US20200292745A1 - Holographic Waveguide Backlight and Related Methods of Manufacturing - Google Patents

Holographic Waveguide Backlight and Related Methods of Manufacturing Download PDF

Info

Publication number
US20200292745A1
US20200292745A1 US16/817,524 US202016817524A US2020292745A1 US 20200292745 A1 US20200292745 A1 US 20200292745A1 US 202016817524 A US202016817524 A US 202016817524A US 2020292745 A1 US2020292745 A1 US 2020292745A1
Authority
US
United States
Prior art keywords
grating
light
grating elements
diffracting
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/817,524
Other languages
English (en)
Inventor
Jonathan David Waldern
Milan Popovich
Alastair John Grant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DigiLens Inc
Original Assignee
DigiLens Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DigiLens Inc filed Critical DigiLens Inc
Priority to US16/817,524 priority Critical patent/US20200292745A1/en
Publication of US20200292745A1 publication Critical patent/US20200292745A1/en
Priority to US17/124,269 priority patent/US11378732B2/en
Assigned to DIGILENS INC. reassignment DIGILENS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRANT, ALASTAIR JOHN, POPOVICH, MILAN MOMCILO, WALDERN, JONATHAN DAVID
Priority to US17/810,095 priority patent/US20220404538A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements

Definitions

  • the present invention generally relates to waveguide devices and, more specifically, to holographic waveguide backlights.
  • Waveguides can be referred to as structures with the capability of confining and guiding waves (i.e., restricting the spatial region in which waves can propagate).
  • One subclass includes optical waveguides, which are structures that can guide electromagnetic waves, typically those in the visible spectrum.
  • Waveguide structures can be designed to control the propagation path of waves using a number of different mechanisms.
  • planar waveguides can be designed to utilize diffraction gratings to diffract and couple incident light into the waveguide structure such that the in-coupled light can proceed to travel within the planar structure via total internal reflection (TIR).
  • TIR total internal reflection
  • Fabrication of waveguides can include the use of material systems that allow for the recording of holographic optical elements within the waveguides.
  • One class of such material includes polymer dispersed liquid crystal (PDLC) mixtures, which are mixtures containing photopolymerizable monomers and liquid crystals.
  • PDLC polymer dispersed liquid crystal
  • HPDLC holographic polymer dispersed liquid crystal
  • Holographic optical elements such as volume phase gratings, can be recorded in such a liquid mixture by illuminating the material with two mutually coherent laser beams.
  • the monomers polymerize, and the mixture undergoes a photopolymerization-induced phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer.
  • the alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating.
  • the resulting grating which is commonly referred to as a switchable Bragg grating (SBG)
  • SBG switchable Bragg grating
  • the latter can extend from non-diffracting (cleared) to diffracting with close to 100% efficiency.
  • Waveguide optics such as those described above, can be considered for a range of display and sensor applications.
  • waveguides containing one or more grating layers encoding multiple optical functions can be realized using various waveguide architectures and material systems, enabling new innovations in near-eye displays for augmented reality (AR) and virtual reality (VR), compact head-up displays (HUDs) and helmet-mounted displays or head-mounted displays (HMDs) for road transport, aviation, and military applications, and sensors for biometric and laser radar (LIDAR) applications.
  • AR augmented reality
  • VR virtual reality
  • HUDs compact head-up displays
  • HMDs helmet-mounted displays or head-mounted displays
  • LIDAR biometric and laser radar
  • One embodiment includes an optical illumination device including a light guiding structure with an upper surface for extracting illumination and a lower surface, a light source optically coupled to the light guiding structure and configured to provide polarized light, the light undergoing total internal reflection within the light guiding structure, and at least one plurality of grating elements disposed in at least one grating layer for extracting light from the light guiding structure.
  • the light source is configured to emit at least first and second wavelength collimated light color sequentially, wherein the at least one plurality of grating elements includes a first plurality of grating elements for diffracting the first wavelength light out of the light guiding structure into a first set of output paths, and a second plurality grating elements for diffracting the second wavelength light out of the light guiding structure into a second set of output paths substantially overlapping the first set of output paths.
  • the optical illumination device further includes a substrate having half-wave retarding regions interspersed with clear regions overlaying the upper surface, wherein each the half wave retarding region overlaps at least one grating element in each of the first and second pluralities of grating elements, and each the clear region overlaps at least one grating element in each of the first and second pluralities of grating elements.
  • the optical illumination device further includes a quarter-wave retarding layer disposed, the quarter-wave retarding layer having a first surface disposed in proximity to the lower surface and a reflective surface.
  • the first plurality of grating elements is disposed in a separate grating layer to the second plurality of grating elements, wherein grating elements for diffracting the first wavelength light overlap grating elements for diffracting the second wavelength light.
  • grating elements for diffracting first and second wavelength light are disposed as uniformly interspersed first and second multiplicities of grating elements in one layer.
  • grating elements for diffracting first and second wavelength light are disposed as uniformly interspersed first and second multiplicities of grating elements in two layers, wherein grating element for diffracting a first wavelength light overlap grating elements for diffracting second wavelength light.
  • grating elements for diffracting first wavelength light have a first grating vector and grating elements for diffracting second wavelength light have a second grating vector in an opposing direction to the first grating vector.
  • grating elements for diffracting first wavelength light and grating elements for diffracting second wavelength light have grating vectors aligned in substantially parallel directions.
  • grating elements for diffracting first wavelength light and grating elements for diffracting second wavelength light are off-Bragg with respect to each other.
  • grating elements for diffracting first wavelength light are disposed in a first layer in which grating elements having a first grating vector and grating elements having a second grating vector in an opposing direction to the first grating vector are uniformly interspersed, wherein grating elements for diffracting second wavelength light are disposed in a second layer in which grating elements having a first grating vector and grating elements having a second grating vector in an opposing direction to the first grating vector are interspersed.
  • the first wavelength light has a first polarization and the second wavelength light has a second polarization orthogonal to the first polarization.
  • the first wavelength light and the second wavelength light have the same polarization.
  • grating elements for diffracting first and second wavelength light are disposed as first and second multiplicities of grating elements multiplexed in a single layer, wherein grating elements for diffracting the first wavelength are multiplexed with grating elements for diffracting the second wavelength light.
  • grating elements for diffracting first and second wavelength light are disposed as first and second multiplicities of grating elements in a stack of two contacting layers with grating elements for diffracting the first wavelength light overlapping grating elements for diffracting the second wavelength light.
  • grating elements of the first plurality are switched into a diffracting state when the light source emits the first wavelength light and grating elements of the second plurality are switched into a diffracting state when the light source emits the second wavelength light.
  • the output paths are angularly separated.
  • the output paths are substantially normal to the upper surface.
  • the at least one plurality of grating elements is disposed in at least one grating layer, wherein the light guiding structure includes at least one waveguide, wherein each the waveguide supports at least one of the grating layers.
  • the layer is formed between transparent substrates with transparent conductive coatings applied to each the substrate, at least one of the coatings being patterned into independently addressable elements overlapping the grating elements, wherein an electrical control circuit operative to apply voltages across each the grating elements is provided.
  • each the grating element includes at least one property that is one of a planar Bragg surfaces, optical power, optical retardation, diffusing properties, spatially varying diffraction efficiency, diffraction efficiency proportional to a voltage applied across the grating element, and phase retardation proportional to a voltages applied across the grating element.
  • the at least one plurality of grating elements includes a two-dimensional array.
  • the at least one plurality of grating elements includes a one-dimensional array of elongate elements.
  • each the grating element is recorded in a Holographic Polymer Dispersed Liquid Crystal.
  • the light is coupled into the light guide structure by a grating or a prism.
  • the light source is laser or LED.
  • the optical illumination device further includes at least one component that is one of a beam deflector, a dichroic filter, a microlens array, beam shaper, light integrator, and a polarization rotator.
  • a still yet another embodiment again includes an optical illumination device including at least one waveguide, a source of light optically coupled to the at least one waveguide configured to emit light having a first polarization state, a first plurality of grating elements for diffracting the light having the first polarization state out of the at least one waveguide into a first set of output paths, a second plurality of grating elements for diffracting the light having the first polarization state light out of the at least one waveguide into a second set of output paths, and at least one input coupler configured to couple at least a portion of the light having the first polarization state towards the first and second pluralities of grating elements.
  • the optical illumination device further includes a quarter-wave plate having a reflective surface, and a substrate including a plurality of transparent regions and a plurality of regions supporting half-wave plates, wherein at least one of the first plurality of grating elements is configured to diffract a first portion of the light having the first polarization state towards at least one of the plurality of transparent regions, at least one of the second plurality of grating elements is configured to diffract a second portion of the light having the first polarization state towards the quarter-wave plate, and the quarter-wave plate is configured to reflect incident the light having the first polarization state towards at least one of the plurality of regions supporting half-wave plates, wherein the reflected incident light has its polarization state changed to a second polarization state that is orthogonal to the first polarization state, wherein the first and second pluralities of grating elements are formed in at least one grating layer disposed within the at least one waveguide.
  • the optical illumination device further includes third and fourth pluralities of grating elements, wherein the light having a first polarization state includes light of a first wavelength band and light of a second wavelength band, the at least one input coupler includes a first input coupler for coupling the light of the first wavelength band towards the first and second pluralities of grating elements, and a second input coupler for coupling the light of the second wavelength band towards the third and fourth pluralities of grating elements.
  • the at least one waveguide includes first and second grating layers, the first and second pluralities of grating elements are interspersed within the first grating layer, the third and fourth pluralities of grating elements are interspersed with the second grating layer, the first and third pluralities of grating elements have grating vectors in a first direction, and the second and fourth pluralities of grating elements have grating vectors in an opposing direction to the first direction.
  • the emitted light is collimated light
  • source of light is configured to emit the light of the first and second wavelength bands sequentially.
  • the first and second pluralities of grating elements are configured to switch into a diffracting state when the source of light emits the light of the first wavelength band is emitted, and the third and fourth pluralities of grating elements are configured to switch into a diffracting state when the source of light emits the light of the second wavelength band.
  • the optical illumination device further includes third and fourth pluralities of grating elements, wherein the at least one waveguide includes first and second grating layers, the first and third pluralities of grating elements are interspersed within the first grating layer, the second and fourth pluralities of grating elements are interspersed within the second grating layer, the light having a first polarization state includes light of a first wavelength band and light of a second wavelength band, and the at least one input coupler includes a first input coupler for coupling the light of the first wavelength band towards the first and second pluralities of grating elements, and a second input coupler for coupling the light of the second wavelength band towards the third and fourth pluralities of grating elements.
  • the optical illumination device further includes a quarter-wave plate having a reflective surface, third and fourth pluralities of grating elements, wherein the source of light is further configured to emit light having a second polarization state, the light having the first polarization state is in a first wavelength band, and the light having the second polarization state is in a second wavelength band, the third and fourth pluralities of grating elements are configured to diffract the light having the second polarization state towards the quarter-wave plate, the at least one waveguide includes first and second grating layers, the first and third pluralities of grating elements are interspersed within the first grating layer, and the second and fourth pluralities of grating elements are interspersed within the second grating layer, and the first plurality of grating elements spatially overlaps the second plurality of grating elements.
  • the first plurality of grating elements has a grating vector in a first direction
  • the second plurality of grating elements has a grating vector in an opposing direction to the first direction
  • the source of light is a laser source.
  • FIGS. 1A and 1B conceptually illustrate HPDLC SBG devices and the switching property of SBGs in accordance with various embodiments of the invention.
  • FIG. 2 conceptually illustrates a waveguide backlight in accordance with an embodiment of the invention.
  • FIG. 3 conceptually illustrates a flow chart of a process for providing a waveguide backlight in accordance with an embodiment of the invention.
  • FIG. 4 conceptually illustrates a waveguide backlight with two waveguide layers in accordance with an embodiment of the invention.
  • FIG. 5 conceptually illustrates a waveguide backlight with a single waveguide layer in accordance with an embodiment of the invention.
  • FIG. 6 conceptually illustrates a waveguide backlight having two waveguide layers with alternating wavelength-diffracting grating elements in accordance with an embodiment of the invention.
  • FIG. 7 conceptually illustrates a waveguide backlight having a single waveguide layer with alternating wavelength-diffracting grating elements in accordance with an embodiment of the invention.
  • FIG. 8 conceptually illustrates a waveguide backlight having two waveguide layers with alternating wavelength-diffracting grating elements for input light having orthogonal polarizations in accordance with an embodiment of the invention.
  • FIG. 9 conceptually illustrates a waveguide backlight having a single waveguide layer with alternating wavelength-diffracting grating elements for input light having orthogonal polarizations in accordance with an embodiment of the invention.
  • the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention.
  • the terms light, ray, beam, and direction may be used interchangeably and in association with each other to indicate the direction of propagation of electromagnetic radiation along rectilinear trajectories.
  • the term light and illumination may be used in relation to the visible and infrared bands of the electromagnetic spectrum.
  • grating may encompass a grating comprised of a set of gratings in some embodiments.
  • grating may encompass a grating comprised of a set of gratings in some embodiments.
  • An ideal backlight unit should have a compact (i.e., thin) form factor and should deliver uniform luminance and color with efficient coupling of light from the illumination source and extraction from the BLU onto the display panel to be back-lit.
  • the BLU thickness should be a few millimeters.
  • Television displays likewise require low thickness to image diagonal ratios.
  • Traditional edge-lit solutions have failed to meet form factor and uniformity requirements.
  • Waveguide or light guiding which carry the illumination light by total internal reflection while extracting portions of such light from the waveguide, can provide very thin form factors.
  • waveguides can suffer from spatial variations of luminance and color due to the dispersive properties of gratings typically implemented in waveguides. In some cases, dispersion can be greatly alleviated by using laser sources.
  • Illumination nonuniformities can arise from wavelength-dependent absorption within gratings; the small loss incurred at each beam-grating interaction can be multiplied as the beam propagates down the waveguide, leading to a progressive dimming of light along the waveguide.
  • laser sources which can make for a very compact light source-to-waveguide coupling optics
  • the high coherence of the lasers can result in a banding effect caused by gaps or overlaps due to imperfect interlacing of the total internal reflection beams.
  • Laser-lit BLUs can also suffer from laser speckle.
  • Another source of nonuniformity when birefringent materials are used to form gratings, results from polarization rotations occurring at each beam bounce.
  • This polarization variation can manifest itself as luminance nonuniformity. Color nonuniformity can also occur due to wavelength dependence of birefringence. Finally, birefringent gratings can result in spatially varying polarization at the output of the BLU. This can result in luminance and color nonuniformity when the display panel to be lit is a liquid crystal device.
  • the waveguide backlight is implemented as a compact, efficient, highly uniform, color waveguide backlight that can be used in a range of display applications, such as but not limited to LCD monitors, digital holographic display, and mobile computing and telecommunications devices.
  • the waveguide backlight includes a waveguide and a source of light configured to provide input light. The input light can be coupled into the waveguide in a total internal reflection path using a variety of different methods.
  • an input coupler such as but not limited to a grating or a prism, is utilized to couple light into the waveguide.
  • the source of light is configured to provide light of different wavelengths. In further embodiments, the source of light is configured to emit at least first and second wavelength collimated light color sequentially.
  • the waveguide can include at least two sets of grating elements disposed across at least one grating layer. Each set of grating elements can be configured to operate at a specific wavelength/angular band. In many embodiments, each set of grating elements is configured to diffract and extract either upward-going or downward-going light. In several embodiments, each set of grating elements are configured for a specific wavelength band. In further embodiments, each set of grating elements include switchable Bragg gratings and is switched into a diffracting state when the light source emits wavelength light intended for that set.
  • waveplates and retarders are implemented to control the polarization of light.
  • waveguide backlights in accordance with various embodiments of the invention can be implemented in numerous configurations, the specific of which can depend on the application. Waveguide backlight configurations, optical waveguide structures, materials, and manufacturing processes are discussed in the sections below in further detail.
  • Optical structures recorded in waveguides can include many different types of optical elements, such as but not limited to diffraction gratings.
  • Gratings can be implemented to perform various optical functions, including but not limited to coupling light, directing light, and preventing the transmission of light.
  • the gratings are surface relief gratings that reside on the outer surface of the waveguide.
  • the grating implemented is a Bragg grating (also referred to as a volume grating), which are structures having a periodic refractive index modulation.
  • Bragg gratings can be fabricated using a variety of different methods. One process includes interferential exposure of holographic photopolymer materials to form periodic structures.
  • Bragg gratings can have high efficiency with little light being diffracted into higher orders.
  • the relative amount of light in the diffracted and zero order can be varied by controlling the refractive index modulation of the grating, a property that can be used to make lossy waveguide gratings for extracting light over a large pupil.
  • SBGs can be fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between substrates.
  • the substrates can be made of various types of materials, such glass and plastics. In many cases, the substrates are in a parallel configuration. In other embodiments, the substrates form a wedge shape.
  • One or both substrates can support electrodes, typically transparent tin oxide films, for applying an electric field across the film.
  • the grating structure in an SBG can be recorded in the liquid material (often referred to as the syrup) through photopolymerization-induced phase separation using interferential exposure with a spatially periodic intensity modulation.
  • Factors such as but not limited to control of the irradiation intensity, component volume fractions of the materials in the mixture, and exposure temperature can determine the resulting grating morphology and performance.
  • HPDLC material is used.
  • the monomers polymerize, and the mixture undergoes a phase separation.
  • the LC molecules aggregate to form discrete or coalesced droplets that are periodically distributed in polymer networks on the scale of optical wavelengths.
  • the alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating, which can produce Bragg diffraction with a strong optical polarization resulting from the orientation ordering of the LC molecules in the droplets.
  • the resulting volume phase grating can exhibit very high diffraction efficiency, which can be controlled by the magnitude of the electric field applied across the film.
  • the electrodes are configured such that the applied electric field will be perpendicular to the substrates.
  • the electrodes are fabricated from indium tin oxide (ITO). In the OFF state with no electric field applied, the extraordinary axis of the liquid crystals generally aligns normal to the fringes.
  • the grating thus exhibits high refractive index modulation and high diffraction efficiency for P-polarized light.
  • the grating switches to the ON state wherein the extraordinary axes of the liquid crystal molecules align parallel to the applied field and hence perpendicular to the substrate.
  • the grating In the ON state, the grating exhibits lower refractive index modulation and lower diffraction efficiency for both S- and P-polarized light.
  • the grating region no longer diffracts light.
  • Each grating region can be divided into a multiplicity of grating elements such as for example a pixel matrix according to the function of the HPDLC device.
  • the electrode on one substrate surface is uniform and continuous, while electrodes on the opposing substrate surface are patterned in accordance to the multiplicity of selectively switchable grating elements.
  • the SBG elements are switched clear in 30 ⁇ s with a longer relaxation time to switch ON.
  • the diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range. In many cases, the device exhibits near 100% efficiency with no voltage applied and essentially zero efficiency with a sufficiently high voltage applied.
  • magnetic fields can be used to control the LC orientation. In some HPDLC applications, phase separation of the LC material from the polymer can be accomplished to such a degree that no discernible droplet structure results.
  • An SBG can also be used as a passive grating. In this mode, its chief benefit is a uniquely high refractive index modulation. SBGs can be used to provide transmission or reflection gratings for free space applications.
  • SBGs can be implemented as waveguide devices in which the HPDLC forms either the waveguide core or an evanescently coupled layer in proximity to the waveguide.
  • the substrates used to form the HPDLC cell provide a total internal reflection (TIR) light guiding structure.
  • TIR total internal reflection
  • Light can be coupled out of the SBG when the switchable grating diffracts the light at an angle beyond the TIR condition.
  • a reverse mode grating device can be implemented—i.e., the grating is in its non-diffracting (cleared) state when the applied voltage is zero and switches to its diffracting stated when a voltage is applied across the electrodes.
  • FIGS. 1A and 1B conceptually illustrate HPDLC SBG devices 100 , 110 and the switching property of SBGs in accordance with various embodiments of the invention.
  • the SBG 100 is in an OFF state.
  • the LC molecules 101 are aligned substantially normal to the fringe planes.
  • the SBG 100 exhibits high diffraction efficiency, and incident light can easily be diffracted.
  • FIG. 1B illustrates the SBG 110 in an ON position.
  • An applied voltage 111 can orient the optical axis of the LC molecules 112 within the droplets 113 to produce an effective refractive index that matches the polymer's refractive index, essentially creating a transparent cell where incident light is not diffracted.
  • an AC voltage source is shown.
  • various voltage sources can be utilized depending on the specific requirements of a given application.
  • different materials and device configurations can also be implemented.
  • the device implements different material systems and can operate in reverse with respect to the applied voltage—i.e., the device exhibits high diffraction efficiency in response to an applied voltage.
  • LC can be extracted or evacuated from the SBG to provide a surface relief grating (SRG) that has properties very similar to a Bragg grating due to the depth of the SRG structure (which is much greater than that practically achievable using surface etching and other conventional processes commonly used to fabricate SRGs).
  • SRG surface relief grating
  • the LC can be extracted using a variety of different methods, including but not limited to flushing with isopropyl alcohol and solvents.
  • one of the transparent substrates of the SBG is removed, and the LC is extracted.
  • the removed substrate is replaced.
  • the SRG can be at least partially backfilled with a material of higher or lower refractive index.
  • Such gratings offer scope for tailoring the efficiency, angular/spectral response, polarization, and other properties to suit various waveguide applications.
  • Waveguides in accordance with various embodiments of the invention can include various grating configurations designed for specific purposes and functions.
  • the waveguide is designed to implement a grating configuration capable of preserving eyebox size while reducing lens size by effectively expanding the exit pupil of a collimating optical system.
  • the exit pupil can be defined as a virtual aperture where only the light rays which pass though this virtual aperture can enter the eyes of a user.
  • the waveguide includes an input grating optically coupled to a light source, a fold grating for providing a first direction beam expansion, and an output grating for providing beam expansion in a second direction, which is typically orthogonal to the first direction, and beam extraction towards the eyebox.
  • the grating configuration implemented waveguide architectures can depend on the specific requirements of a given application.
  • the grating configuration includes multiple fold gratings.
  • the grating configuration includes an input grating and a second grating for performing beam expansion and beam extraction simultaneously.
  • the second grating can include gratings of different prescriptions, for propagating different portions of the field-of-view, arranged in separate overlapping grating layers or multiplexed in a single grating layer.
  • Multiplexed gratings can include the superimposition of at least two gratings having different grating prescriptions within the same volume.
  • Gratings having different grating prescriptions can have different grating vectors and/or grating slant with respect to the waveguide's surface.
  • the gratings within each layer are designed to have different spectral and/or angular responses. For example, in many embodiments, different gratings across different grating layers are overlapped, or multiplexed, to provide an increase in spectral bandwidth.
  • a full color waveguide is implemented using three grating layers, each designed to operate in a different spectral band (red, green, and blue). In other embodiments, a full color waveguide is implemented using two grating layers, a red-green grating layer and a green-blue grating layer. As can readily be appreciated, such techniques can be implemented similarly for increasing angular bandwidth operation of the waveguide.
  • multiple gratings can be multiplexed within a single grating layer—i.e., multiple gratings can be superimposed within the same volume.
  • the waveguide includes at least one grating layer having two or more grating prescriptions multiplexed in the same volume.
  • the waveguide includes two grating layers, each layer having two grating prescriptions multiplexed in the same volume. Multiplexing two or more grating prescriptions within the same volume can be achieved using various fabrication techniques.
  • a multiplexed master grating is utilized with an exposure configuration to form a multiplexed grating.
  • a multiplexed grating is fabricated by sequentially exposing an optical recording material layer with two or more configurations of exposure light, where each configuration is designed to form a grating prescription.
  • a multiplexed grating is fabricated by exposing an optical recording material layer by alternating between or among two or more configurations of exposure light, where each configuration is designed to form a grating prescription.
  • various techniques including those well known in the art, can be used as appropriate to fabricate multiplexed gratings.
  • the waveguide can incorporate at least one of: angle multiplexed gratings, color multiplexed gratings, fold gratings, dual interaction gratings, rolled K-vector gratings, crossed fold gratings, tessellated gratings, chirped gratings, gratings with spatially varying refractive index modulation, gratings having spatially varying grating thickness, gratings having spatially varying average refractive index, gratings with spatially varying refractive index modulation tensors, and gratings having spatially varying average refractive index tensors.
  • the waveguide can incorporate at least one of: a half wave plate, a quarter wave plate, an anti-reflection coating, a beam splitting layer, an alignment layer, a photochromic back layer for glare reduction, and louvre films for glare reduction.
  • the waveguide can support gratings providing separate optical paths for different polarizations.
  • the waveguide can support gratings providing separate optical paths for different spectral bandwidths.
  • the gratings can be HPDLC gratings, switching gratings recorded in HPDLC (such switchable Bragg Gratings), Bragg gratings recorded in holographic photopolymer, or surface relief gratings.
  • the waveguide operates in a monochrome band. In some embodiments, the waveguide operates in the green band. In several embodiments, waveguide layers operating in different spectral bands such as red, green, and blue (RGB) can be stacked to provide a three-layer waveguiding structure. In further embodiments, the layers are stacked with air gaps between the waveguide layers. In various embodiments, the waveguide layers operate in broader bands such as blue-green and green-red to provide two-waveguide layer solutions. In other embodiments, the gratings are color multiplexed to reduce the number of grating layers. Various types of gratings can be implemented. In some embodiments, at least one grating in each layer is a switchable grating.
  • Waveguides incorporating optical structures such as those discussed above can be implemented in a variety of different applications, including but not limited to waveguide displays.
  • the waveguide display is implemented with an eyebox of greater than 10 mm with an eye relief greater than 25 mm.
  • the waveguide display includes a waveguide with a thickness between 2.0-5.0 mm.
  • the waveguide display can provide an image field-of-view of at least 50° diagonal.
  • the waveguide display can provide an image field-of-view of at least 70° diagonal.
  • the waveguide display can employ many different types of picture generation units (PGUs).
  • PGUs picture generation units
  • the PGU can be a reflective or transmissive spatial light modulator such as a liquid crystal on Silicon (LCoS) panel or a micro electromechanical system (MEMS) panel.
  • the PGU can be an emissive device such as an organic light emitting diode (OLED) panel.
  • OLED organic light emitting diode
  • an OLED display can have a luminance greater than 4000 nits and a resolution of 4 k ⁇ 4 k pixels.
  • the waveguide can have an optical efficiency greater than 10% such that a greater than 400 nit image luminance can be provided using an OLED display of luminance 4000 nits.
  • Waveguides implementing P-diffracting gratings typically have a waveguide efficiency of 5%-6.2%. Since P-diffracting or S-diffracting gratings can waste half of the light from an unpolarized source such as an OLED panel, many embodiments are directed towards waveguides capable of providing both S-diffracting and P-diffracting gratings to allow for an increase in the efficiency of the waveguide by up to a factor of two. In some embodiments, the S-diffracting and P-diffracting gratings are implemented in separate overlapping grating layers.
  • the waveguide includes Bragg-like gratings produced by extracting LC from HPDLC gratings, such as those described above, to enable high S and P diffraction efficiency over certain wavelength and angle ranges for suitably chosen values of grating thickness (typically, in the range 2-5 ⁇ m).
  • HPDLC mixtures generally include LC, monomers, photoinitiator dyes, and coinitiators.
  • the mixture (often referred to as syrup) frequently also includes a surfactant.
  • a surfactant is defined as any chemical agent that lowers the surface tension of the total liquid mixture.
  • the use of surfactants in PDLC mixtures is known and dates back to the earliest investigations of PDLCs. For example, a paper by R. L Sutherland et al., SPIE Vol.
  • High luminance and excellent color fidelity are important factors in various waveguide applications. In each case, high uniformity across the FOV can be desired.
  • the fundamental optics of waveguides can lead to non-uniformities due to gaps or overlaps of beams bouncing down the waveguide. Further non-uniformities may arise from imperfections in the gratings and non-planarity of the waveguide substrates.
  • SBGs there can exist a further issue of polarization rotation by birefringent gratings.
  • the biggest challenge is usually the fold grating where there are millions of light paths resulting from multiple intersections of the beam with the grating fringes. Careful management of grating properties, particularly the refractive index modulation, can be utilized to overcome non-uniformity.
  • the design can be exported to the deposition mechanism, with each target index modulation translating to a unique deposition setting for each spatial resolution cell on the substrate to be coated/deposited.
  • the resolution of the deposition mechanism can depend on the technical limitations of the system utilized. In many embodiments, the spatial pattern can be implemented to 30 micrometers resolution with full repeatability.
  • SBG waveguides Compared with waveguides utilizing surface relief gratings (SRGs), SBG waveguides implementing manufacturing techniques in accordance with various embodiments of the invention can allow for the grating design parameters that impact efficiency and uniformity, such as but not limited to refractive index modulation and grating thickness, to be adjusted dynamically during the deposition process without the need for a different master.
  • SRGs where modulation is controlled by etch depth such schemes would not be practical as each variation of the grating would entail repeating the complex and expensive tooling process. Additionally, achieving the required etch depth precision and resist imaging complexity can be very difficult.
  • Deposition processes in accordance with various embodiments of the invention can provide for the adjustment of grating design parameters by controlling the type of material that is to be deposited.
  • Various embodiments of the invention can be configured to deposit different materials, or different material compositions, in different areas on the substrate.
  • deposition processes can be configured to deposit HPDLC material onto an area of a substrate that is meant to be a grating region and to deposit monomer onto an area of the substrate that is meant to be a non-grating region.
  • the deposition process is configured to deposit a layer of optical recording material that varies spatially in component composition, allowing for the modulation of various aspects of the deposited material.
  • the deposition of material with different compositions can be implemented in several different ways.
  • more than one deposition head can be utilized to deposit different materials and mixtures.
  • Each deposition head can be coupled to a different material/mixture reservoir.
  • Such implementations can be used for a variety of applications. For example, different materials can be deposited for grating and non-grating areas of a waveguide cell.
  • HPDLC material is deposited onto the grating regions while only monomer is deposited onto the non-grating regions.
  • the deposition mechanism can be configured to deposit mixtures with different component compositions.
  • spraying nozzles can be implemented to deposit multiple types of materials onto a single substrate. In waveguide applications, the spraying nozzles can be used to deposit different materials for grating and non-grating areas of the waveguide.
  • the spraying mechanism is configured for printing gratings in which at least one the material composition, birefringence, and/or thickness can be controlled using a deposition apparatus having at least two selectable spray heads.
  • the manufacturing system provides an apparatus for depositing grating recording material optimized for the control of laser banding. In several embodiments, the manufacturing system provides an apparatus for depositing grating recording material optimized for the control of polarization non-uniformity.
  • the manufacturing system provides an apparatus for depositing grating recording material optimized for the control of polarization non-uniformity in association with an alignment control layer.
  • the deposition workcell can be configured for the deposition of additional layers such as beam splitting coatings and environmental protection layers.
  • Inkjet print heads can also be implemented to print different materials in different regions of the substrate.
  • deposition processes can be configured to deposit optical recording material that varies spatially in component composition. Modulation of material composition can be implemented in many different ways.
  • an inkjet print head can be configured to modulate material composition by utilizing the various inkjet nozzles within the print head. By altering the composition on a “dot-by-dot” basis, the layer of optical recording material can be deposited such that it has a varying composition across the planar surface of the layer.
  • Such a system can be implemented using a variety of apparatuses including but not limited to inkjet print heads.
  • inkjet print heads in accordance with various embodiments of the invention can be configured to print optical recording materials with varying compositions using only a few reservoirs of different materials.
  • Different types of inkjet print heads can have different precision levels and can print with different resolutions.
  • a 300 DPI (“dots per inch”) inkjet print head is utilized.
  • discretization of varying compositions of a given number of materials can be determined across a given area.
  • each dot location can contain either one of the two types of materials.
  • each dot location can contain either one of the two types of materials or both materials.
  • more than one inkjet print head is configured to print a layer of optical recording material with a spatially varying composition.
  • the amount of discrete levels of possible concentrations/ratios across a unit square is given by how many dot locations can be printed within the unit square.
  • the concepts are applicable to real units and can be determined by the precision level of the inkjet print head.
  • specific examples of modulating the material composition of the printed layer are discussed, the concept of modulating material composition using inkjet print heads can be expanded to use more than two different material reservoirs and can vary in precision levels, which largely depends on the types of print heads used.
  • Varying the composition of the material printed can be advantageous for several reasons. For example, in many embodiments, varying the composition of the material during deposition can allow for the formation of a waveguide with gratings that have spatially varying diffraction efficiencies across different areas of the gratings. In embodiments utilizing HPDLC mixtures, this can be achieved by modulating the relative concentration of liquid crystals in the HPDLC mixture during the printing process, which creates compositions that can produce gratings with varying diffraction efficiencies when the material is exposed.
  • a first HPDLC mixture with a certain concentration of liquid crystals and a second HPDLC mixture that is liquid crystal-free are used as the printing palette in an inkjet print head for modulating the diffraction efficiencies of gratings that can be formed in the printed material.
  • discretization can be determined based on the precision of the inkjet print head.
  • a discrete level can be given by the concentration/ratio of the materials printed across a certain area. In this example, the discrete levels range from no liquid crystal to the maximum concentration of liquid crystals in the first PDLC mixture.
  • a waveguide is typically designed to guide light internally by reflecting the light many times between the two planar surfaces of the waveguide. These multiple reflections can allow for the light path to interact with a grating multiple times.
  • a layer of material can be printed with varying composition of materials such that the gratings formed have spatially varying diffraction efficiencies to compensate for the loss of light during interactions with the gratings to allow for a uniform output intensity.
  • an output grating is configured to provide exit pupil expansion in one direction while also coupling light out of the waveguide.
  • the output grating can be designed such that when light within the waveguide interact with the grating, only a percentage of the light is refracted out of the waveguide. The remaining portion continues in the same light path, which remains within TIR and continues to be reflected within the waveguide. Upon a second interaction with the same output grating again, another portion of light is refracted out of the waveguide. During each refraction, the amount of light still traveling within the waveguide decreases by the amount refracted out of the waveguide. As such, the portions refracted at each interaction gradually decreases in terms of total intensity. By varying the diffraction efficiency of the grating such that it increases with propagation distance, the decrease in output intensity along each interaction can be compensated, allowing for a uniform output intensity.
  • Varying the diffraction efficiency can also be used to compensate for other attenuation of light within a waveguide. All objects have a degree of reflection and absorption. Light trapped in TIR within a waveguide are continually reflected between the two surfaces of the waveguide. Depending on the material that makes up the surfaces, portions of light can be absorbed by the material during each interaction. In many cases, this attenuation is small, but can be substantial across a large area where many reflections occur.
  • a waveguide cell can be printed with varying compositions such that the gratings formed from the optical recording material layer have varying diffraction efficiencies to compensate for the absorption of light from the substrates. Depending on the substrates, certain wavelengths can be more prone to absorption by the substrates.
  • each layer can be designed to couple in a certain range of wavelengths of light. Accordingly, the light coupled by these individual layers can be absorbed in different amounts by the substrates of the layers.
  • the waveguide is made of a three-layered stack to implement a full color display, where each layer is designed for one of red, green, and blue.
  • gratings within each of the waveguide layers can be formed to have varying diffraction efficiencies to perform color balance optimization by compensating for color imbalance due to loss of transmission of certain wavelengths of light.
  • another technique includes varying the thickness of the waveguide cell. This can be accomplished through the use of spacers.
  • spacers are dispersed throughout the optical recording material for structural support during the construction of the waveguide cell.
  • different sizes of spacers are dispersed throughout the optical recording material.
  • the spacers can be dispersed in ascending order of sizes across one direction of the layer of optical recording material.
  • modulating spacer sizes can be combined with modulation of material compositions.
  • reservoirs of HPDLC materials each suspended with spacers of different sizes are used to print a layer of HPDLC material with spacers of varying sizes strategically dispersed to form a wedge-shaped waveguide cell.
  • spacer size modulation is combined with material composition modulation by providing a number of reservoirs equal to the product of the number of different sizes of spacers and the number of different materials used.
  • the inkjet print head is configured to print varying concentrations of liquid crystal with two different spacer sizes.
  • four reservoirs can be prepared: a liquid crystal-free mixture suspension with spacers of a first size, a liquid crystal-free mixture-suspension with spacers of a second size, a liquid crystal-rich mixture-suspension with spacers of a first size, and a liquid crystal-rich mixture-suspension with spacers of a second size.
  • material modulation can be found in U.S. application Ser. No. 16/203,071 filed Nov. 18, 2018 entitled “Systems and Methods for Manufacturing Waveguide Cells.” The disclosure of U.S. application Ser. No. 16/203,491 is hereby incorporated by reference in its entirety for all purposes.
  • Waveguide backlights in accordance with various embodiments of the invention can be implemented using a variety of different configurations. As can readily be appreciated, the specific configuration implemented can depend on various factors, including but not limited to the intended application, cost constraints, form factor constraints, etc.
  • the waveguide backlight is implemented with at least one waveguide layer containing at least one grating layer sandwiched by first and second substrates.
  • the substrates can include various transparent materials, including but not limited to glass and plastics.
  • the grating layer(s) can include different sets of grating elements configured for various purposes. In some embodiments, the grating layer includes two different sets of grating elements, each set configured and designed to have high diffraction efficiency for a specific wavelength band and/or angular band.
  • the grating layer includes two different sets of grating elements, where each set contains grating elements having the same K-vectors. In various embodiments, the two sets of grating elements have opposing K-vectors. In several embodiments, the grating layer includes two different sets of grating elements, each set configured and designed to diffract and extract light from different directions. For example, in a number of embodiments, the grating layer includes a first set of grating elements configured to diffract TIR light that is reflected off the first substrate and to extract such light through the second substrate and a second set of grating elements configured to diffract TIR light that is reflected off the second substrate and to extract such light through the first substrate.
  • the grating elements implemented in waveguide backlights can be arranged in a number of different configurations.
  • the waveguide backlight includes a grating layer having first and second sets of grating elements that are interspersed with one another.
  • the first and second set of grating elements are disposed across two different grating layers.
  • the two different grating layers can be disposed adjacent one another (i.e., the waveguide layer includes two grating layers sandwiched between two substrates) or across two different waveguide layers.
  • such grating architectures can be expanded to implement more than two sets of grating elements.
  • the waveguide layer(s) can be configured to implement a variety of different grating structures, including but not limited to HPDLC gratings, switching gratings recorded in HPDLC (such switchable Bragg Gratings), Bragg gratings recorded in holographic photopolymer, evacuated Bragg gratings, backfilled evacuated Bragg gratings, and surface relief gratings.
  • HPDLC gratings switching gratings recorded in HPDLC (such switchable Bragg Gratings), Bragg gratings recorded in holographic photopolymer, evacuated Bragg gratings, backfilled evacuated Bragg gratings, and surface relief gratings.
  • the gratings are implemented using an HPDLC material that forms gratings that are sensitive to P-polarized light.
  • the waveguide backlight can be designed with the appropriate considerations.
  • the waveguide backlight can include various waveplate and retarder configurations for manipulating the polarization of light traveling throughout the waveguide backlight.
  • the waveguide backlight includes a quarter-wave plate (QWP).
  • QWP quarter-wave plate
  • the QWP is implemented with a mirror, which can be formed on an outer surface of the QWP.
  • a mirror which can be formed on an outer surface of the QWP.
  • Such configurations can allow for incident linearly polarized light to be reflected with its polarization orthogonally changed.
  • an incident P-polarized light ray can be converted into circularly polarized light by the QWP, reflected by the mirror to give circularly polarized light in an opposing direction, and finally converted into linearly S-polarized light.
  • the waveguide backlight includes a half-wave plate (HWP) for switching the polarization of P-polarized light into S-polarized light and vice versa.
  • the waveguide backlight includes a substrate supporting half wave retarders.
  • P- and/or S-polarized light is coupled into the waveguide backlight.
  • unpolarized light is coupled into the waveguide backlight.
  • the specific configuration of input light and grating structures can depend on the specific requirements of a given application.
  • Grating elements within a waveguide backlight can be arranged and implemented in various configurations.
  • all of the grating elements in a waveguide layer are designed to operate at a common wavelength band.
  • the grating elements can have K-vectors configured to diffract upward-going or downward-going rays in a waveguide layer.
  • both types of gratings are provided in a waveguide layer.
  • both types of gratings are provided in a single grating layer.
  • the grating elements can have K-vectors in differing directions but operating at a common wavelength band. It should be appreciated from the discussions that any number of separate wavelength bands can be provided. FIG.
  • the waveguide backlight 200 includes: a waveguide 201 formed by substrates 202 , 203 sandwiching a grating layer 204 .
  • a source of light (which is not illustrated) can be optically coupled to the waveguide structure 201 and can be configured to emit collimated light.
  • the substrates 202 , 203 can provide a TIR structure for the input light.
  • the grating layer 204 can include a plurality of grating elements for diffracting light out of the waveguide and, ultimately, towards an external illumination surface.
  • the grating layer 204 includes two sets of plane gratings having two grating configurations (e.g., grating elements 205 , 206 ) with opposing K-vectors for diffracting TIR light coming from different directions.
  • grating element 205 is configured to diffract light reflected from the outer surface of substrate 202 while grating element 206 is configured to diffract light reflected from the outer surface of substrate 203 .
  • the two different directions of light can also be referred to as upward- and downward-going TIR light, respectively, with the orientation of the waveguide in the figure as a frame of reference.
  • the pair of grating configurations are repeated along the grating layer 204 in the embodiment of FIG. 2 to form two sets of interspersed grating elements.
  • the waveguide backlight 200 of FIG. 2 further includes a quarter wave plate 207 and a transparent layer 208 divided into clear regions 209 and regions supporting half wave retarders 210 .
  • the QWP 207 is implemented along with a mirror to provide reflection of incident light while changing its polarization orthogonally.
  • the QWP 207 and the transparent layer 208 can be separated from the waveguide 201 by air gaps or layers of low refractive index material, including but not limited to a nanoporous material. Methods of such implementations are discussed in the sections above. Referring back to FIG.
  • the illustrative embodiment shows operation of the waveguide backlight 200 where input P-polarized light 211 (which is the preferred light polarization state for diffraction by SBGs) undergoes TIR within the waveguide 201 .
  • a portion of this light (upward-going TIR light) can be diffracted ( 212 ) by grating element 205 and directed towards a clear region 209 of the transparent layer 208 to provide P-polarized output light 213 .
  • Downward-going TIR light incident on the grating element 206 can be diffracted ( 214 ) downwards and reflected ( 215 ) by the QWP 207 with its polarization rotated from P to S.
  • the S-polarized light can travel through the grating layer 204 and proceed out of the waveguide 201 towards a half wave retarder region 210 of the transparent layer 208 . After transmission through a half wave retarder region 210 , the light has its polarization rotated from S to P ( 216 ).
  • S to P 216
  • the diffraction efficiencies of the grating elements can be varied along the waveguide path to control uniformity.
  • the grating elements can be electrically switchable.
  • a grating layer can be formed between transparent substrates with transparent conductive coatings applied to each substrate. At least one of the coatings can be patterned into independently addressable elements overlapping the grating elements. An electrical control circuit operative to apply voltages across each of the grating elements can be provided.
  • FIG. 3 conceptually illustrates a flow chart of a process for providing a waveguide backlight in accordance with an embodiment of the invention.
  • the process 300 includes providing ( 301 ) a waveguide having a first set of grating elements for diffracting downward-going rays and a second set of grating elements diffracting upward-going rays, wherein the grating elements are disposed between first and second transparent substrates.
  • Input light can be coupled ( 302 ) into a total internal reflection path within the waveguide.
  • Various types of input light can be utilized. In many embodiments, narrow band laser illumination is utilized. In some embodiments, the input light is P-polarized light.
  • a portion of the input light can be extracted ( 303 ) through an outer surface of the first transparent substrate using the first set of grating elements, and a portion of the input light can be extracted ( 304 ) through an outer surface of the second transparent substrate using the second set of grating elements.
  • the first set of grating elements is configured to extract light reflected from the outer surface of the second substrate
  • the second set of grating elements is configured to extract light reflected from the outer surface of the first substrate.
  • Various types of gratings can be implemented. In several embodiments, P-polarization sensitive gratings are utilized. In a number of embodiments, S-polarization sensitive gratings are utilized. In some embodiments, both types of gratings are implemented.
  • the types of gratings utilized can depend on the type of input light.
  • the light extracted from the second transparent surface can have its polarization rotated ( 305 ) and can be reflected towards the waveguide, propagating through to the outer surface of the first transparent surface.
  • a QWP is utilized to rotate the polarization of the light and to reflect it towards the waveguide.
  • the light with its polarization rotated can optionally have its polarization rotated ( 306 ) again after its propagation through the outer surface of the first transparent substrate.
  • a substrate containing HWP regions can be implemented to rotate the polarization of the light after its propagation through the first transparent substrate.
  • the input light contains only P-polarized light.
  • the input light contains both S- and P-polarized light.
  • Waveguide backlights in accordance with various embodiments of the invention can be configured for many different applications.
  • the waveguide backlight is configured for narrow band illumination applications—i.e., the wavelength band can have a narrow bandwidth as is typically provided by a laser.
  • the wavelength band can have a broader bandwidth such as can be provided by an LED.
  • the backlight can also be used to provide non-visible radiation such as infrared and ultraviolet.
  • the waveguide backlight is configured as a color waveguide backlight. Such backlights can be implemented based on principles similar to those shown in FIG. 2 .
  • the backlight provides light from red, green, and blue (RGB) sources.
  • RGB red, green, and blue
  • the backlight can include RGB grating elements interspersed within a single layer or disposed in some way over two or more layers. In some embodiments, separate RGB layers can be used.
  • the waveguide backlight operates using first and second wavelength input light that covers a large portion of the visible band. For example, in various embodiments, the first wavelength light covers the blue to green band, and the second wavelength light can cover the green to red band.
  • a color waveguide backlight can be implemented utilizing separate grating layers for each color component to be emitted from the backlight.
  • the waveguide backlight incorporates SBGs.
  • the waveguide backlight can include a first set of grating elements configured to switch into a diffracting state when the light source emits light of a first wavelength band and a second set of grating elements configured to switch into a diffracting state when the source emits light of a second wavelength band.
  • FIG. 4 conceptually illustrates a waveguide backlight with two waveguide layers in accordance with an embodiment of the invention.
  • the discussions will include waveguides for emitting light in two different wavelength bands (first and second wavelength light) using first and second sets of grating elements formed in two waveguide layers, each waveguide layer containing a single grating layer.
  • first and second wavelength light any number of waveguides layers and grating layers can be utilized as appropriated depending on the specific requirements of a given application.
  • the waveguide backlight 400 shown includes first and second waveguides 401 , 402 .
  • the backlight 400 further includes a quarter wave plate (QWP) 403 and a transparent substrate 404 divided into clear regions 405 and regions supporting half wave retarders 406 .
  • Each waveguide can be configured to operate according to principles similar to those shown in FIG. 2 .
  • the first waveguide 401 can be configured to receive p-polarized light of a first wavelength band
  • the second waveguide 402 can be configured to receive p-polarized light of a second wavelength band.
  • each of the first and second waveguides 401 , 402 includes a grating layer 407 , 408 .
  • the second waveguide 402 can include a similar configuration of grating elements to that of the first waveguide 401 but operating in a different wavelength band.
  • the first waveguide 401 can include grating elements configured to operate in the red-green wavelength band while the second waveguide 402 can include grating elements configured to operate in the green-blue wavelength band, allowing for the implementation of a full color waveguide backlight.
  • a full color waveguide backlight can be implemented with three waveguide layers, each configured to operate in one of red, green, and blue wavelength band. As indicated by the two sets of rays (dashed and solid, representing rays of different wavelength light), it is shown that the ray and grating interactions of the second waveguide 402 are similar to those of the first waveguide 401 .
  • the first and second wavelength light extracted from the two waveguides can be combined to provide uniform illumination. In many embodiments, the first and second wavelength light can be introduced to the waveguides sequentially.
  • FIG. 4 conceptually illustrates a waveguide backlight with a single waveguide layer in accordance with an embodiment of the invention.
  • the waveguide backlight 500 includes a grating configuration 501 formed of two adjacent grating layers 502 , 503 sandwiched by two substrates 504 , 505 .
  • the waveguide backlight 500 further includes a QWP 506 and a transparent substrate 507 divided into clear regions 508 and regions supporting half wave retarders 509 .
  • the grating configuration 501 includes two grating layers 508 , 509 capable of operating in a different wavelength band.
  • the operating wavelength band of the two grating layers covers a large portion of the visible band.
  • Each grating layer further includes two interspersed sets of grating elements 510 , 511 and 512 , 513 for diffracting upward- ( 510 , 512 ) and downward-going ( 511 , 513 ) TIR light.
  • the backlight shown in FIG. 5 can operate in accordance with principles similar to those shown in FIG. 4 .
  • the two grating layers are shown in separate adjacent layers, the combination of which provides the grating configuration.
  • the grating elements across the two grating layers are multiplexed and superimposed into a single layer.
  • grating elements 510 can be multiplexed with grating elements 512
  • grating elements A 311 can be multiplexed with grating elements 513 .
  • the waveguide backlight includes two waveguide layers, each containing interspersed grating elements configured to operate in two wavelength bands.
  • FIG. 6 conceptually illustrates a waveguide backlight 600 having two waveguide layers 601 , 602 each containing a grating layer 603 , 604 with alternating first wavelength-diffracting 605 and second wavelength-diffracting 606 grating elements in accordance with an embodiment of the invention.
  • the grating elements 605 , 606 can all have K-vectors configured to diffract one of upward-going or downward-going TIR light through an outer surface (e.g., upward-going in the illustrative embodiment of FIG. 6 ) of the waveguide.
  • the first wavelength-diffracting and second wavelength-diffracting grating elements 605 , 606 are spatially overlapped.
  • first wavelength P-polarized light 607 and second wavelength P-polarized light 608 can be coupled into the waveguides and undergo diffraction and extraction as indicated by rays 609 , 610 corresponding to first wavelength light and rays 611 , 612 corresponding to second wavelength light.
  • FIG. 6 conceptually illustrates a waveguide backlight having a single waveguide layer with alternating wavelength-diffracting grating elements in accordance with an embodiment of the invention.
  • the waveguide backlight 700 includes a single grating configuration 701 sandwiched by two substrates 702 , 703 .
  • the grating configuration 701 includes two grating layers 704 , 705 .
  • two sets of grating elements 706 , 707 are interspersed within and across both grating layers 704 , 705 .
  • Grating elements from the first set 706 spatially overlap grating elements from the second set 707 .
  • the grating elements can be configured in a variety of different ways.
  • each set of grating elements are configured to diffract a specific wavelength band.
  • all of the grating vectors are configured to have similar K-vectors.
  • all of the grating elements are configured with diffract and direct light towards the same direction.
  • the waveguide backlight shown in FIG. 7 can operate in accordance with principles similar to those shown in FIG. 6 .
  • the two grating layers 704 , 705 are shown in separate adjacent layers, the combination of which provides the single grating configuration 701 .
  • the grating elements within the two grating layers 704 , 705 are multiplexed and superimposed in the same layer—i.e., each multiplexed region contains grating element 706 and grating element 707 .
  • FIGS. 2-7 illustrate specific waveguide backlights receiving P-polarized input light
  • waveguide backlights in accordance with various embodiments of the invention can be configured for operation with various light sources.
  • FIG. 8 conceptually illustrates a waveguide backlight 800 having two waveguide layers 801 , 802 with alternating wavelength-diffracting grating elements for input light having orthogonal polarizations in accordance with an embodiment of the invention.
  • the first waveguide layer 801 includes a first grating layer 803 with a first set of alternating first wavelength-diffracting 804 and second wavelength-diffracting 805 grating elements.
  • the second waveguide layer 802 includes a second grating layer 806 with a second set of alternating first wavelength-diffracting 804 and second wavelength-diffracting 805 grating elements.
  • the waveguide backlight 800 further includes a QWP 807 .
  • the input light includes first and second wavelength light 808 , 809 having orthogonal polarizations.
  • the input first wavelength light 808 can be P-polarized and the input second wavelength light 809 can be S-polarized.
  • the first wavelength-diffracting grating elements 804 have K-vectors configured to diffract upward-going TIR light through the upper waveguide surface 810 of the first waveguide layer 801
  • the second wavelength-diffracting grating elements 805 have K-vectors configured to diffract downward-going TIR light through the lower waveguide surface 811 of the second waveguide layer 802 .
  • the first wavelength-diffracting and second wavelength-diffracting grating elements 804 , 805 are spatially overlapped.
  • the light (second wavelength light) extracted from the lower waveguide surface 813 has its polarization rotated from S to P by the QWP 807 before being retransmitted through the two waveguide layers 801 , 802 and out of the upper surface 810 .
  • the output light from the waveguide backlight 800 is all P-polarized.
  • FIG. 9 conceptually illustrates a waveguide backlight implementation 900 of the embodiment of FIG. 8 using a single waveguide layer 901 with adjacent grating layers 902 , 903 .
  • such a waveguide backlight can operate according to principles similar to those shown in FIG. 8 .
  • such grating layers can also be implemented as a single layer containing multiplexed gratings.
  • Bragg gratings diffract with high efficiency when light satisfies the Bragg equation to within angular and wavelength tolerances set by the angular and spectral bandwidths of the grating.
  • the spectral and angular bandwidths can be computed using theory of volume holographic gratings. Waveguided rays falling within the above bandwidth limits are referred to as being on-Bragg while rays falling outside the bandwidth are referred to as off-Bragg.
  • the waveguide backlight can be configured to operate entirely in collimated space.
  • the input light and the output beams replicated at each beam grating interaction are all collimated.
  • the input beam is scanned in at least one angular direction.
  • the cross section of the input beam can be varied with incidence angle to match a debanding condition according to the embodiments or teaching disclosed in PCT/US2018/015553 “WAVEGUIDE DEVICE WITH UNIFORM OUTPUT ILLUMINATION”, the disclosure of which is incorporated herein by reference in its entirety.
  • the input beam cross section can be adjusted by means of edges formed on a surface or layer supported by the waveguide as discussed in the above references.
  • light is coupled into the waveguide using a grating or a prism.
  • the optics for coupling light into the waveguides may further include, beam splitters, filters, dichroic filters, polarization components, light integrators, condenser lenses, micro lenses, beam shaping elements and other components commonly used in display illumination systems.
  • the light source is a laser scanned in at least one angular direction using an electromechanical beam deflector.
  • the laser scanner may be an electro optical device.
  • light can be extracted from the waveguide into output paths that are angularly separated. In many embodiments that output paths can be substantially normal to a total internal reflection surface of the waveguide. In many embodiments, the light extracted from the waveguide is collimated.
  • a grating element includes at least one selected from the group of a planar grating, a grating with optical power, a grating providing optical retardation, and a grating with diffusing properties.
  • the grating elements can have spatially varying diffraction efficiencies to enable extraction of light along the waveguide.
  • the grating elements have diffraction efficiencies proportional to voltages applied across the electrodes.
  • the grating elements can have phase retardations proportional to voltages applied across said electrodes.
  • the grating elements can be configured as a one-dimensional array of elongate elements. In many embodiments, the gratings can be configured as two-dimensional arrays.
  • the gratings elements are recorded in a Holographic Polymer Dispersed Liquid Crystal.
  • the spatio-temporal addressing of grating elements by an electrical control circuit addresses can be characterized by a cyclic process.
  • the spatio-temporal addressing of grating elements by an electrical control circuit can be characterized by a random process.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
US16/817,524 2019-03-12 2020-03-12 Holographic Waveguide Backlight and Related Methods of Manufacturing Abandoned US20200292745A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/817,524 US20200292745A1 (en) 2019-03-12 2020-03-12 Holographic Waveguide Backlight and Related Methods of Manufacturing
US17/124,269 US11378732B2 (en) 2019-03-12 2020-12-16 Holographic waveguide backlight and related methods of manufacturing
US17/810,095 US20220404538A1 (en) 2019-03-12 2022-06-30 Holographic Waveguide Backlight and Related Methods of Manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962817468P 2019-03-12 2019-03-12
US16/817,524 US20200292745A1 (en) 2019-03-12 2020-03-12 Holographic Waveguide Backlight and Related Methods of Manufacturing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/124,269 Continuation US11378732B2 (en) 2019-03-12 2020-12-16 Holographic waveguide backlight and related methods of manufacturing

Publications (1)

Publication Number Publication Date
US20200292745A1 true US20200292745A1 (en) 2020-09-17

Family

ID=72422776

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/817,524 Abandoned US20200292745A1 (en) 2019-03-12 2020-03-12 Holographic Waveguide Backlight and Related Methods of Manufacturing
US17/124,269 Active US11378732B2 (en) 2019-03-12 2020-12-16 Holographic waveguide backlight and related methods of manufacturing
US17/810,095 Abandoned US20220404538A1 (en) 2019-03-12 2022-06-30 Holographic Waveguide Backlight and Related Methods of Manufacturing

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/124,269 Active US11378732B2 (en) 2019-03-12 2020-12-16 Holographic waveguide backlight and related methods of manufacturing
US17/810,095 Abandoned US20220404538A1 (en) 2019-03-12 2022-06-30 Holographic Waveguide Backlight and Related Methods of Manufacturing

Country Status (6)

Country Link
US (3) US20200292745A1 (ja)
EP (1) EP3938821A4 (ja)
JP (1) JP2022525165A (ja)
KR (1) KR20210134763A (ja)
CN (1) CN113728258A (ja)
WO (1) WO2020186113A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113625446A (zh) * 2021-07-15 2021-11-09 嘉兴驭光光电科技有限公司 Ar光波导的设计方法及用于ar眼镜的光波导
US11194162B2 (en) 2017-01-05 2021-12-07 Digilens Inc. Wearable heads up displays
US11194098B2 (en) 2015-02-12 2021-12-07 Digilens Inc. Waveguide grating device
US11281013B2 (en) 2015-10-05 2022-03-22 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
EP3985419A1 (en) * 2020-10-14 2022-04-20 Samsung Electronics Co., Ltd. Waveguide structure, back light unit including the same, and display apparatus including the waveguide structure
WO2022119396A1 (en) * 2020-12-04 2022-06-09 Samsung Electronics Co., Ltd. Mid-air image display device and method of operating the same
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US11460576B2 (en) * 2019-04-18 2022-10-04 Beijing Voyager Technology Co., Ltd. Transmitter having beam shifter for light detection and ranging (LIDAR)
US20220334392A1 (en) * 2021-04-16 2022-10-20 Nvidia Corporation Holographic virtual reality display
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11592614B2 (en) 2019-08-29 2023-02-28 Digilens Inc. Evacuated gratings and methods of manufacturing
US11604314B2 (en) 2016-03-24 2023-03-14 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
WO2023129952A1 (en) * 2021-12-29 2023-07-06 Digilens Inc. Method and system utilizing inverted master for holographic recording
US11709373B2 (en) 2014-08-08 2023-07-25 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US11726323B2 (en) 2014-09-19 2023-08-15 Digilens Inc. Method and apparatus for generating input images for holographic waveguide displays
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11740472B2 (en) 2015-01-12 2023-08-29 Digilens Inc. Environmentally isolated waveguide display
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11782273B2 (en) * 2017-10-04 2023-10-10 Akonia Holographics Llc Comb-shifted skew mirrors
US20230375713A1 (en) * 2022-05-20 2023-11-23 Ours Technology, Llc Lidar with switchable local oscillator signals
US11892543B2 (en) 2020-06-29 2024-02-06 Aurora Innovation, Inc. Systems and methods for IQ detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428376A (zh) * 2021-12-29 2022-05-03 歌尔股份有限公司 光波导系统及增强现实设备

Family Cites Families (1339)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242411A (ja) 1999-05-10 2001-09-07 Asahi Glass Co Ltd ホログラム表示装置
US1043938A (en) 1911-08-17 1912-11-12 Friedrich Huttenlocher Safety device for gas-lamps.
US2141884A (en) 1936-11-12 1938-12-27 Zeiss Carl Fa Photographic objective
US3482498A (en) 1967-05-09 1969-12-09 Trw Inc Ridge pattern recording apparatus
GB1332433A (en) 1969-10-24 1973-10-03 Smiths Industries Ltd Head-up display apparatus
DE2115312C3 (de) 1971-03-30 1975-06-26 Hoechst Ag, 6000 Frankfurt Beheizbarer Spinnschacht
US3843231A (en) 1971-04-22 1974-10-22 Commissariat Energie Atomique Liquid crystal diffraction grating
US3851303A (en) 1972-11-17 1974-11-26 Sundstrand Data Control Head up display and pitch generator
US3885095A (en) 1973-04-30 1975-05-20 Hughes Aircraft Co Combined head-up multisensor display
US3965029A (en) 1974-02-04 1976-06-22 Kent State University Liquid crystal materials
US4038110A (en) 1974-06-17 1977-07-26 Ibm Corporation Planarization of integrated circuit surfaces through selective photoresist masking
US3975711A (en) 1974-08-30 1976-08-17 Sperry Rand Corporation Real time fingerprint recording terminal
US4066334A (en) 1975-01-06 1978-01-03 National Research Development Corporation Liquid crystal light deflector
US4082432A (en) 1975-01-09 1978-04-04 Sundstrand Data Control, Inc. Head-up visual display system using on-axis optics with image window at the focal plane of the collimating mirror
US3940204A (en) 1975-01-23 1976-02-24 Hughes Aircraft Company Optical display systems utilizing holographic lenses
US4035068A (en) 1975-06-25 1977-07-12 Xerox Corporation Speckle minimization in projection displays by reducing spatial coherence of the image light
GB1525573A (en) 1975-09-13 1978-09-20 Pilkington Perkin Elmer Ltd Lenses
US4099841A (en) 1976-06-30 1978-07-11 Elliott Brothers (London) Limited Head up displays using optical combiner with three or more partially reflective films
GB1584268A (en) 1977-03-28 1981-02-11 Elliott Brothers London Ltd Head-up displays
US4251137A (en) 1977-09-28 1981-02-17 Rca Corporation Tunable diffractive subtractive filter
US4322163A (en) 1977-10-25 1982-03-30 Fingermatrix Inc. Finger identification
US4218111A (en) 1978-07-10 1980-08-19 Hughes Aircraft Company Holographic head-up displays
GB2041562B (en) 1978-12-21 1983-09-01 Redifon Simulation Ltd Visual display apparatus
DE3000402A1 (de) 1979-01-19 1980-07-31 Smiths Industries Ltd Anzeigevorrichtung
US4248093A (en) 1979-04-13 1981-02-03 The Boeing Company Holographic resolution of complex sound fields
US4389612A (en) 1980-06-17 1983-06-21 S.H.E. Corporation Apparatus for reducing low frequency noise in dc biased SQUIDS
GB2182159B (en) 1980-08-21 1987-10-14 Secr Defence Head-up displays
US4403189A (en) 1980-08-25 1983-09-06 S.H.E. Corporation Superconducting quantum interference device having thin film Josephson junctions
US4386361A (en) 1980-09-26 1983-05-31 S.H.E. Corporation Thin film SQUID with low inductance
US4544267A (en) 1980-11-25 1985-10-01 Fingermatrix, Inc. Finger identification
JPS5789722A (en) 1980-11-25 1982-06-04 Sharp Corp Manufacture of display cell
IL62627A (en) 1981-04-10 1984-09-30 Yissum Res Dev Co Eye testing system
US4418993A (en) 1981-05-07 1983-12-06 Stereographics Corp. Stereoscopic zoom lens system for three-dimensional motion pictures and television
US4562463A (en) 1981-05-15 1985-12-31 Stereographics Corp. Stereoscopic television system with field storage for sequential display of right and left images
US4472037A (en) 1981-08-24 1984-09-18 Stereographics Corporation Additive color means for the calibration of stereoscopic projection
US4523226A (en) 1982-01-27 1985-06-11 Stereographics Corporation Stereoscopic television system
US4566758A (en) 1983-05-09 1986-01-28 Tektronix, Inc. Rapid starting, high-speed liquid crystal variable optical retarder
US4884876A (en) 1983-10-30 1989-12-05 Stereographics Corporation Achromatic liquid crystal shutter for stereoscopic and other applications
EP0180592B1 (en) 1984-03-19 1995-08-02 Kent State University Light modulating material comprising a liquid crystal dispersion in a synthetic resin matrix
US4583117A (en) 1984-07-17 1986-04-15 Stereographics Corporation Stereoscopic video camera
US4729640A (en) 1984-10-03 1988-03-08 Canon Kabushiki Kaisha Liquid crystal light modulation device
US4643515A (en) 1985-04-01 1987-02-17 Environmental Research Institute Of Michigan Method and apparatus for recording and displaying edge-illuminated holograms
US4728547A (en) 1985-06-10 1988-03-01 General Motors Corporation Liquid crystal droplets dispersed in thin films of UV-curable polymers
US4711512A (en) 1985-07-12 1987-12-08 Environmental Research Institute Of Michigan Compact head-up display
JPS6232425A (ja) 1985-08-05 1987-02-12 Brother Ind Ltd 光偏向器
US4890902A (en) 1985-09-17 1990-01-02 Kent State University Liquid crystal light modulating materials with selectable viewing angles
US4741926A (en) 1985-10-29 1988-05-03 Rca Corporation Spin-coating procedure
US4743083A (en) 1985-12-30 1988-05-10 Schimpe Robert M Cylindrical diffraction grating couplers and distributed feedback resonators for guided wave devices
US4647967A (en) 1986-01-28 1987-03-03 Sundstrand Data Control, Inc. Head-up display independent test site
US4799765A (en) 1986-03-31 1989-01-24 Hughes Aircraft Company Integrated head-up and panel display unit
US5148302A (en) 1986-04-10 1992-09-15 Akihiko Nagano Optical modulation element having two-dimensional phase type diffraction grating
US5707925A (en) 1986-04-11 1998-01-13 Dai Nippon Insatsu Kabushiki Kaisha Image formation on objective bodies
WO1987006195A1 (en) 1986-04-11 1987-10-22 Dai Nippon Insatsu Kabushiki Kaisha Image formation on object
US4794021A (en) 1986-11-13 1988-12-27 Microelectronics And Computer Technology Corporation Method of providing a planarized polymer coating on a substrate wafer
US4970129A (en) 1986-12-19 1990-11-13 Polaroid Corporation Holograms
US4749256A (en) 1987-02-13 1988-06-07 Gec Avionics, Inc. Mounting apparatus for head-up display
US4811414A (en) 1987-02-27 1989-03-07 C.F.A. Technologies, Inc. Methods for digitally noise averaging and illumination equalizing fingerprint images
US5736424A (en) 1987-02-27 1998-04-07 Lucent Technologies Inc. Device fabrication involving planarization
EP0284910B1 (de) 1987-03-30 1993-05-26 Siemens Aktiengesellschaft Integriert-optische Anordnung für die bidirektionale optische Nachrichten- oder Signalübertragung
FR2613497B1 (fr) 1987-03-31 1991-08-16 Thomson Csf Viseur binoculaire, holographique et a grand champ, utilisable sur casque
US4775218A (en) 1987-04-17 1988-10-04 Flight Dynamics, Inc. Combiner alignment detector for head up display system
US4848093A (en) 1987-08-24 1989-07-18 Quantum Design Apparatus and method for regulating temperature in a cryogenic test chamber
US4791788A (en) 1987-08-24 1988-12-20 Quantum Design, Inc. Method for obtaining improved temperature regulation when using liquid helium cooling
US20050259302A9 (en) 1987-09-11 2005-11-24 Metz Michael H Holographic light panels and flat panel display systems and method and apparatus for making same
US5822089A (en) 1993-01-29 1998-10-13 Imedge Technology Inc. Grazing incidence holograms and system and method for producing the same
US5710645A (en) 1993-01-29 1998-01-20 Imedge Technology, Inc. Grazing incidence holograms and system and method for producing the same
GB8723050D0 (en) 1987-10-01 1987-11-04 British Telecomm Optical filters
IL88178A0 (en) 1987-10-27 1989-06-30 Filipovich Danny Night vision goggles
US4792850A (en) 1987-11-25 1988-12-20 Sterographics Corporation Method and system employing a push-pull liquid crystal modulator
US4938568A (en) 1988-01-05 1990-07-03 Hughes Aircraft Company Polymer dispersed liquid crystal film devices, and method of forming the same
US5096282A (en) 1988-01-05 1992-03-17 Hughes Aircraft Co. Polymer dispersed liquid crystal film devices
US4933976A (en) 1988-01-25 1990-06-12 C.F.A. Technologies, Inc. System for generating rolled fingerprint images
US5240636A (en) 1988-04-11 1993-08-31 Kent State University Light modulating materials comprising a liquid crystal microdroplets dispersed in a birefringent polymeric matri method of making light modulating materials
US4994204A (en) 1988-11-04 1991-02-19 Kent State University Light modulating materials comprising a liquid crystal phase dispersed in a birefringent polymeric phase
US4854688A (en) 1988-04-14 1989-08-08 Honeywell Inc. Optical arrangement
US5119454A (en) 1988-05-23 1992-06-02 Polaroid Corporation Bulk optic wavelength division multiplexer
JPH01306886A (ja) 1988-06-03 1989-12-11 Canon Inc 体積位相型回折格子
US5150234A (en) 1988-08-08 1992-09-22 Olympus Optical Co., Ltd. Imaging apparatus having electrooptic devices comprising a variable focal length lens
US5004323A (en) 1988-08-30 1991-04-02 Kent State University Extended temperature range polymer dispersed liquid crystal light shutters
US4964701A (en) 1988-10-04 1990-10-23 Raytheon Company Deflector for an optical beam
US5007711A (en) 1988-11-30 1991-04-16 Flight Dynamics, Inc. Compact arrangement for head-up display components
US4928301A (en) 1988-12-30 1990-05-22 Bell Communications Research, Inc. Teleconferencing terminal with camera behind display screen
JPH02186319A (ja) 1989-01-13 1990-07-20 Fujitsu Ltd 表示システム
US5033814A (en) 1989-04-10 1991-07-23 Nilford Laboratories, Inc. Line light source
US5009483A (en) 1989-04-12 1991-04-23 Rockwell Iii Marshall A Optical waveguide display system
FI82989C (fi) 1989-04-13 1991-05-10 Nokia Oy Ab Foerfarande foer framstaellning av en ljusvaogledare.
US5183545A (en) 1989-04-28 1993-02-02 Branca Phillip A Electrolytic cell with composite, porous diaphragm
FR2647556B1 (fr) 1989-05-23 1993-10-29 Thomson Csf Dispositif optique pour l'introduction d'une image collimatee dans le champ visuel d'un observateur et casque comportant au moins un tel dispositif
US5099343A (en) 1989-05-25 1992-03-24 Hughes Aircraft Company Edge-illuminated liquid crystal display devices
US4967268A (en) 1989-07-31 1990-10-30 Stereographics Liquid crystal shutter system for stereoscopic and other applications
KR920704159A (ko) 1989-08-21 1992-12-19 알. 아모스 칼 전자현상 조작방법 및 장치
US4960311A (en) 1989-08-31 1990-10-02 Hughes Aircraft Company Holographic exposure system for computer generated holograms
US5016953A (en) 1989-08-31 1991-05-21 Hughes Aircraft Company Reduction of noise in computer generated holograms
US4963007A (en) 1989-09-05 1990-10-16 U.S. Precision Lens, Inc. Color corrected projection lens
US5210624A (en) 1989-09-19 1993-05-11 Fujitsu Limited Heads-up display
US4971719A (en) 1989-09-22 1990-11-20 General Motors Corporation Polymer dispersed liquid crystal films formed by electron beam curing
US5198912A (en) 1990-01-12 1993-03-30 Polaroid Corporation Volume phase hologram with liquid crystal in microvoids between fringes
US5109465A (en) 1990-01-16 1992-04-28 Summit Technology, Inc. Beam homogenizer
JPH03239384A (ja) 1990-02-16 1991-10-24 Fujitsu Ltd 半導体レーザ保護回路
US5416616A (en) 1990-04-06 1995-05-16 University Of Southern California Incoherent/coherent readout of double angularly multiplexed volume holographic optical elements
US5117302A (en) 1990-04-13 1992-05-26 Stereographics Corporation High dynamic range electro-optical shutter for steroscopic and other applications
US5153751A (en) 1990-04-27 1992-10-06 Central Glass Company, Limited Holographic display element
CA2044932C (en) 1990-06-29 1996-03-26 Masayuki Kato Display unit
FI86226C (fi) 1990-07-10 1992-07-27 Nokia Oy Ab Foerfarande foer framstaellning av ljusvaogsledare medelst jonbytesteknik pao ett glassubstrat.
FI86225C (fi) 1990-08-23 1992-07-27 Nokia Oy Ab Anpassningselement foer sammankoppling av olika ljusvaogsledare och framstaellningsfoerfarande foer detsamma.
US5110034A (en) 1990-08-30 1992-05-05 Quantum Magnetics, Inc. Superconducting bonds for thin film devices
US5139192A (en) 1990-08-30 1992-08-18 Quantum Magnetics, Inc. Superconducting bonds for thin film devices
US5053834A (en) 1990-08-31 1991-10-01 Quantum Magnetics, Inc. High symmetry dc SQUID system
DE4028275A1 (de) 1990-09-06 1992-03-12 Kabelmetal Electro Gmbh Verfahren zur herstellung von glasfaser-lichtwellenleitern mit erhoehter zugfestigkeit
US5063441A (en) 1990-10-11 1991-11-05 Stereographics Corporation Stereoscopic video cameras with image sensors having variable effective position
US5142357A (en) 1990-10-11 1992-08-25 Stereographics Corp. Stereoscopic video camera with image sensors having variable effective position
US10593092B2 (en) 1990-12-07 2020-03-17 Dennis J Solomon Integrated 3D-D2 visual effects display
US5619586A (en) 1990-12-20 1997-04-08 Thorn Emi Plc Method and apparatus for producing a directly viewable image of a fingerprint
US5416514A (en) 1990-12-27 1995-05-16 North American Philips Corporation Single panel color projection video display having control circuitry for synchronizing the color illumination system with reading/writing of the light valve
US5410370A (en) 1990-12-27 1995-04-25 North American Philips Corporation Single panel color projection video display improved scanning
US5159445A (en) 1990-12-31 1992-10-27 At&T Bell Laboratories Teleconferencing video display system for improving eye contact
US5867238A (en) 1991-01-11 1999-02-02 Minnesota Mining And Manufacturing Company Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same
US5117285A (en) 1991-01-15 1992-05-26 Bell Communications Research Eye contact apparatus for video conferencing
US5481321A (en) 1991-01-29 1996-01-02 Stereographics Corp. Stereoscopic motion picture projection system
US5142644A (en) 1991-03-08 1992-08-25 General Motors Corporation Electrical contacts for polymer dispersed liquid crystal films
US5317405A (en) 1991-03-08 1994-05-31 Nippon Telegraph And Telephone Corporation Display and image capture apparatus which enables eye contact
JP2873126B2 (ja) 1991-04-17 1999-03-24 日本ペイント株式会社 体積ホログラム記録用感光性組成物
US5695682A (en) 1991-05-02 1997-12-09 Kent State University Liquid crystalline light modulating device and material
US5453863A (en) 1991-05-02 1995-09-26 Kent State University Multistable chiral nematic displays
US6104448A (en) 1991-05-02 2000-08-15 Kent State University Pressure sensitive liquid crystalline light modulating device and material
US5241337A (en) 1991-05-13 1993-08-31 Eastman Kodak Company Real image viewfinder requiring no field lens
US5181133A (en) 1991-05-15 1993-01-19 Stereographics Corporation Drive method for twisted nematic liquid crystal shutters for stereoscopic and other applications
US5268792A (en) 1991-05-20 1993-12-07 Eastman Kodak Company Zoom lens
US5218360A (en) 1991-05-23 1993-06-08 Trw Inc. Millimeter-wave aircraft landing and taxing system
JPH0728999Y2 (ja) 1991-05-29 1995-07-05 セントラル硝子株式会社 多色表示ヘッドアップディスプレイ用ガラス
FR2677463B1 (fr) 1991-06-04 1994-06-17 Thomson Csf Visuel collimate a grands champs horizontal et vertical, en particulier pour simulateurs.
US5299289A (en) 1991-06-11 1994-03-29 Matsushita Electric Industrial Co., Ltd. Polymer dispersed liquid crystal panel with diffraction grating
US5764414A (en) 1991-08-19 1998-06-09 Hughes Aircraft Company Biocular display system using binary optics
US5193000A (en) 1991-08-28 1993-03-09 Stereographics Corporation Multiplexing technique for stereoscopic video system
US5416510A (en) 1991-08-28 1995-05-16 Stereographics Corporation Camera controller for stereoscopic video system
US5621552A (en) 1991-08-29 1997-04-15 Merck Patent Gesellschaft Mit Beschrankter Haftung Electrooptical liquid crystal system containing dual frequency liquid crystal mixture
US5200861A (en) 1991-09-27 1993-04-06 U.S. Precision Lens Incorporated Lens systems
US5224198A (en) 1991-09-30 1993-06-29 Motorola, Inc. Waveguide virtual image display
US5726782A (en) 1991-10-09 1998-03-10 Nippondenso Co., Ltd. Hologram and method of fabricating
EP0536763B1 (en) 1991-10-09 1999-03-17 Denso Corporation Hologram
US5315440A (en) 1991-11-04 1994-05-24 Eastman Kodak Company Zoom lens having weak front lens group
US5515184A (en) 1991-11-12 1996-05-07 The University Of Alabama In Huntsville Waveguide hologram illuminators
US5633100A (en) 1991-11-27 1997-05-27 E. I. Du Pont De Nemours And Company Holographic imaging using filters
US5218480A (en) 1991-12-03 1993-06-08 U.S. Precision Lens Incorporated Retrofocus wide angle lens
US5239372A (en) 1991-12-31 1993-08-24 Stereographics Corporation Stereoscopic video projection system
US5264950A (en) 1992-01-06 1993-11-23 Kent State University Light modulating device with polarizer and liquid crystal interspersed as spherical or randomly distorted droplets in isotropic polymer
US5303085A (en) 1992-02-07 1994-04-12 Rallison Richard D Optically corrected helmet mounted display
US5295208A (en) 1992-02-26 1994-03-15 The University Of Alabama In Huntsville Multimode waveguide holograms capable of using non-coherent light
US5296967A (en) 1992-03-02 1994-03-22 U.S. Precision Lens Incorporated High speed wide angle projection TV lens system
US5528720A (en) * 1992-03-23 1996-06-18 Minnesota Mining And Manufacturing Co. Tapered multilayer luminaire devices
EP0564869A1 (en) 1992-03-31 1993-10-13 MERCK PATENT GmbH Electrooptical liquid crystal systems
US5284499A (en) 1992-05-01 1994-02-08 Corning Incorporated Method and apparatus for drawing optical fibers
US5327269A (en) 1992-05-13 1994-07-05 Standish Industries, Inc. Fast switching 270° twisted nematic liquid crystal device and eyewear incorporating the device
DE69229003T2 (de) 1992-05-18 1999-10-21 Kent State University Kent Flüssigkristalline, lichtmodulierende vorrichtung und material
KR100320567B1 (ko) 1992-05-18 2002-06-20 액정광변조장치및재료
US5251048A (en) 1992-05-18 1993-10-05 Kent State University Method and apparatus for electronic switching of a reflective color display
US5315419A (en) 1992-05-19 1994-05-24 Kent State University Method of producing a homogeneously aligned chiral smectic C liquid crystal having homeotropic alignment layers
US5368770A (en) 1992-06-01 1994-11-29 Kent State University Method of preparing thin liquid crystal films
US6479193B1 (en) 1992-06-30 2002-11-12 Nippon Sheet Glass Co., Ltd. Optical recording film and process for production thereof
JP2958418B2 (ja) 1992-07-23 1999-10-06 セントラル硝子株式会社 表示装置
JP3027065B2 (ja) 1992-07-31 2000-03-27 日本電信電話株式会社 表示・撮像装置
US5313330A (en) 1992-08-31 1994-05-17 U.S. Precision Lens Incorporated Zoom projection lens systems
US5243413A (en) 1992-09-02 1993-09-07 At&T Bell Laboratories Color parallax-free camera and display
DE69332090T2 (de) 1992-09-03 2002-10-17 Denso Corp Holographievorrichtung
US5343147A (en) 1992-09-08 1994-08-30 Quantum Magnetics, Inc. Method and apparatus for using stochastic excitation and a superconducting quantum interference device (SAUID) to perform wideband frequency response measurements
US6052540A (en) 1992-09-11 2000-04-18 Canon Kabushiki Kaisha Viewfinder device for displaying photographic information relating to operation of a camera
US5455693A (en) 1992-09-24 1995-10-03 Hughes Aircraft Company Display hologram
US5321533A (en) 1992-09-24 1994-06-14 Kent State Universtiy Polymer dispersed ferroelectric smectic liquid crystal
US7132200B1 (en) 1992-11-27 2006-11-07 Dai Nippon Printing Co., Ltd. Hologram recording sheet, holographic optical element using said sheet, and its production process
US5315324A (en) 1992-12-09 1994-05-24 Delphax Systems High precision charge imaging cartridge
US5760931A (en) 1992-12-14 1998-06-02 Nippondenso Co., Ltd. Image display unit
US5341230A (en) 1992-12-22 1994-08-23 Hughes Aircraft Company Waveguide holographic telltale display
US5418584A (en) 1992-12-31 1995-05-23 Honeywell Inc. Retroreflective array virtual image projection screen
US6151142A (en) 1993-01-29 2000-11-21 Imedge Technology, Inc. Grazing incidence holograms and system and method for producing the same
US5351151A (en) 1993-02-01 1994-09-27 Levy George S Optical filter using microlens arrays
US5371817A (en) 1993-02-16 1994-12-06 Eastman Kodak Company Multichannel optical waveguide page scanner with individually addressable electro-optic modulators
US5428480A (en) 1993-02-16 1995-06-27 Eastman Kodak Company Zoom lens having weak plastic element
US5751452A (en) 1993-02-22 1998-05-12 Nippon Telegraph And Telephone Corporation Optical devices with high polymer material and method of forming the same
US5682255A (en) 1993-02-26 1997-10-28 Yeda Research & Development Co. Ltd. Holographic optical devices for the transmission of optical signals of a plurality of channels
DE69434719T2 (de) 1993-02-26 2007-02-08 Yeda Research And Development Co., Ltd. Optische holographische Vorrichtungen
US5371626A (en) 1993-03-09 1994-12-06 Benopcon, Inc. Wide angle binocular system with variable power capability
JP2823470B2 (ja) 1993-03-09 1998-11-11 シャープ株式会社 光走査装置及びそれを用いた表示装置並びに画像情報入出力装置
US5359362A (en) 1993-03-30 1994-10-25 Nec Usa, Inc. Videoconference system using a virtual camera image
US5309283A (en) 1993-03-30 1994-05-03 U.S. Precision Lens Incorporated Hybrid, color-corrected, projection TV lens system
JP3202831B2 (ja) 1993-04-09 2001-08-27 日本電信電話株式会社 反射形カラー液晶ディスプレイの製造方法
EP0620469B1 (en) 1993-04-16 1997-10-01 Central Glass Company, Limited Glass pane with reflectance reducing coating and combiner of head-up display system
DE4492865T1 (de) 1993-04-28 1996-04-25 Mcpheters Holographische Benutzer-Schnittstelle
US5471326A (en) 1993-04-30 1995-11-28 Northrop Grumman Corporation Holographic laser scanner and rangefinder
WO1994025508A1 (en) 1993-05-03 1994-11-10 Loctite Corporation Polymer dispersed liquid crystals in electron-rich alkene-thiol polymers
US5579026A (en) 1993-05-14 1996-11-26 Olympus Optical Co., Ltd. Image display apparatus of head mounted type
FR2706079B1 (fr) 1993-06-02 1995-07-21 France Telecom Composant intégré monolithique laser-modulateur à structure multi-puits quantiques.
US5329363A (en) 1993-06-15 1994-07-12 U. S. Precision Lens Incorporated Projection lens systems having reduced spherochromatism
US5400069A (en) 1993-06-16 1995-03-21 Bell Communications Research, Inc. Eye contact video-conferencing system and screen
US5455713A (en) 1993-06-23 1995-10-03 Kreitzer; Melvyn H. High performance, thermally-stabilized projection television lens systems
JP3623250B2 (ja) 1993-06-23 2005-02-23 オリンパス株式会社 映像表示装置
US5585035A (en) 1993-08-06 1996-12-17 Minnesota Mining And Manufacturing Company Light modulating device having a silicon-containing matrix
JPH0798439A (ja) 1993-09-29 1995-04-11 Nippon Telegr & Teleph Corp <Ntt> 3次元立体表示装置
US5537232A (en) 1993-10-05 1996-07-16 In Focus Systems, Inc. Reflection hologram multiple-color filter array formed by sequential exposure to a light source
US5686975A (en) 1993-10-18 1997-11-11 Stereographics Corporation Polarel panel for stereoscopic displays
US5408346A (en) 1993-10-20 1995-04-18 Kaiser Electro-Optics, Inc. Optical collimating device employing cholesteric liquid crystal and a non-transmissive reflector
US5485313A (en) 1993-10-27 1996-01-16 Polaroid Corporation Zoom lens systems
IL107502A (en) 1993-11-04 1999-12-31 Elbit Systems Ltd Helmet display mounting system
US5991087A (en) 1993-11-12 1999-11-23 I-O Display System Llc Non-orthogonal plate in a virtual reality or heads up display
US5438357A (en) 1993-11-23 1995-08-01 Mcnelley; Steve H. Image manipulating teleconferencing system
US5757546A (en) 1993-12-03 1998-05-26 Stereographics Corporation Electronic stereoscopic viewer
US5524272A (en) 1993-12-22 1996-06-04 Gte Airfone Incorporated Method and apparatus for distributing program material
GB2286057A (en) 1994-01-21 1995-08-02 Sharp Kk Electrically controllable grating
US5677797A (en) 1994-02-04 1997-10-14 U.S. Precision Lens Inc. Method for correcting field curvature
US5559637A (en) 1994-02-04 1996-09-24 Corning Incorporated Field curvature corrector
US5463428A (en) 1994-02-08 1995-10-31 Stereographics Corporation Wireless active eyewear for stereoscopic applications
US5986746A (en) 1994-02-18 1999-11-16 Imedge Technology Inc. Topographical object detection system
JP3453836B2 (ja) 1994-02-18 2003-10-06 株式会社デンソー ホログラムの製造方法
US5631107A (en) 1994-02-18 1997-05-20 Nippondenso Co., Ltd. Method for producing optical member
ATE195189T1 (de) 1994-02-18 2000-08-15 Imedge Technology Inc Kompakte vorrichtung um ein bild von der oberflächen topologie von objekten herzustellen und verfahren um die vorrichtung herzustellen
JPH07270615A (ja) 1994-03-31 1995-10-20 Central Glass Co Ltd ホログラフィック積層体
EP0755616B1 (de) 1994-04-15 2002-06-26 Nokia Corporation Transportnetz mit hoher übertragungskapazität für die telekommunikation
WO1995029968A1 (en) 1994-04-29 1995-11-09 Minnesota Mining And Manufacturing Company Light modulating device having a matrix prepared from acid reactants
US7126583B1 (en) 1999-12-15 2006-10-24 Automotive Technologies International, Inc. Interactive vehicle display system
US5473222A (en) 1994-07-05 1995-12-05 Delco Electronics Corporation Active matrix vacuum fluorescent display with microprocessor integration
EP0724174A4 (en) 1994-07-15 1998-12-09 Matsushita Electric Ind Co Ltd 'HEADUP' DISPLAY DEVICE, LIQUID CRYSTAL DISPLAY PANEL AND PRODUCTION METHOD THEREFOR
US5612733A (en) 1994-07-18 1997-03-18 C-Phone Corporation Optics orienting arrangement for videoconferencing system
US5493430A (en) 1994-08-03 1996-02-20 Kent Display Systems, L.P. Color, reflective liquid crystal displays
US5606433A (en) 1994-08-31 1997-02-25 Hughes Electronics Lamination of multilayer photopolymer holograms
US5903395A (en) 1994-08-31 1999-05-11 I-O Display Systems Llc Personal visual display system
JPH08129146A (ja) 1994-09-05 1996-05-21 Olympus Optical Co Ltd 映像表示装置
US5727098A (en) 1994-09-07 1998-03-10 Jacobson; Joseph M. Oscillating fiber optic display and imager
US5647036A (en) 1994-09-09 1997-07-08 Deacon Research Projection display with electrically-controlled waveguide routing
US6167169A (en) 1994-09-09 2000-12-26 Gemfire Corporation Scanning method and architecture for display
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
FI98871C (fi) 1994-09-15 1997-08-25 Nokia Telecommunications Oy Menetelmä tukiaseman summausverkon virittämiseksi sekä kaistanpäästösuodatin
US5572248A (en) 1994-09-19 1996-11-05 Teleport Corporation Teleconferencing method and system for providing face-to-face, non-animated teleconference environment
US5506929A (en) 1994-10-19 1996-04-09 Clio Technologies, Inc. Light expanding system for producing a linear or planar light beam from a point-like light source
US5572250A (en) 1994-10-20 1996-11-05 Stereographics Corporation Universal electronic stereoscopic display
US5500671A (en) 1994-10-25 1996-03-19 At&T Corp. Video conference system and method of providing parallax correction and a sense of presence
SG47360A1 (en) 1994-11-14 1998-04-17 Hoffmann La Roche Colour display with serially-connected lc filters
US5625495A (en) 1994-12-07 1997-04-29 U.S. Precision Lens Inc. Telecentric lens systems for forming an image of an object composed of pixels
US5745301A (en) 1994-12-19 1998-04-28 Benopcon, Inc. Variable power lens systems for producing small images
US6154190A (en) 1995-02-17 2000-11-28 Kent State University Dynamic drive methods and apparatus for a bistable liquid crystal display
US5748277A (en) 1995-02-17 1998-05-05 Kent State University Dynamic drive method and apparatus for a bistable liquid crystal display
US6061463A (en) 1995-02-21 2000-05-09 Imedge Technology, Inc. Holographic fingerprint device
US5731853A (en) 1995-02-24 1998-03-24 Matsushita Electric Industrial Co., Ltd. Display device
JP3658034B2 (ja) 1995-02-28 2005-06-08 キヤノン株式会社 画像観察光学系及び撮像光学系
US5583795A (en) 1995-03-17 1996-12-10 The United States Of America As Represented By The Secretary Of The Army Apparatus for measuring eye gaze and fixation duration, and method therefor
US6259559B1 (en) 1995-03-28 2001-07-10 Central Glass Company, Limited Glass arrangement including an outside glass plate, a polarization direction changing film and an adhesive layer therebetween, and an inside glass layer
US5621529A (en) 1995-04-05 1997-04-15 Intelligent Automation Systems, Inc. Apparatus and method for projecting laser pattern with reduced speckle noise
US5764619A (en) 1995-04-07 1998-06-09 Matsushita Electric Industrial Co., Ltd. Optical recording medium having two separate recording layers
US5619254A (en) 1995-04-11 1997-04-08 Mcnelley; Steve H. Compact teleconferencing eye contact terminal
US5668614A (en) 1995-05-01 1997-09-16 Kent State University Pixelized liquid crystal display materials including chiral material adopted to change its chirality upon photo-irradiation
US5543950A (en) 1995-05-04 1996-08-06 Kent State University Liquid crystalline electrooptical device
FI98584C (fi) 1995-05-05 1997-07-10 Nokia Technology Gmbh Menetelmä ja piirijärjestely vastaanotetun signaalin käsittelemiseksi
EP0771433A1 (en) 1995-05-15 1997-05-07 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Low-cost light-weight head-mounted virtual-image projection display with low moments of inertia and low center of gravity
US5825448A (en) 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
US5831700A (en) 1995-05-19 1998-11-03 Kent State University Polymer stabilized four domain twisted nematic liquid crystal display
US5929946A (en) 1995-05-23 1999-07-27 Colorlink, Inc. Retarder stack for preconditioning light for a modulator having modulation and isotropic states of polarization
US5680231A (en) 1995-06-06 1997-10-21 Hughes Aircraft Company Holographic lenses with wide angular and spectral bandwidths for use in a color display device
US5694230A (en) 1995-06-07 1997-12-02 Digital Optics Corp. Diffractive optical elements as combiners
US5671035A (en) 1995-06-07 1997-09-23 Barnes; Elwood E. Light intensity reduction apparatus and method
WO1997001133A1 (en) 1995-06-23 1997-01-09 Holoplex Multiplexed hologram copying system and method
US5629764A (en) 1995-07-07 1997-05-13 Advanced Precision Technology, Inc. Prism fingerprint sensor using a holographic optical element
JPH0933853A (ja) 1995-07-20 1997-02-07 Denso Corp ホログラム表示装置
FI99221C (fi) 1995-08-25 1997-10-27 Nokia Telecommunications Oy Planaarinen antennirakenne
EP0764865B1 (en) 1995-09-21 2003-07-30 U.S. Precision Lens Inc. Projection television lens system
JPH0990312A (ja) 1995-09-27 1997-04-04 Olympus Optical Co Ltd 光学装置
US5907436A (en) 1995-09-29 1999-05-25 The Regents Of The University Of California Multilayer dielectric diffraction gratings
US5999282A (en) 1995-11-08 1999-12-07 Victor Company Of Japan, Ltd. Color filter and color image display apparatus employing the filter
US5612734A (en) 1995-11-13 1997-03-18 Bell Communications Research, Inc. Eye contact apparatus employing a directionally transmissive layer for video conferencing
US5724189A (en) 1995-12-15 1998-03-03 Mcdonnell Douglas Corporation Methods and apparatus for creating an aspheric optical element and the aspheric optical elements formed thereby
JP3250782B2 (ja) 1995-12-25 2002-01-28 セントラル硝子株式会社 積層体
US5668907A (en) 1996-01-11 1997-09-16 Associated Universities, Inc. Thin optical display panel
EP1798592A3 (en) 1996-01-17 2007-09-19 Nippon Telegraph And Telephone Corporation Optical device and three-dimensional display device
WO1997027519A1 (en) 1996-01-29 1997-07-31 Foster-Miller, Inc. Optical components containing complex diffraction gratings and methods for the fabrication thereof
US5963375A (en) 1996-01-31 1999-10-05 U.S. Precision Lens Inc. Athermal LCD projection lens
EP0886802B1 (en) 1996-03-15 2001-11-21 Retinal Display Cayman Ltd. Method of and apparatus for viewing an image
US6166834A (en) 1996-03-15 2000-12-26 Matsushita Electric Industrial Co., Ltd. Display apparatus and method for forming hologram suitable for the display apparatus
US5701132A (en) 1996-03-29 1997-12-23 University Of Washington Virtual retinal display with expanded exit pupil
GB2312109B (en) 1996-03-29 2000-08-02 Advanced Saw Prod Sa Acoustic wave filter
GB2312110B (en) 1996-03-29 2000-07-05 Advanced Saw Prod Sa Acoustic wave filter
JP2000509515A (ja) 1996-04-29 2000-07-25 ユーエス プレシジョン レンズ インコーポレイテッド Lcd投影レンズ
US5841587A (en) 1996-04-29 1998-11-24 U.S. Precision Lens Inc. LCD projection lens
JP2000509514A (ja) 1996-04-29 2000-07-25 ユーエス プレシジョン レンズ インコーポレイテッド 投写型テレビレンズ系
US5729242A (en) 1996-05-08 1998-03-17 Hughes Electronics Dual PDLC-projection head-up display
US6583838B1 (en) 1996-05-10 2003-06-24 Kent State University Bistable liquid crystal display device using polymer stabilization
US6061107A (en) 1996-05-10 2000-05-09 Kent State University Bistable polymer dispersed cholesteric liquid crystal displays
US6133975A (en) 1996-05-10 2000-10-17 Kent State University Bistable liquid crystal display device using polymer stabilization
US5870228A (en) 1996-05-24 1999-02-09 U.S. Precision Lens Inc. Projection lenses having larger back focal length to focal length ratios
US5969874A (en) 1996-05-30 1999-10-19 U.S. Precision Lens Incorporated Long focal length projection lenses
CA2207226C (en) 1996-06-10 2005-06-21 Sumitomo Electric Industries, Ltd. Optical fiber grating and method of manufacturing the same
US6550949B1 (en) 1996-06-13 2003-04-22 Gentex Corporation Systems and components for enhancing rear vision from a vehicle
US6821457B1 (en) 1998-07-29 2004-11-23 Science Applications International Corporation Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects
US7312906B2 (en) 1996-07-12 2007-12-25 Science Applications International Corporation Switchable polymer-dispersed liquid crystal optical elements
US7077984B1 (en) 1996-07-12 2006-07-18 Science Applications International Corporation Electrically switchable polymer-dispersed liquid crystal materials
US6867888B2 (en) 1996-07-12 2005-03-15 Science Applications International Corporation Switchable polymer-dispersed liquid crystal optical elements
US5942157A (en) 1996-07-12 1999-08-24 Science Applications International Corporation Switchable volume hologram materials and devices
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
GB2315902A (en) 1996-08-01 1998-02-11 Sharp Kk LIquid crystal device
US5847787A (en) 1996-08-05 1998-12-08 Motorola, Inc. Low driving voltage polymer dispersed liquid crystal display device with conductive nanoparticles
DE19632111C1 (de) 1996-08-08 1998-02-12 Pelikan Produktions Ag Thermotransferfarbband für lumineszierende Schriftzeichen
US5857043A (en) 1996-08-12 1999-01-05 Corning Incorporated Variable period amplitude grating mask and method for use
DE69726352T2 (de) 1996-08-16 2004-09-09 3M Innovative Properties Co., St. Paul Miniaturprojektionszoomobjektiv zur Verwendung mit Anzeigetafel mit Pixelmatrix
US5856842A (en) 1996-08-26 1999-01-05 Kaiser Optical Systems Corporation Apparatus facilitating eye-contact video communications
KR100206688B1 (ko) 1996-09-07 1999-07-01 박원훈 천연색 홀로그래픽 헤드 업 표시 장치
JPH1096903A (ja) 1996-09-25 1998-04-14 Sumitomo Bakelite Co Ltd 液晶表示素子およびその製造方法
US5936776A (en) 1996-09-27 1999-08-10 U.S. Precision Lens Inc. Focusable front projection lens systems for use with large screen formats
US5745266A (en) 1996-10-02 1998-04-28 Raytheon Company Quarter-wave film for brightness enhancement of holographic thin taillamp
US5886822A (en) 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
JP4007633B2 (ja) 1996-10-09 2007-11-14 株式会社島津製作所 ヘッドアップディスプレイ
FR2755530B1 (fr) 1996-11-05 1999-01-22 Thomson Csf Dispositif de visualisation et ecran plat de television utilisant ce dispositif
JP4155343B2 (ja) 1996-11-12 2008-09-24 ミラージュ イノベーションズ リミテッド 二つの光景からの光を観察者の眼へ代替的に、あるいは同時に導くための光学系
JPH10148787A (ja) 1996-11-20 1998-06-02 Central Glass Co Ltd 表示装置
US5962147A (en) 1996-11-26 1999-10-05 General Latex And Chemical Corporation Method of bonding with a natural rubber latex and laminate produced
WO1998023988A1 (en) 1996-11-29 1998-06-04 U.S. Precision Lens Incorporated Lenses for electronic imaging systems
US6366281B1 (en) 1996-12-06 2002-04-02 Stereographics Corporation Synthetic panoramagram
US6864927B1 (en) 1996-12-31 2005-03-08 Micron Technology, Inc. Head up display with adjustable transparency screen
US5907416A (en) 1997-01-27 1999-05-25 Raytheon Company Wide FOV simulator heads-up display with selective holographic reflector combined
US5956113A (en) 1997-01-31 1999-09-21 Xerox Corporation Bistable reflective display and methods of forming the same
US5875012A (en) 1997-01-31 1999-02-23 Xerox Corporation Broadband reflective display, and methods of forming the same
US5790314A (en) 1997-01-31 1998-08-04 Jds Fitel Inc. Grin lensed optical device
US6133971A (en) 1997-01-31 2000-10-17 Xerox Corporation Holographically formed reflective display, liquid crystal display and projection system and methods of forming the same
US5877826A (en) 1997-02-06 1999-03-02 Kent State University Dual frequency switchable cholesteric liquid crystal light shutter and driving waveform
US5937115A (en) 1997-02-12 1999-08-10 Foster-Miller, Inc. Switchable optical components/structures and methods for the fabrication thereof
US6567573B1 (en) 1997-02-12 2003-05-20 Digilens, Inc. Switchable optical components
US5900987A (en) 1997-02-13 1999-05-04 U.S. Precision Lens Inc Zoom projection lenses for use with pixelized panels
US5798641A (en) 1997-03-17 1998-08-25 Quantum Design, Inc. Torque magnetometer utilizing integrated piezoresistive levers
US6034752A (en) 1997-03-22 2000-03-07 Kent Displays Incorporated Display device reflecting visible and infrared radiation
US6156243A (en) 1997-04-25 2000-12-05 Hoya Corporation Mold and method of producing the same
FI971850A (fi) 1997-04-30 1998-10-31 Nokia Telecommunications Oy Järjestely radiotaajuisten signaalien keskeishäiriöiden vähentämiseksi
US5868951A (en) 1997-05-09 1999-02-09 University Technology Corporation Electro-optical device and method
US5973727A (en) 1997-05-13 1999-10-26 New Light Industries, Ltd. Video image viewing device and method
US5999089A (en) 1997-05-13 1999-12-07 Carlson; Lance K. Alarm system
GB2325530A (en) 1997-05-22 1998-11-25 Sharp Kk Liquid crystal device
FI103619B1 (fi) 1997-05-26 1999-07-30 Nokia Telecommunications Oy Optinen multipleksointi ja demultipleksointi
US6608720B1 (en) 1997-06-02 2003-08-19 Robin John Freeman Optical instrument and optical element thereof
JPH1115358A (ja) 1997-06-25 1999-01-22 Denso Corp ホログラム
WO1999003006A1 (en) 1997-07-11 1999-01-21 U.S. Precision Lens Incorporated High performance projection television lens systems
US7164818B2 (en) 2001-05-03 2007-01-16 Neophontonics Corporation Integrated gradient index lenses
US5930433A (en) 1997-07-23 1999-07-27 Hewlett-Packard Company Waveguide array document scanner
US6417971B1 (en) 1997-08-05 2002-07-09 U.S. Precision Lens Incorporated Zoom projection lens having a lens correction unit
JP2001516062A (ja) 1997-08-13 2001-09-25 フォスター−ミラー・インコーポレーテッド スイッチング可能な光学構成要素
US6141154A (en) 1997-08-22 2000-10-31 U.S. Precision Lens Inc. Focusable, color corrected, high performance projection lens systems
JPH1167448A (ja) 1997-08-26 1999-03-09 Toyota Central Res & Dev Lab Inc ディスプレイ装置
JP3535710B2 (ja) 1997-09-16 2004-06-07 キヤノン株式会社 光学素子及びそれを用いた光学系
US7028899B2 (en) 1999-06-07 2006-04-18 Metrologic Instruments, Inc. Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target
JP2953444B2 (ja) 1997-10-01 1999-09-27 日本電気株式会社 液晶表示装置およびその製造方法
US6285813B1 (en) 1997-10-03 2001-09-04 Georgia Tech Research Corporation Diffractive grating coupler and method
US5903396A (en) 1997-10-17 1999-05-11 I/O Display Systems, Llc Intensified visual display
US5929960A (en) 1997-10-17 1999-07-27 Kent State University Method for forming liquid crystal display cell walls using a patterned electric field
US6486997B1 (en) 1997-10-28 2002-11-26 3M Innovative Properties Company Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter
DE69833682T2 (de) 1997-11-13 2006-11-09 3M Innovative Properties Co., St. Paul Projektionsobjektive mit einem breiten sehfeld für kompakte projektionsobjektivsysteme, die pixelierte tafeln verwenden
JP3331559B2 (ja) 1997-11-13 2002-10-07 日本電信電話株式会社 光学装置
DE19751190A1 (de) 1997-11-19 1999-05-20 Bosch Gmbh Robert Laseranzeigevorrichtung
US6046585A (en) 1997-11-21 2000-04-04 Quantum Design, Inc. Method and apparatus for making quantitative measurements of localized accumulations of target particles having magnetic particles bound thereto
US6437563B1 (en) 1997-11-21 2002-08-20 Quantum Design, Inc. Method and apparatus for making measurements of accumulations of magnetically susceptible particles combined with analytes
US5949508A (en) 1997-12-10 1999-09-07 Kent State University Phase separated composite organic film and methods for the manufacture thereof
US6864861B2 (en) 1997-12-31 2005-03-08 Brillian Corporation Image generator having a miniature display device
US6195206B1 (en) 1998-01-13 2001-02-27 Elbit Systems Ltd. Optical system for day and night use
US6975345B1 (en) 1998-03-27 2005-12-13 Stereographics Corporation Polarizing modulator for an electronic stereoscopic display
DE69912759T2 (de) 1998-04-02 2004-09-30 Elop Electro-Optics Industries Ltd. Optische holographische Vorrichtung
US6176837B1 (en) 1998-04-17 2001-01-23 Massachusetts Institute Of Technology Motion tracking system
US6268839B1 (en) 1998-05-12 2001-07-31 Kent State University Drive schemes for gray scale bistable cholesteric reflective displays
US6204835B1 (en) 1998-05-12 2001-03-20 Kent State University Cumulative two phase drive scheme for bistable cholesteric reflective displays
JPH11326617A (ja) 1998-05-13 1999-11-26 Olympus Optical Co Ltd 回折光学素子を含む光学系及びその設計方法
EP0957477A3 (en) 1998-05-15 2003-11-05 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus
GB2337859B (en) 1998-05-29 2002-12-11 Nokia Mobile Phones Ltd Antenna
US6388797B1 (en) 1998-05-29 2002-05-14 Stereographics Corporation Electrostereoscopic eyewear
US6341118B1 (en) 1998-06-02 2002-01-22 Science Applications International Corporation Multiple channel scanning device using oversampling and image processing to increase throughput
KR100553060B1 (ko) 1998-06-24 2006-02-15 쓰리엠 이노베이티브 프로퍼티즈 컴파니 개선된 변조전달함수를 가진 투사 텔레비젼 렌즈 시스템
US6411444B1 (en) 1998-06-30 2002-06-25 Corning Precision Lens, Incorporated Lenses for electronic imaging systems having long wavelength filtering properties
US6064354A (en) 1998-07-01 2000-05-16 Deluca; Michael Joseph Stereoscopic user interface method and apparatus
US20030202228A1 (en) 1998-07-07 2003-10-30 Kenichiro Takada Hologram screen and a method of producing the same
US6137630A (en) 1998-07-13 2000-10-24 Industrial Technology Research Institute Thin-film multilayer systems for use in a head-up display
US6222971B1 (en) 1998-07-17 2001-04-24 David Slobodin Small inlet optical panel and a method of making a small inlet optical panel
US6618104B1 (en) * 1998-07-28 2003-09-09 Nippon Telegraph And Telephone Corporation Optical device having reverse mode holographic PDLC and front light guide
IL125558A (en) 1998-07-28 2003-06-24 Elbit Systems Ltd Non-adjustable helmet mounted optical systems
JP3643486B2 (ja) 1998-08-04 2005-04-27 株式会社東芝 光機能素子及び光通信システム
JP2000056259A (ja) 1998-08-10 2000-02-25 Fuji Xerox Co Ltd 画像表示装置
US6169594B1 (en) 1998-08-24 2001-01-02 Physical Optics Corporation Beam deflector and scanner
US6188462B1 (en) 1998-09-02 2001-02-13 Kent State University Diffraction grating with electrically controlled periodicity
KR100533451B1 (ko) 1998-09-02 2005-12-06 세이코 엡슨 가부시키가이샤 광원 및 표시 장치
US20020127497A1 (en) 1998-09-10 2002-09-12 Brown Daniel J. W. Large diffraction grating for gas discharge laser
US6278429B1 (en) 1998-09-11 2001-08-21 Kent State University Bistable reflective cholesteric liquid crystal displays utilizing super twisted nematic driver chips
US20020126332A1 (en) 1998-09-14 2002-09-12 Popovich Milan M. System and method for modulating light intesity
EP1114340A1 (en) 1998-09-14 2001-07-11 Digilens Inc. Holographic illumination system and holographic projection system
JP4052741B2 (ja) 1998-09-30 2008-02-27 セントラル硝子株式会社 反射型ディスプレイ用積層ガラス
US6082862A (en) 1998-10-16 2000-07-04 Digilens, Inc. Image tiling technique based on electrically switchable holograms
WO2000023830A1 (en) 1998-10-16 2000-04-27 Digilens Inc. Autostereoscopic display based on electrically switchable holograms
AU6428199A (en) 1998-10-16 2000-05-08 Digilens Inc. Holographic display system
FI105856B (fi) 1998-10-21 2000-10-13 Nokia Networks Oy Optisen WDM-signaalin vahvistus
WO2000023811A1 (en) 1998-10-21 2000-04-27 Duncan Paul G Methods and apparatus for optically measuring polarization rotation of optical wave fronts using rare earth iron garnets
US6218316B1 (en) 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6414760B1 (en) 1998-10-29 2002-07-02 Hewlett-Packard Company Image scanner with optical waveguide and enhanced optical sampling rate
US6567014B1 (en) 1998-11-05 2003-05-20 Rockwell Collins, Inc. Aircraft head up display system
US6850210B1 (en) 1998-11-12 2005-02-01 Stereographics Corporation Parallax panoramagram having improved depth and sharpness
EP1129382A2 (en) 1998-11-12 2001-09-05 Digilens Inc. Head mounted apparatus for viewing an image
CN1145045C (zh) 1998-11-12 2004-04-07 3M创新有限公司 使用衍射光学表面的彩色校正投影透镜
US6222675B1 (en) 1998-12-01 2001-04-24 Kaiser Electro-Optics, Inc. Area of interest head-mounted display using low resolution, wide angle; high resolution, narrow angle; and see-through views
US6078427A (en) 1998-12-01 2000-06-20 Kaiser Electro-Optics, Inc. Smooth transition device for area of interest head-mounted display
US6744478B1 (en) 1998-12-28 2004-06-01 Central Glass Company, Limited Heads-up display system with optical rotation layers
US6185016B1 (en) 1999-01-19 2001-02-06 Digilens, Inc. System for generating an image
US6191887B1 (en) 1999-01-20 2001-02-20 Tropel Corporation Laser illumination with speckle reduction
US6320563B1 (en) 1999-01-21 2001-11-20 Kent State University Dual frequency cholesteric display and drive scheme
US6301057B1 (en) 1999-02-02 2001-10-09 Corning Precision Lens Long focal length projection lenses
JP4089071B2 (ja) 1999-03-10 2008-05-21 ブラザー工業株式会社 ヘッドマウントカメラ
JP2000267042A (ja) 1999-03-17 2000-09-29 Fuji Xerox Co Ltd 頭部搭載型映像表示装置
US6269203B1 (en) 1999-03-17 2001-07-31 Radiant Photonics Holographic optical devices for transmission of optical signals
JP2000267552A (ja) 1999-03-19 2000-09-29 Sony Corp 画像記録装置及び画像記録方法並びに記録媒体
US6504629B1 (en) 1999-03-23 2003-01-07 Digilens, Inc. Method and apparatus for illuminating a display
US6909443B1 (en) 1999-04-06 2005-06-21 Microsoft Corporation Method and apparatus for providing a three-dimensional task gallery computer interface
JP4548680B2 (ja) 1999-04-12 2010-09-22 大日本印刷株式会社 カラーホログラム表示体及びその作成方法
US6107943A (en) 1999-04-16 2000-08-22 Rockwell Collins, Inc. Display symbology indicating aircraft ground motion deceleration
US6121899A (en) 1999-04-16 2000-09-19 Rockwell Collins, Inc. Impending aircraft tail strike warning display symbology
DE19917751C2 (de) 1999-04-20 2001-05-31 Nokia Networks Oy Verfahren und Überwachungsvorrichtung zur Überwachung der Qualität der Datenübertragung über analoge Leitungen
US6195209B1 (en) 1999-05-04 2001-02-27 U.S. Precision Lens Incorporated Projection lenses having reduced lateral color for use with pixelized panels
SE516715C2 (sv) 1999-05-26 2002-02-19 Ericsson Telefon Ab L M Display för huvudmontering
FI113581B (fi) 1999-07-09 2004-05-14 Nokia Corp Menetelmä aaltojohdon toteuttamiseksi monikerroskeramiikkarakenteissa ja aaltojohto
FR2796184B1 (fr) 1999-07-09 2001-11-02 Thomson Csf Document securise, systeme de fabrication et systeme de lecture de ce document
JP4341108B2 (ja) 1999-07-14 2009-10-07 ソニー株式会社 虚像観察光学装置
US20030063042A1 (en) 1999-07-29 2003-04-03 Asher A. Friesem Electronic utility devices incorporating a compact virtual image display
AU6400300A (en) 1999-08-04 2001-03-05 Digilens Inc. Apparatus for producing a three-dimensional image
GB2353144A (en) 1999-08-11 2001-02-14 Nokia Telecommunications Oy Combline filter
US6317528B1 (en) 1999-08-23 2001-11-13 Corning Incorporated Temperature compensated integrated planar bragg grating, and method of formation
US6317228B2 (en) 1999-09-14 2001-11-13 Digilens, Inc. Holographic illumination system
US6646772B1 (en) 1999-09-14 2003-11-11 Digilens, Inc. Holographic illumination system
US6222297B1 (en) 1999-09-24 2001-04-24 Litton Systems, Inc. Pressed V-groove pancake slip ring
JP2001091715A (ja) 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp 複合回折素子
GB2354835A (en) 1999-09-29 2001-04-04 Marconi Electronic Syst Ltd Head up displays
US6323970B1 (en) 1999-09-29 2001-11-27 Digilents, Inc. Method of producing switchable holograms
US6741189B1 (en) 1999-10-06 2004-05-25 Microsoft Corporation Keypad having optical waveguides
US6301056B1 (en) 1999-11-08 2001-10-09 Corning Precision Lens High speed retrofocus projection television lens systems
US20020009299A1 (en) 1999-12-04 2002-01-24 Lenny Lipton System for the display of stereoscopic photographs
WO2001042828A1 (en) 1999-12-07 2001-06-14 Digilens Inc. Holographic display system
WO2001050200A2 (en) 1999-12-22 2001-07-12 Science Applications International Corp. Switchable polymer-dispersed liquid crystal optical elements
US6356172B1 (en) 1999-12-29 2002-03-12 Nokia Networks Oy Resonator structure embedded in mechanical structure
US7502003B2 (en) 2000-01-20 2009-03-10 Real D Method for eliminating pi-cell artifacts
US6519088B1 (en) 2000-01-21 2003-02-11 Stereographics Corporation Method and apparatus for maximizing the viewing zone of a lenticular stereogram
JP4921634B2 (ja) 2000-01-31 2012-04-25 グーグル インコーポレイテッド 表示装置
GB2360186B (en) 2000-03-03 2003-05-14 Toshiba Res Europ Ltd Apparatus and method for investigating a sample
US6987911B2 (en) 2000-03-16 2006-01-17 Lightsmyth Technologies, Inc. Multimode planar waveguide spectral filter
US6993223B2 (en) 2000-03-16 2006-01-31 Lightsmyth Technologies, Inc. Multiple distributed optical structures in a single optical element
US7245325B2 (en) 2000-03-17 2007-07-17 Fujifilm Corporation Photographing device with light quantity adjustment
US6919003B2 (en) 2000-03-23 2005-07-19 Canon Kabushiki Kaisha Apparatus and process for producing electrophoretic device
JP2001296503A (ja) 2000-04-13 2001-10-26 Mitsubishi Heavy Ind Ltd スペックル低減装置
WO2001086200A1 (en) * 2000-05-04 2001-11-15 Koninklijke Philips Electronics N.V. Illumination unit for a device having a multi-color reflective liquid crystal display
US6522795B1 (en) 2000-05-17 2003-02-18 Rebecca Jordan Tunable etched grating for WDM optical communication systems
US6730442B1 (en) 2000-05-24 2004-05-04 Science Applications International Corporation System and method for replicating volume holograms
JP4433355B2 (ja) 2000-05-25 2010-03-17 大日本印刷株式会社 透過型ホログラムの作製方法
JP2003535405A (ja) 2000-05-29 2003-11-25 ブイケービー インコーポレイティド 文字・数字及び他のデータを入力する仮想データ入力装置及び方法
AU5664401A (en) 2000-06-05 2001-12-17 Lumus Ltd Substrate-guided optical beam expander
US7671889B2 (en) 2000-06-07 2010-03-02 Real D Autostereoscopic pixel arrangement techniques
US20010050756A1 (en) 2000-06-07 2001-12-13 Lenny Lipton Software generated color organ for stereoscopic and planar applications
FI114585B (fi) 2000-06-09 2004-11-15 Nokia Corp Siirtojohdin monikerrosrakenteissa
US6830789B2 (en) 2000-06-09 2004-12-14 Kent Displays, Inc. Chiral additives for cholesteric displays
US6598987B1 (en) 2000-06-15 2003-07-29 Nokia Mobile Phones Limited Method and apparatus for distributing light to the user interface of an electronic device
US20080024598A1 (en) 2000-07-21 2008-01-31 New York University Autostereoscopic display
US6359737B1 (en) 2000-07-28 2002-03-19 Generals Motors Corporation Combined head-up display
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element
US7376068B1 (en) 2000-08-19 2008-05-20 Jehad Khoury Nano-scale resolution holographic lens and pickup device
US7099080B2 (en) 2000-08-30 2006-08-29 Stereo Graphics Corporation Autostereoscopic lenticular screen
US6470132B1 (en) 2000-09-05 2002-10-22 Nokia Mobile Phones Ltd. Optical hinge apparatus
US6611253B1 (en) 2000-09-19 2003-08-26 Harel Cohen Virtual input environment
JP2002090858A (ja) 2000-09-20 2002-03-27 Olympus Optical Co Ltd ファインダ内表示装置
US6583873B1 (en) 2000-09-25 2003-06-24 The Carnegie Institution Of Washington Optical devices having a wavelength-tunable dispersion assembly that has a volume dispersive diffraction grating
FI111457B (fi) 2000-10-02 2003-07-31 Nokia Corp Mikromekaaninen rakenne
US6750968B2 (en) 2000-10-03 2004-06-15 Accent Optical Technologies, Inc. Differential numerical aperture methods and device
DE60024684T2 (de) 2000-10-06 2006-06-22 Nokia Corp. Selbstausrichtender uebergang zwischen einer uebertragungsleitung und einem modul
DE10051186B4 (de) 2000-10-16 2005-04-07 Fibermark Gessner Gmbh & Co. Ohg Staubfilterbeutel mit hochporöser Trägermateriallage
JP2002122906A (ja) 2000-10-17 2002-04-26 Olympus Optical Co Ltd ファインダ内表示装置
ATE264550T1 (de) 2000-10-18 2004-04-15 Nokia Corp Hohlleiter-streifenleiter-übergang
US6563648B2 (en) 2000-10-20 2003-05-13 Three-Five Systems, Inc. Compact wide field of view imaging system
US6738105B1 (en) 2000-11-02 2004-05-18 Intel Corporation Coherent light despeckling
US6791629B2 (en) 2000-11-09 2004-09-14 3M Innovative Properties Company Lens systems for projection televisions
US6552789B1 (en) 2000-11-22 2003-04-22 Rockwell Collins, Inc. Alignment detector
US6822713B1 (en) 2000-11-27 2004-11-23 Kent State University Optical compensation film for liquid crystal display
JP4727034B2 (ja) 2000-11-28 2011-07-20 オリンパス株式会社 観察光学系および撮像光学系
GB0029340D0 (en) 2000-11-30 2001-01-17 Cambridge 3D Display Ltd Flat panel camera
US7123319B2 (en) 2000-12-14 2006-10-17 Koninklijke Philips Electronics N.V. Liquid crystal display laminate and method of manufacturing such comprising a stratified-phase-separated composite
US20020093701A1 (en) 2000-12-29 2002-07-18 Xiaoxiao Zhang Holographic multifocal lens
US7042631B2 (en) 2001-01-04 2006-05-09 Coherent Technologies, Inc. Power scalable optical systems for generating, transporting, and delivering high power, high quality, laser beams
US20020120916A1 (en) 2001-01-16 2002-08-29 Snider Albert Monroe Head-up display system utilizing fluorescent material
US6563650B2 (en) 2001-01-17 2003-05-13 3M Innovative Properties Company Compact, telecentric projection lenses for use with pixelized panels
US7323275B2 (en) 2001-02-09 2008-01-29 Dai Nippon Printing Co., Ltd Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording
US6518747B2 (en) 2001-02-16 2003-02-11 Quantum Design, Inc. Method and apparatus for quantitative determination of accumulations of magnetic particles
US6625381B2 (en) 2001-02-20 2003-09-23 Eastman Kodak Company Speckle suppressed laser projection system with partial beam reflection
US6600590B2 (en) 2001-02-20 2003-07-29 Eastman Kodak Company Speckle suppressed laser projection system using RF injection
US6476974B1 (en) 2001-02-28 2002-11-05 Corning Precision Lens Incorporated Projection lenses for use with reflective pixelized panels
AU2002250235A1 (en) 2001-03-02 2002-09-19 Innovative Solutions And Support, Inc. Image display generator for a head-up display
JP2002277732A (ja) 2001-03-14 2002-09-25 Fuji Photo Optical Co Ltd 回折型光ピックアップレンズおよびこれを用いた光ピックアップ装置
JP2002277816A (ja) 2001-03-21 2002-09-25 Minolta Co Ltd 映像表示装置
US7184002B2 (en) 2001-03-29 2007-02-27 Stereographics Corporation Above-and-below stereoscopic format with signifier
GB0108838D0 (en) 2001-04-07 2001-05-30 Cambridge 3D Display Ltd Far field display
US6781701B1 (en) 2001-04-10 2004-08-24 Intel Corporation Method and apparatus for measuring optical phase and amplitude
WO2002084345A1 (en) 2001-04-12 2002-10-24 Omniguide Communications High index-contrast fiber waveguides and applications
FI20010778A (fi) 2001-04-12 2002-10-13 Nokia Corp Optinen kytkentäjärjestely
JP4772204B2 (ja) 2001-04-13 2011-09-14 オリンパス株式会社 観察光学系
TWI233500B (en) 2001-04-23 2005-06-01 Reveo Inc Image display system and electrically actuatable image combiner therefor
FI111357B (fi) 2001-05-03 2003-07-15 Nokia Corp Sähköisesti ohjattava, paksuudeltaan muunneltava levy ja menetelmä sen muodostamiseksi
FI20010917A (fi) 2001-05-03 2002-11-04 Nokia Corp Sähköisesti uudelleen konfigurotuvia optisia laitteita ja menetelmä niiden muodostamiseksi
US6731434B1 (en) 2001-05-23 2004-05-04 University Of Central Florida Compact lens assembly for the teleportal augmented reality system
US7009773B2 (en) 2001-05-23 2006-03-07 Research Foundation Of The University Of Central Florida, Inc. Compact microlenslet arrays imager
US6999239B1 (en) 2001-05-23 2006-02-14 Research Foundation Of The University Of Central Florida, Inc Head-mounted display by integration of phase-conjugate material
US6963454B1 (en) 2002-03-01 2005-11-08 Research Foundation Of The University Of Central Florida Head-mounted display by integration of phase-conjugate material
JP4414612B2 (ja) 2001-05-31 2010-02-10 矢崎総業株式会社 車両用表示装置
US7002618B2 (en) 2001-06-01 2006-02-21 Stereographics Corporation Plano-stereoscopic DVD movie
US7500104B2 (en) 2001-06-15 2009-03-03 Microsoft Corporation Networked device branding for secure interaction in trust webs on open networks
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US7151246B2 (en) 2001-07-06 2006-12-19 Palantyr Research, Llc Imaging system and methodology
US6750995B2 (en) 2001-07-09 2004-06-15 Dickson Leroy David Enhanced volume phase grating with high dispersion, high diffraction efficiency and low polarization sensitivity
JP2003114347A (ja) 2001-07-30 2003-04-18 Furukawa Electric Co Ltd:The シングルモード光ファイバ、その製造方法および製造装置
GB0118866D0 (en) 2001-08-02 2001-09-26 Cambridge 3D Display Ltd Shaped taper flat panel display
CN1558921A (zh) 2001-08-03 2004-12-29 Dsm 显示器件用可固化组合物
US6791739B2 (en) 2001-08-08 2004-09-14 Eastman Kodak Company Electro-optic despeckling modulator and method of use
US6927694B1 (en) 2001-08-20 2005-08-09 Research Foundation Of The University Of Central Florida Algorithm for monitoring head/eye motion for driver alertness with one camera
JP2003066428A (ja) 2001-08-23 2003-03-05 Toppan Printing Co Ltd ホログラフィック高分子分散液晶を用いたプロジェクター
US6987908B2 (en) 2001-08-24 2006-01-17 T-Networks, Inc. Grating dispersion compensator and method of manufacture
JP4155771B2 (ja) 2001-08-27 2008-09-24 大日本印刷株式会社 体積型ホログラム記録用感光性組成物及びそれを用いた体積型ホログラム記録用感光性媒体
US6594090B2 (en) 2001-08-27 2003-07-15 Eastman Kodak Company Laser projection display system
US6646810B2 (en) 2001-09-04 2003-11-11 Delphi Technologies, Inc. Display backlighting apparatus
US7447967B2 (en) 2001-09-13 2008-11-04 Texas Instruments Incorporated MIMO hybrid-ARQ using basis hopping
DE60124961T2 (de) 2001-09-25 2007-07-26 Cambridge Flat Projection Displays Ltd., Fenstanton Flachtafel-Projektionsanzeige
WO2003027569A1 (en) * 2001-09-26 2003-04-03 Koninklijke Philips Electronics N.V. Waveguide, edge-lit illumination arrangement and display comprising such
US6833955B2 (en) 2001-10-09 2004-12-21 Planop Planar Optics Ltd. Compact two-plane optical device
KR100416548B1 (ko) 2001-10-10 2004-02-05 삼성전자주식회사 3차원 영상 표시장치
JP2003139958A (ja) 2001-10-31 2003-05-14 Sony Corp 透過型積層ホログラム光学素子、画像表示素子及び画像表示装置
US6806982B2 (en) 2001-11-30 2004-10-19 Zebra Imaging, Inc. Pulsed-laser systems and methods for producing holographic stereograms
US6816309B2 (en) 2001-11-30 2004-11-09 Colorlink, Inc. Compensated color management systems and methods
US6773114B2 (en) 2001-12-07 2004-08-10 Nokia Corporation Portable multimode display device
JP4623703B2 (ja) 2001-12-13 2011-02-02 ソニー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング 複合材の形成方法
KR20040080924A (ko) 2002-01-10 2004-09-20 켄트 스테이트 유니버시티 액정 셀용 물질
US6577429B1 (en) 2002-01-15 2003-06-10 Eastman Kodak Company Laser projection display system
US6972788B1 (en) 2002-01-28 2005-12-06 Rockwell Collins Projection display for a aircraft cockpit environment
US6926429B2 (en) 2002-01-30 2005-08-09 Delphi Technologies, Inc. Eye tracking/HUD system
US6952435B2 (en) 2002-02-11 2005-10-04 Ming Lai Speckle free laser probe beam
WO2003069396A2 (en) 2002-02-15 2003-08-21 Elop Electro-Optics Industries Ltd. Device and method for varying the reflectance or transmittance of light
JP2005529984A (ja) 2002-02-19 2005-10-06 フォトン−エックス・インコーポレーテッド 光用途のポリマーナノ複合材
US6836369B2 (en) 2002-03-08 2004-12-28 Denso Corporation Head-up display
DE60311904D1 (de) 2002-03-15 2007-04-05 Computer Sciences Corp Verfahren und Vorrichtungen zur Analyse von Schrift in Dokumenten
US7528385B2 (en) 2002-03-15 2009-05-05 Pd-Ld, Inc. Fiber optic devices having volume Bragg grating elements
JP2003270419A (ja) 2002-03-18 2003-09-25 Sony Corp 回折光学素子及び画像表示装置
US7027671B2 (en) 2002-03-18 2006-04-11 Koninklijke Philips Electronics N.V. Polarized-light-emitting waveguide, illumination arrangement and display device comprising such
EP1347641A1 (de) 2002-03-19 2003-09-24 Siemens Aktiengesellschaft Projektionsfreie Anzeigevorrichtung
IL148804A (en) 2002-03-21 2007-02-11 Yaacov Amitai Optical device
WO2003083523A2 (en) 2002-03-27 2003-10-09 Avery Dennison Corporation Switchable electro-optical laminates
DE10216279A1 (de) 2002-04-12 2003-10-30 Siemens Ag Verfahren zur Detektion eines Kontrollsignals in einem optischen Übertragungssystem
DE10312405B4 (de) 2002-04-16 2011-12-01 Merck Patent Gmbh Flüssigkristallines Medium mit hoher Doppelbrechung und Lichtstabilität und seine Verwendung
US6757105B2 (en) 2002-04-25 2004-06-29 Planop Planar Optics Ltd. Optical device having a wide field-of-view for multicolor images
JP3460716B1 (ja) 2002-04-25 2003-10-27 ソニー株式会社 画像表示装置
FI113719B (fi) 2002-04-26 2004-05-31 Nokia Corp Modulaattori
KR20030088217A (ko) 2002-05-13 2003-11-19 삼성전자주식회사 배율 조정이 가능한 착용형 디스플레이 시스템
US20030228019A1 (en) 2002-06-11 2003-12-11 Elbit Systems Ltd. Method and system for reducing noise
WO2003107087A1 (en) 2002-06-13 2003-12-24 Nokia Corporation Enhancement electrode configuration for electrically controlled light modulators
US7804995B2 (en) 2002-07-02 2010-09-28 Reald Inc. Stereoscopic format converter
JP3958134B2 (ja) 2002-07-12 2007-08-15 キヤノン株式会社 測定装置
ITTO20020625A1 (it) 2002-07-17 2004-01-19 Fiat Ricerche Guida di luce per dispositivi di visualizzazione di tipo "head-mounted" o "head-up"
JP3867634B2 (ja) 2002-07-26 2007-01-10 株式会社ニコン イメージコンバイナ及び画像表示装置
US6951393B2 (en) 2002-07-31 2005-10-04 Canon Kabushiki Kaisha Projection type image display apparatus and image display system
US7733464B2 (en) 2002-08-05 2010-06-08 Elbit Systems Ltd. Vehicle mounted night vision imaging system and method
US7872804B2 (en) 2002-08-20 2011-01-18 Illumina, Inc. Encoded particle having a grating with variations in the refractive index
US8538208B2 (en) 2002-08-28 2013-09-17 Seng-Tiong Ho Apparatus for coupling light between input and output waveguides
US7619739B1 (en) 2002-08-29 2009-11-17 Science Applications International Corporation Detection and identification of biological agents using Bragg filters
US7259906B1 (en) 2002-09-03 2007-08-21 Cheetah Omni, Llc System and method for voice control of medical devices
TWI275827B (en) 2002-09-03 2007-03-11 Optrex Kk Image display system
CN100584921C (zh) 2002-09-05 2010-01-27 奈米系统股份有限公司 促进电荷转移至纳米结构或自纳米结构转移出电荷的有机物
FI114945B (fi) 2002-09-19 2005-01-31 Nokia Corp Sähköisesti säädettävä diffraktiivinen hilaelementti
US7269317B2 (en) 2002-09-25 2007-09-11 Xponent Photonics Inc Optical assemblies for free-space optical propagation between waveguide(s) and/or fiber(s)
US6776339B2 (en) 2002-09-27 2004-08-17 Nokia Corporation Wireless communication device providing a contactless interface for a smart card reader
US9134585B2 (en) 2002-09-30 2015-09-15 Gentex Corporation Automotive rearview mirror with capacitive switches
US6805490B2 (en) 2002-09-30 2004-10-19 Nokia Corporation Method and system for beam expansion in a display device
DE50212936D1 (de) 2002-10-24 2008-12-04 L 1 Identity Solutions Ag Prüfung von Bildaufnahmen von Personen
JP4242138B2 (ja) 2002-11-05 2009-03-18 日本電信電話株式会社 ホログラム描画方法及びホログラム
US7095026B2 (en) 2002-11-08 2006-08-22 L-3 Communications Cincinnati Electronics Corporation Methods and apparatuses for selectively limiting undesired radiation
US8786923B2 (en) 2002-11-22 2014-07-22 Akonia Holographics, Llc Methods and systems for recording to holographic storage media
US20040263969A1 (en) 2002-11-25 2004-12-30 Lenny Lipton Lenticular antireflection display
US7018563B1 (en) 2002-11-26 2006-03-28 Science Applications International Corporation Tailoring material composition for optimization of application-specific switchable holograms
US6853491B1 (en) 2003-11-26 2005-02-08 Frank Ruhle Collimating optical member for real world simulation
CN1695184A (zh) 2002-11-27 2005-11-09 诺基亚公司 光存储器的读/写设备及读/写方法
US20040112862A1 (en) 2002-12-12 2004-06-17 Molecular Imprints, Inc. Planarization composition and method of patterning a substrate using the same
FI114946B (fi) 2002-12-16 2005-01-31 Nokia Corp Diffraktiivinen hilaelementti diffraktiohyötysuhteen tasapainottamiseksi
KR20050089159A (ko) 2002-12-18 2005-09-07 파워웨이브 테크놀로지스, 인크. 제어를 위해 페널티 및 플로어를 사용하는 지연 미스매치된피드 포워드 증폭기 시스템
US7046888B2 (en) 2002-12-18 2006-05-16 The Regents Of The University Of Michigan Enhancing fiber-optic sensing technique using a dual-core fiber
GB2396484A (en) 2002-12-19 2004-06-23 Nokia Corp Reducing coupling between different antennas
US6952312B2 (en) 2002-12-31 2005-10-04 3M Innovative Properties Company Head-up display with polarized light source and wide-angle p-polarization reflective polarizer
US6853493B2 (en) 2003-01-07 2005-02-08 3M Innovative Properties Company Folded, telecentric projection lenses for use with pixelized panels
JP3873892B2 (ja) 2003-01-22 2007-01-31 コニカミノルタホールディングス株式会社 映像表示装置
US7268946B2 (en) 2003-02-10 2007-09-11 Jian Wang Universal broadband polarizer, devices incorporating same, and method of making same
US20040263971A1 (en) 2003-02-12 2004-12-30 Lenny Lipton Dual mode autosteroscopic lens sheet
US7088515B2 (en) 2003-02-12 2006-08-08 Stereographics Corporation Autostereoscopic lens sheet with planar areas
US7205960B2 (en) 2003-02-19 2007-04-17 Mirage Innovations Ltd. Chromatic planar optic display system
US7119965B1 (en) 2003-02-24 2006-10-10 University Of Central Florida Research Foundation, Inc. Head mounted projection display with a wide field of view
US8230359B2 (en) 2003-02-25 2012-07-24 Microsoft Corporation System and method that facilitates computer desktop use via scaling of displayed objects with shifts to the periphery
US6980365B2 (en) 2003-03-05 2005-12-27 3M Innovative Properties Company Diffractive lens optical design
US7092133B2 (en) 2003-03-10 2006-08-15 Inphase Technologies, Inc. Polytopic multiplex holography
US20040179764A1 (en) 2003-03-14 2004-09-16 Noureddine Melikechi Interferometric analog optical modulator for single mode fibers
KR20060015476A (ko) 2003-03-16 2006-02-17 익스플레이 엘티디. 투사 시스템 및 방법
US7006732B2 (en) 2003-03-21 2006-02-28 Luxtera, Inc. Polarization splitting grating couplers
CN100507623C (zh) 2003-03-25 2009-07-01 富士胶片株式会社 合成激光的调芯方法及激光合成光源
US7460696B2 (en) 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
US7539330B2 (en) 2004-06-01 2009-05-26 Lumidigm, Inc. Multispectral liveness determination
US6950173B1 (en) 2003-04-08 2005-09-27 Science Applications International Corporation Optimizing performance parameters for switchable polymer dispersed liquid crystal optical elements
AU2003901797A0 (en) 2003-04-14 2003-05-01 Agresearch Limited Manipulation of condensed tannin biosynthesis
US6985296B2 (en) 2003-04-15 2006-01-10 Stereographics Corporation Neutralizing device for autostereoscopic lens sheet
WO2004102226A2 (en) 2003-05-09 2004-11-25 Sbg Labs, Inc. Switchable viewfinder display
WO2004099851A2 (en) 2003-05-12 2004-11-18 Elbit Systems Ltd. Method and system for audiovisual communication
FI115169B (fi) 2003-05-13 2005-03-15 Nokia Corp Menetelmä ja optinen järjestelmä valon kytkemiseksi aaltojohteeseen
US7401920B1 (en) 2003-05-20 2008-07-22 Elbit Systems Ltd. Head mounted eye tracking and display system
US7046439B2 (en) 2003-05-22 2006-05-16 Eastman Kodak Company Optical element with nanoparticles
GB0313044D0 (en) 2003-06-06 2003-07-09 Cambridge Flat Projection Flat panel scanning illuminator
EP1639394A2 (en) 2003-06-10 2006-03-29 Elop Electro-Optics Industries Ltd. Method and system for displaying an informative image against a background image
JP2005011387A (ja) 2003-06-16 2005-01-13 Hitachi Global Storage Technologies Inc 磁気ディスク装置
CN100514091C (zh) 2003-06-19 2009-07-15 株式会社尼康 光学元件
JP2007526542A (ja) 2003-06-21 2007-09-13 アプリリス,インコーポレイテッド 高解像度生体認証用画像の取得
US7394865B2 (en) 2003-06-25 2008-07-01 Nokia Corporation Signal constellations for multi-carrier systems
AU2004258513B2 (en) 2003-07-03 2009-12-24 Holotouch, Inc. Holographic human-machine interfaces
ITTO20030530A1 (it) 2003-07-09 2005-01-10 Infm Istituto Naz Per La Fisi Ca Della Mater Reticolo olografico di diffrazione, procedimento per la
US7158095B2 (en) 2003-07-17 2007-01-02 Big Buddy Performance, Inc. Visual display system for displaying virtual images onto a field of vision
KR101060829B1 (ko) 2003-08-08 2011-08-30 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 액정 분자를 정렬하기 위해 반응성 메소젠을 갖는 정렬층
EP1510862A3 (en) 2003-08-25 2006-08-09 Fuji Photo Film Co., Ltd. Hologram recording method and hologram recording material
US7567372B2 (en) 2003-08-29 2009-07-28 Nokia Corporation Electrical device utilizing charge recycling within a cell
GB2405519A (en) 2003-08-30 2005-03-02 Sharp Kk A multiple-view directional display
IL157838A (en) 2003-09-10 2013-05-30 Yaakov Amitai High-brightness optical device
IL157837A (en) 2003-09-10 2012-12-31 Yaakov Amitai Substrate-guided optical device particularly for three-dimensional displays
IL157836A (en) 2003-09-10 2009-08-03 Yaakov Amitai Optical devices particularly for remote viewing applications
US7212175B1 (en) 2003-09-19 2007-05-01 Rockwell Collins, Inc. Symbol position monitoring for pixelated heads-up display method and apparatus
US7088457B1 (en) 2003-10-01 2006-08-08 University Of Central Florida Research Foundation, Inc. Iterative least-squares wavefront estimation for general pupil shapes
US7616227B2 (en) 2003-10-02 2009-11-10 Real D Hardware based interdigitation
US7616228B2 (en) 2003-10-02 2009-11-10 Real D Hardware based interdigitation
JP4266770B2 (ja) 2003-10-22 2009-05-20 アルプス電気株式会社 光学式画像読み取り装置
US7277640B2 (en) 2003-11-18 2007-10-02 Avago Technologies Fiber Ip (Singapore) Pte Ltd Optical add/drop multiplexing systems
US7333685B2 (en) 2003-11-24 2008-02-19 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Variable optical attenuator systems
EP1688767A4 (en) 2003-11-28 2007-11-28 Omron Tateisi Electronics Co MULTIPLEXER / DEMULTIPLEXER OF MULTI-CHANNEL ARRAY SHAFT BENDING GRID TYPE AND METHOD OF CONNECTING AN ARRAY SHAFT WITH OUTPUT SHAFT
IL165376A0 (en) 2003-12-02 2006-01-15 Electro Optics Ind Ltd Vehicle display system
JP2005190647A (ja) 2003-12-03 2005-07-14 Ricoh Co Ltd 相変化型光記録媒体
US7034748B2 (en) 2003-12-17 2006-04-25 Microsoft Corporation Low-cost, steerable, phased array antenna with controllable high permittivity phase shifters
US7273659B2 (en) 2003-12-18 2007-09-25 Lintec Corporation Photochromic film material
US7557154B2 (en) 2004-12-23 2009-07-07 Sabic Innovative Plastics Ip B.V. Polymer compositions, method of manufacture, and articles formed therefrom
US7496293B2 (en) 2004-01-14 2009-02-24 Elbit Systems Ltd. Versatile camera for various visibility conditions
EP1710619B1 (en) 2004-01-29 2018-07-04 Panasonic Intellectual Property Management Co., Ltd. Light source device, and two-dimensional image display unit
FI20040162A0 (fi) 2004-02-03 2004-02-03 Nokia Oyj Viitevärähtelijän taajuuden vakauttaminen
JP4438436B2 (ja) 2004-02-03 2010-03-24 セイコーエプソン株式会社 表示装置
JP4682519B2 (ja) 2004-02-03 2011-05-11 セイコーエプソン株式会社 表示装置
US7317449B2 (en) 2004-03-02 2008-01-08 Microsoft Corporation Key-based advanced navigation techniques
EP1731943B1 (en) 2004-03-29 2019-02-13 Sony Corporation Optical device and virtual image display device
US6958868B1 (en) 2004-03-29 2005-10-25 John George Pender Motion-free tracking solar concentrator
US7119161B2 (en) 2004-03-31 2006-10-10 Solaris Nanosciences, Inc. Anisotropic nanoparticles and anisotropic nanostructures and pixels, displays and inks using them
US20050232530A1 (en) 2004-04-01 2005-10-20 Jason Kekas Electronically controlled volume phase grating devices, systems and fabrication methods
JP3952034B2 (ja) 2004-04-14 2007-08-01 富士ゼロックス株式会社 ホログラム記録方法、ホログラム記録装置、ホログラム再生方法、ホログラム再生装置、及び情報保持体
US7526103B2 (en) 2004-04-15 2009-04-28 Donnelly Corporation Imaging system for vehicle
US7375886B2 (en) 2004-04-19 2008-05-20 Stereographics Corporation Method and apparatus for optimizing the viewing distance of a lenticular stereogram
JP2005309125A (ja) * 2004-04-22 2005-11-04 Canon Inc 反射型液晶照明光学系および画像表示光学系
US6992830B1 (en) 2004-04-22 2006-01-31 Raytheon Company Projection display having an angle-selective coating for enhanced image contrast, and method for enhancing image contrast
US7339737B2 (en) 2004-04-23 2008-03-04 Microvision, Inc. Beam multiplier that can be used as an exit-pupil expander and related system and method
EP1743197B1 (en) 2004-04-23 2011-08-10 Olivier M. Parriaux High efficiency optical diffraction device
JP4373286B2 (ja) 2004-05-06 2009-11-25 オリンパス株式会社 頭部装着型表示装置
GB2414127A (en) 2004-05-12 2005-11-16 Sharp Kk Time sequential colour projection
WO2005111669A1 (ja) 2004-05-17 2005-11-24 Nikon Corporation 光学素子、コンバイナ光学系、及び画像表示装置
US7301601B2 (en) 2004-05-20 2007-11-27 Alps Electric (Usa) Inc. Optical switching device using holographic polymer dispersed liquid crystals
US7639208B1 (en) 2004-05-21 2009-12-29 University Of Central Florida Research Foundation, Inc. Compact optical see-through head-mounted display with occlusion support
US8229185B2 (en) 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
US7002753B2 (en) 2004-06-02 2006-02-21 3M Innovative Properties Company Color-corrected projection lenses for use with pixelized panels
IL162572A (en) 2004-06-17 2013-02-28 Lumus Ltd High brightness optical device
IL162573A (en) 2004-06-17 2013-05-30 Lumus Ltd Optical component in a large key conductive substrate
US7482996B2 (en) 2004-06-28 2009-01-27 Honeywell International Inc. Head-up display
EP1612596A1 (en) 2004-06-29 2006-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-efficient, tuneable and switchable optical elements based on polymer-liquid crystal composites and films, mixtures and a method for their production
IL162779A (en) 2004-06-29 2010-11-30 Elbit Systems Ltd Security systems and methods relating to travelling vehicles
JP2006018864A (ja) 2004-06-30 2006-01-19 Sony Corp ホログラム複製方法
US7617022B1 (en) 2004-07-01 2009-11-10 Rockwell Collins, Inc. Dual wavelength enhanced vision system optimized for visual landing light alignment
US7605774B1 (en) 2004-07-02 2009-10-20 Rockwell Collins, Inc. Enhanced vision system (EVS) processing window tied to flight path
US20060013977A1 (en) 2004-07-13 2006-01-19 Duke Leslie P Polymeric ballistic material and method of making
US7597447B2 (en) 2004-07-14 2009-10-06 Honeywell International Inc. Color correcting contrast enhancement of displays
US7285903B2 (en) 2004-07-15 2007-10-23 Honeywell International, Inc. Display with bright backlight
US7110184B1 (en) 2004-07-19 2006-09-19 Elbit Systems Ltd. Method and apparatus for combining an induced image with a scene image
US7492512B2 (en) 2004-07-23 2009-02-17 Mirage International Ltd. Wide field-of-view binocular device, system and kit
JP4841815B2 (ja) 2004-07-23 2011-12-21 株式会社村上開明堂 表示装置
US8938141B2 (en) 2004-07-30 2015-01-20 University Of Connecticut Tunable resonant leaky-mode N/MEMS elements and uses in optical devices
US7689086B2 (en) 2004-07-30 2010-03-30 University Of Connecticut Resonant leaky-mode optical devices and associated methods
US7145729B2 (en) 2004-08-04 2006-12-05 3M Innovative Properties Company Foldable projection lenses
US7230770B2 (en) 2004-08-04 2007-06-12 3M Innovative Properties Company Projection lenses having color-correcting rear lens units
IL163361A (en) 2004-08-05 2011-06-30 Lumus Ltd Optical device for light coupling into a guiding substrate
JP2008509438A (ja) 2004-08-06 2008-03-27 ユニヴァーシティ オブ ワシントン 可変固定視距離で走査される光表示装置
US7436568B1 (en) 2004-08-17 2008-10-14 Kuykendall Jr Jacob L Head mountable video display
US7233446B2 (en) 2004-08-19 2007-06-19 3Dtl, Inc. Transformable, applicable material and methods for using same for optical effects
US7075273B2 (en) 2004-08-24 2006-07-11 Motorola, Inc. Automotive electrical system configuration using a two bus structure
US8124929B2 (en) 2004-08-25 2012-02-28 Protarius Filo Ag, L.L.C. Imager module optical focus and assembly method
JP2006318515A (ja) 2004-09-10 2006-11-24 Ricoh Co Ltd ホログラム素子及びその製造方法及び光ヘッド装置
US7619825B1 (en) 2004-09-27 2009-11-17 Rockwell Collins, Inc. Compact head up display with wide viewing angle
WO2006035737A1 (ja) 2004-09-29 2006-04-06 Brother Kogyo Kabushiki Kaisha 網膜走査型ディスプレイ
JP4649158B2 (ja) 2004-09-30 2011-03-09 富士フイルム株式会社 ホログラム記録方法
EP1801798B1 (en) 2004-10-08 2010-01-06 Pioneer Corporation Diffraction optical element, objective lens module, optical pickup, and optical information recording/reproducing apparatus
WO2006041278A1 (en) 2004-10-15 2006-04-20 Stichting Dutch Polymer Institute Waveguide comprising an anisotropic diffracting layer
US7787110B2 (en) 2004-10-16 2010-08-31 Aprilis, Inc. Diffractive imaging system and method for the reading and analysis of skin topology
WO2006043516A1 (ja) 2004-10-19 2006-04-27 Asahi Glass Company, Limited 液晶回折レンズ素子および光ヘッド装置
US7376307B2 (en) 2004-10-29 2008-05-20 Matsushita Electric Industrial Co., Ltd Multimode long period fiber bragg grating machined by ultrafast laser direct writing
IL165190A (en) 2004-11-14 2012-05-31 Elbit Systems Ltd System and method for stabilizing an image
CN101065713A (zh) 2004-11-25 2007-10-31 皇家飞利浦电子股份有限公司 动态液晶凝胶全息图
US7778508B2 (en) 2004-12-06 2010-08-17 Nikon Corporation Image display optical system, image display unit, illuminating optical system, and liquid crystal display unit
EP1828832B1 (en) 2004-12-13 2013-05-22 Nokia Corporation General diffractive optics method for expanding an exit pupil
US7206107B2 (en) 2004-12-13 2007-04-17 Nokia Corporation Method and system for beam expansion in a display device
US20060126181A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
ATE552524T1 (de) 2004-12-13 2012-04-15 Nokia Corp System und verfahren zur strahlerweiterung mit nahem brennpunkt in einer anzeigeeinrichtung
US7466994B2 (en) 2004-12-31 2008-12-16 Nokia Corporation Sub-display of a mobile device
US7289069B2 (en) 2005-01-04 2007-10-30 Nokia Corporation Wireless device antenna
WO2006077588A2 (en) 2005-01-20 2006-07-27 Elbit Systems Electro-Optics Elop Ltd. Laser obstacle detection and display
US8885139B2 (en) 2005-01-21 2014-11-11 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
WO2007097738A2 (en) 2005-01-26 2007-08-30 Wollf Robin Q Eye tracker/head tracker/camera tracker controlled camera/weapon positioner control system
AU2006208719B2 (en) 2005-01-26 2009-05-28 Xieon Networks S.A.R.L. Method for optically transmitting polarisation multiplex signals
GB0502453D0 (en) 2005-02-05 2005-03-16 Cambridge Flat Projection Flat panel lens
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Aluminum shale surfaces for use in a conductive substrate
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
US7751122B2 (en) 2005-02-10 2010-07-06 Lumus Ltd. Substrate-guided optical device particularly for vision enhanced optical systems
US7724443B2 (en) 2005-02-10 2010-05-25 Lumus Ltd. Substrate-guided optical device utilizing thin transparent layer
US7325928B2 (en) 2005-02-14 2008-02-05 Intel Corporation Resolution multiplication technique for projection display systems
GB2423517A (en) 2005-02-28 2006-08-30 Weatherford Lamb Apparatus for drawing and annealing an optical fibre
EP1863328A4 (en) 2005-03-15 2010-01-13 Fujifilm Corp ELECTROMAGNETIC PROTECTION FILM LEAVING LIGHT, OPTICAL FILTER AND PLASMA TELEVISION
WO2006102073A2 (en) 2005-03-18 2006-09-28 Sbg Labs, Inc. Spatial light modulator
US7242527B2 (en) 2005-03-22 2007-07-10 The Microoptical Corporation Optical system using total internal reflection images
US7587110B2 (en) 2005-03-22 2009-09-08 Panasonic Corporation Multicore optical fiber with integral diffractive elements machined by ultrafast laser direct writing
JP4612853B2 (ja) 2005-03-29 2011-01-12 キヤノン株式会社 指示位置認識装置及びそれを有する情報入力装置
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
WO2006110646A2 (en) 2005-04-08 2006-10-19 Real D Autostereoscopic display with planar pass-through
US7123421B1 (en) 2005-04-22 2006-10-17 Panavision International, L.P. Compact high performance zoom lens system
IL168581A (en) 2005-05-15 2010-12-30 Elbit Systems Electro Optics Elop Ltd Head-up display system
WO2006128066A2 (en) 2005-05-26 2006-11-30 Real D Ghost-compensation for improved stereoscopic projection
EP1886179B1 (en) 2005-05-30 2014-10-01 Elbit Systems Ltd. Combined head up display
US20090303599A1 (en) 2005-06-03 2009-12-10 Nokia Corporation General diffractive optics method for expanding an exit pupil
JP5465430B2 (ja) 2005-06-07 2014-04-09 リアルディー インコーポレイテッド オートステレオスコピック視域の角度範囲の制御
JP4655771B2 (ja) 2005-06-17 2011-03-23 ソニー株式会社 光学装置及び虚像表示装置
JP5377960B2 (ja) 2005-06-24 2013-12-25 リアルディー インコーポレイテッド オートステレオスコピックディスプレイシステム
JP4862298B2 (ja) 2005-06-30 2012-01-25 ソニー株式会社 光学装置及び虚像表示装置
EP2037300A3 (en) 2005-07-07 2009-04-08 Nokia Corporation Manufacturing of optical waveguides by embossing grooves by rolling
US8086030B2 (en) 2005-07-19 2011-12-27 Elbit Systems Electro-Optics Elop Ltd. Method and system for visually presenting a high dynamic range image
US7271960B2 (en) 2005-07-25 2007-09-18 Stewart Robert J Universal vehicle head up display (HUD) device and method for using the same
US7513668B1 (en) 2005-08-04 2009-04-07 Rockwell Collins, Inc. Illumination system for a head up display
WO2007015141A2 (en) 2005-08-04 2007-02-08 Milan Momcilo Popovich Laser illuminator
US7397606B1 (en) 2005-08-04 2008-07-08 Rockwell Collins, Inc. Meniscus head up display combiner
CN102681064A (zh) 2005-08-29 2012-09-19 松下电器产业株式会社 衍射光学元件及摄像装置
US7666331B2 (en) 2005-08-31 2010-02-23 Transitions Optical, Inc. Photochromic article
US7434940B2 (en) 2005-09-06 2008-10-14 Hewlett-Packard Development Company, L.P. Light coupling system and method
WO2007029032A1 (en) 2005-09-07 2007-03-15 Bae Systems Plc A projection display with two plate-like, co-planar waveguides including gratings
ATE447726T1 (de) 2005-09-07 2009-11-15 Bae Systems Plc Projektionsanzeige mit einem stabartigen wellenleiter mit rechteckigem querschnitt und einem plattenartigen wellenleiter, die jeweils ein beugungsgitter aufweisen
IL173361A (en) 2005-09-12 2012-03-29 Elbit Systems Ltd Display system near the eye
CN101263412A (zh) 2005-09-14 2008-09-10 米拉茨创新有限公司 衍射光学装置和系统
US20090128911A1 (en) 2005-09-14 2009-05-21 Moti Itzkovitch Diffraction Grating With a Spatially Varying Duty-Cycle
US20080043334A1 (en) 2006-08-18 2008-02-21 Mirage Innovations Ltd. Diffractive optical relay and method for manufacturing the same
GB0518912D0 (en) 2005-09-16 2005-10-26 Light Blue Optics Ltd Methods and apparatus for displaying images using holograms
JP2007086145A (ja) 2005-09-20 2007-04-05 Sony Corp 3次元表示装置
JP4810949B2 (ja) 2005-09-29 2011-11-09 ソニー株式会社 光学装置及び画像表示装置
US20070089625A1 (en) 2005-10-20 2007-04-26 Elbit Vision Systems Ltd. Method and system for detecting defects during the fabrication of a printing cylinder
US8018579B1 (en) 2005-10-21 2011-09-13 Apple Inc. Three-dimensional imaging and display system
EP1941318B1 (en) 2005-10-27 2013-06-19 RealD Inc. Temperature compensation for the differential expansion of an autostereoscopic lenticular array and display screen
US20090128902A1 (en) 2005-11-03 2009-05-21 Yehuda Niv Binocular Optical Relay Device
US10261321B2 (en) 2005-11-08 2019-04-16 Lumus Ltd. Polarizing optical system
IL171820A (en) 2005-11-08 2014-04-30 Lumus Ltd A polarizing optical component for light coupling within a conductive substrate
IL179135A (en) 2005-11-10 2010-11-30 Elbit Systems Electro Optics Elop Ltd Head up display mechanism
US7777819B2 (en) 2005-11-10 2010-08-17 Bae Systems Plc Display source
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
US20070109401A1 (en) 2005-11-14 2007-05-17 Real D Monitor with integral interdigitation
US7477206B2 (en) 2005-12-06 2009-01-13 Real D Enhanced ZScreen modulator techniques
US7583437B2 (en) 2005-12-08 2009-09-01 Real D Projection screen with virtual compound curvature
JP4668780B2 (ja) 2005-12-08 2011-04-13 矢崎総業株式会社 発光表示装置
US7639911B2 (en) 2005-12-08 2009-12-29 Electronics And Telecommunications Research Institute Optical device having optical waveguide including organic Bragg grating sheet
US20070133983A1 (en) 2005-12-14 2007-06-14 Matilda Traff Light-controlling element for a camera
US7522344B1 (en) 2005-12-14 2009-04-21 University Of Central Florida Research Foundation, Inc. Projection-based head-mounted display with eye-tracking capabilities
US7778305B2 (en) 2005-12-22 2010-08-17 Université Jean-Monnet Mirror structure and laser device comprising such a mirror structure
US8233154B2 (en) 2005-12-22 2012-07-31 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College High precision code plates and geophones
IL172797A (en) 2005-12-25 2012-09-24 Elbit Systems Ltd Real-time image scanning and processing
US7953308B2 (en) 2005-12-30 2011-05-31 General Electric Company System and method for fiber optic bundle-based illumination for imaging system
US8384504B2 (en) 2006-01-06 2013-02-26 Quantum Design International, Inc. Superconducting quick switch
US20070160325A1 (en) 2006-01-11 2007-07-12 Hyungbin Son Angle-tunable transmissive grating
DE102006003785B4 (de) 2006-01-25 2023-02-23 Adc Automotive Distance Control Systems Gmbh Sensor mit einer regelbaren Abblendvorrichtung
WO2007085682A1 (en) 2006-01-26 2007-08-02 Nokia Corporation Eye tracker device
US7760429B2 (en) 2006-01-27 2010-07-20 Reald Inc. Multiple mode display device
US7928862B1 (en) 2006-01-30 2011-04-19 Rockwell Collins, Inc. Display of hover and touchdown symbology on head-up display
IL173715A0 (en) 2006-02-14 2007-03-08 Lumus Ltd Substrate-guided imaging lens
JP2007219106A (ja) 2006-02-16 2007-08-30 Konica Minolta Holdings Inc 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ
JP4572342B2 (ja) 2006-02-21 2010-11-04 セイコーエプソン株式会社 電子機器
JP4763809B2 (ja) 2006-02-27 2011-08-31 ノキア コーポレイション 効率を調節できる回折格子
US7499217B2 (en) 2006-03-03 2009-03-03 University Of Central Florida Research Foundation, Inc. Imaging systems for eyeglass-based display devices
US20070206155A1 (en) 2006-03-03 2007-09-06 Real D Steady state surface mode device for stereoscopic projection
IL174170A (en) 2006-03-08 2015-02-26 Abraham Aharoni Device and method for two-eyed tuning
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
WO2007130130A2 (en) 2006-04-06 2007-11-15 Sbg Labs Inc. Method and apparatus for providing a transparent display
US7679641B2 (en) 2006-04-07 2010-03-16 Real D Vertical surround parallax correction
US7733557B2 (en) 2006-04-24 2010-06-08 Micron Technology, Inc. Spatial light modulators with changeable phase masks for use in holographic data storage
US7843642B2 (en) 2006-05-04 2010-11-30 University Of Central Florida Research Foundation Systems and methods for providing compact illumination in head mounted displays
US7524053B2 (en) 2006-05-12 2009-04-28 Real D 3-D eyewear
US7740387B2 (en) 2006-05-24 2010-06-22 3M Innovative Properties Company Backlight wedge with side mounted light source
WO2007141588A1 (en) 2006-06-02 2007-12-13 Nokia Corporation Split exit pupil expander
CN101460882B (zh) 2006-06-02 2010-10-27 诺基亚公司 用于在出瞳扩大器中提供分色的装置和方法以及电子设备
US8466953B2 (en) 2006-06-02 2013-06-18 Nokia Corporation Stereoscopic exit pupil expander display
DE102006027415B3 (de) 2006-06-13 2007-10-11 Siemens Ag Verfahren und Anordnung zur Ein- und/oder Abschaltung eines Raman-Pumplasers
US7415173B2 (en) 2006-06-13 2008-08-19 Nokia Corporation Position sensor
WO2008001578A1 (fr) 2006-06-30 2008-01-03 Hoya Corporation Film photochrome, lentilles photochromes ayant ce dernier et procédé de fabrication d'une lentille photochrome
KR101229019B1 (ko) 2006-06-30 2013-02-15 엘지디스플레이 주식회사 액정표시장치 및 이의 구동회로
ATE455421T1 (de) 2006-07-14 2010-01-15 Nokia Siemens Networks Gmbh Empfängerstruktur und verfahren zur demodulation eines quadraturmodulierten signals
WO2008011066A2 (en) 2006-07-18 2008-01-24 L-1 Identity Solutions Operating Company Methods and apparatus for self check-in of items for transportation
US7517081B2 (en) 2006-07-20 2009-04-14 Real D Low-cost circular polarizing eyewear
IL177618A (en) 2006-08-22 2015-02-26 Lumus Ltd Optical component in conductive substrate
US20100177388A1 (en) 2006-08-23 2010-07-15 Mirage Innovations Ltd. Diffractive optical relay device with improved color uniformity
US8736672B2 (en) 2006-08-24 2014-05-27 Reald Inc. Algorithmic interaxial reduction
CN200944140Y (zh) 2006-09-08 2007-09-05 李伯伦 一种平直波导显示器面板
US8493433B2 (en) 2006-09-12 2013-07-23 Reald Inc. Shuttering eyewear for use with stereoscopic liquid crystal display
DE102006046555B4 (de) 2006-09-28 2010-12-16 Grintech Gmbh Miniaturisiertes optisch abbildendes System mit hoher lateraler und axialer Auflösung
US8830143B1 (en) 2006-09-28 2014-09-09 Rockwell Collins, Inc. Enhanced vision system and method for an aircraft
US7525448B1 (en) 2006-09-28 2009-04-28 Rockwell Collins, Inc. Enhanced vision system and method for an aircraft
CN101512413B (zh) 2006-09-28 2012-02-15 诺基亚公司 利用三维衍射元件的光束扩展
GB0619226D0 (en) 2006-09-29 2006-11-08 Cambridge Flat Projection Efficient wedge projection
GB0619366D0 (en) 2006-10-02 2006-11-08 Cambridge Flat Projection Distortionless wedge projection
GB0620014D0 (en) 2006-10-10 2006-11-22 Cambridge Flat Projection Prismatic film backlight
US7857455B2 (en) 2006-10-18 2010-12-28 Reald Inc. Combining P and S rays for bright stereoscopic projection
US7670004B2 (en) 2006-10-18 2010-03-02 Real D Dual ZScreen® projection
US8000491B2 (en) 2006-10-24 2011-08-16 Nokia Corporation Transducer device and assembly
WO2008053063A1 (en) 2006-11-02 2008-05-08 Nokia Corporation Method for coupling light into a thin planar waveguide
US20080106779A1 (en) 2006-11-02 2008-05-08 Infocus Corporation Laser Despeckle Device
EP2095171A4 (en) 2006-12-14 2009-12-30 Nokia Corp DISPLAY DEVICE HAVING TWO OPERATING MODES
EP2122329A1 (en) 2006-12-21 2009-11-25 Koninklijke Philips Electronics N.V. Wiregrid waveguide
US20080155426A1 (en) 2006-12-21 2008-06-26 Microsoft Corporation Visualization and navigation of search results
US7775387B2 (en) 2006-12-21 2010-08-17 Reald Inc. Eyewear receptacle
US20080151370A1 (en) 2006-12-21 2008-06-26 Real D Method of recycling eyewear
JP5303928B2 (ja) 2006-12-26 2013-10-02 東レ株式会社 反射型偏光板及びその製造方法、それを用いた液晶表示装置
WO2008081071A1 (en) 2006-12-28 2008-07-10 Nokia Corporation Light guide plate and a method of manufacturing thereof
WO2008081070A1 (en) 2006-12-28 2008-07-10 Nokia Corporation Device for expanding an exit pupil in two dimensions
US8134434B2 (en) 2007-01-05 2012-03-13 Quantum Design, Inc. Superconducting quick switch
US7369911B1 (en) 2007-01-10 2008-05-06 International Business Machines Corporation Methods, systems, and computer program products for managing movement of work-in-process materials in an automated manufacturing environment
US20080172526A1 (en) 2007-01-11 2008-07-17 Akshat Verma Method and System for Placement of Logical Data Stores to Minimize Request Response Time
US8022942B2 (en) 2007-01-25 2011-09-20 Microsoft Corporation Dynamic projected user interface
US7508589B2 (en) 2007-02-01 2009-03-24 Real D Soft aperture correction for lenticular screens
US7808708B2 (en) 2007-02-01 2010-10-05 Reald Inc. Aperture correction for lenticular screens
CA2675207A1 (en) 2007-02-12 2008-07-21 E. I. Du Pont De Nemours And Company Production of arachidonic acid in oilseed plants
CN101548259A (zh) 2007-02-23 2009-09-30 诺基亚公司 键区上的光学促动器
BRPI0808123A2 (pt) 2007-02-28 2014-06-17 L 3 Comm Corp Sistemas e métodos para ajudar na consciência situacional de pilotos
US20080273081A1 (en) 2007-03-13 2008-11-06 Lenny Lipton Business system for two and three dimensional snapshots
US20080226281A1 (en) 2007-03-13 2008-09-18 Real D Business system for three-dimensional snapshots
JP4880746B2 (ja) 2007-03-19 2012-02-22 パナソニック株式会社 レーザ照明装置及び画像表示装置
US20080239068A1 (en) 2007-04-02 2008-10-02 Real D Color and polarization timeplexed stereoscopic display apparatus
US8014050B2 (en) 2007-04-02 2011-09-06 Vuzix Corporation Agile holographic optical phased array device and applications
US20080239067A1 (en) 2007-04-02 2008-10-02 Real D Optical concatenation for field sequential stereoscpoic displays
EP2137558B1 (en) * 2007-04-16 2011-10-19 North Carolina State University Low-twist chiral liquid crystal polarization gratings and related fabrication methods
US8643948B2 (en) 2007-04-22 2014-02-04 Lumus Ltd. Collimating optical device and system
US7600893B2 (en) 2007-05-01 2009-10-13 Exalos Ag Display apparatus, method and light source
DE102007021036A1 (de) 2007-05-04 2008-11-06 Carl Zeiss Ag Anzeigevorrichtung und Anzeigeverfahren zur binokularen Darstellung eines mehrfarbigen Bildes
US8493630B2 (en) 2007-05-10 2013-07-23 L-I Indentity Solutions, Inc. Identification reader
KR101464795B1 (ko) 2007-05-20 2014-11-27 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광 재순환 중공 공동형 디스플레이 백라이트
JP5003291B2 (ja) 2007-05-31 2012-08-15 コニカミノルタホールディングス株式会社 映像表示装置
US20080297731A1 (en) 2007-06-01 2008-12-04 Microvision, Inc. Apparent speckle reduction apparatus and method for mems laser projection system
IL183637A (en) 2007-06-04 2013-06-27 Zvi Lapidot Head display system
CN101688977B (zh) 2007-06-04 2011-12-07 诺基亚公司 衍射扩束器和基于衍射扩束器的虚拟显示器
US8373744B2 (en) 2007-06-07 2013-02-12 Reald Inc. Stereoplexing for video and film applications
US8487982B2 (en) 2007-06-07 2013-07-16 Reald Inc. Stereoplexing for film and video applications
US20080316303A1 (en) 2007-06-08 2008-12-25 Joseph Chiu Display Device
CA2689672C (en) 2007-06-11 2016-01-19 Moog Limited Low-profile transformer
US20080309586A1 (en) 2007-06-13 2008-12-18 Anthony Vitale Viewing System for Augmented Reality Head Mounted Display
EP2485075B1 (en) 2007-06-14 2014-07-16 Nokia Corporation Displays with integrated backlighting
US7633666B2 (en) 2007-06-20 2009-12-15 Real D ZScreen® modulator with wire grid polarizer for stereoscopic projection
US7589901B2 (en) 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
EP2167920B1 (en) 2007-07-18 2013-09-18 Elbit Systems Ltd. Aircraft landing assistance
US7733571B1 (en) 2007-07-24 2010-06-08 Rockwell Collins, Inc. Phosphor screen and displays systems
US7605719B1 (en) 2007-07-25 2009-10-20 Rockwell Collins, Inc. System and methods for displaying a partial images and non-overlapping, shared-screen partial images acquired from vision systems
JP5092609B2 (ja) 2007-08-01 2012-12-05 ソニー株式会社 画像表示装置及びその駆動方法
IL185130A0 (en) 2007-08-08 2008-01-06 Semi Conductor Devices An Elbi Thermal based system and method for detecting counterfeit drugs
US7672549B2 (en) 2007-09-10 2010-03-02 Banyan Energy, Inc. Solar energy concentrator
US7656585B1 (en) 2008-08-19 2010-02-02 Microvision, Inc. Embedded relay lens for head-up displays or the like
WO2009034694A1 (ja) 2007-09-14 2009-03-19 Panasonic Corporation プロジェクタ
JP5216761B2 (ja) 2007-09-26 2013-06-19 パナソニック株式会社 ビーム走査型表示装置
US8491121B2 (en) 2007-10-09 2013-07-23 Elbit Systems Of America, Llc Pupil scan apparatus
IL195389A (en) 2008-11-19 2013-12-31 Elbit Systems Ltd Magnetic Field Mapping System and Method
US8355610B2 (en) 2007-10-18 2013-01-15 Bae Systems Plc Display systems
IL186884A (en) 2007-10-24 2014-04-30 Elta Systems Ltd Object simulation system and method
US7969657B2 (en) 2007-10-25 2011-06-28 University Of Central Florida Research Foundation, Inc. Imaging systems for eyeglass-based display devices
US7866869B2 (en) 2007-10-26 2011-01-11 Corporation For Laser Optics Research Laser illuminated backlight for flat panel displays
CN101431085A (zh) 2007-11-09 2009-05-13 鸿富锦精密工业(深圳)有限公司 具有自动曝光功能的相机模组
US20090128495A1 (en) 2007-11-20 2009-05-21 Microsoft Corporation Optical input device
WO2009066475A1 (ja) 2007-11-21 2009-05-28 Panasonic Corporation 表示装置
US20090136246A1 (en) 2007-11-26 2009-05-28 Kabushiki Kaisha Toshiba Image forming apparatus having paper type detection section and paper type confirmation method of the same
JP4450058B2 (ja) 2007-11-29 2010-04-14 ソニー株式会社 画像表示装置
JP4395802B2 (ja) 2007-11-29 2010-01-13 ソニー株式会社 画像表示装置
US8432372B2 (en) 2007-11-30 2013-04-30 Microsoft Corporation User input using proximity sensing
US20110013423A1 (en) 2007-12-03 2011-01-20 Selbrede Martin G Light injection system and method for uniform luminosity of waveguide-based displays
US8783931B2 (en) 2007-12-03 2014-07-22 Rambus Delaware Llc Light injection system and method for uniform luminosity of waveguide-based displays
US8132976B2 (en) 2007-12-05 2012-03-13 Microsoft Corporation Reduced impact keyboard with cushioned keys
WO2009077803A1 (en) 2007-12-17 2009-06-25 Nokia Corporation Exit pupil expanders with spherical and aspheric substrates
US8508848B2 (en) 2007-12-18 2013-08-13 Nokia Corporation Exit pupil expanders with wide field-of-view
EP2225601A1 (en) 2007-12-18 2010-09-08 BAE Systems PLC Improvements in or relating to projection displays
US8107780B2 (en) 2007-12-18 2012-01-31 Bae Systems Plc Display projectors
DE102008005817A1 (de) 2008-01-24 2009-07-30 Carl Zeiss Ag Optisches Anzeigegerät
US8721149B2 (en) 2008-01-30 2014-05-13 Qualcomm Mems Technologies, Inc. Illumination device having a tapered light guide
PL2242419T3 (pl) 2008-02-14 2016-05-31 Nokia Technologies Oy Urządzenie i sposób określania kierunku spojrzenia
US7742070B2 (en) 2008-02-21 2010-06-22 Otto Gregory Glatt Panoramic camera
US8786519B2 (en) 2008-03-04 2014-07-22 Elbit Systems Ltd. Head up display utilizing an LCD and a diffuser
US7589900B1 (en) 2008-03-11 2009-09-15 Microvision, Inc. Eyebox shaping through virtual vignetting
US7884593B2 (en) 2008-03-26 2011-02-08 Quantum Design, Inc. Differential and symmetrical current source
US20090242021A1 (en) 2008-03-31 2009-10-01 Noribachi Llc Solar cell with colorization layer
US8264498B1 (en) 2008-04-01 2012-09-11 Rockwell Collins, Inc. System, apparatus, and method for presenting a monochrome image of terrain on a head-up display unit
US20100149073A1 (en) 2008-11-02 2010-06-17 David Chaum Near to Eye Display System and Appliance
MY159553A (en) 2008-04-11 2017-01-13 Seattle Genetics Inc Detection and treatment of pancreatic, ovarian and other cancers
EP2110701A1 (en) 2008-04-14 2009-10-21 BAE Systems PLC Improvements in or relating to waveguides
EP2277077A1 (en) 2008-04-14 2011-01-26 BAE Systems PLC Lamination of optical substrates
AU2009237502A1 (en) 2008-04-14 2009-10-22 Bae Systems Plc Improvements in or relating to waveguides
WO2009128065A1 (en) 2008-04-16 2009-10-22 Elbit Systems Ltd. Multispectral enhanced vision system and method for aircraft landing in inclement weather conditions
KR20110004887A (ko) 2008-05-05 2011-01-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광원 모듈
US8643691B2 (en) 2008-05-12 2014-02-04 Microsoft Corporation Gaze accurate video conferencing
US7733572B1 (en) 2008-06-09 2010-06-08 Rockwell Collins, Inc. Catadioptric system, apparatus, and method for producing images on a universal, head-up display
JP4518193B2 (ja) 2008-06-10 2010-08-04 ソニー株式会社 光学装置および虚像表示装置
US8087698B2 (en) 2008-06-18 2012-01-03 L-1 Secure Credentialing, Inc. Personalizing ID document images
EP2141833B1 (en) 2008-07-04 2013-10-16 Nokia Siemens Networks Oy Optical I-Q-modulator
US8167173B1 (en) 2008-07-21 2012-05-01 3Habto, Llc Multi-stream draught beer dispensing system
IL193326A (en) 2008-08-07 2013-03-24 Elbit Systems Electro Optics Elop Ltd Wide field of view coverage head-up display system
US7984884B1 (en) 2008-08-08 2011-07-26 B.I.G. Ideas, LLC Artificial christmas tree stand
JP4706737B2 (ja) 2008-08-18 2011-06-22 ソニー株式会社 画像表示装置
JP4858512B2 (ja) 2008-08-21 2012-01-18 ソニー株式会社 頭部装着型ディスプレイ
WO2010023444A1 (en) 2008-08-27 2010-03-04 Milan Momcilo Popovich Laser display incorporating speckle reduction
US7969644B2 (en) 2008-09-02 2011-06-28 Elbit Systems Of America, Llc System and method for despeckling an image illuminated by a coherent light source
US7660047B1 (en) 2008-09-03 2010-02-09 Microsoft Corporation Flat panel lens
US8482858B2 (en) 2008-09-04 2013-07-09 Innovega Inc. System and apparatus for deflection optics
US8441731B2 (en) 2008-09-04 2013-05-14 Innovega, Inc. System and apparatus for pixel matrix see-through display panels
US8520309B2 (en) 2008-09-04 2013-08-27 Innovega Inc. Method and apparatus to process display and non-display information
US8142016B2 (en) 2008-09-04 2012-03-27 Innovega, Inc. Method and apparatus for constructing a contact lens with optics
US8493662B2 (en) 2008-09-16 2013-07-23 Bae Systems Plc Waveguides
US7961117B1 (en) 2008-09-16 2011-06-14 Rockwell Collins, Inc. System, module, and method for creating a variable FOV image presented on a HUD combiner unit
AU2009292629B2 (en) 2008-09-16 2014-03-20 Pacific Biosciences Of California, Inc. Substrates and optical systems and methods of use thereof
US8552925B2 (en) 2008-09-24 2013-10-08 Kabushiki Kaisha Toshiba Stereoscopic image display apparatus
US8384730B1 (en) 2008-09-26 2013-02-26 Rockwell Collins, Inc. System, module, and method for generating HUD image data from synthetic vision system image data
US20100079865A1 (en) 2008-09-26 2010-04-01 Nokia Corporation Near-to-eye scanning display with exit-pupil expansion
FR2936613B1 (fr) 2008-09-30 2011-03-18 Commissariat Energie Atomique Coupleur de lumiere entre une fibre optique et un guide d'onde realise sur un substrat soi.
US8132948B2 (en) 2008-10-17 2012-03-13 Microsoft Corporation Method and apparatus for directing light around an obstacle using an optical waveguide for uniform lighting of a cylindrical cavity
JP4636164B2 (ja) 2008-10-23 2011-02-23 ソニー株式会社 頭部装着型ディスプレイ
US7949214B2 (en) 2008-11-06 2011-05-24 Microvision, Inc. Substrate guided relay with pupil expanding input coupler
US8188925B2 (en) 2008-11-07 2012-05-29 Microsoft Corporation Bent monopole antenna with shared segments
WO2010057219A1 (en) 2008-11-17 2010-05-20 Luminit Llc Holographic substrate-guided wave-based see-through display
JP2010132485A (ja) 2008-12-03 2010-06-17 Keio Gijuku メソポーラスシリカ多孔質膜の形成方法、その多孔質膜、反射防止膜及び光学素子
KR101311711B1 (ko) 2008-12-08 2013-09-27 노키아 지멘스 네트웍스 오와이 조정 가능한 로컬 오실레이터를 포함하는 코히어런트 광학 시스템
ES2717200T3 (es) 2008-12-12 2019-06-19 Bae Systems Plc Mejoras en las guías de ondas o relacionadas con estas
US9465213B2 (en) 2008-12-12 2016-10-11 Bae Systems Plc Waveguides
EP2197018A1 (en) 2008-12-12 2010-06-16 FEI Company Method for determining distortions in a particle-optical apparatus
US8965152B2 (en) 2008-12-12 2015-02-24 Bae Systems Plc Waveguides
JP4674634B2 (ja) 2008-12-19 2011-04-20 ソニー株式会社 頭部装着型ディスプレイ
CA2749036C (en) 2009-01-07 2015-06-16 Magnetic Autocontrol Gmbh Apparatus for a checkpoint
US8380749B2 (en) 2009-01-14 2013-02-19 Bmc Software, Inc. MDR federation facility for CMDBf
CN101793555B (zh) 2009-02-01 2012-10-24 复旦大学 电调谐全息聚合物分散液晶布拉格体光栅单色仪
IL196923A (en) 2009-02-05 2014-01-30 Elbit Systems Ltd Driving an imaging device on a suspended communication channel
EP2219073B1 (de) 2009-02-17 2020-06-03 Covestro Deutschland AG Holografische Medien und Photopolymerzusammensetzungen
FI20095197A0 (fi) 2009-02-27 2009-02-27 Epicrystals Oy Kuvaprojektori ja kuvaprojektorissa käytettäväksi sopiva valaisuyksikkö
IL197417A (en) 2009-03-05 2014-01-30 Elbit Sys Electro Optics Elop Imaging device and method for correcting longitudinal and transverse chromatic aberrations
KR20100102774A (ko) 2009-03-12 2010-09-27 삼성전자주식회사 터치 감지 시스템 및 이를 채용한 디스플레이 장치
US20100231498A1 (en) 2009-03-13 2010-09-16 Microsoft Corporation Image display via multiple light guide sections
US20100232003A1 (en) 2009-03-13 2010-09-16 Transitions Optical, Inc. Vision enhancing optical articles
US8746008B1 (en) 2009-03-29 2014-06-10 Montana Instruments Corporation Low vibration cryocooled system for low temperature microscopy and spectroscopy applications
US8233113B2 (en) * 2009-04-08 2012-07-31 Panasonic Corporation Surface illumination apparatus and liquid crystal display using same
US8427439B2 (en) 2009-04-13 2013-04-23 Microsoft Corporation Avoiding optical effects of touch on liquid crystal display
US8136690B2 (en) 2009-04-14 2012-03-20 Microsoft Corporation Sensing the amount of liquid in a vessel
EP2419780B1 (en) 2009-04-14 2017-09-20 BAE Systems PLC Optical waveguide and display device
CA2759295C (en) 2009-04-20 2017-08-01 Bae Systems Plc Improvements in optical waveguides
EP2244114A1 (en) 2009-04-20 2010-10-27 BAE Systems PLC Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface
US10642039B2 (en) 2009-04-20 2020-05-05 Bae Systems Plc Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface
US8323854B2 (en) 2009-04-23 2012-12-04 Akonia Holographics, Llc Photopolymer media with enhanced dynamic range
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
WO2010125337A2 (en) 2009-04-27 2010-11-04 Milan Momcilo Popovich Compact holographic edge illuminated wearable display
US8639072B2 (en) 2011-10-19 2014-01-28 Milan Momcilo Popovich Compact wearable display
US8842368B2 (en) 2009-04-29 2014-09-23 Bae Systems Plc Head mounted display
US8321810B2 (en) 2009-04-30 2012-11-27 Microsoft Corporation Configuring an adaptive input device with selected graphical images
US8251563B2 (en) * 2009-05-29 2012-08-28 Sharp Kabushiki Kaisha Polarized diffractive backlight
GB2470831B (en) 2009-06-01 2016-11-02 Wilcox Ind Corp Helmet mount for viewing device
US20100322555A1 (en) 2009-06-22 2010-12-23 Imec Grating Structures for Simultaneous Coupling to TE and TM Waveguide Modes
US8194325B2 (en) 2009-06-30 2012-06-05 Nokia Corporation Optical apparatus and method
US20110001895A1 (en) 2009-07-06 2011-01-06 Dahl Scott R Driving mechanism for liquid crystal based optical device
US8699836B2 (en) 2009-07-07 2014-04-15 Alcatel Lucent Optical coupler
IL199763B (en) 2009-07-08 2018-07-31 Elbit Systems Ltd Automatic contractual system and method for observation
US9244275B1 (en) 2009-07-10 2016-01-26 Rockwell Collins, Inc. Visual display system using multiple image sources and heads-up-display system using the same
JP5545076B2 (ja) 2009-07-22 2014-07-09 ソニー株式会社 画像表示装置及び光学装置
FR2948775B1 (fr) 2009-07-31 2011-12-02 Horiba Jobin Yvon Sas Systeme optique planaire d'imagerie polychromatique a large champ de vision
US8184363B2 (en) 2009-08-07 2012-05-22 Northrop Grumman Systems Corporation All-fiber integrated high power coherent beam combination
US20120224062A1 (en) 2009-08-07 2012-09-06 Light Blue Optics Ltd Head up displays
US8447365B1 (en) 2009-08-11 2013-05-21 Howard M. Imanuel Vehicle communication system
US7884992B1 (en) 2009-08-13 2011-02-08 Darwin Optical Co., Ltd. Photochromic optical article
US8354806B2 (en) 2009-08-21 2013-01-15 Microsoft Corporation Scanning collimation of light via flat panel lamp
US20110044582A1 (en) 2009-08-21 2011-02-24 Microsoft Corporation Efficient collimation of light with optical wedge
US8354640B2 (en) 2009-09-11 2013-01-15 Identix Incorporated Optically based planar scanner
US8120548B1 (en) 2009-09-29 2012-02-21 Rockwell Collins, Inc. System, module, and method for illuminating a target on an aircraft windshield
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
AU2010302915B2 (en) 2009-10-01 2015-06-25 Tornado Spectral Systems Inc. Optical slicer for improving the spectral resolution of a dispersive spectrograph
US8089568B1 (en) 2009-10-02 2012-01-03 Rockwell Collins, Inc. Method of and system for providing a head up display (HUD)
US20200057353A1 (en) 2009-10-09 2020-02-20 Digilens Inc. Compact Edge Illuminated Diffractive Display
US9075184B2 (en) 2012-04-17 2015-07-07 Milan Momcilo Popovich Compact edge illuminated diffractive display
US8885112B2 (en) 2009-10-27 2014-11-11 Sbg Labs, Inc. Compact holographic edge illuminated eyeglass display
RU2542984C2 (ru) 2009-11-03 2015-02-27 Байер Матириальсайенс Аг Способ изготовления голографической пленки
WO2011055109A2 (en) 2009-11-03 2011-05-12 Milan Momcilo Popovich Apparatus for reducing laser speckle
CN102667936B (zh) 2009-11-03 2016-03-30 拜尔材料科学股份公司 生产全息介质的方法
US8384694B2 (en) 2009-11-17 2013-02-26 Microsoft Corporation Infrared vision with liquid crystal display device
US8578038B2 (en) 2009-11-30 2013-11-05 Nokia Corporation Method and apparatus for providing access to social content
US8698705B2 (en) 2009-12-04 2014-04-15 Vuzix Corporation Compact near eye display with scanned image generation
WO2011073673A1 (en) 2009-12-17 2011-06-23 Bae Systems Plc Projector lens assembly
EP2521346A4 (en) 2009-12-28 2015-07-29 Canon Components Kk CONTACT IMAGE SENSOR UNIT AND PICTURE READER THEREWITH
US8982480B2 (en) 2009-12-29 2015-03-17 Elbit Systems Of America, Llc System and method for adjusting a projected image
US8905547B2 (en) 2010-01-04 2014-12-09 Elbit Systems Of America, Llc System and method for efficiently delivering rays from a light source to create an image
WO2011085233A1 (en) 2010-01-07 2011-07-14 Holotouch, Inc. Compact holographic human-machine interface
EP2529268A1 (en) 2010-01-25 2012-12-05 BAE Systems Plc Projection display
US8137981B2 (en) 2010-02-02 2012-03-20 Nokia Corporation Apparatus and associated methods
US8659826B1 (en) 2010-02-04 2014-02-25 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
CA2789607C (en) 2010-02-16 2018-05-01 Midmark Corporation Led light for examinations and procedures
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US20140063055A1 (en) 2010-02-28 2014-03-06 Osterhout Group, Inc. Ar glasses specific user interface and control interface based on a connected external device type
KR20130000401A (ko) 2010-02-28 2013-01-02 오스터하우트 그룹 인코포레이티드 대화형 머리­장착식 아이피스 상의 지역 광고 컨텐츠
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US8472120B2 (en) 2010-02-28 2013-06-25 Osterhout Group, Inc. See-through near-eye display glasses with a small scale image source
US20120194420A1 (en) 2010-02-28 2012-08-02 Osterhout Group, Inc. Ar glasses with event triggered user action control of ar eyepiece facility
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US8964298B2 (en) 2010-02-28 2015-02-24 Microsoft Corporation Video display modification based on sensor input for a see-through near-to-eye display
AU2011222418B2 (en) 2010-03-03 2015-09-10 Elbit Systems Ltd. System for guiding an aircraft to a reference point in low visibility conditions
WO2011107831A1 (en) 2010-03-04 2011-09-09 Nokia Corporation Optical apparatus and method for expanding an exit pupil
EP2365654B1 (en) 2010-03-10 2019-05-29 Ofs Fitel Llc, A Delaware Limited Liability Company Multicore fiber transmission systems and methods
WO2011110821A1 (en) 2010-03-12 2011-09-15 Milan Momcilo Popovich Biometric sensor
EP2372454A1 (de) 2010-03-29 2011-10-05 Bayer MaterialScience AG Photopolymer-Formulierung zur Herstellung sichtbarer Hologramme
JP2011216701A (ja) 2010-03-31 2011-10-27 Sony Corp 固体撮像装置及び電子機器
US8697346B2 (en) 2010-04-01 2014-04-15 The Regents Of The University Of Colorado Diffraction unlimited photolithography
US9028123B2 (en) 2010-04-16 2015-05-12 Flex Lighting Ii, Llc Display illumination device with a film-based lightguide having stacked incident surfaces
EP2381290A1 (en) 2010-04-23 2011-10-26 BAE Systems PLC Optical waveguide and display device
ES2738499T5 (es) 2010-04-23 2023-02-16 Bae Systems Plc Guía de onda óptica y dispositivo de visualización
US8477261B2 (en) 2010-05-26 2013-07-02 Microsoft Corporation Shadow elimination in the backlight for a 3-D display
CN101881936B (zh) 2010-06-04 2013-12-25 江苏慧光电子科技有限公司 全息波导显示器及其全息图像的生成方法
US8631333B2 (en) 2010-06-07 2014-01-14 Microsoft Corporation Feature set differentiation by tenant and user
NL2006743A (en) 2010-06-09 2011-12-12 Asml Netherlands Bv Position sensor and lithographic apparatus.
JP5488226B2 (ja) 2010-06-10 2014-05-14 富士通オプティカルコンポーネンツ株式会社 マッハツェンダ型の光変調器
US8670029B2 (en) 2010-06-16 2014-03-11 Microsoft Corporation Depth camera illuminator with superluminescent light-emitting diode
US8253914B2 (en) 2010-06-23 2012-08-28 Microsoft Corporation Liquid crystal display (LCD)
US8391656B2 (en) 2010-07-29 2013-03-05 Hewlett-Packard Development Company, L.P. Grating coupled converter
US9063261B2 (en) 2010-08-10 2015-06-23 Sharp Kabushiki Kaisha Light-controlling element, display device and illumination device
EP2614518A4 (en) 2010-09-10 2016-02-10 VerLASE TECHNOLOGIES LLC METHODS OF MANUFACTURING OPTOELECTRONIC DEVICES USING SEMICONDUCTOR DONOR DETACHED LAYERS AND DEVICES MANUFACTURED THEREBY
US8649099B2 (en) 2010-09-13 2014-02-11 Vuzix Corporation Prismatic multiple waveguide for near-eye display
US8582206B2 (en) 2010-09-15 2013-11-12 Microsoft Corporation Laser-scanning virtual image display
US8376548B2 (en) 2010-09-22 2013-02-19 Vuzix Corporation Near-eye display with on-axis symmetry
US8633786B2 (en) 2010-09-27 2014-01-21 Nokia Corporation Apparatus and associated methods
US20150015946A1 (en) 2010-10-08 2015-01-15 SoliDDD Corp. Perceived Image Depth for Autostereoscopic Displays
US9507149B2 (en) 2010-10-19 2016-11-29 Bae Systems Plc Image combiner
EP2635610A1 (en) 2010-11-04 2013-09-11 The Regents of the University of Colorado, A Body Corporate Dual-cure polymer systems
US8305577B2 (en) 2010-11-04 2012-11-06 Nokia Corporation Method and apparatus for spectrometry
EP2450387A1 (de) 2010-11-08 2012-05-09 Bayer MaterialScience AG Photopolymer-Formulierung für die Herstellung holographischer Medien
EP2450893A1 (de) 2010-11-08 2012-05-09 Bayer MaterialScience AG Photopolymer-Formulierung zur Herstellung holographischer Medien mit hoch vernetzten Matrixpolymeren
US20130021586A1 (en) 2010-12-07 2013-01-24 Laser Light Engines Frequency Control of Despeckling
NZ725592A (en) 2010-12-24 2018-05-25 Magic Leap Inc An ergonomic head mounted display device and optical system
JP2012138654A (ja) 2010-12-24 2012-07-19 Sony Corp ヘッド・マウント・ディスプレイ
JP5741901B2 (ja) 2010-12-27 2015-07-01 Dic株式会社 立体画像表示装置用複屈折レンズ材料、及び、立体画像表示装置用複屈折レンズの製造方法
KR101807691B1 (ko) 2011-01-11 2017-12-12 삼성전자주식회사 3차원 디스플레이장치
BRPI1100786A2 (pt) 2011-01-19 2015-08-18 André Jacobovitz Fotopolímero para gravação de holograma de volume e processo para produzi-lo
US8619062B2 (en) 2011-02-03 2013-12-31 Microsoft Corporation Touch-pressure sensing in a display panel
US8189263B1 (en) 2011-04-01 2012-05-29 Google Inc. Image waveguide with mirror arrays
WO2012138414A1 (en) 2011-04-06 2012-10-11 Versatilis Llc Optoelectronic device containing at least one active device layer having a wurtzite crystal structure, and methods of making same
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
EP2699956B1 (en) 2011-04-18 2021-03-03 BAE Systems PLC A projection display
EP3462286A1 (en) 2011-05-06 2019-04-03 Magic Leap, Inc. Massive simultaneous remote digital presence world
JP6129160B2 (ja) 2011-05-16 2017-05-17 バーレイス テクノロジーズ エルエルシー 改良された共振器光電子工学装置及びその製作方法
EP2710582A4 (en) 2011-05-17 2014-12-31 Cross Match Technologies Inc DIGITAL FOOTPRINT SENSORS
WO2012172295A1 (en) 2011-06-16 2012-12-20 Milan Momcilo Popovich Holographic beam deflector for autostereoscopic displays
US8693087B2 (en) 2011-06-30 2014-04-08 Microsoft Corporation Passive matrix quantum dot display
US8767294B2 (en) 2011-07-05 2014-07-01 Microsoft Corporation Optic with extruded conic profile
US8672486B2 (en) 2011-07-11 2014-03-18 Microsoft Corporation Wide field-of-view projector
JP2014522981A (ja) 2011-07-13 2014-09-08 ファロ テクノロジーズ インコーポレーテッド 空間光変調器を用いて物体の三次元座標を求める装置および方法
US8988474B2 (en) 2011-07-18 2015-03-24 Microsoft Technology Licensing, Llc Wide field-of-view virtual image projector
US10793067B2 (en) 2011-07-26 2020-10-06 Magna Electronics Inc. Imaging system for vehicle
US8754831B2 (en) 2011-08-02 2014-06-17 Microsoft Corporation Changing between display device viewing modes
US9983361B2 (en) 2011-08-08 2018-05-29 Greg S. Laughlin GRIN-lensed, tuned wedge waveguide termination and method of reducing back reflection caused thereby
US8472119B1 (en) 2011-08-12 2013-06-25 Google Inc. Image waveguide having a bend
GB201114149D0 (en) 2011-08-17 2011-10-05 Bae Systems Plc Projection display
US8548290B2 (en) 2011-08-23 2013-10-01 Vuzix Corporation Dynamic apertured waveguide for near-eye display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
EP2995986B1 (en) 2011-08-24 2017-04-12 Rockwell Collins, Inc. Data display
WO2013027006A1 (en) 2011-08-24 2013-02-28 Milan Momcilo Popovich Improvements to holographic polymer dispersed liquid crystal materials and devices
GB201114771D0 (en) 2011-08-26 2011-10-12 Bae Systems Plc A display
EP2751611B1 (en) 2011-08-29 2018-01-10 Vuzix Corporation Controllable waveguide for near-eye display applications
WO2013034879A1 (en) 2011-09-07 2013-03-14 Milan Momcilo Popovich Method and apparatus for switching electro optical arrays
US20150148728A1 (en) 2011-09-08 2015-05-28 Children's Medical Center Corporation Isolated orthosis for thumb actuation
JP5901192B2 (ja) 2011-09-13 2016-04-06 オリンパス株式会社 光学機構
WO2013039897A2 (en) 2011-09-14 2013-03-21 VerLASE TECHNOLOGIES LLC Phosphors for use with leds and other optoelectronic devices
US20140330159A1 (en) 2011-09-26 2014-11-06 Beth Israel Deaconess Medical Center, Inc. Quantitative methods and systems for neurological assessment
US8998414B2 (en) 2011-09-26 2015-04-07 Microsoft Technology Licensing, Llc Integrated eye tracking and display system
JP5696017B2 (ja) 2011-09-27 2015-04-08 富士フイルム株式会社 インプリント用硬化性組成物、パターン形成方法およびパターン
US9377852B1 (en) 2013-08-29 2016-06-28 Rockwell Collins, Inc. Eye tracking as a method to improve the user interface
US9366864B1 (en) 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US8634139B1 (en) 2011-09-30 2014-01-21 Rockwell Collins, Inc. System for and method of catadioptric collimation in a compact head up display (HUD)
US9599813B1 (en) 2011-09-30 2017-03-21 Rockwell Collins, Inc. Waveguide combiner system and method with less susceptibility to glare
US8749890B1 (en) 2011-09-30 2014-06-10 Rockwell Collins, Inc. Compact head up display (HUD) for cockpits with constrained space envelopes
US8903207B1 (en) 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
US8937772B1 (en) 2011-09-30 2015-01-20 Rockwell Collins, Inc. System for and method of stowing HUD combiners
GB201117029D0 (en) 2011-10-04 2011-11-16 Bae Systems Plc Optical waveguide and display device
BR112014010230A8 (pt) 2011-10-28 2017-06-20 Magic Leap Inc sistema e método para realidade virtual e aumentada
US20140140091A1 (en) 2012-11-20 2014-05-22 Sergiy Victorovich Vasylyev Waveguide illumination system
JP6250547B2 (ja) 2011-11-23 2017-12-20 マジック リープ, インコーポレイテッドMagic Leap,Inc. 3次元仮想現実および拡張現実表示システム
US8651678B2 (en) 2011-11-29 2014-02-18 Massachusetts Institute Of Technology Polarization fields for dynamic light field display
US8917453B2 (en) 2011-12-23 2014-12-23 Microsoft Corporation Reflective array waveguide
CA2859978A1 (en) 2011-12-23 2013-06-27 Johnson & Johnson Vision Care, Inc. Variable optic ophthalmic device including liquid crystal elements
US8638498B2 (en) 2012-01-04 2014-01-28 David D. Bohn Eyebox adjustment for interpupillary distance
US20150010265A1 (en) 2012-01-06 2015-01-08 Milan, Momcilo POPOVICH Contact image sensor using switchable bragg gratings
US9278674B2 (en) 2012-01-18 2016-03-08 Engineered Arresting Systems Corporation Vehicle operator display and assistive mechanisms
US8810600B2 (en) 2012-01-23 2014-08-19 Microsoft Corporation Wearable display device calibration
US20150107671A1 (en) 2012-01-24 2015-04-23 AMI Research & Development, LLC Monolithic broadband energy collector with dichroic filters and mirrors embedded in waveguide
US9000615B2 (en) 2012-02-04 2015-04-07 Sunfield Semiconductor Inc. Solar power module with safety features and related method of operation
US9001030B2 (en) 2012-02-15 2015-04-07 Google Inc. Heads up display
US8749886B2 (en) 2012-03-21 2014-06-10 Google Inc. Wide-angle wide band polarizing beam splitter
US8736963B2 (en) 2012-03-21 2014-05-27 Microsoft Corporation Two-dimensional exit-pupil expansion
US9274338B2 (en) 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
US8985803B2 (en) 2012-03-21 2015-03-24 Microsoft Technology Licensing, Llc Freeform-prism eyepiece with illumination waveguide
US11068049B2 (en) 2012-03-23 2021-07-20 Microsoft Technology Licensing, Llc Light guide display and field of view
GB2500631B (en) 2012-03-27 2017-12-27 Bae Systems Plc Improvements in or relating to optical waveguides
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US9558590B2 (en) 2012-03-28 2017-01-31 Microsoft Technology Licensing, Llc Augmented reality light guide display
US8830588B1 (en) 2012-03-28 2014-09-09 Rockwell Collins, Inc. Reflector and cover glass for substrate guided HUD
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
KR102223290B1 (ko) 2012-04-05 2021-03-04 매직 립, 인코포레이티드 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
JP5994715B2 (ja) 2012-04-10 2016-09-21 パナソニックIpマネジメント株式会社 計算機ホログラム型表示装置
JP6001320B2 (ja) 2012-04-23 2016-10-05 株式会社ダイセル 体積ホログラム記録用感光性組成物、これを用いた体積ホログラム記録媒体及びその製造方法、並びにホログラム記録方法
WO2013163347A1 (en) 2012-04-25 2013-10-31 Rockwell Collins, Inc. Holographic wide angle display
US9389415B2 (en) 2012-04-27 2016-07-12 Leia Inc. Directional pixel for use in a display screen
EP2841980A4 (en) 2012-04-27 2016-01-13 Leia Inc PIXEL DIRECTIONAL FOR USE IN A DISPLAY SCREEN
US20130312811A1 (en) 2012-05-02 2013-11-28 Prism Solar Technologies Incorporated Non-latitude and vertically mounted solar energy concentrators
TW201400946A (zh) 2012-05-09 2014-01-01 Sony Corp 照明裝置及顯示裝置
US8721092B2 (en) 2012-05-09 2014-05-13 Microvision, Inc. Wide field of view substrate guided relay
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
US20130305437A1 (en) 2012-05-19 2013-11-21 Skully Helmets Inc. Augmented reality motorcycle helmet
US10502876B2 (en) 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
IN2014DN11015A (ja) 2012-05-25 2015-09-25 Cambridge Entpr Ltd
US9459461B2 (en) 2012-05-31 2016-10-04 Leia Inc. Directional backlight
PT2856244T (pt) 2012-05-31 2021-04-22 Leia Inc Retroiluminação direcional
JP5964500B2 (ja) 2012-06-01 2016-08-03 レイア、インコーポレイテッドLeia Inc. 変調層を有する指向性バックライト
US9201270B2 (en) 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US20130328948A1 (en) 2012-06-06 2013-12-12 Dolby Laboratories Licensing Corporation Combined Emissive and Reflective Dual Modulation Display System
NZ702897A (en) 2012-06-11 2017-03-31 Magic Leap Inc Multiple depth plane three-dimensional display using a wave guide reflector array projector
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
WO2013190257A1 (en) 2012-06-18 2013-12-27 Milan Momcilo Popovich Apparatus for copying a hologram
US9098111B2 (en) 2012-06-22 2015-08-04 Microsoft Technology Licensing, Llc Focus guidance within a three-dimensional interface
US9841537B2 (en) 2012-07-02 2017-12-12 Nvidia Corporation Near-eye microlens array displays
US9367036B2 (en) 2012-07-03 2016-06-14 Samsung Electronics Co., Ltd. High speed hologram recording apparatus
US8816578B1 (en) 2012-07-16 2014-08-26 Rockwell Collins, Inc. Display assembly configured for reduced reflection
US10111989B2 (en) 2012-07-26 2018-10-30 Medline Industries, Inc. Splash-retarding fluid collection system
US9175975B2 (en) 2012-07-30 2015-11-03 RaayonNova LLC Systems and methods for navigation
US8913324B2 (en) 2012-08-07 2014-12-16 Nokia Corporation Display illumination light guide
JP6291707B2 (ja) 2012-08-10 2018-03-14 三菱電機株式会社 密着イメージセンサ、密着イメージセンサ用出力補正装置及び密着イメージセンサ用出力補正方法
US8742952B1 (en) 2012-08-14 2014-06-03 Rockwell Collins, Inc. Traffic awareness systems and methods
US8885997B2 (en) 2012-08-31 2014-11-11 Microsoft Corporation NED polarization system for wavelength pass-through
EP2893379A1 (en) 2012-09-04 2015-07-15 Soliddd Corp. Switchable lenticular array for autostereoscopic video displays
DE102012108424A1 (de) 2012-09-10 2014-03-13 Institut für Mess- und Regelungstechnik der Leibniz Universität Hannover Optisches System mit einer GRIN-Optik und Vorrichtung mit zumindest zwei optischen Systemen
US8731350B1 (en) 2012-09-11 2014-05-20 The United States Of America As Represented By The Secretary Of The Navy Planar-waveguide Bragg gratings in curved waveguides
US10025089B2 (en) 2012-10-05 2018-07-17 Microsoft Technology Licensing, Llc Backlight for viewing three-dimensional images from a display from variable viewing angles
GB201219126D0 (en) 2012-10-24 2012-12-05 Oxford Energy Technologies Ltd Low refractive index particles
KR20200105965A (ko) * 2012-10-24 2020-09-09 시리얼 테크놀로지즈 에스.에이. 조명 디바이스
JP2014089294A (ja) 2012-10-30 2014-05-15 Toshiba Corp 液晶レンズ装置およびその駆動方法
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
WO2014080155A1 (en) 2012-11-20 2014-05-30 Milan Momcilo Popovich Waveguide device for homogenizing illumination light
US20140146394A1 (en) 2012-11-28 2014-05-29 Nigel David Tout Peripheral display for a near-eye display device
US20150288129A1 (en) 2012-11-28 2015-10-08 VerLASE TECHNOLOGIES LLC Optically Surface-Pumped Edge-Emitting Devices and Systems and Methods of Making Same
EP2929391B1 (en) 2012-12-10 2020-04-15 BAE SYSTEMS plc Improvements in and relating to displays
GB2508661A (en) 2012-12-10 2014-06-11 Bae Systems Plc Improved display
US9664824B2 (en) 2012-12-10 2017-05-30 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
WO2014091200A1 (en) 2012-12-10 2014-06-19 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
US8937771B2 (en) 2012-12-12 2015-01-20 Microsoft Corporation Three piece prism eye-piece
US20140168260A1 (en) 2012-12-13 2014-06-19 Paul M. O'Brien Waveguide spacers within an ned device
JP2016503185A (ja) 2012-12-14 2016-02-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 複屈折rmレンズ
US10311609B2 (en) 2012-12-17 2019-06-04 Clinton B. Smith Method and system for the making, storage and display of virtual image edits
US10146053B2 (en) 2012-12-19 2018-12-04 Microsoft Technology Licensing, Llc Multiplexed hologram tiling in a waveguide display
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
EP2943823A1 (en) 2013-01-08 2015-11-18 BAE Systems PLC Diffraction gratings and the manufacture thereof
GB2509536A (en) 2013-01-08 2014-07-09 Bae Systems Plc Diffraction grating
US9842562B2 (en) 2013-01-13 2017-12-12 Qualcomm Incorporated Dynamic zone plate augmented vision eyeglasses
KR102141992B1 (ko) 2013-01-15 2020-08-06 매직 립, 인코포레이티드 초고해상도 스캐닝 섬유 디스플레이
US20140204437A1 (en) 2013-01-23 2014-07-24 Akonia Holographics Llc Dynamic aperture holographic multiplexing
US8873149B2 (en) 2013-01-28 2014-10-28 David D. Bohn Projection optical system for coupling image light to a near-eye display
KR101886757B1 (ko) 2013-01-31 2018-08-09 레이아 인코포레이티드 다중 뷰 3d 손목시계
US9298168B2 (en) 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
US20140240842A1 (en) 2013-02-22 2014-08-28 Ian Nguyen Alignment-insensitive image input coupling
EP4193906A1 (en) 2013-03-11 2023-06-14 Magic Leap, Inc. Method for augmented and virtual reality
US20160054563A9 (en) 2013-03-14 2016-02-25 Honda Motor Co., Ltd. 3-dimensional (3-d) navigation
US20140268277A1 (en) 2013-03-14 2014-09-18 Andreas Georgiou Image correction using reconfigurable phase mask
CA2905911C (en) 2013-03-15 2017-11-28 Station 4 Llc Devices and methods for bending a tab on a container
CN107656618B (zh) 2013-03-15 2021-03-23 奇跃公司 显示系统和方法
GB2512077B (en) 2013-03-19 2019-10-23 Univ Erasmus Med Ct Rotterdam Intravascular optical imaging system
EP2979126B1 (en) 2013-03-28 2022-11-30 Snap Inc. Improvements in and relating to displays
GB201305691D0 (en) 2013-03-28 2013-05-15 Bae Systems Plc Improvements in and relating to displays
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
WO2014176695A1 (en) 2013-04-30 2014-11-06 Lensvector Inc. Reprogrammable tuneable liquid crystal lens intraocular implant and methods therefor
US9488836B2 (en) 2013-05-02 2016-11-08 Microsoft Technology Licensing, Llc Spherical interface for binocular display
WO2014188149A1 (en) 2013-05-20 2014-11-27 Milan Momcilo Popovich Holographic waveguide eye tracker
DE102013209436A1 (de) 2013-05-22 2014-11-27 Robert Bosch Gmbh Vorrichtung und Verfahren zum Erzeugen eines Beleuchtungsmusters
USD701206S1 (en) 2013-06-04 2014-03-18 Oculus VR, Inc. Virtual reality headset
US9639985B2 (en) 2013-06-24 2017-05-02 Microsoft Technology Licensing, Llc Active binocular alignment for near eye displays
US10228561B2 (en) 2013-06-25 2019-03-12 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism and gaze-detection light
US20140375542A1 (en) 2013-06-25 2014-12-25 Steve Robbins Adjusting a near-eye display device
US9625723B2 (en) 2013-06-25 2017-04-18 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism
US9176324B1 (en) 2013-06-25 2015-11-03 Rockwell Collins, Inc. Enhanced-image presentation system, device, and method
US8913865B1 (en) 2013-06-27 2014-12-16 Microsoft Corporation Waveguide including light turning gaps
US9664905B2 (en) 2013-06-28 2017-05-30 Microsoft Technology Licensing, Llc Display efficiency optimization by color filtering
ITTO20130541A1 (it) 2013-06-28 2014-12-29 St Microelectronics Srl Dispositivo a semiconduttore integrante un partitore resistivo e procedimento di fabbricazione di un dispositivo a semiconduttore
US9754507B1 (en) 2013-07-02 2017-09-05 Rockwell Collins, Inc. Virtual/live hybrid behavior to mitigate range and behavior constraints
WO2015006784A2 (en) 2013-07-12 2015-01-15 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US10533850B2 (en) 2013-07-12 2020-01-14 Magic Leap, Inc. Method and system for inserting recognized object data into a virtual world
US10345903B2 (en) 2013-07-30 2019-07-09 Microsoft Technology Licensing, Llc Feedback for optic positioning in display devices
CN109100887B (zh) 2013-07-30 2021-10-08 镭亚股份有限公司 背光体、电子显示器、多视图显示器和操作方法
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
JP6131766B2 (ja) 2013-08-06 2017-05-24 株式会社デンソー 車両用ヘッドアップディスプレイ装置
JP6232863B2 (ja) 2013-09-06 2017-11-22 セイコーエプソン株式会社 光学デバイス及び画像表示装置
US9785231B1 (en) 2013-09-26 2017-10-10 Rockwell Collins, Inc. Head worn display integrity monitor system and methods
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
US9164290B2 (en) 2013-11-06 2015-10-20 Microsoft Corporation Grating configurations for a tiled waveguide display
DE102013223964B3 (de) 2013-11-22 2015-05-13 Carl Zeiss Ag Abbildungsoptik sowie Anzeigevorrichtung mit einer solchen Abbildungsoptik
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
KR102651578B1 (ko) 2013-11-27 2024-03-25 매직 립, 인코포레이티드 가상 및 증강 현실 시스템들 및 방법들
US20150167868A1 (en) 2013-12-17 2015-06-18 Scott Boncha Maple sap vacuum collection systems with chew proof tubing
JP6430516B2 (ja) 2013-12-19 2018-11-28 ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc 導波路における、および、導波路に関連した改良
KR20150072151A (ko) 2013-12-19 2015-06-29 한국전자통신연구원 Slm을 이용하여 홀로그램 엘리먼트 이미지들을 기록하는 홀로그램 기록 장치 및 방법
CN106030375B (zh) 2013-12-19 2019-10-18 Bae系统公共有限公司 波导的改进
US9719639B2 (en) * 2013-12-20 2017-08-01 Apple Inc. Display having backlight with narrowband collimated light sources
US9804316B2 (en) * 2013-12-20 2017-10-31 Apple Inc. Display having backlight with narrowband collimated light sources
US9459451B2 (en) 2013-12-26 2016-10-04 Microsoft Technology Licensing, Llc Eye tracking apparatus, method and system
US10037775B2 (en) 2014-01-29 2018-07-31 Hitachi Consumer Electronics Co., Ltd. Optical information device and optical information processing method
US9671612B2 (en) 2014-01-29 2017-06-06 Google Inc. Dynamic lens for head mounted display
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
CN106233189B (zh) 2014-01-31 2020-06-26 奇跃公司 多焦点显示系统和方法
CN103777282A (zh) 2014-02-26 2014-05-07 华中科技大学 一种光栅耦合器及光信号的耦合方法
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US9762895B1 (en) 2014-03-11 2017-09-12 Rockwell Collins, Inc. Dual simultaneous image presentation for a three-dimensional aviation display
JP2015172713A (ja) 2014-03-12 2015-10-01 オリンパス株式会社 表示装置
JP6201836B2 (ja) 2014-03-14 2017-09-27 ソニー株式会社 光学装置及びその組立方法、ホログラム回折格子、表示装置並びにアライメント装置
WO2015145119A1 (en) 2014-03-24 2015-10-01 Wave Optics Ltd Display system
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US10048647B2 (en) 2014-03-27 2018-08-14 Microsoft Technology Licensing, Llc Optical waveguide including spatially-varying volume hologram
NZ727350A (en) 2014-05-30 2020-08-28 Magic Leap Inc Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
TWI540401B (zh) 2014-06-26 2016-07-01 雷亞有限公司 多視角三維腕錶及在多視角三維腕錶中產生三維時間影像的方法
WO2016010289A1 (en) 2014-07-15 2016-01-21 Samsung Electronics Co., Ltd. Holographic see-through optical device, stereoscopic imaging system, and multimedia head mounted system
JP2016030503A (ja) 2014-07-29 2016-03-07 日本精機株式会社 ヘッドアップディスプレイ装置
ES2856011T3 (es) 2014-07-30 2021-09-27 Leia Inc Retroiluminación de colores basada en redes de difracción multihaz
US9557466B2 (en) 2014-07-30 2017-01-31 Leia, Inc Multibeam diffraction grating-based color backlighting
GB2529003B (en) 2014-08-03 2020-08-26 Wave Optics Ltd Optical device
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
US9377623B2 (en) 2014-08-11 2016-06-28 Microsoft Technology Licensing, Llc Waveguide eye tracking employing volume Bragg grating
US9678345B1 (en) 2014-08-15 2017-06-13 Rockwell Collins, Inc. Dynamic vergence correction in binocular displays
US9733475B1 (en) 2014-09-08 2017-08-15 Rockwell Collins, Inc. Curved waveguide combiner for head-mounted and helmet-mounted displays (HMDS), a collimated virtual window, or a head up display (HUD)
US20160077338A1 (en) 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US9494799B2 (en) 2014-09-24 2016-11-15 Microsoft Technology Licensing, Llc Waveguide eye tracking employing switchable diffraction gratings
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
WO2016046514A1 (en) 2014-09-26 2016-03-31 LOKOVIC, Kimberly, Sun Holographic waveguide opticaltracker
NZ745107A (en) 2014-09-29 2021-07-30 Magic Leap Inc Architectures and methods for outputting different wavelength light out of waveguides
JP2016085430A (ja) 2014-10-29 2016-05-19 セイコーエプソン株式会社 虚像表示装置
IL236491B (en) 2014-12-25 2020-11-30 Lumus Ltd A method for manufacturing an optical component in a conductive substrate
JP6507250B2 (ja) 2015-01-10 2019-04-24 レイア、インコーポレイテッドLeia Inc. 格子カップリング型ライトガイド
CN107111058B (zh) 2015-01-10 2020-10-02 镭亚股份有限公司 具有受控衍射耦合效率的基于衍射光栅的背光
EP3243094B1 (en) 2015-01-10 2022-03-23 LEIA Inc. Multibeam grating-based backlight and a method of electronic display operation
JP6567058B2 (ja) 2015-01-10 2019-08-28 レイア、インコーポレイテッドLeia Inc. 2次元/3次元(2d/3d)切り替え可能ディスプレイバックライトおよび電子ディスプレイ
CN111323867A (zh) 2015-01-12 2020-06-23 迪吉伦斯公司 环境隔离的波导显示器
EP3245551B1 (en) 2015-01-12 2019-09-18 DigiLens Inc. Waveguide light field displays
KR102200059B1 (ko) 2015-01-19 2021-01-08 레이아 인코포레이티드 반사 아일랜드를 채용하는 단일 방향 격자-기반 백라이팅
CN107533137A (zh) 2015-01-20 2018-01-02 迪吉伦斯公司 全息波导激光雷达
EP3250960B1 (en) 2015-01-28 2023-06-07 LEIA Inc. Three-dimensional (3d) electronic display
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
WO2016135434A1 (en) 2015-02-23 2016-09-01 Milan Momcilo Popovich Electrically focus-tunable lens
US10088689B2 (en) 2015-03-13 2018-10-02 Microsoft Technology Licensing, Llc Light engine with lenticular microlenslet arrays
WO2016146963A1 (en) 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
KR20170128595A (ko) 2015-03-20 2017-11-22 매직 립, 인코포레이티드 증강 현실 디스플레이 시스템들을 위한 광 결합기
WO2016156776A1 (en) 2015-03-31 2016-10-06 Milan Momcilo Popovich Method and apparatus for contact image sensing
KR102527670B1 (ko) 2015-05-08 2023-04-28 배 시스템즈 피엘시 디스플레이 개선 방법
WO2016183537A1 (en) 2015-05-14 2016-11-17 Cross Match Technologies, Inc. Handheld biometric scanner device
AU2016278006B2 (en) 2015-06-15 2021-09-02 Magic Leap, Inc. Virtual and augmented reality systems and methods
US10670862B2 (en) 2015-07-02 2020-06-02 Microsoft Technology Licensing, Llc Diffractive optical elements with asymmetric profiles
CN107850784B (zh) 2015-07-20 2021-06-01 奇跃公司 虚拟/增强现实系统中具有内向指向角度的准直光纤扫描仪设计
US9541763B1 (en) 2015-07-29 2017-01-10 Rockwell Collins, Inc. Active HUD alignment
US10038840B2 (en) 2015-07-30 2018-07-31 Microsoft Technology Licensing, Llc Diffractive optical element using crossed grating for pupil expansion
US9864208B2 (en) 2015-07-30 2018-01-09 Microsoft Technology Licensing, Llc Diffractive optical elements with varying direction for depth modulation
US9791694B1 (en) 2015-08-07 2017-10-17 Rockwell Collins, Inc. Transparent film display system for vehicles
US10180520B2 (en) 2015-08-24 2019-01-15 Akonia Holographics, Llc Skew mirrors, methods of use, and methods of manufacture
JP6598269B2 (ja) 2015-10-05 2019-10-30 ディジレンズ インコーポレイテッド 導波管ディスプレイ
US10429645B2 (en) 2015-10-07 2019-10-01 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US10067346B2 (en) 2015-10-23 2018-09-04 Microsoft Technology Licensing, Llc Holographic display
US9946072B2 (en) 2015-10-29 2018-04-17 Microsoft Technology Licensing, Llc Diffractive optical element with uncoupled grating structures
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US9915825B2 (en) 2015-11-10 2018-03-13 Microsoft Technology Licensing, Llc Waveguides with embedded components to improve intensity distributions
US9791696B2 (en) * 2015-11-10 2017-10-17 Microsoft Technology Licensing, Llc Waveguide gratings to improve intensity distributions
WO2017094129A1 (ja) 2015-12-02 2017-06-08 株式会社日立製作所 ホログラム光情報再生装置
US10558043B2 (en) 2015-12-02 2020-02-11 Rockwell Collins, Inc. Worn display using a peripheral view
US9800607B2 (en) 2015-12-21 2017-10-24 Bank Of America Corporation System for determining effectiveness and allocation of information security technologies
US10038710B2 (en) 2015-12-22 2018-07-31 Sap Se Efficient identification of log events in enterprise threat detection
CN106960661B (zh) * 2016-01-08 2019-06-21 京东方科技集团股份有限公司 一种3d显示装置及其驱动方法
CN105487170A (zh) * 2016-01-19 2016-04-13 东南大学 全息光波导及全息光波导显示装置
US9874931B1 (en) 2016-02-22 2018-01-23 Rockwell Collins, Inc. Head-tracking system and method
US10540007B2 (en) 2016-03-04 2020-01-21 Rockwell Collins, Inc. Systems and methods for delivering imagery to head-worn display systems
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
CN109154717B (zh) 2016-04-11 2022-05-13 迪吉伦斯公司 用于结构光投射的全息波导设备
US10025093B2 (en) 2016-04-13 2018-07-17 Microsoft Technology Licensing, Llc Waveguide-based displays with exit pupil expander
US9791703B1 (en) 2016-04-13 2017-10-17 Microsoft Technology Licensing, Llc Waveguides with extended field of view
WO2017182771A1 (en) 2016-04-21 2017-10-26 Bae Systems Plc Display with a waveguide coated with a meta-material
GB201609026D0 (en) 2016-05-23 2016-07-06 Bae Systems Plc Waveguide manufacturing method
GB201609027D0 (en) 2016-05-23 2016-07-06 Bae Systems Plc Waveguide manufacturing method
GB2550958B (en) 2016-06-03 2022-02-23 Bae Systems Plc Waveguide structure
KR102646789B1 (ko) * 2016-09-22 2024-03-13 삼성전자주식회사 지향성 백라이트 유닛 및 이를 포함하는 입체 영상 표시 장치
KR102335721B1 (ko) * 2016-10-05 2021-12-07 레이아 인코포레이티드 모드-선택가능 백라이트, 방법, 및 지향성 산란 피처를 채용하는 디스플레이
GB2556938B (en) 2016-11-28 2022-09-07 Bae Systems Plc Multiple waveguide structure for colour displays
WO2018102834A2 (en) 2016-12-02 2018-06-07 Digilens, Inc. Waveguide device with uniform output illumination
US10088686B2 (en) 2016-12-16 2018-10-02 Microsoft Technology Licensing, Llc MEMS laser scanner having enlarged FOV
CN106848835B (zh) 2016-12-22 2020-04-28 华中科技大学 一种基于表面光栅的dfb激光器
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US10295824B2 (en) 2017-01-26 2019-05-21 Rockwell Collins, Inc. Head up display with an angled light pipe
JP2020514783A (ja) 2017-01-26 2020-05-21 ディジレンズ インコーポレイテッド 均一出力照明を有する導波管
US11460694B2 (en) 2017-02-14 2022-10-04 Snap Inc. Waveguide structure
DE102017110246A1 (de) 2017-05-11 2018-11-15 Hettich Franke Gmbh & Co. Kg Schwenkbeschlag und Möbel
WO2019046649A1 (en) 2017-08-30 2019-03-07 Digilens, Inc. METHODS AND APPARATUS FOR COMPENSATION OF IMAGE DISTORTION AND LIGHT UNIFORMITY IN A WAVEGUIDE
US11175506B2 (en) 2017-09-28 2021-11-16 Google Llc Systems, devices, and methods for waveguide-based eyebox expansion in wearable heads-up displays
WO2019079350A2 (en) 2017-10-16 2019-04-25 Digilens, Inc. SYSTEMS AND METHODS FOR MULTIPLYING THE IMAGE RESOLUTION OF A PIXÉLISÉ DISPLAY
JP7486701B2 (ja) 2017-10-19 2024-05-20 スナップ・インコーポレーテッド ヘッドアップディスプレイ用の軸方向に非対称な画像ソース
JP7155267B2 (ja) 2017-12-21 2022-10-18 ビ-エイイ- システムズ パブリック リミテッド カンパニ- ウェアラブルデバイス
FI129113B (en) 2017-12-22 2021-07-15 Dispelix Oy Waveguide display and display element with new lattice configuration
FI129400B (en) 2017-12-22 2022-01-31 Dispelix Oy Diffractive waveguide element and diffractive waveguide display
CN114721242A (zh) 2018-01-08 2022-07-08 迪吉伦斯公司 用于制造光学波导的方法
US20190212597A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Low Haze Liquid Crystal Materials
EP3710876A4 (en) 2018-01-08 2022-02-09 DigiLens Inc. SYSTEMS AND PROCESSES FOR THE MANUFACTURE OF WAVEGUIDE CELLS
US20190212596A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Holographic Material Systems and Waveguides Incorporating Low Functionality Monomers
US20190212589A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Liquid Crystal Materials and Formulations
EP3710893A4 (en) 2018-01-08 2021-09-22 Digilens Inc. SYSTEMS AND METHODS FOR HIGH RATE RECORDING OF HOLOGRAPHIC NETWORKS IN WAVEGUIDE CELLS
WO2019171038A1 (en) 2018-03-07 2019-09-12 Bae Systems Plc Waveguide structure for head up displays
FI129387B (en) 2018-03-28 2022-01-31 Dispelix Oy Waveguide elements
FI128837B (en) 2018-03-28 2021-01-15 Dispelix Oy Outlet pupil dilator
FI130178B (en) 2018-03-28 2023-03-29 Dispelix Oy Waveguide element and waveguide stack for display use
FI129359B (en) 2018-03-28 2021-12-31 Dispelix Oy Diffractive grating
US20190339558A1 (en) 2018-05-07 2019-11-07 Digilens Inc. Methods and Apparatuses for Copying a Diversity of Hologram Prescriptions from a Common Master
US20200247017A1 (en) 2019-02-05 2020-08-06 Digilens Inc. Methods for Compensating for Optical Surface Nonuniformity
CN113728258A (zh) 2019-03-12 2021-11-30 迪吉伦斯公司 全息波导背光及相关制造方法
US20220187605A1 (en) 2019-04-18 2022-06-16 Bae Systems Plc Optical arrangement for a display
US20200341194A1 (en) 2019-04-26 2020-10-29 Digilens Inc. Holographic Waveguide Illumination Homogenizers
US20200348519A1 (en) 2019-05-03 2020-11-05 Digilens Inc. Waveguide Display with Wide Angle Peripheral Field of View
BR112022003132B1 (pt) 2019-08-21 2023-10-31 Bae Systems Plc Método e sistema de gravação para gravar uma estrutura de relevo de superfície queimada em um substrato
KR20220045988A (ko) 2019-08-21 2022-04-13 배 시스템즈 피엘시 광 도파로
EP4025829A1 (en) 2019-09-06 2022-07-13 BAE SYSTEMS plc Waveguide and method for fabricating a waveguide master grating tool

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US11815781B2 (en) * 2012-11-16 2023-11-14 Rockwell Collins, Inc. Transparent waveguide display
US20230114549A1 (en) * 2012-11-16 2023-04-13 Rockwell Collins, Inc. Transparent waveguide display
US11709373B2 (en) 2014-08-08 2023-07-25 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US11726323B2 (en) 2014-09-19 2023-08-15 Digilens Inc. Method and apparatus for generating input images for holographic waveguide displays
US11740472B2 (en) 2015-01-12 2023-08-29 Digilens Inc. Environmentally isolated waveguide display
US11194098B2 (en) 2015-02-12 2021-12-07 Digilens Inc. Waveguide grating device
US11703645B2 (en) 2015-02-12 2023-07-18 Digilens Inc. Waveguide grating device
US11754842B2 (en) 2015-10-05 2023-09-12 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11281013B2 (en) 2015-10-05 2022-03-22 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11604314B2 (en) 2016-03-24 2023-03-14 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US11586046B2 (en) 2017-01-05 2023-02-21 Digilens Inc. Wearable heads up displays
US11194162B2 (en) 2017-01-05 2021-12-07 Digilens Inc. Wearable heads up displays
US11782273B2 (en) * 2017-10-04 2023-10-10 Akonia Holographics Llc Comb-shifted skew mirrors
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US11460576B2 (en) * 2019-04-18 2022-10-04 Beijing Voyager Technology Co., Ltd. Transmitter having beam shifter for light detection and ranging (LIDAR)
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11899238B2 (en) 2019-08-29 2024-02-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11592614B2 (en) 2019-08-29 2023-02-28 Digilens Inc. Evacuated gratings and methods of manufacturing
US11921219B2 (en) 2020-06-29 2024-03-05 Aurora Operations, Inc. Systems and methods for IQ detection
US11892543B2 (en) 2020-06-29 2024-02-06 Aurora Innovation, Inc. Systems and methods for IQ detection
EP3985419A1 (en) * 2020-10-14 2022-04-20 Samsung Electronics Co., Ltd. Waveguide structure, back light unit including the same, and display apparatus including the waveguide structure
WO2022119396A1 (en) * 2020-12-04 2022-06-09 Samsung Electronics Co., Ltd. Mid-air image display device and method of operating the same
US20220334392A1 (en) * 2021-04-16 2022-10-20 Nvidia Corporation Holographic virtual reality display
CN113625446A (zh) * 2021-07-15 2021-11-09 嘉兴驭光光电科技有限公司 Ar光波导的设计方法及用于ar眼镜的光波导
WO2023129952A1 (en) * 2021-12-29 2023-07-06 Digilens Inc. Method and system utilizing inverted master for holographic recording
US20230375713A1 (en) * 2022-05-20 2023-11-23 Ours Technology, Llc Lidar with switchable local oscillator signals

Also Published As

Publication number Publication date
EP3938821A4 (en) 2023-04-26
US20220404538A1 (en) 2022-12-22
KR20210134763A (ko) 2021-11-10
JP2022525165A (ja) 2022-05-11
WO2020186113A1 (en) 2020-09-17
EP3938821A1 (en) 2022-01-19
US20210247560A1 (en) 2021-08-12
US11378732B2 (en) 2022-07-05
CN113728258A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
US11378732B2 (en) Holographic waveguide backlight and related methods of manufacturing
US11543594B2 (en) Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11573483B2 (en) Systems and methods for multiplying the image resolution of a pixelated display
US11747568B2 (en) Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11726261B2 (en) Holographic waveguides incorporating birefringence control and methods for their fabrication
US20200271973A1 (en) Holographic Polymer Dispersed Liquid Crystal Mixtures with High Diffraction Efficiency and Low Haze
US11681143B2 (en) Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US20230168514A1 (en) Waveguide Device with Uniform Output Illumination
US20240012242A1 (en) Methods and Apparatuses for Providing a Single Grating Layer Color Holographic Waveguide Display
US20240012247A1 (en) Wide Angle Waveguide Display
US20200400946A1 (en) Methods and Apparatuses for Providing a Waveguide Display with Angularly Varying Optical Power

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: DIGILENS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WALDERN, JONATHAN DAVID;POPOVICH, MILAN MOMCILO;GRANT, ALASTAIR JOHN;SIGNING DATES FROM 20210729 TO 20210802;REEL/FRAME:057387/0127