WO2014185430A1 - L-アミノ酸の製造法 - Google Patents

L-アミノ酸の製造法 Download PDF

Info

Publication number
WO2014185430A1
WO2014185430A1 PCT/JP2014/062752 JP2014062752W WO2014185430A1 WO 2014185430 A1 WO2014185430 A1 WO 2014185430A1 JP 2014062752 W JP2014062752 W JP 2014062752W WO 2014185430 A1 WO2014185430 A1 WO 2014185430A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
amino acid
activity
protein
seq
Prior art date
Application number
PCT/JP2014/062752
Other languages
English (en)
French (fr)
Inventor
聖子 平野
和之 林
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to BR112015007916-4A priority Critical patent/BR112015007916B1/pt
Priority to KR1020157019590A priority patent/KR101773755B1/ko
Priority to JP2015517097A priority patent/JP5831669B2/ja
Priority to EP14797459.6A priority patent/EP2868745B1/en
Priority to CN201480005332.7A priority patent/CN105008532B/zh
Priority to MYPI2015701942A priority patent/MY185322A/en
Publication of WO2014185430A1 publication Critical patent/WO2014185430A1/ja
Priority to PH12015500792A priority patent/PH12015500792A1/en
Priority to US14/796,326 priority patent/US9506094B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids

Definitions

  • the present invention relates to a method for producing L-amino acids using coryneform bacteria.
  • L-amino acids are industrially useful as additives for animal feed, ingredients for seasonings and foods and drinks, amino acid infusions, and the like.
  • L-amino acids are industrially produced, for example, by fermentation using various microorganisms capable of producing L-amino acids.
  • methods for producing L-amino acids by fermentation include a method using a wild-type microorganism (wild strain), a method using an auxotrophic strain derived from a wild strain, and various drug-resistant mutant strains derived from a wild strain. And a method using a strain having characteristics of both an auxotrophic strain and a metabolic control mutant.
  • Escherichia coli has at least two inorganic phosphate uptake systems (Non-patent Document 1).
  • One is a low-affinity inorganic phosphate transporter (Pit) system, and the other is a high-affinity phosphate-specific transporter (Pst).
  • PitA and pitB genes are known as genes encoding the Pit system.
  • the pstSCAB gene is known as a gene encoding the Pst system, and the product of the pstSCAB gene forms a complex and functions as the Pst system.
  • the relationship between the activity of these phosphate transporters and L-amino acid production has not been known.
  • An object of the present invention is to develop a novel technique for improving L-amino acid producing ability of coryneform bacteria and to provide an efficient method for producing L-amino acid.
  • the present inventor has improved the ability of L-amino acid production of coryneform bacteria by modifying coryneform bacteria so that the activity of the phosphate transporter is increased.
  • the present invention has been completed.
  • the present invention can be exemplified as follows.
  • a method for producing an L-amino acid comprising culturing a coryneform bacterium having L-amino acid-producing ability in a medium, and collecting the L-amino acid from the medium, A method wherein the bacterium has been modified to increase the activity of a phosphate transporter.
  • the method, wherein the activity of a phosphate transporter is increased by increasing the expression of a gene encoding a phosphate transporter.
  • the method, wherein the gene is a pitA gene.
  • the pitA gene is the DNA described in (a) or (b) below: (A) DNA having the base sequence shown in SEQ ID NO: 5 or 25, (B) A DNA that hybridizes with a probe that can be prepared from a complementary sequence of the nucleotide sequence shown in SEQ ID NO: 5 or 25 or a complementary sequence thereof under stringent conditions and that encodes a protein having phosphate transporter activity.
  • the pitA gene is DNA encoding the protein described in (A) or (B) below: (A) a protein having the amino acid sequence shown in SEQ ID NO: 6 or 26, (B) a protein having an amino acid sequence including substitution, deletion, insertion, or addition of one or several amino acid residues and having phosphate transporter activity in the amino acid sequence shown in SEQ ID NO: 6 or 26 . [6] The method, wherein the expression of the gene is increased by increasing the copy number of the gene and / or modifying an expression regulatory sequence of the gene.
  • a method for producing an L-amino acid comprising culturing a coryneform bacterium having L-amino acid-producing ability in a medium, and collecting the L-amino acid from the medium,
  • the bacterium has a mutant pitA gene encoding a phosphate transporter having a mutation in which an amino acid residue corresponding to the phenylalanine residue at position 246 of SEQ ID NO: 6 is substituted with an amino acid residue other than phenylalanine
  • the method of the present invention is a method for producing an L-amino acid, comprising culturing a coryneform bacterium having L-amino acid-producing ability in a medium, and collecting the L-amino acid from the medium.
  • the coryneform bacterium used in this method is also referred to as “the bacterium of the present invention”.
  • the bacterium of the present invention is a coryneform bacterium having an ability to produce L-amino acids, modified so that the activity of a phosphate transporter is increased.
  • bacteria having L-amino acid-producing ability refers to the production and recovery of a target L-amino acid when cultured in a medium. Bacteria that have the ability to accumulate in the medium or in the cells to the extent possible.
  • the bacterium having L-amino acid-producing ability may be a bacterium capable of accumulating a larger amount of the target L-amino acid in the medium than the unmodified strain.
  • Non-modified strains include wild strains and parent strains.
  • the bacterium having L-amino acid-producing ability is a bacterium that can accumulate the target L-amino acid in an amount of 0.5 g / L or more, more preferably 1.0 g / L or more in the medium. May be.
  • L-amino acids include basic amino acids such as L-lysine, L-ornithine, L-arginine, L-histidine, L-citrulline, L-isoleucine, L-alanine, L-valine, L-leucine, glycine, etc.
  • Aliphatic amino acids amino acids which are hydroxymonoaminocarboxylic acids such as L-threonine and L-serine, cyclic amino acids such as L-proline, aromatic amino acids such as L-phenylalanine, L-tyrosine and L-tryptophan, L- Examples thereof include sulfur-containing amino acids such as cysteine, L-cystine and L-methionine, acidic amino acids such as L-glutamic acid and L-aspartic acid, and amino acids having an amide group in the side chain such as L-glutamine and L-asparagine.
  • the bacterium of the present invention may have an ability to produce two or more amino acids.
  • L-amino acids are L-amino acids unless otherwise specified.
  • the L-amino acid may be a free form, a salt thereof, or a mixture thereof. That is, the term “L-amino acid” in the present invention may mean a free L-amino acid, a salt thereof, or a mixture thereof.
  • the salt include sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, and potassium salt.
  • L-lysine may be free L-lysine, L-lysine sulfate, L-lysine hydrochloride, L-lysine carbonate, or a mixture thereof.
  • L-glutamic acid may be free L-glutamic acid, sodium L-glutamate (MSG), ammonium L-glutamate, or a mixture thereof.
  • coryneform bacteria examples include bacteria belonging to genera such as Corynebacterium genus, Brevibacterium genus, and Microbacterium genus.
  • coryneform bacteria include the following species. Corynebacterium acetoacidophilum Corynebacterium acetoglutamicum Corynebacterium alkanolyticum Corynebacterium callunae Corynebacterium glutamicum Corynebacterium lilium Corynebacterium melassecola Corynebacterium thermoaminogenes (Corynebacterium efficiens) Corynebacterium herculis Brevibacterium divaricatum (Corynebacterium glutamicum) Brevibacterium flavum (Corynebacterium glutamicum) Brevibacterium immariophilum Brevibacterium lactofermentum (Corynebacterium glutamicum) Brevibacterium roseum Brevibacterium saccharolyticum Brevibacterium thiogenitalis Corynebacterium ammoniagenes (Corynebacterium stationis) Brevibacterium album Brevibacterium cerinum Microbacterium ammoniaphilum
  • coryneform bacteria include the following strains. Corynebacterium acetoacidophilum ATCC 13870 Corynebacterium acetoglutamicum ATCC 15806 Corynebacterium alkanolyticum ATCC 21511 Corynebacterium callunae ATCC 15991 Corynebacterium glutamicum ATCC 13020, ATCC 13032, ATCC 13060, ATCC 13869, FERM BP-734 Corynebacterium lilium ATCC 15990 Corynebacterium melassecola ATCC 17965 Corynebacterium efficiens (Corynebacterium thermoaminogenes) AJ12340 (FERM BP-1539) Corynebacterium herculis ATCC 13868 Corynebacterium glutamicum (Brevibacterium divaricatum) ATCC 14020 Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13826, ATCC 14067, AJ124
  • corynebacteria belonging to the genus Brevibacterium has been classified as a genus of corynebacteria, but bacteria integrated into the genus corynebacteria (Int. J. Syst. Bacteriol., 41, 255 (1991)) are also available. included.
  • Corynebacterium stationis which was previously classified as Corynebacterium ammoniagenes, includes bacteria that have been reclassified as Corynebacterium stationis by 16S rRNA sequencing (Int. J Syst. Evol. Microbiol., 60, 874-879 (2010)).
  • strains can be sold, for example, from the American Type Culture Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States States of America). That is, a registration number corresponding to each strain is given, and it is possible to receive a sale using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
  • the bacterium of the present invention may inherently have L-amino acid-producing ability or may have been modified to have L-amino acid-producing ability.
  • a bacterium having L-amino acid-producing ability can be obtained, for example, by imparting L-amino acid-producing ability to the bacterium as described above, or by enhancing the L-amino acid-producing ability of the bacterium as described above. .
  • L-amino acid-producing ability can be imparted or enhanced by a method conventionally used for breeding amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (Amino Acid Fermentation, Academic Publishing Center, Inc., 1986). (May 30, 1st edition issued, see pages 77-100). Examples of such methods include acquisition of auxotrophic mutants, acquisition of L-amino acid analog-resistant strains, acquisition of metabolic control mutants, and recombination with enhanced activity of L-amino acid biosynthetic enzymes. The creation of stocks. In the breeding of L-amino acid-producing bacteria, properties such as auxotrophy, analog resistance, and metabolic control mutation that are imparted may be single, or two or more.
  • L-amino acid biosynthetic enzymes whose activities are enhanced in breeding L-amino acid-producing bacteria may be used alone or in combination of two or more.
  • imparting properties such as auxotrophy, analog resistance, and metabolic control mutation may be combined with enhancing the activity of biosynthetic enzymes.
  • An auxotrophic mutant, an analog resistant strain, or a metabolically controlled mutant having L-amino acid production ability is subjected to normal mutation treatment of the parent strain or wild strain, and the auxotrophic, analog It can be obtained by selecting those exhibiting resistance or metabolic control mutations and having the ability to produce L-amino acids.
  • Normal mutation treatments include X-ray and ultraviolet irradiation, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethyl methane sulfonate (EMS), methyl methane sulfonate (MMS), etc. Treatment with a mutagen is included.
  • the L-amino acid-producing ability can be imparted or enhanced by enhancing the activity of an enzyme involved in the target L-amino acid biosynthesis. Enhancing enzyme activity can be performed, for example, by modifying bacteria so that expression of a gene encoding the enzyme is enhanced. Methods for enhancing gene expression are described in WO00 / 18935 pamphlet, European Patent Application Publication No. 1010755, and the like. A detailed method for enhancing the enzyme activity will be described later.
  • the L-amino acid-producing ability can be imparted or enhanced by reducing the activity of an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. It can be carried out.
  • an enzyme that catalyzes a reaction that produces a compound other than the target L-amino acid by branching from the biosynthetic pathway of the target L-amino acid includes enzymes involved in the degradation of the target amino acid. It is. A method for reducing the enzyme activity will be described later.
  • L-amino acid-producing bacteria and methods for imparting or enhancing L-amino acid-producing ability are given below.
  • any of the modifications exemplified below for imparting or enhancing the properties of L-amino acid-producing bacteria and L-amino acid-producing ability may be used alone or in appropriate combination.
  • L-glutamic acid producing bacteria examples include strains in which the activity of one or more enzymes selected from L-glutamic acid biosynthetic enzymes are enhanced.
  • enzymes include, but are not limited to, glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthetase (gltBD), isocitrate dehydrogenase (icdA), aconitate hydratase (acnA, acnB), citric acid Synthase (gltA), methyl citrate synthase (prpC), phosphoenol pyruvate carbocilase (ppc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenol pyruvate synthe
  • the parentheses are abbreviations for genes encoding the enzymes (the same applies to the following description).
  • these enzymes it is preferable to enhance the activity of one or more enzymes selected from, for example, glutamate dehydrogenase, citrate synthase, phosphoenolpyruvate carboxylase, and methyl citrate synthase.
  • Examples of coryneform bacteria modified to increase the expression of glutamate synthetase gene include those disclosed in WO99 / 07853.
  • the L-glutamic acid-producing bacterium or the parent strain for deriving it is selected from enzymes selected from enzymes that catalyze reactions that branch off from the biosynthetic pathway of L-glutamic acid to produce compounds other than L-glutamic acid. Examples include strains in which the activity of the above enzymes is reduced or deficient.
  • Such enzymes include, but are not limited to, isocitrate lyase (aceA), ⁇ -ketoglutarate dehydrogenase (sucA, odhA), phosphotransacetylase (pta), acetate kinase (ack), acetohydroxy acid synthase (IlvG), acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ldh), glutamate decarboxylase (gadAB), succinate dehydrogenase (sdhABCD), 1-pyrroline-5-carboxylate dehydrogenase (putA ).
  • aceA isocitrate lyase
  • sucA ⁇ -ketoglutarate dehydrogenase
  • pta phosphotransacetylase
  • ack acetate kinase
  • ack acetohydroxy acid synthase
  • Coryneform bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity and methods for obtaining them are described in WO2008 / 075483.
  • Specific examples of coryneform bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity include the following strains.
  • L-glutamic acid-producing bacteria or parent strains for inducing the same also include strains in which both ⁇ -ketoglutarate dehydrogenase (sucA) activity and succinate dehydrogenase (sdh) activity are reduced or deficient (Japanese Patent Application Laid-Open (JP-A) 2010-041920).
  • specific examples of such strains include, for example, an odhAsdhA double-deficient strain of Corynebacterium glutamicum ATCC14067 (Corynebacterium glutamicum 8L3G ⁇ SDH strain) (Japanese Patent Laid-Open No. 2010-041920).
  • examples of L-glutamic acid-producing bacteria or parent strains for deriving the same also include strains modified to enhance D-xylulose-5-phosphate-phosphoketolase and / or fructose-6-phosphate phosphoketolase activity. (Special Table 2008-509661). Either one or both of D-xylulose-5-phosphate-phosphoketolase activity and fructose-6-phosphate phosphoketolase activity may be enhanced. In the present specification, D-xylulose-5-phosphate phosphoketolase and fructose-6-phosphate phosphoketolase may be collectively referred to as phosphoketolase.
  • D-xylulose-5-phosphate-phosphoketolase activity is the consumption of phosphoric acid to convert xylulose-5-phosphate into glyceraldehyde-3-phosphate and acetyl phosphate, and one molecule of H 2 O Means the activity of releasing. This activity is measured by the method described in Goldberg, M. et al. (Methods Enzymol., 9,515-520 (1966)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
  • fructose-6-phosphate phosphoketolase activity means that phosphoric acid is consumed, fructose 6-phosphate is converted into erythrose-4-phosphate and acetyl phosphate, and one molecule of H 2 O is released. Means activity. This activity is measured by the method described in Racker, E (Methods Enzymol., 5, 276-280 (1962)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
  • Examples of methods for imparting or enhancing L-glutamic acid-producing ability for coryneform bacteria include methods for imparting resistance to organic acid analogs and respiratory inhibitors, and methods for imparting sensitivity to cell wall synthesis inhibitors. .
  • Examples of such methods include a method for imparting monofluoroacetic acid resistance (Japanese Patent Laid-Open No. 50-113209), a method for imparting adenine resistance or thymine resistance (Japanese Patent Laid-Open No. 57-065198), and a method of weakening urease activity.
  • JP 52-038088 method for imparting malonic acid resistance (JP 52-038088), method for imparting resistance to benzopyrone or naphthoquinones (JP 56-1889), imparting HOQNO resistance
  • a method for imparting resistance to ⁇ -ketomalonic acid Japanese Patent Laid-Open No. 57-2689
  • a method for imparting guanidine resistance Japanese Patent Laid-Open No. 56-35981
  • imparting sensitivity to penicillin And a method Japanese Patent Laid-Open No. 4-88994
  • Such resistant or sensitive bacteria include the following strains. Corynebacterium glutamicum (Brevibacterium flavum) AJ3949 (FERM BP-2632; see JP 50-113209) Corynebacterium glutamicum AJ11628 (FERM P-5736; see JP-A-57-065198) Corynebacterium glutamicum (Brevibacterium flavum) AJ11355 (FERM P-5007; see JP 56-1889) Corynebacterium glutamicum AJ11368 (FERM P-5020; see JP-A-56-1889) Corynebacterium glutamicum (Brevibacterium flavum) AJ11217 (FERM P-4318; see JP-A-57-2689) Corynebacterium glutamicum AJ11218 (FERM P-4319; see JP 57-2689) Corynebacterium glutamicum (Brevibacterium flavum) AJ11564 (FERM P-
  • Examples of a method for imparting or enhancing L-glutamic acid producing ability for coryneform bacteria include a method for enhancing expression of the yggB gene and a method for introducing a mutant yggB gene having a mutation introduced into the coding region ( WO2006 / 070944).
  • the yggB gene encodes a mechanosensitive channel.
  • the yggB gene of Corynebacterium glutamicum ATCC13032 corresponds to the complementary sequence of the sequences 1,336,091 to 1,337,692 in the genome sequence registered in the NCBI database as Genbank Accession No. NC_003450, and is also called NCgl1221.
  • the YggB protein encoded by the yggB gene of Corynebacterium glutamicum ATCC13032 is registered as GenBank accession No. NP_600492.
  • the nucleotide sequence of the yggB gene of Corynebacterium glutamicum 2256 (ATCC 13869) and the amino acid sequence of the YggB protein encoded by the same gene are shown in SEQ ID NOs: 21 and 22, respectively.
  • mutant yggB gene used herein examples include the yggB gene having the following mutations.
  • the YggB protein encoded by the mutant yggB gene is also referred to as a mutant YggB protein.
  • the yggB gene not having the mutation and the YggB protein encoded by the same gene are also referred to as a wild-type yggB gene and a wild-type YggB protein, respectively.
  • Examples of the wild type YggB protein include a protein having the amino acid sequence shown in SEQ ID NO: 22.
  • the C-terminal side mutation is a mutation introduced into a part of the base sequence of the region encoding the sequence of amino acid numbers 419 to 533 of SEQ ID NO: 22.
  • the C-terminal mutation is not particularly limited as long as the mutation is introduced into at least a part of the base sequence of the above region, but preferably has an insertion sequence (hereinafter also referred to as “IS”) or a transposon inserted therein.
  • the C-terminal mutation may be any of those accompanied by amino acid substitution (missense mutation), those having a frameshift mutation introduced by insertion of the IS or the like, and those having a nonsense mutation introduced.
  • a mutant yggB gene having a C-terminal mutation for example, IS is inserted at a position encoding valine residue at position 419 of SEQ ID NO: 22, which is more than that of the wild-type YggB protein (SEQ ID NO: 22).
  • a yggB gene encoding a mutant YggB protein having a short total length of 423 amino acid residues can be mentioned (Japanese Patent Laid-Open No. 2007-222163).
  • the nucleotide sequence of this mutant yggB gene (V419 :: IS) and the amino acid sequence of the mutant YggB protein encoded by the same gene are shown in SEQ ID NOs: 23 and 24, respectively.
  • examples of the C-terminal mutation include a mutation that substitutes proline existing in the region of amino acid numbers 419 to 533 of SEQ ID NO: 22 with another amino acid.
  • the YggB protein encoded by the yggB gene has five transmembrane regions.
  • the transmembrane regions are amino acid numbers 1 to 23 (first transmembrane region), 25 to 47 (second transmembrane region), and 62 to 84 (third membrane), respectively. This corresponds to the region of through region), 86 to 108 (fourth membrane penetration region), and 110 to 132 (fifth membrane penetration region).
  • the yggB gene may have a mutation in the region encoding these transmembrane regions.
  • the mutation in the transmembrane region is preferably a mutation including substitution, deletion, addition, insertion or inversion of one or several amino acids, and is not accompanied by a frameshift mutation and a nonsense mutation.
  • Mutations in the transmembrane region include mutations in which one or several amino acids are inserted between the leucine residue at position 14 and the tryptophan residue at position 15 in the amino acid sequence shown in SEQ ID NO: 22, and the alanine residue at position 100 And the like, and the mutation that substitutes the alanine residue at position 111 to another amino acid residue.
  • the above “one or several” specifically means preferably 1 to 20, more preferably 1 to 10, further preferably 1 to 5, particularly preferably 1 to 3. .
  • the mutant yggB gene is mutated into a region encoding an amino acid residue corresponding to the amino acid residue at the above position in SEQ ID NO: 22. As long as it has.
  • which amino acid residue is “the amino acid residue corresponding to the amino acid residue at the above position in SEQ ID NO: 22” is determined based on the amino acid sequence of the wild type YggB protein and SEQ ID NO: 22 It can be determined by alignment with the amino acid sequence.
  • mutant phosphate transporters described later and variants of genes encoding the same can be applied mutatis mutandis.
  • Amino acid number X of SEQ ID NO: 22 may be read as “X position of SEQ ID NO: 22”.
  • Examples of the method for imparting or enhancing L-glutamine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, glutamate dehydrogenase (gdhA) and glutamine synthetase (glnA).
  • the method for imparting or enhancing L-glutamine production ability is, for example, selected from an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine.
  • an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • Such an enzyme is not particularly limited, and includes glutaminase.
  • L-glutamine-producing bacteria or parent strains for inducing them examples include coryneform bacteria (EP1229121, EP1424398) with enhanced activity of glutamate dehydrogenase (gdhA) and / or glutamine synthetase (glnA), and coryneforms with reduced glutaminase activity Type bacteria (Japanese Patent Laid-Open No. 2004-187684). Enhancement of glutamine synthetase activity can also be achieved by disruption of the glutamine adenylyltransferase gene (glnE) or the PII regulatory protein gene (glnB) (EP1229121).
  • gdhA glutamate dehydrogenase
  • glnA glutamine synthetase
  • glnA glutaminase activity Type bacteria
  • Enhancement of glutamine synthetase activity can also be achieved by disruption of the glutamine adenylyltransferase gene (g
  • Corynebacterium glutamicum (Brevibacterium flavum) AJ11573 (FERM P-5492, JP 56-161495) Corynebacterium glutamicum (Brevibacterium flavum) AJ11576 (FERM BP-10381, JP 56-161495) Corynebacterium glutamicum (Brevibacterium flavum) AJ12212 (FERM P-8123, JP 61-202694)
  • L-proline producing bacteria examples include a strain in which the activity of one or more enzymes selected from L-proline biosynthesis enzymes are enhanced.
  • enzymes involved in L-proline biosynthesis include glutamate 5-kinase, ⁇ -glutamyl-phosphate reductase, and pyrroline-5-carboxylate reductase.
  • the proB gene German Patent No. 3127361 encoding glutamate kinase which is desensitized to feedback inhibition by L-proline can be preferably used.
  • examples of L-proline-producing bacteria or parent strains for inducing them also include strains in which the activity of an enzyme involved in L-proline degradation is reduced.
  • examples of such an enzyme include proline dehydrogenase and ornithine aminotransferase.
  • L-threonine producing bacteria examples include a strain in which the activity of one or more enzymes selected from L-threonine biosynthetic enzymes are enhanced.
  • enzymes include, but are not limited to, aspartokinase III (lysC), aspartate semialdehyde dehydrogenase (asd), aspartokinase I (thrA), homoserine kinase (thrB), threonine synthase ( threonine synthase) (thrC), aspartate aminotransferase (aspartate transaminase) (aspC).
  • the L-threonine biosynthesis gene may be introduced into a strain in which threonine degradation is suppressed.
  • the activity of the L-threonine biosynthetic enzyme is inhibited by the final product L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is preferable to modify the L-threonine biosynthetic gene so as not to receive feedback inhibition by L-threonine.
  • the thrA, thrB, and thrC genes constitute a threonine operon, and the threonine operon forms an attenuator structure. Expression of the threonine operon is inhibited by isoleucine and threonine in the culture medium, and is suppressed by attenuation.
  • Enhanced expression of the threonine operon can be achieved by removing the leader sequence or attenuator in the attenuation region (Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., um Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194: 59-69 1987 (1987); WO02 / 26993; WO2005 / 049808; WO2005 / 049808; WO2003 / 097839 ).
  • the threonine operon may be constructed so that a gene involved in threonine biosynthesis is expressed under the control of a lambda phage repressor and promoter (see European Patent No. 0593792).
  • Bacteria modified so as not to be subjected to feedback inhibition by L-threonine can also be obtained by selecting a strain resistant to ⁇ -amino- ⁇ -hydroxyvaleric acid (AHV), which is an L-threonine analog.
  • HAV ⁇ -amino- ⁇ -hydroxyvaleric acid
  • the threonine operon modified so as not to be subjected to feedback inhibition by L-threonine is improved in the expression level in the host by increasing the copy number or being linked to a strong promoter.
  • An increase in copy number can be achieved by introducing a plasmid containing a threonine operon into the host.
  • An increase in copy number can also be achieved by transferring the threonine operon onto the host genome using a transposon, Mu phage, or the like.
  • the thrA gene encoding aspartokinase homoserine dehydrogenase I of E. coli has been revealed (nucleotide numbers 337-2799, GenBank accession NC_000913.2, gi: 49175990).
  • the thrA gene is located between the thrL gene and the thrB gene in the chromosome of E. coli K-12.
  • the thrB gene encoding homoserine kinase of Escherichia coli has been elucidated (nucleotide numbers 2801 to 3733, GenBank accession NC_000913.2, gi: 49175990).
  • the thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12.
  • the thrC gene encoding threonine synthase from E.coli has been elucidated (nucleotide numbers 3734 to 5020, GenBank accession NC_000913.2, gi: 49175990).
  • the thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12.
  • thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is known in the threonine-producing strain E. coli VKPM B-3996. It can be obtained from plasmid pVIC40 (US Pat. No. 5,705,371).
  • the rhtA gene of E. coli is present at 18 minutes of the E. coli chromosome close to the glnHPQ operon, which encodes an element of the glutamine transport system.
  • the rhtA gene is the same as ORF1 (ybiF gene, nucleotide numbers 764 to 1651, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene.
  • the unit that expresses the protein encoded by ORF1 is called rhtA gene (rht: resistant toosehomoserine andeonthreonine (resistant to homoserine and threonine)).
  • the asd gene of E. coli has already been clarified (nucleotide numbers 3572511 to 3571408, GenBank accession NC_000913.1, gi: 16131307), and can be obtained by PCR using primers prepared based on the nucleotide sequence of the gene ( White, TJ et al., Trends Genet., 5, 185 (1989)).
  • the asd gene of other microorganisms can be obtained similarly.
  • the aspC gene of E. ⁇ ⁇ coli has already been clarified (nucleotide numbers 983742 to 984932, GenBank accession NC_000913.1, gi: 16128895), and obtained by PCR using a primer prepared based on the nucleotide sequence of the gene be able to.
  • the aspC gene of other microorganisms can be obtained similarly.
  • coryneform bacteria having L-threonine-producing ability examples include Corynebacterium acetoacidophilum AJ12318123 (FERM BP-1172) (see US Patent No. 5,188,949).
  • L-lysine producing bacteria examples include a strain in which the activity of one or more enzymes selected from L-lysine biosynthetic enzymes are enhanced.
  • enzymes include, but are not limited to, dihydrodipicolinate synthase (dapA), aspartokinase III (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate Diaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (US Pat. No.
  • phosphoenolpyrvate carboxylase ppc
  • aspartate semialdehyde dehydrogenase phosphoenolpyrvate carboxylase
  • Asd aspartate semialdehyde dehydrogenase
  • aspartate aminotransferase aspartate transaminase
  • aspC diaminopimelate epi Diaminopimelate epimerase
  • dapF diaminopimelate epi Diaminopimelate epimerase
  • dapD tetrahydrodipicolinate succinylase
  • dapE succinyl-diaminopimelate deacylase
  • aspartase aspA (195) ).
  • dihydrodipicolinate reductase diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and
  • the activity of one or more enzymes selected from succinyl diaminopimelate deacylase is enhanced.
  • a gene (cyo) (EP 1170376 A) involved in energy efficiency, a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) ( US Pat. No. 5,830,716), ybjE gene (WO2005 / 073390), or combinations thereof may have increased expression levels.
  • Aspartokinase III (lysC) is subject to feedback inhibition by L-lysine.
  • a mutant lysC gene encoding aspartokinase III that has been desensitized to feedback inhibition by L-lysine is used. It may be used (US Pat. No.
  • the L-lysine-producing bacterium or the parent strain for deriving it is selected from enzymes selected from enzymes that catalyze reactions that branch off from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine. Examples include strains in which the activity of the above enzymes is reduced or deficient. Such enzymes include, but are not limited to, homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malic enzyme (WO2005 / 010175). .
  • L-lysine-producing bacteria or parent strains for inducing them include mutants having resistance to L-lysine analogs.
  • L-lysine analogs inhibit the growth of bacteria such as Enterobacteriaceae and coryneform bacteria, but this inhibition is completely or partially released when L-lysine is present in the medium.
  • the L-lysine analog is not particularly limited, and examples thereof include oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), ⁇ -methyllysine, and ⁇ -chlorocaprolactam.
  • Mutant strains having resistance to these lysine analogs can be obtained by subjecting bacteria to normal artificial mutation treatment.
  • coryneform bacteria having L-lysine-producing ability include, for example, AEC resistant mutant strains (Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ11082 (NRRL B-11470) strain, etc .; Japanese Patent Publication No.
  • L-leucine L-homoserine, L-proline
  • Mutants requiring amino acids such as L-serine, L-arginine, L-alanine and L-valine (US Pat. No. 3,708) 395 and 3854272); DL- ⁇ -amino- ⁇ -caprolactam, ⁇ -amino-lauryllactam, aspartic acid analogs, sulfa drugs, quinoids, mutant strains resistant to N-lauroylleucine; oxaloacetic acid Mutants exhibiting resistance to decarboxylase inhibitors or respiratory enzyme inhibitors (Japanese Patent Laid-Open Nos.
  • JP 50-53588, 50-31093, 52-102498, 53-9394) JP, 53-86089, 55-9783, 55-9759, 56-32995, 56-39778, 56-39778, JP 53-43591, JP-B 53-1833); mutants requiring inositol or acetic acid (JP 55-9784, JP 56-8692); fluoropyruvic acid or 34 ° C or higher Mutants exhibiting sensitivity to the temperature of JP-A-55-9783 and JP-A-53-86090; Mutants resistant to Ji glycol (U.S. Pat. No. 4,411,997) and the like.
  • L-arginine producing bacteria examples include a strain in which the activity of one or more enzymes selected from L-arginine biosynthesis enzymes are enhanced.
  • enzymes include, but are not limited to, N-acetylglutamate synthase (argA), N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine
  • Examples thereof include transaminase (argD), ornithine carbamoyltransferase (argF), arginosuccinate synthetase (argG), arginosuccinate lyase (argH), and carbamoyl phosphate synthetase (carAB).
  • N-acetylglutamate synthase (argA) gene examples include mutant N-acetylglutamate synthase in which amino acid residues corresponding to the 15th to 19th positions of the wild type are substituted and feedback inhibition by L-arginine is released. It is preferable to use a gene to be encoded (European Application Publication No. 1170361).
  • examples of L-arginine-producing bacteria or parent strains for inducing them also include strains having resistance to amino acid analogs and the like.
  • Such strains include, for example, coryneform bacterial strains that have L-histidine, L-proline, L-threonine, L-isoleucine, L-methionine, or L-tryptophan requirements in addition to 2-thiazolealanine resistance.
  • coryneform bacterial strains that have L-histidine, L-proline, L-threonine, L-isoleucine, L-methionine, or L-tryptophan requirements in addition to 2-thiazolealanine resistance.
  • Coryneform bacterial strain resistant to ketomalonic acid, fluoromalonic acid or monofluoroacetic acid Japanese Patent Laid-Open No.
  • coryneform bacterial strain resistant to argininol Japanese Examined Patent Publication No. 62-24075
  • Coryneform bacterial strain resistant to X-guanidine X is a fatty acid or fatty chain derivative
  • Arginine Hydroxamate and 6-Azauracil A coryneform bacterium strain having resistance Japanese Patent Laid-Open No. 57-150381.
  • Specific examples of coryneform bacteria having the ability to produce L-arginine include the following strains.
  • L-citrulline and L-ornithine-producing bacteria share a biosynthetic pathway with L-arginine.
  • N-acetylglutamate synthase argA
  • N-acetylglutamylphosphate reductase argC
  • ornithine acetyltransferase argJ
  • N-acetylglutamate kinase argB
  • acetylornithine transaminase argD
  • WO 2006-35831 By increasing the enzyme activity of deacetylase (argE), the ability to produce L-citrulline and / or L-ornithine can be imparted or enhanced (WO 2006-35831).
  • L-histidine producing bacteria examples include strains in which the activity of one or more enzymes selected from L-histidine biosynthetic enzymes are enhanced.
  • examples of such an enzyme include, but are not limited to, ATP phosphoribosyltransferase (hisG), phosphoribosyl-AMP cyclohydrolase (hisI), phosphoribosyl-ATP pyrophosphohydrolase (hisI), phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleoside.
  • tide isomerase (hisA), amide transferase (hisH), histidinol phosphate aminotransferase (hisC), histidinol phosphatase (hisB), and histidinol dehydrogenase (hisD).
  • hisA tide isomerase
  • hisH amide transferase
  • hisC histidinol phosphate aminotransferase
  • hisB histidinol phosphatase
  • hisD histidinol dehydrogenase
  • L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine. Therefore, the ability to produce L-histidine can be imparted or enhanced, for example, by introducing a mutation that confers resistance to feedback inhibition in the ATP phosphoribosyltransferase gene (hisG) ( Russian Patent No. 2003677 and No. 2). 2119536).
  • L-cysteine producing bacteria examples include strains in which the activity of one or more enzymes selected from L-cysteine biosynthetic enzymes are enhanced.
  • enzymes are not particularly limited, and include serine acetyltransferase and 3-phosphoglycerate dehydrogenase.
  • Serine acetyltransferase activity can be enhanced, for example, by introducing a mutant cysE gene encoding a mutant serine acetyltransferase resistant to feedback inhibition by cysteine into bacteria.
  • Mutant serine acetyltransferases are disclosed, for example, in JP-A-11-155571 and US Patent Publication No. 20050112731. Further, the 3-phosphoglycerate dehydrogenase activity can be enhanced, for example, by introducing a mutant serA gene encoding a mutant 3-phosphoglycerate dehydrogenase resistant to feedback inhibition by serine into a bacterium. Mutant 3-phosphoglycerate dehydrogenase is disclosed, for example, in US Pat. No. 6,180,373.
  • the L-cysteine-producing bacterium or the parent strain for deriving it is selected from enzymes selected from enzymes that catalyze reactions that branch off from the biosynthetic pathway of L-cysteine to produce compounds other than L-cysteine. Examples include strains in which the activity of the above enzymes is reduced or deficient. Examples of such enzymes include enzymes involved in the degradation of L-cysteine.
  • the enzyme involved in the degradation of L-cysteine is not particularly limited, and examples thereof include cysteine desulfhydrase (aecD) (Japanese Patent Laid-Open No. 2002-233384).
  • examples of L-cysteine-producing bacteria or parent strains for inducing them include strains with enhanced L-cysteine excretion system and strains with enhanced sulfate / thiosulfate transport system.
  • Proteins of the L-cysteine excretion system include proteins encoded by the ydeD gene (JP 2002-233384), proteins encoded by the yfiK gene (JP 2004-49237), emrAB, emrKY, yojIH, acrEF, bcr, And each protein encoded by each gene of cusA (Japanese Patent Laid-Open No.
  • sulfate / thiosulfate transport system protein examples include proteins encoded by the cysPTWAM gene cluster.
  • coryneform bacterium having L-cysteine-producing ability a coryneform bacterium in which intracellular serine acetyltransferase activity is increased by retaining a serine acetyltransferase in which feedback inhibition by L-cysteine is reduced (Japanese Patent Application Laid-Open No. 2005-133867). 2002-233384).
  • L-methionine producing bacteria examples include L-threonine-requiring strains and mutants having resistance to norleucine (Japanese Patent Laid-Open No. 2000-139471).
  • examples of L-methionine-producing bacteria or parent strains for deriving them also include strains that retain mutant homoserine transsuccinylase that is resistant to feedback inhibition by L-methionine (Japanese Patent Laid-Open No. 2000-139471). , US20090029424).
  • L-methionine is biosynthesized with L-cysteine as an intermediate, L-methionine production ability can be improved by improving L-cysteine production ability (Japanese Patent Laid-Open No. 2000-139471, US20080311632).
  • L-leucine producing bacteria examples include strains in which the activity of one or more enzymes selected from L-leucine biosynthesis enzymes are enhanced.
  • examples of such an enzyme include, but are not limited to, an enzyme encoded by a gene of leuABCD operon.
  • a mutant leuA gene US Pat. No. 6,403,342
  • isopropyl malate synthase from which feedback inhibition by L-leucine has been released can be suitably used.
  • Coryneform bacteria having L-leucine-producing ability include, for example, Corynebacterium amicglutamicum (Brevibacterium lactofermentum) AJ3718 (FERM P-2516), which is resistant to 2-thiazolealanine and ⁇ -hydroxyleucine, and is auxotrophic for isoleucine and methionine. Is mentioned.
  • Examples of the method for imparting or enhancing L-isoleucine producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-isoleucine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, threonine deaminase and acetohydroxy acid synthase (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
  • Coryneform bacteria having the ability to produce L-isoleucine include coryneform bacteria in which a brnE gene encoding a branched-chain amino acid excretion protein is amplified (JP 2001-169788), and L-isoleucine by protoplast fusion with L-lysine producing bacteria.
  • Coryneform bacterium imparted with productivity JP-A 62-74293
  • coryneform bacterium enriched with homoserine dehydrogenase JP-A 62-91193
  • threonine hydroxamate resistant strain JP-A 62-195293
  • ⁇ -Ketomalone resistant strain JP 61-15695
  • methyl lysine resistant strain JP 61-15696
  • Corynebacterium glutamicum (Brevibacterium flavum) AJ12149 (FERM BP-759) (US Pat. No. 4,656,135).
  • L-valine producing bacteria examples include a strain in which the activity of one or more enzymes selected from L-valine biosynthesis enzymes is enhanced.
  • enzymes include, but are not limited to, enzymes encoded by genes of ilvGMEDA operon and ilvBNC operon.
  • ilvBN encodes acetohydroxy acid synthase
  • ilvC encodes isomeroreductase (WO 00/50624).
  • the ilvGMEDA operon and the ilvBNC operon are subject to expression suppression (attenuation) by L-valine, L-isoleucine, and / or L-leucine.
  • the threonine deaminase encoded by the ilvA gene is an enzyme that catalyzes the deamination reaction from L-threonine to 2-ketobutyric acid, which is the rate-limiting step of the L-isoleucine biosynthesis system. Therefore, for L-valine production, it is preferable that the ilvA gene is disrupted and the threonine deaminase activity is reduced.
  • the L-valine-producing bacterium or the parent strain for deriving it is selected from an enzyme that catalyzes a reaction that produces a compound other than L-valine by branching from the biosynthetic pathway of L-valine.
  • a strain in which the activity of the above enzyme is reduced is also mentioned.
  • enzymes include, but are not limited to, threonine dehydratase involved in L-leucine synthesis and enzymes involved in D-pantothenic acid synthesis (International Publication No. 00/50624).
  • L-valine-producing bacteria or parent strains for inducing them include strains having resistance to amino acid analogs and the like.
  • Such strains include, for example, L-isoleucine and L-methionine requirement, coryneform bacterial strains resistant to D-ribose, purine ribonucleoside, or pyrimidine ribonucleoside and capable of producing L-valine.
  • L-alanine producing bacteria examples include coryneform bacteria lacking H + -ATPase (Appl Microbiol Biotechnol. 2001 Nov; 57 (4): 534-40) and aspartic acid ⁇ -Coryneform bacteria with enhanced decarboxylase activity (JP 07-163383 A).
  • L-tryptophan producing bacteria L-phenylalanine producing bacteria, L-tyrosine producing bacteria>
  • methods for imparting or enhancing L-tryptophan production ability, L-phenylalanine production ability, and / or L-tyrosine production ability include biosynthesis of L-tryptophan, L-phenylalanine, and / or L-tyrosine.
  • Biosynthetic enzymes common to these aromatic amino acids are not particularly limited, but 3-deoxy-D-arabinohepturonic acid-7-phosphate synthase (aroG), 3-dehydroquinate synthase (aroB) Shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enolic acid pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC) (European Patent No. 763127). Expression of genes encoding these enzymes is controlled by a tyrosine repressor (tyrR), and the activity of these enzymes may be enhanced by deleting the tyrR gene (European Patent No. 763127).
  • tyrR tyrosine repressor
  • L-tryptophan biosynthesis enzyme examples include, but are not limited to, anthranilate synthase (trpE), tryptophan synthase (trpAB), and phosphoglycerate dehydrogenase (serA).
  • trpE anthranilate synthase
  • trpAB tryptophan synthase
  • serA phosphoglycerate dehydrogenase
  • L-tryptophan production ability can be imparted or enhanced by introducing DNA containing a tryptophan operon.
  • Tryptophan synthase consists of ⁇ and ⁇ subunits encoded by trpA and trpB genes, respectively.
  • anthranilate synthase is subject to feedback inhibition by L-tryptophan
  • a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • phosphoglycerate dehydrogenase is feedback-inhibited by L-serine
  • a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used to enhance the activity of the enzyme.
  • L-tryptophan-producing ability is imparted or enhanced by increasing the expression of an operon consisting of malate synthase (aceB), isocitrate lyase (aceA), and isocitrate dehydrogenase kinase / phosphatase (aceK). (WO2005 / 103275).
  • the L-phenylalanine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prefenate dehydratase. Chorismate mutase and prefenate dehydratase are encoded by the pheA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydratase is feedback-inhibited by L-phenylalanine, in order to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • the L-tyrosine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prephenate dehydrogenase. Chorismate mutase and prefenate dehydrogenase are encoded by the tyrA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydrogenase is feedback-inhibited by L-tyrosine, to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • the L-tryptophan, L-phenylalanine, and / or L-tyrosine producing bacterium may be modified so that biosynthesis of aromatic amino acids other than the target aromatic amino acid is lowered.
  • L-tryptophan, L-phenylalanine, and / or L-tyrosine-producing bacteria may be modified so that the by-product uptake system is enhanced.
  • By-products include aromatic amino acids other than the desired aromatic amino acid. Examples of genes encoding uptake systems of by-products include, for example, uptake systems of tnaB and mtr, which are L-tryptophan uptake systems, and pheP, L-tyrosine, which are genes encoding uptake systems of L-phenylalanine. TyrP, which is a gene coding for (EP1484410).
  • Coryneform bacteria having the ability to produce L-tryptophan include Corynebacterium glutamicum AJ12118 (FERM BP-478 Patent 01688102) resistant to sulfaguanidine, strains into which tryptophan operon has been introduced (JP 63240794), coryneform bacteria And a strain into which a gene encoding shikimate kinase derived therefrom has been introduced (Japanese Patent Laid-Open No. 01994749).
  • coryneform bacteria having the ability to produce L-phenylalanine include, for example, Corynebacterium amicglutamicum BPS-13 strain FER (FERM BP-1777), Corynebacterium glutamicum K77 (FERM BP-2062) having reduced phosphoenolpyruvate carboxylase or pyruvate kinase activity Corynebacterium glutamicum K78 (FERM BP-2063) (European Patent Publication No. 331145, Japanese Patent Laid-Open No. 02-303495) and tyrosine-requiring strain (Japanese Patent Laid-Open No. 05-049489).
  • coryneform bacteria having the ability to produce L-tyrosine include Corynebacterium glutamicum AJ11655 (FERM P-5836) (Japanese Patent Publication No. 2-6517), Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12081 (FERM P-7249) -70093).
  • examples of a method for imparting or enhancing L-amino acid-producing ability include a method of modifying a bacterium so that the activity of discharging L-amino acid from the bacterium cell is increased.
  • the activity to excrete L-amino acids can be increased, for example, by increasing the expression of a gene encoding a protein that excretes L-amino acids.
  • genes encoding proteins that excrete various amino acids include b2682 gene (ygaZ), b2683 gene (ygaH), b1242 gene (ychE), and b3434 gene (yhgN) (Japanese Patent Laid-Open No. 2002-300874) .
  • examples of a method for imparting or enhancing L-amino acid producing ability include a method for modifying bacteria so that the activity of a protein involved in sugar metabolism or a protein involved in energy metabolism is increased.
  • Proteins involved in sugar metabolism include proteins involved in sugar uptake and glycolytic enzymes.
  • genes encoding proteins involved in sugar metabolism include glucose 6-phosphate isomerase gene (pgi; WO 01/02542 pamphlet), phosphoenolpyruvate synthase gene (pps; EP 877090 specification) , Phosphoenolpyruvate carboxylase gene (ppc; WO 95/06114 pamphlet), pyruvate carboxylase gene (pyc; WO 99/18228 pamphlet, European application 1092776), phosphoglucomutase gene (Pgm; WO 03/04598 pamphlet), fructose diphosphate aldolase gene (pfkB, fbp; WO 03/04664 pamphlet), pyruvate kinase gene (pykF; WO 03/008609 pamphlet), transaldolase Gene (talB; WO03 / 008611 pamphlet), fumarase residue Child (
  • non-PTS sucrose uptake gene gene csc; European Application Publication No. 149911 pamphlet
  • sucrose utilization gene scrAB operon; International Publication No. 90/04636 pamphlet
  • genes encoding proteins involved in energy metabolism include a transhydrogenase gene (pntAB; US Pat. No. 5,830,716), a cytochrome bo type oxidase (cyoB; European Patent Application Publication No. 1070376) Is mentioned.
  • the gene used for breeding the above-mentioned L-amino acid-producing bacteria is not limited to the above-exemplified genes or genes having a known base sequence, as long as the function of the encoded protein is not impaired. May be.
  • a gene used for breeding an L-amino acid-producing bacterium is an amino acid in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence of a known protein. It may be a gene encoding a protein having a sequence.
  • the description regarding the phosphate transporter gene and the variant of the phosphate transporter described later can be applied mutatis mutandis.
  • the bacterium of the present invention has been modified to increase phosphate transporter activity.
  • the bacterium of the present invention can be obtained by modifying a coryneform bacterium having L-amino acid-producing ability so that the phosphate transporter activity is increased.
  • the bacterium of the present invention can also be obtained by imparting or enhancing L-amino acid-producing ability after modifying the coryneform bacterium so that the phosphate transporter activity is increased.
  • the bacterium of the present invention may have acquired L-amino acid-producing ability by being modified so that the phosphate transporter activity is increased.
  • the modification for constructing the bacterium of the present invention can be performed in any order.
  • phosphate transporter refers to a protein having phosphate transporter activity.
  • phosphate transporter activity refers to an activity of taking inorganic phosphate (Pi) into the cell from outside the cell.
  • a phosphate transporter As a phosphate transporter, a low-affinity phosphate-specific transporter (Pst) system or a high-affinity phosphate-specific transporter (Pst) system is used. Is mentioned.
  • Examples of a gene encoding a phosphate transporter include a pitA gene encoding a Pit system, a pitB gene, and a pstSCAB gene encoding a Pst system (Non-patent Document 1). The Pst system functions as a complex of four proteins (product of the pstSCAB gene).
  • the activity of either the Pit system or the Pst system may be increased.
  • it is preferable to increase the activity of the Pit system and it is more preferable to increase the activity of the PitA protein that is the pitA gene product.
  • the pitA gene of Escherichia coli K12 MG1655 strain corresponds to the sequence of positions 3635665 to 3637164 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the pitA gene of Escherichia coli K12 MG1655 is synonymous with ECK3478 and JW3460.
  • the nucleotide sequence of the pitA gene of the MG1655 strain and the amino acid sequence of the PitA protein encoded by the same gene are shown in SEQ ID NOs: 1 and 2, respectively.
  • the pitA gene of Pantoea ananatis LMG20103 strain corresponds to the complementary sequence of positions 1397898 to 1395514 in the genome sequence registered as GenBank accession NC_013956 (VERSION NC_013956.2 GI: 332139403) in the NCBI database.
  • the nucleotide sequence of the pitA gene of Pantoea ananatis LMG20103 and the amino acid sequence of the PitA protein encoded by this gene are shown in SEQ ID NOs: 3 and 4, respectively.
  • the pitA gene of Corynebacterium glutamicum ATCC13032 corresponds to a complementary sequence of the 481391 to 482776 positions in the genome sequence registered as GenBank accession NC_003450 (VERSION NC_003450.3 GI: 58036263) in the NCBI database.
  • the pitA gene of Corynebacterium glutamicum ATCC13032 is synonymous with Cgl0460.
  • the nucleotide sequence of the pitA gene of Corynebacterium glutamicum ATCC13032 and the amino acid sequence of the PitA protein encoded by the gene are shown in SEQ ID NOs: 25 and 26, respectively.
  • the nucleotide sequence of the pitA gene of Corynebacterium glutamicum 2256 (ATCC 13869) and the amino acid sequence of the PitA protein encoded by the gene are shown in SEQ ID NOs: 5 and 6, respectively.
  • the phosphate transporter may be a variant of the above-mentioned phosphate transporter, for example, various PitA proteins, as long as it has phosphate transporter activity. Such variants may be referred to as “conservative variants”. Examples of conservative variants include homologues and artificially modified forms of the above-mentioned phosphate transporters such as various PitA proteins.
  • the gene encoding the homologue of the PitA protein can be easily obtained from a public database by BLAST search or FASTA search using the base sequence (SEQ ID NO: 1, 3, 5, or 25) of the pitA gene as a query sequence, for example. be able to.
  • the gene encoding the PitA protein homolog can be obtained, for example, by PCR using a bacterial or yeast chromosome as a template and oligonucleotides prepared based on these known gene sequences as primers.
  • the gene encoding a conservative variant of phosphate transporter may be, for example, the following gene. That is, as long as the phosphate transporter gene encodes a protein having phosphate transporter activity, one or several amino acids at one or several positions in the amino acid sequence are substituted, deleted, inserted, Alternatively, it may be a gene encoding a protein having an added amino acid sequence. In this case, the phosphate transporter activity is usually 70% or more, preferably 80% or more, more preferably 90% or more with respect to the protein before one or several amino acids are substituted, deleted, inserted or added. % Or more can be maintained.
  • one or several differs depending on the position of the amino acid residue in the three-dimensional structure of the protein and the type of amino acid residue, but specifically, preferably 1-20, more preferably 1-10. It means 1 to 5, more preferably 1 to 5, particularly preferably 1 to 3.
  • substitution, deletion, insertion, or addition of one or several amino acids described above is a conservative mutation that maintains the protein function normally.
  • a typical conservative mutation is a conservative substitution.
  • Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxyl group Is a mutation that substitutes between Ser and Thr.
  • substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Trp to Phe or Tyr, substitution
  • the gene having a conservative mutation as described above is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, particularly preferably 99%, based on the entire amino acid sequence. It may be a gene encoding a protein having a homology of at least% and having phosphate transporter activity. In the present specification, “homology” means “identity”.
  • the phosphate transporter gene is a protein having a phosphate transporter activity that hybridizes under stringent conditions with a probe that can be prepared from a known gene sequence, for example, a complementary sequence to the whole or a part of the base sequence. It may be DNA encoding. “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, highly homologous DNAs, for example, 80% or more, preferably 90% or more, more preferably 95% or more, more preferably 97% or more, particularly preferably 99% or more between DNAs having homology.
  • the probe used for the hybridization may be a part of a complementary sequence of a gene.
  • a probe can be prepared by PCR using an oligonucleotide prepared on the basis of a known gene sequence as a primer and a DNA fragment containing these base sequences as a template.
  • a DNA fragment having a length of about 300 bp can be used as the probe. More specifically, when a DNA fragment having a length of about 300 bp is used as the probe, the hybridization washing conditions include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
  • the phosphate transporter gene may be one in which any codon is replaced with an equivalent codon as long as it encodes a protein having phosphate transporter activity.
  • the phosphate transporter gene may be modified so as to have an optimal codon according to the codon usage frequency of the host to be used.
  • the percentage sequence identity between two sequences can be determined using, for example, a mathematical algorithm.
  • a mathematical algorithm include Myers and Miller (1988) CABIOS 4: 11 17 algorithm, Smith et aldv (1981) Adv. Appl. Math. 2: 482 local homology algorithm, Needleman and Wunsch (1970) J. Mol. Biol. 48: 443 453 homology alignment algorithm, Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85: 2444 2448 similarity search method, Karlin and Altschul ⁇ (1993) Proc. Natl. Acad. Sci. USA 90: 5873 5877, an improved algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 872264.
  • sequence comparison for determining sequence identity can be performed.
  • the program can be appropriately executed by a computer.
  • Such programs include, but are not limited to, the PC / Gene program CLUSTAL (available from Intelligents, Mountain View, Calif.), The ALIGN program (Version 2.0), and Wisconsin Genetics Software Package, Version 8 (Genetics Computer Group (GCG), 575 Science Drive, Madison, Wis., USA) GAP, BESTFIT, BLAST, FASTA, and TFASTA. Alignment using these programs can be performed using initial parameters, for example.
  • CLUSTAL program Higgins et al. (1988) Gene 73: 237 244 (1988), Higgins et al.
  • Gapped BLAST (BLAST 2.0) can be used to obtain an alignment with a gap added for the purpose of comparison.
  • PSI-BLASTA (BLAST 2.0) can be used to perform iterative searches that detect distant relationships between sequences.
  • BLAST 2.0 For Gapped BLAST and PSI-BLAST, see Altschul et al. (1997) Nucleic Acids Res. 25: 3389.
  • the initial parameters of each program eg, BLASTN for nucleotide sequences, BLASTX for amino acid sequences
  • the alignment may be performed manually.
  • sequence identity between two sequences is calculated as the ratio of residues that match between the two sequences when the two sequences are aligned for maximum matching.
  • genes and protein variants can be applied mutatis mutandis to any proteins such as L-amino acid biosynthesis enzymes and the genes encoding them.
  • Protein activity increases “means that the activity per cell of the protein is increased relative to unmodified strains such as wild strains and parental strains. Note that “increasing protein activity” is also referred to as “enhancing protein activity”. “Protein activity increases” specifically means that the number of molecules per cell of the protein is increased and / or the function per molecule of the protein compared to an unmodified strain. Is increasing. That is, “activity” in the case of “increasing protein activity” means not only the catalytic activity of the protein, but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be. The activity of the protein is not particularly limited as long as it is increased compared to the non-modified strain.
  • the protein activity is increased 1.5 times or more, 2 times or more, or 3 times or more compared to the non-modified strain.
  • “the protein activity increases” means not only to increase the activity of the protein in a strain that originally has the activity of the target protein, but also to the activity of the protein in a strain that does not originally have the activity of the target protein. Including granting.
  • a suitable protein may be introduced after the activity of the target protein originally possessed by the host is weakened and / or deleted.
  • Modification that increases the activity of the protein is achieved, for example, by increasing the expression of the gene encoding the protein.
  • increasing gene expression is also referred to as “enhanced gene expression”.
  • the expression of the gene may be increased 1.5 times or more, 2 times or more, or 3 times or more, for example, as compared to the unmodified strain.
  • increasing gene expression means not only increasing the expression level of a target gene in a strain that originally expresses the target gene, but also in a strain that originally does not express the target gene. Including expressing a gene. That is, “increasing gene expression” includes, for example, introducing the gene into a strain that does not hold the target gene and expressing the gene.
  • An increase in gene expression can be achieved, for example, by increasing the copy number of the gene.
  • Increase in gene copy number can be achieved by introducing the gene into the host chromosome.
  • Introduction of a gene into a chromosome can be performed, for example, using homologous recombination (Miller I, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory). Only one copy of the gene may be introduced, or two copies or more may be introduced.
  • multiple copies of a gene can be introduced into a chromosome by performing homologous recombination with a sequence having multiple copies on the chromosome as a target. Examples of sequences having many copies on a chromosome include repetitive DNA sequences (inverted DNA) and inverted repeats present at both ends of a transposon.
  • homologous recombination may be performed by targeting an appropriate sequence on a chromosome such as a gene unnecessary for L-amino acid production.
  • Homologous recombination is, for example, the Red-driven integration method (Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97: 6640-6645 (2000) ), A method using a linear DNA, a method using a plasmid containing a temperature-sensitive replication origin, a method using a plasmid capable of conjugation transfer, a method using a suicide vector that does not have a replication origin and functions in a host, or a phage It can be performed by the transduction method used.
  • the gene can also be randomly introduced onto the chromosome using transposon or Mini-Mu (Japanese Patent Laid-Open No. 2-109985, US Pat. No. 5,882,888, EP805867B1).
  • the increase in gene copy number can be achieved by introducing a vector containing the target gene into the host.
  • a DNA fragment containing a target gene can be linked to a vector that functions in the host to construct an expression vector for the gene, and the host can be transformed with the expression vector to increase the copy number of the gene. it can.
  • a DNA fragment containing a target gene can be obtained, for example, by PCR using a genomic DNA of a microorganism having the target gene as a template.
  • a vector capable of autonomous replication in a host cell can be used as the vector.
  • the vector is preferably a multicopy vector.
  • the vector preferably has a marker such as an antibiotic resistance gene.
  • the vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid, or a phagemid.
  • vectors capable of autonomous replication in coryneform bacteria include, for example, pHM1519 (Agric, Biol. Chem., 48, 2901-2903 (1984)); pAM330 (Agric. Biol.
  • plasmids having improved drug resistance genes plasmid pCRY30 described in JP-A-3-210184; plasmid pCRY21 described in JP-A-2-72876 and US Pat. No. 5,185,262.
  • the gene may be retained in the bacterium of the present invention so that it can be expressed.
  • the gene may be introduced so as to be expressed under the control of a promoter sequence that functions in the bacterium of the present invention.
  • the promoter may be a host-derived promoter or a heterologous promoter.
  • the promoter may be a native promoter of a gene to be introduced or a promoter of another gene. As the promoter, for example, a stronger promoter as described later may be used.
  • each gene when two or more genes are introduced, each gene may be retained in the bacterium of the present invention so that it can be expressed.
  • all the genes may be held on a single expression vector, or all may be held on a chromosome.
  • each gene may be separately hold
  • an operon may be constructed by introducing two or more genes.
  • the gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host.
  • the introduced gene may be a host-derived gene or a heterologous gene.
  • the increase in gene expression can be achieved by improving the transcription efficiency of the gene.
  • Improvement of gene transcription efficiency can be achieved, for example, by replacing a promoter of a gene on a chromosome with a stronger promoter.
  • strong promoter is meant a promoter that improves transcription of the gene over the native wild-type promoter.
  • artificially redesigned P54-6 promoter (Appl. Microbiol.
  • the promoter activity can be increased by bringing the -35 and -10 regions in the promoter region closer to the consensus sequence (WO 00/18935).
  • Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotickpromoters in biotechnology. Biotechnol. Annu. Rev.,. 1, 105-128 (1995)).
  • the increase in gene expression can be achieved by improving the translation efficiency of the gene.
  • Improvement of gene translation efficiency can be achieved, for example, by replacing the Shine-Dalgarno (SD) sequence (also referred to as ribosome binding site (RBS)) of the gene on the chromosome with a stronger SD sequence.
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • a stronger SD sequence is meant an SD sequence in which the translation of mRNA is improved over the originally existing wild-type SD sequence.
  • RBS of gene 10 derived from phage T7 can be mentioned (Olins P. O. et al, Gene, 1988, 73, 227-235).
  • substitution of several nucleotides in the spacer region between the RBS and the start codon, particularly the sequence immediately upstream of the start codon (5'-UTR), or insertion or deletion contributes to mRNA stability and translation efficiency. It is known to have a great influence, and the translation efficiency of a gene can be improved by modifying them.
  • a site that affects gene expression such as a promoter, an SD sequence, and a spacer region between the RBS and the start codon is also collectively referred to as an “expression control region”.
  • the expression regulatory region can be determined using a promoter search vector or gene analysis software such as GENETYX.
  • GENETYX gene analysis software
  • These expression control regions can be modified by, for example, a method using a temperature sensitive vector or a Red driven integration method (WO2005 / 010175).
  • Improvement of gene translation efficiency can also be achieved, for example, by codon modification.
  • codon modification when performing heterologous expression of a gene, the translation efficiency of the gene can be improved by replacing rare codons present in the gene with synonymous codons that are used more frequently. Codon substitution can be performed, for example, by a site-specific mutagenesis method in which a target mutation is introduced into a target site of DNA. Alternatively, gene fragments in which codons have been replaced may be fully synthesized. The frequency of codon usage in various organisms can be found in the “Codon Usage Database” (http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000)) Is disclosed.
  • the increase in gene expression can be achieved by amplifying a regulator that increases gene expression or by deleting or weakening a regulator that decreases gene expression.
  • the modification that increases the enzyme activity can be achieved, for example, by enhancing the specific activity of the enzyme.
  • Enzymes with enhanced specific activity can be obtained by searching for various organisms, for example.
  • a highly active type may be obtained by introducing a mutation into a conventional enzyme.
  • the enhancement of specific activity may be used alone or in any combination with the above-described method for enhancing gene expression.
  • the activity of a phosphate transporter can be increased, for example, by allowing a host to retain a phosphate transporter gene encoding a phosphate transporter having a “specific mutation”.
  • the phosphate transporter having the “specific mutation” is also referred to as a mutant phosphate transporter, and the gene encoding it is also referred to as a mutant phosphate transporter gene.
  • the phosphate transporter having no “specific mutation” is also referred to as a wild-type phosphate transporter, and the gene encoding it is also referred to as a wild-type phosphate transporter gene.
  • the mutant phosphate transporter having the “specific mutation” may have a higher specific activity than the wild-type phosphate transporter.
  • Examples of the wild-type phosphate transporter include PitA protein having no “specific mutation” (wild-type PitA protein).
  • Examples of the mutant phosphate transporter include a PitA protein having a “specific mutation” (mutant PitA protein).
  • a gene encoding a wild type PitA protein is also referred to as a wild type pitA gene, and a gene encoding a mutant PitA protein is also referred to as a mutant pitA gene.
  • Examples of the wild-type PitA protein include various PitA proteins exemplified above and conservative variants thereof that do not have “specific mutation”. That is, the mutant phosphate transporter may be the same as any protein selected from, for example, the various PitA proteins exemplified above and conservative variants thereof, except for having a “specific mutation”.
  • the mutant phosphate transporter may be a protein having the amino acid sequence shown in SEQ ID NO: 2, 4, 6, or 26 except that it has a “specific mutation”.
  • the mutant phosphate transporter has one or several amino acids in the amino acid sequence shown in SEQ ID NO: 2, 4, 6, or 26 except that it has a “specific mutation”. It may be a protein having an amino acid sequence containing substitutions, deletions, insertions, or additions.
  • the mutant phosphate transporter is preferably 80% or more, preferably 80% or more with respect to the amino acid sequence shown in SEQ ID NO: 2, 4, 6, or 26, except that it has a “specific mutation”. May be a protein having an amino acid sequence having homology of 90% or more, more preferably 95% or more, more preferably 97% or more, and particularly preferably 99% or more.
  • “homology” means “identity”.
  • the mutant phosphate transporter is a variant that has a “specific mutation” in the various PitA proteins exemplified above and further contains a conservative mutation at a place other than the “specific mutation”. It may be.
  • the mutant phosphate transporter has a “specific mutation” in the amino acid sequence shown in SEQ ID NO: 2, 4, 6, or 26, and other than the “specific mutation”. It may be a protein having an amino acid sequence further including substitution, deletion, insertion, or addition of one or several amino acids at a position.
  • one or several specifically means preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5, particularly preferably 1 to 3.
  • One or several amino acid substitutions, deletions, insertions or additions described above are conservative mutations in which the function of the protein is maintained normally.
  • a typical conservative mutation is a conservative substitution.
  • Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid.
  • substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Trp to Phe or Tyr, substitution
  • Examples of the “specific mutation” include a mutation in which an amino acid residue corresponding to the phenylalanine residue at position 246 in SEQ ID NO: 6 is substituted with an amino acid residue other than phenylalanine.
  • the amino acid residue after substitution may be any amino acid other than phenylalanine as long as it is a natural amino acid. Lysine, glutamic acid, tyrosine, valine, isoleucine, serine, aspartic acid, asparagine, glutamine, arginine, cysteine, methionine, tryptophan , Glycine, alanine and histidine, serine being particularly preferred.
  • the “X position” in the amino acid sequence means the X position from the N terminal of the amino acid sequence, and the amino acid residue at the N terminal is the amino acid residue at the first position.
  • the position of an amino acid residue shows a relative position, The absolute position may be moved back and forth by deletion, insertion, addition, etc. of an amino acid. That is, “the amino acid residue corresponding to the phenylalanine residue at position 246 of SEQ ID NO: 6” means that when one amino acid residue on the N-terminal side from position 246 in SEQ ID NO: 6 is deleted, the N-terminal Means the 245th amino acid residue.
  • amino acid residue corresponding to the phenylalanine residue at position 246 of SEQ ID NO: 6 is counted from the N terminus when one amino acid residue is inserted at the N-terminal side from position 246 in SEQ ID NO: 6. The 247th amino acid residue.
  • amino acid residue is “an amino acid residue corresponding to the phenylalanine residue at position 246 of SEQ ID NO: 6” is aligned with the amino acid sequence of SEQ ID NO: 6 Can be determined.
  • the alignment can be performed using, for example, known gene analysis software. Specific software includes DNA Solutions from Hitachi Solutions and GENETYX from Genetics (Elizabeth C. Tyler et al., Computers and Biomedical Research, 24 (1), 72-96, 1991; Barton GJ et) al., Journal of molecular biology, 198 (2), 327-37. 1987).
  • the “amino acid residue corresponding to the phenylalanine residue at position 246 in SEQ ID NO: 6” is phenylalanine. It may not be a residue. That is, for example, “mutation in which the amino acid residue corresponding to the phenylalanine residue at position 246 of SEQ ID NO: 6 is substituted with a serine residue” includes the wild-type acidic phosphate transporter in the amino acid sequence shown in SEQ ID NO: 6.
  • amino acid residue corresponding to the phenylalanine residue at position 246 is a phenylalanine residue
  • it is not limited to a mutation that substitutes the phenylalanine residue with a serine residue, and is shown in SEQ ID NO: 6 in the wild-type acidic phosphate transporter
  • the mutant phosphate transporter gene can be obtained by modifying the wild-type phosphate transporter gene so that the encoded phosphate transporter has a “specific mutation”.
  • the wild-type phosphate transporter gene may be a host-derived gene into which the mutant phosphate transporter gene is introduced, or a heterologous gene.
  • Modification of DNA can be performed by a known method. Specifically, for example, as a site-specific mutation method for introducing a target mutation into a target site of DNA, a method using PCR (Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds. , Stockton press (1989); Carter, P., Meth.
  • the mutant phosphate transporter gene can also be obtained by chemical synthesis.
  • the coryneform bacterium can retain the mutant phosphate transporter gene.
  • the method for introducing the mutant phosphate transporter gene into the coryneform bacterium is not particularly limited, and a conventionally known method can be used.
  • the mutant phosphate transporter gene can be introduced into a coryneform bacterium in the same manner as the above-described method for increasing the copy number of a gene.
  • the wild-type phosphate transporter gene of the coryneform bacterium may be modified by natural mutation or mutagen treatment so that the encoded phosphate transporter has a “specific mutation”.
  • the bacterium of the present invention may or may not have a wild type phosphate transporter gene.
  • the bacterium of the present invention may have one or more copies of the mutant phosphate transporter gene.
  • the method of transformation is not particularly limited, and a conventionally known method can be used.
  • recipient cells are treated with calcium chloride to increase DNA permeability (Mandel, M. and Higa, A., J. Mol. Biol. 1970, 53, 159-162) and methods for introducing competent cells from proliferating cells and introducing DNA as reported for Bacillus subtilis (Duncan, C. H., Wilson, G. A. and Young, F. E .., 1997. Gene 1: 153-167) can be used.
  • DNA-receptive cells such as those known for Bacillus subtilis, actinomycetes, and yeast, can be made into protoplasts or spheroplasts that readily incorporate recombinant DNA into recombinant DNA.
  • Introduction method (Chang, S. and Choen, SN, 1979. Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978. Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933) can also be applied.
  • the electric pulse method Japanese Patent Laid-Open No. 2-207791 reported for coryneform bacteria can be used.
  • the increase in protein activity can be confirmed by measuring the activity of the protein.
  • the phosphate transporter activity can be measured, for example, by measuring the incorporation of inorganic phosphate by a known method (R. M. Harris et al., Journal of Bacteriology, Sept. 2001, p5008-5014).
  • the increase in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has increased.
  • An increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased, or by confirming that the amount of protein expressed from the gene has increased.
  • the transcription amount of the gene has increased by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain.
  • Methods for assessing the amount of mRNA include Northern hybridization, RT-PCR, etc. (Sambrook, J., et al., Molecular Cloning A Laboratory Manual / Third Edition, Cold spring Harbor Laboratory Press, Cold spring Harbor (USA ), 2001).
  • the amount of mRNA may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
  • the amount of protein can be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more as compared to the unmodified strain.
  • the above-described techniques for increasing the activity of a protein can enhance the activity of an arbitrary protein, such as an L-amino acid biosynthetic enzyme, and can detect an arbitrary gene, such as an arbitrary protein. It can be used to enhance the expression of the encoding gene.
  • an arbitrary protein such as an L-amino acid biosynthetic enzyme
  • Protein activity decreases means that the activity per cell of the protein is decreased compared to wild-type strains and parental unmodified strains, and the activity is completely lost. including. Specifically, “the activity of the protein is decreased” means that the number of molecules per cell of the protein is decreased and / or the function per molecule of the protein compared to the unmodified strain. Means that it is decreasing. In other words, “activity” in the case of “decrease in protein activity” means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be. Note that “the number of molecules per cell of the protein is decreased” includes a case where the protein does not exist at all.
  • the function per molecule of the protein is reduced includes the case where the function per molecule of the protein is completely lost.
  • the activity of the protein is not particularly limited as long as it is lower than that of the non-modified strain. For example, it is 50% or less, 20% or less, 10% or less, 5% or less, or 0, compared to the non-modified strain. %.
  • the modification that reduces the activity of the protein is achieved, for example, by reducing the expression of a gene encoding the protein.
  • Gene expression decreases includes the case where the gene is not expressed at all.
  • the expression of the gene is reduced is also referred to as “the expression of the gene is weakened”. Gene expression may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to an unmodified strain.
  • the decrease in gene expression may be due to, for example, a decrease in transcription efficiency, a decrease in translation efficiency, or a combination thereof.
  • Reduction of gene expression can be achieved, for example, by modifying an expression regulatory sequence such as a gene promoter or Shine-Dalgarno (SD) sequence.
  • the expression control sequence is preferably modified by 1 base or more, more preferably 2 bases or more, particularly preferably 3 bases or more. Further, part or all of the expression regulatory sequence may be deleted.
  • reduction of gene expression can be achieved, for example, by manipulating factors involved in expression control. Factors involved in expression control include small molecules (such as inducers and inhibitors) involved in transcription and translation control, proteins (such as transcription factors), nucleic acids (such as siRNA), and the like.
  • the modification that decreases the activity of the protein can be achieved, for example, by destroying a gene encoding the protein.
  • Gene disruption can be achieved, for example, by deleting part or all of the coding region of the gene on the chromosome.
  • the entire gene including the sequences before and after the gene on the chromosome may be deleted.
  • the region to be deleted may be any region such as an N-terminal region, an internal region, or a C-terminal region as long as a decrease in protein activity can be achieved.
  • the longer region to be deleted can surely inactivate the gene.
  • it is preferable that the reading frames of the sequences before and after the region to be deleted do not match.
  • gene disruption is, for example, introducing an amino acid substitution (missense mutation) into a coding region of a gene on a chromosome, introducing a stop codon (nonsense mutation), or adding or deleting 1 to 2 bases. It can also be achieved by introducing a frameshift mutation (Journal of Biological Chemistry 272: 8611-8617 (1997) Proceedings of the National Academy of Sciences, USA 95 5511-5515 (1998), Journal of Biological Chemistry 26 116, 20833 -20839 (1991)).
  • gene disruption can be achieved, for example, by inserting another sequence into the coding region of the gene on the chromosome.
  • the insertion site may be any region of the gene, but the longer the inserted sequence, the more reliably the gene can be inactivated.
  • Other sequences are not particularly limited as long as they reduce or eliminate the activity of the encoded protein, and examples include marker genes such as antibiotic resistance genes and genes useful for L-amino acid production.
  • Modifying a gene on a chromosome as described above includes, for example, deleting a partial sequence of the gene and preparing a deleted gene modified so as not to produce a normally functioning protein.
  • the host is transformed with the recombinant DNA containing, and the homologous recombination is caused between the deletion type gene and the wild type gene on the chromosome, thereby replacing the wild type gene on the chromosome with the deletion type gene. Can be achieved.
  • the recombinant DNA can be easily manipulated by including a marker gene in accordance with a trait such as auxotrophy of the host.
  • the modification that reduces the activity of the protein may be performed by, for example, a mutation treatment.
  • Mutation treatment includes X-ray irradiation or ultraviolet irradiation, or N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethyl methanesulfonate (EMS), methylmethanesulfonate (MMS), etc.
  • MNNG N-methyl-N′-nitro-N-nitrosoguanidine
  • EMS ethyl methanesulfonate
  • MMS methylmethanesulfonate
  • the decrease in the activity of the protein can be confirmed by measuring the activity of the protein.
  • the decrease in gene expression can be confirmed by confirming that the transcription amount of the gene has decreased, or confirming that the amount of protein expressed from the gene has decreased.
  • the amount of transcription of the gene has been reduced by comparing the amount of mRNA transcribed from the same gene with that of the unmodified strain.
  • methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR, and the like (Molecular cloning (Cold spring spring Laboratory Laboratory, Cold spring Harbor (USA), 2001)).
  • the amount of mRNA may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • the amount of protein may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • the gene has been destroyed by determining part or all of the nucleotide sequence, restriction enzyme map, full length, etc. of the gene according to the means used for the destruction.
  • the above-described method for reducing the activity of a protein involves reducing the activity of any protein, for example, an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. , And can be used to reduce the expression of any gene, for example, a gene encoding any of these proteins.
  • the method of the present invention comprises a method for producing an L-amino acid comprising culturing the bacterium of the present invention in a medium and collecting L-amino acid from the medium. is there.
  • the medium to be used is not particularly limited as long as the bacterium of the present invention can grow and the target L-amino acid is produced.
  • a normal medium used for culturing bacteria such as coryneform bacteria can be used.
  • a medium containing a carbon source, a nitrogen source, a phosphate source, a sulfur source, and other components selected from various organic components and inorganic components as necessary can be used.
  • the type and concentration of the medium component may be appropriately set according to various conditions such as the type of bacteria used and the type of amino acid to be produced.
  • the carbon source examples include glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, waste molasses, starch hydrolyzate, biomass hydrolyzate and other sugars, acetic acid, fumaric acid, citric acid, Examples include organic acids such as succinic acid, alcohols such as glycerol, crude glycerol, and ethanol, and fatty acids.
  • the carbon source one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
  • the nitrogen source include ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate, organic nitrogen sources such as peptone, yeast extract, meat extract, soybean protein degradation product, ammonia, and urea. Ammonia gas or ammonia water used for pH adjustment may be used as a nitrogen source. As the nitrogen source, one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
  • the phosphoric acid source examples include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphate polymers such as pyrophosphoric acid.
  • phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate
  • phosphate polymers such as pyrophosphoric acid.
  • the phosphoric acid source one type of phosphoric acid source may be used, or two or more types of phosphoric acid sources may be used in combination.
  • the sulfur source include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite, and sulfur-containing amino acids such as cysteine, cystine, and glutathione.
  • the sulfur source one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
  • organic and inorganic components include, for example, inorganic salts such as sodium chloride and potassium chloride; trace metals such as iron, manganese, magnesium and calcium; vitamin B1, vitamin B2, vitamin B6 and nicotine Examples include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
  • inorganic salts such as sodium chloride and potassium chloride
  • trace metals such as iron, manganese, magnesium and calcium
  • vitamin B1, vitamin B2, vitamin B6 and nicotine include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
  • vitamins such as acid, nicotinamide, and vitamin B12
  • amino acids amino acids
  • nucleic acids amino acids
  • organic components such as peptone, casamino acid, yeast extract, and soybean
  • L-lysine producing bacteria often have an enhanced L-lysine biosynthetic pathway and weakened L-lysine resolution. Therefore, when culturing such L-lysine-producing bacteria, for example, one or more amino acids selected from L-threonine, L-homoserine, L-isoleucine, and L-methionine are supplemented to the medium. Is preferred.
  • L-glutamic acid when L-glutamic acid is produced by coryneform bacteria, it is preferable to limit the amount of biotin in the medium, or to add a surfactant or penicillin to the medium.
  • Culture conditions are not particularly limited as long as the bacterium of the present invention can grow and the target L-amino acid is produced.
  • the culture can be performed, for example, under normal conditions used for culture of bacteria such as coryneform bacteria.
  • the culture conditions may be appropriately set according to various conditions such as the type of bacteria used and the type of amino acid to be produced.
  • Cultivation can be performed aerobically using a liquid medium.
  • the culture can be performed by aeration culture or shaking culture.
  • the culture temperature may be, for example, 20 to 40 ° C, preferably 25 to 37 ° C.
  • the pH of the medium may be adjusted to 5 to 8, for example.
  • an inorganic or organic acidic or alkaline substance, ammonia gas, or the like can be used.
  • the culture period may be, for example, 15 hours to 90 hours.
  • the culture can be carried out by batch culture, fed-batch culture, continuous culture, or a combination thereof.
  • cultivation may be performed by dividing into seed culture and main culture. In that case, the culture conditions of the seed culture and the main culture may or may not be the same.
  • both seed culture and main culture may be performed by batch culture.
  • seed culture may be performed by batch culture
  • main culture may be performed by fed-batch culture or continuous culture.
  • L-glutamic acid when producing L-glutamic acid, it is also possible to carry out the culture while precipitating L-glutamic acid in the medium using a liquid medium adjusted to conditions under which L-glutamic acid is precipitated.
  • the conditions for precipitation of L-glutamic acid include, for example, pH 5.0 to 4.0, preferably pH 4.5 to 4.0, more preferably pH 4.3 to 4.0, and particularly preferably pH 4.0. (European Patent Application Publication No. 1078989).
  • a method of fermenting basic amino acid using bicarbonate ion and / or carbonate ion as a main counter ion of basic amino acid may be used.
  • basic amino acids can be produced while reducing the amount of sulfate ions and / or chloride ions that have been conventionally used as counter ions for basic amino acids.
  • L-amino acids from the fermentation broth is usually performed by ion exchange resin method (Nagai, H. et al., Separation Science and Technology, 39 (16), 3691-3710), precipitation method, membrane separation method 9-164323, Japanese Patent Laid-Open No. 9-173792), a crystallization method (WO2008 / 078448, WO2008 / 078646), and other known methods can be combined.
  • ion exchange resin method Naagai, H. et al., Separation Science and Technology, 39 (16), 3691-3710
  • precipitation method membrane separation method 9-164323
  • Japanese Patent Laid-Open No. 9-173792 Japanese Patent Laid-Open No. 9-173792
  • a crystallization method WO2008 / 078448, WO2008 / 078646
  • the recovered L-amino acid may be a free form, a salt thereof, or a mixture thereof.
  • the salt include sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, and potassium salt.
  • ammonium L-glutamate in the fermentation broth is crystallized by adding an acid, and equimolar sodium hydroxide is added to the crystals to obtain sodium L-glutamate (MSG).
  • MSG sodium L-glutamate
  • you may decolorize by adding activated carbon before and after the crystallization see Industrial crystallization of sodium glutamate, Journal of the Seawater Society of Japan, Vol. 56, No. 5, Tetsuya Kawakita).
  • L-amino acid is precipitated in the medium, it can be recovered by centrifugation or filtration.
  • the L-amino acid precipitated in the medium may be isolated together after crystallization of the L-amino acid dissolved in the medium.
  • the recovered L-amino acid may contain bacterial cells, medium components, moisture, and bacterial metabolic byproducts in addition to the L-amino acid.
  • the purity of the recovered L-amino acid may be, for example, 50% or more, preferably 85% or more, particularly preferably 95% or more (JP1214636B, USP5,431,933, USP4,956,471, USP4,777,051, USP4,946,654, USP5,840,358, USP6,238,714, US2005 / 0025878)).
  • L-amino acid is L-glutamic acid
  • sodium L-glutamate crystals can be used as an umami seasoning.
  • the sodium L-glutamate crystals may be used as a seasoning by mixing with nucleic acids such as sodium guanylate and sodium inosinate having an umami taste.
  • One aspect of the method of the present invention is a method for producing an L-amino acid comprising culturing a coryneform bacterium having L-amino acid-producing ability in a medium and collecting the L-amino acid from the medium. And the bacterium has a mutant pitA gene encoding a phosphate transporter having a mutation in which an amino acid residue corresponding to the phenylalanine residue at position 246 of SEQ ID NO: 6 is substituted with an amino acid residue other than phenylalanine. It is the method characterized by having.
  • the above description of the bacterium of the present invention and the method of the present invention can be applied mutatis mutandis.
  • the amino acid residue corresponding to the phenylalanine residue at position 246 of SEQ ID NO: 6 is preferably substituted with a serine residue.
  • the coryneform bacterium is preferably Corynebacterium glutamicum.
  • the produced L-amino acid may be any amino acid, but is preferably L-glutamic acid.
  • Example 1 Glu production culture using a pitA-enhanced strain
  • Glu production was performed using a Glu-producing strain of C. glutamicum with enhanced expression of the pitA gene, and the enhanced expression of the pitA gene contributed to Glu production. The effect was evaluated.
  • the strains used are as follows. C. glutamicum 2256 ⁇ ldhA ⁇ sucA yggB * / pVK9 C. glutamicum 2256 ⁇ ldhA ⁇ sucA yggB * / pVK9-Plac-pitA
  • a DNA fragment for ldhA gene deletion was amplified using 2256 strain chromosomal DNA as a template and using a pair of primers 1 and 2 and a pair of primers 3 and 4 respectively.
  • PCR was performed using primers 5 and 6 using a mixture of equal amounts of the two amplified fragments as a template to obtain a DNA fragment to which the two fragments were bound.
  • the obtained DNA fragment was treated with SalI and introduced into the SalI site of pBS4S (WO2005 / 113745) to construct an ldhA deletion plasmid.
  • the ldhA gene was deleted by inserting this ldhA deletion plasmid into the chromosome of 2256 strain and then dropping it.
  • a DNA fragment for sucA gene deletion was amplified using 2256 strain chromosomal DNA as a template and using a pair of primers 7 and 8 and a pair of primers 9 and 10, respectively.
  • PCR was performed using primers 11 and 12 using a mixture of equal amounts of the two amplified fragments as a template to obtain a DNA fragment to which the two fragments were bound.
  • the obtained DNA fragment was treated with BamHI and introduced into the BamHI site of pBS3 (WO2006 / 070944) to construct a plasmid for sucA deletion.
  • the sucA gene was deleted by inserting this sucA deletion plasmid into the chromosome of the 2256 ⁇ ldhA strain and then dropping it.
  • a Glu-producing strain containing the yggB gene with an IS mutation (V419 :: IS) was obtained.
  • the nucleotide sequence of the yggB gene containing the IS mutation (V419 :: IS) and the amino acid sequence of the YggB protein encoded by the same gene are shown in SEQ ID NOs: 23 and 24, respectively.
  • the obtained Glu production strain was designated as 2256 ⁇ ldhA ⁇ sucA yggB * strain.
  • a pitA expression plasmid (pVK9-Plac-pitA) was constructed by the following method. First, the pitA gene fragment was amplified using primers 2 3 and 14 using 2256 strain chromosomal DNA as a template. Next, the amplified fragment was ligated to pVK9 plasmid (US2006-0141588) treated with bamHI and pstI using in-fusion (TaKaRa INC.) To construct a pitA expression plasmid. The constructed pitA expression plasmid was designated as pVK9-Plac-pitA.
  • the constructed pVK9-Plac-pitA and pVK9 as a vector control were respectively introduced into the Glu-producing bacterium 2256 ⁇ ldhA ⁇ sucA yggB * strain to construct 2256 ⁇ ldhA ⁇ sucA yggB * / pVK9-Plac-pitA strain and 2256 ⁇ ldhA ⁇ sucA yggB * / pVK9 strain.
  • a medium having the above composition adjusted to pH 8.0 with KOH was prepared, sterilized by an autoclave (115 ° C., 15 min) and subjected to culture.
  • Example 2 Glu production culture using pitA mutant
  • Glu production was performed using a Glu producing strain of C. glutamicum in which mutation was introduced into the pitA gene, and the effect of mutation of pitA gene on Glu production. was evaluated.
  • strains used are as follows. C. glutamicum 2256 ⁇ ldhA ⁇ sucA yggB * C. glutamicum 2256 ⁇ ldhA ⁇ sucA yggB * pitAmut
  • the plasmid pBS4S-pitAmut for pitA mutation introduction was constructed by the following method. Primers 15 and 16 using the chromosomal DNA of Glu-producing strain B3 containing a mutation (Phe246Ser ttc ⁇ tcc) in which the phenylalanine residue at position 246 of the PitA protein is replaced by a serine residue in the coding region of the pitA gene PCR was performed to amplify the pitA gene fragment having the above mutation. Next, the amplified fragment was ligated to BamHI and PstI-treated pBS4S plasmid using in-fusion (TaKaRa INC.) To construct a pitA mutation-introducing plasmid. The constructed plasmid for introducing pitA mutation was designated as pBS4S-pitAmut.
  • the constructed pBS4S-pitAmut was inserted into the chromosome of the Glu-producing bacterium 2256 ⁇ ldhA ⁇ sucA yggB * strain and then dropped to construct a 2256 ⁇ ldhA ⁇ sucA yggB * pitAmut strain in which a mutation was introduced into the pitA gene.
  • the pitA mutant strain 2256 ⁇ ldhA ⁇ sucA yggB * pitAmut strain was constructed using a mutation-introducing plasmid constructed using the chromosomal DNA of the Glu acid-producing bacterium B3 strain as a template.
  • PrimeSTAR registered trademark
  • Mutagenesis Basal Kit manufactured by Takara Bio Inc. It can also be constructed using the prepared plasmid for mutagenesis.
  • PCR is performed using primers 15 and 16 using a chromosomal DNA of a wild strain such as C. glutamicum 2256 strain (ATCC 13869) as a template to amplify a pitA gene fragment having no mutation.
  • the amplified fragment is ligated to the pBS4S plasmid treated with BamHI and PstI using in-fusion (TaKaRa INC.)
  • a plasmid containing the wild type pitA gene sequence is constructed using this plasmid as a template.
  • PCR is performed using an appropriate primer that changes T at position 737 of the pitA gene to C according to the instructions for the PrimeSTAR (registered trademark) Mutagenesis Basal Kit. Plasmid pBS4S-pitAmut can be constructed. Using this, the same pitA mutant can be constructed.
  • a medium having the above composition adjusted to pH 8.0 with KOH was prepared, sterilized by an autoclave (115 ° C., 15 min) and subjected to culture.
  • L-amino acid producing ability of coryneform bacteria can be improved, and L-amino acids can be produced efficiently.
  • SEQ ID NO: 1 Base sequence of pitA gene of E. coli MG1655
  • SEQ ID NO: 2 Amino acid sequence of PitA protein of E. coli MG1655
  • SEQ ID NO: 3 Base sequence of pitA gene of Pantoea ananatis LMG20103
  • SEQ ID NO: 4 PitA of Pantoea ananatis LMG20103
  • Amino acid sequence of the protein SEQ ID NO: 5 Nucleotide sequence of the pitA gene of Corynebacterium glutamicum 2256 (ATCC 13869)
  • SEQ ID NO: 6 Amino acid sequence of the PitA protein of Corynebacterium glutamicum 2256 (ATCC 13869)
  • SEQ ID NO: 7 to 20 Primer
  • SEQ ID NO: 21 Corynebacterium
  • SEQ ID NO: 22 The amino acid sequence of the YggB protein of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)

Abstract

 L-アミノ酸の製造法を提供する。リン酸トランスポーターの活性が増大するように改変されたL-アミノ酸生産能を有するコリネ型細菌を培地で培養し、該培地よりL-アミノ酸を採取することにより、L-アミノ酸を製造する。

Description

L-アミノ酸の製造法
 本発明は、コリネ型細菌を用いたL-アミノ酸の製造法に関する。L-アミノ酸は、動物飼料用の添加物、調味料や飲食品の成分、又はアミノ酸輸液等として、産業上有用である。
 L-アミノ酸は、例えば、L-アミノ酸生産能を有する各種微生物を用いた発酵法により工業生産されている。発酵法によるL-アミノ酸の製造法としては、例えば、野生型微生物(野生株)を用いる方法、野生株から誘導された栄養要求株を用いる方法、野生株から種々の薬剤耐性変異株として誘導された代謝調節変異株を用いる方法、栄養要求株と代謝調節変異株の両方の性質を持った株を用いる方法が挙げられる。
 また、近年は、組換えDNA技術によりL-アミノ酸生産能を向上させた微生物がL-アミノ酸の製造に利用されている。微生物のL-アミノ酸生産能を向上させる方法としては、例えば、L-アミノ酸生合成系酵素をコードする遺伝子の発現を増強すること(特許文献1、特許文献2)、L-アミノ酸生合成系への炭素源の流入を増強すること(特許文献3)が挙げられる。
 エシェリヒア・コリ(Escherichia coli)は、少なくとも2種の無機リン酸取り込み系を有する(非特許文献1)。一方は、低親和性の無機リン酸トランスポーター(low-affinity inorganic phosphate transporter;Pit)系であり、もう一方は、高親和性のリン酸特異的トランスポーター(high-affinity phosphate-specific transporter;Pst)系である。Pit系をコードする遺伝子としてはpitA遺伝子やpitB遺伝子が知られている。Pst系をコードする遺伝子としてはpstSCAB遺伝子が知られており、pstSCAB遺伝子の産物は複合体を形成してPst系として機能する。しかしながら、これらリン酸トランスポーターの活性とL-アミノ酸生産との関連は知られていなかった。
米国特許第5,168,056号明細書 米国特許第5,776,736号明細書 米国特許第5,906,925号明細書
R. M. Harris et al., Journal of Bacteriology, Sept. 2001, p5008-5014
 本発明は、コリネ型細菌のL-アミノ酸生産能を向上させる新規な技術を開発し、効率的なL-アミノ酸の製造法を提供することを課題とする。
 本発明者は、上記課題を解決するために鋭意研究を行った結果、リン酸トランスポーターの活性が増大するようにコリネ型細菌を改変することによって、コリネ型細菌のL-アミノ酸生産能を向上させることができることを見出し、本発明を完成させた。
 すなわち、本発明は以下の通り例示できる。
[1]
 L-アミノ酸生産能を有するコリネ型細菌を培地で培養すること、および該培地よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
 前記細菌が、リン酸トランスポーターの活性が増大するように改変されていることを特徴とする、方法。
[2]
 リン酸トランスポーターをコードする遺伝子の発現を上昇させることにより、リン酸トランスポーターの活性が増大した、前記方法。
[3]
 前記遺伝子がpitA遺伝子である、前記方法。
[4]
 前記pitA遺伝子が、下記(a)又は(b)に記載のDNAである、前記方法:
 (a)配列番号5または25に示す塩基配列を有するDNA、
 (b)配列番号5または25に示す塩基配列の相補配列又は同相補配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズし、かつ、リン酸トランスポーター活性を有するタンパク質をコードするDNA。
[5]
 前記pitA遺伝子が、下記(A)又は(B)に記載のタンパク質をコードするDNAである、前記方法:
 (A)配列番号6または26に示すアミノ酸配列を有するタンパク質、
 (B)配列番号6または26に示すアミノ酸配列において、1若しくは数個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつ、リン酸トランスポーター活性を有するタンパク質。
[6]
 前記遺伝子の発現が、該遺伝子のコピー数を高めること、及び/又は該遺伝子の発現調節配列を改変することによって上昇した、前記方法。
[7]
 配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基がフェニルアラニン以外のアミノ酸残基に置換される変異を有するリン酸トランスポーターをコードする変異型pitA遺伝子を前記細菌に保持させることにより、リン酸トランスポーターの活性が増大した、前記方法。
[8]
 配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基が、セリン残基に置換されたことを特徴とする、前記方法。
[9]
 L-アミノ酸生産能を有するコリネ型細菌を培地で培養すること、および該培地よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
 前記細菌が、配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基がフェニルアラニン以外のアミノ酸残基に置換される変異を有するリン酸トランスポーターをコードする変異型pitA遺伝子を保持していることを特徴とする、方法。
[10]
 配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基が、セリン残基に置換されたことを特徴とする、前記方法。
[11]
 前記細菌が、コリネバクテリウム属細菌である、前記方法。
[12]
 前記コリネ型細菌が、コリネバクテリウム・グルタミカムである、前記方法。
[13]
 前記L-アミノ酸が、L-グルタミン酸である、前記方法。
[14]
 前記L-グルタミン酸が、L-グルタミン酸アンモニウムまたはL-グルタミン酸ナトリウムである、前記方法。
[15]
 配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基がセリン残基に置換される変異を有するリン酸トランスポーターをコードするDNA。
[16]
 配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基がセリン残基に置換される変異を有するリン酸トランスポーターをコードする変異型pitA遺伝子を保持しているコリネ型細菌。
 以下、本発明を詳細に説明する。
 本発明の方法は、L-アミノ酸生産能を有するコリネ型細菌を培地で培養すること、および該培地よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、前記細菌が、リン酸トランスポーターの活性が増大するように改変されたことを特徴とする、方法である。同方法に用いられるコリネ型細菌を、「本発明の細菌」ともいう。
<1>本発明の細菌
 本発明の細菌は、リン酸トランスポーターの活性が増大するように改変された、L-アミノ酸生産能を有するコリネ型細菌である。
<1-1>L-アミノ酸生産能を有するコリネ型細菌
 本発明において、「L-アミノ酸生産能を有する細菌」とは、培地で培養したときに、目的とするL-アミノ酸を生成し、回収できる程度に培地中または菌体内に蓄積する能力を有する細菌をいう。L-アミノ酸生産能を有する細菌は、非改変株よりも多い量の目的とするL-アミノ酸を培地に蓄積することができる細菌であってよい。非改変株としては、野生株や親株が挙げられる。また、L-アミノ酸生産能を有する細菌は、好ましくは0.5g/L以上、より好ましくは1.0g/L以上の量の目的とするL-アミノ酸を培地に蓄積することができる細菌であってもよい。
 L-アミノ酸としては、L-リジン、L-オルニチン、L-アルギニン、L-ヒスチジン、L-シトルリン等の塩基性アミノ酸、L-イソロイシン、L-アラニン、L-バリン、L-ロイシン、グリシン等の脂肪族アミノ酸、L-スレオニン、L-セリン等のヒドロキシモノアミノカルボン酸であるアミノ酸、L-プロリン等の環式アミノ酸、L-フェニルアラニン、L-チロシン、L-トリプトファン等の芳香族アミノ酸、L-システイン、L-シスチン、L-メチオニン等の含硫アミノ酸、L-グルタミン酸、L-アスパラギン酸等の酸性アミノ酸、L-グルタミン、L-アスパラギン等の側鎖にアミド基を持つアミノ酸が挙げられる。本発明の細菌は、2またはそれ以上のアミノ酸の生産能を有していてもよい。
 本発明において、アミノ酸は、特記しない限り、いずれもL-アミノ酸である。L-アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。すなわち、本発明における「L-アミノ酸」という用語は、フリー体のL-アミノ酸、その塩、またはそれらの混合物を意味してよい。塩としては、例えば、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。例えば、L-リジンは、フリー体のL-リジン、L-リジン硫酸塩、L-リジン塩酸塩、L-リジン炭酸塩、またはそれらの混合物であってもよい。また、例えば、L-グルタミン酸は、フリー体のL-グルタミン酸、L―グルタミン酸ナトリウム(MSG)、L-グルタミン酸アンモニウム塩、またはそれらの混合物であってもよい。
 コリネ型細菌としては、コリネバクテリウム(Corynebacterium)属、ブレビバクテリウム(Brevibacterium)属、およびミクロバクテリウム(Microbacterium)属等の属に属する細菌が挙げられる。
 コリネ型細菌としては、具体的には、下記のような種が挙げられる。
コリネバクテリウム・アセトアシドフィラム(Corynebacterium acetoacidophilum)
コリネバクテリウム・アセトグルタミカム(Corynebacterium acetoglutamicum)
コリネバクテリウム・アルカノリティカム(Corynebacterium alkanolyticum)
コリネバクテリウム・カルナエ(Corynebacterium callunae)
コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)
コリネバクテリウム・リリウム(Corynebacterium lilium)
コリネバクテリウム・メラセコーラ(Corynebacterium melassecola)
コリネバクテリウム・サーモアミノゲネス(コリネバクテリウム・エフィシエンス)(Corynebacterium thermoaminogenes (Corynebacterium efficiens))
コリネバクテリウム・ハーキュリス(Corynebacterium herculis)
ブレビバクテリウム・ディバリカタム(コリネバクテリウム・グルタミカム)(Brevibacterium divaricatum (Corynebacterium glutamicum))
ブレビバクテリウム・フラバム(コリネバクテリウム・グルタミカム)(Brevibacterium flavum (Corynebacterium glutamicum))
ブレビバクテリウム・イマリオフィラム(Brevibacterium immariophilum)
ブレビバクテリウム・ラクトファーメンタム(コリネバクテリウム・グルタミカム)(Brevibacterium lactofermentum (Corynebacterium glutamicum))
ブレビバクテリウム・ロゼウム(Brevibacterium roseum)
ブレビバクテリウム・サッカロリティカム(Brevibacterium saccharolyticum)
ブレビバクテリウム・チオゲニタリス(Brevibacterium thiogenitalis)
コリネバクテリウム・アンモニアゲネス(コリネバクテリウム・スタティオニス)(Corynebacterium ammoniagenes (Corynebacterium stationis))
ブレビバクテリウム・アルバム(Brevibacterium album)
ブレビバクテリウム・セリナム(Brevibacterium cerinum)
ミクロバクテリウム・アンモニアフィラム(Microbacterium ammoniaphilum)
 コリネ型細菌としては、具体的には、下記のような菌株が挙げられる。
Corynebacterium acetoacidophilum ATCC 13870
Corynebacterium acetoglutamicum ATCC 15806
Corynebacterium alkanolyticum ATCC 21511
Corynebacterium callunae ATCC 15991
Corynebacterium glutamicum ATCC 13020, ATCC 13032, ATCC 13060,ATCC 13869,FERM BP-734
Corynebacterium lilium ATCC 15990
Corynebacterium melassecola ATCC 17965
Corynebacterium efficiens (Corynebacterium thermoaminogenes) AJ12340 (FERM BP-1539)
Corynebacterium herculis ATCC 13868
Corynebacterium glutamicum (Brevibacterium divaricatum) ATCC 14020
Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13826, ATCC 14067, AJ12418(FERM BP-2205)
Brevibacterium immariophilum ATCC 14068
Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869
Brevibacterium roseum ATCC 13825
Brevibacterium saccharolyticum ATCC 14066
Brevibacterium thiogenitalis ATCC 19240
Corynebacterium ammoniagenes (Corynebacterium stationis) ATCC 6871, ATCC 6872
Brevibacterium album ATCC 15111
Brevibacterium cerinum ATCC 15112
Microbacterium ammoniaphilum ATCC 15354
 なお、コリネバクテリウム属細菌には、従来ブレビバクテリウム属に分類されていたが、現在コリネバクテリウム属に統合された細菌(Int. J. Syst. Bacteriol., 41, 255(1991))も含まれる。また、コリネバクテリウム・スタティオニスには、従来コリネバクテリウム・アンモニアゲネスに分類されていたが、16S rRNAの塩基配列解析等によりコリネバクテリウム・スタティオニスに再分類された細菌も含まれる(Int. J. Syst. Evol. Microbiol., 60, 874-879(2010))。
 これらの菌株は、例えば、アメリカン・タイプ・カルチャー・コレクション(住所12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States of America)より分譲を受けることが出来る。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(http://www.atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。
 本発明の細菌は、本来的にL-アミノ酸生産能を有するものであってもよく、L-アミノ酸生産能を有するように改変されたものであってもよい。L-アミノ酸生産能を有する細菌は、例えば、上記のような細菌にL-アミノ酸生産能を付与することにより、または、上記のような細菌のL-アミノ酸生産能を増強することにより、取得できる。
 L-アミノ酸生産能の付与または増強は、従来、コリネ型細菌又はエシェリヒア属細菌等のアミノ酸生産菌の育種に採用されてきた方法により行うことができる(アミノ酸発酵、(株)学会出版センター、1986年5月30日初版発行、第77~100頁参照)。そのような方法としては、例えば、栄養要求性変異株の取得、L-アミノ酸のアナログ耐性株の取得、代謝制御変異株の取得、L-アミノ酸の生合成系酵素の活性が増強された組換え株の創製が挙げられる。L-アミノ酸生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独であってもよく、2種又は3種以上であってもよい。また、L-アミノ酸生産菌の育種において、活性が増強されるL-アミノ酸生合成系酵素も、単独であってもよく、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の活性の増強が組み合わされてもよい。
 L-アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株は、親株又は野生株を通常の変異処理に供し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代謝制御変異を示し、且つL-アミノ酸生産能を有するものを選択することによって取得できる。通常の変異処理としては、X線や紫外線の照射、N-メチル-N’-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、メチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。
 また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成に関与する酵素の活性を増強することによっても行うことができる。酵素活性の増強は、例えば、同酵素をコードする遺伝子の発現が増強するように細菌を改変することにより行うことができる。遺伝子の発現を増強する方法は、WO00/18935号パンフレット、欧州特許出願公開1010755号明細書等に記載されている。酵素活性を増強する詳細な手法については後述する。
 また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素の活性を低下させることによっても行うことができる。なお、ここでいう「目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素」には、目的のアミノ酸の分解に関与する酵素も含まれる。酵素活性を低下させる手法については後述する。
 以下、L-アミノ酸生産菌、およびL-アミノ酸生産能を付与または増強する方法について具体的に例示する。なお、以下に例示するようなL-アミノ酸生産菌が有する性質およびL-アミノ酸生産能を付与または増強するための改変は、いずれも、単独で用いてもよく、適宜組み合わせて用いてもよい。
<L-グルタミン酸生産菌>
 L-グルタミン酸生産菌又はそれを誘導するための親株としては、L-グルタミン酸生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、グルタメートデヒドロゲナーゼ(gdhA)、グルタミンシンテターゼ(glnA)、グルタメートシンテターゼ(gltBD)、イソシトレートデヒドロゲナーゼ(icdA)、アコニテートヒドラターゼ(acnA, acnB)、クエン酸シンターゼ(gltA)、メチルクエン酸シンターゼ(prpC)、ホスホエノールピルベートカルボシラーゼ(ppc)、ピルベートデヒドロゲナーゼ(aceEF, lpdA)、ピルベートキナーゼ(pykA, pykF)、ホスホエノールピルベートシンターゼ(ppsA)、エノラーゼ(eno)、ホスホグリセロムターゼ(pgmA, pgmI)、ホスホグリセレートキナーゼ(pgk)、グリセルアルデヒド-3-フォスフェートデヒドロゲナーゼ(gapA)、トリオースフォスフェートイソメラーゼ(tpiA)、フルクトースビスフォスフェートアルドラーゼ(fbp)、ホスホフルクトキナーゼ(pfkA, pfkB)、グルコースフォスフェートイソメラーゼ(pgi)、6-ホスホグルコン酸デヒドラターゼ(edd)、2-ケト-3-デオキシ-6-ホスホグルコン酸アルドラーゼ(eda)、トランスヒドロゲナーゼが挙げられる。なお、カッコ内は、その酵素をコードする遺伝子の略記号である(以下の記載においても同様)。これらの酵素の中では、例えば、グルタメートデヒドロゲナーゼ、クエン酸シンターゼ、ホスホエノールピルベートカルボキシラーゼ、及びメチルクエン酸シンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。
 グルタミン酸シンテターゼ遺伝子(gltBD)の発現が増大するように改変されたコリネ型細菌としては、WO99/07853に開示されたものが挙げられる。
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、L-グルタミン酸の生合成経路から分岐してL-グルタミン酸以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下または欠損している株も挙げられる。そのような酵素としては、特に制限されないが、イソシトレートリアーゼ(aceA)、α-ケトグルタレートデヒドロゲナーゼ(sucA, odhA)、ホスホトランスアセチラーゼ(pta)、アセテートキナーゼ(ack)、アセトヒドロキシ酸シンターゼ(ilvG)、アセトラクテートシンターゼ(ilvI)、フォルメートアセチルトランスフェラーゼ(pfl)、ラクテートデヒドロゲナーゼ(ldh)、グルタメートデカルボキシラーゼ(gadAB)、コハク酸デヒドロゲナーゼ(sdhABCD)、1-ピロリン-5-カルボキシレートデヒドロゲナーゼ(putA)が挙げられる。
 α-ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したコリネ型細菌、及びそれらの取得方法は、WO2008/075483に記載されている。α-ケトグルタレートデヒドロゲナーゼ活性が低下または欠損したコリネ型細菌として、具体的には、例えば、下記の株が挙げられる。
Corynebacterium glutamicum (Brevibacterium lactofermentum) L30-2株 (特開2006-340603号明細書)
Corynebacterium glutamicum (Brevibacterium lactofermentum) ΔS株 (国際公開95/34672号パンフレット)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12821 (FERM BP-4172;フランス特許公報9401748号明細書参照)
Corynebacterium glutamicum (Brevibacterium flavum) AJ12822 (FERM BP-4173;フランス特許公報9401748号明細書)
Corynebacterium glutamicum AJ12823 (FERM BP-4174;フランス特許公報9401748号明細書)
Corynebacterium glutamicum L30-2株 (特開2006-340603号)
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、α-ケトグルタレートデヒドロゲナーゼ(sucA)活性およびコハク酸デヒドロゲナーゼ(sdh)活性の両方が低下または欠損した株も挙げられる(特開2010-041920号)。そのような株として、具体的には、例えば、Corynebacterium glutamicum ATCC14067のodhAsdhA二重欠損株(Corynebacterium glutamicum 8L3GΔSDH株)が挙げられる(特開2010-041920号)。
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、D-キシルロース-5-リン酸-ホスホケトラーゼ及び/又はフルクトース-6-リン酸ホスホケトラーゼ活性を増強するように改変された株も挙げられる(特表2008-509661)。D-キシルロース-5-リン酸-ホスホケトラーゼ活性及びフルクトース-6-リン酸ホスホケトラーゼ活性はいずれか一方を増強してもよいし、両方を増強してもよい。なお、本明細書ではD-キシルロース-5-リン酸-ホスホケトラーゼとフルクトース-6-リン酸ホスホケトラーゼをまとめてホスホケトラーゼと呼ぶことがある。
 D-キシルロース-5-リン酸-ホスホケトラーゼ活性とは、リン酸を消費して、キシルロース-5-リン酸をグリセルアルデヒド-3-リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Goldberg, M.らの文献 (Methods Enzymol., 9,515-520 (1966)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。
 また、フルクトース-6-リン酸ホスホケトラーゼ活性とは、リン酸を消費して、フルクトース6-リン酸をエリスロース-4-リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Racker, Eの文献 (Methods Enzymol., 5, 276-280 (1962)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。
 また、コリネ型細菌について、L-グルタミン酸生産能を付与または増強する方法としては、有機酸アナログや呼吸阻害剤などへの耐性を付与する方法や細胞壁合成阻害剤に対する感受性を付与する方法も挙げられる。そのような方法としては、例えば、モノフルオロ酢酸耐性を付与する方法(特開昭50-113209)、アデニン耐性またはチミン耐性を付与する方法(特開昭57-065198)、ウレアーゼ活性を弱化させる方法(特開昭52-038088)、マロン酸耐性を付与する方法(特開昭52-038088)、ベンゾピロン耐性またはナフトキノン類への耐性を付与する方法(特開昭56-1889)、HOQNO耐性を付与する方法(特開昭56-140895)、α-ケトマロン酸耐性を付与する方法(特開昭57-2689)、グアニジン耐性を付与する方法(特開昭56-35981)、ペニシリンに対する感受性を付与する方法(特開平4-88994)が挙げられる。
 このような耐性菌または感受性菌として、具体的には、例えば、下記の株が挙げられる。
Corynebacterium glutamicum (Brevibacterium flavum) AJ3949 (FERM BP-2632;特開昭50-113209参照)
Corynebacterium glutamicum AJ11628 (FERM P-5736;特開昭57-065198参照)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11355 (FERM P-5007;特開昭56-1889号公報参照)
Corynebacterium glutamicum AJ11368 (FERM P-5020;特開昭56-1889号公報参照)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11217 (FERM P-4318;特開昭57-2689号公報参照)
Corynebacterium glutamicum AJ11218 (FERM P-4319;特開昭57-2689号公報参照)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11564 (FERM P-5472;特開昭56-140895公報参照)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11439 (FERM P-5136;特開昭56-35981号公報参照)
Corynebacterium glutamicum H7684 (FERM BP-3004;特開平04-88994号公報参照)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ11426 (FERM P-5123;特開平56-048890号公報参照)
Corynebacterium glutamicum AJ11440 (FERM P-5137;特開平56-048890号公報参照)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ11796 (FERM P-6402;特開平58-158192号公報参照)
 また、コリネ型細菌について、L-グルタミン酸生産能を付与または増強する方法としては、yggB遺伝子の発現を増強する方法やコード領域内に変異を導入した変異型yggB遺伝子を導入する方法も挙げられる(WO2006/070944)。yggB遺伝子は、メカノセンシティブチャンネル(mechanosensitive channel)をコードする遺伝子である。Corynebacterium glutamicum ATCC13032のyggB遺伝子は、NCBIデータベースにGenbank Accession No. NC_003450で登録されているゲノム配列中、1,336,091~1,337,692の配列の相補配列に相当し、NCgl1221とも呼ばれる。Corynebacterium glutamicum ATCC13032のyggB遺伝子にコードされるYggBタンパク質は、GenBank accession No. NP_600492として登録されている。また、Corynebacterium glutamicum 2256 (ATCC 13869)のyggB遺伝子の塩基配列、及び同遺伝子がコードするYggBタンパク質のアミノ酸配列を、それぞれ配列番号21および22に示す。
 ここで用いる変異型yggB遺伝子としては、以下のような変異を有するyggB遺伝子を挙げることができる。なお、変異型yggB遺伝子にコードされるYggBタンパク質を変異型YggBタンパク質ともいう。また、当該変異を有さないyggB遺伝子および同遺伝子にコードされるYggBタンパク質を、それぞれ野生型yggB遺伝子および野生型YggBタンパク質ともいう。野生型YggBタンパク質としては、例えば配列番号22に示すアミノ酸配列を有するタンパク質が挙げられる。
(1)C末端側変異
 C末端側変異は、配列番号22のアミノ酸番号419~533の配列をコードする領域の塩基配列の一部に導入された変異である。C末端側変異は、上記領域の塩基配列中の少なくとも一部に変異が導入される限り特に制限されないが、インサーションシーケンス(以下、「IS」ともいう)やトランスポゾンが挿入されたものが好ましい。C末端側変異は、アミノ酸置換を伴うもの(ミスセンス変異)や、上記IS等の挿入によってフレームシフト変異が導入されたもの、ナンセンス変異が導入されたものの何れでもよい。C末端側変異を有する変異型yggB遺伝子として、具体的には、例えば、配列番号22の419位のバリン残基をコードする箇所にISが挿入され、野生型YggBタンパク質(配列番号22)よりも短い全長423アミノ酸残基の変異型YggBタンパク質をコードするyggB遺伝子が挙げられる(特開2007-222163)。この変異型yggB遺伝子(V419::IS)の塩基配列、及び同遺伝子がコードする変異型YggBタンパク質のアミノ酸配列を、それぞれ配列番号23および24に示す。また、C末端側変異として、配列番号22のアミノ酸番号419~533の領域内に存在するプロリンを他のアミノ酸に置換する変異も挙げられる。
(2)膜貫通領域の変異
 yggB遺伝子がコードするYggBタンパク質は、5個の膜貫通領域を有していると推測されている。配列番号22の野生型YggBタンパク質のアミノ酸配列において、膜貫通領域はそれぞれ、アミノ酸番号1~23(第1膜貫通領域)、25~47(第2膜貫通領域)、62~84(第3膜貫通領域)、86~108(第4膜貫通領域)、110~132(第5膜貫通領域)の領域に相当する。yggB遺伝子は、これら膜貫通領域をコードする領域内に変異を有していてよい。膜貫通領域の変異は、1若しくは数個のアミノ酸の置換、欠失、付加、挿入又は逆位を含む変異であって、フレームシフト変異およびナンセンス変異を伴わないものが望ましい。膜貫通領域の変異としては、配列番号22に示されるアミノ酸配列において、14位のロイシン残基と15位のトリプトファン残基間に1又は数個のアミノ酸を挿入する変異、100位のアラニン残基を他のアミノ酸残基へ置換する変異、111位のアラニン残基を他のアミノ酸残基へ置換する変異などが挙げられる。尚、上記「1又は数個」とは、具体的には、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。
 なお、野生型YggBタンパク質が配列番号22に示すアミノ酸配列以外のアミノ酸配列を有する場合、変異型yggB遺伝子は、配列番号22における上記箇所のアミノ酸残基に相当するアミノ酸残基をコードする領域に変異を有していればよい。任意の野生型YggBタンパク質において、いずれのアミノ酸残基が「配列番号22における上記箇所のアミノ酸残基に相当するアミノ酸残基」であるかは、当該野生型YggBタンパク質のアミノ酸配列と配列番号22のアミノ酸配列とでアライメントを行うことにより決定できる。このような変異型yggB遺伝子や変異型YggBタンパク質のバリアントについては、後述する変異型リン酸トランスポーターやそれをコードする遺伝子のバリアントについての記載を準用できる。なお、「配列番号22のアミノ酸番号X」とは、「配列番号22のX位」と読み替えてよい。
<L-グルタミン生産菌>
 L-グルタミン生産能を付与又は増強するための方法としては、例えば、L-グルタミン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)やグルタミンシンセターゼ(glnA)が挙げられる。
 また、L-グルタミン生産能を付与又は増強するための方法としては、例えば、L-グルタミンの生合成経路から分岐してL-グルタミン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、グルタミナーゼが挙げられる。
 L-グルタミン生産菌又はそれを誘導するための親株としては、グルタミン酸デヒドロゲナーゼ(gdhA)および/またはグルタミンシンセターゼ(glnA)の活性を増強したコリネ型細菌(EP1229121, EP1424398)やグルタミナーゼ活性が低下したコリネ型細菌(特開2004-187684)が挙げられる。グルタミンシンセターゼの活性増強は、グルタミンアデニリルトランスフェラーゼ遺伝子(glnE)の破壊、PII制御タンパク質遺伝子(glnB)の破壊によっても達成できる(EP1229121)。
 また、コリネ型細菌について、L-グルタミン生産能を付与または増強する方法としては、6-ジアゾ-5-オキソ-ノルロイシン耐性を付与する方法 (特開平3-232497)、プリンアナログ耐性及びメチオニンスルホキシド耐性を付与する方法 (特開昭61-202694)、α-ケトマレイン酸耐性を付与する方法 (特開昭56-151495)が挙げられる。L-グルタミン生産能を有するコリネ型細菌として、具体的には、例えば、以下の株が挙げられる。
Corynebacterium glutamicum (Brevibacterium flavum) AJ11573 (FERM P-5492、特開昭56-161495)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11576 (FERM BP-10381、特開昭56-161495)
Corynebacterium glutamicum (Brevibacterium flavum) AJ12212 (FERM P-8123、特開昭61-202694)
<L-プロリン生産菌>
 L-プロリン生産菌又はそれを誘導するための親株としては、L-プロリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。L-プロリン生合成に関与する酵素としては、グルタミン酸5-キナーゼ、γ‐グルタミル-リン酸レダクターゼ、ピロリン-5-カルボキシレートレダクターゼが挙げられる。酵素活性の増強には、例えば、L-プロリンによるフィードバック阻害が解除されたグルタメートキナーゼをコードするproB遺伝子(ドイツ特許第3127361号)が好適に利用できる。
 また、L-プロリン生産菌又はそれを誘導するための親株としては、L-プロリン分解に関与する酵素の活性が低下した株も挙げられる。そのような酵素としては、プロリンデヒドロゲナーゼやオルニチンアミノトランスフェラーゼが挙げられる。
<L-スレオニン生産菌>
 L-スレオニン生産菌又はそれを誘導するための親株としては、L-スレオニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、アスパルトキナーゼIII(lysC)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(asd)、アスパルトキナーゼI(thrA)、ホモセリンキナーゼ(homoserine kinase)(thrB)、スレオニンシンターゼ(threonine synthase)(thrC)、アスパラギン酸アミノトランスフェラーゼ(アスパラギン酸トランスアミナーゼ)(aspC)が挙げられる。これらの酵素の中では、アスパルトキナーゼIII、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、アスパルトキナーゼI、ホモセリンキナーゼ、アスパラギン酸アミノトランスフェラーゼ、及びスレオニンシンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。L-スレオニン生合成系遺伝子は、スレオニン分解が抑制された株に導入してもよい。
 L-スレオニン生合成系酵素の活性は、最終産物のL-スレオニンによって阻害される。従って、L-スレオニン生産菌を構築するためには、L-スレオニンによるフィードバック阻害を受けないようにL-スレオニン生合成系遺伝子を改変するのが好ましい。上記thrA、thrB、thrC遺伝子は、スレオニンオペロンを構成しており、スレオニンオペロンは、アテニュエーター構造を形成している。スレオニンオペロンの発現は、培養液中のイソロイシン、スレオニンに阻害を受け、アテニュエーションにより抑制される。スレオニンオペロンの発現の増強は、アテニュエーション領域のリーダー配列あるいはアテニュエーターを除去することにより達成できる(Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194:59-69 (1987); WO02/26993; WO2005/049808; WO2005/049808; WO2003/097839参照)。
 スレオニンオペロンの上流には固有のプロモーターが存在するが、同プロモーターを非天然のプロモーターに置換してもよい(WO98/04715号パンフレット参照)。また、スレオニン生合成関与遺伝子がラムダファ-ジのリプレッサーおよびプロモーターの制御下で発現するようにスレオニンオペロンを構築してもよい(欧州特許第0593792号明細書参照)。また、L-スレオニンによるフィードバック阻害を受けないように改変された細菌は、L-スレオニンアナログであるα-amino-β-hydroxyvaleric acid(AHV)に耐性な菌株を選抜することによっても取得できる。
 このようにL-スレオニンによるフィードバック阻害を受けないように改変されたスレオニンオペロンは、コピー数の上昇により、あるいは強力なプロモーターに連結されることにより、宿主内での発現量が向上しているのが好ましい。コピー数の上昇は、スレオニンオペロンを含むプラスミドを宿主に導入することにより達成できる。また、コピー数の上昇は、トランスポゾン、Muファ-ジ等を利用して、宿主のゲノム上にスレオニンオペロンを転移させることによっても達成できる。
 E. coliのアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードするthrA遺伝子は明らかにされている(ヌクレオチド番号337~2799, GenBank accession NC_000913.2, gi: 49175990)。thrA遺伝子は、E. coli K-12の染色体において、thrL遺伝子とthrB遺伝子との間に位置する。Escherichia coliのホモセリンキナーゼをコードするthrB遺伝子は明らかにされている(ヌクレオチド番号2801~3733, GenBank accession NC_000913.2, gi: 49175990)。thrB遺伝子は、E. coli K-12の染色体において、thrA遺伝子とthrC遺伝子との間に位置する。E. coliのスレオニンシンターゼをコードするthrC遺伝子は明らかにされている(ヌクレオチド番号3734~5020, GenBank accession NC_000913.2, gi: 49175990)。thrC遺伝子は、E. coli K-12の染色体において、thrB遺伝子とyaaXオープンリーディングフレームとの間に位置する。また、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンは、スレオニン生産株E. coli VKPM B-3996に存在する周知のプラスミドpVIC40(米国特許第5,705,371号)から取得できる。
 E. coliのrhtA遺伝子は、グルタミン輸送系の要素をコードするglnHPQ オペロンに近いE. coli染色体の18分に存在する。rhtA遺伝子は、ORF1 (ybiF遺伝子, ヌクレオチド番号764~1651, GenBank accession number AAA218541, gi:440181)と同一であり、pexB遺伝子とompX遺伝子との間に位置する。ORF1によりコードされるタンパク質を発現するユニットは、rhtA遺伝子と呼ばれている(rht: resistant to homoserine and threonine(ホモセリン及びスレオニンに耐性))。また、高濃度のスレオニン又はホモセリンへの耐性を付与するrhtA23変異が、ATG開始コドンに対して-1位のG→A置換であることが判明している(ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A)。
 E. coliのasd遺伝子は既に明らかにされており(ヌクレオチド番号3572511~3571408, GenBank accession NC_000913.1, gi:16131307)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより取得できる(White, T.J. et al., Trends Genet., 5, 185 (1989)参照)。他の微生物のasd遺伝子も同様に得ることができる。
 また、E. coliのaspC遺伝子も既に明らかにされており(ヌクレオチド番号983742~984932, GenBank accession NC_000913.1, gi:16128895)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより得ることができる。他の微生物のaspC遺伝子も同様に得ることができる。
 また、L-スレオニン生産能を有するコリネ型細菌としては、例えば、Corynebacterium acetoacidophilum AJ12318 (FERM BP-1172) (米国特許第5,188,949号参照) が挙げられる。
<L-リジン生産菌>
 L-リジン生産菌又はそれを誘導するための親株としては、L-リジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、ジヒドロジピコリン酸シンターゼ(dihydrodipicolinate synthase)(dapA)、アスパルトキナーゼIII(aspartokinase III)(lysC)、ジヒドロジピコリン酸レダクターゼ(dihydrodipicolinate reductase)(dapB)、ジアミノピメリン酸デカルボキシラーゼ(diaminopimelate decarboxylase)(lysA)、ジアミノピメリン酸デヒドロゲナーゼ(diaminopimelate dehydrogenase)(ddh)(米国特許第6,040,160号)、ホスホエノールピルビン酸カルボキシラーゼ(phosphoenolpyrvate carboxylase)(ppc)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(aspartate semialdehyde dehydrogenease)(asd)、アスパラギン酸アミノトランスフェラーゼ(aspartate aminotransferase)(アスパラギン酸トランスアミナーゼ(aspartate transaminase))(aspC)、ジアミノピメリン酸エピメラーゼ(diaminopimelate epimerase)(dapF)、テトラヒドロジピコリン酸スクシニラーゼ(tetrahydrodipicolinate succinylase)(dapD)、スクシニルジアミノピメリン酸デアシラーゼ(succinyl-diaminopimelate deacylase)(dapE)、及びアスパルターゼ(aspartase)(aspA)(EP 1253195 A)が挙げられる。これらの酵素の中では、例えば、ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、ホスホエノールピルビン酸カルボキシラーゼ、アスパラギン酸アミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及びスクシニルジアミノピメリン酸デアシラーゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。また、L-リジン生産菌又はそれを誘導するための親株では、エネルギー効率に関与する遺伝子(cyo)(EP 1170376 A)、ニコチンアミドヌクレオチドトランスヒドロゲナーゼ(nicotinamide nucleotide transhydrogenase)をコードする遺伝子(pntAB)(米国特許第5,830,716号)、ybjE遺伝子(WO2005/073390)、またはこれらの組み合わせの発現レベルが増大していてもよい。アスパルトキナーゼIII(lysC)はL-リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼIIIをコードする変異型lysC遺伝子を利用してもよい(米国特許5,932,453号明細書)。また、ジヒドロジピコリン酸合成酵素(dapA)L-リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードする変異型dapA遺伝子を利用してもよい。
 また、L-リジン生産菌又はそれを誘導するための親株としては、L-リジンの生合成経路から分岐してL-リジン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下または欠損している株も挙げられる。そのような酵素としては、特に制限されないが、ホモセリンデヒドロゲナーゼ(homoserine dehydrogenase)、リジンデカルボキシラーゼ(lysine decarboxylase)(米国特許第5,827,698号)、及びリンゴ酸酵素(malic enzyme)(WO2005/010175)が挙げられる。
 また、L-リジン生産菌又はそれを誘導するための親株としては、L-リジンアナログに耐性を有する変異株も挙げられる。L-リジンアナログは腸内細菌科の細菌やコリネ型細菌等の細菌の生育を阻害するが、この阻害は、L-リジンが培地に共存するときには完全にまたは部分的に解除される。L-リジンアナログとしては、特に制限されないが、オキサリジン、リジンヒドロキサメート、S-(2-アミノエチル)-L-システイン(AEC)、γ-メチルリジン、α-クロロカプロラクタムが挙げられる。これらのリジンアナログに対して耐性を有する変異株は、細菌を通常の人工変異処理に付すことによって得ることができる。
 また、L-リジン生産能を有するコリネ型細菌として、具体的には、例えば、AEC耐性変異株(Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ11082(NRRL B-11470)株など;特公昭56-1914号公報、特公昭56-1915号公報、特公昭57-14157号公報、特公昭57-14158号公報、特公昭57-30474号公報、特公昭58-10075号公報、特公昭59-4993号公報、特公昭61-35840号公報、特公昭62-24074号公報、特公昭62-36673号公報、特公平5-11958号公報、特公平7-112437号公報、特公平7-112438号公報参照);その生育にL-ホモセリン等のアミノ酸を必要とする変異株(特公昭48-28078号公報、特公昭56-6499号公報参照);AECに耐性を示し、更にL-ロイシン、L-ホモセリン、L-プロリン、L-セリン、L-アルギニン、L-アラニン、L-バリン等のアミノ酸を要求する変異株(米国特許第3708395号及び第3825472号明細書参照);DL-α-アミノ-ε-カプロラクタム、α-アミノ-ラウリルラクタム、アスパラギン酸アナログ、スルファ剤、キノイド、N-ラウロイルロイシンに耐性を示す変異株;オキザロ酢酸デカルボキシラーゼ阻害剤または呼吸系酵素阻害剤に対する耐性を示す変異株(特開昭50-53588号公報、特開昭50-31093号公報、特開昭52-102498号公報、特開昭53-9394号公報、特開昭53-86089号公報、特開昭55-9783号公報、特開昭55-9759号公報、特開昭56-32995号公報、特開昭56-39778号公報、特公昭53-43591号公報、特公昭53-1833号公報);イノシトールまたは酢酸を要求する変異株(特開昭55-9784号公報、特開昭56-8692号公報);フルオロピルビン酸または34℃以上の温度に対して感受性を示す変異株(特開昭55-9783号公報、特開昭53-86090号公報);エチレングリコールに耐性を示す変異株(米国特許第4411997号明細書)が挙げられる。
<L-アルギニン生産菌>
 L-アルギニン生産菌又はそれを誘導するための親株としては、L-アルギニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミルフォスフェートレダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N-アセチルグルタメートキナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、オルニチンカルバモイルトランスフェラーゼ(argF)、アルギノコハク酸シンテターゼ(argG)、アルギノコハク酸リアーゼ(argH)、カルバモイルフォスフェートシンテターゼ(carAB)が挙げられる。N-アセチルグルタミン酸シンターゼ(argA)遺伝子としては、例えば、野生型の15位~19位に相当するアミノ酸残基が置換され、L-アルギニンによるフィードバック阻害が解除された変異型N-アセチルグルタミン酸シンターゼをコードする遺伝子を用いると好適である(欧州出願公開1170361号明細書)。
 また、L-アルギニン生産菌又はそれを誘導するための親株としては、アミノ酸アナログなどへの耐性を有する株も挙げられる。そのような株としては、例えば、2-チアゾールアラニン耐性に加えて、L-ヒスチジン、L-プロリン、L-スレオニン、L-イソロイシン、L-メチオニン、またはL-トリプトファン要求性を有するコリネ型細菌株(特開昭54-44096号公報);ケトマロン酸、フルオロマロン酸、又はモノフルオロ酢酸に耐性を有するコリネ型細菌株(特開昭57-18989号公報);アルギニノールに耐性を有するコリネ型細菌株(特公昭62-24075号公報);X-グアニジン(Xは脂肪酸又は脂肪鎖の誘導体)に耐性を有するコリネ型細菌株(特開平2-186995号公報);アルギニンヒドロキサメート及び6-アザウラシルに耐性を有するコリネ型細菌株(特開昭57-150381号公報)が挙げられる。L-アルギニン生産能を有するコリネ型細菌の具体例としては、下記のような菌株が挙げられる。
Corynebacterium glutamicum (Brevibacterium flavum) AJ11169(FERM BP-6892)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12092(FERM BP-6906)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11336(FERM BP-6893)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11345(FERM BP-6894)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12430(FERM BP-2228)
<L-シトルリン生産菌およびL-オルニチン生産菌>
 L-シトルリンおよびL-オルニチンは、L-アルギニンと生合成経路が共通している。よって、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミルリン酸レダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N-アセチルグルタミン酸キナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、および/またはアセチルオルニチンデアセチラーゼ(argE)の酵素活性を上昇させることによって、L-シトルリンおよび/またはL-オルニチンの生産能を付与または増強することができる(国際公開2006-35831号パンフレット)。
<L-ヒスチジン生産菌>
 L-ヒスチジン生産菌又はそれを誘導するための親株としては、L-ヒスチジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、ATPホスホリボシルトランスフェラーゼ(hisG)、ホスホリボシル-AMPサイクロヒドロラーゼ(hisI)、ホスホリボシル-ATPピロホスホヒドロラーゼ(hisI)、ホスホリボシルフォルミミノ-5-アミノイミダゾールカルボキサミドリボタイドイソメラーゼ(hisA)、アミドトランスフェラーゼ(hisH)、ヒスチジノールフォスフェイトアミノトランスフェラーゼ(hisC)、ヒスチジノールフォスファターゼ(hisB)、ヒスチジノールデヒドロゲナーゼ(hisD)が挙げられる。
 これらの内、hisG及びhisBHAFIにコードされるL-ヒスチジン生合成系酵素は、L-ヒスチジンにより阻害されることが知られている。従って、L-ヒスチジン生産能は、例えば、ATPホスホリボシルトランスフェラーゼ遺伝子(hisG)にフィードバック阻害への耐性を付与する変異を導入することにより、付与または増強させることができる(ロシア特許第2003677号及び第2119536号)。
<L-システイン生産菌>
 L-システイン生産菌又はそれを誘導するための親株としては、L-システイン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、セリンアセチルトランスフェラーゼや3-ホスホグリセレートデヒドロゲナーゼが挙げられる。セリンアセチルトランスフェラーゼ活性は、例えば、システインによるフィードバック阻害に耐性の変異型セリンアセチルトランスフェラーゼをコードする変異型cysE遺伝子を細菌に導入することにより増強できる。変異型セリンアセチルトランスフェラーゼは、例えば、特開平11-155571や米国特許公開第20050112731に開示されている。また、3-ホスホグリセレートデヒドロゲナーゼ活性は、例えば、セリンによるフィードバック阻害に耐性の変異型3-ホスホグリセレートデヒドロゲナーゼをコードする変異型serA遺伝子を細菌に導入することにより増強できる。変異型3-ホスホグリセレートデヒドロゲナーゼは、例えば、米国特許第6,180,373号に開示されている。
 また、L-システイン生産菌又はそれを誘導するための親株としては、L-システインの生合成経路から分岐してL-システイン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下または欠損している株も挙げられる。そのような酵素としては、例えば、L-システインの分解に関与する酵素が挙げられる。L-システインの分解に関与する酵素としては、特に制限されないが、システインデスルフヒドラーゼ(aecD)(特開2002-233384)が挙げられる。
 また、L-システイン生産菌又はそれを誘導するための親株としては、L-システイン排出系が増強された株や硫酸塩/チオ硫酸塩輸送系が増強された株も挙げられる。L-システイン排出系のタンパク質としては、ydeD遺伝子にコードされるタンパク質(特開2002-233384)、yfiK遺伝子にコードされるタンパク質(特開2004-49237)、emrAB、emrKY、yojIH、acrEF、bcr、およびcusAの各遺伝子にコードされる各タンパク質(特開2005-287333)、yeaS遺伝子にコードされるタンパク質(特開2010-187552)が挙げられる。硫酸塩/チオ硫酸塩輸送系のタンパク質としては、cysPTWAM遺伝子クラスターにコードされるタンパク質が挙げられる。
 また、L-システイン生産能を有するコリネ型細菌としては、L-システインによるフィードバック阻害が低減されたセリンアセチルトランスフェラーゼを保持することにより、細胞内のセリンアセチルトランスフェラーゼ活性が上昇したコリネ型細菌(特開2002-233384)が挙げられる。
<L-メチオニン生産菌>
 L-メチオニン生産菌又はそれを誘導するための親株としては、L-スレオニン要求株や、ノルロイシンに耐性を有する変異株が挙げられる(特開2000-139471)。また、L-メチオニン生産菌又はそれを誘導するための親株としては、L-メチオニンによるフィードバック阻害に対して耐性をもつ変異型ホモセリントランスサクシニラーゼを保持する株も挙げられる(特開2000-139471、US20090029424)。なお、L-メチオニンはL-システインを中間体として生合成されるため、L-システインの生産能の向上によりL-メチオニンの生産能も向上させることができる(特開2000-139471、US20080311632)。
<L-ロイシン生産菌>
 L-ロイシン生産菌又はそれを誘導するための親株としては、L-ロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、leuABCDオペロンの遺伝子にコードされる酵素が挙げられる。また、酵素活性の増強には、例えば、L-ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンターゼをコードする変異leuA遺伝子(米国特許第6,403,342号)が好適に利用できる。
 L-ロイシン生産能を有するコリネ型細菌としては、例えば、2-チアゾールアラニン及びβ-ハイドロキシロイシンに耐性で、且つイソロイシン及びメチオニン要求性である、Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ3718(FERM P-2516)が挙げられる。
<L-イソロイシン生産菌>
 L-イソロイシン生産能を付与又は増強するための方法としては、例えば、L-イソロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、スレオニンデアミナーゼやアセトヒドロキシ酸シンターゼが挙げられる(特開平2-458号, FR 0356739, 及び米国特許第5,998,178号)。
 L-イソロイシン生産能を有するコリネ型細菌としては、分岐鎖アミノ酸排出タンパク質をコードするbrnE遺伝子を増幅したコリネ型細菌(特開2001-169788)、L-リジン生産菌とのプロトプラスト融合によりL-イソロイシン生産能を付与したコリネ型細菌(特開昭62-74293)、ホモセリンデヒドロゲナーゼを強化したコリネ型細菌(特開昭62-91193)、スレオニンハイドロキサメート耐性株(特開昭62-195293)、α-ケトマロン耐性株(特開昭61-15695)、メチルリジン耐性株(特開昭61-15696)、Corynebacterium glutamicum (Brevibacterium flavum) AJ12149(FERM BP-759)(米国特許第4,656,135号)が挙げられる。
<L-バリン生産菌>
 L-バリン生産菌又はそれを誘導するための親株としては、L-バリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、ilvGMEDAオペロンやilvBNCオペロンの遺伝子にコードされる酵素が挙げられる。ilvBNはアセトヒドロキシ酸シンターゼを、ilvCはイソメロリダクターゼ(国際公開00/50624号)を、それぞれコードする。なお、ilvGMEDAオペロンおよびilvBNCオペロンは、L-バリン、L-イソロイシン、および/またはL-ロイシンによる発現抑制(アテニュエーション)を受ける。よって、酵素活性の増強のためには、アテニュエーションに必要な領域を除去または改変し、生成するL-バリンによる発現抑制を解除するのが好ましい。また、ilvA遺伝子がコードするスレオニンデアミナーゼは、L-イソロイシン生合成系の律速段階であるL-スレオニンから2-ケト酪酸への脱アミノ化反応を触媒する酵素である。よって、L-バリン生産のためには、ilvA遺伝子が破壊等され、スレオニンデアミナーゼ活性が減少しているのが好ましい。
 また、L-バリン生産菌又はそれを誘導するための親株としては、L-バリンの生合成経路から分岐してL-バリン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下した株も挙げられる。そのような酵素としては、特に制限されないが、L-ロイシン合成に関与するスレオニンデヒドラターゼやD-パントテン酸合成に関与する酵素が挙げられる(国際公開00/50624号)。
 また、L-バリン生産菌又はそれを誘導するための親株としては、アミノ酸アナログなどへの耐性を有する株も挙げられる。そのような株としては、例えば、L-イソロイシンおよびL-メチオニン要求性、ならびにD-リボース、プリンリボヌクレオシド、またはピリミジンリボヌクレオシドに耐性を有し、且つL-バリン生産能を有するコリネ型細菌株(FERM P-1841、FERM P-29、特公昭53-025034)、ポリケトイド類に耐性を有するコリネ型細菌株(FERM P-1763、FERM P-1764、特公平06-065314)、酢酸を唯一の炭素源とする培地でL-バリン耐性を示し、且つグルコースを唯一の炭素源とする培地でピルビン酸アナログ(フルオロピルビン酸等)に感受性を有するコリネ型細菌株(FERM BP-3006、FERM BP-3007、特許3006929号)が挙げられる。
<L-アラニン生産菌>
 L-アラニン生産菌又はそれを誘導するための親株としては、H+-ATPaseを欠失しているコリネ型細菌(Appl Microbiol Biotechnol. 2001 Nov;57(4):534-40)やアスパラギン酸β-デカルボキシラーゼ活性が増強されたコリネ型細菌(特開平07-163383)が挙げられる。
<L-トリプトファン生産菌、L-フェニルアラニン生産菌、L-チロシン生産菌>
 L-トリプトファン生産能、L-フェニルアラニン生産能、および/またはL-チロシン生産能を付与又は増強するための方法としては、例えば、L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。
 これらの芳香族アミノ酸に共通する生合成系酵素としては、特に制限されないが、3-デオキシ-D-アラビノヘプツロン酸-7-リン酸シンターゼ(aroG)、3-デヒドロキネートシンターゼ(aroB)、シキミ酸デヒドロゲナーゼ(aroE)、シキミ酸キナーゼ(aroL)、5-エノール酸ピルビルシキミ酸3-リン酸シンターゼ(aroA)、コリスミ酸シンターゼ(aroC)が挙げられる(欧州特許763127号)。これらの酵素をコードする遺伝子の発現はチロシンリプレッサー(tyrR)によって制御されており、tyrR遺伝子を欠損させることによって、これらの酵素の活性を増強してもよい(欧州特許763127号)。
 L-トリプトファン生合成系酵素としては、特に制限されないが、アントラニル酸シンターゼ(trpE)、トリプトファンシンターゼ(trpAB)、及びホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。例えば、トリプトファンオペロンを含むDNAを導入することにより、L-トリプトファン生産能を付与又は増強できる。トリプトファンシンターゼは、それぞれtrpA及びtrpB遺伝子によりコードされるα及びβサブユニットからなる。アントラニル酸シンターゼはL-トリプトファンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。ホスホグリセリン酸デヒドロゲナーゼはL-セリンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。さらに、マレートシンターゼ(aceB)、イソクエン酸リアーゼ(aceA)、およびイソクエン酸デヒドロゲナーゼキナーゼ/フォスファターゼ(aceK)からなるオペロン(aceオペロン)の発現を増大させることによりL-トリプトファン生産能を付与または増強してもよい(WO2005/103275)。
 L-フェニルアラニン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼは、2機能酵素としてpheA遺伝子によってコードされている。コリスミ酸ムターゼ-プレフェン酸デヒドラターゼはL-フェニルアラニンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。
 L-チロシン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼは、2機能酵素としてtyrA遺伝子によってコードされている。コリスミ酸ムターゼ-プレフェン酸デヒドロゲナーゼはL-チロシンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。
 L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生産菌は、目的の芳香族アミノ酸以外の芳香族アミノ酸の生合成が低下するように改変されていてもよい。また、L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生産菌は、副生物の取り込み系が増強されるように改変されていてもよい。副生物としては、目的の芳香族アミノ酸以外の芳香族アミノ酸が挙げられる。副生物の取り込み系をコードする遺伝子としては、例えば、L-トリプトファンの取り込み系をコードする遺伝子であるtnaBやmtr、L-フェニルアラニンの取り込み系をコードする遺伝子であるpheP、L-チロシンの取り込み系をコードする遺伝子であるtyrPが挙げられる(EP1484410)。
 L-トリプトファン生産能を有するコリネ型細菌としては、サルファグアニジンに耐性のCorynebacterium glutamicum AJ12118(FERM BP-478 特許01681002号)、トリプトファンオペロンが導入された株(特開昭63240794号公報)、コリネ型細菌由来のシキミ酸キナーゼをコードする遺伝子が導入された株(特開01994749号公報)が挙げられる。
 L-フェニルアラニン生産能を有するコリネ型細菌としては、例えば、ホスホエノールピルビン酸カルボキシラーゼまたはピルビン酸キナーゼ活性が低下したCorynebacterium glutamicum BPS-13株 (FERM BP-1777)、Corynebacterium glutamicum K77 (FERM BP-2062)、Corynebacterium glutamicum K78 (FERM BP-2063)(欧州特許公開公報331145号、特開平 02-303495号)、チロシン要求性株(特開平05-049489)が挙げられる。
 L-チロシン生産能を有するコリネ型細菌としては、例えば、Corynebacterium glutamicum AJ11655 (FERM P-5836)(特公平2-6517)、Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12081 (FERM P-7249)(特開昭60-70093)が挙げられる。
 また、L-アミノ酸生産能を付与または増強する方法としては、例えば、細菌の細胞からL-アミノ酸を排出する活性が増大するように細菌を改変する方法が挙げられる。L-アミノ酸を排出する活性は、例えば、L-アミノ酸を排出するタンパク質をコードする遺伝子の発現を上昇させることにより、増大させることができる。各種アミノ酸を排出するタンパク質をコードする遺伝子としては、例えば、b2682遺伝子(ygaZ)、b2683遺伝子(ygaH)、b1242遺伝子(ychE)、b3434遺伝子(yhgN)が挙げられる(特開2002-300874号公報)。
 また、L-アミノ酸生産能を付与または増強する方法としては、例えば、糖代謝に関与するタンパク質やエネルギー代謝に関与するタンパク質の活性が増大するように細菌を改変する方法が挙げられる。
 糖代謝に関与するタンパク質としては、糖の取り込みに関与するタンパク質や解糖系酵素が挙げられる。糖代謝に関与するタンパク質をコードする遺伝子としては、グルコース6-リン酸イソメラーゼ遺伝子(pgi;国際公開第01/02542号パンフレット)、ホスホエノールピルビン酸シンターゼ遺伝子(pps;欧州出願公開877090号明細書)、ホスホエノ-ルピルビン酸カルボキシラ-ゼ遺伝子(ppc;国際公開95/06114号パンフレット)、ピルビン酸カルボキシラーゼ遺伝子(pyc;国際公開99/18228号パンフレット、欧州出願公開1092776号明細書)、ホスホグルコムターゼ遺伝子(pgm;国際公開03/04598号パンフレット)、フルクトース二リン酸アルドラーゼ遺伝子(pfkB, fbp;国際公開03/04664号パンフレット)、ピルビン酸キナーゼ遺伝子(pykF;国際公開03/008609号パンフレット)、トランスアルドラーゼ遺伝子(talB;国際公開03/008611号パンフレット)、フマラーゼ遺伝子(fum;国際公開01/02545号パンフレット)、non-PTSスクロース取り込み遺伝子遺伝子(csc;欧州出願公開149911号パンフレット)、スクロース資化性遺伝子(scrABオペロン;国際公開第90/04636号パンフレット)が挙げられる。
 エネルギー代謝に関与するタンパク質をコードする遺伝子としては、トランスヒドロゲナーゼ遺伝子(pntAB;米国特許 5,830,716号明細書)、チトクロムbo型オキシダーゼ(cytochromoe bo type oxidase)遺伝子(cyoB;欧州特許出願公開1070376号明細書)が挙げられる。
 なお、上記のL-アミノ酸生産菌の育種に使用される遺伝子は、コードされるタンパク質の機能が損なわれない限り、上記例示した遺伝子や公知の塩基配列を有する遺伝子に限られず、そのバリアントであってもよい。例えば、L-アミノ酸生産菌の育種に使用される遺伝子は、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。遺伝子やタンパク質のバリアントについては、後述するリン酸トランスポーター遺伝子およびリン酸トランスポーターのバリアントに関する記載を準用できる。
<1-2>リン酸トランスポーター活性の増強
 本発明の細菌は、リン酸トランスポーター活性が増大するように改変されている。本発明の細菌は、L-アミノ酸生産能を有するコリネ型細菌を、リン酸トランスポーター活性が増大するように改変することにより取得できる。また、本発明の細菌は、リン酸トランスポーター活性が増大するようにコリネ型細菌を改変した後に、L-アミノ酸生産能を付与または増強することによっても得ることができる。なお、本発明の細菌は、リン酸トランスポーター活性が増大するように改変されたことにより、L-アミノ酸生産能を獲得したものであってもよい。本発明の細菌を構築するための改変は、任意の順番で行うことができる。
 以下に、リン酸トランスポーターおよびそれをコードする遺伝子について説明する。
 本発明において、「リン酸トランスポーター」とは、リン酸トランスポーター活性を有するタンパク質をいう。本発明において、「リン酸トランスポーター活性」とは、無機リン酸(Pi)を細胞外から細胞内に取り込む活性をいう。
 リン酸トランスポーターとしては、低親和性の無機リン酸トランスポーター(low-affinity inorganic phosphate transporter;Pit)系や高親和性のリン酸特異的トランスポーター(high-affinity phosphate-specific transporter;Pst)系が挙げられる。リン酸トランスポーターをコードする遺伝子(「リン酸トランスポーター遺伝子」ともいう)としては、Pit系をコードするpitA遺伝子やpitB遺伝子、Pst系をコードするpstSCAB遺伝子が挙げられる(非特許文献1)。なお、Pst系は、4つのタンパク質(pstSCAB遺伝子の産物)の複合体として機能する。
 本発明においては、Pit系とPst系のいずれの活性を増大させてもよい。本発明においては、Pit系の活性を増大させるのが好ましく、pitA遺伝子産物であるPitAタンパク質の活性を増大させるのがより好ましい。
 エシェリヒア・コリK12 MG1655株のpitA遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、3635665~3637164位の配列に相当する。エシェリヒア・コリK12 MG1655株のpitA遺伝子は、ECK3478、JW3460と同義である。また、エシェリヒア・コリK12 MG1655株のPitAタンパク質は、GenBank accession NP_417950 (version NP_417950.1 GI:16131365、locus_tag="b3493")として登録されている。MG1655株のpitA遺伝子の塩基配列、及び同遺伝子がコードするPitAタンパク質のアミノ酸配列を、それぞれ配列番号1および2に示す。
 Pantoea ananatis LMG20103株のpitA遺伝子は、NCBIデータベースに、GenBank accession NC_013956 (VERSION NC_013956.2 GI:332139403)として登録されているゲノム配列中、1397898~1399514位の配列の相補配列に相当する。また、Pantoea ananatis LMG20103株のPitAタンパク質は、GenBank accession YP_003519531 (version YP_003519531.1 GI:291616789、locus_tag="PANA_1236")として登録されている。Pantoea ananatis LMG20103株のpitA遺伝子の塩基配列、及び同遺伝子がコードするPitAタンパク質のアミノ酸配列を、それぞれ配列番号3および4に示す。
 Corynebacterium glutamicum ATCC13032のpitA遺伝子は、NCBIデータベースに、GenBank accession NC_003450 (VERSION NC_003450.3 GI:58036263)として登録されているゲノム配列中、481391~482776位の配列の相補配列に相当する。Corynebacterium glutamicum ATCC13032のpitA遺伝子は、Cgl0460と同義である。また、Corynebacterium glutamicum ATCC13032のPitAタンパク質は、GenBank accession NP_599707 (version NP_599707.1 GI:19551705、locus_tag="NCgl0445")として登録されている。Corynebacterium glutamicum ATCC13032のpitA遺伝子の塩基配列、及び同遺伝子がコードするPitAタンパク質のアミノ酸配列を、それぞれ配列番号25および26に示す。また、Corynebacterium glutamicum 2256 (ATCC 13869)のpitA遺伝子の塩基配列、及び同遺伝子がコードするPitAタンパク質のアミノ酸配列を、それぞれ配列番号5および6に示す。
 リン酸トランスポーターは、リン酸トランスポーター活性を有する限り、上記リン酸トランスポーター、例えば各種PitAタンパク質、のバリアントであってもよい。なお、そのようなバリアントを「保存的バリアント」という場合がある。保存的バリアントとしては、例えば、上記リン酸トランスポーター、例えば各種PitAタンパク質、のホモログや人為的な改変体が挙げられる。
 上記PitAタンパク質のホモログをコードする遺伝子は、例えば、上記pitA遺伝子の塩基配列(配列番号1、3、5、または25)を問い合わせ配列として用いたBLAST検索やFASTA検索によって公開データベースから容易に取得することができる。また、上記PitAタンパク質のホモログをコードする遺伝子は、例えば、細菌や酵母の染色体を鋳型にして、これら公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとして用いたPCRにより取得することができる。
 リン酸トランスポーターの保存的バリアントをコードする遺伝子は、例えば、以下のような遺伝子であってよい。すなわち、リン酸トランスポーター遺伝子は、リン酸トランスポーター活性を有するタンパク質をコードする限りにおいて、上記アミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入、又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。この場合、リン酸トランスポーター活性は、1又は数個のアミノ酸が置換、欠失、挿入、又は付加される前のタンパク質に対して、通常70%以上、好ましくは80%以上、より好ましくは90%以上が維持され得る。なお上記「1又は数個」とは、アミノ酸残基のタンパク質の立体構造における位置やアミノ酸残基の種類によっても異なるが、具体的には、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。
 上記の1若しくは数個のアミノ酸の置換、欠失、挿入、または付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。
 さらに、上記のような保存的変異を有する遺伝子は、上記アミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有し、かつ、リン酸トランスポーター活性を有するタンパク質をコードする遺伝子であってもよい。尚、本明細書において、「相同性」(homology)は、「同一性」(identity)を意味する。
 また、リン酸トランスポーター遺伝子は、公知の遺伝子配列から調製され得るプローブ、例えば上記塩基配列の全体または一部に対する相補配列とストリンジェントな条件下でハイブリダイズし、リン酸トランスポーター活性を有するタンパク質をコードするDNAであってもよい。「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、特に好ましくは99%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは60℃、0.1×SSC、0.1% SDS、より好ましくは、68℃、0.1×SSC、0.1% SDSに相当する塩濃度および温度で、1回、好ましくは2~3回洗浄する条件を挙げることができる。
 上述の通り、上記ハイブリダイゼーションに用いるプローブは、遺伝子の相補配列の一部であってもよい。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、これらの塩基配列を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとしては、300 bp程度の長さのDNA断片を用いることができる。より具体的には、プローブとして、300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件としては、50℃、2×SSC、0.1% SDSが挙げられる。
 また、リン酸トランスポーター遺伝子は、リン酸トランスポーター活性を有するタンパク質をコードする限り、任意のコドンがそれと等価のコドンに置換されたものであってもよい。例えば、リン酸トランスポーター遺伝子は、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されたものであってもよい。
 2つの配列間の配列同一性のパーセンテージは、例えば、数学的アルゴリズムを用いて決定できる。このような数学的アルゴリズムの限定されない例としては、Myers 及び Miller (1988) CABIOS 4:11 17のアルゴリズム、Smith et al (1981) Adv. Appl. Math. 2:482の局所ホモロジーアルゴリズム、Needleman及びWunsch (1970) J. Mol. Biol. 48:443 453のホモロジーアライメントアルゴリズム、Pearson及びLipman (1988) Proc. Natl. Acad. Sci. 85:2444 2448の類似性を検索する方法、Karlin 及びAltschul (1993) Proc. Natl. Acad. Sci. USA 90:5873 5877に記載されているような、改良された、Karlin及びAltschul (1990) Proc. Natl. Acad. Sci. USA 872264のアルゴリズムが挙げられる。
 これらの数学的アルゴリズムに基づくプログラムを利用して、配列同一性を決定するための配列比較(アラインメント)を行うことができる。プログラムは、適宜、コンピュータにより実行することができる。このようなプログラムとしては、特に限定されないが、PC/GeneプログラムのCLUSTAL(Intelligenetics, Mountain View, Calif.から入手可能)、ALIGNプログラム(Version 2.0)、並びにWisconsin Genetics Software Package, Version 8(Genetics Computer Group (GCG), 575 Science Drive, Madison, Wis., USAから入手可能)のGAP、BESTFIT、BLAST、FASTA、及びTFASTAが挙げられる。これらのプログラムを用いたアライメントは、例えば、初期パラメーターを用いて行うことができる。CLUSTALプログラムについては、Higgins et al. (1988) Gene 73:237 244 (1988)、Higgins et al. (1989) CABIOS 5:151 153、Corpet et al. (1988) Nucleic Acids Res. 16:10881 90、Huang et al. (1992) CABIOS 8:155 65、及びPearson et al. (1994) Meth. Mol. Biol. 24:307 331によく記載されている。
 対象のタンパク質をコードするヌクレオチド配列と相同性があるヌクレオチド配列を得るために、具体的には、例えば、BLASTヌクレオチド検索を、BLASTNプログラム、スコア=100、ワード長=12にて行うことができる。対象のタンパク質と相同性があるアミノ酸配列を得るために、具体的には、例えば、BLASTタンパク質検索を、BLASTXプログラム、スコア=50、ワード長=3にて行うことができる。BLASTヌクレオチド検索やBLASTタンパク質検索については、http://www.ncbi.nlm.nih.govを参照されたい。また、比較を目的としてギャップを加えたアライメントを得るために、Gapped BLAST(BLAST 2.0)を利用できる。また、PSI-BLAST (BLAST 2.0)を、配列間の離間した関係を検出する反復検索を行うのに利用できる。Gapped BLASTおよびPSI-BLASTについては、Altschul et al. (1997) Nucleic Acids Res. 25:3389を参照されたい。BLAST、Gapped BLAST、またはPSI-BLASTを利用する場合、例えば、各プログラム(例えば、ヌクレオチド配列に対してBLASTN、アミノ酸配列に対してBLASTX)の初期パラメーターが用いられ得る。アライメントは、手動にて行われてもよい。
 2つの配列間の配列同一性は、2つの配列を最大一致となるように整列したときに2つの配列間で一致する残基の比率として算出される。
 なお、上記の遺伝子やタンパク質のバリアントに関する記載は、L-アミノ酸生合成系酵素等の任意のタンパク質、およびそれらをコードする遺伝子にも準用できる。
<1-3>タンパク質の活性を増大させる手法
 以下に、タンパク質の活性を増大させる手法について説明する。
 「タンパク質の活性が増大する」とは、同タンパク質の細胞当たりの活性が野生株や親株等の非改変株に対して増大していることを意味する。なお、「タンパク質の活性が増大する」ことを、「タンパク質の活性が増強される」ともいう。「タンパク質の活性が増大する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が増加していること、および/または、同タンパク質の分子当たりの機能が増大していることをいう。すなわち、「タンパク質の活性が増大する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。タンパク質の活性は、非改変株と比較して増大していれば特に制限されないが、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、「タンパク質の活性が増大する」とは、もともと標的のタンパク質の活性を有する菌株において同タンパク質の活性を増大させることだけでなく、もともと標的のタンパク質の活性が存在しない菌株に同タンパク質の活性を付与することを含む。また、結果としてタンパク質の活性が増大する限り、宿主が本来有する標的のタンパク質の活性を弱化および/または欠損させた上で、好適な同タンパク質を導入してもよい。
 タンパク質の活性が増大するような改変は、例えば、同タンパク質をコードする遺伝子の発現を上昇させることによって達成される。なお、「遺伝子の発現が上昇する」ことを、「遺伝子の発現が増強される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、「遺伝子の発現が上昇する」とは、もともと標的の遺伝子が発現している菌株において同遺伝子の発現量を上昇させることだけでなく、もともと標的の遺伝子が発現していない菌株において、同遺伝子を発現させることを含む。すなわち、「遺伝子の発現が上昇する」とは、例えば、標的の遺伝子を保持しない菌株に同遺伝子を導入し、同遺伝子を発現させることを含む。
 遺伝子の発現の上昇は、例えば、遺伝子のコピー数を増加させることにより達成できる。
 遺伝子のコピー数の増加は、宿主の染色体へ同遺伝子を導入することにより達成できる。染色体への遺伝子の導入は、例えば、相同組み換えを利用して行うことができる(MillerI, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory)。遺伝子は、1コピーのみ導入されてもよく、2コピーまたはそれ以上導入されてもよい。例えば、染色体上に多数のコピーが存在する配列を標的として相同組み換えを行うことで、染色体へ遺伝子の多数のコピーを導入することができる。染色体上に多数のコピーが存在する配列としては、反復DNA配列(repetitive DNA)、トランスポゾンの両端に存在するインバーテッド・リピートが挙げられる。また、L-アミノ酸生産に不要な遺伝子等の染色体上の適当な配列を標的として相同組み換えを行ってもよい。相同組み換えは、例えば、Redドリブンインテグレーション(Red-driven integration)法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))等の直鎖状DNAを用いる方法、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法、またはファージを用いたtransduction法により行うことができる。また、遺伝子は、トランスポゾンやMini-Muを用いて染色体上にランダムに導入することもできる(特開平2-109985号公報、US5,882,888、EP805867B1)。
 染色体上に標的遺伝子が導入されたことの確認は、同遺伝子の全部又は一部と相補的な配列を持つプローブを用いたサザンハイブリダイゼーション、又は同遺伝子の配列に基づいて作成したプライマーを用いたPCR等によって確認できる。
 また、遺伝子のコピー数の増加は、標的遺伝子を含むベクターを宿主に導入することによっても達成できる。例えば、標的遺伝子を含むDNA断片を、宿主で機能するベクターと連結して同遺伝子の発現ベクターを構築し、当該発現ベクターで宿主を形質転換することにより、同遺伝子のコピー数を増加させることができる。標的遺伝子を含むDNA断片は、例えば、標的遺伝子を有する微生物のゲノムDNAを鋳型とするPCRにより取得できる。ベクターとしては、宿主の細胞内において自律複製可能なベクターを用いることができる。ベクターは、マルチコピーベクターであるのが好ましい。また、形質転換体を選択するために、ベクターは抗生物質耐性遺伝子などのマーカーを有することが好ましい。ベクターは、例えば、細菌プラスミド由来のベクター、酵母プラスミド由来のベクター、バクテリオファージ由来のベクター、コスミド、またはファージミド等であってよい。コリネ型細菌で自律複製可能なベクターとして、具体的には、例えば、pHM1519(Agric, Biol. Chem., 48, 2901-2903(1984));pAM330(Agric. Biol. Chem., 48, 2901-2903(1984));これらを改良した薬剤耐性遺伝子を有するプラスミド;特開平3-210184号公報に記載のプラスミドpCRY30;特開平2-72876号公報及び米国特許5,185,262号明細書公報に記載のプラスミドpCRY21、pCRY2KE、pCRY2KX、pCRY31、pCRY3KE及びpCRY3KX;特開平1-191686号公報に記載のプラスミドpCRY2およびpCRY3;特開昭58-192900号公報に記載のpAJ655、pAJ611及びpAJ1844;特開昭57-134500号公報に記載のpCG1;特開昭58-35197号公報に記載のpCG2;特開昭57-183799号公報に記載のpCG4およびpCG11が挙げられる。
 遺伝子を導入する場合、遺伝子は、発現可能に本発明の細菌に保持されていればよい。具体的には、遺伝子は、本発明の細菌で機能するプロモーター配列による制御を受けて発現するように導入されていればよい。プロモーターは、宿主由来のプロモーターであってもよく、異種由来のプロモーターであってもよい。プロモーターは、導入する遺伝子の固有のプロモーターであってもよく、他の遺伝子のプロモーターであってもよい。プロモーターとしては、例えば、後述するような、より強力なプロモーターを利用してもよい。
 また、2またはそれ以上の遺伝子を導入する場合、各遺伝子が、発現可能に本発明の細菌に保持されていればよい。例えば、各遺伝子は、全てが単一の発現ベクター上に保持されていてもよく、全てが染色体上に保持されていてもよい。また、各遺伝子は、複数の発現ベクター上に別々に保持されていてもよく、単一または複数の発現ベクター上と染色体上とに別々に保持されていてもよい。また、2またはそれ以上の遺伝子でオペロンを構成して導入してもよい。
 導入される遺伝子は、宿主で機能するタンパク質をコードするものであれば特に制限されない。導入される遺伝子は、宿主由来の遺伝子であってもよく、異種由来の遺伝子であってもよい。
 また、遺伝子の発現の上昇は、遺伝子の転写効率を向上させることにより達成できる。遺伝子の転写効率の向上は、例えば、染色体上の遺伝子のプロモーターをより強力なプロモーターに置換することにより達成できる。「より強力なプロモーター」とは、遺伝子の転写が、もともと存在している野生型のプロモーターよりも向上するプロモーターを意味する。また、コリネ型細菌で利用できるより強力なプロモーターとしては、人為的に設計変更されたP54-6プロモーター(Appl.Microbiol.Biotechnolo., 53, 674-679(2000))、コリネ型細菌内で酢酸、エタノール、ピルビン酸等で誘導できるpta、aceA、aceB、adh、amyEプロモーター、コリネ型細菌内で発現量が多い強力なプロモーターであるcspB、SOD、tufプロモーター(Journal of Biotechnology 104 (2003) 311-323, Appl Environ Microbiol. 2005 Dec;71(12):8587-96.)、lacプロモーター、tacプロモーター、trcプロモーターが挙げられる。また、より強力なプロモーターとしては、各種レポーター遺伝子を用いることにより、在来のプロモーターの高活性型のものを取得してもよい。例えば、プロモーター領域内の-35、-10領域をコンセンサス配列に近づけることにより、プロモーターの活性を高めることができる(国際公開第00/18935号)。プロモーターの強度の評価法および強力なプロモーターの例は、Goldsteinらの論文(Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1, 105-128 (1995))等に記載されている。
 また、遺伝子の発現の上昇は、遺伝子の翻訳効率を向上させることにより達成できる。遺伝子の翻訳効率の向上は、例えば、染色体上の遺伝子のシャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)をより強力なSD配列に置換することにより達成できる。「より強力なSD配列」とは、mRNAの翻訳が、もともと存在している野生型のSD配列よりも向上するSD配列を意味する。より強力なSD配列としては、例えば、ファージT7由来の遺伝子10のRBSが挙げられる(Olins P. O. et al, Gene, 1988, 73, 227-235)。さらに、RBSと開始コドンとの間のスペーサー領域、特に開始コドンのすぐ上流の配列(5'-UTR)における数個のヌクレオチドの置換、あるいは挿入、あるいは欠失がmRNAの安定性および翻訳効率に非常に影響を及ぼすことが知られており、これらを改変することによっても遺伝子の翻訳効率を向上させることができる。
 本発明においては、プロモーター、SD配列、およびRBSと開始コドンとの間のスペーサー領域等の遺伝子の発現に影響する部位を総称して「発現調節領域」ともいう。発現調節領域は、プロモーター検索ベクターやGENETYX等の遺伝子解析ソフトを用いて決定することができる。これら発現調節領域の改変は、例えば、温度感受性ベクターを用いた方法や、Redドリブンインテグレーション法(WO2005/010175)により行うことができる。
 遺伝子の翻訳効率の向上は、例えば、コドンの改変によっても達成できる。例えば、遺伝子の異種発現を行う場合等には、遺伝子中に存在するレアコドンを、より高頻度で利用される同義コドンに置き換えることにより、遺伝子の翻訳効率を向上させることができる。コドンの置換は、例えば、DNAの目的の部位に目的の変異を導入する部位特異的変異法により行うことができる。また、コドンが置換された遺伝子断片を全合成してもよい。種々の生物におけるコドンの使用頻度は、「コドン使用データベース」(http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000))に開示されている。
 また、遺伝子の発現の上昇は、遺伝子の発現を上昇させるようなレギュレーターを増幅すること、または、遺伝子の発現を低下させるようなレギュレーターを欠失または弱化させることによっても達成できる。
 上記のような遺伝子の発現を上昇させる手法は、単独で用いてもよく、任意の組み合わせで用いてもよい。
 また、酵素活性が増大するような改変は、例えば、酵素の比活性を増強することによっても達成できる。比活性が増強された酵素は、例えば、種々の生物を探索し取得することができる。また、在来の酵素に変異を導入することで高活性型のものを取得してもよい。比活性の増強は、単独で用いてもよく、上記のような遺伝子の発現を増強させる手法と任意に組み合わせて用いてもよい。
 リン酸トランスポーターの活性は、例えば、「特定の変異」を有するリン酸トランスポーターをコードするリン酸トランスポーター遺伝子を宿主に保持させることによっても増大させることができる。本発明においては、当該「特定の変異」を有するリン酸トランスポーターを変異型リン酸トランスポーター、それをコードする遺伝子を変異型リン酸トランスポーター遺伝子ともいう。また、本発明においては、当該「特定の変異」を有さないリン酸トランスポーターを野生型リン酸トランスポーター、それをコードする遺伝子を野生型リン酸トランスポーター遺伝子ともいう。当該「特定の変異」を有する変異型リン酸トランスポーターは、野生型リン酸トランスポーターと比較して、高い比活性を有するものであってよい。
 野生型リン酸トランスポーターとしては、「特定の変異」を有さないPitAタンパク質(野生型PitAタンパク質)が挙げられる。変異型リン酸トランスポーターとしては、「特定の変異」を有するPitAタンパク質(変異型PitAタンパク質)が挙げられる。野生型PitAタンパク質をコードする遺伝子を野生型pitA遺伝子、変異型PitAタンパク質をコードする遺伝子を変異型pitA遺伝子ともいう。野生型PitAタンパク質としては、上記例示した各種PitAタンパク質や、その保存的バリアントであって「特定の変異」を有さないものが挙げられる。すなわち、変異型リン酸トランスポーターは、「特定の変異」を有する以外は、例えば上記例示した各種PitAタンパク質およびその保存的バリアントから選択されるいずれかのタンパク質と同一であってよい。
 具体的には、例えば、変異型リン酸トランスポーターは、「特定の変異」を有する以外は、配列番号2、4、6、または26に示すアミノ酸配列を有するタンパク質であってよい。また、具体的には、例えば、変異型リン酸トランスポーターは、「特定の変異」を有する以外は、配列番号2、4、6、または26に示すアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、又は付加を含むアミノ酸配列を有するタンパク質であってよい。また、具体的には、例えば、変異型リン酸トランスポーターは、「特定の変異」を有する以外は、配列番号2、4、6、または26に示すアミノ酸配列に対して、80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、特に好ましくは99%以上の相同性を有するアミノ酸配列を有するタンパク質であってよい。尚、本明細書において、「相同性」とは、「同一性」を意味する。
 また、言い換えると、変異型リン酸トランスポーターは、上記例示した各種PitAタンパク質において、「特定の変異」を有し、且つ、当該「特定の変異」以外の箇所にさらに保存的変異を含むバリアントであってよい。
 具体的には、例えば、変異型リン酸トランスポーターは、配列番号2、4、6、または26に示すアミノ酸配列において、「特定の変異」を有し、且つ、当該「特定の変異」以外の箇所にさらに1若しくは数個のアミノ酸の置換、欠失、挿入、又は付加を含むアミノ酸配列を有するタンパク質であってよい。
 なお上記「1又は数個」とは、具体的には、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。上記の1若しくは数個のアミノ酸の置換、欠失、挿入、または付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。
 「特定の変異」としては、例えば、配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基がフェニルアラニン以外のアミノ酸残基に置換される変異が挙げられる。置換後のアミノ酸残基はフェニルアラニン以外のアミノ酸で天然型アミノ酸であればいずれのアミノ酸でもよく、リジン、グルタミン酸、チロシン、バリン、イソロイシン、セリン、アスパラギン酸、アスパラギン、グルタミン、アルギニン、システイン、メチオニン、トリプトファン、グリシン、アラニン、ヒスチジンから選択されるが、特にセリンが好ましい。
 アミノ酸配列における「X位」とは、同アミノ酸配列のN末端から数えてX番目の位置を意味し、N末端のアミノ酸残基が1位のアミノ酸残基である。なお、アミノ酸残基の位置は相対的な位置を示すものであって、アミノ酸の欠失、挿入、付加などによってその絶対的な位置は前後することがある。すなわち、「配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基」とは、配列番号6において246位よりもN末端側の1アミノ酸残基が欠失している場合は、N末端から数えて245番目のアミノ酸残基を意味する。また、「配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基」とは、配列番号6において246位よりもN末端側に1アミノ酸残基挿入されている場合は、N末端から数えて247番目のアミノ酸残基を意味する。
 任意のアミノ酸配列において、いずれのアミノ酸残基が「配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基」であるかは、当該任意のアミノ酸配列と配列番号6のアミノ酸配列とでアライメントを行うことにより決定できる。アライメントは、例えば、公知の遺伝子解析ソフトウェアを利用して行うことができる。具体的なソフトウェアとしては、日立ソリューションズ製のDNASISや、ゼネティックス製のGENETYXなどが挙げられる(Elizabeth C. Tyler et al., Computers and Biomedical Research, 24(1), 72-96, 1991;Barton GJ et al., Journal of molecular biology, 198(2), 327-37. 1987)。
 なお、本発明において、野生型リン酸トランスポーターが配列番号6に示すアミノ酸配列以外のアミノ酸配列を有する場合には、「配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基」はフェニルアラニン残基でないことがあり得る。すなわち、例えば、「配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基がセリン残基に置換される変異」には、野生型酸性リン酸トランスポーターにおいて配列番号6に示すアミノ酸配列における246位のフェニルアラニン残基に相当するアミノ酸残基がフェニルアラニン残基である場合に、当該フェニルアラニン残基をセリン残基に置換する変異に限られず、野生型酸性リン酸トランスポーターにおいて配列番号6に示すアミノ酸配列における246位のフェニルアラニン残基に相当するアミノ酸残基がフェニルアラニン残基およびセリン残基以外のいずれかのアミノ酸残基である場合に、当該アミノ酸残基をセリン残基に置換する変異も含まれる。
 変異型リン酸トランスポーター遺伝子は、野生型リン酸トランスポーター遺伝子を、コードされるリン酸トランスポーターが「特定の変異」を有するよう改変することにより取得できる。野生型リン酸トランスポーター遺伝子は、変異型リン酸トランスポーター遺伝子を導入する宿主由来の遺伝子であってもよく、異種由来の遺伝子であってもよい。DNAの改変は公知の手法により行うことができる。具体的には、例えば、DNAの目的部位に目的の変異を導入する部位特異的変異法としては、PCRを用いる方法(Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989);Carter, P., Meth. in Enzymol., 154, 382 (1987))や、ファージを用いる方法(Kramer,W. and Frits, H. J., Meth. in Enzymol., 154, 350 (1987);Kunkel, T. A. et al., Meth. in Enzymol., 154, 367 (1987))が挙げられる。また、変異型リン酸トランスポーター遺伝子は、化学合成によっても取得できる。
 変異型リン酸トランスポーター遺伝子をコリネ型細菌に導入することにより、コリネ型細菌に変異型リン酸トランスポーター遺伝子を保持させることができる。変異型リン酸トランスポーター遺伝子をコリネ型細菌に導入する手法は特に制限されず、従来知られた方法を用いることができる。例えば、上述した遺伝子のコピー数を増加させる手法と同様にして、変異型リン酸トランスポーター遺伝子をコリネ型細菌に導入することができる。また、自然変異や変異原処理により、コリネ型細菌が有する野生型リン酸トランスポーター遺伝子を、コードされるリン酸トランスポーターが「特定の変異」を有するよう改変してもよい。本発明の細菌が変異型リン酸トランスポーター遺伝子を保持する場合、本発明の細菌は、野生型リン酸トランスポーター遺伝子を有していてもよく、有していなくともよい。本発明の細菌は、1またはそれ以上のコピーの変異型リン酸トランスポーター遺伝子を有していてよい。
 形質転換の方法は特に限定されず、従来知られた方法を用いることができる。例えば、エシェリヒア・コリ K-12について報告されているような、受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法(Mandel, M. and Higa, A.,J. Mol. Biol. 1970, 53, 159-162)や、バチルス・ズブチリスについて報告されているような、増殖段階の細胞からコンピテントセルを調製してDNAを導入する方法(Duncan, C. H., Wilson, G. A. and Young, F. E.., 1997. Gene 1: 153-167)を用いることができる。あるいは、バチルス・ズブチリス、放線菌類、及び酵母について知られているような、DNA受容菌の細胞を、組換えDNAを容易に取り込むプロトプラストまたはスフェロプラストの状態にして組換えDNAをDNA受容菌に導入する方法(Chang, S.and Choen, S.N., 1979.Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978.Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933)も応用できる。さらに、コリネ型細菌について報告されている電気パルス法(特開平2-207791)を利用することができる。
 タンパク質の活性が増大したことは、同タンパク質の活性を測定することで確認できる。リン酸トランスポーター活性は、例えば、公知の手法により無機リン酸の取り込みを測定することにより測定できる(R. M. Harris et al., Journal of Bacteriology, Sept. 2001, p5008-5014)。
 タンパク質の活性が増大したことは、同タンパク質をコードする遺伝子の発現が上昇したことを確認することによっても、確認できる。遺伝子の発現が上昇したことは、同遺伝子の転写量が上昇したことを確認することや、同遺伝子から発現するタンパク質の量が上昇したことを確認することにより確認できる。
 遺伝子の転写量が上昇したことの確認は、同遺伝子から転写されるmRNAの量を野生株または親株等の非改変株と比較することによって行うことができる。mRNAの量を評価する方法としてはノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Sambrook, J., et al., Molecular Cloning A Laboratory Manual/Third Edition, Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001)。mRNAの量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
 タンパク質の量が上昇したことの確認は、抗体を用いてウェスタンブロットによって行うことができる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
 上記したタンパク質の活性を増大させる手法は、リン酸トランスポーターの活性増強に加えて、任意のタンパク質、例えばL-アミノ酸生合成系酵素、の活性増強や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現増強に利用できる。
<1-4>タンパク質の活性を低下させる手法
 以下に、タンパク質の活性を低下させる手法について説明する。
 「タンパク質の活性が低下する」とは、同タンパク質の細胞当たりの活性が野性株や親株等の非改変株と比較して減少していることを意味し、活性が完全に消失している場合を含む。「タンパク質の活性が低下する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が低下していること、および/または、同タンパク質の分子当たりの機能が低下していることをいう。すなわち、「タンパク質の活性が低下する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。なお、「タンパク質の細胞当たりの分子数が低下している」ことには、同タンパク質が全く存在していない場合が含まれる。また、「タンパク質の分子当たりの機能が低下している」ことには、同タンパク質の分子当たりの機能が完全に消失している場合が含まれる。タンパク質の活性は、非改変株と比較して低下していれば特に制限されないが、例えば、非改変株と比較して、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子の発現を低下させることにより達成される。「遺伝子の発現が低下する」ことには、同遺伝子が全く発現していない場合が含まれる。なお、「遺伝子の発現が低下する」ことを、「遺伝子の発現が弱化される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 遺伝子の発現の低下は、例えば、転写効率の低下によるものであってもよく、翻訳効率の低下によるものであってもよく、それらの組み合わせによるものであってもよい。遺伝子の発現の低下は、例えば、遺伝子のプロモーターやシャインダルガノ(SD)配列等の発現調節配列を改変することにより達成できる。発現調節配列を改変する場合には、発現調節配列は、好ましくは1塩基以上、より好ましくは2塩基以上、特に好ましくは3塩基以上が改変される。また、発現調節配列の一部または全部を欠失させてもよい。また、遺伝子の発現の低下は、例えば、発現制御に関わる因子を操作することによっても達成できる。発現制御に関わる因子としては、転写や翻訳制御に関わる低分子(誘導物質、阻害物質など)、タンパク質(転写因子など)、核酸(siRNAなど)等が挙げられる。
 また、タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子を破壊することにより達成できる。遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域の一部又は全部を欠損させることにより達成できる。さらには、染色体上の遺伝子の前後の配列を含めて、遺伝子全体を欠失させてもよい。タンパク質の活性の低下が達成できる限り、欠失させる領域は、N末端領域、内部領域、C末端領域等のいずれの領域であってもよい。通常、欠失させる領域は長い方が確実に遺伝子を不活化することができる。また、欠失させる領域の前後の配列は、リーディングフレームが一致しないことが好ましい。
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入すること、終止コドンを導入すること(ナンセンス変異)、あるいは1~2塩基を付加または欠失するフレームシフト変異を導入すること等によっても達成できる(Journal of Biological Chemistry 272:8611-8617(1997) Proceedings of the National Academy of Sciences, USA 95 5511-5515(1998), Journal of Biological Chemistry 26 116, 20833-20839(1991))。
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域に他の配列を挿入することによっても達成できる。挿入部位は遺伝子のいずれの領域であってもよいが、挿入する配列は長い方が確実に遺伝子を不活化することができる。また、挿入部位の前後の配列は、リーディングフレームが一致しないことが好ましい。他の配列としては、コードされるタンパク質の活性を低下又は消失させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子等のマーカー遺伝子やL-アミノ酸生産に有用な遺伝子が挙げられる。
 染色体上の遺伝子を上記のように改変することは、例えば、遺伝子の部分配列を欠失し、正常に機能するタンパク質を産生しないように改変した欠失型遺伝子を作製し、該欠失型遺伝子を含む組換えDNAで宿主を形質転換して、欠失型遺伝子と染色体上の野生型遺伝子とで相同組換えを起こさせることにより、染色体上の野生型遺伝子を欠失型遺伝子に置換することによって達成できる。その際、組換えDNAには、宿主の栄養要求性等の形質にしたがって、マーカー遺伝子を含ませておくと操作がしやすい。欠失型遺伝子によってコードされるタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。このような相同組換えを利用した遺伝子置換による遺伝子破壊は既に確立しており、「Redドリブンインテグレーション(Red-driven integration)」と呼ばれる方法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))、Redドリブンインテグレーション法とλファージ由来の切り出しシステム(Cho, E. H., Gumport, R. I., Gardner, J. F. J. Bacteriol. 184: 5200-5203 (2002))とを組み合わせた方法(WO2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法などがある(米国特許第6303383号、特開平05-007491号)。
 また、タンパク質の活性が低下するような改変は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線もしくは紫外線の照射、またはN-メチル-N'-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、メチルメタンスルフォネート(MMS)等の変異剤による通常の変異処理が挙げられる。
 タンパク質の活性が低下したことは、同タンパク質の活性を測定することで確認できる。
 遺伝子の発現が低下したことは、同遺伝子の転写量が低下したことを確認することや、同遺伝子から発現するタンパク質の量が低下したことを確認することにより確認できる。
 遺伝子の転写量が低下したことの確認は、同遺伝子から転写されるmRNAの量を非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。mRNAの量は、非改変株と比較して、例えば、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 タンパク質の量が低下したことの確認は、抗体を用いてウェスタンブロットによって行うことが出来る(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 遺伝子が破壊されたことは、破壊に用いた手段に応じて、同遺伝子の一部または全部の塩基配列、制限酵素地図、または全長等を決定することで確認できる。
 上記したタンパク質の活性を低下させる手法は、任意のタンパク質、例えば目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素、の活性低下や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現低下に利用できる。
<2>本発明のL-アミノ酸の製造方法
 本発明の方法は、本発明の細菌を培地で培養すること、および該培地よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法である。
 使用する培地は、本発明の細菌が増殖でき、目的のL-アミノ酸が生産される限り、特に制限されない。培地としては、例えば、コリネ型細菌等の細菌の培養に用いられる通常の培地を用いることができる。培地としては、例えば、炭素源、窒素源、リン酸源、硫黄源、その他の各種有機成分や無機成分から選択される成分を必要に応じて含有する培地を用いることができる。培地成分の種類や濃度は、使用する細菌の種類や製造するアミノ酸の種類等の諸条件に応じて適宜設定してよい。
 炭素源として、具体的には、例えば、グルコース、フルクトース、スクロース、ラクトース、ガラクトース、キシロース、アラビノース、廃糖蜜、澱粉加水分解物、バイオマスの加水分解物等の糖類、酢酸、フマル酸、クエン酸、コハク酸等の有機酸類、グリセロール、粗グリセロール、エタノール等のアルコール類、脂肪酸類が挙げられる。炭素源としては、1種の炭素源を用いてもよく、2種またはそれ以上の炭素源を組み合わせて用いてもよい。
 窒素源として、具体的には、例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等のアンモニウム塩、ペプトン、酵母エキス、肉エキス、大豆タンパク質分解物等の有機窒素源、アンモニア、ウレアが挙げられる。pH調整に用いられるアンモニアガスやアンモニア水を窒素源として利用してもよい。窒素源としては、1種の窒素源を用いてもよく、2種またはそれ以上の窒素源を組み合わせて用いてもよい。
 リン酸源として、具体的には、例えば、リン酸2水素カリウム、リン酸水素2カリウム等のリン酸塩、ピロリン酸等のリン酸ポリマーが挙げられる。リン酸源としては、1種のリン酸源を用いてもよく、2種またはそれ以上のリン酸源を組み合わせて用いてもよい。
 硫黄源として、具体的には、例えば、硫酸塩、チオ硫酸塩、亜硫酸塩等の無機硫黄化合物、システイン、シスチン、グルタチオン等の含硫アミノ酸が挙げられる。硫黄源としては、1種の硫黄源を用いてもよく、2種またはそれ以上の硫黄源を組み合わせて用いてもよい。
 その他の各種有機成分や無機成分として、具体的には、例えば、塩化ナトリウム、塩化カリウム等の無機塩類;鉄、マンガン、マグネシウム、カルシウム等の微量金属類;ビタミンB1、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタミンB12等のビタミン類;アミノ酸類;核酸類;これらを含有するペプトン、カザミノ酸、酵母エキス、大豆タンパク質分解物等の有機成分が挙げられる。その他の各種有機成分や無機成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。
 また、生育にアミノ酸などを要求する栄養要求性変異株を使用する場合には、培地に要求される栄養素を補添することが好ましい。例えば、L-リジン生産菌は、L-リジン生合成経路が強化され、L-リジン分解能が弱化されている場合が多い。よって、そのようなL-リジン生産菌を培養する場合には、例えば、L-スレオニン、L-ホモセリン、L-イソロイシン、L-メチオニンから選ばれる1またはそれ以上のアミノ酸を培地に補添するのが好ましい。
 また、例えば、コリネ型細菌によりL-グルタミン酸を製造する場合は、培地中のビオチン量を制限することや、培地に界面活性剤またはペニシリンを添加することが好ましい。
 培養条件は、本発明の細菌が増殖でき、目的のL-アミノ酸が生産される限り、特に制限されない。培養は、例えば、コリネ型細菌等の細菌の培養に用いられる通常の条件で行うことができる。培養条件は、使用する細菌の種類や製造するアミノ酸の種類等の諸条件に応じて適宜設定してよい。
 培養は、液体培地を用いて好気的に行うことができる。培養は、具体的には、通気培養または振盪培養で行うことができる。培養温度は、例えば、20~40℃、好ましくは25℃~37℃であってよい。培地のpHは、例えば、5~8に調整されてよい。pH調整には、無機あるいは有機の酸性あるいはアルカリ性物質、またはアンモニアガス等を使用することができる。培養期間は、例えば、15時間~90時間であってよい。培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)、またはそれらの組み合わせにより実施することができる。また、培養は、種培養と本培養とに分けて行われてもよい。その場合、種培養と本培養の培養条件は、同一であってもよく、そうでなくてもよい。例えば、種培養と本培養を、共に回分培養で行ってもよい。また、例えば、種培養を回分培養で行い、本培養を流加培養または連続培養で行ってもよい。このような条件下で本発明の細菌を培養することにより、培地中にL-アミノ酸が蓄積する。
 また、L-グルタミン酸を製造する場合、L-グルタミン酸が析出する条件に調整された液体培地を用いて、培地中にL-グルタミン酸を析出させながら培養を行うことも出来る。L-グルタミン酸が析出する条件としては、例えば、pH5.0~4.0、好ましくはpH4.5~4.0、さらに好ましくはpH4.3~4.0、特に好ましくはpH4.0の条件が挙げられる(欧州特許出願公開第1078989号明細書)。
 また、L-リジン等の塩基性アミノ酸を製造する場合、重炭酸イオン及び/又は炭酸イオンを塩基性アミノ酸の主なカウンタイオンとして利用して塩基性アミノ酸を発酵生産する方法を利用してもよい(特開2002-65287、US2002-0025564A、EP1813677A)。これらの方法によれば、塩基性アミノ酸のカウンタイオンとして従来利用されていた硫酸イオン及び/又は塩化物イオンの使用量を削減しつつ、塩基性アミノ酸を製造することができる。
 発酵液からのL-アミノ酸の回収は、通常、イオン交換樹脂法(Nagai, H. et al., Separation Science and Technology, 39(16), 3691-3710)、沈殿法、膜分離法(特開平9-164323号、特開平9-173792号)、晶析法(WO2008/078448、WO2008/078646)、その他の公知の方法を組み合わせることにより実施できる。なお、菌体内にL-アミノ酸が蓄積する場合には、例えば、菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清から、イオン交換樹脂法などによってL-アミノ酸を回収することができる。回収されるL-アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。塩としては、例えば、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。例えば、L-グルタミン酸の場合、発酵液中のL-グルタミン酸アンモニウムを酸を加えて晶析させ、結晶に等モルの水酸化ナトリウムを添加することでL-グルタミン酸ナトリウム(MSG)が得られる。なお、晶析前後に活性炭を加えて脱色してもよい(グルタミン酸ナトリウムの工業晶析 日本海水学会誌 56巻 5号 川喜田哲哉参照)。
 また、L-アミノ酸が培地中に析出する場合は、遠心分離又は濾過等により回収することができる。また、培地中に析出したL-アミノ酸は、培地中に溶解しているL-アミノ酸を晶析した後に、併せて単離してもよい。
 尚、回収されるL-アミノ酸は、L-アミノ酸以外に、細菌菌体、培地成分、水分、及び細菌の代謝副産物を含んでいてもよい。回収されたL-アミノ酸の純度は、例えば50%以上、好ましくは85%以上、特に好ましくは95%以上であってよい (JP1214636B, USP5,431,933, USP4,956,471, USP4,777,051, USP4,946,654, USP5,840,358, USP6,238,714, US2005/0025878))。
 L-アミノ酸がL-グルタミン酸である場合、例えば、L-グルタミン酸ナトリウム結晶をうま味調味料として用いることができる。L-グルタミン酸ナトリウム結晶は、同様にうま味を有するグアニル酸ナトリウムやイノシン酸ナトリウム等の核酸と混合して調味料として用いてもよい。
 なお、本発明の方法の一態様は、L-アミノ酸生産能を有するコリネ型細菌を培地で培養すること、および該培地よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、前記細菌が、配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基がフェニルアラニン以外のアミノ酸残基に置換される変異を有するリン酸トランスポーターをコードする変異型pitA遺伝子を保持していることを特徴とする方法である。
 本発明の方法の当該態様については、上述した本発明の細菌や本発明の方法に関する記載を準用できる。例えば、当該態様においては、配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基が、セリン残基に置換されていることが好ましい。また、当該態様においては、コリネ型細菌が、コリネバクテリウム・グルタミカムであることが好ましい。また、当該態様においては、製造されるL-アミノ酸はいずれのアミノ酸でもよいが、L-グルタミン酸であることが好ましい。
 本発明は以下の実施例によって、更に具体的に説明されるが、これらはいかなる意味でも本発明を限定する意図と解してはならない。
実施例1:pitA強化株を用いたGlu生産培養
 本実施例では、pitA遺伝子の発現が増強されたC. glutamicumのGlu生産株を用いてGlu生産を行い、pitA遺伝子の発現増強がGlu生産に与える影響について評価した。
 使用菌株は以下の通りである。
C. glutamicum 2256ΔldhAΔsucA yggB*/pVK9
C. glutamicum 2256ΔldhAΔsucA yggB*/pVK9-Plac-pitA
(1)菌株構築方法
 C. glutamicum 2256株(ATCC 13869)を親株に用いて、以下の方法で、モデルGlu生産株として2256ΔldhAΔsucA yggB*株を構築した。使用したプライマーを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 まず、2256株の染色体DNAを鋳型としてプライマー1と2のペア、およびプライマー3と4のペアをそれぞれ用いて、ldhA遺伝子欠損用のDNA断片を増幅した。次に、増幅された2断片を等量混合したものを鋳型としてプライマー5と6を用いてPCRを行い、2断片の結合したDNA断片を得た。得られたDNA断片をSalIで処理して、pBS4S(WO2005/113745)のSalI部位に導入することでldhA欠損用プラスミドを構築した。このldhA欠損用プラスミドを2256株の染色体に挿入した後、脱落させることでldhA遺伝子を欠損させた。
 次に、2256株の染色体DNAを鋳型としてプライマー7と8のペア、およびプライマー9と10のペアをそれぞれ用いてsucA遺伝子欠損用のDNA断片を増幅した。次に、増幅された2断片を等量混合したものを鋳型としてプライマー11と12を用いてPCRを行い、2断片の結合したDNA断片を得た。得られたDNA断片をBamHIで処理して、pBS3(WO2006/070944)のBamHI部位に導入することでsucA欠損用プラスミドを構築した。このsucA欠損用プラスミドを2256ΔldhA株の染色体に挿入した後、脱落させることでsucA遺伝子を欠損させた。得られたsucA欠損株のいくつかのバリアントをビオチン十分条件において培養し、Glu生産能を有する株を選抜した結果、yggB遺伝子にIS変異(V419::IS)の入ったGlu生産株を取得した。IS変異(V419::IS)が入ったyggB遺伝子の塩基配列、及び同遺伝子がコードするYggBタンパク質のアミノ酸配列を、それぞれ配列番号23および24に示す。得られたGlu生産株を2256ΔldhAΔsucA yggB*株とした。
 pitA発現プラスミド(pVK9-Plac-pitA)を以下の方法で構築した。まず、2256株の染色体DNAを鋳型としてプライマー13と14を用いてpitA遺伝子断片を増幅した。次いで、増幅した断片をbamHIとpstIで処理したpVK9プラスミド(US2006-0141588)にin-fusion(TaKaRa INC.)を用いて連結し、pitA発現プラスミドを構築した。構築したpitA発現プラスミドをpVK9-Plac-pitAとした。
 構築したpVK9-Plac-pitAとベクターコントロールとしてpVK9をそれぞれGlu生産菌2256ΔldhAΔsucA yggB*株に導入して、2256ΔldhAΔsucA yggB*/pVK9-Plac-pitA株および2256ΔldhAΔsucA yggB*/pVK9株を構築した。
(2)Glu生産培養
 2256ΔldhAΔsucA yggB*/pVK9-Plac-pitA株および2256ΔldhAΔsucA yggB*/pVK9株を用いて、Glu生産培養を行った。用いた培地の組成を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 KOHでpH8.0に調整した上記組成の培地を作製し、オートクレーブ(115℃、15min)により滅菌して培養に供した。
<培養方法>
 培養(前培養および本培養)は、坂口フラスコに培地を20mL張り込み、CaCO3を50g/Lになるように添加して、31.5℃のボックスシェーカーで振とうして行なった。最初に、前培養として、培地1を用いて上記の株のそれぞれを24時間培養した。次いで、得られた前培養液2mLを培地2に植菌し、植菌から2時間後にTween40(終濃度4g/L)を添加してメイン培養を行った。サンプリングは植菌から17時間後に行った。残存糖およびグルタミン酸は、AS-310(旭化成)を用いて定量した。
<結果と考察>
 結果を表3に示す。表3中、「RS」は残存糖量を、「Glu」はグルタミン酸量を示す。本実施例により、C. glutamicumにおいてpitA遺伝子の発現を上昇させることで、C. glutamicumの生育とGlu生産性が向上することが明らかとなった。よって、pitA遺伝子がコードするリン酸トランスポーターの活性を増大させることは、グルタミン酸等のアミノ酸生産に有効であると考察された。
Figure JPOXMLDOC01-appb-T000003
実施例2:pitA変異株を用いたGlu生産培養
 本実施例では、pitA遺伝子に変異を導入したC. glutamicumのGlu生産株を用いてGlu生産を行い、pitA遺伝子の変異がGlu生産に与える影響について評価した。
 使用菌株は以下の通りである。
C. glutamicum 2256ΔldhAΔsucA yggB*
C. glutamicum 2256ΔldhAΔsucA yggB* pitAmut
(1)菌株構築方法
 実施例1で構築したモデルGlu生産株であるC. glutamicum 2256ΔldhAΔsucA yggB*を親株として、pitA遺伝子に変異が導入された2256ΔldhAΔsucA yggB* pitAmut株を構築した。使用したプライマーを表4に示す。
Figure JPOXMLDOC01-appb-T000004
 pitA変異導入用プラスミドpBS4S-pitAmutを以下の方法で構築した。pitA遺伝子のコード領域内にPitAタンパク質の246位のフェニルアラニン残基がセリン残基に置換される変異(Phe246Ser  ttc→tcc)が入ったGlu生産菌B3株の染色体DNAを鋳型として、プライマー15と16を用いてPCRを行い、上記変異を有するpitA遺伝子断片を増幅した。次いで、増幅した断片をBamHIとPstI処理したpBS4Sプラスミドにin-fusion(TaKaRa INC.)を用いて連結し、pitA変異導入用プラスミドを構築した。構築したpitA変異導入用プラスミドをpBS4S-pitAmutとした。
 構築したpBS4S-pitAmutをGlu生産菌2256ΔldhAΔsucA yggB*株の染色体に挿入した後、脱落させることで、pitA遺伝子に変異が導入された2256ΔldhAΔsucA yggB* pitAmut株を構築した。
 なお、上記pitA変異株2256ΔldhAΔsucA yggB* pitAmut株は、Glu酸生産菌B3株の染色体DNAを鋳型として構築した変異導入用プラスミドを用いて構築したが、タカラバイオ製PrimeSTAR(登録商標) Mutagenesis Basal Kitによって作製した変異導入用プラスミドを用いても構築可能である。例えば、C. glutamicum 2256株(ATCC 13869)等の野生株の染色体DNAを鋳型として、プライマー15と16を用いてPCRを行い、変異を有さないpitA遺伝子断片を増幅する。ついで、増幅した断片をBamHIとPstI処理したpBS4Sプラスミドにin-fusion(TaKaRa INC.)を用いて連結し、野生型pitA遺伝子の配列を含むプラスミドを構築する。さらに、本プラスミドを鋳型として、PrimeSTAR(登録商標) Mutagenesis Basal Kitの使用説明書に従ってpitA遺伝子の737位のTがCに改変されるような適切なプライマーを用いてPCRを行い、pitA変異導入用プラスミドpBS4S-pitAmutが構築できる。これを用いて同一のpitA変異株の構築が可能である。
(2)Glu生産培養
 2256ΔldhAΔsucA yggB*株および2256ΔldhAΔsucA yggB* pitAmut株を用いて、Glu生産培養を行った。用いた培地の組成を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 KOHでpH8.0に調整した上記組成の培地を作製し、オートクレーブ(115℃、15min)により滅菌して培養に供した。
<培養方法>
 培養(前培養および本培養)は、坂口フラスコに培地を20mL張り込み、CaCO3を50g/Lになるように添加して、31.5℃のボックスシェーカーで振とうして行なった。最初に、前培養として、培地3を用いて上記の株のそれぞれを24時間培養した。次いで、得られた前培養液2mLを培地3に植菌し、植菌から2時間後にTween40(終濃度4g/L)を添加してメイン培養を行った。サンプリングは植菌から21.5時間後に行った。残存糖およびグルタミン酸は、AS-310(旭化成)を用いて定量した。
<結果と考察>
 結果を表6に示す。表6中、「RS」は残存糖量を、「Glu」はグルタミン酸量を示す。本実施例により、C. glutamicumにおいてpitA遺伝子に変異(Phe246Ser)を導入することで、C. glutamicumの生育とGlu生産性が向上することが明らかとなった。よって、本pitA変異(Phe246Ser)はグルタミン酸等のアミノ酸生産に有効であると考察された。
Figure JPOXMLDOC01-appb-T000006
 本発明によれば、コリネ型細菌のL-アミノ酸生産能を向上させることができ、L-アミノ酸を効率よく製造することができる。
〔配列表の説明〕
配列番号1:E. coli MG1655のpitA遺伝子の塩基配列
配列番号2:E. coli MG1655のPitAタンパク質のアミノ酸配列
配列番号3:Pantoea ananatis LMG20103のpitA遺伝子の塩基配列
配列番号4:Pantoea ananatis LMG20103のPitAタンパク質のアミノ酸配列
配列番号5:Corynebacterium glutamicum 2256 (ATCC 13869)のpitA遺伝子の塩基配列
配列番号6:Corynebacterium glutamicum 2256 (ATCC 13869)のPitAタンパク質のアミノ酸配列
配列番号7~20:プライマー
配列番号21:Corynebacterium glutamicum 2256 (ATCC 13869)のyggB遺伝子の塩基配列
配列番号22:Corynebacterium glutamicum 2256 (ATCC 13869)のYggBタンパク質のアミノ酸配列
配列番号23:Corynebacterium glutamicum 2256 (ATCC 13869)のyggB遺伝子(V419::IS)の塩基配列
配列番号24:Corynebacterium glutamicum 2256 (ATCC 13869)のYggBタンパク質(V419::IS)のアミノ酸配列
配列番号25:Corynebacterium glutamicum ATCC13032のpitA遺伝子の塩基配列
配列番号26:Corynebacterium glutamicum ATCC13032のPitAタンパク質のアミノ酸配列
配列番号27、28:プライマー

Claims (16)

  1.  L-アミノ酸生産能を有するコリネ型細菌を培地で培養すること、および該培地よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
     前記細菌が、リン酸トランスポーターの活性が増大するように改変されていることを特徴とする、方法。
  2.  リン酸トランスポーターをコードする遺伝子の発現を上昇させることにより、リン酸トランスポーターの活性が増大した、請求項1に記載の方法。
  3.  前記遺伝子がpitA遺伝子である、請求項2に記載の方法。
  4.  前記pitA遺伝子が、下記(a)又は(b)に記載のDNAである、請求項3に記載の方法:
     (a)配列番号5または25に示す塩基配列を有するDNA、
     (b)配列番号5または25に示す塩基配列の相補配列又は同相補配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズし、かつ、リン酸トランスポーター活性を有するタンパク質をコードするDNA。
  5.  前記pitA遺伝子が、下記(A)又は(B)に記載のタンパク質をコードするDNAである、請求項3または4に記載の方法:
     (A)配列番号6または26に示すアミノ酸配列を有するタンパク質、
     (B)配列番号6または26に示すアミノ酸配列において、1若しくは数個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつ、リン酸トランスポーター活性を有するタンパク質。
  6.  前記遺伝子の発現が、該遺伝子のコピー数を高めること、及び/又は該遺伝子の発現調節配列を改変することによって上昇した、請求項2~5のいずれか一項に記載の方法。
  7.  配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基がフェニルアラニン以外のアミノ酸残基に置換される変異を有するリン酸トランスポーターをコードする変異型pitA遺伝子を前記細菌に保持させることにより、リン酸トランスポーターの活性が増大した、請求項1~6のいずれか1項に記載の方法。
  8.  配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基が、セリン残基に置換されたことを特徴とする、請求項7に記載の方法。
  9.  L-アミノ酸生産能を有するコリネ型細菌を培地で培養すること、および該培地よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
     前記細菌が、配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基がフェニルアラニン以外のアミノ酸残基に置換される変異を有するリン酸トランスポーターをコードする変異型pitA遺伝子を保持していることを特徴とする、方法。
  10.  配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基が、セリン残基に置換されたことを特徴とする、請求項9に記載の方法。
  11.  前記コリネ型細菌が、コリネバクテリウム属細菌である、請求項1~10のいずれか一項に記載の方法。
  12.  前記コリネ型細菌が、コリネバクテリウム・グルタミカムである、請求項11に記載の方法。
  13.  前記L-アミノ酸が、L-グルタミン酸である、請求項1~12のいずれか一項に記載の方法。
  14.  前記L-グルタミン酸が、L-グルタミン酸アンモニウムまたはL-グルタミン酸ナトリウムである、請求項13に記載の方法。
  15.  配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基がセリン残基に置換される変異を有するリン酸トランスポーターをコードするDNA。
  16.  配列番号6の246位のフェニルアラニン残基に相当するアミノ酸残基がセリン残基に置換される変異を有するリン酸トランスポーターをコードする変異型pitA遺伝子を保持しているコリネ型細菌。
PCT/JP2014/062752 2013-05-13 2014-05-13 L-アミノ酸の製造法 WO2014185430A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112015007916-4A BR112015007916B1 (pt) 2013-05-13 2014-05-13 Método para produzir l-aminoácido
KR1020157019590A KR101773755B1 (ko) 2013-05-13 2014-05-13 L-아미노산의 제조법
JP2015517097A JP5831669B2 (ja) 2013-05-13 2014-05-13 L−アミノ酸の製造法
EP14797459.6A EP2868745B1 (en) 2013-05-13 2014-05-13 Method for manufacturing an L-amino acid
CN201480005332.7A CN105008532B (zh) 2013-05-13 2014-05-13 L‑氨基酸的制造方法
MYPI2015701942A MY185322A (en) 2013-05-13 2014-05-13 Method for producing l-amino acid
PH12015500792A PH12015500792A1 (en) 2013-05-13 2015-04-10 Method for producing l-amino acid
US14/796,326 US9506094B2 (en) 2013-05-13 2015-07-10 Method for producing L-amino acid using microorganism having increased phosphate transporter activity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-101589 2013-05-13
JP2013101589 2013-05-13
JP2013219274 2013-10-22
JP2013-219274 2013-10-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/796,326 Continuation US9506094B2 (en) 2013-05-13 2015-07-10 Method for producing L-amino acid using microorganism having increased phosphate transporter activity

Publications (1)

Publication Number Publication Date
WO2014185430A1 true WO2014185430A1 (ja) 2014-11-20

Family

ID=51898407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062752 WO2014185430A1 (ja) 2013-05-13 2014-05-13 L-アミノ酸の製造法

Country Status (10)

Country Link
US (1) US9506094B2 (ja)
EP (1) EP2868745B1 (ja)
JP (1) JP5831669B2 (ja)
KR (1) KR101773755B1 (ja)
CN (1) CN105008532B (ja)
BR (1) BR112015007916B1 (ja)
MY (1) MY185322A (ja)
PE (1) PE20150681A1 (ja)
PH (1) PH12015500792A1 (ja)
WO (1) WO2014185430A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3165608A1 (en) 2015-10-30 2017-05-10 Ajinomoto Co., Inc. Method for producing l-amino acid of glutamate family
CN108486133A (zh) * 2018-06-29 2018-09-04 江南大学 一种l-丝氨酸转运蛋白的应用方法
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
EP3716274A1 (en) 2019-03-29 2020-09-30 Ajinomoto Co., Inc. Control device, control method, computer program, and method for producing organic compound
WO2022092018A1 (ja) 2020-10-28 2022-05-05 味の素株式会社 L-アミノ酸の製造法
CN115135767A (zh) * 2020-02-12 2022-09-30 大象株式会社 具有提高的l-谷氨酸生产能力的谷氨酸棒状杆菌突变体菌株,以及用于使用其生产l-谷氨酸的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146329B (zh) * 2016-07-18 2018-03-30 山东师范大学 一种谷氨酸发酵废醪菌渣中谷氨酸的提取方法
US10428359B2 (en) 2016-10-03 2019-10-01 Ajinomoto Co, Inc. Method for producing L-amino acid
KR101904675B1 (ko) * 2017-12-15 2018-10-04 씨제이제일제당 (주) 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법
CN110590920B (zh) * 2019-09-30 2020-12-29 江南大学 一种l-丝氨酸转运蛋白及其应用
KR102185850B1 (ko) * 2020-02-21 2020-12-02 씨제이제일제당 주식회사 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
KR102266233B1 (ko) * 2021-01-27 2021-06-17 씨제이제일제당 주식회사 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법
KR102266231B1 (ko) * 2021-01-27 2021-06-17 씨제이제일제당 주식회사 신규한 mfs 트랜스포터 변이체 및 이를 이용한 l-글루탐산 생산 방법
KR102266230B1 (ko) * 2021-01-27 2021-06-17 씨제이제일제당 주식회사 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법
KR102277407B1 (ko) * 2021-04-29 2021-07-14 씨제이제일제당 주식회사 신규한 글루타메이트 합성 효소 서브 유니트 알파 변이체 및 이를 이용한 l-글루탐산 생산 방법
KR102634303B1 (ko) * 2021-05-21 2024-02-06 씨제이제일제당 주식회사 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2024090884A1 (ko) * 2022-10-24 2024-05-02 대상 주식회사 페닐알라닌:h+ 동시수송체 phep 신규 변이체 및 이를 이용한 l-방향족 아미노산의 생산 방법
KR20240066507A (ko) * 2022-11-01 2024-05-16 씨제이제일제당 (주) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산 방법

Citations (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR356739A (fr) 1904-09-20 1905-12-07 Charles Glauser Perrin Mécanisme de remontoir et de mise à l'heure
US3708395A (en) 1969-07-23 1973-01-02 Kyowa Hakko Kogyo Kk Process for producing l-lysine
JPS4828078B1 (ja) 1969-03-20 1973-08-29
US3825472A (en) 1972-04-27 1974-07-23 Ajinomoto Kk Method of producing l-lysine by fermentation
JPS5031093A (ja) 1973-07-26 1975-03-27
JPS5053588A (ja) 1973-09-22 1975-05-12
JPS50113209A (ja) 1974-02-13 1975-09-05
JPS5238088A (en) 1975-09-19 1977-03-24 Ajinomoto Co Inc Preparation of l-glutamic acid
JPS52102498A (en) 1976-02-20 1977-08-27 Ajinomoto Co Inc Preparation of l-lysine
JPS531833B2 (ja) 1974-08-12 1978-01-23
JPS539394A (en) 1976-07-09 1978-01-27 Kyowa Hakko Kogyo Co Ltd Preparation of l-lysine by fermentation
JPS5325034B1 (ja) 1973-01-23 1978-07-24
JPS5386090A (en) 1976-12-29 1978-07-29 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPS5386089A (en) 1976-12-29 1978-07-29 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPS5343591B2 (ja) 1974-08-05 1978-11-21
JPS5444096A (en) 1977-09-13 1979-04-07 Ajinomoto Co Inc Preparation of l-arginine by fermentation
JPS559759A (en) 1978-07-07 1980-01-23 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPS559783A (en) 1978-07-10 1980-01-23 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPS559784A (en) 1978-07-10 1980-01-23 Ajinomoto Co Inc Preparation of l-lysine
JPS561889A (en) 1979-06-20 1981-01-10 Ajinomoto Co Inc Preparation of l-glutamic acid by fermentation
JPS561915B2 (ja) 1976-12-29 1981-01-16
JPS568692A (en) 1979-07-03 1981-01-29 Kyowa Hakko Kogyo Co Ltd Preparation of l-lysine by fermentation
JPS566499B1 (ja) 1970-04-14 1981-02-12
JPS5632995A (en) 1979-08-28 1981-04-02 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPS5635981A (en) 1979-08-31 1981-04-08 Ajinomoto Co Inc Novel variant
JPS5639778A (en) 1979-09-10 1981-04-15 Ajinomoto Co Inc Novel modified strain
JPS5648890A (en) 1979-08-10 1981-05-02 Ajinomoto Co Inc Preparation of l-glutamic acid by fermentation
JPS56140895A (en) 1980-04-02 1981-11-04 Ajinomoto Co Inc Preparation of l-glutamic acid by fermentation
JPS56151495A (en) 1980-04-25 1981-11-24 Ajinomoto Co Inc Production of l-glutamine through fermentation
JPS572689A (en) 1981-03-23 1982-01-08 Ajinomoto Co Inc Preparation of l-glutamic acid
JPS572869A (en) 1980-06-10 1982-01-08 Tohoku Electric Power Co Inc Austenite stainless steel for hot corrosive environment
JPS5718989A (en) 1980-07-09 1982-01-30 Ajinomoto Co Inc Production of l-arginine through fermentation
JPS5765198A (en) 1980-10-09 1982-04-20 Ajinomoto Co Inc Fermentative production of l-glutamic acid
JPS5730474B2 (ja) 1978-07-10 1982-06-29
JPS57134500A (en) 1981-02-12 1982-08-19 Kyowa Hakko Kogyo Co Ltd Plasmid pcg1
JPS57150381A (en) 1982-02-12 1982-09-17 Kyowa Hakko Kogyo Co Ltd Variant of corynebacterium glutamicum
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
DE3127361A1 (de) 1981-07-08 1983-02-03 Schering Ag, 1000 Berlin Und 4619 Bergkamen Herstellung und anwendung von plasmiden mit genen fuer die biosynthese von l-prolin
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
JPS58158192A (ja) 1982-03-15 1983-09-20 Ajinomoto Co Inc 発酵法によるl−グルタミン酸の製造方法
US4411997A (en) 1980-12-29 1983-10-25 Ajinomoto Company Incorporated Method for producing L-lysine by fermentation
JPS5848147B2 (ja) 1975-12-15 1983-10-26 味の素株式会社 シリヨウノセイゾウホウ
JPS58192900A (ja) 1982-05-04 1983-11-10 Ajinomoto Co Inc 複合プラスミド
JPS6070093A (ja) 1983-09-28 1985-04-20 Ajinomoto Co Inc 発酵法によるl−チロシンの製造法
EP0149911A2 (en) 1984-01-09 1985-07-31 Minnesota Mining And Manufacturing Company Electrical connector locator plate
JPS6115695A (ja) 1984-06-29 1986-01-23 Ajinomoto Co Inc 発酵法によるl−イソロイシンの製造方法
JPS6115696A (ja) 1984-06-29 1986-01-23 Ajinomoto Co Inc 発酵法によるl−イソロイシンの製造法
JPS6135840B2 (ja) 1981-09-28 1986-08-15 Ajinomoto Kk
JPS61202694A (ja) 1985-03-07 1986-09-08 Ajinomoto Co Inc 発酵法によるl−グルタミンの製造法
JPS6274293A (ja) 1985-09-28 1987-04-06 Kyowa Hakko Kogyo Co Ltd L−イソロイシンの製造法
US4656135A (en) 1984-06-29 1987-04-07 Ajinomoto Co., Inc. Process for producing L-isoleucine by fermentation
JPS6291193A (ja) 1985-06-05 1987-04-25 Kyowa Hakko Kogyo Co Ltd L−スレオニンおよびl−イソロイシンの製造法
JPS6224075B2 (ja) 1979-05-02 1987-05-26 Ajinomoto Kk
JPS6224074B2 (ja) 1979-12-21 1987-05-26 Ajinomoto Kk
JPS62195293A (ja) 1986-02-22 1987-08-28 Kyowa Hakko Kogyo Co Ltd 発酵法によるl−イソロイシンの製造法
JPS63240794A (ja) 1987-03-30 1988-10-06 Ajinomoto Co Inc L−トリプトフアンの製造法
US4777051A (en) 1986-06-20 1988-10-11 Ajinomoto Co., Inc. Process for the production of a composition for animal feed
JPH01191686A (ja) 1988-01-26 1989-08-01 Mitsubishi Petrochem Co Ltd 複合プラスミド
EP0331145A2 (en) 1988-03-04 1989-09-06 Kyowa Hakko Kogyo Co., Ltd. Process for producing amino acids
JPH02458A (ja) 1987-10-12 1990-01-05 Ajinomoto Co Inc 発酵法によるl―イソロイシンの製造法
JPH026517B2 (ja) 1981-02-12 1990-02-09 Ajinomoto Kk
JPH0272876A (ja) 1988-09-08 1990-03-13 Mitsubishi Petrochem Co Ltd トリプトフアンシンターゼの製造法
JPH02109985A (ja) 1988-02-22 1990-04-23 Eurolysine 細菌染色体上ヘの目的遺伝子の組み込み方法及び該方法によって得られた細菌
WO1990004636A1 (en) 1988-10-25 1990-05-03 Vsesojuzny Nauchno-Issledovatelsky Institut Genetiki I Selektsii Promyshlennykh Mikroorganizmov (Vniigenetika) Strain of bacteria escherichia coli, producer of l-threonine
JPH02186995A (ja) 1989-01-12 1990-07-23 Ajinomoto Co Inc 発酵法によるl‐アルギニンの製造法
US4946654A (en) 1984-04-07 1990-08-07 Bayer Aktiengesellschaft Process for preparing granulates
JPH02207791A (ja) 1989-02-07 1990-08-17 Ajinomoto Co Inc 微生物の形質転換法
US4956471A (en) 1986-04-28 1990-09-11 Ajinomoto Company, Inc. Process for isolating and purifying amino acids
JPH02303495A (ja) 1989-05-17 1990-12-17 Kyowa Hakko Kogyo Co Ltd 芳香族アミノ酸の製造法
JPH0347838B2 (ja) 1983-12-23 1991-07-22 Ajinomoto Kk
JPH03210184A (ja) 1990-01-11 1991-09-13 Mitsubishi Petrochem Co Ltd 新規プラスミドベクター
JPH03232497A (ja) 1990-02-08 1991-10-16 Asahi Chem Ind Co Ltd 発酵法によるl―グルタミンの製造方法
JPH0488994A (ja) 1990-07-30 1992-03-23 Kyowa Hakko Kogyo Co Ltd 発酵法によるl―グルタミン酸の製造法
US5168056A (en) 1991-02-08 1992-12-01 Purdue Research Foundation Enhanced production of common aromatic pathway compounds
JPH057491A (ja) 1990-10-15 1993-01-19 Ajinomoto Co Inc 温度感受性プラスミド
US5185262A (en) 1988-07-27 1993-02-09 Mitsubishi Petrochemical Co., Ltd. DNA fragment containing gene which encodes the function of stabilizing plasmid in host microorganism
JPH0511958B2 (ja) 1982-03-15 1993-02-16 Ajinomoto Kk
US5188949A (en) 1986-09-29 1993-02-23 Ajinomoto Co., Inc. Method for producing L-threonine by fermentation
JPH0549489A (ja) 1991-08-22 1993-03-02 Ajinomoto Co Inc 発酵法によるl−フエニルアラニンの製造法
RU2003677C1 (ru) 1992-03-30 1993-11-30 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина
JPH0665314B2 (ja) 1987-04-16 1994-08-24 味の素株式会社 発酵法によるl−バリンの製造法
WO1995006114A1 (fr) 1993-08-24 1995-03-02 Ajinomoto Co., Inc. Allele de phosphenolpyruvate carboxylase, gene de cet allele et procede de production de l'acide amine
JPH0724591B2 (ja) 1984-09-27 1995-03-22 味の素株式会社 組換えdnaを有するコリネ型細菌を用いる芳香族アミノ酸の製造法
JPH07163383A (ja) 1993-10-18 1995-06-27 Mitsubishi Chem Corp L−アラニンの製造法
US5431933A (en) 1991-09-17 1995-07-11 Degussa Aktiengesellschaft Animal feed supplement based on a fermentation broth amino acid, a process for its production and its use
JPH07112437B2 (ja) 1982-03-05 1995-12-06 味の素株式会社 澱粉からの発酵生産物の製造方法
JPH07112438B2 (ja) 1982-03-15 1995-12-06 味の素株式会社 生育の改善されたアミノ酸生産菌を用いた発酵法によるアミノ酸の製造方法
WO1995034672A1 (fr) 1994-06-14 1995-12-21 Ajinomoto Co., Inc. GENE A DESHYDROGENASE α-CETOGLUTARIQUE
EP0593792B1 (en) 1992-10-14 1997-05-14 Ajinomoto Co., Inc. Novel L-threonine-producing microbacteria and a method for the production of L-threonine
JPH09164323A (ja) 1995-10-13 1997-06-24 Ajinomoto Co Inc 発酵液の膜除菌方法
JPH09173792A (ja) 1995-10-23 1997-07-08 Ajinomoto Co Inc 発酵液の処理方法
US5705371A (en) 1990-06-12 1998-01-06 Ajinomoto Co., Inc. Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine
WO1998004715A1 (en) 1996-07-30 1998-02-05 Archer-Daniels-Midland Company Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
US5776736A (en) 1992-12-21 1998-07-07 Purdue Research Foundation Deblocking the common pathway of aromatic amino acid synthesis
RU2119536C1 (ru) 1997-01-21 1998-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм escherichia coli - продуцент l-гистидина
US5827698A (en) 1994-12-09 1998-10-27 Ajinomoto Co., Inc. Lysine decarboxylase gene and method of producing l-lysine
US5830716A (en) 1993-10-28 1998-11-03 Ajinomoto Co., Inc. Increased amounts of substances by modifying a microorganism to increase production of NADPH from NADH
EP0877090A1 (en) 1995-08-30 1998-11-11 Ajinomoto Co., Inc. Process for producing l-amino acids
US5840358A (en) 1996-05-31 1998-11-24 Degussa Aktiengesellschaft Process for the preparation of an animal feed supplement based on fermentation broth
WO1999007853A1 (fr) 1997-08-12 1999-02-18 Ajinomoto Co., Inc. Procede de production d'acide l-glutamique par fermentation
US5882888A (en) 1995-01-23 1999-03-16 Novo Nordisk A/S DNA integration by transposition
WO1999018228A2 (de) 1997-10-04 1999-04-15 Forschungszentrum Jülich GmbH Verfahren zur mikrobiellen herstellung von aminosäuren der aspartat- und/oder glutamatfamilie und im verfahren einsetzbare mittel
US5906925A (en) 1994-09-16 1999-05-25 Liao; James C. Microorganisms and methods for overproduction of DAHP by cloned pps gene
JPH11155571A (ja) 1997-11-25 1999-06-15 Ajinomoto Co Inc L−システインの製造法
US5932453A (en) 1996-10-15 1999-08-03 Ajinomoto Co., Ltd. Process for producing L-amino acid through fermentation
US5998178A (en) 1994-05-30 1999-12-07 Ajinomoto Co., Ltd. L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation
JP3006929B2 (ja) 1990-09-18 2000-02-07 協和醗酵工業株式会社 発酵法によるl−バリンの製造法
US6040160A (en) 1993-12-08 2000-03-21 Ajinomoto Co., Inc. Method of producing L-lysine by fermentation
WO2000018935A1 (fr) 1998-09-25 2000-04-06 Ajinomoto Co.,Inc. Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie
JP2000139471A (ja) 1998-11-17 2000-05-23 Ajinomoto Co Inc 発酵法によるl−メチオニンの製造法
EP1010755A1 (en) 1998-12-18 2000-06-21 Ajinomoto Co., Inc. Method for producing L-Glutamic acid by fermentation
EP1013765A1 (en) 1998-12-23 2000-06-28 Ajinomoto Co., Ltd. Gene and method for producing L-amino acids
WO2000050624A1 (de) 1999-02-22 2000-08-31 Forschungszentrum Jülich GmbH Verfahren zur mikrobiellen herstellung von l-valin
WO2001002542A1 (fr) 1999-07-02 2001-01-11 Ajinomoto Co., Inc. Procede de production d'acide l-amine
WO2001002545A1 (fr) 1999-07-02 2001-01-11 Ajinomoto Co., Inc. Procede de production d'acide l-amine
EP1070376A1 (de) 1998-04-09 2001-01-24 Siemens Aktiengesellschaft Anordnung und verfahren zur elektrischen energieversorgung einer elektrischen last
US6180373B1 (en) 1992-09-28 2001-01-30 Consortium f{umlaut over (u)}r elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for the preparation thereof
EP1078989A2 (en) 1999-08-20 2001-02-28 Ajinomoto Co., Ltd. Method for producing L-glutamic acid by fermentation accompanied by precipitation
EP1092776A1 (en) 1999-10-14 2001-04-18 Ajinomoto Co., Inc. Method for producing L-amino acid by fermentation
US6238714B1 (en) 1999-05-05 2001-05-29 Degussa-Huls Ag Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof
JP2001169788A (ja) 1999-10-27 2001-06-26 Degussa Huels Ag 分枝アミノ酸の排出をコードするヌクレオチド配列、その単離法および使用
US6303383B1 (en) 1999-03-16 2001-10-16 Ajinomoto Co., Inc. Temperature sensitive plasmid for coryneform bacteria
EP1170361A2 (en) 2000-06-28 2002-01-09 Ajinomoto Co., Inc. New mutant N-Acetylglutamate synthase and method for L-Arginine production
EP1170376A1 (en) 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Method for producing substances utilizing microorganisms
US20020025564A1 (en) 2000-08-24 2002-02-28 Ajinomoto Co., Inc. Method for producing basic amino acid
WO2002022671A1 (en) * 2000-09-14 2002-03-21 Degussa Ag Nucleotide sequences coding for the pstc2 gene
WO2002026993A1 (en) 2000-09-28 2002-04-04 Archer-Daniels-Midland Company Escherichia coli strains which over-produce l-threonine and processes for the production of l-threonine by fermentation
US6403342B1 (en) 1999-07-09 2002-06-11 Anjinomoto Co., Inc. DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine
EP1229121A2 (en) 2001-02-05 2002-08-07 Ajinomoto Co., Inc. Method for producing L-glutamine by fermentation and L-glutamine producing bacterium
JP2002233384A (ja) 2001-02-09 2002-08-20 Ajinomoto Co Inc L−システイン生産菌及びl−システインの製造法
JP2002300874A (ja) 2001-02-13 2002-10-15 Ajinomoto Co Inc エシェリヒア属細菌を用いたl−アミノ酸の製造法
EP1253195A1 (en) 2000-01-21 2002-10-30 Ajinomoto Co., Inc. Process for producing l-lysine
WO2003004598A2 (en) 2001-07-06 2003-01-16 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family
WO2003008611A2 (en) 2001-07-18 2003-01-30 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an enhanced talb gene
WO2003097839A1 (en) 2002-05-15 2003-11-27 Cj Corporation Nucleotide sequence of threonine operon irrepressible by isoleucine and method for producing l-threonine using transformed host cell containing the same
JP2004049237A (ja) 2002-07-19 2004-02-19 Consortium Elektrochem Ind Gmbh 微生物株、プラスミド、微生物株の製造方法及びホスホグリセレート−ファミリーのアミノ酸の製造方法
JP2004187684A (ja) 2002-11-26 2004-07-08 Ajinomoto Co Inc L−グルタミンの製造法及びl−グルタミン生産菌
EP1484410A1 (en) 2003-06-05 2004-12-08 Ajinomoto Co., Ltd. Fermentation methods and genetically modified bacteria with increased substrate and byproduct uptake.
WO2005010175A1 (en) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
US20050025878A1 (en) 2003-07-11 2005-02-03 Degussa Ag Process for the granulation of an animal feedstuff additive
US20050112731A1 (en) 2003-07-16 2005-05-26 Tatsuki Kashiwagi Mutant serine acetyltransferase
WO2005049808A1 (en) 2003-11-21 2005-06-02 Ajinomoto Co., Inc. Method for producing l-amino acid by fermentation
WO2005073390A2 (en) 2004-01-30 2005-08-11 Ajinomoto Co., Inc. L-amino acid-producing microorganism and method for producing l-amino acid
JP2005287333A (ja) 2004-03-31 2005-10-20 Ajinomoto Co Inc L−システイン生産菌及びl−システインの製造法
WO2005103275A1 (ja) 2004-04-26 2005-11-03 Ajinomoto Co., Ltd. 発酵法によるl-トリプトファンの製造法
WO2005113745A1 (ja) 2004-05-20 2005-12-01 Ajinomoto Co., Inc. コハク酸生産菌及びコハク酸の製造方法
WO2006035831A1 (ja) 2004-09-28 2006-04-06 Kyowa Hakko Kogyo Co., Ltd. L-アルギニン、l-オルニチンまたはl-シトルリンの製造法
US20060141588A1 (en) 2004-12-28 2006-06-29 Jun Nakamura L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
WO2006070944A2 (en) 2004-12-28 2006-07-06 Ajinomoto Co., Inc. L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
JP2006340603A (ja) 2003-06-23 2006-12-21 Ajinomoto Co Inc L−グルタミン酸の製造法
EP1813677A1 (en) 2004-10-07 2007-08-01 Ajinomoto Co., Inc. Process for producing basic substance
JP2007222163A (ja) 2006-01-27 2007-09-06 Ajinomoto Co Inc L−アミノ酸の製造法
JP2008509661A (ja) 2004-08-10 2008-04-03 味の素株式会社 有用な代謝産物を製造するためのホスホケトラーゼの使用
WO2008075483A1 (ja) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. L-アミノ酸の製造法
WO2008078448A1 (ja) 2006-12-25 2008-07-03 Ajinomoto Co., Inc. 塩基性アミノ酸塩酸塩結晶の取得方法
WO2008078646A1 (ja) 2006-12-22 2008-07-03 Ajinomoto Co., Inc. アミノ酸又は核酸の結晶の分離方法
US20080311632A1 (en) 2006-01-04 2008-12-18 Rainer Figge Methods for Producing Methionine by Culturing a Microorganism Modified to Enhance Production of Cysteine
US20090029424A1 (en) 2004-05-12 2009-01-29 Metabolic Explorer Recombinant enzyme with altered feedback sensitivity
JP2010187552A (ja) 2009-02-16 2010-09-02 Ajinomoto Co Inc L−アミノ酸生産菌及びl−アミノ酸の製造法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623825B2 (ja) 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
US6818391B2 (en) * 2000-07-25 2004-11-16 The Regents Of The University Of California Glutamate transporters
US7741070B2 (en) 2003-12-24 2010-06-22 Massachusetts Institute Of Technology Gene targets for enhanced carotenoid production
EP1930409B1 (en) 2005-08-26 2012-02-08 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for production of l-glutamic acid
JP2008283863A (ja) 2005-08-26 2008-11-27 Ajinomoto Co Inc L−アミノ酸生産菌及びl−アミノ酸の製造方法
JP2009089603A (ja) 2006-02-02 2009-04-30 Ajinomoto Co Inc メタノール資化性細菌を用いたl−リジンの製造法
JP2010110217A (ja) 2007-02-22 2010-05-20 Ajinomoto Co Inc L−アミノ酸生産菌及びl−アミノ酸の製造法
JP2010130899A (ja) * 2007-03-14 2010-06-17 Ajinomoto Co Inc L−グルタミン酸系アミノ酸生産微生物及びアミノ酸の製造法
WO2010084995A2 (en) 2009-01-23 2010-07-29 Ajinomoto Co.,Inc. A method for producing an l-amino acid
RU2013144250A (ru) * 2013-10-02 2015-04-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae, В КОТОРОЙ ОСЛАБЛЕНА ЭКСПРЕССИЯ ГЕНА, КОДИРУЮЩЕГО ФОСФАТНЫЙ ТРАНСПОРТЕР

Patent Citations (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR356739A (fr) 1904-09-20 1905-12-07 Charles Glauser Perrin Mécanisme de remontoir et de mise à l'heure
JPS4828078B1 (ja) 1969-03-20 1973-08-29
US3708395A (en) 1969-07-23 1973-01-02 Kyowa Hakko Kogyo Kk Process for producing l-lysine
JPS566499B1 (ja) 1970-04-14 1981-02-12
US3825472A (en) 1972-04-27 1974-07-23 Ajinomoto Kk Method of producing l-lysine by fermentation
JPS5325034B1 (ja) 1973-01-23 1978-07-24
JPS5031093A (ja) 1973-07-26 1975-03-27
JPS5053588A (ja) 1973-09-22 1975-05-12
JPS50113209A (ja) 1974-02-13 1975-09-05
JPS5343591B2 (ja) 1974-08-05 1978-11-21
JPS531833B2 (ja) 1974-08-12 1978-01-23
JPS5238088A (en) 1975-09-19 1977-03-24 Ajinomoto Co Inc Preparation of l-glutamic acid
JPS5848147B2 (ja) 1975-12-15 1983-10-26 味の素株式会社 シリヨウノセイゾウホウ
JPS52102498A (en) 1976-02-20 1977-08-27 Ajinomoto Co Inc Preparation of l-lysine
JPS539394A (en) 1976-07-09 1978-01-27 Kyowa Hakko Kogyo Co Ltd Preparation of l-lysine by fermentation
JPS561915B2 (ja) 1976-12-29 1981-01-16
JPS5386089A (en) 1976-12-29 1978-07-29 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPS5386090A (en) 1976-12-29 1978-07-29 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPS594993B2 (ja) 1976-12-29 1984-02-02 味の素株式会社 発酵法によるl−リジンの製法
JPS561914B2 (ja) 1976-12-29 1981-01-16
JPS5444096A (en) 1977-09-13 1979-04-07 Ajinomoto Co Inc Preparation of l-arginine by fermentation
JPS559759A (en) 1978-07-07 1980-01-23 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPS5714158B2 (ja) 1978-07-10 1982-03-23
JPS559784A (en) 1978-07-10 1980-01-23 Ajinomoto Co Inc Preparation of l-lysine
JPS559783A (en) 1978-07-10 1980-01-23 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPS5730474B2 (ja) 1978-07-10 1982-06-29
JPS5714157B2 (ja) 1978-07-10 1982-03-23
JPS6224075B2 (ja) 1979-05-02 1987-05-26 Ajinomoto Kk
JPS561889A (en) 1979-06-20 1981-01-10 Ajinomoto Co Inc Preparation of l-glutamic acid by fermentation
JPS568692A (en) 1979-07-03 1981-01-29 Kyowa Hakko Kogyo Co Ltd Preparation of l-lysine by fermentation
JPS5648890A (en) 1979-08-10 1981-05-02 Ajinomoto Co Inc Preparation of l-glutamic acid by fermentation
JPS5632995A (en) 1979-08-28 1981-04-02 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPS5635981A (en) 1979-08-31 1981-04-08 Ajinomoto Co Inc Novel variant
JPS5810075B2 (ja) 1979-08-31 1983-02-24 味の素株式会社 新規変異株
JPS5639778A (en) 1979-09-10 1981-04-15 Ajinomoto Co Inc Novel modified strain
JPS6224074B2 (ja) 1979-12-21 1987-05-26 Ajinomoto Kk
JPS56140895A (en) 1980-04-02 1981-11-04 Ajinomoto Co Inc Preparation of l-glutamic acid by fermentation
JPS56151495A (en) 1980-04-25 1981-11-24 Ajinomoto Co Inc Production of l-glutamine through fermentation
JPS572869A (en) 1980-06-10 1982-01-08 Tohoku Electric Power Co Inc Austenite stainless steel for hot corrosive environment
JPS5718989A (en) 1980-07-09 1982-01-30 Ajinomoto Co Inc Production of l-arginine through fermentation
JPS5765198A (en) 1980-10-09 1982-04-20 Ajinomoto Co Inc Fermentative production of l-glutamic acid
JPS6236673B2 (ja) 1980-12-29 1987-08-07 Ajinomoto Kk
US4411997A (en) 1980-12-29 1983-10-25 Ajinomoto Company Incorporated Method for producing L-lysine by fermentation
JPS57134500A (en) 1981-02-12 1982-08-19 Kyowa Hakko Kogyo Co Ltd Plasmid pcg1
JPH026517B2 (ja) 1981-02-12 1990-02-09 Ajinomoto Kk
JPS572689A (en) 1981-03-23 1982-01-08 Ajinomoto Co Inc Preparation of l-glutamic acid
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
DE3127361A1 (de) 1981-07-08 1983-02-03 Schering Ag, 1000 Berlin Und 4619 Bergkamen Herstellung und anwendung von plasmiden mit genen fuer die biosynthese von l-prolin
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
JPS6135840B2 (ja) 1981-09-28 1986-08-15 Ajinomoto Kk
JPS57150381A (en) 1982-02-12 1982-09-17 Kyowa Hakko Kogyo Co Ltd Variant of corynebacterium glutamicum
JPH07112437B2 (ja) 1982-03-05 1995-12-06 味の素株式会社 澱粉からの発酵生産物の製造方法
JPS58158192A (ja) 1982-03-15 1983-09-20 Ajinomoto Co Inc 発酵法によるl−グルタミン酸の製造方法
JPH07112438B2 (ja) 1982-03-15 1995-12-06 味の素株式会社 生育の改善されたアミノ酸生産菌を用いた発酵法によるアミノ酸の製造方法
JPH0511958B2 (ja) 1982-03-15 1993-02-16 Ajinomoto Kk
JPS58192900A (ja) 1982-05-04 1983-11-10 Ajinomoto Co Inc 複合プラスミド
JPS6070093A (ja) 1983-09-28 1985-04-20 Ajinomoto Co Inc 発酵法によるl−チロシンの製造法
JPH0347838B2 (ja) 1983-12-23 1991-07-22 Ajinomoto Kk
EP0149911A2 (en) 1984-01-09 1985-07-31 Minnesota Mining And Manufacturing Company Electrical connector locator plate
US4946654A (en) 1984-04-07 1990-08-07 Bayer Aktiengesellschaft Process for preparing granulates
US4656135A (en) 1984-06-29 1987-04-07 Ajinomoto Co., Inc. Process for producing L-isoleucine by fermentation
JPS6115696A (ja) 1984-06-29 1986-01-23 Ajinomoto Co Inc 発酵法によるl−イソロイシンの製造法
JPS6115695A (ja) 1984-06-29 1986-01-23 Ajinomoto Co Inc 発酵法によるl−イソロイシンの製造方法
JPH0724591B2 (ja) 1984-09-27 1995-03-22 味の素株式会社 組換えdnaを有するコリネ型細菌を用いる芳香族アミノ酸の製造法
JPS61202694A (ja) 1985-03-07 1986-09-08 Ajinomoto Co Inc 発酵法によるl−グルタミンの製造法
JPS6291193A (ja) 1985-06-05 1987-04-25 Kyowa Hakko Kogyo Co Ltd L−スレオニンおよびl−イソロイシンの製造法
JPS6274293A (ja) 1985-09-28 1987-04-06 Kyowa Hakko Kogyo Co Ltd L−イソロイシンの製造法
JPS62195293A (ja) 1986-02-22 1987-08-28 Kyowa Hakko Kogyo Co Ltd 発酵法によるl−イソロイシンの製造法
US4956471A (en) 1986-04-28 1990-09-11 Ajinomoto Company, Inc. Process for isolating and purifying amino acids
US4777051A (en) 1986-06-20 1988-10-11 Ajinomoto Co., Inc. Process for the production of a composition for animal feed
US5188949A (en) 1986-09-29 1993-02-23 Ajinomoto Co., Inc. Method for producing L-threonine by fermentation
JPS63240794A (ja) 1987-03-30 1988-10-06 Ajinomoto Co Inc L−トリプトフアンの製造法
JPH0665314B2 (ja) 1987-04-16 1994-08-24 味の素株式会社 発酵法によるl−バリンの製造法
JPH02458A (ja) 1987-10-12 1990-01-05 Ajinomoto Co Inc 発酵法によるl―イソロイシンの製造法
JPH01191686A (ja) 1988-01-26 1989-08-01 Mitsubishi Petrochem Co Ltd 複合プラスミド
JPH02109985A (ja) 1988-02-22 1990-04-23 Eurolysine 細菌染色体上ヘの目的遺伝子の組み込み方法及び該方法によって得られた細菌
EP0331145A2 (en) 1988-03-04 1989-09-06 Kyowa Hakko Kogyo Co., Ltd. Process for producing amino acids
US5185262A (en) 1988-07-27 1993-02-09 Mitsubishi Petrochemical Co., Ltd. DNA fragment containing gene which encodes the function of stabilizing plasmid in host microorganism
JPH0272876A (ja) 1988-09-08 1990-03-13 Mitsubishi Petrochem Co Ltd トリプトフアンシンターゼの製造法
WO1990004636A1 (en) 1988-10-25 1990-05-03 Vsesojuzny Nauchno-Issledovatelsky Institut Genetiki I Selektsii Promyshlennykh Mikroorganizmov (Vniigenetika) Strain of bacteria escherichia coli, producer of l-threonine
JPH02186995A (ja) 1989-01-12 1990-07-23 Ajinomoto Co Inc 発酵法によるl‐アルギニンの製造法
JPH02207791A (ja) 1989-02-07 1990-08-17 Ajinomoto Co Inc 微生物の形質転換法
JPH02303495A (ja) 1989-05-17 1990-12-17 Kyowa Hakko Kogyo Co Ltd 芳香族アミノ酸の製造法
JPH03210184A (ja) 1990-01-11 1991-09-13 Mitsubishi Petrochem Co Ltd 新規プラスミドベクター
JPH03232497A (ja) 1990-02-08 1991-10-16 Asahi Chem Ind Co Ltd 発酵法によるl―グルタミンの製造方法
US5705371A (en) 1990-06-12 1998-01-06 Ajinomoto Co., Inc. Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine
JPH0488994A (ja) 1990-07-30 1992-03-23 Kyowa Hakko Kogyo Co Ltd 発酵法によるl―グルタミン酸の製造法
JP3006929B2 (ja) 1990-09-18 2000-02-07 協和醗酵工業株式会社 発酵法によるl−バリンの製造法
JPH057491A (ja) 1990-10-15 1993-01-19 Ajinomoto Co Inc 温度感受性プラスミド
US5168056A (en) 1991-02-08 1992-12-01 Purdue Research Foundation Enhanced production of common aromatic pathway compounds
JPH0549489A (ja) 1991-08-22 1993-03-02 Ajinomoto Co Inc 発酵法によるl−フエニルアラニンの製造法
US5431933A (en) 1991-09-17 1995-07-11 Degussa Aktiengesellschaft Animal feed supplement based on a fermentation broth amino acid, a process for its production and its use
RU2003677C1 (ru) 1992-03-30 1993-11-30 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина
US6180373B1 (en) 1992-09-28 2001-01-30 Consortium f{umlaut over (u)}r elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for the preparation thereof
EP0593792B1 (en) 1992-10-14 1997-05-14 Ajinomoto Co., Inc. Novel L-threonine-producing microbacteria and a method for the production of L-threonine
US5776736A (en) 1992-12-21 1998-07-07 Purdue Research Foundation Deblocking the common pathway of aromatic amino acid synthesis
WO1995006114A1 (fr) 1993-08-24 1995-03-02 Ajinomoto Co., Inc. Allele de phosphenolpyruvate carboxylase, gene de cet allele et procede de production de l'acide amine
JPH07163383A (ja) 1993-10-18 1995-06-27 Mitsubishi Chem Corp L−アラニンの製造法
US5830716A (en) 1993-10-28 1998-11-03 Ajinomoto Co., Inc. Increased amounts of substances by modifying a microorganism to increase production of NADPH from NADH
US6040160A (en) 1993-12-08 2000-03-21 Ajinomoto Co., Inc. Method of producing L-lysine by fermentation
US5998178A (en) 1994-05-30 1999-12-07 Ajinomoto Co., Ltd. L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation
EP0763127B1 (en) 1994-06-09 2005-03-16 Purdue Research Foundation Deblocking the common pathway of aromatic amino acid synthesis
WO1995034672A1 (fr) 1994-06-14 1995-12-21 Ajinomoto Co., Inc. GENE A DESHYDROGENASE α-CETOGLUTARIQUE
US5906925A (en) 1994-09-16 1999-05-25 Liao; James C. Microorganisms and methods for overproduction of DAHP by cloned pps gene
US5827698A (en) 1994-12-09 1998-10-27 Ajinomoto Co., Inc. Lysine decarboxylase gene and method of producing l-lysine
EP0805867B1 (en) 1995-01-23 2003-12-17 Novozymes A/S Dna integration by transposition
US5882888A (en) 1995-01-23 1999-03-16 Novo Nordisk A/S DNA integration by transposition
EP0877090A1 (en) 1995-08-30 1998-11-11 Ajinomoto Co., Inc. Process for producing l-amino acids
JPH09164323A (ja) 1995-10-13 1997-06-24 Ajinomoto Co Inc 発酵液の膜除菌方法
JPH09173792A (ja) 1995-10-23 1997-07-08 Ajinomoto Co Inc 発酵液の処理方法
US5840358A (en) 1996-05-31 1998-11-24 Degussa Aktiengesellschaft Process for the preparation of an animal feed supplement based on fermentation broth
WO1998004715A1 (en) 1996-07-30 1998-02-05 Archer-Daniels-Midland Company Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
US5932453A (en) 1996-10-15 1999-08-03 Ajinomoto Co., Ltd. Process for producing L-amino acid through fermentation
RU2119536C1 (ru) 1997-01-21 1998-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм escherichia coli - продуцент l-гистидина
WO1999007853A1 (fr) 1997-08-12 1999-02-18 Ajinomoto Co., Inc. Procede de production d'acide l-glutamique par fermentation
WO1999018228A2 (de) 1997-10-04 1999-04-15 Forschungszentrum Jülich GmbH Verfahren zur mikrobiellen herstellung von aminosäuren der aspartat- und/oder glutamatfamilie und im verfahren einsetzbare mittel
JPH11155571A (ja) 1997-11-25 1999-06-15 Ajinomoto Co Inc L−システインの製造法
EP1070376A1 (de) 1998-04-09 2001-01-24 Siemens Aktiengesellschaft Anordnung und verfahren zur elektrischen energieversorgung einer elektrischen last
WO2000018935A1 (fr) 1998-09-25 2000-04-06 Ajinomoto Co.,Inc. Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie
JP2000139471A (ja) 1998-11-17 2000-05-23 Ajinomoto Co Inc 発酵法によるl−メチオニンの製造法
EP1010755A1 (en) 1998-12-18 2000-06-21 Ajinomoto Co., Inc. Method for producing L-Glutamic acid by fermentation
EP1013765A1 (en) 1998-12-23 2000-06-28 Ajinomoto Co., Ltd. Gene and method for producing L-amino acids
WO2000050624A1 (de) 1999-02-22 2000-08-31 Forschungszentrum Jülich GmbH Verfahren zur mikrobiellen herstellung von l-valin
US6303383B1 (en) 1999-03-16 2001-10-16 Ajinomoto Co., Inc. Temperature sensitive plasmid for coryneform bacteria
US6238714B1 (en) 1999-05-05 2001-05-29 Degussa-Huls Ag Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof
WO2001002545A1 (fr) 1999-07-02 2001-01-11 Ajinomoto Co., Inc. Procede de production d'acide l-amine
WO2001002542A1 (fr) 1999-07-02 2001-01-11 Ajinomoto Co., Inc. Procede de production d'acide l-amine
US6403342B1 (en) 1999-07-09 2002-06-11 Anjinomoto Co., Inc. DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine
EP1078989A2 (en) 1999-08-20 2001-02-28 Ajinomoto Co., Ltd. Method for producing L-glutamic acid by fermentation accompanied by precipitation
EP1092776A1 (en) 1999-10-14 2001-04-18 Ajinomoto Co., Inc. Method for producing L-amino acid by fermentation
JP2001169788A (ja) 1999-10-27 2001-06-26 Degussa Huels Ag 分枝アミノ酸の排出をコードするヌクレオチド配列、その単離法および使用
EP1253195A1 (en) 2000-01-21 2002-10-30 Ajinomoto Co., Inc. Process for producing l-lysine
EP1170361A2 (en) 2000-06-28 2002-01-09 Ajinomoto Co., Inc. New mutant N-Acetylglutamate synthase and method for L-Arginine production
EP1170376A1 (en) 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Method for producing substances utilizing microorganisms
JP2002065287A (ja) 2000-08-24 2002-03-05 Ajinomoto Co Inc 塩基性アミノ酸の製造方法
US20020025564A1 (en) 2000-08-24 2002-02-28 Ajinomoto Co., Inc. Method for producing basic amino acid
WO2002022671A1 (en) * 2000-09-14 2002-03-21 Degussa Ag Nucleotide sequences coding for the pstc2 gene
WO2002026993A1 (en) 2000-09-28 2002-04-04 Archer-Daniels-Midland Company Escherichia coli strains which over-produce l-threonine and processes for the production of l-threonine by fermentation
EP1424398A2 (en) 2001-02-05 2004-06-02 Ajinomoto Co., Inc. Method for producing L-glutamine by fermentation and L-glutamine producing bacterium
EP1229121A2 (en) 2001-02-05 2002-08-07 Ajinomoto Co., Inc. Method for producing L-glutamine by fermentation and L-glutamine producing bacterium
JP2002233384A (ja) 2001-02-09 2002-08-20 Ajinomoto Co Inc L−システイン生産菌及びl−システインの製造法
JP2002300874A (ja) 2001-02-13 2002-10-15 Ajinomoto Co Inc エシェリヒア属細菌を用いたl−アミノ酸の製造法
WO2003004598A2 (en) 2001-07-06 2003-01-16 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family
WO2003004664A2 (en) 2001-07-06 2003-01-16 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family with enhanced fba expression
WO2003008611A2 (en) 2001-07-18 2003-01-30 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an enhanced talb gene
WO2003008609A2 (en) 2001-07-18 2003-01-30 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an enhanced pykf gene
WO2003097839A1 (en) 2002-05-15 2003-11-27 Cj Corporation Nucleotide sequence of threonine operon irrepressible by isoleucine and method for producing l-threonine using transformed host cell containing the same
JP2004049237A (ja) 2002-07-19 2004-02-19 Consortium Elektrochem Ind Gmbh 微生物株、プラスミド、微生物株の製造方法及びホスホグリセレート−ファミリーのアミノ酸の製造方法
JP2004187684A (ja) 2002-11-26 2004-07-08 Ajinomoto Co Inc L−グルタミンの製造法及びl−グルタミン生産菌
EP1484410A1 (en) 2003-06-05 2004-12-08 Ajinomoto Co., Ltd. Fermentation methods and genetically modified bacteria with increased substrate and byproduct uptake.
JP2006340603A (ja) 2003-06-23 2006-12-21 Ajinomoto Co Inc L−グルタミン酸の製造法
US20050025878A1 (en) 2003-07-11 2005-02-03 Degussa Ag Process for the granulation of an animal feedstuff additive
US20050112731A1 (en) 2003-07-16 2005-05-26 Tatsuki Kashiwagi Mutant serine acetyltransferase
WO2005010175A1 (en) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
WO2005049808A1 (en) 2003-11-21 2005-06-02 Ajinomoto Co., Inc. Method for producing l-amino acid by fermentation
WO2005073390A2 (en) 2004-01-30 2005-08-11 Ajinomoto Co., Inc. L-amino acid-producing microorganism and method for producing l-amino acid
JP2005287333A (ja) 2004-03-31 2005-10-20 Ajinomoto Co Inc L−システイン生産菌及びl−システインの製造法
WO2005103275A1 (ja) 2004-04-26 2005-11-03 Ajinomoto Co., Ltd. 発酵法によるl-トリプトファンの製造法
US20090029424A1 (en) 2004-05-12 2009-01-29 Metabolic Explorer Recombinant enzyme with altered feedback sensitivity
WO2005113745A1 (ja) 2004-05-20 2005-12-01 Ajinomoto Co., Inc. コハク酸生産菌及びコハク酸の製造方法
JP2008509661A (ja) 2004-08-10 2008-04-03 味の素株式会社 有用な代謝産物を製造するためのホスホケトラーゼの使用
WO2006035831A1 (ja) 2004-09-28 2006-04-06 Kyowa Hakko Kogyo Co., Ltd. L-アルギニン、l-オルニチンまたはl-シトルリンの製造法
EP1813677A1 (en) 2004-10-07 2007-08-01 Ajinomoto Co., Inc. Process for producing basic substance
US20060141588A1 (en) 2004-12-28 2006-06-29 Jun Nakamura L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
WO2006070944A2 (en) 2004-12-28 2006-07-06 Ajinomoto Co., Inc. L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
US20080311632A1 (en) 2006-01-04 2008-12-18 Rainer Figge Methods for Producing Methionine by Culturing a Microorganism Modified to Enhance Production of Cysteine
JP2007222163A (ja) 2006-01-27 2007-09-06 Ajinomoto Co Inc L−アミノ酸の製造法
WO2008075483A1 (ja) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. L-アミノ酸の製造法
JP2010041920A (ja) 2006-12-19 2010-02-25 Ajinomoto Co Inc L−アミノ酸の製造法
WO2008078646A1 (ja) 2006-12-22 2008-07-03 Ajinomoto Co., Inc. アミノ酸又は核酸の結晶の分離方法
WO2008078448A1 (ja) 2006-12-25 2008-07-03 Ajinomoto Co., Inc. 塩基性アミノ酸塩酸塩結晶の取得方法
JP2010187552A (ja) 2009-02-16 2010-09-02 Ajinomoto Co Inc L−アミノ酸生産菌及びl−アミノ酸の製造法

Non-Patent Citations (55)

* Cited by examiner, † Cited by third party
Title
"ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology", 24 August 1997, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, article "Abstract No. 457"
"Amino Acid Fermentation", 30 May 1986, GAKKAI SHUPPAN CENTER (LTD., pages: 77 - 100
"phosphate/sulphate permease [Corynebacterium glutamicum K051].", 25 March 2013 (2013-03-25), XP055174303, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/protein/470173484?sat=17&satkey=24225128> [retrieved on 20140811] *
AGRIC. BIOL. CHEM., vol. 48, 1984, pages 2901 - 2903
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389
APPL. ENVIRON. MICROBIOL., vol. 71, no. 12, December 2005 (2005-12-01), pages 8587 - 96
APPL. MICROBIOL. BIOTECHNOL., vol. 7, no. 4, 5 November 2001 (2001-11-05), pages 534 - 40
APPL. MICROBIOL. BIOTECHNOLO., vol. 53, 2000, pages 674 - 679
BARTON GJ ET AL., JOURNAL OF MOLECULAR BIOLOGY, vol. 198, no. 2, 1987, pages 327 - 37
BIBB, M.J.; WARD, J.M.; HOPWOOD, O.A., NATURE, vol. 274, 1978, pages 398 - 400
CARTER P., METH. IN ENZYMOL., vol. 154, 1987, pages 382
CHANG, S.; CHOEN, S.N., MOL. GEN. GENET., vol. 168, 1979, pages 111 - 115
CHO, E.H.; GUMPORT, R.I.; GARDNER, J.F., J. BACTERIOL., vol. 184, 2002, pages 5200 - 5203
CORPET ET AL., NUCLEIC ACIDS RES., vol. 16, 1988, pages 10881 - 90
DATSENKO, K.A.; WANNER, B.L., PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 6640 - 6645
DATSENKO, K.A; WANNER, B.L., PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 6640 - 6645
DUNCAN, C.H.; WILSON, G.A.; YOUNG, F.E., GENE, vol. 1, 1977, pages 153 - 167
ELIZABETH C. TYLER ET AL., COMPUTERS AND BIOMEDICAL RESEARCH, vol. 24, no. 1, 1991, pages 72 - 96
ERLICH, H.A.: "PCR Technology", vol. 61, 1989, STOCKTON PRESS, article HIGUCHI, R.
GOLDBERG, M. ET AL., METHODS ENZYMOL., vol. 9, 1996, pages 515 - 520
GOLDSTEIN ET AL., PROKARYOTIC PROMOTERS IN BIOTECHNOLOGY, BIOTECHNOL. ANNU. REV., vol. 1, 1995, pages 105 - 128
HIGGINS ET AL., CABIOS, vol. 5, 1989, pages 151 - 153
HIGGINS ET AL., GENE, vol. 73, 1988, pages 237 - 244
HINNEN, A.; HICKS, J.B.; FINK, G.R., PROC. NATL. ACAD. SCI. USA, vol. 75, 1978, pages 1929 - 1933
HUANG ET AL., CABIOS, vol. 8, 1992, pages 155 - 65
INT. J. SYST. BACTERIOL., vol. 41, 1991, pages 255
INT. J. SYST. EVOL. MICROBIOL., vol. 60, 2010, pages 874 - 879
ISHIGE T. ET AL.: "The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses.", J. BACTERIOL., vol. 185, no. 15, 2003, pages 4519 - 4529, XP002372836 *
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 26, no. 116, 1991, pages 20833 - 20839
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, 1997, pages 8611 - 8617
JOURNAL OF BIOTECHNOLOGY, vol. 104, 2003, pages 311 - 323
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 5877
KRAMER, W.; FRITS, H.J., METH. IN ENZYMOL., vol. 154, 1987, pages 350
KUNKEL, T.A. ET AL., METH. IN ENZYMOL., vol. 154, 1987, pages 367
L. MEILE, J. BACTERIOL., vol. 183, 2001, pages 2929 - 2936
LV Y. ET AL.: "Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in coryneform bacteria.", J. BACTERIOL., vol. 194, no. 3, 2012, pages 742 - 743, XP055172500 *
LYNN, S.P.; BURTON, W.S.; DONOHUE, T.J.; GOULD, R.M.; GUMPORT, R.L; GARDNER, J.F., J. MOL. BIOL., vol. 194, 1987, pages 59 - 69
MANDEL, M.; HIGA, A., J. MOL. BIOL., vol. 53, 1970, pages 159 - 162
MILLER, J.H.: "Experiments in Molecular Genetics", 1972, COLD SPRING HARBOR LABORATORY
MYERS; MILLER, CABIOS, vol. 4, 1988, pages 11 - 17
NAGAI, H ET AL., SEPARATION SCIENCE AND TECHNOLOGY, vol. 39, no. 16, pages 3691 - 3710
NAKAMURA, Y. ET AL.: "Codon Usage Database", NUCL. ACIDS RES., vol. 28, 2000, pages 292, Retrieved from the Internet <URL:http://www.kazusa.or.jp/codon>
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
OLINS P.O. ET AL., GENE, vol. 73, 1988, pages 227 - 235
PEARSON ET AL., METH. MOL. BIOL., vol. 24, 1994, pages 307 - 331
PEARSON; LIPMAN, PROC. NATL. ACAD. SCI., vol. 85, 1988, pages 2444 - 2448
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, USA, vol. 95, 1998, pages 5511 - 5515
R.M. HARRIS ET AL., JOURNAL OF BACTERIOLOGY, September 2001 (2001-09-01), pages 5008 - 5014
RACKER, E., METHODS ENZYMOL., vol. 5, 1962, pages 276 - 280
SAMBROOK, J. ET AL.: "Molecular Cloning A Laboratory Manual, 3rd ed.", 2001, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2868745A4
SMITH ET AL., ADV. APPL. MATH., vol. 2, 1981, pages 482
TETSUYA KAWAKITA: "Industrial Crystallization for Monosodium L-Glutamate.", BULLETIN OF THE SOCIETY OF SEA WATER SCIENCE, JAPAN, vol. 56, pages 5
WHITE, T.J. ET AL., TRENDS GENET, vol. 5, 1989, pages 185

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3165608A1 (en) 2015-10-30 2017-05-10 Ajinomoto Co., Inc. Method for producing l-amino acid of glutamate family
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
JP2018174717A (ja) * 2017-04-03 2018-11-15 味の素株式会社 L−アミノ酸の製造法
JP7066977B2 (ja) 2017-04-03 2022-05-16 味の素株式会社 L-アミノ酸の製造法
CN108486133A (zh) * 2018-06-29 2018-09-04 江南大学 一种l-丝氨酸转运蛋白的应用方法
EP3716274A1 (en) 2019-03-29 2020-09-30 Ajinomoto Co., Inc. Control device, control method, computer program, and method for producing organic compound
CN115135767A (zh) * 2020-02-12 2022-09-30 大象株式会社 具有提高的l-谷氨酸生产能力的谷氨酸棒状杆菌突变体菌株,以及用于使用其生产l-谷氨酸的方法
JP2023514216A (ja) * 2020-02-12 2023-04-05 デサン・コーポレイション L-グルタミン酸の生産能が向上したコリネバクテリウムグルタミクム変異株およびこれを用いたl-グルタミン酸の生産方法
CN115135767B (zh) * 2020-02-12 2024-03-15 大象株式会社 具有提高的l-谷氨酸生产能力的谷氨酸棒状杆菌突变体菌株,以及用于使用其生产l-谷氨酸的方法
WO2022092018A1 (ja) 2020-10-28 2022-05-05 味の素株式会社 L-アミノ酸の製造法

Also Published As

Publication number Publication date
KR20150099809A (ko) 2015-09-01
BR112015007916A2 (pt) 2015-09-29
US9506094B2 (en) 2016-11-29
EP2868745A1 (en) 2015-05-06
PE20150681A1 (es) 2015-05-15
US20150307907A1 (en) 2015-10-29
EP2868745B1 (en) 2017-06-21
EP2868745A4 (en) 2015-09-02
KR101773755B1 (ko) 2017-09-01
CN105008532A (zh) 2015-10-28
MY185322A (en) 2021-05-04
CN105008532B (zh) 2017-07-21
JPWO2014185430A1 (ja) 2017-02-23
PH12015500792B1 (en) 2015-06-15
BR112015007916B1 (pt) 2023-04-04
JP5831669B2 (ja) 2015-12-09
PH12015500792A1 (en) 2015-06-15

Similar Documents

Publication Publication Date Title
JP5831669B2 (ja) L−アミノ酸の製造法
KR100786987B1 (ko) L-아미노산 생산 미생물 및 l-아미노산 생산 방법
CN107893089B (zh) 用于生产l-氨基酸的方法
US10155952B2 (en) Method for producing target substance
EP3385389B1 (en) Method for producing l-amino acids from fructose
JP2010041920A (ja) L−アミノ酸の製造法
JP2007117082A (ja) L−アミノ酸生産菌及びl−アミノ酸の製造法
US10767200B2 (en) Method for producing L-amino acid
US10563234B2 (en) Method for producing L-amino acids
WO2015005405A1 (ja) 有用物質の製造方法
JP6459962B2 (ja) L−アミノ酸の製造法
JP2007117076A (ja) L−アミノ酸生産菌及びl−アミノ酸の製造法
WO2022092018A1 (ja) L-アミノ酸の製造法
JP2007117077A (ja) L−アミノ酸生産菌及びl−アミノ酸の製造法
JP2009240161A (ja) L−アミノ酸の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797459

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014797459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014797459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 000425-2015

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2015517097

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12015500792

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: IDP00201502251

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015007916

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20157019590

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015007916

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150409

NENP Non-entry into the national phase

Ref country code: DE