WO2002076966A1 - Procede de fabrication de compose epoxy, composition de resine expoxy et son utilisation, composition de revetement a sechage uv, et procede de fabrication de boite metallique ainsi revetue - Google Patents

Procede de fabrication de compose epoxy, composition de resine expoxy et son utilisation, composition de revetement a sechage uv, et procede de fabrication de boite metallique ainsi revetue Download PDF

Info

Publication number
WO2002076966A1
WO2002076966A1 PCT/JP2002/002778 JP0202778W WO02076966A1 WO 2002076966 A1 WO2002076966 A1 WO 2002076966A1 JP 0202778 W JP0202778 W JP 0202778W WO 02076966 A1 WO02076966 A1 WO 02076966A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
group
epoxy compound
parts
compound
Prior art date
Application number
PCT/JP2002/002778
Other languages
English (en)
French (fr)
Inventor
Hideyuki Takai
Original Assignee
Daicel Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001084195A external-priority patent/JP4663893B2/ja
Priority claimed from JP2001143835A external-priority patent/JP5226162B2/ja
Priority claimed from JP2001193430A external-priority patent/JP4795570B2/ja
Application filed by Daicel Chemical Industries, Ltd. filed Critical Daicel Chemical Industries, Ltd.
Priority to EP02708643A priority Critical patent/EP1389615A4/en
Priority to KR1020027013628A priority patent/KR100877124B1/ko
Priority to CA 2439608 priority patent/CA2439608A1/en
Publication of WO2002076966A1 publication Critical patent/WO2002076966A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/22Ethers with hydroxy compounds containing no oxirane rings with monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/14Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether

Definitions

  • the present invention I relates to a method for producing an epoxy compound. More particularly, the present invention relates to a method for producing an alicyclic epoxy compound having a specific structure by oxidizing an alicyclic olefin compound with an aliphatic overactive rubonic acid having a low water content.
  • the alicyclic epoxy compounds are useful in applications such as coatings, inks, adhesives, sealant sealants, and stabilizers.
  • the present invention II relates to an epoxy resin composition containing an alicyclic epoxy compound as a main component and its use. More specifically, the present invention relates to an epoxy resin composition which can be cured by heating to obtain a cured product having good wet heat resistance and good transparency, and to its use as an optical semiconductor encapsulation.
  • the present invention III can be cured by ultraviolet irradiation, and has excellent coating properties such as processability, adhesion, hardness, and scratch resistance, and in particular, forms a coating having excellent coating appearance and retort resistance.
  • the present invention relates to a UV-curable can coating composition comprising an alicyclic epoxy compound as a main component, and a method for producing a coated metal can using the composition.
  • celloxide 2021 (3,4-epoxycyclohexylmethyl 3 ', 4'-epoxycyclohexanecarboxylate), celloxide 300 (1, 2,8,9-diepoxylimonene), Celloxide 2021 ( ⁇ -force prolactone monomer or oligomer at both ends with 3,4-epoxycyclo Xylmethanol and 3,4-epoxycyclohexanecarboxylic acid in which ester bond is formed) (above, manufactured by Daicel Chemical Industries).
  • the above-mentioned celoxide 300 has a methyl group at the carbon constituting the epoxy group, the reactivity of the epoxy group is lower than that of the compound having no methyl group. For this reason, alicyclic epoxy resins have been used mainly when priority is given to lower viscosity and high Tg.
  • Celloxide 2021 and celloxide 281 have an ester group in the molecule, so they are hydrolysable and have poor moisture and heat resistance as compared with pisphenol-type epoxy. .
  • Japanese Patent Application Laid-Open No. 9-2555764 discloses an epoxy resin for encapsulating an optical semiconductor containing hydrogenated diglycidyl ether of bisphenol A.
  • the cured product has problems such as coloring, weather resistance, heat resistance, and the like.
  • Japanese Patent Application Laid-Open No. H10-156692 discloses an optical system using the same alicyclic epoxy compound as in the present invention. Although a resin composition for three-dimensional modeling is described, there is no description about its use as an optical semiconductor encapsulation.
  • JP-A-2000-63485 discloses a curable composition for build-up using a composition of a specific alicyclic epoxy compound and a polyvalent epoxy compound having a polyvalent phenol skeleton. Although it is described, it does not find any special features in heat resistance and transparency.
  • Japanese Patent Application Laid-Open No. 48-28989 discloses that an alicyclic epoxy compound (A) represented by the following formula (I) in which X is -CH 2 is synthesized.
  • A alicyclic epoxy compound represented by the following formula (I) in which X is -CH 2 is synthesized.
  • an acid anhydride By performing a curing reaction with an acid anhydride using the above, physical properties of the cured product are improved as compared with the conventional alicyclic epoxy.
  • perbenzoic acid is used in the synthesis of the epoxy compound, it is difficult to industrially use it.
  • a percarboxylic acid is synthesized from hydrogen peroxide, an acid catalyst, and an organic acid, and then the percarboxylic acid is extracted with an organic solvent.
  • the company is converting to epoxy. Therefore, the operation is long, the amount of waste is large, and the work is complicated. Furthermore, considering the extraction efficiency and cost of percarboxylic acid, the solvent becomes something like benzene, which is not preferable in terms of toxicity. Therefore, an epoxy compound having an alicyclic skeleton having no ester group in the molecule and an efficient production method thereof are desired.
  • an object of the present invention I is to provide a method for performing epoxidation of an alicyclic olefin compound efficiently, economically, and using a solvent having low toxicity.
  • an object of the present invention II is to provide an epoxy resin composition for encapsulating an optical semiconductor in which a cured product has good wet heat resistance and excellent transparency.
  • UV-curable coating compositions include a cationically polymerizable compound having a cationically polymerizable compound having an epoxy group or a vinyl group and a cationically polymerizable initiator that generates a cation upon irradiation with ultraviolet light, and a radically polymerizable unsaturated group.
  • Radical polymerizable paints containing a radically polymerizable compound having the formula (I) and a radical polymerization initiator that generates radicals upon irradiation with ultraviolet rays are known.
  • radical polymerization type paints are characterized by a relatively high curing rate, but have poor adhesion to materials and workability, and are inferior in surface curability due to inhibition of curing by oxygen.
  • equipment such as nitrogen encapsulation is required, especially when used in thin films (2 to 8).
  • cationic polymerization type paints have advantages such as better adhesion to materials and processability than radical polymerization type paints and do not require equipment such as nitrogen encapsulation.
  • the coating film performance, especially the coating film appearance and the retort resistance are insufficient.
  • any of the polymerizable coatings has a problem that the curability is insufficient when the irradiation dose is low (less than 100 mJ / cm 2 ).
  • JP-A-10-158581 discloses compounds having an alicyclic epoxy group in a molecule, compounds having an oxetane ring in a molecule, specific copolymers, and cations.
  • a UV curable can coating composition containing a polymerization initiator is described, there are problems such as hardness in hot water, appearance of a coating film, impact resistance, etc., related to retortability for the above reasons.
  • an object of the present invention III is to provide a coating composition for an ultraviolet-curable can and a method for producing a coated metal can. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above object of the present invention I. As a result, the inventors have found that a compound having two alicyclic olefin skeletons can be prepared by using an aliphatic percarboxylic acid having a low water content. It has been found that the problem of the present invention I can be solved by epoxidation, and the present invention I has been completed.
  • the present inventors have conducted intensive studies to solve the object of the present invention, and as a result, of the alicyclic epoxy compounds, the alicyclic epoxy compounds having a structure having no ester bond constitute an alicyclic epoxy.
  • a carbon having no methyl group is used as the carbon to be cured, an epoxy resin composition for encapsulating an optical semiconductor having excellent wet heat resistance and transparency of a cured product can be obtained, and the problem of the present invention can be solved. And completed the present invention II.
  • the present inventors have conducted intensive studies to solve the object of the present invention III, and as a result, by using a predetermined amount of alicyclic epoxy having a specific structure, equipment such as nitrogen filling is not required. It is a thin film and can be cured by UV irradiation at a low irradiation dose, and has excellent coating properties such as workability, adhesion, hardness, and scratch resistance required for paints for cans. It is possible to obtain an ultraviolet ray curable coating composition which can form a coating film having excellent retort resistance and can form a coating film having excellent hardness in hot water after heating after irradiation with ultraviolet rays. This led to the completion of the present invention III.
  • the first aspect of the present invention is characterized in that an alicyclic olefin compound represented by the following general formula (II) is epoxidized using an aliphatic overactive ruponic acid having a water content of 2% by weight or less.
  • X in the formula is an oxygen atom, a sulfur atom, - SO-, - S0 2 - , - CH 2 -, - C (CH 3) 2 -, - CB r 2 -, - C (CB r 3) 2 -, - C (CF 3) 2 -, - C (CC 1 3) 2 - or - CH (C 6 H 5)
  • - is a divalent group, or two connecting alicyclic mere single bond, 1 ⁇ ! ⁇ 18 may be the same or different and each has a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group which may contain a halogen atom, or a substituent. Is an alkoxy group.
  • the second aspect of the present invention is the method for producing the first epoxy compound (A) of the present invention, wherein the aliphatic overactive ruponic acid is obtained by oxidation of a corresponding aldehyde with oxygen.
  • a third aspect of the present invention is a method for producing the first or second epoxy compound (A) of the present invention, wherein the water content in the aliphatic percarboxylic acid is 0.8% by weight or less.
  • a fourth aspect of the present invention is the method for producing the epoxy compound (A) according to any one of the first to third aspects of the present invention, wherein the aliphatic percarboxylic acid is peracetic acid.
  • a fifth aspect of the present invention is a liquid epoxy resin composition
  • a liquid epoxy resin composition comprising an epoxy resin and a curing agent and / or a curing accelerator, having the following general formula (I)
  • X represents an oxygen atom, a sulfur atom, -SO-, -SO2-, -CH 2 - , -C (CH 3) 2 -,
  • R to R 18 may be the same or different, and each may include a 7j elementary atom, a halogen atom, or an oxygen atom or a halogen atom. It is a good hydrocarbon group or an alkoxy group which may have a substituent. )
  • a liquid epoxy resin composition characterized in that the epoxy resin contains 100 to 20% by weight of the alicyclic epoxy compound (A) represented by the formula:
  • A alicyclic epoxy compound represented by the formula:
  • the fifth aspect of the present invention wherein the alicyclic epoxy compound (A) represented by (I) is an epoxy compound produced using percarbonic acid having a water content of 1% by weight or less. 3.
  • the curing agent is an initiator that releases a substance that initiates thione polymerization by heating.
  • An eighth aspect of the present invention is the liquid epoxy resin composition according to any one of the fifth to seventh aspects of the present invention, wherein a liquid acid anhydride is used as a curing agent.
  • a ninth aspect of the present invention is a liquid acid anhydride-based hardener (C) 110 to 100 parts by weight of the alicyclic epoxy compound (A) represented by the general formula (I) according to the fifth aspect of the present invention. 160 parts by weight and 3 to 7 parts by weight of a curing accelerator (D), or, based on 100 parts by weight of an alicyclic epoxy compound (A), an initiator that releases cations by heating
  • a tenth aspect of the present invention is the liquid epoxy resin composition according to any one of the fifth to ninth aspects of the present invention for sealing an optical semiconductor.
  • An eleventh aspect of the present invention is the epoxy resin composition for optical semiconductor encapsulation according to the tenth aspect of the present invention. : An optical semiconductor device in which the optical semiconductor element is sealed ⁇
  • X represents an oxygen atom, a sulfur atom, -SO-, -S0 2 -, -CH 2 -, -C (CH 3) 2 -,
  • ⁇ 18 may be the same or different, and may be a hydrogen atom, a halogen atom, or a hydrocarbon group which may contain an oxygen atom or a halogen atom. Or an alkoxy group which may have a substituent. )
  • An ultraviolet-curable can coating composition characterized by containing 0.01 to 20 parts by weight.
  • a thirteenth aspect of the present invention is the copolymer (F), wherein the glycidyl group-containing polymerizable unsaturated monomer and / or the alicyclic epoxy group-containing polymerizable unsaturated monomer and other polymerizable unsaturated monomers.
  • the ultraviolet-curable can coating composition according to the twelfth aspect of the present invention which is a copolymer of A fourteenth aspect of the present invention further comprises a lubricating agent,
  • the twelfth aspect of the present invention which is characterized by containing 0.01 to 10 parts by weight based on 100 parts by weight of the total amount of the alicyclic epoxy compound (A) and the epoxy compound (B) represented by (I).
  • the present invention 15 further comprises resin fine particles in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the total amount of the alicyclic epoxy compound (A) and the epoxy compound (B) represented by the general formula (I).
  • the coating composition for an ultraviolet-curable can according to any one of the first to second aspects of the present invention, which contains 0 parts by weight.
  • a sixteenth aspect of the present invention is a liquid epoxy compound produced by using an alicyclic epoxy compound (A) represented by the general formula (I) by using an aliphatic percarboxylic acid having a water content of 2% by weight or less.
  • a seventeenth aspect of the present invention is directed to a UV-curable can coating composition according to any one of the 12th to 16th aspects of the present invention, comprising a metal plate, a resin film laminated metal plate, or a metal obtained by molding these metal plates. This is a method for producing a coated metal can, characterized in that the can is painted and cured by irradiating ultraviolet rays.
  • the alicyclic epoxy compound ( ⁇ ) represented by the general formula (I) is obtained by converting the alicyclic olefin compound represented by the general formula (II) to an aliphatic compound having a water content of 2% by weight or less. It is produced by oxidation with a percarboxylic acid.
  • the alicyclic olefin compound used as a raw material is generally synthesized by a dehydration reaction of a compound having a corresponding hydroxyl group.
  • the alicyclic olefin compound represented by the general formula (II) is disclosed in JP-A-48-28999, JP-A-58-172873, JP-A-200 As disclosed in Japanese Patent Application No. 0-169393, the compound can be synthesized from, for example, a compound having a cyclohexanol structure.
  • the obtained alicyclic olefin compound preferably has a double bond at the 3- and 4-positions with respect to the substituent X, and has a hydroxyl group as a raw material of the alicyclic olefin compound.
  • a compound having a hydroxyl group at the 4-position to the substituent X is preferable. ..
  • the present invention is particularly effective for a dehydration reaction of a compound containing at least two or more cyclohexane rings each having a hydroxyl group in the molecule for the same reason as described above.
  • Compounds include, for example, hydrogenated phenol, dicyclohexanol methane, bis (dimethylcyclohexanol) methane, 1,2-bis (cyclohexanol) ethane, 1,3-bis (cyclohexanol) propane, 1,4-bis (cyclohexanol) butane, 1,5-bis (cyclohexanol) pentane, 1,6-bis (cyclohexanol) hexane, 2,2-bis (cyclohexanol) ) Propane, bis (cyclohexanol) phenylmethane, a, ⁇ -bis (4-hydroxycyclohexyl) 1-4-(4-hydroxy-,-dimethylcyclohexyl)-ethylbenzene, 3,3-bis (cyclohexanol) ) Pentane,
  • the epoxidizing agent that can be used for the epoxidation of the double bond of the alicyclic olefin compound it is preferable to use an aliphatic percarboxylic acid having a low water content. This is because when the epoxidation reaction is performed in the presence of water, the ring opening reaction of the epoxy group proceeds, and the yield of the epoxide compound decreases.
  • the aliphatic superlative ruponic acid has a water content of 2% by weight or less, preferably 1% by weight or less, more preferably 0.8% by weight or less, and still more preferably 0.8% by weight or less. 6% by weight or less.
  • the aliphatic percarboxylic acid having a water content of 2% by weight or less as referred to in the present invention generally refers to peracetic acid or the like produced by air oxidation of acetoaldehyde and the like. It is manufactured by the method described in Japanese Patent Application Laid-Open Publication No. 1418465 and Japanese Patent Application Laid-Open No. 54-306. It is also possible to synthesize an aliphatic percarboxylic acid from an aliphatic carboxylic acid using hydrogen peroxide, extract it by distillation or extraction with a solvent, and use it to produce an aliphatic overactive ruponic acid having a water content of 2% by weight or less. Good.
  • aliphatic percarboxylic acids formic acid, peracetic acid, perisobutyric acid, perfluoroacetic acid and the like can be used. Of these, peracetic acid is particularly preferable because it is industrially available at low cost and has high strength and stability.
  • the amount of aliphatic percarboxylic acid which is the epoxidizing agent there is no strict limit on the amount of aliphatic percarboxylic acid which is the epoxidizing agent, and the optimal amount in each case depends on the particular epoxidizing agent used, the desired degree of epoxidation, and the particular epoxy to be used. It depends on variable factors such as compounds.
  • an epoxidizing agent to the olefin group in an amount equal to or more than one mole.
  • the epoxidation reaction is carried out by adjusting the presence or absence of an inert solvent and the reaction temperature according to the equipment and physical properties of the raw materials.
  • the inert solvent it can be used for the purpose of lowering the viscosity of the raw material, stabilizing by diluting the epoxidizing agent, and in the case of peracetic acid, an aromatic compound, an ester or the like can be used.
  • Particularly preferred solvents are hexane, cyclohexane, toluene, ethyl acetate, and methyl acetate.
  • the reaction temperature range that can be used is determined by the reactivity of the epoxidizing agent used. Generally, it is not less than 0 and not more than lOO. As for the preferred epoxidizing agent, peracetic acid, 20 to 70 is preferable. At 20 the reaction is slower below, and at 70 the decomposition of peracetic acid occurs.
  • the charged molar ratio of the epoxidizing agent to the unsaturated bond can be changed depending on the purpose such as how much the unsaturated bond is desired to remain.
  • the mixture may be stirred for 1 to 5 hours.
  • the obtained epoxide is isolated by a suitable method, for example, a method of precipitating with a poor solvent, a method of pouring the epoxide into hot water with stirring and distilling off the solvent, a direct desolvation method, etc. Can be done with
  • the alicyclic epoxy compound (A) represented by the general formula (I) produced by the production method of the present invention I can be obtained by homopolymerization, copolymerization, or reaction with another compound. It can produce intermediates for various coatings, inks, adhesives, sealants, moldings, or other applications using them.
  • Examples of the final applications using the alicyclic epoxy compound (A) produced by the production method of the present invention I include acid removers, furniture coatings, decorative coatings, drinks and other can coatings, and adhesives.
  • Various end-uses including moldings, solvents, flame retardants, pharmaceuticals and medical supplies, mainly made of glass, carbon, graphite or other fiber-reinforced or sheet-forming compounds There are intermediates for producing other compounds useful for the above.
  • the alicyclic epoxy compound (A) produced by the production method of the present invention I has heat resistance, transparency, and good dielectric properties, which are characteristics of a cured resin using a compound having an alicyclic skeleton. be able to.
  • the present invention will be described in detail.
  • the present invention II provides a liquid epoxy resin composition
  • a liquid epoxy resin composition comprising the alicyclic epoxy compound (A) represented by the above general formula (I) as a preferred alicyclic epoxy resin, and an optical semiconductor device comprising the liquid epoxy resin composition. Is turned into a sealed optical semiconductor device.
  • each component in the composition will be described.
  • the alicyclic epoxy compound (A) used in the present invention II has been described in detail in the above-mentioned present invention I, and is usually liquid at ordinary temperature (250 at room temperature).
  • the liquid epoxy resin composition of the present invention II contains 100 to 20% by weight of the alicyclic epoxy compound (A).
  • alicyclic epoxy compound (A) those produced by the production method described in detail in the present invention I are preferably used, but those produced by other production methods are used. You can also. In addition, commercially available products can be used.
  • alicyclic epoxy resin other than the alicyclic epoxy compound (A) for example, the following can be used in combination. 3,4-epoxycyclohexyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-1-6-methylcyclohexanecarboxylate, bis (3 , 4-epoxycyclohexyl) adipate, vinylcyclohexene monoepoxide, limonene diepoxide and the like.
  • the following reactive diluent may be used for the epoxy compound.
  • the low-viscosity cycloalkylene glycol diglycidyl ether for example, a low-viscosity cycloalkylene glycol diglycidyl ether having a viscosity at 25 ⁇ of 100 cps or less is used.
  • Examples of such cycloalkylenedalichol diglycidyl ether include cyclohexane dimethanol diglycidyl ether and cyclohexane diol diglycidyl ether.
  • liquid glycidyl type epoxy resin such as bisphenol A type or F type, a hydrogenated bisphenol A type epoxy resin, a dalicidylamine type epoxy resin, or the like may be used.
  • solid epoxy resin can be used as long as the viscosity of the compounded epoxy resin becomes 400 cp or less at 45.
  • usable solid epoxy resins include solid bisphenol-type epoxy resin, nopolak-type epoxy resin, glycidyl ester, triglycidyl isocyanurate, and EHPE-315 (manufactured by Daicel Chemical Industries). No.
  • One of these epoxy resins may be used alone, or two or more thereof may be used in combination.
  • the acid anhydride used as the curing agent (C) can be arbitrarily selected from those commonly used as epoxy resin curing agents.
  • the acid anhydride used in the present invention II is preferably a liquid at room temperature, and specifically, for example, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenylsuccinic anhydride, methylend Methylene tetrahydrophthalic anhydride and the like can be mentioned.
  • acid anhydrides which are solid at room temperature such as phthalic anhydride, tetrahydrofluoric anhydride, hexahydrophthalic anhydride, and the like, as long as they do not adversely affect the impregnation of the liquid epoxy resin composition of the present invention II.
  • Methylcyclohexenedicarboxylic anhydride and the like can be used.
  • an acid anhydride that is solid at room temperature it is preferable to dissolve it in a liquid acid anhydride at room temperature and use it as a mixture that is liquid at room temperature.
  • the compounding amount of the acid anhydride is not particularly limited as long as it is an effective amount capable of exerting the effect as the curing agent (C).
  • the acid anhydride at a ratio such that the acid anhydride equivalent is 0.5 to 1.5 per equivalent.
  • the curing accelerator (D) in the present invention II is mainly composed of a diazabicycloundecene-based curing accelerator, which accounts for at least 50% by weight of the total amount of the curing accelerator (D). is necessary. If the proportion of the diazabicycloundecene-based curing accelerator is less than this, the pot life cannot be sufficiently extended. From the viewpoint of obtaining a sufficient pot life, the content is preferably 70% by weight or more.
  • diazabicycloundecene-based curing accelerator examples include, for example, 1,8-diazabicyclo [5.4.0] ndecene-7 and a salt thereof, and in particular, 1,8-diazabicyclo [ 5.4.0] Pendyl-7-octylate is preferred.
  • the curing accelerator (D) may be the diazabicycloundecene-based curing accelerator alone, or may be up to 50% by weight of another epoxy resin curing accelerator, such as a commonly used tertiary amine. A mixture with a phosphorus-based compound such as a system curing accelerator or triphenylphosphine may be used.
  • the curing accelerator (D) is used in an amount of 0.3 to 10 parts by weight per 100 parts by weight of the epoxy resin. If the amount is less than 0.3 part by weight, the effect of accelerating curing is insufficient, and if it is more than 10 parts by weight, the pot life is rather shortened. Therefore, a particularly preferable blending amount from the viewpoints of curing promotion and pot life is 1 to 5 parts by weight per 100 parts by weight of the epoxy resin component.
  • the curing accelerator (D) is a compound having a function of accelerating the curing reaction when the epoxy resin is cured with an acid anhydride.
  • Other curing accelerators (D) used in the present invention II include, for example, tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 2-ethyl-4-methylimidazole, 1—cyanoethyl— 2—ethyl—
  • Known compounds such as imidazoles such as 4-methylimidazole, organic phosphine compounds such as triphenylphosphine, tertiary amine salts, quaternary ammonium salts, phosphonium salts, and metal salts such as tin octylate can be mentioned.
  • the curing accelerator (D) in an amount of 1 to 10 parts by weight based on 100 parts by weight of the epoxy resin.
  • a cationic polymerization initiator (E) may be used as a curing agent.
  • the cationic polymerization initiator (E) is an initiator that releases a substance that initiates cationic polymerization by heating, and is used in an amount of 0.05 to 5 parts by weight, preferably 0.1 to 3 parts by weight, per 100 parts by weight of the epoxy resin. Parts are blended. By blending in this range, a cured product having good heat resistance, transparency, weather resistance, and the like can be obtained.
  • Examples of the cationic polymerization initiator (E) include aryl dimethyl salts (for example, PP-33 (manufactured by Asahi Denka Kogyo Co., Ltd.)), aryl rhododium salts, aryl sulfonium salts (for example, FC—509 (manufactured by 3M), UVE 1014 (manufactured by G.E.), UV I—6974, UV I—6970, UV I—6990, UV I-6950 (manufactured by Union Carbide), SP—170 , SP-150 (manufactured by Asahi Denka Kogyo KK)), SI-60L, SI-80L, SI-100L (manufactured by Sanshin Chemical Industry), allene monoion complex (for example, CG-24-61 )).
  • aryl dimethyl salts for example, PP-33 (manufactured by Asahi Denka Kogyo Co
  • a chelate compound containing a chelate compound of a metal such as aluminum or titanium with an acetoacetate ester or a diketone and a silanol or phenol compound aluminum acetyl acetonate silanol or a phenol compound is included.
  • liquid epoxy resin composition of the present invention II can be added to the liquid epoxy resin composition of the present invention II as long as the viscosity is not adversely affected.
  • Such additives include, for example, silicone-based or fluorine-based defoamers, Examples thereof include silane coupling agents such as lysidoxypropyltrimethoxysilane.
  • the liquid epoxy resin composition of the present invention II has a high glass transition temperature and transparency of the cured product and a low water absorption, and is suitable as a resin composition for optical semiconductors.
  • the liquid epoxy resin composition of the present invention II in particular, the liquid epoxy resin composition for encapsulating optical semiconductors, may contain a filler, a flame retardant, an antifoaming agent, a coloring agent, a silane coupling agent, etc., if desired.
  • Various additives conventionally used in epoxy resin compositions for optical semiconductor encapsulation can be blended.
  • the present invention relates to an ultraviolet-curable can coating composition
  • an ultraviolet-curable can coating composition comprising the alicyclic epoxy compound (A) represented by the general formula (I) as an essential component, and a method for producing a coated metal can using the same. . .
  • alicyclic epoxy compound (A) used in the present invention m those produced by the method described in detail in the above present present invention I are preferably used.
  • This alicyclic epoxy compound (A) is usually liquid at normal temperature (25 ⁇ ).
  • alicyclic epoxy compound (A) those produced by the method described in detail in the present invention I are preferably used, but those produced by other production methods may be used. In addition, commercially available products can be used.
  • Examples of the alicyclic epoxy resin other than the alicyclic epoxy compound (A) include a compound having an alicyclic epoxy group in the molecule and having an ester bond and / or an epoxy having a glycidyl group.
  • Compound (B) may be used in an amount of 0 to 80% by weight.
  • the compound having an alicyclic epoxy group in the molecule and having an ester bond and / or the epoxy compound (B) having a glycidyl group one or more, preferably 1 to 1, alicyclic epoxy groups are contained in the molecule. Any compound having two can be used without particular limitation.
  • particularly preferred compounds are 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanyl propyloxylate, Examples thereof include epoxycyclohexylmethyl alcohol, 34-epoxycyclohexylethyltrimethoxysilane, and a compound represented by the following formula.
  • a compound having an oxetane ring in the molecule may be used.
  • the compound having an oxetane ring used in the coating composition of the present invention m may be used in the presence of a cation polymerization initiator.
  • Is a compound having at least one, preferably 115, and more preferably 14 in one molecule (hereinafter referred to as oxetane compound ⁇ ).
  • oxetane compound ⁇ a compound having at least one, preferably 115, and more preferably 14 in one molecule
  • oxetane compound ⁇ a compound represented by the following formula (4):
  • R 6 is a hydrogen atom, a fluorine atom, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms (for example, methyl, ethyl, n- or i-propyl) , N-, i- or t-butyl, pentyl, hexyl, cyclohexyl, etc.), linear or branched fluoroalkyl groups having 1 to 6 carbon atoms (for example, monofluoromethyl, difluoromethyl, trifluoromethyl) Romethyl, 2,2,2-trifluoroethyl, perfluoroethyl, perfluoropropyl, perfluorobutyl, no-fluorohexyl group, etc., aryl group, aryl group (for example, phenyl, naphthyl, tolyl) xylyl group), Ararukiru group (e.g., benzy
  • the monovalent to tetravalent organic group represented by R 7 may include at least one kind of heteroatom selected from 0, S, N and F and / or a siloxane bond. Examples thereof include a 1 to 30 linear, branched or cyclic, 1 to 4 valent hydrocarbon group.
  • examples of the monovalent group that R 7 can represent include a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms (eg, methyl, ethyl, n- or i-propyl, n-, i- or t-butyl, pentyl, hexyl, cyclohexyl group, etc., linear or branched alkoxyalkyl group having 1 to 6 carbon atoms (eg, methoxyethyl, ethoxyxetyl) , Butoxyshetyl, ethoxymethyl group, etc.), a linear or branched fluoroalkyl group having 1 to 6 carbon atoms (for example, monofluoromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, perfluoro) Loethyl, perfluoropropyl, perfluoropropyl, perfluorohexyl, etc.
  • Examples of the divalent group which R 7 can represent include a linear, branched or cyclic alkylene group (particularly, methylene, ethylene, 1,2- or 1,3-propylene, butylene, C1-C15 alkylene group such as cyclohexylene group), charcoal A poly (alkyleneoxy) group having 4 to 30 element atoms, preferably 4 to 8 (eg, poly (ethyleneoxy), poly (propyleneoxy) group, etc.), a phenylene group, a xylylene group, and a compound represented by the following formula (5) ) And (6),
  • R 8 represents 0, S, CH 2 , NH :, S ⁇ , SOC (CF 3 ) 2 or C (CH 3 ) 2 )
  • R 9 represents an alkylene group having 1 to 6 carbon atoms, an arylene group or a direct bond
  • a group having 2 to 30, preferably 2 to 6 carbon atoms in which an alkylene group and an alkylene group are bonded by a (poly) siloxane chain for example, the alkylene group is an ethylene or propylene group; (Poly) Those having a siloxane chain molecular weight of 130 to 15,000, particularly 130 to 500, preferably those represented by the following formula (7)) and the like.
  • k represents an integer of 1 to 6, and 1 is 2 or 3.
  • R 7 can represent, for example, the following formulas (8) to
  • R 1 ° represents an alkyl group having 1 to 6 carbon atoms, for example, an ethyl group
  • R 11 are the same or different and each represents an alkylene group having 1 to 6 carbon atoms, for example, an ethylene group.
  • R 12 are the same or different and each represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms, an aryl group, and an aryl group. Or a furyl or phenyl group)
  • R 7 may represent, monovalent or divalent group is preferably (Sunawa Chi, p is 1 or 2 are preferred), among others, methyl, Echiru, propyl, Number of carbon atoms in butyl, hexyl, etc .:!
  • An alkylene group having 1 to 6 children; a p-xylylene group; a group represented by the following formula is preferred.
  • R 6 is preferably a hydrogen atom; an alkyl group having 1 to 6 carbon atoms such as methyl, ethyl, propyl, butyl, and hexyl; an aryl group; An atom, a methyl group and an ethyl group are preferred.
  • (OXE) having at least one oxetane ring in the molecule (OXE-1): a compound having at least one, preferably one each of an oxetane ring and a hydroxyl group in the molecule; and (OXE — 2): A compound having at least two oxetane rings or an oxetane ring in the molecule and an epoxy group is preferable.
  • oxetane compound (OXE-1) for example, a compound of the above formula (4) when p is 1 and R 7 is a hydrogen atom, particularly a compound represented by the following formula (4-1): Can be mentioned.
  • R 61 is a hydrogen atom, a fluorine atom, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, or an aryl group. Represents.
  • Representative examples of the compound represented by the above formula (4-1) include a compound represented by the formula (4-1) when R 4 is an ethyl group.
  • polyoxetane compounds compounds having at least two oxetane rings in the molecule
  • polyoxetane compounds compounds having at least two oxetane rings in the molecule
  • p is an integer of 2 to 4.
  • the compound represented by the following formula (4-2) is preferable.
  • R 61 has the same meaning as described above, R 71 represents a divalent to tetravalent organic group defined for R 7 in the formula (4), and q represents an integer of 2 to 4. .
  • R 61 is an ethyl group and R 71 is a 1,4-tetramethylene group, a dodecamethylene group, an o-, m- or p-xylylene group,
  • R 3 is an ethylene group, a compound of the formula (6) or a compound of the formula (4-2) when it is a group of the above formula (7).
  • polyoxetane compound examples include compounds represented by the following formulas (12), (13) and (14), in addition to the compound represented by the above formula (4-2).
  • s represents an integer of 25 to 200.
  • epoxy-containing oxetane compounds compounds having an oxetane ring and an epoxy group in the molecule (hereinafter referred to as epoxy-containing oxetane compounds) each have an oxetane ring and an epoxy group in the molecule.
  • R 13 represents an epoxy group-containing group, and R 61 has the same meaning as described above.
  • R 61 is an ethyl group
  • R 13 is a glycidyl group or a 3,4-epoxycyclohexylmethyl group.
  • the oxetane compounds (OXE) described above can be used alone or in combination of two or more. In particular, it is preferable to use the compound (OXE-1) and the compound (OXE-2) in combination.
  • the amount of each of the oxetane compounds (OXE-1) and (OXE-2) is based on 100 parts by weight of the total amount of the epoxy compound (A) and the epoxy compound (B).
  • (OXE-1) is in the range of 1 to 75 parts by weight, preferably 3 to 50 parts by weight
  • the oxetane compound (OXE-2) is in the range of 1 to 75 parts by weight, preferably 3 to 50 parts by weight. Can be.
  • the copolymer (F) used in the coating composition of the present invention II is a copolymer having a glycidyl group and / or at least one alicyclic epoxy group in the molecule.
  • the epoxy group-containing monomer used as a raw material of the copolymer any polymerizable unsaturated monomer containing an epoxy group can be used without any particular limitation, and a typical example is glycidyl acrylate. Glycidyl methacrylate, methyldaricidyl acrylate, methyldaricidyl methacrylate, arylglycidyl ether, vinyldaricidyl ether, and the like.
  • glycidyl acrylate and daricidyl methacrylate are preferably used.
  • the alicyclic epoxy group-containing monomer that is a raw material of the copolymer include Cyclomer A200 and M100 (manufactured by Daicel Chemical Industries, Ltd.).
  • the other monomer copolymerizable with the epoxy group-containing monomer is a monomer that is appropriately used as needed according to the intended performance of the obtained copolymer (F), for example, methyl acrylate , Methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-, i- or t-butyl acrylate, n-, i- or t-butyl methacrylate, hexyl acrylate, hexyl methacrylate, octyl Number of carbon atoms of acrylic acid or methacrylic acid such as acrylate, octylmethyl acrylate, lauryl acrylate, lauryl methacrylate, stearyl acrylate, stearyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, etc.
  • the copolymer (F) is prepared by subjecting a monomer component composed of the above-mentioned epoxy group-containing monomer and other monomer as necessary to solution polymerization, bulk polymerization, emulsification in the presence or absence of a radical polymerization initiator, for example. Polymerization can be performed by a known polymerization method such as polymerization or suspension polymerization. And can be obtained by The copolymer (F) preferably has a number average molecular weight in the range of 1,000 to 100,000, and more preferably 2,000 to 50,000.
  • the proportion of each monomer component in the polymerization of the copolymer (F) is preferably within the following range based on 100 parts by weight of the total amount of the monomer components.
  • Epoxy group-containing monomer 10 to 95 parts by weight, preferably 20 to 80 parts by weight.
  • Other monomers 0 to 85 parts by weight, preferably 10 to 70 parts by weight.
  • the concentration of the epoxy group in the copolymer (F) is preferably in the range of 0.1 to 7.0 equivalents / kg, and more preferably 0.2 to 5.0 equivalents Zkg.
  • the leveling property of the obtained coating film by using a polydimethylsiloxane macromonomer such as Silaplane FM0721 1 (manufactured by TIDOS CORPORATION) as another monomer, the leveling property of the obtained coating film, The lubricity of the coating film after the retort treatment can be improved.
  • a polydimethylsiloxane macromonomer such as Silaplane FM0721 1 (manufactured by TIDOS CORPORATION)
  • the cationic polymerization initiator (G) used in the present invention m is a compound that generates polymerization by ultraviolet irradiation and initiates polymerization, and includes, for example, a hexafluroine represented by the following formulas (I) to (XV). And pentafluorohydroxyantimonate, hexafluorophosphate, hexafluoroarzenate and other cationic polymerization initiators. it can.
  • Ar represents an aryl group, for example, a phenyl group
  • X— represents PF 6 —, SbF ⁇ T or As F 6 —
  • R 20 represents an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
  • r represents an integer from 0 to 3 and X- has the same meaning as above).
  • Y— represents PF 6 —, SbFcT, As F 6 — or SbF 5 (OH) —
  • X ′′ has the same meaning as described above. (Where X— has the same meaning as described above) B 22 21 -S + X-(VIII)
  • R 21 represents an aralkyl group having 7 to 15 carbon atoms or an alkenyl group having 3 to 9 carbon atoms
  • R 22 represents a hydrocarbon group or a hydroxyphenyl group having 1 to 7 carbon atoms
  • R 23 represents an alkyl group having 1 to 5 carbon atoms which may contain an oxygen atom or a sulfur atom, and X— has the above-mentioned meaning
  • R 24 and R 25 each independently represent an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 12 carbon atoms
  • cationic polymerization initiator G
  • examples of the commercially available products include UVACURE 1591 (manufactured by UCB, USA) CD-I010, CD-I011, CD-1012, (US Sartoma Co., Ltd.), Irgacure 264 (Ciba-Geigy), CIT-1682 (Nippon Soda Co., Ltd.) and the like.
  • PF 6 — hexafluorophosphate anion
  • the EI coating composition of the present invention may further comprise a lubricity-imparting agent; a sensitizer; Amount of coloring that does not significantly inhibit Pigments, extenders and other pigments, dyes; modified resins such as polyol resins, phenol resins, acrylic resins, polyester resins, polyolefin resins, epoxy resins, epoxidized polybutadiene resins; organic resin fine particles; solvents, etc. Can be blended.
  • the lubricity-imparting agent is compounded for the purpose of improving the lubricity of the obtained coating film.
  • the lubricating agent include a fatty acid ester, which is an esterified product of a polyol compound and a fatty acid, a silicon-based wax, a fluorine-based wax,
  • the resins include polyolefin waxes, animal waxes, and plant waxes.
  • the polyol compound used as a raw material for the fatty acid ester wax includes ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3- or 1,4-butanediol, neopentyl glycol, 1,6- Hexanediol, glycerin, di- or higher polyglycerin, trimethylol pentose, pentaerythritol, dipentaerythritol and the like can be mentioned.
  • polyol compounds having three or more hydroxyl groups in one molecule are preferable, and among them, polyglycerin, trimethylolpropane, and pentaerythritol are preferable.
  • Examples of the fatty acid that is the other raw material of the fatty acid ester wax include a saturated or unsaturated fatty acid, and preferably a fatty acid having 6 to 32 carbon atoms.
  • Saturated fatty acids such as caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachinic acid, behenic acid, cerotic acid, montanic acid, and melicic acid;
  • unsaturated fatty acids such as pentadecylenic acid, palmitoleic acid, oleic acid, linoleic acid, linolenic acid, eleostearic acid, cetrenic acid, erlic acid, licanoic acid, ricinoleic acid, and arachidonic acid.
  • fatty acid ester wax those in which at least 1 Z 3 of the above-mentioned polyol compound is hydroxylated with a fatty acid are preferable.
  • Silicone waxes include, for example, BYK—300, BYK—320, BYK—330 [or more, manufactured by BYK Chemie (Bik Chemie)], Sylwet L—77, Syldeet L — 720, Silveret L—7602 [or more, manufactured by Nippon Tunicer Co., Ltd.], Painted 29, Painted 32, Painted M (or more, manufactured by Dow Corning), Shin-Etsu Silicone KF— 9 6 [Shin-Etsu Manufactured by Chemical Co., Ltd.
  • system wax examples include shamrock wax SST-1 MG, shamrock wax SST-3, shamrock wax fluoroslip 2 3 1 [or more, manufactured by shamrock chemicals], POLYFLUO (polyfluor) 120, 150 and 400 [MicroPaders Inc.] and the like.
  • polyolefin wax examples include Shamrock Wax S-394, Shamrock Wax S-395 [or more, manufactured by Shamrock Chemicals Co., Ltd.], HEXTOX PE-520, HEXT WAX PE- 5 2 1 [or more, manufactured by Hoechst Co., Ltd.], Mitsui High Wax [manufactured by Mitsui Chemicals, Inc.] and the like.
  • animal waxes include, for example, lanolin and beeswax. Examples include carnapa wax, beeswax and the like.
  • the lubricity imparting agents as described above can be used alone or in combination of two or more.
  • the compounding amount of the lubricity imparting agent is (A) a compound having an alicyclic epoxy group in the molecule and having no ester / bond, and (B) a compound having an alicyclic epoxy group in the molecule and an ester.
  • A a compound having an alicyclic epoxy group in the molecule and having no ester / bond
  • B a compound having an alicyclic epoxy group in the molecule and an ester.
  • 100 parts by weight or less preferably 0.1 to 5 parts by weight, and more preferably 0.1 to 10 parts by weight, based on the total weight of the compound having a bond or the epoxy compound having a daricidyl group of 100 parts by weight. It can be in the range of 5 to 3 parts by weight.
  • silicone wax is excellent in lubricity before painting and after retort treatment
  • fatty acid ester wax is excellent in lubrication after painting and curing and after retort treatment. I have. Therefore, it is preferable to mix at least one selected from a silicone wax and a fatty acid ester wax.
  • a silicone wax and a fatty acid ester wax are used in combination, a coating film having excellent lubricity before and after the retort treatment can be obtained.
  • the sensitizer is compounded for the purpose of further improving the curability by ultraviolet rays, and examples thereof include pyrene, perylene, acridine orange, thioxanthone, 2-chlorothioxanthone, and benzoflapine. .
  • the amount of the sensitizer to be added is usually based on 100 parts by weight of the total amount of the epoxy compound (A) and the epoxy compound (B). It is used within the range of 10 parts by weight or less, preferably 3 parts by weight or less.
  • the modified resin is a compound (A) having an alicyclic epoxy group in the molecule and having no ester bond, and an alicyclic epoxy group in the molecule.
  • 0.1 to 50 parts by weight, especially 5 to 20 parts by weight, based on 100 parts by weight of the total amount of the compound having an ester bond and the epoxy compound (B) having a Z or a daricidyl group It is preferable to use within the range.
  • epoxidized polybutadiene resin is particularly effective for improving the processability and adhesion of the coating film.
  • the organic resin fine particles are preferably organic resin fine particles having a particle diameter in the range of 50 to 500 nm, and include, for example, acryl resin fine particles having a three-dimensionally cross-linked interior.
  • Organic resin fine particles are obtained by pulverizing an organic polymer into fine particles; dried and pulverized polymer fine particles obtained by emulsion polymerization in water in the presence of an emulsifier; Dried and pulverized polymer fine particles obtained by dispersion polymerization in a solvent can be exemplified.
  • the organic resin fine particles with the coating composition of the present invention m, the adhesion and processability of the coating film can be improved.
  • the amount of the organic resin fine particles is usually 0.1 to 50 parts by weight based on 100 parts by weight of the total amount of the epoxy compound (A) and the epoxy compound (B). It is preferably in the range of 1 part by weight, especially 1 to 10 parts by weight.
  • the coating composition of the present invention can be prepared by mixing the above-mentioned components and stirring the mixture so as to form a uniform coating composition.
  • it can be prepared by mixing the components, heating (for example, about 50) as necessary, and stirring the mixture with a stirrer such as a dissolver until it becomes uniform, for example, for about 10 minutes. .
  • the proportion of the epoxy compound having a glycidyl group (B), the copolymer (F), and the cationic polymerization initiator (G) can be as follows.
  • an alicyclic epoxy compound (A) having an alicyclic epoxy group in the molecule and having no ester bond, a compound having an alicyclic epoxy group in the molecule and having an ester bond, and Z or epoxy compound having glycidyl group (B) is the total amount of both Is 100 parts by weight, the alicyclic epoxy compound (A) is 10 to 90 parts by weight, preferably 20 to 70 parts by weight, more preferably 30 to 60 parts by weight, and Compound (B) can be used in the range of 10 to 90 parts by weight, preferably 30 to 80 parts by weight, and more preferably 40 to 70 parts by weight.
  • the amount of the alicyclic epoxy compound (A) is less than 10 parts by weight in the total amount of 100 parts by weight, the hardness and adhesion of the obtained coating film are inferior.
  • the amount of the epoxy compound (A) exceeds 90 parts by weight, the curability and retort resistance of the coating film due to the irradiation of a low dose of ultraviolet light are inferior.
  • the amount of the copolymer (F) used is an alicyclic epoxy compound (A;) having an alicyclic epoxy group in the molecule and having no ester bond, and an alicyclic epoxy group having an alicyclic epoxy group in the molecule. And usually 1 to 50 parts by weight, preferably 3 to 30 parts by weight, based on 100 parts by weight of the total amount of the compound having an ester bond and the epoxy compound (B) having a Z or glycidyl group. Preferably it can be in the range of 5 to 20 parts by weight.
  • the amount of the copolymer (F) is less than 1 part by weight, the hardness of the coated film after post-heating in the low irradiation amount of ultraviolet rays, the in-water hardness, the adhesion of the coated film, and the hardness of the coated film are reduced.
  • the amount of the copolymer (F) exceeds 50 parts by weight, the curability by ultraviolet irradiation, particularly at a low irradiation amount, is inferior, and the hardness and retort resistance of the coating film are reduced.
  • the amount of the cationic polymerization initiator (G) to be used depends on the alicyclic epoxy compound (A) having an alicyclic epoxy group in the molecule and having no ester bond, and the alicyclic epoxy group in the molecule. Is usually 0.01 to 20 parts by weight, preferably 100 parts by weight, based on the total amount of 100 parts by weight of the compound having an ester bond and the Z or epoxy compound (B) having a dalicidyl group. It can be in the range of 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight.
  • the ultraviolet-curable can coating composition of the present invention has ultraviolet-curing properties, and includes tin, aluminum, tin-free steel, iron, zinc, copper, zinc-plated steel sheet, and alloy plating of zinc and other metals.
  • Metal plates molded into metal cans such as steel plates (this metal plate may be subjected to a chemical conversion treatment such as zinc phosphate treatment or chromate treatment); These metal plates are made of polyester such as polyethylene terephthalate.
  • Resin film laminated metal plate formed by laminating resin films such as resin, polyolefin resin such as polyethylene or polypropylene, polyamide resin, epoxy resin, polyvinyl chloride, etc .; or these metal plates Can be applied to a molded metal can and irradiated with ultraviolet light to form a cured coating.
  • the thickness of the coating film can be appropriately selected depending on the application, but is usually in the range of about 2 to 20 / zm, preferably about 2 to 8 m as a dry coating film thickness.
  • the ultraviolet-curable can coating composition of the present invention m can be applied by a coating method such as roll coating, spray coating, brush coating, bar coating, mouth-to-mouth coating, and silk-screen printing.
  • the coating contains a solvent, after coating, the solvent is removed by heating, etc., and then the coating is cured by UV irradiation, but the irradiation conditions depend on the type and thickness of the applied coating composition. It can be appropriately changed according to the conditions.
  • the wavelength of the ultraviolet light to be irradiated is usually within a range of 200 to 60 nm, and an irradiation source having a wavelength with high sensitivity is appropriately selected according to the type of the cationic polymerization initiator. Can be used.
  • Examples of the ultraviolet irradiation source include a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, and sunlight.
  • Irradiation condition to the coating film usually, dose 1 0 ⁇ 1, 0 0 O m J / cm 2, especially 5 0-5 0 Fei! ! Noji! ! Within the range that becomes ⁇ ! ! I do.
  • the coating film may be heated as necessary.
  • heating unreacted substances in the coating film can be reduced, and the curability of the coating film due to ultraviolet irradiation and the distortion of the coating film caused by molding can be reduced. In some cases, this heating can improve the hardness and adhesion of the coating film.
  • the above-mentioned heating can be usually performed at an atmosphere temperature of 150 to 25 O for 1 to 30 minutes.
  • the coating composition for an ultraviolet-curable can comprises an alicyclic epoxy compound (A;) having an alicyclic epoxy group in the molecule and having no ester bond, and an alicyclic epoxy group in the molecule.
  • a compound having an ester bond and Z or an epoxy compound having a glycidyl group (B) and a copolymer (F) as a film-forming resin component, and a cation polymerization initiator (G ) Can be efficiently cured by cationic polymerization even with low irradiation of ultraviolet light without the need for equipment such as nitrogen filling, and is required as a paint for cans even in thin films.
  • the coating composition is particularly suitable as a coating for the outer surface of a can.
  • the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
  • Parts and “%” in the examples represent “parts by weight” and “% by weight”, respectively.
  • reaction was terminated when no more water was distilled off.
  • Analysis of the reaction mixture by gas chromatography revealed that 2,2-bis (3 ', 4, -cyclohexenyl) propane was produced in a 96% yield.
  • the obtained reaction solution is washed with 500 ml of ion-exchanged water using a separatory funnel, and the organic layer is distilled under reduced pressure to form a colorless and transparent liquid, 2,2-bis (3 ′, 4′-cyclohexenyl). 387.0 g of propane were obtained, and its purity was 96.1%.
  • reaction-terminated liquid was washed with water at 30 and de-boiling at 70 at 3 OmmHg to obtain 106.4 g of an epoxide.
  • the purity of di (3,4-epoxycyclohexyl) methane in the epoxy compound was 91.8%.
  • the properties of the obtained product were oxysilane oxygen concentration of 13.8%, viscosity of 2,590 cP (253 ⁇ 4), and the peak derived from the double bond near ⁇ 4.5 to 5 disappeared from HNMR, 52. It was confirmed that a peak of a proton derived from the epoxy group was generated at around 9 to 3.3.
  • Hydrogenated bisphenol sulfone ie, 4, 4'-dicyclohexanol sulfone
  • Solvesso 150 manufactured by Exxon Chemical
  • 330 g of di (3,4-cyclohexenyl) sulfone was obtained. Its purity was 92.2%.
  • the properties of the obtained product were oxysilane oxygen concentration of 10.8% and viscosity of 6,700 cP (25). From 1 HNMR, the peak derived from a double bond near ⁇ 4.5 to 5 disappeared from 1 HNMR. It was confirmed that a proton peak derived from an epoxy group was generated around 32.9 to 3.3.
  • the mixture was aged for 4 hours at 30 to complete the reaction. Further, the crude liquid was washed with 4 O with water, and deboiled with 70/2 OmmHg to obtain 81.8 g of an epoxy compound.
  • the purity of 2,2-bis (3 ', 4,1-epoxycyclohexyl) propane in the epoxy compound was 52%.
  • Example I-1 100 g of the 2,2-bis (3 ′, 4, —cyclohexenyl) propane synthesized in Example I-1 was charged into the 1-liter jacketed flask used in Example I-1.
  • 410.0 g of a 21.8% peracetic acid solution in ethyl acetate (water content: 8.5%) was added dropwise over about 2 hours so that the temperature in the reaction system became 3 Ot.
  • the mixture was aged for 4 hours at 30 to complete the reaction.
  • the crude liquid was further washed with water at 20 and deboiled at 70 / ⁇ 2 OmmHg at 70 to obtain 65.7 g of an epoxy compound.
  • the purity of 2,2-bis (3 ', 4'-epoxycyclohexyl) propane in the epoxy compound was 37.8%.
  • epoxidation of an alicyclic olefin compound can be performed efficiently, economically, and using a solvent having low toxicity.
  • Examples of the present invention II> The physical properties of the epoxy resin composition and the cured product thereof in each example of the present invention II were evaluated according to the following methods.
  • 140 or more. ⁇ : 130 or more and less than 140.
  • test piece (length 50 mm, width 50 mm, thickness 3 mm) obtained by heat-curing the moisture-resistant sample composition under the same conditions as the above-mentioned sample for heat resistance test was applied to a pressure cooking device (manufactured by Tapaispec) at 120 at 2 atmospheres. After humidification for 50 hours, the weight increase of the test piece after the humidification was determined according to the following equation.
  • Weight increase rate (%) (W-W 0) XW 0 X 100
  • W 0 is the weight before humidification
  • W is the weight after humidification
  • 1.5% or more and less than 2.0%.
  • the components constituting the epoxy resin composition for encapsulating an optical semiconductor of the present invention II were blended in the ratio (parts by weight) shown in Table II-11 and uniformly mixed.
  • Example II-13, II-4, and II-8 the alicyclic epoxy compound (A-2) produced in Example I-2 was used.
  • Comparative Example II—1 to II-1 2 The pot life and impregnation were measured in the same manner as in the examples for the compositions in which the respective components were blended in the proportions (parts by weight) shown in Table II-11. The results are shown in Table II-1.
  • each of the compositions was cured under the same conditions as in the examples, and the heat resistance, moisture resistance and light transmittance of the cured products were measured in the same manner as in the examples. The results are shown in Table II-12.
  • Comparative Example II-11 the alicyclic epoxy compound (A-1) produced in Example I-1 was used.
  • Comparative Example II-2 the alicyclic epoxy compound (A-2) produced in Example 1-2 was used.
  • Celloxide 2021P (trade name) (CEL-2021P): manufactured by Daicel Chemical Industries, Ltd. 3,4-epoxycyclohexyl-3,4-epoxycyclohexanecarboxylate, epoxy equivalent 134.
  • Celloxide 3000 (trade name) (CEL-3000): manufactured by Daicel Chemical Industries, Ltd., limonene diepoxide, epoxy equivalent 94.
  • EHPE-3150 manufactured by Daicel Chemical Industries, alicyclic epoxy resin, epoxy equivalent: 168.
  • Triglycidyl isocyanurate (trade name) TEPIC: manufactured by Nissan Chemical Industries, Ltd.
  • Epicoat 828 (trade name): Bisphenol A type epoxy resin, manufactured by Yuka Shell Epoxy Co., Ltd., liquid at 25, epoxy equivalent 187.
  • Sulfonium salt-based cationic curing catalyst (trade name) SI-100L: manufactured by Sanshin Chemical Co., Ltd.
  • the obtained copolymer (F) had a number average molecular weight of about 250,000 and an oxysilane oxygen concentration of 1.4%.
  • CYMA-200 epoxy cyclohexylmethyl acrylate, trade name: Cycloma A—200 (manufactured by Daicel Chemical Industries, Ltd.) 3) n-BMA: n-butyl acrylate
  • UVACURE 1591 (UCB, U.S.A., a photoinitiated thione polymerization initiator having PF6), 1 mol of decaglycerin ether, a polyglycerin with a polymerization degree of 10 (having 12 hydroxyl groups in one molecule) and lauric acid 1 part of fatty acid ester wax prepared by reacting with 10 moles and 0.2 part of Painted M (Silicone Wax, manufactured by Dow Corning Co., Ltd.) A coating composition was obtained.
  • Example HI-3 the alicyclic epoxy compound (A-2) produced in Example I-12 was used.
  • CEL-3000 1,2,8,9-diepoxylimonene (manufactured by Daicel Chemical Co., Ltd.)
  • UVACURE-1591 Sulfonium salt-based cation catalyst (manufactured by Daicel UCB)
  • Example m-1! H-7 and Comparative Example IE-1 ⁇ ! Each paint composition obtained in ⁇ -2 was applied to a tin-free steel plate (TFS) with a thickness of 0.20 mm and a tin-free steel plate with a thickness of 0.20 mm using a homo PET (polyethylene) with a thickness of 12 / im. (Telephthalate)
  • TSS tin-free steel plate
  • PET polyethylene
  • 12 / im. Tephthalate
  • a thermo-compressed PET steel sheet is coated to a dry film thickness of 5 m. Irradiation was performed using a high-pressure mercury lamp (16 OW / cm) from a distance of 15 cm from the coated plate so that the energy per dose became 80 mJ_cm 2, and the coating film was cured to obtain a test coated plate.
  • Each of the obtained test coated plates was tested according to the following test method. All tests were performed at 2 Ot :.
  • Pencil hardness The pencil coating test specified in JIS K-5400 8.4.2 (1990) was performed on the coating film of the test coated plate. The evaluation was performed by the tearing method.
  • Impact resistance (DuPont type): According to JIS II-5400 8.3.2 (1990) Using a Dupont impact tester, apply a 3 / 8-inch diameter drop barrel and drop weight from the opposite side of the coating surface to the test coated plate Impact processing was performed under the conditions of a load of 500 g and a drop weight height of 30 cm, and the processed part was observed with a microscope and evaluated according to the following criteria.
  • Adhesion JIS K-5400 8..5.2 (1990) 100 pieces of 1.5mmXl.5mm squares were created on the painted surface of the test painted plate and adhered to the surface in accordance with the grid pattern method. The state of the squares after cellophane tape was stuck and rapidly removed was evaluated according to the following criteria.
  • Hardness in hot water The test coated plate was heated at 200 for 1 minute, immersed in warm water at 80 for 10 minutes, and measured for pencil hardness in warm water at 80.
  • each coating composition obtained in II-2 was tested for repelling properties according to the following method.
  • Leveling property Each coating composition is applied on a PET steel sheet by a roll coating method (natural coating) to a dry film thickness of 5 m, and the conditions from coating to UV irradiation are 0.5 seconds. The appearance of the coated surface when cured by irradiation with ultraviolet rays was visually evaluated. The evaluation was performed according to the following criteria.
  • the UV-curable can coating composition of the present invention m can be cured by irradiating UV rays at a low irradiation dose, and the cured product has improved coating properties such as processability, adhesion, hardness, and scratch resistance. Excellent, especially excellent coating film appearance and retort resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Epoxy Resins (AREA)
  • Epoxy Compounds (AREA)

Description

明 細 書 エポキシ化合物の製造方法、 エポキシ樹脂組成物及びその用途、 および紫外線硬 化型缶用塗料組成物及び塗装金属缶の製造方法 技術分野
本発明 Iは、 エポキシ化合物の製造方法に関する。 さらに詳しくは、 脂環式ォレ フィン化合物を水分含有量の低い脂肪族過力ルボン酸により酸化することによる特 定の構造を有する脂環式エポキシ化合物の製造方法に関する。 同脂環式エポキシ化 合物は、 コーティング、 インキ、 接着剤、 シーラント封止材、 安定剤などの用途に おいて有用である。
本発明 IIは、 脂環式エポキシ化合物を主成分とするエポキシ樹脂組成物及びその 用途に関する。 さらに詳しくは、 加熱によって硬化させることができ、 耐湿熱性及 び透明性が良好な硬化物が得られるエポキシ樹脂組成物及びその光半導体封止用と しての用途に闋する。
本発明 IIIは、紫外線照射によって硬化させることができ、加工性、密着性、硬度、 耐スリキズ性などの塗膜性能に優れ、 特に塗膜外観、 耐レトルト性に優れた塗膜を 形成することのできる脂環式ェポキシ化合物を主成分とする紫外線硬化型缶用塗料 組成物、 及びこの組成物を使用した塗装金属缶の製造方法に閼する。 背景技術
[本発明 Iおよび IIに関する背景技術]
分子内に 2個の脂環骨格を持つジエポキシ化合物は、 現在さまざまな種類のものが 市販されている。 例えばセロキサイド 2 0 2 1 ( 3 , 4—エポキシシクロへキシル メチル 3 ', 4 ' —エポキシシクロへキサンカルポキシレート)、 セロキサイド 3 0 0 0 ( 1 , 2, 8, 9—ジエポキシリモネン)、 セロキサイド 2 0 8 1 ( ε—力プロ ラクトンモノマーまたはオリゴマーの両端に、 それぞれ 3 , 4—エポキシシクロへ キシルメタノールと 3 , 4—エポキシシクロへキサンカルボン酸がエステル結合し たもの) (以上、 ダイセル化学工業製) がある。
上記セロキサイド 3 0 0 0は、 エポキシ基を構成する炭素にメチル基があるため、 メチル基の無いものに比べてエポキシ基の反応性が低い。 そのため、 脂環式ェポキ シ樹脂は、 主に低粘度化や高い T gなどを優先させる場合に使用されてきた。
また、 セロキサイド 2 0 2 1、 セロキサイド 2 0 8 1は、 分子内にエステル基を 持っため加水分解性があり、 かつ、 耐湿熱性がピスフエノ一ル型のエポキシに比べ て劣る。 .
そのため、 高温高湿下での使用や強酸が発生する条件等を用いた場合、 硬化物の 物性低下が起こることがあった。
かかる問題点を改善しょうとする提案として、 例えば、 特開平 9— 2 5 5 7 6 4 号公報には水添されたビスフエノール Aのジグリシジルエーテルを含む光半導体封 止用エポキシ樹脂が記載されているが、 硬化物の着色ゃ耐候性、 耐熱性等の問題が あり、 特開平 1 0— 1 5 6 9 5 2号公報には本発明と同様の脂環式エポキシ化合物 を用いた光学的立体造形用樹脂組成物が記載されているが、 光半導体封止用として の利用に付いては記載されていない。 また特開 2 0 0 0 - 6 3 4 8 5号公報には特 定の脂環式エポキシ化合物と多価フエノール骨格を有する多価エポキシ化合物との 組成物を用いるビルドアップ用硬化性組成物が記載されているが、 耐熱性、 透明性 に特徵を見出したものではない。
一方、 特開昭 4 8 - 2 9 8 9 9号公報には、 下記 ( I ) 式で表される脂環式ェポ キシ化合物 (A) の Xが- C H2 の化合物を合成し、 これを使用して酸無水物と硬化 反応を行うことにより従来の脂環エポキシに比べて硬化物の物性が改善されている。 しかし、 該エポキシ化合物の合成には、 過安息香酸を使用しているため工業的に利 用しにくい。
また、 特開昭 5 8 - 1 7 2 3 8 7号公報では、 過酸化水素と酸触媒と有機酸から過 カルボン酸を合成した後、 有機溶媒で過カルボン酸を抽出し、 これを用いてェポキ シ化を行っている。 従って、 操作が長い上に廃棄物の量も多く、 作業が煩雑である。 さらに、 過カルボン酸の抽出効率とコストを考えると溶媒は、 ベンゼンのようなも のになり毒性の面からも好ましくない。 従って、 分子内にエステル基を持たない脂 環骨格を持つエポキシ化合物およびその効率的な製造方法が望まれている。
従って、 本発明 Iの目的は、 脂環式ォレフイン化合物のエポキシ化を、 効率よく、 経済的に、 また毒性の少ない溶媒を使用して行う方法を提供することである。
また、 本発明 IIの目的は、 硬化物の耐湿熱性及び透明性の良好な光半導体封止用 エポキシ樹脂組成物を提供することである。
[本発明 ΙΠに関 ί~る背景技術]
従来、 紫外線硬化型塗料組成物としては、 エポキシ基やビニル基を有するカチォ ン重合性化合物及び紫外線照射によりカチオンを発生するカチオン重合開始剤を含 有するカチオン重合型塗料と、 ラジカル重合性不飽和基を有するラジカル重合性化 合物及び紫外線照射によりラジカルを発生するラジカル重合開始剤を含有するラジ 力ル重合型塗料などが知られている。
しかしながら、 ラジカル重合型塗料は、 硬化速度が比較的速いという特徴がある 反面、 素材への密着性、 加工性が不十分であり、 また酸素による硬化阻害があるた め、 表面の硬化性に劣り、 特に薄膜 (2〜8 ) での使用に際しては窒素封入など の設備が必要であるという問題点がある。
一方、 カチオン重合型塗料は、 ラジカル重合型塗料と比較して、 素材への密着性、 加工性が良好であり、 また窒素封入などの設備も必要としないなどの利点がある反 面、 硬化速度が遅いために、 塗膜性能、 特に塗膜外観、 耐レトルト性が不十分であ るという問題点がある。
また、 いずれの重合型塗料も低照射量 (1 0 0 m Jノ c m2未満) では硬化性が不 十分であるという問題がある。
これは、 例えばカチオン硬化に適した脂環式エポキシは、 分子内にエステル結合 を有することが多いが、 エステル結合は、 カチオン種と反応してエポキシの重合を 妨げることがあるためと言われている。
例えば、 特開平 1 0— 1 5 8 5 8 1号公報には、 分子中に脂環式エポキシ基を有 する化合物、 分子中にォキセタン環を有する化合物、 特定の共重合体、 及びカチォ ン重合開始剤を含有する紫外線硬化型缶用塗料組成物が記載されているが、 上記理 由により謝レトルト性にかかわる湯中硬度、 塗膜外観、 耐衝撃性等の問題がある。 従って、 本発明 IIIの目的は、 紫外線硬化型缶用塗料組成物及び塗装金属缶の製造 方法を提供することである。 発明の開示
本発明者らは、 上記本発明 Iの目的を解決すべく鋭意研究を重ねた結果、 脂環式 ォレフィン骨格を二つ有する化合物を、 水分含有量の低い脂肪族過カルボン酸を使 用してエポキシ化することにより、 上記本発明 Iにおける問題を解決できることを 見いだし、 本発明 Iを完成するに至った。
また、 本発明者らは、 上記本発明 Πの目的を解決すべく鋭意研究を重ねた結果、 脂環式エポキシ化合物の内、 エステル結合を有しない構造のもので、 脂環式ェポキ シを構成する炭素に、 メチル基を有しない構造のものを用いると、 硬化物の耐湿熱 性及び透明性の良好な光半導体封止用エポキシ樹脂組成物が得られ、 上記本発明 Π における問題を解決できることを見出し、 本発明 IIを完成するに至った。
さらに、本発明者らは、上記本発明 IIIの目的を解決すべく鋭意研究を重ねた結果、 特定の構造の脂環式エポキシを所定量使用することにより、 窒素封入などの設備を 必要としないで薄膜で、 かつ低照射量での紫外線照射により硬化することができ、 缶用塗料として必要とされる加工性、 密着性、 硬度、 耐スリキズ性などの塗膜性能 に優れ、 特に塗膜外観、 耐レトルト性に優れた塗膜を形成することができ、 しかも 紫外線照射後の後加熱後、 優れた湯中硬度を示す塗膜を形成することができる紫外 線硬化型塗料組成物が得られることを見出し、 本発明 IIIを完成するに至つた。 すなわち、 本発明の第 1は、 下記一般式 (I I) で表される脂環式ォレフイン化合 物を水分含有量 2重量%以下の脂肪族過力ルポン酸を使用してエポキシ化すること を特徴とする下記一般式 (I )
Figure imgf000007_0001
(H) (I)
(式中で Xは、 酸素原子、 硫黄原子、 - SO-、 - S02-、 - CH2-、 - C (CH3)2-、 — CB r2—、 — C (CB r3) 2—、 — C (CF3)2—、 — C (CC 13)2—又は— CH (C6H5) ― の 2価の基、 又は二つの脂環を繋ぐ単なる一重結合であり、 1〜!^18は、 それぞれ 同一であっても異なっていてもよく、 これらは、 水素原子、 ハロゲン原子、 あるい は酸素原子もしくは、 ハロゲン原子を含んでよい炭化水素基、 又は置換基を有して よいアルコキシ基である。)
で表される脂環式エポキシ化合物 (A) の製造方法である。 また、 本発明の第 2は、 脂肪族過力ルポン酸が対応するアルデヒドの酸素による酸化により得られたもので ある本発明の第 1のエポキシ化合物 (A) の製造方法である。 さらに、 本発明の第 3は、 脂肪族過カルボン酸中の水分含有量が 0. 8重量%以下である本発明の第 1 または 2のエポキシ化合物 (A) の製造方法である。 さらに、 本発明の第 4は、 脂 肪族過カルボン酸が過酢酸である本発明の第 1〜3のいずれかのエポキシ化合物 (A) の製造方法である。
本発明の第 5は、 エポキシ樹脂及び硬化剤及び/又は硬化促進剤からなる液状ェ ポキシ樹脂組成物であって、 下記一般式 (I)
Figure imgf000008_0001
(I)
(式中、 Xは酸素原子、 硫黄原子、 -SO-、 -SO2-, -CH2-、 -C(CH3)2-、
-CBr2-、 -C(CBr3)2-、 -C(CF3)2-、 -C (C C 13) 2-又は- CH (C6H5) -の 2 価の基、 又は二つの脂環を翳ぐ単なる一重結合であり、 R 〜R18は、 それぞれ同一 であっても異なっていてもよく、 これらは、 7j素原子、 ハロゲン原子、 あるいは酸素 原子もしくは、 ハロゲン原子を含んでよい炭化水素基、 又は置換基を有してもよいァ ルコキシ基である。)
で表される脂環式エポキシ化合物 (A) を該エポキシ榭脂中 100〜20重量%含 有することを特徵とする液状エポキシ樹脂組成物である。 本発明の第 6は、 一般式
(I) で表される脂環式エポキシ化合物 (A) が、 水分含有量 1重量%以下の過カル ボン酸を使用して製造されたエポキシ化合物であることを特徴とする本発明の第 5に 記載の液状エポキシ樹脂組成物である。 本発明の第 7は、 硬化剤が、 加熱により力 チオン重合を開始させる物質を放出する開始剤であることを特徴とする本発明の第
5または 6に記載の液状エポキシ樹脂組成物である。 本発明の第 8は、 硬化剤とし て、 液状の酸無水物を使用することを特徴とする本発明の第 5〜 7のいずれかに記 載の液状エポキシ樹脂組成物である。本発明の第 9は、本発明 5に記載の一般式( I ) で表される脂環式エポキシ化合物 (A) 100重量部に対して、 液状酸無水物系硬 化剤 (C) 110〜160重量部と、 硬化促進剤 (D) 3〜 7重量部を配合し、 ま たは、 更に脂環式エポキシ化合物 (A) 100重量部に対して、 加熱によりカチォ ン種を放出する開始剤 (E) を 0. 1〜20重量部配合してなる液状エポキシ樹脂 組成物である。 本発明の第 10は、 光半導体封止用である本発明の第 5〜 9のいず れかに記載の液状エポキシ樹脂組成物である。
本発明の第 11は、 本発明の第 10に記載の光半導体封止用エポキシ樹脂組成物 :よつて光半導体素子が封止されてなる光半導体装置である <
さらに、 本発明の第 12は、 下記一般式 ( I )
Figure imgf000009_0001
(I)
(式中、 Xは酸素原子、 硫黄原子、 -SO-、 -S02-、 -CH2-、 -C(CH3)2-、
-CB r z ~C (CBr3)2-、 -C (C F 3) 2-又は- C (C C 13) 2-、 -CH (C6H5) -の 2 価の基、 又は二つの脂環を繋ぐ単なる一重結合であり、 1〜!^18は、 それぞれ同一 であっても異なっていてもよく、 これらは、 水素原子、 ハロゲン原子、 あるいは酸素 原子もしくはハロゲン原子を含んでよい炭化水素基、 又は置換基を有してもよいアル コキシ基である。)
で表される脂環式エポキシ化合物 (A) 10〜100重量部、 及び分子中に脂環式 エポキシ基を有し、 かつエステル結合を有する化合物及び Z又はグリシジル基を有 するエポキシ化合物 (B) 0〜90重量部と、 化合物 (A) 及び (B) の合計量 1
00重量部に対して、 分子中にグリシジル基及び z又は脂環式エポキシ基を少なく とも 1個有する共重合体 (F) 1〜50重量部、 及び紫外線照射によりカチオンを 発生するカチオン重合開始剤 (G) 0. 01〜20重量部を含有することを特徴と する紫外線硬化型缶用塗料組成物である。
本発明の第 13は、 共重合体 (F) が、 グリシジル基含有重合性不飽和モノマ一 及ぴノ又は脂環式エポキシ基含有重合性不飽和モノマーとその他の重合性不飽和モ ノマ.一との共重合体であることを特徴とする本発明の第 12に記載の紫外線硬化型 缶用塗料組成物である。 本発明の第 14は、 さらに、 潤滑性付与剤を、 上記一般式
(I) で表される脂環式エポキシ化合物 (A) 及びエポキシ化合物 (B) の合計量 100重量部に対して、 0. 01〜10重量部含有することを特徵とする本発明の 第 12〜13のいずれかに記載の紫外線硬化型缶用塗料組成物である。 本発明の第 1 5は、 さらに樹脂微粒子を、 上記一般式 (I ) で表される脂環式エポキシ化合物 (A) 及びエポキシ化合物 (B ) の合計量 1 0 0重量部に対して、 0. 1〜5 0重 量部含有することを特徵とする本発明の第 1 2〜: L. 4のいずれかに記載の紫外線硬 化型缶用塗料組成物である。 本発明の第 1 6は、 一般式 (I ) で表される脂環式ェ ポキシ化合物 (A) が、 水分含有量 2重量%以下の脂肪族過カルボン酸を使用して 製造された液状エポキシ化合物であることを特徵とする本発明の第 1 2〜1 5に記載 の紫外線硬化型缶用塗料組成物である。 本発明の第 1 7は、 本発明の第 1 2〜1 6の いずれかに記載の紫外線硬化 ί缶用塗料組成物を、 金属板、 樹脂フィルム積層金属 板又はこれらの金属板を成型した金属缶に塗装し、 紫外線を照射して硬化させるこ とを特徴とする塗装金属缶の製造方法である。 発明を実施するための最良の形態
初めに本発明 Iについて、 詳細に説明する。
本発明 Iにおける上記一般式 (I ) で表される脂環式エポキシ化合物 (Α) は、 一 般式 (II) で表される脂環式ォレフイン化合物を水分含有量 2重量%以下の脂肪族 過カルボン酸によって酸化させることにより製造される。
原料として使用する脂環式ォレフィン化合物は、 対応する水酸基を持つ化合物の 脱水反応による合成が一般的である。
一般式 (II) で表される脂環式ォレフイン化合物は、 特開昭 4 8— 2 9 8 9 9号 公報、 特開昭 5 8 - 1 7 2 3 8 7号公報、 特開 2 0 0 0— 1 6 9 3 9 9号公報にあ るように、 例えばシク口へキサノール構造を持つ化合物より合成することができる。 式 (II) からわかるように、 得られた脂環式ォレフイン化合物は置換基 Xに対して 3 , 4位に二重結合を持つものが好ましく、 脂環式ォレフイン化合物の原料となる 水酸基を持つ化合物としては、 置換基 Xに対して 4位に水酸基を持つものが好まし い。 ..
これらの化合物の例としては、 分子中に水酸基の結合したシクロへキサン環を、 少なくとも 2つ以上含有する化合物の脱水反応に対しては、 上記と同様の理由から 本発明は特に有効である。
分子中に水酸基の結合したシクロへキサン環を、 少なくとも 2つ以上含有する化 合物としては、 例えば、 水添ピフエノール、 ジシクロへキサノールメタン、 ビス (ジ メチルシクロへキサノール) メタン、 1 , 2—ビス (シクロへキサノール) ェタン、 1, 3—ビス (シクロへキサノール) プロパン、 1 , 4—ビス (シクロへキサノー ル) ブタン、 1 , 5—ビス (シクロへキサノ一ル) ペンタン、 1, 6—ビス (シク 口へキサノール) へキサン、 2, 2—ビス (シクロへキサノール) プロパン、 ビス (シクロへキサノール) フエニルメタン、 a , α—ビス ( 4—ヒドロキシシクロへ キシル) 一 4— ( 4ーヒドロキシー , ひージメチルシクロへキシル) —ェチルべ ンゼン、 3, 3—ビス (シクロへキサノール) ペンタン、 5 , 5—ビス (シクロへ キサノール) ヘプタン、 ドデカヒドロフルオレンジオール、 トリス (シクロへキサ ノール) メタン、 トリス (シクロへキサノール) ェタン、 1 , 3 , 3—トリス (シ クロへキサノール) ブタン、 テトラキス (シクロへキサノール) ェタン、 2 , 2— ビス 〔4 , 4 ' —ビス (シクロへキサノール) シクロへキシル〕 プロパン、 水素化 ビスフエノール C ( C:シクロへキサン)、 水添ポリフエノール等及びこれらの混合 物が挙げられる。
脂環式ォレフィン化合物の二重結合のエポキシ化に使用できるエポキシ化剤とし ては、 水分含有量の低い脂肪族過カルボン酸を使用することが好ましい。 これは、 水分の存在下でエポキシ化反応を行うと、 エポキシ基の開環反応が進みエポキシ化 合物の収率が低下するためである。
このため、 脂肪族過力ルポン酸は水分含有量が 2重量%以下であることが必須で あり、 好ましくは 1重量%以下、 より好ましくは 0 . 8重量%以下、 さらに好まし くは 0 . 6重量%以下である。
本発明で言う水分含有量が 2重量%以下の脂肪族過カルボン酸は、 一般的にはァ セトアルデヒド等の空気酸化により製造される過酢酸等のことであり、 例えば、 過 酢酸についてはドイツ公開特許公報 1 4 1 8 4 6 5号や特開昭 5 4— 3 0 0 6に記 載された方法により製造される。 また、 過酸化水素を用いて脂肪族カルボン酸から 脂肪族過カルボン酸を合成し、 蒸留や溶媒により抽出して水分含有量 2重量%以下の 脂肪族過力ルポン酸を製造して用いてもよい。
このァセトアルデヒド等の空気酸化による方法によれば、 連続して大量に高濃度 の脂肪族過カルボン酸を合成できるために、 実質的に安価に得ることができる。 脂肪族過カルボン酸類としては過ギ酸、 過酢酸、 過イソ酪酸、 過トリフルォロ酢 酸等を用いることができる。 この内、 特に過酢酸は工業的に安価に入手可能で、 力 つ安定度も高く、 好ましいエポキシ化剤である。
エポキシ化剤である脂肪族過カルボン酸の量に厳密な制限がなく、 それぞれの場 合における最適量は、 使用する個々のエポキシ化剤、 所望されるエポキシ化度、 使 用する個々の被エポキシ化物等のごとき可変要因によって決まる。 1分子中のェポ キシ基の数が多い化合物が目的の場合、 エポキシ化剤はォレフィン基に対して等モ ルかそれ以上加えることが好ましい。 ただし、 経済性、 及び次に述べる副反応の問 題から 2倍モルを超えることは通常不利であり、 過酢酸の場合 1〜1 . 5倍モルが 好ましい。
エポキシ化反応は、 装置や原料物性に応じて不活性溶媒使用の有無や反応温度を 調節して行なう。
不活性溶媒としては、 原料粘度の低下、 エポキシ化剤の希釈による安定化などの 目的で使用することができ、 過酢酸の場合であれば芳香族化合物、 エステル類など を用いることができる。
特に好ましい溶媒は、 へキサン、 シクロへキサン、 トルエン、 酢酸ェチル、 酢酸 メチルである。
用いるエポキシ化剤の反応性によって使用できる反応温度域は定まる。 一般的に は、 0 以上、 l O O 以下である。 好ましいエポキシ化剤である過酢酸について いえば 2 0〜7 0でが好ましい。 2 0で以下では反応が遅く、 7 0 では過酢酸の 分解が起きる。
不飽和結合に対するエポキシ化剤の仕込みモル比は不飽和結合をどれくらい残存 させたいかなどの目的に応じて変化させることができる。
反応混合物の特別な操作は必要なく、 例えば混合物を 1〜 5時間攪拌すればよい。 得ら.れたエポキシ化物の単離は適当な方法、 例えば貧溶媒で沈殿させる方法、 ェポ キシ化物を熱水中に攪拌の下で投入し溶媒を蒸留除去する方法、 直接脱溶媒法など で行うことができる。
本発明 Iの製造方法によって製造される上記一般式 (I ) で表される脂環式ェポキ シ化合物 (A) は、 単独重合、 共重合又はさらに他の化合物と反応させることによ つてさまざまなコーティング、 インキ、 接着剤、 シーラント、 成形品又は、 これら を用いた他の用途のための中間体を生成することができる。
本発明 Iの製造方法によって製造される脂環式エポキシ化合物 (A) を用いた最 終用途の例としては、 酸除去剤、 家具コーティング、 装飾コーティング、 飲料街及 びその他の缶コーティング、 接着剤、 自動車下塗り、 シーラー、 仕上げ塗り、 文字 情報又は画像情報のインキ、 電子部品用のシーラント、 印刷版又は印刷回路版を開 発するのに適したフォトレジスト、 注型印刷ロール、 不飽和ポリエステル及びスチ レンを主体としガラス、 炭素、 グラフアイト又は、 他の繊維によって強化された成 形配合物又はシート形成配合物によって作られた成形品、 溶媒、 難燃剤、 医薬品お よび医療用品を含む種々の最終用途に有用な他の化合物を製造するための中間体な どがある。
また、 本発明 Iの製造方法によって製造される脂環式エポキシ化合物 (A) は、 脂環骨格を持つ化合物を用いた硬化樹脂の特徴である耐熱性、 透明性、 良好な誘電 特性を持たせることができる。 次に、 本発明 Πについて、 詳細に説明する。
本発明 II は、 上記一般式 (I ) で表される脂環式エポキシ化合物 (A) を好まし い脂環式エポキシ樹脂とする液状エポキシ樹脂組成物および同液状エポキシ樹脂組成 物によって光半導体素子が封止されてなる光半導体装置に翻する。 以下にこの組成 物における各成分について説明する。
本発明 II において用いられる脂環式エポキシ化合物 (A) は、 上記本発明 Iにお いて詳細に説明したものであり、 通常は、 常温 (2 5 0 にて液状である。
本発明 II における液状エポキシ樹脂組成物は上記脂環式エポキシ化合物 (A) を 1 0 0〜2 0重量%含有する。
上記脂環式エポキシ化合物 (A) としては、 上記本発明 Iにおいて詳細に |½明し た製造方法で製造されたものが好ましく使用されるが、 他の製造方法で製造されたも のを使用することもできる。 さらに、 市販品を使用することもできる。
さらに、 上記脂環式エポキシ化合物 (A) 以外の脂環式エポキシ樹脂として、 例 えば、 以下のようなものを併用することができる。 3 , 4 -エポキシシクロへキシル - 3 , 4 -エポキシシクロへキサンカルボキシ レート、 3, 4 -エポキシ- 6 -メチルシクロへキシルメチル - 3, 4 -エポキシ 一 6 -メチルシクロへキサンカルポキシレート、 ビス ( 3 , 4 -エポキシシクロへ キシル) アジペート、 ビニルシクロへキセンモノエポキシド、 リモネンジエポキシ ドなどが挙げられる。
上記エポキシ化合物には、 次の反応性希釈剤を使用してもよい。 低粘度シクロア ルキレングリコールジグリシジルエーテルとしては、 例えば、 2 5 ^における粘度 が 1 0 0 c p s以下の低粘度シクロアルキレングリコールジグリシジルエーテルが 用いられる。 このようなシクロアルキレンダリコールジグリシジルエーテルとして は、 例えば、 シクロへキサンジメタノールジグリシジルェ一テル、 シクロへキサン ジオールジグリシジルェ一テルを挙げることができる。
さらに、 液状のビスフエノール A型、 F型などのグリシジル型エポキシ樹脂、 水 添ビスフエノ一ル A型エポキシ樹脂、 ダリシジルァミン型エポキシ樹脂等を使用し てもよい。
また、 固形のエポキシ樹脂であっても、 配合されたエポキシ樹脂の粘度として、 4 5でで 4 0 0 0 0 c p以下になるものであれば使用することは可能である。 使用 可能な固形のエポキシ樹脂としては、 例えば、 固形のビスフエノール型のエポキシ 樹脂、 ノポラック型のエポキシ樹脂、 グリシジルエステル、 トリグリシジルイソシ ァヌレート、 E H P E— 3 1 5 0 (ダイセル化学工業製) などが挙げられる。
これらのエポキシ樹脂は、 1種を単独で併用してもよいし、 2種以上を組み合わ せて使用してもよい。
(硬化剤 (C) )
本発明 II において、 硬化剤 (C) として使用する酸無水物としては、 一般にェポ キシ樹脂硬化剤として慣用されているものの中から任意に選択して使用することが でぎ.る。
本発明 II において使用する酸無水物としては、 常温で液状のものが好ましく、 具 体的には、 例えば、 メチルテ卜ラヒドロ無水フタル酸、 メチルへキサヒドロ無水フ タル酸、 ドデセニル無水コハク酸、 メチルエンドメチレンテトラヒドロ無水フタル 酸等を挙げることができる。 また、 本発明 II の液状エポキシ樹脂組成物の含浸性に悪影響を与えない範囲で、 常温で固体の酸無水物、 例えば、 無水フタル酸、 テトラヒドロ無水フ夕ル酸、 へキ サヒドロ無水フタル酸、 メチルシクロへキセンジカルボン酸無水物等を使用するこ とができる。 常温で固体の酸無水物を使用する場合には、 常温で液状の酸無水物に 溶解させ、 常温で液状の混合物として使用することが好ましい。
酸無水物の配合量については、 硬化剤 (C ) としての効果を発揮し得る有効量で あればよく、 特に制限はないが、 通常、 前記エポキシ樹脂成分におけるエポキシ基
1当量当たり、 0 . 5〜1 . 5の酸無水物当量になるような割合で使用することが 好ましい。
(硬化促進剤 (D))
本発明 II における硬化促進剤 (D) は、 ジァザビシクロウンデセン系硬化促進剤 が主体となるものであり、 これが硬化促進剤 (D) の全量中少なくとも 5 0重量% を占めていることが必要である。 このジァザビシクロウンデセン系硬化促進剤の割 合がこれよりも少ないと、 ポットライフを十分に長くすることができない。 十分な ポットライフを得るという点では、 7 0重量%以上にすることが好ましい。
このようなジァザビシクロウンデセン系硬化促進剤としては、 例えば、 1, 8 - ジァザビシクロ [ 5 . 4. 0 ] ゥンデセン- 7及びその塩を挙げることができるが、 特に 1 , 8 -ジァザビシクロ [ 5 . 4 . 0 ] ゥンデセン- 7のォクチル酸塩が好ま しい。 硬化促進剤 (D) は、 このジァザビシクロウンデセン系硬化促進剤単独でも よいし、 また 5 0重量%までの他のエポキシ樹脂用硬化促進剤、 例えば、 慣用され ている第三級アミン系硬化促進剤やトリフエニルホスフィンなどのリン系のとの混 合物でもよい。
この硬化促進剤 (D ) は、 エポキシ樹脂 1 0 0重量部当り、 0 . 3〜1 0重量部 の割合で用いられる。 この量が 0 . 3重量部未満では硬化促進効果が不十分である し、.また 1 0重量部以上では、 むしろポットライフが短かくなる。 従って、 硬化促 進とポッ卜ライフの面から特に好ましい配合量は、 エポキシ樹脂成分 1 0 0重量部 当り 1〜 5重量部である。
硬化促進剤 (D ) は、 エポキシ樹脂が酸無水物により硬化する際、 硬化反応を促 進する機能を有する化合物である。 本発明 IIにおいて使用する他の硬化促進剤 (D) としては、 例えば、 ベンジルジ メチルァミン、 2, 4, 6—トリス (ジメチルアミノメチル) フエノール等の三級 ァミン、 2—ェチル—4ーメチルイミダゾール、 1—シァノエチル— 2—ェチル—
4ーメチルイミダゾール等のイミダゾール類、 トリフエニルホスフィン等の有機ホ スフイン化合物、 三級アミン塩、 四級アンモニゥム塩、 ホスホニゥム塩、 ォクチル 酸スズ等の金属塩等の公知の化合物を挙げることができる。
この硬化促進剤 (D) の配合量は、 エポキシ樹脂 100重量部に対して 1〜10 重量部の範囲で使用すること好ましい。
(カチオン重合開始剤 (E) )
一方、 本発明 IIにおいて硬化剤としてカチオン重合開始剤 (E) を用いてもよい。 カチオン重合開始剤 (E) は、 加熱によりカチオン重合を開始させる物質を放出 する開始剤であり、 エポキシ樹脂 100重量部に対して 0. 05〜5重量部、 好ま しくは 0. 1〜3重量部の範囲で配合される。 この範囲で配合することにより、 耐 熱性、 透明性、 耐候性等の良好な硬化物を得ることができる。
カチオン重合開始剤 (E) としては、 例えば、 ァリールジァゾ二ゥム塩 (例えば、 PP- 33 (旭電化工業社製))、 ァリールョードニゥム塩、 ァリールスルホニゥム 塩 (例えば、 FC— 509 (3M社製)、 UVE 1014 (G. E, 社製)、 UV I — 6974、 UV I— 6970、 UV I— 6990、 UV I - 6950 (ユニオン 'カーバイド社製)、 SP— 170、 SP— 150 (旭電化工業社製))、 S I— 60 L, S I -80L, S I - 100L (三新化学工業社製)、 アレン一イオン錯体 (例 えば、 CG— 24— 61 (チバガイギ一社製)) が挙げられる。
さらに、 アルミニウムやチタンなど金属とァセト酢酸エステルまたはジケトン類 とのキレート化合物とシラノールまたはフエノール類との系も含むキレ一ト化合物 としては、 アルミニウムァセチルァセトナートシラノ一ルまたはフエノール類とし ては、 トリフエエルシラノ—ルゃビスフエノ—ル S等が挙げられる
(各種の添加剤)
本発明 IIの液状エポキシ樹脂組成物には、 粘度に悪影響を与えない範囲で各種の 添加剤を配合することができる。
そのような添加剤としては、 例えば、 シリコーン系やフッ素系の消泡剤、 ァ一グ リシドキシプロピルトリメトキシシラン等のシランカップリング剤等を挙げること ができる。
本発明 II の液状エポキシ樹脂組成物は、 その硬化物のガラス転移温度及び透明性 が高く、 吸水率が低く、 光半導体用の樹脂組成物として好適である。
そのほか、 本発明 IIの液状エポキシ樹脂組成物、 特に光半導体封止用液状ェポキ シ樹脂組成物には、 所望に応じ、 充填剤、 難燃剤、 消泡剤、 着色剤、 シランカップ リング剤などのこれまで光半導体封止用ェポキシ樹脂組成物に慣用されている各種 添加剤を配合することができる。 次に、 本発明]! [について、 詳細に説明する。
本発明 EIは、 上記一般式 (I ) で表される脂環式エポキシ化合物 (A) を必須成分 とする紫外線硬化型缶用塗料組成物および同組成物を用いる塗装金属缶の製造方法に 関する。 .
以下、 本発明 mの紫外線硬化型 用塗料組成物における各成分について説明する。 本発明 mにおいて用いられる脂環式エポキシ化合物 (A) は、 上記本発明 Iにおい て詳細に説明した方法で製造されるものが好ましく使用される。 この脂環式ェポキシ 化合物 (A) は、 通常、 常温 (2 5Ό) にて液状である。
上記脂環式エポキシ化合物 (A) としては、 上記本発明 Iにおいて詳細に説明した 方法で製造されたものが好ましく使用されるが、 他の製造方法で製造されたものでも よい。 さらに、 市販品を使用することもできる。
また、上記脂環式エポキシ化合物(A)以外の脂環式エポキシ樹脂として、例えば、 分子中に脂環式エポキシ基を有し、 かつエステル結合を有する化合物及び/又は、 グ リシジル基を有するエポキシ化合物 (B) を 0〜8 0重量%併用することができる。 分子中に脂環式エポキシ基を有し、 かつエステル結合を有する化合物及び 又は、 グリシジル基を有するエポキシ化合物 (B) としては、 分子中に脂環式エポキシ基を 1個以上、 好ましくは 1〜 2個有する化合物であれば特に制限なく使用することがで きる。
具体例としては、 ジ (3 , 4—エポキシシクロへキシル) アジペート、 (3, 4 - エポキシシクロへキシル) メチル一3, 4一エポキシシクロへキサンカルボキシレー ト、 (3 4—エポキシ— 6—メチルシクロへキシル) メチルー 3, 4—エポキシ一 6—メチルシクロへキサンカルボキシレート、 エチレン一 1 2—ジ (3, 4ーェポ キシシクロへキサンカルボン酸) エステル等を挙げることができる。 これらの化合物 は単独又は 2種以上組み合わせて使用することができる。
以上に述べた分子中に脂環式エポキシ基を有する化合物の内、 特に好適なものとし ては、 3, 4—エポキシシクロへキシルメチル— 3, 4—エポキシシクロへキサン力 ルポキシレート、 3, 4—エポキシシクロへキシルメチルアルコール、 3 4—ェポ キシシク口へキシルェチルトリメトキシシラン又は下記式で表される化合物等を挙げ ることができる。
0 0
Figure imgf000018_0001
もしくは )2-
Figure imgf000018_0002
1(3 本発明 mには、 分子中にォキセタン環を有する化合物を用いることもできる。 本発明 mの塗料組成物において使用されるォキセタン環を有する化合物は、 カチォ ン重合開始剤の存在下に、 紫外線照射によって開環重合し得る下記ォキセタン環 ϋ
を 1分子中に少なくとも 1個、 好ましくは 1 15個、 より好ましくは 1 4個有す る化合物 (以下、 ォキセタン化合物 ΟΧΕという。) であり、 具体的には、 例えば、 下記式 (4) で示される化合物、 並びに後記式 (10)、 (11) 及び (12) で示さ れる化合物等が包含される。
Figure imgf000018_0003
上記式(4) において、 R 6は水素原子、 フッ素原子、 炭素原子数 1〜6の直鎖状、 分岐鎖状もしくは環状のアルキル基 (例えば、 メチル、 ェチル、 n—もしくは i—プ 口ピル、 n―、 i—もしくは t—ブチル、 ペンチル、 へキシル、 シクロへキシル基な ど)、 炭素原子数 1〜 6の直鎖状もしくは分岐鎖状フルォロアルキル基 (例えば、 モ ノフルォロメチル、 ジフルォロメチル、 トリフルォロメチル、 2, 2 , 2—トリフル ォロェチル、 パ一フルォロェチル、 パ一フルォロプロピル、 パーフルォロブチル、 ノ —フルォ口へキシル基など)、 ァリル基、 ァリール基(例えば、 フエニル、 ナフチル、 トリル、 キシリル基など)、 ァラルキル基 (例えば、 ベンジル、 フエネチル基など)、 フリル基又はチェ二ル基を表わし; R 7は Pの値に対応する価数を有しそして水素原 子又は 1〜 4価の有機基を表わし; Zは酸素原子又は硫黄原子を表わし; pは 1〜4 の整数である。
R 7が表わし得る 1〜4価の有機基としては、 0、 S、 N及び Fから選ばれる少な くとも 1種の異種原子及び/ /又はシロキサン結合を含有していてもよい、 炭素原子数 1〜 3 0の直鎖状、 分岐鎖状もしくは環状の 1〜 4価の炭化水素基が挙げられる。 より具体的に、 R 7が表わし得る 1価の基としては、 例えば、 炭素原子数 1〜6の 直鎖状、 分岐鎖状もしくは環状のアルキル基 (例えば、 メチル、 ェチル、 n—もしく は i—プロピル、 n—、 i 一もしくは t—ブチル、 ペンチル、 へキシル、 シクロへキ シル基など)、炭素原子数 1〜6の直鎖状もしくは分岐鎖状アルコキシアルキル基(例 えばメトキシェチル、 エトキシェチル、 ブトキシェチル、 エトキシメチル基など)、 炭素原子数 1〜6の直鎖状もしくは分岐鎖状フルォロアルキル基 (例えば、 モノフル ォロメチル、 ジフルォロメチル、 トリフルォロメチル、 2 , 2 , 2—トリフルォロェ チル、 パーフルォロェチル、 パーフルォロプロピル、 パ一フルォロプチル、 パーフル ォ口へキシル基など)、 ァリル基、 ァリール基 (例えば、 フエニル、 ナフチル、 トリ ル、 キシリル基など)、 ァラルキル基 (例えば、 ベンジル、 フエネチル基など)、 フリ ル基、 チェニル基、 エポキシ含有基 (例えば、 グリシジル、 3, 4一エポキシシクロ へキシルメチル基など) 等が挙げられる。
また、 R 7が表わし得る 2価の基としては、 例えば、 直鎖状、 分岐鎖状もしくは環 状のアルキレン基 (特に、 メチレン、 エチレン、 1 , 2—もしくは 1 , 3—プロピレ ン、 プチレン、 シクロへキシレン基などの炭素原子数 1〜1 5のアルキレン基)、 炭 素原子数 4〜30、 好ましくは 4〜8のポリ (アルキレンォキシ) 基 (例えば、 ポリ (エチレンォキシ)、 ポリ (プロピレンォキシ) 基など)、 フエ二レン基、 キシリレン 基、 下記式 (5) 及び (6)、
(5)
Figure imgf000020_0001
(式中、 R8は 0、 S、 CH2、 NH:、 S〇、 SO C (C F 3) 2又は C (CH3) 2を表 わす)
0 0
II II
一 G— 一 G— (6)
(式中、 R9は炭素原子数 1〜6のアルキレン基、 ァリーレン基又は直接結合を表わ す)
で示される基、 アルキレン基とアルキレン基とが (ポリ) シロキサン鎖で結合された 炭素原子数 2〜30、 好ましくは 2〜6の基 (例えば、 該アルキレン基がエチレン又 はプロピレン基であり、 (ポリ) シロキサン鎖の分子量が 130〜15, 000、 特 に 130〜500のもの、好ましくは下記式(7)で示されるもの)等が挙げられる。
一 - (7)
Figure imgf000020_0002
(式中、 kは 1〜6の整数を表わし、 1は 2又は 3である。)
さらに、 R7が表わし得る 3又は 4価の基としては、 例えば、 下記式 (8) 〜
(11) で示される基等が挙げられる。 — (8)
(式中、 R 1 °は炭素原子数 1〜 6のアルキル基、 例えばェチル基を表わす)
Figure imgf000021_0001
R 1 1―
^' '
Figure imgf000021_0002
(式中、 4つの R 1 1は同一又は異なり、 それぞれ炭素原子数 1〜6のアルキレン基、 例えばエチレン基を表わす)
Figure imgf000021_0003
(式中、 2個の R 1 2は同一又は異なり、 それぞれ水素原子、 フッ素原子、 炭素原子 数 1〜6のアルキル基、 炭素原子数 1〜6のフルォロアルキル基、 ァリル基、 ァリー ル基、 フリル基又はチェ二ル基を表わす)
R 7が表わし得る 1〜 4価の有機基の内、 1価又は 2価の基が好適であり (すなわ ち、 pは 1又は 2が好適であり)、 中でも、 メチル、 ェチル、 プロピル、 プチル、 へ キシルなどの炭素原子数:!〜 6のアルキル基;ァリル基;ダリシジル基;ビニル基; ェトキシェチル、 メ卜キシェチルなどの炭素原子数 1〜 6のアルコキシアルキル基; ベンジル基;メチレン、 エチレン、 プロピレン、 ブチレン、 へキシレンなどの炭素原 子数 1〜6のアルキレン基; p—キシリレン基;下記式で示される基が好適である。
CH3 CH3
— CiI2CH2- Si 0 Si CH2CH2-
Figure imgf000022_0001
また、 前記式 (4) において、 R6としては、 水素原子;メチル、 ェチル、 プロピ ル、プチル、へキシルなどの炭素原子数 1〜 6のアルキル基;ァリル基が好適であり、 なかでも水素原子、 メチル基、 ェチル基が好適である。
分子中にォキセタン環を少なくとも 1個有する化合物 (OXE) の内、 (OXE— 1) :分子中にォキセタン環及び水酸基をそれぞれ少なくとも 1個、 好ましくはそれ ぞれ 1個ずつ有する化合物;及び (OXE— 2) :分子中にォキセタン環を少なくと も 2個又はォキセ夕ン環をエポキシ基とを有する化合物が好適である。
上記ォキセタン化合物 (OXE— 1) としては、 例えば、 pが 1であり且つ R7が 水素原子である場合の前記式 (4) の化合物、 特に下記式 (4—1) で示される化合 物を挙げることができる。
(4-1)
Figure imgf000022_0002
(式中、 R61は、 水素原子、 フッ素原子、 炭素原子数 1〜6の直鎖状もしくは分岐鎖 状アルキル基、 炭素原子数 1〜 6の直鎖状もしくは分岐鎖状フルォロアルキル基又は ァリル基を表わす。)
上記式 (4— 1) で示される化合物の代表例としては、 R4がェチル基である場合 の式 (4—1) の化合物を挙げることができる。
また、 上記ォキセタン化合物 (OXE— 2) の内、 分子中にォキセタン環を少なく とも 2個有する化合物 (以下、 ポリオキセタン化合物という) としては、 pが 2〜4 の整数である場合の前記式 (4) の化合物が挙げられ、 中でも、 下記式 (4一 2) で 示される化合物が好適である。
Figure imgf000023_0001
(式中、 R61は前記と同じ意味を有し、 R71は式 (4) において R7に対して定義し た 2〜 4価の有機基を表わし、 qは 2〜4の整数を表わす。)
上記式 (4—2) で示される化合物の代表例としては、 R61がェチル基であり且つ R71が 1, 4ーテトラメチレン基、 ドデカメチレン基、 o—、 m—もしくは p—キシ リレン基、 R3がエチレン基である上記式 (6) の基又は上記式 (7) の基である場 合の式 (4— 2) の化合物を挙げることができる。
ポリオキセタン化合物としては、 上記式 (4一 2) で示される化合物のほかに、 下 記式 (12)、 (13) 及び (14) で示される化合物を挙げることができる。
Figure imgf000024_0001
(式中、 2個の R61は同一又は異なり、 それぞれ前記と同じ意味を有し、 特にェチル 基が好適である。)
Figure imgf000024_0002
(式中、 sは 25〜200の整数を表わす。)
さらに、 前記ォキセタン化合物 (OXE— 2) の内、 分子中にォキセタン環をェポ キシ基とを有する化合物 (以下、 エポキシ含有ォキセタン化合物という。) は、 分子 中にォキセタン環とエポキシ基とをそれぞれ 1個ずつ有する、 好ましくは分子量が 1. 0ひ.0未満の化合物を包含し、 具体的には、 例えば下記式 (15) で示される化合物 を挙げることができる。
Figure imgf000025_0001
(式中、 R13はエポキシ基含有基を表わし、 R61は前記と同じ意味を有する。) また、エポキシ含有ォキセタン化合物の代表例としては、上記式(15)において、 R 61がェチル基であり且つ R 13がグリシジル基又は 3, 4—ェポキシシクロへキシル メチル基である場合の化合物が挙げられる。
以上に述べたォキセタン化合物(OXE)は、それぞれ単独で使用することができ、 又は 2種もしくはそれ以上を組合わせて使用することがでる。特に、前記の化合物(O XE-1) と化合物 (OXE— 2) とを組合わせ使用することが好適である。 併用す る場合のォキセタン化合物(OXE— 1)及び(OXE— 2)のそれぞれの使用量は、 前記エポキシ化合物(A) とエポキシ化合物(B)の合計量 100重量部とに対して、 ォキセタン化合物 (OXE—1) は 1〜75重量部、 好ましくは 3〜50重量部、 そ してォキセタン化合物 (OXE— 2) は 1〜75重量部、 好ましくは 3〜50重量部 の範囲内とすることができる。
(分子中にグリシジル基及び Z又は、 脂環式エポキシ基を少なくとも 1個有する共重 合体 (F))
本発明 IIの塗料組成物において使用される共重合体 (F) は、 分子中に分子中にグ リシジル基を及ぴ Z又は、脂環式エポキシ基を少なくとも 1個有する共重合体である。 該共重合体の原料となるエポキシ基含有モノマーとしては、 エポキシ基含有を含有 する重合性不飽和モノマーであれば特に制限なく使用することができるが、 代表例と して、 グリシジルァクリレ一ト、 グリシジルメタクリレート、 メチルダリシジルァク リレート、 メチルダリシジルメタクリレート、 ァリルグリシジルエーテル、 ビニルダ リシジルエーテルなどを挙げることができる。これらの内、グリシジルァクリレート、 ダリシジルメタクリレートが好適に使用される。 該共重合体の原料となる脂環式エポキシ基含有モノマーは、 サイクロマー A 2 0 0、 M l 0 0 (ダイセル化学 (株) 社製) 等が例示される。
上記エポキシ基含有モノマーと共重合可能な他のモノマーは、 得られる共重合体 (F) の目的とする性能などに応じ、 必要に応じて適宜使用されるモノマーであり、 例えば、 メチルァクリレート、 メチルメタクリレート、 ェチルァクリレート、 ェチル メタクリレ一ト、 n— , i —又は t —プチルァクリレート、 n— , i—もしくは t— ブチルメタクリレート、 へキシルァクリレート、 へキシルメタクリレート、 ォクチル ァクリレート、 ォクチルメ夕クリレート、 ラウリルァクリレート、 ラウリルメタクリ レート、 ステアリルァクリレート、 ステアリルメタクリレート、 シクロへキシルァク リレ一ト、 シク口へキシルメタクリレート等の如きァクリル酸又はメタクリル酸の炭 素数 1〜 2 4のアルキル又はシクロアルキルエステル; 2—ヒドロキシェチルァクリ レート、 2—ヒドロキシェチルメ夕クリレート、 2—ヒドロキシプロピルァクリレー ト、 2—ヒドロキシプロピルメタクリレート、 4—ヒドロキシプチルァクリレ一ト、 4—ヒド口キシブチルメタクリレ一トなどのァクリル酸又はメタクリル酸の炭素数 1 〜 8個のヒドロキシアルキルエステル;アクリル酸、 メタクリル酸、 マレイン酸、 ィ タコン酸、クロトン酸などの ω , i3—エチレン性不飽和カルボン酸;アクリルアミド、 メタクリルアミド、 N—メチルアクリルアミド、 N—ェチルメタクリルアミド、 ジァ セトンアクリルアミド、 N—メチロールアクリルアミド、 N—メチ口一ルメタクリル アミド、 N—メトキシメチルアクリルアミド、 N—ブトキシメチルアクリルアミドな どのアクリルアミドもしくはメ夕クリルアミド又はこれらの誘導体;スチレン、 ピニ ルトルエン、 α—メチルスチレンなどの芳香族ビニル単量体;プロピオン酸ビエル、 酢酸ビニル、 アクリロニトリル、 メタクリロニトリル、 ピニルビパレート、 ベォバモ ノマ一 (シェル化学社製、 分岐脂肪酸のビニルエステル)、 サイラプレーン FM 0 7 1 1、 同 FM 0 7 2 1、 同 FM 0 7 2 5 (以上、 いずれもチッソ社製、 末端にメ夕ク リロイル基を有するポリジメチルシロキサンマクロモノマ一) などのその他のビニル 単量体を挙げることができる。
共重合体 (F) は、 上記エポキシ基含有モノマ一及び必要に応じて他のモノマーか らなるモノマー成分を、 例えばラジカル重合開始剤の存在下または不存在下に、 溶液 重合、 塊状重合、 乳化重合、 懸濁重合などのそれ自体既知の重合方法にて重合するこ とにより得ることができる。共重合体 (F)は、数平均分子量が 1, 000〜100, 000、 更には 2, 000〜50, 000の範囲内にあることが好適である。
共重合体 (F) の重合における各モノマー成分の配合割合は、 モノマー成分合計量 100重量部に対し、 以下の範囲内にあることが好適である。
エポキシ基含有モノマ一: 10〜95重量部、 好ましくは 20〜80重量部。 他のモノマー: 0〜85重量部、 好ましくは 10〜70重量部。
共重合体 (F) においてエポキシ基の濃度は、 0. 1〜7. 0当量/ kg、 更には 0. 2〜5. 0当量 Zk gの範囲内にあることが好ましい。
共重合体 (F) の重合において、 他のモノマーとして、 サイラプレーン FM072 1 (チヅソ社製) などのポリジメチルシロキサンマクロモノマーを使用することによ り、 得られる塗膜のレべリング性や、 レトルト処理後における塗膜の滑性を向上させ ることができる。
(カチオン重合開始剤 (G))
本発明 mにおいて使用されるカチオン重合開始剤 (G) は、 紫外線照射によって力 チオンを発生して重合を開始させる化合物であり、 例えば、 下記式 (I) 〜 (XV) で示されるへキサフルォロアンチモネ一ト塩、 ペンタフルォロヒドロキシアンチモネ ート塩、 へキサフルォロホスフエ一ト塩、 へキサフルォロアルゼネート塩及ぴその他 のカチオン重合開始剤を挙げることができる。
Ar"+' X (I)
(式中、 Arはァリール基、 例えばフエ二ル基を表わし、 X—は PF6—、 SbF<T又 は As F 6—を表わす)、
Ar S + · X- (II)
(式中、 A r及ぴ X—は上記と同じ意味を有する)、
Figure imgf000027_0001
(R2fl) r
(式中、 R20は炭素数 1〜12のアルキル基又は炭素数 1〜12のアルコキシ基を表 わし、 rは 0〜3の整数を表わし、 X—は上記と同じ意味を有する).
Figure imgf000028_0001
(式中、 Y—は PF6—、 SbFcT、 As F6—又は SbF5(OH)—を表わす)
(式中、
(VI)
Figure imgf000028_0002
(式中、 X—は上記と同じ意味を有する)
Figure imgf000028_0003
【0090】 式中、 X"は上記と同じ意味を有する. (式中、 X—は上記と同じ意味を有する) B22 21-S+ · X - (VIII)
K23
(式中、 R21は炭素原子数 7〜15のァラルキル基又は炭素原子数 3〜9のァルケ二 ル基を表わし、 R22は炭素原子数 1〜7の炭化水素基又はヒドロキシフエ二ル基を表 わし、 R 23は酸素原子又は硫黄原子を含有していてもよい炭素原子数 1〜 5のアルキ ル基を表わし、 X—は上記の意味を有する)、
(X)
Figure imgf000029_0001
(式中、 R24及び R25はそれぞれ独立に炭素数 1〜12のアルキル基又は炭素数 12のアルコキシ基を表わす)、
)
Figure imgf000029_0002
(式中、 R24及び R25は上記と同じ意味を有する),
Figure imgf000030_0001
0 0-CH.
Figure imgf000030_0002
カチオン重合開始剤(G) としては市販品を使用することもでき、市販品としては、 例えば、 UVACURE 1591 (米国 UCB社製) CD-I 010, CD-I 0 11, CD— 1012, (米国サートマ一社製)、 ィルガキュア 264 (チバガイギー 社製)、 C I T- 1682 (日本曹達 (株) 製) などを挙げることができる。
以上に述べたカチオン重合開始剤の内、 毒性、 汎用性等の観点から、 へキサフルォ 口フォスフェートァニオン (PF6— ) を有する化合物が好ましい。
本発明 EIの塗料組成物には、 必須成分である上記 (A)、 (B)、 (F) 及び (G) 成 分以外に、 必要に応じて、 潤滑性付与剤;増感剤;硬化を著しく阻害しない量の着色 顔料、 体質顔料などの顔料類、 染料;ポリオ一ル樹脂、 フエノール樹脂、 アクリル樹 脂、 ポリエステル樹脂、 ポリオレフイン樹脂、 エポキシ樹脂、 エポキシ化ポリプタジ ェン樹脂などの改質樹脂;有機樹脂微粒子;溶剤などを配合することができる。
上記潤滑性付与剤は、 得られる塗膜の潤滑性を向上させる目的で配合されるもので あり、 例えば、 ポリオール化合物と脂肪酸とのエステル化物である脂肪酸エステルヮ ックス、 シリコン系ワックス、 フッ素系ワックス、 ポリオレフインワックス、 動物系 ワックス、 植物系ワックスなどのヮックス類を挙げることができる。
上記脂肪酸エステルワックスの原料となるポリオール化合物としては、 エチレング リコ一ル、 ジエチレングリコール、 トリエチレングリコール、 テトラエチレングリコ —ル、 1, 3—又は 1 , 4一ブタンジオール、 ネオペンチルグリコール、 1, 6—へ キサンジオール、 グリセリン、 ジ又はそれ以上のポリグリセリン、 トリメチロールプ 口パン、ペンタエリスリトール、ジペンタエリスリトールなどを挙げることができる。 これらの内、 1分子中に 3個以上の水酸基を有するポリオール化合物が好ましく、 中 でもポリグリセリン、 トリメチロールプロパン、ペンタエリスリトールが好適である。 上記脂肪酸エステルワックスのもう一方の原料となる脂肪酸としては、 飽和又は不 飽和の脂肪酸を挙げることができ、 炭素原子数 6〜 3 2の脂肪酸であることが好まし レ^ 好適な脂肪酸の具体例としては、 力プリル酸、 ペラルゴン酸、 力プリン酸、 ラウ リン酸、 ミリスチン酸、 パルミチン酸、 ステアリン酸、 ァラキン酸、 ベヘン酸、 セロ チン酸、 モンタン酸、 メリシン酸などの飽和脂肪酸;力プロレイン酸、 ゥンデシレン 酸、パルミトレイン酸、 ォレイン酸、 リノール酸、 リノレン酸、エレォステアリン酸、 セトレイン酸、 エル力酸、 リカン酸、 リシノール酸、 ァラキドン酸などの不飽和脂肪 酸を挙げることができる。
脂肪酸エステルワックスとしては、 上記ポリオール化合物の水酸基の数の少なくと も 1 Z 3が脂肪酸でエステル化されたものが好ましい。
シリコン系ワックスとしては、 例えば、 B YK— 3 0 0、 B YK— 3 2 0、 B YK — 3 3 0 [以上、 B YK C h e m i e (ビックケミー) 社製]、 シルウエット L— 7 7、 シルゥエツト L— 7 2 0、 シルゥエツト L— 7 6 0 2 [以上、 日本ュニカー(株) 製]、 ペインタッド 2 9、 ペインタッド 3 2、 ペインタッド M [以上、 ダウコーニン グ社製]、 信越シリコーン K F— 9 6 [信越化学社製] 等が挙げられ、 また、 フッ素 系ワックスとしては、 例えば、 シャムロックワックス S S T— 1 MG、 シャムロック ワックス S S T— 3、 シャムロックワックスフルォロスリップ 2 3 1 [以上、 シャム ロックケミカルズ社製]、 P O L Y F L U O (ポリフルォ) 1 2 0、 同 1 5 0、 同 4 0 0 [マイクロパゥダーズ社] 等が挙げられる。
ポリオレフインワックスとしては、 例えば、 シャムロックワックス S— 3 9 4、 シ ャムロツクワックス S— 3 9 5 [以上、 シャムロックケミカルズ社製]、 へキストヮ ックス P E— 5 2 0、 へキストワックス P E— 5 2 1 [以上、 へキスト社製]、 三井 ハイワックス [三井化学工業社製]等が挙げられ、 さらに、動物系ワックスとしては、 例えば、 ラノリン、 蜜ろう等が挙げられ、 植物系ワックスとしては、 例えば、 カルナ ゥパワックス、 蜜ろう等が挙げられる。
以上に述べた如き潤滑性付与剤は単独で又は 2種もしくはそれ以上を組合わせて使 用することができる。 潤滑性付与剤の配合量は、 (A) 分子中に脂環式エポキシ基を 有しかつエステ^/結合を持たない化合物及ぴ (B) 分子中に脂環式エポキシ基を有し かつエステル結合を有する化合物又は、 ダリシジル基を有するエポキシ化合物との合 計量 1 0 0重量部に対して、 通常 1 0重量部以下、 好ましくは 0 . 1〜5重量部、 さ らに好ましくは 0 . .5〜 3重量部の範囲内とすることができる。
上記潤滑性付与剤の内、 シリコン系ワックスは、 塗装硬化後レトルト処理前におけ る潤滑付与性に優れており、 また、 脂肪酸エステルワックスは、 塗装硬化しレトルト 処理後における潤滑付与性に優れている。 従って、 シリコン系ワックス及び脂肪酸ェ ステルワックスから選ばれる少なくとも 1種を配合することが好ましい。 なかでもェ ポキシ化合物 (A) と分子中に脂環式エポキシ基を有しかつエステル結合を有する化 合物又はグリシジル基を有するエポキシ化合物 (B) との合計量 1 0 0重量部に対し て、 シリコン系ワックス 0 . 0 1〜5重量部と脂肪酸エステルワックス 0 . 1〜5重 量部とを併用すると、 レトルト処理前後における潤滑付与性に優れた塗膜とすること ができる。
前記増感剤は、 紫外線による硬化性をさらに向上させる目的で配合されるものであ り、 例えば、 ピレン、 ペリレン、 ァクリジンオレンジ、 チォキサントン、 2—クロ口 チォキサントン、ベンゾフラピンなどを挙げることができる。この増感剤の配合量は、 エポキシ化合物 (A) とエポキシ化合物 (B) との合計量 1 0 0重量部に対して通常 1 0重量部以下、 好ましくは 3重量部以下の範囲内で使用される。
また、 改質樹脂を配合する場合には、 該改質樹脂は、 分子中に脂環式エポキシ基を 有しかつエステル結合を持たない化合物 (A)、 及び分子中に脂環式エポキシ基を有 しかつエステル結合を有する化合物及び Z又は、 ダリシジル基を有するエポキシ化合 物 (B) の合計量 1 0 0重量部に対して通常 0. 1〜5 0重量部、 特に 5〜2 0重量 部の範囲内で使用することが好ましい。 改質樹脂としては、 中でも、 エポキシ化ポリ ブタジエン樹脂が塗膜の加工性、 密着性等の改良に特に効果的である。
前記有機樹脂微粒子としては、 粒子径が 5 0〜 5 0 0 nmの範囲内の有機樹脂微粒 子が好ましく、 例えば内部が 3次元架橋したァクリル樹脂微粒子などを挙げることが できる。 有機樹脂微粒子としては、 有機重合体を粉砕して微粒子化したもの;乳化剤 の存在下に水中でェマルジョン重合して得られる重合体微粒子を乾燥、 粉砕したもの ;高分子安定剤の存在下に有機溶剤中でディスパージョン重合して得られる重合体微 粒子を乾燥、 粉砕したものなどを挙げることができる。 本発明 mの塗料組成物に有機 樹脂微粒子を配合することによって塗膜の密着性及び加工性を改良することができ る。 有機樹脂微粒子を配合する場合には、 該有機樹脂微粒子の配合量は、 エポキシ化 合物 (A) とエポキシ化合物 (B) の合計量 1 0 0重量部に対して通常 0 . 1〜5 0 重量部、 特に 1〜 1 0重量部の範囲内であることが好ましい。
(塗料組成物)
本発明 ΠΙの塗料組成物は、 以上に述べた各成分を混合し、 均一な塗料組成物となる ように撹拌することにより調製することができる。 例えば、 各成分を混合し、 必要に 応じて加温(例えば 5 0で程度)し、ディソルパ一などの撹拌機にて均一になるまで、 例えば 1 0分間程度撹拌することにより調製することができる。
その際の分子中に脂環式エポキシ基を有しかつエステル結合を持たない脂環式ェポ キシ化合物 (A)、 及ぴ分子中に脂環式エポキシ基を有しかつエステル結合を有する 化合物及び Z又は、 グリシジル基を有するエポキシ化合物 (B)、 共重合体 (F) 及 びカチオン重合開始剤 (G) の使用割合は下記のとおりとすることができる。
すなわち、 分子中に脂環式エポキシ基を有しかつエステル結合を持たない脂環式ェ ポキシ化合物 (A)、 及び分子中に脂環式エポキシ基を有しかつエステル結合を有す る化合物及び Z又は、 グリシジル基を有するエポキシ化合物 (B) は、 両者の合計量 が 1 0 0重量部となる割合において、 脂環式エポキシ化合物 (A) は 1 0〜9 0重量 部、 好ましくは 2 0〜7 0重量部、 さらに好ましくは 3 0〜6 0重量部、 そして化合 物 (B) は 1 0〜9 0重量部、 好ましくは 3 0 ~ 8 0重量部、 さらに好ましくは 4 0 〜7 0重量部の範囲内で使用することができる。 両者の合計量 1 0 0重量部中におい て、 脂環式エポキシ化合物 (A) の量が 1 0重量部未満となると、 得られる塗膜の硬 度、密着性が劣り、 一方、脂環式エポキシ化合物(A) の量が 9 0重量部を超えると、 低照射量の紫外線照射による塗膜の硬化性、 耐レトルト性が劣る。
共重合体 (F) の使用量は、 分子中に脂環式エポキシ基を有しかつエステル結合を 持たない脂環式エポキシ化合物 (A;)、 及び分子中に脂環式エポキシ基を有しかつェ ステル結合を有する化合物及び Z又は、 グリシジル基を有するエポキシ化合物 (B) の合計量 1 0 0重量部に対して、 通常 1〜 5 0重量部、 好ましくは 3〜 3 0重量部、 さらに好ましくは 5〜2 0重量部の範囲内とすることができる。 共重合体 (F) の量 が 1重量部未満では、 低照射量での紫外線照射の際の後加熱後の塗膜の湯中硬度、 塗 膜の付着性、 塗膜硬度などが低下し、 一方、 共重合体 (F) の量が 5 0重量部を超え ると、 特に低照射量での紫外線照射による硬化性が劣り、 塗膜の硬度、 耐レトルト性 が低下する。
また、 カチオン重合開始剤 (G) の使用量は、 分子中に脂環式エポキシ基を有しか つエステル結合を持たない脂環式エポキシ化合物 (A)、 及び分子中に脂環式ェポキ シ基を有しかつエステル結合を有する化合物及び Z又は、 ダリシジル基を有するェポ キシ化合物 (B) の合計量 1 0 0重量部に対して、 通常 0. 0 1〜2 0重量部、 好ま しくは 0 . 1〜1 0重量部、 さらに好ましくは 1〜5重量部の範囲内とすることがで きる。
本発明 ΠΙの紫外線硬化型缶用塗料組成物は、 紫外線硬化性を有しており、 ブリキ、 アルミニウム、 ティンフリースチール、 鉄、 亜鉛、 銅、 亜鉛メツキ鋼板、 亜鉛と他の 金属との合金メツキ鋼板などの金属缶に成型加工される金属板 (この金属板には燐酸 亜鉛処理やクロメート処理などの化成処理が施されていてもよい) ;これらの金属板 に、 ポリエチレンテレフ夕レートなどのポリエステル樹脂、 ポリエチレンやポリプロ ピレンなどのポリオレフイン樹脂、 ポリアミド樹脂、 エポキシ樹脂、 ポリ塩化ビニル などの樹脂フィルムが積層されてなる樹脂フィルム積層金属板;又はこれらの金属板 を成型した金属缶に塗装し、 紫外線を照射することによって硬化塗膜を形成すること ができる。 塗装膜厚は、 用途によって適宜選択することができるが、 通常、 乾燥塗膜 厚として約 2〜2 0 /zm、 好ましくは約 2〜8 mの範囲内とすることができる。 本発明 mの紫外線硬化型缶用塗料組成物は、 例えば、 ロールコート塗装、 スプレー 塗装、 ハケ塗り、 バーコート塗装、 口一ラ一塗り、 シルクスクリーン印刷などの塗装 法によって塗装することができる。 塗膜が溶剤を含有する場合には、 塗装後、 加熱な どにより溶剤を除去した後、 塗膜は紫外線照射によって硬化されるが、 照射条件は塗 装された塗料組成物の種類や膜厚等に応じて適宜変えることができる。 照射する紫外 線の波長としては、 通常、 2 0 0〜6 0 O nmの範隨内が適当であり、 カチオン重合 開始剤の種類等に応じて、 感度の高い波長を有する照射源を適宜選択して使用するこ とができる。
紫外線の照射源としては、 例えば、 高圧水銀ランプ、 超高圧水銀ランプ、 キセノン ランプ、カーボンアーク、メタルハライドランプ、太陽光などを挙げることができる。 塗膜への照射条件は、 通常、 線量が 1 0〜1, 0 0 O m J / c m2, 特に 5 0〜 5 0 ひ!!^ノじ!!^となる範囲内が!!してぃる。
また、 紫外線照射後、 必要に応じて塗膜を加熱してもよい。 加熱によって塗膜中の 未反応物の低減および紫外線照射による塗膜の硬化性や成型加工によって発生した塗 膜の歪みの緩和を行なうことができる。 この加熱によって塗膜の硬度や密着性の向上 を行なうことができる場合がある。 上記加熱は、 通常、 1 5 0〜2 5 O の雰囲気温 度で 1〜 3 0分間の条件で行なうことができる。
本発明 ΙΠの紫外線硬化型缶用塗料組成物は、 分子中に脂環式エポキシ基を有しかつ エステル結合を持たない脂環式エポキシ化合物 (A;)、 及び分子中に脂環式エポキシ 基を有しかつエステル結合を有する化合物及び Z又は、 グリシジル基を有するェポキ シ化合物 (B) と共重合体 (F ) とを被膜形成性樹脂成分として含有しており、 カチ オン重合開始剤 (G) の存在下で、 窒素封入などの設備を必要とすることなく、 低照 射量の紫外線照射によっても効率よくカチオン重合により硬化させることができ、 薄 膜においても缶用塗料として必要とされる加工性、 密着性、 硬度、 耐スリキズ性など の塗膜性能に優れており、 さらに、 塗膜外観、 耐レトルト性にも優れた塗膜を形成す ることができる。 従って、 本発明]! [の塗料組成物は、 缶外面用の塗料として特に好適である。 以下、 実施例により本発明を具体的に説明するが、 本発明はこれらに限定されるも のではない。
例中の「部」及び「%」は、 それぞれ 「重量部」 及び 「重量%」 を表わす。
ぐ本発明 Iの実施例 >
(製造例 1 )
空気吹き込み口、 ガス分散多孔板、 冷却ジャケットを備えた 300mlステンレス 製反応器に酢酸コバルトを含む 10 %ァセトアルデヒド-酢酸ェチル溶液を 114k gZhで仕込ながら圧縮空気を吹き込み、 4 で反応を行った。 反応液は、 過酢酸 10. 1%、 ァセトアルデヒドモノパーアセテート 2. 2%、 酢酸 2. 0%を含んで いた。 この溶液をポリリン酸ナトリゥムとともに蒸留塔に仕込み濃縮を行い過酢酸溶 液を得た。 この過酢酸溶液は、過酢酸濃度 29. 1%、 水分は、 0. 47%であった。
[実施例 1—1 :脂環式エポキシ化合物 (A— 1) の合成]
撹拌器、 冷却管、 温度計、 窒素導入管を備えた 1リットルのジャケット付きフラス コに水 36g、 硫酸水素ナトリウム 12. 0g、 イソプロピリデンー 4, 4, ージシ クロへキサノール (アルドリッチ製) 500 g、 溶媒としてソルべッソ 150 (ェク ソン化学製) 500 gを加えて 100でで脱水反応させた。
水の留出が無くなった時点で反応終了とした。 反応液をガスクロマトグラフィーで 分析を行ったところ、 96%の収率で 2, 2-ビス(3', 4, —シクロへキセニル)プ 口パンが生成していた。 得られた反応液を、 分液漏斗を用いて 500mlのイオン交 換水で洗浄した後、 有機層を減圧蒸留し無色透明液状の 2, 2-ビス(3', 4' —シ クロへキセニル)プロパン 387. 0 gを得、 その純度は 96. 1%であった。
この 2, 2-ビス (3', 4 ' —シクロへキセニル) プロパン 100 g、 酢酸ェチル 300 gを前記と同様の 1リットルのジャケット付きフラスコに仕込み、 窒素を気 相部に吹き込みながら、 反応系内の温度を 30 になるように約 2時間かけて、 製造 例 1で得られた実質的に無水の過酢酸の酢酸ェチル溶液 307. 2 g (過酢酸濃度: 29. 1%、 水分含量 0. 47%) を滴下した。 過酢酸滴下終了後、 30^0で3«^ 熟成し反応を終了した。 さらに 30 で反応終了液を水洗し、 Y O^/SOmmHg で脱低沸を行い、 エポキシ化合物を 99. 4 g を得た。 エポキシ化合物中の 2, 2- ビス(3', 4, 一エポキシシクロへキシル)プロパンの純度は 93. 4%であった。 得られた製品の性状は、 ォキシラン酸素濃度 11. 3%、 粘度 3, 550 c P (2 5 ) であり、 iHNMRから 54. 5〜 5 p pm付近の内部二重結合に由来するピ ークが消失し、 32. 9〜3. 1 ppm付近にエポキシ基に由来するプロトンのピー クの生成が確認された。
[実施例 I— 2 :脂環式エポキシ化合物 (A— 2) の合成]
撹拌器、 冷却管、 温度計、 窒素導入管を備えた 1リットルジャケット付きフラスコ に 4, 4, 一ジシクロへキサノールメタン 300 g、 トルエン 600 g、 パラトルェ ンスルホン酸 3 gを加えて 110でで脱水反応させた。
水の留出が無くなった時点で反応終了とした。 反応液をガスクロマトグラフィーで 分析を行ったところ、 96%の収率でジ (3, 4—シクロへキセニル) メタンが生成 していた。 得られた反応液を、 分液漏斗を用いて 500 mlのイオン交換水で洗浄し た後、 有機層を減圧蒸留し無色透明液状のジ (3, 4—シクロへキセニル) メタンを 269 g得た。
このジ (3, 4—シクロへキセニル) メタン 100 gと酢酸ェチル 200 gを実 施例 I一 1と同様の 1リットルのジャケット付きフラスコに仕込み、 窒素を気相部に 吹き込みながら、 反応系内の温度が 25でになるように約 3時間かけて、 製造例 1で 得られた実質的に無水の過酢酸の酢酸ェチル溶液 276. 2 g (過酢酸濃度: 29. 1 %) を滴下した。 過酢酸滴下終了後、 30 で 4Hr熟成し反応を終了した。 さら に 30 で反応終了液を水洗し、 70で 3 OmmHgで脱低沸を行い、 エポキシ化 物 106. 4 gを得た。 エポキシ化合物中のジ (3, 4—エポキシシクロへキシル) メタンの純度は 91. 8%であった。
得られた製品の性状は、 ォキシラン酸素濃度 13. 8%、 粘度 2, 590 cP (2 5¾) であり、 HNMRから δ 4. 5〜 5付近の二重結合に由来するピークが消失 し、 《52. 9〜3. 3付近にエポキシ基に由来するプロトンのピークの生成が確認さ れた。
[実施例 I— 3]
水添ビスフエノールスルフォン (即ち、 4, 4' —ジシクロへキサノールスルフォ ン) 400 gと溶媒としてソルべッソ 150 (ェクソン化学製) 500 gを使用した 他は実施例 I— 1と同様に行い、 ジ (3, 4—シクロへキセニル) スルフォン 330 gを得、 その純度は 92. 2%であった。
この反応物 100 gと酢酸ェチル 300 gを前記と同様の 1リツトルのジャケット 付きフラスコに仕込み、 気相部に窒素を吹込みながら、 反応系内の温度を 40 にな るように約 2時間かけて過酢酸の酢酸ェチル溶液 242. 7 g (過酢酸濃度 : 29. 1 %) を滴下した。 過酢酸滴下終了後、 40 で 4 Hr熟成し反応を終了した。 さら に 30 で 液を水洗し、 70t Z3 OmmHgで脱低沸を行い、 エポキシ化合物 9 7. 0 g を得た。 エポキシ化合物中のジ (3, 4—エポキシシクロへキシル) スル フォンの純度は 90. 3%であった。
得られた製品の性状は、 ォキシラン酸素濃度 10. 8 %、 粘度 6, 700 c P (2 5 ) であり、 1HNMRから δ 4. 5〜 5付近の二重結合に由来するピークが消失 し、 32. 9〜3. 3付近にエポキシ基に由来するプロトンのピークの生成が確認さ れた。
[比較例 I— 1]
濃度 60%の過酸化水素水 167. 7 g、 プロピオン酸 200 g、 硫酸 0. 3 gを 30¾で 3時間混合し、 過プロピオン酸を合成した後、 ベンゼン 700 gで抽出を行 レ 濃度 16. 9%の過プロピオン酸のベンゼン溶液 (水分 4. 5%) を得た。 実施例 I― 1で使用した 1リットルのジャケット付フラスコに実施例 I一 1で合成 した 2, 2-ビス (シクロへキセニル) プロパン 100 gを仕込んだ。 ここに上記過 プロピオン酸のベンゼン溶液 578. 8 gを、 反応系内の温度を 30 になるように 約 1時間かけて滴下した。 滴下終了後、 30でで 4Hr熟成し反応を終了した。 さら に 4 O で粗液を水洗し、 70 /2 OmmHgで脱低沸を行い、 エポキシ化合物 8 1. 8 g を得た。 エポキシ化合物中の 2, 2-ビス(3', 4, 一エポキシシクロへキ シル)プロパンの純度は 52 %であった。
得られた製品の性状は、 ォキシラン酸素濃度 6. 4%、 粘度 14, 560 c P (2 5 ) であり、 tHNMRから δ 4. 5〜 5付近の二重結合に由来するピークが消失 し、 δ 2. 9〜3. 3付近にエポキシ基に由来するプロトンのピークの生成が確^:さ れた。 [比較例 I—2]
60%過酸化水素 300 g、 酢酸 280 gを 30^で 3時間混合し、 過酢酸酸を合 成した後、 酢酸ェチル 1000 gで抽出を行い、 濃度 2 1. 8%の過酢酸の酢酸ェチ ル溶液 (水分 8· 5%) を得た。
実施例 I― 1で使用した 1リットルのジャケット付フラスコに、 実施例 I— 1で合 成した 2, 2-ビス(3 ', 4, —シクロへキセニル)プロパン 100 gを仕込んだ。 こ こに 21. 8%の過酢酸の酢酸ェチル溶液 410. 0 g (水分 8. 5%) を反応系内 の温度を 3 Otになるように約 2時間かけて滴下した。 滴下終了後、 30でで 4Hr 熟成し反応を終了した。 さらに 20でで粗液を水洗し、 70で/ ^2 OmmHgで脱低 沸を行い、 エポキシ化合物 65. 7 gを得た。 エポキシ化合物中の 2, 2-ビス(3', 4' —エポキシシクロへキシル)プロパンの純度は 37. 8%であった。
得られた製品の性状は、ォキシラン酸素濃度 4. 87%、粘度 16, 000 cP (2 5 ) であり、 1HNMRから(54. 5〜 5付近の二重結合に由来するピークが消失 し、 2. 9〜3. 3付近にエポキシ基に由来するプロトンのピークの生成が確認さ れた。
本発明 Iによれば、脂環式ォレフィン化合物のエポキシ化を、効率よく、経済的に、 また毒性の少ない溶媒を使用して行うことができる。 ぐ本発明 IIの実施例 > なお、本発明 IIの各実施例におけるエポキシ樹脂組成物及びその硬化物の物性は、 次に示す方法に従って評価した。
[耐熱性]
耐熱性試料組成物を 120 で 1時間 + 160 で 3時間 (実施例 Π— 7〜 II— 8、 比較例 II —2は、 100 で 1時間 +160度で 3時間) 熱硬化させた試験片 (長さ 1 Omm、 幅 5mm、 厚さ 5mm) を、 熱機械測定装置 (TMA) (セイコー インスルツルメント社製) でガラス転移温度を測定した.。 その結果を以下の基準で評 価した。
0 : 140 以上。 △ : 130で以上 140 未満。
X: 130 未満。
なお、 ガラス転移温度が 140 以上のものは耐熱性が良好である。
[耐湿性]
耐湿性試料組成物を上記耐熱性試験用サンプルと同条件で熱硬化させた試験片 (長 さ 50mm、 幅 50mm、 厚さ 3mm) をプレッシャークッキング装置 (タパイエス ペック社製) で 120で、 2気圧、 50時間の条件で加湿し、 この加湿後の試験片の 重量増加率を次式に従って求めた。
重量増加率 (%) = (W-W 0) XW 0 X 100
なお、 W 0 は加湿前の重量、 Wは加湿後の重量である。 その結果を以下の基準で 評価した。
◎: 1. 2 %未満。
0 : 1. 2%以上1. 5%未満。
△: 1. 5%以上 2. 0%未満。
X: 2. 0 %以上。
なお、 重量増加率 1. 5%未満のものは耐湿性が良好である。
[光透過性]
エポキシ榭脂組成物を使用して、 120 で 1時間 + 160でで 3時間 (実施例 II — 7〜: [I一 8、 比較例 II一 2は、 100 で 1時間 + 160度で 3時間) で硬化さ せて厚み 1 mmの硬化物を成形した。
これについて、 波長 60 Onmにおける光透過率を分光光度計を用いて測定した。 実施例 II— 1〜 II— 8
本発明 IIの光半導体封止用エポキシ樹脂組成物を構成する各成分を、 表 II一 1に 示す割合 (重量部) で配合して均一に混合した。
実施例 II一 1、 II— 2、 II一 5、 II— 6、 II - 7においては、 前記実施例 I― 1 で製造した脂環式エポキシ化合物 (A— 1) を使用した。
また、 実施例 II一 3、 II— 4、 II— 8においては、 前記実施例 I― 2で製造した 脂環式エポキシ化合物 (A— 2) を使用した。
比較例 II— 1〜 II一 2 表 II 一 1に示す割合 (重量部) で各成分を配合した組成物について、 実施例と同 様にしてポットライフ及び含浸性を測定した。 結果を表 II― 1に示す。
さらに、 その各組成物を実施例と同様の条件で硬化させ、 その硬化物についての耐 熱性、 耐湿性および光透過性について実施例と同様にして測定した。 結果を表 II 一 2に示す。 比較例 II 一 1においては、 前記実施例 I― 1で製造した脂環式エポキシ 化合物 (A— 1 ) を使用した。 比較例 II —2においては、 前記実施例 1—2で製造 した脂環式エポキシ化合物 (A— 2 ) を使用した。 表 I I— 1
Figure imgf000041_0001
( 1 ) セロキサイド 2 0 2 1 P (商品名) (CEL-2021P):ダイセル化学工業社製、 3, 4 -エポキシシクロへキシル - 3, 4 -エポキシシクロへキサンカルボキシレー ト, エポキシ当量 134。
(2) セロキサイド 3000 (商品名) (CEL-3000) :ダイセル化学工業社製、 リモネンジエポキシド、 エポキシ当量 94。
(3) EHPE-3150 :ダイセル化学工業社製、 脂環式エポキシ樹脂、 エポキシ当量 168。
(4) トリグリシジルイソシァヌレート (商品名) TEPIC :日産化学社製
(5) ェピコート 828 (商品名) :油化シェルエポキシ社製, ビスフエノール A 型エポキシ樹脂, 25 において液状, エポキシ当量 187。
(6) メチルェへキサヒドロ無水フタル酸 (商品名) MH-700:新日本理化社製
(7) 1, 8 -ジァザビシクロ [5. 4. 0] ゥンデセン- 7 DBU) :和光純薬 社製
(8) スルホ二ゥム塩系カチオン硬化触媒 (商品名) SI-100L:三新化学社製
(9) アルミニウム卜リスァセチルァセトナート (Al(AcAc)3):ダイセル化学工業 社製 表 Π— 2 評価結果
Figure imgf000042_0001
本発明 IIの光半導体到'止用エポキシ樹脂組成物から、 耐湿熱性及び透明性が良好 な ¾g'化物が得られる。 ぐ本発明 mの実施例 >
(分子中にエポキシ基を少なくとも 1個有する共重合体 (F) の製造) 41 製造例 m— l
撹拌機及び冷却器を備えたフラスコに、 トルエン 5 0 0部を仕込み、 撹拌しながら
9 5 まで加温した。 ついで同温度に保持しながら、 この中に、 グリシジルメタクリ レート 1 5 0部、 n—ブチルメタクリレート 2 5 0部及び 2 , 2 ' —ァゾビスイソプ チロニトリル 5 0部を予め混合溶解した混合物を 4時間かけて滴下し、 重合を行った 後、 減圧蒸留によりトルエンを除去して共重合体 (F) を得た。
得られた共重合体 ( F )は数平均分子量約 2 5 0 0、及ぴォキシラン酸素濃度 1 . 4 %を有していた。
製造例 m - 2〜! E— 3
製造例 ΙΠ— 1において、 滴下する混合物の組成を下記表 HI— 1に示すとおりとする 以外は、 製造例 IE— 1と同様に行い各種共重合体を得た。 得られた共重合体の数平均 分子量、 ォキセタン環濃度及びグリシジル基濃度を下記表 m—iに示す。 表 m— 1に おける各成分の量は、 重量部による表示である。 表 m— 1 製造例
Figure imgf000043_0001
1 ) GMA:グリシジルメタクリレー卜
2 ) CYMA- 2 0 0 :エポキシシクロへキシルメチルァクリレート、 商品名サイ クロマ一 A— 2 0 0 (ダイセル化学 (株) 社製) 3) n— BMA : n—プチルメ夕クリレート
4) A I B N: 2, 2 ' —ァゾビスイソブチロニトリル
5) HEMA: 2—ヒドロキシェチルメタクリレート 実施例 IK— 1〜ffl— 7及び比較例 IE— 1〜! H— 2
3, 4—エポキシシクロへキシルメチルー 3, 4—エポキシシクロへキサンカルボ キシレート (表 1H— 2中、 CEL— 2021 Pと表示する)、 3—ェチル—3—ヒド ロキシメチルォキセ夕ン (表 IE— 2中、 OXEと表示する)、 前記式 (12) におい て R61のいずれもがェチル基である化合物 (表 ΙΠ— 2中、 E— DOAと表示する)、 各製造例で得た共重合体、 UVACURE 1591 (米国、 UCB社製、 PF6—を 有する光力チオン重合開始剤)、 重合度 10のポリグリセリンであるデカグリセリン エーテル (1分子中に水酸基を 12個有する) 1モルとラウリン酸 10モルとを反応 させてなる脂肪酸エステルワックス 1部及ぴペインタツド M (ダウコーニング社製、 シリコンワックス) 0. 2部を配合し、 50 に保持して 20分間撹拌して紫外線硬 化型缶用塗料組成物を得た。
実施例 n— 1、 m— 2、 m— 4、 m— 5においては、 前記実施例 ι—ιで製造した 脂環式エポキシ化合物 (A— 1) を使用した。
また、 実施例 HI— 3、 ΠΙ— 6、 ΠΙ— 7においては、 前記実施例 I一 2で製造した脂 環式エポキシ化合物 (A— 2) を使用した。
比較例 m— 1〜! H— 2においては、 脂環式エポキシ化合物 (A— 1)、 脂環式ェポ キシ化合物 (A— 2) のいずれも使用しなかった。
43
Figure imgf000045_0001
1) E -DO A:実施例 1—1で合成された脂環式エポキシ化合物 (A— 1)
2) E-DOA- f :実施例 I—2合成されたエポキシ化合物 (A— 2)
3) CEL-2021P : 3, 4—エポキシシクロへキシルメチル— 3, 4—ェポ キシシクロへキサンカルポキシレート (ダイセル化学 (株) 社製)
4) CEL- 3000 : 1, 2, 8, 9—ジエポキシリモネン(ダイセル化学(株) 社製)
5) OXE: 3—ェチルー 3—ヒドロキシメチルォキセタン (宇部興産社製)
6) UVACURE-1591 :スルホニゥム塩系のカチオン触媒 (ダイセル ·ュ ーシービー株式会社製)
試験塗板の作成
上記実施例 m— 1〜! H— 7及び比較例 IE— 1〜! Π— 2で得た各塗料組成物を、 厚さ 0. 20mmのティンフリースチール板 (TF S)、 及び厚さ 0. 20mmのティン フリ一スチール板に厚さ 12 /imのホモ PET (ポリエチレンテレフタレー卜) シー トを熱圧着した PET鋼板に、 それぞれ乾燥膜厚が 5 mとなるように塗装し、 紫外 線照射を高圧水銀灯 (16 OW/cm) を用い、 塗装板との距離 15 cmから、 エネ ルギ一線量が 80mJ_ cm2となるように行ない塗膜を硬化させて試験塗板とした。 得られた各試験塗板について、 下記の試験方法に基づいて試験を行なった。 なお、 試験はすべて 2 Ot:において行なった。
試験方法
鉛筆硬度:試験塗板の塗膜に、 J I S K-5400 8. 4. 2 (1990) に 規定する鉛筆引つかき試験で行った。 評価はやぶれ法で行った。
耐衝撃性 (デュポン式): J I S Κ— 5400 8. 3. 2 (1990) に準じ デュポン衝撃試験機を用い試験塗板に塗膜面の反対側から、撃芯の直径 3 / 8インチ、 落錘荷重 500 g、 落錘高さ 30 cmの条件で衝撃加工を行い、 加工部をマイクロス コープで観察し、 以下の基準によって評価した。
◎:クラックも塗膜の剥がれも全く見られない。
〇:わずかにクラックが見られるが塗膜の剥がれは見られない。
△:かなりのクラックが見られるが塗膜の剥がれは見られない。
X:塗膜の剥がれが見られる。
密着性: J I S K-5400 8..5. 2 (1990)碁盤目テ一プ法に準じて、 試験塗板の塗板面に 1. 5mmXl. 5mmのマス目を 100個作成し、 その表面に 粘着セロハンテープを貼着し、 急激に剥がした後のマス目の状態を以下の基準によつ て評価した。
◎:剥離は全く認められない。
〇:マス目のフチがわずかにとれる。
△:マス目のフチ以外にもわずかに剥離が認められる。
X:著しい剥離が認められる。
湯中硬度:試験塗板を 200 で 1分間加熱した後、 80 の温水中に 10分間浸 潰し、 80での温水中にて鉛筆硬度を測定した。
評価は J I S K- 5400 8. 4. 2 (1990) におけるやぶれ法にて行つ た。
また、 前記実施例 ΠΙ— 1〜! Π— 7及び比較例 IE— 1〜! Π— 2で得た各塗料組成物に ついて、 下記方法に従ってレペリング性の試験を行った。 レべリング性:各塗料組成物を、 ロールコート法 (ナチュラル塗装) により乾燥膜 厚が 5 mとなるように P E T鋼板上に塗装し、 塗装から紫外線照射までが 0 . 5秒 となる条件で紫外線照射を行って硬化させたときの塗面外観を目視にて評価した。 評 価は下記基準に従つて行つた。
◎:塗面にロール目が見られず平滑性に優れている。
〇:塗面にロール目がわずかに見られるが、 平滑性良好である。
△:塗面にロール目がかなり見られ、 平滑性がかなり劣る。
X:塗面に口一ル目が顕著に見られ、 平滑性が著しく劣る。 上記試験の結果を下記表 m— 3に示す。
表 m— 3 素材 T F Sの場合
Figure imgf000047_0001
本発明 mの紫外線硬化型缶用塗料組成物は、 低照射量での紫外線照射によって硬化 させることができ、 その硬化物ば、 加工性、 密着性、 硬度、 耐スリキズ性などの塗膜 性能に優れ、 特に塗膜外観、 耐レトルト性に優れている。

Claims

請 求 の 範 囲
1. 下記一般式 (II) で表される脂環式ォレフイン化合物を、 水分含有量 2重量 %以下の脂肪族過カルボン酸を使用してエポキシ化することを特徴とする下記一般 式 (I)
Figure imgf000048_0001
(H) (I)
(式中で Xは、 酸素原子、 硫黄原子、 - SO-、 - S〇2-、 - CH2-、 - C (CH3)2 -、 -CB r 2-、 -C (CB r 3) 2 、 C (CF3) 2—、 -C (CC 13) 2 -又は— CH (CeHs) - の 2価の基、 又は二つの脂環を繋ぐ単なる一重結合であり、 R1〜R は、 それぞれ 同一であっても異なっていてもよく、 これらは、 水素原子、 ハロゲン原子、 あるい は酸素原子もしくは、 ハロゲン原子を含んでよい炭化水素基、 又は置換基を有して よいアルコキシ基である。)
で表される脂環式エポキシ化合物 (A) の製造方法。
2. 脂肪族過力ルポン酸が対応するアルデヒドの酸素による酸化により得られ たものである請求項 1に記載の脂環式エポキシ化合物 (A) の製造方法。
3. 脂肪族過カルボン酸中の水分含有量が 0. 8重量%以下である請求項 1又 は 2に記載の脂環式エポキシ化合物 (A) の製造方法。
4. 脂肪族過カルボン酸が過酢酸である請求項 1〜 3のいずれかに記載の脂環 式エポキシ化合物 (A) の製造方法。
5. エポキシ樹脂及び硬化剤及ぴ 又は硬化促進剤からなる液状エポキシ樹脂 組成物であって、 下記一般式 (I)
Figure imgf000049_0001
(I)
(式中、 Xは酸素原子、 硫黄原子、 -SO-、 -S〇2-、 -CH2-、 -C (CH3)2-、
-CB r 2-、 -C (CB r 3) 2-、 -C (CFs) 2-、 -C (CC 13) 2-又は- CH (C6H5) -の 2 価の基、 又は二つの脂環を繋ぐ単なる一重結合であり、 〜 18は、 それぞれ同一 であっても異なっていてもよく、 これらは、 水素原子、 ハロゲン原子、 あるいは酸素 原子もしくはハ口ゲン原子を含んでよい炭化水素基、 又は置換基を有してもよいアル コキシ基である。)
で表される脂環式エポキシ化合物 (A) を該エポキシ樹脂中 100〜20重量%含 有することを特徴とする液状エポキシ樹脂組成物。
6. 一般式 (I) で表される脂環式エポキシ化合物 (A) が、 水分含有量 2重 量%以下の過カルボン酸を使用して製造されたエポキシ化合物であることを特徴と する請求項 5記載の液状エポキシ樹脂組成物。
7. 硬化剤が、 加熱によりカチオン重合を開始させる物質を放出する開始剤で あることを特徵とする請求項 5または 6に記載の液状エポキシ樹脂組成物。
8. 硬化剤として、 液状の酸無水物を使用することを特徴とする請求項 5〜 7 のいずれかに記載の液状エポキシ樹脂組成物。
9. 請求項 6に記載の脂環式エポキシ化合物 (A) 100重量部に対して、 液 状酸無水物系硬化剤 (C) 110〜160重量部と、 硬化促進剤 (D) 3〜7重量 部を.配合し、 または、 更に上記一般式 (I) で表される脂環式エポキシ化合物 (A) 100重量部に対して、 加熱によりカチオン種を放出する開始剤 (E) を 0. 1〜 20重量部配合してなる液状エポキシ樹脂組成物。
10. 光半導体封止用である請求項 5〜 9のいずれかに記載の液状エポキシ樹脂 組成物。
11. 請求項 10記載の光半導体封止用エポキシ樹脂組成物によって光半導体素 子が封止されてなる光半導体装置。
12. 下記一般式 ( I )
Figure imgf000050_0001
(I)
(式中、 Xは酸素原子、 硫黄原子、 -SO-、 -S02-、 -CH 、 -C (CH3)2-、
-CB r 2-, -C (CB r3)2-、 -C (CF3)2-、 -C (C C 13) 2-又は- CH (CeHs) -の 2 価の基、 又は二つの脂環を繋ぐ単なる一重結合であり、 R]〜R18は、 それぞれ同一 であっても異なっていてもよく、 これらは、 水素原子、 ハロゲン原子、 あるいは酸素 原子もしくはハロゲン原子を含んでよい炭化水素基、 又は置換基を有してもよいアル コキシ基である。)
で表される脂環式エポキシ化合物 (A) 10〜100重量部、 及び分子中に脂環式 エポキシ基を有し、 かつエステル結合を有する化合物及び/又はダリシジル基を有 するエポキシ化合物 (B) 0〜90重量部と、 上記脂環式エポキシ化合物 (A) 及 びエポキシ化合物 (B) の合計量 100重量部に対して、 分子中にグリシジル基及 び/又は脂環式エポキシ基を少なくとも 1個有する共重合体 (F) 1〜50重量部、 及び紫外線照射によりカチオンを発生するカチオン重合開始剤 (G) 0. 01〜2 0重量部を含有することを特徵とする紫外線硬化型缶用塗料組成物。
13. 共重合体 (F) が、 グリシジル基含有重合性不飽和モノマー及び 又は脂 環式ェポキシ基含有重合性不飽和モノマーとその他の重合性不飽和モノマーとの共 重合体であることを特徴とする請求項 12に記載の紫外線硬化型缶用塗料組成物。
14. さらに、 潤滑性付与剤を、 上記脂環式エポキシ化合物 (A) 及ぴエポキシ 化合物 (B) の合計量 100重量部に対して、 0. 01〜10重量部含有すること を特徵とする請求項 12又は 13に記載の紫外線硬化型缶用塗料組成物。
1 5. さらに樹脂微粒子を、脂環式エポキシ化合物(A)及びエポキシ化合物(B) の合計量 1 0 0重量部に対して、 0 . 1〜5 0重量部含有することを特徴とする請 求項 1 2〜1 4のいずれかに記載の紫外線硬化型缶用塗料組成物。
1 6 . —般式 (I ) で表される脂環式エポキシ化合物 (A) が、 水分含有量 2重 量%以下の脂肪族過カルボン酸を使用して製造されたエポキシ化合物であることを 特徴とする請求項 1 2〜1 5に記載の紫外線硬化型缶用塗料組成物。
1 7 . 請求項 1 2〜1 6のいずれかに記載の紫外線硬化型缶用塗料組成物を、 金 属板、 樹脂フィルム積層金属板又はこれらの金属板を成型した金属缶に塗装し、 紫 外線を照射して硬化させることを特徴とする塗装金属缶の製造方法。
PCT/JP2002/002778 2001-03-23 2002-03-22 Procede de fabrication de compose epoxy, composition de resine expoxy et son utilisation, composition de revetement a sechage uv, et procede de fabrication de boite metallique ainsi revetue WO2002076966A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02708643A EP1389615A4 (en) 2001-03-23 2002-03-22 METHOD FOR PRODUCING AN EPOXY COMPOUND, EPOXY RESIN COMPOSITION AND ITS USE, ULTRAVIOLET-HEATED COATING COMPOSITION FOR CANS AND METHOD FOR PRODUCING COATED METAL CANS
KR1020027013628A KR100877124B1 (ko) 2001-03-23 2002-03-22 에폭시 화합물의 제조방법, 에폭시수지 조성물 및 그용도, 및 자외선경화형 캔용 도료조성물 및 도장금속캔의제조방법
CA 2439608 CA2439608A1 (en) 2001-03-23 2002-03-22 Method of producing epoxy compound, epoxy resin composition and its applications, ultraviolet rays-curable can-coating composition and method of producing coated metal can

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001084195A JP4663893B2 (ja) 2001-03-23 2001-03-23 エポキシ化合物の製造方法
JP2001-84195 2001-03-23
JP2001-143835 2001-05-14
JP2001143835A JP5226162B2 (ja) 2001-05-14 2001-05-14 液状エポキシ樹脂組成物及びその用途
JP2001-193430 2001-06-26
JP2001193430A JP4795570B2 (ja) 2001-06-26 2001-06-26 紫外線硬化型缶用塗料組成物及び塗装金属缶の製造方法

Publications (1)

Publication Number Publication Date
WO2002076966A1 true WO2002076966A1 (fr) 2002-10-03

Family

ID=27346334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002778 WO2002076966A1 (fr) 2001-03-23 2002-03-22 Procede de fabrication de compose epoxy, composition de resine expoxy et son utilisation, composition de revetement a sechage uv, et procede de fabrication de boite metallique ainsi revetue

Country Status (7)

Country Link
US (2) US20030059618A1 (ja)
EP (2) EP2031006A1 (ja)
KR (1) KR100877124B1 (ja)
CN (1) CN1243744C (ja)
CA (1) CA2439608A1 (ja)
TW (1) TWI298065B (ja)
WO (1) WO2002076966A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035558A1 (ja) * 2002-09-05 2004-04-29 Daicel Chemical Industries, Ltd. 脂環式ジエポキシ化合物の製造方法、硬化性エポキシ樹脂組成物、電子部品封止用エポキシ樹脂組成物、電気絶縁油用安定剤、および電気絶縁用注型エポキシ樹脂組成物
JP2006188476A (ja) * 2005-01-07 2006-07-20 Daicel Chem Ind Ltd 高純度脂環式ジエポキシ化合物およびその製造方法
CN100404519C (zh) * 2002-09-05 2008-07-23 大赛璐化学工业株式会社 脂环族二环氧化合物的制造方法、固化性环氧树脂组合物、电子部件密封用环氧树脂组合物、电绝缘油用稳定剂及电绝缘铸塑环氧树脂组合物
JP2008189698A (ja) * 2007-01-31 2008-08-21 Daicel Chem Ind Ltd 透明封止材料及び透明封止物
JP2008189709A (ja) * 2007-02-01 2008-08-21 Daicel Chem Ind Ltd 硬化性樹脂組成物及びその硬化物
JP2008189699A (ja) * 2007-01-31 2008-08-21 Daicel Chem Ind Ltd 硬化性樹脂組成物及び光導波路
JP2008189853A (ja) * 2007-02-06 2008-08-21 Daicel Chem Ind Ltd 光硬化性樹脂組成物及び塗装物
JP2008195802A (ja) * 2007-02-10 2008-08-28 Daicel Chem Ind Ltd 活性エネルギー線硬化型インク及び印刷物
JP2008214448A (ja) * 2007-03-02 2008-09-18 Daicel Chem Ind Ltd 繊維強化複合材料用エポキシ樹脂組成物及び繊維強化複合材料
US7786224B2 (en) * 2001-03-23 2010-08-31 Daicel Chemical Industries, Ltd Liquid composition of alicyclic diepoxide, curing agent and/or curing accelerator
EP1426394A4 (en) * 2001-09-14 2010-11-03 Sumitomo Chemical Co RESIN COMPOSITION FOR THE PACKAGING OF OPTICAL SEMICONDUCTORS
WO2014084030A1 (ja) * 2012-11-27 2014-06-05 株式会社ダイセル 微細構造体の製造方法及びナノインプリント用光硬化性組成物

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210932A (ja) * 2002-12-27 2004-07-29 Daicel Chem Ind Ltd 硬化性樹脂組成物及び硬化物
TWI340763B (en) * 2003-02-20 2011-04-21 Nippon Kayaku Kk Seal agent for photoelectric conversion elements and photoelectric conversion elements using such seal agent
JP3797348B2 (ja) * 2003-02-24 2006-07-19 コニカミノルタホールディングス株式会社 活性エネルギー線硬化組成物
JP3973611B2 (ja) * 2003-08-25 2007-09-12 ダイセル化学工業株式会社 熱硬化型エポキシ樹脂組成物および透明材料
WO2005044890A1 (en) * 2003-11-03 2005-05-19 Union Carbide Chemicals & Plastics Technology Corporation Tougher cycloaliphatic epoxide resins
US20070179256A1 (en) * 2004-03-18 2007-08-02 Kyuhei Kitao High-purity alicyclic epoxy compound, process for production of the same, curable epoxy resin composition, cured product thereof, and application thereof
GB0412196D0 (en) * 2004-06-02 2004-07-07 Hexcel Composites Ltd Cure accelerators
EP1829936A4 (en) * 2004-11-18 2008-08-27 Konica Minolta Med & Graphic ACTIALLY HARDENABLE COMPOSITION, ACTIALLY HARDENABLE INK AND IMAGING METHOD
JP5329043B2 (ja) * 2004-12-16 2013-10-30 株式会社ダイセル 熱硬化性エポキシ樹脂組成物及びその用途
WO2006077693A1 (ja) * 2005-01-21 2006-07-27 Konica Minolta Medical & Graphic, Inc. 重合性活性光線硬化組成物、重合方法、活性光線硬化型インク及び画像形成方法、インクジェット記録装置並びにエポキシ化合物
JP4636469B2 (ja) * 2005-09-02 2011-02-23 ダイセル化学工業株式会社 体積型ホログラム記録用感光性組成物
EP2014634A4 (en) * 2006-04-18 2012-10-31 Daicel Chem PROCESS FOR THE PREPARATION OF CYCLIC OLEFINES
US8197033B2 (en) 2006-07-13 2012-06-12 Telecom Italia S.P.A. Ink jet cartridge comprising a layer made by a curable resin composition
JP5638812B2 (ja) 2010-02-01 2014-12-10 株式会社ダイセル 硬化性エポキシ樹脂組成物
ES2416466T3 (es) 2011-03-31 2013-08-01 Henkel Ag & Co. Kgaa Fórmula de una laca para la superficie interior de un bote o tarro
WO2012137880A1 (ja) * 2011-04-08 2012-10-11 Jx日鉱日石エネルギー株式会社 樹脂組成物、その硬化物及びそれを用いた光半導体装置
KR20150008093A (ko) * 2012-04-13 2015-01-21 주식회사 다이셀 디에폭시 화합물 및 그의 제조 방법
DE102012223355A1 (de) 2012-12-17 2014-06-18 Henkel Ag & Co. Kgaa Hochvernetzende Lackformulierung für Doseninnenflächen
DE102012223356A1 (de) 2012-12-17 2014-06-18 Henkel Ag & Co. Kgaa Verfahren zur Herstellung beschichteter Dosendeckel
CN105308092B (zh) * 2013-10-30 2018-01-30 积水化学工业株式会社 有机el显示元件用密封剂
JP6204420B2 (ja) 2015-08-07 2017-09-27 株式会社ダイセル 硬化性組成物、及びそれを用いた光学素子
AR108133A1 (es) 2016-04-15 2018-07-18 Valspar Sourcing Inc Composiciones de revestimiento que contienen copolímeros libres de estireno
CN109843824B (zh) * 2016-07-22 2021-11-23 普睿司曼股份公司 用聚酯涂层涂覆的光纤
EP3529317A4 (en) 2016-10-19 2020-05-20 Swimc Llc ALKALI-SOLUBLE RESIN ADDITIVES AND COATING COMPOSITIONS WITH SUCH ADDITIVES
JP6943278B2 (ja) 2016-10-21 2021-09-29 東レ株式会社 エポキシ樹脂組成物及びそれから作製された繊維強化複合材料
US10191405B2 (en) * 2016-11-11 2019-01-29 Xerox Corporation Electrostatic charging member
KR102118365B1 (ko) * 2017-04-21 2020-06-04 주식회사 엘지화학 유기전자소자 봉지용 조성물
DE112018004899T5 (de) 2017-09-01 2020-06-04 Swimc Llc Mehrstufige, polymere latizes, diese latizes enthaltende beschichtungszusammensetzungen und damit beschichtete artikel
WO2019046700A1 (en) 2017-09-01 2019-03-07 Swimc Llc MULTI-STAGE POLYMER LATEX, COATING COMPOSITIONS CONTAINING SUCH LATEX, AND ARTICLES THEREOF
CN107734847A (zh) * 2017-10-16 2018-02-23 江苏赛博宇华科技有限公司 一种手机电路板
JP7009201B2 (ja) * 2017-12-21 2022-02-10 デクセリアルズ株式会社 化合物、カチオン硬化剤、及びカチオン硬化性組成物
BR112020014501A2 (pt) * 2018-01-19 2020-12-08 Prysmian S.P.A. Fibra óptica, e processo de revestimento de fibras ópticas
CN111918899B (zh) * 2018-03-28 2023-05-16 日本板硝子株式会社 树脂组合物的固化物、层积体以及树脂组合物
CN109738257A (zh) * 2019-02-28 2019-05-10 山东科技大学 一种粉煤煤岩光片的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2008593A (en) * 1977-11-26 1979-06-06 Akzo Nv Process for the preparation of epoxides
JPS58172387A (ja) * 1982-03-26 1983-10-11 バイエル・アクチエンゲゼルシヤフト 2,2−ジシクロヘキセニルプロパンジエポキシドの製造方法
EP0844262A2 (en) * 1996-11-26 1998-05-27 Asahi Denka Kogyo Kabushiki Kaisha Energy beam curable epoxy resin composition, stereolithographic resin composition and stereolithographic method

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE523503A (ja) * 1952-11-03
DE1418465A1 (de) 1959-03-16 1968-10-03 Wacker Chemie Gmbh Verfahren zur Herstellung von Peressigsaeureloesungen
US3075955A (en) * 1960-03-31 1963-01-29 Union Carbide Corp Polyepoxy sulfones
US3271371A (en) * 1960-03-31 1966-09-06 Union Carbide Corp Cured diepoxy sulfone and polyfunctional amine compositions
GB996064A (en) * 1960-08-24 1965-06-23 Union Carbide Corp Improvements in and relating to epoxy resins
US3278456A (en) * 1960-12-27 1966-10-11 Union Carbide Corp Diepoxide compositions
JPS5010636B2 (ja) 1971-08-20 1975-04-23
IT1009956B (it) * 1973-06-12 1976-12-20 Gen Electric Liquido impregnante costituito da estere stabilizzato
JPS5335999A (en) * 1976-09-16 1978-04-03 Nissin Electric Co Ltd Capacitor
JPS543006A (en) 1977-06-07 1979-01-11 Daicel Chem Ind Ltd Preparation of peracetic acid solution
JPS59136321A (ja) * 1983-01-26 1984-08-04 Nitto Electric Ind Co Ltd 光半導体封止用エポキシ樹脂組成物
JPS61213204A (ja) * 1985-03-19 1986-09-22 Sanyo Kokusaku Pulp Co Ltd 紫外線硬化樹脂組成物
JPH02169620A (ja) * 1988-12-22 1990-06-29 Mitsui Petrochem Ind Ltd 硬化用エポキシ樹脂組成物、ならびに、この組成物からなる透明樹脂板、半導体装置用透明窓材および液晶パネル用透明基板
DE69103089T2 (de) * 1990-05-30 1995-01-05 Daicel Chem Alicyclische Verbindung enthaltende Komposition, Verfahren für ihre Herstellung, polymerisierbare Komposition und photopolymerisierbare Komposition.
JPH04325519A (ja) * 1991-04-25 1992-11-13 Nippon Paint Co Ltd 尿素系触媒性硬化剤およびそれを含む樹脂組成物
JPH05239043A (ja) * 1991-10-03 1993-09-17 Daicel Chem Ind Ltd 酢酸とシクロヘキセンオキシドの分離方法
EP0859021A3 (en) * 1991-10-31 1998-11-11 Daicel Chemical Industries, Ltd. Epoxidised compositions
JP2537583B2 (ja) * 1992-01-23 1996-09-25 住友ベークライト株式会社 液状エポキシ樹脂組成物
JPH05279451A (ja) * 1992-03-31 1993-10-26 Nippon Kayaku Co Ltd エポキシ樹脂組成物及びその硬化物
JPH0745126A (ja) * 1993-07-28 1995-02-14 Meidensha Corp 含浸用樹脂組成物
JPH07196774A (ja) * 1993-12-28 1995-08-01 Sumitomo Bakelite Co Ltd 液状エポキシ樹脂組成物
JP3841858B2 (ja) * 1995-11-01 2006-11-08 凸版印刷株式会社 多層プリント配線板用絶縁層樹脂組成物
JPH09176288A (ja) * 1995-12-28 1997-07-08 Hitachi Ltd エポキシ樹脂組成物および絶縁スペーサ
JPH09255764A (ja) 1996-03-26 1997-09-30 Nitto Denko Corp 光半導体封止用エポキシ樹脂組成物硬化体およびそれを用いた光半導体装置
JPH10158581A (ja) 1996-12-05 1998-06-16 Kansai Paint Co Ltd 紫外線硬化型缶用塗料組成物
JP3409648B2 (ja) * 1997-06-16 2003-05-26 東洋インキ製造株式会社 紫外線硬化型樹脂組成物
JPH11106474A (ja) * 1997-10-03 1999-04-20 Hitachi Chem Co Ltd 半導体封止用液状エポキシ樹脂組成物
JPH11152441A (ja) * 1997-11-21 1999-06-08 Kansai Paint Co Ltd 紫外線硬化型缶用塗料組成物
WO1999041296A1 (en) * 1998-02-11 1999-08-19 Rensselaer Polytechnic Institute Photopolymerizable compositions containing cycloaliphatic epoxyalcohol monomers
JP3933294B2 (ja) * 1998-03-06 2007-06-20 株式会社Adeka 硬化性組成物
CA2269378C (en) * 1998-04-17 2008-04-01 Ajinomoto Co., Inc. Curable resin composition
JP2886853B1 (ja) * 1998-06-08 1999-04-26 関西ペイント株式会社 カチオン重合性塗料組成物
US6287748B1 (en) * 1998-07-10 2001-09-11 Dsm N.V. Solid imaging compositions for preparing polyethylene-like articles
US6210790B1 (en) * 1998-07-15 2001-04-03 Rensselaer Polytechnic Institute Glass-like composites comprising a surface-modified colloidal silica and method of making thereof
JP4124295B2 (ja) * 1998-08-20 2008-07-23 株式会社Adeka 硬化性組成物
JP4274444B2 (ja) 1998-12-10 2009-06-10 株式会社Adeka オレフィン化合物の製造方法
DE10001228B4 (de) * 2000-01-13 2007-01-04 3M Espe Ag Polymerisierbare Zubereitungen auf der Basis von siliziumhaltigen Epoxiden
DE60101079T2 (de) * 2000-12-13 2004-07-15 Fuji Photo Film Co., Ltd., Minami-Ashigara Flachdruckplattenvorläufer
JP4795570B2 (ja) * 2001-06-26 2011-10-19 ダイセル化学工業株式会社 紫外線硬化型缶用塗料組成物及び塗装金属缶の製造方法
US20030059618A1 (en) * 2001-03-23 2003-03-27 Hideyuke Takai Method of producing epoxy compound, epoxy resin composition and its applications, ultraviolet rays-curable can-coating composition and method of producing coated metal can
JP4743736B2 (ja) * 2001-08-31 2011-08-10 株式会社Adeka 光学的立体造形用樹脂組成物およびこれを用いた光学的立体造形方法
JP2003109780A (ja) * 2001-09-28 2003-04-11 Hitachi Unisia Automotive Ltd 車両用ランプ点灯装置
JP2004099467A (ja) * 2002-09-05 2004-04-02 Daicel Chem Ind Ltd 脂環式エポキシ化合物の製造方法
JP2004182648A (ja) * 2002-12-03 2004-07-02 Daicel Chem Ind Ltd 脂環式ジエポキシ化合物の製造方法
JP2004204228A (ja) * 2002-12-13 2004-07-22 Daicel Chem Ind Ltd 硬化性エポキシ樹脂組成物および硬化物
JP2004262874A (ja) * 2003-03-03 2004-09-24 Daicel Chem Ind Ltd ジエポキシシクロオクタン類の製造方法
JP4426324B2 (ja) * 2004-01-21 2010-03-03 ダイセル化学工業株式会社 非エステル型エポキシ樹脂および樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2008593A (en) * 1977-11-26 1979-06-06 Akzo Nv Process for the preparation of epoxides
JPS58172387A (ja) * 1982-03-26 1983-10-11 バイエル・アクチエンゲゼルシヤフト 2,2−ジシクロヘキセニルプロパンジエポキシドの製造方法
EP0844262A2 (en) * 1996-11-26 1998-05-27 Asahi Denka Kogyo Kabushiki Kaisha Energy beam curable epoxy resin composition, stereolithographic resin composition and stereolithographic method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1389615A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7786224B2 (en) * 2001-03-23 2010-08-31 Daicel Chemical Industries, Ltd Liquid composition of alicyclic diepoxide, curing agent and/or curing accelerator
EP1426394A4 (en) * 2001-09-14 2010-11-03 Sumitomo Chemical Co RESIN COMPOSITION FOR THE PACKAGING OF OPTICAL SEMICONDUCTORS
EP1541567A4 (en) * 2002-09-05 2010-11-17 Daicel Chem PROCESS FOR THE PREPARATION OF DIEPOXY ALICYCLIC COMPOUNDS, CURABLE EPOXY RESIN COMPOSITIONS, EPOXY RESIN COMPOSITIONS FOR ENCAPSULATION OF ELECTRONIC COMPONENTS, STABILIZERS FOR ELECTRICALLY INSULATING OILS, AND EPOXY RESIN COMPOSITIONS FOR ELECTRO ISOLATION
CN100404519C (zh) * 2002-09-05 2008-07-23 大赛璐化学工业株式会社 脂环族二环氧化合物的制造方法、固化性环氧树脂组合物、电子部件密封用环氧树脂组合物、电绝缘油用稳定剂及电绝缘铸塑环氧树脂组合物
WO2004035558A1 (ja) * 2002-09-05 2004-04-29 Daicel Chemical Industries, Ltd. 脂環式ジエポキシ化合物の製造方法、硬化性エポキシ樹脂組成物、電子部品封止用エポキシ樹脂組成物、電気絶縁油用安定剤、および電気絶縁用注型エポキシ樹脂組成物
EP2546275A3 (en) * 2002-09-05 2013-05-22 Daicel Chemical Industries, Ltd. Curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic parts, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation.
US7781543B2 (en) 2002-09-05 2010-08-24 Daicel Chemical Industries, Ltd. Curable alicyclic diepoxy resin composition
JP2006188476A (ja) * 2005-01-07 2006-07-20 Daicel Chem Ind Ltd 高純度脂環式ジエポキシ化合物およびその製造方法
KR101257121B1 (ko) * 2005-01-07 2013-04-22 가부시끼가이샤 다이셀 고순도 지환식 디에폭시 화합물 및 그의 제조 방법
JP4688503B2 (ja) * 2005-01-07 2011-05-25 ダイセル化学工業株式会社 高純度脂環式ジエポキシ化合物およびその製造方法
JP2008189698A (ja) * 2007-01-31 2008-08-21 Daicel Chem Ind Ltd 透明封止材料及び透明封止物
JP2008189699A (ja) * 2007-01-31 2008-08-21 Daicel Chem Ind Ltd 硬化性樹脂組成物及び光導波路
JP2008189709A (ja) * 2007-02-01 2008-08-21 Daicel Chem Ind Ltd 硬化性樹脂組成物及びその硬化物
JP2008189853A (ja) * 2007-02-06 2008-08-21 Daicel Chem Ind Ltd 光硬化性樹脂組成物及び塗装物
JP2008195802A (ja) * 2007-02-10 2008-08-28 Daicel Chem Ind Ltd 活性エネルギー線硬化型インク及び印刷物
JP2008214448A (ja) * 2007-03-02 2008-09-18 Daicel Chem Ind Ltd 繊維強化複合材料用エポキシ樹脂組成物及び繊維強化複合材料
WO2014084030A1 (ja) * 2012-11-27 2014-06-05 株式会社ダイセル 微細構造体の製造方法及びナノインプリント用光硬化性組成物

Also Published As

Publication number Publication date
KR100877124B1 (ko) 2009-01-07
CN1243744C (zh) 2006-03-01
CN1458927A (zh) 2003-11-26
US20040242839A1 (en) 2004-12-02
US20030059618A1 (en) 2003-03-27
EP1389615A1 (en) 2004-02-18
TWI298065B (ja) 2008-06-21
KR20030007515A (ko) 2003-01-23
CA2439608A1 (en) 2002-10-03
EP1389615A4 (en) 2005-09-07
US7786224B2 (en) 2010-08-31
EP2031006A1 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
WO2002076966A1 (fr) Procede de fabrication de compose epoxy, composition de resine expoxy et son utilisation, composition de revetement a sechage uv, et procede de fabrication de boite metallique ainsi revetue
CN1325559C (zh) 环氧树脂组合物、可紫外线固化型罐头用涂料组合物、及用途
CN101616948A (zh) 混杂的阳离子可固化涂料
CN101103062A (zh) 固化性树脂组合物和层间绝缘膜
JP4823892B2 (ja) 高純度脂環式エポキシ化合物、その製造方法、硬化性エポキシ樹脂組成物、その硬化物、および用途
KR20050076687A (ko) 비-에스테르형 에폭시 수지 및 수지 조성물
JPWO2017077846A1 (ja) エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物
JP3712960B2 (ja) 紫外線硬化型塗料組成物
JP4553572B2 (ja) 紫外線硬化型接着剤およびその接着体
EP3431470B1 (en) Epoxy compound, curable composition, cured product, method for producing epoxy compound, and reactive diluent
JP4854295B2 (ja) 活性エネルギー線硬化型接着剤およびその接着体
JP2004285125A (ja) エポキシ樹脂組成物及びその硬化物
JP4795570B2 (ja) 紫外線硬化型缶用塗料組成物及び塗装金属缶の製造方法
JP4786200B2 (ja) 紫外線硬化型缶用塗料組成物、塗装金属板、および塗装金属缶
US20020016418A1 (en) Curable coating compositions and methods of forming coating films
JPH11343396A (ja) エポキシ基含有コロイド粒子有機溶剤液、エポキシ基含有コロイド粒子、このコロイド粒子を含む活性エネルギー線硬化型組成物及びそれを使用した被膜形成方法
JP6644659B2 (ja) エポキシ化合物、硬化性組成物、硬化物、エポキシ化合物の製造方法および反応性希釈剤
WO2004033532A1 (ja) 金属酸化物微粒子含有カチオン重合型組成物
JP5301997B2 (ja) 液状エポキシ樹脂組成物及びエポキシ樹脂硬化物
JP6719310B2 (ja) (メタ)アクリレート化合物、その合成方法および該(メタ)アクリレート化合物の利用
WO2005019298A1 (ja) 熱硬化型エポキシ樹脂組成物および透明材料
US20030176584A1 (en) Curable coating compositions of alkoxylsilyl group containing polymers
JP3599837B2 (ja) 光硬化性樹脂組成物
JPH08291214A (ja) 新規多官能エポキシ樹脂組成物およびそれを用いた光硬化性樹脂組成物
JPH11209326A (ja) ビニル基含有脂環式アクリレート系化合物及びエポキシ基含有脂環式アクリレート系化合物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027013628

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028007492

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027013628

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2439608

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002708643

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002708643

Country of ref document: EP