CN106848835B - 一种基于表面光栅的dfb激光器 - Google Patents

一种基于表面光栅的dfb激光器 Download PDF

Info

Publication number
CN106848835B
CN106848835B CN201611200634.7A CN201611200634A CN106848835B CN 106848835 B CN106848835 B CN 106848835B CN 201611200634 A CN201611200634 A CN 201611200634A CN 106848835 B CN106848835 B CN 106848835B
Authority
CN
China
Prior art keywords
layer
grating
waveguide
region
ridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611200634.7A
Other languages
English (en)
Other versions
CN106848835A (zh
Inventor
陆巧银
张鹏斐
国伟华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201611200634.7A priority Critical patent/CN106848835B/zh
Publication of CN106848835A publication Critical patent/CN106848835A/zh
Priority to PCT/CN2017/114175 priority patent/WO2018113501A1/zh
Priority to US16/448,000 priority patent/US10811842B2/en
Application granted granted Critical
Publication of CN106848835B publication Critical patent/CN106848835B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • H01S5/2215Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides using native oxidation of semiconductor layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2226Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semiconductors with a specific doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2063Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种基于表面光栅的DFB激光器。该激光器为脊形波导结构,自下而上包含:衬底、下波导盖层、有源层、上波导盖层;在脊形波导表面上刻蚀有布拉格光栅;脊区采用高折射率材料,使光栅具有大的耦合系数;脊形波导上面不做电极,电极位于脊形波导两侧;在脊形波导与两侧电极之间刻蚀有沟槽;该激光器的下波导盖层中含有一个或多个电流限制区,或者是在上波导盖层中制作一个掩埋隧道结来限制电流。本发明不需要材料的二次外延生长,制作工艺简便,因而降低了器件的制作成本,提高了器件的可靠性。此外本发明可以获得大的耦合系数,因而在激光器腔长很短的情况下能获得低阈值以及高速直调的激光器性能。

Description

一种基于表面光栅的DFB激光器
技术领域
本发明属于半导体激光器技术领域,尤其涉及一种基于表面光栅的DFB激光器。
背景技术
分布反馈(Distributed Feedback,DFB)激光器(H.Kogelnik,C.V.Shank,"Coupled-wave theory of distributed feedback lasers,"J.Appl.Phys.,vol.43,pp.2327-2335,1972.)具有窄线宽、低啁啾、可调谐等特点,因而在光通信、光存储和光学检测等领域具有广泛的应用。目前主流的商用DFB激光器使用的是掩埋的一阶布拉格(Bragg)光栅来提供反馈,通常将布拉格光栅刻蚀在非常接近有源层的上波导盖层中并通过再生长的方式将光栅掩埋起来,所以在制作过程中会包含一次或多次的材料再生长过程。这种材料的再次生长过程会使激光器的制作变得复杂,从而降低了器件的成品率和可靠性。特别是含铝组分的材料在空气中极易被氧化,也不适用于材料再次生长。
目前不需要材料再生长的单模激光器主要为光栅刻蚀在脊波导两侧的侧边耦合表面光栅激光器(LC-DFB)以及光栅刻蚀在脊波导的表面上的脊波导表面光栅激光器(RW-DFB)。其中,LC-DFB是一种横向耦合的DFB激光器,最早由L.M.Miller提出(L.M.Miller,J.T.Verdeyen,J.J.Coleman,R.P.Bryan,J.J.Alwan,K.J.Beernink,J.S.Hughes,andT.M.Cockerill,"A distributed feedback ridge waveguide quantumwellheterostructure laser,"IEEE Photon.Technol.Lett.,vol.3,pp.6-8,1991.),该激光器不需要材料再生长,布拉格光栅刻蚀在激光器的脊波导的两侧,电流从脊波导表面注入。LC-DFB激光器的光栅可以是折射率耦合型的也可以是增益耦合型。另外,可以用金属条纹光栅来制作LC-DFB激光器(M.Kamp,J.Hofmann,A.Forchel,F.Schaf-er,andJ.P.Reithmaier,"Low-thresholdhighquantumefficiencylaterallygain-coupledInGaAs/AlGaAsdistributed feedback lasers,"Appl.Phys.Lett.,vol.74,pp.483-485,1999.),但是不管是折射率耦合型光栅还是折射率-增益复合耦合型的LC-DFB激光器都由于波导模式与光栅之间的弱耦合而导致耦合系数κ小,通常需要很长的激光器腔长L来得到较大的光栅归一化耦合系数κL来保证DFB激光器的性能;而且侧边金属光栅LC-DFB由于金属的引入,会对激光器带来额外的光损耗,并因此影响激光器的性能。而RW-DFB则是一种垂直耦合表面光栅激光器(G.M.Smith,J.S.Hughes,R.M.Lammert,M.L.Osowski and J.J.Coleman,"Wavelength tunable two-pad ridge waveguidedistributed Bragg reflector InGaAs-GaAs quantum well lasers,"Eletron.Lett.,vol.30,pp.1313-1314,1994.)。光栅级数比较低,有2级、3级布拉格光栅也有一级布拉格光栅(R.M.Lammert,J.S.Hughes,S.D.Roh,M.L.Osowski,A.M.jones,J.J.Coleman,"Low-threshold narrow-linewidthInGaAs-GaAs ridgewaveguide DBR lasers with first-order surface gratings,"IEEE Photon.Technol.Lett.,vol.9,no.2,pp.149-151,1997.)。该激光器反馈来自解理面和光栅,光栅刻蚀在脊波导的表面,深度比脊波导浅,光栅区有电流注入。这类激光器通过引入非对称上下限制层,采用较薄的上限制层,来增强光栅与脊波导模场之间的重叠,以此来增大光栅的耦合系数。由于电极位于脊波导的表面上,会产生比较大的金属吸收损耗,而且采用低级光栅会增大光栅表面电极的制作难度。为了降低光栅表面电极的制作难度,表面光栅激光器也会采用高阶布拉格光栅,为了降低表面电极的吸收损耗,通常采用较厚的脊层并通过深刻蚀光栅来提高耦合系数,光栅的刻蚀深度可以超过1个微米。高阶表面光栅激光器主要有通过引入表面结构来选模的Fabry-Pérot(FP)腔激光器(B.Corbett,and D.McDonald,"Single longitudinalmoderidgewaveguide1.3μmFabry-Perotlaser by modal perturbation,"Electron.Lett.,vo.31,no.25,pp.2181-2182,1995。),该激光器的反馈主要来自于FP腔的两个镜面,在表面脊波导的脊中的特定位置刻蚀多个槽,从FP腔的众多纵模中选出一个来激射。这种激光器由于存在FP腔面影响,通常很难获得高的边模抑制比;也有高阶表面布拉格光栅DBR激光器(Q.Lu,A.Abdullaev,M.Nawrocka,G.Wei,J.Callaghan,F.Donegan,"Slotted single modelasers integrated with a semi-conductor optical amplifier,"IEEEPhoton.Technol.Lett.,vol.25,no.6,pp.564-567,2013.),该激光器在一端的脊波导表面刻蚀高阶布拉格光栅,该端的光反馈完全由光栅提供。这种激光器由于去除了FP腔的影响,通常可以获得比较高的边模抑制比。另一方面,为了制作简单,这种高阶光栅的槽宽通常比较宽,约1微米,因而可以采用普通的光刻工艺来制作,制作工艺简单,但是它的缺点是光栅的散射损耗较大,导致制备的激光器阈值偏高、输出功率和斜率效率偏低。为了降低光栅带来的损耗,高阶表面光栅激光器还可以采用窄槽宽的光栅(H.Wenzel,J.Fricke,J.Decker,P.Crump,and G.Erbert,“High-power distributed feedback lasers with surfacegratings:theory and experi-ments,”IEEE J.Sel.Topics Quantum Electron.,vol.21,pp.1502707,2015.)。这里槽宽只有100nm左右,为了在实验上实现这种窄槽宽的深刻蚀表面光栅,通常需要比较复杂的刻蚀工艺,因此存在成品率低、成本高的缺点。
总之,现有的商用DFB激光器存在材料再生长的问题,导致成品率低、成本高。现有的表面光栅激光器存在光栅的耦合系数小或者电极损耗大的问题。
发明内容
本发明所要解决的技术问题是提出一种基于表面光栅的DFB激光器,以克服现有技术所存在的缺陷。
为解决上述技术问题,本发明提出的一种基于表面光栅的DFB激光器,包括中间的脊形波导结构和两侧的上下电极区,所述激光器的横截面自下而上包括衬底、下波导盖层、有源层、上波导盖层;
所述上波导盖层包含上下排列的高折射率层和高电导率层,所述高折射率层的材料折的射率能够大于有源层的材料折射率,所述高折射率层的厚度小于1微米,所述高折射率层的中间区域形成所述脊形波导的脊区,所述脊区表面刻有布拉格光栅。
为了减小损耗并且降低电极制作难度,脊波导表面不做电极,所述上电极位于所述脊波导的两侧,所述脊波导与上电极之间刻有沟槽;所述高电导率层与脊波导两侧的上电极区相连;
所述下波导盖层中含有一个或多个电流限制区;或者在所述上波导盖层制作有一个掩埋隧道结,以用于限制电流。这样整个脊波导的模式在脊区中有较大的光限制因子,与光栅的作用可以很强,光栅有大的耦合系数,在激光器腔长L很短的情况下也可以获得低阈值以及高速直调的激光器性能。
整个脊区的光场与所述布拉格光栅形成强相互作用,所述布拉格光栅的耦合系数足够大,能够大于250cm-1
优选的,所述布拉格光栅选用一阶布拉格光栅,且所述一阶布拉格光栅包含一个或者多个λB/4的相移区;或者选用是高阶光栅;所述布拉格光栅的周期为Λ=mλB/2neff,其中λB和m分别为光栅所对应的布拉格波长和级数,neff为波导的有效折射率。
进一步的,通过调整光栅的刻蚀深度、脊区的材料折射率以及脊区的厚度参数调整光栅的耦合系数,以提高光栅的耦合系数,最大能够达到1000cm-1以上。
优选的,所述高电导率层为N型掺杂。
最优的,所述沟槽的刻蚀深度至高电导率层,沟槽的宽度大于500纳米,以使上电极区对脊波导的模式没有影响。
可优选的,所述上电极是N电极,电子在所述高电导率层横向移动后注入到脊波导下面的有源层区域中。所述下电极是P电极。
同样优选的,所述有源层不掺杂,有源层有源介质层、以及一个或多个分别限制层;其中,有源介质层选用多量子阱、量子点或者体材料。
优选的,所述下波导盖层为P型掺杂,所述下波导盖层下含有高掺杂的P欧姆接触层;所述上波导盖层、有源层和下波导盖层共同构成N-i-P结构;所述电流限制区是在P型掺杂的下波导盖层中靠近有源层区域的位置形成,以限制空穴的注入。
优选的,形成所述电流限制区的选用方式包括:通过离子注入相应区域的方式形成;或者在相应区域通过预埋高铝组分层,然后从两侧氧化该高铝组分层形成氧化铝,从而形成高电阻区;或者在有源层区域的上方利用隧道结来限制空穴的注入。
本发明的有益效果是:整个脊形波导的模式在脊区中有大的光限制因子,与光栅的作用很强,光栅有大的耦合系数,在激光器腔长L很短的情况下也能够获得低阈值以及高速直调的激光器性能;脊波导表面不做电极,上电极位于脊波导两侧,这样减小损耗并且降低上电极制作难度。本发明不需要材料的二次外延生长,制作工艺简便,因而降低了器件的制作成本,提高了器件的可靠性。
附图说明
下面结合附图和具体实施方式对本发明的技术方案作进一步具体说明。
图1为本发明激光器的结构示意图。
图2A为本发明激光器含有富铝电流限制层的截面结构示意图。
图2B为本发明激光器含有隧道结的截面结构示意图。
图3为本发明激光器一个具体实例的纵向截面图。
图4为本发明激光器一个具体实例的脊波导高度和光栅刻蚀深度与光栅耦合系数的关系图。
图5A为本发明激光器一个具体实例的腔内的载流子密度分布
图5B为本发明激光器一个具体实例的腔内的光子密度分布。
图6为本发明激光器一个具体实例的的输出光功率随着输入电流的变化关系曲线。
具体实施方式
下文结合附图和具体实施例来详细说明本发明。
图1是根据本发明的基于表面光栅的DFB激光器的结构示意图。激光器的侧向、横向和纵向分别记为x、y和z方向,所有的示意图都用相同的空间坐标系和标记。如图1所示,该半导体激光器的分层结构,横截面自下而上包括衬底1、下波导盖层3、有源层4、上波导盖层5。其中,下波导盖层3为P型掺杂,有源层4不掺杂,上波导盖层5为N型掺杂,上波导盖层5、有源层4和下波导盖层3共同构成N-i-P结构。自下而上,下波导盖层3中含有一层欧姆接触层2,为P型重掺杂,掺杂浓度范围为1019~1020cm-3,来提供足够的载流子,欧姆接触层2与下电极区20相连;下波导盖层3中还含有一个或多个电流限制区12,或者是在上波导盖层5中制作一个掩埋隧道结来限制电流。有源层4以提供光增益,有源层4中含有一个或者多个量子阱7以及一个或多个下分别限制层6和上分别限制层8。量子阱7也选用体材料、量子线和量子点替代。上波导盖层5包含高电导率层9以及其上的高折射率层10。
10为高折射率材料,厚度Hr如图1中所示小于1微米,脊形波导的表面刻蚀有布拉格光栅11,整个脊形波导的模式在脊中有比较大的光限制因子,脊区的光场与脊表面的光栅形成强的相互作用,光栅有大的耦合系数,耦合系数能够大于250cm-1。这样,在激光器腔长L很短的情况下也可以获得低阈值以及高速直调的激光器性能。
脊形波导表面的光栅11可以为一阶布拉格光栅,可以包含一个或者多个λB/4的相移区,也可以是高阶布拉格光栅。光栅的周期为Λ=mλB/2neff,其中λB和m分别为光栅所对用的布拉格波长和级数,neff为波导的有效折射率。
脊形波导的表面没有电极,N面电极13位于脊形波导两侧,在脊形波导与两侧电极13之间刻蚀有沟槽,沟槽刻蚀至高电导率层9。沟槽的宽度Wr大于500纳米,这样电极区远离脊形波导芯区,因此对脊形波导的模式没有影响。高折射率层10下面的高电导率层9与两侧的上电极区13相连,下电极区20位于上电极区13的外侧。脊形波导的两侧,在P型掺杂的下波导盖层3中靠近有源层4区域的位置形成高电阻区12来限制空穴的注入。空穴只能从脊形波导的正下方注入到有源层区域中,这样空穴注入的区域与脊波导的模式能最大程度地重叠,从而提高激光器的注入效率。所述激光器的空穴注入限制区可以通过离子注入相应区域的方式形成;也可以在相应区域通过预埋高铝组分层比如AlAs层,然后从两侧氧化该高铝组分层形成氧化铝,从而形成高电阻区。另外,也可以在有源层区域的上方利用隧道结来限制空穴的注入。具体如下:在N摻杂的高电导率层与有源层之间引入低掺杂的P掺杂层,在脊形波导的下方引入隧道结。这时下波导盖层可以采用N掺杂,整个结构在隧道结区域变成N-N++-P++-i-N,其中N++-P++就是隧道结。在隧道结以外的区域是N-P-i-N结构。当上面的N电极加正偏电压时,在隧道结以外的区域由于NP结反偏无法注入电流,在隧道结的位置,电子可以通过量子隧穿的方式由P++层穿过隧道结进入N++层,效果上就是空穴注入到隧道结下面的有源层区域中。
图2为空穴注入限制区形成的高铝氧化层和掩埋隧道结两种方式下的激光器截面结构示意图(xy平面)。如图2A所示,在该激光器中邻近有源层4的下波导盖层3中有一层富铝电流限制层12(该层材料中的铝组分高,能够被氧化成(AlGa)xOy,该氧化物具有绝缘的效果,一般含铝组分大于等于80%),通过选择区氧化该层形成高阻区。如图2B所示,在该激光器中邻近有源层4的上波导盖层5中制作一个掩埋隧道结(Buried tunnel junction),隧道结是由P型重掺杂层15即P++层和N型重掺杂层即N++层16组成。在N摻杂的高电导率层9与有源层4之间引入低掺杂的P掺杂层14,这时下波导盖层3可以采用N掺杂。注入电流后,掩埋隧道结能够形成电子空洞,从而很好的限制电流。
图3为本发明的基于表面光栅的DFB激光器的一个具体实例激光器的纵向结构示意图(zy平面)。脊形波导表面含有2组一阶布拉格光栅18和19,它们具有相同刻蚀深度Hg和周期Λ=λB/2neff,其中λB和neff分别为光栅所对应的布拉格波长和波导的有效折射率,因而它们具有相同的耦合系数,并在布拉格波长λB处光栅能够提供最大的反射。在一阶布拉格光栅18中插入λ/4相移区17来保证激光器能够稳定的工作在布拉格波长λB处,该结构在Bragg阻带的中心即布拉格波长处存在一个损耗最低的模式,从而实现了稳定波长即布拉格波长处的单模运行。电极位于光栅18所对应的脊波导两侧,而光栅19的脊形波导两侧没有做电极。在在光栅所在脊形波导的下波导盖层中靠近有源层区域通过离子注入可以形成限制空穴注入的高阻区,通过调整离子注入区域的位置可以有效控制电流的路径。在光栅18对应的高阻区在脊形波导的两侧,这样空穴就从脊形波导的正下方注入到有源层区域中;而在光栅19对应的高阻区则延伸至整个一层,这样就没有电流的注入,无法获得增益,因此该光栅充当反射区主要为激光器的光反馈,以降低阈值,并保证激光器的单模工作。在反射区光栅19的外端为激光器的输出端,为了减小解理端面带来反射,采用小角度弯曲波导或水平倾斜的端面端等,用于避免来自该端的反射。激光器的输出端镀增透膜,增透膜的反射率小于1%。
脊区的高度Hr和光栅的刻蚀深度Hg可以根据所需激光器的性能来确定。但是一阶表面布拉格光栅刻蚀不宜太深,所以选择高折射率材料形成脊区,并选取较薄的脊厚度,厚度小于1微米,整个脊波导的模式在脊中有比较大的光限制因子,脊区的光场与光栅形成强的相互作用,光栅有大的耦合系数。脊区的高度Hr和光栅的刻蚀深度Hg(Hr>Hg)与光栅的耦合系数的大小有密切的关系如图4所示,可见,脊区高度Hr越薄,光栅的刻蚀深度Hg越深,光栅的耦合系数越大。通常现有技术采用的掩埋光栅结构中光栅的耦合系数小于250cm-1,本发明则能够达到1000cm-1以上,如图4所示,此时脊区的厚度小于0.5微米。
图5A和5B分别为本发明该具体实例激光器在注入电流2mA下腔内的载流子密度和光子密度分布分布,可以看出它们在光栅16和光栅反射区15的分布是非常不均匀的。图6为该激光器的输出功率随着输入电流的变化关系曲线,可以看到阈值电流很低,仅为为0.2mA左右,而斜率效率达到了0.5mW/mA,可见该激光器实现了短腔长下低阈值高斜率效率的激光器性能。最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (11)

1.一种基于表面光栅的DFB激光器,其特征在于,所述激光器包括中间的脊形波导结构以及两侧的上、下电极区,所述激光器的横截面自下而上包括衬底、下波导盖层、有源层、上波导盖层;
所述上波导盖层为N型掺杂,包含上下排列的高折射率层和高电导率层,所述高折射率层的厚度小于1微米,所述高折射率层的中间区域形成所述脊形波导的脊区,所述脊区上表面刻有布拉格光栅;所述上电极区位于所述脊形波导的两侧,所述脊形波导与所述上电极区之间刻有沟槽;所述高电导率层与所述上电极区相连;
所述下波导盖层中含有一个或多个电流限制区;或者在所述上波导盖层制作有一个掩埋隧道结,以用于限制电流;所述下波导盖层中含有一层欧姆接触层;
所述的下电极区位于所述的上电极区的外侧;所述欧姆接触层与所述下电极区相连。
2.根据权利要求1所述的基于表面光栅的DFB激光器,其特征在于,所述脊区的光场与所述布拉格光栅形成强相互作用,所述布拉格光栅的耦合系数足够大。
3.根据权利要求1所述的基于表面光栅的DFB激光器,其特征在于,所述布拉格光栅选用一阶光栅,所述一阶光栅包含一个或者多个λB/4的相移区,或者选用高阶光栅;所述布拉格光栅的周期为Λ=mλB/2neff,其中λB和m分别为光栅所对应的布拉格波长和级数,neff为波导的有效折射率。
4.根据权利要求1或2或3所述的基于表面光栅的DFB激光器,其特征在于,通过调整光栅的刻蚀深度、脊区的材料折射率以及脊区的厚度参数来调整光栅的耦合系数。
5.根据权利要求1所述的基于表面光栅的DFB激光器,其特征在于,所述高电导率层为N型掺杂。
6.根据权利要求1所述的基于表面光栅的DFB激光器,其特征在于,所述沟槽的刻蚀深度至高电导率层,沟槽的宽度大于500纳米。
7.根据权利要求1所述的基于表面光栅的DFB激光器,其特征在于,所述上电极是N电极,电子在所述高电导率层横向移动后注入到脊波导下面的有源层区域中;所述下电极为P电极。
8.根据权利要求1或2所述的基于表面光栅的DFB激光器,其特征在于,所述有源层不掺杂,有源层含有有源介质层、一个或多个分别限制层;其中,有源介质层选用多量子阱、量子点或者体材料。
9.根据权利要求1所述的基于表面光栅的DFB激光器,其特征在于,所述下波导盖层为P型掺杂;所述上波导盖层、有源层和下波导盖层共同构成N-i-P结构;所述电流限制区是在P型掺杂的下波导盖层中靠近有源层区域的位置形成,以限制空穴的注入,使空穴注入的区域与脊波导的模式能最大程度地重叠。
10.根据权利要求1或9所述的基于表面光栅的DFB激光器,其特征在于,形成所述电流限制区的选用方式包括:通过离子注入相应区域的方式形成;或者在相应区域通过预埋高铝组分层,然后从两侧氧化该高铝组分层形成氧化铝,从而形成高电阻区;或者在有源层区域的上方利用隧道结来限制空穴的注入。
11.根据权利要求1所述的基于表面光栅的DFB激光器,其特征在于,所述欧姆接触层为P型重掺杂,掺杂浓度范围为1019~1020cm-3,以提供足够的载流子。
CN201611200634.7A 2016-12-22 2016-12-22 一种基于表面光栅的dfb激光器 Active CN106848835B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201611200634.7A CN106848835B (zh) 2016-12-22 2016-12-22 一种基于表面光栅的dfb激光器
PCT/CN2017/114175 WO2018113501A1 (zh) 2016-12-22 2017-12-01 一种基于表面光栅的dfb激光器
US16/448,000 US10811842B2 (en) 2016-12-22 2019-06-21 Distributed feedback laser based on surface grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611200634.7A CN106848835B (zh) 2016-12-22 2016-12-22 一种基于表面光栅的dfb激光器

Publications (2)

Publication Number Publication Date
CN106848835A CN106848835A (zh) 2017-06-13
CN106848835B true CN106848835B (zh) 2020-04-28

Family

ID=59135450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611200634.7A Active CN106848835B (zh) 2016-12-22 2016-12-22 一种基于表面光栅的dfb激光器

Country Status (3)

Country Link
US (1) US10811842B2 (zh)
CN (1) CN106848835B (zh)
WO (1) WO2018113501A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US11320571B2 (en) * 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US11300795B1 (en) 2009-09-30 2022-04-12 Digilens Inc. Systems for and methods of using fold gratings coordinated with output couplers for dual axis expansion
US10795160B1 (en) 2014-09-25 2020-10-06 Rockwell Collins, Inc. Systems for and methods of using fold gratings for dual axis expansion
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
EP2995986B1 (en) 2011-08-24 2017-04-12 Rockwell Collins, Inc. Data display
EP2842003B1 (en) 2012-04-25 2019-02-27 Rockwell Collins, Inc. Holographic wide angle display
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
WO2016113534A1 (en) 2015-01-12 2016-07-21 Milan Momcilo Popovich Environmentally isolated waveguide display
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
US11366316B2 (en) 2015-05-18 2022-06-21 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US10126552B2 (en) 2015-05-18 2018-11-13 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
JP6598269B2 (ja) 2015-10-05 2019-10-30 ディジレンズ インコーポレイテッド 導波管ディスプレイ
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
JP6734933B2 (ja) 2016-04-11 2020-08-05 ディジレンズ インコーポレイテッド 構造化光投影のためのホログラフィック導波管装置
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
CN106848835B (zh) * 2016-12-22 2020-04-28 华中科技大学 一种基于表面光栅的dfb激光器
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
CN109217106A (zh) * 2017-07-05 2019-01-15 长春理工大学 一种采用多周期表面DFB光反馈系统抑制1550nm SLD器件F-P激射的方法
US10340661B2 (en) * 2017-11-01 2019-07-02 International Business Machines Corporation Electro-optical device with lateral current injection regions
US11137536B2 (en) * 2018-07-26 2021-10-05 Facebook Technologies, Llc Bragg-like gratings on high refractive index material
JP7159844B2 (ja) * 2018-12-17 2022-10-25 日本電信電話株式会社 半導体レーザ
US20200264378A1 (en) 2019-02-15 2020-08-20 Digilens Inc. Methods and Apparatuses for Providing a Holographic Waveguide Display Using Integrated Gratings
KR20210134763A (ko) 2019-03-12 2021-11-10 디지렌즈 인코포레이티드. 홀로그래픽 도파관 백라이트 및 관련된 제조 방법
JP2022535460A (ja) 2019-06-07 2022-08-08 ディジレンズ インコーポレイテッド 透過格子および反射格子を組み込んだ導波路、ならびに関連する製造方法
CN110247302B (zh) * 2019-07-09 2020-12-01 华中科技大学 一种基于表面光栅的面发射激光器
PL3767762T3 (pl) * 2019-07-14 2022-12-12 Instytut Wysokich Ciśnień Polskiej Akademii Nauk Dioda laserowa z rozłożonym sprzężeniem zwrotnym i sposób wytwarzania takiej diody
WO2021041949A1 (en) 2019-08-29 2021-03-04 Digilens Inc. Evacuating bragg gratings and methods of manufacturing
WO2021210464A1 (ja) * 2020-04-16 2021-10-21 ヌヴォトンテクノロジージャパン株式会社 アレー型半導体レーザ装置
CN111600198B (zh) * 2020-05-26 2021-05-04 陕西源杰半导体科技股份有限公司 一种通讯用超大功率激光器及其制备方法
CN111769437B (zh) * 2020-07-21 2021-09-21 厦门市三安集成电路有限公司 布拉格光栅及其制备方法、分布反馈激光器
CN113097864B (zh) * 2021-06-10 2021-11-30 常州纵慧芯光半导体科技有限公司 一种垂直腔面发射激光器阵列及其制备方法
CN114256737B (zh) * 2021-12-15 2023-09-26 电子科技大学 一种窄线宽dfb纳米等离子体激光器及其制备方法
CN114498295B (zh) * 2022-04-13 2022-06-24 常州纵慧芯光半导体科技有限公司 一种带增益耦合光栅的dfb激光器及其制备方法
CN115327703B (zh) * 2022-07-26 2024-03-19 华中科技大学 一种基于相变材料的非易失多级可调光子神经突触器件
CN116683291B (zh) * 2023-08-02 2023-10-03 中国科学院半导体研究所 相移多波长半导体激光器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026287A (zh) * 2006-02-22 2007-08-29 中国科学院半导体研究所 GaAs基单模面发射量子级联激光器结构及其制造方法
CN102738701A (zh) * 2012-06-25 2012-10-17 中国科学院半导体研究所 分布式反馈激光器及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098552C (zh) * 1998-07-16 2003-01-08 中国科学院半导体研究所 单模垂直腔面发射半导体激光器
US6728290B1 (en) * 2000-09-13 2004-04-27 The Board Of Trustees Of The University Of Illinois Current biased dual DBR grating semiconductor laser
JP4770077B2 (ja) * 2001-07-04 2011-09-07 三菱電機株式会社 波長可変半導体レーザおよび光モジュール
JP2003273464A (ja) * 2002-03-19 2003-09-26 Mitsubishi Electric Corp リッジ導波路型半導体レーザ装置
KR100541913B1 (ko) * 2003-05-02 2006-01-10 한국전자통신연구원 추출 격자 브래그 반사기와 결합된 추출 격자 분포궤환파장가변 반도체 레이저
US20080192794A1 (en) * 2007-02-14 2008-08-14 Jacob Meyer Hammer Lateral-Bragg-Grating-Surface-Emitting Laser/Amplifier (LBGSE)
JP4312239B2 (ja) * 2007-02-16 2009-08-12 富士通株式会社 光素子及びその製造方法
CN103427332B (zh) * 2013-08-08 2015-09-09 中国科学院半导体研究所 硅基锗激光器及其制备方法
WO2015170590A1 (ja) * 2014-05-07 2015-11-12 日本碍子株式会社 グレーティング素子の実装構造の製造方法
US9438011B2 (en) * 2014-08-12 2016-09-06 California Institute Of Technology Single-mode, distributed feedback interband cascade lasers
CN105826813B (zh) * 2016-05-06 2019-02-05 华中科技大学 一种基于高阶表面光栅的单模激光器
CN106848835B (zh) * 2016-12-22 2020-04-28 华中科技大学 一种基于表面光栅的dfb激光器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026287A (zh) * 2006-02-22 2007-08-29 中国科学院半导体研究所 GaAs基单模面发射量子级联激光器结构及其制造方法
CN102738701A (zh) * 2012-06-25 2012-10-17 中国科学院半导体研究所 分布式反馈激光器及其制备方法

Also Published As

Publication number Publication date
US10811842B2 (en) 2020-10-20
WO2018113501A1 (zh) 2018-06-28
CN106848835A (zh) 2017-06-13
US20190319426A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
CN106848835B (zh) 一种基于表面光栅的dfb激光器
CN110247302B (zh) 一种基于表面光栅的面发射激光器
US9431793B2 (en) Semiconductor laser device
US6928223B2 (en) Stab-coupled optical waveguide laser and amplifier
US7638792B2 (en) Tunnel junction light emitting device
US8319229B2 (en) Optical semiconductor device and method for manufacturing the same
US6256330B1 (en) Gain and index tailored single mode semiconductor laser
US9350138B2 (en) Single-step-grown transversely coupled distributed feedback laser
US9917421B2 (en) P-type isolation regions adjacent to semiconductor laser facets
US20090086785A1 (en) Semiconductor light emitting device and method for manufacturing the same
US8514902B2 (en) P-type isolation between QCL regions
JP3558717B2 (ja) レーザダイオード、その製造方法、およびかかるレーザダイオードを使った光通信システム
Song et al. High-power broad-band superluminescent diode with low spectral modulation at 1.5-μm wavelength
US8660160B2 (en) Semiconductor laser element and method of manufacturing the same
JP4599700B2 (ja) 分布帰還型半導体レーザ
Swint et al. Curved waveguides for spatial mode filters in semiconductor lasers
JPH11195838A (ja) 分布帰還型半導体レーザ
EP0284684B1 (en) Inverted channel substrate planar semiconductor laser
US6845116B2 (en) Narrow lateral waveguide laser
CN115280609A (zh) 光学器件
US6782025B2 (en) High power distributed feedback ridge waveguide laser
JP2012146761A (ja) 半導体レーザ及び光半導体装置
JP2783163B2 (ja) 分布帰還型半導体レーザおよびその製造方法
US8355416B2 (en) Wavelength stabilized multi-transverse optical mode laser diodes
KR20230161444A (ko) 반도체 광전자 디바이스

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant