JP5216761B2 - ビーム走査型表示装置 - Google Patents

ビーム走査型表示装置 Download PDF

Info

Publication number
JP5216761B2
JP5216761B2 JP2009513152A JP2009513152A JP5216761B2 JP 5216761 B2 JP5216761 B2 JP 5216761B2 JP 2009513152 A JP2009513152 A JP 2009513152A JP 2009513152 A JP2009513152 A JP 2009513152A JP 5216761 B2 JP5216761 B2 JP 5216761B2
Authority
JP
Japan
Prior art keywords
unit
scanning
light source
light
wavefront shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009513152A
Other languages
English (en)
Other versions
JPWO2009041055A1 (ja
Inventor
圭司 杉山
格也 山本
研一 笠澄
達男 伊藤
章 黒塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009513152A priority Critical patent/JP5216761B2/ja
Publication of JPWO2009041055A1 publication Critical patent/JPWO2009041055A1/ja
Application granted granted Critical
Publication of JP5216761B2 publication Critical patent/JP5216761B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • B60R11/0229Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof for displays, e.g. cathodic tubes
    • B60R11/0235Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof for displays, e.g. cathodic tubes of flat type, e.g. LCD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/0003Arrangements for holding or mounting articles, not otherwise provided for characterised by position inside the vehicle
    • B60R2011/0028Ceiling, e.g. roof rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0042Arrangements for holding or mounting articles, not otherwise provided for characterised by mounting means
    • B60R2011/008Adjustable or movable supports
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7475Constructional details of television projection apparatus
    • H04N5/7491Constructional details of television projection apparatus of head mounted projectors

Description

本発明は、HMD(ヘッドマウントディスプレイ)等の表示装置に関するものである。
従来、HMD(ヘッドマウントディスプレイ)等の表示装置において、レーザ光を2次元走査して、眼の網膜に直描する方式(以下、レーザ走査方式、と記す)がある(例えば、特許文献1、2参照)。レーザ走査方式の表示装置は、網膜走査ディスプレイ、網膜照射ディスプレイ、網膜直描ディスプレイ、レーザ走査ディスプレイ、直視型表示装置、RSD(Retinal Scanning Display:網膜走査ディスプレイ)、VRD(Virtual Retinal Display:仮想網膜ディスプレイ)、などとも呼ばれている。
また、レーザ走査方式で、焦点変更部を持ち、各画素表示の奥行きを変更することで、3次元立体表示を実現する方式もある(例えば、特許文献3参照)。
また、レーザ走査方式で、波面曲率変更部を持ち、レーザ光の波面曲率半径を変更することで、波面曲率半径が目標値となるよう補正する方式もある(例えば、特許文献4参照)。
図34A及び図34Bに眼鏡型のHMDの構造の例を示す。図34A及び図34Bでは眼鏡フレームにレーザ光を発光する光源101、110、レーザ光の波面を制御する波面形状変更部102、109、及びレーザ光を二次元方向に走査する走査部103、108を搭載している。レーザ光は、走査部103、108によって眼鏡レンズに向かって投影され、眼鏡レンズの表面に備えられた偏向部104、107によって反射され、ユーザの眼に入射し、網膜上に画像を形成する。ここで偏向部104、107にはハーフミラーやホログラム光学素子(HOE:Hologram Optical Element)などが用いられ、ユーザは外の景色と、レーザによって描かれる画像の両方を同時に視聴することが可能になる。また走査部103、108には、一枚の単板ミラーを一軸、もしくは二軸方向に振動させることでレーザ光を二次元方向に走査するミラーデバイスなどが用いられる。
また、従来から存在するマイクロディスプレイ型のHMDの他の実施形態として、レーザ光源ではなく、液晶ディスプレイや有機ELディスプレイなどのマイクロディスプレイを光源として用い、マイクロディスプレイからの光を偏向部によってユーザの眼に導く構成が用いられている。
一般的なパーソナルコンピューター向けのディスプレイと同様に、上記のようなHMDにおいてもVDT(Visual Display Terminal)作業における眼精疲労が問題になる。眼精疲労は主に眼のディスプレイに固定されることによって引き起こされる。図35に人間の眼の構造を示す。図35は、人間の眼の断面図であり、図に示されるように人間の眼は、入射光1205が水晶体1202を通過し、眼球1201の奥に存在する網膜1204に集光されることで、映像を視認する。
ここで人間の眼は筋肉である毛様体1203を弛緩もしくは緊張させることにより水晶体1202の厚さを変更し、入射光1205が網膜1204上に上手く集光するように調節を行う。
一般に、人間は近くを見るときには毛様体1203を緊張させ、水晶体1202を厚くする。水晶体1202の厚さが増すことで、水晶体の焦点距離が短くなり、近くからの光が網膜1204上に集光しやすくなり、人間は近くの物体1301を鮮明に見ることが出来るようになる。この様子を図36に例示する。
また、遠くを見るときには人間の眼は毛様体1203を弛緩させることで、水晶体1202を薄くする。水晶体1202の厚さが減ることで、水晶体の焦点距離が長くなり、遠くからの光が網膜1204上に集光しやすくなり、人間は遠くの物体1301を鮮明に見ることができるようになる。この様子を図37に例示する。
VDT作業では眼の近くのディスプレイに映し出された光を見るため、通常、人間は毛様体1203を緊張させ、水晶体1202を厚くする。VDT作業が長時間に及ぶと、この毛様体1203の緊張が持続するため、毛様体の疲労を招き、眼精疲労を引き起こしてしまう。
この眼精疲労を避けるためにマイクロディスプレイ型HMDでは、マイクロディスプレイやレンズの位置を変化させる機能が用いられる(例えば、特許文献5参照)。
マイクロディスプレイやレンズの位置を変化させると、ユーザに提示される映像の視距離(ユーザの眼と、表示映像の虚像との距離)が変化する。そのためユーザに提示する映像を、ユーザから遠くに表示するようにすれば、ユーザの眼は水晶体を薄くするために毛様体1203を弛緩させようとする。この作用を利用すれば、HMDを利用するユーザの眼精疲労を緩和することが可能になる。
一方、ビーム走査型HMDでは、マイクロディスプレイの位置を移動させる代わりに、ビームの波面曲率を変化させることで同様の処理が可能になる。一般に、光の波面曲率は遠方からの光ほど大きくなる(無限遠からの光は、波面曲率が無限大の平行光)。そのためレーザ光源からの光の波面曲率を大きくすると、ユーザに提示される映像の視距離が長くなり、その結果、眼の毛様体の緊張が緩和される。
HMDなどに用いる画像表示装置は、個人用携帯ディスプレイ端末のうちのひとつの画像表示装置であり、そのウェアラブル性の観点から図34A及び図34Bに示すように眼鏡形態などによる構造が一般的に適用されている。
このようなHMDなどの画像表示装置には、例えば眼鏡形態のレンズに相当する部分をスクリーンなどに仮定して、その部分にレーザ光を2次元的に走査して、観察者の眼の網膜に直接描画して画像表示を行っているものが知られている(例えば、特許文献6参照)。ここでは、スクリーンに相当する瞳伝送レンズに裏面反射鏡または表面反射鏡からなる反射鏡を用い、これらをフレネルレンズなどで構成することにより光学系全体の厚さを抑えてより小型軽量にしてウェアラブル性に富む構造としている。
ところで、このようなレーザ走査方式のHMDにおいては、レーザ光源やレーザ走査部を眼前ではなく側頭部に配置した場合、または画角を広くして大画面表示とした場合に、レーザ光源からスクリーンを介して網膜へと至る光路は、各画素により空間的に異なっている。すなわち、光路に配置したミラーなどの偏向部でのビームの入射角、反射角、波面形状およびスポットサイズが、各画素により大きく異なってくる。したがって、レーザ光源から一定の波面形状およびスポットサイズのビームを出力しても、観察者である人の眼に到達するビームの波面形状およびスポットサイズなどの特性は、画面内の画素によって異なる。その結果、各画素サイズにばらつきが生じる、または画素サイズが許容範囲を超えるなどの課題が生じていた。
このような課題を解決するために、レーザ走査方式の画像表示装置に含まれる観察者の眼に走査されるレーザ光を偏向する光学手段において、この光学手段の位置を変化させることに対応して、レーザ光の波面曲率を目標値となるように補正する曲率補正部を有する画像表示装置が提案されている(例えば、特許文献4参照)。このことにより、レーザ光が照射される光学手段の照射位置によりレーザ光の波面曲率などの光学特性が変化する度合いが異なるにもかかわらず、光学特性が補正されて観察者に正確な画像を認識させることが容易となるとしている。
また、使用者の頭部に装着して画像表示を行うHMD等の画像表示装置において、画像表示部として液晶素子や有機ELなどの画素型表示デバイスや、レーザビームを2次元走査して眼の網膜に直描する方式など様々な方式が提案されている。
このような画像表示装置においては、使用者への装着負担を軽減し長時間使用可能とするため、表示装置全体が小型で軽量であることが求められる。さらには一般的なめがねと同等のデザインで構成すれば、通常のめがねの様に常時装着して活動できるようになる。
しかし、高画質、広視野角にするほど、画素型表示デバイスを用いた方式は、表示部ならびに表示部が発した光を眼まで導くプリズムやハーフミラーを用いた接眼光学系が大型になり、小型軽量化が困難である。
また、接眼光学系が眼前を覆う構造となり、めがねというよりはゴーグルやヘルメットに近い形となり、自然な装着感は望み難く一般的なめがね型の構成は実現が難しい。
一方、図34A及び図34Bに示されるようなレーザ走査方式の網膜走査型ディスプレイは、小型のMEMS(Micro−Electro−Mechanical−System)ミラーデバイスを用いて、極めて小型の表示装置を構成できる特徴がある。
さらに、接眼光学系に、プリズムやハーフミラーではなくホログラムミラーを用いて光学系を薄型にし、装置全体をめがね型に構成する提案もされている(例えば、特許文献2参照)。
図38、図39A、及び図39Bに、このようなめがね型画像表示装置の例を示す。
図38において、めがね型画像表示装置81は、通常のめがねと同様、めがねレンズ82、レンズフレーム83、及びテンプル84で構成される。
テンプル84に設けた開口85よりレーザビーム86が照射され、2次元走査されてめがねレンズ82上の画像反射領域87で使用者の眼88の方向へ偏向される。眼88に入射したレーザビーム86は網膜上でスポットを形成し、画像が認識される。
構成によっては、走査部や電源部を含んだ外部機器89が有線、または無線で接続される(図では破線で表示)。また、別途音声再生装置と組み合わせてイヤホン等が設けられる(図示せず)。
図39Aはめがね型画像表示装置81の平面図、図39Bは側面図である。図では使用者の頭部およびめがね型画像表示装置81の右半分のみを示しているが、両眼視対応の場合は、左右対称な構成となる(以下同様)。
この実施形態においては、図39A及び図39Bに示されるように、レーザビーム86を出射する光源91、レーザビーム86を二次元走査する走査部92、及び各部を制御する制御部94をテンプル84に搭載している。テンプル84の水平寸法Wは内蔵する各素子を直線状に配置できる最小限の幅とする。MEMSミラーに入射するレーザビーム径が2mm程度の場合、おおむね5〜10mm程度とできる。
垂直寸法Hは、通常めがねレンズ82の高さが25〜35mmあるので、おおむね30mm程度の寸法が取れる。
レーザビーム86は、光源91によってめがねレンズ82に向かって投射され、めがねレンズ82の表面に形成されたホログラムミラーである偏向部93によって反射され、使用者の眼88に入射して網膜上に画像を形成する。ホログラムミラーはリップマン体積ホログラムを形成したフォトポリマー層であり、波長選択性を持ちレーザビームの波長のみを反射する。その結果、ユーザは外の景色とレーザビームによって描かれる画像の両方を同時に視認することが可能となっている。
このような構成で、走査部92にMEMSミラーを使用した場合、テンプル84の耳側からMEMSミラーへレーザビームを照射する光軸と、眼の中心軸が略平行となり、MEMSミラーへのレーザビームの入射角(反射面の法線と入射光軸のなす角)αは、MEMSミラーから偏向部93への入射角βと等しくなる。MEMSミラーからのレーザビームが使用者の顔で遮られることなく偏向部に照射するよう図39Aのように配置すると、α=β=60°となる。
また、同様の構成で、レーザビームの入射方向が異なる例もある(例えば、特許文献7参照)。
特許文献7では、レーザ光源を耳側ではなくめがねレンズ側に光源部を設けて走査部に入射している。実際には、走査部よりめがねレンズ側にはあまりスペースがないので、図40A及び図40Bに示すような光路構成となる。
図40A及び図40Bは、このようなめがね型画像表示装置の例を示す平面図と側面図である。
走査部92は図39A及び図39Bの構成と同じ位置にある。それに対して、光源91から照射されたレーザビーム86は折り返しミラー95、96を使って走査部92よりめがねレンズ82側から照射される。この場合、走査部92への入射角αは、α=β/2=30°となる。
特許第2932636号公報 特開平10−301055号公報 特許第3103986号公報 特開2004−191946号公報 特許第3148791号公報 特開2000−221441号公報 特開2003−029198号公報
レーザ走査方式のディスプレイで、高解像度表示を実現するには、画面内の画素サイズを小さくするために、各画素に対応するレーザ光のビームスポットサイズを小さくする必要がある。
レーザ走査方式では、光源から網膜へと至る光路は、各画素によって空間的に異なる。特に、HMDをメガネ形とする目的で光源や走査部を眼前ではなく側頭部に配置した場合や、画角を広くして大画面表示とした場合に、走査部でのビームの走査角や、眼前に配置したミラー等(偏向部)でのビームの入射角や反射角や波面形状変化が、各画素によって、より大きく異なってくる。その結果、光源から一定の波面形状のビームを出力しても、ユーザの眼に到達するビームの波面形状は画面内の画素によって異なる結果、ビームスポットサイズも異なり、各画素サイズにばらつきが生じたり、画素サイズが許容範囲内に収まらない課題があった。
特許文献4では曲率半径を補正する方法を示しているが、曲率半径を目標値になるよう制御しても、ビームスポットサイズが異なれば、画質が低下する課題がある。例えば、画面の中央でも端でも、平行光(曲率が0)が眼に入射するように制御すると、ビームスポットサイズが画面中央と画面端とでは異なってしまう場合がある。その結果、隣接する走査線間に隙間が生じてしまったり、走査線が重なってしまったりする結果、画質が低下する課題があった。
図41は本課題の例を示した図である。前記特許文献4の曲率補正部を、メガネ形のHMDに適用した図であり、メガネ形とするために、走査ミラーを側頭部に配置し、ホログラム回折素子等の平面形状の偏向ミラーを眼の前に配置する。図41は、偏向ミラーから眼へ向かうビームの曲率が0(平行光)となるように、曲率変更部が光源からのビームの曲率を変更した図である。図のように、平行ビームとすることによって、A1地点でのビームスポットサイズ(直径)が450μmとなるのに対して、B1地点でのスポットサイズは2400μmと、大きく異なる場合がある。この結果、網膜上でのスポットサイズ(画素サイズ)も、A2地点では35μmに対し、B2地点では7μmとなるため、画素サイズにばらつきが生じてしまう。
さらに特許文献4の曲率半径を補正する方法では、ビームの波面形状が球面形状をしており、その半径が変化する場合しか補正できず、波面形状の水平成分と垂直成分が異なる変化をする場合などは、目標とする曲率半径や目標とするスポットサイズに補正できない課題もあった。
図42は本課題の例を示した図である。図41同様に、前記曲率補正部を、メガネ形のHMDに適用した図である。図42の平面図は頭上から見下ろした図で、図42の側面図は側面からの図である。
図42の平面図では、図41同様に、偏向ミラーから眼へのビームは平行光で、A1でのビームスポットサイズ(水平幅)が450μmで、A2地点でのスポットサイズ(水平幅)が35μmである。偏向ミラーから眼へのビームは、平面図では平行光であるが、側面図では発散光となる結果、A1でのスポットサイズ(垂直幅)は900μmで、A2地点でのスポットサイズ(垂直幅)は780μmとなる。
偏向ミラー反射光が、平面図では平行光なのに、側面図では発散光となる原因は、偏向ミラーのレンズパワーが水平方向と垂直方向で異なることや、偏向ミラーへの入射角が水平方向と垂直方向で異なることであり、これらはHMDをメガネ形にしたことによるものである。
このように、水平方向を平行光にすると垂直方向が平行でなくなり、同様に、垂直方向を平行光にすると水平方向が平行でなくなるために、前記特許文献4の曲率補正部では、目標とする曲率半径や、目標とするスポットサイズに補正できない場合がある。
さらにレーザ走査方式では、ビームを高速に走査する結果、ビームスポットサイズを変更できる速度が、走査速度に追いつかない場合に、画面の各画素を望むサイズに制御できない課題もあった。
また、上記で説明した従来技術においては、光学特性が補正されて観察者に正確な画像を認識させることはできるものの光学特性を調整する処理が複雑であり、高精細の高速で動く画像に対応することが難しいという課題があった。
また、マイクロディスプレイの位置やレーザの波面曲率を、ユーザの眼の状態を考慮せずに変えてしまうと、ユーザの眼が入射光を上手く網膜上に集光することができず、その結果、表示される映像がボケるという課題が生じる。
入射光を上手く網膜上に集光するための水晶体の調節には、一定の時間が必要であり、また水晶体が実現できる厚さや薄さには近視や遠視など個人差も存在する。そのため、現在の水晶体の薄さや、水晶体が実現できる薄さの限界などを考慮することなしに、マイクロディスプレイの距離やレーザの波面曲率などを変化させると、水晶体の変化がそれらの変化に追随できない。そのため入射光が上手く網膜上に集光されずに、ユーザが視認する表示画像がボケるという事態を招いてしまう。
前述のレーザ走査HMDや眼精疲労を防止するHMDの先行例では、この点に対する考慮がなされていない。
さらに、従来のめがね型画像表示装置では、以下のような課題があった。
一般的なめがねでは、フレームやテンプルが細いもの、太いもの、中には、レンズフレームがなく直接テンプルが取り付けられているもの等様々なデザインが存在するが、図38のような、幅広タイプのテンプルデザインのものもある。画像表示装置としてテンプル内に部品を内蔵するには、このようなデザインのめがねが適している。この場合も、テンプルは上下方向に幅広にしているが、水平方向には薄いほうが良い。特に、テンプル部が外側へ突出すると、デザイン上不自然な形状となり、常時使用するような用途には不都合である。
図39A及び図39Bに示すめがね型画像表示装置では、テンプルの水平寸法Wは最小限に設定できるが、走査部であるMEMSミラーへの入射角が60°と大きいため、MEMSミラーの必要サイズがその分大きくなる。
ビーム径DbとMEMSミラーサイズDmは入射角αに対して、Dm=Db/cosαの関係があるので、α=60°の場合、ビーム径の2倍のMEMSミラーサイズとなる。その結果、MEMSミラーが大型化することで高速駆動が困難となり、高解像度表示が困難になる。
また、大きく重くなることで、MEMSミラーの駆動部をより大きくする必要があり、テンプル幅Wも大きくなってしまう。
図40A及び図40Bに示すめがね型画像表示装置では、図39A及び図39Bの場合よりもMEMSミラーへの入射角αは小さく設定できるためMEMSミラーサイズはより小型にできる。α=30°では、MEMSミラーサイズDmはレーザビーム径Dbの1.15倍でよく、高速駆動に有利となるが、光源91や折り返しミラー95をMEMSミラーの外側へ配置して光路を構成しているため、テンプルの水平寸法Wが大きくなってしまう。
本発明は前記課題を解決するもので、レーザ走査方式のディスプレイで、ビームの波面形状を適切に変化させることで、ビームスポットサイズを制御して、より高解像度で高画質な表示を実現することを目的とする。
本発明は、上記従来の課題を解決するもので、高精細の高速で動く画像に対応することができるだけでなく、観察者に正確な画像を認識させるための処理も簡単な画像表示装置を提供することを目的とする。
本発明は前記課題を解決するもので、ユーザの網膜上のビームのスポットサイズを測定しながら、ビームの曲率半径を変化させることで、映像のボケを防ぎながら、眼精疲労防止を図ることを目的とする。
本発明は前記課題を解決するもので、MEMSミラーのサイズを抑えて高速駆動を有利にするとともに、テンプルの水平寸法を薄くして装着感の良好なめがね型画像表示装置を実現することを目的とする。
この発明に係るビーム走査型表示装置は、ビームを出力する光源と、前記光源から出力されたビームを走査する走査部と、前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部と、前記走査部で走査されたビームの一部であって、ユーザの眼に入射したビームの角膜上での反射光を検出する光検出部と、前記光検出部によって検出された反射光の強度からユーザの視線方向を検出する視線検出部と、前記視線検出部で検出した視線方向を用いて、ユーザの視野領域におけるビームの位置を判定する視野位置判定部とを備え、前記波面形状変更部は、前記視野位置判定部で判定したビームの位置に応じて変動する前記許容範囲に基づいて、ビームの波面形状を変更する
本構成のようにビームの波面形状を変更することで、ビームのスポットサイズを所定の範囲内とできる。その結果、画面内の各画素サイズのばらつきを減らして、より高画質な表示や、より高解像度な表示を実現できる効果がある。また、波面形状のより大きな変化に対応できるようになる結果、大画面表示を実現できる効果や、走査部等を側頭部に配置するメガネ形のHMDを実現できる効果もある。また、本構成によって、視線が移動した場合でも画質劣化を減少できる効果がある。
本構成によって、視線が移動した場合でも画質劣化を減少できる効果がある。
また、前記許容範囲の上限は、ビームがユーザの視野中心に近づくほど小さくなり、視野中心から遠ざかるほど大きくなるようにしてもよい。本構成によって、中心視野での画質を劣化させることなく、波面形状変更部の動作速度を低下させられる効果がある。同様に、波面形状変更部の動作速度が遅い場合でも、高画質なHMDとできる効果がある。
また、前記許容範囲の上限は、ユーザの視野領域での位置に対応する視力分解能に応じた値、及び視野中心での目標表示解像度に応じた値のうちのいずれか大きい方の値であってもよい。本構成によって、周辺視野でのスポットサイズを中心視野よりも大きくした場合でも、ユーザの眼に画質劣化として識別されない効果がある。
他の実施形態に係るビーム走査型表示装置として、ビームを出力する光源と、前記光源から出力されたビームを走査する走査部と、前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部と、前記走査部で走査されたビームの一部を検出する光検出部と、前記光検出部の検出結果に基づいて、ユーザの眼に入射されるビームの網膜上でのスポットサイズを判定するスポットサイズ判定部と、ビームの曲率半径の目標値を保持し、前記スポットサイズ判定部によって判定されたスポットサイズが予め定めた閾値を超えない範囲で、ビームの曲率半径が前記目標値に段階的に近づくように、ビームの曲率半径を所定値ずつ変更するビーム曲率制御部とを備え、前記波面形状変更部は、前記光検出部の検出結果に基づいてビームの波面形状を変更するようにしてもよい。
また、ビームの曲率半径の前記目標値は、前記スポットサイズ判定部によって判定されたスポットサイズが予め定めた閾値を超えない範囲で、最大の値に設定される。
本構成によって、ユーザに表示される映像がボケることを防止しながら、眼の毛様体の緊張を防ぎ、眼精疲労を低減することができる。
また、前記ビーム曲率制御部は、前記スポットサイズ判定部の判定結果が前記閾値を超えたことに応じて、前記目標値を引き下げる。
本構成によって、近視などの影響のために遠くにピントを合わせることが出来ないユーザに対応することが可能になる。
また、前記ビーム曲率制御部は、一定時間内における前記スポットサイズの変動幅が一定値以下の場合にのみビームの曲率半径を変更するようにしてもよい。
本構成によって、ビームの曲率半径の変更に水晶体の調節が追随するまでの時間を考慮して、スポットサイズの決定を行うことが可能になる。
また、ビーム走査型表示装置は、ユーザの身体動作変化を検出する動き検出部をさらに備える。そして、前記ビーム曲率制御部は、前記動き検出の出力からユーザの身体動作変化の幅が一定値以上の場合には、前記曲率半径の変更を行わないようにしてもよい。
本構成によって、ユーザが動いているときなど表示映像ではなく外界を見ている可能性が高い場合などには処理を中断し、不要な処理を削減することが可能になる。
また、前記ビーム曲率制御部は、ビームの曲率半径を増加させる期間と、前記曲率半径を減少させる期間とを交互に繰り返してもよい。本構成によって表示映像がボケることを防止しながら、毛様体の弛緩と緊張を一定周期ごとに繰り返すことが出来るようになる。その結果、毛様体の疲労を軽減し、眼精疲労を緩和することが可能になる。
さらに他の実施形態に係るビーム走査型表示装置として、ビームを出力する光源と、前記光源から出力されたビームを走査する走査部と、前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部と、前記走査部で走査されたビームの一部を検出する光検出部とを備え、前記波面形状変更部は、前記光検出部の検出結果に基づいてビームの波面形状を変更し、前記偏向部は、基板と、前記基板の少なくとも一部に形成されたホログラムミラーとを含む。そして、前記ホログラムミラーは、前記走査部からの走査光をユーザの眼に向かわせる偏向領域と、前記走査部が出力したビームの一部を反射して前記光検出部に導く反射体とを含んでもよい。
このような構成とすることにより、小型で軽量な画像処理の光学系を簡単に構成することができるので、高速かつ高精度の光学調整を実現することができる。また、観察者に正確な画像を認識させるための処理も簡単に行うことができる。
また、前記反射体は、前記偏向領域内に形成されており、前記偏向領域と前記反射体とは、多重化されていてもよい。このような構成とすることにより、さらに小型で軽量な画像処理の光学系を簡単に構成することができるので、高速かつ高精度の光学調整を実現することができる。また、観察者に正確な画像を認識させるための処理も簡単に行うことができる。
また、前記反射体は、前記偏向領域の周囲の少なくとも一部に形成されていてもよい。このような構成とすることにより、光偏向部をさらに薄くすることができ、小型、軽量かつ薄型のHMDを実現することができる。また、表示される映像に影響を与えることなくホログラムミラーの周囲に走査光の一部を走査することにより光学調整を行うことができる。
また、前記反射体は、網膜上のスポットサイズが最適値となるときに最も強い反射光を出力するようなものであってもよい。このような構成とすることにより、光学調整を行うときのサーボ範囲をさらに拡大する、あるいはオフセットをさらに減少することができる。
また、前記光源は、赤色レーザ光源と、青色レーザ光源と、中心波長が750nm以上、1500nm以下の赤外光を出力する赤外レーザ光源及び赤外光の一部を緑色に変換するSHG(Second−Harmonic Generation)素子を組み合わせた緑色レーザ光源とを含む。そして、前記反射体は、前記赤外光を反射するものであってもよい。
このような構成とすることにより、サーボ用の光源を別途使用しなくてもよいので装置を小型化、軽量化および低消費電力化することができる。また、サーボ用光源と光検出部とを近くに配置することができるので、さらに光学調整を安定に行うことができる。
また、前記偏向部は、前記基板の前記ホログラムミラーが取り付けられた面とは反対側の面に、赤外光を遮蔽する遮蔽膜を備えてもよい。このような構成とすることにより、外側の面の外部からの赤外光が偏向面に入射することを防止できるので、赤外光によるS/N比がさらに改善された高精度の光検出を行うことができる。
また、ビーム走査型表示装置は、ビームを出力する光源と、前記光源から出力されたビームを走査する走査部と、前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部と、前記走査部で走査されたビームの一部を検出する光検出部とを備え、前記波面形状変更部は、前記光検出部の検出結果に基づいてビームの波面形状を変更し、前記光検出部は、前記反射光の波面形状のうち光軸に垂直で、かつ互いに直交する2方向のビームの曲率半径を個別に検出するようにしてもよい。
また、ビーム走査型表示装置は、ビームを出力する光源と、前記光源から出力されたビームを走査する走査部と、前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部とを備え、前記波面形状変更部は、ビームの水平成分の波面形状を変更する水平成分変更部と、垂直成分の波面形状を変更する垂直成分変更部とを有し、前記水平成分変更部は、前記垂直成分変更部よりも、ビームの波面形状を大きく変更させるものであってもよい。
本構成によって、波面形状の水平成分と垂直成分が異なる変化をする場合でもスポットサイズを制御できる効果がある。特に、ビームの水平方向の光路変化の大きさと、垂直方向の光路変化の大きさとが、異なる光学配置の場合に有効であるので、光学系を平面上に配置するなどした薄型のHMDとできる効果がある。また、本構成によって、波面形状の水平走査時の変化が垂直走査時の変化よりも大きい場合に対応できる効果がある。特に、走査部を側頭部に配置し、偏向部を眼前正面に配置した場合など、ビームの水平方向の光路変化が垂直方向よりも大きい配置のHMDを実現できる効果がある。また、垂直走査を走査部の高速軸、水平走査を低速軸とすると、高速軸での変化を小さくできるので、波面形状変更部の動作速度が遅い場合でも、高画質なHMDとできる効果がある。
また、ビーム走査型表示装置は、ビームを出力する光源と、前記光源から出力されたビームを走査する走査部と、前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部とを備え、前記波面形状変更部は、ビームの水平成分の波面形状を変更する水平成分変更部と、垂直成分の波面形状を変更する垂直成分変更部とを有し、前記走査部での水平方向走査時に垂直方向走査時よりもビームの波面形状を大きく変更させてもよい。
本構成によって、波面形状の水平走査時の変化が垂直走査時の変化よりも大きい場合に対応できる効果がある。特に、走査部を側頭部に配置し、偏向部を眼前正面に配置した場合など、ビームの水平方向の光路変化が垂直方向よりも大きい配置のHMDを実現できる効果がある。また、垂直走査を走査部の高速軸、水平走査を低速軸とすると、高速軸での変化を小さくできるので、波面形状変更部の動作速度が遅い場合でも、高画質なHMDとできる効果がある。
さらに他の実施形態として、ビームを出力する光源と、前記光源から出力されたビームを走査する走査部と、前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部とを備えるビーム走査型表示装置であって、該ビーム走査型表示装置は、めがね型の画像表示装置である。具体的には、前記偏向部を有する一対のレンズと、前記一対のレンズそれぞれの外縁部から後方に延びると共に、少なくとも前記走査部を保持する一対のテンプルと、前記光源からのビームを前記走査部に導くものであって、前記走査部へのビームの入射角が、前記光源から前記走査部に直接入射する場合より小さくなる位置に配置される折り返しミラーとを備える。そして、前記折り返しミラーは、前記テンプル内の前記走査部と鉛直方向に離隔した位置に配置され、前記光源からのビームを反射する第1のミラーと、前記第1のミラーより前記レンズに近い位置に配置され、前記第1のミラーからの反射光を前記走査部に導く第2のミラーとを含む構成であってもよい。
本構成によって、テンプルの水平寸法を増大させることなく、走査部であるMEMSミラーへの入射角を抑えて高速駆動可能となり、高解像度で装着感の良いめがね型画像表示装置が構成できる。
また、前記偏向部は、ホログラムミラーであり、前記走査部からの走査光をユーザの眼に向かう方向に偏向する画像反射領域と、前記第2のミラーとして機能する折り返し反射領域とを備えるものであってもよい。本構成によって、テンプルの内側への凸部をなくして水平寸法を最小限に抑え、より装着感の良いめがね型画像表示装置が構成できる。
また、前記折り返し反射領域は、前記偏向領域で生じる収差の少なくとも一部を補正するための収差を有するようにしてもよい。
また、前記波面形状変更部は、前記光源から出力されたビームを集光させるレンズと、前記レンズで集光されたビームを前記レンズに向かって反射するミラーと、前記レンズと前記ミラーとの間の距離を制御する位置制御部とを備えるものであってもよい。
本発明のビーム走査型表示装置は、波面形状変更部が偏向部で偏向されたビームのスポットサイズを所定の範囲内となるよう波面形状を変更することで、ビームのスポットサイズを所定の範囲内とできる。その結果、画面内の各画素サイズのばらつきを減らして、より高画質な表示や、より高解像度な表示を実現できる効果がある。また、波面形状のより大きな変化に対応できるようになる結果、大画面表示を実現できる効果や、光源を側頭部に配置するメガネ形のHMDを実現できる効果もある。
また、ビーム走査型のHMDで、ユーザの網膜上のビームのスポットサイズを測定しながら、ビームの曲率半径を変化させることで、映像のボケを防ぎながら、眼精疲労防止を図ることが可能になる。
また、本発明は、高速で、かつ高精度の光学調整をすることができるので、高速で高精細の動画像を表示する画像表示装置を実現することができる。また、網膜よりも反射率の大きい反射体からの反射光を利用しているので、光学調整が精度よく確実にすることができ、外乱やビームの一部が遮蔽されるなどの影響に対して光学特性などを安定化することができる。その結果、観察者に正確で鮮明な画像を認識させることができる。
また、MEMSミラーサイズの増大を招くことなく、かつテンプルの水平方向厚さを最小限に抑える構成とすることで、高解像度で装着感が良く、日常の活動の中で常時使用可能なめがね型画像表示装置を実現できる。
以下本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1A〜図9Bを参照して、本発明の実施の形態1に係るビーム走査型表示装置を説明する。なお、図1A及び図1Bは、本発明の実施の形態1におけるメガネ形のHMD(ヘッドマウントディスプレイ)の構成図(平面図と側面図)である。図2は、図1Aの一部の詳細図である。図3〜図5はシリンドリカルレンズの形状及び機能を説明するための図である。図6及び図7は波面形状変更部の機能を説明するための図である。図8は走査部の構成を示す図である。図9A及び図9BはHMDの制御ブロック図である。
図1A、図1B、及び図2を参照して、ビーム走査型表示装置は、メガネのフレーム部分に光源101、波面形状変更部102、走査部103、制御部105、及びヘッドホン部106が配置されており、レンズ部分に偏向部104が配置されている。なお、図1A及び図1Bではメガネの左側部分にのみ参照番号を付しているが、メガネの右側についても同様である。
光源101は、ビームを出力する。出力されるビームは、図2に示すように、赤色レーザ光源211と、青色レーザ光源212と、緑色レーザ光源213とから出力される各レーザ光を合波したレーザ光である。そして、各色レーザ光源からの出力を適切に変調することで、任意の色のレーザ光を出力できる。さらに、後述する波面形状変更部102や走査部103と連動させて変調することで、ユーザの眼の網膜上に映像を表示できる。
なお、図2では、緑色レーザ光源213は、赤外線の半導体レーザ光源と、赤外線を緑色に変換するSHG(Second−Harmonic Generation:第2次高調波発生)素子とを組み合わせて緑色のビームを出力しているが、これに代えて、緑色の半導体レーザ光源を用いてもよい。また、各光源は、固体レーザ、液体レーザ、ガスレーザ、発光ダイオードのいずれであってもよい。
なお、図2では各レーザ光源でレーザ光の変調を行っているが、レーザ光源から出力された光を変調する手段をレーザ光源と組み合わせて用いることで、レーザ光を変調してもよい。
なお、光源101は、図2の光検出部214を含んでもよい。実施の形態1における光検出部214は、ユーザの眼の角膜からの反射光の強度を検出することで、ユーザの視線方向を検出できる。角膜からの反射光の強度は、角膜表面への入射角に依存して変化する。具体的には、角膜表面に対して垂直に入射するビームの反射率は相対的に高く、角膜表面に対して斜めに入射するビームの反射率は相対的に低い。そこで、光検出部214は、反射光の強度を検出することによってユーザの視線方向を検出することができる。
波面形状変更部102は、光源101からのビームの波面形状を変化させて、後述の偏向部104で偏向されたビームのスポットサイズを所定の範囲内となるようにする。
ビームの「スポットサイズ」とは、ユーザの眼の網膜でのスポットサイズとして以後説明するが、瞳孔でのスポットサイズ、角膜でのスポットサイズ、偏向部104でのスポットサイズでもよい。網膜でのスポットサイズは、表示する画素サイズと同一である。また、「波面形状」とはビーム波面の3次元形状であり、平面、球面、非球面の形状を含む。
図2に示されるように、波面形状変更部102は、焦点距離水平成分変更部(水平成分変更部)201と、焦点距離垂直成分変更部(垂直成分変更部)202とを光路に直列に配置することによって、波面形状の水平方向の曲率半径と垂直方向の曲率半径とを独立して変更できる。
焦点距離水平成分変更部201及び焦点距離垂直成分変更部202は、それぞれ、光源101から出力されたビームを集光させるシリンドリカルレンズ203と、シリンドリカルレンズ203で集光されたビームをシリンドリカルレンズ203に向かって反射するミラー204とを備える。
そして、シリンドリカルレンズ203とミラー204との距離を変更することによって、ビームの曲率半径を変更している。なお、シリンドリカルレンズ203とミラー204との間の距離は、位置制御部として作動する制御部105によって制御される。
ここで、図3〜図7を参照して、波面形状変更部102の仕組みを説明する。なお、図3はシリンドリカルレンズ203の斜視図、図4は図3のIV−IVにおける断面図、図5は図3のV−Vにおける断面図である。また、図6はシリンドリカルレンズ203とミラーとの距離がシリンドリカルレンズ203の焦点距離fに一致した状態を示す図、図7は図6の状態からミラー204をシリンドリカルレンズ203に距離dだけ近づけた状態を示す図である。
まず、図3に示されるように、シリンドリカルレンズ203は、円柱をその底面に垂直な平面で切断したような形状であって、切断面に相当する平面部203aと、円柱の側面に相当する曲面部203bと、円柱の底面及び上面に相当する一対の端面部203c、203dとを備える。波面形状変更部102では、ビームが平面部203a側から入射するようにシリンドリカルレンズ203を配置する。
次に、図4に示されるように、シリンドリカルレンズ203を通過するビームのうち、一対の端面部203c、203dに平行(図3のIV−IV平面)な成分は、曲面部203bの曲率に従って屈折する。一方、図5に示されるように、一対の端面部203c、203dに垂直(図3のV−V平面)な成分は、そのまま通過する。
そこで、焦点距離水平成分変更部201では、一対の端面部203c、203dが上下方向を向くように(IV−IV平面が水平方向と平行になるように)配置する。一方、焦点距離垂直成分変更部202では、一対の端面部203c、203dが左右方向を向くように(IV−IV平面が垂直方向と平行になるように)配置する。
次に、図6に示されるように、シリンドリカルレンズ203とミラー204との距離がシリンドリカルレンズ203の焦点距離fと一致している場合において、シリンドリカルレンズ203に入射した平行光(曲率半径無限大)は、屈折してミラー204の表面で焦点を結ぶ。そして、ミラー204によって反射されたビームは、シリンドリカルレンズ203で再度屈折して平行光として出力される(コリメートされる)。
一方、図7に示されるように、シリンドリカルレンズ203とミラー204との距離がシリンドリカルレンズ203の焦点距離fより近くなるようにミラー204を距離dだけ移動させた場合において、シリンドリカルレンズ203に入射した平行光(図7の実線)は、ミラー204の表面で焦点を結ばない。そして、ミラー204で反射した後、ミラー204から距離dだけ離れた位置(つまり、シリンドリカルレンズ203からf−2dだけ離れた位置)で焦点を結ぶ。このビームは、再度シリンドリカルレンズ203を通過しても平行光に戻らず、所定の曲率半径を持った拡散光(図7の破線)として出力される(コリメートされない)。
つまり、シリンドリカルレンズ203とミラー204との距離が焦点距離fに近づくほど、波面形状変更部102から出力されるビームの曲率半径は大きくなる。一方、シリンドリカルレンズ203とミラー204との距離が焦点距離fから遠ざかるほど、波面形状変更部102から出力されるビームの曲率半径は小さくなる。
上記のように、シリンドリカルレンズ203とミラー204との距離を適宜変更することによって、ビームの曲率半径を変更することができる。なお、焦点距離水平成分変更部201、焦点距離垂直成分変更部202ともに、曲率半径の変更に伴い、ビームの直径も変更している。
なお、図3に示すシリンドリカルレンズ203は、ビームの入射する面を平面(平面部203a)としたが、これに限ることなく、凸状曲面又は凹状曲面であってもよい。
また、水平方向の曲率を垂直方向よりも大きく変化させると、水平方向の変化により大きく対応できるので、画面の水平視野角を垂直視野角より大きくしたい場合や、側頭部に走査部(後述)があるHMDのように、走査部から偏向部(後述)へのビームの水平入射角が垂直入射角よりも大きい場合に特に有効となる。
また、図2では、波面形状を表す項目のなかで、水平方向の曲率半径と垂直方向の曲率半径とそれぞれのビームの直径という波面形状の一部のみを変更しているが、他の項目として波面内での曲率の分布や、波面端の形状やサイズなどを変更する手段があってもよい。
さらに、図2の波面形状変更部102では、シリンドリカルレンズ203とミラー204とを用いて波面形状を変更するが、他の手段として、液晶レンズや、液体レンズ等の可変形状レンズや、回折素子や、EO素子(電気−光変換素子)などを用いてもよい。
走査部103は、波面形状変更部102から出力されるビームを2次元走査する。走査部103は、角度を2次元的に変更できる単板小型ミラーで、MEMS(Micro−Electro−Mechanical−System)ミラーである。
図8に示されるように、走査部103は、x軸を中心に回動可能なミラー部103aと、x軸に直交するy軸を中心に回動可能な枠体103bとを組み合わせて構成されている。具体的には、ミラー部103aは、x軸方向に延びる軸部103cによって枠体103bの内側に回動可能に取り付けられている。また、枠体103bは、y軸方向に延びる軸部103dによって支持部材(図示省略)の内側に回動可能に取り付けられている。
上記構成とすれば、ミラー部103aは、軸部103cを中心として枠体103bに対して回動可能となる。同様に、枠体103bは、軸部103dを中心として支持部材に対して回動可能となる。なお、枠体103bがy軸周りに回動するときは、ミラー部103aも一体となって回動する。その結果、走査部103は、ビームを2次元走査することができる。
なお、走査部103は、水平走査用と垂直走査用のように2種以上の走査部の組合せで実現してもよい。また、走査部は、ミラーを物理的に傾ける方法に限定されず、レンズを移動したり、回折素子を回転する方法や、液晶レンズや可変形状レンズや、AO素子(音響光学素子)やEO素子(電気−光変換素子)などの偏向素子を用いる方法でもよい。
偏向部104は、走査部103で走査されたビームの向きをユーザの眼に向かう方向へ偏向する。偏向部104は、メガネのレンズの内側(眼の側)に、例えば、リップマン体積ホログラムが形成されたフォトポリマー層が形成されており、走査部103からのビームがユーザの眼の瞳孔に回折・集光されるように製作されている。
フォトポリマー層には赤色、緑色、青色、それぞれの光源からの光を反射する3つのホログラムを多重に形成してもよいし、それぞれの色の光に対応した3層のホログラムを積層してもよい。また、ホログラムの波長選択性を用いて、光源波長の光のみを回折させ、外界からの光のほとんどを占める光源波長以外の波長の光を回折させないように製作することで、透過型のディスプレイとできる。
なお、偏向部104は、ホログラムなどの回折素子による偏向に限定されず、凹面鏡などのミラーや、凸レンズなどのレンズでもよい。また偏向部104は、反射型スクリーンや透過型スクリーンのように、スクリーンにビームが当たって発散する結果、スクリーンからの発散光の一部がユーザの眼の方向へ偏向される方式も含む。
制御部105は、HMD各部を制御する集積回路を備える。制御部105は、図9A及び図9Bに示すように、中央処理部501、記憶部502、及び入出力制御部503を備えてもよい。
中央処理部501は、視線検出部531、及び視野位置判定部532等として作動する。記憶部502は、制御部105で用いるデータを記憶する。実施の形態1においては、図11Bに示す視野位置とビームスポットサイズとの関係を示すテーブルと、図12に示す網膜上のビームスポットサイズ、波面形状変更部102から出力されるビームの波面形状、及び視野位置の関係を示すテーブルと、その他の各種情報とを記憶する。
入出力制御部503は、制御部105の制御対象となる光源101、波面形状変更部102、及び走査部103などへの制御信号出力や制御対象からの信号入力を制御する。具体的には、入出力制御部503は、制御対象種別毎に光源入出力制御部510、波面形状変更入出力制御部511、走査入出力制御部512、偏向入出力制御部513、ヘッドホン入出力制御部514、電源入出力制御部515、及び通信入出力制御部516などを備えてもよい。入出力制御部503で入出力に関連した処理を実行することで、中央処理部501の負荷を下げられる効果がある。
中央処理部501は、記憶部502や入出力制御部503と信号を受け渡しして情報処理を実行する。具体的な制御の方法は、後述する動作説明で述べる。
なお、制御部105は、携帯電話等の周辺機器と無線接続して映像や音声信号を受信する通信部520を備えてもよい。制御部105は、ユーザに提示すべき画像を格納したメモリを備えていてもよいし、もしくは無線によって外部機器からユーザに提示すべき画像を取得しても良い。これにより、HMDと周辺機器の接続がワイヤレスとなり、HMDの装着性を向上させられる効果がある。
ヘッドホン部106は、スピーカーを備え、音声を出力する。なお、ヘッドホン部には、HMD各部へ電源供給するバッテリーを備えてもよい。
なお、図1Aにおける各手段や各部は、1台のHMDに内蔵されていてもよいし、内蔵されていなくてもよい。例えば、図1A各部の全てが、1台のHMDに含まれていてもよいし、ヘッドホン部106がなくてもよい。また、各部を分散配置してもよい。例えば、制御部105が走査部103や波面形状変更部102に一部含まれていてもよい。また、図1Aにおける各部は、複数存在してもよい。例えば、左目用と右目用に走査部103が2つあってもよい。赤色、緑色、青色のそれぞれに波面形状変更部102が計3つあってもよい。複数の機器で図1Aの各部を共有してもよい。例えば、レーザ光源211、212、213を2つのHMDで共有してもよい。
上記構成のビーム走査型表示装置は、ビームのスポットサイズが予め定めた許容範囲内に収まるように、光源101からのビームの波面形状を変更する。具体的には、光検出部214によって検出される視野位置、予め保持しているスポットサイズの許容範囲(図11B)、及び予め保持している視野位置と波面形状とスポットサイズとの関係(図12)を用いて、次回出力するビームの波面形状を決定する。
次に、上記構成のビーム走査型表示装置の動作を詳細に説明する。
図1A及び図1Bのビーム走査型表示装置が、ビームの波面形状を変更することで、ビームのスポットサイズを制御する動作を図10に示す。本説明では、表示する映像を構成する1つの画素を、ユーザの眼の網膜に正しい大きさで描いていく流れを説明する。
(S01)光検出部214が、ユーザの眼からの反射光の強度を検出し、S02の動作へ移る。眼の正面からビームが入射した場合に、より大きな強度の反射光を検出できる。
なお、眼からの反射光の強度は、光源で変調された出射光の強度と、光検出部214で検出した反射光の強度との比で表してもよい。また、赤外線など眼に感じない光を一定強度で走査しつつ、その反射光を検出してもよい。
(S02)制御部105が、S01で検出した反射光強度を用いて、前回出力したビームが表示した画素の、視野領域での位置(以後、「視野位置」と記す)を判定する。具体的には、視線検出部531が、S01で検出した反射光強度からユーザの視線方向を検出する。次に、視野位置判定部532が、検出された視線方向を用いて、ユーザの視野領域におけるビームの位置を判定する。また、次回出力ビームの視野位置も同時に判定し、S03の動作へ移る。
視野領域の中心位置は、視線の位置を意味し、以後、「視野中心」と記す。また、「中心視野」は視野中心付近の視野領域を意味し、視野の周辺領域を意味する「周辺視野」と相対的に用いる。
眼の正面からの強い反射光が検出されたら、前回出力ビームが視野中心の位置の画素を表示したと判定できる。また、視野中心以外の位置も、走査部103での走査角や走査パターンの視野中心との差分を用いて判定する。視野位置を、反射光の強度や強度変化から求めてもよいし、視野中心検出時からの経過時間を用いて求めてもよい。
次回出力ビームの視野位置は、前回出力ビームの視野位置と同様と近似してもよいし、走査部103からの走査角や走査パターンなどのデータを用いて位置を算出してもよいし、視野中心検出時からの経過時間を用いて求めてもよい。
ビームの視野位置は、水平角度と、垂直角度の2値で表現できる。それぞれ視野中心を0度とし、水平角度は視野の左側が負の角度で右側が正の角度、垂直角度は視野の下側が負の角度で上側が正の角度として表せる。例えば、視野中心は、水平角度が0度で垂直角度が0度と表せ、右上の周辺視野のある点は、水平角度が+40度で垂直角度が+30度等と表せる。
なお、S01で反射光を検出できなかった場合は、視野位置を所定の値として設定してもよい。例えば、最初にまだビームを出力していないために反射光を検出できない場合は、初期値として視野位置を視野中心等と設定してもよい。
なお、光検出部214を持たないHMDの場合は、視線は頭部正面を向いていると仮定して視野位置を判定してもよい。
(S03)制御部105が、S02で判定した次回出力ビームの視野位置に応じたビームスポットサイズの許容範囲を判定し、S04の動作へ移る。
図11Aに示されるように、眼の視力分解能は、視野中心に近づくほど高く、視野中心から遠ざかるほど低くなる。一方、目標解像度に対応するスポットサイズは、視野位置に拘らず一定である。その結果、中心視野と周辺視野とでは、視力分解能に対応するスポットサイズと、目標解像度に対応するスポットサイズとが逆転している。
つまり、中心視野においては、スポットサイズの許容範囲は、目標となる表示解像度から求められる。しかし周辺視野においては、中心視野と比べて視力の分解能が低下しているので、中心視野よりもスポットサイズが多少大きくても、ユーザの眼は識別できないので構わない(図11A)。
従って、次回出力するビームが表示する画素が、中心視野なのか周辺視野なのかによって(つまり、視野位置に応じて)、スポットサイズの許容範囲は変動する。許容範囲は、図11Bの太線および斜線部に示すように、下限と上限が決まる。許容範囲の下限は、中心視野での目標表示解像度に対応したサイズとなる。一方、許容範囲の上限は、視野領域での位置に対応する視力分解能に応じたサイズ(周辺視野の場合)と、中心視野での目標表示解像度に応じたサイズ(中心視野の場合)との大きい方となる。つまり、図11Bに示されるように、ビームがユーザの視野中心に近づくほど許容範囲の上限値が小さくなり、視野中心から遠ざかるほど許容範囲の上限値が大きくなる。
なお、図11Bの太線の太さ(線の幅)で示したように、範囲の上限と下限のそれぞれに対して、所定の範囲のずれを許容することで、許容範囲を広げてもよい。
図11Bの点B1のように、サイズが小さすぎる場合は大きくする必要が生じ、点B2や点B3のように、サイズが大きすぎる場合は小さくする必要が生じる。点B3と点B4は同じサイズであるが、視野位置が異なるため、点B4に関してはサイズを変更する必要はない。
視野位置は視線移動(眼球回転)に伴って変化するため、たとえ走査部103の走査角が同じであってもスポットサイズの許容範囲は変化する。図11Aでは走査範囲の中心と視野中心が一致しているが、図11Cでは、走査範囲の中心は、やや周辺視野に寄っているため、スポットサイズの許容範囲も変化する。
図11A〜図11Cの各図の横軸の視野範囲は、表示の水平方向と垂直方向の両方向に適用できる。視野の中央に比べて左右の周辺領域は許容範囲が広がるように、上下の周辺領域でも許容範囲が広がる。
なお、周辺視野では、中心視野と比べてビームスポットサイズの許容範囲が広がる結果、波面形状変更部102の動作速度を遅くできる場合がある。その結果、スポットサイズ変更速度が走査速度に追いつかない課題を緩和できる。
例えば、走査部103での垂直方向走査の速度が、垂直方向走査に伴うスポットサイズ制御より速い結果、サイズにばらつきが生じてしまう課題がある。このような場合でも、周辺視野ではスポットサイズの許容範囲が広いので、スポットサイズの変更速度が遅いままでも(あるいは変更しない場合でも)、許容範囲内に収めることができる場合がある。
ただし、視線が上下に移動した際には許容範囲が変化するため、視線移動に追従できる速度でサイズを変更する必要がある。それでも、垂直方向走査が視線移動よりも速い場合は有効である。
(S04)制御部105が、ビームスポットサイズ予測し、S05の動作へ移る。スポットサイズの予測は、S02で求めた視野位置と、波面形状変更部102からの波面形状とを、図12に示す「スポットサイズ−波面形状−視野位置 対応表」に照らし合わせて算出する。
例えば、図12の1行目を用いると、視野中心(水平角度:0度、垂直角度:0度)における波面形状は、水平焦点距離が36mmで、垂直焦点距離が29mmで、水平直径が2.4mmで、垂直直径が1.6mmである。また、この視野位置における網膜上のビームスポットサイズは、水平サイズが0.035mmで、垂直サイズが0.027mmになると予測できる。
なお、図12に例示した対応表では、具体的な数値を記した行は3行しかないが、実際には必要な行数を記しておく。
また、図12の対応表で、数値が完全に一致する行がない場合は、数値的に近い行を用いてスポットサイズを予測してもよい。一方、一致する行が複数ある場合は、どちらか一方を用いてスポットサイズを予測してもよい。
また、図12のような対応表を用いる代わりに、スポットサイズを求める数式を準備しておき、その数式に波面形状や視野位置等の値を代入して、スポットサイズを予測してもよい。
さらに、図12の対応表は、視線が移動する(眼球が回転する)と、眼球と、偏向部104や走査部103等との位置関係が変化するために、値を変更する必要がある。その変更動作のタイミングは、対応表を参照する前にS04で行ってもよいし、視線位置を検出したS01やS02で行ってもよい。変更方法は、視線の移動量に対応した複数の対応表を予め準備しておき、視線移動に応じて適切な対応表を選択する方法でもよいし、視線移動量を代入すると対応表が求められる数式を用いて算出する方法でもよい。
なお、S03の動作とS04の動作の順番は入れ替わっても、同時でもよい。
(S05)制御部105が、S04で求めたスポットサイズ予測値とS03で求めた許容範囲とを比較する。スポットサイズ予測値が許容範囲外ならS06の動作へ移り、許容範囲内ならS07の動作へ移る。
なお、スポットサイズの水平サイズと垂直サイズの片方が範囲内で片方が範囲外の場合など、一部が範囲外の場合は、範囲外であるとみなしてS06の動作へ移る。
(S06)制御部105が、ビームスポットサイズがS03で求めた許容範囲内に収まるように、図12から適切な波面形状を判定し、S07の動作へ移る。波面形状は、S03で求めた許容範囲内のスポットサイズと、S02で求めた視野位置とを図12に示す対応表に照らし合わせて求める。
例えば、視野位置の水平角度が−30度で、垂直角度が0度であれば、S03で求められるスポットサイズの許容範囲の下限値は、水平サイズが0.035mm、垂直サイズが0.027mmとなる。一方、S04で求められる上記の視野位置におけるスポットサイズ予測値の水平サイズが0.018mmで、垂直サイズが0.019mmであると仮定する。この場合、スポットサイズ予測値が許容範囲の下限値より小さいので、スポットサイズを下限値以上に引き上げる必要がある。
そこで、図12の3行目を用いて、水平焦点距離が27mmで、垂直焦点距離が22mmで、水平直径が2.4mmで、垂直直径が1.6mmの波面形状に変更することで、スポットサイズを許容範囲の下限の値まで、大きくすることができると判明する。
なお、図12の対応表で、数値が完全に一致する行がない場合は、数値的に近い行を用いて波面形状を求めてもよい。また一致する行が複数ある場合は、どちらか一方を用いて波面形状を求めてもよい。また、図12のような対応表を用いる代わりに、波面形状を求める数式を準備しておき、その数式にスポットサイズや視野位置等を代入して、波面形状を算出してもよい。
(S07)波面形状変更部102が、S06で求めた波面形状にビームの波面形状を変更し、S08の動作へ移る。例えば、波面形状の水平焦点距離を変更したい場合は、焦点距離水平成分変更部201のシリンドリカルレンズ203とミラー204との間の距離を変更することで水平焦点距離を変更する。同様に、垂直焦点距離を変更したい場合は、焦点距離垂直成分変更部202で変更する。
S05で範囲内と判定されてS07の動作に移ってきた場合は、前回ビームの波面形状の変更と同じ変更を行う。なお、同じ変更でなくても、スポットサイズが許容範囲内に収まる変更なら、異なる変更としてもよい。
(S08)光源101が、ビームを出力制御し、S09の動作へ移る。赤色レーザ光源211と青色レーザ光源212と緑色レーザ光源213とから出力されるビームの強度をそれぞれ適切に変調することで、S02で求めた次回出力ビームの視野位置に対応する画素の色相や彩度や明度を表現する。また、出力制御は、走査部103や偏向部104など、光源から眼までの光学系の影響を考慮した補正制御をしてもよい。
(S09)走査部103が、MEMSミラーの傾きを変化させることで、S08で出力されたビームの走査角を変更し、S10の動作へ移る。
なお、S07の波面形状変更と、S08のビーム出力と、S09の走査は、同時に実行してもよいし、実行順が入れ替わってもよい。
(S10)偏向部104が、S09で走査されたビームをユーザの眼に向かう方向へ偏向し、S01の動作へ移る。偏向部104のホログラムミラーの回折効果により反射されたビームがユーザの眼の瞳孔に集まり、瞳孔を通過したビームが網膜に到達してユーザに映像として知覚される。
なお、S07、S08、S09、S10の一連の動作によって画素が網膜に描かれるが、S01の視線検出を実行する頻度は、1画素描画毎でなくてよい。よってS10の動作後はS02に移ってもよい。
以上の動作により、ビームの波面形状を変化させることで、表示する映像を構成する1つの画素をユーザの眼の網膜に正しい大きさで描いていく動作を実現できる。
本発明のビーム走査型表示装置によれば、波面形状変更部102が偏向部104で偏向されたビームのスポットサイズが所定の範囲内となるよう波面形状を変更することで、画面内の各画素サイズのばらつきを減らして、より高画質な表示や、より高解像度な表示を実現できる効果がある。また、画素による波面形状の変化を減少できる結果、大画面表示を実現できる効果や、光源101を側頭部に配置するメガネ形のHMDを実現できる効果もある。
なお、S01からS10までの動作は、確率を伴う処理動作としてもよい。例えば、スポットサイズの予測値が20%でサイズA、80%でサイズB、などと求めてもよいし、45%の確率で許容範囲内であると判定してもよい。
(実施の形態2)
次に、本発明の実施の形態2に係るビーム走査型表示装置を説明する。なお、装置の構成は実施の形態1と共通するので、図1A〜図9Aを用いて説明すると共に、共通部分の詳しい説明は省略する。
光源101は、ビームを出力する。出力するビームは、図2に示すように、赤色レーザ光源211と、青色レーザ光源212と、緑色レーザ光源213とから出力される各レーザ光を合波したレーザ光とし、各色レーザ光源からの出力を適切に変調することで、任意の色のレーザ光を出力できる。さらに、波面形状変更部102や走査部103と連動させて変調することで、ユーザの眼の網膜上に映像を表示できる。
なお、図2では、緑色レーザ光源213は、赤外線の半導体レーザ光源と赤外線を緑色に変換するSHG(Second−Harmonic Generation:第2次高調波発生)素子とを組み合わせて、緑色のビームを出力しているが、これに代えて、緑色の半導体レーザ光源を用いてもよい。また、各光源は、固体レーザ、液体レーザ、ガスレーザ、発光ダイオードでもよい。
なお、図2では各レーザ光源でレーザ光の変調を行っているが、レーザ光源から出力された光を変調する手段を、レーザ光源と組み合わせて用いることで、レーザ光を変調してもよい。
光源101は、図2の光検出部214を含む。第2の実施形態における光検出部214は、ユーザの眼の網膜からの反射光を検出することで、ユーザの網膜上のビームスポット径を検出する。
なお光検出部214は、CCDカメラなどの撮像素子であってもよい。この場合、網膜からの反射光によって、網膜像を生成し、そこに写されているビームスポットの大きさからビームスポット径を検出してもよい。
波面形状変更部102は、光源101からのビームの波面形状をそれぞれ変化させて、後述の偏向部104で偏向されたビームのスポットサイズを所定の範囲内となるようにする。
なお、実施の形態2におけるビームの「スポットサイズ」とは、ユーザの眼の網膜でのスポットサイズとして扱う。また、「波面形状」とはビーム波面の3次元形状であり、平面、球面、非球面の形状を含む。
図2では、波面形状変更部102は、焦点距離水平成分変更部201と、焦点距離垂直成分変更部202とを光路に直列に配置することによって、波面形状の水平方向の曲率半径と垂直方向の曲率半径とを独立して変更できる。焦点距離水平成分変更部201は、シリンドリカルレンズとミラーとの距離を変更することで水平方向の曲率を変更している。焦点距離垂直成分変更部202は、焦点距離水平成分変更部201のシリンドリカルレンズに対して垂直に配置されたシリンドリカルレンズを用いることで、垂直方向の曲率を変更している。また、焦点距離水平成分変更部201、焦点距離垂直成分変更部202ともに、曲率半径の変更に伴い、ビームの直径も変更している。
なお、水平方向の曲率を垂直方向よりも大きく変化させると、水平方向の変化により大きく対応できるので、画面の水平視野角を垂直視野角より大きくしたい場合や、側頭部に走査部(後述)があるHMDのように、走査部から偏向部(後述)へのビームの水平入射角が垂直入射角よりも大きい場合に、特に有効となる。
なお、図2では、波面形状を表す項目のなかで、水平方向の曲率半径と、垂直方向の曲率半径と、それぞれの直径という波面形状の一部のみを変更しているが、他の項目として波面内での曲率半径の分布や、波面端の形状やサイズなどを変更する手段があってもよい。
なお、図2の波面形状変更部102では、シリンドリカルレンズとミラーを用いて波面形状を変更するが、他の手段として、液晶レンズや、液体レンズ等の可変形状レンズや、回折素子や、EO素子(電気−光変換素子)などを用いてもよい。
走査部103は、それぞれ波面形状変更部102からのビームを2次元走査する。走査部103は角度を2次元的に変更できる単板小型ミラーで、MEMSミラーである。
なお、走査部103は水平走査用と垂直走査用のように2種以上の走査部の組合せで実現してもよい。
偏向部104は、走査部103で走査されたビームの向きをそれぞれユーザの眼に向かう方向へ偏向する。偏向部104は、メガネのレンズの内側(眼の側)に、例えば、リップマン体積ホログラムが形成されたフォトポリマー層が形成されており、走査部103からのビームがユーザの眼の瞳孔に回折・集光されるように製作されている。フォトポリマー層には赤色、緑色、青色、それぞれの光源からの光を反射する3つのホログラムを多重に形成してもよいし、それぞれの色の光に対応した3層のホログラムを積層してもよい。また、ホログラムの波長選択性を用いることで、光源波長の光のみを回折させ、外界からの光のほとんどを占める光源波長以外の波長の光を回折させないように製作することで、透過型のディスプレイとできる。
なお、偏向部104は、ホログラムなどの回折素子による偏向に限定されず、凹面鏡などのミラーや、凸レンズなどのレンズでもよい。また偏向部104は、反射型スクリーンや透過型スクリーンのように、スクリーンにビームが当たって発散する結果、スクリーンからの発散光の一部がユーザの眼の方向へ偏向される方式も含む。
制御部105は、HMD各部を制御する集積回路を備える。制御部105は、図9Aに示すように、中央処理部501、記憶部502、入出力制御部503、及び通信部520を備えてもよい。
実施の形態2における中央処理部501は、図13に示されるように、スポットサイズ判定部1501、及びビーム曲率制御部1502としても作動する。また、実施の形態2における記憶部502は、例えば、図15に示されるような網膜上のスポットサイズと、ビームの曲率半径と、眼の焦点距離との関係を保持するテーブル等を記憶する。その他は、実施の形態1と同様である。
なお、制御部105は、ひとつで制御部105左右の眼に対応するレーザ光源101、波面形状変更部102、走査部103、ヘッドホン部106の動作を制御してもよい。
ヘッドホン部106は、スピーカーを備え、音声を出力する。なお、ヘッドホン部106には、HMD各部へ電源供給するバッテリーを備えてもよい。
なお、図1Aにおける各手段や各部は、1台のHMDに内蔵されていてもよいし、内蔵されていなくてもよい。例えば、図1A各部の全てが、1台のHMDに含まれていてもよいし、ヘッドホン部106がなくてもよい。また、各部を分散配置してもよい。例えば、制御部105が走査部103や波面形状変更部102に一部含まれていてもよい。複数の機器で図1Aの各部を共有してもよい。例えば、レーザ光源101を2つのHMDで共有してもよい。
以下に、図1A及び図1Bのビーム走査型表示装置において、ビームの曲率半径を変えることで眼の筋肉を弛緩させる処理の例を示す。この処理は図14に示すステップ1601〜1606を実行することよって行われる。
(ステップ1601 網膜上のビームのスポットサイズ取得)
本ステップでは、スポットサイズ判定部1501が、ユーザの網膜上でのビームのスポットサイズを判定する。本実施の形態においては、光検出部214が、ユーザの網膜からの反射光を検出し、網膜上に投影されたビームスポットを含むユーザの網膜像を生成する。スポットサイズ判定部1501は、光検出部214が取得した網膜像から、網膜上でのビームのスポットサイズSを判定する。
なお、水晶体の厚みが変化した場合、網膜上のビームのスポットサイズが安定するまでに一定の時間がかかることを考慮する際には、スポットサイズ判定部1501は、一定期間T0のビームのスポットサイズの平均値もしくは中央値を網膜上でのビームのスポットサイズSとして判定しても良い。あるいはスポットサイズ判定部1501がビームのスポットサイズの判定を開始してから一定期間T0後の光検出部214の出力のみからビームのスポットサイズSを判定しても良い。
なお、判定されたビームスポットサイズSが、スポットサイズ判定部1501が保持する閾値S1より大きい場合、スポットサイズ判定部1501は、一定時間T1が経過してから再度ビームスポットサイズSの計測を行っても良い。ここで一定時間T1は、眼の水晶体が厚さを変更するために必要な時間から生成される値である。
なお、光検出部214が網膜像を生成するのではなく、網膜からの光の反射強度のみを検出し、その結果からスポットサイズ判定部1501が網膜上でのビームのスポットサイズSを判定しても良い。
また、網膜の場所によって、ビームのスポットサイズが異なる場合には、スポットサイズ判定部1501は、中心窩や黄斑など網膜上の特定部分でのビームのスポットサイズを、ビームのスポットサイズSの値として判定しても良い。また網膜上の各場所でのビームのスポットサイズの平均値を、ビームのスポットサイズSとして用いてもよい。
(ステップ1602 ビームのスポットサイズの判定)
本ステップでは、ビーム曲率制御部1502が、前ステップで判定したビームのスポットサイズSと、ビーム曲率制御部1502の定める閾値S0との比較を行う。
ここで閾値S0は、ビームのスポットサイズがS0以下である場合に、ユーザがHMDで表示される画像に対してボケを感じない値に設定されている。
ビーム曲率制御部1502は、ビームスポットサイズSの値が閾値S0より大きい場合、ユーザの眼は近視などの影響で、現在の入射光を網膜上に焦点を結ぶように調節できないものと判断する。そして、ビームの曲率半径を大きくするためにステップ1604の処理に進む。
一方、ビームのスポットサイズSの値が閾値S0より小さい場合、ユーザは画像をはっきり認識しているので、毛様体の弛緩を促してもよいと判断する。そこで、ビーム曲率制御部1502は、ユーザの眼の毛様体の弛緩を促すためにステップ1603の処理を行う。
なお、閾値S0の値は、網膜上において入射光が投影される全面積を、表示される画像の解像度で割った値から動的に算出しても良いし、ユーザが直接指定しても良い。
(ステップ1603 ビーム曲率半径判定)
本ステップでは、ビーム曲率制御部1502が、現在のユーザの眼に対するビームの曲率半径Rと、目標とする目標曲率半径R0との比較を行う。ここでビームの曲率半径Rとは、波面形状変更部102が波面の形状を変更した後のビームの曲率半径を示す。
一般に、遠方にある物体からの光は曲率半径が大きく、無限遠にある物体からの光は平行光(曲率半径が無限大)になる。反対に、近くにある物体からの光は曲率半径が小さく、球面波としてユーザの眼に入射される。この例を図16、図17に例示する。
曲率半径がR1であるビームが網膜上に集光するように水晶体の太さが調節されているユーザの眼に対して、曲率半径がR1より大きいビームを入射した場合のビームの集光位置を図16に示す。図16に示すように曲率半径が大きい光は、ユーザの網膜より瞳孔側に集光点を持つように集光される。この時、ユーザの眼は、ビームの集光位置が網膜上に一致するように、毛様体を弛緩させて水晶体を薄くする。
一方、曲率半径がR1であるビームが網膜上に集光するように水晶体の太さが調節されているユーザの眼に対して、曲率半径がR1より小さいビームを入射した場合のビームの集光位置を図17に示す。図17に示すように曲率半径が小さいビームは、ユーザの網膜より奥に集光点を持つように集光される。この時、ユーザの眼は、ビームの集光位置が網膜上に一致するように、毛様体を緊張させて水晶体を厚くする。
本発明のHMDは、眼のこのような作用を利用して、ユーザが画像をはっきりと認識できる範囲で毛様体の弛緩を促すように入射光の曲率半径の値を変更する。
そこで、現在のビームの曲率半径Rの値が、目標曲率半径R0と一致している場合は、ビーム曲率制御部1502は、ユーザの眼の毛様体は充分に弛緩していると判断し、ステップ1606の処理を行う。
一方、現在のビームの曲率半径Rの値が、目標曲率半径R0と一致しない場合、ビーム曲率制御部1502は、ステップ1605の処理を行う。
なお、ユーザに表示する映像の品質を保つため、波面形状変更部102が網膜上でのビームの投影位置に応じてビームの曲率半径を変更する場合、ビーム曲率制御部1502は、中心窩に対して入射される入射光の曲率半径を、現在の入射光の曲率半径Rとして扱ってもよい。また、波面形状変更部102によって変更されているビームの曲率半径の平均値や中央値を現在の入射光の曲率半径Rとしても良い。
(ステップ1604 近視対策)
本ステップでは、ビーム曲率制御部1502が、前述の目標曲率半径R0の値の修正を行う。
ステップ1602において現在のビームのスポットサイズSが閾値S0を上回ると判定された場合、ビーム曲率制御部1502は、ユーザの眼は近視などの影響で遠方からの光を網膜上に上手く結像することができないものと判断する。この時ビーム曲率制御部1502は目標曲率半径R0の値から曲率半径修正幅R1を減算する(目標値を引き下げる)。本実施の形態においては、曲率半径修正幅R1は、あらかじめビーム曲率制御部1502の記憶部に保持されている。
なお、曲率半径修正幅R1の値は、現在の入射光の曲率半径Rの値から動的に算出しても良い。この場合、例えば、現在の曲率半径Rの一割の値をR1の値として設定するなどの処理が行われる。
すなわち、上記の処理を繰り返すことによって、目標曲率半径R0は、スポットサイズ判定部1501によって判定されたスポットサイズが予め定めた閾値S0を超えない範囲で、最大の値に設定される。
また、ステップ1604ではユーザが近視の場合について説明したが、ユーザが遠視又は老眼の場合にも応用することができる。この場合、現在のビームスポットサイズSが閾値S0を上回ると判定された場合、ビーム曲率制御部1502は、目標曲率半径R0の値に曲率半径修正幅R1を加算する(目標値を引き上げる)。
(ステップ1605 ビーム曲率半径変更)
本ステップでは、ビーム曲率制御部1502が、現在のビームの曲率半径Rの変更を行う。
ビーム曲率制御部1502は、曲率半径変更幅R2の値を現在のビームの曲率半径Rに加算もしくは減算することで、曲率半径Rを段階的に目標曲率半径R0に近づける。ここで、現在のビームの曲率半径Rをいきなり目標曲率半径R0に変更すると、曲率半径の変化量が大きくなりすぎる場合がある。その結果、ユーザの眼がこの変化に追従できず、画像をはっきり認識することができなくなる場合がある。
そこで、曲率半径変更幅R2は、ビームの曲率半径がRから、R+R2、もしくはR−R2の値に変更された際に、ビームの網膜上でのスポットサイズSが大きくなりすぎないように定められた値であり、本実施の形態ではビーム曲率制御部1502内に保持されている。
図15にビームのスポットサイズ、ビームの曲率半径、および眼の焦点距離の関係の例を示す。これらの値を予め求めておくことで、ビーム曲率制御部1502は、適切な曲率半径変更幅R2を決定することができる。
ビーム曲率制御部1502は、現在のビームの曲率半径Rの値がR0を下回っている場合には、Rの値に曲率半径変更幅R2を加算する。これにより、図16に示すように、ビームの集光位置は網膜上から水晶体の側に移動する。この時、人間の眼はビームの集光位置を網膜上に移動させるために、毛様体を無意識に弛緩させて水晶体の厚さを薄くする。
一方、現在のビームの曲率半径Rの値が目標曲率半径R0を上回っている場合、Rの値から曲率半径変更幅R2を減算する。これにより、図17に示すように、ビームの集光位置は網膜の奥に移動する。この時、人間の眼はビームの集光位置を網膜上に移動させるために、毛様体を無意識に緊張させて水晶体の厚さを厚くする。
なお、この処理は、例えば、S1604において目標曲率半径R0の値から曲率半径修正幅R1を減算した場合等に発生し得る。つまり、ビームの曲率半径を大きくしすぎた結果、画像を網膜上に上手く結像できなくなったような場合に、これを修正する処理である。
ビーム曲率制御部1502は、ビームの曲率半径Rを変更した後、実際にユーザの眼に入射されるビームの曲率半径が変更後のRに一致するように波面形状変更部102の制御を行う。
なお、曲率半径変更幅R2は、現在のビームの曲率半径Rの値から動的に算出しても良い。この場合、例えば、R0の一割の値がR2の値として設定するなどの処理が行われる。また曲率半径RとビームのスポットサイズSの関係を関数として定義しておくことで、スポットサイズSの値が一定範囲に収まるようなR2の値を動的に計算してもよい。
なお、ユーザに表示する映像の品質を保つため、波面形状変更部102が網膜上でのビームの投影位置に応じて、入射光のビーム曲率半径を変更する場合、網膜への投影位置ごとに設定されているビームの曲率半径を、曲率半径変更幅R2の値だけ増加もしくは削減することで曲率半径の変更を行っても良い。また、予め網膜上へのビームの投影位置ごとに異なる曲率半径変更幅の値をビーム曲率制御部1502に保持しておき、その値を各入射光の曲率半径に加算もしくは減算する方法を用いてもよい。
また、ビームの曲率半径を縦方向と横方向で異なる値に設定してもよい。この場合には、縦方向の曲率半径変更幅および横方向の曲率半径変更幅の値を、ビーム曲率制御部1502が保持し、この値を用いて現在のビームの縦方向および横方向の曲率半径の変更を行う。
ビーム曲率制御部1502は、ビームの曲率半径Rを変更した後、再びステップ1601に戻り、ステップ1601〜1605の処理を繰り返す。これにより、目標曲率半径R0は、スポットサイズSが閾値S0を超えない範囲で最も大きな値に調整される。また、現在のビームの曲率半径Rも徐々に目標曲率半径R0に近づくので、ユーザが画像をはっきり認識できる範囲でユーザの眼の毛様体を弛緩させることができる。
(ステップ1606 終了)
入射光のビームの曲率半径が目標曲率半径R0に一致した場合、ユーザの水晶体は充分に薄く延ばされており、毛様体が弛緩している。このため長時間、HMDに表示される画像を視聴している場合でも、毛様体にかかる負担は少なく、VDT作業における眼精疲労を低減することが可能になる。
なお、目標曲率半径R0の値は、HMDのユーザーインターフェースによりユーザが直接入力しても良い。また予めHMDに設定されているR0の値を、HMDのユーザーインターフェースによりユーザが増減させる方法を用いてもよい。
なお、本実施の形態においては左右の眼に画像を表示するHMDを用いたが、左右の眼のどちらかにのみ映像を表示する単眼HMDを用いても良い。
なお、HMDがヘッドトラッカーなどユーザの体の動きを検知する手段を備えている場合、それらの手段からの出力の変化幅が一定値を超えており、ユーザの体が動いていると判断される場合、本発明のHMDは、ビームの曲率半径の変更を停止してもよい。これはユーザが動いている際にはHMDが表示する映像ではなく、外界に視線を向けていると判断するためであり、その際に不要な処理を行わないことで処理コストや消費電力などを削減することが可能になる。
なお、本実施の形態ではビームの曲率半径を大きくするための処理を例示したが、目標曲率半径R0の値を小さく設定することで、ビームの曲率半径を小さくすることもできる。この時、目標曲率半径R0の値を大きく設定する期間と、目標曲率半径R0を小さく設定する期間を交互に設けることで、眼の水晶体が薄くなる期間と、眼の水晶体が厚くなる期間を交互に設けることが可能になる。このような処理を行うと、眼の毛様体が緊張と弛緩を繰り返すことになるため、適度な運動効果を得ることができる。その結果、眼の毛様体の疲労が一層軽減されるため、眼精疲労を予防する効果が高まる。
なお、目標曲率半径R0を定めるときに、予め定められた曲率半径の上限値RUと下限値RDの範囲内でR0の値を決定してもよい。近眼のユーザに対してはRUの値を小さく、老眼や遠視のユーザに対してはRDの値を大きく設定することで、曲率半径の現在値を目標曲率半径R0に近づけるまでの処理コストを低く抑えることができる。
(実施の形態3)
図18に本発明の実施の形態3に係る画像表示装置10の概略構成図を示す。
本実施の形態3の画像表示装置10は、光源11と、この光源11から出射されたレーザ光12を走査する走査部13と、この走査部13からの走査光14を観察者の瞳15に偏向して導く偏向部16とを備えている。そして、走査光14の一部は反射体17aにより反射光17bとして反射され、反射光17bのスポットサイズ17cを検出する光検出部18と、この光検出部18からの出力信号を元に走査光14のビーム形状14cを変化させて網膜19a上のスポットサイズ19bを規定値以下に制御するビーム形状調節部20aとを有している。このようにして本実施の形態3の画像表示装置10は、走査光14を用いて観察者の眼19の網膜19aに映像を投影している。
ここで、図18に示すように偏向部16は、基板16aとこの基板16a上の少なくとも一部に形成されたホログラムミラー16bとからなる。
次に、本実施の形態3の画像表示装置10の主な光学的な動作について具体的に説明する。ここでは左右対称な光学系のうち、図18に示すように左側の光学系を例としてその動作について説明する。
図18に示すように光源11は、少なくとも赤色レーザ光源(以下、「R光源」とする)11R、緑色レーザ光源(以下、「G光源」とする)11Gおよび青色レーザ光源(以下、「B光源」とする)11BからなるRGB光源である。ここで、R光源11RおよびB光源11Bには、波長650nmおよび波長450nmのレーザ光を出射する半導体レーザを用いている。一方、G光源11Gには、波長530nmのレーザ光を出射する半導体レーザ励起のSHGレーザを用いている。
R光源11R、G光源11GおよびB光源11Bから出射されたレーザ光は、コリメータレンズ11aによりそれぞれ平行光線に変換されてダイクロイックプリズム11bに入射した後、レーザ光12として1つにまとめられてダイクロイックプリズム11bから出射する。
そして、レーザ光12は、光路長調整部21(実施の形態1、2における「波面形状変更部102」に相当)に入射する。光路長調整部21は、サーボ用ミラー20bの位置を矢印の方向に移動させることにより偏向部16までの光路長を調整する。この処理は、制御部20に含まれるビーム形状調節部20aにより制御される。
その後にレーザ光12は、反射ミラー13aで反射されて走査部13に導かれる。走査部13は、反射角度を任意に変更することによって、反射ミラー13aからの光を偏向部16のホログラムミラー16bに所定のスポットサイズで2次元的に走査する。なお、ここで走査部13に、MEMSミラーを採用すれば、走査光14を精度よくホログラムミラー16bに走査することができる。
そして、走査光14はホログラムミラー16bにより偏向されて観察者の眼19の瞳15から入射して網膜19aに映像として投影されることになる。
この網膜19a上に投影された走査光14のスポットサイズ19bは、網膜19a上に焦点を結んだときに20μm以下であることが望ましい。これは、例えば水平方向の視野角が100度の場合に、水平方向に1000ドットの表示を行うために必要な大きさであり、合焦時のスポットサイズが20μmを上回ると、隣接するドット同士が重なり合い所定の解像度が得られない。
また、走査光14(14a、14b)のビーム形状が所定の形状よりずれた状態でホログラムミラー16bにより観察者の眼19に偏向されると、図18に示すように走査光14(14a、14b)の焦点位置19cが、デフォーカス量ΔZだけずれる。このΔZは、図18に示す光源11付近に配置された光検出部18の受光素子18aの受光面上のスポットサイズ17c、17dの大きさに反映されて後述のように検出することができる。
すなわち、走査光14(14a、14b)の一部は反射体17aにより反射光17bとして反射される。この反射光17bは、レーザ光12が出射された光路を逆進してダイクロイックプリズム11bに入射したのち、光検出部18の受光素子18aの受光面上にスポットサイズ17c、17dを投影する。
そして、この光検出部18は、反射光17bのスポットサイズ17c、17dから検出した信号を基に出力信号を発生する。ビーム形状調節部20aは、この出力信号を元に光路長調整部21のサーボ用ミラー20bを矢印の方向に移動させることにより走査光14(14a、14b)のビーム形状を変化させる。その結果、ビーム形状調節部20aは、網膜19a上のスポットサイズ19bを規定値以下、例えば20μm以下に制御している。
このように、走査光14の一部をフィードバックしてビームの波面形状を変更することにより、常に最適な映像を観察者の眼19の網膜19aに投影することができる。なお、光路長調整部21は、2つのサーボ用ミラー20bの間に導光用のプリズム21aおよび2つの対物レンズ21bを配置してレーザ光12および反射光17bの光路およびビーム形状を制御している。
このような構成とすることにより、高速で、かつ高精度の光学調整をすることができる。その結果、高速で高精細の動画像を表示する画像表示装置10を実現することができる。また、網膜19aよりも反射率の大きい反射体17aからの反射光17bを利用しているので、光学調整が精度よく確実にすることができる。その結果、外乱やビームの一部が遮蔽されるなどの影響に対して光学特性などを安定化することができるので、観察者に正確で鮮明な画像を認識させることができる。
なお、反射体17aは、図23Aに示すように、偏向部16の基板16a上に形成されたホログラムミラー16b(偏向領域)内に多重化して形成されるサーボ光発生用ホログラムミラー16fであってもよい。または、図23Bに示すように、ホログラムミラー16bとは異なる位置(図23Bでは、ホログラムミラー16bの周囲)に形成されるサーボ光発生用ホログラムミラーであってもよい。
このような構成とすることにより、さらに小型で軽量な画像処理の光学系を簡単に構成することができる。その結果、高速で、かつ高精度の光学調整を実現することができる。また、観察者に正確な画像を認識させるための処理も簡単に行うことができる。
さらに、複数のホログラムミラーを多重化することにより偏向部をさらに薄くすることができ、小型、軽量かつ薄型のHMDを実現することができる。
ここで、図18に示すようにサーボ光発生用ホログラムミラー16fは、網膜19a上のスポットサイズ19bが最適値となるときに最も強い反射光17bを出力するレンズパワーを持った反射型ホログラムミラーであるように形成されている。
このような構成とすることにより、後述するように光学調整を行うときのサーボ範囲をさらに拡大する、あるいはオフセットをさらに減少することができる。
また、上記の実施形態においては、反射体17aをサーボ光発生用ホログラムミラーとして偏向部16に設けた例を示したが、これに限ることなく、観察者の瞳15の虹彩17、眼19の網膜19aを反射体17aとして、ここからの反射光を光検出部18で検出してもよい。このような構成とすることにより、偏向部16の光学構成を簡素化することができる。
図18に示すように反射光17bは、走査光14とは逆進してダイクロイックプリズム11bに入射したのちに光検出部18に向けて出射される。そして、反射光17bは、対物レンズ18bにより絞られ、アパーチャ18cを通過し、さらに光検出用の回折格子18dにより相補的なレンズ作用を与えられて2つの回折光18f、18gに分離される。
光検出部18は、この2つの回折光18f、18gを受光するための2つの受光素子18aを有している。この2つの受光素子18aは、回折格子18dからの光学的な距離が等しくなるように配置されている。したがって、走査光14が観察者の眼19の網膜19aに焦点を結ぶとき、回折光18f、18gのスポットサイズは、受光素子18a上で同一となる。一方、走査光14が観察者の眼19の網膜19aに焦点を結ばないとき、回折光18f、18gのスポットサイズは、2つの受光素子18a上で異なる大きさとなる。そこで、例えば、2つの受光素子18aの検出結果の差分から焦点位置19cを検出することができる。
図19A〜図21Cは、観察者の眼19の中の走査光14の焦点位置19cと、光検出部18における反射光17bの検出状態との関係を示した図である。図19A、図20A、図21Aは眼19の中の走査光14の焦点位置19cを示す図、図19B、図20B、図21Bは光検出部18において回折光18f、18gが受光される状態を示す図、図19C、図20C、図21Cは光検出部18の受光素子18a上のスポットサイズ17c、17dを示す図である。
図19A及び図19Bは、焦点位置19cが網膜19a上にある場合、すなわち眼19の網膜19a上に20μm以下のスポットサイズ19bで焦点を結んでいるときの検出状態を示す図である。図19Bに示すように、受光素子18a上の2つの回折光18f、18gは、互いに同じ大きさとなる。したがって、2つの受光素子18aの検出信号の差分はほぼ0になるので、眼19の網膜19a上に焦点位置19cがあることが検出できる。
図20A及び図20Bは、焦点位置19cが網膜19aの手前にあるときの検出状態を示す図である。図20Bに示すように、左側の受光素子18a上のスポットサイズ17cは、図19Bで示されたスポットサイズ17cよりも小さく、右側の受光素子18a上のスポットサイズ17cは、図19Bで示されたスポットサイズ17dよりも大きくなっている。この左右のスポットサイズ17c、17dの大きさの差から焦点位置19cを検出することができる。
図21A及び図21Bは、図20A及び図20Bとは逆に焦点位置19cが網膜19aの向こう側、すなわち眼19から外の位置にあるときの検出状態を示す図である。このときには、光検出部18上の受光素子18a上のスポットサイズ17c、17dの大きさは図20A及び図20Bは逆の関係となるが、同様に焦点位置19cを検出することができる。
また、図19C、図20C、及び図21Cに示すように、それぞれが複数に分割(この実施形態では、3分割)された一対の受光素子22、23を用いてもよい。この受光素子22は、真中の受光部22aと、両端の受光部22b、22cとでそれぞれ光量を検出し、その差分からスポットサイズ17cの大きさを判定することができる。同様に、受光素子23(23a、23b、23c)でスポットサイズ17dの大きさを判定し、両者の差分をとれば、焦点位置19cを検出することができる。
このような構成とすることにより、高速で、かつ高精度の光学調整をすることができるので、高速で高精細の動画像を表示する画像表示装置10を実現することができる。また、網膜19aよりも反射率の大きい反射体17aからの反射光17bを利用しているので、光学調整が精度よく確実にすることができ、外乱やビームの一部が遮蔽されるなどの影響に対して光学特性などを安定化することができるので観察者に正確で鮮明な画像を認識させることができる。
(実施の形態4)
図22に本発明の実施の形態4にかかる画像表示装置30の概略構成図を示す。
本実施の形態4は、実施の形態3とほぼ同様の構成があるがRGB光源である光源11に加えて赤色から赤外の波長の赤外レーザ光源18hを備えている。
すなわち、図22に示す画像表示装置30は、図18に示す画像表示装置10の構成に加えて光検出部18に中心波長が750nm以上、1500nm以下の赤外レーザ光源18hを備えている。この赤外レーザ光源18hは、例えばCDなどの光ディスクで使用される中心波長が780nmの赤外半導体レーザなどである。
この赤外レーザ光源18hから出射されるサーボ用のレーザ光12aは、ダイクロイックプリズム11bに入射してレーザ光12と同じ光路を伝播し、偏向部16に形成されたサーボ光発生用ホログラムミラー16fで反射される。そして、このサーボ光発生用ホログラムミラー16fにより生成された反射光17bは、実施の形態3で説明した光路を伝播(つまり、レーザ光12の光路を逆進)して光検出部18の受光素子18aに到達する。
ビーム形状調節部20aは、受光素子18aの出力信号を元に実施の形態3と同様に光路長調整部21のサーボ用ミラー20bを矢印の方向に移動させることにより、走査光14(14a、14b)のビーム形状を変化させる。その結果、ビーム形状調節部20aは網膜19a上のスポットサイズ19bを規定値以下、例えば20μm以下に制御している。
このような構成とすることにより、サーボ用の赤外レーザ光源18hと光検出部18とを近くに配置することができるので、さらに光学調整を安定に行うことができる。しかも、高速で、かつ高精度の光学調整をすることができるので、高速で高精細の動画像を表示する画像表示装置30を実現することができる。
また、網膜19aよりも反射率の大きい反射体17aからの反射光17bを利用しているので、光学調整が精度よく確実にすることができる。その結果、外乱やビームの一部が遮蔽されるなどの影響に対して光学特性などを安定化することができるので、観察者に正確で鮮明な画像を認識させることができる。
ところで、G光源11Gは、上記の赤外レーザ光源18hと、赤外光の一部を緑色に変換するSHG素子とを組み合わせて構成してもよい。より具体的には、例えば、赤外レーザ光源として中心波長が1060nmの励起用赤外半導体レーザを、SHG素子としてLiNbO3を採用することができる。
そして、偏向部16のサーボ光発生用ホログラムミラー16fは、赤外レーザ光源から出力された赤外光のうち、SHG素子で緑色に変換されなかった赤外光を反射するようにしてもよい。
このような構成とすることにより、サーボ用の光源を別途使用しなくてもよいので装置を小型化、軽量化および低消費電力化することができる。
また、このような赤外レーザ光をサーボ用の光源に使用し、検出信号のS/N比を向上させるために、偏向部16は、走査光14を偏向する偏向面16cと対向する外側の面16dに赤外光を遮蔽する遮蔽膜16eをさらに備えてもよい。
このような構成とすることにより、外側の面16dの外部からの赤外光が偏向面16cに入射することを防止できるので、赤外光によるS/N比がさらに改善されて、高精度の光検出を行うことができる。また、外部からの赤外光が眼19の方に入射することをも遮蔽することができるので、網膜19a上に投影される映像のS/N比を改善することもできる。
また、遮蔽膜16eは、少なくとも中心波長が750nm以上、1500nm以下の光線を遮蔽する構成としてもよい。このような構成とすることにより、さらに効果的に外側の面16dの外部からの赤外光が偏向面16cに入射することを防止できるので、赤外光によるS/N比がさらに改善された高精度の光検出および映像の投影を行うことができる。
図23A及び図23Bは、本実施の形態3および4に係るホログラムミラーの例を示す図であり、図18及び図22に示す画像表示装置10、30の矢印31の方向から見た偏向部16およびサーボ光発生用ホログラムミラー16fを示している。
図23Aにおいて偏向部16に形成されたホログラムミラー16b(偏向領域)には、反射体17aとして多重化されたサーボ光発生用ホログラムミラー16fが形成されている。
これにより、図23Aに示すビーム走査方向32に走査される走査光14のうち、偏向された走査光14は観察者の眼19に、サーボ光発生用ホログラムミラー16fで反射された反射光17bはサーボ光として光検出部18にそれぞれ導かれる。
なお、サーボ光発生用ホログラムミラー16fは、網膜19a上のスポットサイズ19bが最適値となるときに、通常より大きなレンズパワーとなる第1の反射型ホログラムミラー16gと、網膜19a上のスポットサイズ19bが最適値となるときに、通常より小さなレンズパワーとなる第2の反射型ホログラムミラー16hとからなる一対の反射型ホログラムミラーを少なくとも有する構成としてもよい。このときには、光検出部18の手前に配置された回折格子18dは、レンズパワーを持たない単純な等間隔の回折格子としている。
このような構成とすることにより、光学調整を行うときのサーボ範囲をさらに拡大する、あるいはオフセットをさらに減少することができる。なお、上記の説明における「通常」とは、スポットサイズ19bが最適値でないときと解釈することができる。
一方、図23Bにおいて、反射体17aは、ホログラムミラー16bの周囲の少なくとも一部に形成されたサーボ光発生用ホログラムミラー16fである。このときに、図23Bに示すようにサーボ光発生用ホログラムミラー16fは、図23Aと同様に第1の反射型ホログラムミラー16gと第2の反射型ホログラムミラー16hとからなる一対の反射型ホログラムミラーとして形成していてもよい。
図23Bに偏向部16によれば、走査光14がビーム走査方向32aに走査されると、ビーム偏向領域33で偏向された走査光14は、観察者の眼19に映像を投影する。一方、走査光14がビーム走査方向32bに走査されると、サーボ光が発生する領域34で反射された反射光17bは、光検出部18で検出される。
このような構成とすることにより、光学調整を行うときのサーボ範囲をさらに拡大する、あるいはオフセットをさらに減少することができる。
図23Bにおいて、偏向部16全体にRGB光および赤外光の全てを走査してもよく、ビーム偏向領域33にRGB光を、サーボ光が発生する領域34に赤外光を走査してもよい。
なお、このようなサーボ光発生用ホログラムミラー16fは、MEMSミラーから出射されるレーザ光と、その位相共役光(進行方向が逆向きでビーム形状が同じ光)とを同時にフォトポリマーなどのホログラム材料に照射し、その干渉縞をホログラム材料に記録することで作製することができる。
(実施の形態5)
図24A、図24B、及び図25を参照して、本発明の実施の形態5に係るビーム走査型の画像表示装置50を説明する。なお、図24Aはサーボ光発生用ホログラムミラー51を示す図、図24Bは光検出部52を示す図、図25は画像表示装置50の概略構成図である。
図24Aに示すように、ホログラムパターン51aは、直交するX方向とY方向とで曲率半径を変えて形成されている。これにより、生成された反射光17bは、X方向とY方向とで異なった光学的作用を受ける。
また、図24Bに示すように、光検出部52は、直行する2方向のビームの曲率半径を個別に検出することができる。つまり、4つの受光素子53のうち、見かけの発光点55の左右に配置されている2つの受光素子53で反射光17bのX方向の成分を検出し、見かけの発光点55の上下に配置されている2つの受光素子53で反射光17bのY方向の成分を検出することができる。
さらに、図25に示すように、画像表示装置50の光路長調整部21は、レーザ光12の水平方向成分(X方向の成分)の波面形状を変更する焦点距離水平成分変更部と、垂直方向成分(Y方向成分)の波面形状を変更する焦点距離垂直成分変更部とを備える。
上記構成によれば、反射光17bのX方向成分の検出結果に基づいて、焦点距離水平成分変更部がレーザ光12の水平方向成分の波面形状を変更する。次に、反射光17bのY方向成分の検出結果に基づいて、焦点距離垂直成分変更部がレーザ光12の垂直方向成分の波面形状を変更する。
このように、レーザ光12の波面形状の水平方向成分と垂直方向成分とを個別に制御することにより、高精度に光学調整を行うことができる。以上の構成により、高速で、かつ高精度の光学調整をすることができるので、高速で高精細の動画像を表示する画像表示装置50を実現することができる。また、網膜19aよりも反射率の大きい反射体17aからの反射光17bを利用しているので、光学調整を精度よく確実にすることができる。その結果、外乱やビームの一部が遮蔽されるなどの影響に対して光学特性などを安定化することができるので、観察者に正確で鮮明な画像を認識させることができる。
(実施の形態6)
図26A〜図26Cに、本発明の実施の形態6におけるめがね型画像表示装置81の構成を示す。図26Aは平面図、図26Bは側面図、図26Cは走査部の走査中心軸97に垂直な方向Xから見た矢視図である。
図26A〜図26Cに示されるめがね型画像表示装置81は、基本構成が図38と同様であって、一対のめがねレンズ82と、一対のめがねレンズ82をユーザの左右の眼の位置に保持するレンズフレーム83と、レンズフレーム83の外縁部から後方に延びる一対のテンプル84とを備える。なお、レンズフレーム83を省略し、めがねレンズ82の外縁部に直接テンプル84を取り付けてもよい。
一対のめがねレンズ82の眼88に対面する面には、レーザビーム86を眼に偏向する偏向部93が設けられている。一対のテンプル84には、その内部にレーザビーム86を出射する光源91、レーザビーム86を二次元走査する走査部92、及び各部を制御する制御部94が搭載されている。
光源91は、半導体レーザ、固体レーザ、波長変換素子、コリメート光学系等のいずれかを含み、光路上の所定の位置に集光スポットを形成するように構成される。カラー表示のため複数波長のビームを用いる場合は、合波光学系で1本のビームにして出射する。網膜上で適切に焦点を結ぶよう、焦点制御光学系を備えても良い。
制御部94は、走査部92の駆動と同期して光源91を表示画像に従って強度変調する。変調制御は、レーザ光源を直接変調しても良いし、別途AO素子(音響光学素子)等の変調素子を併用しても良い。
走査部92には小型のMEMSミラーを用いる。駆動方式には、電磁方式、静電方式、圧電方式、熱駆動方式、またはそれらの組み合わせ方式等、様々な方式のデバイスが適用できる。
レーザビーム86は、走査部92によってめがねレンズ82に向かって投射され、めがねレンズ82の表面に形成されたホログラムミラーである偏向部93によって反射され、使用者の眼88に入射して網膜上に画像を形成する。ホログラムミラーはリップマン体積ホログラムを形成したフォトポリマー層であり、波長選択性を持ちレーザビームの波長のみを反射する。その結果、ユーザは外の景色とレーザビームによって描かれる画像の両方を同時に視認することが可能となっている。
カラー表示を行う場合、フォトポリマー層には赤色、緑色、青色、それぞれの光源からの光を反射する3つのホログラムを多重に形成してもよいし、それぞれの色の光に対応した3層のホログラムを積層してもよい。
図39A〜図40Bで示した構成と異なっているのは、折り返しミラー95をMEMSミラーと鉛直方向(実施の形態6では、上方)に離隔した位置に設け、さらに折り返しミラー96をMEMSミラーから見てめがねレンズ82の方向へ配置したことである。
すなわち、MEMSミラーの上方に配置した折り返しミラー95で一旦レーザビームを走査中心軸97の方向に偏向し、さらに折り返しミラー96でMEMSミラーの方向へ折り返す。これにより、光源91から出力されたレーザビーム86を走査部92に直接入射させる場合と比較して、入射角を小さくすることができる。より具体的には、図26Cに示すように、折り返しミラー96は、垂直方向の走査範囲に干渉しないよう配置される。
すなわち、折り返しミラー95は、水平位置を走査部92と偏向部93の左右端とで囲まれる領域内とし、垂直位置を走査部92と偏向部93の上下端とで囲まれる領域外となるよう配置する。
この例の垂直走査角γは、垂直走査領域Ha=20mm、投射距離L=35mmで、γ=ATAN(Ha/2/L)=16°であり、入射角αは20〜25°程度となり、図40A及び図40Bの構成よりもさらに小さくできる。
α=25°では、MEMSミラーサイズDmは、レーザビーム径Dbの1.1倍でよい。また、折り返しミラー95をMEMSミラーの上方に配置しているので、MEMSミラーより外側にスペースをとる必要がなく、テンプル84の水平寸法Wが大きくなることはない。折り返しミラー96をMEMSミラーよりめがねレンズ82側に配置することで、テンプルの内側に若干の水平寸法W’を必要とするが、テンプル84が内側に一部突出するだけなので、概観上大きな影響はなく、デザイン性、装着感を損なうこともない。
折り返しミラー96を走査部92の走査中心軸97を含む鉛直面に沿って配置したことで、水平方向の入射角は0°となり、MEMSミラーサイズを小さく抑えることができる。このような構成により、MEMSミラーの大型化を招くことなく、テンプル84の水平寸法を抑えて、高解像度で装着感のよいめがね型画像表示装置81が実現できる。
なお、本実施の形態では、折り返しミラー95、96を走査部92の上方に配置したが、下方に配置しても良い。
(実施の形態7)
図27A〜図27Cに、本発明の実施の形態7における、めがね型画像表示装置81の構成を示す。図27Aは平面図、図27Bは側面図、図27Cは走査部92の走査中心軸97に垂直な方向Xから見た矢視図である。
図27A〜図27Cにおいて、図26A〜図26Cで示した構成と同様、レーザビーム86を出射する光源91、レーザビーム86を二次元走査する走査部92、及び各部を制御する制御部94をテンプル84に搭載している。レーザビーム86は、走査部92によってめがねレンズ82に向かって投射され、めがねレンズ82の表面に形成されたホログラムミラーである偏向部93によって反射され、使用者の眼88に入射して網膜上に画像を形成する。ホログラムミラーはリップマン体積ホログラムを形成したフォトポリマー層であり、波長選択性を持ちレーザビームの波長のみを反射する。その結果、ユーザは外の景色とレーザビームによって描かれる画像の両方を同時に視認することが可能となっている。
実施の形態6との相違点は、偏向部93が、画像反射領域87と、画像反射領域87の上部に第2の偏向部として折り返し反射領域98とを有する点である。この折り返し反射領域98は、実施の形態6における折り返しミラー96の機能を代替する。
すなわち、MEMSミラーの上方に配置した折り返しミラー95で一旦レーザビームを走査中心軸97の方向に偏向し、さらに偏向部93の画像反射領域87の上方に設けた折り返し反射領域98でMEMSミラーの方向へ折り返して入射角を小さくしている。
具体的には、図27Cに示すように、折り返し反射領域98は画像反射領域87に隣接するよう上部に設けることで、垂直方向の走査範囲に干渉することはなく、入射角αは垂直走査角γの1/2近くまで小さくできる。
実施の形態6における垂直走査角γは、垂直走査領域Ha=20mm、投射距離L=35mmで、γ=ATAN(Ha/2/L)=16°であり、入射角αは20°〜25°程度であったのに対し、折り返し反射領域98を走査中心からの高さh=12mmの位置に設けると、入射角αは19°程度となり、図26A〜図26Cの構成よりもさらに小さくできる。
α=19°では、MEMSミラーサイズDmはレーザビーム径Dbの1.06倍でよい。
また、折り返しミラー95をMEMSミラーの上方に配置しているので、MEMSミラーより外側にスペースをとる必要がなく、テンプル84の水平寸法Wが大きくなることはない。さらに、折り返し反射領域98を第2の偏向部としてめがねレンズ82上に設けるので、MEMSミラーよりめがねレンズ82側に別途ミラーを配置する必要がなく、テンプル84の内側に突出する部分もないので、最もデザイン性、装着感の良い構成となる。
また、実施の形態6と同様、折り返し反射領域98を走査部92の走査中心軸97を含む鉛直面に沿って配置したことで、水平方向の入射角は0°となり、MEMSミラーのサイズを小さく抑えることができる。
このような構成により、MEMSミラーの大型化を招くことなく、テンプルの水平寸法を抑えて、高解像度で装着感のよいめがね型画像表示装置81が実現できる。
本構成ではさらに、折り返し反射領域98に収差特性を持たせることが可能である。これは、偏向部93であるホログラムミラーを形成する際、画像反射領域87を形成する第1の作成光学系とともに、折り返し反射領域98を形成する第2の作成光学系を設け、第2の作成光学系の参照光に収差成分を付加することで実現する。
この収差成分を、偏向部93が持つ、コマ収差等を補正するよう設定すれば良い。偏向部93は走査部92の走査中心から発した光が使用者の眼88へ集光するよう作成されるが、水平方向に斜め入射しているため、ビームの水平方向走査位置によって集光パワーが連続的に変化する特性を持つ。
このため、ある場所にレーザビームが当たっている時、ビームの両端でわずかに集光パワーが異なることでコマ収差が発生し、網膜上での集光スポットが広がって解像度が低下することがある。このような収差を、あらかじめ収差特性を持たせた折り返し反射領域98に照射することで補正することができ、より高解像度の表示が可能となる。
なお、本実施の形態では、折り返し反射領域98を画像反射領域87の上方に配置したが、下方に配置しても良い。また、めがねレンズ82は度付レンズでもよいし、度数ゼロのレンズでもよい。
さらに、偏向部93をめがねレンズ82上に直接形成する構成を説明したが、別途基板上に形成してめがねレンズ82の内側に取り付ける方式でも同様の効果が得られる。
なお、上記の各実施形態は、単独であってもそれぞれ有利な効果を奏するのはもちろん、任意の組み合わせで組み合わせることによっても相乗効果を奏する。例えば、実施の形態1、2の偏向部104として、実施の形態3のホログラムミラーを採用する事等が考えられる。
また、上記した各実施の形態での制御処理は、記憶装置(ROM、RAM、ハードディスク等)に格納された上述した処理手順を実行可能な所定のプログラムデータが、CPUによって解釈実行されることで実現される。この場合、プログラムデータは、記録媒体を介して記憶装置内に導入されてもよいし、記録媒体上から直接実行されてもよい。なお、記録媒体は、ROM、RAM、フラッシュメモリ等の半導体メモリ、フレキシブルディスクやハードディスク等の磁気ディスクメモリ、CD−ROMやDVDやBD等の光ディスクやSDカード等のメモリカード等の記録媒体をいう。また、記録媒体は、電話回線や搬送路等の通信媒体も含む概念である。
さらに、図9Aに示すビーム走査型表示装置の各機能ブロックは、集積回路であるLSIとして実現されてもよい。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。例えばメモリ以外の機能ブロックが1チップ化されていてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
次に、図28〜図33を参照して、上記の各実施形態に係るビーム走査型表示装置の様々な用途を説明する。なお、下記の説明は、実施の形態1の用途として説明するが、実施の形態2〜7に置き換えてもよいし、実施の形態1〜7を相互に組み合わせて用いてもよい。また、上記の各実施形態に係るビーム走査型表示装置の用途は、下記の用途に限られないことは言うまでもない。
(実施の形態8)
図28は、本発明の実施の形態8における自動車搭載型のHUD(Head−Up Display:ヘッドアップディスプレイ)の構成図である。
光源101、波面形状変更部102、走査部103、偏向部104、制御部105、及びヘッドホン部106の基本的な仕組みや動作は、実施の形態1と同様である。
本実施の形態では、乗車中のユーザに対して映像を表示する。実施の形態1と同様に、偏向部104にビーム反射特性と車外からの可視光の透過特性とを持たせることで、車外の光景を見ながら本発明による表示も見ることができる。これにより、車外の光景を見ながら、車速、注意や警告、行先案内などの運転行動や居場所などに関連する情報を見られる効果がある。
光源101、波面形状変更部102、及び走査部103は、図28のように車の天井付近に取り付けてもよい。これにより、窓からの視界を遮らない効果や、眼に近い場所に配置することで、光路が短くなり表示精度を向上できる効果がある。また、光源101を車体下部などの波面形状変更部102から離れた場所に配置し、光源101から波面形状変更部102まで光ファイバーでビームを伝送する構成としてもよい。これにより、天井部における光源101を設置するための領域を減少できる効果がある。
制御部105は、ダッシュボード内に配置してもよい。本発明の表示装置とは別の制御装置、例えば車速管理装置や案内制御装置(カーナビゲーションシステム)などの制御装置が本制御部105を兼ねてもよい。これにより制御装置の総数を減らせる効果がある。
ヘッドホン部106は、ユーザの耳に接触している必要はなく、ユーザ周囲の室内面、例えばドアや前面ダッシュボードに装備されたスピーカーでよい。
偏向部支持部401は、天井や窓上部から偏向部104を支持する。偏向部支持部401の位置調整機能は、ユーザの頭部位置に応じて偏向部104の位置や傾きを調整できる。調整はユーザが手動で行う構造としてもよいし、自動で行われる構造としてもよい。自動とする方法としては、偏向部支持部401付近にカメラを設置し、ユーザの頭部や眼などの位置変化を撮像、認識することで、適切な位置や角度に偏向部104を移動、回転して調整する方法でもよい。
(実施の形態9)
図29は、本発明の実施の形態9における椅子装着型の表示装置の構成図である。
光源101、波面形状変更部102、走査部103、偏向部104、制御部105、及びヘッドホン部106の基本的な仕組みや動作は、実施の形態1と同様である。本実施の形態では、椅子に着席しているユーザに対して映像を表示する。
光源101、波面形状変更部102、及び走査部103は、図29のように椅子の背もたれからユーザ眼前の偏向部104へと至る部分に配置してもよい。図29ではユーザの頭部の上方に配置しているが、側頭部や、頭部下方に配置してもよい。
制御部105は、椅子下部に配置してもよい。本発明の表示装置とは別の制御装置、例えばマッサージ制御装置などの制御装置が本制御部105を兼ねてもよい。これにより制御装置の総数を減らせる効果がある。
ヘッドホン部106は、ユーザの耳に接触するヘッドホンでもよいし、頭部後方や側方に設置されたスピーカーでもよい。
(実施の形態10)
図30は、本発明の実施の形態10におけるレーザ走査型のHUD(ヘッドアップディスプレイ)の構成図(側面図)である。また、図31は、図30に示されるレーザ走査ユニット2002の詳細図である。
レーザ走査ユニット2002は、車2001のフロントガラス2003の下方、より具体的にはインパネの内部に配置されており、表示装置の省スペース化を図っている。
なお、レーザ走査ユニット2002はインパネの内部ではなく、インパネ外部に配置してもよい。この場合、レーザ走査ユニット2002の交換や位置の変更が容易になる。
レーザ走査ユニット2002によって走査された光は、フロントガラス2003に取り付けられた偏向部104によって反射され、ハーフミラー2004を通過し、ドライバー2005の眼球2006に到達することで映像が視認される。このようなHUDではフロントガラス2003越しに外界風景を確認しながら、レーザ走査ユニット2002によって表示される地図情報や警告情報を見ることができ、ドライバーの安全性や利便性を向上させることが可能になる。
なお、ユーザの網膜上に投影されたレーザの反射光は、ユーザの眼前に設置されたハーフミラー2004によって反射され、光検出部214によって検出される。
レーザ走査ユニット2002は、光源101、波面形状変更部102、走査部103、及び制御部105から構成されている。図31に本実施の形態における光源101、波面形状変更部102、及び偏向部104の構造の例を示す。
図31における光源101は、図2と同様、赤色レーザ光源211と、青色レーザ光源212と、緑色レーザ光源213とから構成されている。なお本実施の形態において光検出部214は光源101中には含まれず、図30に示されるように車内の天井2007に設置されている。この構成をとることで、ユーザの網膜と光検出部214までの距離を短くすることができ、網膜上のスポットサイズを検出することが容易になる。
図31における波面形状変更部102は、焦点距離水平成分変更部2101と、焦点距離垂直成分変更部2102とを光路に直列に配置している。これによって、波面形状の水平方向の曲率と垂直方向の曲率とを独立して変更できる。本実施の形態においては、焦点距離水平成分変更部2101および焦点距離垂直成分変更部2102は、シリンドリカルレンズの位置を変更することによって水平方向および垂直方向の曲率を変更する。
なお、焦点距離水平成分変更部2101及び焦点距離垂直成分変更部2102は、図2に示される実施の形態1の波面形状変更部102と同様に、シリンドリカルレンズとミラーを組み合わせ、ミラーの位置を変更することで波面形状の変更を行っても良い。この場合、ミラーを高速に振動させることで、解像度の高い画像やフレームレートの高い動画を表示する際でも波面形状を適切に変更することが可能になる。
また、本実施の形態における偏向部104は、透過型のホログラムによって実現されている。本実施の形態において104は、フロントガラス2003の内側(眼の側)に、例えば、リップマン体積ホログラムが形成されたフォトポリマー層が形成され、走査部103からのビームがユーザの眼の瞳孔に回折・集光されるように製作されている。
フォトポリマー層には赤色、緑色、青色、それぞれの光源からの光を反射する3つのホログラムを多重に形成してもよいし、それぞれの色の光に対応した3層のホログラムを積層してもよい。また、ホログラムの波長選択性を用いることで、光源波長の光のみを回折させ、外界からの光のほとんどを占める光源波長以外の波長の光を回折させないように製作することで、透過型のディスプレイとできる。
なお、偏向部104は、フロントガラス2003に自由に着脱できるようにしてもよい。この場合、ディスプレイの表示が不要な場合は偏向部104を外すことにより、フロントガラス2003の透過性を保ち、ドライバーの安全性を向上させることができる。
なお、偏向部104は、走査部103からの光をユーザのいずれかの眼に向かって反射するのではなく、ユーザの両方の眼に向かって反射させてもよい。この場合、一つの偏向部104によってユーザの両眼に映像を表示することが可能になる。
本発明の実施の形態10においては、ユーザの眼前にハーフミラー2004を設置することで、ユーザの網膜上からの反射光を光検出部214に反射させる。ハーフミラー2004は、車2001の天井2007に支持棒2008によって取り付けられている。この構造によって、ユーザの頭部への装置の装着を強制することなしに、ユーザの網膜上のスポットサイズの検出を行うことができる。
なお、ハーフミラー2004および光検出部214は、車2001の天井に設置するのではなく、ドライバーの眼鏡や帽子に設置しても良い。この場合、ドライバーの頭が前後に動いてもハーフミラーに頭が接触する可能性が減るため、ドライバーの安全性を向上させることができる。
制御部105は、HUD各部を制御する集積回路を備える。各レーザの出力および、波面形状変更部102、走査部103、光検出部214の制御が制御部105によって行われる。本実施の形態において、光検出部214は天井に配置され、制御部105はインパネ内部に設置されているが、光検出部214と制御部105との間の通信は、車の内部を有線ケーブルを這わせることで行っても良いし、無線通信で行っても良い。
なお、図30においてはユーザの眼は一つしか示されていないが、レーザ走査ユニット2002、偏向部104、光検出部214をもう一組用意し、両眼に対してビームの曲率半径の制御を行っても良い。この場合、左右の眼で視力が異なる場合などにそれぞれの眼に対して異なったビームの曲率半径を設定することで、片方の眼で映像がボケてしまう事態を防ぐことができる。
(実施の形態11)
図32は、本発明の実施の形態11におけるレーザ走査型の単眼鏡2201の構成図(側面図)である。
単眼鏡2201は、カメラ2203を備えており、ユーザは単眼鏡2201を覗き込むことでカメラ2203が撮影した映像や、単眼鏡2201の外部入力端子に接続された外部の映像機器からの映像を視聴することができる。図32の構成をとることで、ユーザはHMDのように頭部に装置を装着する必要がなくなり、まだ屋外で簡単にビーム走査型表示装置を利用することが可能になる。
単眼鏡2201は、光源101、波面形状変更部102、走査部103、偏向部104、制御部105、カメラ2203、及び折り返しミラー2202から構成されている。
図32における光源101は、図2と同様、赤色レーザ光源211、青色レーザ光源212、緑色レーザ光源213、及び光検出部214で構成される。
図32における波面形状変更部102は、焦点距離水平成分変更部201と、焦点距離垂直成分変更部202とを光路に直列に配置している。これによって、波面形状の水平方向の曲率と垂直方向の曲率とを独立して変更できる。本実施の形態においては、図2に示すようにシリンドリカルレンズとミラーを組み合わせ、ミラーの位置を変更することで垂直方向および水平方向の波面形状の変更を行う。
波面形状変更部102からのビームは、折り返しミラー2202を経由して、走査部103によって走査されて、偏向部104に入射する。
偏向部104は、単眼鏡2201の接眼部分に配置される接眼レンズであり、走査部103からの光をユーザの瞳孔上に集光する。なお偏向部104は凸レンズではなく、透過型ホログラムであってもよい。この場合、接眼レンズ部分を薄くすることができ単眼鏡2201を小型化することができる。
ユーザの網膜上からの反射光は、入射光と同じ経路を逆向きに辿った後、光検出部214によって検出される。
制御部105は、単眼鏡2201各部を制御する集積回路を備える。各レーザの出力および、波面形状変更部102、走査部103、光検出部214、及びカメラ2203の制御が制御部105によって行われる。
なお、図32においてはユーザの眼は一つしか示されていないが、光源101、波面形状変更部102、走査部103、偏向部104、光検出部214をもう一組用意し、双眼鏡の形状になるようにして、両眼に対してビームの曲率半径の制御を行っても良い。この場合、左右の眼で視力が異なる場合などにそれぞれの眼に対して異なったビームの曲率半径を設定することで、片方の眼で映像がボケてしまう事態を防ぐことができる。
なお、双眼鏡の形状にする場合、左右の眼の表示に用いる光源101を同一のものにして、光源101からのビームをプリズムなどで分光し、左右の眼の表示に用いる波面形状変更部102にそれぞれ入射する方法をとっても良い。この場合、必要な光源が減るため双眼鏡を小型化することができ、また消費電力を抑えることが可能になる。
(実施の形態12)
図33は、本発明の実施の形態12におけるレーザ走査型のディスプレイ2301の構成図(側面図)である。
ディスプレイ2301は、光源101、波面形状変更部102、走査部103、偏向部104、及び制御部105で構成されている。ユーザはこのディスプレイを机2302に設置して利用する。図33の構成をとることで、ユーザはHMDのように頭部に装置を装着する必要が無くなる。また単眼鏡のように長時間、手で装置を支持する必要もなくなるため負担無く、長時間ディスプレイを使用することが可能になる。
図33における光源101は、図2と同様、赤色レーザ光源211、青色レーザ光源212、緑色レーザ光源213、及び光検出部214で構成される。
図33における波面形状変更部102は、焦点距離水平成分変更部201と、焦点距離垂直成分変更部202とを光路に直列に配置している。これによって、波面形状の水平方向の曲率と垂直方向の曲率とを独立して変更できる。本実施の形態においては、図2に示すようにシリンドリカルレンズとミラーを組み合わせ、ミラーの位置を変更することで垂直方向および水平方向の波面形状の変更を行う。
波面形状変更部102からのビームは、走査部103によって走査されて、偏向部104に入射する。
本実施の形態において偏向部104は、透過型のホログラムによって実現されている。本実施の形態において偏向部104はディスプレイの表面に配置され、走査部103からの光をユーザの瞳孔上に集光する。
ユーザの網膜上からの反射光は、入射光と同じ経路を逆向きに辿った後、光検出部214によって検出される。
制御部105は、ディスプレイ各部を制御する集積回路を備える。各レーザの出力および、波面形状変更部102、走査部103、光検出部214の制御が制御部105によって行われる。
なお、図33においてはユーザの眼は一つしか示されていないが、光源101、波面形状変更部102、走査部103、偏向部104、光検出部214をもう一組用意し、両眼に対してビームの曲率半径の制御を行っても良い。この場合、左右の眼で視力が異なる場合などにそれぞれの眼に対して異なったビームの曲率半径を設定することで、片方の眼で映像がボケてしまう事態を防ぐことができる。
なお、左右の眼の表示に用いる光源101を同一のものにして、光源101からのビームをプリズムなどで分光し、左右の眼の表示に用いる波面形状変更部102にそれぞれ入射する方法をとっても良い。この場合、必要な光源が減るためディスプレイを小型化することができ、また消費電力を抑えることが可能になる。
以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
本発明にかかるビーム走査型表示装置は、波面形状変更部などを有し、表示装置、表示システム、表示方法、表示プログラム、などの用途にも応用できる。
図1Aは、本発明の実施の形態1におけるビーム走査型表示装置の平面図である。 図1Bは、本発明の実施の形態1におけるビーム走査型表示装置の側面図である。 図2は、本発明の実施の形態1におけるビーム走査型表示装置の詳細構成図である。 図3は、シリンドリカルレンズの構造を示す斜視図である。 図4は、図3のIV−IVにおける断面図である。 図5は、図3のV−Vにおける断面図である。 図6は、波面曲率変更部において、シリンドリカルレンズとミラーとの距離がシリンドリカルレンズの焦点距離に一致している状態を示す図である。 図7は、波面曲率変更部において、シリンドリカルレンズとミラーとの距離がシリンドリカルレンズの焦点距離より近い状態を示す図である。 図8は、走査部の構造を示す斜視図である。 図9Aは、ビーム走査型表示装置のブロック図である。 図9Bは、本発明の実施の形態1における図9Aの中央処理部の詳細図である。 図10は、本発明の実施の形態1におけるビーム走査型表示装置の動作を示すフローチャートである。 図11Aは、視力分解能に対応するスポットサイズと、目標解像度に対応するスポットサイズとの関係を示す図である。 図11Bは、スポットサイズの許容範囲を示す図である。 図11Cは、図11Aと同様の図であって、走査範囲と視野中心とが一致していない場合を示す図である。 図12は、本発明の実施の形態1におけるスポットサイズ−波面形状−視野位置の対応表を示した図である。 図13は、本発明の実施の形態2における図9Aの中央処理部の詳細図である。 図14は、本発明の実施の形態2におけるビームの曲率半径を変更する処理のフローチャートである。 図15は、本発明の実施の形態2におけるビームの曲率半径とビームのスポットサイズの関係表の例を示す図である。 図16は、本発明の実施の形態2におけるビームの曲率半径を大きくしたときのビームの集光位置の変化を示す図である。 図17は、本発明の実施の形態2におけるビームの曲率半径を小さくしたときのビームの集光位置の変化を示す図である。 図18は、本発明の実施の形態3にかかる画像表示装置の概略構成図である。 図19Aは、眼の中の走査光の焦点位置を示す図である。 図19Bは、光検出部において回折光が受光される状態を示す図である。 図19Cは、光検出部の受光素子上のスポットサイズについて示す図である。 図20Aは、眼の中の走査光の焦点位置を示す図である。 図20Bは、光検出部において回折光が受光される状態を示す図である。 図20Cは、光検出部の受光素子上のスポットサイズについて示す図である。 図21Aは、眼の中の走査光の焦点位置を示す図である。 図21Bは、光検出部において回折光が受光される状態を示す図である。 図21Cは、光検出部の受光素子上のスポットサイズについて示す図である。 図22は、本発明の実施の形態4にかかる画像表示装置の概略構成図である。 図23Aは、ホログラムミラーの一例を示す図である。 図23Bは、ホログラムミラーの他の例を示す図である。 図24Aは、サーボ光発生用ホログラムミラーのホログラムパターンを示す図である。 図24Bは、2方向のビームの曲率半径を検出する光検出部を示す図である。 図25は、本発明の実施の形態5にかかる画像表示装置の要部拡大図である。 図26Aは、本発明の実施の形態6におけるめがね型画像表示装置の平面図である。 図26Bは、本発明の実施の形態6におけるめがね型画像表示装置の側面図である。 図26Cは、本発明の実施の形態6におけるめがね型画像表示装置のX矢視図である。 図27Aは、本発明の実施の形態7におけるめがね型画像表示装置の平面図である。 図27Bは、本発明の実施の形態7におけるめがね型画像表示装置の側面図である。 図27Cは、本発明の実施の形態7におけるめがね型画像表示装置のX矢視図である。 図28は、本発明の実施の形態8における自動車搭載型のHUDの構成図である。 図29は、本発明の実施の形態9における椅子装着型の表示装置の構成図である。 図30は、本発明の実施の形態10におけるレーザ走査型のHUDの構成図である。 図31は、図30に示されるレーザ走査ユニットの詳細図である。 図32は、本発明の実施の形態11におけるレーザ走査型の単眼鏡の構成図である。 図33は、本発明の実施の形態12におけるレーザ走査型のディスプレイの構成図である。 図34Aは、従来のビーム走査型表示装置の平面図である。 図34Bは、従来のビーム走査型表示装置の側面図である。 図35は、人間の眼の構造を示す断面図である。 図36は、近くのものを見るときの水晶体と毛様体の様子を示す図である。 図37は、遠くのものを見るときの水晶体と毛様体の様子を示す図である。 図38は、めがね型画像表示装置の外観の例を示す斜視図である。 図39Aは、従来のめがね型画像表示装置の第1の例を示す平面図である。 図39Bは、従来のめがね型画像表示装置の第1の例を示す側面図である。 図40Aは、従来のめがね型画像表示装置の第2の例を示す平面図である。 図40Bは、従来のめがね型画像表示装置の第2の例を示す側面図である。 図41は、従来例における課題を示した図である。 図42は、従来例における課題を示した図である。
10,30,50 画像表示装置
11,91,101 光源
11a コリメータレンズ
11b ダイクロイックプリズム
11R,211 赤色レーザ光源(R光源)
11G,213 緑色レーザ光源(G光源)
11B,212 青色レーザ光源(B光源)
12,12a レーザ光
13,92,103 走査部
13a 反射ミラー
14,14a,14b 走査光
15 瞳
16,93,104 偏向部
16a 基板
16b ホログラムミラー
16c 偏向面
16d 外側の面
16e 遮蔽膜
16f,51 サーボ光発生用ホログラムミラー
16g 第1の反射型ホログラムミラー
16h 第2の反射型ホログラムミラー
17 虹彩
17a 反射体
17b 反射光
17c,17d,19b スポットサイズ
18,52,214 光検出部
18a,22,23,53 受光素子
18b,21b 対物レンズ
18c アパーチャ
18d 回折格子
18f,18g 回折光
18h 赤外レーザ光源
19,88 眼
19a,1204 網膜
19c 焦点位置
20,94,105 制御部
20a ビーム形状調節部
20b サーボ用ミラー
21 光路長調整部
21a プリズム
22a,22b,22c,23a,23b,23c 受光部
31 矢印
32,32a,32b ビーム走査方向
33 ビーム偏向領域
34 サーボ光が発生する領域
51a ホログラムパターン
55 見かけの発光点
81 めがね型画像表示装置
82 めがねレンズ
83 レンズフレーム
84 テンプル
85 開口
86 レーザビーム
87 画像反射領域
89 外部機器
95,96,2202 折り返しミラー
97 走査中心軸
98 折り返し反射領域
102 波面形状変更部
103a ミラー部
103b 枠体
103c,103d 軸部
106 ヘッドホン部
201,2101 焦点距離水平成分変更部
202,2102 焦点距離垂直成分変更部
203 シリンドリカルレンズ
203a 平面部
203b 曲面部
203c,203d 端面部
204 ミラー
401 偏向部支持部
501 中央処理部
502 記憶部
503 入出力制御部
520 通信部
531 視線検出部
532 視野位置判定部
1201,2006 眼球
1202 水晶体
1203 毛様体
1205 入射光
1301 物体
1501 スポットサイズ判定部
1502 ビーム曲率制御部
2001 車
2002 レーザ走査ユニット
2003 フロントガラス
2004 ハーフミラー
2005 ドライバー
2007 天井
2008 支持棒
2201 単眼鏡
2203 カメラ
2301 ディスプレイ
2302 机

Claims (21)

  1. ビームを出力する光源と、
    前記光源から出力されたビームを走査する走査部と、
    前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、
    ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部と
    前記走査部で走査されたビームの一部であって、ユーザの眼に入射したビームの角膜上での反射光を検出する光検出部と、
    前記光検出部によって検出された反射光の強度からユーザの視線方向を検出する視線検出部と、
    前記視線検出部で検出した視線方向を用いて、ユーザの視野領域におけるビームの位置を判定する視野位置判定部とを備え、
    前記波面形状変更部は、前記視野位置判定部で判定したビームの位置に応じて変動する前記許容範囲に基づいて、ビームの波面形状を変更する
    ビーム走査型表示装置。
  2. 前記許容範囲の上限は、ビームがユーザの視野中心に近づくほど小さくなり、視野中心から遠ざかるほど大きくなる
    請求項に記載のビーム走査型表示装置。
  3. 前記許容範囲の上限は、ユーザの視野領域での位置に対応する視力分解能に応じた値、及び視野中心での目標表示解像度に応じた値のうちのいずれか大きい方の値である
    請求項に記載のビーム走査型表示装置。
  4. ビームを出力する光源と、
    前記光源から出力されたビームを走査する走査部と、
    前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、
    ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部と、
    前記走査部で走査されたビームの一部を検出する光検出部と、
    前記光検出部の検出結果に基づいて、ユーザの眼に入射されるビームの網膜上でのスポットサイズを判定するスポットサイズ判定部と、
    ビームの曲率半径の目標値を保持し、前記スポットサイズ判定部によって判定されたスポットサイズが予め定めた閾値を超えない範囲で、ビームの曲率半径が前記目標値に段階的に近づくように、ビームの曲率半径を所定値ずつ変更するビーム曲率制御部とを備え、
    前記波面形状変更部は、前記光検出部の検出結果に基づいてビームの波面形状を変更する
    ビーム走査型表示装置。
  5. ビームの曲率半径の前記目標値は、前記スポットサイズ判定部によって判定されたスポットサイズが予め定めた閾値を超えない範囲で、最大の値に設定される
    請求項に記載のビーム走査型表示装置。
  6. 前記ビーム曲率制御部は、前記スポットサイズ判定部の判定結果が前記閾値を超えたことに応じて、前記目標値を引き下げる
    請求項に記載のビーム走査型表示装置。
  7. 前記ビーム曲率制御部は、一定時間内における前記スポットサイズの変動幅が一定値以下の場合にのみビームの曲率半径を変更する
    請求項に記載のビーム走査型表示装置。
  8. ユーザの身体動作変化を検出する動き検出部を備え、
    前記ビーム曲率制御部は、前記動き検出の出力からユーザの身体動作変化の幅が一定値以上の場合には、前記曲率半径の変更を行わない
    請求項に記載のビーム走査型表示装置。
  9. 前記ビーム曲率制御部は、ビームの曲率半径を増加させる期間と、前記曲率半径を減少させる期間とを交互に繰り返す
    請求項に記載のビーム走査型表示装置。
  10. ビームを出力する光源と、
    前記光源から出力されたビームを走査する走査部と、
    前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、
    ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部と、
    前記走査部で走査されたビームの一部を検出する光検出部とを備え、
    前記波面形状変更部は、前記光検出部の検出結果に基づいてビームの波面形状を変更し、
    前記偏向部は、基板と、前記基板の少なくとも一部に形成されたホログラムミラーとを含み、
    前記ホログラムミラーは、前記走査部からの走査光をユーザの眼に向かわせる偏向領域と、前記走査部が出力したビームの一部を反射して前記光検出部に導く反射体とを含む
    ビーム走査型表示装置。
  11. 前記反射体は、前記偏向領域内に形成されており、
    前記偏向領域と前記反射体とは、多重化されている
    請求項10に記載のビーム走査型表示装置。
  12. 前記反射体は、前記偏向領域の周囲の少なくとも一部に形成されている
    請求項10に記載のビーム走査型表示装置。
  13. 前記反射体は、網膜上のスポットサイズが最適値となるときに最も強い反射光を出力する
    請求項10に記載のビーム走査型表示装置。
  14. 前記光源は、赤色レーザ光源と、青色レーザ光源と、中心波長が750nm以上、1500nm以下の赤外光を出力する赤外レーザ光源及び赤外光の一部を緑色に変換するSHG(Second−Harmonic Generation)素子を組み合わせた緑色レーザ光源とを含み、
    前記反射体は、前記赤外光を反射する
    請求項10に記載のビーム走査型表示装置。
  15. 前記偏向部は、前記基板の前記ホログラムミラーが取り付けられた面とは反対側の面に、赤外光を遮蔽する遮蔽膜を備える
    請求項14に記載のビーム走査型表示装置。
  16. ビームを出力する光源と、
    前記光源から出力されたビームを走査する走査部と、
    前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、
    ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部と、
    前記走査部で走査されたビームの一部を検出する光検出部とを備え、
    前記波面形状変更部は、前記光検出部の検出結果に基づいてビームの波面形状を変更し、
    前記光検出部は、前記反射光の波面形状のうち光軸に垂直で、かつ互いに直交する2方向のビームの曲率半径を個別に検出する
    ビーム走査型表示装置。
  17. ビームを出力する光源と、
    前記光源から出力されたビームを走査する走査部と、
    前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、
    ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部とを備え、
    前記波面形状変更部は、ビームの水平成分の波面形状を変更する水平成分変更部と、垂直成分の波面形状を変更する垂直成分変更部とを有し、
    前記水平成分変更部は、前記垂直成分変更部よりも、ビームの波面形状を大きく変更させる
    ビーム走査型表示装置。
  18. ビームを出力する光源と、
    前記光源から出力されたビームを走査する走査部と、
    前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、
    ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部とを備え、
    前記波面形状変更部は、ビームの水平成分の波面形状を変更する水平成分変更部と、垂直成分の波面形状を変更する垂直成分変更部とを有し、前記走査部での水平方向走査時に垂直方向走査時よりもビームの波面形状を大きく変更させる
    ビーム走査型表示装置。
  19. ビームを出力する光源と、
    前記光源から出力されたビームを走査する走査部と、
    前記走査部で走査されたビームをユーザの眼に向かう方向へ偏向する偏向部と、
    ビームのスポットサイズが予め定めた許容範囲内に収まるように、前記光源からのビームの波面形状を変更して前記走査部に出力する波面形状変更部とを備えるビーム走査型表示装置であって、
    該ビーム走査型表示装置は、めがね型の画像表示装置であって、
    前記偏向部を有する一対のレンズと、
    前記一対のレンズそれぞれの外縁部から後方に延びると共に、少なくとも前記走査部を保持する一対のテンプルと、
    前記光源からのビームを前記走査部に導くものであって、前記走査部へのビームの入射角が、前記光源から前記走査部に直接入射する場合より小さくなる位置に配置される折り返しミラーとを備え、
    前記折り返しミラーは、
    前記テンプル内の前記走査部と鉛直方向に離隔した位置に配置され、前記光源からのビームを反射する第1のミラーと、
    前記第1のミラーより前記レンズに近い位置に配置され、前記第1のミラーからの反射光を前記走査部に導く第2のミラーとを含む
    ビーム走査型表示装置。
  20. 前記偏向部は、ホログラムミラーであり、
    前記走査部からの走査光をユーザの眼に向かう方向に偏向する画像反射領域と、
    前記第2のミラーとして機能する折り返し反射領域とを備える
    請求項19に記載のビーム走査型表示装置。
  21. 前記折り返し反射領域は、前記偏向領域で生じる収差の少なくとも一部を補正するための収差を有する
    請求項20に記載のビーム走査型表示装置。
JP2009513152A 2007-09-26 2008-09-26 ビーム走査型表示装置 Expired - Fee Related JP5216761B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009513152A JP5216761B2 (ja) 2007-09-26 2008-09-26 ビーム走査型表示装置

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2007248605 2007-09-26
JP2007248605 2007-09-26
JP2007266339 2007-10-12
JP2007266339 2007-10-12
JP2007268539 2007-10-16
JP2007268539 2007-10-16
JP2008135132 2008-05-23
JP2008135132 2008-05-23
JP2009513152A JP5216761B2 (ja) 2007-09-26 2008-09-26 ビーム走査型表示装置
PCT/JP2008/002680 WO2009041055A1 (ja) 2007-09-26 2008-09-26 ビーム走査型表示装置、その表示方法、プログラム、及び集積回路

Publications (2)

Publication Number Publication Date
JPWO2009041055A1 JPWO2009041055A1 (ja) 2011-01-20
JP5216761B2 true JP5216761B2 (ja) 2013-06-19

Family

ID=40510959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009513152A Expired - Fee Related JP5216761B2 (ja) 2007-09-26 2008-09-26 ビーム走査型表示装置

Country Status (4)

Country Link
US (1) US8403490B2 (ja)
JP (1) JP5216761B2 (ja)
CN (1) CN101589327B (ja)
WO (1) WO2009041055A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056802A1 (ja) * 2015-09-29 2017-04-06 株式会社Qdレーザ 画像投影装置
KR20170096997A (ko) * 2014-10-08 2017-08-25 옵토투네 아게 광학 요소, 특히 거울을 틸팅하기 위한 장치
JP6209662B1 (ja) * 2016-10-13 2017-10-04 株式会社Qdレーザ 画像投影装置
US10268433B2 (en) 2015-04-20 2019-04-23 Fanuc Corporation Display system

Families Citing this family (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2578857C (en) * 2004-09-07 2013-03-19 National Printing Bureau, Incorporated Administrative Agency Ovd inspection method and inspection apparatus
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
FR2906899B1 (fr) * 2006-10-05 2009-01-16 Essilor Int Dispositif d'affichage pour la visualisation stereoscopique.
JP2009244869A (ja) * 2008-03-11 2009-10-22 Panasonic Corp 表示装置、表示方法、眼鏡型ヘッドマウントディスプレイ、及び自動車
WO2009131626A2 (en) * 2008-04-06 2009-10-29 David Chaum Proximal image projection systems
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US11300795B1 (en) 2009-09-30 2022-04-12 Digilens Inc. Systems for and methods of using fold gratings coordinated with output couplers for dual axis expansion
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US10795160B1 (en) 2014-09-25 2020-10-06 Rockwell Collins, Inc. Systems for and methods of using fold gratings for dual axis expansion
CN102043310B (zh) * 2009-10-13 2014-08-27 中强光电股份有限公司 投影系统、投影装置及成像模组
JP2011154324A (ja) * 2010-01-28 2011-08-11 Pioneer Electronic Corp 画像表示装置
US8659826B1 (en) 2010-02-04 2014-02-25 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
JP5494153B2 (ja) * 2010-04-08 2014-05-14 ソニー株式会社 頭部装着型ディスプレイにおける画像表示方法
US8934159B2 (en) 2010-04-20 2015-01-13 Panasonic Corporation See-through display and head-up display
WO2011135848A1 (ja) * 2010-04-28 2011-11-03 パナソニック株式会社 走査型画像表示装置
JP5701573B2 (ja) * 2010-06-15 2015-04-15 オリンパス株式会社 スキャナ、走査型照明装置および走査型観察装置
US9223137B2 (en) 2010-10-08 2015-12-29 Seiko Epson Corporation Virtual image display apparatus
US8781794B2 (en) 2010-10-21 2014-07-15 Lockheed Martin Corporation Methods and systems for creating free space reflective optical surfaces
US10359545B2 (en) 2010-10-21 2019-07-23 Lockheed Martin Corporation Fresnel lens with reduced draft facet visibility
US8625200B2 (en) 2010-10-21 2014-01-07 Lockheed Martin Corporation Head-mounted display apparatus employing one or more reflective optical surfaces
US9632315B2 (en) 2010-10-21 2017-04-25 Lockheed Martin Corporation Head-mounted display apparatus employing one or more fresnel lenses
US20120106126A1 (en) * 2010-11-01 2012-05-03 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
US9720228B2 (en) 2010-12-16 2017-08-01 Lockheed Martin Corporation Collimating display with pixel lenses
US9128282B2 (en) * 2011-02-10 2015-09-08 Seiko Epson Corporation Head-mounted display device and control method for the head-mounted display device
CN102654644A (zh) * 2011-03-04 2012-09-05 中兴通讯股份有限公司 一种多功能投影眼镜及应用该眼镜的系统
US9274349B2 (en) 2011-04-07 2016-03-01 Digilens Inc. Laser despeckler based on angular diversity
US9134700B2 (en) * 2011-04-27 2015-09-15 Panasonic Intellectual Property Management Co., Ltd. Display device
US20130009853A1 (en) * 2011-07-05 2013-01-10 The Board Of Trustees Of The Leland Stanford Junior University Eye-glasses mounted display
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US20140204455A1 (en) 2011-08-24 2014-07-24 Milan Momcilo Popovich Wearable data display
US8634139B1 (en) 2011-09-30 2014-01-21 Rockwell Collins, Inc. System for and method of catadioptric collimation in a compact head up display (HUD)
US8903207B1 (en) 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
US9366864B1 (en) 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US8937772B1 (en) 2011-09-30 2015-01-20 Rockwell Collins, Inc. System for and method of stowing HUD combiners
US9599813B1 (en) 2011-09-30 2017-03-21 Rockwell Collins, Inc. Waveguide combiner system and method with less susceptibility to glare
CN103064186A (zh) * 2011-10-19 2013-04-24 中央大学 一维扫描式瞳孔投影显示装置
US9019614B2 (en) * 2011-10-26 2015-04-28 Google Inc. Display device with image depth simulation
JP6064316B2 (ja) 2011-11-28 2017-01-25 セイコーエプソン株式会社 透過型表示装置、及び操作入力方法
JP5927867B2 (ja) 2011-11-28 2016-06-01 セイコーエプソン株式会社 表示システム、及び操作入力方法
JP5879973B2 (ja) * 2011-11-30 2016-03-08 ソニー株式会社 光反射部材、光ビーム伸長装置、画像表示装置及び光学装置
CN206649211U (zh) * 2017-02-24 2017-11-17 北京耐德佳显示技术有限公司 一种使用波导型光学元件的近眼显示装置
JP6160020B2 (ja) 2011-12-12 2017-07-12 セイコーエプソン株式会社 透過型表示装置、表示方法および表示プログラム
US9223138B2 (en) 2011-12-23 2015-12-29 Microsoft Technology Licensing, Llc Pixel opacity for augmented reality
US8917453B2 (en) 2011-12-23 2014-12-23 Microsoft Corporation Reflective array waveguide
US8638498B2 (en) 2012-01-04 2014-01-28 David D. Bohn Eyebox adjustment for interpupillary distance
US20150010265A1 (en) 2012-01-06 2015-01-08 Milan, Momcilo POPOVICH Contact image sensor using switchable bragg gratings
US8810600B2 (en) 2012-01-23 2014-08-19 Microsoft Corporation Wearable display device calibration
US9606586B2 (en) 2012-01-23 2017-03-28 Microsoft Technology Licensing, Llc Heat transfer device
US9297996B2 (en) * 2012-02-15 2016-03-29 Microsoft Technology Licensing, Llc Laser illumination scanning
US9726887B2 (en) 2012-02-15 2017-08-08 Microsoft Technology Licensing, Llc Imaging structure color conversion
US9368546B2 (en) 2012-02-15 2016-06-14 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9779643B2 (en) 2012-02-15 2017-10-03 Microsoft Technology Licensing, Llc Imaging structure emitter configurations
JP5919885B2 (ja) 2012-02-28 2016-05-18 セイコーエプソン株式会社 虚像表示装置
US9001005B2 (en) 2012-02-29 2015-04-07 Recon Instruments Inc. Modular heads-up display systems
US9069166B2 (en) 2012-02-29 2015-06-30 Recon Instruments Inc. Gaze detecting heads-up display systems
JP5957972B2 (ja) 2012-03-07 2016-07-27 セイコーエプソン株式会社 虚像表示装置
US9578318B2 (en) 2012-03-14 2017-02-21 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US11068049B2 (en) 2012-03-23 2021-07-20 Microsoft Technology Licensing, Llc Light guide display and field of view
US9558590B2 (en) 2012-03-28 2017-01-31 Microsoft Technology Licensing, Llc Augmented reality light guide display
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
EP2842003B1 (en) 2012-04-25 2019-02-27 Rockwell Collins, Inc. Holographic wide angle display
US10502876B2 (en) 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US8754829B2 (en) 2012-08-04 2014-06-17 Paul Lapstun Scanning light field camera and display
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
JP6119232B2 (ja) * 2012-12-19 2017-04-26 株式会社ソシオネクスト 距離測定装置、距離測定方法
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
CN105163268B (zh) * 2012-12-22 2020-03-10 华为技术有限公司 一种眼镜式通信装置、系统及方法
WO2014115095A2 (en) * 2013-01-28 2014-07-31 Ecole Polytechnique Federale De Lausanne (Epfl) Transflective holographic film for head worn display
EP3296797B1 (en) * 2013-03-25 2019-11-06 North Inc. Method for displaying an image projected from a head-worn display with multiple exit pupils
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
US10262462B2 (en) 2014-04-18 2019-04-16 Magic Leap, Inc. Systems and methods for augmented and virtual reality
US10345903B2 (en) * 2013-07-30 2019-07-09 Microsoft Technology Licensing, Llc Feedback for optic positioning in display devices
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
CN103605199B (zh) * 2013-08-30 2016-09-28 北京智谷睿拓技术服务有限公司 成像装置及方法
KR102108066B1 (ko) * 2013-09-02 2020-05-08 엘지전자 주식회사 헤드 마운트 디스플레이 디바이스 및 그 제어 방법
US10908417B2 (en) * 2013-09-19 2021-02-02 Magna Electronics Inc. Vehicle vision system with virtual retinal display
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
TW201516467A (zh) 2013-10-25 2015-05-01 Quanta Comp Inc 頭戴式顯示裝置及其成像方法
KR102211476B1 (ko) * 2014-07-10 2021-02-03 엘지전자 주식회사 전자 디바이스 및 그 제어방법
KR20150055121A (ko) * 2013-11-06 2015-05-21 한국전자통신연구원 동공 추적을 이용한 홀로그램 이미지 표시 장치 및 방법
US9761051B2 (en) * 2013-12-26 2017-09-12 Empire Technology Development Llc Out-of focus micromirror to display augmented reality images
US10732407B1 (en) 2014-01-10 2020-08-04 Rockwell Collins, Inc. Near eye head up display system and method with fixed combiner
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US9727136B2 (en) * 2014-05-19 2017-08-08 Microsoft Technology Licensing, Llc Gaze detection calibration
US9874744B2 (en) 2014-06-25 2018-01-23 Thalmic Labs Inc. Systems, devices, and methods for wearable heads-up displays
US10445573B2 (en) * 2014-06-27 2019-10-15 Fove, Inc. Gaze detection device
US9805454B2 (en) * 2014-07-15 2017-10-31 Microsoft Technology Licensing, Llc Wide field-of-view depth imaging
US9304235B2 (en) 2014-07-30 2016-04-05 Microsoft Technology Licensing, Llc Microfabrication
US10592080B2 (en) 2014-07-31 2020-03-17 Microsoft Technology Licensing, Llc Assisted presentation of application windows
US10678412B2 (en) 2014-07-31 2020-06-09 Microsoft Technology Licensing, Llc Dynamic joint dividers for application windows
US10254942B2 (en) 2014-07-31 2019-04-09 Microsoft Technology Licensing, Llc Adaptive sizing and positioning of application windows
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
US10088675B1 (en) 2015-05-18 2018-10-02 Rockwell Collins, Inc. Turning light pipe for a pupil expansion system and method
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
US10296098B2 (en) * 2014-09-30 2019-05-21 Mirama Service Inc. Input/output device, input/output program, and input/output method
US10684477B2 (en) * 2014-09-30 2020-06-16 Omnivision Technologies, Inc. Near-eye display device and methods with coaxial eye imaging
US9958680B2 (en) 2014-09-30 2018-05-01 Omnivision Technologies, Inc. Near-eye display device and methods with coaxial eye imaging
JP6424552B2 (ja) 2014-10-02 2018-11-21 セイコーエプソン株式会社 画像表示装置
WO2016061447A1 (en) 2014-10-17 2016-04-21 Lockheed Martin Corporation Head-wearable ultra-wide field of view display device
TWI588535B (zh) * 2014-11-20 2017-06-21 英特爾股份有限公司 可調式焦距平面光學系統
TWI688789B (zh) * 2014-11-20 2020-03-21 美商英特爾股份有限公司 虛擬影像產生器及投影虛擬影像的方法
CN104352243B (zh) * 2014-11-26 2016-09-21 首都医科大学附属北京朝阳医院 测量声源定位能力的测听系统
JP6464708B2 (ja) * 2014-12-08 2019-02-06 セイコーエプソン株式会社 画像表示装置
JP6439453B2 (ja) 2015-01-09 2018-12-19 セイコーエプソン株式会社 画像表示装置、及び画像表示装置の製造方法
CN107873086B (zh) 2015-01-12 2020-03-20 迪吉伦斯公司 环境隔离的波导显示器
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US9827209B2 (en) 2015-02-09 2017-11-28 Microsoft Technology Licensing, Llc Display system
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US11086216B2 (en) 2015-02-09 2021-08-10 Microsoft Technology Licensing, Llc Generating electronic components
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
JP6769974B2 (ja) 2015-02-17 2020-10-14 ノース インコーポレイテッドNorth Inc. ウェアラブルヘッドアップディスプレイにおけるアイボックス拡張のためのシステム、機器、及び方法
JP2016161670A (ja) 2015-02-27 2016-09-05 セイコーエプソン株式会社 画像表示装置
WO2016141054A1 (en) 2015-03-02 2016-09-09 Lockheed Martin Corporation Wearable display system
US10175488B2 (en) 2015-05-04 2019-01-08 North Inc. Systems, devices, and methods for spatially-multiplexed holographic optical elements
US10247943B1 (en) 2015-05-18 2019-04-02 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US10126552B2 (en) 2015-05-18 2018-11-13 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US11366316B2 (en) 2015-05-18 2022-06-21 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
EP3304172A4 (en) 2015-05-28 2019-01-02 North Inc. Systems, devices, and methods that integrate eye tracking and scanning laser projection in wearable heads-up displays
US10108010B2 (en) 2015-06-29 2018-10-23 Rockwell Collins, Inc. System for and method of integrating head up displays and head down displays
DE102015213376A1 (de) * 2015-07-16 2017-01-19 Robert Bosch Gmbh Projektionsvorrichtung für eine Datenbrille, Datenbrille und Verfahren zum Betreiben einer Projektionsvorrichtung für eine Datenbrille
DE102015213769A1 (de) * 2015-07-22 2017-01-26 Robert Bosch Gmbh Verfahren und Vorrichtung zum Prädizieren einer Blickrichtung eines Fahrzeuginsassen
EP3345021A4 (en) 2015-09-04 2019-05-08 North Inc. SYSTEMS, ARTICLES AND METHOD FOR INTEGRATING HOLOGRAPHIC OPTICAL ELEMENTS IN GLASS GLASSES
DE202016005501U1 (de) * 2015-09-11 2016-11-21 Hyster-Yale Group, Inc. Zubehörarm für einen Gabelstapler
WO2017059285A1 (en) 2015-10-01 2017-04-06 Thalmic Labs Inc. Systems, devices, and methods for interacting with content displayed on head-mounted displays
CN108474945B (zh) 2015-10-05 2021-10-01 迪吉伦斯公司 波导显示器
US10338384B2 (en) * 2015-10-12 2019-07-02 North Inc. Spatially separated exit pupils in a head mounted display
US9784967B2 (en) * 2015-10-12 2017-10-10 Intel Corporation Suppression of undesired harmonics in MEMS mirror projector display
US10754156B2 (en) 2015-10-20 2020-08-25 Lockheed Martin Corporation Multiple-eye, single-display, ultrawide-field-of-view optical see-through augmented reality system
US9904051B2 (en) 2015-10-23 2018-02-27 Thalmic Labs Inc. Systems, devices, and methods for laser eye tracking
TWI578022B (zh) * 2015-10-23 2017-04-11 中強光電股份有限公司 頭戴式顯示裝置
DE102015221774B4 (de) 2015-11-05 2019-10-17 Agrippa Holding & Consulting Gmbh Optisches System und Verfahren zur Erzeugung eines zwei- oder dreidimensionalen Bildes
US10802190B2 (en) 2015-12-17 2020-10-13 Covestro Llc Systems, devices, and methods for curved holographic optical elements
WO2017113189A1 (zh) * 2015-12-30 2017-07-06 深圳市柔宇科技有限公司 头戴式显示装置
JP6231585B2 (ja) * 2016-01-05 2017-11-15 株式会社Qdレーザ 画像投影装置
US10598932B1 (en) 2016-01-06 2020-03-24 Rockwell Collins, Inc. Head up display for integrating views of conformally mapped symbols and a fixed image source
US10303246B2 (en) 2016-01-20 2019-05-28 North Inc. Systems, devices, and methods for proximity-based eye tracking
US10151926B2 (en) 2016-01-29 2018-12-11 North Inc. Systems, devices, and methods for preventing eyebox degradation in a wearable heads-up display
JP2017146696A (ja) * 2016-02-16 2017-08-24 ソニー株式会社 画像処理装置、画像処理方法及び画像処理システム
JP2017161789A (ja) * 2016-03-10 2017-09-14 富士通株式会社 網膜描画表示装置、網膜描画表示方法および網膜描画表示プログラム
CN108780224B (zh) 2016-03-24 2021-08-03 迪吉伦斯公司 用于提供偏振选择性全息波导装置的方法和设备
CN109154717B (zh) 2016-04-11 2022-05-13 迪吉伦斯公司 用于结构光投射的全息波导设备
JP2019518979A (ja) * 2016-04-13 2019-07-04 ノース インコーポレイテッドNorth Inc. レーザプロジェクタの焦点を合わせるためのシステム、デバイス、及び方法
TWI600925B (zh) * 2016-04-15 2017-10-01 中強光電股份有限公司 頭戴式顯示裝置
US9995936B1 (en) 2016-04-29 2018-06-12 Lockheed Martin Corporation Augmented reality systems having a virtual image overlaying an infrared portion of a live scene
TWI609199B (zh) * 2016-06-30 2017-12-21 葉天守 反射式虛像顯示裝置
KR102523377B1 (ko) * 2016-07-15 2023-04-20 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이를 포함하는 두부 장착 표시 시스템
US10277874B2 (en) 2016-07-27 2019-04-30 North Inc. Systems, devices, and methods for laser projectors
CN107664840A (zh) * 2016-07-28 2018-02-06 中强光电股份有限公司 头戴式显示装置
JP2018018077A (ja) 2016-07-28 2018-02-01 中強光電股▲ふん▼有限公司 ヘッドマウントディスプレイ
US10459221B2 (en) 2016-08-12 2019-10-29 North Inc. Systems, devices, and methods for variable luminance in wearable heads-up displays
WO2018057660A2 (en) * 2016-09-20 2018-03-29 Apple Inc. Augmented reality system
JP6900165B2 (ja) * 2016-10-04 2021-07-07 矢崎総業株式会社 車両用表示装置
US10120337B2 (en) 2016-11-04 2018-11-06 Microsoft Technology Licensing, Llc Adjustable scanned beam projector
US10345596B2 (en) 2016-11-10 2019-07-09 North Inc. Systems, devices, and methods for astigmatism compensation in a wearable heads-up display
WO2018085941A1 (en) * 2016-11-10 2018-05-17 Thalmic Labs Inc. Systems, devices, and methods for field shaping in wearable heads-up display
WO2018098579A1 (en) * 2016-11-30 2018-06-07 Thalmic Labs Inc. Systems, devices, and methods for laser eye tracking in wearable heads-up displays
WO2018102834A2 (en) 2016-12-02 2018-06-07 Digilens, Inc. Waveguide device with uniform output illumination
WO2018112254A1 (en) * 2016-12-14 2018-06-21 C. Light Technologies, Inc. Binocular retinal imaging device, system, and method for tracking fixational eye motion
US10663732B2 (en) 2016-12-23 2020-05-26 North Inc. Systems, devices, and methods for beam combining in wearable heads-up displays
US11100831B2 (en) * 2016-12-26 2021-08-24 Maxell, Ltd. Image display apparatus and image display method
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
JP6227177B1 (ja) 2017-01-20 2017-11-08 株式会社Qdレーザ 画像投影装置
US10718951B2 (en) 2017-01-25 2020-07-21 North Inc. Systems, devices, and methods for beam combining in laser projectors
US10295824B2 (en) 2017-01-26 2019-05-21 Rockwell Collins, Inc. Head up display with an angled light pipe
DE112018002005T5 (de) 2017-04-13 2020-01-09 Sony Corporation Bildanzeigevorrichtung
EP3602171A1 (en) 2017-05-17 2020-02-05 Apple Inc. Head-mounted display device with vision correction
CN107193127A (zh) * 2017-06-27 2017-09-22 北京数科技有限公司 一种成像方法及穿戴式设备
DE102017211934A1 (de) * 2017-07-12 2019-01-17 Robert Bosch Gmbh Projektionsvorrichtung für eine Datenbrille, Datenbrille sowie Verfahren zur Verbesserung einer Symmetrie eines Lichtstrahls und/oder zur Reduktion des Durchmessers des Lichtstrahls
DE102017211932A1 (de) * 2017-07-12 2019-01-17 Robert Bosch Gmbh Projektionsvorrichtung für eine Datenbrille, Datenbrille sowie Verfahren zum Betreiben einer Projektionsvorrichtung
US10394034B2 (en) * 2017-08-15 2019-08-27 Microsoft Technology Licensing, Llc Eye-tracking with MEMS scanning and optical relay
US11067800B2 (en) 2017-10-04 2021-07-20 Samsung Electronics Co., Ltd. Image display device
JP7399084B2 (ja) 2017-10-16 2023-12-15 ディジレンズ インコーポレイテッド ピクセル化されたディスプレイの画像分解能を倍増させるためのシステムおよび方法
WO2019079894A1 (en) 2017-10-23 2019-05-02 North Inc. MULTIPLE LASER DIODE MODULES WITH FREE SPACES
US20190196196A1 (en) * 2017-12-11 2019-06-27 North Inc. Wavelength combiner photonic integrated circuit with grating coupling of lasers
CN107861247B (zh) * 2017-12-22 2020-08-25 联想(北京)有限公司 光学部件及增强现实设备
CN115356905A (zh) 2018-01-08 2022-11-18 迪吉伦斯公司 波导单元格中全息光栅高吞吐量记录的系统和方法
WO2019136476A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Waveguide architectures and related methods of manufacturing
JP7268674B2 (ja) 2018-03-13 2023-05-08 ソニーグループ株式会社 光学装置、画像表示装置及び表示装置
US20210041693A1 (en) * 2018-03-26 2021-02-11 Sony Corporation Information detection apparatus, video projection apparatus, information detection method, and video projection method
US20190369253A1 (en) * 2018-06-04 2019-12-05 North Inc. Edge Detection Circuit and Detection of Features on Illuminated Eye Using the Same
US10983349B2 (en) * 2018-06-14 2021-04-20 Google Llc Method of dynamically adjusting display luminance flux in wearable heads-up displays
JP7122673B2 (ja) 2018-06-29 2022-08-22 パナソニックIpマネジメント株式会社 表示器、表示システム、移動体
GB2575658B (en) * 2018-07-18 2020-12-23 Envisics Ltd Head-up display
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
CN111044990B (zh) * 2018-10-11 2022-10-18 北京北科天绘科技有限公司 机载激光雷达光束指向标定方法、系统及激光光斑探测器
US10608409B1 (en) * 2018-10-19 2020-03-31 Microsoft Technology Licensing, Llc Calibration of laser power monitor in an imaging system of a wearable head mounted display
DE102018219474A1 (de) * 2018-11-15 2020-05-20 Robert Bosch Gmbh Verfahren und Anordnung zum Durchführen einer virtuellen Netzhautanzeige
DE102018220034B4 (de) * 2018-11-22 2021-10-21 Robert Bosch Gmbh Optische Kombinationsvorrichtung und Projektionssystem
US11885964B2 (en) * 2018-12-26 2024-01-30 Lg Electronics Inc. Electronic device
KR20210138609A (ko) 2019-02-15 2021-11-19 디지렌즈 인코포레이티드. 일체형 격자를 이용하여 홀로그래픽 도파관 디스플레이를 제공하기 위한 방법 및 장치
US10838489B2 (en) 2019-03-04 2020-11-17 Microsoft Technology Licensing, Llc IR illumination module for MEMS-based eye tracking
US11624906B2 (en) 2019-03-04 2023-04-11 Microsoft Technology Licensing, Llc IR illumination module for MEMS-based eye tracking
US10832052B2 (en) * 2019-03-04 2020-11-10 Microsoft Technology Licensing, Llc IR illumination module for MEMS-based eye tracking
WO2020186113A1 (en) 2019-03-12 2020-09-17 Digilens Inc. Holographic waveguide backlight and related methods of manufacturing
JP7163230B2 (ja) * 2019-03-25 2022-10-31 株式会社日立製作所 視線検出装置、視線検出方法、及び表示装置
CN114207492A (zh) 2019-06-07 2022-03-18 迪吉伦斯公司 带透射光栅和反射光栅的波导及其生产方法
EP4004646A4 (en) 2019-07-29 2023-09-06 Digilens Inc. METHODS AND APPARATUS FOR MULTIPLYING THE IMAGE RESOLUTION AND FIELD OF VIEW OF A PIXELATED DISPLAY SCREEN
CN112346558A (zh) 2019-08-06 2021-02-09 苹果公司 眼睛跟踪系统
US11360557B2 (en) * 2019-08-06 2022-06-14 Apple Inc. Eye tracking system
CN114450608A (zh) 2019-08-29 2022-05-06 迪吉伦斯公司 真空布拉格光栅和制造方法
CN111694368A (zh) * 2020-06-04 2020-09-22 哈尔滨工业大学 六自由度平台控制方法
DE102020125552A1 (de) * 2020-09-30 2022-03-31 Schwind Eye-Tech-Solutions Gmbh Verfahren zum Bereitstellen von Steuerdaten für einen augenchirurgischen Laser einer Behandlungsvorrichtung
US11656463B2 (en) * 2020-12-02 2023-05-23 Qualcomm Incorporated Eye tracking using a light directing mechanism
JP2022108496A (ja) * 2021-01-13 2022-07-26 株式会社リコー 光学装置、視線検出装置、網膜投影表示装置、頭部装着型表示装置、検眼装置、立体物の傾き検出方法及び視線検出方法
CN113031383B (zh) * 2021-03-16 2022-04-19 深圳市火乐科技发展有限公司 投影机镜头组件和投影机
US11899211B2 (en) 2021-06-24 2024-02-13 Microsoft Technology Licensing, Llc Pulse-modulated laser-based near-eye display
US11656467B2 (en) * 2021-06-24 2023-05-23 Microsoft Technology Licensing, Llc Compact laser-based near-eye display
CN117813037A (zh) * 2021-08-18 2024-04-02 索尼集团公司 眼球信息检测装置、显示装置、眼球信息检测方法和显示方法
JP7089823B1 (ja) 2022-03-28 2022-06-23 株式会社Qdレーザ 画像投影装置、視覚検査装置、および眼底撮影装置
CN114675428A (zh) * 2022-05-31 2022-06-28 季华实验室 一种显示装置、显示设备、驱动方法及存储介质
WO2023248768A1 (ja) * 2022-06-23 2023-12-28 ソニーグループ株式会社 表示装置及び電子機器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231921A (ja) * 1986-04-02 1987-10-12 Nec Corp レ−ザ加工光学装置
JPH10301055A (ja) * 1997-04-25 1998-11-13 Sony Corp 画像表示装置
JP2003029198A (ja) * 2001-07-16 2003-01-29 Denso Corp スキャン型ディスプレイ装置
JP2006058505A (ja) * 2004-08-19 2006-03-02 Brother Ind Ltd 瞳孔検出装置およびそれを備えた画像表示装置
JP2006066875A (ja) * 2004-07-26 2006-03-09 Fuji Photo Film Co Ltd レーザモジュール
JP2006251509A (ja) * 2005-03-11 2006-09-21 Brother Ind Ltd 画像表示装置
JP2007093945A (ja) * 2005-09-28 2007-04-12 Brother Ind Ltd 光結合器及び画像表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103986A (ja) 1989-09-19 1991-04-30 Fujitsu Ltd 画像処理システム
JP2728526B2 (ja) 1989-11-06 1998-03-18 株式会社日立製作所 紙葉類堆積装置
JP2932636B2 (ja) 1990-08-20 1999-08-09 ソニー株式会社 直視型画像表示装置
JP3103986B2 (ja) 1991-03-14 2000-10-30 ソニー株式会社 直視型画像表示装置
EP0473343B1 (en) * 1990-08-20 1995-11-22 Sony Corporation Direct viewing picture image display apparatus
JP3148791B2 (ja) 1994-04-13 2001-03-26 シャープ株式会社 頭部搭載型ディスプレイ装置を利用した視力回復装置
JP2000221441A (ja) 1999-02-04 2000-08-11 Olympus Optical Co Ltd 表示装置
JP4921634B2 (ja) * 2000-01-31 2012-04-25 グーグル インコーポレイテッド 表示装置
WO2004049037A1 (ja) * 2002-11-27 2004-06-10 Brother Kogyo Kabushiki Kaisha 画像表示装置
JP4423936B2 (ja) 2002-11-27 2010-03-03 ブラザー工業株式会社 画像表示装置
US6967781B2 (en) * 2002-11-29 2005-11-22 Brother Kogyo Kabushiki Kaisha Image display apparatus for displaying image in variable direction relative to viewer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231921A (ja) * 1986-04-02 1987-10-12 Nec Corp レ−ザ加工光学装置
JPH10301055A (ja) * 1997-04-25 1998-11-13 Sony Corp 画像表示装置
JP2003029198A (ja) * 2001-07-16 2003-01-29 Denso Corp スキャン型ディスプレイ装置
JP2006066875A (ja) * 2004-07-26 2006-03-09 Fuji Photo Film Co Ltd レーザモジュール
JP2006058505A (ja) * 2004-08-19 2006-03-02 Brother Ind Ltd 瞳孔検出装置およびそれを備えた画像表示装置
JP2006251509A (ja) * 2005-03-11 2006-09-21 Brother Ind Ltd 画像表示装置
JP2007093945A (ja) * 2005-09-28 2007-04-12 Brother Ind Ltd 光結合器及び画像表示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170096997A (ko) * 2014-10-08 2017-08-25 옵토투네 아게 광학 요소, 특히 거울을 틸팅하기 위한 장치
KR102470757B1 (ko) * 2014-10-08 2022-11-24 옵토투네 아게 광학 요소, 특히 거울을 틸팅하기 위한 장치
US10268433B2 (en) 2015-04-20 2019-04-23 Fanuc Corporation Display system
WO2017056802A1 (ja) * 2015-09-29 2017-04-06 株式会社Qdレーザ 画像投影装置
JPWO2017056802A1 (ja) * 2015-09-29 2017-10-05 株式会社Qdレーザ 画像投影装置
JP6209662B1 (ja) * 2016-10-13 2017-10-04 株式会社Qdレーザ 画像投影装置
JP2018063365A (ja) * 2016-10-13 2018-04-19 株式会社Qdレーザ 画像投影装置

Also Published As

Publication number Publication date
CN101589327A (zh) 2009-11-25
US8403490B2 (en) 2013-03-26
WO2009041055A1 (ja) 2009-04-02
US20100060551A1 (en) 2010-03-11
JPWO2009041055A1 (ja) 2011-01-20
CN101589327B (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5216761B2 (ja) ビーム走査型表示装置
JP5237268B2 (ja) 表示装置
US7784945B2 (en) Display Apparatus, display method, display program, integrated circuit, goggle-type head-mounted display, vehicle, monocle, and stationary display
US8547618B2 (en) Beam scanning display apparatus
JP5237267B2 (ja) ビーム走査型表示装置、表示方法、及び自動車
CN107407812B (zh) 图像显示装置
US8228608B2 (en) Display apparatus, display method, goggle-type head-mounted display, and vehicle
JP7275124B2 (ja) 映像投射システム、映像投射装置、映像表示光回折用光学素子、器具、及び映像投射方法
JP2010117541A (ja) ビーム走査型表示装置
JP2019144515A (ja) 虚像表示装置
JP2010113172A (ja) ビーム走査型表示装置および方法
JP2010117542A (ja) ビーム走査型表示装置
JP7093591B1 (ja) 画像投影装置
JP2020160275A (ja) 虚像表示装置
WO2024062812A1 (en) Image display device and light guide plate
JP2016142864A (ja) 画像表示装置および画像表示装置の位置合わせ方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Ref document number: 5216761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees