WO2014084030A1 - 微細構造体の製造方法及びナノインプリント用光硬化性組成物 - Google Patents

微細構造体の製造方法及びナノインプリント用光硬化性組成物 Download PDF

Info

Publication number
WO2014084030A1
WO2014084030A1 PCT/JP2013/080421 JP2013080421W WO2014084030A1 WO 2014084030 A1 WO2014084030 A1 WO 2014084030A1 JP 2013080421 W JP2013080421 W JP 2013080421W WO 2014084030 A1 WO2014084030 A1 WO 2014084030A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mold
formula
photocurable composition
group
Prior art date
Application number
PCT/JP2013/080421
Other languages
English (en)
French (fr)
Inventor
湯川隆生
三宅弘人
水田智也
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to KR1020157013557A priority Critical patent/KR20150090073A/ko
Priority to JP2014550109A priority patent/JPWO2014084030A1/ja
Priority to CN201380061534.9A priority patent/CN104837886A/zh
Priority to US14/647,204 priority patent/US20150298365A1/en
Publication of WO2014084030A1 publication Critical patent/WO2014084030A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/58Applying the releasing agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/022Polycondensates containing more than one epoxy group per molecule characterised by the preparation process or apparatus used
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to a method for producing a fine structure and a photocurable composition for nanoimprinting. More specifically, the present invention relates to a method for producing a microstructure by nanoimprint transfer using a mold, and a photocurable composition for nanoimprint used in the production method.
  • This application claims the priority of Japanese Patent Application No. 2012-258996 for which it applied to Japan on November 27, 2012, and uses the content here.
  • a nanoimprint method using a mold is known as a method of manufacturing a fine structure.
  • a photocurable composition is used as a precursor of a material constituting the microstructure, and after the photocurable composition is applied to a substrate, the mold is pressed and cured by ultraviolet exposure to obtain a cured product.
  • the development of a nanoimprinting method (UV-nanoimprinting method) for forming a pattern corresponding to the mold on the surface is highly expected in that high throughput is possible (see Patent Documents 1 to 3).
  • a mold made of quartz glass, a mold made of nickel, or the like is used as a mold.
  • these molds are inferior in resin releasability, they are used by applying a release agent to the surface of the mold (transfer mold).
  • a mold made of silicone for example, polydimethylsiloxane
  • the mold release agent gradually peels off from the mold (transfer mold) when continuous transfer is performed, and each time treatment with the mold release agent (release) is performed. It was necessary to perform the mold treatment again.
  • a silicone mold particularly when a radical polymerizable monomer is used as a constituent of the photocurable composition, the mold swells, and continuous transfer cannot be performed, resulting in a decrease in productivity. There was a problem such as.
  • an object of the present invention is to provide a method for producing a fine structure capable of continuous transfer with good releasability without subjecting a mold to release treatment.
  • Another object of the present invention is to provide a cured product capable of continuous transfer with good releasability, which is used for manufacturing a fine structure by a nanoimprint method using a mold formed from an organic polymer compound having a siloxane bond. It is in providing the photocurable composition (photocurable composition for nanoimprint) which gives.
  • the inventors of the present invention are a method for producing a microstructure by a nanoimprint method, using a mold formed of a specific material, and a specific photocurable composition According to the production method using the above, it has been found that continuous transfer can be performed with good releasability without subjecting the mold to release treatment, and the present invention has been completed.
  • the present invention is formed by sandwiching a liquid photocurable transfer material layer between a substrate and a mold having a concavo-convex pattern formed on the surface, and then exposing the transfer material layer to form a photocurable layer, Next, a method for producing a microstructure by releasing the mold from the photocured layer,
  • the mold is a mold composed of an organic polymer compound having a siloxane bond
  • the transfer material layer is a layer formed of a photocurable composition containing a cationic polymerizable compound (A) and a photoacid generator (B)
  • the photocurable composition is represented by the following formula (I) as the cationic polymerizable compound (A). [In the formula (I), n represents an integer of 0 to 10.
  • X represents an oxygen atom, —CH 2 —, —C (CH 3 ) 2 —, —CBr 2 —, —C (CBr 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —CCl 2- , -C (CCl 3 ) 2- , or -CH (C 6 H 5 )-is shown.
  • n is 2 or more, two or more Xs may be the same or different.
  • R 1 to R 18 are the same or different and each represents a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group that may contain a halogen atom, or an alkoxy group that may have a substituent.
  • the photocurable composition comprises, as the cationic polymerizable compound (A), an epoxy compound other than the compound represented by the formula (I) and the compound represented by the formula (II), an oxetane compound, and a vinyl ether.
  • a method for producing the above microstructure comprising at least one compound selected from the group consisting of compounds.
  • R 19 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent. r and s are the same or different and represent an integer of 1 or more.
  • the method for producing a microstructure described above is a compound having a content of 0 to 80% by weight.
  • the present invention also includes a substrate and a mold made of an organic polymer compound having a concavo-convex pattern formed on the surface and having a siloxane bond, sandwiching a liquid photocurable transfer material layer, and then forming the substrate.
  • a photocurable composition for nanoimprint that forms the transferred material layer, which is used for manufacturing a microstructure that exposes a transfer material layer to form a photocured layer and then releases the mold from the photocured layer.
  • a cationically polymerizable compound (A) and a photoacid generator (B) are used as the cationically polymerizable compound (A).
  • n represents an integer of 0 to 10.
  • X represents an oxygen atom, —CH 2 —, —C (CH 3 ) 2 —, —CBr 2 —, —C (CBr 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —CCl 2- , -C (CCl 3 ) 2- , or -CH (C 6 H 5 )-is shown.
  • n is 2 or more, two or more Xs may be the same or different.
  • R 1 to R 18 are the same or different and each represents a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group that may contain a halogen atom, or an alkoxy group that may have a substituent.
  • a photocurable composition for nanoimprints comprising at least one compound selected from the group consisting of compounds represented by:
  • the cationic polymerizable compound (A) was selected from the group consisting of the compound represented by the formula (I) and the epoxy compound other than the compound represented by the formula (II), an oxetane compound, and a vinyl ether compound.
  • the photocurable composition for nanoimprinting comprising at least one compound is provided.
  • R 19 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent. r and s are the same or different and represent an integer of 1 or more.
  • the photocurable composition for nanoimprinting is provided wherein the content of the compound represented by the formula is 0 to 80% by weight.
  • the present invention relates to the following. (1) After forming by sandwiching a liquid photocurable transferable material layer with a substrate and a mold having a concavo-convex pattern formed on the surface, the transferable material layer is exposed to form a photocured layer, A method for producing a microstructure by releasing the mold from the photocured layer,
  • the mold is a mold composed of an organic polymer compound having a siloxane bond,
  • the transfer material layer is a layer formed of a photocurable composition containing a cationic polymerizable compound (A) and a photoacid generator (B),
  • the photocurable composition is represented by the following formula (I) as the cationic polymerizable compound (A).
  • n represents an integer of 0 to 10.
  • X represents an oxygen atom, —CH 2 —, —C (CH 3 ) 2 —, —CBr 2 —, —C (CBr 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —CCl 2- , -C (CCl 3 ) 2- , or -CH (C 6 H 5 )-is shown.
  • n is 2 or more, two or more Xs may be the same or different.
  • R 1 to R 18 are the same or different and each represents a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group that may contain a halogen atom, or an alkoxy group that may have a substituent.
  • R represents a group obtained by removing q hydroxyl groups from q-valent alcohol.
  • p and q are the same or different and represent an integer of 1 or more.
  • a method for producing a microstructure comprising at least one compound selected from the group consisting of compounds represented by: (2)
  • the compound represented by the formula (I) is 3,4,3 ′, 4′-diepoxybicyclohexyl, 2,2-bis (3,4-epoxycyclohexyl) propane, 2,2-bis. (3,4-epoxycyclohexyl) -1,1,1,3,3,3-hexafluoropropane, bis (3,4-epoxycyclohexyl) methane, and 1,1-bis (3,4-epoxycyclohexyl)
  • the method for producing a microstructure according to (1) which is at least one compound selected from the group consisting of -1-phenylethane.
  • the photocurable composition comprises, as the cationic polymerizable compound (A), an epoxy compound other than the compound represented by the formula (I) and the compound represented by the formula (II), an oxetane compound, and The method for producing a microstructure according to any one of (1) to (3), comprising at least one compound selected from the group consisting of vinyl ether compounds.
  • the photocurable composition has the following formula (III) as the epoxy compound: [In Formula (III), R 19 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent. r and s are the same or different and represent an integer of 1 or more. ] The manufacturing method of the microstructure as described in (4) containing the compound represented by these.
  • Ratio of the structural unit in parentheses to which r is attached and the structural unit in parentheses to which s is attached constituting the compound represented by the formula (III) [the structural unit in parentheses to which r is attached The structural unit in parentheses with / s attached] (molar ratio) is a method for producing a microstructure according to (5), which is 10/90 to 90/10.
  • the content of the cationically polymerizable compound (A) in the photocurable composition is the total amount of the photocurable composition (100% by weight; when an organic solvent is included, the photocurable composition excluding the organic solvent)
  • the content of the compound represented by the formula (I) and the compound represented by the formula (II) in the photocurable composition is the total amount (100% by weight) of the cationic polymerizable compound (A).
  • the content of the photoacid generator (B) in the photocurable composition is 0.1 to 15 parts by weight with respect to 100 parts by weight of the total amount of the cationic polymerizable compound (A)
  • the antioxidant is at least one selected from the group consisting of a phenolic antioxidant, a phosphorus antioxidant, and a sulfur antioxidant.
  • the content of the antioxidant in the photocurable composition is 0.001 to 15 parts by weight with respect to 100 parts by weight of the total amount of the cationic polymerizable compound (A). ).
  • the manufacturing method of the fine structure described in the above. (18) The method for producing a microstructure according to any one of (1) to (17), wherein the photocurable composition has a viscosity at 25 ° C. of 1 to 1000000 mPa ⁇ s.
  • n represents an integer of 0 to 10.
  • X represents an oxygen atom, —CH 2 —, —C (CH 3 ) 2 —, —CBr 2 —, —C (CBr 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —CCl 2- , -C (CCl 3 ) 2- , or -CH (C 6 H 5 )-is shown.
  • n is 2 or more, two or more Xs may be the same or different.
  • R 1 to R 18 are the same or different and each represents a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group that may contain a halogen atom, or an alkoxy group that may have a substituent.
  • R represents a group obtained by removing q hydroxyl groups from q-valent alcohol.
  • p and q are the same or different and represent an integer of 1 or more.
  • a photocurable composition for nanoimprints comprising at least one compound selected from the group consisting of compounds represented by: (27)
  • the compound represented by the formula (I) is 3,4,3 ′, 4′-diepoxybicyclohexyl, 2,2-bis (3,4-epoxycyclohexyl) propane, or 2,2-bis.
  • an epoxy compound other than the compound represented by the formula (I) and the compound represented by the formula (II), an oxetane compound, and a vinyl ether compound As the cationically polymerizable compound (A), an epoxy compound other than the compound represented by the formula (I) and the compound represented by the formula (II), an oxetane compound, and a vinyl ether compound.
  • As said epoxy compound following formula (III) [In Formula (III), R 19 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent. r and s are the same or different and represent an integer of 1 or more. ] (29)
  • the content of the cationic polymerizable compound (A) is based on the total amount of the photocurable composition (100% by weight; when an organic solvent is included, the total amount of the photocurable composition excluding the organic solvent).
  • the content of the compound represented by the formula (I) and the compound represented by the formula (II) is 5% by weight with respect to the total amount (100% by weight) of the cationic polymerizable compound (A).
  • the manufacturing method of the fine structure according to the present invention has the above-described configuration, it is possible to perform continuous transfer with good releasability without performing mold release treatment on the mold, and the fine structure can be manufactured with high productivity.
  • the photocurable composition for nanoimprinting of the present invention in a method for producing a microstructure by a nanoimprinting method using a mold formed of an organic polymer compound having a siloxane bond, continuous transfer can be performed with good releasability. It becomes possible, and a fine structure can be manufactured with high productivity.
  • the method for producing a fine structure of the present invention is a method for producing a fine structure (a structure having a fine structure such as an uneven pattern on the surface) by a nanoimprint method (nanoimprint technology). More specifically, the manufacturing method of the microstructure of the present invention is formed by sandwiching a liquid photocurable transfer material layer between a substrate and a mold having a concavo-convex pattern (fine concavo-convex pattern) formed on the surface, In this method, the photocurable transfer material layer is cured by exposure to form a photocured layer, and then the mold is released from the photocured layer to produce a microstructure.
  • step A the step of sandwiching a liquid photocurable transfer material layer between a substrate and a mold having a concavo-convex pattern formed on the surface is referred to as “step A”.
  • step B the step of curing the photocurable transfer material layer by exposure to form a photocured layer and then releasing the mold from the photocured layer. That is, the manufacturing method of the fine structure of the present invention is a manufacturing method including Step A and Step B as essential steps.
  • FIG. 1A a structure having a photocurable transfer material layer (photocurable composition layer) 2 on one surface of the substrate 1 is prepared (see FIG. 1A), and the photocurable coating of the structure is prepared.
  • a mold 3 having a concavo-convex pattern formed thereon is placed on the surface of the transfer material layer 2, and pressure is applied as necessary (see FIG. 1B).
  • FIG. 1B a structure in which the photocurable transfer material layer 2 is sandwiched and molded between the substrate 1 and the mold 3 is obtained.
  • the photocurable transfer material layer 2 in the structure is cured by exposure to form a photocured layer (cured material layer) 5 (see (c) of FIG. 1), and then from the photocured layer 5 By peeling the mold 3, the fine structure 6 is obtained (see FIG. 1D).
  • the manufacturing method of the fine structure of the present invention further includes a step of etching and a step of removing the photocured layer with respect to the fine structure obtained through the steps A and B (see, for example, FIG. 2), A step for performing known or conventional fine processing such as a lift-off step may be included.
  • a step for performing known or conventional fine processing such as a lift-off step may be included.
  • a structure having a fine structure formed on the substrate is obtained.
  • a fine structure at an unetched stage is referred to as a “fine structure (unetched)”
  • a fine structure after being etched is referred to as a “fine structure (after etching)”. May be called.
  • the fine structure (unetched) and the fine structure (after etching) may be collectively referred to as “the fine structure of the present invention”.
  • the method for producing a microstructure of the present invention uses a mold (mold made of an organic polymer compound having a siloxane bond) formed (configured) from an organic polymer compound having a siloxane bond as the mold, and As a photocurable transfer material layer, a cationically polymerizable compound (A) and a photoacid generator (B) are included as essential components, and the cationically polymerizable compound (A) is a specific compound (in formula (I) described later) A layer formed of a photocurable composition containing as an essential component at least one compound selected from the group consisting of a compound represented by the formula (II) and a compound represented by formula (II): .
  • a mold made of an organic polymer compound having a siloxane bond
  • a photoacid generator B
  • a layer formed of a photocurable composition containing as an essential component at least one compound selected from the group consisting of a compound represented by the formula (II) and a compound represented by
  • step A in the method for manufacturing a microstructure of the present invention is a step in which a liquid photocurable transfer material layer is sandwiched between a substrate and a mold having a concavo-convex pattern formed on the surface. .
  • a known or conventional substrate can be used, and is not particularly limited.
  • a glass substrate, a silica glass substrate, a sapphire substrate examples include plastic substrates (for example, PET film, polycarbonate film, triacetyl cellulose film, etc.), silicon wafers, compound semiconductor substrates (GaAs, InAs, GaN, etc.), metal substrates, metal oxide substrates, and the like.
  • the substrate may be subjected to a known or conventional surface treatment.
  • the mold used in the method for producing a fine structure of the present invention is a mold (stamper) of a fine structure, and a nanoimprint transfer stamp (stamper) having a transfer pattern (concave / convex pattern) formed on the surface thereof. It is.
  • a mold formed of an organic polymer compound having a siloxane bond is used as the mold.
  • the organic polymer compound having a siloxane bond include organic silicon polymers (silicone) such as polydimethylsiloxane (PDMS) and polydimethylsiloxane rubber.
  • the shape and size of the concavo-convex pattern in the mold can be appropriately set according to the shape and size of the fine structure of the fine structure to be manufactured.
  • corrugated pattern is not specifically limited, For example, a square, a rectangle, a semicircle, a triangle, the shape similar to these shapes, an indeterminate form, etc. are mentioned.
  • the depth of each concave portion of the concave / convex pattern is not particularly limited, but is preferably 1 nm to 100 ⁇ m
  • the width of the opening of each concave portion is not particularly limited, but is preferably 1 nm to 100 ⁇ m.
  • the surface of the mold may be subjected to a known or conventional release treatment in order to further improve the release property with respect to the photocured layer.
  • a known or commonly used release treatment agent such as a perfluoro polymer compound, a hydrocarbon polymer compound, an alkoxysilane compound, a trichlorosilane compound, or diamond-like carbon is used. It can be carried out by a phase method or a liquid phase method.
  • the mold is used in the method for producing a fine structure of the present invention, the releasability from the photocured layer is good without performing a release treatment.
  • the mold can be produced, for example, by pouring a precursor of an organic polymer compound having a siloxane bond (for example, a curable silicone resin composition) into an original having a concavo-convex pattern on the surface, and curing and molding. it can.
  • a precursor of an organic polymer compound having a siloxane bond for example, a curable silicone resin composition
  • the photocurable transfer material layer formed on the substrate in step A is a liquid photocurable composition (photocuring for nanoimprinting) containing a cationically polymerizable compound (A) and a photoacid generator (B) as essential components.
  • a liquid layer (photocurable composition layer) formed from a photocurable composition) (sometimes referred to as “photocurable composition of the present invention”).
  • the cationically polymerizable compound (A) in the photocurable composition of the present invention is a compound having at least one cationically polymerizable group such as an epoxy group, vinyl ether group or oxetanyl group in the molecule.
  • the photocurable composition of the present invention includes a compound (alicyclic epoxy compound) represented by the following formula (I) as the cationic polymerizable compound (A) and a compound (fatty compound) represented by the following formula (II). At least one compound selected from the group consisting of cyclic epoxy compounds) as an essential component.
  • the compound represented by the above formula (I) is a non-ester alicyclic epoxy compound (an alicyclic epoxy compound having no ester bond in the molecule).
  • n represents an integer of 0 to 10.
  • X is a divalent linking group and is an oxygen atom, —CH 2 —, —C (CH 3 ) 2 —, —CBr 2 —, —C (CBr 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —CCl 2 —, —C (CCl 3 ) 2 —, or —CH (C 6 H 5 ) — is shown.
  • n is 2 or more, two or more Xs may be the same or different.
  • n is 0, the structure where the two cyclohexane rings in Formula (I) are connected by a single bond is shown.
  • R 1 to R 18 represent a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group that may contain a halogen atom, or an alkoxy group that may have a substituent.
  • R 1 to R 18 may be the same or different.
  • the halogen atom include a fluorine atom and a chlorine atom.
  • the number of carbon atoms in the hydrocarbon group and alkoxy group is not particularly limited, but preferably 1 to 5 (that is, a hydrocarbon group having 1 to 5 carbon atoms and an alkoxy group having 1 to 5 carbon atoms are preferable). ).
  • Examples of the hydrocarbon group that may contain an oxygen atom or a halogen atom include an alkoxyalkyl group such as a methoxyethyl group and a haloalkyl group such as a trifluoromethyl group.
  • the substituent in the alkoxy group which may have the above-mentioned substituent is not particularly limited, but for example, a halogen atom, a hydroxyl group, a mercapto group, a carboxyl group, an amino group, a mono or dialkylamino group, a mono or diphenylamino group , Glycidyl group, epoxy group, isocyanate group and the like.
  • Examples of the compound represented by the above formula (I) include 3,4,3 ′, 4′-diepoxybicyclohexyl, 2,2-bis (3,4-epoxycyclohexyl) propane, and 2,2-bis. (3,4-epoxycyclohexyl) -1,1,1,3,3,3-hexafluoropropane, bis (3,4-epoxycyclohexyl) methane, 1,1-bis (3,4-epoxycyclohexyl)- 1-phenylethane is preferred.
  • 3,4,3 ′, 4′-diepoxybicyclohexyl is preferable from the viewpoint of curability.
  • a commercial item can also be used as a compound represented by the said formula (I).
  • the compound represented by the above formula (I) can be used singly or in combination of two or more.
  • R represents a group obtained by removing q hydroxyl groups (—OH) from q-valent alcohol, and p and q are the same or different and each represents an integer of 1 or more.
  • the q-valent alcohol [R— (OH) q ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms, etc.).
  • q is preferably 1 to 6
  • p is preferably 1 to 30.
  • p in each group in () (inside the outer parenthesis) may be the same or different.
  • the compound examples include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol (for example, trade names “EHPE3150”, ( Manufactured by Daicel Corporation).
  • the weight average molecular weight (Mw) in terms of standard polystyrene of the compound represented by the above formula (II) is not particularly limited, but is preferably 500 to 10,000, more preferably 700 to 5000, and still more preferably 1000 to 4000.
  • the weight average molecular weight can be measured by, for example, gel permeation chromatography (GPC method).
  • the photocurable composition of the present invention includes a compound represented by the above formula (I) and a cationically polymerizable compound other than the compound represented by the formula (II) (“other cations”). It may be referred to as a “polymerizable compound”).
  • the other cationically polymerizable compound include, for example, an epoxy compound other than the compound represented by the above formula (I) and the compound represented by the formula (II) (a compound having one or more epoxy groups in the molecule).
  • vinyl ether compounds compounds having one or more vinyl ether groups in the molecule
  • oxetane compounds compounds having one or more oxetanyl groups in the molecule
  • Examples of the epoxy compound other than the compound represented by the above formula (I) and the compound represented by the formula (II) include those represented by the formula (I).
  • An epoxy compound other than the compound and the compound represented by the formula (II), which has an alicyclic epoxy compound having a cyclic aliphatic group and an epoxy group in the molecule (sometimes referred to as “other alicyclic epoxy compound”) );
  • An epoxy compound (epoxy resin) having a glycidyl group is particularly preferable.
  • the other epoxy compounds may be monofunctional epoxy compounds (compounds having one epoxy group in the molecule) or polyfunctional epoxy compounds (compounds having two or more epoxy groups in the molecule). However, in order to obtain a fine structure with high accuracy, a polyfunctional epoxy compound is preferable.
  • the compound (copolymer) represented by following formula (III) is included, for example.
  • R 19 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent.
  • the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an s-butyl group, and a t-butyl group.
  • the substituent that the alkyl group may have include a halogen atom.
  • the addition form (polymerization form) of the structural unit in parentheses to which r is attached and the structural unit in parentheses to which s is attached may be a random type or a block type. That is, the compound represented by the above formula (III) may be a random copolymer or a block copolymer.
  • the terminal structure of the compound represented by the formula (III) is not particularly limited, and may be, for example, a polymerization initiator terminal.
  • the compound represented by the above formula (III) can be obtained, for example, by polymerizing a compound represented by the following formula and styrene by a known or conventional method. [In the above formula, R 19 is the same as defined above. ]
  • the structural unit in parentheses attached] (molar ratio) is not particularly limited, but is preferably 10/90 to 90/10, more preferably 30/70 to 70/30, still more preferably 40/60 to 60 / 40.
  • the weight average molecular weight (Mw) in terms of standard polystyrene of the compound represented by the above formula (III) is not particularly limited, but is preferably 1,000 to 1,000,000, more preferably 5,000 to 500,000, and still more preferably 10,000 to 100,000.
  • the weight average molecular weight can be measured by, for example, gel permeation chromatography (GPC method).
  • the other epoxy compounds include, for example, bis (3,4-epoxycyclohexyl) adipate, 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, (3,4 -Epoxy-6-methylcyclohexyl) methyl-3 ', 4'-epoxy-6-methylcyclohexanecarboxylate, ethylene-1,2-bis (3,4-epoxycyclohexanecarboxylic acid) ester, 3,4-epoxycyclohexyl Methyl alcohol, 1,2-epoxy-4-vinylcyclohexane, 1,2-epoxy-4- (2-methyloxiranyl) -1-methylcyclohexane, 1,2,5,6-diepoxycyclooctane, 2 , 2-Bis (3 ′, 4′-epoxycyclohexyl) propane, glycidyl And ruphenyl ether.
  • epoxy compound examples include, for example, trade name “1031S” manufactured by Mitsubishi Chemical Corporation; trade names “TETRAD-X” and “TETRAD-C” manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • trade name “EPB-13” manufactured by Nippon Soda Co., Ltd. can also be used.
  • the vinyl ether compound may be a compound having a vinyl ether group in the molecule, may be a monofunctional vinyl ether compound (a compound having one vinyl ether group in the molecule), or a polyfunctional vinyl ether compound (intramolecular A compound having two or more vinyl ether groups), and is not particularly limited. Among these, a polyfunctional vinyl ether compound is preferable from the viewpoint of the transfer accuracy of the fine structure.
  • vinyl ether compound examples include cyclic ether type vinyl ethers such as isosorbide divinyl ether and oxanorbornene divinyl ether (vinyl ethers having a cyclic ether group such as oxirane ring, oxetane ring and oxolane ring); phenyl vinyl ether Aryl vinyl ethers such as n-butyl vinyl ether and octyl vinyl ether; cycloalkyl vinyl ethers such as cyclohexyl vinyl ether; hydroquinone divinyl ether, 1,4-butanediol divinyl ether, cyclohexane divinyl ether, cyclohexane dimethanol divinyl ether Examples include functional vinyl ethers.
  • cyclic ether type vinyl ethers such as isosorbide divinyl ether and oxanorbornene divinyl ether (vinyl ethers having a cyclic
  • HEVE 2-hydroxyethyl vinyl ether
  • DEGV diethylene glycol monovinyl ether
  • HBVE 2-hydroxybutyl vinyl ether
  • TEGDVE triethylene glycol divinyl ether
  • PEGDVE polyethylene glycol divinyl ether
  • the vinyl ether compound which has substituents, such as an alkyl group, an aryl group, and an alkoxy group, in alpha-position and / or beta-position (carbon atom of alpha-position and / or beta-position of ether oxygen) can also be used.
  • the oxetane compound may be a compound having an oxetanyl group in the molecule, may be a monofunctional oxetane compound (a compound having one oxetanyl group in the molecule), or a polyfunctional oxetane compound (intramolecular And a compound having two or more oxetanyl groups), and is not particularly limited. Among these, a polyfunctional oxetane compound is preferable particularly from the viewpoint of the transfer accuracy of the fine structure.
  • oxetane compound examples include 3-ethyl-3- (phenoxymethyl) oxetane (POX), di [1-ethyl (3-oxetanyl)] methyl ether (DOX), 3-ethyl-3- (2-Ethylhexyloxymethyl) oxetane (EHOX), 3-ethyl-3- ⁇ [3- (triethoxysilyl) propoxy] methyl ⁇ oxetane (TESOX), oxetanylsilsesquioxane (OX-SQ), phenol novolak Oxetane (PNOX-1009), 3-ethyl-3-hydroxymethyloxetane (OXA), 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane (EHOX), 1,4-bis [(3-ethyl-3 -Oxetanylmethoxy) methyl] benzene
  • a compound having a different cationic polymerizable group in its molecule such as 3,3-dimethanol divinyl ether oxetane having an oxetanyl group and a vinyl ether group can also be used.
  • the above-mentioned other cationic polymerizable compounds can be used alone or in combination of two or more.
  • the content (blending amount) of the cationic polymerizable compound (A) in the photocurable composition of the present invention is not particularly limited, but the total amount of the photocurable composition (100% by weight; organic when an organic solvent is included)
  • the total amount of the photocurable composition excluding the solvent is preferably 50 to 99.5% by weight, more preferably 80 to 99% by weight, and still more preferably 85 to 98% by weight.
  • the content of the cationic polymerizable compound (A) is less than 50% by weight, curing may be insufficient and a pattern may not be obtained with high accuracy.
  • the content of the cationic polymerizable compound (A) exceeds 99.5% by weight, the content of the photoacid generator (B) is relatively decreased, and curing may be insufficient.
  • the amount (mixing amount: if only one of them is included) is not particularly limited, but the total amount (100% by weight) of the cationically polymerizable compound (A) contained in the photocurable composition. On the other hand, it is preferably 5% by weight or more (for example, 5 to 100% by weight), more preferably 5 to 80% by weight, still more preferably 7 to 60% by weight, and particularly preferably 10 to 50% by weight.
  • the content (blending amount) of the compound represented by (III) is not particularly limited, but is preferably 0 to 80% by weight with respect to the total amount (100% by weight) of the cationically polymerizable compound (A). More preferably, it is 5 to 75% by weight, still more preferably 10 to 70% by weight. If the content exceeds 80% by weight, the pattern may not be obtained with high accuracy.
  • a cationically polymerizable compound (A) is included as a photocurable composition (photocurable composition of this invention) for forming a photocurable to-be-transferred material layer.
  • a photocurable composition photocurable composition of this invention
  • photocurable composition of this invention for forming a photocurable to-be-transferred material layer.
  • a mold formed of an organic polymer compound having a siloxane bond has high air permeability, bubble defects are unlikely to occur in the resulting microstructure. Furthermore, a mold formed of an organic polymer compound having a siloxane bond is excellent in followability to the substrate. Therefore, the fine structure obtained by the method for producing a fine structure using the mold formed from the photocurable composition of the present invention and the organic polymer compound having a siloxane bond is excellent in both productivity and quality. .
  • a radical curable composition containing a radical polymerizable compound is used as the photocurable composition, a mold formed of an organic polymer compound having a siloxane bond is eroded by the photocurable composition. This makes transfer difficult or impossible.
  • composition of the cationically polymerizable compound (A) in the photocurable composition of the present invention are as follows.
  • the compound represented by the above formula (I) (particularly, 3,4,3 ′, 4′-diepoxybicyclohexyl) is used with respect to the total amount (100% by weight) of the cationically polymerizable compound (A).
  • a photocurable composition comprising 15 to 45% by weight, 5 to 35% by weight of a compound represented by the above formula (II), and 5 to 25% by weight of an oxetane compound.
  • the compound represented by the above formula (I) (particularly, 3,4,3 ′, 4′-diepoxybicyclohexyl) is added to the total amount (100% by weight) of the cationically polymerizable compound (A).
  • a photocurable composition comprising 5 to 35% by weight, 55 to 85% by weight of the compound represented by the above formula (III), and 2 to 18% by weight of an oxetane compound.
  • the compound represented by the above formula (I) (particularly, 3,4,3 ′, 4′-diepoxybicyclohexyl) is added to the total amount (100% by weight) of the cationically polymerizable compound (A).
  • Photo-curable composition containing 5-35% by weight, 45-75% by weight of 1,2-epoxy-4- (2-methyloxiranyl) -1-methylcyclohexane, and 5-35% by weight of oxetane compound .
  • the compound represented by the above formula (I) (particularly, 3,4,3 ′, 4′-diepoxybicyclohexyl) is added to the total amount (100% by weight) of the cationically polymerizable compound (A).
  • a photocurable composition comprising 15 to 45% by weight, 2 to 18% by weight of the compound represented by the above formula (II), and 35 to 65% by weight of an oxetane compound.
  • the compound represented by the above formula (I) (particularly, 3,4,3 ′, 4′-diepoxybicyclohexyl) is added to the total amount (100% by weight) of the cationically polymerizable compound (A).
  • a photocurable composition comprising 5 to 35% by weight, 55 to 85% by weight of the compound represented by the above formula (II), and 2 to 18% by weight of an oxetane compound.
  • Photoacid generator (B) The photoacid generator (B) in the photocurable composition of the present invention generates an acid upon irradiation with light or active energy rays, and proceeds with a curing reaction (cationic polymerization reaction) of the cationically polymerizable compound (A). It is a compound to be made.
  • the photoacid generator (B) known or commonly used photoacid generators can be used, and are not particularly limited, and examples thereof include sulfonium salts, iodonium salts, phosphonium salts, and pyridinium salts.
  • the photoacid generator (B) can be used alone or in combination of two or more.
  • sulfonium salt examples include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, bis (4- (diphenylsulfonio) -phenyl) sulfide-bis (hexafluorophosphate), and bis (4- (diphenyl).
  • iodonium salt examples include diphenyl iodonium hexafluorophosphate, diphenyl iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, JP-A-6-184170, US Pat. No. 4,256,828. Aromatic iodonium salts described in the above.
  • Examples of the phosphonium salt include tetrafluorophosphonium hexafluorophosphate, tetrafluorophosphonium hexafluoroantimonate, and aromatic phosphonium salts described in JP-A-6-157624.
  • pyridinium salts examples include pyridinium salts described in Japanese Patent No. 2519480, JP-A-5-222112, and the like.
  • anions photoacid generator (B) has is not particularly limited, for example, SbF 6 -, the following formula (1) [Each X1 to X4 in Formula (1) represents an integer of 0 to 5, and the total of all is 1 or more. ] (For example, tetrakis (pentafluorophenyl) borate etc.) etc. are mentioned.
  • the above sulfonium salt and iodonium salt can be easily obtained from the market.
  • Examples of the photoacid generator (B) that can be easily obtained from the market include a trade name “UVI-6990”, a trade name “UVI-6974” (above, manufactured by Union Carbide), and a trade name “Adekaopt”.
  • MER SP-170 trade name“ Adekaoptomer SP-172 ”(manufactured by ADEKA Corporation), trade name“ CPI-100P ”, trade name“ CPI-100A ”, trade name“ CPI-200K ”, Examples thereof include sulfonium salts such as trade name “CPI-300PG” and trade name “HS-1PC” (manufactured by San Apro Co., Ltd.), and iodonium salts such as trade name “PI 2074” (manufactured by Rhodia).
  • sulfonium salts such as trade name “CPI-300PG” and trade name “HS-1PC” (manufactured by San Apro Co., Ltd.)
  • iodonium salts such as trade name “PI 2074” (manufactured by Rhodia).
  • the content (blending amount) of the photoacid generator (B) in the photocurable composition of the present invention is not particularly limited, but is 0.1 to 100 parts by weight based on 100 parts by weight of the total amount of the cationic polymerizable compound (A).
  • the amount is preferably 15 parts by weight, more preferably 1 to 12 parts by weight.
  • the content is less than 0.1 part by weight, the progress of curing in the photocured layer may be insufficient.
  • the content exceeds 15 parts by weight, the photocured layer may be easily colored.
  • the photocurable composition of the present invention preferably contains an antioxidant.
  • an antioxidant well-known thru
  • an antioxidant can also be used individually by 1 type and can also be used in combination of 2 or more type.
  • phenol-based antioxidant examples include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl- ⁇ - ( Monophenols such as 3,5-di-tert-butyl-4-hydroxyphenyl) propionate; 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl) -6-tert-butylphenol), 4,4'-thiobis (3-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 3,9-bis [ 1,1-dimethyl-2- ⁇ - (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ ethyl] 2,4,8,10-tetraoxa Bisphenols such as pyro [5.5] undecane; 1,1,3-tri
  • Examples of the phosphorus antioxidant include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2,4-di-t -Butylphenyl) phosphite, cyclic neopentanetetraylbis (octadecyl) phosphite, cyclic neopentanetetraylbis (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbis ( 2,4-di-tert-butyl-4-methylphenyl) phosphite, bis [2-tert-butyl-6-methyl-4- ⁇ 2- (oct
  • Phosphites 9,1 -Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phospha And oxaphosphaphenanthrene oxides such as phenanthrene-10-oxide.
  • sulfur-based antioxidant examples include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate. It is done.
  • the content (blending amount) of the antioxidant in the photocurable composition of the present invention is not particularly limited, but is 0.001 to 15 parts by weight with respect to 100 parts by weight of the total amount of the cationic polymerizable compound (A).
  • the amount is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight. If the content is less than 0.001 part by weight, suppression of deterioration of the photocured layer may be insufficient depending on the application. On the other hand, when the content exceeds 15 parts by weight, the photocured layer may be insufficiently cured.
  • the photocurable composition of the present invention may contain an organic solvent, if necessary.
  • organic solvent known or commonly used organic solvents can be used, and are not particularly limited.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene
  • cellosolve Methyl cellosolve, carbitol, methyl carbitol, butyl carbitol
  • glycol ethers such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether; ethyl acetate, butyl acetate , Cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, etc.
  • Acetic esters include alcohols such as ethanol, propanol, ethylene glycol, and propylene glycol; aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha .
  • an organic solvent can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the content (blending amount) of the organic solvent in the photocurable composition of the present invention is not particularly limited, but is preferably 0 to 95% by weight, more preferably based on the photocurable composition (100% by weight). 0 to 80% by weight or less.
  • the photocurable composition of the present invention contains an organic solvent, it is preferable to remove the organic solvent before exposing the photocurable transfer material layer.
  • the photocurable composition of the present invention may contain nanoscale particles.
  • the nanoscale particles include the following formula (2): SiU 4 (2) [In the formula (2), the groups U are the same or different and each represents a hydrolyzable group or a hydroxyl group. ] And / or the following formula (3) R 21 a R 22 b SiU (4-ab) (3) [In the formula (3), R 21 represents a non-hydrolyzable group, and R 22 represents a group having a functional group.
  • U is the same as above.
  • a and b represent the values 0, 1, 2 or 3, and the sum (a + b) represents the values 1, 2 or 3.
  • a polymerizable silane such as a compound represented by the above and / or a condensate derived therefrom can be added.
  • nanoscale particles include oxides, sulfides, selenides, tellurides, halides, carbides, arsenides, antimonides, nitrides, and phosphides. , Carbonates, carboxylates, phosphates, sulfates, silicates, titanates, zirconates, aluminates, stannates, leadates and mixed oxides thereof. And nanoscale particles.
  • nanoscale particles include nanoscale inorganic particles disclosed in International Publication No. 96/31572.
  • nanoscale inorganic particles include oxidation of CaO, ZnO, CdO, SiO 2 , TiO 2 , ZrO 2 , CeO 2 , SnO 2 , PbO, Al 2 O 3 , In 2 O 3 , and La 2 O 3.
  • Sulphides such as CdS and ZnS; Selenides such as GaSe, CdSe and ZnSe; Tellurides such as ZnTe and CdTe; NaCl, KCl, BaCl 2 , AgCl, AgBr, AgI, CuCl, CuBr and CdI 2 , halides such as PbI 2 ; carbides such as CeC 2 ; arsenides such as AlAs, GaAs, and CeAs; antimonides such as InSb; BN, AlN, Si 3 N 4 , Ti 3 N 4, etc.
  • Nitrides such as GaP, InP, Zn 3 P 2 , Cd 3 P 2 ; Na 2 CO 3 , K 2 CO 3 , CaCO 3 , SrCO 3 , B carbonates such as aCO 3 ; carboxylates such as acetates such as CH 3 COONa and Pb (CH 3 COO) 4 ; phosphates; sulfates; silicates; titanates; zirconates; Salts; stannates; lead salts; ordinary glass compositions whose composition preferably has a low coefficient of thermal expansion, for example two, three or four components of SiO 2 , TiO 2 , ZrO 2 and Al 2 O 3 And the corresponding mixed oxides corresponding to the combination of
  • the nanoscale particles can be prepared by conventional methods, for example, flame hydrolysis, flame pyrolysis and plasma methods according to the literature described in WO 96/31572.
  • the nanoscale particles include nanodispersed sols of stabilized colloidal inorganic particles, for example, silica sol manufactured by BAYER, SnO 2 sol manufactured by Goldschmidt, TiO 2 sol manufactured by MERCK, and Nissan Chemicals. Particularly preferred are SiO 2 , ZrO 2 , A1 2 O 3 , Sb 2 O 3 sol, or Aerosil dispersions manufactured by DEGUSSA.
  • the average particle size of the nanoscale particles is not particularly limited, but is preferably 1 to 200 nm, more preferably 2 to 50 nm, and still more preferably 2 to 20 nm.
  • the content (volume fraction) of the nanoscale particles in the photocurable composition of the present invention is not particularly limited, but is 0 to 50% by volume with respect to the total amount (100% by volume) of the photocurable composition. More preferably, it is 0 to 30% by volume, and still more preferably 0 to 20% by volume.
  • the photocurable composition of the present invention may have the following formula (4) as necessary.
  • R 23 (U 1 ) 3 Si (4) [In the formula (4), R 23 represents a partially fluorinated or perfluorinated C 2 -C 20 alkyl group, U 1 is the same or different, and represents a C 1 -C 3 -alkoxy group, methyl A group, an ethyl group, or a chlorine atom; ] The compound (fluorosilane) represented by these may be included.
  • the partially fluorinated alkyl group means an alkyl group in which at least one hydrogen atom is replaced by a fluorine atom.
  • groups (R 23 ) include, in particular, CF 3 CH 2 CH 2 —, C 2 F 5 CH 2 CH 2 —, C 4 F 9 CH 2 CH 2 —, nC 6 F 13 CH 2 CH 2- , n-C 8 F 17 CH 2 CH 2- , n-C 10 F 21 CH 2 CH 2- , i-C 3 F 7 O- (CH 2 ) 3 -are preferred.
  • tridecafluoro-1,1,2,2-tetrahydrooctyl-1-triethoxysilane CF 3 CH 2 CH 2 SiCl 2 CH 3 , CF 3 CH 2 CH 2 SiCl (CH 3 ) 2 , CF 3 CH 2 CH 2 Si (CH 3 ) (OCH 3 ) 2 , i-C 3 F 7 O— (CH 2 ) 3 SiCl 2 CH 3 , nC 6 F 13 CH 2 CH 2 SiCl 2 CH 3 , nC 6 F 13 CH 2 CH 2 SiCl (CH 3 ) 2 and the like are commercially available.
  • the content (blending amount) of the compound represented by the above formula (4) in the photocurable composition of the present invention is not particularly limited, but is 0 with respect to the total amount (100% by weight) of the photocurable composition. Is preferably 3 to 3% by weight, more preferably 0.05 to 3% by weight, still more preferably 0.1 to 2.5% by weight, and particularly preferably 0.2 to 2% by weight.
  • the photocurable composition of the present invention is a liquid photocurable composition.
  • the photocurable composition of the present invention is not particularly limited as long as it is liquid at any temperature, but is preferably liquid at room temperature (for example, 25 ° C.). That is, the photocurable transfer material layer is preferably a liquid layer at room temperature (for example, 25 ° C.).
  • the photocurable composition of the present invention is a liquid composition at room temperature, the photocurable transfer material layer can be easily formed on the substrate at room temperature, and the light of the uneven pattern of the mold can be formed. Transfer (nanoimprint) to the curable transfer material layer can be performed easily and with high accuracy.
  • the viscosity at 25 ° C. of the photocurable composition of the present invention is not particularly limited, but is preferably 1 to 1000000 mPa ⁇ s, more preferably 2 to 10000 mPa ⁇ s, and further preferably 3 to 1000 mPa ⁇ s. It is. If the viscosity is less than 1 mPa ⁇ s, it may be difficult for the photocurable transfer material layer to maintain the layer state. On the other hand, when the viscosity exceeds 1,000,000 mPa ⁇ s, the accuracy of transfer of the uneven pattern of the mold to the photocurable transferable material layer may be lowered. The viscosity at 25 ° C.
  • E-type viscometer (trade name “VISCONIC”, manufactured by Tokimec Co., Ltd.) (rotor: 1 ° 34 ′ ⁇ R24, rotation speed: 0.00). 5 rpm, measurement temperature: 25 ° C.).
  • step A of the manufacturing method of the microstructure of the present invention a liquid photocurable transfer material layer is sandwiched between the substrate and the mold.
  • the method for obtaining the structure having the laminated structure of “substrate / photocurable transfer material layer / mold” in step A is not particularly limited, but for example, the photocurable composition of the present invention is publicly or commonly used on a substrate.
  • the coating method for example, spin coating, slit coating, spray coating, roller coating, etc. is applied (applied) to form a photocurable transfer material layer (photocurable composition layer).
  • the photocurable composition of the present invention contains an organic solvent, after coating on a substrate or a mold, the organic solvent is volatilized and removed while heating, if necessary.
  • a transferable material layer can be formed.
  • the thickness of the photocurable transfer material layer is not particularly limited, but is preferably 10 to 100,000 nm (for example, 50 to 100,000 nm), more preferably 100 to 50,000 nm. . If the thickness is less than 10 nm, the curability may be insufficient. On the other hand, if the thickness exceeds 100,000 nm, the remaining film in the photocured layer after nanoimprinting may be excessive.
  • pressurization may be performed from one of the mold and the substrate, or from both.
  • the pressure to be applied is not particularly limited, but is preferably 0.01 to 5 MPa, more preferably 0.03 to 3 MPa, still more preferably more than 0.05 MPa and 1 MPa or less.
  • the time for pressurization is not particularly limited, but is preferably 0.1 to 300 seconds, more preferably 0.2 to 200 seconds, and still more preferably 0.5 to 100 seconds. If the pressurization time is less than 0.1 seconds, the accuracy of the uneven pattern transfer may be reduced. On the other hand, when the pressurization time exceeds 300 seconds, the productivity of the fine structure may decrease.
  • the thickness of the photocurable transfer material layer is not particularly limited, but is preferably 10 to 100,000 nm (for example, 50 to 100,000 nm), more preferably 100 to 100 nm. 50000 nm. If the thickness is less than 10 nm, the curability may be insufficient. On the other hand, if the thickness exceeds 100,000 ⁇ m, the remaining film in the photocured layer after nanoimprinting may be excessive.
  • the structure in which the photocurable transfer material layer is sandwiched between the substrate and the mold by the process A (the structure having a laminated structure of “substrate / photocurable transfer material layer / mold”) is obtained. can get.
  • Step B In the method for producing a microstructure of the present invention, after step A, the photocurable transferable material layer in the structure is exposed to form a photocured layer, and then the mold is released from the photocured layer. Step B is included.
  • the exposure of the photocurable transfer material layer can be carried out by a known or common method, and is not particularly limited.
  • examples of the light irradiated during exposure include X-rays, ultraviolet rays, visible rays, infrared rays (near infrared rays, far infrared rays), and electron beams.
  • ultraviolet rays are preferable because they are easy to handle.
  • the light source of the said light For example, a mercury lamp, a xenon lamp, a carbon arc lamp, a metal halide lamp, sunlight, an electron beam source, a laser light source, an LED light source etc. are mentioned.
  • the exposure conditions for the photocurable transfer material layer can be appropriately adjusted and are not particularly limited.
  • 100 to 100,000 mJ / cm 2 (more preferably 100 to 50,000 mJ). / Cm 2 ) is preferably used for irradiation.
  • a heat treatment may be further performed.
  • a photocured layer having a higher degree of cure (cured rate) in the exposed portion can be formed, and the resulting microstructure has excellent heat resistance.
  • the heat treatment can be performed simultaneously with or in parallel with the exposure, or can be performed before or after the exposure.
  • the heat treatment can be performed before releasing the mold, or can be performed after releasing the mold.
  • the heating temperature is not particularly limited, but is preferably 80 to 150 ° C.
  • the heating time is not particularly limited, but is preferably 1 to 10 minutes.
  • the atmosphere at the time of performing the exposure of the photocurable transfer material layer is not particularly limited as long as it does not inhibit the curing reaction, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like.
  • the exposure may be performed under normal pressure, or under reduced pressure or under pressure.
  • a structure in which the photocurable transfer material layer is converted into a photocured layer (a layer formed from the cured product of the photocurable composition of the present invention) by the above exposure.
  • a structure having a structure) is obtained.
  • the mold is then released from the structure.
  • the mold since a mold formed of a polymer having a siloxane bond is used as the mold, the mold can be released without being subjected to a release treatment with a release agent or the like. Easy.
  • the above-mentioned mold does not swell and can be continuously transferred easily. be able to.
  • the means for releasing the mold is not particularly limited. For example, a manual release method using a hand or tweezers or the like, or an automatic release method using a micro-molding tool (for example, SUSS MicroTec , Inc. of Indianapolis, Indiana 46204, and USA tools).
  • a microstructure (unetched) having a photocured layer in which the uneven pattern of the mold is imprinted on the surface of the substrate is obtained.
  • the thickness of the photocured layer (cured film) in the microstructure [microstructure (unetched)] is not particularly limited, but is preferably 50 to 1000 nm, more preferably 100 to 500 nm.
  • an unstructured residual layer having a thickness of less than 30 nm remains.
  • Such a residual layer is preferably removed in order to achieve, for example, a steep wall inclination and a high aspect ratio (aspect ratio).
  • the residual layer can be removed by, for example, an etching process described later. Note that the remaining layer can be confirmed using, for example, a scanning electron microscope.
  • the fine structure manufacturing method of the present invention may further include a step of etching the photocured layer (cured film) and the substrate (etching step) in addition to the steps A and B.
  • the etching can be performed by a known or conventional method, and is not particularly limited, and examples thereof include a method using oxygen plasma or CHF 3 / O 2 gas. By passing through the etching step, a fine structure (after etching) is obtained.
  • the photocured layer (resist coating) remaining in the microstructure of the present invention can be removed by using a known or common solvent such as tetramethylammonium hydroxide, for example. is there.
  • the manufacturing method of the microstructure of the present invention may include a step of removing the above-mentioned photocured layer (resist removing step).
  • FIG. 2 is a schematic view (cross-sectional view) for explaining an example of an etching step and a resist removal step in the method for manufacturing a microstructure of the present invention.
  • Etching is performed on the fine structure (unetched) 6 obtained through Step A and Step B in the method for producing the fine structure of the present invention (see FIG. 2 (e)), and if necessary, By removing the remaining photocured film, a fine structure (after etching) 7 is obtained (see FIG. 2 (f)).
  • the manufacturing method of the microstructure of the present invention includes other processes such as a process of doping a semiconductor material in an etched region of a substrate (for example, a compound semiconductor substrate).
  • a process may be included.
  • the fine structure obtained by the fine structure manufacturing method of the present invention uses a mold formed of an organic polymer compound having a siloxane bond, and is a photocurable transfer material. Since the layer formed from the photocurable composition of the present invention is adopted as the layer, the releasability of the fine structure is good, continuous transfer is possible, and the productivity is very high.
  • the fine structure of the present invention can be used in various fields where fine structures obtained by the nanoimprint method are used. For example, semiconductor materials, flat screens, holograms, waveguides, structures for media, precision machinery It is extremely useful in the field of parts or precision machine parts such as sensors.
  • the unit of the quantity of each component which comprises the photocurable composition shown in Table 1 is a weight part.
  • Example 1 [Preparation of Photocurable Composition]
  • Product name “EHPE3150” (manufactured by Daicel Corporation) 20 parts by weight, product name “jER YX8000” (manufactured by Mitsubishi Chemical Corporation) 20 parts by weight, 3,4,3 ′, 4′-diepoxybicyclohexyl 30 parts by weight Part, product name “Celoxide 2021P” (manufactured by Daicel Corporation), 15 parts by weight, product name “OXT221” (manufactured by Toagosei Co., Ltd.), product name “HS-1PC” (manufactured by San Apro Co., Ltd.) 6 parts by weight and 0.1 part by weight of methoxyhydroquinone (MEHQ) were blended and stirred at room temperature (25 ° C.) to uniformly dissolve each component, and a liquid photocurable composition (light for nanoimprinting) at room temperature.
  • MEHQ methoxyhydroquinone
  • a curable composition was obtained.
  • a microstructure was produced according to the following procedure. First, a coating film (photocurable coating) of the photocurable composition obtained above was applied to a substrate (a silicon wafer of 25 mm ⁇ 25 mm square pretreated with hexamethyldisilazane) by spin coating (3000 rpm, 30 seconds). A transfer material layer) was formed. The thickness (film thickness) of the coating film was about 500 nm. Next, the substrate having the photocurable transfer material layer obtained above is placed on the stage of the imprinting apparatus (NM-0403 model manufactured by Myeongchang Kiko Co., Ltd.), and the photocurable transfer material layer is finely patterned.
  • the substrate having the photocurable transfer material layer obtained above is placed on the stage of the imprinting apparatus (NM-0403 model manufactured by Myeongchang Kiko Co., Ltd.), and the photocurable transfer material layer is finely patterned.
  • a mold made of silicone (polydimethylsiloxane; PDMS) having a pattern was placed thereon. Thereafter, the transfer pressure (applied pressure) is increased to 0.1 MPa over 30 seconds, the transfer pressure is maintained for the application time shown in Table 1, and then the mold pressure is maintained from the mold side while maintaining the transfer pressure. Irradiate ultraviolet rays with the UV irradiation intensity and UV irradiation time shown in 1 (integrated light amount: 660 mJ / cm 2 ) to cure the photo-curable transfer material layer and to form a nanoimprinted cured product layer (photo-cured layer) Formed.
  • the mold is a mold capable of transferring a line and space pattern having a width of 200 nm.
  • the imprinting device is a computer-controlled testing machine that can maintain a specified pressure for a specific time by programming loading, relaxation rate, heating temperature, etc. It is a device that can irradiate ultraviolet rays with a high-pressure mercury lamp. Thereafter, the mold was peeled off (released) from the photocured layer with tweezers or the like to obtain a microstructure having a photocured layer having a pattern formed on the substrate.
  • Examples 2-7, Comparative Examples 1-4 A photocurable composition was prepared in the same manner as in Example 1, except that the composition of the photocurable composition was changed to that shown in Table 1. In addition, a fine structure was produced in the same manner as in Example 1 except that the photocurable composition used was changed to that shown in Table 1 and the transfer conditions shown in Table 1 were adopted. In Examples 3, 6, and 7, the organic solvent (PGMEA) was removed by drying at 80 ° C. for 10 minutes when forming the photocurable transfer material layer. Further, in Comparative Examples 3 and 4, a quartz mold (quartz mold) that was previously subjected to a mold release treatment was used.
  • PGMEA organic solvent
  • the mold releasability is good, and the transferability and continuous transferability are also good. there were.
  • the above-described mold release property, transfer property, and continuous transfer property were not compatible.
  • EHPE3150 1,2-epoxy-4- (2-oxiranyl) cyclohexene adduct of 2,2-bis (hydroxymethyl) -1-butanol (Mw: about 2000), manufactured by Daicel Corporation YX8000 (jER YX8000): Hydrogenated bisphenol A-type epoxy compound, Mitsubishi Chemical Corporation Celoxide 2021P: 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, Daicel Corporation OXT221 (Aron Oxetane OXT221): 3-ethyl -3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane manufactured by Toagosei Co., Ltd.
  • CS1140 copolymer of cyclomer M100 and styrene (1/1: molar ratio) (Mw: about 40000) )
  • OXT121 Alonoxetane OXT121: 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, manufactured by Toagosei Co., Ltd.
  • Celoxide 3000 1,2-epoxy-4- (2-methyloxyla) Nyl) -1-methylcyclohexane, manufactured by Daicel Corporation
  • TMPTA trimethylolpropane triacrylate
  • IRR214K tricyclodecane dimethanol diacrylate, manufactured by Daicel Cytec Co., Ltd.
  • EA1020 bisphenol A type epoxy acrylate, Shin-Nakamura Chemical Co., Ltd.
  • HS-1PC Cationic polymerization initiator (photoacid generator), Sangapro Co., Ltd.
  • IRGACURE 184 Radical polymerization initiator, BASF MEHQ: Methoxyhydroquinone IRG1010 (Irganox 1010): Antioxidation , BASF Ltd. HP-10 (ADK STAB HP-10): antioxidant, (Ltd.) ADEKA Ltd.
  • PGMEA propylene glycol monomethyl ether acetate
  • Substrate 2 Photocurable Transferable Material Layer (Photocurable Composition Layer) 3 Mold 4 Light source 5 Photocured layer (cured product layer) 6 Microstructure (unetched) 7 Microstructure (after etching)
  • the fine structure obtained by the method for producing a fine structure of the present invention can be used in various fields in which the fine structure obtained by the nanoimprint method is used.
  • a semiconductor material, a flat screen, a hologram for example, a semiconductor material, a flat screen, a hologram, The present invention is extremely useful in the fields of waveguides, media structures, precision machine parts, or precision machine parts such as sensors.

Abstract

 本発明の目的は、モールドに離型処理を施すことなく、離型性良く連続転写が可能な微細構造体の製造方法を提供することにある。 本発明の微細構造体の製造方法は、基板と表面に凹凸パターンが形成されたモールドとで、液状の光硬化性被転写材層を挟み込んで成形した後、前記被転写材層を露光して光硬化層とし、次いで、前記光硬化層から前記モールドを離型して微細構造体を製造する方法であって、前記モールドが、シロキサン結合を有する有機高分子化合物より構成されたモールドであり、前記被転写材層が、カチオン重合性化合物(A)及び光酸発生剤(B)を含む光硬化性組成物により形成された層であり、前記光硬化性組成物が、カチオン重合性化合物(A)として、下記式(I)で表される化合物、及び下記式(II)で表される化合物からなる群より選択された少なくとも1種の化合物を含むことを特徴とする。

Description

微細構造体の製造方法及びナノインプリント用光硬化性組成物
 本発明は、微細構造体の製造方法及びナノインプリント用光硬化性組成物に関する。より詳しくは、モールドを使用したナノインプリント転写による微細構造体の製造方法及び該製造方法に使用されるナノインプリント用光硬化性組成物に関する。本願は、2012年11月27日に日本に出願した特願2012-258996号の優先権を主張し、その内容をここに援用する。
 従来、微細構造体を製造する方法として、モールド(鋳型、スタンパ)を使用したナノインプリント法が知られている。特に、微細構造体を構成する材料の前駆体として光硬化性組成物を使用し、該光硬化性組成物を基材に塗布した後、モールドを押し当て、紫外線露光により硬化させて硬化物の表面に上記モールドに対応するパターンを形成するナノインプリント法(UV-ナノインプリント法)の開発が、高スループットが可能である点で、非常に期待されている(特許文献1~3参照)。
 上述のナノインプリント法による微細構造体の製造方法においては、モールドとして石英ガラス製のモールド、ニッケル製のモールドなどが使用されている。一般に、これらのモールドは樹脂の離型性に劣るため、モールド(転写金型)の表面に離型剤を塗布して使用される。また、モールドとして離型性が良好なシリコーン(例えば、ポリジメチルシロキサンなど)製のモールドを使用することも検討されている。
米国特許第5900160号明細書 米国特許第5925259号明細書 米国特許第5817242号明細書
 しかしながら、石英ガラス製のモールドやニッケル製のモールドを使用した場合には、連続転写を行うと徐々に離型剤がモールド(転写金型)から剥がれてしまい、その都度離型剤による処理(離型剤処理)をしなおす必要が生じていた。一方、シリコーン製のモールドを使用した場合には、光硬化性組成物の構成成分として特にラジカル重合性モノマーを使用した場合にはモールドが膨潤してしまい、連続転写ができず生産性が低下するなどの問題が生じていた。
 従って、本発明の目的は、モールドに離型処理を施すことなく、離型性良く連続転写が可能な微細構造体の製造方法を提供することにある。
 また、本発明の他の目的は、シロキサン結合を有する有機高分子化合物より形成されたモールドを使用したナノインプリント法による微細構造体の製造に使用される、離型性良く連続転写が可能な硬化物を与える光硬化性組成物(ナノインプリント用光硬化性組成物)を提供することにある。
 本発明者らは、上記課題を解決するため鋭意検討した結果、ナノインプリント法による微細構造体の製造方法であって、特定の材料で形成されたモールドを使用し、なおかつ特定の光硬化性組成物を使用する製造方法によると、モールドに離型処理を施すことなく、離型性良く連続転写が可能であることを見出し、本発明を完成させた。
 すなわち、本発明は、基板と表面に凹凸パターンが形成されたモールドとで、液状の光硬化性被転写材層を挟み込んで成形した後、前記被転写材層を露光して光硬化層とし、次いで、前記光硬化層から前記モールドを離型して微細構造体を製造する方法であって、
 前記モールドが、シロキサン結合を有する有機高分子化合物より構成されたモールドであり、
 前記被転写材層が、カチオン重合性化合物(A)及び光酸発生剤(B)を含む光硬化性組成物により形成された層であり、
 前記光硬化性組成物が、カチオン重合性化合物(A)として、下記式(I)
Figure JPOXMLDOC01-appb-C000007
[式(I)中、nは0~10の整数を示す。Xは、酸素原子、-CH2-、-C(CH32-、-CBr2-、-C(CBr32-、-CF2-、-C(CF32-、-CCl2-、-C(CCl32-、又は-CH(C65)-を示す。nが2以上の場合には、2個以上のXは同一であってもよいし異なっていてもよい。R1~R18は、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。]
で表される化合物、及び下記式(II)
Figure JPOXMLDOC01-appb-C000008
[式(II)中、Rは、q価のアルコールからq個の水酸基を除いた基を示す。p、qは、同一又は異なって、1以上の整数を示す。]
で表される化合物からなる群より選択された少なくとも1種の化合物を含むことを特徴とする微細構造体の製造方法を提供する。
 さらに、前記光硬化性組成物が、カチオン重合性化合物(A)として、前記式(I)で表される化合物及び前記式(II)で表される化合物以外のエポキシ化合物、オキセタン化合物、並びにビニルエーテル化合物からなる群より選択された少なくとも1種の化合物を含む前記の微細構造体の製造方法を提供する。
 さらに、前記カチオン重合性化合物(A)における下記式(III)
Figure JPOXMLDOC01-appb-C000009
[式(III)中、R19は、水素原子、又は置換基を有していてもよい炭素数1~4のアルキル基を示す。r、sは、同一又は異なって、1以上の整数を示す。]
で表される化合物の含有量が0~80重量%である前記の微細構造体の製造方法を提供する。
 また、本発明は、基板と、表面に凹凸パターンが形成されシロキサン結合を有する有機高分子化合物より構成されたモールドとで、液状の光硬化性被転写材層を挟み込んで成形した後、前記被転写材層を露光して光硬化層とし、次いで、前記光硬化層から前記モールドを離型する微細構造体の製造に使用される、前記被転写材層を形成するナノインプリント用光硬化性組成物であって、
 カチオン重合性化合物(A)と光酸発生剤(B)とを含み、カチオン重合性化合物(A)として、下記式(I)
Figure JPOXMLDOC01-appb-C000010
[式(I)中、nは0~10の整数を示す。Xは、酸素原子、-CH2-、-C(CH32-、-CBr2-、-C(CBr32-、-CF2-、-C(CF32-、-CCl2-、-C(CCl32-、又は-CH(C65)-を示す。nが2以上の場合には、2個以上のXは同一であってもよいし異なっていてもよい。R1~R18は、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。]
で表される化合物、及び下記式(II)
Figure JPOXMLDOC01-appb-C000011
[式(II)中、Rは、q価のアルコールからq個の水酸基を除いた基を示す。p、qは、同一又は異なって、1以上の整数を示す。]
で表される化合物からなる群より選択された少なくとも1種の化合物を含むことを特徴とするナノインプリント用光硬化性組成物を提供する。
 さらに、カチオン重合性化合物(A)として、前記式(I)で表される化合物及び前記式(II)で表される化合物以外のエポキシ化合物、オキセタン化合物、並びにビニルエーテル化合物からなる群より選択された少なくとも1種の化合物を含む前記のナノインプリント用光硬化性組成物を提供する。
 さらに、前記カチオン重合性化合物(A)における下記式(III)
Figure JPOXMLDOC01-appb-C000012
[式(III)中、R19は、水素原子、又は置換基を有していてもよい炭素数1~4のアルキル基を示す。r、sは、同一又は異なって、1以上の整数を示す。]
で表される化合物の含有量が0~80重量%である前記のナノインプリント用光硬化性組成物を提供する。
 すなわち、本発明は以下に関する。
(1)基板と表面に凹凸パターンが形成されたモールドとで、液状の光硬化性被転写材層を挟み込んで成形した後、前記被転写材層を露光して光硬化層とし、次いで、前記光硬化層から前記モールドを離型して微細構造体を製造する方法であって、
 前記モールドが、シロキサン結合を有する有機高分子化合物より構成されたモールドであり、
 前記被転写材層が、カチオン重合性化合物(A)及び光酸発生剤(B)を含む光硬化性組成物により形成された層であり、
 前記光硬化性組成物が、カチオン重合性化合物(A)として、下記式(I)
Figure JPOXMLDOC01-appb-C000013
[式(I)中、nは0~10の整数を示す。Xは、酸素原子、-CH2-、-C(CH32-、-CBr2-、-C(CBr32-、-CF2-、-C(CF32-、-CCl2-、-C(CCl32-、又は-CH(C65)-を示す。nが2以上の場合には、2個以上のXは同一であってもよいし異なっていてもよい。R1~R18は、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。]
で表される化合物、及び下記式(II)
Figure JPOXMLDOC01-appb-C000014
[式(II)中、Rは、q価のアルコールからq個の水酸基を除いた基を示す。p、qは、同一又は異なって、1以上の整数を示す。]
で表される化合物からなる群より選択された少なくとも1種の化合物を含むことを特徴とする微細構造体の製造方法。
(2)前記式(I)で表される化合物が、3,4,3',4'-ジエポキシビシクロヘキシル、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、2,2-ビス(3,4-エポキシシクロヘキシル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(3,4-エポキシシクロヘキシル)メタン、及び1,1-ビス(3,4-エポキシシクロヘキシル)-1―フェニルエタンからなる群より選択される少なくとも一種の化合物である(1)に記載の微細構造体の製造方法。
(3)前記式(II)で表される化合物の標準ポリスチレン換算の重量平均分子量(Mw)が500~10000である(1)又は(2)に記載の微細構造体の製造方法。
(4)前記光硬化性組成物が、カチオン重合性化合物(A)として、前記式(I)で表される化合物及び前記式(II)で表される化合物以外のエポキシ化合物、オキセタン化合物、並びにビニルエーテル化合物からなる群より選択された少なくとも1種の化合物を含む(1)~(3)のいずれか1つに記載の微細構造体の製造方法。
(5)前記光硬化性組成物が、前記エポキシ化合物として、下記式(III)
Figure JPOXMLDOC01-appb-C000015
[式(III)中、R19は、水素原子、又は置換基を有していてもよい炭素数1~4のアルキル基を示す。r、sは、同一又は異なって、1以上の整数を示す。]
で表される化合物を含む(4)に記載の微細構造体の製造方法。
(6)前記式(III)で表される化合物を構成するrが付された括弧内の構成単位とsが付された括弧内の構成単位の割合[rが付された括弧内の構成単位/sが付された括弧内の構成単位](モル比)が10/90~90/10である(5)に記載の微細構造体の製造方法。
(7)前記式(III)で表される化合物の標準ポリスチレン換算の重量平均分子量(Mw)が1000~1000000である(5)又は(6)に記載の微細構造体の製造方法。
(8)前記オキセタン化合物が、多官能オキセタン化合物である(4)~(7)のいずれか1つに記載の微細構造体の製造方法。
(9)前記ビニルエーテル化合物が、多官能ビニルエーテル化合物である(4)~(8)のいずれか1つに記載の微細構造体の製造方法。
(10)前記光硬化性組成物におけるカチオン重合性化合物(A)の含有量が、光硬化性組成物の全量(100重量%;有機溶剤を含む場合には有機溶剤を除いた光硬化性組成物の全量)に対して50~99.5重量%である(1)~(9)のいずれか1つに記載の微細構造体の製造方法。
(11)前記光硬化性組成物における前記式(I)で表される化合物及び前記式(II)で表される化合物の含有量が、カチオン重合性化合物(A)の全量(100重量%)に対して、5重量%以上である(1)~(10)のいずれか1つに記載の微細構造体の製造方法。
(12)前記式(I)で表される化合物が、3,4,3’,4’-ジエポキシビシクロヘキシルである(11)に記載の微細構造体の製造方法。
(13)前記カチオン重合性化合物(A)における前記式(III)で表される化合物の含有量が0~80重量%である(5)~(12)のいずれか1つに記載の微細構造体の製造方法。
(14)前記光硬化性組成物における光酸発生剤(B)の含有量が、カチオン重合性化合物(A)の全量100重量部に対して、0.1~15重量部である(1)~(13)のいずれか1つに記載の微細構造体の製造方法。
(15)前記光硬化性組成物が酸化防止剤を含む(1)~(14)のいずれか1つに記載の微細構造体の製造方法。
(16)前記酸化防止剤が、フェノール系酸化防止剤、リン系酸化防止剤、及び硫黄系酸化防止剤からなる群より選択される少なくとも1種である(15)に記載の微細構造体の製造方法。
(17)前記光硬化性組成物における前記酸化防止剤の含有量が、カチオン重合性化合物(A)の全量100重量部に対して、0.001~15重量部である(15)又は(16)に記載の微細構造体の製造方法。
(18)前記光硬化性組成物の25℃における粘度が1~1000000mPa・sである(1)~(17)のいずれか1つに記載の微細構造体の製造方法。
(19)基板と表面に凹凸パターンが形成されたモールドとで、液状の光硬化性被転写材層を挟み込んで成形する方法が、前記基板上に光硬化性被転写材層を形成し、その後、該光硬化性被転写材層上に前記モールドを載置する方法、又は、前記モールド上に光硬化性被転写材層を形成し、その後、該光硬化性被転写材層上に前記基板を載置する方法である(1)~(18)のいずれか1つに記載の微細構造体の製造方法。
(20)前記光硬化性被転写材層(モールド又は基板を載置する前の厚み)が10~100000nmである(19)に記載の微細構造体の製造方法。
(21)前記光硬化性被転写材層上にモールド又は基板を載置する際に0.01~5MPaで加圧する(19)又は(20)に記載の微細構造体の製造方法。
(22)前記加圧時間が0.1~300秒である(21)に記載の微細構造体の製造方法。
(23)前記光硬化性被転写材層(モールド又は基板を載置し加圧した後の厚み)が10~100000nmである(21)又は(22)に記載の微細構造体の製造方法。
(24)前記露光が、紫外線を照射することにより行う(1)~(23)のいずれか1つに記載の微細構造体の製造方法。
(25)前記紫外線の照射を、100~100000mJ/cm2の積算光量で行う(24)に記載の微細構造体の製造方法。
(26)基板と、表面に凹凸パターンが形成されシロキサン結合を有する有機高分子化合物より構成されたモールドとで、液状の光硬化性被転写材層を挟み込んで成形した後、前記被転写材層を露光して光硬化層とし、次いで、前記光硬化層から前記モールドを離型する微細構造体の製造に使用される、前記被転写材層を形成するナノインプリント用光硬化性組成物であって、
 カチオン重合性化合物(A)と光酸発生剤(B)とを含み、カチオン重合性化合物(A)として、下記式(I)
Figure JPOXMLDOC01-appb-C000016
[式(I)中、nは0~10の整数を示す。Xは、酸素原子、-CH2-、-C(CH32-、-CBr2-、-C(CBr32-、-CF2-、-C(CF32-、-CCl2-、-C(CCl32-、又は-CH(C65)-を示す。nが2以上の場合には、2個以上のXは同一であってもよいし異なっていてもよい。R1~R18は、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。]
で表される化合物、及び下記式(II)
Figure JPOXMLDOC01-appb-C000017
[式(II)中、Rは、q価のアルコールからq個の水酸基を除いた基を示す。p、qは、同一又は異なって、1以上の整数を示す。]
で表される化合物からなる群より選択された少なくとも1種の化合物を含むことを特徴とするナノインプリント用光硬化性組成物。
(27)前記式(I)で表される化合物が、3,4,3',4'-ジエポキシビシクロヘキシル、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、2,2-ビス(3,4-エポキシシクロヘキシル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(3,4-エポキシシクロヘキシル)メタン、及び1,1-ビス(3,4-エポキシシクロヘキシル)-1―フェニルエタンからなる群より選択される少なくとも一種の化合物である(26)に記載のナノインプリント用光硬化性組成物。
(28)前記式(II)で表される化合物の標準ポリスチレン換算の重量平均分子量(Mw)が500~10000である(26)又は(27)に記載のナノインプリント用光硬化性組成物。
(29)さらに、カチオン重合性化合物(A)として、前記式(I)で表される化合物及び前記式(II)で表される化合物以外のエポキシ化合物、オキセタン化合物、並びにビニルエーテル化合物からなる群より選択された少なくとも1種の化合物を含む(26)~(28)のいずれか1つに記載のナノインプリント用光硬化性組成物。
(30)前記エポキシ化合物として、下記式(III)
Figure JPOXMLDOC01-appb-C000018
[式(III)中、R19は、水素原子、又は置換基を有していてもよい炭素数1~4のアルキル基を示す。r、sは、同一又は異なって、1以上の整数を示す。]
で表される化合物を含む(29)に記載のナノインプリント用光硬化性組成物。
(31)前記式(III)で表される化合物を構成するrが付された括弧内の構成単位とsが付された括弧内の構成単位の割合[rが付された括弧内の構成単位/sが付された括弧内の構成単位](モル比)が10/90~90/10である(30)に記載のナノインプリント用光硬化性組成物。
(32)前記式(III)で表される化合物の標準ポリスチレン換算の重量平均分子量(Mw)が1000~1000000である(30)又は(31)に記載のナノインプリント用光硬化性組成物。
(33)前記オキセタン化合物が、多官能オキセタン化合物である(29)~(32)のいずれか1つに記載のナノインプリント用光硬化性組成物。
(34)前記ビニルエーテル化合物が、多官能ビニルエーテル化合物である(29)~(33)のいずれか1つに記載のナノインプリント用光硬化性組成物。
(35)カチオン重合性化合物(A)の含有量が、光硬化性組成物の全量(100重量%;有機溶剤を含む場合には有機溶剤を除いた光硬化性組成物の全量)に対して50~99.5重量%である(26)~(34)のいずれか1つに記載のナノインプリント用光硬化性組成物。
(36)前記式(I)で表される化合物及び前記式(II)で表される化合物の含有量が、カチオン重合性化合物(A)の全量(100重量%)に対して、5重量%以上である(26)~(35)のいずれか1つに記載のナノインプリント用光硬化性組成物。
(37)前記式(I)で表される化合物が、3,4,3’,4’-ジエポキシビシクロヘキシルである(36)に記載のナノインプリント用光硬化性組成物。
(38)前記カチオン重合性化合物(A)における前記式(III)で表される化合物の含有量が0~80重量%である(30)~(37)のいずれか1つに記載のナノインプリント用光硬化性組成物。
(39)光酸発生剤(B)の含有量が、カチオン重合性化合物(A)の全量100重量部に対して、0.1~15重量部である(26)~(38)のいずれか1つに記載のナノインプリント用光硬化性組成物。
(40)酸化防止剤を含む(26)~(39)のいずれか1つに記載のナノインプリント用光硬化性組成物。
(41)前記酸化防止剤が、フェノール系酸化防止剤、リン系酸化防止剤、及び硫黄系酸化防止剤からなる群より選択される少なくとも1種である(40)に記載のナノインプリント用光硬化性組成物。
(42)前記酸化防止剤の含有量が、カチオン重合性化合物(A)の全量100重量部に対して、0.001~15重量部である(40)又は(41)に記載のナノインプリント用光硬化性組成物。
(43)25℃における粘度が1~1000000mPa・sである(26)~(42)のいずれか1つに記載のナノインプリント用光硬化性組成物。
 本発明の微細構造体の製造方法は上記構成を有するため、モールドに離型処理を施すことなく、離型性良く連続転写が可能であり、微細構造体を高い生産性で製造することができる。また、本発明のナノインプリント用光硬化性組成物を用いると、シロキサン結合を有する有機高分子化合物により形成されたモールドを使用したナノインプリント法による微細構造体の製造方法において、離型性良く連続転写が可能となり、微細構造体を高い生産性で製造することができる。
本発明の微細構造体の製造方法の一例を説明する概略図(断面図)である。 本発明の微細構造体の製造方法におけるエッチング工程及びレジスト除去工程の一例を説明する概略図(断面図)である。
 本発明の微細構造体の製造方法は、ナノインプリント法(ナノインプリント技術)による微細構造体(表面に凹凸パターン等の微細構造を有する構造体)の製造方法である。より詳しくは、本発明の微細構造体の製造方法は、基板と表面に凹凸パターン(微細凹凸パターン)が形成されたモールドとで、液状の光硬化性被転写材層を挟み込んで成形した後、上記光硬化性被転写材層を露光により硬化させて光硬化層とし、次いで、上記光硬化層から上記モールドを離型して微細構造体を製造する方法である。なお、本発明の微細構造体の製造方法において、基板と表面に凹凸パターンが形成されたモールドとで、液状の光硬化性被転写材層を挟み込んで成形する工程を「工程A」と称し、当該工程Aの後、上記光硬化性被転写材層を露光により硬化させて光硬化層とし、次いで、上記光硬化層から上記モールドを離型する工程を「工程B」と称する。即ち、本発明の微細構造物の製造方法は、工程A及び工程Bを必須の工程として含む製造方法である。
 本発明の微細構造体の製造方法の一例を、図1を用いて具体的に説明する。まず、基板1の一方の表面に光硬化性被転写材層(光硬化性組成物層)2を有する構造体を準備し(図1の(a)参照)、当該構造体の光硬化性被転写材層2の表面に、表面に凹凸パターンが形成されたモールド3を載せ、必要に応じて圧力を加える(図1の(b)参照)。これにより、光硬化性被転写材層2が基板1とモールド3とで挟み込まれ成形された構造体が得られる。そして、上記構造体における光硬化性被転写材層2を露光により硬化させて光硬化層(硬化物層)5を形成させ(図1の(c)参照)、その後、該光硬化層5からモールド3を剥離することにより、微細構造体6が得られる(図1の(d)参照)。
 本発明の微細構造体の製造方法は、さらに、上記工程A及び工程Bを経て得られた微細構造体に対して、エッチングする工程や光硬化層を除去する工程(例えば、図2参照)、リフトオフ工程などの公知乃至慣用の微細加工を行うための工程を含んでいてもよい。これにより、基板上に微細構造が形成された構造体が得られる。なお、本明細書においては、特に、エッチングされていない段階の微細構造体を「微細構造体(未エッチング)」と称し、エッチングされた後の微細構造体を「微細構造体(エッチング後)」と称する場合がある。また、微細構造体(未エッチング)と微細構造体(エッチング後)とを総称して「本発明の微細構造体」と称する場合がある。
 本発明の微細構造体の製造方法は、上記モールドとしてシロキサン結合を有する有機高分子化合物より形成(構成)されたモールド(シロキサン結合を有する有機高分子化合物からなるモールド)を使用し、かつ、上記光硬化性被転写材層として、カチオン重合性化合物(A)及び光酸発生剤(B)を必須成分として含み、該カチオン重合性化合物(A)として特定の化合物(後述の式(I)で表される化合物及び式(II)で表される化合物からなる群より選択された少なくとも1種の化合物)を必須成分として含む光硬化性組成物より形成された層を採用したことを特徴としている。以下、本発明の微細構造体の製造方法について詳細に説明する。
<工程A>
 本発明の微細構造体の製造方法における工程Aは、上述のように、基板と表面に凹凸パターンが形成されたモールドとで、液状の光硬化性被転写材層を挟み込んで成形する工程である。
[基板]
 本発明の微細構造体の製造方法において使用される基板としては、公知乃至慣用の基板(基材)を使用することができ、特に限定されないが、例えば、ガラス基板、シリカガラス基板、サファイア基板、プラスチック基板(例えば、PETフィルム、ポリカーボネートフィルム、トリアセチルセルロールフィルムなど)、シリコンウェハ、化合物半導体基板(GaAs、InAs、GaNなど)、金属基板、金属酸化物基板などが挙げられる。なお、上記基板は公知乃至慣用の表面処理が施されていてもよい。
[モールド]
 本発明の微細構造体の製造方法において使用されるモールドは、微細構造体の鋳型(スタンパ)であり、表面に微細凹凸からなる転写パターン(凹凸パターン)が形成されたナノインプリント用転写スタンプ(スタンパ)である。上述のように、本発明の微細構造体の製造方法においては、上記モールドとして、シロキサン結合を有する有機高分子化合物より形成されたモールドを使用する。上記シロキサン結合を有する有機高分子化合物としては、例えば、ポリジメチルシロキサン(PDMS)、ポリジメチルシロキサンゴムなどの有機ケイ素ポリマー(シリコーン)などが挙げられる。本発明の微細構造体の製造方法においては、モールドとして上述のシロキサン結合を有する有機高分子化合物より形成されたモールドを使用することにより、該モールドからの樹脂離れが良好であり、後述の工程Bにおける光硬化層からのモールドの離型(除去)を容易に行うことができる。また、上記モールドは安価に製造することができるため、本発明の微細構造体の製造方法は、コスト面でも有利である。
 上記モールドにおける凹凸パターンの形状や大きさは、製造する微細構造体が有する微細構造の形状や大きさ等に応じて適宜設定することができる。上記凹凸パターンにおける各凹部の断面形状は、特に限定されないが、例えば、正方形、長方形、半円形、三角形、これら形状に類似した形状、不定形等が挙げられる。また、凹凸パターンの各凹部の深さは、特に限定されないが、1nm~100μmが好ましく、各凹部の開口部の幅は、特に限定されないが、1nm~100μmが好ましい。
 上記モールドの表面には、光硬化層に対する離型性をいっそう高めるため、公知乃至慣用の離型処理を施すこともできる。上記離型処理は、例えば、パーフルオロ系の高分子化合物、炭化水素系の高分子化合物、アルコキシシラン化合物、トリクロロシラン化合物、ダイヤモンドライクカーボンなどの公知乃至慣用の離型処理剤を使用し、気相法や液相法などにより実施することができる。但し、本発明の微細構造物の製造方法においては上記モールドを使用するため、離型処理を施さなくても光硬化層からの離型性が良好である。
 上記モールドは、例えば、表面に凹凸パターンを有する原版に、シロキサン結合を有する有機高分子化合物の前駆体(例えば、硬化性シリコーン樹脂組成物など)を流し込み、硬化及び成形することにより製造することができる。
[光硬化性被転写材層(光硬化性組成物層)]
 工程Aにおいて基板上に形成される光硬化性被転写材層は、カチオン重合性化合物(A)及び光酸発生剤(B)を必須成分として含む液状の光硬化性組成物(ナノインプリント用光硬化性組成物)(「本発明の光硬化性組成物」と称する場合がある)より形成された液状の層(光硬化性組成物層)である。
(カチオン重合性化合物(A))
 本発明の光硬化性組成物におけるカチオン重合性化合物(A)は、エポキシ基、ビニルエーテル基、オキセタニル基などのカチオン重合性基を分子内に1個以上有する化合物である。中でも、本発明の光硬化性組成物は、カチオン重合性化合物(A)として下記式(I)で表される化合物(脂環エポキシ化合物)、及び下記式(II)で表される化合物(脂環エポキシ化合物)からなる群より選択された少なくとも1種の化合物を必須成分として含有する。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記式(I)で表される化合物は、非エステル系の脂環エポキシ化合物(分子内にエステル結合を有しない脂環エポキシ化合物)である。上記式(I)中、nは0~10の整数を示す。Xは、2価の連結基であって、酸素原子、-CH2-、-C(CH32-、-CBr2-、-C(CBr32-、-CF2-、-C(CF32-、-CCl2-、-C(CCl32-、又は-CH(C65)-を示す。nが2以上の場合には、2個以上のXは同一であってもよいし、異なっていてもよい。なお、nが0の場合には、式(I)中の2つのシクロヘキサン環が単結合で繋がれた構造を示す。
 上記式(I)中、R1~R18は、水素原子,ハロゲン原子,酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基,又は置換基を有していてもよいアルコキシ基を示す。上記R1~R18は、それぞれ同一であってもよいし、異なっていてもよい。上記ハロゲン原子としては、例えば、フッ素原子、塩素原子などが挙げられる。また、上記炭化水素基、アルコキシ基における炭素原子の数は、特に限定されないが、それぞれ1~5が好ましい(即ち、炭素数1~5の炭化水素基、炭素数1~5のアルコキシ基が好ましい)。上記酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基としては、例えば、メトキシエチル基等のアルコキシアルキル基、トリフルオロメチル基等のハロアルキル基などが挙げられる。上記置換基を有していてもよいアルコキシ基における置換基は、特に限定されないが、例えば、ハロゲン原子、ヒドロキシル基、メルカプト基、カルボキシル基、アミノ基、モノ又はジアルキルアミノ基、モノ又はジフェニルアミノ基、グリシジル基、エポキシ基、イソシアネート基などが挙げられる。
 上記式(I)で表される化合物としては、特に、3,4,3',4'-ジエポキシビシクロヘキシル、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、2,2-ビス(3,4-エポキシシクロヘキシル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(3,4-エポキシシクロヘキシル)メタン、1,1-ビス(3,4-エポキシシクロヘキシル)-1-フェニルエタンが好ましい。中でも、硬化性の観点で、3,4,3',4'-ジエポキシビシクロヘキシルが好ましい。なお、上記式(I)で表される化合物としては、市販品を使用することもできる。
 本発明の光硬化性組成物において上記式(I)で表される化合物は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記式(II)中、Rはq価のアルコールからq個の水酸基(-OH)を除いた基を示し、p、qは、同一又は異なって、1以上の整数を表す。q価のアルコール[R-(OH)q]としては、例えば、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコールなど(炭素数1~15のアルコール等)が挙げられる。qは1~6が好ましく、pは1~30が好ましい。qが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるpは同一でもよく異なっていてもよい。上記化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(例えば、商品名「EHPE3150」、(株)ダイセル製)などが挙げられる。
 上記式(II)で表される化合物の標準ポリスチレン換算の重量平均分子量(Mw)は、特に限定されないが、500~10000が好ましく、より好ましくは700~5000、さらに好ましくは1000~4000である。なお、重量平均分子量は、例えば、ゲル・パーミエーション・クロマトグラフィー法(GPC法)により測定できる。
 カチオン重合性化合物(A)として、本発明の光硬化性組成物は、上記式(I)で表される化合物及び式(II)で表される化合物以外のカチオン重合性化合物(「その他のカチオン重合性化合物」と称する場合がある)を含んでいてもよい。上記その他のカチオン重合性化合物としては、例えば、上記式(I)で表される化合物及び式(II)で表される化合物以外のエポキシ化合物(分子内に1個以上のエポキシ基を有する化合物)、ビニルエーテル化合物(分子内に1個以上のビニルエーテル基を有する化合物)、オキセタン化合物(分子内に1個以上のオキセタニル基を有する化合物)などが挙げられる。
 上記式(I)で表される化合物及び式(II)で表される化合物以外のエポキシ化合物(「その他のエポキシ化合物」と称する場合がある)としては、例えば、式(I)で表される化合物及び式(II)で表される化合物以外のエポキシ化合物であって、分子内に環状脂肪族基とエポキシ基とを有する脂環エポキシ化合物(「その他の脂環エポキシ化合物」と称する場合がある);グリシジル基を有するエポキシ化合物(エポキシ樹脂)などが挙げられる。これらの中でも、その他の脂環エポキシ化合物が好ましく、特に、環状脂肪族基を構成する隣接する2つの炭素原子を含んでエポキシ基(オキシラン環)が形成されている化合物が好ましい。上記その他のエポキシ化合物は、単官能エポキシ化合物(分子内に1個のエポキシ基を有する化合物)、多官能エポキシ化合物(分子内に2個以上のエポキシ基を有する化合物)のいずれであってもよいが、精度良く微細構造体を得るには、多官能エポキシ化合物が好ましい。
 上記その他のエポキシ化合物(その他の脂環エポキシ化合物)としては、例えば、下記式(III)で表される化合物(共重合体)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000021
 上記式(III)中、r及びsは、同一又は異なって、1以上の整数(例えば、1~100の整数)を示す。R19は、水素原子、又は置換基を有していてもよい炭素数1~4のアルキル基を示す。上記炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基などが挙げられる。当該アルキル基が有していてもよい置換基としては、例えば、ハロゲン原子等が挙げられる。なお、rが付された括弧内の構成単位とsが付された括弧内の構成単位の付加形態(重合形態)は、ランダム型であってもよいし、ブロック型であってもよい。即ち、上記式(III)で表される化合物は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。また、上記式(III)で表される化合物の末端構造は特に限定されず、例えば、重合開始剤末端などであってもよい。上記式(III)で表される化合物は、例えば、下記式で表される化合物とスチレンとを公知乃至慣用の方法により重合することによって得ることができる。
Figure JPOXMLDOC01-appb-C000022
[上記式中、R19は前記に同じ。]
 上記式(III)で表される化合物を構成するrが付された括弧内の構成単位とsが付された括弧内の構成単位の割合[rが付された括弧内の構成単位/sが付された括弧内の構成単位](モル比)は、特に限定されないが、10/90~90/10が好ましく、より好ましくは30/70~70/30、さらに好ましくは40/60~60/40である。
 上記式(III)で表される化合物の標準ポリスチレン換算の重量平均分子量(Mw)は、特に限定されないが、1000~1000000が好ましく、より好ましくは5000~500000、さらに好ましくは10000~100000である。なお、重量平均分子量は、例えば、ゲル・パーミエーション・クロマトグラフィー法(GPC法)により測定できる。
 上記その他のエポキシ化合物としては、より具体的には、例えば、ビス(3,4-エポキシシクロヘキシル)アジペート、3,4-エポキシシクロへキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(3,4-エポキシ-6-メチルシクロヘキシル)メチル-3',4'-エポキシ-6-メチルシクロヘキサンカルボキシレート、エチレン-1,2-ビス(3,4-エポキシシクロヘキサンカルボン酸)エステル、3,4-エポキシシクロヘキシルメチルアルコール、1,2-エポキシ-4-ビニルシクロヘキサン、1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサン、1,2,5,6-ジエポキシシクロオクタン、2,2-ビス(3',4'-エポキシシクロヘキシル)プロパン、グリシジルフェニルエーテルなどが挙げられる。上記その他の脂環エポキシ化合物の市販品としては、例えば、(株)ダイセル製の商品名「セロキサイド2000」、「セロキサイド2021」、「セロキサイド3000」などが挙げられる。
 また、上記その他のエポキシ化合物としては、その他にも、例えば、三菱化学(株)製の商品名「1031S」;三菱ガス化学(株)製の商品名「TETRAD-X」、「TETRAD-C」;日本曹達(株)製の商品名「EPB-13」なども使用することができる。
 上記ビニルエーテル化合物としては、分子内にビニルエーテル基を有する化合物であればよく、単官能ビニルエーテル化合物(分子内に1個のビニルエーテル基を有する化合物)であってもよいし、多官能ビニルエーテル化合物(分子内に2個以上のビニルエーテル基を有する化合物)であってもよく、特に限定されない。中でも、特に微細構造体の転写精度の観点で、多官能ビニルエーテル化合物が好ましい。
 上記ビニルエーテル化合物としては、具体的には、例えば、イソソルバイドジビニルエーテル、オキサノルボルネンジビニルエーテル等の環状エーテル型ビニルエーテル(オキシラン環、オキセタン環、オキソラン環等の環状エーテル基を有するビニルエーテル);フェニルビニルエーテル等のアリールビニルエーテル;n-ブチルビニルエーテル、オクチルビニルエーテル等のアルキルビニルエーテル;シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル;ハイドロキノンジビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル等の多官能ビニルエーテルなどが挙げられる。また、2-ヒドロキシエチルビニルエーテル(HEVE)、ジエチレングリコールモノビニルエーテル(DEGV)、2-ヒドロキシブチルビニルエーテル(HBVE)、トリエチレングリコールジビニルエーテル(TEGDVE)、ポリエチレングリコールジビニルエーテル(PEGDVE)など(例えば、丸善石油化学(株)製の製品など)を使用することもできる。また、α位及び/又はβ位(エーテル酸素のα位及び/又はβ位の炭素原子)にアルキル基、アリール基、アルコキシ基等の置換基を有するビニルエーテル化合物も使用できる。
 上記オキセタン化合物としては、分子内にオキセタニル基を有する化合物であればよく、単官能オキセタン化合物(分子内に1個のオキセタニル基を有する化合物)であってもよいし、多官能オキセタン化合物(分子内に2個以上のオキセタニル基を有する化合物)であってもよく、特に限定されない。中でも、特に微細構造体の転写精度の観点で、多官能オキセタン化合物が好ましい。
 オキセタン化合物としては、具体的には、例えば、3-エチル-3-(フェノキシメチル)オキセタン(POX)、ジ[1-エチル(3-オキセタニル)]メチルエーテル(DOX)、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン(EHOX)、3-エチル-3-{[3-(トリエトキシシリル)プロポキシ]メチル}オキセタン(TESOX)、オキセタニルシルセスキオキサン(OX-SQ)、フェノールノボラックオキセタン(PNOX-1009)、3-エチル-3-ヒドロキシメチルオキセタン(OXA)、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン(EHOX)、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン(XDO)、1,3-ビス[(1-エチル-3-オキセタニル)メトキシ]ベンゼン(RSOX)など(例えば、東亞合成(株)製の製品など)が挙げられる。
 また、上記その他のカチオン重合性化合物としては、オキセタニル基とビニルエーテル基を持つ3,3-ジメタノールジビニルエーテルオキセタンのような異種のカチオン重合性基を分子内に有する化合物も使用できる。
 本発明の光硬化性組成物において上記その他のカチオン重合性化合物は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本発明の光硬化性組成物におけるカチオン重合性化合物(A)の含有量(配合量)は、特に限定されないが、光硬化性組成物の全量(100重量%;有機溶剤を含む場合には有機溶剤を除いた光硬化性組成物の全量)に対して、50~99.5重量%が好ましく、より好ましくは80~99重量%、さらに好ましくは85~98重量%である。カチオン重合性化合物(A)の含有量が50重量%未満であると、硬化が不十分となり、精度良くパターンを得られない場合がある。一方、カチオン重合性化合物(A)の含有量が99.5重量%を超えると、相対的に光酸発生剤(B)の含有量が少なくなり、硬化が不十分となる場合がある。
 本発明の光硬化性組成物における上記式(I)で表される化合物(特に、3,4,3',4'-ジエポキシビシクロヘキシル)及び上記式(II)で表される化合物の含有量(配合量:いずれか一方しか含まない場合にはその一方の含有量)は、特に限定されないが、光硬化性組成物に含まれるカチオン重合性化合物(A)の全量(100重量%)に対して、5重量%以上(例えば、5~100重量%)が好ましく、より好ましくは5~80重量%、さらに好ましくは7~60重量%、特に好ましくは10~50重量%である。上記式(I)で表される化合物及び上記式(II)で表される化合物の含有量が5重量%未満であると、硬化が不十分となり、精度良くパターンが得られない場合がある。一方、上記式(I)で表される化合物及び上記式(II)で表される化合物の含有量を80重量%以下とすることにより、微細構造体の脆化が抑制される傾向がある。
 また、上記(III)で表される化合物の含有量(配合量)は、特に限定されないが、カチオン重合性化合物(A)の全量(100重量%)に対して、0~80重量%が好ましく、より好ましくは5~75重量%、さらに好ましくは10~70重量%である。上記含有量が80重量%を超えると、精度良くパターンが得られない場合がある。
 本発明の微細構造体の製造方法においては、光硬化性被転写材層を形成するための光硬化性組成物(本発明の光硬化性組成物)として、カチオン重合性化合物(A)を含む光硬化性組成物を使用し、なおかつ、モールドとしてシロキサン結合を有する有機高分子化合物より形成されたモールドを使用するという組み合わせを採用することにより、一般的な石英製のモールド等を使用した場合と比較して低い転写圧力での転写が可能となる。また、シロキサン結合を有する有機高分子化合物より形成されたモールドを使用することにより、モールドの離型処理も不要となる。さらに、シロキサン結合を有する有機高分子化合物より形成されたモールドは空気の透過性が高いため、得られる微細構造体に気泡欠陥が発生しにくい。さらに、シロキサン結合を有する有機高分子化合物より形成されたモールドは、基板に対する追従性にも優れる。従って、本発明の光硬化性組成物とシロキサン結合を有する有機高分子化合物より形成されたモールドを使用する微細構造体の製造方法により得られた微細構造体は、生産性と品質の両方に優れる。一方で、光硬化性組成物として、ラジカル重合性化合物を含むラジカル硬化性組成物を使用した場合には、シロキサン結合を有する有機高分子化合物より形成されたモールドが当該光硬化性組成物により侵され、転写が困難ないし不可能となる。
 本発明の光硬化性組成物におけるカチオン重合性化合物(A)の組成の特に好ましい具体的態様は、以下の通りである。
[1]カチオン重合性化合物(A)の全量(100重量%)に対して、上記式(I)で表される化合物(特に、3,4,3',4'-ジエポキシビシクロヘキシル)を15~45重量%、上記式(II)で表される化合物を5~35重量%、及び、オキセタン化合物を5~25重量%含む光硬化性組成物。
[2]カチオン重合性化合物(A)の全量(100重量%)に対して、上記式(I)で表される化合物(特に、3,4,3',4'-ジエポキシビシクロヘキシル)を5~35重量%、上記式(III)で表される化合物を55~85重量%、及び、オキセタン化合物を2~18重量%含む光硬化性組成物。
[3]カチオン重合性化合物(A)の全量(100重量%)に対して、上記式(I)で表される化合物(特に、3,4,3',4'-ジエポキシビシクロヘキシル)を5~35重量%、1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサンを45~75重量%、及び、オキセタン化合物を5~35重量%含む光硬化性組成物。
[4]カチオン重合性化合物(A)の全量(100重量%)に対して、上記式(I)で表される化合物(特に、3,4,3',4'-ジエポキシビシクロヘキシル)を15~45重量%、上記式(II)で表される化合物を2~18重量%、及び、オキセタン化合物を35~65重量%含む光硬化性組成物。
[5]カチオン重合性化合物(A)の全量(100重量%)に対して、上記式(II)で表される化合物を80~100重量%含む光硬化性組成物。
[6]カチオン重合性化合物(A)の全量(100重量%)に対して、上記式(I)で表される化合物(特に、3,4,3',4'-ジエポキシビシクロヘキシル)を5~35重量%、上記式(II)で表される化合物を55~85重量%、及び、オキセタン化合物を2~18重量%含む光硬化性組成物。
(光酸発生剤(B))
 本発明の光硬化性組成物における光酸発生剤(B)は、光や活性エネルギー線を照射することにより酸を発生し、カチオン重合性化合物(A)の硬化反応(カチオン重合反応)を進行させる化合物である。光酸発生剤(B)としては、公知乃至慣用の光酸発生剤を使用することができ、特に限定されないが、例えば、スルホニウム塩、ヨードニウム塩、ホスホニウム塩あるいはピリジニウム塩などが挙げられる。本発明の光硬化性組成物において光酸発生剤(B)は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記スルホニウム塩としては、例えば、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、ビス(4-(ジフェニルスルホニオ)-フェニル)スルフィド-ビス(ヘキサフルオロホスフェート)、ビス(4-(ジフェニルスルホニオ)-フェニル)スルフィド-ビス(ヘキサフルオロアンチモネート)、4-ジ(p-トルイル)スルホニオ-4'-tert-ブチルフェニルカルボニル-ジフェニルスルフィドヘキサフルオロアンチモネート、7-ジ(p-トルイル)スルホニオ-2-イソプロピルチオキサントンヘキサフルオロホスフェート、7-ジ(p-トルイル)スルホニオ-2-イソプロピルチオキサントンヘキサフルオロアンチモネート等や、特開平6-184170号公報、特開平7-61964号公報、特開平8-165290号公報、米国特許第4231951号、米国特許第4256828号等に記載の芳香族スルホニウム塩などが挙げられる。
 上記ヨードニウム塩としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等や、特開平6-184170号公報、米国特許第4256828号等に記載の芳香族ヨードニウム塩などが挙げられる。
 上記ホスホニウム塩としては、例えば、テトラフルオロホスホニウムヘキサフルオロホスフェート、テトラフルオロホスホニウムヘキサフルオロアンチモネート等や、特開平6-157624号公報等に記載の芳香族ホスホニウム塩などが挙げられる。
 上記ピリジニウム塩としては、例えば、特許第2519480号公報、特開平5-222112号公報等に記載のピリジニウム塩などが挙げられる。
 また、光酸発生剤(B)が有する陰イオンは、特に限定されず、例えば、SbF6 -、下記式(1)
Figure JPOXMLDOC01-appb-C000023
[式(1)中のそれぞれのX1~X4は、0から5の整数を表し、全ての合計が1以上である。]
で表されるボレート類(例えば、テトラキス(ペンタフルオロフェニル)ボレートなど)などが挙げられる。
 上記スルホニウム塩及びヨードニウム塩は、市場より容易に入手することもできる。市場より容易に入手することができる光酸発生剤(B)としては、例えば、商品名「UVI-6990」、商品名「UVI-6974」(以上、ユニオンカーバイド社製)、商品名「アデカオプトマーSP-170」、商品名「アデカオプトマーSP-172」(以上、(株)ADEKA製)、商品名「CPI-100P」、商品名「CPI-100A」、商品名「CPI-200K」、商品名「CPI-300PG」、商品名「HS-1PC」(以上、サンアプロ(株)製)などのスルホニウム塩や、商品名「PI 2074」(ローディア社製)などのヨードニウム塩などが挙げられる。
 本発明の光硬化性組成物における光酸発生剤(B)の含有量(配合量)は、特に限定されないが、カチオン重合性化合物(A)の全量100重量部に対して、0.1~15重量部が好ましく、より好ましくは1~12重量部である。含有量が0.1重量部未満であると、光硬化層における硬化の進行が不十分となる場合がある。一方、含有量が15重量部を超えると、光硬化層が着色し易くなる場合がある。
[その他の添加剤など]
 本発明の光硬化性組成物は、酸化防止剤を含むことが好ましい。上記酸化防止剤としては、公知乃至慣用の酸化防止剤を使用することができ、特に限定されないが、例えば、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤などが挙げられる。なお、酸化防止剤は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記フェノール系酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート等のモノフェノール類;2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4'-チオビス(3-メチル-6-t-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等のビスフェノール類;1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3'-ビス-(4'-ヒドロキシ-3'-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、1,3,5-トリス(3',5'-ジ-t-ブチル-4'-ヒドロキシベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類などが挙げられる。
 上記リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス[2-t-ブチル-6-メチル-4-{2-(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド類などが挙げられる。
 上記硫黄系酸化防止剤としては、例えば、ジラウリル-3,3'-チオジプロピオネート、ジミリスチル-3,3'-チオジプロピオネート、ジステアリル-3,3'-チオジプロピオネートなどが挙げられる。
 なお、上記酸化防止剤としては、市販品を使用することもできる。
 本発明の光硬化性組成物における酸化防止剤の含有量(配合量)は、特に限定されないが、カチオン重合性化合物(A)の全量100重量部に対して、0.001~15重量部が好ましく、より好ましくは0.01~10重量部、さらに好ましくは0.1~5重量部である。含有量が0.001重量部未満であると、用途によっては光硬化層の劣化の抑制が不十分となる場合がある。一方、含有量が15重量部を超えると、光硬化層の硬化が不十分となる場合がある。
 本発明の光硬化性組成物は、必要に応じて、有機溶剤を含有していてもよい。上記有機溶剤としては、公知乃至慣用の有機溶剤を使用することができ、特に限定されないが、例えば、メチルエチルケトン、シクロヘキサノンなどのケトン類;トルエン、キシレン、テトラメチルベンゼンなどの芳香族炭化水素類;セロソルブ、メチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルなどのグリコールエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテートなどの酢酸エステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコールなどのアルコール類;オクタン、デカンなどの脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサなどの石油系溶剤などが挙げられる。なお、有機溶剤は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本発明の光硬化性組成物における有機溶剤の含有量(配合量)は、特に限定されないが、光硬化性組成物(100重量%)に対して、0~95重量%が好ましく、より好ましくは0~80重量%以下である。本発明の光硬化性組成物が有機溶剤を含む場合、光硬化性被転写材層を露光する前に有機溶剤を除去することが好ましい。
 本発明の光硬化性組成物はナノスケール粒子を含んでいてもよい。上記ナノスケール粒子としては、例えば、下記式(2)
SiU4   (2)
[式(2)中、基Uは、同一又は異なって、加水分解性基又はヒドロキシル基を示す。]
で表される化合物、及び/又は、下記式(3)
21 a22 bSiU(4-a-b)   (3)
[式(3)中、R21は非加水分解性基、R22は官能基を有する基を示す。Uは前記に同じ。aおよびbは値0、1、2又は3を示し、合計(a+b)は値1、2又は3を示す。]
で表される化合物などの重合性シラン、及び/又はそれらから誘導された縮合物などを添加する事ができる。
 上記ナノスケール粒子としては、その他にも例えば、酸化物類、硫化物類、セレン化物類、テルル化物類、ハロゲン化物類、炭化物類、ヒ化物類、アンチモン化物類、窒化物類、リン化物類、炭酸塩類、カルボン酸塩類、リン酸塩類、硫酸塩類、ケイ酸塩類、チタン酸塩類、ジルコン酸塩類、アルミン酸塩類、スズ酸塩類、鉛酸塩類及びこれらの混合酸化物からなる群より選択されたナノスケール粒子などが挙げられる。
 上記ナノスケール粒子としては、より具体的には、国際公開第96/31572号に開示されたナノスケール無機粒子などが挙げられる。上記ナノスケール無機粒子としては、例えば、CaO、ZnO、CdO、SiO2、TiO2、ZrO2、CeO2、SnO2、PbO、Al23、In23、La23などの酸化物類;CdS、ZnSなどの硫化物類;GaSe、CdSe、ZnSeなどのセレン化物類;ZnTe、CdTeなどのテルル化物類;NaCl、KCl、BaCl2、AgCl、AgBr、AgI、CuCl、CuBr、CdI2、PbI2などのハロゲン化物類;CeC2などの炭化物類;AlAs、GaAs、CeAsなどのヒ素化物類;InSbなどのアンチモン化物類;BN、AlN、Si34、Ti34などの窒化物類;GaP、InP、Zn32、Cd32などのリン化物類;Na2CO3、K2CO3、CaCO3、SrCO3、BaCO3などの炭酸塩類;カルボン酸塩類、例えば、CH3COONaおよびPb(CH3COO)4などの酢酸塩類;リン酸塩類;硫酸塩類;ケイ酸塩類;チタン酸塩類;ジルコン酸塩類;アルミン酸塩類;スズ酸塩類;鉛酸塩類;その組成が好ましくは低熱膨張係数を有する通常のガラスの組成、例えば、SiO2、TiO2,ZrO2及びAl23の二成分、三成分又は四成分の組み合わせに一致する、対応する混合酸化物類などが挙げられる。
 上記ナノスケール粒子類は、従来の方法、例えば、国際公開第96/31572号に記載された文献による火炎加水分解、火炎熱分解及びプラズマ法で作製することができる。上記ナノスケール粒子類としては、安定化されたコロイド状無機粒子のナノ分散ゾル類、例えば、BAYER社製のシリカゾル、Goldschmidt社製のSnO2ゾル類、MERCK社製のTiO2ゾル類、Nissan Chemicals社製のSiO2、ZrO2、A123、Sb23ゾル、又はDEGUSSA社製のAerosil分散物類などが特に好ましい。
 上記ナノスケール粒子の平均粒子径は、特に限定されないが、1~200nmが好ましく、より好ましくは2~50nm、さらに好ましくは2~20nmである。
 本発明の光硬化性組成物における上記ナノスケール粒子の含有量(体積分率)は、特に限定されないが、光硬化性組成物の全量(100体積%)に対して、0~50体積%が好ましく、より好ましくは0~30体積%、さらに好ましくは0~20体積%である。
 本発明の光硬化性組成物は、必要に応じて、下記式(4)
23(U1)3Si   (4)
[式(4)中、R23は部分的にフッ素化又はペルフルオロ化されたC2~C20のアルキル基を示し、U1は、同一又は異なって、C1~C3-アルコキシ基、メチル基、エチル基、又は塩素原子を示す。]
で表される化合物(フルオロシラン)を含んでいてもよい。
 上記部分的にフッ素化されたアルキル基とは、少なくとも1個の水素原子がフッ素原子により置き換えられたアルキル基を意味する。このような基(R23)としては、特に、CF3CH2CH2-、C25CH2CH2-、C49CH2CH2-、n-C613CH2CH2-、n-C817CH2CH2-、n-C1021CH2CH2-、i-C37O-(CH2)3-が好ましい。
 上記式(4)で表される化合物の中でも、例えば、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル-1-トリエトキシシラン、CF3CH2CH2SiCl2CH3、CF3CH2CH2SiCl(CH3)2、CF3CH2CH2Si(CH3)(OCH3)2、i-C37O-(CH2)3SiCl2CH3、n-C613CH2CH2SiCl2CH3、n-C613CH2CH2SiCl(CH32などが市販品として入手可能である。
 本発明の光硬化性組成物における上記式(4)で表される化合物の含有量(配合量)は、特に限定されないが、光硬化性組成物の全量(100重量%)に対して、0~3重量%が好ましく、より好ましくは0.05~3重量%、さらに好ましくは0.1~2.5重量%、特に好ましくは0.2~2重量%である。
 本発明の光硬化性組成物は液状の光硬化性組成物である。本発明の光硬化性組成物は、何れかの温度において液状であればよく、特に限定されないが、特に室温(例えば、25℃)で液状であることが好ましい。即ち、上記光硬化性被転写材層は、室温(例えば、25℃)で液状の層であることが好ましい。本発明の光硬化性組成物が室温で液状の組成物であると、基板上への光硬化性被転写材層の形成を室温で容易に行うことができ、また、モールドの凹凸パターンの光硬化性被転写材層への転写(ナノインプリント)を容易かつ高精度に行うことができる。
 具体的には、本発明の光硬化性組成物の25℃における粘度は、特に限定されないが、1~1000000mPa・sが好ましく、より好ましくは2~10000mPa・s、さらに好ましくは3~1000mPa・sである。粘度が1mPa・s未満であると、光硬化性被転写材層が層の状態を保持することが困難となる場合がある。一方、粘度が1000000mPa・sを超えると、モールドの凹凸パターンの光硬化性被転写材層への転写の精度が低下する場合がある。上記の25℃における粘度は、例えば、E型粘度計(商品名「VISCONIC」、(株)トキメック製)を用いて測定することができる(ローター:1°34′×R24、回転数:0.5rpm、測定温度:25℃)。
 本発明の微細構造体の製造方法の工程Aにおいては、上記基板と上記モールドとで、液状の光硬化性被転写材層を挟み込む。工程Aにおいて「基板/光硬化性被転写材層/モールド」の積層構成を有する構造体を得る方法は、特に限定されないが、例えば、基板上に本発明の光硬化性組成物を公知乃至慣用のコーティング法(例えば、スピンコーティング、スリットコーティング、スプレーコーティング、ローラーコーティングなど)により塗工(塗布)して光硬化性被転写材層(光硬化性組成物層)を形成し、その後、該光硬化性被転写材層上にモールドを載置する方法;モールド上に本発明の光硬化性組成物を公知乃至慣用のコーティング法により塗工して光硬化性被転写材層を形成し、その後、該光硬化性被転写材層上に基板を載置する方法などが挙げられる。なお、本発明の光硬化性組成物が有機溶剤を含有する場合には、基板又はモールド上に塗工した後、必要に応じて加熱しながら有機溶剤を揮発させて除去することにより、光硬化性被転写材層を形成できる。
 上記光硬化性被転写材層の厚み(モールド又は基板を載置する前の厚み)は、特に限定されないが、10~100000nm(例えば、50~100000nm)が好ましく、より好ましくは100~50000nmである。厚みが10nm未満であると、硬化性が不十分になる場合がある。一方、厚みが100000nmを超えると、ナノインプリント後の光硬化層における残膜が多くなり過ぎる場合がある。
 上記光硬化性被転写材層上にモールド又は基板を載置する際には、モールドの凹凸パターンを光硬化性被転写材層に精度良く転写するため、加圧することが好ましい。なお、加圧はモールド及び基板のいずれか一方から行ってもよいし、両方から行ってもよい。印加する圧力としては、特に限定されないが、0.01~5MPaが好ましく、より好ましくは0.03~3MPa、さらに好ましくは0.05MPaを超え1MPa以下である。圧力が0.01MPa未満であったり、5MPaを超える場合、凹凸パターン転写の精度が低下する場合がある。また、加圧する時間(加圧時間)は、特に限定されないが、0.1~300秒が好ましく、より好ましくは0.2~200秒、さらに特に好ましくは0.5~100秒である。加圧時間が0.1秒未満であると、凹凸パターン転写の精度が低下する場合がある。一方、加圧時間が300秒を超えると、微細構造体の生産性が低下する場合がある。
 上記光硬化性被転写材層の厚み(モールド又は基板を載置し加圧した後の厚み)は、特に限定されないが、10~100000nm(例えば、50~100000nm)が好ましく、より好ましくは100~50000nmである。厚みが10nm未満であると、硬化性が不十分になる場合がある。一方、厚みが100000μmを超えると、ナノインプリント後の光硬化層における残膜が多くなり過ぎる場合がある。
 上述のように、工程Aにより、基板とモールドとで光硬化性被転写材層が挟み込まれた構造体(「基板/光硬化性被転写材層/モールド」の積層構成を有する構造体)が得られる。
<工程B>
 本発明の微細構造体の製造方法は、工程Aの後、上記構造体における上記光硬化性被転写材層を露光して光硬化層とし、次いで、上記光硬化層から上記モールドを離型する工程Bを包含する。
 上記光硬化性被転写材層の露光は、公知乃至慣用の方法により実施することができ、特に限定されない。例えば、露光の際に照射する光としては、例えば、X線、紫外線、可視光線、赤外線(近赤外線、遠赤外線)、電子線などが挙げられる。中でも、取り扱いが容易である点で、紫外線が好ましい。当該光の光源としては、特に限定されないが、例えば、水銀ランプ、キセノンランプ、カーボンアークランプ、メタルハライドランプ、太陽光、電子線源、レーザー光源、LED光源などが挙げられる。また、上記光硬化性被転写材層に対する露光の条件は適宜調整可能であり、特に限定されないが、例えば、紫外線照射により露光する場合には、100~100000mJ/cm2(より好ましくは100~50000mJ/cm2)の積算光量で照射することが好ましい。
 上記光硬化性被転写材層の露光に際しては、さらに加熱処理を行ってもよい。加熱処理を行うことにより、露光部分の硬化度(硬化率)がより高い光硬化層を形成させることができ、得られる微細構造体は優れた耐熱性を有する。なお、加熱処理は、上記露光と同時に又は並行して実施することもできるし、露光の前後に実施することもできる。露光の後に加熱処理を行う場合には、当該加熱処理は、モールドを離型する前に実施することもできるし、モールドを離型した後に実施することもできる。加熱温度は、特に限定されないが、80~150℃が好ましく、加熱時間は、特に限定されないが、1~10分間が好ましい。
 なお、上記光硬化性被転写材層の露光を行う際の雰囲気は、硬化反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気などの何れであってもよい。また、露光は、常圧下で行ってもよいし、減圧下又は加圧下で行ってもよい。
 上記露光により、光硬化性被転写材層が光硬化層(本発明の光硬化性組成物の硬化物により形成された層)に転化した構造体(「基板/光硬化層/モールド」の積層構成を有する構造体)が得られる。工程Bにおいては、その後、上記構造体からモールドを離型する。本発明の微細構造体の製造方法においては、上記モールドとしてシロキサン結合を有するポリマーにより形成されたモールドを使用しているため、モールドに離型剤などによる離型処理を施さなくても離型が容易である。また、光硬化性被転写材層として、本発明の光硬化性組成物により形成された特定の被転写材層を使用することにより、上記モールドが膨潤することがなく、容易に連続転写を行うことができる。モールドを離型する手段は、特に限定されず、例えば、手やピンセット等を使用して引き剥がす手動の離型方法や、マイクロ成形用のツールを使用する自動の離型方法(例えば、SUSS MicroTec, Inc. of Indianapolis, Indiana 46204, U.S.A.製のツール)などを使用することができる。
 工程Bにより、基板の表面に上記モールドの凹凸パターンがインプリントされた光硬化層を有する微細構造体(未エッチング)が得られる。上記微細構造体[微細構造体(未エッチング)]における光硬化層(硬化被膜)の厚みは、特に限定されないが、50~1000nmが好ましく、より好ましくは100~500nmである。
 上記微細構造体(未エッチング)においては、一般に、基板上にインプリントされた微細構造だけでなく、30nm未満の厚さを有する、被膜の構造化されていない残留層も残る。このような残留層は、例えば、急峻な壁面傾斜および高い縦横比(アスペクト比)を達成するためには、取り除くことが好ましい。上記残留層は、例えば、後述のエッチング工程を経ることによって取り除くことができる。なお、残留層が残っていることは、例えば、走査型電子顕微鏡等を用いて確認可能である。
 本発明の微細構造体の製造方法は、上記工程A及び工程B以外にも、さらに、光硬化層(硬化被膜)や基板にエッチングを施す工程(エッチング工程)を含んでいてもよい。上記エッチングは、公知乃至慣用の方法により実施することができ、特に限定されないが、例えば、酸素プラズマ又はCHF3/O2ガスを使用する方法などが挙げられる。当該エッチング工程を経ることにより、微細構造体(エッチング後)が得られる。
 なお、エッチングを行った後、本発明の微細構造体において残存する光硬化層(レジストコーティング)は、例えば、水酸化テトラメチルアンモニウムなどの公知乃至慣用の溶媒を使用して除去することが可能である。本発明の微細構造体の製造方法は、上述の光硬化層を除去する工程(レジスト除去工程)を含んでいてもよい。
 図2は、本発明の微細構造体の製造方法におけるエッチング工程及びレジスト除去工程の一例を説明する概略図(断面図)である。本発明の微細構造体の製造方法における工程A及び工程Bを経て得られた微細構造体(未エッチング)6に対してエッチングを施し(図2の(e)参照)、さらに必要に応じて、残存した光硬化膜を除去することによって、微細構造体(エッチング後)7が得られる(図2の(f)参照)。
 本発明の微細構造体の製造方法は、上述のエッチング工程やレジスト工程のほかにも、例えば、基板(例えば、化合物半導体基板など)のエッチングした領域中の半導体材料をドーピングする工程等のその他の工程を含んでいてもよい。
 本発明の微細構造体の製造方法により得られた微細構造体(本発明の微細構造体)は、シロキサン結合を有する有機高分子化合物により形成されたモールドを使用し、かつ光硬化性被転写材層として本発明の光硬化性組成物より形成された層を採用して製造されるため、微細構造体の離型性が良好で連続転写可能であり、生産性が非常に高い。本発明の微細構造体は、ナノインプリント法により得られる微細構造体が使用される種々の分野で使用することができ、例えば、半導体材料、フラットスクリーン、ホログラム、導波路、メディア用構造体、精密機械部品、又はセンサなどの精密機械部品等の分野で極めて有用である。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、表1中に示す光硬化性組成物を構成する各成分の量の単位は重量部である。
実施例1
[光硬化性組成物の調製]
 商品名「EHPE3150」((株)ダイセル製)20重量部、商品名「jER YX8000」(三菱化学(株)製)20重量部、3,4,3',4'-ジエポキシビシクロヘキシル30重量部、商品名「セロキサイド2021P」((株)ダイセル製)15重量部、商品名「OXT221」(東亞合成(株)製)15重量部、商品名「HS-1PC」(サンアプロ(株)製)6重量部、及びメトキシハイドロキノン(MEHQ)0.1重量部を、室温(25℃)で配合及び攪拌し、各成分を均一に溶解させて、室温で液状の光硬化性組成物(ナノインプリント用光硬化性組成物)を得た。
[微細構造体の製造]
 上記で得た光硬化性組成物を使用して、以下の手順で微細構造体の製造を行った。
 まず、基板(ヘキサメチルジシラザンで前処理した25mm×25mm角のシリコンウェハ)に、スピンコーティング(3000回転、30秒)により、上記で得た光硬化性組成物の塗膜(光硬化性被転写材層)を形成した。塗膜の厚み(膜厚)は、約500nmであった。
 次に、インプリンティング装置(明昌機工(株)製NM-0403モデル)のステージ上に、上記で得た光硬化性被転写材層を有する基板を載せ、当該光硬化性被転写材層に微細パターンを有するシリコーン(ポリジメチルシロキサン;PDMS)製のモールドを載せた。その後、30秒かけて0.1MPaまで転写圧(印加圧力)を高め、当該転写圧を表1に示す印加時間の間維持し、その後、当該転写圧を維持したまま、上記モールド側から、表1に示すUV照射強度及びUV照射時間で紫外線の照射を行い(積算光量:660mJ/cm2)、上記光硬化性被転写材層を硬化させて、ナノインプリントされた硬化物層(光硬化層)を形成させた。なお、上記モールドは、幅200nmのラインアンドスペースのパターンを転写できるモールドである。また、上記インプリンティング装置は、コンピューターで制御された試験機であり、装荷、緩和速度、加熱温度等をプログラムすることにより、規定された圧力を特定の時間維持することができ、さらに、付帯する高圧水銀灯により紫外線を照射することができる装置である。
 その後、上記光硬化層からモールドをピンセット等で引き剥がすことにより剥離(離型)し、基板上にパターンが形成された光硬化層を有する微細構造体を得た。
実施例2~7、比較例1~4
 光硬化性組成物の配合組成を表1に示すものに変更したこと以外は実施例1と同様にして、光硬化性組成物を調製した。また、使用する光硬化性組成物を表1に示すものに変更し、さらに、表1に示す転写条件を採用したこと以外は実施例1と同様にして、微細構造体を製造した。
 なお、実施例3、6、及び7の場合には、光硬化性被転写材層の形成の際に80℃で10分乾燥させることにより有機溶剤(PGMEA)を除去した。また、比較例3、4においては、予め離型処理を施した石英製のモールド(石英モールド)を使用した。
(離型性の評価)
 実施例及び比較例において微細構造体を製造した後のモールドのパターンが形成されている側の面を目視で確認し、以下の基準で離型性を評価した。
○(離型性良好):モールドに樹脂(光硬化性組成物の硬化物)が付着していない
×(離型性不良):モールドに樹脂(光硬化性組成物の硬化物)が付着している
(転写性の評価)
 実施例及び比較例にて得られた微細構造体の転写率を算出し、以下の基準で転写性(モールドのパターンが微細構造体において精度良く再現できていることを示す特性)を評価した。
◎(転写性が極めて良好):転写率が70%以上
○(転写性が良好):転写率が30%以上、70%未満
×(転写性が不良):転写率が30%未満
 なお、転写率は、モールドのパターン高さ(H1)と、微細構造体において転写されたパターン高さ(H2)とを用いて、下記式により算出した。なお、パターン高さは、AFMにより求めた。
 転写率 = H2/H1 × 100
(連続転写性の評価)
 実施例及び比較例における微細構造体の製造を連続して50回実施し、1回目に得られた微細構造体と50回目に得られた微細構造体の微細パターンを、AFMにより観察した。これら微細構造体の微細パターンの高さから、それぞれの微細構造体における転写率を算出し、その変化量にて連続転写性を評価した。なお、転写率は、上述の式により算出した。
○(連続転写性が良好):転写率の変化量[=(1回目に得られた微細構造体の転写率)-(50回目に得られた微細構造体の転写率)]が初期値(1回目に得られた微細構造体における転写率)の±20%の範囲内である
×(連続転写性が不良):転写率の変化量が初期値の±20%の範囲外である
Figure JPOXMLDOC01-appb-T000024
 表1に示すように、実施例における微細構造体の製造方法(本発明の微細構造体の製造方法)では、モールドの離型性が良好であり、また、転写性及び連続転写性も良好であった。一方、比較例における微細構造体の製造方法においては、上述の離型性、転写性、及び連続転写性を両立させることはできなかった。
 以下に、実施例にて使用した成分を示す。
 EHPE3150:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキセン付加物(Mw:約2000)、(株)ダイセル製
 YX8000(jER YX8000):水素添加ビスフェノールA型エポキシ化合物、三菱化学(株)製
 セロキサイド2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
 OXT221(アロンオキセタンOXT221):3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、東亞合成(株)製
 CS1140:サイクロマーM100とスチレン(1/1:モル比)の共重合体(Mw:約40000)
 OXT121(アロンオキセタンOXT121):1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、東亞合成(株)製
 セロキサイド3000:1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサン、(株)ダイセル製
 TMPTA:トリメチロールプロパントリアクリレート
 IRR214K:トリシクロデカンジメタノールジアクリレート、ダイセル・サイテック(株)製
 EA1020:ビスフェノールA型エポキシアクリレート、新中村化学(株)製
 HS-1PC:カチオン重合開始剤(光酸発生剤)、サンアプロ(株)製
 IRGACURE184:ラジカル重合開始剤、BASF製
 MEHQ:メトキシハイドロキノン
 IRG1010(イルガノックス1010):酸化防止剤、BASF製
 HP-10(アデカスタブHP-10):酸化防止剤、(株)ADEKA製
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
1   基板
2   光硬化性被転写材層(光硬化性組成物層)
3   モールド
4   光源
5   光硬化層(硬化物層)
6   微細構造体(未エッチング)
7   微細構造体(エッチング後)
 本発明の微細構造体の製造方法により得られた微細構造体は、ナノインプリント法により得られる微細構造体が使用される種々の分野で使用することができ、例えば、半導体材料、フラットスクリーン、ホログラム、導波路、メディア用構造体、精密機械部品、又はセンサなどの精密機械部品等の分野で極めて有用である。

Claims (6)

  1.  基板と表面に凹凸パターンが形成されたモールドとで、液状の光硬化性被転写材層を挟み込んで成形した後、前記被転写材層を露光して光硬化層とし、次いで、前記光硬化層から前記モールドを離型して微細構造体を製造する方法であって、
     前記モールドが、シロキサン結合を有する有機高分子化合物より構成されたモールドであり、
     前記被転写材層が、カチオン重合性化合物(A)及び光酸発生剤(B)を含む光硬化性組成物により形成された層であり、
     前記光硬化性組成物が、カチオン重合性化合物(A)として、下記式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、nは0~10の整数を示す。Xは、酸素原子、-CH2-、-C(CH32-、-CBr2-、-C(CBr32-、-CF2-、-C(CF32-、-CCl2-、-C(CCl32-、又は-CH(C65)-を示す。nが2以上の場合には、2個以上のXは同一であってもよいし異なっていてもよい。R1~R18は、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。]
    で表される化合物、及び下記式(II)
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、Rは、q価のアルコールからq個の水酸基を除いた基を示す。p、qは、同一又は異なって、1以上の整数を示す。]
    で表される化合物からなる群より選択された少なくとも1種の化合物を含むことを特徴とする微細構造体の製造方法。
  2.  前記光硬化性組成物が、カチオン重合性化合物(A)として、前記式(I)で表される化合物及び前記式(II)で表される化合物以外のエポキシ化合物、オキセタン化合物、並びにビニルエーテル化合物からなる群より選択された少なくとも1種の化合物を含む請求項1に記載の微細構造体の製造方法。
  3.  前記カチオン重合性化合物(A)における下記式(III)
    Figure JPOXMLDOC01-appb-C000003
    [式(III)中、R19は、水素原子、又は置換基を有していてもよい炭素数1~4のアルキル基を示す。r、sは、同一又は異なって、1以上の整数を示す。]
    で表される化合物の含有量が0~80重量%である請求項1又は2に記載の微細構造体の製造方法。
  4.  基板と、表面に凹凸パターンが形成されシロキサン結合を有する有機高分子化合物より構成されたモールドとで、液状の光硬化性被転写材層を挟み込んで成形した後、前記被転写材層を露光して光硬化層とし、次いで、前記光硬化層から前記モールドを離型する微細構造体の製造に使用される、前記被転写材層を形成するナノインプリント用光硬化性組成物であって、
     カチオン重合性化合物(A)と光酸発生剤(B)とを含み、カチオン重合性化合物(A)として、下記式(I)
    Figure JPOXMLDOC01-appb-C000004
    [式(I)中、nは0~10の整数を示す。Xは、酸素原子、-CH2-、-C(CH32-、-CBr2-、-C(CBr32-、-CF2-、-C(CF32-、-CCl2-、-C(CCl32-、又は-CH(C65)-を示す。nが2以上の場合には、2個以上のXは同一であってもよいし異なっていてもよい。R1~R18は、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。]
    で表される化合物、及び下記式(II)
    Figure JPOXMLDOC01-appb-C000005
    [式(II)中、Rは、q価のアルコールからq個の水酸基を除いた基を示す。p、qは、同一又は異なって、1以上の整数を示す。]
    で表される化合物からなる群より選択された少なくとも1種の化合物を含むことを特徴とするナノインプリント用光硬化性組成物。
  5.  さらに、カチオン重合性化合物(A)として、前記式(I)で表される化合物及び前記式(II)で表される化合物以外のエポキシ化合物、オキセタン化合物、並びにビニルエーテル化合物からなる群より選択された少なくとも1種の化合物を含む請求項4に記載のナノインプリント用光硬化性組成物。
  6.  前記カチオン重合性化合物(A)における下記式(III)
    Figure JPOXMLDOC01-appb-C000006
    [式(III)中、R19は、水素原子、又は置換基を有していてもよい炭素数1~4のアルキル基を示す。r、sは、同一又は異なって、1以上の整数を示す。]
    で表される化合物の含有量が0~80重量%である請求項4又は5に記載のナノインプリント用光硬化性組成物。
PCT/JP2013/080421 2012-11-27 2013-11-11 微細構造体の製造方法及びナノインプリント用光硬化性組成物 WO2014084030A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157013557A KR20150090073A (ko) 2012-11-27 2013-11-11 미세 구조체의 제조 방법 및 나노임프린트용 광경화성 조성물
JP2014550109A JPWO2014084030A1 (ja) 2012-11-27 2013-11-11 微細構造体の製造方法及びナノインプリント用光硬化性組成物
CN201380061534.9A CN104837886A (zh) 2012-11-27 2013-11-11 微细结构体的制造方法及纳米压印用光固化性组合物
US14/647,204 US20150298365A1 (en) 2012-11-27 2013-11-11 Method for producing microstructure and photocurable composition for nanoimprinting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-258996 2012-11-27
JP2012258996 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014084030A1 true WO2014084030A1 (ja) 2014-06-05

Family

ID=50827676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080421 WO2014084030A1 (ja) 2012-11-27 2013-11-11 微細構造体の製造方法及びナノインプリント用光硬化性組成物

Country Status (6)

Country Link
US (1) US20150298365A1 (ja)
JP (1) JPWO2014084030A1 (ja)
KR (1) KR20150090073A (ja)
CN (1) CN104837886A (ja)
TW (1) TW201438876A (ja)
WO (1) WO2014084030A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052212A1 (ja) * 2014-10-02 2016-04-07 株式会社ダイセル ナノインプリント用光硬化性組成物
JP2017036422A (ja) * 2015-08-13 2017-02-16 株式会社ダイセル 硬化性組成物及びその硬化物
JP2017036421A (ja) * 2015-08-13 2017-02-16 株式会社ダイセル 硬化性組成物及びその硬化物
JP2019183168A (ja) * 2019-07-05 2019-10-24 株式会社ダイセル 硬化性組成物及びその硬化物
WO2024053548A1 (ja) * 2022-09-08 2024-03-14 日東電工株式会社 光硬化性樹脂シート

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI649212B (zh) * 2015-04-03 2019-02-01 佳能股份有限公司 液體排放設備、壓印設備及部件製造方法
US20170210036A1 (en) * 2016-01-22 2017-07-27 Canon Kabushiki Kaisha Mold replicating method, imprint apparatus, and article manufacturing method
CN105856888B (zh) 2016-04-01 2018-11-30 京东方科技集团股份有限公司 一种转印方法和重复转印方法
CN108640081B (zh) * 2018-05-07 2019-11-12 徐小女 一种微结构的制备方法
US20220390839A1 (en) * 2021-06-03 2022-12-08 Viavi Solutions Inc. Method of replicating a microstructure pattern

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275169A (ja) * 2001-03-23 2002-09-25 Daicel Chem Ind Ltd エポキシ化合物の製造方法
CA2439608A1 (en) * 2001-03-23 2002-10-03 Daicel Chemical Industries, Ltd. Method of producing epoxy compound, epoxy resin composition and its applications, ultraviolet rays-curable can-coating composition and method of producing coated metal can
KR20080005875A (ko) * 2006-07-10 2008-01-15 후지필름 가부시키가이샤 광경화성 조성물 및 그것을 사용한 패턴형성방법
JP2008266608A (ja) * 2007-03-24 2008-11-06 Daicel Chem Ind Ltd ナノインプリント用硬化性樹脂組成物
WO2009101758A1 (ja) * 2008-02-14 2009-08-20 Daicel Chemical Industries, Ltd. ナノインプリント用硬化性樹脂組成物
WO2009110162A1 (ja) * 2008-03-03 2009-09-11 ダイセル化学工業株式会社 微細構造物の製造方法
JP2012101474A (ja) * 2010-11-11 2012-05-31 Asahi Kasei Corp 樹脂モールド

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101449206A (zh) * 2006-04-11 2009-06-03 陶氏康宁公司 热变形低的硅氧烷复合模具
JP5309436B2 (ja) * 2006-10-16 2013-10-09 日立化成株式会社 樹脂製微細構造物、その製造方法及び重合性樹脂組成物
JP4937806B2 (ja) * 2007-03-24 2012-05-23 株式会社ダイセル ナノインプリント用光硬化性樹脂組成物

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275169A (ja) * 2001-03-23 2002-09-25 Daicel Chem Ind Ltd エポキシ化合物の製造方法
CA2439608A1 (en) * 2001-03-23 2002-10-03 Daicel Chemical Industries, Ltd. Method of producing epoxy compound, epoxy resin composition and its applications, ultraviolet rays-curable can-coating composition and method of producing coated metal can
EP1389615A1 (en) * 2001-03-23 2004-02-18 DAICEL CHEMICAL INDUSTRIES, Ltd. Process for producing epoxy compound, epoxy resin composition and use thereof, ultraviolet-curable can coating composition, and process for producing coated metal can
US20030059618A1 (en) * 2001-03-23 2003-03-27 Hideyuke Takai Method of producing epoxy compound, epoxy resin composition and its applications, ultraviolet rays-curable can-coating composition and method of producing coated metal can
WO2002076966A1 (fr) * 2001-03-23 2002-10-03 Daicel Chemical Industries, Ltd. Procede de fabrication de compose epoxy, composition de resine expoxy et son utilisation, composition de revetement a sechage uv, et procede de fabrication de boite metallique ainsi revetue
KR20080005875A (ko) * 2006-07-10 2008-01-15 후지필름 가부시키가이샤 광경화성 조성물 및 그것을 사용한 패턴형성방법
CN101105625A (zh) * 2006-07-10 2008-01-16 富士胶片株式会社 光固化性组合物及使用其的图案形成方法
TW200811597A (en) * 2006-07-10 2008-03-01 Fujifilm Corp Photo-curing composition and producing method of pattern using the same
JP2008019292A (ja) * 2006-07-10 2008-01-31 Fujifilm Corp 光硬化性組成物およびそれを用いたパターン形成方法
JP2008266608A (ja) * 2007-03-24 2008-11-06 Daicel Chem Ind Ltd ナノインプリント用硬化性樹脂組成物
WO2009101758A1 (ja) * 2008-02-14 2009-08-20 Daicel Chemical Industries, Ltd. ナノインプリント用硬化性樹脂組成物
JP2009191172A (ja) * 2008-02-14 2009-08-27 Daicel Chem Ind Ltd ナノインプリント用硬化性樹脂組成物
KR20100126686A (ko) * 2008-02-14 2010-12-02 다이셀 가가꾸 고교 가부시끼가이샤 나노임프린트용 경화성 수지 조성물
US20120141738A1 (en) * 2008-02-14 2012-06-07 Hiroto Miyake Curable resin composition for nanoimprint
TW200940566A (en) * 2008-02-14 2009-10-01 Daicel Chem Curable resin composition for nanoimprint
CN101984756A (zh) * 2008-02-14 2011-03-09 大赛璐化学工业株式会社 纳米压印用固化性树脂组合物
EP2246371A1 (en) * 2008-02-14 2010-11-03 Daicel Chemical Industries, Ltd. Curable resin composition for nanoimprint
WO2009110162A1 (ja) * 2008-03-03 2009-09-11 ダイセル化学工業株式会社 微細構造物の製造方法
EP2261007A1 (en) * 2008-03-03 2010-12-15 Daicel Chemical Industries, Ltd. Process for production of nanostructures
KR20100137437A (ko) * 2008-03-03 2010-12-30 다이셀 가가꾸 고교 가부시끼가이샤 미세 구조물의 제조 방법
CN101945750A (zh) * 2008-03-03 2011-01-12 大赛璐化学工业株式会社 细微结构体的制造方法
US20110008577A1 (en) * 2008-03-03 2011-01-13 Hiroto Miyake Process for production of fine structure
TW200944938A (en) * 2008-03-03 2009-11-01 Daicel Chem Production method of fine structure
JP2009208317A (ja) * 2008-03-03 2009-09-17 Daicel Chem Ind Ltd 微細構造物の製造方法
JP2012101474A (ja) * 2010-11-11 2012-05-31 Asahi Kasei Corp 樹脂モールド

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052212A1 (ja) * 2014-10-02 2016-04-07 株式会社ダイセル ナノインプリント用光硬化性組成物
JP2017036422A (ja) * 2015-08-13 2017-02-16 株式会社ダイセル 硬化性組成物及びその硬化物
JP2017036421A (ja) * 2015-08-13 2017-02-16 株式会社ダイセル 硬化性組成物及びその硬化物
WO2017026352A1 (ja) * 2015-08-13 2017-02-16 株式会社ダイセル 硬化性組成物及びその硬化物
WO2017026351A1 (ja) * 2015-08-13 2017-02-16 株式会社ダイセル 硬化性組成物及びその硬化物
US10988569B2 (en) 2015-08-13 2021-04-27 Daicel Corporation Curable composition and cured product from same
US10988568B2 (en) 2015-08-13 2021-04-27 Daicel Corporation Curable composition and cured product from same
JP2019183168A (ja) * 2019-07-05 2019-10-24 株式会社ダイセル 硬化性組成物及びその硬化物
WO2024053548A1 (ja) * 2022-09-08 2024-03-14 日東電工株式会社 光硬化性樹脂シート

Also Published As

Publication number Publication date
CN104837886A (zh) 2015-08-12
KR20150090073A (ko) 2015-08-05
US20150298365A1 (en) 2015-10-22
TW201438876A (zh) 2014-10-16
JPWO2014084030A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2014084030A1 (ja) 微細構造体の製造方法及びナノインプリント用光硬化性組成物
JP5101343B2 (ja) 微細構造物の製造方法
JP5435879B2 (ja) ナノインプリント用硬化性樹脂組成物
JP5269449B2 (ja) ナノインプリント用硬化性樹脂組成物
JP5215833B2 (ja) 微細パターン転写用スタンパ及びその製造方法
JP5555025B2 (ja) 微細パターン転写用スタンパ及びその製造方法
Pina-Hernandez et al. High-resolution functional epoxysilsesquioxane-based patterning layers for large-area nanoimprinting
US20090256287A1 (en) UV Curable Silsesquioxane Resins For Nanoprint Lithography
JP5235155B2 (ja) 微細樹脂構造体及び光電回路基板の製造方法、微細樹脂構造体及び光電回路基板
JP6737958B2 (ja) キット、積層体、積層体の製造方法、硬化物パターンの製造方法および回路基板の製造方法
JP2008214555A (ja) 樹脂組成物及び樹脂硬化物
KR20190077547A (ko) 레플리카 몰드 형성용 수지 조성물, 레플리카 몰드 및 상기 레플리카 몰드를 사용한 패턴 형성 방법
JP4912058B2 (ja) ハイブリッド感光性樹脂組成物
JP2008299165A (ja) 中空構造を有する成形体の製造法
US8690559B2 (en) Nano-imprinting resin stamper and nano-imprinting apparatus using the same
TW202104322A (zh) 壓印用光硬化性樹脂組合物、壓印用光硬化性樹脂組合物之製造方法、及圖案形成體之製造方法
WO2019142528A1 (ja) 凹凸構造体の製造方法、凹凸構造体を製造する方法に用いられる積層体および当該積層体の製造方法
JP2018161862A (ja) 樹脂成型品の製造方法及び光学部品の製造方法
JP2006003622A (ja) 光デバイスの製造方法
Pina Novel organosilicone materials and patterning techniques for nanoimprint lithography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550109

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157013557

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14647204

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859276

Country of ref document: EP

Kind code of ref document: A1