ザ ロックフェラー ユニヴァーシティ アゴニスト活性が増強されたcd40に対する抗体
TW202346349A (zh) 2015-07-31 2023-12-01 德商安美基研究(慕尼黑)公司 Dll3及cd3抗體構築體
TWI796283B (zh) 2015-07-31 2023-03-21 德商安美基研究(慕尼黑)公司 Msln及cd3抗體構築體
TWI744242B (zh) 2015-07-31 2021-11-01 德商安美基研究(慕尼黑)公司 Egfrviii及cd3抗體構築體
TWI829617B (zh) 2015-07-31 2024-01-21 德商安美基研究(慕尼黑)公司 Flt3及cd3抗體構築體
TWI717375B (zh) 2015-07-31 2021-02-01 德商安美基研究(慕尼黑)公司 Cd70及cd3抗體構築體
CA2994516A1 (en) 2015-08-03 2017-02-09 Novartis Ag Methods of treating fgf21-associated disorders
ES2777602T3 (es) 2015-08-03 2020-08-05 Engmab Sàrl Anticuerpos monoclonales contra el antígeno de maduración de células b humanas (BCMA)
US11273167B2 (en) 2015-08-03 2022-03-15 The Regents Of The University Of California Compositions and methods for modulating ABHD2 activity
JO3620B1 (ar) 2015-08-05 2020-08-27 Amgen Res Munich Gmbh مثبطات نقطة فحص مناعية للاستخدام في علاج سرطانات محمولة عبر الدم
CN108699145A (zh) 2015-09-02 2018-10-23 伊缪泰普有限公司 抗lag-3抗体
UY36889A (es) 2015-09-09 2017-04-28 Novartis Ag Moléculas de unión a linfopoyetina estromal timica (tslp) y métodos de uso de las moléculas
MX2018003038A (es) 2015-09-09 2018-04-11 Novartis Ag Moleculas de union a linfopoyetina estromal timica (tslp) y metodos de uso de las moleculas.
RU2638457C2 (ru) 2015-09-28 2017-12-13 Общество С Ограниченной Ответственностью "Онкомакс" Антитела, специфически связывающие рецептор 1 типа фактора роста фибробластов, применение антител для лечения онкологического заболевания, способ получения антител
CA2997963A1 (en) 2015-09-29 2017-04-06 Celgene Corporation Pd-1 binding proteins and methods of use thereof
CA3001590A1 (en) 2015-10-10 2017-04-13 Intrexon Corporation Improved therapeutic control of proteolytically sensitive, destabilized forms of interleukin-12
MX2018005063A (es) 2015-11-02 2018-12-10 Bioatla Llc Polipéptidos condicionalmente activos.
WO2017079768A1 (en) 2015-11-08 2017-05-11 Genentech, Inc. Methods of screening for multispecific antibodies
EA201891121A1 (ru) 2015-11-19 2018-12-28 Бристол-Майерс Сквибб Компани Антитела к глюкокортикоид-индуцированному рецептору фактора некроза опухоли (gitr) и их применения
US10556948B2 (en) 2015-11-30 2020-02-11 Bristol-Myers Squibb Company IP-10 antibodies and their uses
KR101896882B1 (ko) 2015-11-30 2018-09-11 앱클론(주) Vegfr2에 특이적으로 결합하는 항체
WO2017103895A1 (en) 2015-12-18 2017-06-22 Novartis Ag Antibodies targeting cd32b and methods of use thereof
TWI797073B (zh) 2016-01-25 2023-04-01 德商安美基研究(慕尼黑)公司 包含雙特異性抗體建構物之醫藥組合物
UA126657C2 (uk) 2016-02-03 2023-01-11 Емджен Рісерч (Мюнік) Ґмбг ОДНОЛАНЦЮГОВА КОНСТРУКЦІЯ АНТИТІЛА ДО BCMA І CD3<font face="Symbol">e</font>
EA039859B1 (ru) 2016-02-03 2022-03-21 Эмджен Рисерч (Мюник) Гмбх Биспецифические конструкты антител, связывающие egfrviii и cd3
DK3411404T3 (da) 2016-02-03 2023-01-30 Amgen Res Munich Gmbh Psma- og cd3-bispecifikke t-celleinddragende antistofkonstruktioner
WO2017137830A1 (en) 2016-02-12 2017-08-17 Janssen Pharmaceutica Nv Anti-vista (b7h5) antibodies
US10669340B2 (en) 2016-02-15 2020-06-02 Samsung Life Public Welfare Foundation Antibody against EGFRvIII and use thereof
WO2017151176A1 (en) 2016-03-04 2017-09-08 The Rockefeller University Antibodies to cd40 with enhanced agonist activity
US10934347B2 (en) 2016-04-04 2021-03-02 Genzyme Corporation Anti-complement factor BB antibodies and uses thereof
UA125382C2 (uk) 2016-04-15 2022-03-02 Імьюнекст Інк. Антитіла проти людського vista та їх застосування
JOP20170091B1 (ar) 2016-04-19 2021-08-17 Amgen Res Munich Gmbh إعطاء تركيبة ثنائية النوعية ترتبط بـ cd33 وcd3 للاستخدام في طريقة لعلاج اللوكيميا النخاعية
EP3448887A1 (de) 2016-04-27 2019-03-06 Novartis AG Antikörper gegen den wachstumsdifferenzierungsfaktor 15 und verwendungen davon
CN109311948B (zh) 2016-05-11 2022-09-16 思拓凡生物工艺研发有限公司 清洁和/或消毒分离基质的方法
EP3455243B1 (de) 2016-05-11 2021-03-24 Cytiva BioProcess R&D AB Trennmatrix
US10889615B2 (en) 2016-05-11 2021-01-12 Cytiva Bioprocess R&D Ab Mutated immunoglobulin-binding polypeptides
US10703774B2 (en) 2016-09-30 2020-07-07 Ge Healthcare Bioprocess R&D Ab Separation method
US10730908B2 (en) 2016-05-11 2020-08-04 Ge Healthcare Bioprocess R&D Ab Separation method
WO2017194592A1 (en) 2016-05-11 2017-11-16 Ge Healthcare Bioprocess R&D Ab Method of storing a separation matrix
US10654887B2 (en) 2016-05-11 2020-05-19 Ge Healthcare Bio-Process R&D Ab Separation matrix
TW201802121A (zh) 2016-05-25 2018-01-16 諾華公司 抗因子XI/XIa抗體之逆轉結合劑及其用途
CA3025757A1 (en) 2016-05-27 2017-11-30 Orum Therapeutics Inc. Cytosol-penetrating antibody and use thereof
WO2017209554A2 (ko) 2016-06-03 2017-12-07 사회복지법인 삼성생명공익재단 항-nrp1 항체 스크리닝 방법
SG11201810775SA (en) 2016-06-03 2019-01-30 Samsung Life Public Welfare Foundation Anti-nrp1 antibody screening method
WO2017209553A2 (ko) 2016-06-03 2017-12-07 사회복지법인 삼성생명공익재단 환자 유래 세포를 이용한 항체 스크리닝 방법
AU2017273169B2 (en) 2016-06-03 2020-07-30 Aimed Bio Inc. Method for screening antibody using patient-derived tumor spheroids
JP7231411B2 (ja) 2016-06-15 2023-03-01 ノバルティス アーゲー 骨形成タンパク質6(bmp6)の阻害剤を使用して疾患を処置する方法
JP2018035137A (ja) 2016-07-13 2018-03-08 マブイミューン ダイアグノスティックス エイジーMabimmune Diagnostics Ag 新規な抗線維芽細胞活性化タンパク質(fap)結合薬剤およびその使用
MX2019000443A (es) 2016-07-14 2019-06-20 Squibb Bristol Myers Co Anticuerpos contra proteina 3 que contiene el dominio de mucina e inmunoglobulina de linfocitos t (tim3) y sus usos.
KR102048477B1 (ko) 2016-08-05 2019-11-26 주식회사 와이바이오로직스 프로그램화된 세포 사멸 단백질 리간드-1 (pd-l1)에 대한 항체 및 이의 용도
JP6786722B2 (ja) 2016-08-05 2020-11-18 ワイ−バイオロジクス・インコーポレイテッド プログラム化された細胞死蛋白質(pd−1)に対する新規抗体及びその用途
WO2018026249A1 (ko) 2016-08-05 2018-02-08 주식회사 와이바이오로직스 프로그램화된 세포 사멸 단백질 리간드-1 (pd-l1)에 대한 항체 및 이의 용도
JP2019534859A (ja) 2016-09-19 2019-12-05 セルジーン コーポレイション Pd−1結合タンパク質を使用して白斑を治療する方法
EA201990747A1 (ru) 2016-09-19 2019-10-31 Способы лечения иммунных нарушений с применением белков, связывающих pd–1
AU2017341766A1 (en) 2016-10-12 2019-05-23 Bioverativ Usa Inc. Anti-C1s antibodies and methods of use thereof
CN110167964B (zh) 2016-11-02 2023-12-01 百时美施贵宝公司 组合用于治疗多发性骨髓瘤的针对bcma和cd3的双特异性抗体和免疫药物
US11332521B2 (en) 2016-11-07 2022-05-17 Neuracle Science Co., Ltd. Anti-family with sequence similarity 19, member A5 antibodies and method of use thereof
US10935555B2 (en) 2016-12-22 2021-03-02 Qiagen Sciences, Llc Determining candidate for induction of labor
US10656164B2 (en) 2016-12-22 2020-05-19 Qiagen Sciences, Llc Screening asymptomatic pregnant woman for preterm birth
AU2017383232A1 (en) 2016-12-23 2019-06-27 Novartis Ag Factor XI antibodies and methods of use
US11773182B2 (en) 2017-01-05 2023-10-03 The Johns Hopkins University Development of new monoclonal antibodies recognizing human prostate-specific membrane antigen (PSMA)
US20180244785A1 (en) 2017-01-09 2018-08-30 Merrimack Pharmaceuticals, Inc. Anti-fgfr antibodies and methods of use
EP3573665A4 (de) * 2017-01-27 2020-11-11 Board Of Supervisors Of Louisiana State University Bifunktionelles kleines peptid für autoimmun-diabetes
JOP20190189A1 (ar) 2017-02-02 2019-08-01 Amgen Res Munich Gmbh تركيبة صيدلانية ذات درجة حموضة منخفضة تتضمن بنيات جسم مضاد يستهدف الخلية t
KR102572663B1 (ko) 2017-02-08 2023-09-01 노파르티스 아게 Fgf21 모방 항체 및 이의 용도
CN110506057B (zh) 2017-02-17 2023-09-29 百时美施贵宝公司 Alpha突触核蛋白抗体及其应用
TW201842931A (zh) 2017-03-14 2018-12-16 美商生物維瑞提夫美國公司 用於治療補體介導之疾病及病症之方法
JP2020514375A (ja) 2017-03-15 2020-05-21 キュー バイオファーマ, インコーポレイテッド 免疫応答を調節するための方法
KR20240014600A (ko) 2017-03-24 2024-02-01 노바르티스 아게 심장질환 예방 및 치료 방법
KR101757346B1 (ko) 2017-03-27 2017-07-26 아주대학교산학협력단 항-emap ii 항체 및 이의 용도
TWI788340B (zh) 2017-04-07 2023-01-01 美商必治妥美雅史谷比公司 抗icos促效劑抗體及其用途
KR101970327B1 (ko) 2017-04-13 2019-04-18 고려대학교 산학협력단 검출 신호의 자가 증폭 원리를 이용한 정확, 신속, 편리한 단일 단계 질병 진단 방법
EP3618864A1 (de) 2017-05-05 2020-03-11 Amgen Inc. Pharmazeutische zusammensetzung mit bispezifischen antikörperkonstrukten zur verbesserten aufbewahrung und verabreichung
BR112019025070A2 (pt) 2017-05-30 2021-03-23 Chong Kun Dang Pharmaceutical Corp. inovador anticorpo anti-c-met e utilização do mesmo
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
US11325957B2 (en) 2017-06-19 2022-05-10 Cell Design Labs, Inc. Methods and compositions for reducing the immunogenicity of chimeric notch receptors
HUE058233T2 (hu) 2017-08-03 2022-07-28 Amgen Inc Interleukin-21-muteinek és kezelési eljárások
WO2019050362A2 (ko) 2017-09-08 2019-03-14 주식회사 와이바이오로직스 인간 dlk1에 대한 항체 및 이의 용도
US10640504B2 (en) 2017-09-08 2020-05-05 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
CN111148510A (zh) 2017-09-15 2020-05-12 美国安进公司 用于治疗性蛋白质的冻干药物配制品的方法
US11230601B2 (en) 2017-10-10 2022-01-25 Tilos Therapeutics, Inc. Methods of using anti-lap antibodies
SG11202003111SA (en) 2017-10-10 2020-05-28 Numab Therapeutics AG Antibodies targeting cd137 and methods of use thereof
EP3470429A1 (de) 2017-10-10 2019-04-17 Numab Innovation AG Auf pdl1 gerichtete antikörper und verfahren zur verwendung davon
JP2021501569A (ja) 2017-10-10 2021-01-21 ヌマブ セラピューティックス アーゲー Pdl1を標的とする抗体及びそれを用いる方法
EP3694873A1 (de) 2017-10-10 2020-08-19 Numab Therapeutics AG Multispezifischer antikörper
EP3470426A1 (de) 2017-10-10 2019-04-17 Numab Therapeutics AG Multispezifischer antikörper
EP3470428A1 (de) 2017-10-10 2019-04-17 Numab Innovation AG Anti cd137 antikörper und deren verwendung
SG11202002374RA (en) 2017-10-13 2020-04-29 Merck Sharp & Dohme Compositions and methods for treating diffuse large b cell lymphoma
MX2020005495A (es) 2017-10-20 2021-01-08 Pharmabcine Inc Anticuerpo anti-vista y uso del mismo.
US20210040205A1 (en) 2017-10-25 2021-02-11 Novartis Ag Antibodies targeting cd32b and methods of use thereof
WO2019086331A2 (en) 2017-11-02 2019-05-09 Bayer Aktiengesellschaft Bispecific antibodies binding alk-1 and bmpr-2
AU2018375788A1 (en) 2017-11-30 2020-07-09 Ladrx Corporation Maytansinoid-based drug delivery systems
KR20200118408A (ko) 2017-11-30 2020-10-15 센추리온 바이오파마 코포레이션 아우리스타틴 e 유도체의 알부민-결합 전구약물
MX2020006007A (es) 2017-12-11 2020-08-17 Amgen Inc Procedimiento de fabricacion continuo para productos de anticuerpos biespecificos.
KR102311838B1 (ko) 2017-12-27 2021-10-14 주식회사 파멥신 항-pd-l1 항체 및 이의 용도
US11306149B2 (en) 2017-12-27 2022-04-19 Bristol-Myers Squibb Company Anti-CD40 antibodies and uses thereof
UY38041A (es) 2017-12-29 2019-06-28 Amgen Inc Construcción de anticuerpo biespecífico dirigida a muc17 y cd3
EP3737700A1 (de) 2018-01-12 2020-11-18 Bristol-Myers Squibb Company Antikörper gegen tim3 und verwendungen davon
TW201930344A (zh) 2018-01-12 2019-08-01 美商安進公司 抗pd-1抗體及治療方法
US20200384030A1 (en) 2018-02-21 2020-12-10 Cell Design Labs, Inc. Chimeric transmembrane receptors and uses thereof
KR102275930B1 (ko) 2018-03-14 2021-07-12 (주)알테오젠 Folr1에 특이적으로 결합하는 항체 및 그의 용도
WO2019183551A1 (en) 2018-03-23 2019-09-26 Bristol-Myers Squibb Company Antibodies against mica and/or micb and uses thereof
KR20200139219A (ko) 2018-04-02 2020-12-11 브리스톨-마이어스 스큅 컴퍼니 항-trem-1 항체 및 이의 용도
TW202011029A (zh) 2018-04-04 2020-03-16 美商建南德克公司 偵測及定量fgf21之方法
US10640576B2 (en) 2018-04-10 2020-05-05 Y-Biologics Inc. Cell engaging binding molecules
US11945878B2 (en) 2018-04-18 2024-04-02 Abclon Inc. Switch molecule and switchable chimeric antigen receptor
EP3798305A4 (de) 2018-04-27 2022-02-09 Aimed Bio Inc. Magnetbasiertes biopanningverfahren durch anbringen eines magnetischen kügelchens an einer zelle
US11970532B2 (en) 2018-05-10 2024-04-30 Neuracle Science Co., Ltd. Anti-family with sequence similarity 19, member A5 antibodies and method of use thereof
UY38247A (es) 2018-05-30 2019-12-31 Novartis Ag Anticuerpos frente a entpd2, terapias de combinación y métodos de uso de los anticuerpos y las terapias de combinación
KR102115300B1 (ko) 2018-06-01 2020-05-26 재단법인 목암생명과학연구소 항체 라이브러리 및 이를 이용한 항체 스크리닝 방법
MX2021001221A (es) 2018-07-30 2021-06-23 Amgen Res Munich Gmbh Administración prolongada de un constructo de anticuerpo biespecífico que se une a cd33 y cd3.
EP3829633A1 (de) 2018-08-03 2021-06-09 Amgen Research (Munich) GmbH Antikörperkonstrukte für cldn18.2 und cd3
CN113366017B (zh) 2018-08-10 2024-05-28 优特力克斯有限公司 结合hla-dr的嵌合抗原受体和car-t细胞
CN113056487A (zh) 2018-09-18 2021-06-29 梅里麦克制药股份有限公司 抗tnfr2抗体及其用途
WO2020069303A1 (en) 2018-09-28 2020-04-02 Amgen Inc. Antibodies against soluble bcma
CN112839957A (zh) 2018-09-28 2021-05-25 协和麒麟株式会社 Il-36抗体及其用途
EP3636320A1 (de) 2018-10-09 2020-04-15 Numab Therapeutics AG Auf cd137 gerichtete antikörper und verfahren zur verwendung davon
KR20210076907A (ko) 2018-10-09 2021-06-24 누맙 세러퓨틱스 아게 Cd137을 표적화하는 항체 및 이의 사용 방법
CN113164780A (zh) 2018-10-10 2021-07-23 泰洛斯治疗公司 抗lap抗体变体及其用途
CA3114802A1 (en) 2018-10-11 2020-04-16 Amgen Inc. Downstream processing of bispecific antibody constructs
UY38407A (es) 2018-10-15 2020-05-29 Novartis Ag Anticuerpos estabilizadores de trem2
WO2020089437A1 (en) 2018-10-31 2020-05-07 Engmab Sàrl Combination therapy
KR102353568B1 (ko) 2018-11-14 2022-01-20 주식회사 헬릭스미스 안정성이 향상된 항 c-Met 항체 또는 그의 항원 결합 단편
KR20210092769A (ko) 2018-11-16 2021-07-26 브리스톨-마이어스 스큅 컴퍼니 항-nkg2a 항체 및 그의 용도
US20220289857A1 (en) 2018-12-20 2022-09-15 Kyowa Kirin Co., Ltd. Fn14 antibodies and uses thereof
JP7285936B2 (ja) 2019-01-22 2023-06-02 ブリストル-マイヤーズ スクイブ カンパニー Il-7rアルファサブユニットに対する抗体及びその使用
WO2020157305A1 (en) 2019-01-31 2020-08-06 Numab Therapeutics AG Multispecific antibodies having specificity for tnfa and il-17a, antibodies targeting il-17a, and methods of use thereof
EP3689907A1 (de) 2019-01-31 2020-08-05 Numab Therapeutics AG Auf il-17a gerichtete antikörper und verfahren zur verwendung davon
AU2020221821A1 (en) 2019-02-13 2021-08-26 The Brigham And Women's Hospital, Inc. Anti-peripheral lymph node addressin antibodies and uses thereof
AU2020226619A1 (en) 2019-02-20 2021-08-05 Amgen Inc. Methods of determining protein stability
CN113874083A (zh) 2019-03-01 2021-12-31 梅里麦克制药股份有限公司 抗-tnfr2抗体及其用途
EP3936150A4 (de) 2019-03-06 2023-03-29 LegoChem Biosciences, Inc. Antikörper-wirkstoff-konjugate mit antikörper gegen humanes dlk1 und verwendung davon
MX2021010565A (es) 2019-03-08 2021-10-13 Genentech Inc Metodos para detectar y cuantificar proteinas asociadas a la membrana en vesiculas extracelulares.
AU2020245573A1 (en) 2019-03-27 2021-09-30 Amgen Inc. Methods of fingerprinting therapeutic proteins via a two-dimensional (2D) nuclear magnetic resonance technique at natural abundance for formulated biopharmaceutical products
WO2020221792A1 (en) 2019-04-30 2020-11-05 Amgen Research (Munich) Gmbh Means and methods of treating burkitt lymphoma or leukemia
EP3983520A1 (de) 2019-06-13 2022-04-20 Amgen, Inc Automatisierte biomassebasierte perfusionssteuerung zur herstellung von biologika
JP2022540904A (ja) 2019-07-15 2022-09-20 ブリストル-マイヤーズ スクイブ カンパニー ヒトtrem-1に対する抗体およびその使用
CN114174536A (zh) 2019-07-15 2022-03-11 百时美施贵宝公司 抗trem-1抗体及其用途
EP4028416A1 (de) 2019-09-10 2022-07-20 Amgen Inc. Reinigungsverfahren für bispezifische antigen-bindende polypeptide mit erhöhter dynamischer bindungskapazität beim protein-l-einfang
TW202124446A (zh) 2019-09-18 2021-07-01 瑞士商諾華公司 與entpd2抗體之組合療法
CN114502590A (zh) 2019-09-18 2022-05-13 诺华股份有限公司 Entpd2抗体、组合疗法、以及使用这些抗体和组合疗法的方法
EP3816185A1 (de) 2019-11-04 2021-05-05 Numab Therapeutics AG Multispezifischer antikörper gegen pd-l1 und ein tumorassoziiertes antigen
EP4058485A1 (de) 2019-11-13 2022-09-21 Amgen Inc. Verfahren zur verringerung der aggregatbildung bei der nachgelagerten verarbeitung von bispezifischen antigen-bindenden molekülen
CN110818795B (zh) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 抗tigit抗体和使用方法
WO2021150824A1 (en) 2020-01-22 2021-07-29 Amgen Research (Munich) Gmbh Combinations of antibody constructs and inhibitors of cytokine release syndrome and uses thereof
EP4096707A1 (de) 2020-01-30 2022-12-07 Umoja Biopharma, Inc. Bispezifischer transduktionsverstärker
EP4110830A1 (de) 2020-02-28 2023-01-04 Tallac Therapeutics, Inc. Transglutaminase-vermittelte konjugation
US20230140384A1 (en) 2020-03-09 2023-05-04 Bristol-Myers Squibb Company Antibodies to cd40 with enhanced agonist activity
IL296241A (en) 2020-03-10 2022-11-01 Massachusetts Inst Technology Compositions and methods for immunotherapy for npm1c-positive cancer
US20230146593A1 (en) 2020-03-12 2023-05-11 Amgen Inc. Method for treatment and prophylaxis of crs in patients comprising a combination of bispecific antibodies binding to cds x cancer cell and tnf alpha or il-6 inhibitor
CA3175275A1 (en) 2020-03-19 2021-09-23 Amgen Inc. Antibodies against mucin 17 and uses thereof
WO2021207449A1 (en) 2020-04-09 2021-10-14 Merck Sharp & Dohme Corp. Affinity matured anti-lap antibodies and uses thereof
KR102502287B1 (ko) 2020-04-17 2023-02-22 앱클론(주) 항-her2 어피바디 및 이를 스위치 분자로 이용하는 스위처블 키메라 항원 수용체
WO2021222347A1 (en) 2020-04-29 2021-11-04 Amgen Inc. Pharmaceutical formulation
WO2021222355A1 (en) 2020-04-29 2021-11-04 Amgen Inc. Pharmaceutical formulation
WO2021231732A1 (en) 2020-05-15 2021-11-18 Bristol-Myers Squibb Company Antibodies to garp
MX2022014636A (es) 2020-05-19 2023-02-23 Amgen Inc Construcciones de unión a mageb2.
MX2022014902A (es) 2020-05-29 2023-01-04 Amgen Inc Administracion mitigadora de efectos adversos de un constructo biespecifico que se une a cd33 y cd3.
EP3915580A1 (de) 2020-05-29 2021-12-01 Numab Therapeutics AG Multispezifischer antikörper
CN115667310A (zh) 2020-06-01 2023-01-31 创新生物有限公司 Cd22特异性抗体及其用途
EP4163298A4 (de) 2020-06-09 2024-06-12 Univ Kookmin Ind Acad Coop Found Antikörper mit spezifischer bindung an grp94 oder antigenbindendes fragment davon und verwendungen davon
PE20231093A1 (es) 2020-07-16 2023-07-18 Novartis Ag Anticuerpos anti-betacelulina, fragmentos de los mismos, y moleculas de union multiespecificas
WO2022031978A1 (en) 2020-08-06 2022-02-10 Bioverativ Usa Inc. Inflammatory cytokines and fatigue in subject with a complement mediated disease
JP2023538669A (ja) 2020-08-24 2023-09-08 アムジェン インコーポレイテッド Bite、二重特異性抗体、及びメチオニンを含む医薬製剤
EP3988568A1 (de) 2020-10-21 2022-04-27 Numab Therapeutics AG Kombinationsbehandlung
US20230391893A1 (en) * 2020-10-30 2023-12-07 Cellemedy Co.,Ltd Antibody-like protein and use thereof
CN116472288A (zh) 2020-11-06 2023-07-21 诺华股份有限公司 抗体Fc变体
EP4240770A1 (de) 2020-11-06 2023-09-13 Amgen Research (Munich) GmbH Polypeptidkonstrukte mit selektiver bindung an cldn6 und cd3
AR124019A1 (es) 2020-11-06 2023-02-01 Amgen Res Munich Gmbh Construcciones polipeptídicas que se unen a cd3
MX2023005322A (es) 2020-11-06 2023-08-29 Amgen Inc Moleculas de union a antigeno biespecificas con multiples dianas de selectividad aumentada.
KR20230107281A (ko) 2020-11-11 2023-07-14 비온테크 에스이 프로그램된 사멸-1 단백질에 대한 모노클로날 항체 및 의약에서의 용도
KR20220080375A (ko) 2020-12-07 2022-06-14 (주)이노베이션바이오 Cd47에 특이적인 항체 및 이의 용도
EP4019547A1 (de) 2020-12-23 2022-06-29 Numab Therapeutics AG Multispezifische antikörper mit spezifität für il-4r und il-31
JP2024501656A (ja) 2020-12-23 2024-01-15 ヌマブ セラピューティクス アクチェンゲゼルシャフト Il-4rに結合する抗体可変ドメイン
EP4019090A1 (de) 2020-12-23 2022-06-29 Numab Therapeutics AG Antikörper mit variablen domänen, die il-4r binden
EP4019546A1 (de) 2020-12-23 2022-06-29 Numab Therapeutics AG Antikörper mit variablen domänen, die il-31 binden
WO2022136693A1 (en) 2020-12-23 2022-06-30 Numab Therapeutics AG Antibody variable domains and antibodies having decreased immunogenicity
WO2022147463A2 (en) 2020-12-31 2022-07-07 Alamar Biosciences, Inc. Binder molecules with high affinity and/ or specificity and methods of making and use thereof
US20240141061A1 (en) 2021-01-12 2024-05-02 Sg Medical Inc Novel antibody against cd55 and use thereof
JP2024504471A (ja) 2021-02-02 2024-01-31 ヌマブ セラピューティックス アーゲー Ror1およびcd3に対する特異性を有する多重特異性抗体
US20240139198A1 (en) 2021-02-10 2024-05-02 Curon Biopharmaceutical (Shanghai) Co., Limited Method and combination for treating tumors
TW202304508A (zh) 2021-03-31 2023-02-01 美商百歐維拉提夫美國公司 減少冷凝集素疾病患者之手術相關溶血
JP2024514530A (ja) 2021-04-02 2024-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 切断型cdcp1に対する抗体およびその使用
EP4328243A1 (de) 2021-04-20 2024-02-28 Korea University Research and Business Foundation Asymmetrischer antikörper mit verbesserter zytotoxizität gegen krebszellen
MX2023012931A (es) 2021-05-06 2023-11-13 Amgen Res Munich Gmbh Moleculas de union a antigeno dirigidas a cd20 y cd22 para su uso en enfermedades proliferativas.
EP4346778A1 (de) 2021-06-01 2024-04-10 Amgen Inc. Beschleunigtes verfahren zur herstellung lyophilisierter proteinformulierungen
WO2023277281A1 (ko) 2021-06-30 2023-01-05 (주)이노베이션바이오 Cd47에 특이적인 인간화 항체 및 이를 포함하는 cd47 관련 질환의 예방 또는 치료용 약학적 조성물
CN117377695A (zh) 2021-06-30 2024-01-09 安进公司 冻干制剂的重构方法
KR20230066257A (ko) 2021-11-05 2023-05-15 서울대학교병원 리지스틴 특이적 항체 및 이의 용도
EP4183800A1 (de) 2021-11-19 2023-05-24 Medizinische Hochschule Hannover Neue sars-cov-2-neutralisierende antikörper
WO2023109901A1 (en) 2021-12-17 2023-06-22 Shanghai Henlius Biotech, Inc. Anti-ox40 antibodies and methods of use
WO2023109900A1 (en) 2021-12-17 2023-06-22 Shanghai Henlius Biotech, Inc. Anti-ox40 antibodies, multispecific antibodies and methods of use
EP4273162A1 (de) 2022-05-06 2023-11-08 Numab Therapeutics AG Variable antikörperdomänen und antikörper mit verminderter immunogenität
WO2023214047A1 (en) 2022-05-06 2023-11-09 Numab Therapeutics AG Antibody variable domains and antibodies having decreased immunogenicity
TW202346368A (zh) 2022-05-12 2023-12-01 德商安美基研究(慕尼黑)公司 具有增加的選擇性的多鏈多靶向性雙特異性抗原結合分子
US11932693B2 (en) 2022-05-12 2024-03-19 BioNTech SE Monoclonal antibodies directed against programmed death-1 protein and their use in medicine
US20240117021A1 (en) 2022-06-15 2024-04-11 Bioverativ Usa Inc. Anti-complement c1s antibody formulation
WO2023250507A1 (en) 2022-06-24 2023-12-28 Bioverativ Usa Inc. Methods for treating complement-mediated diseases
WO2024038095A1 (en) 2022-08-16 2024-02-22 Iome Bio NOVEL ANTI-RGMb ANTIBODIES
WO2024059675A2 (en) 2022-09-14 2024-03-21 Amgen Inc. Bispecific molecule stabilizing composition
WO2024086827A2 (en) 2022-10-20 2024-04-25 Repertoire Immune Medicines, Inc. Cd8 t cell targeted il2
WO2024092033A1 (en) 2022-10-26 2024-05-02 Amgen Inc. Multispecific molecules for clearance of immunoglobulins in the treatment of autoantibody-induced diseases
CN117777307A (zh) * 2023-09-26 2024-03-29 深圳豪石生物科技有限公司 一种cldn18.2特异性嵌合t细胞受体、嵌合t细胞受体免疫细胞及其应用

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355023A (en) * 1980-09-30 1982-10-19 The Massachusetts General Hospital Antibody fragment compositions and process
US4474893A (en) * 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
DE3382317D1 (de) * 1982-03-15 1991-07-25 Schering Corp Hybride dns, damit hergestellte bindungszusammensetzung und verfahren dafuer.
US4666837A (en) * 1982-05-24 1987-05-19 Smithkline-Rit DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits
GB8308235D0 (en) * 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
NZ212312A (en) * 1984-06-07 1988-09-29 John Richard Murphy Hybrid protein comprising fragments of diphtheria toxin and part of cell-specific ligand; and fused gene therefor
JPS6147500A (ja) * 1984-08-15 1986-03-07 Res Dev Corp Of Japan キメラモノクロ−ナル抗体及びその製造法
EP0173494A3 (de) * 1984-08-27 1987-11-25 The Board Of Trustees Of The Leland Stanford Junior University Chimäre Rezeptoren durch Verbindung und Expression von DNS
GB8422238D0 (en) * 1984-09-03 1984-10-10 Neuberger M S Chimeric proteins
JPS61104788A (ja) * 1984-10-26 1986-05-23 Teijin Ltd 核酸塩基配列
JPS61134325A (ja) 1984-12-04 1986-06-21 Teijin Ltd ハイブリツド抗体遺伝子の発現方法
US4698420A (en) * 1985-02-25 1987-10-06 Xoma Corporation Antibody hybrid molecules and process for their preparation
US4824659A (en) * 1985-06-07 1989-04-25 Immunomedics, Inc. Antibody conjugates
DE3689123T2 (de) * 1985-11-01 1994-03-03 Xoma Corp Modulare einheit von antikörpergenen, daraus hergestellte antikörper und verwendung.
SE8505922D0 (sv) * 1985-12-13 1985-12-13 Kabigen Ab Construction of an igg binding protein to facilitate downstream processing using protein engineering
GB8607679D0 (en) * 1986-03-27 1986-04-30 Winter G P Recombinant dna product
US5225539A (en) * 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4881175A (en) 1986-09-02 1989-11-14 Genex Corporation Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides
US4704692A (en) * 1986-09-02 1987-11-03 Ladner Robert C Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides
DE3785186T2 (de) * 1986-09-02 1993-07-15 Enzon Lab Inc Bindungsmolekuele mit einzelpolypeptidkette.
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5260203A (en) * 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
DE3852304T3 (de) * 1987-03-02 1999-07-01 Enzon Lab Inc Organismus als Träger für "Single Chain Antibody Domain (SCAD)".
DE3715033A1 (de) 1987-05-06 1988-11-17 Hoechst Ag Verfahren zur isolierung von fusionsproteinen
US5132405A (en) * 1987-05-21 1992-07-21 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
EP0623679B1 (de) 1987-05-21 2003-06-25 Micromet AG Multifunktionelle Proteine mit vorbestimmter Zielsetzung
US5091513A (en) * 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5258498A (en) * 1987-05-21 1993-11-02 Creative Biomolecules, Inc. Polypeptide linkers for production of biosynthetic proteins
ATE140963T1 (de) * 1988-01-22 1996-08-15 Zymogenetics Inc Verfahren zur herstellung von sekretierten rezeptoranalogen

Also Published As

Publication number Publication date
EP0318554B2 (de) 2005-01-12
AU648591B2 (en) 1994-04-28
WO1988009344A1 (en) 1988-12-01
EP0623679A1 (de) 1994-11-09
EP0318554B1 (de) 1995-04-05
US5476786A (en) 1995-12-19
US6207804B1 (en) 2001-03-27
DE3856559D1 (de) 2003-07-31
DE3853515T3 (de) 2005-08-25
CA1341614C (en) 2011-05-24
AU612370B2 (en) 1991-07-11
ATE243754T1 (de) 2003-07-15
DE3853515D1 (de) 1995-05-11
EP0318554A1 (de) 1989-06-07
AU8579991A (en) 1992-02-13
AU1804988A (en) 1988-12-21
JPH02500329A (ja) 1990-02-08
DE3853515T2 (de) 1995-08-17
CA1341415C (en) 2003-01-07
EP0318554A4 (de) 1990-01-24
ATE120761T1 (de) 1995-04-15
EP0623679B1 (de) 2003-06-25

Similar Documents

Publication Publication Date Title
DE3856559T2 (de) Multifunktionelle Proteine mit vorbestimmter Zielsetzung
US5258498A (en) Polypeptide linkers for production of biosynthetic proteins
DE3486179T3 (de) Verfahren zur Herstellung von Immunglobulinen
DE69333807T2 (de) Marker für krebs und biosynthetisches bindeprotein dafür
DE69730209T2 (de) Multivalentes und multispezifisches Antigenbindungsprotein
US5132405A (en) Biosynthetic antibody binding sites
DE69233204T2 (de) Verfahren und materialien zur herstellung von modifizierten variablen antikörperdomänen und ihre therapeutische verwendung
US5091513A (en) Biosynthetic antibody binding sites
DE69532940T2 (de) Verfahren zur Herstellung modifizierter Immunoglobuline mit verminderter Immunogenität der variablen Domänen eines Antikörpers der Maus, Zusammensetzungen, die diese enthalten
DE69233153T2 (de) Humanisierte monoklonale antikörper
EP0404097B1 (de) Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
DE69922159T2 (de) Mehrzweck-antikörperderivate
DE69530975T2 (de) Rekombinante humanisierte antikörper gegen lewis y
DE69333044T2 (de) LIGAND-BINDENDE VARIABELE DOMANE (V-MIN), DIE EINE &#34;FRAMEWORK&#34;-REGION ENTHÄLT MIT EINEM ZYKLISCH PERMUTIERTEN ZENTRALEN $g(b)-TUBUS
EP0517024B1 (de) Tetravalente bispezifische Rezeptoren, ihre Herstellung und Verwendung
DE69330523T3 (de) Immunoglobuline ohne leichte ketten
DE69233528T2 (de) Verfahren zur Herstellung von multivalenten antigenbindenden Proteinen
DE69233068T2 (de) Serin-reiche peptidlinker
WO1995033844A1 (de) Verfahren zur herstellung von heterologen bispezifischen antikörpern
EP0388964A2 (de) Verfahren zur Herstellung hetero-bispezifischer Antikörper
EP0440146A2 (de) Herstellung und Verwendung von Genbanken synthetischer menschlicher Antikörper (&#34;synthetische Human-Anti-Körper-Bibliotheken)
DE69333484T2 (de) Umgestaltete monoklonale Antikörper gegen ein Immunglobulinisotyp
DE4344350C2 (de) Bakterien zur Herstellung stabiler Fusionsproteine und Verfahren zu deren Nachweis
EP0537489B1 (de) Monoklonale Antikörper gegen tumorassoziierte Antigene, Verfahren zu ihrer Herstellung und ihre Verwendung
CA1341615C (en) Targeted multifunctional proteins

Legal Events

Date Code Title Description
8364 No opposition during term of opposition