TWI705072B - 具有鈣依存性的抗原結合能力之抗體 - Google Patents

具有鈣依存性的抗原結合能力之抗體 Download PDF

Info

Publication number
TWI705072B
TWI705072B TW107144399A TW107144399A TWI705072B TW I705072 B TWI705072 B TW I705072B TW 107144399 A TW107144399 A TW 107144399A TW 107144399 A TW107144399 A TW 107144399A TW I705072 B TWI705072 B TW I705072B
Authority
TW
Taiwan
Prior art keywords
antigen
binding
amino acid
antibody
binding molecule
Prior art date
Application number
TW107144399A
Other languages
English (en)
Other versions
TW201920260A (zh
Inventor
井川智之
石井慎也
舩木美步
廣庭奈緒香
前田敦彥
根津淳一
類家慶直
馬場威
清水駿
Original Assignee
日商中外製藥股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商中外製藥股份有限公司 filed Critical 日商中外製藥股份有限公司
Publication of TW201920260A publication Critical patent/TW201920260A/zh
Application granted granted Critical
Publication of TWI705072B publication Critical patent/TWI705072B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3007Carcino-embryonic Antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/248IL-6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4208Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an idiotypic determinant on Ig
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • C07K16/4291Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig against IgE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/02Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/537Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody
    • G01N33/5375Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody by changing the physical or chemical properties of the medium or immunochemicals, e.g. temperature, density, pH, partitioning
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本發明的課題在於提供:促進利用抗原結合分子使抗原攝入細胞內之方法、增加1分子的抗原結合分子對於抗原的結合次數之方法、利用抗原結合分子之投予促進血漿中抗原濃度減少之方法、改善抗原結合分子的血漿中滯留性之方法、促進抗原攝入細胞內之抗原結合分子、增加對抗原的結合次數之抗原結合分子、能利用投予而促進血漿中之抗原濃度減少之抗原結合分子、改善血漿中滯留性之抗原結合分子、含有該抗原結合分子之醫藥組成物、及此等之製造方法。 本案發明人等發現藉由使用顯示具鈣依存性之抗原抗體反應的抗原結合分子,能解決上述課題。

Description

具有鈣依存性的抗原結合能力之抗體
本發明係關於一種抗原結合分子及其製造方法與醫藥用途。
抗體在血漿中的安定性高、副作用少,因此當做醫藥品受重視。其中IgG型之抗體醫藥已有多數上市,現在也有多數抗體醫藥正在開發中(非專利文獻1、非專利文獻2)。另一方面,就適用於第2世代之抗體醫藥的技術而言已開發出各種技術,已有使效應子機能、抗原結合能力、藥物動態、安定性提高、或使免疫原性風險減低的技術等報告(非專利文獻3)。抗體醫藥一般由於投予量非常高,故難製作皮下投予製劑,且製造成本高等據認為係課題。就減低抗體醫藥之投予量的方法而言,有人考慮提高抗體之藥物動態之方法,及提高抗體與抗原之親和性(affinity)之方法。
就提高抗體之藥物動態之方法而言,有人報告恆定區的人工胺基酸取代(非專利文獻4、5)。就增強抗原結合能力、抗原中和能力之技術而言,有人報告親和性成熟技術(非專利文獻6),可藉由對於可變區之CDR區等導入胺基酸變異而增加對於抗原之結合活性。藉由增加抗原結合能力,可使於體外(in vitro)之生物活性提高,或減少投予量,而且也可提高於體內(in vivo)之藥效(非專利文獻7)。
另一方面,抗體每1分子能中和之抗原量取決於親和性,藉由強化親和性能以少抗體量中和抗原,且可利用各種方法強化抗體之親和性(非專利文獻6)。再者,若能對於抗原共價鍵結並使親和性為無限大,則能以1分子抗體中和1分子抗原(2價時為2分子抗原)。但是,至今為止的方法,以1分子抗體中和1分子抗原(2價時為2分子抗原)之化學理論中和反應為極限,不可能以抗原量以下的抗體量將抗原完全中和。亦即,強化親和性之效果存在極限(非專利文獻9)。中和抗體時,為了使其中和效果持續固定期間,需要在此期間投予比起活體內所產生之抗原量更多的抗體量,僅是上述抗體之藥物動態提高、或親和性成熟技術,於必要抗體投予量之減少存在極限。是以,為了以抗原量以下的抗體量於目的期間持續抗原之中和效果,必須以1個抗體中和多數抗原。
就達成此效果的新方法有人最近報告對於抗原為pH依存性結合的抗體(專利文獻1)。對於抗原在血漿中之中性條件下強力結合,且於核內體內之酸性條件下從抗原解離之pH依存性抗原結合抗體,可於核內體內從抗原解離。pH依存性抗原結合抗體,可於將抗原解離後,將抗體利用FcRn再度循環於血漿中而再度結合於抗原,故能以1個抗體反複結合於多數抗原。
又,抗原之血漿中滯留性,比起結合於FcRn而再度循環的抗體,非常之短。血漿中滯留性長之抗體若結合於如此於血漿中滯留性短的抗原,則抗體抗原複合體之血漿中滯留性會與抗體同樣增長。因此,藉由抗原與抗體結合,血漿中滯留性增長,且血漿中抗原濃度升高。於如此的情形,即使提高抗體對於抗原之親和性,也無法促進抗原從血漿中消失。上述pH依存性抗原結合抗體比起通常之抗體,當做促進抗原從血漿中消失之方法據報告為有效(專利文獻1)。
如上所述,pH依存性抗原結合抗體以1個抗體結合於多數抗原,且比起通常的抗體能促進抗原從血漿中消失,故具有通常的抗體無法獲得的作用。但是至今為止,為了達成該pH依存性抗原結合抗體能反複結合於抗原之效果,及達成促進抗原從血漿中消失之效果,僅知道利用血漿中與核內體內之pH的差異而對於抗原抗體反應賦予pH依存性之方法。
又,本發明之先前技術文獻如下。 [先前技術文獻] [專利文獻]
[專利文獻1] WO 2009/125825, ANTIGEN-BINDING MOLECULE CAPABLE OF BINDING TO TWO OR MORE ANTIGEN MOLECULES REPEATEDLY [非專利文獻]
[非專利文獻1] Monoclonal antibody successes in the clinic, Janice M Reichert, Clark J Rosensweig, Laura B Faden & Matthew C Dewitz, Nature Biotechnology 23, 1073 - 1078 (2005) [非專利文獻2] Pavlou AK, Belsey MJ., The therapeutic antibodies market to 2008., Eur J Pharm Biopharm. 2005 Apr;59(3):389-96. [非專利文獻3] Kim SJ, Park Y, Hong HJ., Antibody engineering for the development of therapeutic antibodies., Mol Cells. 2005 Aug 31;20(1):17-29. Review. [非專利文獻4] Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N., An engineered human IgG1 antibody with longer serum half-life., J Immunol. 2006 Jan 1;176(1):346-56 [非專利文獻5] Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward ES., Increasing the serum persistence of an IgG fragment by random mutagenesis., Nat Biotechnol. 1997 Jul;15(7):637-40 [非專利文獻6] Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8466-71. Epub 2005 Jun 6. A general method for greatly improving the affinity of antibodies by using combinatorial libraries.Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, Bhatt RR, Takeuchi T, Lerner RA, Crea R. [非專利文獻7] Wu H, Pfarr DS, Johnson S, Brewah YA, Woods RM, Patel NK, White WI, Young JF, Kiener PA. Development of Motavizumab, an Ultra-potent Antibody for the Prevention of Respiratory Syncytial Virus Infection in the Upper and Lower Respiratory Tract. J Mol Biol. 2007, 368, 652-665 [非專利文獻8] Hanson CV, Nishiyama Y, Paul S. Catalytic antibodies and their applications.Curr Opin Biotechnol. 2005 Dec;16(6):631-6. [非專利文獻9] Rathanaswami P, Roalstad S, Roskos L, Su QJ, Lackie S, Babcook J. Demonstration of an 體內(in vivo) generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8. Biochem Biophys Res Commun. 2005 Sep 9;334(4):1004-13.
[發明欲解決之課題]
本發明係有鑑於如此的狀況而產生,其目的在於提供促進利用抗原結合分子使抗原攝入細胞內之方法、增加1分子之抗原結合分子對於抗原之結合次數之方法、利用抗原結合分子之投予促進血漿中之抗原濃度減少之方法、改善抗原結合分子之血漿中滯留性之方法、促進抗原攝入細胞內之抗原結合分子、增加對於抗原之結合次數之抗原結合分子、能利用投予而促進血漿中之抗原濃度減少之抗原結合分子、改善血漿中滯留性之抗原結合分子、含有該抗原結合分子之醫藥組成物、及此等之製造方法。 [解決課題之方式]
本案發明人等針對促進利用抗原結合分子(具有抗原結合能力之多胜肽等分子)使抗原攝入細胞內之方法、使1分子抗原結合分子對於抗原之結合次數增加方法、促進利用抗原結合分子之投予減少血漿中之抗原濃度之方法、改善抗原結合分子之血漿中滯留性之方法努力研究。其結果,本案發明人等著眼於血漿中與早期核內體內的鈣濃度的差異,藉由使用具有顯示鈣依存性之抗原抗體反應的抗原結合分子,能夠促進利用抗原結合分子使抗原攝入細胞內、藉由抗原結合分子多次結合於抗原使1分子抗原結合分子對於抗原的結合次數增加、利用抗原結合分子之投予促進血漿中之抗原濃度減少、及改善抗原結合分子之血漿中滯留性。
亦即本發明係關於藉由顯示具鈣依存性之抗原抗體反應之抗原結合分子,促進抗原攝入細胞內之方法、增加1分子抗原結合分子對於抗原之結合次數之方法、利用抗原結合分子之投予促進血漿中之抗原濃度減少之方法、改善抗原結合分子之血漿中滯留性之方法、抗原攝入細胞內受促進之抗原結合分子、對於抗原之結合次數經增加之抗原結合分子、能藉由其投予促進血漿中之抗原濃度減少之抗原結合分子、血漿中滯留性經改善之抗原結合分子、含有該抗原結合分子之醫藥組成物、及該等之製造方法等,更具體而言,係關於以下: [1] 一種抗原結合分子,其包含抗原結合域與人類FcRn結合域,在2種不同鈣濃度條件下的抗原結合活性不同,抗原結合分子在低鈣濃度條件下的抗原結合活性比起在高鈣濃度條件下的抗原結合活性為低,且於中性pH條件下對於人類FcRn具結合活性。 [2] 如[1]之抗原結合分子,其中低鈣濃度為離子化鈣濃度0.1μM~30μM。 [3] 如[1]之抗原結合分子,其中高鈣濃度為離子化鈣濃度100μM~10 mM。 [4] 如[1]或[2]之抗原結合分子,其中低鈣濃度為核內體內之離子化鈣濃度。 [5] 如[1]或[3]之抗原結合分子,其中高鈣濃度為血漿中之離子化鈣濃度。 [6] 如[1]至[5]中任一項之抗原結合分子,其中前述FcRn結合域為Fc區域。 [7] 如[1]至[6]中任一項之抗原結合分子,其中,於酸性pH條件下之抗原結合活性比起於中性pH條件下之抗原結合活性低。 [8] 如[7]之抗原結合分子,其中至少1個胺基酸經組胺酸取代,或至少有1個組胺酸插入。 [9] 如[1]至[8]中任一項之抗原結合分子,其係結合於膜抗原或可溶型抗原。 [10] 如[1]至[9]中任一項之抗原結合分子,其中,該抗原係選自於由IL-6R、IL-6、IgA、人類Glypican3、及IgE構成的群組。 [11] 一種抗原結合分子,其包含抗原結合域與人類FcRn結合域,於2種不同的鈣濃度條件下的抗原結合活性不同,抗原結合分子在低鈣濃度條件下的抗原結合活性比起在高鈣濃度條件下的抗原結合活性為低,且包含於抗原結合域的輕鏈或重鏈含有來自於人類抗體之鈣結合模體(motif)。 [12] 如[11]之抗原結合分子,其中鈣結合模體包含於抗原結合域之輕鏈CDR1、CDR2及/或CDR3。 [13] 如[12]之抗原結合分子,其中鈣結合模體包含於輕鏈CDR1之以Kabat編號法表示之30位、31位及/或32位。 [14] 如[12]或[13]之抗原結合分子,其中鈣結合模體包含於輕鏈CDR2之以Kabat編號法表示之50位。 [15] 如[12]至[14]中任一項之抗原結合分子,其中鈣結合模體包含於輕鏈CDR3之以Kabat編號法表示之92位。 [16] 如[12]至[15]中任一項之抗原結合分子,其中抗原結合分子為IgA、或人類Glypican3任一者。 [17] 如[11]之抗原結合分子,其中,鈣結合模體包含於抗原結合域之重鏈CDR1、CDR2及/或CDR3。 [18] 如[16]之抗原結合分子,其中,鈣結合模體包含於重鏈CDR3之以Kabat編號法表示之95位、96位、100a位、及/或101位。 [19] 如[17]或[18]之抗原結合分子,其中抗原結合分子為IL-6R、或IL-6任一者。 [20] 如[11]至[19]中任一項之抗原結合分子,其包含於pH中性域之條件下對於FcRn具結合活性之FcRn結合域。 [21] 如[20]之抗原結合分子,其中前述FcRn結合域為Fc區域。 [22] 如[1]至[10]、[20]或[21]中任一項之抗原結合分子,其中,前述Fc區域之胺基酸序列當中,以EU編號法表示之248、250、252、254、255、256、257、258、265、286、289、297、303、305、307、308、309、311、312、314、315、317、332、334、360、376、380、382、384、385、386、387、389、424、428、433、434、及436中任一者以上之胺基酸為與天然型Fc區域之胺基酸不同之Fc區域。 [23] 如[22]之抗原結合分子,其中,前述Fc區域之以EU編號法表示之胺基酸為; 237位之胺基酸為Met、 248位之胺基酸為Ile、 250位之胺基酸為Ala、Phe、Ile、Met、Gln、Ser、Val、Trp、或Tyr、 252位之胺基酸為Phe、Trp、或Tyr、 254位之胺基酸為Thr、 255位之胺基酸為Glu、 256位之胺基酸為Asp、Glu、或Gln、 257位之胺基酸為Ala、Gly、Ile、Leu、Met、Asn、Ser、Thr、或Val、 258位之胺基酸為His、 265位之胺基酸為Ala、 286位之胺基酸為Ala或Glu、 289位之胺基酸為His、 297位之胺基酸為Ala、 303位之胺基酸為Ala、 305位之胺基酸為Ala、 307位之胺基酸為Ala、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、或Tyr、 308位之胺基酸為Ala、Phe、Ile、Leu、Met、Pro、Gln、或Thr、 309位之胺基酸為Ala、Asp、Glu、Pro、或Arg、 311位之胺基酸為Ala、His、或Ile、 312位之胺基酸為Ala或His、 314位之胺基酸為Lys或Arg、 315位之胺基酸為Ala、Asp或His、 317位之胺基酸為Ala、 332位之胺基酸為Val、 334位之胺基酸為Leu、 360位之胺基酸為His、 376位之胺基酸為Ala、 380位之胺基酸為Ala、 382位之胺基酸為Ala、 384位之胺基酸為Ala、 385位之胺基酸為Asp或His、 386位之胺基酸為Pro、 387位之胺基酸為Glu、 389位之胺基酸為Ala或Ser、 424位之胺基酸為Ala、 428位之胺基酸為Ala、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、或Tyr、 433位之胺基酸為Lys、 434位之胺基酸為Ala、Phe、His、Ser、Trp、或Tyr、或 436位之胺基酸為His 、Ile、Leu、Val、 中任一者以上之組合。 [24] 如[1]至[23]中任一項之抗原結合分子,其中,該抗原結合分子為抗體。 [25] 一種抗原結合分子之製造方法,該抗原結合分子具有選自於以下中至少1種機能:(i)促進抗原攝入細胞內之機能、(ii)對於抗原結合2次以上之機能、(iii)促進血漿中之抗原濃度減少之機能、及(iv)優異的血漿中滯留性機能, 包含以下步驟(a)~(e); (a) 獲得在低鈣濃度條件下之抗原結合分子之抗原結合活性、 (b) 獲得於高鈣濃度條件下之抗原結合分子之抗原結合活性、 (c) 選擇在低鈣濃度條件下之抗原結合活性比起於高鈣濃度條件下之抗原結合活性低的抗原結合分子、 (d) 獲得編碼為前述步驟(c)所選擇之抗原結合分子的基因、 (e) 使用前述步驟(d)獲得之基因製造抗原結合分子。 [26] 一種抗原結合分子之製造方法,該抗原結合分子具有選自於以下中至少1種機能:(i) 促進抗原攝入細胞內之機能、(ii)對於抗原結合2次以上之機能、(iii)促進血漿中之抗原濃度減少之機能、及(iv)優異的血漿中滯留性機能, 包含以下步驟(a)~(e); (a) 於高鈣濃度條件下使抗原結合分子或抗原結合分子庫接觸抗原、 (b) 將前述步驟(a)中結合於抗原之抗原結合分子置在低鈣濃度條件下、 (c) 取得於前述步驟(b)解離之抗原結合分子、 (d) 獲得編碼為前述步驟(c)取得之抗原結合分子的基因、 (e) 使用前述步驟(d)獲得之基因製造抗原結合分子。 [27] 一種抗原結合分子之製造方法,該抗原結合分子具有選自於以下中至少1種機能:(i) 促進抗原攝入細胞內之機能、(ii)對於抗原結合2次以上之機能、(iii)促進血漿中之抗原濃度減少之機能、及(iv)優異的血漿中滯留性機能, 包含以下步驟(a)~(f); (a) 在低鈣濃度條件下使抗原結合分子或抗原結合分子庫接觸抗原、 (b) 選擇於前述步驟(a)未結合於抗原之抗原結合分子、 (c) 使前述步驟(b)選擇之抗原結合分子於高鈣濃度條件下接觸抗原、 (d) 取得於前述步驟(c)結合於抗原之抗原結合分子、 (e) 獲得編碼為前述步驟(d)取得之抗原結合分子之基因、 (f) 使用前述步驟(e)獲得之基因產生抗原結合分子。 [28] 如[25]至[27]中任一項之抗原結合分子之製造方法,更包含以下步驟:改變抗原結合分子中之胺基酸,賦予或提高於中性pH條件下對於人類FcRn之結合活性。 [29] 如[25]至[27]中任一項之抗原結合分子之製造方法,更包含以下步驟:改變抗原結合分子中之胺基酸,使於酸性pH條件下之抗原結合活性低於中性pH條件下之抗原結合活性。 [30] 如[25]至[27]中任一項之抗原結合分子之製造方法,其中,低鈣濃度為離子化鈣濃度0.1μM~30μM。 [31] 如[25]至[27]中任一項之抗原結合分子之製造方法,其中,高鈣濃度為離子化鈣濃度100μM~10mM。 [32] 如[25]至[27]中任一項之抗原結合分子之製造方法,其中,低鈣濃度為核內體內之離子化鈣濃度。 [33] 如[25]至[27]中任一項之抗原結合分子之製造方法,其中,高鈣濃度為血漿中之離子化鈣濃度。 [34] 如[29]之抗原結合分子之製造方法,其中,抗原結合分子中之胺基酸之改變,係將抗原結合分子中至少1個以上之胺基酸以組胺酸取代或插入至少1個組胺酸之改變。 [35] 如[25]至[34]中任一項之抗原結合分子之製造方法,其中,前述抗原結合分子所結合之抗原係選自於由IL-6R、IL-6、IgA、人類Glypican3、及IgE構成的群組的抗原。 [36] 如[25]至[35]中任一項之抗原結合分子之製造方法,其中,前述抗原結合分子為抗體。 [37] 一種醫藥組成物,其包含如[1]至[24]中任一項之抗原結合分子或由如[25]至[36]項中任一項之抗原結合分子之製造方法製造之抗原結合分子、及藥學上可容許之載體。 [38] 如[37]之醫藥組成物,其係用於促進抗原攝入細胞內。 [39] 如[37]之醫藥組成物,其係用於促進血漿中之抗原濃度減少。 [40] 一種醫藥組成物,其用於促進抗原攝入細胞內或促進血漿中之抗原濃度減少,包含抗原結合分子,該抗原結合分子含有抗原結合域與人類FcRn結合域且於2種不同的鈣濃度條件下的抗原結合活性不同,抗原結合分子在低鈣濃度條件下之抗原結合活性比起於高鈣濃度條件下之抗原結合活性為低。 [41] 如[40]之醫藥組成物,其中,低鈣濃度為離子化鈣濃度0.1μM~30μM、。 [42] 如[40]之醫藥組成物,其中,高鈣濃度為離子化鈣濃度100μM~10 mM。 [43] 如[40]或[41]之醫藥組成物,其中,低鈣濃度為核內體內之離子化鈣濃度。 [44] 如[40]或[42]之醫藥組成物,其中,高鈣濃度為血漿中之離子化鈣濃度。 [45] 如[40]至[44]中任一項之醫藥組成物,其中,包含於前述抗原結合分子之FcRn結合域為Fc區域。 [46] 如[40]至[45]中任一項之醫藥組成物,其中,前述抗原結合分子於酸性pH條件下之抗原結合活性低於中性pH條件下之抗原結合活性。 [47] 如[46]之醫藥組成物,其中,前述抗原結合分子之至少1個胺基酸經組胺酸取代、或至少有1個組胺酸插入。 [48] 如[40]至[47]中任一項之醫藥組成物,其中,前述抗原結合分子所結合之抗原,係選自於由IL-6R、IL-6、IgA、人類Glypican3、及IgE構成的群組的抗原。 [49] 一種抗原結合分子之篩選方法,該抗原結合分子具有選自於以下中至少1種機能:(i) 促進抗原攝入細胞內之機能、(ii)對於抗原結合2次以上之機能、(iii)促進血漿中之抗原濃度減少之機能、及(iv)優異的血漿中滯留性機能, 包含以下步驟(a)~(c); (a) 獲得在低鈣濃度條件下之抗原結合分子之抗原結合活性、 (b) 獲得於高鈣濃度條件下之抗原結合分子之抗原結合活性、 (c) 選擇在低鈣濃度條件下之抗原結合活性比起於高鈣濃度條件下之抗原結合活性低的抗原結合分子。 [50] 一種抗原結合分子之篩選方法,該抗原結合分子具有選自於以下中至少1種機能(i) 促進抗原攝入細胞內之機能、(ii)對於抗原結合2次以上之機能、(iii)促進血漿中之抗原濃度減少之機能、及(iv)優異的血漿中滯留性機能, 包含以下步驟(a)~(c); (a) 於高鈣濃度條件下使抗原結合分子或抗原結合分子庫接觸抗原、 (b) 將前述步驟(a)中結合於抗原之抗原結合分子置在低鈣濃度條件下、 (c) 取得於前述步驟(b)解離之抗原結合分子。 [51] 一種抗原結合分子之篩選方法,該抗原結合分子具有選自於以下中至少1種機能:(i) 促進抗原攝入細胞內之機能、(ii)對於抗原結合2次以上之機能、(iii)促進血漿中之抗原濃度減少之機能、及(iv)優異的血漿中滯留性機能, 包含以下步驟(a)~(d); (a) 在低鈣濃度條件下使抗原結合分子或抗原結合分子庫接觸抗原、 (b) 選擇於前述步驟(a)未結合於抗原之抗原結合分子、 (c) 使前述步驟(b)選擇之抗原結合分子於高鈣濃度條件下結合於抗原、 (d) 取得於前述步驟(c)結合於抗原之抗原結合分子。 [52] 如[49]至[51]項中任一項之抗原結合分子之篩選方法,其中,低鈣濃度為離子化鈣濃度0.1μM~30μM。 [53] 如[49]至[51]項中任一項之抗原結合分子之篩選方法,其中,高鈣濃度為離子化鈣濃度100μM~10mM。 [54] 如[49]至[52]項中任一項之抗原結合分子之篩選方法,其中,低鈣濃度為核內體內之離子化鈣濃度。 [55] 如[49]至[51]或[53]項中任一項之抗原結合分子之篩選方法,其中,高鈣濃度為血漿中之離子化鈣濃度。 [56] 如[49]至[55]項中任一項之抗原結合分子之篩選方法,其中,前述抗原結合分子所結合之抗原為選自於由IL-6R、IL-6、IgA、人類Glypican3、及IgE構成的群組的抗原。 [57] 如[49]至[56]項中任一項之抗原結合分子之篩選方法,其中,抗原結合分子為抗體。 [58] 一種促進利用抗原結合分子使抗原攝入細胞內之方法,其係藉由投予如[1]至[24]項中任一項之抗原結合分子或依照如[25]至[36]中任一項之抗原結合分子之製造方法所製造之抗原結合分子。 [59] 一種促進血漿中之抗原濃度減少之方法,其係藉由投予如[1]至[24]項中任一項之抗原結合分子或依照如[25]至[36]中任一項之抗原結合分子之製造方法所製造之抗原結合分子。 [60] 一種增加1分子之抗原結合分子對於抗原之結合次數之方法,其係藉由投予如[1]至[24]項中任一項之抗原結合分子或依照如[25]至[36]中任一項之抗原結合分子之製造方法所製造之抗原結合分子。 [61] 一種改善抗原結合分子之血漿中滯留性之方法,其係藉由投予如[1]至[24]項中任一項之抗原結合分子或依照如[25]至[36]中任一項之抗原結合分子之製造方法所製造之抗原結合分子。 [62] 一種促進利用抗原結合分子使抗原攝入細胞內之方法,其係藉由投予如下的抗原結合分子:包含抗原結合域與人類FcRn結合域,且於2種不同的鈣濃度條件下的抗原結合活性不同,抗原結合分子之低鈣濃度條件下之抗原結合活性低於高鈣濃度條件下之抗原結合活性。 [63] 一種促進血漿中之抗原濃度減少之方法,其係藉由投予如下的抗原結合分子:包含抗原結合域與人類FcRn結合域,且於2種不同的鈣濃度條件下的抗原結合活性不同,抗原結合分子之低鈣濃度條件下之抗原結合活性低於高鈣濃度條件下之抗原結合活性。 [64] 一種增加1分子之抗原結合分子對於抗原之結合次數之方法,其係藉由使用如下的抗原結合分子:包含抗原結合域與人類FcRn結合域,且於2種不同的鈣濃度條件下的抗原結合活性不同,抗原結合分子之低鈣濃度條件下之抗原結合活性低於高鈣濃度條件下之抗原結合活性。 [65] 一種改善抗原結合分子之血漿中滯留性之方法,其係藉由使用如下的抗原結合分子:包含抗原結合域與人類FcRn結合域,且於2種不同的鈣濃度條件下的抗原結合活性不同,抗原結合分子之低鈣濃度條件下之抗原結合活性低於高鈣濃度條件下之抗原結合活性。 [66] 如[62]至[65]中任一項之方法,其中前述低鈣濃度為離子化鈣濃度0.1μM~30μM。 [67] 如[62]至[66]中任一項之方法,其中,高鈣濃度為離子化鈣濃度100μM~10 mM。 [68] 如[62]至[67]中任一項之方法,其中,低鈣濃度為核內體內之離子化鈣濃度。 [69] 如[62]至[68]中任一項之方法,其中,高鈣濃度為血漿中之離子化鈣濃度。 [70] 如[62]至[69]中任一項之方法,其中,包含於前述抗原結合分子之FcRn結合域為Fc區域。 [71] 如[62]至[69]中任一項之方法,其中,前述抗原結合分子於酸性pH條件下之抗原結合活性低於中性pH條件下之抗原結合活性。 [72] 如[71]之方法,其中,前述抗原結合分子之至少1個胺基酸經組胺酸取代、或至少有1個組胺酸插入。 [73] 如[62]至[72]中任一項之方法,其中,前述抗原結合分子所結合之抗原係選自於由IL-6R、IL-6、IgA、人類Glypican3、及IgE構成的群組。 [74] 如[62]至[73]中任一項之方法,其中,前述抗原結合分子為抗體。
又,本發明係關於本發明之方法使用之套組,其包含本發明之抗原結合分子或依照本發明之製造方法製造之抗原結合分子。又,本發明係關於一種利用抗原結合分子使抗原攝入細胞內之促進劑、血漿中之抗原濃度之減少促進劑、1分子之抗原結合分子對於抗原之結合次數增加劑、或抗原結合分子之血漿中滯留性改善劑,其包含本發明之抗原結合分子或依照本發明之製造方法製造之抗原結合分子當做有效成分。又,本發明係關於一種本發明之抗原結合分子或依照本發明之製造方法製造之抗原結合分子之用途,係用於製造利用抗原結合分子之抗原攝入細胞內促進劑、血漿中之抗原濃度之減少促進劑、1分子之抗原結合分子對於抗原之結合次數增加劑、或抗原結合分子之血漿中滯留性改善劑。又,本發明係關於用在本發明之方法之本發明之抗原結合分子或依照本發明之製造方法製造之抗原結合分子。 [發明之效果]
依照本發明,可提供促進利用抗原結合分子使抗原攝入細胞內之方法、增加1分子之抗原結合分子對於抗原之結合次數之方法、利用抗原結合分子之投予而促進血漿中之抗原濃度之減少之方法、改善抗原結合分子之血漿中滯留性之方法。藉由促進以抗原結合分子使抗原攝入細胞內,能促進利用抗原結合分子之投予而減少抗原之血漿中之抗原濃度,同時可改善抗原結合分子之血漿中滯留性,可增加1分子之抗原結合分子對於抗原之結合次數,能於體內(in vivo)比起通常之抗原結合分子發揮更為優異的效果。
[實施發明之形態]
本發明提供促進利用抗原結合分子使抗原攝入細胞內之方法、增加1分子之抗原結合分子對於抗原之結合次數之方法、促進利用抗原結合分子之投予而減少血漿中之抗原濃度之方法、及改善抗原結合分子之血漿中滯留性之方法。具體而言,提供藉由使用抗原結合分子之低鈣濃度條件下之抗原結合活性(本發明有時記載為「結合能力」)低於高鈣濃度條件下之抗原結合活性的抗原結合分子,而促進抗原結合分子所為之使抗原攝入細胞內之方法、增加1分子之抗原結合分子對於抗原之結合次數之方法、促進抗原結合分子之投予所致血漿中之抗原濃度之減少之方法、及改善抗原結合分子之血漿中滯留性之方法。
胺基酸 本說明書中,例如Ala/A、Leu/L、Arg/R、Lys/K、Asn/N、Met/M、Asp/D、Phe/F、Cys/C、Pro/P、Gln/Q、Ser/S、Glu/E、Thr/T、Gly/G、Trp/W、His/H、Tyr/Y、Ile/I、Val/V所表示,胺基酸以單字母碼或3字母碼或其兩者表示記載。
抗原 本說明書中,「抗原」只要含有抗原結合域所結合之抗原決定基即可,其構造不限於特定構造。就其他含意而言,抗原也可為無機物也可為有機物,對於投予本發明之活體可為外源性或內在性者。依照本發明之方法,藥物動態經改善之抗原結合分子含有的抗原結合域所結合之抗原,較佳為例如:受體蛋白質(膜結合型受體、可溶型受體)或細胞表面標記等膜抗原、細胞激素等可溶型抗原、含有僅存在於外源性生物之抗原決定基的抗原等。抗原例如下列分子;17-IA、4-1 BB、4Dc、6-酮基-PGF1a、8-異-PGF2a、8-側氧基-dG、A1腺苷受體、A33、ACE、ACE-2、活化素(activin)、活化素A、活化素AB、活化素B、活化素C、活化素RIA、活化素RIA ALK-2、活化素RIB ALK-4、活化素RIIA、活化素RIIB、ADAM、ADAM10、ADAM12、ADAM15、ADAM17/TACE、ADAM8、ADAM9、ADAMTS、ADAMTS4、ADAMTS5、Addressin(Addressins)、Adiponectin、ADP-ribosyl cyclase-1、aFGF、AGE、ALCAM、ALK、ALK-1、ALK-7、Allergen、α1-antichymotrypsin、α1-antitrypsin、α-synuclein、α-V/β-1拮抗劑、aminin (aminin)、amylin、類澱粉β、類澱粉免疫球蛋白重鏈可變區、類澱粉免疫球蛋白輕鏈可變區、雄激素(androgen)、ANG、血管收縮素原(angiotensinogen)、血管生成素( Angiopoietin)配體-2、抗Id、antithrombin III、碳疽、APAF-1、APE、APJ、APO A1、APO 血清類澱粉A、APO-SAA、APP、APRIL、AR、ARC、ART、Artemin (Artemin)、ASPARTIC、心房性鈉利尿因子、心房性鈉利尿胜肽、心房性鈉利尿胜肽A、心房性鈉利尿胜肽B、心房性鈉利尿胜肽C、av/b3 integrin、Axl、B7-1、B7-2、B7-H、BACE、BACE-1、炭疽桿菌(Bacillus anthracis)防禦抗原、Bad、BAFF、BAFF-R、Bag-1、BAK、Bax、BCA-1、BCAM、Bcl、BCMA、BDNF、b-ECGF、β-2-微球蛋白、β內醯胺分解酶、bFGF、BID、Bik、BIM、BLC、BL-CAM、BLK、B淋巴球刺激因子(BIyS)、BMP、BMP-2 (BMP-2a)、BMP-3 (Osteogenin (Osteogenin))、BMP-4 (BMP-2b)、BMP-5、BMP-6 (Vgr-1)、BMP-7 (OP-1)、BMP-8 (BMP-8a)、BMPR、BMPR-IA (ALK-3)、BMPR-IB (ALK-6)、BMPR-II (BRK-3)、BMP、BOK、Bombesin、骨來源神經營養因子(Bone-derived neurotrophic factor)、牛成長荷爾蒙、BPDE、BPDE-DNA、BRK-2、BTC、B淋巴球細胞黏著分子、C10、C1抑制因子、C1q、C3、C3a、C4、C5、C5a(補體5a)、CA125、CAD-8、Cadherin-3、calcitonin、cAMP、碳酸脱水酵素-IX、癌胎兒抗原(CEA)、癌關連抗原(carcinoma-associated antigen)、cardiotrophin-1、CathepsinA、CathepsinB、CathepsinC/DPPI、CathepsinD、CathepsinE、CathepsinH、CathepsinL、CathepsinO、CathepsinS、CathepsinV、CathepsinX/Z/P、CBL、CCI、CCK2、CCL、CCL1/I-309、CCL11/eotaxin、CCL12/MCP-5、CCL13/MCP-4、CCL14/HCC-1、CCL15/HCC-2、CCL16/HCC-4、CCL17/TARC、CCL18/PARC、CCL19/ELC、CCL2/MCP-1、CCL20/MIP-3-α、CCL21/SLC、CCL22/MDC、CCL23/MPIF-1、CCL24/eotaxin-2、CCL25/TECK、CCL26/eotaxin-3、CCL27/CTACK、CCL28/MEC、CCL3/M1P-1-α、CCL3Ll/LD-78-β、CCL4/MIP-l-β、CCL5/RANTES、CCL6/C10、CCL7/MCP-3、CCL8/MCP-2、CCL9/10/MTP-1-γ、CCR、CCR1、CCR10、CCR2、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CCR9、CD1、CD10、CD105、CD11a、CD11b、CD11c、CD123、CD13、CD137、CD138、CD14、CD140a、CD146、CD147、CD148、CD15、CD152、CD16、CD164、CD18、CD19、CD2、CD20、CD21、CD22、CD23、CD25、CD26、CD27L、CD28、CD29、CD3、CD30、CD30L、CD32、CD33 (p67蛋白質)、CD34、CD37、CD38、CD3E、CD4、CD40、CD40L、CD44、CD45、CD46、CD49a、CD49b、CD5、CD51、CD52、CD54、CD55、CD56、CD6、CD61、CD64、CD66e、CD7、CD70、CD74、CD8、CD80 (B7-1)、CD89、CD95、CD105、CD158a、CEA、CEACAM5、CFTR、cGMP、CGRP受體、CINC、CKb8-1、Claudin18、CLC、肉毒桿菌(Clostridium botulinum)毒素、Clostridium difficile (Clostridium difficile)毒素、Clostridium perfringens (Clostridium perfringens)毒素、c-Met、CMV、CMV UL、CNTF、CNTN-1、補體因子3 (C3)、補體因子D、皮質類固醇結合球蛋白、群落刺激因子-1受體、COX、C-Ret、CRG-2、CRTH2、CT-1、CTACK、CTGF、CTLA-4、CX3CL1/fractalkine、CX3CR1、CXCL、CXCL1/Gro-α、CXCL10、CXCL11/I-TAC、CXCL12/SDF-l-α/β、CXCL13/BCA-1、CXCL14/BRAK、CXCL15/ Lungkine (Lungkine)、CXCL16、CXCL16、CXCL2/Gro-β CXCL3/Gro-γ、CXCL3、CXCL4/PF4、CXCL5/ENA-78、CXCL6/GCP-2、CXCL7/NAP-2、CXCL8/IL-8、CXCL9/Mig、CXCLlO/IP-10、CXCR、CXCR1、CXCR2、CXCR3、CXCR4、CXCR5、CXCR6、cystatinC、cytokeratin腫瘤關連抗原、DAN、DCC、DcR3、DC-SIGN、崩壞促進因子、Delta狀蛋白質(Delta-like protein)配體4、des(1-3)-IGF-1 (腦IGF-1)、Dhh、DHICA氧化酶、Dickkopf-1、Digoxin、二肽基肽解酶IV、DK1、DNAM-1、Dnase、Dpp、DPPIV/CD26、Dtk、ECAD、EDA、EDA-A1、EDA-A2、EDAR、EGF、EGFR (ErbB-1)、含有EGF狀域之蛋白質7(EGF like domain containing protein 7)、elastase、elastin、EMA、EMMPRIN、ENA、ENA-78、Endosialin (Endosialin)、endothelin受體、內毒素、enkephalinase、eNOS、Eot、eotaxin、eotaxin-2、eotaxini (eotaxini)、EpCAM、Ephrin B2/EphB4、Epha2酪胺酸激酶受體、上皮增殖因子受體 (EGFR)、ErbB2受體、ErbB3酪胺酸激酶受體、ERCC、erythropoietin (EPO)、erythropoietin受體、E-selectin、ET-1、Exodus (Exodus)-2、RSV之F蛋白質、F10、F11、F12、F13、F5、F9、第Ia因子、第IX因子、第Xa因子、第VII因子、第VIII因子、第VIIIc因子、Fas、FcαR、Fc epsilon RI、FcγIIb、FcγRI、FcγRIIa、FcγRIIIa、FcγRIIIb、FcRn、FEN-1、ferritin、FGF、FGF-19、FGF-2、FGF-2受體、FGF-3、FGF-8、酸性FGF(FGF-acidic)、鹼性FGF(FGF-basic)、FGFR、FGFR-3、fibrin、纖維母細胞活化蛋白質(FAP)、纖維母細胞增殖因子、纖維母細胞增殖因子-10、fibronectin、FL、FLIP、Flt-3、FLT3配體、葉酸受體、卵泡刺激荷爾蒙(FSH)、fractalkine(CX3C)、游離型重鏈、游離型輕鏈、FZD1、FZD10、FZD2、FZD3、FZD4、FZD5、FZD6、FZD7、FZD8、FZD9、G250、Gas 6、GCP-2、GCSF、G-CSF、G-CSF受體、GD2、GD3、GDF、GDF-1、GDF-15 (MIC-1)、GDF-3 (Vgr-2)、GDF-5 (BMP-14/CDMP-1)、GDF-6 (BMP-13/CDMP-2)、GDF-7 (BMP-12/CDMP-3)、GDF-8 (myostatin)、GDF-9、GDNF、gelsolin、GFAP、GF-CSF、GFR-α1、GFR-α2、GFR-α3、GF-β1、gH外被糖蛋白質、GITR、升糖素、升糖素受體、升糖素狀胜肽1受體、Glut 4、谷胺酸羧基肽解酶II、糖蛋白質荷爾蒙受體、糖蛋白質llb/llla (GP llb/llla)、Glypican-3、GM-CSF、GM-CSF受體、gp130、gp140、gp72、顆粒球-CSF (G-CSF)、GRO/MGSA、成長荷爾蒙釋放ㄅ因子、GRO-β、GRO-γ、pylori菌(H. pylori)、半抗原(NP-cap或NIP-cap)、HB-EGF、HCC、HCC 1、HCMV gB外被糖蛋白質、HCMV UL、造血增殖因子(Hemopoietic growth factor) (HGF)、Hep B gp120、heparanase、肝素輔因子II、肝細胞增殖因子(hepatic growth factor)、Bacillus anthracis防禦抗原、C型肝炎病毒E2糖蛋白質、E型肝炎、hepcidin、Her1、Her2/neu (ErbB-2)、Her3 (ErbB-3)、Her4 (ErbB-4)、單純皰疹病毒(HSV) gB糖蛋白質、HGF、HGFA、高分子量黑色素瘤關連抗原(High molecular weight melanoma-associated antigen) (HMW-MAA)、GP120等HIV外被蛋白質、HIV MIB gp 120 V3環圈、HLA、HLA-DR、HM1.24、HMFG PEM、HMGB-1、HRG、Hrk、HSP47、Hsp90、HSV gD糖蛋白質、人類心肌肌凝蛋白、人類細胞巨病毒(HCMV)、人類成長荷爾蒙(hGH)、人類血清白蛋白、人類組織型纖維蛋白溶酶原活化因子(t-PA)、Huntingtin、HVEM、IAP、ICAM、ICAM-1、ICAM-3、ICE、ICOS、IFN-α、IFN-β、IFN-γ、IgA、IgA受體、IgE、IGF、IGF結合蛋白質、IGF-1、IGF-1 R、IGF-2、IGFBP、IGFR、IL、IL-1、IL-10、IL-10受體、IL-11、IL-11受體、IL-12、IL-12受體、IL-13、IL-13受體、IL-15、IL-15受體、IL-16、IL-16受體、IL-17、IL-17受體、IL-18 (IGIF)、IL-18受體、IL-1α、IL-1β、IL-1受體、IL-2、IL-2受體、IL-20、IL-20受體、IL-21、IL-21受體、IL-23、IL-23受體、IL-2受體、IL-3、IL-3受體、IL-31、IL-31受體、IL-3受體、IL-4、IL-4受體、IL-5、IL-5受體、IL-6、IL-6受體、IL-7、IL-7受體、IL-8、IL-8受體、IL-9、IL-9受體、免疫球蛋白免疫複合體、免疫球蛋白、INF-α、INF-α受體、INF-β、INF-β受體、INF-γ、INF-γ受體、I型IFN、I型IFN受體、influenza、inhibin、inhibinα、inhibinβ、iNOS、胰島素、胰島素A鏈、胰島素B鏈、胰島素狀增殖因子1、胰島素狀增殖因子2、胰島素狀增殖因子結合蛋白質、integrin、integrinα2、integrinα3、integrinα4、integrinα4/β1、integrinα-V/β-3、integrinα-V/β-6、integrinα4/β7、integrinα5/β1、integrinα5/β3、integrinα5/β6、integrinα-δ (αV)、integrinα-θ、integrinβ1、integrinβ2、integrinβ3(GPIIb-IIIa)、IP-10、I-TAC、JE、kallikrein、kallikrein11、kallikrein12、kallikrein14、kallikrein15、kallikrein2、kallikrein5、kallikrein6、kallikreinL1、kallikreinL2、kallikreinL3、kallikreinL4、kallistatin、KC、KDR、角質化細胞增殖因子(KGF)、角質化細胞增殖因子-2 (KGF-2)、KGF、殺手免疫球蛋白狀受體、kit配體 (KL)、Kit酪胺酸激酶、laminin5、LAMP、LAPP (amilin、胰島類澱粉多胜肽)、LAP (TGF-1)、潛伏期關連胜肽、潛在型TGF-1、潛在型TGF-1 bp1、LBP、LDGF、LDL、LDL受體、LECT2、lefty、leptin、黃體形成荷爾蒙(leutinizing hormone)(LH)、Lewis-Y抗原、Lewis-Y關連抗原、LFA-1、LFA-3、LFA-3受體、Lfo、LIF、LIGHT、脂蛋白、LIX、LKN、Lptn、L-selectin、LT-a、LT-b、LTB4、LTBP-1、肺界面活性劑、黃體形成荷爾蒙、lymphotactin、lympotoxinβ受體、Lysosphingolipid脂質受體、Mac-1、巨噬體-CSF (M-CSF)、MAdCAM、MAG、MAP2、MARC、maspin、MCAM、MCK-2、MCP、MCP-1、MCP-2、MCP-3、MCP-4、MCP-I (MCAF)、M-CSF、MDC、MDC (67 a.a.)、MDC (69 a.a.)、megsin (megsin)、Mer、MET酪胺酸激酶受體家族、金屬蛋白酶、膜糖蛋白質OX2、mesothelin、MGDF受體、MGMT、MHC (HLA-DR)、微生物蛋白質(microbial protein)、MIF、MIG、MIP、MIP-1 α、MIP-1 β、MIP-3 α、MIP-3 β、MIP-4、MK、MMAC1、MMP、MMP-1、MMP-10、MMP-11、MMP-12、MMP-13、MMP-14、MMP-15、MMP-2、MMP-24、MMP-3、MMP-7、MMP-8、MMP-9、單核球吸引蛋白質(monocyte attractant protein)、單核球群落抑制因子(monocyte colony inhibitory factor)、小鼠促性腺激素關連(gonadotropin-associated)胜肽、MPIF、Mpo、MSK、MSP、MUC-16、MUC18、mutin(Mud)、Muller管抑制因子、Mug、MuSK、髓磷脂關連糖蛋白質、骨髓前驅細胞抑制因子-1 (MPIF-I)、NAIP、Nanobody (Nanobody)、NAP、NAP-2、NCA 90、NCAD、N-Cadherin、NCAM、neprilysin、神經細胞黏著分子、neroserpin (neroserpin)、神經成長因子(NGF)、neurotrophin-3、neurotrophin-4、neurotrophin-6、neuropilin1、neurturin、NGF-β、NGFR、NKG20、N-甲硫胺醯基人類成長荷爾蒙、nNOS、NO、Nogo-A、Nogo受體、C型肝炎病毒來源之非構造蛋白質3型 (NS3)、NOS、Npn、NRG-3、NT、NT-3、NT-4、NTN、OB、OGG1、oncostatinM、OP-2、OPG、OPN、OSM、OSM受體、骨誘導因子(osteoinductive factor)、Osteopontin、OX40L、OX40R、氧化型LDL、p150、p95、PADPr、副甲狀腺荷爾蒙、PARC、PARP、PBR、PBSF、PCAD、P-Cadherin、PCNA、PCSK9、PDGF、PDGF受體、PDGF-AA、PDGF-AB、PDGF-BB、PDGF-D、PDK-1、PECAM、PEDF、PEM、PF-4、PGE、PGF、PGI2、PGJ2、PIGF、PIN、PLA2、胎盤增殖因子、胎盤鹼性磷解酶(PLAP)、胎盤lactogen、纖維蛋白溶酶原活化因子抑制因子-1、血小板增殖因子(platelet-growth factor)、plgR、PLP、不同大小的聚甘醇鏈(poly glycol chain)(例如:PEG-20、PEG-30、PEG40)、PP14、prekallikrein、prion蛋白質、procalcitonin、程式化細胞死蛋白質1、胰島素前體、prolactin、蛋白質前體轉換酵素PC9、prorelaxin (prorelaxin)、前列腺專一性膜抗原(PSMA)、proteinA、proteinC、proteinD、proteinS、proteinZ、PS、PSA、PSCA、PsmAr、PTEN、PTHrp、Ptk、PTN、P-selectin糖蛋白質配體-1、R51、RAGE、RANK、RANKL、RANTES、relaxin、relaxinA鏈、relaxinB鏈、腎素(renin)、呼吸器多核體病毒(RSV) F、Ret、reticulon (reticulon)4、風濕因子、RLI P76、RPA2、RPK-1、RSK、RSV Fgp、S100、RON-8、SCF/KL、SCGF、Sclerostin (Sclerostin)、SDF-1、SDF1 α、SDF1 β、SERINE (SERINE)、血清類澱粉P、血清白蛋白、sFRP-3、Shh、志賀類毒素II、SIGIRR、SK-1、SLAM、SLPI、SMAC、SMDF、SMOH、SOD、SPARC、神經胺醇磷酸受體1、葡萄球菌之脂胞壁酸(lipoteichoic acid)、Stat、STEAP、STEAP-II、幹細胞因子(SCF)、鏈激酶、過氧化超氧化物歧化酶、syndecan-1、TACE、TACI、TAG-72 (腫瘤關連糖蛋白質-72)、TARC、TB、TCA-3、T細胞受體α/β、TdT、TECK、TEM1、TEM5、TEM7、TEM8、Tenascm、TERT、睪丸PLAP狀鹼性磷解酶、TfR、TGF、TGF-α、TGF-β、TGF-β泛專一性(TGF-β Pan Specific)、TGF-β RII、TGF-β RIIb、TGF-β RIII、TGF-β Rl (ALK-5)、TGF-β1、TGF-β2、TGF-β3、TGF-β4、TGF-β5、TGF-I、凝血(thrombin)、血小板生成素(Thrombopoietin)(TPO)、胸腺間質性淋巴蛋白質(Thymic stromal lymphoprotein)受體、胸腺Ck-1、甲狀腺刺激荷爾蒙(TSH)、甲狀腺素、甲狀腺素結合球蛋白、Tie、TIMP、TIQ、組織因子、組織因子蛋白酶抑制因子、組織因子蛋白質、TMEFF2、Tmpo、TMPRSS2、TNF受體I、TNF受體II、TNF-α、TNF-β、TNF-β2、TNFc、TNF-RI、TNF-RII、TNFRSF10A (TRAIL R1 Apo-2/DR4)、TNFRSF10B (TRAIL R2 DR5/KILLER/TRICK-2A/TRICK-B)、TNFRSF10C (TRAIL R3 DcR1/LIT/TRID)、TNFRSF10D (TRAIL R4 DcR2/TRUNDD)、TNFRSF11A (RANK ODF R/TRANCE R)、TNFRSF11B (OPG OCIF/TR1)、TNFRSF12 (TWEAK R FN14)、TNFRSF12A、TNFRSF13B (TACI)、TNFRSF13C (BAFF R)、TNFRSF14 (HVEM ATAR/HveA/LIGHT R/TR2)、TNFRSF16 (NGFR p75NTR)、TNFRSF17 (BCMA)、TNFRSF18 (GITR AITR)、TNFRSF19 (TROY TAJ/TRADE)、TNFRSF19L (RELT)、TNFRSF1A (TNF Rl CD120a/p55-60)、TNFRSF1B (TNF RII CD120b/p75-80)、TNFRSF21 (DR6)、TNFRSF22 (DcTRAIL R2 TNFRH2)、TNFRSF25 (DR3 Apo-3/LARD/TR-3/TRAMP/WSL-1)、TNFRSF26 (TNFRH3)、TNFRSF3 (LTbR TNF RIII/TNFC R)、TNFRSF4 (OX40 ACT35/TXGP1 R)、TNFRSF5 (CD40 p50)、TNFRSF6 (Fas Apo-1/APT1/CD95)、TNFRSF6B (DcR3 M68/TR6)、TNFRSF7 (CD27)、TNFRSF8 (CD30)、TNFRSF9 (4-1 BB CD137/ILA)、TNFRST23 (DcTRAIL R1 TNFRH1)、TNFSF10 (TRAIL Apo-2配體/TL2)、TNFSF11 (TRANCE/RANK配體ODF/OPG配體)、TNFSF12 (TWEAK Apo-3配體/DR3配體)、TNFSF13 (APRIL TALL2)、TNFSF13B (BAFF BLYS/TALL1/THANK/TNFSF20)、TNFSF14 (LIGHT HVEM配體/LTg)、TNFSF15 (TL1A/VEGI)、TNFSF18 (GITR配體 AITR配體/TL6)、TNFSF1A (TNF-a Conectin (Conectin)/DIF/TNFSF2)、TNFSF1B (TNF-b LTa/TNFSF1)、TNFSF3 (LTb TNFC/p33)、TNFSF4 (OX40配體gp34/TXGP1)、TNFSF5 (CD40配體CD154/gp39/HIGM1/IMD3/TRAP)、TNFSF6 (Fas配體 Apo-1配體/APT1配體)、TNFSF7 (CD27配體CD70)、TNFSF8 (CD30配體CD153)、TNFSF9 (4-1 BB配體 CD137配體)、TNF-α、TNF-β、TNIL-I、毒性代謝產物(toxic metabolite)、TP-1、t-PA、Tpo、TRAIL、TRAIL R、TRAIL-R1、TRAIL-R2、TRANCE、transferrin受體、TGF-α及TGF-β等轉形增殖因子(TGF)、穿膜型糖蛋白質NMB、transcyletin、TRF、Trk、TROP-2、凝血細胞(thromboblast)糖蛋白質、TSG、TSLP、腫瘤壞死因子(TNF)、腫瘤關連抗原CA 125、Lewis Y關連糖を示す腫瘤關連抗原、TWEAK、TXB2、Ung、uPAR、uPAR-1、尿激酶、VAP-1、血管內皮增殖因子(VEGF)、vaspin (vaspin)、VCAM、VCAM-1、VECAD、VE-Cadherin、VE-Cadherin-2、VEFGR-1 (flt-1)、VEFGR-2、VEGF受體 (VEGFR)、VEGFR-3 (flt-4)、VEGI、VIM、病毒抗原、維生素B12受體、hydronectin受體、VLA、VLA-1、VLA-4、VNRintegrin、Von Willebrand因子(vWF)、WIF-1、WNT1、WNT10A、WNT10B、WNT11、WNT16、WNT2、WNT2B/13、WNT3、WNT3A、WNT4、WNT5A、WNT5B、WNT6、WNT7A、WNT7B、WNT8A、WNT8B、WNT9A、WNT9B、XCL1、XCL2/SCM-l-β、XCLl/lymponectin、XCR1、XEDAR、XIAP、XPD、HMGB1、IgA、Aβ、CD81, CD97, CD98, DDR1, DKK1, EREG、Hsp90, IL-17/IL-17R、IL-20/IL-20R、氧化LDL, PCSK9, prekallikrein , RON, TMEM16F、SOD1, Chromogranin A, Chromogranin B、tau, VAP1、高分子kininogen、IL-31、IL-31R、Nav1.1、Nav1.2、Nav1.3、Nav1.4、Nav1.5、Nav1.6、Nav1.7、Nav1.8、Nav1.9、EPCR、C1, C1q, C1r, C1s, C2, C2a, C2b, C3, C3a, C3b, C4, C4a, C4b, C5, C5a, C5b, C6, C7, C8, C9, factor B, factor D, factor H, properdin、sclerostin、fibrinogen, fibrin, prothrombin, thrombin, 組織因子, factor V, factor Va, factor VII, factor VIIa, factor VIII, factor VIIIa, factor IX, factor IXa, factor X, factor Xa, factor XI, factor XIa, factor XII, factor XIIa, factor XIII, factor XIIIa, TFPI, antithrombin III, EPCR, thrombomodulin、TAPI, tPA, plasminogen, plasmin, PAI-1, PAI-2、GPC3、Syndecan-1、Syndecan-2、Syndecan-3、Syndecan-4、LPA、S1P及荷爾蒙及成長因子用之受體當中,在活體體液中不會留在細胞而以可溶型式存在之分子。
意指抗原中存在之抗原決定部位之抗原決定基(epitope),係本說明書揭示之抗原結合分子中之抗原結合域所結合之抗原上之部位。因此,例如:抗原決定基可由其構造定義。又,該抗原決定基也可由認識該抗原決定基之抗原結合分子中之對於抗原之結合活性定義。抗原為胜肽或多胜肽時,也可利用構成抗原決定基之胺基酸殘基指定抗原決定基。又,抗原決定基為糖鏈時,也可利用特定糖鏈構造來指定抗原決定基。
直線狀抗原決定基,係包含認識胺基酸一次序列的抗原決定基的抗原決定基。直線狀抗原決定基典型在固有序列中至少含有3個,且最普通為至少5個,例如約8至約10個,6至20個胺基酸。
立體構造抗原決定基,與直線狀抗原決定基相對照,係指含有抗原決定基之胺基酸之一次序列並非所認識之抗原決定基之單一規定成分的抗原決定基(例如:胺基酸之一次序列不一定由規定抗原決定基之抗體所認識之抗原決定基)。立體構造抗原決定基,可能包含對於直線狀抗原決定基為更多之數之胺基酸。關於立體構造抗原決定基之認識,抗體認識胜肽或蛋白質之三維構造。例如:蛋白質分子折疊形成三維構造時,形成立體構造抗原決定基之某個胺基酸及/或多胜肽主鏈,可以並排,抗體可認識抗原決定基。決定抗原決定基之立體構造之方法,包含例如X射線結晶學、二維核磁共振分光學及部位專一性旋轉標誌及電磁場磁性共振分光學,但不限於該等。例如參考:Epitope Mapping Protocols in Methods in Molecular Biology (1996)、第66巻、Morris(編)。
結合活性 以下例示確認含有對抗IL-6R之抗原結合域的待驗抗原結合分子其對於抗原決定基之結合的確認方法,但是確認含有對抗IL-6R以外之抗原的抗原結合域之待驗抗原結合分子其對於抗原決定基之結合的確認方法,也可依照下列例示適當實施。
例如:含有對抗IL-6R之抗原結合域的待驗抗原結合分子會認識IL-6R分子中存在之線狀抗原決定基之情事,例如可以如下方式確認。為了上述目的,合成由構成IL-6R之細胞外域之胺基酸序列構成的線狀胜肽。該胜肽可化學合成。或,利用IL-6R之cDNA中之編碼為相當於細胞外域之胺基酸序列之區域,以基因工程方法可獲得。其次,評價由構成細胞外域之胺基酸序列所構成的線狀胜肽與含有對於IL-6R之抗原結合域的待驗抗原結合分子間的結合活性。例如,利用以經固定化之線狀胜肽為抗原之ELISA,可評價該抗原結合分子對於該胜肽之結合活性。或,依據IL-6R表現細胞中,該抗原結合分子之結合時由於線狀胜肽所致抑制的水平,可以明確獲得對於線狀胜肽之結合活性。利用該等試驗,可以明確獲得該抗原結合分子對於線狀胜肽之結合活性。
又,含有對抗IL-6R之抗原結合域的待驗抗原結合分子會認識立體構造抗原決定基之情事,可由以下方式確認。為了上述目的,製備表現IL-6R之細胞。含有對抗IL-6R之抗原結合域的待驗抗原結合分子接觸IL-6R表現細胞時,會強力結合於該細胞,另一方面,對於固定化有該抗原結合分子之由構成IL-6R之細胞外域的胺基酸序列而成的線狀胜肽,實質上不結合時等。在此,實質上不結合,係指對於人類IL-6R表現細胞之結合活性之80%以下、通常50%以下,較佳為30%以下,尤佳為15%以下之結合活性。
包含對抗IL-6R之抗原結合域之待驗抗原結合分子其對於IL-6R表現細胞之結合活性之測定方法,例如:Antibodies A Laboratory Manual記載之方法(Ed Harlow, David Lane, Cold Spring Harbor Laboratory (1988) 359-420)。亦即,可利用以IL-6R表現細胞為抗原之ELISA或FACS(fluorescence activated cell sorting)之原理評價。
ELISA格式中,包含對抗IL-6R之抗原結合域之待驗抗原結合分子其對於IL-6R表現細胞之結合活性,可利用比較酵素反應所生成之訊號水平而定量評價。亦即,在固定化有IL-6R表現細胞之ELISA板添加待驗抗原結合分子,利用認識待驗抗原結合分子之酵素標記檢測結合於抗體細胞之待驗抗原結合分子。或FACS中,製作待驗抗原結合分子之稀釋系列,決定對於IL-6R表現細胞之抗體結合力價(titer),藉此可比較待驗抗原結合分子對於IL-6R表現細胞之結合活性。
待驗抗原結合分子對於在懸浮於緩衝液等之細胞表面上表現之抗原之結合,可利用流式細胞計數器檢測。流式細胞計數器已知例如如下裝置。 FACSCantoTM II FACSAriaTM FACSArrayTM FACSVantageTM SE FACSCaliburTM (均為BD Biosciences公司的商品名) EPICS ALTRA HyPerSort Cytomics FC 500 EPICS XL-MCL ADC EPICS XL ADC Cell Lab Quanta / Cell Lab Quanta SC(均為Beckman Coulter公司之商品名)
例如:包含對抗IL-6R之抗原結合域之待驗抗原結合分子其對於抗原之結合活性之理想測定方法,例如以下方法。首先,以認識與表現IL-6R之細胞反應之待驗抗原結合分子的經FITC標定的二次抗體染色。將待驗抗原結合分子以適當理想的緩衝液稀釋,可將該抗原結合分子製成所望濃度。例如可使用10μg/ml至10 ng/ml之間的任一濃度。其次,以 FACSCalibur(BD公司)測定螢光強度及細胞數。抗體對於該細胞之結合量,反映於使用CELL QUEST Software(BD公司)解析所得之螢光強度,亦即幾何平均值(幾何平均)。亦即,藉由獲得該幾何平均之値,可測定待驗抗原結合分子之結合量所代表之待驗抗原結合分子之結合活性。
包含對抗IL-6R之抗原結合域之待驗抗原結合分子與某抗原結合分子共有抗原決定基之情事,可藉由兩者對於相同抗原決定基之彼此競爭而確認。抗原結合分子間之彼此競爭,可利用交叉阻斷試驗等檢測。例如彼此競爭ELISA試驗為較佳的交叉阻斷試驗。
具體而言,交叉阻斷試驗中,塗覆在微滴定板之井上的IL-6R蛋白質,於候選的彼此競爭抗原結合分子存在下或非存在下,預備溫育後,添加待驗抗原結合分子。井中之IL-6R蛋白質所結合之待驗抗原結合分子之量,間接相關於成為彼此競爭之候選的彼此競爭抗原結合分子對於相同抗原決定基之結合之結合能力。亦即,彼此競爭抗原結合分子對於相同抗原決定基之親和性愈大,則對於塗覆有待驗抗原結合分子之IL-6R蛋白質之井的結合活性愈低。
經由IL-6R蛋白質而結合於井之待驗抗原結合分子之量,可藉由預先標記抗原結合分子而輕易測定。例如,經生物素標記之抗原結合分子,可藉由抗生物素蛋白過氧化酶接合體及適當基質測定。利用過氧化酶等酵素標記之交叉阻斷試驗,尤其稱為彼此競爭ELISA試驗。抗原結合分子可以用能檢測或測定之其他標記物質予以標記。具體而言,放射標記或螢光標記等為公知。
比起於不存在候選之彼此競爭抗原結合分子組合體下實施之對照試驗中獲得之結合活性,彼此競爭抗原結合分子若能阻斷包含對抗IL-6R之抗原結合域之待驗抗原結合分子之結合至少20%,較佳為至少20-50%,更佳為至少50%,則該待驗抗原結合分子係與彼此競爭抗原結合分子實質上結合於相同抗原決定基,或對於相同抗原決定基之結合為彼此競爭之抗原結合分子。
包含對抗IL-6R之抗原結合域之待驗抗原結合分子所結合之抗原決定基在鑑定構造時,待驗抗原結合分子與對照抗原結合分子共有抗原決定基之情事,可藉由比較兩者之抗原結合分子對於構成該抗原決定基之胜肽導入有胺基酸變異而成之胜肽之結合活性而予以評價。
如此測定結合活性之方法,例如可藉由比較前述ELISA格式中,待驗抗原結合分子及對照抗原結合分子對於導入有變異的線狀胜肽的結合活性而測定。就ELISA以外之方法而言,也可藉由將對於結合於管柱之該變異胜肽的結合活性,以使待驗抗原結合分子與對照抗原結合分子流下該管柱後溶出到溶出液中之抗原結合分子進行定量而測定。使變異胜肽例如與GST之融合胜肽吸附於管柱之方法為公知。
又,當鑑定的抗原決定基為立體抗原決定基時,待驗抗原結合分子與對照抗原結合分子共有抗原決定基之情事,可藉由以下方法評價。首先,製備表現IL-6R之細胞以及表現對於抗原決定基導入有變異之IL-6R的細胞。對於該等細胞懸浮於PBS等適當緩衝液而成的細胞懸浮液添加待驗IL-6R與對照IL-6R。其次,對於經適當緩衝液洗滌的細胞懸浮液,添加能夠認識待驗IL-6R與對照IL-6R的經FITC標記的抗體。利用FACSCalibur(BD公司)測定標記抗體所染色之細胞之螢光強度及細胞數。將待驗IL-6R與對照IL-6R之濃度以適當緩衝液適當稀釋以製備為所望濃度後使用。例如可使用10μg/ml至10 ng/ml之間的任一濃度。標記抗體對於該細胞之結合量,反映於使用CELL QUEST Software(BD公司)解析所獲得之螢光強度,亦即幾何平均值。亦即藉由獲得該幾何平均值,可以測定以標記抗體之結合量所代表之待驗IL-6R與對照IL-6R之結合活性。
本方法中,例如「實質上不結合於變異IL-6R表現細胞」之情事,可藉由以下方法判斷。首先,將已對於表現變異IL-6R之細胞結合之待驗抗原結合分子與對照抗原結合分子以標記抗體染色。接著,檢測細胞之螢光強度。螢光檢測使用FACSCalibur當做流式細胞計數儀時,獲得之螢光強度可以使用CELL QUEST Software解析。從抗原結合分子存在下及非存在下之幾何平均值,將其比較値(Δ幾何平均)依下列計算式計算,可以求得抗原結合分子之結合所致之螢光強度之增加比例。
Δ幾何平均值=幾何平均值 (抗原結合分子存在下)/幾何平均值 (抗原結合分子非存在下)
將由解析獲得之反映待驗抗原結合分子對於變異IL-6R表現細胞之結合量的幾何平均比較値(變異IL-6R分子Δ幾何平均値),與反映待驗抗原結合分子對於IL-6R表現細胞之結合量的Δ幾何平均值比較値進行比較。於該情形,求取對於變異IL-6R表現細胞及IL-6R表現細胞之Δ幾何平均比較値時使用之待驗抗原結合分子之濃度調整為彼此相同或實質上為相同濃度尤佳。可利用預先確認認識IL-6R中之抗原決定基的抗原結合分子當做對照抗原結合分子。
待驗抗原結合分子對於變異IL-6R表現細胞之Δ幾何平均比較値,若比起待驗抗原結合分子對於IL-6R表現細胞之Δ幾何平均比較値之至少80%、較佳為50%、更佳為30%、尤佳為15%還小,則判定為「實質上不結合於變異IL-6R表現細胞」。求取幾何平均値(Geometric Mean)之計算式,記載於CELL QUEST Software User’s Guide(BD biosciences公司)。若比較比較値而其實質上可視為相同之程度,則可評價待驗抗原結合分子與對照抗原結合分子之抗原決定基為相同。
抗原結合域 本說明書中,「抗原結合域」只要能結合於目的之抗原則可使用任意構造之域。如此的域,例如:抗體之重鏈及輕鏈之可變區、存在於生體內之細胞膜蛋白質Avimer所含之約35個胺基酸之稱為A域之模組(WO2004/044011、WO2005/040229)、包含於細胞膜表現之糖蛋白質fibronectin中之蛋白質所結合之域10Fn3域之Adnectin(WO2002/032925)、以構成由ProteinA之58個胺基酸構成的3個螺旋束(bundle)的IgG結合域為支架(scaffold)的Affibody(WO1995/001937)、具含33個胺基酸殘基之轉彎(turn)與2個反向並行之螺旋以及迴圈的次單元返覆層疊的構造的ankyrin返覆(ankyrin repeat:AR)之分子表面所露出之區DARPins(Designed Ankyrin Repeat proteins)(WO2002/020565)、將嗜中性球明膠酶結合lipocalin (neutrophil gelatinase-associated lipocalin(NGAL))等lipocalin分子中高度保守的8個反向並行的股中央方向扭曲成的活塞桶(barrel)構造的單側予以支撐的4個迴圈區Anticalin等(WO2003/029462)、就八目鰻、沼田鰻等無顎類之獲得免疫系統而言不具免疫球蛋白之構造的可變性淋巴球受體(variable lymphocyte receptor(VLR))之富含白胺酸殘基之返覆(leucine-rich-repeat(LRR))模組返覆疊層而獲得之馬蹄形構造之內部之平行型片構造之中空區(WO2008/016854)為佳。本發明之抗原結合域之較佳例,例如含抗體之重鏈及輕鏈之可變區的抗原結合域。如此的抗原結合域,例如「scFv(single chain Fv)」、「單鏈抗體(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「Fab」或「F(ab')2」等為較佳。
本發明之抗原結合分子中,抗原結合域可以結合於相同的抗原決定基。在此,相同之抗原決定基可存在於由例如:序列編號:15記載之胺基酸序列構成的蛋白質中。又,可存在於由序列編號:15記載之胺基酸序列之20號至365號之胺基酸構成的蛋白質中。或,本發明之抗原結合分子中,抗原結合域可以結合於彼此不同的抗原決定基。在此,不同的抗原決定基,可存在於由例如:序列編號:15記載之胺基酸序列構成的蛋白質中。又,可存在於由序列編號:15記載之胺基酸序列之20號至365號之胺基酸構成之蛋白質中。
鈣結合模體 本發明之抗原結合分子中,抗原結合域包含鈣結合模體。鈣結合模體,只要是在低鈣濃度條件下的抗原結合活性低於在高鈣濃度條件下之抗原結合活性,則可包含於抗原結合域之任一位置。抗原結合域為抗體之可變區時,鈣結合模體也可包含於可變區之重鏈,也可包含於可變區之輕鏈。又,鈣結合模體也可包含於重鏈及輕鏈之兩者。非限定之另一一態樣中,鈣結合模體也可包含於可變區之框架序列,也可包含於可變區之CDR序列。又,鈣結合模體也可包含於框架序列與CDR序列兩者。
本發明之非限定之一態樣中,鈣結合模體包含視鈣離子濃度之條件而改變對抗抗原之抗原結合分子之結合活性之胺基酸殘基。該胺基酸殘基,例如理想者有具金屬螯合作用之胺基酸。具金屬螯合作用之胺基酸,例如絲胺酸(Ser(S))、蘇胺酸(Thr(T))、天冬醯胺酸(Asn(N))、麩醯胺酸(Gln(Q))、天冬胺酸(Asp(D))、麩胺酸(Glu(E))、組胺酸(His(H))及酪胺酸(Tyr(Y))等較佳。具有在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性的性質的既有抗原結合域所存在之鈣結合模體,可適當當做本發明之鈣結合模體。如此的既有的抗原結合域之非限定例,例如:在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之抗體之可變區所含之鈣結合模體。如此的抗體之非限定例,例如含序列編號:1及序列編號:2之IL-6受體抗體及含序列編號:25及序列編號:26之IL-6抗體。又,已知具多數個鈣離子結合部位且據認為係從分子進化上共通之起源而來的TroponinC、攜鈣素(Calmodulin)、Parvalbumin、肌凝蛋白輕鏈等,其結合模體也可當做本發明之鈣結合模體使用。
本發明之抗原結合域為抗體之可變區時,鈣結合模體也可包含於可變區之重鏈,也可包含於可變區之輕鏈。又,鈣結合模體也可包含於重鏈及輕鏈之兩者。非限定之另一態樣中,鈣結合模體可包含於可變區之框架序列,也可包含於可變區之CDR序列。又,鈣結合模體,可包含於框架序列與CDR序列兩者。可設計重鏈或輕鏈之CDR1、CDR2及/或CDR3,使得含有該等鈣結合模體。例如:本發明之非限定一態樣中,可設計以序列編號:41、序列編號:63、序列編號:64表示之人類抗體之輕鏈可變區所含之鈣結合模體,使包含於本發明之抗原結合分子之輕鏈可變區。如此的鈣結合模體,例如以Kabat編號法表示之30位、31位、32位、50位及/或92位中任一個以上之胺基酸為包含具金屬螯合作用之胺基酸的鈣結合模體。如此的鈣結合模體之非限定態樣,例如與從以序列編號:41、序列編號:63、序列編號:64表示之人類抗體之輕鏈可變區之以Kabat編號法表示之30位、31位、32位、50位及/或92位之5個胺基酸中選出的1~4個胺基酸為相同之胺基酸,係包含於對應之Kabat編號法之胺基酸部位的鈣結合模體。於此情形,輕鏈可變區之以Kabat編號法表示之30位、31位、32位、50位及/或92位之5個胺基酸部位之中,與以序列編號:41、序列編號:63、序列編號:64表示之人類抗體之輕鏈可變區中之對應的胺基酸部位所含之胺基酸為不相同之胺基酸胺基酸部位,宜為包含具金屬螯合作用之胺基酸。又,例如:本發明之非限定之另一態樣中,可設計以序列編號:1表示之重鏈可變區所包含之鈣結合模體,使其包含於本發明之抗原結合分子之重鏈可變區。如此的鈣結合模體,例如以Kabat編號法表示之95位、96位及/或100a位之胺基酸為包含具金屬螯合作用之胺基酸的鈣結合模體。又,例如:本發明之非限定之另一一態樣中,可設計以序列編號:25表示之重鏈可變區所包含之鈣結合模體,使其包含於本發明之抗原結合分子之重鏈可變區。如此的鈣結合模體,例如以Kabat編號法表示之95位及/或101位之胺基酸為包含具金屬螯合作用之胺基酸的鈣結合模體。具該等金屬螯合作用之胺基酸,例如絲胺酸(Ser(S))、蘇胺酸(Thr(T))、天冬醯胺酸(Asn(N))、麩醯胺酸(Gln(Q))、天冬胺酸(Asp(D))、麩胺酸(Glu(E)、組胺酸(His(H))及酪胺酸(Tyr(Y))等。又,為了鈣離子之結合,也可涉及該等位置之胺基酸之主鏈之羰基。如後述實施例所記載,藉由將包含於鈣結合模體之胺基酸移植到所望的抗原結合域,令人意外地,可對於該抗原結合域賦予鈣離子結合活性。又,也可適當使用Cadherin域、Calmodulin所包含之EF手、Protein kinase C所包含之C2域、血液凝固蛋白質FactorIX所包含之Gla域、去唾液酸糖蛋白(asialoglycoprotein)受體或甘露糖結合受體所包含之C型凝集素、LDL受體所包含之A域、Annexin、thrombospondin3型域及EGF狀域也可理想地使用。
專一性 專一性係指其中之一的分子對於其一或多數之結合對象的分子以外之分子未顯示任何顯著結合之狀態。又,抗原結合域也可用在對於某抗原中所含之多數抗原決定基當中特定抗原決定基為專一性的情形。又,抗原結合域所結合之抗原決定基包含在多數不同抗原時,具該抗原結合域之多胜肽組合體可以與含該抗原決定基之各種抗原結合。
抗體 本說明書中,抗體係指天然者或部分或完全合成所製造之免疫球蛋白。抗體可從其天然存在之血漿或血清等天然資源或產生抗體之融合瘤細胞之培養上清單離,或可使用基因重組等方法部分或完全合成。抗體例如免疫球蛋白之同種型(isotype)及此等同種型之次類(subclass)為較佳例。人類免疫球蛋白已知有IgG1、IgG2、IgG3、IgG4、IgA1、IgA2、IgD、IgE、IgM9種類型(同種型)。本發明之抗體在該等同種型之中,可含IgG1、IgG2、IgG3、IgG4。
製作具有所望結合活性之抗體之方法於該技術領域之人士為公知。以下列舉製作與IL-6結合之抗體(抗IL-6R抗體)之方法。與IL-6R以外之抗原結合的抗體也可依據下列例示適當製作。
抗IL-6R抗體可使用公知方法以多株或單株抗體之形式取得。抗IL-6R抗體,宜製作哺乳動物來源的單株抗體。哺乳動物來源的單株抗體,包含由融合瘤產生者,及以基因工程的方法以含抗體基因之表現載體轉形而得之寄主細胞所產生者等。本發明之單株抗體包含「人類化抗體」或「嵌合抗體」。
單株抗體產生融合瘤,可使用公知技術依例如以下方式製作。亦即,使用IL-6R蛋白質當做感作抗原,依通常之免疫方法將哺乳動物免疫。將獲得之免疫細胞以通常的細胞融合法與公知之母細胞融合。其次依照通常之篩選法,篩選單株抗體產生細胞,可選擇產生抗IL-6R抗體之融合瘤。
具體而言,單株抗體之製作係依例如以下所示方式實行。首先,藉由表現在序列編號:16揭示其核苷酸序列之IL-6R基因,取得當做抗體取得之感作抗原使用的以序列編號:15表示的IL-6R蛋白質。亦即,藉由將編碼為IL-6R之基因序列插入公知之表現載體,而將適當的寄主細胞轉形。從該寄主細胞中或培養上清中以公知方法精製所望之人類IL-6R蛋白質。為了從培養上清中取得可溶型之IL-6R,例如可使Mullberg等人(J. Immunol. (1994) 152 (10), 4958-4968)記載之序列編號:15表示之IL-6R多胜肽序列當中1至357號之胺基酸構成之蛋白質表現,以代替表現以序列編號:15表示之IL-6R蛋白質。又,經精製的天然IL-6R蛋白質也同樣可當做感作抗原使用。
對於哺乳動物免疫時使用之感作抗原,可使用該精製IL-6R蛋白質。IL-6R之部分胜肽也可當做感作抗原使用。於此時,該部分胜肽可利用人類IL-6R之胺基酸序列以化學合成取得。又,也可將IL-6R基因之一部分納入表現載體使表現而取得。再者,使用蛋白質分解酵素將IL-6R蛋白質分解也可取得,但是當做部分胜肽使用之IL-6R胜肽之區域及大小不限於特別之態樣。較佳區域可從序列編號:15之胺基酸序列當中相當於20-357胺基酸之胺基酸序列選擇任意序列。構成當做感作抗原之胜肽的胺基酸的數目至少為5以上,例如6以上或7以上較佳。更具體而言,可將8~50、較佳為10~30個殘基之胜肽當做感作抗原使用。
又,將IL-6R蛋白質之所望之部分多胜肽或胜肽與不同的多胜肽融合成的融合蛋白質可利用為感作抗原。為了製造當做感作抗原使用之融合蛋白質,例如可適當利用抗體之Fc片段或胜肽標籤(tag)等。表現融合蛋白質之載體,可藉由將編碼為所望之二種或更多種多胜肽片段之基因於框架內(inframe)融合,並將該融合基因以前述方式插入表現載體而製作。融合蛋白質之製作方法記載於Molecular Cloning 2nd ed. (Sambrook,J et al., Molecular Cloning 2nd ed., 9.47-9.58(1989)Cold Spring Harbor Lab. press)。可當做感作抗原使用之IL-6R之取得方法及使用其之免疫方法,在WO2003/000883、WO2004/022754、WO2006/006693等亦有具體記載。
以該感作抗原免疫之哺乳動物不限於特定動物,宜考慮與細胞融合使用之母細胞之間的適合性選擇。一般的囓齒類動物,例如小鼠、大鼠、倉鼠、或兔、猴等較佳。
依公知方法將上述動物以感作抗原免疫。例如就一般方法而言,係藉由將感作抗原對於哺乳動物之腹腔內或皮下注射而投予以實施免疫。具體而言,將以PBS(Phosphate-Buffered Saline)或生理食鹽水等以適當稀釋倍率稀釋過的感作抗原,視所望與通常的佐劑例如佛洛依德完全佐劑混合並乳化後,將該感作抗原對於哺乳動物每4至21日投予數次。又,感作抗原免疫時可以使用適當載體。尤其使用小分子量之部分胜肽當做感作抗原時,有時以結合有白蛋白、血藍蛋白(keyhole lympet hemocyanin)等載體蛋白質的該感作抗原胜肽進行免疫為理想。
又,產生所望抗體之融合瘤可使用DNA免疫並依以下方式製作。DNA免疫,係指在免疫動物中投予以能表現編碼為抗原蛋白質之基因的態樣構建之載體DNA的該免疫動物中,藉由感作抗原在該免疫動物之活體內表現,能提供免疫刺激之免疫方法。比起對於免疫動物投予蛋白質抗原之一般免疫方法,DNA免疫可期待如下的優越性。 -可維持如IL-6R之膜蛋白質之構造而提供免疫刺激 -無需精製免疫抗原
為了以DNA免疫獲得本發明之單株抗體,首先將表現IL-6R蛋白質之DNA對於免疫動物投予。編碼為IL-6R之DNA可利用PCR等公知方法合成。將獲得之DNA插入適當表現載體並對於免疫動物投予。表現載體例如可以理想地利用pcDNA3.1等市售表現載體。將載體對於活體投予之方法,可使用一般使用之方法。例如,可藉由將吸附有表現載體之金粒子以基因槍導入免疫動物個體之細胞內而實施DNA免疫。再者,認識IL-6R之抗體之製作也可使用國際公開WO2003/104453記載之方法製作。
以此方式將哺乳動物免疫,確認血清中與IL-6R結合之抗體力價上升後,從哺乳動物採取免疫細胞以供細胞融合。較佳之免疫細胞尤佳為使用脾細胞。
與前述免疫細胞融合之細胞,可使用哺乳動物之骨髓瘤細胞。骨髓瘤細胞宜具有為了篩選的適當選擇標記。選擇標記,係指能於特定培養條件下生存之(或無法生存)之形質。選擇標記中,次黃嘌呤-鳥嘌呤磷酸核糖轉移酶(hypoxanthine-guanine phosphoribosyl transferase)缺損(以下簡稱為HGPRT缺損)、或胸腺嘧啶激酶缺損(以下簡稱為TK缺損)等為公知。具HGPRT或TK缺損之細胞,具有次黃嘌呤-胺基喋呤-胸腺嘧啶感受性(以下簡稱為HAT感受性)。HAT感受性之細胞在HAT選擇培養基中無法合成DNA會死滅,但若與正常細胞融合則會利用正常細胞之補救合成路徑(salvage pathway)繼續合成DNA,故能在HAT選擇培養基中增殖。
HGPRT缺損或TK缺損之細胞,各可以含6硫鳥嘌呤(thioguanine)、8氮雜鳥嘌呤 (以下簡稱為8AG)、或5'溴去氧尿嘧啶之培養基選擇。於DNA中納入該等嘧啶類似物之正常細胞會死滅。另一方面,未納入該等嘧啶類似物之該等酵素缺損之細胞,能在選擇培養基中生存。其他稱為G418耐受性之選擇標記,係利用新黴素耐受性基因提供對於2-去氧鏈黴胺(streptamine)系抗生物質(慶大黴素(gentamycin類似體)之耐受性。對細胞融合為理想的各種骨髓瘤細胞為公知。
如此的骨髓瘤細胞例如可理想地使用P3(P3x63Ag8.653)(J. Immunol.(1979)123 (4), 1548-1550)、P3x63Ag8U.1(Current Topics in Microbiology and Immunology(1978)81, 1-7)、NS-1(C. Eur. J. Immunol.(1976)6 (7), 511-519)、MPC-11(Cell(1976)8 (3), 405-415)、SP2/0(Nature(1978)276 (5685), 269-270)、FO(J. Immunol. Methods(1980)35 (1-2), 1-21)、S194/5.XX0.BU.1(J. Exp. Med.(1978)148 (1), 313-323)、R210(Nature(1979)277 (5692), 131-133)等。
基本上可依照公知方法例如Keller與Milstein等人的方法(Methods Enzymol.(1981)73, 3-46)等,實施前述免疫細胞與骨髓瘤細胞之細胞融合。 更具體而言,可於例如細胞融合促進劑存在下於通常的營養培養液中實施前述細胞融合。融合促進劑可使用例如聚乙二醇(PEG)、仙台病毒 (HVJ)等,為更提高融合效率,可視所望添加使用二甲基亞碸等輔助劑。
免疫細胞與骨髓瘤細胞之使用比例可任意設定。例如相對於骨髓瘤細胞將免疫細胞定為1至10倍較佳。前述細胞融合使用之培養液,例如適於前述骨髓瘤細胞株增殖之RPMI1640培養液、MEM培養液、此外,可使用該種細胞培養使用之通常之培養液,再者,可理想地添加胎牛血清(FCS)等血清補液。
細胞融合係將前述免疫細胞與骨髓瘤細胞以既定量於前述培養液中充分混合,並且將預先加溫至約37℃之PEG溶液(例如平均分子量1000至6000左右)以通常30至60%(w/v)之濃度添加。藉由將混合液緩慢混合,會形成所望之融合細胞(融合瘤)。接著,逐次添加上述列舉之適當培養液,反複實施離心並去除上清之操作,可將對於融合瘤之生長不利的細胞融合劑等除去。
以如此方式獲得之融合瘤,可藉由於通常之選擇培養液,例如HAT培養液(含次黃嘌呤、胺基喋呤、胸腺嘧啶之培養液)培養而選擇。為了使所望之融合瘤以外之細胞(非融合細胞)死滅,可使繼續進行使用上述HAT培養液之培養足夠時間(通常該足夠時間為數日至數週)。其次,以通常之極限稀釋法,實施產生所望抗體之融合瘤之篩選及單一選殖。
以如此方式獲得之融合瘤,可利用因應細胞融合使用之骨髓瘤具有之選擇標記的選擇培養液而選擇。例如具HGPRT或TK缺損之細胞,可藉由以HAT培養液(含次黃嘌呤、胺基喋呤及胸腺嘧啶之培養液)培養而選擇。亦即,當使用HAT感受性骨髓瘤細胞於細胞融合時,可在HAT培養液中將成功與正常細胞細胞融合的細胞選擇性增殖。為了使所望融合瘤以外之細胞(非融合細胞)死滅,可以繼續使用上述HAT培養液之培養足夠時間。具體而言,一般可藉由數日至數週的培養而選擇所望之融合瘤。其次可利用通常之極限稀釋法,實施產生所望之抗體的融合瘤的篩選及單一選殖。
所望之抗體之篩選及單一選殖,可依照基於公知抗原抗體反應之篩選方法而理想地實施。例如,結合於IL-6R之單株抗體可以結合於在細胞表面表現的IL-6R。如此的單株抗體例如可藉由FACS(fluorescence activated cell sorting)篩選。FACS係將與螢光抗體接觸之細胞以雷射光解析,並測定各個細胞發出之螢光,而可測定抗體對於細胞表面之結合的系統。
為了利用FACS篩選產生本發明之單株抗體的融合瘤,首先要製備表現IL-6R之細胞。用於篩選之較佳細胞為使IL-6R強制表現之哺乳動物細胞。藉由以當做寄主細胞之未經轉形之哺乳動物細胞為對照,可以選擇性檢測抗體對於細胞表面之IL-6R的結合活性。亦即,藉由選擇產生未結合於寄主細胞而結合於IL-6R強制表現細胞的抗體的融合瘤,可以取得產生IL-6R單株抗體之融合瘤。
或抗體對於經固定化之IL-6R表現細胞的結合活性可依據ELISA之原理評價。例如,將IL-6R表現細胞固定化在ELISA平板的井。使融合瘤之培養上清接觸井內之固定化細胞,以檢測結合於固定化細胞的抗體。單株抗體為小鼠來源時,與細胞結合之抗體可利用抗小鼠免疫球蛋白抗體檢測。該等篩選所選擇之產生具有對於抗原之結合能力的所望抗體的融合瘤,可利用極限稀釋法等選殖。
以此方式製作之產生單株抗體之融合瘤可在通常之培養液中繼代培養。而且,該融合瘤可於液態氮中長期保存。
將該融合瘤依照通常方法培養,可從其培養上清取得所望之單株抗體。或可將融合瘤對於與其具適合性之哺乳動物投予使增殖,並從其腹水獲取單株抗體。前者之方法對於獲得高純度抗體為適當。
從該融合瘤等抗體產生細胞選殖的抗體基因所編碼之抗體也可適當利用。藉由將經選殖的抗體基因納入適當載體並導入寄主,可以表現該基因所編碼的抗體。抗體基因之單離與對於載體之導入、及用於將寄主細胞轉形之方法,例如已由Vandamme等人確立 (Eur.J. Biochem.(1990)192 (3), 767-775)。下列所述重組抗體之製造方法亦為公知。
例如,可從產生抗IL-6R抗體之融合瘤細胞取得編碼為抗IL-6R抗體之可變區(V區)之cDNA。為此,通常首先從融合瘤萃取全體RNA。用於從細胞萃取mRNA之方法,例如可利用如下方法。 -胍(guanidine)超離心法(Biochemistry (1979) 18 (24), 5294-5299) -AGPC法(Anal. Biochem. (1987) 162 (1), 156-159)
萃取到的mRNA可使用mRNA Purification Kit (GE Health care bioscience製)等精製。或如QuickPrep mRNA Purification Kit (GE Health care bioscience製)等,也有用於從細胞直接萃取全體mRNA之市售套組。使用如此的套組,可從融合瘤取得mRNA。從獲得之mRNA使用反轉錄酵素可合成編碼為抗體V區之cDNA。cDNA可利用AMV Reverse Transcriptase First-strand cDNA Synthesis Kit(生化學工業社製)等合成。又,為了cDNA之合成及放大,可適當利用SMART RACE cDNA 放大套組(Clontech製)及使用PCR之5’-RACE法(Proc. Natl. Acad. Sci. USA (1988) 85 (23), 8998-9002、Nucleic Acids Res. (1989) 17 (8), 2919-2932)。又,在如此的cDNA合成之過程中,可在cDNA的兩末端導入後述適當的限制酶部位。
從獲得之PCR產物精製目的之cDNA片段,其次與載體DNA連結。以如此方式製作重組載體,並導入大腸菌等,選擇群落(colony)後,從形成有該群落之大腸菌製備所望之重組載體。並且針對該重組載體是否具有目的cDNA之鹼基序列,可使用公知之方法例如二去氧核苷酸鏈終結法等確認。
為了取得編碼為可變區之基因,利用使用可變區基因放大用引子之5’-RACE法係屬簡便。首先,以從融合瘤細胞萃取之RNA當做模板,合成cDNA,獲得5’-RACE cDNA庫。5’-RACE cDNA庫之合成可適當使用SMART RACE cDNA 放大套組等市售套組。
以獲得之5’-RACE cDNA庫為模板,以PCR法將抗體基因放大。依據公知之抗體基因序列可設計小鼠抗體基因放大用之引子。此等引子為依免疫球蛋白之次類而各不相同的鹼基序列。因此,次類理想為預先使用Iso Strip小鼠單株抗體同種型決定套組(Roche diagnostics)等市售套組決定。
具體而言,當目的為取得例如編碼為小鼠IgG之基因時,可利用將編碼為當做重鏈之γ1、γ2a、γ2b、γ3、當做輕鏈之κ鏈與λ鏈的基因放大的引子。為了放大IgG之可變區基因,一般係利用於3'側之引子黏合有相當於接近可變區之恆定區之部分的引子。另一方面, 5'側之引子係利用5’ RACE cDNA庫製作套組所附帶的引子。
利用如此放大之PCR產物,可再構成由重鏈與輕鏈之組合而成的免疫球蛋白。以再構成之免疫球蛋白對於IL-6R之結合活性當做指標,可以篩選所望之抗體。例如目的為取得對抗IL-6R之抗體時,抗體對於IL-6R之結合,更佳為專一性的。與IL-6R結合之抗體可藉由例如以下方式篩選; (1)使從融合瘤獲得之含有由cDNA編碼之V區的抗體接觸IL-6R表現細胞之步驟、 (2)檢測IL-6R表現細胞與抗體之間的結合之步驟、及 (3)選擇與IL-6R表現細胞結合之抗體之步驟。
檢測抗體與IL-6R表現細胞之間的結合的方法為公知。具體而言,可利用先前所述FACS等方法,檢測抗體與IL-6R表現細胞間之結合。為了評價抗體之結合活性,可適當利用IL-6R表現細胞之固定標本。
以結合活性為指標之抗體之篩選方法,亦宜使用利用噬菌體載體之淘選法。從多株抗體表現細胞群,以重鏈與輕鏈之次類之庫的形式取得抗體基因時,利用噬菌體載體之篩選方法係屬有利。編碼為重鏈與輕鏈之可變區之基因,可藉由以適當連結子序列連結,而形成單鏈Fv(scFv)。藉由將編碼為scFv之基因插入噬菌體載體,可取得於表面表現scFv之噬菌體。該噬菌體與所望抗原接觸後,藉由回收與抗原結合之噬菌體,可以回收編碼為具目的結合活性之scFv的DNA。該操作可視需要反複實施,而將具所望之結合活性之scFv濃縮。
獲得編碼為目的抗IL-6R抗體之V區的cDNA後,將該cDNA以認識插入於該cDNA之兩末端的限制酶部位之限制酶消化者。較佳之限制酶,係認識構成抗體基因之鹼基序列中出現頻度低之鹼基序列並消化。再者,為了將1副本的消化片段以正確方向插入載體,宜插入提供附著末端之限制酶。藉由將以上述方式經消化之編碼為抗IL-6R抗體之V區的cDNA插入適當表現載體,可以取得抗體表現載體。此時,若將編碼為抗體恆定區(C區)之基因、與編碼為前述V區之基因於框架內融合,則可取得嵌合抗體。在此,嵌合抗體係指恆定區與可變區之來源不同者。因此,除了小鼠-人類等的異種嵌合抗體,人類-人類同種嵌合抗體也包含在本發明之嵌合抗體。藉由預先在具恆定區之表現載體插入前述V區基因,可以構建嵌合抗體表現載體。具體而言,可於例如保持有編碼為所望之抗體恆定區(C區)之DNA的表現載體之5’側,適當配置消化前述V區基因之限制酶之限制酶認識序列。藉由將以相同組合之限制酶消化過的兩者於框架內融合,可以構建嵌合抗體表現載體。
為了製造抗IL-6R單株抗體,可以將抗體基因於由表現控制區控制之下表現的方式納入表現載體。用於表現抗體之表現控制區,例如包含增強子或啟動子。又,也可在胺基末端附加適當的信號序列,以使表現的抗體分泌到細胞外。例如係使用具胺基酸序列MGWSCIILFLVATATGVHS(序列編號:113)之胜肽當做信號序列,但是也可加成其他適當的信號序列。將表現的多胜肽在上述序列之羧基末端部分切斷,切斷的多胜肽可以成熟多胜肽之形式分泌到細胞外。其次,藉由以該表現載體將適當的寄主細胞轉形,可以取得表現編碼為抗IL-6R抗體之DNA的重組細胞。
為了表現抗體基因,可將編碼為抗體重鏈(H鏈)及輕鏈(L鏈)之DNA納入分別的表現載體。藉由納入有H鏈與L鏈之載體,對於相同寄主細胞同時轉形(co-transfect),可以表現具備H鏈與L鏈之抗體分子。或可將編碼為H鏈及L鏈之DNA納入單一的表現載體,而將寄主細胞轉形 (參照國際公開WO 94/11523)。
用以藉由將經單離之抗體基因導入適當寄主而製作抗體之寄主細胞與表現載體的多數組合為公知。該等表現系均可應用於單離本發明之抗原結合域或CD3結合域。真核細胞當做寄主細胞時,可適當使用動物細胞、植物細胞、或真菌細胞。具體而言,動物細胞例如以下細胞。 (1)哺乳類細胞、:CHO、COS、骨髓瘤、BHK(baby hamster kidney)、Hela、Vero等 (2)兩生類細胞:非洲爪蟾卵母細胞等 (3)昆蟲細胞:sf9、sf21、Tn5等
或植物細胞以煙草(Nicotiana tabacum)等煙草 (Nicotiana)屬來源之細胞而得之抗體基因表現系為公知。植物細胞之轉形可以適當利用癒傷組織培養之細胞。
又,真菌細胞可以利用如下的細胞。 酵母:啤酒酵母(Saccharomyces cerevisiae)等糖化酵母 (Saccharomyces)屬、甲醇同化酵母(Pichia pastoris)等Pichia屬 絲狀菌:黑麴黴(Aspergillus niger)等麴菌 (Aspergillus)屬
又,利用原核細胞之抗體基因之表現系亦為公知。例如使用細菌細胞時,可以適當利用大腸菌(E. coli)、枯草菌等細菌細胞。於該等細胞中,以轉形導入含有目的抗體基因之表現載體。藉由將經轉形之細胞於體外培養,可從該轉形細胞之培養物獲取所望之抗體。
重組抗體之產生,除了上述寄主細胞,尚可利用基因轉殖動物。亦即,從導入有編碼為所望抗體之基因的動物,可獲取該抗體。例如,抗體基因藉由於框架內插入編碼為乳汁中固有產生之蛋白質的基因內部,可以構建融合基因。乳汁中分泌之蛋白質,例如可利用羊β酪蛋白等。將含有插入有抗體基因之融合基因的DNA片段注入羊胚,並將該經注入之胚胎導入雌羊體內。從接受胚胎的羊產生之基因轉殖羊 (或其子孫)所產之乳汁,可以取得所望之抗體與乳汁蛋白質之融合蛋白質。又,為了增加從基因轉殖羊產生之含所望之抗體之乳汁量,可對於基因轉殖羊投予荷爾蒙(Bio/Technology (1994), 12 (7), 699-702)。
本說明書記載之多胜肽組合體對於人類投予時,該組合體中之抗原結合域,可適當採用以降低對於人類之異種抗原性等為目的經人為改變過的基因重組型抗體來源的抗原結合域。基因重組型抗體例如包含人類化(Humanized)抗體等。該等改變抗體可使用公知方法適當製造。
本說明書記載之用於製作多胜肽組合體中的抗原結合域所使用之抗體之可變區,通常由插入在4個框架區(FR)的3個互補性決定區(complementarity-determining region ; CDR)構成。CDR係實質上決定抗體之結合專一性之區域。CDR之胺基酸序列富有多樣性。另一方面,構成FR之胺基酸序列,即使在具有不同之結合專一性的抗體之間也常會顯示高度同一性。所以,一般可利用CDR之移植而將某抗體之結合專一性移植到其他抗體。
人類化抗體也稱為再構成(reshaped)人類抗體。具體而言,將人類以外之動物例如小鼠抗體之CDR移植到人類抗體而成之人類化抗體等為公知。為了獲得人類化抗體之一般基因重組方法亦為已知。具體而言,就將小鼠抗體之CDR移植到人類FR的方法而言,例如Overlap Extension PCR為公知。於Overlap Extension PCR,係對於用於合成人類抗體FR之引子中,附加編碼為待移植之小鼠抗體之CDR的鹼基序列。引子各準備4個FR。一般將小鼠CDR移植到人類FR時,選擇與小鼠之FR具高同一性之人類FR時,對於維持CDR機能為有利。亦即,一般較佳為利用與相鄰於待移植之小鼠CDR的FR之胺基酸序列為高同一性之胺基酸序列構成之人類FR。
又,連結之鹼基序列可設計為彼此於框架內連接。藉由各引子,可個別合成人類FR。其結果,可獲得於各FR附加有編碼為小鼠CDR之DNA的產物。各產物之編碼為小鼠CDR之鹼基序列,可設計成彼此重疊。接著,使以人類抗體基因為模板而合成之產物之重疊的CDR部分彼此黏合,進行互補鏈合成反應。利用該反應,人類FR經由小鼠CDR之序列而連結。
最後,將連結有3個CDR與4個FR之V區基因,利用黏合在其5'末端與3'末端並附加有適當之限制酶認識序列的引子,將其全長放大。藉由將以上述方式獲得之DNA與編碼為人類抗體C區之DNA以於框架內融合之方式插入於表現載體中,藉此可製作人類型抗體表現用載體。將該重組載體導入寄主並樹立重組細胞後,培養該重組細胞,使編碼為該人類化抗體之DNA表現,藉此使該培養細胞之培養物中產生該人類化抗體(參照歐洲專利公開EP 239400、國際公開WO1996/002576)。
以定性或定量測定以上述方式製作之人類化抗體對於抗原之結合活性並進行評價,可以理想地選擇當經由CDR連結時該CDR會形成良好之抗原結合部位的人類抗體之FR。視需要,可以將FR之胺基酸殘基取代,使再構成人類抗體之CDR能形成適當的抗原結合部位。例如,應用將小鼠CDR移植到人類FR時使用之PCR法,可對於FR導入胺基酸序列之變異。具體而言,可對於與FR黏合之引子導入部分的鹼基序列的變異。以如此的引子合成之FR,導入有鹼基序列之變異。以上述方法測定並評價將胺基酸取代過的變異型抗體對於抗原之結合活性,可以選擇具所望性質之變異FR序列(Sato, K.et al., Cancer Res, 1993, 53, 851-856)。
又,可以將具有人類抗體基因所有曲目的基因轉殖動物(參照國際公開WO1993/012227、WO1992/003918、WO1994/002602、WO1994/025585、WO1996/034096、WO1996/033735)當做免疫動物,以DNA免疫取得所望之人類抗體。
再者,使用人類抗體庫以淘選取得人類抗體之技術亦為已知。例如,將人類抗體之V區以單鏈抗體(scFv)之形式,以噬菌體呈現法使表現在噬菌體之表面。可以選擇表現與抗原結合之scFv的噬菌體。藉由解析選擇之噬菌體之基因,可以決定編碼為與抗原結合之人類抗體之V區的DNA序列。決定與抗原結合之scFv之DNA序列後,將該V區序列與所望之人類抗體C區之序列於框架內融合後插入適當表現載體,可以製作表現載體。將該表現載體導入上述列舉之適當表現細胞中,並使編碼為該人類抗體之基因表現,可取得該人類抗體。該等方法已為公知(參照國際公開WO1992/001047、WO1992/020791、WO1993/006213、WO1993/011236、WO1993/019172、WO1995/001438、WO1995/015388)。
又,就取得抗體基因之而言,除上述以外,也可適當使用Bernasconi等人(Science (2002) 298, 2199-2202)或WO2008/081008記載之B細胞選殖(各抗體之編碼序列之鑑定及選殖、其單離、及各抗體(尤其IgG1、IgG2、IgG3或IgG4)製作用之表現載體構建之用途等)之方法。
EU編號法 依照本發明使用之方法,指定為抗體之CDR與FR之胺基酸位置係依照Kabat規定 (Sequences of Proteins of Immunological Interest(National Institute of Health, Bethesda, Md., 1987年及1991年)。本說明書中,抗原結合分子為抗體或抗原結合片段時,可變區之胺基酸係依照Kabat編號法,恆定區之胺基酸係依照Kabat之胺基酸位置的EU編號法表示。
抗原對於細胞內之攝入或對於細胞內之攝入之促進 本發明中,由抗原結合分子所為之「抗原對於細胞內之攝入」,係指抗原由於胞吞作用而被攝入細胞內。又,本發明中,「促進對於細胞內之攝入」,係指於血漿中,與抗原結合之抗原結合分子攝入細胞內之速度受促進、及/或經攝入的抗原再循環到血漿中之量減少。本發明中,對於細胞內之攝入速度之促進程度,當比較抗原結合分子在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之前之抗原結合分子,對於細胞內之攝入速度受促進即可。因此,本發明中是否由抗原結合分子使抗原對於細胞內之攝入受促進,可以由是否抗原對於細胞內之攝入速度增大而判斷。抗原對於細胞內之攝入速度例如可對於含人類FcRn表現細胞之培養液添加抗原結合分子與抗原,經時測定抗原於培養液中濃度之減少、或經時測定人類FcRn表現細胞內攝入之抗原之量而計算。
藉由本發明之抗原結合分子促進抗原攝入細胞內之攝入速度的方法,例如藉由投予抗原結合分子,能促進血漿中之抗原之消失速度。因此,是否由於抗原結合分子促進抗原對於細胞內之攝入,例如可藉由測定是否血漿中存在之抗原之消失速度受加速,或是否由於抗原結合分子之投予使血漿中之抗原濃度減低而能確認。亦即,也可藉由本發明之抗原結合分子之投予,而促進血漿中之抗原濃度減少。
1分子之抗原結合分子對於抗原之結合次數 又,本發明中,「1分子之抗原結合分子對於抗原之結合次數」,係指1分子抗原結合分子分解至消失為止之期間能夠結合於抗原之次數。本發明中,「使1分子抗原結合分子對於抗原之結合次數增加」,係指以於血漿中,抗原與抗原結合分子結合,且結合有抗原之抗原結合分子攝入細胞內並在體內將抗原解離後,抗原結合分子回到血漿中當做1個循環時,1分子抗原結合分子被分解而消失為止之期間能夠周轉的該循環數增加。本發明中,只要抗原結合分子在低鈣濃度條件下之抗原結合活性不低於在高鈣濃度條件下之抗原結合活性之抗原結合分子、或在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之前之抗原結合分子比較,循環數有增加即可。因此,是否循環數增加,可藉由是否前述「對於細胞內之攝入有促進」,或是否後述「血漿中滯留性有改善」而判斷。
血漿中滯留性之改善 本發明中,「血漿中滯留性之改善」,可代換為「藥物動態之提高」、「藥物動態之改善」、「優異之藥物動態」、「血漿中滯留性之提高」、「優異之血漿中滯留性」或「血漿中滯留性加長」,該等語句係以相同含意使用。
本發明中,「血漿中滯留性改善」,包含從抗原結合分子對於人類、小鼠、大鼠、猴、兔、犬等動物投予之後到從血漿中消失為止(例如:於細胞內被分解等而成為抗原結合分子不能再回到血漿中之狀態為止)之時間不僅增長,且從投予抗原結合分子到其被分解並消失為止之期間於可結合到抗原之狀態(例如:抗原結合分子非結合於抗原之狀態)滯留於血漿中之時間增長。亦即包含非結合於抗原之抗原結合分子(抗原非結合型抗原結合分子)被分解而消失為止之時間增長。
抗原結合分子即使存在於血漿中,若該抗原結合分子已經與抗原時,該抗原結合分子不能與新的抗原結合。所以,若抗原結合分子未與抗原結合之時間增長,能與新的抗原結合的時間會增長(能與新抗原結合之機會增加),能減少在活體內抗原未與抗原結合分子結合之時間,可以增長抗原與抗原結合分子結合之時間。若能藉由抗原結合分子之投予使抗原從血漿中消失加速,則抗原非結合型抗原結合分子之血漿中濃度增加,且抗原與抗原結合分子結合之時間加長。亦即,本發明中,「抗原結合分子於血漿中滯留性之改善」,係包含在低鈣濃度條件下之抗原結合活性不低於在高鈣濃度條件下之抗原結合活性之抗原非結合型抗原結合分子、或在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之前之抗原非結合型抗原結合分子比較,本發明之抗原非結合型抗原結合分子之任一藥物動態參數有所改善(血漿中半衰期增加、平均血漿中滯留時間增加、血漿中廓清降低任一者)、或抗原結合分子投予後,抗原與抗原結合分子結合之時間延長、或由於抗原結合分子使抗原從血漿中消失加速。
藥物動態參數是否改善,可藉由測定抗原結合分子或抗原非結合型抗原結合分子之血漿中半衰期、平均血漿中滯留時間、血漿中廓清等任一參數(由藥理動力學演習理解(南山堂))以判斷。例如:將抗原結合分子對於小鼠、大鼠、猴、兔、犬、人類等投予時,測定抗原結合分子或抗原非結合型抗原結合分子之血漿中濃度並計算各參數,當血漿中半衰期增長或平均血漿中滯留時間增長時,則可稱抗原結合分子之血漿中滯留性有改善。該等參數可利用該技術領域之人士公知之方法測定,例如可使用藥物動態解析軟體WinNonlin (Pharsight)依附帶的程序書解析Noncompartmental而適當評價。抗原非結合型抗原結合分子之血漿中濃度之測定,可以利用該技術領域之人士公知之方法實施,例如可使用Clin Pharmacol. 2008 Apr;48(4):406-17中的測定方法。
本發明中,「血漿中滯留性改善」,也包含抗原結合分子投予後,抗原與抗原結合分子結合之時間延長。抗原結合分子投予後,抗原與抗原結合分子結合之時間是否延長,可測定抗原結合分子非結合型抗原(游離型抗原)之血漿中濃度、或抗原結合分子非結合型抗原濃度(游離型抗原濃度)相對於總抗原濃度,由該濃度之比例開始上升為止之時間判斷。
本發明中,「血漿中之抗原濃度」之測定,可使用該技術領域之人士公知的方法實施抗原結合分子非結合型抗原之血漿中濃度、或抗原結合分子非結合型抗原濃度相對於總抗原濃度之比例之測定,例如:可使用Pharm Res. 2006 Jan;23(1):95-103中的測定方法。
又,抗原在活體內顯示某些機能時,抗原是否與中和抗原機能之抗原結合分子(拮抗物分子)結合,也可利用該抗原之機能是否受中和以評價。抗原之機能是否受中和,可藉由測定反映抗原機能之某些活體內之標記以評價。抗原是否與活化抗原機能之抗原結合分子(促效劑分子)結合,可藉由測定反映抗原機能之某些活體內之標記以評價。
抗原結合分子非結合型抗原之血漿中濃度之測定、抗原結合分子非結合型抗原濃度對於總抗原濃度之比例之測定、活體內標記之測定等測定不不特別限定,宜於抗原結合分子投予後經過固定時間後進行較佳。本發明中,「抗原結合分子投予後經過固定時間後」並不特別限定,可由該技術領域之人士依投予之抗原結合分子之性質等適時決定,例如抗原結合分子投予後經過1日後、抗原結合分子投予經過3日後、抗原結合分子投予經過7日後、抗原結合分子投予經過14日後、抗原結合分子投予經過28日後等。
本發明中,改善人類之血漿中滯留性較佳。難以測定於人類之血漿中滯留性時,也可基於小鼠(例如:正常小鼠、人類抗原表現基因轉殖小鼠、人類FcRn表現基因轉殖小鼠、等)或猴(例如:長尾獼猴(Macaca fascicularis)等)之血漿中滯留性,來預測於人類之血漿中滯留性。
於細胞外與抗原結合分子結合之抗原於細胞內從抗原結合分子之解離 又,本發明也可當做促進於細胞外與抗原結合分子結合之抗原於細胞內從抗原結合分子解離之方法。本發明中,抗原從抗原結合分子解離之處只要是在細胞內的任一處均可,較佳為早期核內體內。本發明中,「於細胞外與抗原結合分子結合之抗原於細胞內從抗原結合分子之解離」,不需要是在細胞外與抗原結合分子結合之攝入細胞內之抗原全部在細胞內從抗原結合分子解離,只要在細胞內從抗原結合分子解離之抗原之比例,係抗原結合分子在低鈣濃度條件下之抗原結合活性不低於在高鈣濃度條件下之抗原結合活性之抗原結合分子、或在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之前之抗原結合分子比較,於細胞內從抗原結合分子解離之抗原之比例較高即可。又,促進於細胞外與抗原結合分子結合之抗原在細胞內從抗原結合分子解離之方法,也可稱為對於抗原結合分子賦予對於與抗原結合之抗原結合分子攝入細胞內、於細胞內抗原從抗原結合分子解離容易促進之性質之方法。
將以結合於抗原之狀態攝入細胞內之抗原結合分子,以非結合抗原之狀態釋放到細胞外 又,本發明也可當做促進以結合於抗原之狀態攝入細胞內之抗原結合分子,以非結合於抗原之狀態釋放到細胞外之方法。本發明中,「以結合於抗原之狀態攝入細胞內之抗原結合分子,以非結合於抗原之狀態釋放到細胞外」,不需要為以結合於抗原之狀態攝入細胞內之抗原結合分子全部以非結合於抗原之狀態釋放到細胞外,只要比較以非結合於抗原之狀態釋放到細胞外之抗原結合分子之比例為,抗原結合分子在低鈣濃度條件下之抗原結合活性不低於高鈣濃度條件下之抗原結合活性之抗原結合分子、或在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之前,釋放到細胞外之抗原結合分子之比例增高即可。釋放到細胞外之抗原結合分子,宜維持抗原結合活性較佳。又,促進以結合於抗原之狀態攝入細胞內之抗原結合分子以未結合於抗原之狀態釋放到細胞外之方法,也可稱為對於抗原結合分子賦予容易促進使結合於抗原之抗原結合分子攝入細胞內,並促進抗原結合分子未與抗原之狀態釋放到細胞外之促進之性質的方法。
鈣濃度之條件 本發明中,低鈣濃度條件下,通常意指離子化鈣濃度為0.1μM~30μM。較佳為0.5μM~10μM,尤佳為接近在活體內的早期核內體內中的離子化鈣濃度的1μM~5μM。又,本發明中,高鈣濃度條件下,通常意指離子化鈣濃度為100μM~10 mM,較佳為200μM~5 mM,尤佳為接近活體內之血漿中(血中)之離子化鈣濃度之0.5 mM~2.5 mM。
因此本發明中,「抗原結合分子在低鈣濃度條件下之抗原結合活性低於高鈣濃度條件下之抗原結合活性」,係指抗原結合分子於離子化鈣濃度0.1μM~30μM之抗原結合活性,若於於離子化鈣濃度100μM~10 mM之抗原結合活性。較佳為抗原結合分子在離子化鈣濃度0.5μM~10μM之抗原結合活性,若於在離子化鈣濃度200μM~5 mM之抗原結合活性,尤佳在為活體內之早期核內體內之離子化鈣濃度時的抗原結合活性,若於在活體內之血漿中之離子化鈣濃度時的抗原結合活性,具體而言,意指抗原結合分子在離子化鈣濃度1μM~5μM之抗原結合活性若於在離子化鈣濃度0.5 mM~2.5 mM之抗原結合活性。
再者,本發明中,「抗原結合分子在低鈣濃度條件下之抗原結合活性低於高鈣濃度條件下之抗原結合活性」的表達方式,也可表達為抗原結合分子於高鈣濃度條件下之抗原結合活性高於在低鈣濃度條件下之抗原結合活性。又,「抗原結合分子在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性」之表達方式中,也包含藉由改變抗原結合分子中之胺基酸序列,使抗原結合分子在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性、或使抗原結合分子於高鈣濃度條件下之抗原結合活性高在低鈣濃度條件下之抗原結合活性之情形。亦即,本發明中,只要抗原結合分子在低鈣濃度條件下之抗原結合活性與於高鈣濃度條件下之抗原結合活性之比增大即可。例如:如後述,使KD(Ca 3μM)/KD(Ca 2 mM)之値增大之態樣。為了使抗原結合分子在低鈣濃度條件下之抗原結合活性與於高鈣濃度條件下之抗原結合活性之比增大,例如可選擇在低鈣濃度條件下之抗原結合活性低者、或藉由改變抗原結合分子中之胺基酸序列,而降低在低鈣濃度條件下之抗原結合活性,也可選擇於高鈣濃度條件下之抗原結合活性高,或藉由改變抗原結合分子中之胺基酸序列,而提高於高鈣濃度條件下之抗原結合活性,或兩者均可。
又,本發明中,有時會記載「在低鈣濃度條件下之抗原結合活性低於高鈣濃度條件下之抗原結合活性」為「低鈣濃度條件下之抗原結合能力若於高鈣濃度條件下之抗原結合能力」,又,有時會記載「使在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性」為「使低鈣濃度條件下之抗原結合能力低於高鈣濃度條件下之抗原結合能力」。
FcRn 與屬於免疫球蛋白超級家族之Fcγ受體不同,FcRn尤其是人類FcRn,在構造的上與主要組織不適合性複合體(MHC)第I類之多胜肽在構造的相類似,且與第I類之MHC分子有22至29%之序列同一性 (Ghetie等人,Immunol. Today (1997) 18 (12), 592-598)。FcRn,係由與可溶性β或輕鏈(β2微球蛋白)複合體化之穿膜α或重鏈構成的異二聚體的形式表現。如MHC,FcRn之α鏈係由3個細胞外域(α1、α2、α3)構成,且短的細胞質域係將蛋白質留在細胞表面。α1及α2域會與抗體之Fc區域中之FcRn結合域交互作用(Raghavan等人(Immunity (1994) 1, 303-315)。
FcRn係於哺乳動物之母性胎盤或卵黃嚢表現,其涉及IgG從母親移動到胎兒。此外,於表現FcRn之囓齒類新生兒的小腸中,涉及母體IgG從攝取FcRn之初乳或乳橫切移動到刷子緣上皮。FcRn有多數種類,在多數其他組織、及各種內皮細胞系表現。其在人類成人血管內皮、肌肉血管系、及肝臓洞狀毛細血管也有表現。FcRn會與IgG,並且再循環到血清,而據認為有維持IgG之血漿中濃度之作用。FcRn對於IgG分子之結合,通常係嚴格依存於pH,最適結合據認為是小於7.0之pH酸性域。
以含序列編號:17表示之信號序列之多胜肽當做前驅體之人類FcRn,於活體內(序列編號:18記載包含信號序列之其多胜肽)會與人類β2-微球蛋白形成複合體。與β2-微球蛋白形成複合體之可溶型人類FcRn可使用通常之重組表現方法製造。可以評價本發明之FcRn結合域對於與如此的與β2-微球蛋白形成複合體之可溶型人類FcRn的結合活性。本發明中,未特別記載時,人類FcRn指能與本發明之FcRn結合域結合之形態者,例如人類FcRn與人類β2-微球蛋白之複合體。
FcRn結合域 本發明之抗原結合分子,具有抗原結合域與人類FcRn結合域。人類FcRn結合域,只要是抗原結合分子在酸性pH及/或中性pH具有人類FcRn結合活性即不特別限定、又,也可為直接或間接對於人類FcRn具結合活性之域。如此的域,例如:直接對於人類FcRn具結合活性之IgG型免疫球蛋白之Fc區域、白蛋白、白蛋白domain3、抗人類FcRn抗體、抗人類FcRn胜肽、抗人類FcRn Scaffold分子等、或間接對於人類FcRn具結合活性之與IgG或白蛋白結合之分子等。本發明中,宜具於pH酸性域及pH中性域具人類FcRn結合活性之域為較佳。該域只要是預先在pH酸性域及pH中性域具人類FcRn結合活性之域,即可直接使用。該域在pH酸性域及/或pH中性域沒有人類FcRn結合活性或弱時,可改變抗原結合分子中之胺基酸而獲得人類FcRn結合活性,但較佳為改變人類FcRn結合域中之胺基酸而獲得於pH酸性域及/或pH中性域之人類FcRn結合活性。又,也可預先在pH酸性域及/或pH中性域改變具人類FcRn結合活性之域中之胺基酸,而提高人類FcRn結合活性。人類FcRn結合域之胺基酸改變,可藉由比較胺基酸改變前與改變後之pH酸性域及/或pH中性域中的人類FcRn結合活性,而找出目的之改變。
人類FcRn結合域,宜為直接與人類FcRn結合之區。人類FcRn結合區之較佳例,例如抗體之Fc區域。但是能與白蛋白或IgG等具有與人類FcRn之結合活性之多胜肽結合之區,也可經由白蛋白或IgG等而間接結合於人類FcRn。所以,本發明之人類FcRn結合區,也可為與白蛋白或IgG具結合活性之多胜肽結合之區。尤其,人類FcRn結合域,較佳為於中性pH之人類FcRn結合活性較高者,可以預先選擇在中性pH之人類FcRn結合活性高之人類FcRn結合域,也可改變抗原結合分子中之胺基酸而賦予在中性pH之人類FcRn結合活性,或可提高於中性pH之人類FcRn結合活性。
測定對於人類FcRn之結合活性時,pH以外之條件可由該技術領域之人士適當選擇,無特別限定。可於例如:WO2009/125825記載,於MES緩衝液、37℃之條件測定。又,抗原結合分子之人類FcRn結合活性之測定可依照該技術領域之人士公知之方法進行,例如可使用Biacore(GE Healthcare)等測定。抗原結合分子與人類FcRn之結合活性之測定,可藉由對於固定化有抗原結合分子或人類FcRn之晶片,分別以人類FcRn或抗原結合分子當做分析物使其流過而評價。
在此,酸性pH中,對於人類FcRn之結合活性,係指於pH4.0~pH6.5之人類FcRn結合活性。較佳為意指於pH5.5~pH6.5之人類FcRn結合活性,尤佳為接近於活體內之早期核內體內之pH的pH5.8~pH6.0的人類FcRn結合活性。又,於中性pH對於人類FcRn之結合活性,係指於pH6.7~pH10.0之人類FcRn結合活性。較佳為意指於pH7.0~pH8.0之人類FcRn結合活性,尤佳為意指於接近活體內之血漿中之pH之pH7.4的人類FcRn結合活性。
改變抗原結合分子中之胺基酸而賦予於中性pH之人類FcRn結合活性、或提高於中性pH之人類FcRn結合活性時,例如使用IgG型免疫球蛋白之Fc區域當做人類FcRn結合域時,可藉由改變人類FcRn結合域之胺基酸,對於抗原結合分子賦予於中性pH之人類FcRn結合活性、或提高中性pH之人類FcRn結合活性。用於改變之較佳IgG型免疫球蛋白之Fc區域,例如人類天然型IgG(IgG1,IgG2,IgG3,IgG4)之Fc區域。對於其他胺基酸之改變,只要能賦予於中性pH之人類FcRn結合活性或提高人類FcRn結合活性,則可在任意位置改變胺基酸。抗原結合分子,當含有人類IgG1之Fc區域當做人類FcRn結合域時,宜包含使於中性pH對於人類FcRn之結合強於人類天然型IgG1之改變。可進行如此改變之胺基酸,例如:EU編號法221號~225號、227號、228號、230號、232號、233號~241號、243號~252號、254號~260號、262號~272號、274號、276號、278號~289號、291號~312號、315號~320號、324號、325號、327號~339號、341號、343號、345號、360號、362號、370號、375號~378號、380號、382號、385號~387號、389號、396號、414號、416號、423號、424號、426號~438號、440號及442號之位置之胺基酸。更具體而言,例如表1記載之胺基酸改變。藉由使用該等改變,能對於IgG型免疫球蛋白之Fc區域賦予、或提高(加強)於中性pH對於人類FcRn之結合活性。又,能使於pH酸性域對於人類FcRn之結合活性比起人類天然型IgG1為強之改變,例如表2所示。該等改變之中,可以適當選擇於中性pH也能強化對於人類FcRn之結合之改變,並使用於本發明。
FcRn結合域之「胺基酸之改變」或「胺基酸改變」,係包含改變為與母FcRn結合域之胺基酸序列不同之胺基酸序列。只要母FcRn結合域之修飾改變體在pH中性域能與人類FcRn結合,則任一FcRn結合域均可當做母FcRn結合域。又,對於已施加改變之FcRn結合域當做母FcRn結合域再施加改變而得之FcRn結合域,也可理想地當做本發明之FcRn結合域。母FcRn結合域,係指多胜肽本身、包含母FcRn結合域之組成物、或意指編碼為母FcRn結合域之聚核苷酸序列。母FcRn結合域,可包含於抗體之項概略説明過的重組產生之公知Fc區域。母FcRn結合域之起源不限定,但可從非人類動物之任意生物或人類取得。較佳之任意生物,例如小鼠、大鼠、天竺鼠、倉鼠、荒地鼠、貓、兔、犬、羊、綿羊、牛、馬、駱駝、及非人類靈長類選擇之生物。其他態樣中,母FcRn結合域也可從長尾獼猴、天竺鼠、紅毛猩猩、黑猩猩、或人類取得。較佳為母FcRn結合域,係從人類IgG1取得,但不限於IgG之特定類別。此係指可適當使用人類IgG1、IgG2、IgG3、或IgG4之Fc區域當做母FcRn結合域。同樣地,本說明書中,意指可將來自於前述任意生物之IgG之任意類別或次類之Fc區域,較佳為當做母FcRn結合域。天然存在之IgG之變異體或經操作之型,例如公知文獻(Curr. Opin. Biotechnol. (2009) 20 (6), 685-91、Curr. Opin. Immunol. (2008) 20 (4), 460-470、Protein Eng. Des. Sel. (2010) 23 (4), 195-202、WO2009/086320、WO2008/092117、WO2007/041635、及WO2006/105338)記載者,但不限定。
改變例如包含一以上之變異,例如:取代為與母FcRn結合域之胺基酸為不同之胺基酸殘基之變異、或對於母FcRn結合域之胺基酸插入一個以上胺基酸殘基或由母FcRn結合域之胺基酸有一個以上之胺基酸之缺損等。較佳為改變後之FcRn結合域之胺基酸序列中,至少部分包含至少天然未產生之FcRn結合域之胺基酸序列。如此的變種必然與母FcRn結合域有低於100%之序列同一性或類似性。較佳實施形態中,變種與母FcRn結合域之胺基酸序列有約75%~低於100%之胺基酸序列同一性或類似性,更佳為約80%~低於100%,更佳為約85%~低於100%,又更佳為約90%~低於100%、最佳為約95%~低於100%之同一性或類似性之胺基酸序列。本發明之一非限定態樣中,母FcRn結合域及本發明之經改變之FcRn結合域之間,有至少1個胺基酸的差異。母FcRn結合域與改變FcRn結合域之胺基酸之不同,也可利用尤其以前述EU編號法指定之胺基酸殘基之位置之指定之胺基酸差異而理想地指定。
又,於pH酸性域對於人類FcRn之結合能比起母人類IgG為強之改變,例如表2。該等改變之中,可以適當選擇於pH中性域仍能強化對於人類FcRn之結合的改變,並使用在本發明。又,對於Fv4-IgG1於酸性條件下與人類FcRn之結合可以加強之改變之組合如表6-1及6-2。尤佳之母人類IgG之Fc區域之改變胺基酸,例如EU編號法237號、238號、239號、248號、250號、252號、254號、255號、256號、257號、258號、265號、270號、286號、289號、297號、298號、303號、305號、307號、308號、309號、311號、312號、314號、315號、317號、325號、332號、334號、360號、376號、380號、382號、384號、385號、386號、387號、389號、424號、428號、433號、434號及436號之位置之胺基酸。
尤佳之改變,例如:母IgG之Fc區域之EU編號法 237號之Gly取代為Met之胺基酸取代、 238號之Pro取代為Ala之胺基酸取代、 239號之Ser取代為Lys之胺基酸取代、 248號之Lys取代為Ile之胺基酸取代、 250號之Thr取代為Ala、Phe、Ile、Met、Gln、Ser、Val、Trp、或Tyr之胺基酸取代、 252號之Met取代為Phe、Trp、或Tyr之胺基酸取代、 254號之Ser取代為Thr之胺基酸取代、 255號之Arg取代為Glu之胺基酸取代、 256號之Thr取代為Asp、Glu、或Gln之胺基酸取代、 257號之Pro取代為Ala、Gly、Ile、Leu、Met、Asn、Ser、Thr、或Val之胺基酸取代、 258號之Glu取代為His之胺基酸取代、 265號之Asp取代為Ala之胺基酸取代、 270號之Asp取代為Phe之胺基酸取代、 286號之Asn取代為Ala或Glu之胺基酸取代、 289號之Thr取代為His之胺基酸取代、 297號之Asn取代為Ala之胺基酸取代、 298號之Ser取代為Gly之胺基酸取代、 303號之Val取代為Ala之胺基酸取代、 305號之Val取代為Ala之胺基酸取代、 307號之Thr取代為Ala、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、或Tyr之胺基酸取代、 308號之Val取代為Ala、Phe、Ile、Leu、Met、Pro、Gln、或Thr之胺基酸取代、 309號之Leu或Val取代為Ala、Asp、Glu、Pro、或Arg之胺基酸取代、 311號之Gln取代為Ala、His、或Ile之胺基酸取代、 312號之Asp取代為Ala或His之胺基酸取代、 314號之Leu取代為Lys或Arg之胺基酸取代、 315號之Asn取代為Ala或His之胺基酸取代、 317號之Lys取代為Ala之胺基酸取代、 325號之Asn取代為Gly之胺基酸取代、 332號之Ile取代為Val之胺基酸取代、 334號之Lys取代為Leu之胺基酸取代、 360號之Lys取代為His之胺基酸取代、 376號之Asp取代為Ala之胺基酸取代、 380號之Glu取代為Ala之胺基酸取代、 382號之Glu取代為Ala之胺基酸取代、 384號之Asn或Ser取代為Ala之胺基酸取代、 385號之Gly取代為Asp或His之胺基酸取代、 386號之Gln取代為Pro之胺基酸取代、 387號之Pro取代為Glu之胺基酸取代、 389號之Asn取代為Ala或Ser之胺基酸取代、 424號之Ser取代為Ala之胺基酸取代、 428號之Met取代為Ala、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、或Tyr之胺基酸取代、 433號之His取代為Lys之胺基酸取代、 434號之Asn取代為Ala、Phe、His、Ser、Trp、或Tyr之胺基酸取代、及 436號之Tyr或Phe取代為His之胺基酸取代。
改變之胺基酸數目不特別限定,可僅改變1處胺基酸,也可改變2處以上之胺基酸。2處以上之胺基酸之改變之組合,例如表3記載之組合。又,可以使於pH酸性域對於人類FcRn之結合比起母人類IgG為加強之改變之組合,如表4-1~4-5。該等改變之中,可以適當選擇於pH中性域也能加強對於人類FcRn之結合的改變的組合,使用在本發明。再者,相對於Fv4-IgG1,於中性條件下加強對於人類FcRn之結合的改變的組合,如表5-1及5-2。
藉由將選自於該等胺基酸中至少1個胺基酸取代為其他胺基酸,能提高於抗原結合分子之pH中性域之人類FcRn結合活性。
[表1]
Figure 02_image001
[表2]
Figure 02_image003
[表3]
Figure 02_image005
[表4-1]
Figure 02_image007
表4-2係接續表4-1。 [表4-2]
Figure 02_image009
表4-3係接續表4-2。 [表4-3]
Figure 02_image011
表4-4係接續表4-3。 [表4-4]
Figure 02_image013
表4-5係接續表4-4。 [表4-5]
Figure 02_image015
[表5-1]
Figure 02_image017
表5-2係接續表5-1。 [表5-2]
Figure 02_image019
[表6-1]
Figure 02_image021
表6-2係接續表6-1。 [表6-2]
Figure 02_image023
針對該等胺基酸改變,可使用公知技術適當實施,例如Drug Metab Dispos. 2007 Jan;35(1):86-94、Int Immunol. 2006 Dec;18(12):1759-69、J Biol Chem. 2001 Mar 2;276(9):6591-604、J Biol Chem. 2007;282(3):1709-17、J Immunol. 2002;169(9):5171-80、J Immunol. 2009;182(12):7663-71、Molecular Cell, Vol. 7, 867-877, April, 2001、Nat Biotechnol. 1997 Jul;15(7):637-40、Nat Biotechnol. 2005 Oct;23(10):1283-8、Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18709-14、EP2154157、US20070141052、WO2000/042072、WO2002/060919、WO2006/020114、WO2006/031370、WO2010/033279、WO2006/053301、WO2009/086320中,係進行人類天然型IgG1之Fc區域之改變。
依照The Journal of Immunology,2009 182: 7663-7671,pH酸性域(pH6.0)之人類天然型IgG1之人類FcRn結合活性為KD 1.7μM,於pH中性域,人類天然型IgG1幾乎無法檢測到人類FcRn結合活性。因此,本發明之方法使用之抗原結合分子之較佳態樣,例如在pH酸性域之人類FcRn結合活性為KD 20μM以下且於pH中性域之人類FcRn結合活性為人類天然型IgG1以上之抗原結合分子。更佳態樣為例如於pH酸性域之人類FcRn結合活性為KD 2.0μM以下且於pH中性域之人類FcRn結合活性為KD 40μM以下之抗原結合分子。更佳態樣例如於pH酸性域之人類FcRn結合活性為KD 0.5μM以下且於pH中性域之人類FcRn結合活性為KD 15μM以下之抗原結合分子。亦即,宜使抗原結合分子於酸性pH條件下之抗原結合活性低於在中性pH條件下之抗原結合活性。又,在此所示之KD値,係以The Journal of Immunology,2009 182: 7663-7671記載之方法(將抗原結合分子固定於晶片,而流過人類FcRn當做分析物)測定時之値。
人類FcRn結合活性之値可使用KD(解離定數),但由於人類天然型IgG1於pH中性域(pH7.4)幾乎不認為有人類FcRn結合活性,故計算KD有所困難。就判斷於pH7.4之人類FcRn結合活性是否高於人類天然型IgG1之方法而言,例如於Biacore以相同濃度流過分析物時之結合回應的大小判斷之方法。亦即,若於pH7.4對於固定化有抗原結合分子之晶片流過人類FcRn時之回應大過於pH7.4對於固定化有人類天然型IgG1之晶片流過人類FcRn時之回應,則可判斷該抗原結合分子於pH7.4之人類FcRn結合活性高於人類天然型IgG1。
pH7.0也可當做pH中性域使用。中性pH藉由使用pH7.0,可以促進人類FcRn與FcRn結合域之弱的交互作用。就測定條件使用之溫度而言,可於10℃~50℃之任意溫度評價結合親和性。較佳為為了決定人類FcRn結合域與人類FcRn之結合親和性,使用15℃~40℃之溫度。更佳為為了決定人類FcRn結合域與人類FcRn之間的結合親和性,同樣使用20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、及35℃任一由20℃至35℃之任意溫度。實施例5記載之25℃的此溫度,係關於本發明之態樣之一例。於較佳態樣中,人類FcRn與FcRn結合域之交互作用,可如實施例5記載,於pH7.0及25℃測定。抗原結合分子對於人類FcRn之結合親和性,可如實施例3記載,以Biacore測定。
更佳態樣中,本發明之抗原結合分子於pH7.0及25℃,具有比起天然型人類IgG為高之人類FcRn結合活性。更佳態樣中,於pH7.0及25℃之人類FcRn結合活性,係比天然型人類IgG高28倍,或強KD 3.2μM。更佳態樣中,於pH7.0及25℃之人類FcRn結合活性,比天然型人類IgG高38倍、或強KD 2.3μM。
天然型人類IgG1、IgG2、IgG3、或IgG4,較佳為關於人類FcRn結合活性或活體內的結合活性,用於與抗原結合分子比較之參考天然型人類IgG用途的天然型人類IgG。較佳為適當使用與目的之抗原結合分子含相同抗原結合域及就人類FcRn結合域含天然型人類IgG Fc區域之參照抗原結合分子。更佳為,天然型人類IgG1,係用於在關於人類FcRn結合活性或活體內之結合活性,與抗原結合分子比較之參照天然型人類IgG用途中使用。
更具體而言,本發明記載之對於血漿中之抗原消失活性有長期效果之抗原結合分子,係於pH7.0及25℃比起天然型人類IgG1有高28倍~440倍之範圍之FcRn結合活性,或有KD為3.0μM至0.2μM之範圍之FcRn結合活性。為了評價本發明之抗原結合分子對於血漿中之抗原消失活性的長期效果,長期間之血漿中抗原濃度,可測定在抗原結合分子投予2日後、4日後、7日後、14日後、28日後、56日後、或84日後,血漿中之總抗原濃度或游離抗原濃度及抗原/抗原結合分子莫耳比而決定。血漿中抗原濃度或抗原/抗原結合分子莫耳比減少是否係由於本發明記載之抗原結合分子而達成,可利用在先前記載之1或多數任意時點評價減少而決定。
更具體而言,本發明記載之對於血漿中之抗原消失活性具短期效果之抗原結合分子,係於pH7.0及25℃具有比天然型人類IgG高440倍之人類FcRn結合活性、或KD強0.2μM之FcRn結合活性。為了評價本發明之抗原結合分子對於血漿中之抗原消失活性之短期效果,短期間之血漿中抗原濃度,可於抗原結合分子投予15分鐘後、1小時後、2小時後、4小時後、8小時後、12小時後、或24小時後,藉由測定血漿中之總抗原濃度或游離抗原濃度及抗原/抗原結合分子莫耳比而決定。
本發明之方法,不拘於標的抗原種類,可適應於任意之抗原結合分子。
例如:抗原結合分子係與膜抗原結合之抗體時,對於活體內投予之抗體係與抗原結合,之後抗體維持與抗原結合並與抗原一起利用內化(internalization)而攝入細胞內之核內體。之後,抗體維持與抗原結合的狀態移動到溶體,抗體與抗原一起由溶體分解。經由內化而從血漿中消失,稱為抗原依存性的消失,已有人報告許多抗體分子(Drug Discov Today. 2006 Jan;11(1-2):81-8)。1分子之IgG抗體以2價結合於抗原時,1分子之抗體係以結合於2分子之抗原的狀態內化,並且維持此狀態於溶體被分解。因此,為通常之抗體時,1分子之IgG抗體無法結合於3分子以上之抗原。例如為具中和活性之1分子之IgG抗體時,無法中和3分子以上之抗原。
IgG分子之血漿中滯留性較長(消失慢),係由於已知當做IgG分子之再利用(salvage)受體的人類FcRn的作用。利用胞飲作用攝入核內體之IgG分子,在核內體內之酸性條件下會與在核內體內表現的人類FcRn結合。無法結合於人類FcRn之IgG分子會前進到溶體,於此被分解,但與人類FcRn結合之IgG分子會移往細胞表面並於血漿中之中性條件下從人類FcRn解離,藉此再度回到血漿中。
又,抗原結合分子為與可溶型抗原結合之抗體時,對於活體內投予之抗體會與抗原結合,之後抗體維持與抗原結合的狀態被攝入細胞內。攝入細胞內之抗體中的多數會由FcRn而釋放到細胞外,但此時由於以維持結合於抗原之狀態釋放到細胞外,因此無法再度與抗原結合。因此,與和膜抗原結合之抗體同樣,為通常之抗體時,1分子之IgG抗體無法與3分子以上之抗原結合。
對於抗原會在血漿中之高鈣濃度條件下強力結合,且於核內體內之低鈣濃度條件下從抗原解離之鈣濃度依存性抗原結合抗體,能於核內體內從抗原解離。鈣濃度依存性抗原結合抗體,由於將抗原解離後,抗體會利用FcRn於血漿中再循環且能再度與抗原結合,因此1個抗體能與多數抗原返覆結合。又,與抗原結合分子結合之抗原藉由於核內體內解離,不會於血漿中再循環,因此能促進利用抗原結合分子所為之使抗原攝入細胞內,並且促進由於抗原結合分子之投予所為之抗原消失,能使血漿中之抗原濃度降低。
抗原結合分子 本發明提供一種抗原結合分子,其包含:抗原結合域以及人類FcRn結合域,且在2個不同之鈣濃度條件下的抗原結合活性相異,抗原結合分子在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性。
本發明之抗原結合分子,只要是具有對於當做對象之抗原的專一性結合活性之抗原結合域即可,不特別限定。抗原結合域之較佳例,例如具抗體之抗原結合區之域。抗體之抗原結合區,例如CDR或可變區。抗體之抗原結合區為CDR時,也可含有全長抗體所包含之全部6個CDR,也可含1個或2個以上之CDR。就抗體之結合區而言含CDR時,所含之CDR可進行胺基酸之缺損、取代、加成及/或插入等,又也可為CDR之一部分。
又,本發明之方法中當做對象之抗原結合分子,例如具拮抗物活性之抗原結合分子(拮抗物抗原結合分子)、具促效劑活性之抗原結合分子(促效劑抗原結合分子)、具細胞傷害活性之分子等,但較佳態樣,例如:拮抗物抗原結合分子,尤其認識受體或細胞激素等抗原之拮抗物抗原結合分子。
本發明中,成為對象之抗原結合分子不特別限定,可為任意抗原結合分子。本發明使用之抗原結合分子,較佳為具抗原結合活性(抗原結合域)與人類FcRn結合域。本發明中,尤以含有與人類FcRn之結合域的抗原結合分子較佳。
具有抗原結合域與人類FcRn結合域之抗原結合分子,例如抗體。本發明之抗體之較佳例,例如IgG抗體。抗體使用IgG抗體時,其種類不限定,可使用IgG1、IgG2、IgG3、IgG4等同功型(次類)之IgG。又,本發明之抗原結合分子中可含抗體之恆定區,也可在恆定區部分導入胺基酸變異。導入之胺基酸變異,例如:對於Fcγ受體之結合增大或減低者 (Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4005-10.)等,但不限於該等。又,藉由適當選擇IgG2等適當恆定區,能使pH依存性結合變化。
本發明當做對象之抗原結合分子為抗體時,抗體可為小鼠抗體、人類抗體、大鼠抗體、兔抗體、山羊抗體、駱駝抗體等之類的動物來源之抗體。再者,例如嵌合抗體,其中人類化抗體等將胺基酸序列取代而得之改變抗體亦可。又,也可為二種專一性抗體、使各種分子結合成之抗體修飾物、含抗體片段之多胜肽等。
「嵌合抗體」,係指組合不同動物來源的序列而製作之抗體。嵌合抗體之具體例,例如:由小鼠抗體之重鏈、輕鏈之可變(V)區與人類抗體之重鏈、輕鏈之固定(C)區構成的抗體。
「人類化抗體」,也稱為再構成(reshaped)人類抗體,係將人類以外之哺乳動物來源之抗體,例如小鼠抗體之互補性決定區(CDR;complementarity determining region)移植到人類抗體之CDR者。用於鑑定CDR之方法為公知(Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md.; Chothia et al., Nature (1989) 342: 877)。又,其一般的基因重組方法亦為公知(參照歐洲專利申請案公開編號EP 125023號公報、WO 96/02576 號公報)。
雙專一性抗體,係指在同一抗體分子內具有認識不同抗原決定基之可變區的抗體。二種專一性抗體可為認識2種以上不同抗原之抗體,也可為認識同一抗原上之不同的2個以上之抗原決定基之抗體。
又,含抗體片段之多胜肽,例如:Fab片段、F(ab')2片段、scFv(Nat Biotechnol. 2005 Sep;23(9):1126-36.)domain antibody(dAb)(WO2004/058821, WO2003/002609)、scFv-Fc(WO2005/037989)、dAb-Fc、Fc融合蛋白質等。含Fc區域之分子可將Fc區域當做人類FcRn結合域使用。又,該等分子可以融合人類FcRn結合域。
再者,本發明能適用之抗原結合分子,也可為抗體狀分子。抗體狀分子(scaffold分子、胜肽分子),係指藉由與標靶分子結合而發揮機能之分子(Current Opinion in Biotechnology 2006, 17:653-658、Current Opinion in Biotechnology 2007, 18:1-10、Current Opinion in Structural Biology 1997, 7:463-469、Protein Science 2006, 15:14-27),例如:DARPins(WO2002/020565)、Affibody(WO1995/001937)、Avimer(WO2004/044011, WO2005/040229)、Adnectin(WO2002/032925)等。即使是該等抗體狀分子,也能對於標的分子以鈣濃度依存性結合,促進由於抗原結合分子所致抗原攝入細胞內,促進由於抗原結合分子之投予所致血漿中之抗原濃度減少、並改善抗原結合分子之血漿中滯留性、增加1個抗原結合分子所致對於抗原之結合次數增加。
又,抗原結合分子,也可為與標的結合之受體蛋白質融合有人類FcRn結合域之蛋白質,例如:TNFR-Fc融合蛋白質、IL1R-Fc融合蛋白質、VEGFR-Fc融合蛋白質、CTLA4-Fc融合蛋白質等(Nat Med. 2003 Jan;9(1):47-52、BioDrugs. 2006;20(3):151-60.)。該等為受體人類FcRn結合域之融合蛋白質,也能對於標的分子以鈣濃度依存性結合,並且促進由於抗原結合分子所致抗原攝入細胞內,並促進由於抗原結合分子之投予所致血漿中之抗原濃度減少、並改善抗原結合分子之血漿中滯留性、增加1個抗原結合分子對於抗原之結合次數。
又,抗原結合分子也可為與標的結合具中和效果之人工配體蛋白質與人類FcRn結合域之融合蛋白質,例如:人工配體蛋白質,例如變異IL-6(EMBO J. 1994 Dec 15;13(24):5863-70.)等。該等人工配體融合蛋白質也能對於標的分子以鈣濃度依存性的結合,並促進抗原結合分子所致抗原攝入細胞內、促進由於抗原結合分子之投予所致血漿中之抗原濃度減少、改善抗原結合分子之血漿中滯留性、增加1個抗原結合分子對於抗原之結合次數。
再者,本發明之抗體也可有糖鏈改變。糖鏈經改變之抗體之例,例如:糖化經修飾之抗體(WO99/54342等)、對於糖鏈加成的岩藻糖缺損之抗體(WO00/61739、WO02/31140、WO2006/067847、WO2006/067913等)、具有有二等分GlcNAc之糖鏈的抗體(WO02/79255等)等。
測定對於抗原之結合活性時,離子化鈣濃度以外之條件,可由該技術領域之人士適當選擇,不特別限定。例如可於HEPES緩衝液、37℃之條件測定。例如可使用Biacore(GE Healthcare)等測定。抗原結合分子與抗原之結合活性之測定,於抗原為可溶型抗原時,可藉由於固定化有抗原結合分子之晶片,使抗原當做分析物流過,而評價對於可溶型抗原之結合活性,抗原為膜型抗原時,可藉由於固定化有抗原之晶片,使抗原結合分子當做分析物而流過,以評價對於膜型抗原之結合活性。
本發明之抗原結合分子中,只要在低鈣濃度條件下之抗原結合活性弱於在高鈣濃度條件下之抗原結合活性,則在低鈣濃度條件下之抗原結合活性與於高鈣濃度條件下之抗原結合活性之比不特別限定,較佳為對於抗原在低鈣濃度條件下之KD(Dissociation constant:解離常數)與高鈣濃度條件下之KD之比KD(Ca 3μM)/KD(Ca 2 mM)之値為2以上,更佳為KD(Ca 3μM)/KD(Ca 2 mM)之値為10以上,又更佳為KD(Ca 3μM)/KD(Ca 2 mM)之値為40以上。KD(Ca 3μM)/KD(Ca 2 mM)之値之上限不特別限定,只要是該技術領域之人士之技術能製作,可為400、1000、10000等各種値。
就抗原結合活性之値而言,於抗原為可溶型抗原時,可使用KD(解離常數),抗原為膜型抗原時,可使用視KD(Apparent dissociation constant:視解離常數)。KD(解離常數)、及、視KD(視解離常數),可利用該技術領域之人士公知之方法測定,例如可使用Biacore(GE healthcare)、Scatchard作圖法、流式細胞計數儀等。
又,本發明之抗原結合分子中,代表在低鈣濃度條件下之抗原結合活性與於高鈣濃度條件下之抗原結合活性之比的另一指標,例如可使用解離速度常數kd (Dissociation rate constant:解離速度常數)。代表結合活性之比之指標,使用kd (解離速度常數)代替KD(解離常數)時,對於抗原在低鈣濃度條件下之kd (解離速度常數)與高鈣濃度條件下之kd (解離速度常數)之比kd (低鈣濃度條件下)/kd (高鈣濃度條件下)之値,較佳為2以上,更佳為5以上,更佳為10以上,又更佳為30以上。kd (低鈣濃度條件下)/kd (高鈣濃度條件下)之値之上限不特別限定,只要該技術領域之人士之技術常識能製作,可為50、100、200等各種値。
抗原結合活性之値,於抗原為可溶型抗原時,可使用kd (解離速度常數),於抗原為膜型抗原時,可使用視kd (Apparent dissociation rate constant:視解離速度常數)。kd (解離速度常數)、及視kd (視解離速度常數),可以由該技術領域之人士公知之方法測定,例如可使用Biacore(GE healthcare)、流式細胞計數儀等。
又,本發明中,測定不同鈣濃度之抗原結合分子之抗原結合活性時,鈣濃度以外之條件宜為相同。
為了獲得在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之抗原結合分子,使抗原結合分子在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性(減弱)之方法(賦予鈣濃度依存性抗原結合活性之方法),不特別限定。在低鈣濃度條件下之抗原結合活性低於高鈣濃度條件下之抗原結合活性(較弱)之抗原結合分子(顯示鈣濃度依存性結合之抗原結合分子),例如可從藉由於體外(in vitro)呈現的抗體庫以如上述對於抗原之鈣濃度依存性結合為指標進行篩選,而直接取得。
其他方法,例如有直接取得具有如此性質之抗原結合分子之方法。例如:將對於動物(小鼠、大鼠、倉鼠、兔、人類免疫球蛋白基因轉殖小鼠、人類免疫球蛋白基因轉殖大鼠、人類免疫球蛋白基因轉殖兔、羊駝、駱駝等)以抗原進行免疫而得之抗體,以對於抗原之鈣濃度依存性結合為指標進行篩選,直接去得具目的性質之抗體亦可。又,也可對於抗原結合分子中之胺基酸序列導入無規變異,依照上述方法,測定於不同鈣濃度條件下之抗原結合分子之抗原結合活性,並與改變前之抗原結合分子比較,選擇在低鈣濃度條件下之抗原結合活性比起於高鈣濃度條件下之抗原結合活性為低者。
依照上述方法等,使抗原結合分子在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性(減弱)(KD(低鈣濃度條件下)/KD(高鈣濃度條件下)之値增大)時,不特別限定,較佳為與以KD(低鈣濃度條件下)/KD(高鈣濃度條件下)之値比起原本之抗體,通常2倍以上,較佳為5倍以上,更佳為10倍以上者。
再者,本發明之賦予鈣濃度依存性抗原結合活性之方法,可藉由使用於中性pH具人類FcRn結合活性之抗原結合分子、或於中性pH賦予人類FcRn結合活性或提高之方法予以組合,而能增強促進抗原攝入細胞內之機能、增加1分子之抗原結合分子對於抗原之結合次數之機能、促進由於抗原結合分子之投予所致血漿中之抗原濃度減少之機能、或改善抗原結合分子之血漿中滯留性之機能。賦予或提高於中性pH之人類FcRn結合活性之方法,例如:改變上述人類FcRn結合域之胺基酸之方法。在此,「中性pH之人類FcRn結合活性」,係指於pH6.7~pH10.0對於人類FcRn之結合活性,較佳之人類FcRn結合活性,例如pH7.0~pH8.0之間之人類FcRn結合活性,更佳之人類FcRn結合活性,例如於pH7.4之人類FcRn結合活性。
又,本發明之賦予鈣濃度依存性抗原結合活性之方法,可藉由組合使用在具pH依存性抗原結合活性之抗原結合分子、或促進pH依存性抗原結合活性之方法,而增強促進抗原攝入細胞內之機能、增加1分子之抗原結合分子對於抗原之結合次數之機能、促進由於抗原結合分子之投予減少血漿中之抗原濃度之機能、或改善抗原結合分子之血漿中滯留性之機能。賦予pH依存性抗原結合活性之方法,例如:WO2009/125825記載之方法。
具體而言,例如可以組合對於本發明之鈣濃度依存性抗原結合分子,使抗原結合分子於酸性pH之抗原結合活性低於中性pH之抗原結合活性(減弱)之方法。在此,「酸性pH中之抗原結合活性低於中性pH之抗原結合活性(減弱)」,係指抗原結合分子於pH4.0~pH6.5之抗原結合活性弱於pH6.7~pH10.0之抗原結合活性。較佳為抗原結合分子於pH5.5~pH6.5之抗原結合活性弱於pH7.0~pH8.0之抗原結合活性,尤佳為抗原結合分子於pH5.8之抗原結合活性弱於在pH7.4之抗原結合活性。本發明中,酸性pH通常為pH4.0~pH6.5,較佳為pH5.5~pH6.5,尤佳為pH5.8。又、本發明中,中性pH通常為pH6.7~pH10.0,較佳為pH7.0~pH8.0,尤佳為pH7.4。
又,抗原結合分子之「於酸性pH之抗原結合活性低於中性pH之抗原結合活性」,也可表達為抗原結合分子於中性之抗原結合活性高於酸性之pH中的抗原結合活性。亦即,本發明中,抗原結合分子於酸性pH之抗原結合活性與中性pH之抗原結合活性之差可增大即可(例如如後述,KD(pH5.8)/KD(pH7.4)之値增大即可)。為了使抗原結合分子於酸性pH之抗原結合活性與中性pH之抗原結合活性之差加大,例如可減低於酸性pH之抗原結合活性,也可增大於中性pH之抗原結合活性,或兩者。
本發明中,酸性pH之抗原結合活性只要弱於中性pH之抗原結合活性,則酸性pH之抗原結合活性與中性pH之抗原結合活性之差不特別限定,較佳為對於抗原於pH5.8之KD與於pH7.4之KD(Dissociation constant:解離常數)之比KD(pH5.8)/KD(pH7.4)之値為2以上,更佳為KD(pH5.8)/KD(pH7.4)之値為10以上,又更佳為KD(pH5.8)/KD(pH7.4)之値為40以上。KD(pH5.8)/KD(pH7.4)之値之上限不特別限定,只要該技術領域之人士之技術能製作,可為400、1000、10000等各種値。
又,代表酸性pH之抗原結合活性與中性pH之抗原結合活性之差之其他指標,例如也可使用解離速度常數kd (Dissociation rate constant:解離速度常數)。代表結合活性之差之指標,當使用kd (解離速度常數)代替KD(解離常數)時,對於抗原於pH5.8之kd (解離速度常數)與於pH7.4之kd (解離速度常數)之比kd (pH5.8)/kd (pH7.4)之値,較佳為2以上,更佳為5以上,又更佳為10以上,再更佳為30以上。kd (pH5.8)/kd (pH7.4)之値之上限不特別限定,只要該技術領域之人士之技術常識能製作,可為50、100、200等任意値。
賦予pH依存性抗原結合活性之方法不特別限定,例如將抗原結合分子中至少1個胺基酸取代為組胺酸、或在抗原結合分子中插入至少1個組胺酸,而使pH5.8之抗原結合活性弱於pH7.4之抗原結合活性之方法。藉由將抗體中之胺基酸以組胺酸取代,能對於抗體賦予pH依存性之抗原結合活性,係為已知 (FEBS Letter, 309(1), 85-88, (1992))。本發明中,對於抗原結合分子導入(進行)組胺酸變異(取代)或插入之位置不特別限定,只要與變異或插入前相比較,於pH5.8之抗原結合活性弱於pH7.4之抗原結合活性 (KD(pH5.8)/KD(pH7.4)之値增大)即可,可在任意部位。例如:抗原結合分子為抗體時,例如抗體之可變區等。導入(進行)組胺酸變異或插入之數目可由該技術領域之人士適當決定,可僅將1處以組胺酸取代,或僅於1處插入組胺酸,也可將2處以上之多數處以組胺酸取代,或於2處以上之多數處插入組胺酸。又,也可同時導入組胺酸變異以外之變異(變異為組胺酸以外之胺基酸)。再者,也可同時進行組胺酸變異與組胺酸插入。取代為組胺酸或組胺酸之插入可利用該技術領域之人士公知之丙胺酸掃描之丙胺酸取代為組胺酸之組胺酸掃描等方法無規進行,也可於無規導入有組胺酸變異或插入之抗原結合分子庫中,選擇比起變異前之KD(pH5.8)/KD(pH7.4)之値增大之抗原結合分子。
對於抗原結合分子,將至少1個胺基酸取代為組胺酸、或於抗原結合分子胺基酸插入至少1個組胺酸時,不特別限定,但以組胺酸取代或插入後之抗原結合分子於pH7.4之抗原結合活性與組胺酸取代或插入前之抗原結合分子於pH7.4之抗原結合活性為同等較佳。在此,組胺酸取代或插入後之抗原結合分子於pH7.4之抗原結合活性,與組胺酸取代或插入前之抗原結合分子於pH7.4之抗原結合活性為同等,係指組胺酸取代或插入後之抗原結合分子,維持組胺酸取代或插入前之抗原結合分子所具有之抗原結合活性之10%以上,較佳為50%以上,更佳為80%以上,更佳為90%以上。由於組胺酸取代或插入造成抗原結合分子之抗原結合活性減低時,可藉由抗原結合分子中之1或多數胺基酸之取代、缺損、加成及/或插入等,使得抗原結合活性與組胺酸取代或插入前之抗原結合活性為同等。本發明中也包含如此的組胺酸取代或插入後藉由進行1或多數胺基酸之取代、缺損、加成及/或插入使得結合活性成為同等之抗原結合分子。
又,使抗原結合分子於pH5.8之抗原結合活性弱於pH7.4之抗原結合活性之其他方法,例如將抗原結合分子中之胺基酸取代為非天然型胺基酸之方法、或於抗原結合分子中之胺基酸插入非天然型胺基酸之方法。非天然胺基酸已知能夠人為控制pKa(Angew. Chem. Int. Ed. 2005, 44, 34、Chem Soc Rev. 2004 Sep 10;33(7):422-30.、Amino Acids. 1999;16(3-4):345-79.)。因此本發明中,可將非天然型胺基酸代替上述組胺酸。又,上述組胺酸取代及/或插入,與非天然型胺基酸之取代及/或插入,也可同時進行。本發明使用之非天然型胺基酸,可為任意非天然型胺基酸,可使用對於該技術領域之人士為公知之非天然型胺基酸等。
再者,抗原結合分子包含抗體恆定區時,使抗原結合分子於pH5.8之抗原結合活性弱於pH7.4之抗原結合活性之另一方法,例如改變抗原結合分子所包含之抗體恆定區之方法。如此的抗體恆定區之改變之具體例,例如WO2009/125825記載之取代恆定區之方法。
又,抗體恆定區之改變方法,例如:探討多數恆定區之同功型(IgG1、IgG2、IgG3、IgG4),並選擇pH5.8之抗原結合活性降低之(pH5.8之解離速度加快)之同功型之方法。再者,藉由對於野生型同功型之胺基酸序列(野生型IgG1、IgG2、IgG3、IgG4胺基酸序列)導入胺基酸取代,使pH5.8之抗原結合活性降低(pH5.8之解離速度加快)之方法。由於同功型(IgG1、IgG2、IgG3、IgG4),使抗體恆定區之鉸鏈區之序列大幅不同,鉸鏈區之胺基酸序列之不同會大大地影響抗原結合活性,因此依抗原或抗原決定基之種類選擇適當的同功型,可選擇於pH5.8之抗原結合活性降低(pH5.8之解離速度加速)的同功型。又,鉸鏈區之胺基酸序列之差異會大大地影響抗原結合活性,因此野生型同功型之胺基酸序列之胺基酸取代處據認為以鉸鏈區為理想。
依照上述方法等,當抗原結合物質於pH5.8之抗原結合活性弱於pH7.4之抗原結合活性 (KD(pH5.8)/KD(pH7.4)之値增大)時,不特別限定,但KD(pH5.8)/KD(pH7.4)之値比起原本的抗體,通常為2倍以上,較佳為5倍以上,更佳為10倍以上較佳。
抗原結合分子 再者,本發明提供一種抗原結合分子,其於2種不同的鈣濃度條件下的抗原結合活性不同,在低鈣濃度條件下之抗原結合活性低於高鈣濃度條件下之抗原結合活性。本發明較佳為提供一種抗原結合分子,其於離子化鈣濃度0.1μM~30μM之低鈣濃度條件下之抗原結合活性,低於離子化鈣濃度100μM~10 mM之高鈣濃度條件下之抗原結合活性。更具體而言,於活體內之早期核內體內之離子化鈣濃度(低鈣濃度,例如1μM~5μM)的抗原結合活性低於活體內之血漿中之離子化鈣濃度(高鈣濃度,例如0.5 mM~2.5 mM)之抗原結合活性的抗原結合分子。
本發明之在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性的抗原結合分子,只要是在低鈣濃度條件下之抗原結合活性低於高鈣濃度條件下之抗原結合活性即可,其結合活性之差不限定,只要在低鈣濃度條件下之抗原結合活性稍低即可。
本發明之在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之抗原結合分子之較佳態樣,係在低鈣濃度條件下之KD與高鈣濃度條件下之KD之比KD(低Ca)/KD(高Ca)之値為2以上,更佳為KD(低Ca)/KD(高Ca)之値為10以上,更佳為KD(低Ca)/KD(高Ca)之値為40以上。KD(低Ca)/KD(高Ca)之値之上限不特別限定,只要是該技術領域之人士之技術能製作,可為400、1000、10000等任意值。
再者,本發明之在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之抗原結合分子之其他較佳態樣,係對於抗原在低鈣濃度條件下之kd 與在高鈣濃度條件下之kd 之比kd (低Ca)/kd (高Ca)之値為2以上,更佳為kd (低Ca)/kd (高Ca)之値為5以上,更佳為kd (低Ca)/kd (高Ca)之値為10以上,更佳為kd (低Ca)/kd (高Ca)之値為30以上。kd (低Ca)/kd (高Ca)之値之上限不特別限定,只要是該技術領域之人士之技術能製作即可,可為50、100、200等任意値。
本發明之抗原結合分子,可更具有於上述中性pH條件下之人類FcRn結合活性。藉由組合該中性pH條件下之人類FcRn結合活性、與鈣濃度依存性抗原結合活性,可增強促進抗原攝入細胞內之機能、增加1分子之抗原結合分子對於抗原之結合次數之機能、促進由於抗原結合分子之投予所致血漿中之抗原濃度減少之機能、或改善抗原結合分子之血漿中滯留性之機能。
又,本發明之抗原結合分子,也可更具有上述pH依存性抗原結合活性,亦即於酸性pH條件下之抗原結合活性低於中性pH條件下之抗原結合活性之抗原結合活性。藉由組合該pH依存性抗原結合活性、與鈣濃度依存性抗原結合活性,能增加促進抗原攝入細胞內之機能、促進1分子之抗原結合分子結合於抗原之結合次數之機能、促進抗原結合分子之投予所致血漿中之抗原濃度減少之機能、或改善抗原結合分子之血漿中滯留性之機能。
又,本發明之抗原結合分子只要在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性即可,可具有其他任何性質,例如促效劑抗原結合分子或拮抗物抗原結合分子等。本發明之較佳抗原結合分子,例如拮抗物抗原結合分子。拮抗物抗原結合分子通常為抑制配體(促效劑)與受體之結合,並且抑制經由受體之對於細胞內之信號傳遞之抗原結合分子。
又,已賦予pH依存性抗原結合活性之抗原結合分子,可以有至少1個胺基酸以組胺酸取代,或插入有至少1個組胺酸。
又,本發明之抗原結合分子所結合之抗原不特別限定,可結合於任意抗原。例如:受體蛋白質(膜結合型受體、可溶型受體)或細胞表面標記等膜抗原、細胞激素等可溶型抗原等。其他抗原之具體例如上述。
篩選方法 本發明供篩選抗原結合分子在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之抗原結合分子之方法。又,提供一種抗原結合分子之篩選方法,該抗原結合分子係具有從以下選出的至少1種機能: (i)促進抗原攝入細胞內之機能、 (ii)對於抗原結合2次以上之機能、 (iii)促進血漿中之抗原濃度減少之機能,及 (iv)優異之血漿中滯留性機能。
具體而言,本發明提供一種抗原結合分子之篩選方法,其係包含以下步驟(a)~(c); (a) 獲得低鈣濃度條件下之抗原結合分子之抗原結合活性、 (b) 獲得高鈣濃度條件下之抗原結合分子之抗原結合活性、 (c) 選擇在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之抗原結合分子。
再者,本發明提供一種抗原結合分子之篩選方法,係包含以下步驟(a)~(c); (a) 於高鈣濃度條件下使抗原結合分子或抗原結合分子庫接觸抗原、 (b) 將於前述步驟(a)與抗原結合之抗原結合分子置在低鈣濃度條件下、 (c) 取得於前述步驟(b)解離之抗原結合分子。
再者,本發明提供一種抗原結合分子之篩選方法,係包含以下步驟(a)~(d); (a) 在低鈣濃度條件下使抗原結合分子或抗原結合分子庫接觸抗原、 (b) 選擇於前述步驟(a)未結合於抗原之抗原結合分子、 (c) 使前述步驟(b)選擇之抗原結合分子於高鈣濃度條件下與抗原結合、 (d) 取得於前述步驟(c)與抗原結合之抗原結合分子。
再者,本發明提供一種抗原結合分子之篩選方法,係包含以下步驟(a)~(c); (a) 使固定有抗原之管柱,於高鈣濃度條件下接觸抗原結合分子或抗原結合分子庫、 (b) 使於前述步驟(a)與管柱結合之抗原結合分子在低鈣濃度條件下從管柱溶出、 (c) 取得前述步驟(b)溶出之抗原結合分子。
又,本發明提供一種抗原結合分子之篩選方法,係包含以下步驟(a)~(d); (a) 在低鈣濃度條件下使抗原結合分子或抗原結合分子庫通過固定有抗原之管柱、 (b) 將於前述步驟(a)未結合於管柱而溶出之抗原結合分子回收、 (c) 使於前述步驟(b)回收之抗原結合分子於高鈣濃度條件下與抗原結合、 (d) 取得於前述步驟(c)與抗原結合之抗原結合分子。
再者,本發明提供一種抗原結合分子之篩選方法,係包含以下步驟(a)~(d); (a) 於高鈣濃度條件下使抗原結合分子或抗原結合分子庫接觸抗原、 (b) 取得於前述步驟(a)與抗原結合之抗原結合分子、 (c) 將前述步驟(b)取得之抗原結合分子置在低鈣濃度條件下、 (d) 取得前述步驟(c)之抗原結合活性弱於前述步驟(b)中抗原結合活性之抗原結合分子。
又,該等步驟可以返覆2次以上。因此,本發明提供如上述篩選方法,更包含返覆(a)~(c)或(a)~(d)之步驟2次以上之步驟。(a)~(c)或(a)~(d)之步驟返覆的次數不特別限定,通常為10次以內。
本發明之篩選方法中,低鈣濃度條件下之抗原結合分子之抗原結合活性,只要是離子化鈣濃度為0.1μM~30μM之間之抗原結合活性即可,不特別限定、較佳之離子化鈣濃度,例如0.5μM~10μM之間之抗原結合活性。更佳之離子化鈣濃度,例如活體內之早期核內體內之離子化鈣濃度,具體而言例如1μM~5μM之抗原結合活性。又,於高鈣濃度條件下之抗原結合分子之抗原結合活性,只要是離子化鈣濃度為100μM~10 mM之間之抗原結合活性即不特別限定,較佳之離子化鈣濃度,例如200μM~5 mM之間之抗原結合活性。更佳之離子化鈣濃度,例如於活體內之血漿中之離子化鈣濃度,具體而言,例如0.5 mM~2.5 mM之抗原結合活性。
抗原結合分子之抗原結合活性,可依照該技術領域之人士所公知之方法測定,針對離子化鈣濃度以外之條件,可由該技術領域之人士適當決定。抗原結合分子之抗原結合活性,可就KD(Dissociation constant:解離常數)、視KD(Apparent dissociation constant:視解離常數)、解離速度kd (Dissociation rate:解離速度常數)、或視kd (Apparent dissociation:視解離速度常數)等評價。該等可由該技術領域之人士公知之方法測定,例如可使用Biacore (GE healthcare)、Scatchard作圖法、FACS等。
本發明中,選擇於高鈣濃度條件下之抗原結合活性高在低鈣濃度條件下之抗原結合活性之抗原結合分子之步驟,與選擇在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之抗原結合分子之步驟為相同含意。
只要於高鈣濃度條件下之抗原結合活性高於在低鈣濃度條件下之抗原結合活性,則於高鈣濃度條件下之抗原結合活性與在低鈣濃度條件下之抗原結合活性之差不特別限定,較佳為於高鈣濃度條件下之抗原結合活性為在低鈣濃度條件下之抗原結合活性之2倍以上,更佳為10倍以上,又更佳為40倍以上。
依照本發明之篩選方法篩選之抗原結合分子可為任意抗原結合分子,例如可篩選上述抗原結合分子。例如:可篩選具天然序列之抗原結合分子,也可篩選胺基酸序列經取代之抗原結合分子。
本發明之篩選方法所篩選之抗原結合分子可以任意方法製備,例如:可使用預先已存在的抗體、預先已存在之庫(噬菌體庫等)、對於動物免疫獲得之融合瘤或從免疫動物之B細胞製作之抗體或庫、對於該等抗體或庫導入可螯合鈣之胺基酸(例如天冬胺酸或麩胺酸)或導入有非天然胺基酸變異之抗體或庫(可螯合鈣之胺基酸(例如天冬胺酸或麩胺酸)或提高非天然胺基酸之含有率之庫或於特定處有可螯合鈣之胺基酸(例如天冬胺酸或麩胺酸)或導入有非天然胺基酸變異之庫等)等。
依照本發明之篩選方法,可獲得當對於人類、小鼠、猴等動物投予時,具有選自於以下當中至少1種機能的抗原結合分子: (i)促進抗原攝入細胞內之機能、 (ii)對於抗原結合2次以上之機能、 (iii)促進血漿中之抗原濃度減少之機能、及 (iv)優異之血漿中滯留性機能。 因此本發明之篩選方法,可當做能篩選具有該等機能中至少1種機能之抗原結合分子的篩選方法。
又,依照本發明之篩選方法獲得之該等抗原結合分子,可以減少對患者之投予量或投予頻度,結果能減少總投予量,所以可認為當做醫藥品特別優異。因此,本發明之篩選方法可當做篩選用於當做醫藥組成物之抗原結合分子之篩選方法。
抗原結合分子之製造方法 本發明提供製造抗原結合分子在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之抗原結合分子之製造方法。又本發明提供一種抗原結合分子之製造方法,該抗原結合分子具有選自於以下之至少1種機能: (i)促進抗原攝入細胞內之機能、 (ii)對於抗原結合2次以上之機能、 (iii)促進血漿中之抗原濃度減少之機能、及、 (iv)優異之血漿中滯留性機能。
具體而言,本發明提供一種抗原結合分子之製造方法,係包含以下步驟(a)~(e); (a) 獲得在低鈣濃度條件下之抗原結合分子之抗原結合活性、 (b) 獲得於高鈣濃度條件下之抗原結合分子之抗原結合活性、 (c) 選擇在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之抗原結合分子、 (d) 取得編碼為前述步驟(c)選擇之抗原結合分子之基因、 (e) 使用前述步驟(d)獲得之基因產生抗原結合分子。
又,本發明提供一種抗原結合分子之製造方法,係包含以下步驟(a)~(e); (a) 於高鈣濃度條件下使抗原結合分子或抗原結合分子庫接觸抗原、 (b) 將前述步驟(a)與抗原結合之抗原結合分子置在低鈣濃度條件下、 (c) 取得於前述步驟(b)解離之抗原結合分子、 (d) 獲得編碼為前述步驟(c)取得之抗原結合分子之基因、 (e) 使用前述步驟(d)獲得之基因產生抗原結合分子。 又,(a)~(d)之步驟也可返覆2次以上。因此,本發明提供如上述方法,更包含返覆(a)~(d)之步驟2次以上之步驟。(a)~(d)之步驟之返覆次數不特別限定,通常為10次以內。
又,本發明提供一種抗原結合分子之製造方法,係包含以下步驟(a)~(f); (a) 在低鈣濃度條件下使抗原結合分子或抗原結合分子庫與抗原接觸、 (b) 選擇於前述步驟(a)未與抗原結合之抗原結合分子、 (c) 使於前述步驟(b)選擇之抗原結合分子於高鈣濃度條件下與抗原接觸、 (d) 取得於前述步驟(c)與抗原結合之抗原結合分子、 (e) 獲得編碼為前述步驟(d)取得之抗原結合分子之基因、 (f) 使用前述步驟(e)獲得之基因產生抗原結合分子。 又,(a)~(e)之步驟也可返覆2次以上。因此,本發明提供如上述方法,更包含返覆(a)~(e)之步驟2次以上之步驟。(a)~(e)之步驟的返覆次數不特別限定,通常為10次以內。
再者,本發明提供一種抗原結合分子之製造方法,係包含以下步驟(a)~(e); (a) 於高鈣濃度條件下使抗原結合分子或抗原結合分子庫接觸固定有抗原之管柱、 (b) 使於前述步驟(a)與管柱結合之抗原結合分子在低鈣濃度條件下從管柱溶出、 (c) 取得於前述步驟(b)溶出之抗原結合分子、 (d) 獲得編碼為前述步驟(c)取得之抗原結合分子之基因、 (e) 使用前述步驟(d)獲得之基因產生抗原結合分子。 又,(a)~(d)之步驟也可返覆2次以上。因此,本發明提供如上述方法,更包含返覆(a)~(d)之步驟2次以上之步驟。(a)~(d)之步驟的返覆次數不特別限定,通常為10次以內。
又,本發明提供一種抗原結合分子之製造方法,係包含以下步驟(a)~(f); (a) 在低鈣濃度條件下使抗原結合分子或抗原結合分子庫通過固定有抗原之管柱、 (b) 將於前述步驟(a)未與管柱結合而溶出之抗原結合分子回收、 (c) 使於前述步驟(b)回收之抗原結合分子於高鈣濃度條件下與抗原結合、 (d) 取得於前述步驟(c)與抗原結合之抗原結合分子、 (e) 獲得編碼為前述步驟(d)取得之抗原結合分子的基因、 (f) 使用前述步驟(e)獲得之基因產生抗原結合分子。 又,(a)~(e)之步驟也可返覆2次以上。因此,本發明提供如上述方法,更包含返覆(a)~(e)之步驟2次以上之步驟。(a)~(e)之步驟的返覆次數不特別限定,通常為10次以內。
又,本發明提供一種抗原結合分子之製造方法,係包含以下步驟(a)~(f); (a) 於高鈣濃度條件下使抗原結合分子或抗原結合分子庫接觸抗原、 (b) 取得於前述步驟(a)與抗原結合之抗原結合分子、 (c) 將前述步驟(b)取得之抗原結合分子置在低鈣濃度條件下、 (d) 取得前述步驟(c)中抗原結合活性弱於前述步驟(b)中抗原結合活性的抗原結合分子、 (e) 獲得編碼為前述步驟(d)取得之抗原結合分子之基因、 (f) 使用前述步驟(e)獲得之基因產生抗原結合分子。 又,(a)~(e)之步驟也可返覆2次以上。因此,本發明提供如上述方法,更包含返覆(a)~(e)之步驟2次以上之步驟。(a)~(e)之步驟的返覆次數不特別限定,通常為10次以內。
本發明之製造方法使用之抗原結合分子可以任意方法製備,例如:可使用預先已存在的抗體、預先已存在之庫(噬菌體庫等)、對於動物免疫獲得之融合瘤或從免疫動物之B細胞製作之抗體或庫、對於該等抗體或庫導入可螯合鈣之胺基酸(例如天冬胺酸或麩胺酸)或導入有非天然胺基酸變異之抗體或庫(可螯合鈣之胺基酸(例如天冬胺酸或麩胺酸)或提高非天然胺基酸之含有率之庫或於特定處有可螯合鈣之胺基酸(例如天冬胺酸或麩胺酸)或導入有非天然胺基酸變異之庫等)等。
上述製造方法中,在低鈣濃度條件下之抗原結合分子之抗原結合活性,只要離子化鈣濃度為0.1μM~30μM之間之抗原結合活性即不特別限定,較佳之離子化鈣濃度,例如0.5μM~10μM之間之抗原結合活性。更佳之離子化鈣濃度,更佳之離子化鈣濃度,例如活體內之早期核內體內之離子化鈣濃度,具體而言例如1μM~5μM之抗原結合活性。又,於高鈣濃度條件下之抗原結合分子之抗原結合活性,只要是離子化鈣濃度為100μM~10 mM之間之抗原結合活性即不特別限定,較佳之離子化鈣濃度,例如200μM~5 mM之間之抗原結合活性。更佳之離子化鈣濃度,例如於活體內之血漿中之離子化鈣濃度,具體而言,例如0.5 mM~2.5 mM之抗原結合活性。
抗原結合分子之抗原結合活性,可依照該技術領域之人士所公知之方法測定,針對離子化鈣濃度以外之條件,可由該技術領域之人士適當決定。
選擇於高鈣濃度條件下之抗原結合活性高在低鈣濃度條件下之抗原結合活性之抗原結合分子之步驟,與選擇在低鈣濃度條件下之抗原結合活性低於在高鈣濃度條件下之抗原結合活性之抗原結合分子之步驟為相同含意。
只要於高鈣濃度條件下之抗原結合活性高於在低鈣濃度條件下之抗原結合活性,則於高鈣濃度條件下之抗原結合活性與在低鈣濃度條件下之抗原結合活性之差不特別限定,較佳為於高鈣濃度條件下之抗原結合活性為在低鈣濃度條件下之抗原結合活性之2倍以上,更佳為10倍以上,又更佳為40倍以上。
依照本發明之篩選方法篩選之抗原結合分子可為任意抗原結合分子,例如可篩選上述抗原結合分子。例如:可篩選具天然序列之抗原結合分子,也可篩選胺基酸序列經取代之抗原結合分子。 上述製造方法中,抗原與抗原結合分子之結合可在任意狀態進行,不特別限定。例如:可藉由使經固定化之抗原結合分子接觸抗原,而使抗原結合分子與抗原結合,也可藉由使經固定化之抗原與抗原結合分子接觸,而使抗原結合分子與抗原結合。又,也可藉由在溶液中使抗原結合分子與抗原接觸,而使抗原結合分子與抗原結合。
又,本發明之製造方法也可使用在上述中性pH具有人類FcRn結合活性之抗原結合分子,也可組合賦予或提高於中性pH之人類FcRn結合活性之方法。本發明之製造方法,組合用於賦予或提高於中性pH之人類FcRn結合活性之方法時,可包含改變抗原結合分子中之胺基酸,並賦予或提高於中性pH條件下之人類FcRn結合活性之步驟。又,於中性pH具人類FcRn結合活性之抗原結合分子之人類FcRn結合域,例如於上述中性pH具人類FcRn結合活性之人類FcRn結合域為較佳例。因此,本發明之製造方法中,也可包含預先選擇在中性pH之人類FcRn結合活性高之具人類FcRn結合域之抗原結合分子,及/或改變抗原結合分子中之胺基酸並賦予或提高於中性pH之人類FcRn結合活性之步驟。
再者,本發明之製造方法也可使用在上述具pH依存性抗原結合活性之抗原結合分子,也可與賦予pH依存性抗原結合活性之方法(WO 2009/125825)組合。本發明之製造方法中組合賦予pH依存性抗原結合活性之方法時,可以更包含:預先選擇於酸性pH條件下之抗原結合活性低於中性pH條件下之抗原結合活性的抗原結合分子、及/或改變抗原結合分子中之胺基酸,並使於酸性pH條件下之抗原結合活性低於中性pH條件下之抗原結合活性之步驟。
又,具pH依存性抗原結合活性之抗原結合分子,較佳例為:抗原結合分子之至少1個胺基酸以組胺酸取代或至少有1個組胺酸插入之抗原結合分子。因此本發明之製造方法中,也可更包含:就抗原結合分子而言,使用至少1個胺基酸以組胺酸取代或至少有1個組胺酸插入之抗原結合分子,或將抗原結合分子之至少1個胺基酸取代為組胺酸或至少插入1個組胺酸之步驟。
又,本發明之製造方法,也可使用非天然胺基酸代替組胺酸。因此,可將上述組胺酸取代為非天然胺基酸而理解本發明。
依照本發明之製造方法,可製造對於人類、小鼠、猴等動物投予時,具有從以下選出之至少1種機能的抗原結合分子: (i)促進抗原攝入細胞內之機能、 (ii)對於抗原結合2次以上之機能、 (iii)促進血漿中之抗原濃度減少之機能、及 (iv)優異之血漿中滯留性機能。 因此本發明之製造方法可利用為當做獲得具有該等機能中至少其中之一之機能的抗原結合分子之製造方法。
又,該等抗原結合分子可減少對患者之投予量或投予頻度,結果為可減少總投予量,故可認為當做醫藥品特別優異。因此本發明之製造方法可利用為當做製造當做醫藥組成物之抗原結合分子之製造方法。
本發明之製造方法中獲得之基因,通常係載持(插入)適當載體,並導入寄主細胞。該載體只要能穩定保持插入之核酸即可,無特別限制,例如寄主若使用大腸菌,則選殖用載體以pBluescript載體(Stratagene公司製)等為較佳,但可使用市售的各種載體。本發明之抗原結合分子於生產之目的使用載體時,尤以表現載體為有用。表現載體只要是在試管內、大腸菌內、培養細胞內、生物個體內表現抗原結合分子之載體即可,無特別限制,例如若於試管內表現,以pBEST載體較佳(PROMEGA公司製)、若於大腸菌表現,為pET載體較佳(Invitrogen公司製),若於培養細胞表現,以pME18S-FL3載體較佳(GenBank Accession No. AB009864),若於生物個體表現,以pME18S載體(Mol Cell Biol. 8:466-472(1988))等較佳。本發明之DNA插入載體時,可依常法,例如利用限制酶部位之接合酶反應進行(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons.Section 11.4-11.11)。
上述寄主細胞不特別限制,可因應目的使用各種寄主細胞。用於使抗原結合分子表現之細胞,例如:細菌細胞(例:鏈球菌、葡萄球菌、大腸菌、鏈黴菌、枯草菌)、真菌細胞(例:酵母、麴菌)、昆蟲細胞(例:Drosophila S2、spodoptera SF9)、動物細胞(例:CHO、COS、HeLa、C127、3T3、BHK、HEK293、Bowes 黑色素瘤細胞)及植物細胞。對於寄主細胞導入載體,例如可使用磷酸鈣沉澱法、電氣脈衝穿孔法(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons.Section 9.1-9.9)、脂轉染法、顯微注射法等公知之方法進行。
寄主細胞之培養可依照公知之方法進行。例如:動物細胞為寄主時,培養液例如可使用DMEM、MEM、RPMI1640、IMDM。此時,可併用FBS、胎牛血清(FCS)等血清補液,也可於無血清培養進行細胞培養。培養時之pH,定為約6~8為較佳。培養通常於約30~40℃進行約15~200小時,並視需要施行培養基之更換、通氣、攪拌。
為了使寄主細胞表現之抗原結合分子分泌到小胞體之內腔、細胞周邊腔、或細胞外之環境,可以在目的多胜肽納入適當的分泌信號。該等信號對於目的之抗原結合分子可為內因性也可為異種信號。
另一方面,於體內(in vivo)產生多胜肽之系,例如:使用動物之產生系或使用植物之產生系。對於該等動物或植物導入目的聚核苷酸,並使在動物或植物之體內產生多胜肽並回收。本發明中,「寄主」包含該等動物、植物。
使用動物時,有使用哺乳類動物、昆蟲之產生系。哺乳類動物可使用山羊、豬、綿羊、小鼠、牛等 (Vicki Glaser, SPECTRUM Biotechnology Applications (1993))。又,使用哺乳類動物時,可使用基因轉殖動物。
例如可製備編碼為本發明之抗原結合分子之聚核苷酸,與編碼為如山羊β酪蛋白之類在乳汁中固有產生之多胜肽的基因的融合基因。其次,將含該融合基因的聚核苷酸片段注入山羊胚,並將該胚胎移植到雌山羊。從接受胚胎的山羊產生之基因轉殖山羊(或其子孫)所產之乳汁,可以取得所望之抗原結合分子。又,為了增加從基因轉殖山羊產生之含所望之抗原結合分子之乳汁量,可對於基因轉殖山羊投予適當的荷爾蒙(Ebert et al., Bio/Technology (1994) 12: 699-702)。
又,本發明之使抗原結合分子產生之昆蟲,例如可使用蠶。使用蠶時,藉由將插入有編碼為目的抗原結合分子之聚核苷酸的桿狀病毒感染蠶,可從該蠶之體液獲得目的之抗原結合分子。
再者,植物使用在產生本發明之抗原結合分子時,例如可使用煙草。使用煙草時,例如將編碼為目的抗原結合分子之聚核苷酸插入於植物表現用載體例如pMON 530,將該載體導入如農桿菌(Agrobacterium tumefaciens)之細菌。使該細菌桿染煙草,例如Nicotiana tabacum,可從該煙草葉獲得所望之抗原結合分子(Ma et al., Eur. J. Immunol. (1994) 24: 131-8)。又,將同樣的細菌感染浮萍(Lemna minor),並選殖化後,可從浮萍的細胞獲得所望之抗原結合分子(Cox KM et al. Nat. Biotechnol. 2006 Dec;24(12):1591-1597)。
如此獲得之抗原結合分子,可從寄主細胞內或細胞外(培養基、乳汁等)單離,並精製為實質上為純且均勻的抗原結合分子。抗原結合分子之分離、精製,只要是通常之多胜肽之精製使用的分離、精製方法即可,無任何限定。例如可適當選擇層析管柱、過濾、超過濾、鹽析、溶劑沉澱、溶劑萃取、蒸餾、免疫沈降、SDS-聚丙烯醯胺凝膠電泳、等電點電泳法、透析、再結晶等,並組合而將抗原結合分子分離、精製。
層析,例如親和性層析、離子交換層析、疏水性層析、凝膠過濾、逆相層析、吸附層析等 (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al.(1996) Cold Spring Harbor Laboratory Press)。該等層析,如液相層析可使用例如HPLC、FPLC等液相層析進行。親和性層析使用之管柱,例如PROTEIN A管柱、PROTEIN G管柱。例如:使用PROTEIN A之管柱,如Hyper D, POROS, Sepharose F. F. (Pharmacia製)等。
視需要,在抗原結合分子精製前或精製後使適當的蛋白質修飾酵素作用,藉此可任意施加修飾,或部分除去胜肽。蛋白質修飾酵素,例如:胰蛋白酶、胰凝乳蛋白酶、離胺醯基內切胜肽酶、PROTEIN 激酶、糖苷酶等。
醫藥組成物 又,本發明係關於包含本發明之抗原結合分子、由本發明之篩選方法單離之抗原結合分子、或依照本發明之製造方法製造之抗原結合分子的醫藥組成物。本發明之抗原結合分子、由本發明之篩選方法單離之抗原結合分子、或依照本發明之製造方法製造之抗原結合分子,為具有選自於以下當中至少1種機能的抗原結合分子,能期待抗原結合分子之投予頻度減,故當做醫藥組成物為有用: (i)促進抗原攝入細胞內之機能、 (ii)對於抗原結合2次以上之機能、 (iii)促進血漿中之抗原濃度減少之機能、及 (iv)優異之血漿中滯留性機能。又,本發明之醫藥組成物可包含藥學上可容許之載體。
本發明中,醫藥組成物,係指通常、疾患之治療或預防、或檢査・診斷用的藥劑。
本發明之醫藥組成物,能以該技術領域之人士公知之方法製劑化。例如:能以與水或其他藥學上可容許之液體的無菌性溶液、或懸浮液劑之注射劑之形式以非經口的使用。例如:藥理學上可容許之載體或介質,具體而言,可考慮適當組合滅菌水或生理食鹽水、植物油、乳化劑、懸浮劑、界面活性劑、安定劑、香味劑、賦形劑、運載劑、防腐劑、黏結劑等,以一般認可的製藥實務要求的單位用量形態混合而製劑化。該等製劑中的有效成分量,可設定為可獲得指示範圍之適當容量。 用於注射之無菌組成物,可使用如注射用蒸餾水之運載劑而依通常之製劑實務配方。
注射用之水溶液,例如生理食鹽水、葡萄糖或含其他輔助藥(例如D-山梨醇、D-甘露糖、D-甘露醇、氯化鈉)之等張液。也可併用適當的溶解輔助劑,例如醇(乙醇等)、多元醇(丙二醇、聚乙二醇等)、非離子性界面活性劑(聚山梨糖醇酸酯80(TM)、HCO-50等)。
油性液,例如麻油、黃豆油,溶解輔助劑可併用苯甲酸苄酯及/或苯甲醇。又,也可摻合緩衝劑(例如:磷酸鹽緩衝液及乙酸鈉緩衝液)、止痛劑(例如:鹽酸普羅卡因)、安定劑(例如:苯甲醇及酚)、抗氧化劑。製備的注射液通常充填在適當的安瓿。
本發明之醫藥組成物較佳為以非經口投予。例如可製成注射劑型、經鼻投予劑型、經肺投予劑型、經皮投予型之組成物。例如可利用靜脈內注射、肌肉內注射、腹腔內注射、皮下注射等對於全身或局部投予。
投予方法可視患者之年齡、症狀適當選擇。含抗原結合分子之醫藥組成物之投予量,例如可設定為每次體重1 kg為0.0001 mg至1000 mg之範圍。或,可定為例如每位患者為0.001~100000 mg之投予量,但本發明不一定限於該等數値。投予量及投予方法,視患者之體重、年齡、症狀等而變動,但如為該技術領域之人士,可考慮該等條件,設定適當的投予量及投予方法。
又,本發明之醫藥組成物,可為用於促進抗原攝入細胞內、或促進血漿中之抗原濃度減少之醫藥組成物。
又,本發明,係關於藉由投予本發明之抗原結合分子、或依照本發明之製造方法所製造之抗原結合分子,促進由於抗原結合分子使抗原攝入細胞內之方法、或促進血漿中之抗原濃度之減少之方法。投予可於體內(in vivo)或體外(in vitro)任一者進行。投予對象,例如非人類動物(小鼠、猴等)、或人類等。
又,本發明係關於藉由使用本發明之抗原結合分子、或依照本發明之製造方法所製造之抗原結合分子,使1分子之抗原結合分子對於抗原之結合次數增加之方法、或改善抗原結合分子之血漿中滯留性之方法。
又,本發明記載之胺基酸序列所包含之胺基酸,有時會受到轉譯後修飾(例如:N末端之麩醯胺酸由於焦麩胺醯基化而修飾為焦麩胺酸為該技術領域之人士熟知之修飾),但如此的胺基酸為轉譯後修飾時,當然也包含在本發明記載之胺基酸序列。
又,本發明提供至少包含本發明之抗原結合分子之用於本發明之方法之套組。該套組,除此以外,也可預先包裝藥學上可容許之載體、介質、記載使用方法之指示書等。
又,本發明係關於含有本發明之抗原結合分子或依照本發明之製造方法所製造之抗原結合分子當做有效成分之利用抗原結合分子使抗原攝入細胞內之攝入促進劑、血漿中之抗原濃度之減少促進劑、使1分子之抗原結合分子對於抗原之結合次數增加劑、或抗原結合分子之血漿中滯留性改善劑。
又,本發明係關於本發明之抗原結合分子或依照本發明之製造方法所製造之抗原結合分子之用途,係使用在利用抗原結合分子使抗原攝入細胞內之攝入促進劑、血漿中之抗原濃度之減少促進劑、使1分子之抗原結合分子對於抗原之結合次數增加劑、或抗原結合分子之血漿中滯留性改善劑之製造。
又,本發明係關於本發明之抗原結合分子或依照本發明之製造方法所製造之抗原結合分子,其係使用在促進利用抗原結合分子使抗原攝入細胞內之方法、促進血漿中之抗原濃度減少之方法、增加1分子之抗原結合分子對於抗原之結合次數之方法、或改善抗原結合分子之血漿中滯留性之方法。
又,本說明書引用之所有先前技術文獻,係納入本說明書當做參照。 [實施例]
以下以實施例更具體說明本發明,但本發明不限於該等實施例。 [實施例1]鈣依存性的抗原結合抗體之抗原消失加速效果之概念 (1-1)pH依存性的結合抗體之利用抗原結合抗體之抗原消失加速效果 WO 2009/125825記載之H54/L28-IgG1為人類化抗IL-6受體抗體,Fv4-IgG1為對於H54/L28-IgG1賦予對於可溶型人類IL-6受體以pH依存性結合之特性(中性條件下結合,且於酸性條件下解離)的人類化抗IL-6受體抗體。WO 2009/125825記載之小鼠之體內試驗中,與投予H54/L28-IgG1與抗原可溶型人類IL-6受體之混合物之群比較,投予Fv4-IgG1與抗原可溶型人類IL-6受體之混合物之群中,顯示可溶型人類IL-6受體之消失能大幅加速。
通常之與可溶型人類IL-6受體結合之抗體所結合之可溶型人類IL-6受體,會與抗體一起由FcRn而於血漿中再循環,相對於此,以pH依存性的與可溶型人類IL-6受體結合之抗體,會於核內體內之酸性條件下將與抗體結合之可溶型人類IL-6受體解離。解離的可溶型人類IL-6受體會由溶體分解,故可大幅加速可溶型人類IL-6受體之消失,再者,以pH依存性的與可溶型人類IL-6受體結合之抗體會由於FcRn而於血漿中再循環,再循環的抗體能再度與可溶型人類IL-6受體結合,藉由反複此現象,1個抗體分子能多次反複結合於可溶型人類IL-6受體 (圖1)。
又,如WO 2009/125825記載,通常之人類化抗IL-6受體抗體,與膜型人類IL-6受體結合後,會以人類化抗IL-6受體抗體與膜型人類IL-6受體之複合體之狀態,被內化,之後溶體於分解。相對於此,以pH依存性的結合的人類化抗IL-6受體抗體,於與膜型人類IL-6受體結合並內化後,會於核內體內之酸性條件下從膜型人類IL-6受體解離,藉此於血漿中再循環。如此再循環之抗體能再度與膜型人類IL-6受體結合,藉由如此返覆,1個抗體分子能返覆多次與膜型人類IL-6受體結合 (圖2)。
(1-2)血漿中及核內體中之pH及鈣濃度 於圖1及圖2所示之pH依存性的結合抗體的作用中,利用血漿中與核內體內之環境不同,亦即pH之差異 (血漿中:pH7.4、核內體內:pH6.0),使血漿中與抗原強力結合,並於核內體內從抗原解離係屬重要。為了使血漿中與核內體內之pH依存性的結合抗體對於抗原之結合能力有如此差異,血漿中與核內體內之環境差異的大小係屬重要。pH之不同,亦即氫離子濃度之不同。亦即, pH7.4之血漿中之氫離子濃度為約40 nM,pH6.0之核內體內之氫離子濃度為約1000 nM,血漿中與核內體內,因子(氫離子)之濃度約有約25倍的差別。
為了使圖1及圖2所示作用更容易達成,或為了增強其作用,據認為利用血漿中與核內體內之氫離子濃度之不同,使用依存於濃度之不同大的因子的抗體即可。探索血漿中與核內體內的濃度不同大之因子,結果發現:鈣。血漿中之離子化鈣濃度為約1.1-1.3 mM,核內體內之離子化鈣濃度為約3μM,血漿中與核內體內的因子(鈣)之濃度有約400倍的差異,其差比起氫離子濃度差(25倍)為大。亦即,藉由使用於高鈣濃度條件下(1.1-1.3 mM)會與抗原結合,且在低鈣濃度條件下(3μM)會從抗原解離之離子化鈣濃度依存性的結合抗體,據認為可更容易達成圖1及圖2所示之作用,或能增強其作用。
又,WO 2009/125825中,係藉由導入組胺酸,係作在pH7.4與pH6.0之性質改變的pH依存性的結合抗體。組胺酸於血漿中之中性條件下為中性電荷,但於核內體內之酸性條件下具正電荷。利用該組胺酸之電荷變化,可以對於抗體與抗原之交互作用賦予pH依存性。另一方面,如圖3所示,使用組胺酸時,為了於血漿中與抗原結合並於核內體內從抗原解離,抗體之組胺酸殘基必需與抗原之正電荷之胺基酸或成為氫鍵之捐出者的胺基酸交互作用,故用於發揮目的作用之pH依存性的結合抗體所結合之抗原側之抗原決定基,必需為正電荷之胺基酸或能成為氫鍵之捐出者的胺基酸。
另一方面,如圖4所示,由於考慮鈣依存性的結合抗體會介由鈣離子而與抗原結合,故抗原側之抗原決定基為可螯合鈣離子之負電荷之胺基酸或能成為氫鍵接受者的之胺基酸,因此可以導向由導入組胺酸所製作之pH依存性的結合體無法導向的抗原決定基。再者,如圖5所示,藉由使用同時具鈣依存性與pH依存性之抗體,據認為可導向具有廣泛性質之抗原決定基。
[實施例2]使用噬菌體呈現技術從人類抗體庫取得Ca依存性的結合抗體 (2-1)未改變(naïve)人類抗體噬菌體呈現庫之製作 以從人類PBMC製作之polyA RNA或市售人類polyA RNA等當做模板,參考(Methods Mol Biol. 2002;178:87-100.),構建提示由人類抗體序列構成之Fab域之多數人類抗體噬菌體呈現庫。
(2-2)利用珠粒淘選由庫取得Ca依存性的結合抗體片段 從構建之人類抗體噬菌體呈現庫之最初之選拔,係僅濃縮具備對於抗原之結合能力之抗體片段、或以Ca依存性的結合能力為指標濃縮。濃縮成具備Ca依存性的結合能力之抗體片段時,係於Ca離子存在下使抗原結合後,利用EDTA將Ca離子螯合,以溶出噬菌體。抗原使用經生物素標記之人類IL-6受體。
由保持以上述方式構建之噬菌體呈現用phagemid之大腸菌產生噬菌體,將獲得之培養液以2.5 M NaCl/10%PEG沉澱後以TBS稀釋,製成噬菌體庫液。對於噬菌體庫液添加BSA, CaCl2 ,製成使終濃度4% BSA, 離子化鈣濃度1.2 mM。淘選係參考一般方法,即使用固定化於磁性珠粒之抗原之淘選方法(J Immunol Methods. 2008 Mar 20;332(1-2):2-9.、J Immunol Methods. 2001 Jan 1;247(1-2):191-203.、Biotechnol Prog. 2002 Mar-Apr;18(2):212-20.、Mol Cell Proteomics. 2003 Feb;2(2):61-9.)。磁性珠粒使用NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)或Streptavidin coated beads(Dynabeads M-280 Streptavidin)。
具體而言,於製備之噬菌體庫液添加250 pmol生物素標記抗原,於室溫使與抗原接觸60分鐘。添加經BSA阻斷的磁性珠粒,於室溫結合15分鐘。將珠粒以1 mL的1.2 mM CaCl2 /TBS(含1.2 mM CaCl2 TBS)洗滌1次。之後,於濃縮具備結合能力之抗體片段時,以一般方法進行溶出,於濃縮具備Ca依存性的結合能力的抗體片段時,於2 mM EDTA/TBS(含2%EDTA之TBS)將珠粒懸浮,並回收噬菌體。於回收之噬菌體溶液中,添加處在對數增殖期(OD600 0.4-0.5)之大腸菌株TG1 10 mL,於37℃、1 hr, 利用緩慢攪拌培養使感染。將經感染之大腸菌塗覆在225 mm x 225 mm之平板。再度從該大腸菌開始培養,並培養噬菌體。
第2次以後的淘選,係以Ca依存性的結合能力為指標進行濃縮。具體而言,於製備的噬菌體庫液添加40 pmol之生物素標記抗原,於室溫使與抗原接觸60分鐘。添加以BSA阻斷的磁性珠粒,於室溫使結合15分鐘。將珠粒以1 mL的1.2 mM CaCl2 /TBST(含1.2 mM CaCl2 , 0.1% Tween-20之TBS)與1.2 mM CaCl2 /TBS各洗滌1次。之後,添加0.1 mL之2 mM EDTA/TBS(含2%EDTA之TBS),將珠粒於室溫懸浮,並立即使用磁座分離珠粒,回收噬菌體溶液。將回收之噬菌體溶液,添加到處於對數增殖期(OD600 0.4-0.5) 之大腸菌株TG1 10 mL,於37℃、1 hr,緩慢攪拌培養以使感染。將經感染之大腸菌塗覆在225 mm x 225 mm之平板。再度從該大腸菌開始培養,與上述同樣進行噬菌體之培養,反複2次淘選。
(2-3)利用噬菌體ELISA之評價 從依上述方法獲得之大腸菌單一菌落,參考(Methods Mol Biol. 2002;178:133-145.)回收含噬菌體之培養上清。 對於含噬菌體之培養上清添加BSA、 CaCl2 ,使終濃度為4%BSA、鈣離子濃度1.2 mM,以供ELISA。將StreptaWell 96微滴定平板(Roche)以含生物素標記抗原之PBS 100μL塗覆一晩。以PBST(含0.1%Tween20之PBS)洗滌,去除抗原後,以4% BSA-TBS 250μL阻斷1小時以上。去除4% BSA-TBS,於其中添加製備的培養上清,於37℃靜置1小時,使噬菌體呈現抗體結合。以1.2 mM CaCl2 /TBST (含1.2 mM CaCl2 , 0.1% Tween20之TBS)洗滌後,添加1.2 mM CaCl2 /TBS或1 mM EDTA/TBS,於37℃靜置30分鐘並溫育。以1.2 mM CaCl2 /TBST洗滌後,以4% BSA、離子化鈣濃度1.2 mM之TBS稀釋成的HRP結合抗M13抗體(Amersham Parmacia Biotech)溫育1小時。以1.2 mM CaCl2 /TBST洗滌後,以TMB single solution(ZYMED)檢測,並藉由硫酸之添加使反應停止後,測定450 nm之吸光度。對於判斷有Ca依存性的結合能力的抗體片段,使用專一性引子進行鹼基序列解析。
(2-4)抗體之表現與精製 利用噬菌體ELISA,針對判斷有Ca依存性的結合能力的選殖體,進行對於動物細胞表現用質體的導入。抗體之表現係使用以下方法進行。將人類胎腎細胞來源的FreeStyle 293-F株(Invitrogen)懸浮於FreeStyle 293 Expression Medium培養基(Invitrogen),以1.33 × 106 個 /mL的細胞密度在6井盤的各井各接種3 mL,以脂轉染法將製備的質體導入細胞。於CO2 培養箱 (37度、8%CO2 , 90 rpm)培養4日,從獲得之培養上清,使用rProtein A SepharoseTM Fast Flow(Amersham Biosciences),以該技術領域之人士公知之方法精製抗體。精製抗體濃度,使用分光光度計測定於280 nm之吸光度。從獲得之値,以PACE法使用計算之吸光係數,計算抗體濃度(Protein Science 1995 ; 4 : 2411-2423)。
[實施例3]取得之抗體對於人類IL-6受體之Ca依存性的結合能力之評價 將實施例2取得之抗體6RL#9-IgG1(重鏈序列編號:1、輕鏈序列編號:2)、6RK#12-IgG1(重鏈序列編號:66、輕鏈序列編號:67)及、FH4-IgG1(重鏈序列編號:3、輕鏈序列編號:4),使用Biacore T100(GE Healthcare),評價於pH7.4之人類介白素6受體 (hIL6R) 結合活性。運行緩衝液,使用含3 μM或2 mM CaCl2 之0.05% Surfactant P20, 10 mmol/l ACES 150 mmol/l NaCl(pH7.4或pH6.0)測定。
於Sensor chip CM4(GE Healthcare)上,以胺基偶聯法將重組型PROTEIN A(Thermo Scientific)適量固定化後,使抗體結合。注入適當濃度的hIL-6R當作分析物,使與感應晶片上之抗體交互作用。之後,注入10 mmol/L Glycine-HCl (pH1.5),使感應晶片再生。測定於37 ℃進行。測定之結果,獲得之傳感圖如圖6。從該等結果,可知:6RL#9-IgG1、6RK#12-IgG1及FH4-IgG1抗體均為,於Ca2+ 濃度為3μM之條件下比起在Ca2+ 濃度為2 mM之條件下時,對於hIL6R之結合較弱。
該等抗體之中,就具Ca依存性之抗體而言,使用6RL#9-IgG1(重鏈序列編號:1、輕鏈序列編號:2)、及、FH4-IgG1(重鏈序列編號:3、輕鏈序列編號:4)進一步進行反應速度論解析。就不具Ca依存性之抗體而言,使用WO 2009/125825記載之H54/L28-IgG1(重鏈序列編號:5、輕鏈序列編號:6)。就高鈣離子濃度而言,使用2 mM,低鈣離子濃度之條件使用3μM。抗原使用人類IL-6受體(IL-6R)。於Sensor chip CM4 (GE Healthcare)上以胺偶聯法適量固定protein A (Invitrogen),並於其中捕集目的之抗體。運行緩衝液使用10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、2 mmol/L CaCl2 、pH7.4或10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、3 μmol/L CaCl2 、pH7.42種類。測定均於37℃實施,IL-6R 之稀釋也使用分別的緩衝液。
關於H54L28-IgG1,將IL-6R稀釋液與空白運行緩衝液以流速20μL/min注射3分鐘,使捕捉於感應晶片上之抗體與IL-6R交互作用。之後,以流速20μL/min流過10分鐘運行緩衝液,觀察IL-6R之解離後,將10 mmol/L Glycine-HCl, pH1.5以流速30μL/min注射30秒,將感應晶片再生。從測定獲得之傳感圖,計算動力學參數結合速度常數 ka (1/Ms)、及解離速度常數 kd (1/s),基於該値計算各抗體對於人類IL-6受體之解離常數KD (M)。各參數之計算係使用Biacore T100 Evaluation Software (GE Healthcare)。
關於FH4-IgG1、6RL#9-IgG1,係使IL-6R稀釋液與空白運行緩衝液以流速5μL/min注射15分鐘,使捕捉於感應晶片上之抗體與IL-6R交互作用。之後,將10 mmol/L Glycine-HCl, pH1.5以流速30μL/min注射30秒,將感應晶片再生。對於測定獲得之傳感圖使用steady state affinity model計算解離常數KD (M)。各參數之計算使用Biacore T100 Evaluation Software (GE Healthcare)。
依該方法求出之於2 mM CaCl2 存在下之各抗體與IL-6R間的解離常數KD ,如表7。於H54/L28-IgG1未觀察到由於Ca濃度之差異所致對於IL-6R之結合之差異,但是於FH4-IgG1、6RL#9-IgG1,觀察到於低濃度Ca條件下的結合顯著減弱 (圖7、8、9)。
[表7]
Figure 02_image025
針對H54/L28-IgG1,可與於2 mM Ca濃度存在下為同樣方法,計算Ca濃度為3μM之條件下之KD 。針對FH4-IgG1、6RL#9-IgG1,於Ca濃度為3μM時,幾乎未觀察到對於IL-6R之結合,因此,難以利用上述方法計算KD ,但藉由使用下式1,能預測KD (Biacore T100 Software Handbook, BR-1006-48, AE 01/2007)。
[式1]
Figure 02_image027
上述式1中之各項目含意如下; Req (RU): 穩定狀態結合水平(Steady state binding levels) Rmax (RU):分析物之表面結合能力(Analyte binding capacity of the surface) RI (RU): 於試樣中之容積折射率之貢獻(Bulk refractive index contribution in the sample) C (M): 分析物濃度(Analyte concentration) KD (M): 平衡解離常數(Equilibrium dissociation constant)
使用該式1,概算Ca濃度為3 μmol/L時預測之各抗體與IL-6R之解離常數KD ,結果如表8。
[表8]
Figure 02_image029
上述表8中,Req 、Rmax 、RI、C係基於測定結果而假定之値。
由該結果,可預測:FH4-IgG1、6RL#9-IgG1,藉由從2 mM CaCl2 改為3μM CaCl2 ,對於IL-6R之KD 各升高約60倍、約120倍(60倍、120倍以上的親和性會減低)。表9整理H54/L28-IgG1、FH4-IgG1、6RL#9-IgG1之3抗體於2 mM CaCl2 存在下及3 μM CaCl2 存在下之KD 値、及、KD 値之Ca依存性。
[表9]
Figure 02_image031
[實施例4]對於取得之抗體之鈣離子結合評價 其次,為了評價鈣離子對於抗體之結合,利用差示掃描型熱量測定(DSC)評價熱變性中間溫度(Tm値) (MicroCal VP-Capillary DSC、MicroCal製)。熱變性中間溫度(Tm値)係安定性之指標,若鈣離子結合而蛋白質安定化,則熱變性中間溫度(Tm値)比起鈣離子未結合時會增高(J Bio Chem. 2008 Sep 12 ; Vol.283 ; No. 37:pp 25140 - 25149)之性質,評價鈣離子對於抗體之結合。將經精製之抗體對於20 mM Tris-HCl, 150 mM NaCl, 2 mM CaCl2 , pH7.4、或20 mM Tris-HCl, 150 mM NaCl, 3μM CaCl2 , pH7.4之溶液進行透析(EasySEP, TOMY)。將蛋白質溶液以透析用溶液製備成0.1 mg/mL,於20℃至115℃之240℃/hr之升溫速度測定DSC。依據獲得之DSC之變性曲線,計算各抗體之Fab域之熱變性中間溫度(Tm値),如表10。
[表10]
Figure 02_image033
由表10之結果,顯示鈣依存性結合能力之FH4及6RL#9會由於鈣離子濃度而使Fab之Tm値變動,未顯示鈣依存性結合能力之H54/L28的Tm値不會變動。以FH4及6RL#9所示之Fab之Tm値之變動,顯示該等抗體有鈣離子結合,且Fab部分安定化。由此顯示, FH4及6RL#9有鈣離子結合,另一方面,H54/L28無鈣離子結合。
[實施例5]使用正常小鼠之Ca依存性結合抗體對於抗原於血漿中滯留性之影響評價 (5-1)使用正常小鼠之體內(in vivo)試驗 對於正常小鼠(C57BL/6J mouse、Charles River Japan)單獨投予hsIL-6R(可溶型人類IL-6受體:於參考例1製作)或同時投予hsIL-6R及抗人類IL-6受體抗體後,評價hsIL-6R及抗人類IL-6受體抗體之體內動態。將hsIL-6R溶液(5μg/mL)、或hsIL-6R與抗人類IL-6受體抗體之混合溶液對於尾靜脈以10 mL/kg單次投予。抗人類IL-6受體抗體,使用上述H54/L28-IgG1、6RL#9-IgG1、FH4-IgG1。
混合溶液中之hsIL-6R濃度均為5μg/mL,但是抗人類IL-6受體抗體濃度依每種抗體不同,H54/L28-IgG1為0.1 mg/mL、6RL#9-IgG1及FH4-IgG1為10 mg/mL,此時由於相對於hsIL-6R,抗人類IL-6受體抗體有足夠量過剩存在,因此可認為hsIL-6R大部分與抗體結合。投予後15分鐘、7小時、1日、2日、4日、7日、14日、21日、28日進行採血。將採取的血液立即於4℃、12,000 rpm進行15分鐘離心分離,並獲得血漿。經分離之血漿,直到實施測定為止,保存在設定為-20℃以下之冷凍庫。
(5-2)利用ELISA法測定正常小鼠血漿中之抗人類IL-6受體抗體濃度 小鼠血漿中之抗人類IL-6受體抗體濃度,係以ELISA法測定。首先,將 Anti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody (SIGMA) 分注到Nunc-Immuno Plate, MaxiSoup (Nalge nunc International),於4℃靜置1晩,製作Anti-Human IgG固相化板。製備血漿中濃度為0.64、0.32、0.16、0.08、0.04、0.02、0.01μg/mL之檢量線試樣與稀釋100倍以上之小鼠血漿測定試樣,分注到Anti-Human IgG固相化板,於25℃進行1小時溫育。之後使Biotinylated Anti-human IL-6 R Antibody(R&D)於25℃反應1小時,再使Streptavidin-PolyHRP80 (Stereospecific Detection Technologies)於25℃反應0.5小時,以TMB One Component HRP Microwell Substrate (BioFX Laboratories)當做基質進行發色反應,以1N-Sulfuric acid(Showa Chemical)停止反應後,以微平板讀取儀測定450 nm之吸光度。小鼠血漿中濃度係由檢量線之吸光度使用解析軟體SOFTmax PRO(Molecular Devices)計算。以該方法測定之靜脈內投予後之正常小鼠中之H54/L28-IgG1、6RL#9-IgG1、FH4-IgG1在血漿中抗體濃度變動,如圖10。
(5-3)利用電化學發光法測定血漿中hsIL-6R濃度 小鼠之血漿中hsIL-6R濃度,係以電化學發光法測定。製備調整為2000、1000、500、250、125、62.5、31.25 pg/mL之hsIL-6R檢量線試樣及稀釋50倍以上之小鼠血漿測定試樣,混合以SULFO-TAG NHS Ester(Meso Scale Discovery)釕化5 1Monoclonal Anti-human IL-6R Antibody(R&D)及Biotinylated Anti-human IL-6 R Antibody (R&D)及tocilizumab (重鏈序列編號:13、輕鏈序列編號:14)溶液混合,於4℃使反應1晩。此時於Assay buffer中含有10 mM EDTA,使樣本中之游離Ca濃度降低,目的為使樣本中幾乎所有的hsIL-6R從6RL#9-IgG1或FH4-IgG1解離,且與添加之tocilizumab成為結合狀態。之後,分注如MA400 PR Streptavidin Plate(Meso Scale Discovery)。再於25℃使反應1小時並洗滌後,分注Read Buffer T(×4)(Meso Scale Discovery),立即以SECTOR PR 400 reader(Meso Scale Discovery)進行測定。hSIL-6R濃度係由檢量線之回應,使用解析軟體SOFTmax PRO(Molecular Devices)計算。以該方法測定之靜脈內投予後之正常小鼠於血漿中之hsIL-6R濃度變動如圖11。
結果,hsIL-6R單獨顯示非常快消失,相對於此,同時投予hsIL-6R與無Ca依存性結合之通常之抗體H54/L28-IgG1時,hsIL-6R之消失會大幅延遲。相對於此,同時投予hsIL-6R以及具有100倍以上之Ca依存性結合之6RL#9-IgG1或FH4-IgG1時,hsIL-6R之消失會大幅加速。比起同時投予H54/L28-IgG1之情形,同時投予6RL#9-IgG1及FH4-IgG1時,Day1之血漿中之hsIL-6R濃度能分別減低39倍及2倍。藉此,確認鈣依存性結合抗體可加速抗原從血漿中消失。
[實施例6]探討Ca依存性抗原結合抗體之抗原消失加速效果之提高 (製作抗體) (6-1)關於IgG抗體對FcRn之結合 IgG抗體藉由與FcRn結合,會具有長的血漿中滯留性。IgG與FcRn之結合,僅於酸性條件下(pH6.0)會發生,於中性條件下(pH7.4)幾乎未認為有結合。IgG抗體會非專一性地攝入,但於核內體內之酸性條件下會與核內體內之FcRn結合,藉此回到細胞表面上,於血漿中之中性條件下會從FcRn解離。若對於IgG之Fc區域導入變異,並且喪失於酸性條件下對於FcRn之結合,則由於不會核內體內再循環於血漿中,故抗體之血漿中滯留性會顯著減損。
改善IgG抗體之血漿中滯留性之方法,有人報告於酸性條件下提高對於FcRn之結合之方法。藉由對於IgG抗體之Fc區域導入胺基酸取代,並提高於酸性條件下對於FcRn之結合,從核內體內再循環到血漿中之效率會提高,其結果,血漿中滯留性會改善。導入胺基酸取代時重要者,係不提高於中性條件下對於FcRn之結合。若於中性條件下結合於FcRn,則即使於核內體內之酸性條件下藉由與FcRn結合而回到細胞表面上,於中性條件下之血漿中若IgG抗體不會從FcRn解離,IgG抗體不會再循環到血漿中,故反而會減損血漿中滯留性。
例如:J Immunol. 2002;169(9):5171-80.記載,藉由將對於IgG1導入胺基酸取代,而於中性條件下(pH7.4)認為對於小鼠FcRn有結合之抗體對於小鼠投予時,據報告抗體之血漿中滯留性會惡化。又,如J Immunol. 2009;182(12):7663-71.或J Biol Chem. 2007 Jan 19;282(3):1709-17.或J Immunol. 2002 Nov 1;169(9):5171-80.記載,藉由對於IgG1導入胺基酸取代,會提高於酸性條件下(pH6.0)之人類FcRn之結合,但若同時將於中性條件下(pH7.4)對於人類FcRn認為有結合之抗體對於長尾獼猴時,抗體之血漿中滯留性不會改善,不認為血漿中滯留性有變化。所以,於提高抗體機能之抗體工程技術中,僅專注在不使於中性條件下(pH7.4)對於人類FcRn之結合增加,而藉由使酸性條件下之對於人類FcRn之結合增加,以改善抗體之血漿中滯留性,至今為止尚無人報告:於IgG抗體之Fc區域導入胺基酸取代,並增加中性條件下(pH7.4)對於人類FcRn之結合之優點。
與Ca依存性性抗原結合之抗體,由於具有使可溶型之抗原之消失加速,使1個抗體分子返覆多次與可溶型之抗原結合之效果,故極有用。使該抗原消失加速效果更為提高之方法,有人驗證使中性條件下(pH7.4)對於FcRn之結合增強之方法。
(6-2)中性條件下具有對於FcRn之結合的Ca依存性的人類IL-6受體結合抗體之製備 對於具鈣依存性的抗原結合能力之FH4-IgG1與6RL#9-IgG1、及當做對照之不具鈣依存性的抗原結合能力的H54/L28-IgG1,導入於中性條件下(pH7.4)使對於FcRn之結合增加之胺基酸變異。胺基酸變異之導入係利用使用PCR之該技術領域之人士公知之方法進行。具體而言,製作相對於IgG1之重鏈恆定區、相對於IgG1之重鏈恆定區,將EU編號法434號由Asn取代成Trp之FH4-N434W(重鏈序列編號:7、輕鏈序列編號:8)與6RL#9-N434W(重鏈序列編號:9、輕鏈序列編號:10)與H54/L28-N434W(重鏈序列編號:11、輕鏈序列編號:12)。導入胺基酸取代之方法,係使用QuikChange Site-Directed Mutagenesis Kit(Stratagene),以附屬説明書記載之方法製作變異體,並將獲得之質體片段插入動物細胞表現載體,製作成目的之表現載體。抗體之表現、精製、濃度測定,係以實施例2記載之方法實施。
[實施例7]使用正常小鼠評價Ca依存性結合抗體之消失加速效果 (7-1)使用正常小鼠之體內試驗 對於正常小鼠(C57BL/6J mouse、Charles River Japan)單獨投予hsIL-6R(可溶型人類IL-6受體:參考例1製作)或將hsIL-6R及抗人類IL-6受體抗體同時投予後,評價hsIL-6R及抗人類IL-6受體抗體之體內動態。將hsIL-6R溶液(5μg/mL)、或hsIL-6R與抗人類IL-6受體抗體之混合溶液對於尾靜脈以10 mL/kg單次投予。抗人類IL-6受體抗體,使用上述H54/L28-N434W、6RL#9-N434W、FH4-N434W。
混合溶液中之hsIL-6R濃度均為5μg/mL,但抗人類IL-6受體抗體濃度依各抗體而不同,H54/L28-N434W為0.042 mg/mL、6RL#9-N434W為0.55 mg/mL、FH4-N434W為1 mg/mL。此時由於對於hsIL-6R,抗人類IL-6受體抗體以足量過剩存在,因此可認為hsIL-6R大部分與抗體結合。投予後15分鐘、7小時、1日、2日、4日、7日、14日、21日、28日進行採血。將採取之血液立即於4℃、12,000 rpm進行15分鐘離心分離,獲得血漿。將分離之血漿在實施測定為止,保存於設定在-20℃以下之冷凍庫。
(7-2)利用ELISA法測定正常小鼠血漿中之抗人類IL-6受體抗體濃度 小鼠血漿中之抗人類IL-6受體抗體濃度,係以與實施例6同樣之ELISA法測定。該方法測定之靜脈內投予後之正常小鼠中,H54/L28-N434W、6RL#9-N434W、FH4-N434W之血漿中抗體濃度變動如圖12。
(7-3)利用電化學發光法測定血漿中hsIL-6R濃度 小鼠之血漿中hsIL-6R濃度,以電化學發光法測定。製備調整為2000、1000、500、250、125、62.5、31.25 pg/mL之hsIL-6R檢量線試樣及稀釋50倍以上之小鼠血漿測定試樣,並以SULFO-TAG NHS Ester(Meso Scale Discovery)釕化之Monoclonal Anti-human IL-6R Antibody(R&D)及Biotinylated Anti-human IL-6 R Antibody (R&D)混合,並於4℃使反應1晩。此時之Assay buffer中含有10 mM EDTA,並使樣本中之游離Ca濃度降低而使樣本中幾乎全部的hsIL-6R從6RL#9-N434W或FH4-N434W解離,目的為使成為以游離體的形式存在之狀態。之後,分注於MA400 PR Streptavidin Plate(Meso Scale Discovery)。再於25℃反應1小時並洗滌後,分注Read Buffer T(×4)(Meso Scale Discovery),立即以SECTOR PR 400 reader(Meso Scale Discovery)測定。hsIL-6R濃度,係由檢量線之回應使用解析軟體SOFTmax PRO(Molecular Devices)計算。該方法測定之靜脈內投予後之正常小鼠於血漿中之hsIL-6R濃度變動如圖13。
結果,於pH7.4對於FcRn之結合增強,但是當同時投予hsIL-6R與無Ca依存性結合之通常之抗體H54/L28-N434W時,比起單獨投予hsIL-6R時,hsIL-6R之消失大幅減慢。相對於此,同時投予 hsIL-6R與具100倍以上之Ca依存性結合且於pH7.4對於FcRn之結合增強之抗體6RL#9-N434W或FH4-N434W時,比起單獨投予hsIL-6R時, hsIL-6R之消失加速。比起單獨投予hsIL-6R時,同時投予6RL#9-N434W及FH4-N434W時,Day1之血漿中之hsIL-6R濃度各減低3倍及8倍。藉此,可確認對於鈣依存性結合抗體,藉由使於pH7.4對於FcRn之結合能力增強,可以更加速抗原從血漿中消失。
將hsIL-6R與無Ca依存性結合之通常之抗體H54/L28-IgG1比較,具有與hsIL-6R及100倍以上之Ca依存性結合之抗體6RL#9-IgG1或FH4-IgG1,確認有使hsIL-6R之消失增大之效果,具有與hsIL-6R與100倍以上之Ca依存性結合,且於pH7.4對於FcRn之結合增強之抗體6RL#9-N434W或FH4-N434W,確認hsIL-6R之消失比起hsIL-6R單獨時能加速。該等數據,與如圖1所示,與pH依存性的抗原結合之抗體同樣,啟示與Ca依存性的抗原結合之抗體在核內體內會將抗原解離。如實施例1所示,與pH依存性的抗原結合之抗體受限於能當做標的之抗原決定基(圖3),但藉由使用與本探討發現的Ca依存性的抗原結合之抗體(圖4、5),能更加廣以將核內體依存性的抗原解離之抗體為標的之抗原決定基。
[實施例8]利用X射線結晶結構解析鑑定6RL#9抗體之鈣離子結合部位 (8-1)X射線結晶結構解析 如實施例4所示,6RL#9抗體與鈣離子結合,係由熱變性溫度Tm値之測定所啟示。但是由於無法預測6RL#9抗體之哪個部位與鈣離子結合,因此,藉由使用X射線結晶結構解析之方法,指定鈣離子所交互作用之6RL#9抗體之序列中之殘基。
(8-2)6RL#9抗體之表現及精製 將為了X射線結晶結構解析使用而使表現之6RL#9抗體予以精製。具體而言,將各能表現6RL#9抗體之重鏈(序列編號:1)與輕鏈(序列編號:2)之方式製備之動物表現用質體,暫時導入動物細胞。對於懸浮於FreeStyle 293 Expression Medium培養基(Invitrogen),使得最終細胞密度成為1 x 106 細胞/mL之800 mL之人類胎兒腎細胞來源FreeStyle 293-F株(Invitrogen),導入以脂轉染法製備的質體。將導入有質體之細胞,於CO2 培養箱(37℃、8%CO2 、90 rpm)中培養5日。 依照使用rProtein A SepharoseTM Fast Flow(Amersham Biosciences)之該技術領域之人士公知之方法,從如上述獲得之培養上清精製抗體。使用分光光度計測定精製之抗體溶液於280 nm之吸光度。使用依PACE法計算之吸光係數,由測定値計算抗體濃度(Protein Science (1995) 4, 2411-2423)。
(8-3)從6RL#9抗體精製Fab片段 使用分子量區分尺寸10000MWCO之超過濾膜時,將6RL#9抗體濃縮至21 mg/mL。使用L-Cystein 4 mM、EDTA 5 mM、20 mM磷酸鈉緩衝液(pH 6.5),至備以5 mg/mL稀釋而得之2.5 mL之該抗體之試樣。添加0.125 mg之Papain(Roche Applied Science),並將經攪拌之該試樣於35℃鏡置2小時。靜置後,溶解蛋白酶抑制劑蛋白酶抑制劑迷你長尾獼猴,再將溶有無EDTA(Roche Applied Science)1錠之10 mL之25 mM MES 緩衝液(pH6)添加到該試樣,於冰中靜置,藉此,以Papain停止蛋白酶反應。其次,將該試樣添加到於下流游隨機連結之1 mL尺寸之ProteinA載體管柱HiTrap MabSelect Sure(GE Healthcare)之25 mM MES 緩衝液pH6,經平衡化之1 mL尺寸之陽離子交換管柱HiTrap SP HP(GE Healthcare)。同緩衝液中之NaCl濃度藉由直接上升到300 mM並進行溶出可獲得6RL#9抗體之Fab片段之精製區分。其次,將獲得之精製區分以5000MWCO超過濾膜濃縮為約0.8 mL。於以含50 mM NaCl之100 mM HEPES緩衝液(pH 8)平衡化之凝膠過濾管柱Superdex 200 10/300 GL(GE Healthcare)中,添加濃縮液。結晶化用之精製6RL#9抗體之Fab片段使用同緩衝液從管柱溶出。又,上述所有的管柱操作係於6至7.5℃之低溫下實施。
(8-4)6RL#9抗體之 Fab片段於Ca存在下之結晶化 預先以一般的條件設定獲得6RL#9 Fab片段之種結晶。其次,使用以使成為5 mM之方式添加有CaCl2 之精製6RL#9抗體之Fab片段,使用5000MWCO之超過濾膜濃縮為12 mg/mL。其次,利用hanging-drop蒸氣擴散法,實施如前述方式濃縮之試樣之結晶化。貯存溶液,使用含20-29% PEG4000之100 mM HEPES緩衝液(pH7.5)。在蓋玻片上對於0.8μl之貯存溶液及0.8μl之前述濃縮試樣之混合液,添加含29% PEG4000及5 mM CaCl2 之於100 mM HEPES緩衝液(pH7.5)中破碎之前述種結晶稀釋成100-10000倍之稀釋系列之溶液0.2μl,藉此製備結晶化滴劑。將該結晶化滴劑於20℃靜置2日至3日,測定藉此獲得之薄板狀結晶之X射線繞射數據。
(8-5)6RL#9抗體之 Fab片段於Ca非存在下之結晶化 精製6RL#9抗體之Fab片段使用5000MWCO之超過濾膜,濃縮為15 mg/ml。其次,利用hanging-drop蒸氣擴散法,實施以前述方式濃縮之試樣之結晶化。貯存溶液使用含18-25%之PEG4000之100 mM HEPES緩衝液(pH7.5)。在蓋玻片上對於0.8μl之貯存溶液及0.8μl之前述濃縮試樣之混合液,添加以含25% PEG4000之100 mM HEPES緩衝液(pH7.5)中破碎之Ca存在下獲得之6RL#9抗體之Fab片段之結晶稀釋為100-10000倍而得之稀釋系列之溶液0.2μl,製備結晶化滴劑。將該結晶化滴劑於20℃靜置2日至3日,測定藉此獲得之薄板狀之結晶之X射線繞射數據。
(8-6)6RL#9抗體之 Fab片段於Ca存在下之結晶X射線繞射數據之測定 將浸於含35% PEG4000及5 mM CaCl2 之100mM HEPES緩衝液(pH7.5)之溶液而得之6RL#9抗體之Fab片段於Ca存在下獲得之單結晶,使用微小的附尼龍環的銷,將各外液鏟出,而使該單結晶於液態氮中凍結。使用高能量加速器研究機構之放射光設施Phonton Factory之束線BL-17A,測定前述冷凍結晶之X射線繞射數據。又,測定中藉由一直於-178℃之氮氣流中放置冷凍結晶,維持冷凍狀態。使用束線具備並安裝的CCD偵測器Quantum315r(ADSC),使結晶每次旋轉1°,收集總共180張繞射影像。晶格常數之決定、對於繞射斑點賦予指數、及繞射數據之處理,係以程式Xia2(CCP4 Software Suite)、XDS Package(Walfgang Kabsch)及Scala(CCP4 Software Suite)進行。最終,獲得解析能力至多2.2埃之繞射強度數據。本結晶,屬於空間群P212121,晶格常數a=45.47埃、b=79.86埃、c=116.25埃、α=90°、β=90°、γ=90°。
(8-7)6RL#9抗體之 Fab片段於Ca非存在下之結晶之X射線繞射數據之測定 將浸於含35% PEG4000之100 mM HEPES緩衝液(pH7.5)之溶液的6RL#9抗體之Fab片段於Ca非存在下獲得之單結晶之一,藉由使用附微小的尼龍環的的銷,將外液鏟出,使該單結晶於液態氮中冷凍。使用高能量加速器研究機構之放射光設施Phonton Factory之束線BL-5A,測定前述冷凍結晶之X射線繞射數據。又,測定中一直將冷凍結晶放置在-178℃之氮氣流中,藉此維持冷凍狀態。使用束線具備並安裝的CCD偵測器Quantum210r(ADSC),使結晶每次旋轉1°,收集總共180張繞射影像。晶格常數之決定、對於繞射斑點賦予指數、及繞射數據之處理,係以程式Xia2(CCP4 Software Suite)、XDS Package(Walfgang Kabsch)及Scala(CCP4 Software Suite)進行。最終,獲得解析能力至多2.3埃之繞射強度數據。本結晶,屬於空間群P212121,晶格常數a=45.40埃、b=79.63埃、c=116.07埃、α=90°、β=90°、γ=90°,與Ca存在下之結晶為同型。
(8-8)6RL#9抗體之Fab片段於Ca存在下之結晶之結構解析 利用使用程式Phaser(CCP4 Software Suite)之分子取代法,決定6RL#9抗體之Fab片段於Ca存在下之結晶之結構。從獲得之結晶格子之大小以及6RL#9抗體之Fab片段之分子量,預測非對稱單元中之分子數為一個。依據一次序列上之相同性,將從PDB code: 1ZA6之結構座標取出之A鏈112-220號及B鏈116-218號之胺基酸殘基部分當做CL及CH1區之探索用模型分子。其次,將從PDB code: 1ZA6之結構座標取出之B鏈1-115號之胺基酸殘基部分,當做VH區之探索用模型分子。最後,將從PDB code 2A9M之結構座標取出之輕鏈3-147號之胺基酸殘基,當做VL區之探索用模型分子。依照該順序,從旋轉函數及並進函數決定各探索用模型分子於結晶格子內之走向與位置,而獲得6RL#9抗體之Fab片段之起始結構模型。對於該起始結構模型,進行使VH、VL、CH1、CL之各域移動的剛體精密化,對於25-3.0埃之反射數據,結晶學的可靠度因子R値為46.9%、Free R値為48.6%。又,一面參考利用使用程式Refmac5(CCP4 Software Suite)之結構精密化、與由實驗決定之結構因子Fo與從模型計算之結構因子Fc及使用位相計算之以2Fo-Fc、Fo-Fc當做係數之電子密度輿圖,一面反複進行於程式Coot(Paul Emsley)上進行模型修正,藉此進行模型之精密化。最後,依據以2Fo-Fc、Fo-Fc當做係數之電子密度輿圖,將Ca離子及水分子納入模型,以使用程式Refmac5(CCP4 Software Suite)進行精密化。藉由使用解析能力為25-2.2埃之21020個反射數據,最終,對於3440個原子之模型,結晶學的可靠度因子R値為20.0%、Free R値為27.9%。
(8-9)6RL#9抗體之Fab片段於Ca非存在下之結晶之X射線繞射數據之測定 6RL#9抗體之Fab片段於Ca非存在下之結晶之結構,係使用同型Ca存在下結晶之結構決定。從6RL#9抗體之Fab片段於Ca存在下之結晶之結構座標,窺視水分子與Ca離子分子,進行使VH、VL、CH1、CL之各域移動之剛體精密化。對於25-3.0埃之反射數據,結晶學的可靠度因子R値為30.3%、Free R値為31.7%。再者,一面參考利用使用程式Refmac5(CCP4 Software Suite)之結構精密化、與由實驗決定之結構因子Fo與從模型計算之結構因子Fc及使用位相計算之以2Fo-Fc、Fo-Fc當做係數之電子密度輿圖,一面反複進行於程式Coot(Paul Emsley)上進行模型修正,藉此進行模型之精密化。最後,依據以2Fo-Fc、Fo-Fc當做係數之電子密度輿圖,將水分子納入模型,以使用程式Refmac5(CCP4 Software Suite)進行精密化。藉由使用解析能力為25-2.3埃之18357個反射數據,最終,對於3351個原子之模型,結晶學的可靠度因子R値為20.9%、Free R値為27.7%。
(8-10)6RL#9抗體之Fab片段於Ca存在或非存在下之結晶之X射線繞射數據之比較 若比較6RL#9抗體之Fab片段於Ca存在下之結晶及Ca非存在下之結晶之結構,可觀察到重鏈CDR3有重大變化。圖14顯示由X射線結晶結構解析決定之6RL#9抗體之Fab片段之重鏈CDR3之結構。具體而言,於Ca存在下之6RL#9抗體之Fab片段之結晶中,重鏈CDR3環圈部分之中心部分存在有鈣離子。鈣離子,據認為會與重鏈CDR3之95位、96位及100a位(Kabat編號法)交互作用。Ca存在下時,與抗原之結合會由於重要重鏈CDR3環圈與鈣結合而安定化,據認為成為對與抗原之結合最適之結構。抗體之重鏈CDR3有鈣結合之例,至今為止無人報告,抗體之重鏈CDR3有鈣結合之結構為新穎結構。重鏈CDR3與抗原之結合已知為最重要,本實施例發現的鈣離子對於重鏈CDR3之結構維持為必要之模體,據認為鈣離子對於與抗原結合具有重要作用。亦即,具有本模體之抗體據認為對於鈣離子依存性的抗原有結合之可能性極高,例如若能製作具本模體之合成庫,則據認為可從如此的庫有效率的取得鈣依存性結合抗體。
[實施例9]使用噬菌體呈現技術從人類抗體庫取得Ca依存性的與IL-6結合之抗體 (9-1)未經改變的(naïve)人類抗體噬菌體呈現庫之製作 依照從人類PBMC製作之多A RNA,或以市售之人類多A RNA等為模板之該技術領域之人士公知之方法,構建呈現彼此不同的人類抗體序列之Fab域的多數噬菌體構成的人類抗體噬菌體呈現庫。
(9-2)利用珠粒淘選從庫取得Ca依存性的與抗原結合之抗體片段 從構建之未經改變的人類抗體噬菌體呈現庫最初之選拔,係藉由濃縮成僅具對於抗原(IL-6)之結合能力之抗體片段而實施。抗原使用經生物素標記之IL-6。
從保持有經構建之噬菌體呈現用噬粒(phagemid)之大腸菌生產噬菌體。藉由對於進行噬菌體之大腸菌之培養液添加2.5 M NaCl/10%PEG,使沉澱的噬菌體的集團以TBS稀釋,藉此獲得噬菌體庫液。其次,對於噬菌體庫液添加BSA及CaCl2 ,使終濃度成為4%BSA及1.2mM鈣離子濃度。淘選方法,係參照一般方法即使用固定化於磁性珠粒之抗原的淘選方法(J. Immunol. Methods. (2008) 332 (1-2), 2-9、J. Immunol. Methods. (2001) 247 (1-2), 191-203、Biotechnol. Prog. (2002) 18 (2) 212-20、Mol. Cell Proteomics (2003) 2 (2), 61-9)。磁性珠粒可使用NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)或Streptavidin coated beads(Dynabeads M-280 Streptavidin)。
具體而言,於製備的噬菌體庫液添加250 pmol之生物素標記抗原,藉此使該噬菌體庫液於室溫接觸抗原60分鐘。添加以BSA阻斷的磁性珠粒,將抗原與噬菌體之複合體於室溫結合於磁性珠粒15分鐘。將珠粒以1.2 mM CaCl2 /TBST(含1.2 mM CaCl2 之TBST)洗滌3次後,以1 mL之1.2 mM CaCl2 /TBS(含1.2 mM CaCl2 之TBS)再洗滌2次。之後,將添加有0.5 mL之1 mg/mL之胰蛋白酶之珠粒於室溫懸浮15分鐘後,立即使用磁座分離珠粒,將噬菌體溶液回收。將回收的噬菌體溶液,添加到處於對數增殖期(OD600為0.4-0.5)之10 mL之大腸菌株TG1。於37℃緩慢攪拌,培養上述大腸菌1小時,藉此使噬菌體感染大腸菌。將經感染之大腸菌,接種到225 mm x 225 mm的平板。其次,從經接種之大腸菌之培養液回收噬菌體,以製備噬菌體庫液。
第2次後之淘選,係以Ca依存性結合能力為指標,實施噬菌體之濃縮。具體而言,係於製備的噬菌體庫液添加40 pmol之生物素標記抗原,藉此使噬菌體庫於室溫與抗原接觸60分鐘。添加經BSA阻斷的磁性珠粒,使抗原與噬菌體之複合體於室溫結合於磁性珠粒15分鐘。珠粒以1 mL之1.2 mM CaCl2 /TBST與1.2 mM CaCl2 /TBS洗滌。之後,將添加有0.1 mL之2 mM EDTA/TBS的珠粒於室溫懸浮後,立即使用磁座分離珠粒,並回收噬菌體溶液。於回收之噬菌體溶液添加100 mg/mL之胰蛋白酶5μL,藉此切斷未呈現Fab之噬菌體之pIII蛋白質(幫助者(helper)噬菌體來源之pIII蛋白質),使未呈現Fab之噬菌體失去對於大腸菌之感染能力。將從經胰蛋白酶處理之噬菌體溶液回收之噬菌體,添加到處於對數增殖期(OD600為0.4-0.7)之10 mL之大腸菌株TG1。於37℃緩慢攪拌進行1小時上述大腸菌之攪拌培養,使噬菌體感染大腸菌。將感染的大腸菌接種在225 mm x 225 mm之平板。其次,從接種的大腸菌的培養液回收噬菌體,藉此回收噬菌體庫液。以Ca依存性結合能力為指標之淘選,返覆3次。
(9-3)利用噬菌體ELISA所為之評價 從依照上述方法獲得之大腸菌之單一菌落,參考常法(Methods Mol. Biol. (2002) 178, 133-145)回收含噬菌體之培養上清。將添加有BSA及CaCl2 使終濃度為4%BSA及1.2 mM鈣離子濃度之含噬菌體之培養上清,以下列步驟供ELISA。將StreptaWell 96微滴定平板(Roche)以含生物素標記抗原之100μL之PBS塗覆一晩。將該板之各井以PBST洗滌,以去除抗原後,將該井以250μL之4%BSA-TBS阻斷1小時以上。將已去除4%BSA-TBS之各井中添加有製備之培養上清的該板,於37℃靜置1小時,藉此使呈現噬菌體之抗體結合於各井存在之抗原。於以1.2 mM CaCl2 /TBST洗滌之各井中,添加1.2 mM CaCl2 /TBS或1 mM EDTA/TBS,將該板於37℃靜置30分鐘並溫育。以1.2 mM CaCl2 /TBST洗滌後,將以設為終濃度4%BSA及1.2 mM離子化鈣濃度之TBS稀釋過的HRP結合抗M13抗體(Amersham Pharmacia Biotech)添加到各井之板溫育1小時。以1.2 mM CaCl2 /TBST洗滌後,使添加有TMB single溶液(ZYMED)之各井中之溶液之發色反應藉由添加硫酸而停止後,從450 nm之吸光度測定該發色。
使用經單離之96選殖體進行噬菌體ELISA,獲得對於IL-6具有Ca依存性結合能力之6KC4-1#85抗體、6LC4-1#15抗體及6LC4-2#16抗體。由上述噬菌體ELISA之結果,進行判斷為具有對於Ca依存性抗原之結合能力的抗體片段為模板,而以專一性引子放大之基因之鹼基序列解析。6KC4-1#85抗體之重鏈可變區之序列記載於序列編號:25,及輕鏈可變區之序列記載於序列編號:26。將編碼為6KC4-1#85抗體之重鏈可變區(序列編號:25)之聚核苷酸,以PCR法與編碼為IgG1來源序列之聚核苷酸(序列編號:65)連結成之DNA片段,納入動物細胞表現用載體,構建表現序列編號:27表示之重鏈之載體。將編碼為6KC4-1#85抗體之輕鏈可變區(序列編號:26)之聚核苷酸、以PCR法與編碼為天然型Kappa鏈之恆定區(序列編號:28)之聚核苷酸連結成之序列編號:29表示之序列之DNA片段,納入動物細胞表現用載體。以同樣方法,將6LC4-1#15抗體(重鏈序列編號68、輕鏈序列編號69)及6LC4-2#16抗體(重鏈序列編號70、輕鏈序列編號71)納入細胞表現用載體。製作之改變體之序列,經該技術領域之人士公知之方法確認。
(9-4)抗體之表現與精製 噬菌體ELISA之結果,將判斷為具有對於Ca依存性抗原之結合能力之選殖體,導入動物細胞表現用質體。抗體之表現係使用以下方法實施。將人類胎兒腎細胞來源FreeStyle 293-F株(Invitrogen)懸浮於FreeStyle 293 Expression Medium培養基(Invitrogen),以1.33 x 106 細胞/mL之細胞密度對於6井板之各井各接種3 mL。製備之質體,以脂轉染法導入細胞。於CO2 培養箱(37度、8%CO2 、90 rpm)中培養4日。使用rProtein A SepharoseTM Fast Flow(Amersham Biosciences),以該技術領域之人士公知之方法,從上述獲得之培養上清精製抗體。使用分光光度計測定經精製之抗體溶液於280 nm之吸光度。藉由使用PACE法計算之吸光係數,從得到之測定値計算抗體濃度(Protein Science (1995) 4, 2411-2423)。
(9-5)鈣依存性的抗IL6抗體之結合評價 將取得之抗體使用Biacore T100(GE Healthcare),評價於pH7.4相關於人類介白素6 (hIL6) 結合活性(解離常數KD (M))。運行緩衝液係使用含3μM或1.2mM CaCl2 之0.05% Tween20, 10 mmol/l ACES, 150 mmol/l NaCl(pH7.4)測定。
於Sensor chip CM5(GE Healthcare)上以胺基偶聯法適量固定化重組型PROTEIN A/G(Thermo Scientific)後,使抗體結合。注射當做分析物之適當濃度之hIL6(人類介白素6、鎌倉Technoscience),使與感應晶片上之抗體交互作用。之後,注射10 mmol/L Glycine-HCl (pH1.5),使感應晶片再生。測定於37℃進行。測定之結果,獲得之傳感圖如圖15。從該等結果,可知:6LC4-1#15-IgG1及 6LC4-2#16-IgG1、6KC4-1#85-IgG1抗體於Ca2+ 濃度為3μM之條件下,比起於Ca2+ 濃度為1.2mM之條件下,對於hIL6之結合較弱。上述結果不僅是鈣依存性抗原結合之性質為實施例3所示之IL-6R,在IL-6也有顯示,故顯示對於其他抗原也能適用。
[實施例10]6KC4-1#85抗體之鈣離子結合評價 (10-1)6KC4-1#85抗體之鈣離子結合評價 評價從人類抗體庫取得之鈣依存性的抗原結合抗體6KC4-1#85抗體是否會與鈣結合。以離子化鈣濃度不同之條件,依實施例4記載之方法評價所測定之Tm値是否有變動。
6KC4-1#85抗體之Fab域之Tm値如表11。如表11,6KC4-1#85抗體之Fab域之Tm値會由於鈣離子之濃度而變動,所以可知:6KC4-1#85抗體會與鈣結合。
[表11]
Figure 02_image035
(10-2)6KC4-1#85抗體之鈣離子結合部位之鑑定 實施例10之(10-1)顯示6KC4-1#85抗體會與鈣離子結合,但是6KC4-1#85不具有如後述hVk5-2序列之鈣結合模體。所以,為了鑑定鈣離子是否與6KC4-1#85抗體之哪一個殘基有鈣離子結合,製作6KC4-1#85抗體之CDR所存在之Asp(D)殘基取代為與鈣離子之結合或螯合無關的Ala(A)殘基之改變重鏈(6_H1-11(序列編號:30)、6_H1-12(序列編號:31)、6_H1-13(序列編號:32)、6_H1-14(序列編號:33)、6_H1-15(序列編號:34))及改變輕鏈(6_L1-5(序列編號:35)及6_L1-6(序列編號:36))。從導入有含改變抗體基因之表現載體的動物細胞的培養液,依實施例2記載之方法精製改變抗體。經精製之改變抗體之鈣結合,依實施例4記載之方法測定。測定結果如表12。
[表12]
Figure 02_image037
如表12所示,藉由將6KC4-1#85抗體之重鏈CDR3之95位或101位(Kabat編號法)取代為Ala殘基,6KC4-1#85抗體會失去鈣結合能力,因此可認為該殘基對於與鈣之結合為重要。從6KC4-1#85抗體之改變抗體之鈣結合性可知,6KC4-1#85抗體之重鏈CDR3之環圈基部附近存在之鈣結合模體,也可利用為本發明之抗原結合分子所包含之抗原結合域之鈣結合模體。本模體,係與實施例8發現之模體同樣之重鏈CDR3之鈣結合模體,因此,若同樣能製作例如具本模體之合成庫時,則據認為可從如此之庫有效率地取得鈣依存性結合抗體。
[實施例11]與鈣離子結合之人類生殖細胞系列序列之探索 (11-1)人類生殖細胞系列序列之取得 至今為止無人報告以含人類生殖細胞系列序列之抗體與鈣離子結合之情事。所以,為了判定含人類生殖細胞系列序列之抗體是否會與鈣離子結合,選殖包含以從Human Fetal Spreen Poly RNA(Clontech)製備之cDNA當做模板之人類生殖細胞系列序列的抗體之生殖細胞系列的序列。將經選殖之DNA片段插入動物細胞表現載體。將獲得之表現載體之鹼基序列依該技術領域之人士公知之方法決定,其序列編號如表13。編碼為序列編號:37(Vk1)、序列編號:38(Vk2)、序列編號:39(Vk3)、序列編號:40(Vk4)及序列編號:41(Vk5)5 1聚核苷酸,與利用PCR法編碼為天然型Kappa鏈之恆定區(序列編號:28)之聚核苷酸連結成的DNA片段,納入動物細胞表現用載體。又,序列編號:42(Vk1)、序列編號:43(Vk2)、序列編號:44(Vk3)、序列編號:45(Vk4)及編碼為序列編號:46(Vk5)之聚核苷酸,與編碼為利用PCR法而IgG1之C末端2個胺基酸缺損之多胜肽(序列編號:65)之聚核苷酸連結之DNA片段,納入動物細胞表現用載體。製作之改變體之序列經以該技術領域之人士公知之方法確認。
[表13]
Figure 02_image039
(11-2)抗體之表現與精製 將插入有取得之5種人類生殖細胞系列序列的DNA片段的動物細胞表現載體導入動物細胞。抗體之表現係以以下方法進行。將人類胎兒腎細胞來源FreeStyle 293-F株(Invitrogen)懸浮於FreeStyle 293 Expression Medium培養基(Invitrogen),以1.33 x 106 細胞/mL之細胞密度對於6井板之各井接種3 mL。製備之質體以脂轉染法導入細胞。於CO2 培養箱(37度、8%CO2 、90 rpm)中進行4日培養。使用rProtein A SepharoseTM Fast Flow(Amersham Biosciences)並使用該技術領域之人士公知之方法,從上述獲得之培養上清精製抗體。使用分光光度計精製之抗體溶液測定於280 nm之吸光度。使用依PACE法計算之吸光係數,可從獲得之測定値計算抗體濃度(Protein Science (1995) 4, 2411-2423)。
(11-3)含人類生殖細胞系列序列之抗體之鈣離子結合活性之評價 評價經精製之抗體之鈣離子結合活性。將經精製之抗體提供給以20 mM Tris-HCl、150 mM NaCl、2 mM CaCl2 (pH7.4)或20 mM Tris-HCl、150 mM NaCl, 3μM CaCl2 (pH7.4)之溶液為外液之透析(EasySEP、TOMY)處理。使用供透析之溶液及製備為0.1 mg/mL之抗體溶液當做待驗物質,從20℃至115℃以240℃/hr 之升溫速度進行DSC測定。依據獲得之DSC之變性曲線計算之各抗體之Fab域之熱變性中間溫度(Tm値),如表14。
[表14]
Figure 02_image041
其結果,含hVk1、hVk2、hVk3、hVk4序列之抗體之Fab域之Tm値,不依存於含該Fab域之溶液中之鈣離子濃度,不變動。另一方面,含hVk5序列之抗體之Fab域之Tm値,會由於含該Fab域之抗體溶液中之鈣離子濃度而變動,因此顯示hVk5序列會與鈣離子結合。
[實施例12]人類Vk5(hVk5)序列之評價 (12-1)hVk5序列 Kabat資料庫中,hVk5序列僅有hVk5-2序列登載。以下將hVk5與hVk5-2以相同含意處理。
(12-2)糖鏈非加成型hVk5-2序列之構建、表現及精製 hVk5-2序列在20位(Kabat編號法)之胺基酸具有加成N型糖鏈之序列。對於蛋白質加成之糖鏈由於存在異質性,故由物質均勻性之觀點,以不加成糖鏈為理想。而,製作20位(Kabat編號法)之Asn(N)殘基取代為Thr(T)殘基之改變體hVk5-2_L65(序列編號:47)。胺基酸之取代,係使用QuikChange Site-Directed Mutagenesis Kit(Stratagene)之該技術領域之人士公知之方法進行。將編碼為改變體hVk5-2_L65之DNA納入動物表現用載體。納入有製作之改變體hVk5-2_L65之DNA的動物表現用載體,與納入有表現當做重鏈之CIM_H(序列編號:48)的動物表現用載體,以實施例2記載之方法一起導入到動物細胞中。於導入之動物細胞中表現之含hVk5-2_L65 及CIM_H之抗體,以實施例2記載之方法精製。
(12-3)含糖鏈非加成型hVk5-2序列之抗體之物性評價 經取得之含改變序列hVk5-2_L65之抗體,是否比起為供改變之基礎的hVk5-2序列之抗體,其異質性有所減少之情事,係使用離子交換層析分析。離子交換層析之方法如表15所示。分析結果如圖16所示,顯示糖鏈加成部位經改變之hVk5-2_L65,比起原本的hVk5-2序列,異質性有所減少。
[表15]
Figure 02_image043
其次,將含有異質性減少之hVk5-2_L65序列的抗體是否會與鈣離子結合之情事,使用實施例4記載之方法評價。其結果,如表16所示,含有糖鏈加成部位經改變之hVk5-2_L65之抗體之Fab域之Tm値,也會由於抗體溶液中之鈣離子濃度之變化而變動。亦即,顯示含糖鏈加成部位經改變之hVk5-2_L65之抗體之Fab域,會有鈣離子結合。
[表16]
Figure 02_image045
[實施例13]對於含hVk5-2序列之CDR序列之抗體分子之鈣離子結合活性之評價 (13-1)含hVk5-2序列之CDR序列之改變抗體之製作、表現及精製 hVk5-2_L65序列,係存在於人類Vk5-2序列之框架的糖鏈加成部位之胺基酸受改變之序列。於實施例12顯示即使改變糖鏈加成部位,鈣離子仍會結合,但是一般而言,框架序列為生殖細胞系列之序列從免疫原性之觀點為理想。所以,探討是否可能將抗體之框架序列取代為未加成糖鏈之生殖細胞系列序列之框架序列而維持對於該抗體之鈣離子之結合活性。
將編碼為經化學合成之hVk5-2序列之框架序列改變為hVk1、hVk2、hVk3及 hVk4序列之序列(各為CaVk1(序列編號:49)、CaVk2(序列編號:50)、CaVk3(序列編號:51)、CaVk4(序列編號:52)的聚核苷酸,以PCR法與編碼為天然型Kappa鏈之恆定區(序列編號:28)之聚核苷酸連結成的DNA片段,納入動物細胞表現用載體。經製作之改變體之序列以該技術領域之人士公知之方法確認。以上述方式製作之各質體,與納入有編碼為CIM_H(序列編號:48)之聚核苷酸之質體,一起以實施例2記載之方法導入動物細胞。從以上述方式導入之動物細胞之培養液,精製表現之所望之抗體分子。
(13-2)含hVk5-2序列之CDR序列之改變抗體之鈣離子結合活性之評價 以實施例4記載之方法評價鈣離子是否會結合於含hVk5-2序列以外之生殖細胞系列序列(hVk1、hVk2、hVk3、hVk4)之框架序列及hVK5-2序列之CDR序列的改變抗體。評價結果如表17。各改變抗體之Fab域之Tm値,顯示會由於抗體溶液中之鈣離子濃度變化而變動。是以,顯示含hVk5-2序列之框架序列以外的框架序列的抗體也會與鈣離子結合。亦即,顯示hVk5-2序列之CDR序列所具有之模體對於與鈣離子之結合係屬重要,確認框架序列可為任意框架。
[表17]
Figure 02_image047
再者,可知:改變為含有hVk5-2序列以外之生殖細胞系列序列(hVk1、hVk2、hVk3、hVk4)之框架序列及hVK5-2序列之CDR序列的各抗體之Fab域之熱安定性之指標熱變性溫度(Tm値),比以含有當做供改變之基礎的hVk5-2序列的抗體之Fab域之Tm値為增加。從該結果,發現:含hVk1、hVk2、hVk3、hVk4之框架序列及hVk5-2序列之CDR序列的抗體,具有與鈣離子結合之性質,此外,於熱安定性之觀點也為優異之分子。
[實施例14]人類生殖細胞系列hVk5-2序列存在之鈣離子結合部位之鑑定 (14-1)hVk5-2序列之CDR序列中之變異部位之設計 如實施例13記載,含hVk5-2序列之CDR部分導入於其他生殖細胞系列之框架序列之輕鏈之抗體也會顯示與鈣離子結合。由此結果,啟示hVk5-2存在之鈣離子結合部位在CDR之中存在。與鈣離子結合,亦即螯合鈣離子之胺基酸,例如負電荷之胺基酸或能成為氫鍵之接受者之胺基酸。所以,評價含有hVk5-2序列之CDR序列中存在之Asp(D)殘基或Glu(E)殘基取代為Ala(A)殘基之變異hVk5-2序列的抗體是否會與鈣離子結合。
(14-2)hVk5-2序列之Ala取代體之製作及抗體之表現及精製 製作含有hVk5-2序列之CDR序列中存在之Asp及/ 或Glu殘基改變為Ala殘基之輕鏈的抗體分子。如實施例12記載,由於未加成糖鏈之改變體hVk5-2_L65維持與鈣離子結合,故由鈣離子結合性之觀點,可認為與hVk5-2序列為同等。本實施例中,以hVk5-2_L65為模板序列,進行胺基酸取代。製作之改變體如表18。胺基酸之取代使用QuikChange Site-Directed Mutagenesis Kit(Stratagene)、PCR或In fusion Advantage PCR cloning kit(TAKARA)等該技術領域之人士公知之方法進行,構建胺基酸經取代之改變輕鏈之表現載體。
[表18]
Figure 02_image049
獲得之表現載體之鹼基序列以該技術領域之人士公知之方法決定。將製作之改變輕鏈之表現載體與重鏈CIM_H(序列編號:48)之表現載體,一起暫時性導入人類胎兒腎癌細胞來源HEK293H株(Invitrogen)、或FreeStyle293細胞(Invitrogen),以使抗體表現。從獲得之培養上清,使用rProtein A SepharoseTM Fast Flow(GE Healthcare),以該技術領域之人士公知之方法精製抗體。經精製之抗體溶液於280 nm之吸光度,使用分光光度計測定。藉由使用PACE法計算之吸光係數,從獲得之測定値計算抗體濃度 (Protein Science (1995) 4, 2411-2423)。
(14-3)含hVk5-2序列之Ala取代體的抗體之鈣離子結合活性評價 判定獲得之精製抗體是否會與鈣離子結合。具體而言,將經精製之抗體供以20 mM Tris-HCl、150 mM NaCl、2 mM CaCl2 (pH7.5)或20 mM Tris-HCl、150 mM NaCl(pH7.5)之溶液(表19表示記載鈣離子濃度0μM)為外液之透析(EasySEP、TOMY)處理。使用透析用之溶液並以製備為0.1 mg/mL之抗體溶液當做待驗物質,於20℃至115℃以240℃/hr之升溫速度進行DSC測定。依據獲得之DSC之變性曲線計算之各抗體之Fab域之熱變性中間溫度(Tm値),如表19。表中存在有藉由將hVk5-2序列之CDR序列中存在之Asp或Glu殘基取代為與鈣離子之結合或螯合無關的Ala殘基,由於抗體溶液之鈣離子濃度之變化其Fab域之Tm値不會變動之抗體。顯示由於Ala取代而Tm値不變動之取代部位(32位及92位(Kabat編號法)),對於鈣離子與抗體之結合特別重要。
[表19]
Figure 02_image051
[實施例15]含具鈣離子結合模體之hVk1序列之抗體之鈣離子結合活性之評價 (15-1)具鈣離子結合模體之hVk1序列之製作及抗體之表現及精製 從實施例14記載之Ala取代體之鈣之結合活性之結果,顯示hVk5-2序列之CDR序列之中,Asp或Glu殘基對於鈣結合為重要。所以,評價是否僅將30位、31位、32位、50位及92位(Kabat編號法)之殘基導入其他生殖細胞系列之可變區序列,仍能與鈣離子結合。具體而言,製作人類生殖細胞系序列hVk1序列之30位、31位、32位、50位及92位(Kabat編號法)之殘基取代為hVk5-2序列之30位、31位、32位、50位及92位(Kabat編號法)之殘基之改變體LfVk1_Ca(序列編號:61)。亦即,判定是否含有僅導入有hVk5-2序列中之該等5殘基的hVk1序列的抗體能與鈣結合。改變體之製作與實施例2同樣進行。將獲得之輕鏈改變體LfVk1_Ca與含輕鏈hVk1序列之LfVk1(序列編號:62),與重鏈CIM_H(序列編號:48)一起表現。抗體之表現及精製與實施例14以同樣方法實施。
(15-2)含具鈣離子結合模體之人類hVk1序列之抗體之鈣離子結合活性之評價 以實施例4記載之方法判定如上述獲得之精製抗體是否會與鈣離子結合。其結果如表20。含有具hVk1序列之LfVk1的抗體之Fab域之Tm値不會隨抗體溶液中之鈣濃度變化而變動,另一方面,含有LfVk1_Ca之抗體序列之Tm値會隨抗體溶液中之鈣濃度之變化而變化1℃以上,因此,顯示含LfVk1_Ca之抗體會與鈣結合。由上述結果,鈣離子之結合,完全不需要hVk5-2之CDR序列,僅在構建LfVk1_Ca序列時導入之殘基也就足夠。
[表20]
Figure 02_image053
(15-3)分解抑制型LfVk1_Ca序列之構建、表現及精製 製作實施例15之(15-2)中的人類生殖細胞系序列hVk1序列之30位、31位、32位、50位及92位(Kabat編號法)之殘基改為hVk5-2序列之30位、31位、32位、50位及92位(Kabat編號法)之殘基的改變體LfVk1_Ca(序列編號:61),顯示鈣離子結合。而,據認為含LfVk1_Ca序列之Ca依存性抗體(Ca結合抗體),但由於新穎序列LfVk1_Ca序列當做醫藥品之保存安定性不明,故其當做醫藥品之可應用性不明。而,利用LfVk1_Ca之熱加速試驗評價安定性。將L鏈具有LfVk1_Ca之抗體於20 mM Histidine-HCl、150 mM NaCl、pH6.0之溶液於4℃之條件透析一晩。將經透析之抗體製備成0.5 mg/mL,於5℃或50℃保存3日。將保存後之各抗體以實施例12記載之方法進行離子交換層析。其結果,如圖17所示,確認LfVk1_Ca於50℃保存3日時會顯著分解。LfVk1_Ca序列,據報告於30位、31位及32位(Kabat編號法)存在Asp且於酸性條件下會分解之Asp-Asp序列於CDR1序列中存在(J. Pharm. Biomed. Anal. (2008) 47(1), 23-30),故據認為30位、31位及32位(Kabat編號法)為可分解處。為了避免LfVk1_Ca之分解,製作可能分解之3處Asp(D)殘基取代為Ala(A)殘基之改變體LfVk1_Ca1(序列編號:72)、LfVk1_Ca2(序列編號:73)及LfVk1_Ca3(序列編號:74)。胺基酸之取代係使用QuikChange Site-Directed Mutagenesis Kit(Stratagene)之該技術領域之人士公知之方法進行。將編碼為改變體之DNA納入動物表現用載體。製作之納入有改變體之DNA的動物表現用載體,與納入使表現為重鏈之GC H(序列編號:102)的動物表現用載體,以實施例14記載之方法一起導入動物細胞中中。將導入之動物細胞中表現之抗體,以實施例14記載之方法精製。
(15-4)含分解抑制型LfVk1_Ca序列之抗體之安定性評價 利用熱加速後之各抗體之異質性之比較以評價於實施例15之(15-3)取得之抗體是否比起含成為供改變之基礎之LfVk1_Ca序列之抗體在pH6.0溶液中之分解受抑制。與上述同樣,將抗體於5℃或50℃保存3日。保存後之各抗體以實施例12記載之方法進行離子交換層析。分析之結果,如圖17所示,30號(Kabat編號法)部位經改變之LfVk1_Ca1,比起原本的LfVk1_Ca序列的異質性少,由於熱加速所致分解顯示顯著受抑制。亦即,顯示LfVk1_Ca序列中之30位存在之Asp(D)殘基分解,並且顯示Asp殘基之分解能藉由胺基酸改變避免。
(15-5)輕鏈30位Asp殘基分解抑制型LfVk1_Ca序列之製作及抗體之表現及精製 從實施例15之(15-4)記載之Ala取代體之分解抑制之結果,顯示LfVk1_Ca序列之CDR序列之中之30位(Kabat編號法)之Asp(D)殘基於酸性條件分解,且藉由將30位(Kabat編號法)取代為其他胺基酸((15-4)中係取代為Ala(A)殘基),能抑制分解。而,對於30位(Kabat編號法)之殘基取代為能螯合鈣離子之殘基之一個Ser(S)殘基而成序列(稱為LfVk1_Ca6。序列編號:75),是否能於維持鈣結合能力之下使分解受抑制進行評價。改變體之製作與實施例14同樣進行。將獲得之輕鏈改變體LfVk1_Ca6及輕鏈LfVk1_Ca序列與重鏈GC_H(序列編號:102)一起表現。抗體之表現及精製,係與實施例14以同樣方法實施。
(15-6)輕鏈30位Asp殘基分解抑制型LfVk1_Ca序列之評價 如以上述方法獲得之精製抗體之酸性條件下之保存安定性,以實施例15之(15-4)記載之方法判定。其結果如圖18所示,含LfVk1_Ca6序列之抗體,顯示比起含原本的LfVk1_Ca序列之抗體其分解受抑制。
再者,以實施例15記載之方法判定含LfVk1_Ca序列之抗體及含LfVk1_Ca6序列之抗體是否會與鈣離子結合。其結果如表21。含LfVk1_Ca序列之抗體及含分解抑制型LfVk1_Ca6序列之抗體之Fab域之Tm値,各隨抗體溶液中之鈣濃度之變化而變化1℃以上。
[表21]
Figure 02_image055
由以上之結果,若考慮安定性,顯示30位為能與Asp以外之鈣離子交互作用之胺基酸(Asn、Glu、Gln、Ser、Thr、His、Tyr等),且31位、32位、50位及92位(Kabat編號法)之序列之全部或一部分為hVk5-2之胺基酸、或能與鈣交互作用之胺基酸(Asp、Asn、Glu、Gln、Ser、Thr、His、Tyr等),顯示對於抗體之鈣離子之結合為重要。例如據認為若能製作具有如此的模體之合成庫,則能從如此的庫有效率的取得鈣依存性結合抗體。
[實施例16]利用NMR評價具含鈣離子結合模體之人類hVk1序列之抗體之鈣離子結合活性 (16-1)抗體之表現與精製 將用於NMR測定而使表現之含LfVk1_Ca之抗體與含LfVk1之抗體精製。具體而言,將含LfVk1_Ca之抗體以各能使表現重鏈(序列編號:13)與輕鏈(序列編號:61)的方式製備之動物表現用質體對於動物細胞暫時性導入。又,將含LfVk1之抗體以各能使表現重鏈(序列編號:13)與輕鏈(序列編號:62)之方式製備之動物表現用質體暫時性導入動物細胞。於以最終細胞密度成為1 x 106 細胞/mL之方式懸浮於FreeStyle 293 Expression Medium培養基(Invitrogen)之100 mL之人類胎兒腎細胞來源FreeStyle 293-F株(Invitrogen)之細胞懸浮液中,添加標記胺基酸。具體而言,添加針對Asp/Glu/Gln/Asn標記體,將L-Aspartic acid-13 C4 ,15 N(10 mg)、L-Glutamic acid-13 C5 ,15 N(2.5 mg)、L-Glutamine-13 C5 ,15 N2 (60 mg)、L-Asparagine-13 C4 ,15 N2 ・H2 O(2.5 mg)、β-chloro-L-alanine(6 mg)懸浮於10 mL之水而成的溶液以0.22μm濾膜過濾之液體。針對Leu標記體,添加將L-Leucine-15 N(30 mg)、β-chloro-L-alanine(6 mg)懸浮於10 mL之水而成的溶液以0.22μm濾膜過濾之液體。將以脂轉染法製備之質體導入細胞。導入有質體之細胞於CO2 培養箱(37℃、8%CO2 、90 rpm)中培養5日依照使用rProtein A SepharoseTM Fast Flow(Amersham Biosciences)之該技術領域之人士公知之方法,從如上述方法獲得之培養上清精製抗體。使用分光光度計測定經精製之抗體溶液於280 nm之吸光度。使用利用PACE法計算之吸光係數,從測定値計算抗體濃度(Protein Science (1995) 4, 2411-2423)。
(16-2)Fab片段之製備 使用分子量區分尺寸30,000MWCO之超過濾膜,將各種抗體濃縮至8.2-11.8 mg/mL。使用L-Cystein 1 mM、EDTA 2 mM、50 mM乙酸/125 mMTris緩衝液(pH 6.8),製備稀釋成8 mg/mL之該抗體之試樣。將對於各抗體添加1/240量之Papain(Roche Applied Science)並經攪拌之該試樣,於37℃靜置1小時。靜置後,添加到於各下游以連續連結大小1 mL之ProteinA載體管柱HiTrap MabSelect Sure(GE Healthcare)而成之經以50 mM乙酸/125 mMTris緩衝液(pH 6.8)平衡化之結合有Gly-Gly-Tyr-Arg(Sigma)胜肽之大小1 mL之HiTrap NHS-activated HP(GE Healthcare)。藉由以上游的Gly-Gly-Tyr-Arg胜肽去除活化Papain,並以下游的ProteinA載體管柱去除Fc片段及未消化抗體,獲得Fab片段之精製區分。為了防止Fab區分所包含之不活性Papain活化,於Fab區分添加半胱胺酸蛋白酶抑制劑E64(Sigma)10μM。又,上述所有的管柱操作係於20至25℃之室溫下實施。
(16-3)LfVk1_Ca抗體及LfVk1抗體之 Fab片段之NMR試樣製備 將抗體溶液使用MWCO 5000之超過濾器Vivaspin(Sartorius)離心至0.5 mL以濃縮。其次,於上述超過濾器設置透析過濾杯,對於NMR用緩衝液:5 mM d-BisTris, 20 mM NaCl, 0.001 % (w/v) NaN3 , 5 % (v/v)2 H2 O, pH 7.0(使用NaOH、HCl調整pH)進行緩衝液取代(於透析過濾杯補充上述緩衝液5 mL並離心濃縮至0.5 mL之操作返覆3次),最後濃縮至0.25 mL。最後,以NMR緩衝液清洗超過濾器,與濃縮液合併,抗體溶液針對LfVk1_Ca抗體調成420μL、針對LfVk1抗體調成270μL。於此階段再度確認pH,並且視需要以NaOH、HCl調整為pH 7.0。使用UV測定器Nanodrop(Thermo Fisher Scientific),測定於280 nm之吸光度,並且以280 nm之莫耳吸光係數定為70000 M-1 ・cm-1 ,定量Fab片段。Leu標記LfVk1_Ca抗體、Leu標記LfVk1抗體成為0.12 mM、Asp、Glu、Asn、Gln標記LfVk1_Ca抗體、Asp、Glu、Asn、Gln標記LfVk1抗體成為0.24 mM。該等試樣之中,針對LfVk1_Ca抗體,使用移液管充填於直徑5 mm之NMR試管(shigemi),針對LfVk1抗體,充填於直徑5 mm之水溶液用對稱形微型試管(shigemi)。於LfVk1_Ca抗體之Ca2+ 滴定實驗,於抗體溶液中,添加CaCl2 溶液,使對於抗體依序為Ca2+ 為1、2、5、10、20莫耳等量。於添加使用之CaCl2 溶液中,準備溶於NMR緩衝液之10、20、50、100 mM CaCl2 溶液。利用針筒部分為比現有製品更為延長之特別訂製的微型針筒(ITO),將CaCl2 溶液之必要量直接添加到充填於NMR試管之抗體溶液並且使添加容量成為3-10μL之範圍,將試管以Vortex混合器攪拌後,以手動離心器(Shimadzu)離心分離。
(16-4)用於觀測LfVk1_Ca抗體及LfVk1_Ca抗體之 Fab片段之醯胺基信號之NMR測定 NMR測定使用設置有TCI CryoProbe之NMR分光器DRX750(Bruker Biospin)。設定溫度定為307K(GasFlow 535 L/h)。用於觀測醯胺基信號之NMR測定,使用1 H-15 N HSQC。測定法,15 N展開期,使用α碳與羰基碳之同時13 C去偶聯、及溶劑水信號消去用之伴隨3-9-19pulse train之1 H-15 N FHSQC,且用於控制其之脈衝程式,使用由製造商(Bruker Biospin)準備當做標準者。NMR之測定條件如下。光譜寬:12019Hz (f2), 1976 Hz (f1)、數據點數: 2048 (f2), 128 (f1)。數據處理,使用Topspin 3.0(Bruker Biospin)。數據處理條件如下。將f2、f1同時乘以當做窗函數之shifted Sine (QSINE),並且進行填零(zero filling)使成為2倍之數據點數後,進行傅利葉變換。使用NMR解析軟體Sparky(UCSF)計算信號之化學偏移。
(16-5)主鏈醯胺基之NMR信號之指派(assignment) 至今為止,tocilizumab(重鏈序列編號:13、輕鏈序列編號:14)之Fab片段之主鏈醯胺基之NMR信號中,有80%指派 (數據未公開)。LfVk1_Ca抗體之Fab片段之胺基酸序列,除了與輕鏈CDR1、CDR2、CDR3的一部分、及輕鏈73、83號之胺基酸殘基以外,tocilizumab與Fab片段之胺基酸序列相同。針對兩抗體的胺基酸序列相同之部分,其NMR信號具有相同或接近的化學偏移,可移動tocilizumab之指派資訊。針對Leu標記試樣,輕鏈11、(33)、(46)、(47)、(54)、(78)、125、135、136、154、175、179、181、201、重鏈18、46、64、71、81、83、114、144、147、165、176、181、184、195可行指派。上述未附括弧的編號與tocilizumab為相同的化學偏移,為能行指派之殘基編號,有附括弧之編號與tocilizumab具有相近的化學偏移,其他沒有具相近化學偏移之信號,故為能指派之殘基編號。另一方面,針對Asp、Glu、Asn、Gln標記試樣,比較LfVk1_Ca抗體與LfVk1抗體之光譜,於LfVk1_Ca 新觀測到4個信號。此可分類為該兩抗體間在Asp、Glu、Asn、Gln殘基中,當做Ca2+ 結合模體導入之序列之不同輕鏈Asp30、31、32、92、Glu50之5個殘基當中任4個殘基來源者。
(16-6)Ca2+ 之LfVk1_Ca抗體上之結合部位之鑑定 將LfVk1_Ca抗體之Fab片段之Ca2+ 未添加狀態、與添加20莫耳等量之1 H-15 N HSQC光譜比較,並抽取有化學偏移變化之信號。其結果,從Leu標記試樣可知:輕鏈Leu33涉及結合,其他Leu殘基不涉及結合。又,從Asp、Glu、Asn、Gln標記試樣可知:輕鏈Asp30、31、32、92、Glu50之5個殘基中的任4個殘基涉及結合,其他Asp、Glu、Asn、Gln殘基當中除1個殘基以外的全部殘基不涉及結合。由以上,鑑定當做Ca2+ 結合模體導入之胺基酸序列之中,至少輕鏈CDR1、以及輕鏈CDR2、CDR3兩者或任一之胺基酸涉及Ca2+ 結合。此與實施例15確認之30位、31位、32位、50位及92位(Kabat編號法)當中的4個為hVk5-2序列之胺基酸對於鈣離子結合為重要之結果為一致。
(16-7)滴定實驗之Ca2+ 解離常數之計算 對於Ca2+ 濃度為LfVk1_Ca抗體之Fab片段,利用0、1、2、5、10、20莫耳等量時之1 H-15 N HSQC光譜。以鑑定為結合部位之輕鏈Leu33之信號之1 H或15 N化學偏移為縱軸,以上述Ca2+ 之莫耳等量為橫軸作圖,使用製圖軟體Gnuplot,進行以下式2所示函數之適擬。
[式2] f(x) = s×[1-0.5/a×{(a×x+a+Kd)-((a×x+a+Kd)2 -4×x×a2 )0.5 }+t×[0.5/a×{(a×x+a+ Kd)-((a×x+a+Kd)2 -4×x×a2 )0.5 }
式2表示之函數中,s、t各代表Ca2+ 非結合時之化學偏移[ppm]、Ca2+ 飽和結合時之推定化學偏移[ppm]、a代表抗體 Fab片段濃度[M]、Kd代表解離常數、x代表對於抗體 Fab片段添加之Ca2+ 之莫耳等量。適擬時,以s, t, Kd當做適擬參數。其結果,從1 H化學偏移估計Kd=7.1×10-5 [M]、從15 N化學偏移估計Kd=5.9×10-5 [M]。
[實施例17]hVk5-2變異體序列之鈣結合評價 獲得Vk5-2(序列編號:41)以外,分類為Vk5-2之Vk5-2變異體1(序列編號:63)及Vk5-2變異體2(序列編號:64)。針對該等變異體也進行鈣結合評價。將Vk5-2、Vk5-2變異體1及Vk5-2變異體2之DNA片段分別納入動物細胞用表現載體。獲得之表現載體之鹼基序列以該技術領域之人士公知之方法決定。各納入有Vk5-2、Vk5-2變異體1及Vk5-2變異體2之DNA片段的動物細胞用表現載體,與納入有表現當做重鏈之CIM_H(序列編號:48)的動物表現用載體,一起以實施例13記載之方法導入動物細胞中,並且精製抗體。評價經精製之抗體之鈣離子結合活性。將經精製之抗體提供給以20 mM Tris-HCl、150 mM NaCl、2 mM CaCl2 (pH7.5)或20 mM Tris-HCl、150 mM NaCl(pH7.5)之溶液(表22表示記載鈣離子濃度0mM)當做外液之透析(EasySEP、TOMY)處理。使用透析使用之溶液及製備為0.1 mg/mL之抗體溶液當做待驗物質,於20℃至115℃以240℃/hr之升溫速度進行DSC測定。依據獲得之DSC之變性曲線計算之各抗體之Fab域之熱變性中間溫度(Tm値),如表22。
[表22]
Figure 02_image057
其結果,含Vk5-2、Vk5-2變異體1及Vk5-2變異體2之序列的抗體之Fab域之Tm値,會隨含該Fab域之抗體溶液中之鈣離子濃度而變動,由此顯示含分類為Vk5-2之序列的抗體會與鈣離子結合。
[實施例18]鈣依存性的與人類CD4之抗體 (18-1)可溶型人類CD4之製備 可溶型人類CD4以如下方式製備。將編碼為膜貫通區缺損之人類CD4之胺基酸序列加成有Myc標嵌的序列(序列編號:76)的DNA序列納入動物細胞表現用載體。製作之重組人類CD4之序列以該技術領域之人士公知之方法確認。
(18-2)與可溶型人類CD4結合之抗體之表現與精製 TNX355-IgG1(重鏈序列編號:77、輕鏈序列編號:78)及Q425(重鏈序列編號:79、輕鏈序列編號:80),為抗人類CD4抗體。再者, Q425L9(重鏈序列編號:81、輕鏈序列編號:82)為Q425之L鏈改變體。將編碼為TNX355-IgG1(重鏈序列編號:77、輕鏈序列編號:78)、Q425(重鏈序列編號:79、輕鏈序列編號:80)及Q425L9(重鏈序列編號:81、輕鏈序列編號:82)之胺基酸之DNA序列,導入動物細胞表現用質體。抗體之表現係使用以下方法進行。將人類胎兒腎細胞來源FreeStyle 293-F株(Invitrogen)懸浮於FreeStyle 293 Expression Medium培養基(Invitrogen),以1.33 x 106 細胞/mL之細胞密度對於6井板之各井各接種3 mL。製備之質體以脂轉染法導入細胞。於CO2 培養箱(37℃、8%CO2 、90 rpm)中培養4日。使用rProtein A SepharoseTM Fast Flow(Amersham Biosciences),以該技術領域之人士公知之方法,從上述獲得之培養上清精製抗體。使用分光光度計測定經精製之抗體溶液於280 nm之吸光度。藉由使用由PACE法計算之吸光係數,從獲得之測定値計算抗體濃度(Protein Science (1995) 4, 2411-2423)。
(18-3)取得之抗體對於人類CD4之鈣依存性結合能力評價 取得之抗體對於可溶型人類CD4之鈣依存性結合能力,使用Biacore T100 (GE Healthcare)評價。高鈣離子濃度使用1.2 mM,低鈣離子濃度之條件使用3μM。抗原使用可溶型人類CD4(於18-1製備)。於Sensor chip CM4(GE Healthcare)上以胺偶聯法將protein G(Invitrogen)適量固定化,並使其捕捉目的之抗體。運行緩衝液使用含1.2 mmol/L CaCl2 或3μmol/L CaCl2 之10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、1.2 mmol/L CaCl2 、pH7.4或pH6.0。測定均於37℃實施,人類CD4 之稀釋也使用各自的緩衝液。抗體之傳感圖如圖19。如圖19,TNX355-IgG1抗體由於即使運行緩衝液之條件變化時傳感圖之形狀也不變化,因此確認TNX355-IgG1為對於人類CD4不顯示鈣依存性的結合活性的通常之抗體。另一方面,Q425抗體及Q425L9抗體均於鈣離子濃度為3μM(低鈣離子濃度)時之抗原結合量比起鈣離子濃度為1.2 mM(高鈣離子濃度)時之抗原結合量少,顯示Ca依存性結合能力。尤其, Q425L9抗體若於鈣離子濃度為3μM時,當以200 nM之分析物(可溶性人類CD4)測定時完全未觀測到結合相。亦即,確認Q425抗體及Q425L9抗體對於人類CD4顯示鈣依存性的結合活性的鈣依存性結合。
[實施例19]使用正常小鼠評價Ca依存性結合抗體對於抗原之血漿中滯留性之影響 (19-1)使用正常小鼠之體內試驗 實施例18製備之Q425及Q425L9,係以鈣依存性的與可溶型人類CD4結合之抗體。但是至今為止,雖已如實施例5及實施例6所示,由IL6R明白具有將以鈣依存性的與抗原結合之性質的抗體與抗原同時投予時,比以將無鈣依存性的與抗原結合之性質的抗體與抗原同時投予時,會有加速抗原消失之性質,但是其他抗原是否也具有使抗原之消失加速之性質尚為不明。
所以評價對於正常小鼠(C57BL/6J mouse、Charles River Japan)將可溶型人類CD4(實施例18中製備)單獨投予或將可溶型人類CD4及抗人類CD4抗體同時投予後之可溶型人類CD4及抗人類CD4抗體之體內動態。將可溶型人類CD4溶液(50μg/mL)、或可溶型人類CD4及抗人類CD4抗體之混合溶液對於尾靜脈以10 mL/kg單次投予。抗人類CD4抗體使用上述TNX355-IgG1、Q425-IgG1、Q425L9-IgG1。
混合溶液中之可溶型人類CD4濃度均為50μg/mL,但抗人類CD4抗體濃度依抗體而不同,TNX355-IgG1為0.264 mg/mL、Q425-IgG1為0.197 mg/mL、及Q425L9-IgG1為2.594 mg/mL,此時由於抗人類CD4抗體對於可溶型人類CD4存在充分過剩量,故可認為可溶型人類CD4大部分與抗體結合。投予後,可溶型人類CD4單獨投予之群於2分鐘、5分鐘、15分鐘、30分鐘、1小時、2小時採血。同時投予可溶型人類CD4及無鈣依存性的抗原結合能力的TNX355-IgG1的群,於投予後5分鐘、2小時、7小時、1日、3日、7日、14日、28日採血。同時投予具可溶型人類CD4及鈣依存性的抗原結合能力的Q425-IgG1及Q425L9-IgG1之群,於投予後5分鐘、30分鐘、2小時、7小時、1日、3日、8日、14日、28日採血。將採取之血液立即於4℃以12,000 rpm進行15分鐘離心分離,獲得血漿。分離之血漿直到實施測定為止,保存於設定在-20℃以下之冷凍庫。
(19-2)利用ELISA法測定正常小鼠血漿中之抗人類CD4抗體濃度 小鼠血漿中之抗人類CD4抗體濃度以ELISA法測定。首先,將 Anti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody (SIGMA) 分注於Nunc-Immuno Plate, MaxiSoup (Nalge nunc International),於4℃靜置1晩,製作Anti-Human IgG固相化板。製備血漿中濃度為0.64、0.32、0.16、0.08、0.04、0.02、0.01μg/mL之檢量線試樣及稀釋100倍以上之小鼠血漿測定試樣,分注到Anti-Human IgG固相化板,於25℃進行1小時溫育。之後,使Biotinylated Anti-human IL-6 R Antibody(R&D)於25℃反應1小時,再使Streptavidin-PolyHRP80(Stereospecific Detection Technologies)於25℃反應0.5小時,以TMB One Component HRP Microwell Substrate(BioFX Laboratories)當做基質進行發色反應,以1N-Sulfuric acid(Showa Chemical)停止反應後,以微平板讀取儀測定450 nm之吸光度。小鼠血漿中濃度,由檢量線之吸光度使用解析軟體SOFTmax PRO(Molecular Devices)計算。
以該方法測定之靜脈內投予後之正常小鼠中, TNX355-IgG1、Q425-IgG1及Q425L9-IgG1之血漿中抗體濃度變化如圖20。
(19-3)以電化學發光法測定血漿中可溶型人類CD4濃度 小鼠之血漿中可溶型人類CD4濃度以ELISA法測定。
針對sCD4單獨投予之群・Q425、Q425_L9同時投予之群,將TNX分注於Nunc-Immuno Plate, MaxiSoup(Nalge nunc International),於4℃靜置1晩,製作TNX固相化板。以含10mM EDTA之緩衝液製備血漿中濃度為10、5、2.5、1.25、0.625、0.3125、0.156 μg/mL之檢量線試樣及稀釋100倍以上之小鼠血漿測定試樣,分注到TNX固相化板,並於25℃進行3小時溫育。之後使Anti-c-myc-HRP(Miltenyi Biotech)於25℃反應1小時,以TMB One Component HRP Microwell Substrate(BioFX Laboratories)當做基質進行發色反應,以1N-硫酸(Showa Chemical)停止反應後,以微平板讀取儀測定450 nm之吸光度。小鼠血漿中濃度,使用檢量線之吸光度使用解析軟體SOFTmax PRO(Molecular Devices)計算。
針對與TNX同時投予之群,將Q425分注到Nunc-Immuno Plate, MaxiSoup (Nalge nunc International),於4℃靜置1晩,製作Q425固相化板。以含2mM Ca2+ 之緩衝液製備血漿中濃度為20、10、5、2.5、1.25、0.625、0.3125 μg/mL之檢量線試樣及稀釋100倍以上之小鼠血漿測定試樣,分注到TNX固相化板,並於25℃進行3小時溫育。之後將Anti-c-myc-HRP (Miltenyi Biotech)於25℃反應1小時,使用TMB One Component HRP Microwell Substrate (BioFX Laboratories)當做基質進行發色反應,以1N-硫酸(Showa Chemical)停止反應後,以微平板讀取儀測定450 nm之吸光度。小鼠血漿中濃度,從檢量線之吸光度使用解析軟體SOFTmax PRO(Molecular Devices)計算。
該方法測定之靜脈內投予後之正常小鼠中之血漿中可溶型人類CD4濃度變化如圖21。
結果,可溶型人類CD4單獨顯示非常快消失,相對於此,同時投予可溶型人類CD4與無Ca依存性結合之通常之抗體TNX355-IgG1時,可溶型人類CD4之消失大幅減慢。相對於此,同時投予可溶型人類CD4與具Ca依存性結合之Q425-IgG1或Q425L9-IgG1時,可溶型人類CD4之消失大幅加速。比起同時投予TNX355-IgG1之情形,同時投予 Q425-IgG1或Q425L9-IgG1時可促進可溶型人類CD4消失。藉此,不僅於IL-6R確認鈣依存性結合抗體可達成抗原從血漿中消失,於人類CD4也確認。
[實施例20]鈣依存性的與人類IgA結合之抗體 (20-1)人類IgA(hIgA)之製備 為抗原之人類IgA之重組人類IgA(以下hIgA)依如下方式製備。使含H(WT)-IgA1(序列編號:83)與L(WT)(序列編號:14)之hIgA表現,並依該技術領域之人士公知之方法使用離子交換層析及凝膠過濾層析精製。
(20-2)與人類IgA結合之抗體之表現與精製 GA1-IgG1(重鏈序列編號:84、輕鏈序列編號:85)、GA2-IgG1(重鏈序列編號:86、輕鏈序列編號:87)、GA3-IgG1(重鏈序列編號:88、輕鏈序列編號:89)及GA4-IgG1(重鏈序列編號:90、輕鏈序列編號:91),係與人類IgA結合之抗體。再者,與實施例6及實施例7同樣,為了使抗原(hIgA)從血漿中之消失更為增大,為了增強小鼠FcRn 對於GA2-IgG1於pH7.4之結合,製作導入有N434W之胺基酸取代之GA2-N434W(重鏈序列編號:92、輕鏈序列編號:87)。將編碼為GA1-IgG1(重鏈序列編號:84、輕鏈序列編號:85)、GA2-IgG1(重鏈序列編號:86、輕鏈序列編號:87)、GA3-IgG1(重鏈序列編號:88、輕鏈序列編號:89)、GA4-IgG1(重鏈序列編號:90、輕鏈序列編號:91)及GA2-N434W(重鏈序列編號:92、輕鏈序列編號:87)之DNA序列以該技術領域之人士公知之方法納入動物表現用質體。抗體之表現使用以下方法進行。將人類胎兒腎細胞來源FreeStyle 293-F株(Invitrogen)懸浮於FreeStyle 293 Expression Medium培養基(Invitrogen),以1.33 x 106 個 /mL之細胞密度對於6井盤的各井各接種3 mL,將以脂轉染法製備之質體導入細胞。於CO2 培養箱(37℃、8%CO2 , 90 rpm)培養4日,從獲得之培養上清使用rProtein A SepharoseTM Fast Flow(Amersham Biosciences)以該技術領域之人士公知之方法精製抗體。精製抗體濃度,使用分光光度計測定於280 nm之吸光度。從獲得之値使用依PACE法計算之吸光係數,計算抗體濃度(Protein Science 1995 ; 4 : 2411-2423)。
(20-3)取得之抗體對於人類IgA 之Ca依存性結合能力評價 取得之抗體使用Biacore T200(GE Healthcare)關於人類IgA結合活性(解離常數KD (M))進行評價。運行緩衝液使用含3μM或1.2 mM CaCl2 之0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl(pH7.4及pH5.8)、含0.1μM或10 mM CaCl2 之0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl、pH8.0進行測定。
於Sensor chip CM5(GE Healthcare)上以胺基偶聯法將重組型PROTEIN A/G(Thermo Scientific)適量固定化後,使抗體結合。注入當做分析物之適當濃度的hIgA(記載於(20-1)),使與感應晶片上之抗體交互作用。之後,注入10 mmol/L Glycine-HCl, pH1.5,使感應晶片再生。測定於37℃進行。測定結果使用Biacore T200 Evaluation Software(GE Healthcare),利用曲線適擬之解析及平衡値解析,計算解離常數KD (M)。其結果如表23。又,獲得之傳感圖如圖22。可知:GA2-IgG1、GA3-IgG1、GA4-IgG1於Ca2+ 濃度為1.2 mM時與人類IgA強力結合,但於Ca2+ 濃度為3μM時與人類IgA為弱結合。
[表23]
Figure 02_image059
[實施例21]使用正常小鼠評價Ca依存性人類IgA結合抗體對於抗原之血漿中滯留性之影響 (21-1)使用正常小鼠之體內試驗 評價對於正常小鼠(C57BL/6J mouse、Charles River Japan)將人類IgA(人類IgA:實施例20製作)單獨投予或將人類IgA及抗人類IgA抗體同時投予後之人類IgA及抗人類IgA抗體之體內動態。將人類IgA溶液(80μg/mL)、或人類IgA及抗人類IgA抗體之混合溶液對於尾靜脈以10 mL/kg單次投予。抗人類IgA抗體,使用上述GA1-IgG1、GA2-IgG1、GA3-IgG1及GA2-N434W。
混合溶液中之人類IgA濃度均為80μg/mL,但抗人類IgA抗體濃度因應各抗體對於hIgA之親和性而依抗體不同,GA1-IgG1為100 mg/mL、GA2-IgG1為28.9 mg/mL、GA3-IgG1為53.8 mg/mL、GA2-N434W為1 mg/mL。此時,由於對於人類IgA之抗人類IgA抗體係有足量過剩,故可認為人類IgA大部分與抗體結合。投予後5分鐘、7小時、1日、2日、3日、7日進行採血。將採取之血液立即於4℃以12,000 rpm進行15分鐘離心分離,獲得血漿。分離之血漿直到實施測定為止,保存在設定為-20℃以下之冷凍庫。
(21-2)利用ELISA法測定正常小鼠血漿中之抗人類IgA抗體濃度 小鼠血漿中之抗人類IgA抗體濃度以ELISA法測定。首先,將Anti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody (SIGMA) 分注於Nunc-Immuno Plate, MaxiSoup(Nalge nunc International),於4℃靜置1晩,製作Anti-Human IgG固相化板。製備血漿中濃度為0.5、0.25、0.125、0.0625、0.03125、0.01563、0.07813μg/mL之檢量線試樣及稀釋100倍以上之小鼠血漿測定試樣,分注到Anti-Human IgG固相化板,於25℃溫育1小時。之後,使Goat Anti-Human IgG (γ chain specific) Biotin (BIOT) Conjugate(Southern Biotechnology Associats Inc.)於25℃反應1小時,再將Streptavidin-PolyHRP80(Stereospecific Detection Technologies)於25℃反應1小時,使用TMB One Component HRP Microwell Substrate(BioFX Laboratories)為基質進行發色反應,以1N-硫酸(Showa Chemical)使反應停止後,以微平板讀取儀測定450 nm之吸光度。小鼠血漿中濃度,係從檢量線之吸光度使用解析軟體SOFTmax PRO(Molecular Devices)計算。該方法測定之靜脈內投予後之正常小鼠中的GA1-IgG1、GA2-IgG1、GA3-IgG1及GA2-N434W之血漿中抗體濃度變化如圖23。
(21-3)利用ELISA法測定血漿中人類IgA濃度 小鼠之血漿中人類IgA濃度,以ELISA法測定。首先,將Goat anti-Human IgA Antibody(BETHYL)分注於Nunc-Immuno Plate, MaxiSoup(Nalge nunc International),於4℃靜置1晩,製作Anti-Human IgA固相化板。製備血漿中濃度為0.4、0.2、0.1、0.05、0.025、0.0125、0.00625μg/mL之人類IgA檢量線試樣及稀釋100倍以上之小鼠血漿測定試樣,於該等檢量線試樣及血漿測定試樣100μL添加500 ng/mL之hsIL-6R200μL,於室溫靜置1小時。之後分注於Anti-Human IgA固相化板,再於室溫靜置1小時。之後,使Biotinylated Anti-human IL-6 R Antibody(R&D)於室溫反應1小時,再使Streptavidin-PolyHRP80(Stereospecific Detection Technologies)於室溫反應1小時,以TMB One Component HRP Microwell Substrate(BioFX Laboratories)為基質進行發色反應,以1N-硫酸(Showa Chemical)使反應停止後,以微平板讀取儀測定450 nm之吸光度。小鼠血漿中濃度,係從檢量線之吸光度使用解析軟體SOFTmax PRO(Molecular Devices)計算。該方法測定之靜脈內投予後之正常小鼠中之血漿中人類IgA濃度變化如圖24。
結果,相對於人類IgA單獨之消失,同時投予人類IgA與Ca依存性結合弱(依存性程度小)之抗體GA1-IgG1時,人類IgA之消失慢。相對於此,同時投予人類IgA 與有100倍以上之Ca依存性結合之GA2-IgG1時,人類IgA 之消失大幅加速。從圖23所示之血漿中抗體濃度、圖24所示之血漿中人類IgA濃度及表23所示之各抗體之KD値,求出血漿中存在之非結合型之人類IgA濃度。其結果如圖25。如圖25,與GA1-IgG1投予群之非結合型之抗原(人類IgA)之濃度比較,GA2-IgG1或GA3-IgG1投予群之非結合型之抗原(人類IgA)之濃度低,因此顯示藉由鈣依存性結合抗體加速抗原之消失,能降低非結合型之抗原(人類IgA)。再者,於pH7.4之FcRn結合經增強之GA2-N434W,其抗原之消失比GA2-IgG1快,投予7小時後成為檢測極限以下。
從以上確認:鈣依存性結合抗體比起pH或沒有鈣依存性的結合之通常之抗體,可加速抗原從血漿中消失,該現象不僅於實施例5所示之人類IL6R或實施例19所示之人類CD4,在人類IgA也會發生。又,與實施例6及實施例7之人類IL6R同樣,也確認藉由增加對於鈣依存性結合抗體在pH7.4之FcRn結合,在人類IgA也能加速抗原之消失。
如參考實施例31,以pH依存性的與人類IL-6受體結合之Fv4-IgG1,比起以非pH依存性的與人類IL-6受體結合之H54/L28-IgG1,人類IL-6受體之消失能加速,但是,人類IL-6受體單獨無法加速消失。為了加速人類IL-6受體單獨之消失,必需使用使中性區之對於FcRn之結合增強之Fv4-IgG1-v1或Fv4-IgG1-v2。
另一方面,令人意外地發現,Ca依存性的與人類IgA結合之GA2-IgG1,儘管含有於中性區對於FcRn之結合未增強之天然型IgG1之恆定區,但是人類IgA之消失比起人類IgA單獨加速。如此的現象,於GA2-IgG1發生的理由,據認為是由於以下機制。
為人類IL-6受體之單體抗原時,對於2價之抗體有2個抗原結合,且會形成由抗原抗體3分子構成的抗原抗體複合體。另一方面,人類IgA為二聚體抗原,抗體也是2價,故兩者之抗原抗體複合體據認為會形成抗原抗體4分子以上構成的抗原抗體複合體(免疫複合體)。
對於多元體抗原之天然IgG1型通常抗體形成大型的免疫複合體時,該免疫複合體可對於FcgR、FcRn、補體受體等介由多價之Fc區域以avidity結合,因此,相對於納入表現該等受體之細胞,不具pH/Ca依存性之對抗單體抗原之通常抗體,由於對於天然IgG1型的受體的親和性不足,納入細胞之效率低。原本FcRn的作用為將納入細胞內之抗體從核內體再循環到血漿中,但對於如此之對於FcRn能以多價結合之大型免疫複合體,已知會介由FcRn而從核內體移到溶體並被分解。亦即,如圖26,形成對於多元體抗原之大型免疫複合體之通常抗體,其可加速抗原之消失,但是由於在核內體內,抗原不會從抗體解離,而會與抗原同時使抗體也消失,故抗體1分子之使抗原消失之效率差。亦即,不具pH/Ca依存性之對於單體抗原的通常抗體雖能加速抗原之消失,但其效率據認為係差的。
相對於此,包含對抗多元體抗原之天然型IgG1之恆定區之pH/Ca依存性抗體形成大型免疫複合體時,如圖27,該免疫複合體會對於FcgR、FcRn、補體受體等經由多價之Fc區域以avidity結合,並納入表現該等受體之細胞。之後,於核內體內抗原從pH/Ca依存性抗體解離,藉此解除免疫複合體之形成。抗原由於不能與FcRn結合,故相對於移到溶體並被分解,由於抗體不會形成免疫複合體,故據認為能以FcRn再循環於血漿中。
亦即,含對抗多元體抗原之天然IgG1型之恆定區的pH/Ca依存性抗體若形成大型免疫複合體,並以avidity與FcgR、FcRn、補體受體等結合,據認為能僅選擇性地大幅加速抗原之消失。如此的現象,據認為在對抗人類IgA之GA2-IgG1也會發生。據認為當做不使用參考實施例31所示之對於天然型IgG1以胺基酸取代增加中性區之FcRn之結合之方法,而大幅加速多元體抗原之消失之方法有用。
為了發揮如此的作用,據認為抗原抗體必需形成大型免疫複合體,且IgG1也要以avidity與FcgR/FcRn強力結合。抗原若為二量體以上之抗原,則若能篩選形成大型免疫複合體,且以avidity與上述受體結合之pH/Ca依存性抗體,能不進行胺基酸取代而使用天然型IgG1之恆定區,有效率的加速抗原之消失。又,一般而言為了使抗原與抗體形成大型免疫複合體,據認為抗原必需為多元體抗原(例如IgA, IgE等免疫球蛋白或TNF, CD154等TNF超級家族),但據認為即使是單體抗原,但使用認識該單體抗原存在之2個以上之抗原決定基之適當的2種以上之pH/Ca依存性抗體之混合物,也能形成大型免疫複合體。又,使用認識單體抗原存在之2個以上之抗原決定基之適當的多專一性pH/Ca依存性抗體(例如:圖28所示之含認識抗原決定基A之右臂與認識抗原決定基B之左臂之天然型IgG之恆定區的雙專一性抗體),據認為也能形成大型免疫複合體。亦即,即使對於單體抗原,若能篩選適當pH/Ca依存性抗體,則藉由使用含天然型IgG1之恆定區之抗體之混合物或多專一性天然型IgG1之恆定區之抗體,可不使用其之胺基酸經取代之變異型IgG1而可有效率加速抗原之消失。
[實施例22]鈣依存性的與人類Glypican3結合之抗體 (22-1)人類Glypican3(GPC3)之製備 當做抗原之重組人類Glypican3(以下GPC3),以下列方式製備。培養將不含人類Glypican3之膜貫通區之胺基酸序列連結6個殘基之組胺酸的序列(序列編號:93)穩定導入表現之質體的CHO細胞,並回收培養上清。將獲得之培養上清進行離子交換層析精製後,進行使用His標籤之親和性精製及凝膠過濾層析精製,獲得GPC3。
(22-2)與人類GPC3結合之抗體之表現與精製 將抗人類Glypican3抗體、CSCM-01_005(重鏈序列:94、輕鏈序列:95)、CSCM-01_009(重鏈序列:96、輕鏈序列:97)、CSCM-01_015(重鏈序列:98、輕鏈序列:99)、CSCM-01_023(重鏈序列:100、輕鏈序列:101)及GC-IgG1(重鏈序列:102、輕鏈序列:103)各插入動物表現用質體。抗體之表現使用以下方法進行。將人類胎兒腎細胞來源FreeStyle 293-F株(Invitrogen)懸浮於FreeStyle 293 Expression Medium培養基(Invitrogen),以1.33 x 106 個 /mL之細胞密度對於6井盤的各井各接種3 mL,以脂轉染法將製備之質體導入細胞。以CO2 培養箱(37℃、8%CO2 , 90 rpm)培養4日,從獲得之培養上清使用rProtein A SepharoseTM Fast Flow(Amersham Biosciences),以該技術領域之人士公知之方法精製抗體。精製抗體濃度,使用分光光度計測定於280 nm之吸光度。從獲得之値,使用依PACE法計算之吸光係數計算抗體濃度 (Protein Science 1995 ; 4 : 2411-2423)。又,針對GC-IgG1抗體,從穩定表現GC-IgG1抗體之CHO細胞培養上清,以同樣方法精製抗體並計算濃度。
(22-3)取得之抗體對於人類GPC3之Ca依存性結合能力評價 取得之抗體以下列步驟供ELISA。將StreptaWell 96微滴定板(Roche)以含生物素標記抗原之100μLPBS塗覆一晩。將該板之各井以ACES buffer(10 mM ACES, 150 mM NaCl, 100 mM CaCl2 ,0.05% Tween20, pH7.4)洗滌,以去除抗原後,將該井以含2%BSA之ACES Buffer 250μL阻斷1小時以上。於去除含2%BSA之ACES Buffer之各井,添加預先從10μg/mL各稀釋4倍之精製IgG各100μL,將該板靜置1小時,藉此使IgG與各井存在之抗原結合。以ACES Buffer洗滌過之各井中,添加「10 mM ACES,150 mM NaCl, 1.2 mM CaCl2 , pH7.4」、「10 mM ACES, 150 mM NaCl, 3μM CaCl2 , pH7.4」、「10 mM ACES, 150 mM NaCl, 1.2 mM CaCl2 , pH5.8」或「10 mM ACES, 150 mM NaCl, 3μM CaCl2 , pH5.8」,將該板於37℃靜置30分鐘並溫育。以ACES Buffer洗滌後,以含2%BSA之ACES Buffer稀釋過之HRP結合抗人類IgG抗體(BIOSOURCE)對於各井添加,將板溫育1小時。以ACES Buffer洗滌後,添加有TMB single溶液(ZYMED)之各井中之溶液之發色反應藉由硫酸之添加使停止後,測定於450 nm之吸光度之發色。
測定之結果如圖29。GC-IgG1中,無論鈣離子之濃度,吸光度為相同,相對於此,CSCM-01_005、CSCM-01_009、CSCM-01_015及CSCM-01_023中,比起1.2 mM鈣離子濃度(高鈣離子濃度)之吸光度,3μM鈣離子濃度(低鈣離子濃度)之吸光度顯著較低。由該結果可知:CSCM-01_005、CSCM-01_009、CSCM-01_015及CSCM-01_023具有隨鈣離子濃度而與抗原之結合會變化之性質,顯示對於人類Glypican3也可取得鈣依存性抗體。該等鈣依存性的抗人類Glypican3抗體,比起通常之抗人類Glypican3抗體,與上述實施例之人類IL-6R、人類CD4、人類IgA同樣,據認為可加速人類Glypican3之消失。再者,對於該等鈣依存性抗人類抗Glypican3抗體,藉由增加於pH7.4對於FcRn之結合,據認為可進一步加速人類Glypican3之消失。
[實施例23]鈣依存性的與IgE結合之抗體 (23-1)生物素化人類IgE之製備 抗原人類IgE以下列方式製備。製作插入有編碼為IgE-H(序列編號:104、C末端連結有生物素加成序列)及L(WT)(序列編號:14)之DNA序列的動物細胞表現載體,並且使用該表現載體及FreeStyle293(Invitrogen)在培養上清中使C末端結合有生物素加成序列之全長之人類IgE蛋白質表現。從獲得之培養上清,進行離子交換層析、使用抗生物素之親和性精製及凝膠過濾層析精製,獲得生物素化人類IgE。
(23-2)與人類IgE結合之抗體之表現與精製 GEB0100(重鏈序列編號:105、輕鏈序列編號:106)、GEB0220(重鏈序列編號:107、輕鏈序列編號:108)、GEB0230(重鏈序列編號:109、輕鏈序列編號:110)及Xolair(重鏈序列編號:111、輕鏈序列編號:112),為與人類IgE結合之抗體。將GEB0100(重鏈序列編號:105、輕鏈序列編號:106)、GEB0220(重鏈序列編號:107、輕鏈序列編號:108)、GEB0230(重鏈序列編號:109、輕鏈序列編號:110)及Xolair(一般名Omalizumab)(重鏈序列編號:111、輕鏈序列編號:112)以該技術領域之人士公知的方法納入各動物表現用質體。抗體之表現以下列方法進行。對於人類胎兒腎細胞來源FreeStyle 293-F株(Invitrogen),以脂轉染法將製備之質體導入細胞。於CO2 培養箱(37℃、8%CO2 , 90 rpm)進行4至7日培養,從獲得之培養上清,使用rProtein A SepharoseTM Fast Flow(Amersham Biosciences),以該技術領域之人士公知之方法精製抗體。精製抗體濃度,係使用分光光度計測定於280 nm之吸光度。從獲得之値,使用依PACE法計算之吸光係數,計算抗體濃度 (Protein Science 1995 ; 4 : 2411-2423)。
(23-3)取得之抗體對於人類IgE之Ca依存性結合能力之評價 取得之抗體對於人類IgE之Ca依存性結合能力之評價,使用ELISA法進行。具體而言,於NUNCIMMUNO384井板MaxiSorp (Thermo fisher scientific公司製464718)添加1μg/mL之Goat anti-rabbit IgG-Fc polyclonal antibody(Bethyl laboratory公司製 A120-111A)或1μg/mL之Goat anti-human IgG-Fc polyclonal antibody(ICN biomedicals公司製 55071) 40μL。於室溫進行1小時溫育後,除去溶液,添加稀釋為20%之Blocking One試藥(Nacalai tesque公司製03953-95) 50μL。於室溫進行1小時溫育後,去除溶液,添加以含1.2 mM氯化鈣之Tris緩衝溶液稀釋過的精製抗體40μL。於4℃進行一晩溫育後,以含1.2 mM氯化鈣與0.05%(w/v)之Tween-20的Tris緩衝溶液80μL洗滌3次,添加以含1.2 mM氯化鈣之Tris緩衝溶液稀釋為500ng/mL之生物素化人類IgE((23-1)製作) 40μL。於室溫進行1小時溫育後,以含1.2 mM氯化鈣與0.05%(w/v)之Tween-20之Tris緩衝溶液80μL進行3次洗滌,添加含2 mM氯化鈣之ACES緩衝溶液(pH7.4)或含3μM氯化鈣之ACES緩衝溶液(pH7.4) 80μL,立即去除溶液後,再添加含2 mM氯化鈣之ACES緩衝溶液(pH7.4)或含3μM氯化鈣之ACES緩衝溶液(pH7.4) 80μL。於37℃進行1小時溫育後,以含1.2 mM氯化鈣與0.05%(w/v)之Tween-20之Tris緩衝溶液80μL洗滌3次,添加以含1.2 mM氯化鈣之Tris緩衝溶液稀釋為25 ng/mL之HRP標記鏈抗生物素(Thermo fisher scientific公司製21132)40μL。於室溫進行1小時溫育後,以含1.2 mM氯化鈣與0.05%(w/v)之Tween-20之Tris緩衝溶液80μL洗滌3次,添加發色基質(KPL公司製50-66-06: ABTS peroxidase substrate system 1 component)40μL。於室溫進行15分鐘或30分鐘溫育後,測定405nm之吸光度(Molecular devices公司製SpectraMax Plus384)。
測定結果如圖30。Xolair中,不依存於鈣離子濃度,吸光度為相同,相對於此,於GEB0100、GEB0220及GEB0230,比起於2 mM鈣離子濃度(高鈣離子濃度)之吸光度,於3μM鈣離子濃度(低鈣離子濃度)之吸光度顯著較低。由該結果顯示:GEB0100、GEB0220及GEB0230具有隨鈣離子濃度,與抗原之結合變化之性質。上述現象顯示,對於人類IgE也可取得鈣依存性抗體。該等鈣依存性抗人類IgE抗體,比起Xolair等通常之抗人類IgE抗體,與上述實施例之人類IL-6R、人類CD4、人類IgA同樣,據認為可加速人類IgE之消失。再者,藉由對於該等鈣依存性抗人類IgE抗體,使於pH7.4對於FcRn之結合增強,據認為可更加速人類IgE之消失。
[參考例1]可溶型人類IL-6受體(hsIL-6R)之製備 抗原人類IL-6受體之重組人類IL-6受體,以下列方式製備。以該技術領域之人士公知之方法構建並培養穩定表現由J. Immunol. 152, 4958-4968 (1994)報告之N末端側1號至357號之胺基酸序列構成的可溶型人類IL-6受體(以下稱為hsIL-6R)之CHO穩定表現株,使hsIL-6R表現。從獲得之培養上清,以Blue Sepharose 6 FF管柱層析、凝膠過濾管柱層析2個步驟精製hsIL-6R。於最終步驟,以溶出為主要峰部之區分當做最終精製品。
[參考例2]人類FcRn之製備 FcRn,為FcRn與β2-微球蛋白之複合體。依據公開之人類FcRn基因序列製備寡DNA引子 (J Exp Med. 1994 Dec 1; 180(6): 2377-81)。編碼為全體基因之DNA片段,使用製備之引子,並以人類cDNA(Human Placenta Marathon-Ready cDNA, Clontech)為模板,以PCR製備。使用獲得之DNA片段當做模板,將編碼為含信號區(Met1~Leu290)之細胞外域的DNA片段以PCR放大,並插入哺乳動物細胞表現載體。同樣,依據公開的人類β2-微球蛋白基因序列(Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899-16903 (2002))製作寡DNA引子。編碼為全體基因之DNA片段,使用製備之引子,及以人類cDNA(Human Placenta Marathon-Ready cDNA, Clontech)當做模板,以PCR製備。使用獲得之DNA片段當做模板,將編碼為含信號區(Met1~Met119)之蛋白質全體之DNA片段以PCR放大,並插入哺乳動物細胞表現載體。
可溶型人類FcRn以下列步驟使表現。將為了表現人類FcRn(序列編號:17)及β2-微球蛋白(序列編號:18)而構建之質體,利用使用PEI(Polyscience)之脂轉染法,導入人類胎兒腎癌來源細胞株HEK293H(Invitrogen)之細胞。回收獲得之培養上清,使用IgG Sepharose 6 Fast Flow(Amersham Biosciences)精製後,以HiTrap Q HP(GE Healthcare)(J Immunol. 2002 Nov 1; 169(9): 5171-80)將FcRn進一步精製。
[參考例3]pH依存性的抗原結合抗體之抗原消失加速效果之提高探討(體內試驗) (3-1)於中性條件下具對於FcRn之結合之pH依存性人類IL-6受體結合抗體之製備 對於含VH3-IgG1(序列編號:19)與VL3-CK(序列編號:20)之Fv4-IgG1,導入於中性條件下(pH7.4)使對於FcRn之結合增加之變異。具體而言,製備對於IgG1之重鏈恆定區,EU編號法之252號從Met取代為Tyr、254號從Ser取代為Thr、256號從Thr取代為Glu之VH3-IgG1-v1(序列編號:21)、及對於IgG1之重鏈恆定區,EU編號法之434號從Asn取代為Trp之VH3-IgG1-v2(序列編號:22)。胺基酸取代之導入,係使用QuikChange Site-Directed Mutagenesis Kit(Stratagene)或In-Fusion HD Cloning Kit(Clontech),以附屬説明書記載之方法製作變異體,並將獲得之質體片段插入動物細胞表現載體,製作目的之H鏈表現載體及L鏈表現載體。獲得之表現載體之鹼基序列,以該技術領域之人士公知之方法決定。
含H54(序列編號:5)與L28(序列編號:6)之H54/L28-IgG1、含VH3-IgG1(序列編號:19)與VL3-CK(序列編號:20)之Fv4-IgG1、含VH3-IgG1-v1(序列編號:21)與VL3-CK(序列編號:20)之Fv4-IgG1-v1、及含VH3-IgG1-v2(序列編號:22)與VL3-CK(序列編號:20)之Fv4-IgG1-v2之表現及精製,依以下方法進行。依照製造商提供之實驗步驟記載,使FreestyleHEK293 (Invitrogen)或HEK293H 株 (Invitrogen)表現抗體。將人類胎兒腎癌細胞來源HEK293H株(Invitrogen)懸浮於含10%胎牛血清(Invitrogen)之DMEM培養基(Invitrogen),並以5~6 × 105 個 /mL之細胞密度對於各黏著細胞用培養皿 (直徑10 cm, CORNING)之各皿接種10 mL,於CO2 培養箱(37℃、5 % CO2 )內培養一日夜後,抽走培養基,添加CHO-S-SFM-II(Invitrogen)培養基6.9 mL。將製備之質體以脂轉染法導入細胞。回收獲得之培養上清後,離心分離(約2000 g、5分鐘、室溫)去除細胞,再通過0.22μm濾膜MILLEX(註冊商標)-GV(Millipore)滅菌,獲得培養上清。獲得之培養上清使用rProtein A Sepharose(商標) Fast Flow(Amersham Biosciences),依該技術領域之人士公知之方法精製。精製抗體濃度,係使用分光光度計測定於280 nm之吸光度。從獲得之値,使用依Protein Science 1995 ; 4 : 2411-2423之方法計算之吸光係數,計算抗體濃度。依該技術領域之人士公知之方法使表現並精製。
(3-2)使用人類FcRn基因轉殖小鼠及正常小鼠之體內試驗 對於人類FcRn基因轉殖小鼠(B6.mFcRn-/-.hFcRn Tg 系統276 +/+小鼠、Jackson Laboratories、Methods Mol Biol. 2010;602:93-104.)及正常小鼠(C57BL/6J小鼠、Charles River Japan)單獨投予hsIL-6R(可溶型人類IL-6受體:參考例1製備),或同時投予hsIL-6R及抗人類IL-6受體抗體後,評價hsIL-6R及抗人類IL-6受體抗體之活體內之動態。將hsIL-6R溶液(5μg/mL)或hsIL-6R及抗人類IL-6受體抗體之混合溶液(各為5μg/mL、0.1 mg/mL)對於尾靜脈10 mL/kg單次投予。此時,由於對於hsIL-6R存在充分量過剩的抗人類IL-6受體抗體,故可認為hsIL-6R幾乎全部與抗體。投予15分後、7小時後、1日後、2日後、3日後、4日後、7日後、14日後、21日後、28日後採血。將採取之血液立即於4℃以15,000 rpm進行15分鐘離心分離,獲得血漿。分離之血漿於實施測定為止,保存在設定為-20℃以下之冷凍庫。抗人類IL-6受體抗體,於人類FcRn基因轉殖小鼠使用上述H54/L28-IgG1、Fv4-IgG1、及、Fv4-IgG1-v2,於正常小鼠使用上述H54/L28-IgG1、Fv4-IgG1、Fv4-IgG1-v1、及、Fv4-IgG1-v2。
(3-3) 利用ELISA法測定血漿中抗人類IL-6受體抗體濃度 小鼠血漿中之抗人類IL-6受體抗體濃度,以ELISA法測定。首先將抗人類IgG(γ鏈特異的)F(ab')2抗體片段(Sigma) 分注於Nunc-ImmunoPlate, MaxiSorp (Nalge Nunc International),於4℃靜置一晩,製備抗人類IgG固相化板。製備血漿中濃度為0.8、0.4、0.2、0.1、0.05、0.025、0.0125μg/mL之檢量線試樣及稀釋100倍以上之小鼠血漿測定試樣,對於該等檢量線試樣及血漿測定試樣100μL添加20 ng/mL之hsIL-6R 200μL,於室溫靜置1小時。之後,分注到抗人類IgG固相化板,於室溫靜置1小時。之後將生物素化抗人類IL-6 R抗體(R&D)於室溫反應1小時,再使Streptavidin-PolyHRP80 (Stereospecific Detection Technologies)於室溫反應1小時,以TMB One Component HRP Microwell Substrate (BioFX Laboratories)當做基質進行發色反應,以1N硫酸(Showa Chemical)使反應停止後,以微平板讀取儀測定450 nm之吸光度。小鼠血漿中濃度,係從檢量線之吸光度,使用解析軟體SOFTmax PRO(Molecular Devices)計算。以該方法測定之靜脈內投予後之人類FcRn基因轉殖小鼠之血漿中抗體濃度變化如圖31,於正常小鼠之血漿中抗體濃度變化如圖33。
(3-4)利用電化學發光法測定血漿中hsIL-6R濃度 小鼠之血漿中hsIL-6R濃度,以電化學發光法測定。製備調整為2000、1000、500、250、125、62.5、及31.25 pg/mL之濃度的hsIL-6R檢量線試樣及稀釋50倍以上之小鼠血漿測定試樣。將試樣與以SULFO-TAG NHS Ester(Meso Scale Discovery)釕化之單株抗人類IL-6R抗體(R&D)、生物素化抗人類IL-6 R抗體(R&D)、及WT-IgG1溶液混合,於37℃使反應一晩。此時之抗人類IL-6受體抗體,為比起含H(WT)(序列編號:13)與L(WT)(序列編號:14)之WT-IgG1之終濃度過剩於試樣所包含之抗人類IL-6受體抗體濃度之333μg/mL,目的為使試樣中幾乎所有hsIL-6R與WT-IgG1結合之狀態。之後,分注於MA400 PR Streptavidin Plate(Meso Scale Discovery)。再於室溫使反應1小時並洗滌後,分注Read Buffer T(×4)(Meso Scale Discovery),立即以SECTOR PR 400 reader(Meso Scale Discovery)測定。hsIL-6R濃度,係從檢量線之回應使用解析軟體SOFTmax PRO(Molecular Devices)計算。該方法測定之靜脈內投予後之人類FcRn基因轉殖小鼠於血漿中hsIL-6R濃度變化如圖32,正常小鼠之血漿中hsIL-6R濃度變化如圖34。
(3-5)利用電化學發光法測定血漿中游離hsIL-6R濃度 為了評價可溶型人類IL-6受體在血漿中以哪個程度中和,以電化學發光法測定小鼠血漿中未被抗人類IL-6受體抗體結合(中和)之可溶型人類IL-6受體濃度(游離hsIL-6R濃度)。將調整為10000、5000、2500、1250、625、312.5、或156.25 pg/mL 之hsIL-6R檢量線試樣及小鼠之血漿試樣12μL,添加到於0.22μm之濾杯 (Millipore)乾燥過的適量rProtein A Sepharose Fast Flow (GE Healthcare)樹脂,以使血漿中存在之全部IgG型抗體(小鼠IgG、抗人類IL-6受體抗體及抗人類IL-6受體抗體-可溶型人類IL-6受體複合體)吸附於PROTEIN A。之後,以高速離心機離心下來,回收通過溶液。通過溶液中不含與PROTEIN A結合之抗人類IL-6受體抗體-可溶型人類IL-6受體複合體,故藉由測定通過溶液中之hsIL-6R濃度,可測定血漿中之游離hsIL-6R濃度。其次將通過溶液與以SULFO-TAG NHS Ester(Meso Scale Discovery)釕化之單株抗人類IL-6R抗體(R&D)及生物素化抗人類IL-6 R抗體(R&D)混合,於室溫反應1小時。之後,分注於MA400 PR Streptavidin Plate(Meso Scale Discovery)。再於室溫進行1小時反應,並洗滌後,分注Read Buffer T(×4)(Meso Scale Discovery),立即以SECTOR PR 400 reader(Meso Scale Discovery)測定。hsIL-6R濃度,係從檢量線之回應,使用解析軟體SOFTmax PRO(Molecular Devices)計算。該方法測定之靜脈內投予後之正常小鼠血漿中之游離hsIL-6R濃度變化如圖35。
(3-6)pH依存性的人類IL-6受體結合之效果 比較H54/L28-IgG1具有pH依存性人類IL-6受體結合之Fv4-IgG1之體內試驗之結果。如圖31及圖33,兩者之抗體血漿中滯留性大約同等,但如圖32及圖34,與具pH依存性人類IL-6受體結合之Fv4-IgG1同時之hsIL-6R,比起與H54/L28-IgG1同時投予之hsIL-6R,確認hsIL-6R之消失較快。該傾向於人類FcRn基因轉殖小鼠與正常小鼠兩者均確認,發現:藉由賦予pH依存性人類IL-6受體結合能力,在4日後之血漿中hsIL-6R濃度大約可減低約17倍及約34倍。
(3-7)於中性條件下(pH7.4)對於FcRn結合之效果 據報告:天然型人類IgG1於中性條件下(pH7.4)與人類FcRn幾乎不結合(親和性極弱)。對於天然型人類IgG1藉由將EU編號法434號從Asn取代為Trp,可增加於中性條件下(pH7.4)對於人類FcRn之結合 (J Immunol. 2009;182(12):7663-71.)。比較Fv4-IgG1、及對於Fv4-IgG1導入有該胺基酸取代之Fv4-IgG1-v2於人類FcRn基因轉殖小鼠之體內試驗之結果。如圖31,兩者之抗體血漿中滯留性大約同等,但如圖32,與在中性條件下(pH7.4)對於人類FcRn之結合增加之Fv4-IgG1-v2同時投予之hsIL-6R,比起與Fv4-IgG1同時投予之hsIL-6R,確認hsIL-6R之消失較快。發現:藉由賦予於中性條件下(pH7.4)對於人類FcRn之結合,4日後之血漿中hsIL-6R濃度能減少約4倍。
由人類FcRn與小鼠FcRn之同一性,據認為 EU編號法434號從Asn取代為Trp,也會使中性條件下(pH7.4)對於小鼠FcRn之結合增加。又,有人報告EU編號法252號從Met取代為Tyr、254號從Ser取代為Thr、256號從Thr取代為Glu,能使中性條件下(pH7.4)對於小鼠FcRn之結合 (J Immunol. 2002;169(9):5171-80.)。比較Fv4-IgG1、及對於Fv4-IgG1各導入有該等胺基酸取代之Fv4-IgG1-v1與Fv4-IgG1-v2在正常小鼠之體內試驗之結果。如圖33,比起Fv4-IgG1,於中性條件下(pH7.4)使對於小鼠FcRn之結合也增加之Fv4-IgG1-v1與Fv4-IgG1-v2之血漿中滯留性稍低 (1日後之血漿中抗體濃度各為低約1.5倍及約1.9倍)。
如圖34,與中性條件下(pH7.4)之對於小鼠FcRn之結合增加之Fv4-IgG1-v1或Fv4-IgG1-v2同時投予之hsIL-6R,比起與Fv4-IgG1同時之hsIL-6R,確認hsIL-6R之消失顯著較快。發現藉由於中性條件下(pH7.4)賦予對於小鼠FcRn之結合,Fv4-IgG1-v1與Fv4-IgG1-v2在1日後之血漿中hsIL-6R濃度各可減少約32倍及約80倍。發現藉由賦予於中性條件下(pH7.4)對於小鼠FcRn之結合,如上述,抗體之血漿中濃度稍低,但是血漿中hsIL-6R濃度減低效果顯示超出其許多的情形。又,比起hsIL-6R單獨之投予群,發現與Fv4-IgG1-v1或Fv4-IgG1-v2同時投予之hsIL-6R,其hsIL-6R之消失較快。如圖34,比起hsIL-6R 單獨投予,與Fv4-IgG1-v1或Fv4-IgG1-v2同時投予hsIL-6R時,發現1日後之血漿中hsIL-6R濃度各可減低約4倍及約11倍。其亦即意指:藉由投予pH依存性的與可溶型IL-6受體結合,且賦予於中性條件下(pH7.4)對於小鼠FcRn之結合的抗體,能由抗體加速可溶型IL-6受體之消失。亦即,藉由對於活體投予如此的抗體,能減少活體內血漿中之抗原濃度。
如圖35,H54/L28-IgG1在投予7日後為止,檢測到游離hsIL-6R濃度,但Fv4-IgG1投予後1日以後未檢測到游離hsIL-6R,Fv4-IgG1-v1或Fv4-IgG1-v2於投予後7小時以後未檢測到游離hsIL-6R。亦即,對於hsIL-6R具pH依存性結合之Fv4-IgG1,比起H54/L28-IgG1顯示較低之游離hsIL-6R濃度,故藉由對於hsIL-6R賦予pH依存性結合,會發揮較高之hsIL-6R之中和效果,且相對於Fv4-IgG1使於pH7.4對於FcRn之結合增加之Fv4-IgG1-v1及Fv4-IgG1-v2,顯示較低之游離hsIL-6R濃度,故藉由於pH7.4使對於FcRn之結合增加,可發揮更高hsIL-6R之中和效果。
如H54/L28-IgG1之通常之中和抗體,若投予抗體,會降低結合之抗原之廓清,使抗原在血漿中長期滯留。由於抗體投予使欲中和其作用之抗原之血漿中滯留性增長並不好。藉由對於抗原之結合賦予pH依存性(中性條件下結合、酸性條件下解離),能使抗原之血漿中滯留性縮短。本次,藉由賦予於中性條件下(pH7.4)對人類FcRn之結合,能使抗原之血漿中滯留性更短。再者,藉由投予pH依存性與抗原結合且賦予於中性條件下(pH7.4)對於FcRn之結合之抗體,顯示比起抗原單獨之廓清,能使廓清增大。至今為止,並不知道由於抗體投予,會比起抗原單獨之廓清使廓清增大之方法,本研究發現的方法,對於當做利用抗體投予使抗原從血漿中消失之極有用。又,本研究首次發現於中性條件下(pH7.4)使對FcRn之結合增加的好處。又,由於中性條件下(pH7.4)使對於FcRn之結合增加之具不同胺基酸取代之Fv4-IgG1-v1與Fv4-IgG1-v2兩者均認為有同樣效果,故不拘胺基酸取代之種類,只要為中性條件下(pH7.4)使對於人類FcRn之結合增加之胺基酸取代,均認為有加速抗原之消失之效果。亦即,藉由使用J Biol Chem. 2007;282(3):1709-17報告之EU編號法257號之Pro取代為Ile之胺基酸取代、EU編號法311號之Gln取代為Ile之胺基酸取代、J Immunol. 2009;182(12):7663-71.報告之EU編號法434號之Asn取代為Ala、Tyr或Trp之胺基酸取代、EU編號法252號之Met取代為Tyr之胺基酸取代、EU編號法307號之Thr取代為Gln之胺基酸取代、EU編號法308號之Val取代為Pro之胺基酸取代、EU編號法250號之Thr取代為Gln之胺基酸取代、EU編號法428號之Met取代為Leu之胺基酸取代、EU編號法380號之Glu取代為Ala之胺基酸取代、EU編號法378號之Ala取代為Val之胺基酸取代、EU編號法436號之Tyr取代為Ile之胺基酸取代、J Biol Chem. 2006 Aug 18;281(33):23514-24報告之EU編號法252號之Met取代為Tyr之胺基酸取代、EU編號法254號之Ser取代為Thr之胺基酸取代、EU編號法256號之Thr取代為Glu之胺基酸取代、Nat Biotechnol. 2005 Oct;23(10):1283-8.報告之433號之His取代為Lys之胺基酸取代、434號之Asn取代為Phe之胺基酸取代、436號之Tyr取代為His之胺基酸取代等、及該等胺基酸取代之組合,據認為可製作藉由投予使抗原從血漿中消失之抗體分子。
[參考例4]對於人類FcRn之結合活性之評價 當做評價使用Biacore之抗體與FcRn之交互作用的測定系,據報告有在J Immunol. 2009;182(12):7663-71.記載之感應晶片固定化有抗體並以人類FcRn為分析物之系。為此目的,依參考例2記載製備人類FcRn。使用該系,評價Fv4-IgG1、Fv4-IgG1-v1及Fv4-IgG1-v2於pH6.0及pH7.4對於人類FcRn之結合活性(解離常數KD)。待驗物質抗體直接固定化在Series S感應晶片CM5並供試驗。抗體固定化於感應晶片,係使用50 mmol/L磷酸鈉/150 mmol/L NaCl, 0.05% (v/v%) Surfactant P20 pH6.0當做運行緩衝液,使用胺偶聯套組依製造商的指引,以固定化量500RU為目標實施。
運行緩衝液使用50 mmol/L磷酸鈉/150 mmol/L NaCl, 0.05% Surfactant P20 pH6.0、或50 mmol/L磷酸鈉/150 mmol/L NaCl, 0.05% Surfactant P20 pH7.4,使用製作之感應晶片實施測定。測定均於25℃進行。將人類FcRn稀釋液以運行緩衝液(當做參照溶液)以流速5 μL/min注射10分鐘,使感應晶片上之抗體與人類FcRn交互作用。之後以流速5 μL/min流過1分鐘運行緩衝液,觀察FcRn解離後,將20 mmol/L Tris-HCl/150 mmol/L NaCl, pH8.1以流速30 μL/min注射15秒,並返覆2次,使感應晶片再生。
測定結果之解析以Biacore T100 Evaluation Software(Ver. 2.0.1)進行。由至少6個不同濃度之FcRn之測定結果,以穩定狀態親和性法(steady-state affinity method)解析並計算解離常數(KD)。Fv4-IgG1、Fv4-IgG1-v1及Fv4-IgG1-v2於pH6.0及pH7.4對於人類FcRn之結合活性(解離常數KD)之結果,如下表24。
[表24]
Figure 02_image061
Fv4-IgG1於pH7.4對於人類FcRn之結合非常弱,無法計算KD値(NA)。相對於此, Fv4-IgG1-v1與Fv4-IgG1-v2在pH7.4對於人類FcRn認為有結合,KD値各計算為36.55μM與11.03μM。又,pH6.0對於人類FcRn之KD値各計算為1.99μM與0.32μM與0.11μM。如圖31,人類FcRn基因轉殖小鼠中,與Fv4-IgG1相比較,藉由為Fv4-IgG1-v2,hsIL-6R之消失會加速,故可認為藉由改變人類IgG1,使最低在pH7.4對於人類FcRn之結合強於11.03μM,能加速抗原之消失。又,如J Immunol. 2002;169(9):5171-80.所示,人類IgG1對於小鼠FcRn比起對於人類FcRn以強約10倍結合,因此,於Fv4-IgG1-v1與Fv4-IgG1-v2,預測pH7.4對於小鼠FcRn之結合會比起對於人類FcR之結合強約10倍。圖34所示正常小鼠中,Fv4-IgG1-v1與Fv4-IgG1-v2之hsIL-6R之消失加速,比起圖32所示之人類FcRn基因轉殖小鼠中之Fv4-IgG1-v2之hsIL-6R之消失加速大,因此據認為,因應pH7.4對於FcRn之結合強度, hsIL-6R之消失加速會增大。
[參考例5]中性條件下對於人類FcRn之結合經增強之pH依存性人類IL-6受體結合抗體之製備 (5-1)Fv4-IgG1之重鏈恆定區改變體之製作 為使人類FcRn基因轉殖小鼠中,pH依存性人類IL-6受體結合抗體之抗原消失效果更增大,對於Fv4-IgG1導入於中性條件下為使對於人類FcRn之結合增強之各種改變。具體而言,藉由將表25-1及25-2記載之胺基酸改變對於Fv4-IgG1之重鏈恆定區導入,製作各種變異體 (變異處之胺基酸編號依EU編號法)。又,胺基酸取代之導入,依參考例3記載之該技術領域之人士公知之方法實施。
[表25-1]
Figure 02_image063
表25-2係接續於表25-1 [表25-2]
Figure 02_image065
製備之含重鏈與L(WT)(序列編號:14)之變異體,依參考例3記載之該技術領域之人士公知之方法使表現並精製。
(5-2)對於人類FcRn之結合評價 使用Biacore T100 (GE Healthcare),進行人類FcRn與抗體之速度論解析。為該目的,依參考例2記載製備人類FcRn。在感應晶片CM4 (GE Healthcare) 上以胺偶聯法將PROTEIN L (ACTIGEN)適量固定化,使其捕捉目的之抗體。其次,注射FcRn稀釋液與運行緩衝液(當做參照溶液),使捕捉於感應晶片上之抗體與人類FcRn交互作用。運行緩衝液使用50 mmol/L磷酸鈉、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.0,FcRn之稀釋也使用各自的緩衝液。晶片再生使用10 mmol/L甘胺酸-HCl, pH1.5。測定均於25℃實施。從測定獲得之傳感圖,計訴動力學參數結合速度常數 ka (1/Ms)、及解離速度常數 kd (1/s),依該値計算各抗體對於人類FcRn之 KD (M)。各參數之計算使用Biacore T100 Evaluation Software (GE Healthcare)。
依Biacore評價於中性條件下(pH7.0)對於人類FcRn之結合之結果,如表6-1及6-2。在此,天然型IgG1結合非常弱,不能計算KD,在表6-1表示記載為ND。
[參考例6]中性條件下對於人類FcRn之結合經增強之pH依存性人類IL-6受體結合抗體之體內試驗 使用參考例4製備之賦予於中性條件下對於人類FcRn之結合能力之重鏈,製作中性條件下具有對於人類FcRn之結合能力之pH依存性人類IL-6受體結合抗體,並驗證於活體內之抗原消失效果。具體而言,依參考例3記載之該技術領域之人士公知之方法以下抗體表現並精製: 含VH3-IgG1與VL3-CK之Fv4-IgG1、 含VH3-IgG1-v2與VL3-CK之Fv4-IgG1-v2、 含VH3-IgG1-F14與VL3-CK之Fv4-IgG1-F14、 含VH3-IgG1-F20與VL3-CK之Fv4-IgG1-F20、 含VH3-IgG1-F21與VL3-CK之Fv4-IgG1-F21、 含VH3-IgG1-F25與VL3-CK之Fv4-IgG1-F25、 含VH3-IgG1-F29與VL3-CK之Fv4-IgG1-F29、 含VH3-IgG1-F35與VL3-CK之Fv4-IgG1-F35、 含VH3-IgG1-F48與VL3-CK之Fv4-IgG1-F48、 含VH3-IgG1-F93與VL3-CK之Fv4-IgG1-F93、 含VH3-IgG1-F94與VL3-CK之Fv4-IgG1-F94。
針對製備之pH依存性的人類IL-6受體結合抗體,與參考例3之方法同樣實施使用人類FcRn基因轉殖小鼠(B6.mFcRn-/-.hFcRn Tg 系統276 +/+小鼠、Jackson Laboratories、Methods Mol Biol. 2010;602:93-104.)之體內試驗。
獲得之靜脈內投予後之人類FcRn基因轉殖小鼠中,血漿中可溶型人類IL-6受體濃度變化如圖36。試驗結果顯示:於中性條件下對於人類FcRn之結合經增強之pH依存性的人類IL-6受體結合抗體,均為與中性條件下幾乎不具對於人類FcRn之結合能力之Fv4-IgG1比較時,血漿中可溶型人類IL-6受體濃度變為較低。其中,列舉效果特別顯著之例,與Fv4-IgG1-F14同時之可溶型人類IL-6受體之1日後之血漿中濃度,比起與Fv4-IgG1同時,約低54倍。又,與Fv4-IgG1-F21同時投予之可溶型人類IL-6受體之7小時後之血漿中濃度,比起與Fv4-IgG1同時投予時,約低24倍。又,與Fv4-IgG1-F25同時投予之可溶型人類IL-6受體之7小時後之血漿中濃度,為檢測極限(1.56 ng/mL)以下,比起與Fv4-IgG1同時投予時,據認為抗原濃度可顯著低200倍以上。由該等顯示:為了增強抗原消失效果,對於pH依存性的抗原結合抗體使在中性條件下對於人類FcRn之結合增強非常有效。又,用於增強抗原消失效果導入之於中性條件下使對於人類FcRn之結合增強之胺基酸改變之種類,包含表6-1、表6-2記載之改變,不特別限定,據認為導入任意改變,均能使活體內之抗原消失效果增強。
再者,與Fv4-IgG1-F14、Fv4-IgG1-F21、Fv4-IgG1-F25、Fv4-IgG1-F48之4種pH依存性的人類IL-6受體結合抗體同時投予之可溶型人類IL-6受體,比起可溶型人類IL-6受體之單獨投予群,顯示較低的血漿中濃度變化。如此的pH依存性的人類IL-6受體結合抗體對於處於血漿中之可溶型人類IL-6受體濃度為固定濃度之狀態(穩定狀態)的活體內投予,可以使血漿中之可溶型人類IL-6受體濃度為穩定狀態之血漿中濃度維持在更低。亦即,藉由將如此的抗體對於活體內投予,能減低活體內血漿中之抗原濃度。
[參考例7]低用量(0.01 mg/kg)之Fv4-IgG1-F14之有效性之驗證 使用參考例6製備之Fv4-IgG1-F14,與參考例6之方法同樣進行低用量(0.01 mg/kg)之體內試驗,與參考例6獲得之Fv4-IgG1及Fv4-IgG1-F14投予1 mg/kg時之結果比較 (結果如圖37及38)。
其結果,Fv4-IgG1-F14之0.01 mg/kg投予群之血漿中抗體濃度,比起1 mg/kg投予群,低約100倍(圖38),儘管如此,血漿中可溶型人類IL-6受體濃度變化大約同等 (圖37)。又,Fv4-IgG1-F14之0.01 mg/kg投予群7小時後之血漿中可溶型人類IL-6受體濃度,比起Fv4-IgG1之1 mg/kg投予群,顯示約低3倍。再者, Fv4-IgG1-F14在任一用量之投予群,均比可溶型人類IL-6受體單獨投予群,顯示更低之血漿中可溶型人類IL-6受體濃度變化 (圖37)。
由此可顯示:對於Fv4-IgG1使於中性條件下對於人類FcRn之結合增強之Fv4-IgG1-F14,即使是Fv4-IgG1之100分之1之投予量,也能有效使血漿中可溶型人類IL-6受體濃度降低。亦即,藉由對於pH依存性的抗原結合抗體,使中性條件下對於FcRn之結合能力增強,據認為能以較低投予量仍可有效使抗原消失。
[參考例8]利用使用正常小鼠之穩定狀態模型之體內試驗 (8-1)於中性條件下對於小鼠FcRn之結合評價 針對參考例5製備之 含VH3-IgG1(序列編號:19)與L(WT)(序列編號:14)之VH3/L(WT)-IgG1、 含VH3-IgG1-v2(序列編號:22) 與L(WT)(序列編號:14) 之VH3/L(WT)-IgG1-v2、 含VH3-IgG1-F20(序列編號:23) 與L(WT)(序列編號:14) 之VH3/L(WT)-IgG1-F20、 依以下方法評價中性條件下(pH7.4)對於小鼠FcRn之結合評價。
使用Biacore T100 (GE Healthcare),解析小鼠FcRn與抗體之速度論。在感應晶片CM4 (GE Healthcare) 上以胺偶聯法將PROTEIN L (ACTIGEN) 適量固定化,使其捕捉目的之抗體。其次,注射FcRn稀釋液與運行緩衝液(當做參照溶液),使捕捉於感應晶片上之抗體與小鼠FcRn交互作用。運行緩衝液使用50 mmol/L磷酸鈉、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4,FcRn之稀釋也使用各自的緩衝液。晶片再生使用10 mmol/L甘胺酸-HCl, pH1.5。測定均於25 ℃實施。從測定獲得之傳感圖,計算動力學參數結合速度常數 ka (1/Ms)、及解離速度常數 kd (1/s),依該値計算各抗體對於小鼠FcRn之KD (M)。各參數之計算使用 Biacore T100 Evaluation Software (GE Healthcare)。
結果如表26(pH7.4之小鼠FcRn親和性)。在此,恆定區為天然型IgG1VH3/L(WT)-IgG1(表26之IgG1),對小鼠FcRn之結合非常弱,不能計算KD,故表26中表示記載為ND。測定結果,於中性條件下對於人類FcRn之結合經增強之該等改變體,對於小鼠FcRn也同樣,於中性條件下顯示結合增強。
[表26]
Figure 02_image067
(8-2)血漿中可溶型人類IL-6受體濃度為穩定狀態之正常小鼠之體內試驗 使用實施例3及參考例5製備之H54/L28-IgG1、Fv4-IgG1、Fv4-IgG1-v2及Fv4-IgG1-F20,依下列方法進行體內試驗。
於正常小鼠(C57BL/6J小鼠、Charles River Japan)之背部皮下埋入充填有可溶型人類IL-6受體之注入泵浦(MINI-OSMOTIC PUMP MODEL2004、alzet),藉此製作血漿中可溶型人類IL-6受體濃度維持穩定狀態之動物模型。對該動物模型,投予抗人類IL-6受體抗體,並評價投予後之可溶型人類IL-6受體於活體內之動態。為抑制產生對抗可溶型人類IL-6受體之中和抗體,將單株抗小鼠CD4抗體(R&D)對於尾靜脈以20 mg/kg單次投予。之後,將充填有92.8μg/mL可溶型人類IL-6受體之注入泵浦埋入小鼠背部皮下。注入泵浦埋入3日後,將抗人類IL-6受體抗體對於尾靜脈以1 mg/kg單次投予。投予抗人類IL-6受體抗體15分鐘後、7小時後、1日後、2日後、3日後、4日後、7日後、14日後、21日後、28日後採血。將採取之血液立即於4℃以15,000 rpm進行15分鐘離心分離,獲得血漿。將分離之血漿直到實施試驗為止保存在設定為-20℃以下之冷凍庫。
(8-3) 以ELISA法測定血漿中抗人類IL-6受體抗體濃度 與參考例3以同樣方法實施。
(8-4)以電化學發光法測定血漿中hsIL-6R濃度 與實施例5以同樣方法實施。 如圖39,對於血漿中可溶型人類IL-6受體濃度維持約40 ng/mL之穩定狀態的正常小鼠(hsIL-6R群),若投予可溶型人類IL-6受體之中和抗體H54/L28-IgG1,則血漿中可溶型人類IL-6受體濃度會升高到650 ng/mL(投予前之15倍)。另一方面,於對於H54/L28-IgG1賦予pH依存性的抗原結合能力之Fv4-IgG1之投予群,維持血漿中可溶型人類IL-6受體濃度為約70 ng/mL。由此顯示:由於通常之中和抗體H54/L28-IgG1之投予引起的血漿中可溶型人類IL-6受體濃度的升高,會藉由賦予pH依存性結合能力,而能抑制在約10分之1。
再者,投予對於pH依存性的人類IL-6受體結合抗體導入有於中性條件下對於FcRn之結合之改變的Fv-IgG1-v2及Fv-IgG1-F20,顯示可維持血漿中可溶型人類IL-6受體濃度為穩定狀態之10分之1以下之狀態。在此,Fv-IgG1-v2從投予起14日後,血漿中可溶型人類IL-6受體濃度為約2 ng/mL,可降低為投予前之20分之1。又,Fv-IgG1-F20,從投予起7小時後、1日後、2日後、4日後之血漿中可溶型人類IL-6受體濃度,為檢測極限(1.56 ng/mL)以下,顯示可低至投予前之25分之1以下。
由以上顯示,藉由投予對於血漿中之抗原濃度維持穩定狀態之動物模型,同時具備pH依存性的抗原結合能力與於中性條件下對於FcRn之結合能力之抗體,能使血漿中之抗原之消失速度增加、血漿中抗原濃度顯著降低。
通常之抗體,如H54/L28-IgG1,藉由對標的抗原結合,其作用僅能中和,且更壞的是會造成血漿中之抗原濃度上升。另一方面,同時具備pH依存性的抗原結合能力與於中性條件下對於FcRn之結合能力之抗體,不僅可中和標的抗原,且發現能使血漿中之標的抗原之濃度降低。藉由將抗原從血漿中除去,可期待中和以上之高度效果。又,對於僅中和不夠的標的抗原,據認為可顯示效果。
[參考例9]對於增強抗原消失所必要之pH中性域之對於人類FcRn之結合親和性之閾値鑑定、及抗原消失與pH中性域對於人類FcRn之結合親和性之關係 (9-1)用於體內試驗之抗體製備 製備包含於pH中性域對於FcRn之結合經增加之VH3-IgG1(序列編號:19)與VL3-CK(序列編號:20)之Fv4-IgG1之Fc變異體。具體而言,製備VH3-M73(序列編號:24)及VH3-IgG1-v1(序列編號:21)。胺基酸取代之導入,依照參考例3記載之該技術領域之人士公知之方法實施。
依參考例3記載之該技術領域之人士公知之方法表現並精製含H54(序列編號:5)與L28(序列編號:6)之H54/L28-IgG1、含VH3-IgG1(序列編號:19)與VL3-CK(序列編號:20)之Fv4-IgG1、含VH3-M73(序列編號:24)與VL3-CK(序列編號:20)之Fv4-M73、含VH3-IgG1-v1(序列編號:21)與VL3-CK(序列編號:20)之Fv4-IgG1-v1、及含VH3-IgG1-v2(序列編號:22)與VL3-CK(序列編號:20)之Fv4-IgG1-v2。
(9-2)pH中性條件下對於人類FcRn之抗體之結合親和性之評價 依參考例3記載,製備含VH3-IgG1(序列編號:19)與L(WT)(序列編號:14)之VH3/L(WT)-IgG1、含VH3-M73(序列編號:24)與L(WT)(序列編號:14)之VH3/L(WT)-M73、含VH3-IgG1-v1(序列編號:21)與L(WT)(序列編號:14)之VH3/L(WT)-IgG1-v1、及含VH3-IgG1-v2(序列編號:22)與L(WT)(序列編號:14)之VH3/L(WT)-IgG1-v2,並評價於中性pH(pH7.0)與人類FcRn之結合。
VH3/L(WT)-IgG1-v1及VH3/L(WT)-IgG1-v2對於人類FcRn之結合活性,使用參考例5記載之方法測定。由於VH3/L(WT)-IgG1及VH3/L(WT)-M73對人類FcRn之結合活性低,故以實施例5記載之方法無法測定對人類FcRn之結合活性,是以,該等抗體依以下記載之方法評價。抗體與人類FcRn結合之動態使用Biacore T100(GE Healthcare)解析。在感應晶片CM4(GE Healthcare)上以胺偶聯法將適量PROTEIN L(ACTIGEN)固定化,使晶片捕捉目的之抗體。其次,將稀釋FcRn溶液與運行緩衝液(當做參照溶液)注入,使感應晶片上捕捉之抗體與人類FcRn交互作用。運行緩衝液使用50 mmol/l磷酸鈉、150 mmol/l NaCl、0.05% (w/v) Tween 20、pH7.0。FcRn使用各緩衝液稀釋。晶片使用10 mmol/l甘胺酸-HCl(pH1.5)再生。測定於25℃進行。
各抗體之KD(M),使用同時使適擬於傳感圖之結合及解離相,且實行中之組的全部曲線一次適擬的Biacore T100 Evaluation Software(GE Healthcare),從傳感圖數據導出。將傳感圖適擬於Biacore T100 Evaluation Software提供之1:1結合模型「Langmuir結合」模型。針對結合交互作用的數個,使用基於平衡之方法,對於分析物濃度之對數,將平衡結合回應Req作圖,由非線形回歸分析導入KD。 針對中性條件下(pH7.0)之人類FcRn結合,由Biacore得到之結果如表27。
[表27]
Figure 02_image069
(9-3)使用人類FcRn基因轉殖小鼠系統276之同時投予模型之抗體之抗原消失效果之體內試驗 使用同時投予模型之抗體之體內試驗,依參考例3進行。該試驗使用之抗人類IL-6受體抗體,為先前記載之H54/L28-IgG1、Fv4-IgG1、Fv4-M73、Fv4-IgG1-v1、及Fv4-IgG1-v2。該試驗使用之小鼠為人類FcRn基因轉殖小鼠(B6.mFcRn-/-.hFcRn Tg 系統276 +/+小鼠、Jackson Laboratories; Methods Mol Biol. (2010) 602: 93-104)。 如圖40,H54/L28-IgG1、Fv4-IgG1、Fv4-M73、Fv4-IgG1-v1、及Fv4-IgG1-v2之藥物動態為同等,該等抗體於試驗期間維持類似之血漿中濃度。
血漿中hsIL-6濃度變化如圖41。比起與Fv4-IgG1同時投予之hsIL-6R,與Fv4-IgG1-v2同時之hsIL-6R顯示廓清增大,但與Fv4-M73及Fv4-IgG1-v1同時投予hsIL-6R顯示廓清降低。M73、v1及v2所有Fc變異體,對於人類FcRn在pH中性條件下(pH7.0)之結合親和性增大,但顯示hsIL-6R廓清增大的只有Fv4-IgG1-v2,Fv4-M73及Fv4-IgG1-v1未顯示增大。此顯示:為了增大抗原廓清,與pH7.0對於人類FcRn之結合親和性為KD 3.2μM或比天然型人類IgG1(對人類FcRn之結合親和性為KD 88μM)高28倍之IgG1-v1相比,pH7.0對於人類FcRn之抗體之結合親和性至少要比其高高。
圖42顯示pH7.0對於人類FcRn之Fc變異體之結合親和性、與同時投予hsIL-6R及Fc變異體1日後之血漿中hsIL-6R濃度之間的關係。係將本實施例及參考例6記載之Fc變異體(Fv4-IgG1、Fv4-M73、Fv4-IgG1-v1、Fv4-IgG1-v2、Fv4-IgG1-F14、Fv4-IgG1-F20、Fv4-IgG1-F21、Fv4-IgG1-F25、Fv4-IgG1-F29、Fv4-IgG1-F35、Fv4-IgG1-F48、Fv4-IgG1-F93、及Fv4-IgG1-F94)作圖。若pH7.0對於人類FcRn之抗體之結合親和性增大,則反映抗原廓清之血漿中hsIL-6R濃度會先增加後急速降低。此顯示:與天然型人類IgG1比較,為使抗原廓清增大,需要使pH7.0對於人類FcRn之抗體之結合親和性,較佳為比KD 2.3μM(從圖42之曲線對應獲得之値)強。抗體對人類FcRn之結合親和性為KD 88μM~KD 2.3μM時,則抗原廓清降低(較高之hsIL-6R濃度)。換言之,pH7.0對於人類FcRn之抗體之結合親和性,為增強抗原之消失,較佳為必需比天然型人類IgG1高38倍,不然據認為抗原廓清會降低。
圖43顯示pH7.0對於人類FcRn之Fc變異體之結合親和性、與同時投予hsIL-6R及Fc變異體1日後之血漿中抗體濃度之間的關係。係將本實施例及參考例6記載之Fc變異體(Fv4-IgG1、Fv4-M73、Fv4-IgG1-v1、Fv4-IgG1-v2、Fv4-IgG1-F14、Fv4-IgG1-F20、Fv4-IgG1-F21、Fv4-IgG1-F25、Fv4-IgG1-F29、Fv4-IgG1-F35、Fv4-IgG1-F48、Fv4-IgG1-F93、及Fv4-IgG1-F94)作圖。若使pH7.0對於人類FcRn之抗體之結合親和性增大,反映抗體之藥物動態(廓清)之血漿中抗體濃度會先維持,但之後急速降低。此顯示:為維持與天然型人類IgG1(對於人類FcRn之結合親和性為KD 88μM)類似之抗體之藥物動態,需要使pH7.0對於人類FcRn之抗體之親和性弱於KD 0.2μM(從圖43之曲線對應得到之値)。抗體對人類FcRn之結合親和性強於KD 0.2μM時,抗體之廓清會增大(亦即,抗體急速從血漿消失)。換言之,pH7.0對於人類FcRn之抗體之結合親和性,為了顯示與天然型人類IgG1類似之抗體藥物動態,比起天然型人類IgG1,需要440倍以內之高度,不然,據認為抗體會從血漿急速消失。
若考慮圖42及43兩者,為維持與天然型人類IgG1類似之抗體藥物動態且比起IgG1之抗原廓清增大 (亦即使血漿中抗原濃度減少),pH7.0對於人類FcRn之抗體之結合親和性必需為2.3μM至0.2μM,或換言之, pH7.0對於人類FcRn之抗體之結合親和性必需比天然型人類IgG1為高38倍至440倍之範圍。與具長期間之抗體消失活性之IgG1類似之藥物動態之此種抗體,由於長期間作用性,據認為對於慢性疾患等需長投予間隔之抗體治療為有益。
另一方面,藉由使pH7.0對於人類FcRn之抗體之結合親和性強於KD 0.2μM,或換言之,使比起天然型人類IgG1,於pH7.0抗體對於人類FcRn之結合親和性增大為高於440倍,抗體雖比天然型人類IgG1更快從血漿消失,但據認為抗原廓清於短期間也會相當增強。能誘導抗原濃度急速大量減少之如此的抗體,由於其即效性,據認為對於需要將疾病相關抗原從血漿中除去之急性疾病等抗體治療為有益。
就抗體1分子從血漿消失之抗原之量,為利用投予pH7.0對於人類FcRn之結合親和性增大之抗體Fc變異體評價抗原消失效率時之重要要因。為評價抗體1分子之抗原消失效率,於本實施例及參考例6記載之體內試驗之各時點實施以下計算。 A値:各時點之抗原之莫耳濃度 B値:各時點之抗體之莫耳濃度 C値:每個抗體莫耳濃度之抗原莫耳濃度(抗原/抗體莫耳比) C=A/B
針對各抗體之C値(抗原/抗體莫耳比)之變化如圖44。C値較小時,抗體每1分子之抗原消失效率會較高,但C値更大時,抗體每1分子之抗原消失效率會較低。與IgG1相比較,若C値較小,顯示可藉由Fc變異體獲得較高抗原消失效率,但是若比IgG1,C値較大,顯示Fc變異體關於抗原消失效率具負面效果。Fv4-M73及Fv4-IgG1-v1以外的所有Fc變異體,比起Fv4-IgG1,顯示抗原消失效率增大。Fv4-M73及Fv4-IgG1-v1顯示對抗原消失效率有負面影響,此與圖42一致。
圖45顯示pH7.0對於人類FcRn之Fc變異體之結合親和性、與同時投予hsIL-6R及Fc變異體1日後之C値(抗原/抗體莫耳比)之間的關係。將本實施例及參考例6記載之Fc變異體(Fv4-IgG1、Fv4-M73、Fv4-IgG1-v1、Fv4-IgG1-v2、Fv4-IgG1-F14、Fv4-IgG1-F20、Fv4-IgG1-F21、Fv4-IgG1-F25、Fv4-IgG1-F29、Fv4-IgG1-F35、Fv4-IgG1-F48、Fv4-IgG1-F93、及Fv4-IgG1-F94)作圖。其顯示與天然型人類IgG1比較為達成更高之抗原消失效率,必需使pH7.0對於人類FcRn之抗體之親和性強於KD 3.0μM(從圖45之曲線對應到之値)。換言之, pH7.0對於人類FcRn之抗體之結合親和性,為了使比起天然型人類IgG1達成較高抗原消失效率,必需比天然型人類IgG1至少高29倍。
結論為,對於FcRn於pH7.0具KD 3.0μM至0.2μM之結合親和性之抗體變異體之群、或換言之,對於FcRn於pH7.0比起天然型人類IgG1有高29倍至440倍之範圍之結合親和性之抗體變異體之群,具與IgG1類似之抗體藥物動態,但具增大之血漿中抗體消失能力。因此,如此的抗體比起IgG1顯示增大的抗原消失效率。藉由與IgG1類似之藥物動態,能使抗原長期間從血漿消失 (長期間作用性之抗原消失),所以能以長投予間隔投予,此據認為對於慢性疾病相關之抗體治療物質有利。對於FcRn於pH7.0具強於KD 0.2μM之結合親和性之抗體變異體之群,或換言之對FcRn於pH7.0具比天然型人類IgG1高440倍之結合親和性之抗體變異體之群,具急速的抗體廓清(短期間之抗體消失)。此顯示:儘管如此,如此的抗體會由於暴露於抗原而急速廓清 (即效性之抗原消失),故如此的抗體比IgG1顯示增大之抗原消失效率。如參考例8,於正常小鼠之Fv4-IgG1-F20,抗原從血漿之大幅消失會在非常短期間誘導,但抗原消失效果不持續。如此的概況,據認為對於需要使疾病相關抗原於非常短期間迅速且大幅從血漿枯渇之急性疾病時,為有利。
[參考例10]使用人類FcRn基因轉殖小鼠系統276之穩定狀態注入模型之Fv4-IgG1-F14之體內試驗 使用人類FcRn基因轉殖小鼠系統276之下列穩定狀態注入模型進行Fv4-IgG1-F14之體內試驗。試驗群由對照群(無抗體)、以1 mg/kg用量之Fv4-IgG1、及1 mg/kg、0.2 mg/kg、及0.01 mg/kg之用量之Fv4-IgG1-F14構成。
對於人類FcRn基因轉殖小鼠系統276(B6.mFcRn-/-.hFcRn Tg 系統276 +/+小鼠(B6.mFcRn-/- hFCRN Tg276 B6.Cg-Fcgrt<tm1Dcr> Tg(FCGRT)276Dcr (Jackson #4919))、Jackson Laboratories; Methods Mol Biol. (2010) 602: 93-104)之背部皮下,埋入充填有可溶型人類IL-6受體之注入泵浦(MINI-OSMOTIC PUMP MODEL 2004;alzet),藉此製作維持血漿中可溶型人類IL-6受體濃度為固定之模型動物。對於模型動物投予抗人類IL-6受體抗體,評價投予後之可溶型人類IL-6受體於活體內之動態。為抑制產生對抗可溶型人類IL-6受體之中和抗體,在埋入注入泵浦前,於將抗體對尾靜脈投予14日後,以20 mg/kg投予單株抗小鼠CD4抗體(R&D)。其次,將填充有92.8μg/ml之可溶型人類IL-6受體的注入泵浦埋入小鼠之背部皮下。埋入注入泵浦3日後,將抗人類IL-6受體抗體(H54/L28-IgG1及H54/L28-IgG1-F14)對於尾靜脈以1 mg/kg單次投予。投予抗人類IL-6受體抗體15分鐘後、7小時後、1日後、2日後、3日後、4日後、7日後、14日後、21日後、及28日後採血。將採取之血液立即於4℃以15,000 rpm進行15分鐘離心分離,獲得血漿。分離之血漿在實施測定為止前保存在設定為-20℃以下之冷凍庫。
小鼠血漿中之hsIL-6R濃度以電化學發光測定。製備調整為2,000、1,000、500、250、125、62.5、及31.25 pg/ml之濃度之hsIL-6R檢量線試樣及稀釋50倍以上之小鼠血漿試樣。將試樣與經SULFO-TAG NHS Ester(Meso Scale Discovery)釕化之單株抗人類IL-6R抗體(R&D)、生物素化抗人類IL-6R抗體(R&D)、及WT-IgG1溶液混合,於37℃反應一晩。就抗人類IL-6受體抗體而言,含tocilizumab(重鏈序列編號:13、輕鏈序列編號:14)之WT-IgG1之終濃度比起試樣所包含之抗人類IL-6受體抗體濃度為過剩之333μg/ml,目的為使試樣中之幾乎全部hsIL-6R分子成為與WT-IgG1結合之狀態。之後,將試樣分注於MA400 PR Streptavidin Plate(Meso Scale Discovery),於室溫使反應1小時並洗滌。分注Read Buffer T(×4)(Meso Scale Discovery),立即以Sector PR 400 Reader(Meso Scale Discovery)測定。hsIL-6R濃度,係從檢量線之回應使用解析軟體SOFTmax PRO(Molecular Devices)計算。
圖46顯示抗體投予後之血漿中hsIL-6R濃度之時間曲線。比起未投予抗體之基線的hsIL-6R水平,由於投予1 mg/kg Fv4-IgG1,血漿中hsIL-6R濃度增加數倍。另一方面,由於1 mg/kg之Fv4-IgG1-F14投予,比較Fv4-IgG1群及基線群時,血漿中濃度發生顯著減少。於第2日,未檢測到血漿中hsIL-6R濃度 (血漿中hsIL-6R濃度之定量極限於該測定系為1.56 ng/mL),持續到第14日。
H54/L28-IgG1-F14,比起H54/L28-IgG1,血漿中hsIL-6R濃度顯示減少,但減少程度小。減少之程度,當Fv4可變區具有對於hsIL-6R之pH依存性結合特性時,會相當大。此顯示:若使於pH7.0對於人類FcRn之結合親和性增大,對於使血漿中抗原濃度減少有效,但是若組合pH依存性的抗原結合及於pH中性域對於人類FcRn之結合親和性之增大,則抗原消失會顯著增大。
使用較低用量之Fv4-IgG1-F14之試驗,即使是1 mg/kg之1/1000.01 mg/kg,也能使血漿中抗原濃度比基線更減少,顯示分子使抗原從血漿枯渇之效率為顯著。
[參考例11]同時投予模型中,人類FcRn基因轉殖小鼠系統276及系統32之比較 至此的體內試驗,係使用人類FcRn基因轉殖小鼠系統276(Jackson Laboratories)進行。為比較與人類FcRn基因轉殖小鼠系統276不同的基因轉殖系統系統32之差異,本案發明人等使用人類FcRn基因轉殖小鼠系統32(B6.mFcRn-/-.hFcRn Tg 系統32 +/+小鼠(B6.mFcRn-/- hFCRN Tg32; B6.Cg-Fcgrt<tm1Dcr> Tg(FCGRT)32Dcr) (Jackson #4915))、Jackson Laboratories; Methods Mol Biol. (2010) 602: 93-104)進行H54/L28-IgG1、Fv4-IgG1、及Fv4-IgG1-v2之同時投予試驗。試驗方法,除了使用人類FcRn基因轉殖小鼠系統32代替人類FcRn基因轉殖小鼠系統276以外,與參考例3之試驗方法相同。
圖47顯示人類FcRn基因轉殖小鼠系統276及系統32兩者中,血漿中hsIL-6R濃度變化。H54/L28-IgG1、Fv4-IgG1、及Fv4-IgG1-v2,顯示類似之血漿中hsIL-6R濃度-時間曲線。任意小鼠均為若pH7.0對於人類FcRn之結合親和性增大,則抗原從血漿之消失同程度增強 (比較Fv4-IgG1與Fv4-IgG1-v2)。
圖48顯示人類FcRn基因轉殖小鼠系統276及系統32兩者中之血漿中抗體濃度變化。H54/L28-IgG1、Fv4-IgG1、及Fv4-IgG1-v2顯示類似之血漿中抗體濃度-時間曲線。
就結論而言,系統276與系統32之間未觀察到顯著差異,於pH7.0使對於人類FcRn之結合親和性增大之Fc變異體,關於血漿中抗原濃度之消失之增強,於表現人類FcRn之2個不同的基因轉殖小鼠系統為有效。
[參考例12]中性pH對於人類FcRn之結合親和性增大之各種抗體Fc變異體之製作 (12-1)Fc變異體之製作 為進一步改善抗原消失曲線,以pH中性域對於人類FcRn之結合親和性增大為目的,將各種變異導入Fv4-IgG1。具體而言,製作表15所示之胺基酸變異導入Fv4-IgG1之重鏈恆定區的Fc變異體 (變異部位之胺基酸編號依EU編號法記載)。胺基酸取代之導入,依照參考例3記載之該技術領域之人士公知之方法實施。
將製備之含重鏈與L(WT)(序列編號:14)之進一步的變異體(IgG1-F100至IgG1-F1052),依參考例3記載之該技術領域之人士公知之方法表現並精製。
(12-2)人類FcRn結合之評價 抗體與人類FcRn之結合之動態,針對IgG1-v1、IgG1-v2、及IgG1-F2至IgG1-F1052如參考例5記載,或針對IgG1及M73依參考例9記載解析。針對於中性條件下(pH7.0)之人類FcRn結合的利用Biacore所得之結果,如表28-1至28-21。
[表28-1]
Figure 02_image071
表28-2係接續表28-1。 [表28-2]
Figure 02_image073
表28-3係接續表28-2 [表28-3]
Figure 02_image075
表28-4係接續表28-3 [表28-4]
Figure 02_image077
表28-5係接續表28-4 [表28-5]
Figure 02_image079
表28-6係接續表28-5 [表28-6]
Figure 02_image081
表28-7係接續表28-6 [表28-7]
Figure 02_image083
表28-8係接續表28-7 [表28-8]
Figure 02_image085
表28-9係接續表28-8 [表28-9]
Figure 02_image087
表28-10係接續表28-9 [表28-10]
Figure 02_image089
表28-11係接續表28-10 [表28-11]
Figure 02_image091
表28-12係接續表28-11 [表28-12]
Figure 02_image093
表28-13係接續表28-12 [表28-13]
Figure 02_image095
表28-14係接續表28-13 [表28-14]
Figure 02_image097
表28-15係接續表28-14 [表28-15]
Figure 02_image099
表28-16係接續表28-15 [表28-16]
Figure 02_image101
表28-17係接續表28-16 [表28-17]
Figure 02_image103
表28-18係接續表28-17 [表28-18]
Figure 02_image105
表28-19係接續表28-18 [表28-19]
Figure 02_image107
表28-20係接續表28-19 [表28-20]
Figure 02_image109
表28-21係接續表28-20 [表28-21]
Figure 02_image111
[參考例13]使用人類FcRn基因轉殖小鼠系統32之穩定狀態注入模型進行各種Fc變異體抗體之體內試驗 將參考例12製作之Fc變異體,於使用人類FcRn基因轉殖小鼠系統32之穩定狀態注入模型,進行血漿中抗原消失能力相關之試驗。穩定狀態注入模型體內試驗,使用人類FcRn基因轉殖小鼠系統32替代系統276,並投予單株抗小鼠CD4抗體2次(埋入注入泵浦之前、與投予抗體14日後)或3次(埋入注入泵浦前、與投予抗體10日後及20日後),除此以外依實施例1記載實施。
將從表28-1至28-21記載之Fc變異體選擇之以下記載之抗體Fc變異體,依參考例3記載之該技術領域之人士公知之方法表現並精製: 含VH3-IgG1與VL3-CK之Fv4-IgG1; 含VH3-IgG1-F11與VL3-CK之Fv4-IgG1-F11; 含VH3-IgG1-F14與VL3-CK之Fv4-IgG1-F14; 含VH3-IgG1-F39與VL3-CK之Fv4-IgG1-F39; 含VH3-IgG1-F48與VL3-CK之Fv4-IgG1-F48; 含VH3-IgG1-F140與VL3-CK之Fv4-IgG1-F140; 含VH3-IgG1-F157與VL3-CK之Fv4-IgG1-F157; 含VH3-IgG1-F194與VL3-CK之Fv4-IgG1-F194; 含VH3-IgG1-F196與VL3-CK之Fv4-IgG1-F196; 含VH3-IgG1-F198與VL3-CK之Fv4-IgG1-F198; 含VH3-IgG1-F262與VL3-CK之Fv4-IgG1-F262; 含VH3-IgG1-F264與VL3-CK之Fv4-IgG1-F264; 含VH3-IgG1-F393與VL3-CK之Fv4-IgG1-F393; 含VH3-IgG1-F434與VL3-CK之Fv4-IgG1-F424;及 含VH3-IgG1-F447與VL3-CK之Fv4-IgG1-F447。
該等抗體對於人類FcRn基因轉殖小鼠系統32以1 mg/kg之用量投予。 圖49顯示小鼠之血漿中hsIL-6R濃度變化。與Fv4-IgG1相比,pH7.0對於人類FcRn之結合親和性增大之Fc變異體均顯示血漿中hsIL-6R濃度減少,故抗原從血漿之消失增大。抗原濃度減少之程度及持續,視Fc變異體間不同,但全部變異體一致比起IgG1,血漿中hsIL-6R濃度減少。此顯示:藉由使於pH7.0對於人類FcRn之結合親和性增大,抗原從血漿之消失一般而言會增大。圖50顯示於小鼠之血漿中抗體濃度變化。抗體之藥物動態,於Fc變異體間不同。
如參考例9記載,就每抗體1分子,從血漿消失之抗原之量係於藉由投予於pH7.0對於人類FcRn之結合親和性增大之抗體Fc變異體以評價抗原消失效率時之重要要因。故,針對各抗體之C値(抗原/抗體莫耳比)之變化記載於圖51。圖52顯示pH7.0對於人類FcRn之Fc變異體之結合親和性、與抗體投予1日後之C値(抗原/抗體莫耳比)之間的關係。此顯示:於該試驗中經試驗的所有抗體Fc變異體比起Fv4-IgG1具較小C値。本試驗中所試驗之全部Fc變異體,比起人類FcRn,在pH7.0具有強於KD 3.0μM之結合親和性,故此等比起天然型人類IgG1會達成較高抗原消失效率。此點與參考例9獲得之結果一致 (圖42)。
圖53顯示本試驗所試驗之Fc變異體中,具F11、F39、F48、及F264之Fc變異體之抗體顯示與IgG1類似藥物動態。該試驗係使用人類FcRn基因轉殖小鼠進行,因此可預料該等Fc變異體於人類也會具有與IgG1類似之長半衰期。圖54顯示投予具有與天然型人類IgG1為類似藥物動態之抗體(F11、F39、F48、及F264)之小鼠,其血漿中hsIL-6R濃度變化。該等變異體比起IgG1,使血漿中hsIL-6R濃度減少約10倍。故,該等抗體,使hsIL-6R濃度比起基線hsIL-6R濃度(無抗體之濃度)減少。因此、該等抗體,能使抗原從血漿長期消失,據認為能使用對於慢性疾病之抗體治療有利的長投予間隔。
圖55及56各代表針對IgG1、及Fc變異體F157、F196、及F262之血漿中抗體濃度及血漿中hsIL-6R濃度變化。令人意外地, F157及F262之抗體藥物動態比起天然型IgG1,顯示顯著較快從血漿之廓清,但F157及F262顯示從血漿大幅且持續的hsIL-6R消失。具體而言,於F157之血漿中hsIL-6R濃度,從第1日至28日 (不含第14日)為檢測極限(1.56 ng/ml)下,於F262之血漿中hsIL-6R濃度,從第14日至28日在檢測極限(1.56 ng/ml)下。另一方面,關於與F157相比之抗體之廓清較慢的F196,抗原濃度於第14日開始增加,於第28日回到基線。本試驗所試驗之Fc變異體之中,F157及F262為血漿中hsIL-6R濃度在第28日之時點減少到低於1.56 mg/ml的唯一Fc變異體。
抗體比起天然型人類IgG1,非常快速從血漿消失,故F157及F262獲得如此的持續的長期效果,係從抗體之藥物動態料想之外。尤其,於F157之血漿中抗體濃度,於第21日未能檢測到。儘管如此,血漿中hsIL-6R濃度,於第21日及28日之時點,持續減少到低於檢測極限之1.56 ng/ml為低之水平。本發明不拘於特定理論,但該料想外之效果,據認為是由於抗體以FcRn結合型存在於血管內皮細胞表面存在的原故。該等抗體在血漿中顯示低濃度,但該等抗體也會以FcRn結合型(無法以血漿中抗體濃度的形式測定)存在於血管隔間。該等FcRn結合抗體也會與血漿中之抗原結合,並且抗原/抗體複合體藉由FcRn攝入後,抗原於核內體內游離並由溶體分解,但是抗體會以FcRn結合型的形式回到細胞表面並再循環。如此,該等FcRn結合抗體貢獻於抗原之消失。藉此,可說明抗體濃度在血漿中降低後,該等抗體還能維持抗原消失能力的理由。 [產業上利用性]
依照本發明,可提供促進利用抗原結合分子使抗原攝入細胞內之方法、增加1分子之抗原結合分子對於抗原之結合次數之方法、利用抗原結合分子之投予促進血漿中之抗原濃度之減少之方法、改善抗原結合分子之血漿中滯留性之方法。藉由促進利用抗原結合分子使抗原攝入細胞內,能促進由於抗原結合分子投予所致之抗原之血漿中之抗原濃度減少,同時可改善抗原結合分子之血漿中滯留性,能增加1分子之抗原結合分子對於抗原之結合次數,能於體內比起通常之抗原結合分子發揮更優異之效果。
無。
圖1顯示pH依存性結合抗體返覆結合於可溶型抗原之圖。(i) 抗體與可溶型抗原結合、(ii) 非專一性地利用胞飲作用攝入細胞內、(iii) 於核內體內抗體與FcRn結合,可溶型抗原從抗體解離、(iv) 可溶型抗原移到溶體並被分解、(v) 可溶型抗原解離之抗體,由於FcRn再循環於血漿中、(vi) 再循環之抗體可再度與可溶型抗原結合。 圖2顯示pH依存性結合抗體返覆結合於膜型抗原之圖。(i) 抗體與膜型抗原結合、(ii) 抗體與膜型抗原以複合體之狀態內化到細胞內、(iii) 於核內體內從膜型抗原解離、(iv) 膜型抗原移到溶體並被分解、(v) 從膜型抗原解離之抗體再循環到血漿中、(vi) 再循環之抗體可再度與膜型抗原結合。 圖3顯示pH依存性結合抗體於血漿中(pH7.4)與核內體內(pH6.0)對抗原之交互作用之模式。 圖4顯示鈣依存性結合抗體於血漿中(Ca2+ 2 mM)與核內體內(Ca2+ 3μM)對抗原之交互作用之模式。 圖5顯示pH及鈣依存性結合抗體之血漿中(pH7.4、Ca2+ 2 mM)與核內體內(pH6.0、Ca2+ 3μM)對抗原之交互作用之模式。 圖6顯示使用Biacore之抗人類IL-6受體抗體於Ca2+ 2 mM 及Ca2+ 3μM 對於可溶型人類IL-6受體之交互作用之傳感圖。 圖7顯示H54/L28-IgG1於Ca2+ 2 mM 及Ca2+ 3μM 對於可溶型人類IL-6受體之交互作用之Biacore傳感圖。 圖8顯示FH4-IgG1於Ca2+ 2 mM 及Ca2+ 3μM 對於可溶型人類IL-6受體之交互作用之Biacore傳感圖。 圖9顯示6RL#9-IgG1於Ca2+ 2 mM 及Ca2+ 3μM 對於可溶型人類IL-6受體之交互作用之Biacore傳感圖。 圖10顯示H54/L28-IgG1、FH4-IgG1、及、6RL#9-IgG1於正常小鼠之血漿中抗體濃度變化。 圖11顯示H54/L28-IgG1、FH4-IgG1、及、6RL#9-IgG1於正常小鼠之血漿中可溶型人類IL-6受體(hsIL-6R)濃度變化。 圖12顯示H54/L28-N434W、FH4-N434W、及、6RL#9-N434W於正常小鼠之血漿中抗體濃度變化。 圖13顯示H54/L28-N434W、FH4-N434W、及、6RL#9-N434W於正常小鼠之血漿中可溶型人類IL-6受體(hsIL-6R)濃度變化。 圖14顯示以X射線結晶結構解析決定之6RL#9抗體之Fab片段之重鏈CDR3之結構。 圖15顯示使用Biacore之抗人類IL-6抗體於Ca2+ 1.2 mM 及Ca2+ 3μM 對於人類IL-6之交互作用之傳感圖。 圖16顯示含人類Vk5-2序列之抗體、與含人類Vk5-2序列中之糖鏈加成序列經改變之h Vk5-2_L65序列之抗體之離子交換層析圖。實線代表含人類Vk5-2序列之抗體(重鏈:CIM_H、序列編號:48及輕鏈:hVk5-2、序列編號:41與序列編號:28之融合分子)之層析圖、虛線代表具hVk5-2_L65序列之抗體(重鏈:CIM_H(序列編號:48)、輕鏈:hVk5-2_L65(序列編號47))之層析圖。 圖17顯示含LfVk1_Ca序列之抗體(重鏈:GC_H、序列編號:102及輕鏈:LfVk1_Ca、序列編號:61)、與含LfVk1_Ca序列中之Asp(D)殘基改變為Ala(A)殘基之序列之抗體於5℃保存後(實線)或50℃保存後(虛線)之離子交換層析圖。各以5℃保存後之離子交換層析圖中最高的峰部當做主要峰部,以主要峰部將y軸常態化。 圖18顯示含LfVk1_Ca序列之抗體(重鏈:GC_H、序列編號:102及輕鏈:LfVk1_Ca、序列編號:61)、與含LfVk1_Ca序列中之30位(Kabat編號法)之Asp(D)殘基改變為Ser(S)殘基之LfVk1_Ca6序列(重鏈:GC_H、序列編號:102及輕鏈:LfVk1_Ca6、序列編號:75)之抗體於5℃保存後(實線)或50℃保存後(虛線)之離子交換層析圖。各以5℃保存後之離子交換層析圖中最高的峰部當做主要峰部,以主要峰部將y軸常態化。 圖19顯示使用Biacore之抗人類CD4抗體於Ca2+ 1.2 mM 及Ca2+ 3μM 對於可溶型人類CD4之交互作用之傳感圖。 圖20顯示抗人類CD4抗體之正常小鼠血漿中抗體濃度變化。 圖21顯示可溶型人類CD4單獨投予群、TNX355-IgG1抗體投予群、Q425抗體投予群及Q425L9抗體投予群於正常小鼠血漿中之可溶型人類CD4之濃度變化。 圖22顯示使用Biacore之抗人類IgA抗體於Ca2+ 1.2 mM 及Ca2+ 3μM 對於人類IgA之交互作用之傳感圖。 圖23顯示GA1-IgG1抗體投予群、GA2-IgG1抗體投予群、GA3-IgG1及GA2-N434W抗體投予群之正常小鼠血漿中抗體濃度變化。 圖24顯示人類IgA單獨投予群、GA1-IgG1抗體投予群、GA2-IgG1抗體投予群、GA3-IgG1抗體投予群及GA2-N434W抗體投予群於正常小鼠血漿中人類IgA之濃度變化。 圖25顯示GA1-IgG1抗體投予群、GA2-IgG1抗體投予群、GA3-IgG1抗體投予群及GA2-N434W抗體投予群於正常小鼠血漿中之非結合型人類IgA之濃度變化。 圖26顯示對於多元體抗原形成大型免疫複合體之通常抗體,抗體每1分子使抗原消失之效率之例。 圖27顯示包含對於多元體抗原形成大型免疫複合體之天然IgG1之恆定區之pH/Ca依存性抗體,抗體每1分子使抗原消失之效率之例。 圖28顯示認識單體抗原存在之2個以上之抗原決定基並對於形成大型免疫複合體為適當的多專一性pH/Ca依存性抗體,抗體每1分子使抗原消失之效率之例。 圖29顯示使用ELISA法之抗人類Glypican3抗體於Ca2+ 1.2 mM 及Ca2+ 3μM 對於重組人類Glypican3之交互作用。 圖30顯示使用ELISA法之抗人類IgE抗體於Ca2+ 2mM 及Ca2+ 3μM 對於重組人類IgE之交互作用。 圖31顯示人類FcRn基因轉殖小鼠中,抗體之血漿中濃度變化。 圖32顯示人類FcRn基因轉殖小鼠中,可溶型人類IL-6受體之血漿中濃度變化。 圖33顯示正常小鼠中,抗體之血漿中濃度變化。 圖34顯示正常小鼠中,可溶型人類IL-6受體之血漿中濃度變化。 圖35顯示正常小鼠中,非結合型(unbound)可溶型人類IL-6受體之血漿中濃度變化。 圖36顯示人類FcRn基因轉殖小鼠中,血漿中可溶型人類IL-6受體濃度變化。 圖37顯示以低用量(0.01 mg/kg)或1 mg/kg投予Fv4-IgG1-F14後,血漿中可溶型人類IL-6受體濃度變化。 圖38顯示以低用量(0.01 mg/kg)或1 mg/kg投予Fv4-IgG1-F14後,血漿中抗體濃度變化。 圖39顯示對於血漿中可溶型人類IL-6受體濃度維持穩定狀態之正常小鼠,投予抗人類IL-6受體抗體後之血漿中可溶型人類IL-6受體濃度變化。 圖40顯示對於人類FcRn基因轉殖小鼠(系統276),同時投予hsIL-6R及抗人類IL-6受體抗體後之血漿中抗體濃度變化。 圖41顯示對於人類FcRn基因轉殖小鼠(系統276),同時投予hsIL-6R及抗人類IL-6受體抗體後之血漿中可溶型人類IL-6受體濃度變化。 圖42顯示於pH7.0對於人類FcRn之Fc變異體之結合親和性、與對於人類FcRn基因轉殖小鼠(系統276)同時投予hsIL-6R及抗人類IL-6受體抗體1日後之血漿中hsIL-6R濃度之關係。 圖43顯示pH7.0對於人類FcRn之Fc變異體之結合親和性、與對於人類FcRn基因轉殖小鼠(系統276)同時投予hsIL-6R及抗人類IL-6受體抗體1日後之血漿中抗體濃度之關係。 圖44顯示對於人類FcRn基因轉殖小鼠(系統276)同時投予hsIL-6R及抗人類IL-6受體抗體後之抗原/抗體莫耳比(C値)之變化。 圖45顯示pH7.0對於人類FcRn之Fc變異體之結合親和性、與對於人類FcRn基因轉殖小鼠(系統276)同時投予hsIL-6R及抗人類IL-6受體抗體1日後之抗原/抗體莫耳比(C値)之間的關係。 圖46顯示對於血漿中hsIL-6R濃度維持穩定狀態之人類FcRn基因轉殖小鼠(系統276)(穩定狀態注入模型)以低用量(0.01或0.2 mg/kg)或1 mg/kg投予Fv4-IgG1-F14後,血漿中hsIL-6R濃度變化。 圖47顯示對於人類FcRn基因轉殖小鼠(系統276及32),同時投予hsIL-6R及抗人類IL-6受體抗體後,於人類FcRn基因轉殖小鼠系統276及系統32之血漿中hsIL-6R濃度變化。 圖48顯示對於人類FcRn基因轉殖小鼠(系統276及系統32)同時投予hsIL-6R及抗人類IL-6受體抗體後,於人類FcRn基因轉殖小鼠系統276及系統32之血漿中抗體濃度變化。 圖49顯示對於血漿中hsIL-6R濃度維持穩定狀態之人類FcRn基因轉殖小鼠(系統32)(穩定狀態注入模型)投予抗人類IL-6受體抗體後,血漿中hsIL-6R濃度變化。 圖50顯示對於血漿中hsIL-6R濃度維持穩定狀態之人類FcRn基因轉殖小鼠(系統32)(穩定狀態注入模型)投予抗人類IL-6受體抗體後之血漿中抗體濃度變化。 圖51顯示對於血漿中hsIL-6R濃度維持穩定狀態之人類FcRn基因轉殖小鼠(系統32)(穩定狀態注入模型)投予抗人類IL-6受體抗體後,抗原/抗體莫耳比(C値)之變化。 圖52顯示pH7.0對於人類FcRn之Fc變異體之結合親和性、與對於血漿中hsIL-6R濃度維持穩定狀態之人類FcRn基因轉殖小鼠(系統32)(穩定狀態注入模型)投予抗人類IL-6受體抗體1日後之抗原/抗體莫耳比(C値)之間的關係。 圖53顯示對於血漿中hsIL-6R濃度維持穩定狀態之人類FcRn基因轉殖小鼠(系統32)(穩定狀態注入模型),投予具F11、F39、F48、及F264之Fc變異體之抗人類IL-6受體抗體後,血漿中抗體濃度變化。 圖54顯示對於血漿中hsIL-6R濃度維持穩定狀態之人類FcRn基因轉殖小鼠(系統32)(穩定狀態注入模型),投予具F11、F39、F48、及F264之Fc變異體之抗人類IL-6受體抗體後,血漿中hsIL-6R濃度變化。 圖55顯示對於血漿中hsIL-6R濃度維持穩定狀態之人類FcRn基因轉殖小鼠(系統32)(穩定狀態注入模型),投予具F157、F196、及F262之Fc變異體之抗人類IL-6受體抗體後,血漿中抗體濃度變化。 圖56顯示對於血漿中hsIL-6R濃度維持穩定狀態之人類FcRn基因轉殖小鼠(系統32)(穩定狀態注入模型),投予具F157、F196、及F262之Fc變異體之抗人類IL-6受體抗體後,血漿中hsIL-6R濃度變化。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0134
Figure 12_A0101_SEQ_0135
Figure 12_A0101_SEQ_0136
Figure 12_A0101_SEQ_0137
Figure 12_A0101_SEQ_0138
Figure 12_A0101_SEQ_0139
Figure 12_A0101_SEQ_0140
Figure 12_A0101_SEQ_0141
Figure 12_A0101_SEQ_0142
Figure 12_A0101_SEQ_0143
Figure 12_A0101_SEQ_0144
Figure 12_A0101_SEQ_0145
Figure 12_A0101_SEQ_0146
Figure 12_A0101_SEQ_0147
Figure 12_A0101_SEQ_0148
Figure 12_A0101_SEQ_0149
Figure 12_A0101_SEQ_0150
Figure 12_A0101_SEQ_0151
Figure 12_A0101_SEQ_0152
Figure 12_A0101_SEQ_0153
Figure 12_A0101_SEQ_0154
Figure 12_A0101_SEQ_0155
Figure 12_A0101_SEQ_0156
Figure 12_A0101_SEQ_0157
Figure 12_A0101_SEQ_0158
Figure 12_A0101_SEQ_0159
Figure 12_A0101_SEQ_0160
Figure 12_A0101_SEQ_0161
Figure 12_A0101_SEQ_0162
Figure 12_A0101_SEQ_0163
Figure 12_A0101_SEQ_0164
Figure 12_A0101_SEQ_0165
Figure 12_A0101_SEQ_0166
Figure 12_A0101_SEQ_0167
Figure 12_A0101_SEQ_0168
Figure 12_A0101_SEQ_0169
Figure 12_A0101_SEQ_0170
Figure 12_A0101_SEQ_0171
Figure 12_A0101_SEQ_0172
Figure 12_A0101_SEQ_0173
Figure 12_A0101_SEQ_0174
Figure 12_A0101_SEQ_0175
Figure 12_A0101_SEQ_0176
Figure 12_A0101_SEQ_0177
Figure 12_A0101_SEQ_0178
Figure 12_A0101_SEQ_0179
Figure 12_A0101_SEQ_0180
Figure 12_A0101_SEQ_0181
Figure 12_A0101_SEQ_0182
Figure 12_A0101_SEQ_0183
Figure 12_A0101_SEQ_0184
Figure 12_A0101_SEQ_0185
Figure 12_A0101_SEQ_0186
Figure 12_A0101_SEQ_0187
Figure 12_A0101_SEQ_0188
Figure 12_A0101_SEQ_0189
Figure 12_A0101_SEQ_0190
Figure 12_A0101_SEQ_0191
Figure 12_A0101_SEQ_0192
Figure 12_A0101_SEQ_0193
Figure 12_A0101_SEQ_0194
Figure 12_A0101_SEQ_0195
Figure 12_A0101_SEQ_0196
Figure 12_A0101_SEQ_0197
Figure 12_A0101_SEQ_0198
Figure 12_A0101_SEQ_0199
Figure 12_A0101_SEQ_0200
Figure 12_A0101_SEQ_0201
Figure 12_A0101_SEQ_0202
Figure 12_A0101_SEQ_0203
Figure 12_A0101_SEQ_0204
Figure 12_A0101_SEQ_0205
Figure 12_A0101_SEQ_0206
Figure 12_A0101_SEQ_0207
Figure 12_A0101_SEQ_0208
Figure 12_A0101_SEQ_0209
Figure 12_A0101_SEQ_0210
Figure 12_A0101_SEQ_0211
Figure 12_A0101_SEQ_0212
Figure 12_A0101_SEQ_0213
Figure 12_A0101_SEQ_0214
Figure 12_A0101_SEQ_0215
Figure 12_A0101_SEQ_0216
Figure 12_A0101_SEQ_0217
Figure 12_A0101_SEQ_0218
Figure 12_A0101_SEQ_0219
Figure 12_A0101_SEQ_0220
Figure 12_A0101_SEQ_0221
Figure 12_A0101_SEQ_0222
Figure 12_A0101_SEQ_0223
Figure 12_A0101_SEQ_0224
Figure 12_A0101_SEQ_0225
Figure 12_A0101_SEQ_0226
Figure 12_A0101_SEQ_0227
Figure 12_A0101_SEQ_0228
Figure 12_A0101_SEQ_0229
Figure 12_A0101_SEQ_0230
Figure 12_A0101_SEQ_0231
Figure 12_A0101_SEQ_0232
Figure 12_A0101_SEQ_0233
Figure 12_A0101_SEQ_0234
Figure 12_A0101_SEQ_0235
Figure 12_A0101_SEQ_0236
Figure 12_A0101_SEQ_0237
Figure 12_A0101_SEQ_0238
Figure 12_A0101_SEQ_0239
Figure 12_A0101_SEQ_0240

Claims (10)

  1. 一種抗體之製造方法,包括以下步驟(a)及(b):(a)製備一基因,該基因編碼為包括一抗原結合域及一人類FcRn結合域的一抗體,該抗體在兩種不同鈣濃度的條件下的抗原結合活性不同,且在低鈣濃度條件下之抗原結合活性比起在高鈣濃度條件下之抗原結合活性低;以及(b)將步驟(a)製備的該基因插入於一宿主中,且表達該基因以獲得該抗體,其中,該低鈣濃度係指離子化鈣濃度為0.1μM至30μM,以及該高鈣濃度係指離子化鈣濃度為100μM至10mM,其中該抗原結合域包括來自於人類抗體的一鈣結合模體(motif),且在該鈣結合模體中,抗體輕鏈中以Kabat編號法表示之位置30、31、32、50及/或92的任一或多個胺基酸係具有金屬螯合活性的胺基酸,且其選自於絲胺酸、蘇胺酸、天冬醯胺酸、麩醯胺酸、天冬胺酸、麩胺酸、組胺酸及酪胺酸所組成之群組,且該抗體具有選自於以下的至少1種機能:(i)促進抗原攝入細胞內之機能;以及(ii)促進血漿中之抗原濃度減少之機能。
  2. 如申請專利範圍第1項之抗體之製造方法,其中該低鈣濃度為核內體內之離子化鈣濃度。
  3. 如申請專利範圍第1項之抗體之製造方法,其中該高鈣濃度為血漿中之離子化鈣濃度。
  4. 如申請專利範圍第1項之抗體之製造方法,其中該FcRn結合域為一Fc區域。
  5. 如申請專利範圍第1至4項中任一項之抗體之製造方法,其中該抗 體於酸性pH條件下的抗原結合活性比起於中性pH條件下的抗原結合活性低。
  6. 如申請專利範圍第5項之抗體之製造方法,其中,在於酸性pH條件下的抗原結合活性比起於中性pH條件下的抗原結合活性低的抗體中,至少1個胺基酸經組胺酸取代、或至少有1個組胺酸插入。
  7. 如申請專利範圍第1項之抗體之製造方法,其中該抗體結合於一膜抗原或一可溶型抗原。
  8. 如申請專利範圍第1項之抗體之製造方法,其中該抗體包括於中性pH條件下具有FcRn結合活性的一Fc區域。
  9. 如申請專利範圍第8項之抗體之製造方法,其中,在該Fc區域之胺基酸序列中,以EU編號法表示之248、250、252、254、255、256、257、258、265、286、289、297、303、305、307、308、309、311、312、314、315、317、332、334、360、376、380、382、384、385、386、387、389、424、428、433、434、及436中的任一或多個胺基酸與天然型Fc區域的胺基酸不同。
  10. 如申請專利範圍第8項之抗體之製造方法,其中,該Fc區域包括以EU編號法表示之下列任一者或其組合:237位之胺基酸為Met;248位之胺基酸為Ile;250位之胺基酸為Ala、Phe、Ile、Met、Gln、Ser、Val、Trp、或Tyr;252位之胺基酸為Phe、Trp、或Tyr;254位之胺基酸為Thr;255位之胺基酸為Glu;256位之胺基酸為Asp、Glu、或Gln; 257位之胺基酸為Ala、Gly、Ile、Leu、Met、Asn、Ser、Thr、或Val;258位之胺基酸為His;265位之胺基酸為Ala;286位之胺基酸為Ala或Glu;289位之胺基酸為His;297位之胺基酸為Ala;303位之胺基酸為Ala;305位之胺基酸為Ala;307位之胺基酸為Ala、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、或Tyr;308位之胺基酸為Ala、Phe、Ile、Leu、Met、Pro、Gln、或Thr;309位之胺基酸為Ala、Asp、Glu、Pro、或Arg;311位之胺基酸為Ala、His、或Ile;312位之胺基酸為Ala或His;314位之胺基酸為Lys或Arg;315位之胺基酸為Ala、Asp或His;317位之胺基酸為Ala;332位之胺基酸為Val;334位之胺基酸為Leu;360位之胺基酸為His;376位之胺基酸為Ala;380位之胺基酸為Ala; 382位之胺基酸為Ala;384位之胺基酸為Ala;385位之胺基酸為Asp或His;386位之胺基酸為Pro;387位之胺基酸為Glu;389位之胺基酸為Ala或Ser;424位之胺基酸為Ala;428位之胺基酸為Ala、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、或Tyr;433位之胺基酸為Lys;434位之胺基酸為Ala、Phe、His、Ser、Trp、或Tyr;或436位之胺基酸為His、Ile、Leu、或Val。
TW107144399A 2010-11-30 2011-11-30 具有鈣依存性的抗原結合能力之抗體 TWI705072B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-266121 2010-11-30
JP2010266121 2010-11-30
JP2011-217886 2011-09-30
JP2011217886 2011-09-30

Publications (2)

Publication Number Publication Date
TW201920260A TW201920260A (zh) 2019-06-01
TWI705072B true TWI705072B (zh) 2020-09-21

Family

ID=46171919

Family Applications (5)

Application Number Title Priority Date Filing Date
TW109127693A TWI761912B (zh) 2010-11-30 2011-11-30 具有鈣依存性的抗原結合能力之抗體
TW111109184A TWI812066B (zh) 2010-11-30 2011-11-30 具有鈣依存性的抗原結合能力之抗體
TW106112884A TWI654204B (zh) 2010-11-30 2011-11-30 具有鈣依存性的抗原結合能力之抗體
TW107144399A TWI705072B (zh) 2010-11-30 2011-11-30 具有鈣依存性的抗原結合能力之抗體
TW100143904A TWI654203B (zh) 2010-11-30 2011-11-30 具有鈣依存性的抗原結合能力之抗體

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW109127693A TWI761912B (zh) 2010-11-30 2011-11-30 具有鈣依存性的抗原結合能力之抗體
TW111109184A TWI812066B (zh) 2010-11-30 2011-11-30 具有鈣依存性的抗原結合能力之抗體
TW106112884A TWI654204B (zh) 2010-11-30 2011-11-30 具有鈣依存性的抗原結合能力之抗體

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100143904A TWI654203B (zh) 2010-11-30 2011-11-30 具有鈣依存性的抗原結合能力之抗體

Country Status (14)

Country Link
US (3) US20140234340A1 (zh)
EP (2) EP4231014A3 (zh)
JP (5) JP6030452B2 (zh)
KR (2) KR102385507B1 (zh)
CN (3) CN103328632A (zh)
AU (1) AU2011337704B2 (zh)
BR (1) BR112013013354A2 (zh)
CA (1) CA2819356C (zh)
HK (2) HK1251592A1 (zh)
MX (2) MX365235B (zh)
RU (3) RU2658504C9 (zh)
SG (2) SG190727A1 (zh)
TW (5) TWI761912B (zh)
WO (1) WO2012073992A1 (zh)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4342995A3 (en) 2006-03-31 2024-05-15 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
DK2202245T3 (en) 2007-09-26 2016-11-21 Chugai Pharmaceutical Co Ltd A method of modifying an antibody isoelectric point VIA amino acid substitution in CDR
WO2009041613A1 (ja) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗体定常領域改変体
EP3056513A1 (en) 2008-04-11 2016-08-17 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
US8956859B1 (en) 2010-08-13 2015-02-17 Aviex Technologies Llc Compositions and methods for determining successful immunization by one or more vaccines
RU2658504C9 (ru) 2010-11-30 2018-08-21 Чугаи Сейяку Кабусики Кайся Антигенсвязывающая молекула, способная многократно связываться с множеством антигенных молекул
MX352889B (es) 2011-02-25 2017-12-13 Chugai Pharmaceutical Co Ltd Anticuerpo de fc especifico para fcyriib.
RU2719132C2 (ru) 2011-06-30 2020-04-17 Чугаи Сейяку Кабусики Кайся Гетеродимеризованный полипептид
US10556949B2 (en) * 2011-09-30 2020-02-11 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule inducing immune response to target antigen
MX366269B (es) * 2011-09-30 2019-07-04 Chugai Pharmaceutical Co Ltd Biblioteca de moleculas de union dependientes de la concentracion ionica.
TW201817744A (zh) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
JP6322411B2 (ja) 2011-09-30 2018-05-09 中外製薬株式会社 複数の生理活性を有する抗原の消失を促進する抗原結合分子
EP3617313A1 (en) * 2011-10-05 2020-03-04 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting clearance from plasma of antigen comprising saccharide chain receptor-binding domain
KR20210074395A (ko) 2011-11-30 2021-06-21 추가이 세이야쿠 가부시키가이샤 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
EP3738980A1 (en) * 2012-02-24 2020-11-18 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting disappearance of antigen via fc gamma riib
DK2857420T3 (da) 2012-05-30 2020-11-23 Chugai Pharmaceutical Co Ltd Målvævsspecifikt antigenbindende molekyle
WO2013180201A1 (ja) * 2012-05-30 2013-12-05 中外製薬株式会社 会合化した抗原を消失させる抗原結合分子
JP6280300B2 (ja) * 2012-08-24 2018-02-14 中外製薬株式会社 脳疾患治療剤
TW202237660A (zh) 2012-08-24 2022-10-01 日商中外製藥股份有限公司 FcγRIIb特異性Fc區域變異體
EP2889376A4 (en) 2012-08-24 2016-11-02 Chugai Pharmaceutical Co Ltd ANTIBODIES Fc SPECIFIC TO FCTRII OF MOUSE
TWI693073B (zh) 2012-12-21 2020-05-11 日商中外製藥股份有限公司 對gpc3標的治療劑療法為有效之患者投與的gpc3標的治療劑
WO2015097928A1 (ja) * 2013-12-24 2015-07-02 中外製薬株式会社 可溶性gpc3タンパク質の測定方法
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
KR102065112B1 (ko) * 2013-02-28 2020-01-10 삼성전자주식회사 높은 항원 선택성을 갖는 항체의 스크리닝 방법
WO2014163101A1 (ja) 2013-04-02 2014-10-09 中外製薬株式会社 Fc領域改変体
JP6534615B2 (ja) 2013-09-27 2019-06-26 中外製薬株式会社 ポリペプチド異種多量体の製造方法
AU2014358191B2 (en) 2013-12-04 2020-12-24 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
NZ631007A (en) 2014-03-07 2015-10-30 Alexion Pharma Inc Anti-c5 antibodies having improved pharmacokinetics
TWI735410B (zh) 2014-05-08 2021-08-11 日商中外製藥股份有限公司 對gpc3標的治療劑療法為有效之患者投予的gpc3標的治療劑
KR101624702B1 (ko) * 2014-08-01 2016-05-27 한국과학기술원 보체 단백질 C5a와 결합할 수 있는 신규한 폴리펩타이드 및 그 용도
TW201809008A (zh) 2014-12-19 2018-03-16 日商中外製藥股份有限公司 抗c5抗體及使用方法
KR20180054923A (ko) 2014-12-19 2018-05-24 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체, 변이체 Fc 영역을 함유하는 폴리펩타이드, 및 사용 방법
CN107428823B (zh) * 2015-01-22 2021-10-26 中外制药株式会社 两种以上抗-c5抗体的组合与使用方法
EP3816179A3 (en) 2015-02-05 2021-08-04 Chugai Seiyaku Kabushiki Kaisha Fc region variant comprising a modified fcrn-binding domain
SG11201705093UA (en) 2015-02-27 2017-07-28 Chugai Pharmaceutical Co Ltd Composition for treating il-6-related diseases
US11376326B2 (en) 2015-07-01 2022-07-05 Chugai Seiyaku Kabushiki Kaisha GPC3-targeting therapeutic agent which is administered to patient for whom the GPC3-targeting therapeutic agent is effective
BR112018003326A2 (pt) * 2015-09-09 2018-09-18 Novartis Ag anticorpos de ligação de linfopoietina estromal tímica (tslp) e métodos de uso dos anticorpos
TW202342532A (zh) 2015-09-18 2023-11-01 日商中外製藥股份有限公司 Il-8結合抗體及其用途
US10584160B2 (en) 2015-09-23 2020-03-10 Bristol-Myers Squibb Company Glypican-3-binding fibronectin based scaffold molecules
WO2017110981A1 (en) 2015-12-25 2017-06-29 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
JP2019506863A (ja) * 2016-02-02 2019-03-14 カドモン コーポレイション,リミティド ライアビリティ カンパニー Pd−l1及びkdrに対する二重結合タンパク質
MX2019001458A (es) 2016-08-02 2019-07-04 Visterra Inc Polipeptidos modificados y usos de los mismos.
TW202300168A (zh) 2016-08-05 2023-01-01 日商中外製藥股份有限公司 Il-8相關疾病之治療用或預防用組成物
AU2017308590A1 (en) * 2016-08-12 2019-02-14 Janssen Biotech, Inc. Engineered antibodies and other Fc-domain containing molecules with enhanced agonism and effector functions
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
US11608374B2 (en) 2017-01-30 2023-03-21 Chugai Seiyaku Kabushiki Kaisha Anti-sclerostin antibodies and methods of use
EP3601346A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
AU2018255938A1 (en) 2017-04-21 2019-10-31 Staten Biotechnology B.V. Anti-ApoC3 antibodies and methods of use thereof
EP3620531A4 (en) 2017-05-02 2021-03-17 National Center of Neurology and Psychiatry METHOD OF PREDICTION AND EVALUATION OF THERAPEUTIC EFFECT IN DISEASES RELATING TO IL-6 AND NEUTROPHILS
BR112019025583A2 (pt) * 2017-06-05 2020-06-16 Janssen Biotech, Inc. Anticorpos multiespecíficos geneticamente modificados e outras proteínas multiméricas com mutações assimétricas na região ch2-ch3
CN116271012A (zh) 2017-07-27 2023-06-23 瑞颂医药公司 高浓度抗c5抗体制剂
AU2018338451A1 (en) * 2017-09-25 2020-04-02 University Of Florida Research Foundation, Incorporated Immunoassays for detection of RAN proteins
US10538583B2 (en) 2017-10-31 2020-01-21 Staten Biotechnology B.V. Anti-APOC3 antibodies and compositions thereof
JP7039694B2 (ja) 2017-10-31 2022-03-22 スターテン・バイオテクノロジー・ベー・フェー 抗apoc3抗体およびその使用方法
SG11202009010RA (en) 2018-03-15 2020-10-29 Chugai Pharmaceutical Co Ltd Anti-dengue virus antibodies having cross-reactivity to zika virus and methods of use
SG10202106830VA (en) 2018-08-10 2021-08-30 Chugai Pharmaceutical Co Ltd Anti-cd137 antigen-binding molecule and utilization thereof
CN109374884B (zh) * 2018-12-24 2021-10-22 四川沃文特生物技术有限公司 一种pct浓度检测试剂盒及其制备方法
EP3943108A4 (en) 2019-03-19 2023-01-04 Chugai Seiyaku Kabushiki Kaisha ANTIGEN-BINDING MOLECULE CONTAINING AN ANTIGEN-BINDING DOMAIN WHOSE ANTIGEN-BINDING ACTIVITY IS ALTERED DEPENDING ON THE MTA, AND BANK FOR OBTAINING SUCH ANTIGEN-BINDING DOMAIN
SG11202110986YA (en) 2019-04-10 2021-11-29 Chugai Pharmaceutical Co Ltd Method for purifying fc region-modified antibody
CN110467672B (zh) * 2019-08-20 2020-05-05 江苏省疾病预防控制中心(江苏省公共卫生研究院) 一种针对sftsv的全人源单克隆中和抗体及其应用
KR20220113791A (ko) 2019-12-18 2022-08-16 에프. 호프만-라 로슈 아게 이중특이적 항-ccl2 항체
KR102645629B1 (ko) 2019-12-27 2024-03-07 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체 및 그의 사용
TW202144395A (zh) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 用於癌症之治療的抗cd137抗原結合分子
US20230251269A1 (en) * 2020-07-15 2023-08-10 The Johns Hopkins University Comprehensive analysis of anti-allergen antibodies using phage display
WO2022044248A1 (ja) 2020-08-28 2022-03-03 中外製薬株式会社 ヘテロ二量体Fcポリペプチド
CA3173944A1 (en) 2021-01-13 2022-07-21 Visterra, Inc. Humanized complement 5a receptor 1 antibodies and methods of use thereof
AR125344A1 (es) 2021-04-15 2023-07-05 Chugai Pharmaceutical Co Ltd Anticuerpo anti-c1s
WO2022235960A1 (en) * 2021-05-06 2022-11-10 Sorrento Therapeutics, Inc. Neutralizing antibodies that bind variant sars-cov-2 spike proteins
CA3221735A1 (en) 2021-06-18 2022-12-22 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
JP7472405B2 (ja) 2021-06-25 2024-04-22 中外製薬株式会社 抗ctla-4抗体
EP4361176A1 (en) 2021-06-25 2024-05-01 Chugai Seiyaku Kabushiki Kaisha Use of anti-ctla-4 antibody
CN113563480B (zh) * 2021-07-12 2023-04-28 成都维瑾柏鳌生物医药科技有限公司 一种cld蛋白突变体及应用
JPWO2023013618A1 (zh) * 2021-08-02 2023-02-09

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100239577A1 (en) * 2007-09-28 2010-09-23 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody having improved kinetics in plasma

Family Cites Families (492)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961501U (zh) 1972-09-06 1974-05-30
JPS525973Y2 (zh) 1973-09-06 1977-02-08
FR2416931A1 (fr) 1978-02-10 1979-09-07 Lambiotte Usines Procede non polluant de carbonisation du bois
US4769320A (en) * 1982-07-27 1988-09-06 New England Medical Center Hospitals, Inc. Immunoassay means and methods useful in human native prothrombin and human abnormal prothorombin determinations
US4738927A (en) 1982-03-31 1988-04-19 Ajinomoto Co. Inc. Gene coded for interleukin-2 polypeptide, recombinant DNA carrying the said gene, a living cell line possessing the recombinant DNA, and method for producing interleukin-2 using the said cell
ES521371A0 (es) 1982-04-12 1984-05-16 Hybritech Inc Un procedimiento para la purificacion de un anticuerpo.
US4689299A (en) 1982-09-30 1987-08-25 University Of Rochester Human monoclonal antibodies against bacterial toxins
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
JPS6088703U (ja) 1983-11-24 1985-06-18 リョービ株式会社 自動鉋盤における切削屑排出装置
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
JPH06104071B2 (ja) * 1986-08-24 1994-12-21 財団法人化学及血清療法研究所 第▲ix▼因子コンホメ−シヨン特異性モノクロ−ナル抗体
US4801687A (en) 1986-10-27 1989-01-31 Bioprobe International, Inc. Monoclonal antibody purification process using protein A
US4851341A (en) 1986-12-19 1989-07-25 Immunex Corporation Immunoaffinity purification system
JPH01144991A (ja) 1987-12-02 1989-06-07 Kagaku Oyobi Ketsusei Riyouhou Kenkyusho 血液凝固第8因子の精製方法
US5670373A (en) 1988-01-22 1997-09-23 Kishimoto; Tadamitsu Antibody to human interleukin-6 receptor
US5322678A (en) 1988-02-17 1994-06-21 Neorx Corporation Alteration of pharmacokinetics of proteins by charge modification
US5126250A (en) 1988-09-28 1992-06-30 Eli Lilly And Company Method for the reduction of heterogeneity of monoclonal antibodies
CA1332367C (en) 1988-09-28 1994-10-11 Richard Mark Bartholomew Method for the reduction of heterogeneity of monoclonal antibodies
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5202253A (en) * 1988-12-30 1993-04-13 Oklahoma Medical Research Foundation Monoclonal antibody specific for protein C and antibody purification method
CA2006684C (en) 1988-12-30 1996-12-17 Charles T. Esmon Monoclonal antibody against protein c
JPH0636741B2 (ja) * 1989-11-08 1994-05-18 帝人株式会社 ヒト・プロテインcの分離方法
EP0515571B1 (en) 1990-02-16 1998-12-02 Boston Biomedical Research Institute Hybrid reagents capable of selectively releasing molecules into cells
US5130129A (en) 1990-03-06 1992-07-14 The Regents Of The University Of California Method for enhancing antibody transport through capillary barriers
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
ES2139598T3 (es) 1990-07-10 2000-02-16 Medical Res Council Procedimientos para la produccion de miembros de parejas de union especifica.
DK0546073T3 (da) 1990-08-29 1998-02-02 Genpharm Int Frembringelse og anvendelse af transgene, ikke-humane dyr, der er i stand til at danne heterologe antistoffer
GB9022547D0 (en) 1990-10-17 1990-11-28 Wellcome Found Purified immunoglobulin
US5795965A (en) 1991-04-25 1998-08-18 Chugai Seiyaku Kabushiki Kaisha Reshaped human to human interleukin-6 receptor
US5468634A (en) 1991-06-24 1995-11-21 The University Of North Carolina At Chapel Hill Axl oncogene
AU665025B2 (en) 1991-09-23 1995-12-14 Cambridge Antibody Technology Limited Production of chimeric antibodies - a combinatorial approach
ES2227512T3 (es) 1991-12-02 2005-04-01 Medical Research Council Produccion de anticuerpos contra auto-antigenos a partir de repertorios de segmentos de anticuerpos fijados en un fago.
EP0746609A4 (en) 1991-12-17 1997-12-17 Genpharm Int NON-HUMAN TRANSGENIC ANIMALS CAPABLE OF PRODUCING HETEROLOGOUS ANTIBODIES
GB9203459D0 (en) 1992-02-19 1992-04-08 Scotgen Ltd Antibodies with germ-line variable regions
CA2131151A1 (en) 1992-03-24 1994-09-30 Kevin S. Johnson Methods for producing members of specific binding pairs
CA2118508A1 (en) 1992-04-24 1993-11-11 Elizabeth S. Ward Recombinant production of immunoglobulin-like domains in prokaryotic cells
AU675661B2 (en) 1992-07-24 1997-02-13 Abgenix, Inc. Generation of xenogeneic antibodies
BR9204244A (pt) 1992-10-26 1994-05-03 Cofap Ferro fundido cinzento
US5648267A (en) 1992-11-13 1997-07-15 Idec Pharmaceuticals Corporation Impaired dominant selectable marker sequence and intronic insertion strategies for enhancement of expression of gene product and expression vector systems comprising same
AU689090B2 (en) 1992-12-01 1998-03-26 Protein Design Labs, Inc. Humanized antibodies reactive with L-selectin
US7393682B1 (en) 1993-03-19 2008-07-01 The Johns Hopkins University School Of Medicine Polynucleotides encoding promyostatin polypeptides
CA2157577C (en) 1993-03-19 2009-11-17 Se-Jin Lee Growth differentiation factor-8
EP0754225A4 (en) 1993-04-26 2001-01-31 Genpharm Int HETEROLOGIC ANTIBODY-PRODUCING TRANSGENIC NON-HUMAN ANIMALS
WO1994029471A1 (en) 1993-06-10 1994-12-22 Genetic Therapy, Inc. Adenoviral vectors for treatment of hemophilia
GB9313509D0 (en) 1993-06-30 1993-08-11 Medical Res Council Chemisynthetic libraries
FR2707189B1 (fr) 1993-07-09 1995-10-13 Gradient Ass Procédé de traitement de résidus de combustion et installation de mise en Óoeuvre dudit procédé.
GB9314271D0 (en) 1993-07-09 1993-08-18 Inst Of Cancer The Research Cell growth factor receptors
IL107742A0 (en) 1993-11-24 1994-02-27 Yeda Res & Dev Chemically-modified binding proteins
EP0731842A1 (en) 1993-12-03 1996-09-18 Medical Research Council Recombinant binding proteins and peptides
US6074642A (en) 1994-05-02 2000-06-13 Alexion Pharmaceuticals, Inc. Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis
US5945311A (en) 1994-06-03 1999-08-31 GSF--Forschungszentrumfur Umweltund Gesundheit Method for producing heterologous bi-specific antibodies
DE4419399C1 (de) 1994-06-03 1995-03-09 Gsf Forschungszentrum Umwelt Verfahren zur Herstellung von heterologen bispezifischen Antikörpern
US8017121B2 (en) 1994-06-30 2011-09-13 Chugai Seiyaku Kabushika Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
DE69519929T2 (de) 1994-07-11 2001-05-23 Univ Texas Verfahren und zusammensetzungen für die spezifische koagulation von tumorgefässen
US6048972A (en) 1994-07-13 2000-04-11 Chugai Pharmaceutical Co., Ltd. Recombinant materials for producing humanized anti-IL-8 antibodies
CN1156460A (zh) 1994-07-13 1997-08-06 中外制药株式会社 抗人白细胞介素-8的重构人抗体
TW416960B (en) 1994-07-13 2001-01-01 Chugai Pharmaceutical Co Ltd Reshaped human antibody to human interleukin-8
US5994524A (en) 1994-07-13 1999-11-30 Chugai Seiyaku Kabushiki Kaisha Polynucleotides which encode reshaped IL-8-specific antibodies and methods to produce the same
JP3865418B2 (ja) 1994-07-13 2007-01-10 中外製薬株式会社 ヒトインターロイキン−8に対する再構成ヒト抗体
US6309636B1 (en) 1995-09-14 2001-10-30 Cancer Research Institute Of Contra Costa Recombinant peptides derived from the Mc3 anti-BA46 antibody, methods of use thereof, and methods of humanizing antibody peptides
EP2107070A1 (en) 1994-10-07 2009-10-07 Chugai Seiyaku Kabushiki Kaisha Rheumatoid arthritis remedy containing IL-6 antagonist as active ingredient
CN1306963C (zh) 1994-10-21 2007-03-28 岸本忠三 用于治疗il-6产生所致疾病的药物组合物
DE19500911A1 (de) 1995-01-13 1996-07-18 Basf Ag Substituierte 2-Phenylpyridine
US5876950A (en) 1995-01-26 1999-03-02 Bristol-Myers Squibb Company Monoclonal antibodies specific for different epitopes of human GP39 and methods for their use in diagnosis and therapy
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
EP0822830B1 (en) 1995-04-27 2008-04-02 Amgen Fremont Inc. Human anti-IL-8 antibodies, derived from immunized xenomice
EP0823941A4 (en) 1995-04-28 2001-09-19 Abgenix Inc HUMAN ANTIBODIES DERIVED FROM IMMUNIZED XENO MOUSES
US5830478A (en) 1995-06-07 1998-11-03 Boston Biomedical Research Institute Method for delivering functional domains of diphtheria toxin to a cellular target
ES2233974T3 (es) 1995-09-11 2005-06-16 Kyowa Hakko Kogyo Co., Ltd. Anticuerpo contra la cadena alfa del receptor de la interleucina 5 humana.
US5783186A (en) 1995-12-05 1998-07-21 Amgen Inc. Antibody-induced apoptosis
DE69731289D1 (de) 1996-03-18 2004-11-25 Univ Texas Immunglobulinähnliche domäne mit erhöhten halbwertszeiten
IL127872A0 (en) 1996-07-19 1999-10-28 Amgen Inc Analogs of cationic proteins
US7247302B1 (en) 1996-08-02 2007-07-24 Bristol-Myers Squibb Company Method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis
CA2262405A1 (en) 1996-08-02 1998-02-12 Bristol-Myers Squibb Company A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis
US6025158A (en) 1997-02-21 2000-02-15 Genentech, Inc. Nucleic acids encoding humanized anti-IL-8 monoclonal antibodies
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
CA2284271C (en) 1997-03-21 2012-05-08 Chugai Seiyaku Kabushiki Kaisha A preventive or therapeutic agent for sensitized t cell-mediated diseases comprising il-6 antagonist as an active ingredient
AU7132798A (en) 1997-04-17 1998-11-11 Amgen, Inc. Compositions comprising conjugates of stable, active, human ob protein with antibody fc chain and methods
ES2246069T3 (es) 1997-05-02 2006-02-01 Genentech, Inc. Procedimiento de preparacion de anticuerpos multiespecificos que tienen componentes comunes y multimericos.
CN1068524C (zh) 1997-06-23 2001-07-18 叶庆炜 一种治疗顽症牛皮癣的药物
US5980893A (en) 1997-07-17 1999-11-09 Beth Israel Deaconess Medical Center, Inc. Agonist murine monoclonal antibody as a stimulant for megakaryocytopoiesis
US20020187150A1 (en) 1997-08-15 2002-12-12 Chugai Seiyaku Kabushiki Kaisha Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient
KR20010022846A (ko) 1997-08-15 2001-03-26 나가야마 오사무 항 인터루킨-6 수용체 항체를 유효성분으로서 함유하는 전신성 홍반성 낭창의 예방 및/또는 치료제
BR9812846A (pt) 1997-10-03 2000-08-08 Chugai Pharmaceutical Co Ltd Anticorpo humanizado natural
US6458355B1 (en) 1998-01-22 2002-10-01 Genentech, Inc. Methods of treating inflammatory disease with anti-IL-8 antibody fragment-polymer conjugates
EP1069898B1 (en) 1998-03-17 2004-05-12 MARGOLIN, Solomon B. Topical antiseptic compositions and methods
JP4124573B2 (ja) 1998-03-17 2008-07-23 中外製薬株式会社 Il−6アンタゴニストを有効成分として含有する炎症性腸疾患の予防又は治療剤
ATE375365T1 (de) 1998-04-02 2007-10-15 Genentech Inc Antikörper varianten und fragmente davon
EP2261229A3 (en) 1998-04-20 2011-03-23 GlycArt Biotechnology AG Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
JP2002522063A (ja) 1998-08-17 2002-07-23 アブジェニックス インコーポレイテッド 増加した血清半減期を有する改変された分子の生成
US6475718B2 (en) * 1998-09-08 2002-11-05 Schering Aktiengesellschaft Methods and compositions for modulating the interaction between the APJ receptor and the HIV virus
DE69942671D1 (de) 1998-12-01 2010-09-23 Facet Biotech Corp Humanisierte antikoerper gegen gamma-interferon
JP2002534959A (ja) 1998-12-08 2002-10-22 バイオベーション リミテッド 免疫原性タンパク質の改変方法
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
US6737056B1 (en) * 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
CA2359067C (en) 1999-01-15 2017-03-14 Genentech, Inc. Polypeptide variants with altered effector function
AU2006225302B2 (en) 1999-03-25 2010-08-12 AbbVie Deutschland GmbH & Co. KG Human antibodies that bind human IL-12 and methods for producing
EP2264166B1 (en) 1999-04-09 2016-03-23 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
AU4952400A (en) 1999-06-02 2000-12-28 Chugai Research Institute For Molecular Medicine, Inc. Novel hemopoietin receptor protein nr10
SK782002A3 (en) 1999-07-21 2003-08-05 Lexigen Pharm Corp FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens
US20040058393A1 (en) 2000-04-17 2004-03-25 Naoshi Fukishima Agonist antibodies
WO2001082899A2 (en) 2000-05-03 2001-11-08 Mbt Munich Biotechnology Ag Cationic diagnostic, imaging and therapeutic agents associated with activated vascular sites
ATE494304T1 (de) 2000-06-16 2011-01-15 Human Genome Sciences Inc Immunspezifisch bindende antikörper gegen blys
AU2011244851A1 (en) 2000-07-27 2011-11-24 The John Hopkins University School Of Medicine Promyostatin peptides and methods of using same
DE60140474D1 (de) 2000-09-08 2009-12-24 Univ Zuerich Sammlung von proteinen mit sich wiederholenden sequenzen (repeat proteins), die repetitive sequenzmodule enthalten
DK2314686T4 (da) 2000-10-06 2023-08-21 Kyowa Kirin Co Ltd Celler, der danner antistofsammensætninger
WO2002030985A2 (en) 2000-10-10 2002-04-18 Tanox, Inc. Inhibition of complement c5 activation for the treatment and prevention of delayed xenograft or acute vascular rejection
CA2418835A1 (en) 2000-10-16 2002-04-25 Phylos, Inc. Protein scaffolds for antibody mimics and other binding proteins
WO2002034292A1 (fr) 2000-10-25 2002-05-02 Chugai Seiyaku Kabushiki Kaisha Agents preventifs ou therapeutiques contre le psoriasis renfermant l'antagoniste de l'il-6 comme substance active
JP4889187B2 (ja) 2000-10-27 2012-03-07 中外製薬株式会社 Il−6アンタゴニストを有効成分として含有する血中mmp−3濃度低下剤
US7083784B2 (en) 2000-12-12 2006-08-01 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
US7754208B2 (en) 2001-01-17 2010-07-13 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
AU2002307037B2 (en) 2001-04-02 2008-08-07 Biogen Idec Inc. Recombinant antibodies coexpressed with GnTIII
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
PL367324A1 (en) 2001-04-13 2005-02-21 Biogen, Inc. Antibodies to vla-1
US7667004B2 (en) 2001-04-17 2010-02-23 Abmaxis, Inc. Humanized antibodies against vascular endothelial growth factor
US20030157561A1 (en) 2001-11-19 2003-08-21 Kolkman Joost A. Combinatorial libraries of monomer domains
CN1314803C (zh) 2001-06-22 2007-05-09 中外制药株式会社 含有抗磷脂酰肌醇蛋白聚糖3抗体的细胞生长抑制剂
AU2002319402B2 (en) 2001-06-28 2008-09-11 Domantis Limited Dual-specific ligand and its use
US20040161741A1 (en) 2001-06-30 2004-08-19 Elazar Rabani Novel compositions and processes for analyte detection, quantification and amplification
US7432356B2 (en) 2001-08-17 2008-10-07 Genentech, Inc. Complement pathway inhibitors binding to C5 and C5a without preventing formation of C5b
US7320789B2 (en) 2001-09-26 2008-01-22 Wyeth Antibody inhibitors of GDF-8 and uses thereof
WO2003029462A1 (en) 2001-09-27 2003-04-10 Pieris Proteolab Ag Muteins of human neutrophil gelatinase-associated lipocalin and related proteins
US20030190705A1 (en) 2001-10-29 2003-10-09 Sunol Molecular Corporation Method of humanizing immune system molecules
DK1562968T3 (da) 2001-11-14 2013-10-28 Janssen Biotech Inc Anti-il-6-antistoffer, sammensætninger, fremgangsmåder og anvendelser
CA2467633C (en) 2001-12-03 2012-03-27 Abgenix, Inc. Antibody categorization based on binding characteristics
EP1464702A4 (en) 2001-12-28 2005-09-21 Chugai Pharmaceutical Co Ltd METHOD FOR PROTEIN STABILIZATION
EP1576112B1 (en) 2002-01-18 2012-02-29 ZymoGenetics, Inc. Cytokine receptor zcytor17 multimers
US7064186B2 (en) 2002-01-18 2006-06-20 Zymogenetics, Inc. Cytokine zcytor17 ligand
AR038568A1 (es) 2002-02-20 2005-01-19 Hoffmann La Roche Anticuerpos anti-a beta y su uso
US20040002587A1 (en) 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US8093357B2 (en) 2002-03-01 2012-01-10 Xencor, Inc. Optimized Fc variants and methods for their generation
WO2003074679A2 (en) 2002-03-01 2003-09-12 Xencor Antibody optimization
WO2005056606A2 (en) 2003-12-03 2005-06-23 Xencor, Inc Optimized antibodies that target the epidermal growth factor receptor
EP1510943A4 (en) 2002-05-31 2007-05-09 Celestar Lexico Sciences Inc INTERACTION PREDICTION DEVICE
WO2003102580A1 (en) 2002-05-31 2003-12-11 Biacore Ab Method of coupling binding agents to a substrate surface
AU2003242024A1 (en) 2002-06-05 2003-12-22 Chugai Seiyaku Kabushiki Kaisha Method of constructing antibody
EP1512015B1 (en) 2002-06-12 2009-03-25 Genencor International, Inc. Methods for improving a binding characteristic of a molecule
AU2003256266A1 (en) 2002-06-12 2003-12-31 Genencor International, Inc. Methods and compositions for milieu-dependent binding of a targeted agent to a target
ITMI20021527A1 (it) 2002-07-11 2004-01-12 Consiglio Nazionale Ricerche Anticorpi anti componente c5 del complemento e loro uso
EP1382969A1 (en) 2002-07-17 2004-01-21 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Diagnosis and prevention of cancer cell invasion
US20050260213A1 (en) 2004-04-16 2005-11-24 Scott Koenig Fcgamma-RIIB-specific antibodies and methods of use thereof
WO2004022595A1 (ja) 2002-09-04 2004-03-18 Chugai Seiyaku Kabushiki Kaisha MRL/lprマウスを用いた抗体の作製
EP2192129A1 (en) 2002-09-16 2010-06-02 Johns Hopkins University Metalloprotease activation of myostatin, and methods of modulating myostatin activity
DK2345671T3 (en) 2002-09-27 2016-02-15 Xencor Inc Optimized Fc variants and methods for their formation
EP1562972B1 (en) 2002-10-15 2010-09-08 Facet Biotech Corporation ALTERATION OF FcRn BINDING AFFINITIES OR SERUM HALF-LIVES OF ANTIBODIES BY MUTAGENESIS
US7361740B2 (en) * 2002-10-15 2008-04-22 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
US7261893B2 (en) 2002-10-22 2007-08-28 Wyeth Neutralizing antibodies against GDF-8 and uses therefor
JP4739763B2 (ja) 2002-12-16 2011-08-03 ゲンマブ エー/エス インターロイキン8(il−8)に対するヒトモノクローナル抗体
AU2003290330A1 (en) 2002-12-27 2004-07-22 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
US7960512B2 (en) 2003-01-09 2011-06-14 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
AU2004204494B2 (en) 2003-01-09 2011-09-29 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
AU2004215653B2 (en) 2003-02-28 2011-03-17 Lonza Biologics Plc. Antibody purification by protein A and ion exchange chromatography
ES2395126T3 (es) 2003-02-28 2013-02-08 Agenus Inc. Uso de lectinas para promover la oligomerización de glicoproteínas y de moléculas antigénicas
US20040223970A1 (en) 2003-02-28 2004-11-11 Daniel Afar Antibodies against SLC15A2 and uses thereof
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
EP1605974B1 (en) 2003-03-04 2014-11-12 Alexion Pharmaceuticals, Inc. Method of treating autoimmune disease by inducing antigen presentation by tolerance inducing antigen presenting cells
EA009124B1 (ru) 2003-03-24 2007-10-26 Займоджинетикс, Инк. Антитела против il-20 и связывающие партнеры, а также способы их применения при воспалении
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
RU2337107C2 (ru) 2003-05-02 2008-10-27 Ксенкор, Инк. ОПТИМИЗИРОВАННЫЕ Fc-ВАРИАНТЫ, ИМЕЮЩИЕ ИЗМЕНЕННОЕ СВЯЗЫВАНИЕ С FcγR, И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
WO2004108157A2 (en) 2003-06-02 2004-12-16 Wyeth Use of myostatin (gdf8) inhibitors in conjunction with corticosteroids for treating neuromuscular disorders
WO2004113387A2 (en) 2003-06-24 2004-12-29 Merck Patent Gmbh Tumour necrosis factor receptor molecules with reduced immunogenicity
WO2005023193A2 (en) 2003-09-04 2005-03-17 Interleukin Genetics, Inc. Methods of treating endometriosis
EP1663306A2 (en) 2003-09-05 2006-06-07 Genentech, Inc. Antibodies with altered effector functions
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
AU2003271174A1 (en) 2003-10-10 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
AU2003271186A1 (en) 2003-10-14 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
WO2005037867A1 (en) 2003-10-15 2005-04-28 Pdl Biopharma, Inc. ALTERATION OF Fc-FUSION PROTEIN SERUM HALF-LIVES BY MUTAGENESIS OF POSITIONS 250, 314 AND/OR 428 OF THE HEAVY CHAIN CONSTANT REGION OF IG
EP1690550B1 (en) 2003-10-17 2012-08-08 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent for mesothelioma
EP1675878A2 (en) 2003-10-24 2006-07-05 Avidia, Inc. Ldl receptor class a and egf domain monomers and multimers
US7820800B2 (en) 2003-11-05 2010-10-26 Ares Trading S.A. Process for the purification of IL-18 binding protein
EP2385069A3 (en) 2003-11-12 2012-05-30 Biogen Idec MA Inc. Neonatal Fc rReceptor (FcRn)- binding polypeptide variants, dimeric Fc binding proteins and methods related thereto
US20050100965A1 (en) 2003-11-12 2005-05-12 Tariq Ghayur IL-18 binding proteins
CA2548817A1 (en) 2003-12-04 2005-06-23 Xencor, Inc. Methods of generating variant proteins with increased host string content and compositions thereof
HUE025328T2 (en) 2003-12-10 2016-03-29 Squibb & Sons Llc IP-10 antibodies and their use
AR048210A1 (es) 2003-12-19 2006-04-12 Chugai Pharmaceutical Co Ltd Un agente preventivo para la vasculitis.
WO2005077981A2 (en) 2003-12-22 2005-08-25 Xencor, Inc. Fc POLYPEPTIDES WITH NOVEL Fc LIGAND BINDING SITES
AU2004312411B8 (en) 2003-12-31 2011-11-24 Schering-Plough Pty. Limited Neutralizing epitope-based growth enhancing vaccine
JP4762156B2 (ja) 2004-01-12 2011-08-31 アプライド モレキュラー エボリューション,インコーポレイテッド Fc領域変異体
US20070116710A1 (en) 2004-02-03 2007-05-24 Leonard Bell Methods of treating hemolytic anemia
US20050169921A1 (en) 2004-02-03 2005-08-04 Leonard Bell Method of treating hemolytic disease
ATE464908T1 (de) 2004-02-11 2010-05-15 Warner Lambert Co Verfahren zur behandlung von osteoarthritis mit anti-il-6 antikörpern
US20070178095A1 (en) 2004-03-23 2007-08-02 Eli Lilly And Company Anti-myostatin antibodies
EP3736295A1 (en) 2004-03-24 2020-11-11 Chugai Seiyaku Kabushiki Kaisha Subtypes of humanized antibody against interleukin-6 receptor
KR20070035482A (ko) 2004-03-24 2007-03-30 추가이 세이야쿠 가부시키가이샤 인터로킨-6 안타고니스트를 활성성분으로 함유하는내이장해 치료제
EP2053062A1 (en) 2004-03-24 2009-04-29 Xencor, Inc. Immunoglobin variants outside the Fc region
AR048335A1 (es) 2004-03-24 2006-04-19 Chugai Pharmaceutical Co Ltd Agentes terapeuticos para trastornos del oido interno que contienen un antagonista de il- 6 como un ingrediente activo
US20050260711A1 (en) 2004-03-30 2005-11-24 Deepshikha Datta Modulating pH-sensitive binding using non-natural amino acids
WO2005123780A2 (en) 2004-04-09 2005-12-29 Protein Design Labs, Inc. Alteration of fcrn binding affinities or serum half-lives of antibodies by mutagenesis
AU2005265163B2 (en) 2004-06-18 2009-10-01 Ambrx, Inc. Novel antigen-binding polypeptides and their uses
US20060019342A1 (en) 2004-06-25 2006-01-26 Medimmune, Inc. Increasing the production of recombinant antibodies in mammalian cells by site-directed mutagenesis
JP4939410B2 (ja) 2004-07-06 2012-05-23 バイオレン,インク. 強化された特性を持つ変性ポリペプチドを発生させるためのルックスルー変異誘発
WO2006085967A2 (en) 2004-07-09 2006-08-17 Xencor, Inc. OPTIMIZED ANTI-CD20 MONOCONAL ANTIBODIES HAVING Fc VARIANTS
CN111925445A (zh) 2004-07-09 2020-11-13 中外制药株式会社 抗-磷脂酰肌醇蛋白聚糖3抗体
KR100863776B1 (ko) 2004-07-15 2008-10-16 젠코어 인코포레이티드 최적화된 Fc 변이체
BR122018016031B8 (pt) 2004-08-04 2021-07-27 Applied Molecular Evolution Inc processo para produzir um anticorpo monoclonal variante com resposta de adcc realçada
US20060040325A1 (en) 2004-08-16 2006-02-23 Medimmune, Inc. Integrin antagonists with enhanced antibody dependent cell-mediated cytoxicity activity
AU2005285347A1 (en) 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
WO2006047350A2 (en) 2004-10-21 2006-05-04 Xencor, Inc. IgG IMMUNOGLOBULIN VARIANTS WITH OPTIMIZED EFFECTOR FUNCTION
AU2005333602B2 (en) 2004-10-22 2012-04-12 Medimmune, Llc High affinity antibodies against HMGB1 and methods of use thereof
KR101370253B1 (ko) 2004-10-22 2014-03-05 암젠 인크 재조합 항체의 재접힘 방법
US20060115485A1 (en) 2004-10-29 2006-06-01 Medimmune, Inc. Methods of preventing and treating RSV infections and related conditions
US7632497B2 (en) 2004-11-10 2009-12-15 Macrogenics, Inc. Engineering Fc Antibody regions to confer effector function
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
EP2325206B1 (en) 2004-11-12 2014-03-19 Xencor, Inc. Fc variants with altered binding to fcrn
US20070135620A1 (en) 2004-11-12 2007-06-14 Xencor, Inc. Fc variants with altered binding to FcRn
CN101098890B (zh) 2004-11-12 2012-07-18 赞科股份有限公司 对FcRn的结合被改变的Fc变体
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
US8329186B2 (en) 2004-12-20 2012-12-11 Isu Abxis Co., Ltd Treatment of inflammation using BST2 inhibitor
JPWO2006067847A1 (ja) 2004-12-22 2008-06-12 中外製薬株式会社 フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法
RU2440582C2 (ru) 2004-12-23 2012-01-20 Ново Нордиск А/С Аффинные лиганды, связывающие антитела
CA2592015A1 (en) 2004-12-27 2006-07-06 Progenics Pharmaceuticals (Nevada), Inc. Orally deliverable and anti-toxin antibodies and methods for making and using them
NO346624B1 (no) 2004-12-28 2022-11-07 Univ Di Genova Monoklonale antistoff mot NKG2A
US20060275282A1 (en) 2005-01-12 2006-12-07 Xencor, Inc. Antibodies and Fc fusion proteins with altered immunogenicity
GB0502358D0 (en) 2005-02-04 2005-03-16 Novartis Ag Organic compounds
NZ538097A (en) 2005-02-07 2006-07-28 Ovita Ltd Method and compositions for improving wound healing
WO2006088855A1 (en) 2005-02-14 2006-08-24 Zymogenetics, Inc. Methods of treating skin disorders using an il-31ra antagonist
EP1869192B1 (en) 2005-03-18 2016-01-20 MedImmune, LLC Framework-shuffling of antibodies
JP5620626B2 (ja) 2005-03-31 2014-11-05 中外製薬株式会社 会合制御によるポリペプチド製造方法
CA2602663A1 (en) 2005-03-31 2006-10-05 Xencor, Inc. Fc variants with optimized properties
TW200722518A (en) 2005-03-31 2007-06-16 Chugai Pharmaceutical Co Ltd Sc(fv)2 structural isomers
CA2957144C (en) 2005-04-08 2020-06-02 Chugai Seiyaku Kabushiki Kaisha Antibody substituting for function of blood coagulation factor viii
WO2006113643A2 (en) 2005-04-20 2006-10-26 Amgen Fremont Inc. High affinity fully human monoclonal antibodies to interleukin-8 and epitopes for such antibodies
DOP2006000093A (es) 2005-04-25 2007-01-31 Pfizer Anticuerpos contra miostatina
EP1874816A4 (en) 2005-04-26 2010-08-25 Medimmune Inc MODULATION OF THE ANTIBODY EFFECTOR FUNCTION BY "HINGE" DOMENGINE ENGINEERING
PE20061323A1 (es) 2005-04-29 2007-02-09 Rinat Neuroscience Corp Anticuerpos dirigidos contra el peptido amiloide beta y metodos que utilizan los mismos
PA8672101A1 (es) 2005-04-29 2006-12-07 Centocor Inc Anticuerpos anti-il-6, composiciones, métodos y usos
US7592429B2 (en) 2005-05-03 2009-09-22 Ucb Sa Sclerostin-binding antibody
US8003108B2 (en) 2005-05-03 2011-08-23 Amgen Inc. Sclerostin epitopes
ES2523666T3 (es) 2005-05-31 2014-11-28 Board Of Regents, The University Of Texas System Anticuerpos IgG1 con la parte Fc mutada para el aumento de unión al receptor FcRn y usos de los mismos
AU2006256041B2 (en) 2005-06-10 2012-03-29 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
WO2007008943A2 (en) 2005-07-08 2007-01-18 Xencor, Inc. Optimized anti-ep-cam antibodies
FR2888850B1 (fr) 2005-07-22 2013-01-11 Pf Medicament Nouveaux anticorps anti-igf-ir et leurs applications
PT1919503E (pt) 2005-08-10 2015-01-05 Macrogenics Inc Identificação e manipulação de anticorpos com a regiões de fc variantes e métodos de utilização dos mesmos
JP5415071B2 (ja) 2005-08-19 2014-02-12 ワイス・エルエルシー Gdf−8に対するアンタゴニスト抗体ならびにalsおよびその他のgdf−8関連障害の処置における使用
AU2006299429B2 (en) 2005-10-03 2012-02-23 Xencor, Inc. Fc variants with optimized Fc receptor binding properties
AU2006302254B2 (en) 2005-10-06 2011-05-26 Xencor, Inc. Optimized anti-CD30 antibodies
KR101135220B1 (ko) 2005-10-06 2012-04-24 일라이 릴리 앤드 캄파니 항-마이오스타틴 항체
UA92504C2 (en) 2005-10-12 2010-11-10 Эли Лилли Энд Компани Anti-myostatin monoclonal antibody
WO2007043641A1 (ja) 2005-10-14 2007-04-19 Fukuoka University 膵島移植における移植膵島障害抑制剤
US8945558B2 (en) 2005-10-21 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Methods for treating myocardial infarction comprising administering an IL-6 inhibitor
EP2465870A1 (en) 2005-11-07 2012-06-20 Genentech, Inc. Binding polypeptides with diversified and consensus VH/VL hypervariable sequences
AR057582A1 (es) 2005-11-15 2007-12-05 Nat Hospital Organization Agentes para suprimir la induccion de linfocitos t citotoxicos
WO2007060411A1 (en) 2005-11-24 2007-05-31 Ucb Pharma S.A. Anti-tnf alpha antibodies which selectively inhibit tnf alpha signalling through the p55r
US20090269335A1 (en) 2005-11-25 2009-10-29 Keio University Therapeutic agent for prostate cancer
CA2631212A1 (en) 2005-11-28 2007-07-05 Medimmune, Llc Antagonists of hmgb1 and/or rage and methods of use thereof
NZ568384A (en) 2005-12-12 2011-09-30 Ac Immune Sa Therapeutic vaccine comprising Abeta peptide
WO2007074880A1 (ja) 2005-12-28 2007-07-05 Chugai Seiyaku Kabushiki Kaisha 抗体含有安定化製剤
KR101210395B1 (ko) 2005-12-29 2012-12-11 얀센 바이오테크 인코포레이티드 인간 항-il-23 항체, 조성물, 방법 및 용도
JP2009526756A (ja) 2006-01-10 2009-07-23 ザイモジェネティクス, インコーポレイテッド Il−31raアンタゴニストおよびosmrbアンタゴニストを用いて神経組織における疼痛および炎症を治療する方法
ES2685915T3 (es) 2006-01-27 2018-10-15 Keio University Agentes terapéuticos para enfermedades que implican neovascularización coroidea
CA2638811A1 (en) 2006-02-03 2007-08-16 Medimmune, Llc Protein formulations
US20070190056A1 (en) 2006-02-07 2007-08-16 Ravi Kambadur Muscle regeneration compositions and uses therefor
JP4179517B2 (ja) 2006-02-21 2008-11-12 プロテノバ株式会社 イムノグロブリン親和性リガンド
WO2007097361A1 (ja) 2006-02-21 2007-08-30 Protenova Co., Ltd. イムノグロブリン親和性リガンド
BRPI0708424A2 (pt) 2006-03-02 2011-05-31 Alexion Pharma Inc prolongamento da sobreviência de uma aloenxerto por inibição da atividade do complemento
DK1991275T3 (en) 2006-03-08 2014-12-08 Archemix Llc Complement aptamers AND ANTI-C5 AGENTS FOR USE IN THE TREATMENT OF EYE DISEASES
SI2359834T1 (sl) 2006-03-15 2017-02-28 Alexion Pharmaceuticals, Inc. Zdravljenje pacientov,ki imajo paroksizmalno nočno hemoglobinurijo, z zaviralcem komplementa
NZ591252A (en) 2006-03-17 2012-06-29 Biogen Idec Inc Methods of designing antibody or antigen binding fragments thereof with substituted non-covarying amino acids
CA2644663A1 (en) 2006-03-23 2007-09-27 Kirin Pharma Kabushiki Kaisha Agonist antibody to human thrombopoietin receptor
AU2007245164A1 (en) 2006-03-28 2007-11-08 Biogen Idec Ma Inc. Anti-IGF-IR antibodies and uses thereof
EP4342995A3 (en) 2006-03-31 2024-05-15 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
TW201333030A (zh) 2006-04-05 2013-08-16 Abbott Biotech Ltd 抗體之純化
CN101495146B (zh) 2006-04-07 2012-10-17 国立大学法人大阪大学 肌肉再生促进剂
TWI395754B (zh) 2006-04-24 2013-05-11 Amgen Inc 人類化之c-kit抗體
ES2514495T3 (es) 2006-05-25 2014-10-28 Glaxo Group Limited Anticuerpos humanizados modificados anti-interleucina-18
US7582298B2 (en) 2006-06-02 2009-09-01 Regeneron Pharmaceuticals, Inc. High affinity antibodies to human IL-6 receptor
US8080248B2 (en) 2006-06-02 2011-12-20 Regeneron Pharmaceuticals, Inc. Method of treating rheumatoid arthritis with an IL-6R antibody
UA100116C2 (ru) 2006-06-08 2012-11-26 Чугей Сейяку Кабусики Кайся Профилактика или лечение воспалительного заболевания
EP2032602B1 (en) 2006-06-15 2013-03-27 The Board of Trustees of the University of Arkansas Monoclonal antibodies that selectively recognize methamphetamine and methamphetamine like compounds
AR061571A1 (es) 2006-06-23 2008-09-03 Smithkline Beecham Corp Compuesto sal del acido toluenosulfonico de 4-{[6-cloro-3-({[(2- cloro-3-fluorofenil) amino]carbonil} amino)- 2- hidroxifenil]sulfonil] -1- piperazinacarbxilato de 1.1-dimetiletilo, composicion farmaceutica que lo comprende su uso para la fabricacion de un medicamento combinacion farmaceutica con un
CA2656224C (en) 2006-06-26 2018-01-09 Macrogenics, Inc. Combination of fc.gamma.riib antibodies and cd20-specific antibodies and methods of use thereof
CA2659574C (en) 2006-08-02 2017-04-25 The Uab Research Foundation Methods and compositions related to soluble monoclonal variable lymphocyte receptors of defined antigen specificity
AR062223A1 (es) 2006-08-09 2008-10-22 Glycart Biotechnology Ag Moleculas de adhesion al antigeno que se adhieren a egfr, vectores que los codifican, y sus usos de estas
SI2059536T1 (sl) 2006-08-14 2014-06-30 Xencor, Inc. Optimirana protitelesa, ki ciljajo CD19
RS52787B (en) 2006-09-05 2013-10-31 Eli Lilly And Company MYSTATIN ANTIBODIES
PT2066349E (pt) 2006-09-08 2012-07-02 Medimmune Llc Anticorpos anti-cd19 humanizados e respectiva utilização no tratamento de tumores, transplantação e doenças auto-imunes
JP5562031B2 (ja) 2006-09-18 2014-07-30 ゼンコー・インコーポレイテッド Hm1.24を標的とする最適化抗体
US8236313B2 (en) 2006-10-06 2012-08-07 The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Prevention of tissue ischemia, related methods and compositions
US20100034194A1 (en) 2006-10-11 2010-02-11 Siemens Communications Inc. Eliminating unreachable subscribers in voice-over-ip networks
WO2008121160A2 (en) 2006-11-21 2008-10-09 Xencor, Inc. Optimized antibodies that target cd5
CN100455598C (zh) 2006-11-29 2009-01-28 中国抗体制药有限公司 功能人源化抗人cd20抗体及其应用
EP3239175A1 (en) 2007-01-05 2017-11-01 University of Zurich Method of providing disease-specific binding molecules and targets
WO2008091798A2 (en) 2007-01-22 2008-07-31 Xencor, Inc. Optimized ca9 antibodies and methods of using the same
TWI438208B (zh) 2007-01-23 2014-05-21 Chugai Pharmaceutical Co Ltd 抑制慢性排斥反應之藥劑
AU2008207898B2 (en) 2007-01-23 2012-05-03 Xencor, Inc Optimized CD40 antibodies and methods of using the same
US20110236374A1 (en) 2007-01-24 2011-09-29 Kyowa Hakko Kirin Co., Ltd. Genetically recombinant antibody composition capable of binding specifically to ganglioside gm2
WO2008092117A2 (en) 2007-01-25 2008-07-31 Xencor, Inc. Immunoglobulins with modifications in the fcr binding region
WO2008098115A2 (en) 2007-02-07 2008-08-14 Xencor, Inc. Optimized igf-1r antibodies and methods of using the same
EP2069404B1 (en) 2007-02-14 2011-01-05 Vaccinex, Inc. Humanized anti-cd100 antibodies
TR201821029T4 (tr) 2007-02-23 2019-01-21 Merck Sharp & Dohme Geliştirilmiş antı-IL-23p19 antikorları.
US20100184959A1 (en) 2007-03-19 2010-07-22 Medimmune Limited Polypeptide Variants
MY149129A (en) 2007-03-20 2013-07-15 Lilly Co Eli Anti-sclerostin antibodies
WO2008113834A2 (en) 2007-03-22 2008-09-25 Novartis Ag C5 antigens and uses thereof
CL2008001071A1 (es) 2007-04-17 2009-05-22 Smithkline Beecham Corp Metodo para obtener anticuerpo penta-especifico contra il-8/cxcl8, gro-alfa/cxcl1, gro-beta/cxcl2), gro-gama/cxcl3 y ena-78/cxcl5 humanas; anticuerpo penta-especifico; proceso de produccion del mismo; vector, hbridoma o celela que lo comprende; composicion farmceutica; uso para tratar copd, otras enfermedades.
GB0708002D0 (en) 2007-04-25 2007-06-06 Univ Sheffield Antibodies
MX2009012343A (es) 2007-05-14 2010-02-10 Biogen Idec Inc Regiones fc (sc fc) de cadena sencilla, polipeptidos de enlace que comprenden las mismas, y metodos relacionados con ello.
WO2008150494A1 (en) 2007-05-30 2008-12-11 Xencor, Inc. Methods and compositions for inhibiting cd32b expressing cells
WO2008145141A1 (en) 2007-05-31 2008-12-04 Genmab A/S Method for extending the half-life of exogenous or endogenous soluble molecules
KR101530723B1 (ko) 2007-06-25 2015-06-22 에스바테크 - 어 노바티스 컴파니 엘엘씨 단일 쇄 항체의 서열에 기초한 공학처리 및 최적화
JP5611820B2 (ja) 2007-06-25 2014-10-22 エスバテック − ア ノバルティスカンパニー エルエルシー 抗体の修飾方法並びに改善された機能特性を有する修飾された抗体
EP3543691A1 (en) 2007-06-29 2019-09-25 Quest Diagnostics Investments Incorporated Analysis of amino acids in body fluid by liquid chromatography-mass spectrometry
EP3246045A1 (en) 2007-07-26 2017-11-22 Osaka University Therapeutic agents for ocular inflammatory disease comprising interleukin 6 receptor inhibitor as active ingredient
WO2009026117A2 (en) 2007-08-16 2009-02-26 Glaxo Group Limited Novel compounds
US20090130105A1 (en) 2007-08-28 2009-05-21 Biogen Idec Ma Inc. Compositions that bind multiple epitopes of igf-1r
JP2010537985A (ja) 2007-08-28 2010-12-09 バイオジェン アイデック マサチューセッツ インコーポレイテッド 抗igf−1r抗体およびその使用
EP2031064A1 (de) 2007-08-29 2009-03-04 Boehringer Ingelheim Pharma GmbH & Co. KG Verfahren zur Steigerung von Proteintitern
CL2008002775A1 (es) 2007-09-17 2008-11-07 Amgen Inc Uso de un agente de unión a esclerostina para inhibir la resorción ósea.
WO2009041734A1 (ja) 2007-09-26 2009-04-02 Kyowa Hakko Kirin Co., Ltd. ヒトトロンボポエチン受容体に対するアゴニスト抗体
WO2009041621A1 (ja) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗il-6レセプター抗体
WO2009041613A1 (ja) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗体定常領域改変体
DK2202245T3 (en) 2007-09-26 2016-11-21 Chugai Pharmaceutical Co Ltd A method of modifying an antibody isoelectric point VIA amino acid substitution in CDR
CA2701155C (en) 2007-10-02 2016-11-22 Chugai Seiyaku Kabushiki Kaisha Therapeutic agents for graft-versus-host disease comprising interleukin 6 receptor inhibitor as active ingredient
KR100888133B1 (ko) 2007-10-02 2009-03-13 에스케이에너지 주식회사 4종의 금속성분으로 구성된 다성분계 비스무스몰리브데이트 촉매 제조방법 및 상기촉매를 이용하여1,3-부타디엔을 제조하는 방법
AR068767A1 (es) 2007-10-12 2009-12-02 Novartis Ag Anticuerpos contra esclerostina, composiciones y metodos de uso de estos anticuerpos para tratar un trastorno patologico mediado por esclerostina
US20100249381A1 (en) 2007-10-22 2010-09-30 David Delvaille Method for Purifying FC-Fusion Proteins
PE20091163A1 (es) 2007-11-01 2009-08-09 Wyeth Corp Anticuerpos para gdf8
EP2853544A1 (en) 2007-11-15 2015-04-01 Chugai Seiyaku Kabushiki Kaisha Monoclonal antibody capable of binding to anexelekto, and use thereof
KR101840994B1 (ko) 2007-12-05 2018-03-21 추가이 세이야쿠 가부시키가이샤 항nr10 항체 및 그의 이용
EP2241332A4 (en) 2007-12-05 2011-01-26 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT AGAINST PRITURE
EP2235058A2 (en) 2007-12-21 2010-10-06 Amgen, Inc Anti-amyloid antibodies and uses thereof
CA3086659A1 (en) 2007-12-26 2009-07-09 Xencor, Inc. Fc variants with altered binding to fcrn
WO2009089846A1 (en) 2008-01-18 2009-07-23 Stichting Sanquin Bloedvoorziening Methods for increasing the therapeutic efficacy of immunoglobulin g class 3 (igg3) antibodies
WO2009095235A1 (en) 2008-01-29 2009-08-06 Ablynx N.V. Methods to stabilize proteins and polypeptides
AU2015227424A1 (en) 2008-04-11 2015-10-01 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
EP3056513A1 (en) 2008-04-11 2016-08-17 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
JP2011519279A (ja) 2008-05-01 2011-07-07 アムジエン・インコーポレーテツド 抗ヘプシジン抗体及び使用の方法
NZ589308A (en) 2008-05-14 2012-11-30 Agriculture Victoria Serv Pty Use of angiogenin or angiogenin agonists for treating diseases and disorders
ES2675730T3 (es) 2008-06-04 2018-07-12 Macrogenics, Inc. Anticuerpos con unión alterada a FcRn y métodos de uso de los mismos
TW201503898A (zh) 2008-06-05 2015-02-01 Chugai Pharmaceutical Co Ltd 神經浸潤抑制劑
EP2328616B1 (en) 2008-08-05 2015-04-29 Novartis AG Compositions and methods for antibodies against complement protein c5
ES2742419T3 (es) 2008-09-17 2020-02-14 Xencor Inc Nuevas composiciones y métodos para tratar trastornos mediados por IgE
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
JP5028372B2 (ja) 2008-09-26 2012-09-19 京セラドキュメントソリューションズ株式会社 画像処理装置、画像処理方法及び画像処理プログラム
JP5229888B2 (ja) 2008-09-30 2013-07-03 独立行政法人産業技術総合研究所 弱酸性域での易解離性を向上したプロテインa変異型タンパク質及び抗体捕捉剤
RU2536937C2 (ru) 2008-10-14 2014-12-27 Дженентек, Инк. Варианты иммуноглобулина и их применения
RS64039B1 (sr) 2008-11-10 2023-04-28 Alexion Pharma Inc Metode i kompozicije za lečenje poremećaja povezanih sa komplementom
WO2010058860A1 (ja) 2008-11-18 2010-05-27 株式会社シノテスト 試料中のc反応性蛋白質の測定方法及び測定試薬
CN102438653B (zh) 2008-11-25 2019-04-23 奥尔德生物制药公司 预防或治疗恶病质、虚弱、疲劳和/或发烧il-6拮抗剂
AR074777A1 (es) 2008-12-19 2011-02-09 Glaxo Group Ltd Proteinas de union a antigeno
AU2010203353B2 (en) 2009-01-12 2016-06-16 Cytomx Therapeutics, Inc Modified antibody compositions, methods of making and using thereof
CN102369291A (zh) 2009-01-23 2012-03-07 比奥根艾迪克Ma公司 效应子功能降低的稳定Fc多肽及使用方法
US20100292443A1 (en) 2009-02-26 2010-11-18 Sabbadini Roger A Humanized platelet activating factor antibody design using anti-lipid antibody templates
TWI544077B (zh) 2009-03-19 2016-08-01 Chugai Pharmaceutical Co Ltd Antibody constant region change body
KR101468271B1 (ko) 2009-03-19 2014-12-03 추가이 세이야쿠 가부시키가이샤 개량된 항체분자를 함유하는 의약 제제
US9228017B2 (en) 2009-03-19 2016-01-05 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
CA2700030C (en) 2009-04-16 2019-11-05 Accenture Global Services Gmbh Touchpoint customization system
US9340615B2 (en) 2009-05-15 2016-05-17 Chugai Seiyaku Kabushiki Kaisha Anti-AXL antibody
WO2010138610A2 (en) 2009-05-26 2010-12-02 The Johns Hopkins University Novel desmin phosphorylation sites useful in diagnosis and intervention of cardiac disease
US8609097B2 (en) 2009-06-10 2013-12-17 Hoffmann-La Roche Inc. Use of an anti-Tau pS422 antibody for the treatment of brain diseases
BRPI1012759A2 (pt) 2009-06-23 2019-07-02 Alexion Pharma Inc anticorpos biespecíficos que se ligam as proteínas do complemento.
US8945511B2 (en) 2009-06-25 2015-02-03 Paul Weinberger Sensitive methods for detecting the presence of cancer associated with the over-expression of galectin-3 using biomarkers derived from galectin-3
EP2445936A1 (en) 2009-06-26 2012-05-02 Regeneron Pharmaceuticals, Inc. Readily isolated bispecific antibodies with native immunoglobulin format
GB0914691D0 (en) 2009-08-21 2009-09-30 Lonza Biologics Plc Immunoglobulin variants
AU2010289677B2 (en) 2009-09-03 2014-07-31 Merck Sharp & Dohme Llc Anti-GITR antibodies
US10150808B2 (en) 2009-09-24 2018-12-11 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
CN102712692B (zh) 2009-10-06 2014-12-31 医学免疫有限公司 Rsv-特异性结合分子
RU2583298C2 (ru) 2009-10-07 2016-05-10 Макродженикс, Инк. ПОЛИПЕПТИДЫ, СОДЕРЖАЩИЕ Fc-УЧАСТОК, КОТОРЫЕ ДЕМОНСТРИРУЮТ ПОВЫШЕННУЮ ЭФФЕКТОРНУЮ ФУНКЦИЮ БЛАГОДАРЯ ИЗМЕНЕНИЯМ СТЕПЕНИ ФУКОЗИЛИРОВАНИЯ, И СПОСОБЫ ИХ ПРИМЕНЕНИЯ
WO2011051350A1 (en) 2009-10-27 2011-05-05 Ucb Pharma S.A. Function modifying nav 1.7 antibodies
CN101875696B (zh) 2009-11-11 2012-02-08 中国人民解放军军事医学科学院生物工程研究所 一种抗体及其制备方法与应用
EP2327725A1 (en) 2009-11-26 2011-06-01 InflaRx GmbH Anti-C5a binding moieties with high blocking activity
KR101856792B1 (ko) 2009-12-25 2018-05-11 추가이 세이야쿠 가부시키가이샤 폴리펩티드 다량체를 정제하기 위한 폴리펩티드의 개변방법
JP6101489B2 (ja) 2010-01-28 2017-03-22 アブ バイオサイエンシズ インコーポレイテッド 親和性が低下した抗体およびそれを作製する方法
US20120315267A1 (en) 2010-02-09 2012-12-13 Glaxosmithkline Llc Novel uses
DK3053932T3 (da) 2010-02-19 2020-10-19 Xencor Inc Hidtil ukendte ctla4-ig-immunoadhesiner
CN102985106A (zh) 2010-03-01 2013-03-20 阿雷克森制药公司 用于治疗德戈斯病的方法和组合物
WO2011108714A1 (ja) 2010-03-04 2011-09-09 中外製薬株式会社 抗体定常領域改変体
TW201206466A (en) 2010-03-11 2012-02-16 Rinat Neuroscience Corp Antibodies with pH dependent antigen binding
JP2011184418A (ja) 2010-03-11 2011-09-22 Tokyo Institute Of Technology 親和性可変抗体
BR112012022917A2 (pt) 2010-03-11 2017-01-10 Pfizer anticorpos com ligação a antígeno dependente de ph
TWI667346B (zh) 2010-03-30 2019-08-01 中外製藥股份有限公司 促進抗原消失之具有經修飾的FcRn親和力之抗體
KR20130098161A (ko) 2010-04-30 2013-09-04 알렉시온 파마슈티칼스, 인코포레이티드 인간에서 감소된 면역원성을 갖는 항체
JO3340B1 (ar) 2010-05-26 2019-03-13 Regeneron Pharma مضادات حيوية لـعامل تمايز النمو 8 البشري
WO2011149046A1 (ja) 2010-05-28 2011-12-01 独立行政法人国立がん研究センター 膵癌治療剤
AR081556A1 (es) 2010-06-03 2012-10-03 Glaxo Group Ltd Proteinas de union al antigeno humanizadas
CN103052649B (zh) 2010-07-29 2015-12-16 Xencor公司 具有修改的等电点的抗体
EA201390242A1 (ru) 2010-08-16 2013-07-30 Амген Инк. Антитела, связывающие миостатин, композиции и способы
WO2012033953A1 (en) 2010-09-08 2012-03-15 Halozyme, Inc. Methods for assessing and identifying or evolving conditionally active therapeutic proteins
EP2640745B1 (en) 2010-09-10 2018-11-07 MedImmune Limited Bivalent and bispecific anti-il6/anti-il23 antibodies
KR20210021109A (ko) 2010-11-08 2021-02-24 제넨테크, 인크. 피하 투여용 항―il―6 수용체 항체
RU2658504C9 (ru) 2010-11-30 2018-08-21 Чугаи Сейяку Кабусики Кайся Антигенсвязывающая молекула, способная многократно связываться с множеством антигенных молекул
WO2012088247A2 (en) 2010-12-22 2012-06-28 Medimmune, Llc Anti-c5/c5a/c5adesr antibodies and fragments
EP2662385A4 (en) 2011-01-07 2015-11-11 Chugai Pharmaceutical Co Ltd METHOD FOR IMPROVING THE PHYSICAL PROPERTIES OF ANTIBODIES
MX352889B (es) 2011-02-25 2017-12-13 Chugai Pharmaceutical Co Ltd Anticuerpo de fc especifico para fcyriib.
WO2012132067A1 (ja) 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
CN103649118A (zh) 2011-03-01 2014-03-19 安进公司 双特异性结合剂
AU2012233313C1 (en) 2011-03-30 2017-08-03 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
LT3404041T (lt) 2011-04-19 2020-08-25 Amgen Inc. Osteoporozės gydymo būdas
EP3508500A1 (en) 2011-04-29 2019-07-10 Apexigen, Inc. Anti-cd40 antibodies and methods of use
PT2704743T (pt) 2011-05-04 2020-06-17 Omeros Corp Composições para inibir a ativação de complemento dependente de masp-2
SI2714733T1 (sl) 2011-05-21 2019-06-28 Macrogenics, Inc. CD3-vezavne molekule sposobne vezave na humani ali ne-humani CD3
US8961981B2 (en) 2011-06-20 2015-02-24 Saint Louis University Targeting the neuromuscular junction for treatment
UA117901C2 (uk) 2011-07-06 2018-10-25 Ґенмаб Б.В. Спосіб посилення ефекторної функції вихідного поліпептиду, його варіанти та їх застосування
US9738707B2 (en) 2011-07-15 2017-08-22 Biogen Ma Inc. Heterodimeric Fc regions, binding molecules comprising same, and methods relating thereto
MX366269B (es) 2011-09-30 2019-07-04 Chugai Pharmaceutical Co Ltd Biblioteca de moleculas de union dependientes de la concentracion ionica.
US10556949B2 (en) 2011-09-30 2020-02-11 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule inducing immune response to target antigen
JP6322411B2 (ja) 2011-09-30 2018-05-09 中外製薬株式会社 複数の生理活性を有する抗原の消失を促進する抗原結合分子
CA3186128A1 (en) 2011-09-30 2013-04-04 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting elimination of antigens
TW201817744A (zh) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
EP3617313A1 (en) 2011-10-05 2020-03-04 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting clearance from plasma of antigen comprising saccharide chain receptor-binding domain
KR20210074395A (ko) * 2011-11-30 2021-06-21 추가이 세이야쿠 가부시키가이샤 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
EP3738980A1 (en) 2012-02-24 2020-11-18 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting disappearance of antigen via fc gamma riib
EA036225B1 (ru) 2012-03-14 2020-10-15 Ридженерон Фармасьютикалз, Инк. Мультиспецифические антигенсвязывающие молекулы и их применения
WO2013138712A1 (en) 2012-03-16 2013-09-19 Regeneron Pharmaceuticals, Inc. Non-human animals expressing ph-sensitive immunoglobulin sequences
KR102228296B1 (ko) 2012-03-16 2021-03-17 리제너론 파마슈티칼스 인코포레이티드 히스티딘 공학처리된 경쇄 항체 및 그것을 생성하기 위한 유전자 변형된 비-사람 동물
EP2831117B1 (en) 2012-03-29 2017-11-01 NovImmune SA Anti-tlr4 antibodies and uses thereof
TWI619729B (zh) 2012-04-02 2018-04-01 再生元醫藥公司 抗-hla-b*27抗體及其用途
WO2013166099A1 (en) 2012-05-01 2013-11-07 Glaxosmithkline Llc Novel antibodies
US9255154B2 (en) 2012-05-08 2016-02-09 Alderbio Holdings, Llc Anti-PCSK9 antibodies and use thereof
DK2857420T3 (da) 2012-05-30 2020-11-23 Chugai Pharmaceutical Co Ltd Målvævsspecifikt antigenbindende molekyle
WO2013180201A1 (ja) 2012-05-30 2013-12-05 中外製薬株式会社 会合化した抗原を消失させる抗原結合分子
SA113340642B1 (ar) 2012-06-15 2015-09-15 فايزر إنك أجسام مضادة معارضة محسنة ضد gdf-8 واستخداماتها
EP2869845B1 (en) 2012-07-06 2019-08-28 Genmab B.V. Dimeric protein with triple mutations
WO2014028354A1 (en) 2012-08-13 2014-02-20 Regeneron Pharmaceuticals, Inc. Anti-pcsk9 antibodies with ph-dependent binding characteristics
US9133269B2 (en) 2012-08-24 2015-09-15 Anaptysbio, Inc. Humanized antibodies directed against complement protein C5
TW202237660A (zh) 2012-08-24 2022-10-01 日商中外製藥股份有限公司 FcγRIIb特異性Fc區域變異體
TWI595007B (zh) 2012-09-10 2017-08-11 Neotope Biosciences Ltd 抗mcam抗體及相關使用方法
EP2895503B1 (en) 2012-09-13 2019-03-27 Bristol-Myers Squibb Company Fibronectin based scaffold domain proteins that bind to myostatin
TW201418707A (zh) 2012-09-21 2014-05-16 Alexion Pharma Inc 補體組分c5拮抗劑之篩選分析
SG11201503271XA (en) 2012-11-06 2015-05-28 Scholar Rock Inc Compositions and methods for modulating cell signaling
AU2013364133B2 (en) 2012-12-21 2018-10-11 Aveo Pharmaceuticals, Inc. Anti-GDF15 antibodies
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
RU2015130100A (ru) 2013-01-24 2017-03-03 Глаксосмитклайн Интеллекчуал Проперти Дивелопмент Лимитед TNF-альфа антиген-связывающие белки
US10280215B2 (en) 2013-01-31 2019-05-07 Seoul National University R&Db Foundation Anti-C5 antibodies and methods of treating complement-related diseases
US9481725B2 (en) 2013-03-14 2016-11-01 Alderbio Holdings, Llc Antibodies to HGF and compositions containing
CA2906835A1 (en) 2013-03-15 2014-09-18 Amgen Inc. Myostatin antagonism in human subjects
WO2014145806A2 (en) 2013-03-15 2014-09-18 Xencor, Inc. Heterodimeric proteins
US9321686B2 (en) 2013-03-15 2016-04-26 Forta Corporation Reinforcement fiber coating compositions, methods of making and treating, and uses for improved adhesion to asphalt and portland cement concrete
US20160032014A1 (en) 2013-03-15 2016-02-04 Amgen Inc. Human antigen binding proteins that bind to proprotein convertase subtilisin kexin type 9
WO2014145159A2 (en) 2013-03-15 2014-09-18 Permeon Biologics, Inc. Charge-engineered antibodies or compositions of penetration-enhanced targeting proteins and methods of use
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
EP2978451B1 (en) 2013-03-29 2019-11-27 Alexion Pharmaceuticals, Inc. Compositions and methods for increasing the serum half-life of a therapeutic agent targeting complement c5
WO2014163101A1 (ja) 2013-04-02 2014-10-09 中外製薬株式会社 Fc領域改変体
LT2981822T (lt) 2013-05-06 2020-12-28 Scholar Rock, Inc. Kompozicijos ir būdai, skirti augimo faktoriaus moduliacijai
KR20160021125A (ko) 2013-05-17 2016-02-24 쌩뜨레 나티오날 데 라 르세르쉬 생띠끄 (씨. 엔. 알. 에스) 항-cxcl1, cxcl7 및 cxcl8 항체 및 이들의 용도
AU2014273817B2 (en) 2013-05-31 2019-03-14 Zymeworks Bc Inc. Heteromultimers with reduced or silenced effector function
US11161906B2 (en) 2013-07-25 2021-11-02 Cytomx Therapeutics, Inc. Multispecific antibodies, multispecific activatable antibodies and methods of using the same
EP3033358A2 (en) 2013-08-14 2016-06-22 Novartis AG Methods of treating sporadic inclusion body myositis
EP3033093A1 (en) 2013-08-16 2016-06-22 Alexion Pharmaceuticals, Inc. Treatment of graft rejection by administering a complement inhibitor to an organ prior to transplant
EP3042912A4 (en) 2013-09-04 2017-05-03 Protenova Co., Ltd. Immunoglobulin-binding domain multimer
EP2853898B1 (en) 2013-09-27 2017-01-04 Medizinische Hochschule Hannover Analysis of myostatin in serum
CA2925677A1 (en) 2013-12-20 2015-06-25 F. Hoffmann-La Roche Ag Bispecific her2 antibodies and methods of use
EP3100056A2 (en) 2014-01-27 2016-12-07 Novartis AG Biomarkers predictive of muscle atrophy, method and use
CA2939626C (en) 2014-02-20 2023-01-17 Allergan, Inc. Complement component c5 antibodies
NZ631007A (en) 2014-03-07 2015-10-30 Alexion Pharma Inc Anti-c5 antibodies having improved pharmacokinetics
TW201622746A (zh) 2014-04-24 2016-07-01 諾華公司 改善或加速髖部骨折術後身體復原之方法
JP7037885B2 (ja) 2014-06-30 2022-03-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング pH依存性抗原結合を示す抗TNFa抗体
EP3215175A4 (en) 2014-11-06 2018-06-27 Scholar Rock, Inc. Anti-pro/latent-myostatin antibodies and uses thereof
WO2016073879A2 (en) 2014-11-06 2016-05-12 Scholar Rock, Inc. Transforming growth factor-related antibodies and uses thereof
KR20170094292A (ko) 2014-12-08 2017-08-17 노파르티스 아게 근육감소증의 치료를 위한 미오스타틴 또는 액티빈 길항제
KR20180054923A (ko) 2014-12-19 2018-05-24 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체, 변이체 Fc 영역을 함유하는 폴리펩타이드, 및 사용 방법
TW201809008A (zh) 2014-12-19 2018-03-16 日商中外製藥股份有限公司 抗c5抗體及使用方法
CN107428823B (zh) 2015-01-22 2021-10-26 中外制药株式会社 两种以上抗-c5抗体的组合与使用方法
EP3816179A3 (en) 2015-02-05 2021-08-04 Chugai Seiyaku Kabushiki Kaisha Fc region variant comprising a modified fcrn-binding domain
SG11201705093UA (en) 2015-02-27 2017-07-28 Chugai Pharmaceutical Co Ltd Composition for treating il-6-related diseases
US20190135903A1 (en) 2015-03-31 2019-05-09 Alexion Pharmaceuticals, Inc. Identifying and treating subpopulations of paroxysmal nocturnal hemoglobinuria (pnh) patients
AU2016249015B2 (en) 2015-04-15 2022-03-24 Regeneron Pharmaceuticals, Inc. Methods of increasing strength and functionality with GDF8 inhibitors
WO2016178980A1 (en) 2015-05-01 2016-11-10 Alexion Pharmaceuticals, Inc. Efficacy of an anti-c5 antibody in the prevention of antibody mediated rejection in sensitized recipients of kindney thansplant
EP3313437A1 (en) 2015-06-26 2018-05-02 Alexion Pharmaceuticals, Inc. A method for treating a patient in compliance with vaccination with eculizumab or an eculizumab variant
US10940126B2 (en) 2015-07-03 2021-03-09 Camilla Svensson Inhibition of IL-8 in the treatment of pain and/or bone loss
IL258121B2 (en) 2015-09-15 2024-01-01 Scholar Rock Inc Antipro/latent myostatin antibodies and their uses
TW202342532A (zh) 2015-09-18 2023-11-01 日商中外製藥股份有限公司 Il-8結合抗體及其用途
TW201718014A (zh) 2015-10-12 2017-06-01 諾華公司 C5抑制劑於移植相關微血管病之用途
CN115028721A (zh) 2015-12-18 2022-09-09 中外制药株式会社 抗-肌肉生长抑制因子抗体、包含变体fc区的多肽及使用方法
CA3005592C (en) 2015-12-18 2024-01-23 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
US10233252B2 (en) 2015-12-21 2019-03-19 Wisconsin Alumni Research Foundation pH-dependent antibodies targeting the transferrin receptor and methods of use thereof to deliver a therapeutic agent
WO2017110981A1 (en) 2015-12-25 2017-06-29 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
SG11201805709RA (en) 2016-01-08 2018-07-30 Scholar Rock Inc Anti-pro/latent myostatin antibodies and methods of use thereof
WO2017123636A1 (en) 2016-01-11 2017-07-20 Alexion Pharmaceuticals, Inc. Dosage and administration of anti-c5 antibodies for treatment
MA53248A (fr) 2016-01-25 2022-02-16 Takeda Pharmaceuticals Co Anticorps anti-c5 à commutation ph améliorée
RS61090B1 (sr) 2016-06-13 2020-12-31 Scholar Rock Inc Upotreba inhibitora miostatina i kombinovane terapije
KR102534895B1 (ko) 2016-06-14 2023-05-24 리제너론 파아마슈티컬스, 인크. 항-c5 항체 및 이의 용도
TWI760396B (zh) 2016-06-17 2022-04-11 日商中外製藥股份有限公司 抗肌抑素抗體及使用方法
CN109312326B (zh) 2016-06-17 2022-09-09 中外制药株式会社 抗-c5抗体及使用方法
TW202300168A (zh) 2016-08-05 2023-01-01 日商中外製藥股份有限公司 Il-8相關疾病之治療用或預防用組成物
US11608374B2 (en) 2017-01-30 2023-03-21 Chugai Seiyaku Kabushiki Kaisha Anti-sclerostin antibodies and methods of use
SG10201908697XA (en) 2017-01-31 2019-10-30 Chugai Pharmaceutical Co Ltd A pharmaceutical composition for use in the treatment or prevention of a c5-related disease and a method for treating or preventing a c5-related disease
AU2018236218A1 (en) 2017-03-14 2019-09-12 Bristol-Myers Squibb Company Antibodies binding to vista at acidic pH
TWI788332B (zh) 2017-03-16 2023-01-01 英商梅迪繆思有限公司 抗-par2抗體及其用途
EP3978523A1 (en) 2017-04-03 2022-04-06 InflaRx GmbH Treatment of inflammatory diseases with inhibitors of c5a activity
KR20200070355A (ko) 2017-10-26 2020-06-17 알렉시온 파마슈티칼스, 인코포레이티드 발작성 야간 혈색소뇨 (pnh) 및 비정형 용혈성 요독 증후군 (ahus)의 치료를 위한 항-c5 항체의 투여량 및 투여
WO2019112984A1 (en) 2017-12-04 2019-06-13 Ra Pharmaceuticals, Inc. Modulators of complement activity
CN112512563A (zh) 2018-08-01 2021-03-16 中外制药株式会社 用于治疗或预防c5相关疾病的药物组合物和治疗或预防c5相关疾病的方法
SG11202110986YA (en) 2019-04-10 2021-11-29 Chugai Pharmaceutical Co Ltd Method for purifying fc region-modified antibody

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100239577A1 (en) * 2007-09-28 2010-09-23 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody having improved kinetics in plasma

Also Published As

Publication number Publication date
RU2757786C2 (ru) 2021-10-21
US20180258161A1 (en) 2018-09-13
US20240158482A1 (en) 2024-05-16
JP2017019773A (ja) 2017-01-26
MX365235B (es) 2019-05-28
RU2658504C9 (ru) 2018-08-21
CN103328632A (zh) 2013-09-25
JP6030452B2 (ja) 2016-11-24
KR20220045258A (ko) 2022-04-12
RU2642318C2 (ru) 2018-01-24
US20140234340A1 (en) 2014-08-21
TWI654204B (zh) 2019-03-21
JP6745858B2 (ja) 2020-08-26
EP4231014A3 (en) 2024-03-20
TWI812066B (zh) 2023-08-11
KR102568454B1 (ko) 2023-08-18
HK1251592A1 (zh) 2019-02-01
TW202043266A (zh) 2020-12-01
EP2647706B1 (en) 2023-05-17
TW201249871A (en) 2012-12-16
US11891434B2 (en) 2024-02-06
HK1258068A1 (zh) 2019-11-01
RU2018121428A3 (zh) 2019-12-09
CA2819356C (en) 2023-01-24
JP2019048842A (ja) 2019-03-28
WO2012073992A1 (ja) 2012-06-07
JP2022105222A (ja) 2022-07-12
CN107973851A (zh) 2018-05-01
CN108715614A (zh) 2018-10-30
AU2011337704A1 (en) 2013-07-04
RU2013129815A (ru) 2015-01-10
BR112013013354A2 (pt) 2020-10-06
EP2647706A4 (en) 2015-04-22
EP2647706A1 (en) 2013-10-09
SG10201509790YA (en) 2015-12-30
KR20130121900A (ko) 2013-11-06
MX2019001726A (es) 2019-07-18
RU2658504C1 (ru) 2018-06-21
JP2020189850A (ja) 2020-11-26
MX2013006109A (es) 2014-01-31
TW201730217A (zh) 2017-09-01
EP4231014A2 (en) 2023-08-23
CA2819356A1 (en) 2012-06-07
JP6431506B2 (ja) 2018-11-28
TW202225189A (zh) 2022-07-01
RU2018121428A (ru) 2019-12-09
SG190727A1 (en) 2013-07-31
AU2011337704B2 (en) 2017-06-15
JP7096863B2 (ja) 2022-07-06
TWI761912B (zh) 2022-04-21
TWI654203B (zh) 2019-03-21
JPWO2012073992A1 (ja) 2014-05-19
TW201920260A (zh) 2019-06-01
KR102385507B1 (ko) 2022-04-12

Similar Documents

Publication Publication Date Title
JP7096863B2 (ja) 複数分子の抗原に繰り返し結合する抗原結合分子
JP7186813B2 (ja) 抗原の消失を促進する、FcRnに対するアフィニティーが変更された抗体
JP2022034037A (ja) 抗原クリアランスを促進するFcRn結合ドメインを有する治療用抗原結合分子