KR20210074395A - 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약 - Google Patents

면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약 Download PDF

Info

Publication number
KR20210074395A
KR20210074395A KR1020217017021A KR20217017021A KR20210074395A KR 20210074395 A KR20210074395 A KR 20210074395A KR 1020217017021 A KR1020217017021 A KR 1020217017021A KR 20217017021 A KR20217017021 A KR 20217017021A KR 20210074395 A KR20210074395 A KR 20210074395A
Authority
KR
South Korea
Prior art keywords
antigen
amino acid
binding
tyr
binding molecule
Prior art date
Application number
KR1020217017021A
Other languages
English (en)
Inventor
도모유키 이가와
나오카 히로니와
Original Assignee
추가이 세이야쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2011/077619 external-priority patent/WO2012073992A1/ja
Application filed by 추가이 세이야쿠 가부시키가이샤 filed Critical 추가이 세이야쿠 가부시키가이샤
Priority to KR1020237033758A priority Critical patent/KR20230143201A/ko
Publication of KR20210074395A publication Critical patent/KR20210074395A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/248IL-6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • C07K16/4291Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig against IgE
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • G01N33/686Anti-idiotype
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명자들은 둘 이상의 항원 결합 단위(에피토프)을 포함하는 항원과 2 분자 이상의 항원 결합 분자(예를 들면 항체)를 포함하는 큰 면역 복합체를 형성시킴으로써, 둘 이상의 항원 결합 단위를 포함하는 항원의 혈장 중으로부터의 소실을 가속시키는 것을 발견하고, 이 특징을 이용함으로써 또한 추가로 이온 의존성 항원 결합 활성을 구비하는 항원 결합 분자를 사용함으로써 당해 항원의 소실을 더욱 가속시킴으로써 상기 과제를 해결할 수 있는 것을 발견하였다.

Description

면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약{Drug containing carrier into cell for forming immune complex}
본 발명은 혈장 중으로부터 항원을 소실시키기 위한 항원 결합 분자의 사용, 항원 결합 분자를 투여하는 것을 포함하는 혈장 중으로부터 항원을 소실시키는 방법, 혈장 중으로부터 항원을 소실시키는 것이 가능한 항원 결합 분자를 포함하는 의약 조성물, 혈장 중으로부터 항원을 소실시키기 위한 항원 결합 분자의 스크리닝방법 및 혈장 중으로부터 항원을 소실시키기 위한 항원 결합 분자의 제조방법을 제공한다.
항체는 혈장 중에서의 안정성이 높고, 부작용도 적은 것으로부터 의약품으로서 주목되고 있다. 그 중에서도 IgG형의 항체 의약은 다수 시판되고 있고, 현재도 수 많은 항체 의약이 개발되고 있다(비특허문헌 1 및 비특허문헌 2). 한편, 제2세대의 항체 의약에 적용 가능한 기술로서 다양한 기술이 개발되어 있어 이펙터 기능, 항원 결합능, 약물동태, 안정성을 향상시키거나 또는 면역원성 리스크를 저감시키는 기술 등이 보고되어 있다(비특허문헌 3). 항체 의약은 일반적으로 투여량이 매우 높기 때문에 피하 투여 제제의 제작이 곤란한 것, 제조 비용이 비싼 것 등이 과제로서 생각된다. 항체 의약의 투여량을 저감시키는 방법으로서 항체의 약물동태를 향상시키는 방법과 항체와 항원의 친화성(affinity)을 향상시키는 방법이 생각된다.
항체의 약물동태를 향상시키는 방법으로서 정상영역(constant region)의 인공적인 아미노산 치환이 보고되어 있다(비특허문헌 4 및 5). 항원 결합능, 항원 중화능을 증강시키는 기술로서 친화성 성숙 기술(비특허문헌 6)이 보고되어 있어, 가변영역의 CDR 영역 등의 아미노산에 변이를 도입함으로써 항원으로의 결합 활성을 증강시키는 것이 가능하다. 항원 결합능의 증강에 의해 in vitro의 생물활성을 향상시키거나 또는 투여량을 저감시키는 것이 가능하며, 또한 in vivo(생체내)에서의 약효를 향상시키는 것도 가능하다(비특허문헌 7).
한편, 항체 1 분자당 중화할 수 있는 항원량은 친화성에 의존하여, 친화성을 강하게 함으로써 적은 항체량으로 항원을 중화하는 것이 가능하고, 다양한 방법으로 항체의 친화성을 강하게 하는 것이 가능하다(비특허문헌 6). 또한 항원에 공유 결합적으로 결합하여 친화성을 무한대로 할 수 있다면 1 분자의 항체로 1 분자의 항원(2가의 경우는 2 항원)을 중화하는 것이 가능하다. 그러나 지금까지의 방법에서는 1 분자의 항체는 1 분자의 항원(2가의 경우는 2 항원)에 결합하는 것이 한계였다. 한편 최근 들어 항원에 대해 pH 의존적으로 결합하는 항원 결합 분자를 사용함으로써 1 분자의 항원 결합 분자가 복수 분자의 항원에 결합하는 것이 가능한 것이 보고되었다(특허문헌 1, 비특허문헌 8). pH 의존적 항원 결합 분자는 항원에 대해 혈장 중의 중성 조건하에 있어서는 강하게 결합하고, 엔도솜 내의 산성 조건하에 있어서 항원을 해리한다. 또한 항원을 해리한 후에 당해 항원 결합 분자가 FcRn에 의해 혈장 중으로 리사이클되면 재차 항원에 결합하는 것이 가능하기 때문에 하나의 pH 의존적 항원 결합 분자로 복수의 항원에 반복해서 결합하는 것이 가능해진다.
또한 중성 조건하(pH 7.4)에 있어서의 FcRn 결합을 증강시키도록 개변된 pH 의존적 항원 결합 분자는 항원에 반복해서 결합할 수 있는 효과 및 혈장 중으로부터 항원을 소실시키는 효과를 가지고 있기 때문에, 이러한 항원 결합 분자의 투여에 의해 혈장 중으로부터 항원을 제거하는 것이 가능한 것이 보고되었다(특허문헌 2). 통상의 IgG 항체의 Fc영역을 포함하는 pH 의존적 항원 결합 분자는 중성 조건하에 있어서 FcRn에 대해 거의 결합이 확인되지 않는다. 그 때문에 당해 항원 결합 분자와 항원의 복합체가 세포내에 흡수되는 것은 주로 비특이적인 흡수에 의한 것으로 생각된다. 이 보고에 따르면 중성 조건하(pH 7.4)에 있어서의 FcRn 결합을 증강시키도록 개변된 pH 의존적 항원 결합 분자는 통상의 IgG 항체의 Fc영역을 포함하는 pH 의존적 항원 결합 분자보다도 그 항원 소실을 더욱 가속시키는 것이 가능하다(특허문헌 2).
항원의 혈장 중 체류성은 FcRn을 매개로 한 리사이클 메커니즘을 갖는 항체와 비교하여 매우 짧기 때문에 항원은 혈장 중에서 당해 리사이클 메커니즘을 갖는(그 결합이 pH 의존적이지 않은) 항체와 결합함으로써, 통상 혈장 중 체류성이 길어져 혈장 중 항원 농도는 상승한다. 예를 들면 혈장 중 항원이 복수 종류의 생리기능을 갖는 경우, 가령 항체의 결합에 의해 1종류의 생리활성이 차단되었다 하더라도 당해 항원의 혈장 중 농도가 항체의 결합에 의해 다른 생리기능이 병인이 되는 증상을 더 악화시키는 것도 생각할 수 있다. 이러한 관점에서 혈장 중의 항원을 소실시키는 것이 바람직한 경우가 있기 때문에, 항원의 소실을 가속시킬 목적으로 상기와 같은 FcRn으로의 결합을 증강시키는 Fc영역에 대한 개변을 가하는 방법이 보고되어 있으나, 그 이외의 방법으로 항원의 소실을 가속시키는 방법은 지금까지 보고되어 있지 않다.
또한 본 발명에 있어서의 선행기술문헌을 아래에 나타낸다.
국제공개 제WO2009/125825호 국제공개 제WO2011/122011호
Monoclonal antibody successes in the clinic, Janice M Reichert, Clark J Rosensweig, Laura B Faden & Matthew C Dewitz, Nat. Biotechnol. (2005) 23, 1073 - 1078 Pavlou AK, Belsey MJ., The therapeutic antibodies market to 2008., Eur. J. Pharm. Biopharm. (2005) 59 (3), 389-396 Kim SJ, Park Y, Hong HJ., Antibody engineering for the development of therapeutic antibodies., Mol. Cells. (2005) 20 (1), 17-29 Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N, J. Immunol. (2006) 176 (1), 346-356 Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward ES., Nat. Biotechnol. (1997) 15 (7), 637-640 Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, Bhatt RR, Takeuchi T, Lerner RA, Crea R., Proc. Natl. Acad. Sci. USA. (2005) 102 (24), 8466-8471 Wu H, Pfarr DS, Johnson S, Brewah YA, Woods RM, Patel NK, White WI, Young JF, Kiener PA., J. Mol. Biol. (2007) 368, 652-665 Igawa T, et al., Nat. Biotechnol. (2010) 28, 1203-1207
본 발명은 이러한 상황을 감안하여 이루어진 것으로, 그 목적은 혈장 중으로부터 항원을 소실시키기 위한 항원 결합 분자의 사용, 항원 결합 분자를 투여하는 것을 포함하는 혈장 중으로부터 항원을 소실시키는 방법, 혈장 중으로부터 항원을 소실시키는 것이 가능한 항원 결합 분자를 포함하는 의약 조성물, 혈장 중으로부터 항원을 소실시키기 위한 항원 결합 분자의 스크리닝방법 및 혈장 중으로부터 항원을 소실시키기 위한 항원 결합 분자의 제조방법을 제공하는 것에 있다.
본 발명자들은 상기 목적을 달성하기 위해 예의 연구를 진행시킨 바, (i) Fc영역 및 (ii) 둘 이상의 항원 결합 도메인을 포함하는 항원 결합 분자로서, 당해 도메인의 하나 이상이 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인으로,
(a) 2 분자 이상의 당해 항원 결합 분자 및 (b) 2 분자 이상의 항원으로서, 당해 항원은 둘 이상의 항원 결합 단위를 포함하는 항원을 포함하는 면역 복합체를 형성하는 것이 가능한 항원 결합 분자를 창작하였다. 또한 본 발명자들은 당해 항원 결합 분자가 혈장 중으로부터 항원을 소실시키기 위해 사용할 수 있는 것을 발견하였다. 또한 본 발명자들은 당해 항원 결합 분자가 의약 조성물로서 유용한 것을 발견하는 동시에, 당해 항원 결합 분자를 투여하는 것을 포함하는 혈장 중으로부터 당해 항원을 소실시키는 방법을 창작하였다. 또한 본 발명자들은 상기 성질을 갖는 항원 결합 분자의 스크리닝방법을 발견하는 동시에 그 제조방법을 창작하여 본 발명을 완성하였다.
즉 본 발명은 하기;
〔1〕(i) Fc영역 및
(ii) 둘 이상의 항원 결합 도메인
을 포함하는 항원 결합 분자의 사용으로서, 당해 도메인의 하나 이상이 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인으로,
(a) 2 분자 이상의 당해 항원 결합 분자 및 (b) 2 분자 이상의 항원(단 당해 항원은 둘 이상의 항원 결합 단위를 포함한다)
을 포함하는 면역 복합체를 형성하는 것이 가능한 항원 결합 분자의 혈장 중으로부터 당해 항원을 소실시키기 위한 사용,
〔2〕이온 농도의 조건이 칼슘 이온 농도의 조건인, 〔1〕에 기재된 사용,
〔3〕상기 항원 결합 도메인이 저칼슘 이온 농도의 조건하에서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건하에서의 항원에 대한 결합 활성보다도 낮은 항원 결합 도메인인, 〔2〕에 기재된 사용,
〔4〕이온 농도의 조건이 pH의 조건인, 〔1〕내지〔3〕 중 어느 하나에 기재된 사용,
〔5〕상기 항원 결합 도메인이 pH 산성역에 있어서의 항원에 대한 결합 활성이 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다도 낮은 항원 결합 도메인인, 〔4〕에 기재된 사용,
〔6〕둘 이상의 항원 결합 단위를 포함하는 상기 항원이 다량체인 〔1〕내지〔5〕 중 어느 하나에 기재된 사용,
〔7〕상기 항원이 GDF, GDF-1, GDF-3(Vgr-2), GDF-5(BMP-14, CDMP-1), GDF-6(BMP-13, CDMP-2), GDF-7(BMP-12, CDMP-3), GDF-8(미오스타틴), GDF-9, GDF-15(MIC-1), TNF, TNF-알파, TNF-알파베타, TNF-베타2, TNFSF10(TRAIL Apo-2 리간드, TL2), TNFSF11(TRANCE/RANK 리간드 ODF, OPG 리간드), TNFSF12(TWEAK Apo-3 리간드, DR3 리간드), TNFSF13(APRIL TALL2), TNFSF13B(BAFF BLYS, TALL1, THANK, TNFSF20), TNFSF14(LIGHT HVEM 리간드, LTg), TNFSF15(TL1A/VEGI), TNFSF18(GITR 리간드 AITR 리간드, TL6), TNFSF1A(TNF-a 코넥틴(Conectin), DIF, TNFSF2), TNFSF1B(TNF-b LTa, TNFSF1), TNFSF3(LTb TNFC, p33), TNFSF4(OX40 리간드 gp34, TXGP1), TNFSF5(CD40 리간드 CD154, gp39, HIGM1, IMD3, TRAP), TNFSF6(Fas 리간드 Apo-1 리간드, APT1 리간드), TNFSF7(CD27 리간드 CD70), TNFSF8(CD30 리간드 CD153), TNFSF9(4-1BB 리간드 CD137 리간드), VEGF, IgE, IgA, IgG, IgM, RANKL, TGF-알파, TGF-베타, TGF-베타 Pan Specific 또는 IL-8 중 어느 하나인 〔6〕에 기재된 사용,
〔8〕둘 이상의 항원 결합 단위를 포함하는 상기 항원이 단량체인 〔1〕내지〔5〕 중 어느 하나에 기재된 사용,
〔9〕항원 결합 분자가 다중 특이성 또는 다중 파라토픽 항원 결합 분자, 또는 항원 결합 분자 칵테일인 〔1〕내지〔8〕 중 어느 하나에 기재된 사용,
〔10〕상기 Fc영역이 각각 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역인, 〔1〕내지〔9〕 중 어느 하나에 기재된 사용,
〔11〕상기 Fc영역의 pH 산성역 조건하에서의 FcRn에 대한 결합 활성이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 결합 활성보다 증강되어 있는 Fc영역인, 〔1〕내지〔9〕 중 어느 하나에 기재된 사용,
〔12〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는 238번 위치, 244번 위치, 245번 위치, 249번 위치, 250번 위치, 251번 위치, 252번 위치, 253번 위치, 254번 위치, 255번 위치, 256번 위치, 257번 위치, 258번 위치, 260번 위치, 262번 위치, 265번 위치, 270번 위치, 272번 위치, 279번 위치, 283번 위치, 285번 위치, 286번 위치, 288번 위치, 293번 위치, 303번 위치, 305번 위치, 307번 위치, 308번 위치, 309번 위치, 311번 위치, 312번 위치, 314번 위치, 316번 위치, 317번 위치, 318번 위치, 332번 위치, 339번 위치, 340번 위치, 341번 위치, 343번 위치, 356번 위치, 360번 위치, 362번 위치, 375번 위치, 376번 위치, 377번 위치, 378번 위치, 380번 위치, 382번 위치, 385번 위치, 386번 위치, 387번 위치, 388번 위치, 389번 위치, 400번 위치, 413번 위치, 415번 위치, 423번 위치, 424번 위치, 427번 위치, 428번 위치, 430번 위치, 431번 위치, 433번 위치, 434번 위치, 435번 위치, 436번 위치, 438번 위치, 439번 위치, 440번 위치, 442번 위치 또는 447번 위치의 아미노산의 군으로부터 선택되는 적어도 하나 이상의 아미노산이 치환되어 있는 Fc영역인 〔11〕에 기재된 사용,
〔13〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
238번 위치의 아미노산이 Leu,
244번 위치의 아미노산이 Leu,
245번 위치의 아미노산이 Arg,
249번 위치의 아미노산이 Pro,
250번 위치의 아미노산이 Gln 또는 Glu 중 어느 하나, 또는
251번 위치의 아미노산이 Arg, Asp, Glu 또는 Leu 중 어느 하나,
252번 위치의 아미노산이 Phe, Ser, Thr 또는 Tyr 중 어느 하나,
254번 위치의 아미노산이 Ser 또는 Thr 중 어느 하나,
255번 위치의 아미노산이 Arg, Gly, Ile 또는 Leu 중 어느 하나,
256번 위치의 아미노산이 Ala, Arg, Asn, Asp, Gln, Glu, Pro 또는 Thr 중 어느 하나,
257번 위치의 아미노산이 Ala, Ile, Met, Asn, Ser 또는 Val 중 어느 하나,
258번 위치의 아미노산이 Asp,
260번 위치의 아미노산이 Ser,
262번 위치의 아미노산이 Leu,
270번 위치의 아미노산이 Lys,
272번 위치의 아미노산이 Leu 또는 Arg 중 어느 하나,
279번 위치의 아미노산이 Ala, Asp, Gly, His, Met, Asn, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
283번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
285번 위치의 아미노산이 Asn,
286번 위치의 아미노산이 Phe,
288번 위치의 아미노산이 Asn 또는 Pro 중 어느 하나,
293번 위치의 아미노산이 Val,
307번 위치의 아미노산이 Ala, Glu, Gln 또는 Met 중 어느 하나,
311번 위치의 아미노산이 Ala, Glu, Ile, Lys, Leu, Met, Ser, Val 또는 Trp 중 어느 하나,
309번 위치의 아미노산이 Pro,
312번 위치의 아미노산이 Ala, Asp 또는 Pro 중 어느 하나,
314번 위치의 아미노산이 Ala 또는 Leu 중 어느 하나,
316번 위치의 아미노산이 Lys,
317번 위치의 아미노산이 Pro,
318번 위치의 아미노산이 Asn 또는 Thr 중 어느 하나,
332번 위치의 아미노산이 Phe, His, Lys, Leu, Met, Arg, Ser 또는 Trp 중 어느 하나,
339번 위치의 아미노산이 Asn, Thr 또는 Trp 중 어느 하나,
341번 위치의 아미노산이 Pro,
343번 위치의 아미노산이 Glu, His, Lys, Gln, Arg, Thr 또는 Tyr 중 어느 하나,
375번 위치의 아미노산이 Arg,
376번 위치의 아미노산이 Gly, Ile, Met, Pro, Thr 또는 Val 중 어느 하나,
377번 위치의 아미노산이 Lys,
378번 위치의 아미노산이 Asp, Asn 또는 Val 중 어느 하나,
380번 위치의 아미노산이 Ala, Asn, Ser 또는 Thr 중 어느 하나,
382번 위치의 아미노산이 Phe, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
385번 위치의 아미노산이 Ala, Arg, Asp, Gly, His, Lys, Ser 또는 Thr 중 어느 하나,
386번 위치의 아미노산이 Arg, Asp, Ile, Lys, Met, Pro, Ser 또는 Thr 중 어느 하나,
387번 위치의 아미노산이 Ala, Arg, His, Pro, Ser 또는 Thr 중 어느 하나,
389번 위치의 아미노산이 Asn, Pro 또는 Ser 중 어느 하나,
423번 위치의 아미노산이 Asn,
427번 위치의 아미노산이 Asn,
428번 위치의 아미노산이 Leu, Met, Phe, Ser 또는 Thr 중 어느 하나,
430번 위치의 아미노산이 Ala, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val 또는 Tyr 중 어느 하나,
431번 위치의 아미노산이 His 또는 Asn 중 어느 하나,
433번 위치의 아미노산이 Arg, Gln, His, Ile, Lys, Pro 또는 Ser 중 어느 하나,
434번 위치의 아미노산이 Ala, Gly, His, Phe, Ser, Trp 또는 Tyr 중 어느 하나,
436번 위치의 아미노산이 Arg, Asn, His, Ile, Leu, Lys, Met 또는 Thr 중 어느 하나,
438번 위치의 아미노산이 Lys, Leu, Thr 또는 Trp 중 어느 하나,
440번 위치의 아미노산이 Lys, 또는
442번 위치의 아미노산이 Lys, 308번 위치의 아미노산이 Ile, Pro 또는 Thr 중 어느 하나
의 군으로부터 선택되는 적어도 하나 이상의 아미노산인, 〔12〕에 기재된 사용,
〔14〕상기 Fc영역의 pH 중성역 조건하에서의 FcRn에 대한 결합 활성이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 결합 활성보다 증강되어 있는 Fc영역인, 〔1〕내지〔9〕 중 어느 하나에 기재된 사용,
〔15〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는 237번 위치, 248번 위치, 250번 위치, 252번 위치, 254번 위치, 255번 위치, 256번 위치, 257번 위치, 258번 위치, 265번 위치, 286번 위치, 289번 위치, 297번 위치, 298번 위치, 303번 위치, 305번 위치, 307번 위치, 308번 위치, 309번 위치, 311번 위치, 312번 위치, 314번 위치, 315번 위치, 317번 위치, 332번 위치, 334번 위치, 360번 위치, 376번 위치, 380번 위치, 382번 위치, 384번 위치, 385번 위치, 386번 위치, 387번 위치, 389번 위치, 424번 위치, 428번 위치, 433번 위치, 434번 위치 또는 436번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산이 치환되어 있는 Fc영역인 〔14〕에 기재된 사용,
〔16〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
237번 위치의 아미노산이 Met,
248번 위치의 아미노산이 Ile,
250번 위치의 아미노산이 Ala, Phe, Ile, Met, Gln, Ser, Val, Trp 또는 Tyr 중 어느 하나,
252번 위치의 아미노산이 Phe, Trp 또는 Tyr 중 어느 하나,
254번 위치의 아미노산이 Thr,
255번 위치의 아미노산이 Glu,
256번 위치의 아미노산이 Asp, Asn, Glu 또는 Gln 중 어느 하나,
257번 위치의 아미노산이 Ala, Gly, Ile, Leu, Met, Asn, Ser, Thr 또는 Val 중 어느 하나,
258번 위치의 아미노산이 His,
265번 위치의 아미노산이 Ala,
286번 위치의 아미노산이 Ala 또는 Glu 중 어느 하나,
289번 위치의 아미노산이 His,
297번 위치의 아미노산이 Ala,
303번 위치의 아미노산이 Ala,
305번 위치의 아미노산이 Ala,
307번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
308번 위치의 아미노산이 Ala, Phe, Ile, Leu, Met, Pro, Gln 또는 Thr 중 어느 하나,
309번 위치의 아미노산이 Ala, Asp, Glu, Pro 또는 Arg 중 어느 하나,
311번 위치의 아미노산이 Ala, His 또는 Ile 중 어느 하나,
312번 위치의 아미노산이 Ala 또는 His 중 어느 하나,
314번 위치의 아미노산이 Lys 또는 Arg 중 어느 하나,
315번 위치의 아미노산이 Ala, Asp 또는 His 중 어느 하나,
317번 위치의 아미노산이 Ala,
332번 위치의 아미노산이 Val,
334번 위치의 아미노산이 Leu,
360번 위치의 아미노산이 His,
376번 위치의 아미노산이 Ala,
380번 위치의 아미노산이 Ala,
382번 위치의 아미노산이 Ala,
384번 위치의 아미노산이 Ala,
385번 위치의 아미노산이 Asp 또는 His 중 어느 하나,
386번 위치의 아미노산이 Pro,
387번 위치의 아미노산이 Glu,
389번 위치의 아미노산이 Ala 또는 Ser 중 어느 하나,
424번 위치의 아미노산이 Ala,
428번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
433번 위치의 아미노산이 Lys,
434번 위치의 아미노산이 Ala, Phe, His, Ser, Trp 또는 Tyr 중 어느 하나, 또는
436번 위치의 아미노산이 His, Ile, Leu, Phe, Thr 또는 Val
의 군으로부터 선택되는 적어도 하나 이상의 아미노산인, 〔15〕에 기재된 사용,
〔17〕상기 Fc영역이 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 Fc영역을 포함하는 〔1〕내지〔13〕 중 어느 하나에 기재된 사용,
〔18〕상기 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는 221번 위치, 222번 위치, 223번 위치, 224번 위치, 225번 위치, 227번 위치, 228번 위치, 230번 위치, 231번 위치, 232번 위치, 233번 위치, 234번 위치, 235번 위치, 236번 위치, 237번 위치, 238번 위치, 239번 위치, 240번 위치, 241번 위치, 243번 위치, 244번 위치, 245번 위치, 246번 위치, 247번 위치, 249번 위치, 250번 위치, 251번 위치, 254번 위치, 255번 위치, 256번 위치, 258번 위치, 260번 위치, 262번 위치, 263번 위치, 264번 위치, 265번 위치, 266번 위치, 267번 위치, 268번 위치, 269번 위치, 270번 위치, 271번 위치, 272번 위치, 273번 위치, 274번 위치, 275번 위치, 276번 위치, 278번 위치, 279번 위치, 280번 위치, 281번 위치, 282번 위치, 283번 위치, 284번 위치, 285번 위치, 286번 위치, 288번 위치, 290번 위치, 291번 위치, 292번 위치, 293번 위치, 294번 위치, 295번 위치, 296번 위치, 297번 위치, 298번 위치, 299번 위치, 300번 위치, 301번 위치, 302번 위치, 303번 위치, 304번 위치, 305번 위치, 311번 위치, 313번 위치, 315번 위치, 317번 위치, 318번 위치, 320번 위치, 322번 위치, 323번 위치, 324번 위치, 325번 위치, 326번 위치, 327번 위치, 328번 위치, 329번 위치, 330번 위치, 331번 위치, 332번 위치, 333번 위치, 334번 위치, 335번 위치, 336번 위치, 337번 위치, 339번 위치, 376번 위치, 377번 위치, 378번 위치, 379번 위치, 380번 위치, 382번 위치, 385번 위치, 392번 위치, 396번 위치, 421번 위치, 427번 위치, 428번 위치, 429번 위치, 434번 위치, 436번 위치 또는 440번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산이 천연형 인간 IgG의 Fc영역의 아미노산과 상이한 아미노산을 포함하는 〔17〕에 기재된 사용,
〔19〕상기 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
221번 위치의 아미노산이 Lys 또는 Tyr 중 어느 하나,
222번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
223번 위치의 아미노산이 Phe, Trp, Glu 또는 Lys 중 어느 하나,
224번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
225번 위치의 아미노산이 Glu, Lys 또는 Trp 중 어느 하나,
227번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
228번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
230번 위치의 아미노산이 Ala, Glu, Gly 또는 Tyr 중 어느 하나,
231번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
232번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
233번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
234번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
235번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
236번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
237번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
238번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
239번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
240번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
241번 위치의 아미노산이 Asp, Glu, Leu, Arg, Trp 또는 Tyr 중 어느 하나,
243번 위치의 아미노산이 Leu, Glu, Leu, Gln, Arg, Trp 또는 Tyr 중 어느 하나,
244번 위치의 아미노산이 His,
245번 위치의 아미노산이 Ala,
246번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
247번 위치의 아미노산이 Ala, Phe, Gly, His, Ile, Leu, Met, Thr, Val 또는 Tyr 중 어느 하나,
249번 위치의 아미노산이 Glu, His, Gln 또는 Tyr 중 어느 하나,
250번 위치의 아미노산이 Glu 또는 Gln 중 어느 하나,
251번 위치의 아미노산이 Phe,
254번 위치의 아미노산이 Phe, Met 또는 Tyr 중 어느 하나,
255번 위치의 아미노산이 Glu, Leu 또는 Tyr 중 어느 하나,
256번 위치의 아미노산이 Ala, Met 또는 Pro 중 어느 하나,
258번 위치의 아미노산이 Asp, Glu, His, Ser 또는 Tyr 중 어느 하나,
260번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
262번 위치의 아미노산이 Ala, Glu, Phe, Ile 또는 Thr 중 어느 하나,
263번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
264번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
265번 위치의 아미노산이 Ala, Leu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
266번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
267번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
268번 위치의 아미노산이 Asp, Glu, Phe, Gly, Ile, Lys, Leu, Met, Pro, Gln, Arg, Thr, Val 또는 Trp 중 어느 하나,
269번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
270번 위치의 아미노산이 Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
271번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
272번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
273번 위치의 아미노산이 Phe 또는 Ile 중 어느 하나,
274번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
275번 위치의 아미노산이 Leu 또는 Trp 중 어느 하나,
276번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
278번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
279번 위치의 아미노산이 Ala,
280번 위치의 아미노산이 Ala, Gly, His, Lys, Leu, Pro, Gln, Trp 또는 Tyr 중 어느 하나,
281번 위치의 아미노산이 Asp, Lys, Pro 또는 Tyr 중 어느 하나,
282번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
283번 위치의 아미노산이 Ala, Gly, His, Ile, Lys, Leu, Met, Pro, Arg 또는 Tyr 중 어느 하나,
284번 위치의 아미노산이 Asp, Glu, Leu, Asn, Thr 또는 Tyr 중 어느 하나,
285번 위치의 아미노산이 Asp, Glu, Lys, Gln, Trp 또는 Tyr 중 어느 하나,
286번 위치의 아미노산이 Glu, Gly, Pro 또는 Tyr 중 어느 하나,
288번 위치의 아미노산이 Asn, Asp, Glu 또는 Tyr 중 어느 하나,
290번 위치의 아미노산이 Asp, Gly, His, Leu, Asn, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
291번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Gln 또는 Thr 중 어느 하나,
292번 위치의 아미노산이 Ala, Asp, Glu, Pro, Thr 또는 Tyr 중 어느 하나,
293번 위치의 아미노산이 Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
294번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
295번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
296번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr 또는 Val 중 어느 하나,
297번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
298번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Met, Asn, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
299번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
300번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
301번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
302번 위치의 아미노산이 Ile,
303번 위치의 아미노산이 Asp, Gly 또는 Tyr 중 어느 하나,
304번 위치의 아미노산이 Asp, His, Leu, Asn 또는 Thr 중 어느 하나,
305번 위치의 아미노산이 Glu, Ile, Thr 또는 Tyr 중 어느 하나,
311번 위치의 아미노산이 Ala, Asp, Asn, Thr, Val 또는 Tyr 중 어느 하나,
313번 위치의 아미노산이 Phe,
315번 위치의 아미노산이 Leu,
317번 위치의 아미노산이 Glu 또는 Gln,
318번 위치의 아미노산이 His, Leu, Asn, Pro, Gln, Arg, Thr, Val 또는 Tyr 중 어느 하나,
320번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Asn, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
322번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
323번 위치의 아미노산이 Ile,
324번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
325번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
326번 위치의 아미노산이 Ala, Asp, Glu, Gly, Ile, Leu, Met, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
327번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
328번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
329번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
330번 위치의 아미노산이 Cys, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
331번 위치의 아미노산이 Asp, Phe, His, Ile, Leu, Met, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
332번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
333번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Ser, Thr, Val 또는 Tyr 중 어느 하나,
334번 위치의 아미노산이 Ala, Glu, Phe, Ile, Leu, Pro 또는 Thr 중 어느 하나,
335번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
336번 위치의 아미노산이 Glu, Lys 또는 Tyr 중 어느 하나,
337번 위치의 아미노산이 Glu, His 또는 Asn 중 어느 하나,
339번 위치의 아미노산이 Asp, Phe, Gly, Ile, Lys, Met, Asn, Gln, Arg, Ser 또는 Thr 중 어느 하나,
376번 위치의 아미노산이 Ala 또는 Val 중 어느 하나,
377번 위치의 아미노산이 Gly 또는 Lys 중 어느 하나,
378번 위치의 아미노산이 Asp,
379번 위치의 아미노산이 Asn,
380번 위치의 아미노산이 Ala, Asn 또는 Ser 중 어느 하나,
382번 위치의 아미노산이 Ala 또는 Ile 중 어느 하나,
385번 위치의 아미노산이 Glu,
392번 위치의 아미노산이 Thr,
396번 위치의 아미노산이 Leu,
421번 위치의 아미노산이 Lys,
427번 위치의 아미노산이 Asn,
428번 위치의 아미노산이 Phe 또는 Leu 중 어느 하나,
429번 위치의 아미노산이 Met,
434번 위치의 아미노산이 Trp,
436번 위치의 아미노산이 Ile, 또는
440번 위치의 아미노산이 Gly, His, Ile, Leu 또는 Tyr 중 어느 하나
의 군으로부터 선택되는 적어도 하나 이상의 아미노산을 포함하는 〔18〕에 기재된 사용,
〔20〕상기 Fc영역이 활성형 Fcγ 수용체에 대한 결합 활성보다도 억제형 Fcγ 수용체에 대한 결합 활성이 높은 Fc영역인, 〔1〕내지〔16〕 중 어느 하나에 기재된 사용,
〔21〕상기 억제형 Fcγ 수용체가 인간 FcγRIIb인, 〔20〕에 기재된 사용,
〔22〕상기 활성형 Fcγ 수용체가 인간 FcγRIa, 인간 FcγRIIa(R), 인간 FcγRIIa(H), 인간 FcγRIIIa(V) 또는 인간 FcγRIIIa(F)인, 〔20〕 또는 〔21〕 중 어느 하나에 기재된 사용,
〔23〕상기 Fc영역의 EU 넘버링으로 표시되는 238번 위치 또는 328번 위치의 아미노산이 천연형 인간 IgG의 Fc영역의 아미노산과 상이한 아미노산을 포함하는, 〔20〕내지〔22〕 중 어느 하나에 기재된 사용,
〔24〕상기 Fc영역의 EU 넘버링으로 표시되는 238번 위치의 아미노산이 Asp 또는 328번 위치의 아미노산이 Glu인, 〔23〕에 기재된 사용,
〔25〕상기 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
233번 위치의 아미노산이 Asp,
234번 위치의 아미노산이 Trp 또는 Tyr 중 어느 하나,
237번 위치의 아미노산이 Ala, Asp, Glu, Leu, Met, Phe, Trp 또는 Tyr 중 어느 하나,
239번 위치의 아미노산이 Asp,
267번 위치의 아미노산이 Ala, Gln 또는 Val 중 어느 하나,
268번 위치의 아미노산이 Asn, Asp 또는 Glu 중 어느 하나,
271번 위치의 아미노산이 Gly,
326번 위치의 아미노산이 Ala, Asn, Asp, Gln, Glu, Leu, Met, Ser 또는 Thr 중 어느 하나,
330번 위치의 아미노산이 Arg, Lys 또는 Met 중 어느 하나,
323번 위치의 아미노산이 Ile, Leu 또는 Met 중 어느 하나, 또는
296번 위치의 아미노산이 Asp
의 군으로부터 선택되는 적어도 하나 이상의 아미노산인, 〔23〕 또는 〔24〕에 기재된 사용,
〔26〕아래의 공정(a)~(i)를 포함하는, 혈장 중으로부터 당해 항원을 소실시키는 기능을 갖는 항원 결합 분자의 스크리닝방법;
(a) 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인을 얻는 공정,
(b) 상기 공정(a)에서 선택된 항원 결합 도메인을 코드하는 유전자를 얻는 공정,
(c) 상기 공정(b)에서 얻어진 유전자를 Fc영역을 코드하는 유전자와 작동 가능하게 연결하는 공정,
(d) 상기 공정(c)에서 작동 가능하게 연결된 유전자를 포함하는 숙주세포를 배양하는 공정,
(e) 상기 공정(d)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정,
(f) 상기 공정(e)에서 얻어진 항원 결합 분자를 항원과 접촉시키는 공정,
(g) 당해 항원 결합 분자와 당해 항원을 포함하는 면역 복합체의 형성을 평가하는 공정,
〔27〕아래의 공정(a)~(d)를 포함하는, 혈장 중으로부터 당해 항원을 소실시키는 기능을 갖는 항원 결합 분자의 제조방법;
(a) Fc영역 및 둘 이상의 항원 결합 도메인으로서 하나 이상의 항원 결합 도메인이 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인을 포함하는 항원 결합 분자와 항원을 접촉시키는 공정,
(b) 당해 항원 결합 분자와 당해 항원을 포함하는 면역 복합체의 형성을 평가하는 공정,
(c) 상기 공정(b)에서 면역 복합체의 형성이 확인된 항원 결합 분자를 코드하는 유전자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 공정,
(d) 상기 공정(c)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정,
〔28〕아래의 공정(a)~(i)를 포함하는, 혈장 중으로부터 당해 항원을 소실시키는 기능을 갖는 항원 결합 분자의 제조방법;
(a) 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인을 얻는 공정,
(b) 상기 공정(a)에서 선택된 항원 결합 도메인을 코드하는 유전자를 얻는 공정,
(c) 상기 공정(b)에서 얻어진 유전자를 Fc영역을 코드하는 유전자와 작동 가능하게 연결하는 공정,
(d) 상기 공정(c)에서 작동 가능하게 연결된 유전자를 포함하는 숙주세포를 배양하는 공정,
(e) 상기 공정(d)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정,
(f) 상기 공정(e)에서 얻어진 항원 결합 분자를 항원과 접촉시키는 공정,
(g) 당해 항원 결합 분자와 당해 항원을 포함하는 면역 복합체의 형성을 평가하는 공정,
(h) 상기 공정(g)에서 면역 복합체의 형성이 확인된 항원 결합 분자를 코드하는 유전자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 공정,
(i) 상기 공정(h)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정,
〔29〕아래의 공정(a)~(e)를 포함하는 제조방법으로서, 추가로 당해 제조방법으로 얻어진 항원 결합 분자와 항원을 접촉시켜서 당해 항원 결합 분자와 당해 항원을 포함하는 면역 복합체의 형성을 평가하는 공정을 포함하는, 혈장 중으로부터 당해 항원을 소실시키는 기능을 갖는 항원 결합 분자의 제조방법;
(a) 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인을 얻는 공정,
(b) 상기 공정(a)에서 선택된 항원 결합 도메인을 코드하는 유전자를 얻는 공정,
(c) 상기 공정(b)에서 얻어진 유전자를 Fc영역을 코드하는 유전자와 작동 가능하게 연결하는 공정,
(d) 상기 공정(c)에서 작동 가능하게 연결된 유전자를 포함하는 숙주세포를 배양하는 공정,
(e) 상기 공정(d)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정
을 제공한다.
또한 상기 〔1〕~〔25〕는 다른 표현으로는
〔1'〕(i) Fc영역 및
(ii) 둘 이상의 항원 결합 도메인
을 포함하는 항원 결합 분자의 사용으로서, 당해 도메인의 하나 이상이 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인으로,
(a) 2 분자 이상의 당해 항원 결합 분자 및 (b) 2 분자 이상의 항원(단 당해 항원은 둘 이상의 항원 결합 단위를 포함한다)
을 포함하는 면역 복합체를 형성하는 것이 가능한 항원 결합 분자를 포함하는 혈장 중으로부터 당해 항원을 소실시키기 위한 의약 조성물,
〔2'〕이온 농도의 조건이 칼슘 이온 농도의 조건인, 〔1'〕에 기재된 의약 조성물,
〔3'〕상기 항원 결합 도메인이 저칼슘 이온 농도의 조건하에서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건하에서의 항원에 대한 결합 활성보다도 낮은 항원 결합 도메인인, 〔2'〕에 기재된 의약 조성물,
〔4'〕이온 농도의 조건이 pH의 조건인, 〔1'〕내지〔3'〕 중 어느 하나에 기재된 의약 조성물,
〔5'〕상기 항원 결합 도메인이 pH 산성역에 있어서의 항원에 대한 결합 활성이 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다도 낮은 항원 결합 도메인인, 〔4'〕에 기재된 의약 조성물,
〔6'〕둘 이상의 항원 결합 단위를 포함하는 상기 항원이 다량체인 〔1'〕내지〔5'〕 중 어느 하나에 기재된 의약 조성물,
〔7'〕상기 항원이 GDF, GDF-1, GDF-3(Vgr-2), GDF-5(BMP-14, CDMP-1), GDF-6(BMP-13, CDMP-2), GDF-7(BMP-12, CDMP-3), GDF-8(미오스타틴), GDF-9, GDF-15(MIC-1), TNF, TNF-알파, TNF-알파베타, TNF-베타2, TNFSF10(TRAIL Apo-2 리간드, TL2), TNFSF11(TRANCE/RANK 리간드 ODF, OPG 리간드), TNFSF12(TWEAK Apo-3 리간드, DR3 리간드), TNFSF13(APRIL TALL2), TNFSF13B(BAFF BLYS, TALL1, THANK, TNFSF20), TNFSF14(LIGHT HVEM 리간드, LTg), TNFSF15(TL1A/VEGI), TNFSF18(GITR 리간드 AITR 리간드, TL6), TNFSF1A(TNF-a 코넥틴(Conectin), DIF, TNFSF2), TNFSF1B(TNF-b LTa, TNFSF1), TNFSF3(LTb TNFC, p33), TNFSF4(OX40 리간드 gp34, TXGP1), TNFSF5(CD40 리간드 CD154, gp39, HIGM1, IMD3, TRAP), TNFSF6(Fas 리간드 Apo-1 리간드, APT1 리간드), TNFSF7(CD27 리간드 CD70), TNFSF8(CD30 리간드 CD153), TNFSF9(4-1BB 리간드 CD137 리간드), VEGF, IgE, IgA, IgG, IgM, RANKL, TGF-알파, TGF-베타, TGF-베타 Pan Specific 또는 IL-8 중 어느 하나인 〔6'〕에 기재된 의약 조성물,
〔8'〕둘 이상의 항원 결합 단위를 포함하는 상기 항원이 단량체인 〔1'〕내지〔5'〕 중 어느 하나에 기재된 의약 조성물,
〔9'〕항원 결합 분자가 다중 특이성 또는 다중 파라토픽 항원 결합 분자, 또는 항원 결합 분자 칵테일인 〔1'〕내지〔8'〕 중 어느 하나에 기재된 의약 조성물,
〔10'〕상기 Fc영역이 각각 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역인, 〔1'〕내지〔9'〕 중 어느 하나에 기재된 의약 조성물,
〔11'〕상기 Fc영역의 pH 산성역 조건하에서의 FcRn에 대한 결합 활성이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 결합 활성보다 증강되어 있는 Fc영역인, 〔1'〕내지〔9'〕 중 어느 하나에 기재된 의약 조성물,
〔12'〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는 238번 위치, 244번 위치, 245번 위치, 249번 위치, 250번 위치, 251번 위치, 252번 위치, 253번 위치, 254번 위치, 255번 위치, 256번 위치, 257번 위치, 258번 위치, 260번 위치, 262번 위치, 265번 위치, 270번 위치, 272번 위치, 279번 위치, 283번 위치, 285번 위치, 286번 위치, 288번 위치, 293번 위치, 303번 위치, 305번 위치, 307번 위치, 308번 위치, 309번 위치, 311번 위치, 312번 위치, 314번 위치, 316번 위치, 317번 위치, 318번 위치, 332번 위치, 339번 위치, 340번 위치, 341번 위치, 343번 위치, 356번 위치, 360번 위치, 362번 위치, 375번 위치, 376번 위치, 377번 위치, 378번 위치, 380번 위치, 382번 위치, 385번 위치, 386번 위치, 387번 위치, 388번 위치, 389번 위치, 400번 위치, 413번 위치, 415번 위치, 423번 위치, 424번 위치, 427번 위치, 428번 위치, 430번 위치, 431번 위치, 433번 위치, 434번 위치, 435번 위치, 436번 위치, 438번 위치, 439번 위치, 440번 위치, 442번 위치 또는 447번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산이 치환되어 있는 Fc영역인 〔11'〕에 기재된 의약 조성물,
〔13'〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
238번 위치의 아미노산이 Leu,
244번 위치의 아미노산이 Leu,
245번 위치의 아미노산이 Arg,
249번 위치의 아미노산이 Pro,
250번 위치의 아미노산이 Gln 또는 Glu 중 어느 하나, 또는
251번 위치의 아미노산이 Arg, Asp, Glu 또는 Leu 중 어느 하나,
252번 위치의 아미노산이 Phe, Ser, Thr 또는 Tyr 중 어느 하나,
254번 위치의 아미노산이 Ser 또는 Thr 중 어느 하나,
255번 위치의 아미노산이 Arg, Gly, Ile 또는 Leu 중 어느 하나,
256번 위치의 아미노산이 Ala, Arg, Asn, Asp, Gln, Glu, Pro 또는 Thr 중 어느 하나,
257번 위치의 아미노산이 Ala, Ile, Met, Asn, Ser 또는 Val 중 어느 하나,
258번 위치의 아미노산이 Asp,
260번 위치의 아미노산이 Ser,
262번 위치의 아미노산이 Leu,
270번 위치의 아미노산이 Lys,
272번 위치의 아미노산이 Leu 또는 Arg 중 어느 하나,
279번 위치의 아미노산이 Ala, Asp, Gly, His, Met, Asn, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
283번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
285번 위치의 아미노산이 Asn,
286번 위치의 아미노산이 Phe,
288번 위치의 아미노산이 Asn 또는 Pro 중 어느 하나,
293번 위치의 아미노산이 Val,
307번 위치의 아미노산이 Ala, Glu, Gln 또는 Met 중 어느 하나,
311번 위치의 아미노산이 Ala, Glu, Ile, Lys, Leu, Met, Ser, Val 또는 Trp 중 어느 하나,
309번 위치의 아미노산이 Pro,
312번 위치의 아미노산이 Ala, Asp 또는 Pro 중 어느 하나,
314번 위치의 아미노산이 Ala 또는 Leu 중 어느 하나,
316번 위치의 아미노산이 Lys,
317번 위치의 아미노산이 Pro,
318번 위치의 아미노산이 Asn 또는 Thr 중 어느 하나,
332번 위치의 아미노산이 Phe, His, Lys, Leu, Met, Arg, Ser 또는 Trp 중 어느 하나,
339번 위치의 아미노산이 Asn, Thr 또는 Trp 중 어느 하나,
341번 위치의 아미노산이 Pro,
343번 위치의 아미노산이 Glu, His, Lys, Gln, Arg, Thr 또는 Tyr 중 어느 하나,
375번 위치의 아미노산이 Arg,
376번 위치의 아미노산이 Gly, Ile, Met, Pro, Thr 또는 Val 중 어느 하나,
377번 위치의 아미노산이 Lys,
378번 위치의 아미노산이 Asp, Asn 또는 Val 중 어느 하나,
380번 위치의 아미노산이 Ala, Asn, Ser 또는 Thr 중 어느 하나,
382번 위치의 아미노산이 Phe, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
385번 위치의 아미노산이 Ala, Arg, Asp, Gly, His, Lys, Ser 또는 Thr 중 어느 하나,
386번 위치의 아미노산이 Arg, Asp, Ile, Lys, Met, Pro, Ser 또는 Thr 중 어느 하나,
387번 위치의 아미노산이 Ala, Arg, His, Pro, Ser 또는 Thr 중 어느 하나,
389번 위치의 아미노산이 Asn, Pro 또는 Ser 중 어느 하나,
423번 위치의 아미노산이 Asn,
427번 위치의 아미노산이 Asn,
428번 위치의 아미노산이 Leu, Met, Phe, Ser 또는 Thr 중 어느 하나,
430번 위치의 아미노산이 Ala, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val 또는 Tyr 중 어느 하나,
431번 위치의 아미노산이 His 또는 Asn 중 어느 하나,
433번 위치의 아미노산이 Arg, Gln, His, Ile, Lys, Pro 또는 Ser 중 어느 하나,
434번 위치의 아미노산이 Ala, Gly, His, Phe, Ser, Trp 또는 Tyr 중 어느 하나,
436번 위치의 아미노산이 Arg, Asn, His, Ile, Leu, Lys, Met 또는 Thr 중 어느 하나,
438번 위치의 아미노산이 Lys, Leu, Thr 또는 Trp 중 어느 하나,
440번 위치의 아미노산이 Lys, 또는
442번 위치의 아미노산이 Lys, 308번 위치의 아미노산이 Ile, Pro 또는 Thr 중 어느 하나
의 군으로부터 선택되는 적어도 하나 이상의 아미노산인, 〔12'〕에 기재된 의약 조성물,
〔14'〕상기 Fc영역의 pH 중성역 조건하에서의 FcRn에 대한 결합 활성이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 결합 활성보다 증강되어 있는 Fc영역인, 〔1'〕내지〔9'〕 중 어느 하나에 기재된 의약 조성물,
〔15'〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는 237번 위치, 248번 위치, 250번 위치, 252번 위치, 254번 위치, 255번 위치, 256번 위치, 257번 위치, 258번 위치, 265번 위치, 286번 위치, 289번 위치, 297번 위치, 298번 위치, 303번 위치, 305번 위치, 307번 위치, 308번 위치, 309번 위치, 311번 위치, 312번 위치, 314번 위치, 315번 위치, 317번 위치, 332번 위치, 334번 위치, 360번 위치, 376번 위치, 380번 위치, 382번 위치, 384번 위치, 385번 위치, 386번 위치, 387번 위치, 389번 위치, 424번 위치, 428번 위치, 433번 위치, 434번 위치 또는 436번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산이 치환되어 있는 Fc영역인 〔14'〕에 기재된 의약 조성물,
〔16'〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
237번 위치의 아미노산이 Met,
248번 위치의 아미노산이 Ile,
250번 위치의 아미노산이 Ala, Phe, Ile, Met, Gln, Ser, Val, Trp 또는 Tyr 중 어느 하나,
252번 위치의 아미노산이 Phe, Trp 또는 Tyr 중 어느 하나,
254번 위치의 아미노산이 Thr,
255번 위치의 아미노산이 Glu,
256번 위치의 아미노산이 Asp, Asn, Glu 또는 Gln 중 어느 하나,
257번 위치의 아미노산이 Ala, Gly, Ile, Leu, Met, Asn, Ser, Thr 또는 Val 중 어느 하나,
258번 위치의 아미노산이 His,
265번 위치의 아미노산이 Ala,
286번 위치의 아미노산이 Ala 또는 Glu 중 어느 하나,
289번 위치의 아미노산이 His,
297번 위치의 아미노산이 Ala,
303번 위치의 아미노산이 Ala,
305번 위치의 아미노산이 Ala,
307번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
308번 위치의 아미노산이 Ala, Phe, Ile, Leu, Met, Pro, Gln 또는 Thr 중 어느 하나,
309번 위치의 아미노산이 Ala, Asp, Glu, Pro 또는 Arg 중 어느 하나,
311번 위치의 아미노산이 Ala, His 또는 Ile 중 어느 하나,
312번 위치의 아미노산이 Ala 또는 His 중 어느 하나,
314번 위치의 아미노산이 Lys 또는 Arg 중 어느 하나,
315번 위치의 아미노산이 Ala, Asp 또는 His 중 어느 하나,
317번 위치의 아미노산이 Ala,
332번 위치의 아미노산이 Val,
334번 위치의 아미노산이 Leu,
360번 위치의 아미노산이 His,
376번 위치의 아미노산이 Ala,
380번 위치의 아미노산이 Ala,
382번 위치의 아미노산이 Ala,
384번 위치의 아미노산이 Ala,
385번 위치의 아미노산이 Asp 또는 His 중 어느 하나,
386번 위치의 아미노산이 Pro,
387번 위치의 아미노산이 Glu,
389번 위치의 아미노산이 Ala 또는 Ser 중 어느 하나,
424번 위치의 아미노산이 Ala,
428번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
433번 위치의 아미노산이 Lys,
434번 위치의 아미노산이 Ala, Phe, His, Ser, Trp 또는 Tyr 중 어느 하나, 또는
436번 위치의 아미노산이 His, Ile, Leu, Phe, Thr 또는 Val
의 군으로부터 선택되는 적어도 하나 이상의 아미노산인, 〔15'〕에 기재된 의약 조성물,
〔17'〕상기 Fc영역이 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 Fc영역을 포함하는 〔1'〕내지〔13'〕 중 어느 하나에 기재된 의약 조성물,
〔18'〕상기 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는 221번 위치, 222번 위치, 223번 위치, 224번 위치, 225번 위치, 227번 위치, 228번 위치, 230번 위치, 231번 위치, 232번 위치, 233번 위치, 234번 위치, 235번 위치, 236번 위치, 237번 위치, 238번 위치, 239번 위치, 240번 위치, 241번 위치, 243번 위치, 244번 위치, 245번 위치, 246번 위치, 247번 위치, 249번 위치, 250번 위치, 251번 위치, 254번 위치, 255번 위치, 256번 위치, 258번 위치, 260번 위치, 262번 위치, 263번 위치, 264번 위치, 265번 위치, 266번 위치, 267번 위치, 268번 위치, 269번 위치, 270번 위치, 271번 위치, 272번 위치, 273번 위치, 274번 위치, 275번 위치, 276번 위치, 278번 위치, 279번 위치, 280번 위치, 281번 위치, 282번 위치, 283번 위치, 284번 위치, 285번 위치, 286번 위치, 288번 위치, 290번 위치, 291번 위치, 292번 위치, 293번 위치, 294번 위치, 295번 위치, 296번 위치, 297번 위치, 298번 위치, 299번 위치, 300번 위치, 301번 위치, 302번 위치, 303번 위치, 304번 위치, 305번 위치, 311번 위치, 313번 위치, 315번 위치, 317번 위치, 318번 위치, 320번 위치, 322번 위치, 323번 위치, 324번 위치, 325번 위치, 326번 위치, 327번 위치, 328번 위치, 329번 위치, 330번 위치, 331번 위치, 332번 위치, 333번 위치, 334번 위치, 335번 위치, 336번 위치, 337번 위치, 339번 위치, 376번 위치, 377번 위치, 378번 위치, 379번 위치, 380번 위치, 382번 위치, 385번 위치, 392번 위치, 396번 위치, 421번 위치, 427번 위치, 428번 위치, 429번 위치, 434번 위치, 436번 위치 또는 440번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산이 천연형 인간 IgG의 Fc영역의 아미노산과 상이한 아미노산을 포함하는 〔17'〕에 기재된 의약 조성물,
〔19'〕상기 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
221번 위치의 아미노산이 Lys 또는 Tyr 중 어느 하나,
222번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
223번 위치의 아미노산이 Phe, Trp, Glu 또는 Lys 중 어느 하나,
224번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
225번 위치의 아미노산이 Glu, Lys 또는 Trp 중 어느 하나,
227번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
228번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
230번 위치의 아미노산이 Ala, Glu, Gly 또는 Tyr 중 어느 하나,
231번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
232번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
233번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
234번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
235번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
236번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
237번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
238번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
239번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
240번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
241번 위치의 아미노산이 Asp, Glu, Leu, Arg, Trp 또는 Tyr 중 어느 하나,
243번 위치의 아미노산이 Leu, Glu, Leu, Gln, Arg, Trp 또는 Tyr 중 어느 하나,
244번 위치의 아미노산이 His,
245번 위치의 아미노산이 Ala,
246번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
247번 위치의 아미노산이 Ala, Phe, Gly, His, Ile, Leu, Met, Thr, Val 또는 Tyr 중 어느 하나,
249번 위치의 아미노산이 Glu, His, Gln 또는 Tyr 중 어느 하나,
250번 위치의 아미노산이 Glu 또는 Gln 중 어느 하나,
251번 위치의 아미노산이 Phe,
254번 위치의 아미노산이 Phe, Met 또는 Tyr 중 어느 하나,
255번 위치의 아미노산이 Glu, Leu 또는 Tyr 중 어느 하나,
256번 위치의 아미노산이 Ala, Met 또는 Pro 중 어느 하나,
258번 위치의 아미노산이 Asp, Glu, His, Ser 또는 Tyr 중 어느 하나,
260번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
262번 위치의 아미노산이 Ala, Glu, Phe, Ile 또는 Thr 중 어느 하나,
263번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
264번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
265번 위치의 아미노산이 Ala, Leu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
266번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
267번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
268번 위치의 아미노산이 Asp, Glu, Phe, Gly, Ile, Lys, Leu, Met, Pro, Gln, Arg, Thr, Val 또는 Trp 중 어느 하나,
269번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
270번 위치의 아미노산이 Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
271번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
272번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
273번 위치의 아미노산이 Phe 또는 Ile 중 어느 하나,
274번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
275번 위치의 아미노산이 Leu 또는 Trp 중 어느 하나,
276번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
278번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
279번 위치의 아미노산이 Ala,
280번 위치의 아미노산이 Ala, Gly, His, Lys, Leu, Pro, Gln, Trp 또는 Tyr 중 어느 하나,
281번 위치의 아미노산이 Asp, Lys, Pro 또는 Tyr 중 어느 하나,
282번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
283번 위치의 아미노산이 Ala, Gly, His, Ile, Lys, Leu, Met, Pro, Arg 또는 Tyr 중 어느 하나,
284번 위치의 아미노산이 Asp, Glu, Leu, Asn, Thr 또는 Tyr 중 어느 하나,
285번 위치의 아미노산이 Asp, Glu, Lys, Gln, Trp 또는 Tyr 중 어느 하나,
286번 위치의 아미노산이 Glu, Gly, Pro 또는 Tyr 중 어느 하나,
288번 위치의 아미노산이 Asn, Asp, Glu 또는 Tyr 중 어느 하나,
290번 위치의 아미노산이 Asp, Gly, His, Leu, Asn, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
291번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Gln 또는 Thr 중 어느 하나,
292번 위치의 아미노산이 Ala, Asp, Glu, Pro, Thr 또는 Tyr 중 어느 하나,
293번 위치의 아미노산이 Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
294번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
295번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
296번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr 또는 Val 중 어느 하나,
297번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
298번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Met, Asn, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
299번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
300번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
301번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
302번 위치의 아미노산이 Ile,
303번 위치의 아미노산이 Asp, Gly 또는 Tyr 중 어느 하나,
304번 위치의 아미노산이 Asp, His, Leu, Asn 또는 Thr 중 어느 하나,
305번 위치의 아미노산이 Glu, Ile, Thr 또는 Tyr 중 어느 하나,
311번 위치의 아미노산이 Ala, Asp, Asn, Thr, Val 또는 Tyr 중 어느 하나,
313번 위치의 아미노산이 Phe,
315번 위치의 아미노산이 Leu,
317번 위치의 아미노산이 Glu 또는 Gln,
318번 위치의 아미노산이 His, Leu, Asn, Pro, Gln, Arg, Thr, Val 또는 Tyr 중 어느 하나,
320번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Asn, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
322번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
323번 위치의 아미노산이 Ile,
324번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
325번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
326번 위치의 아미노산이 Ala, Asp, Glu, Gly, Ile, Leu, Met, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
327번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
328번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
329번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
330번 위치의 아미노산이 Cys, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
331번 위치의 아미노산이 Asp, Phe, His, Ile, Leu, Met, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
332번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
333번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Ser, Thr, Val 또는 Tyr 중 어느 하나,
334번 위치의 아미노산이 Ala, Glu, Phe, Ile, Leu, Pro 또는 Thr 중 어느 하나,
335번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
336번 위치의 아미노산이 Glu, Lys 또는 Tyr 중 어느 하나,
337번 위치의 아미노산이 Glu, His 또는 Asn 중 어느 하나,
339번 위치의 아미노산이 Asp, Phe, Gly, Ile, Lys, Met, Asn, Gln, Arg, Ser 또는 Thr 중 어느 하나,
376번 위치의 아미노산이 Ala 또는 Val 중 어느 하나,
377번 위치의 아미노산이 Gly 또는 Lys 중 어느 하나,
378번 위치의 아미노산이 Asp,
379번 위치의 아미노산이 Asn,
380번 위치의 아미노산이 Ala, Asn 또는 Ser 중 어느 하나,
382번 위치의 아미노산이 Ala 또는 Ile 중 어느 하나,
385번 위치의 아미노산이 Glu,
392번 위치의 아미노산이 Thr,
396번 위치의 아미노산이 Leu,
421번 위치의 아미노산이 Lys,
427번 위치의 아미노산이 Asn,
428번 위치의 아미노산이 Phe 또는 Leu 중 어느 하나,
429번 위치의 아미노산이 Met,
434번 위치의 아미노산이 Trp,
436번 위치의 아미노산이 Ile, 또는
440번 위치의 아미노산이 Gly, His, Ile, Leu 또는 Tyr 중 어느 하나
의 군으로부터 선택되는 적어도 하나 이상의 아미노산을 포함하는 〔18'〕에 기재된 의약 조성물,
〔20'〕상기 Fc영역이 활성형 Fcγ 수용체에 대한 결합 활성보다도 억제형 Fcγ 수용체에 대한 결합 활성이 높은 Fc영역인, 〔1'〕내지〔16'〕 중 어느 하나에 기재된 의약 조성물,
〔21'〕상기 억제형 Fcγ 수용체가 인간 FcγRIIb인, 〔20'〕에 기재된 의약 조성물,
〔22'〕상기 활성형 Fcγ 수용체가 인간 FcγRIa, 인간 FcγRIIa(R), 인간 FcγRIIa(H), 인간 FcγRIIIa(V) 또는 인간 FcγRIIIa(F)인, 〔20'〕 또는 〔21'〕 중 어느 하나에 기재된 의약 조성물,
〔23'〕상기 Fc영역의 EU 넘버링으로 표시되는 238번 위치 또는 328번 위치의 아미노산이 천연형 인간 IgG의 Fc영역의 아미노산과 상이한 아미노산을 포함하는, 〔20'〕내지〔22'〕 중 어느 하나에 기재된 의약 조성물,
〔24'〕상기 Fc영역의 EU 넘버링으로 표시되는 238번 위치의 아미노산이 Asp 또는 328번 위치의 아미노산이 Glu인, 〔23'〕에 기재된 의약 조성물,
〔25'〕상기 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
233번 위치의 아미노산이 Asp,
234번 위치의 아미노산이 Trp 또는 Tyr 중 어느 하나,
237번 위치의 아미노산이 Ala, Asp, Glu, Leu, Met, Phe, Trp 또는 Tyr 중 어느 하나,
239번 위치의 아미노산이 Asp,
267번 위치의 아미노산이 Ala, Gln 또는 Val 중 어느 하나,
268번 위치의 아미노산이 Asn, Asp 또는 Glu 중 어느 하나,
271번 위치의 아미노산이 Gly,
326번 위치의 아미노산이 Ala, Asn, Asp, Gln, Glu, Leu, Met, Ser 또는 Thr 중 어느 하나,
330번 위치의 아미노산이 Arg, Lys 또는 Met 중 어느 하나,
323번 위치의 아미노산이 Ile, Leu 또는 Met 중 어느 하나, 또는
296번 위치의 아미노산이 Asp
의 군으로부터 선택되는 적어도 하나 이상의 아미노산인, 〔23'〕 또는 〔24'〕에 기재된 의약 조성물
로 바꿔 말하는 것도 가능하다.
또한 상기 〔1〕~〔25〕는 다른 표현으로는
〔1"〕(i) Fc영역 및
(ii) 둘 이상의 항원 결합 도메인
을 포함하는 항원 결합 분자의 사용으로서, 당해 도메인의 하나 이상이 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인으로,
(a) 2 분자 이상의 당해 항원 결합 분자 및 (b) 2 분자 이상의 항원(단 당해 항원은 둘 이상의 항원 결합 단위를 포함한다)
을 포함하는 면역 복합체를 형성하는 것이 가능한 항원 결합 분자를 대상에 투여하는 것을 포함하는, 당해 대상의 혈장 중으로부터 당해 항원을 소실시키기 위한 방법,
〔2"〕상기 이온 농도의 조건이 칼슘 이온 농도의 조건인, 〔1"〕에 기재된 방법,
〔3"〕상기 항원 결합 도메인이 저칼슘 이온 농도의 조건하에서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건하에서의 항원에 대한 결합 활성보다도 낮은 항원 결합 도메인인, 〔2"〕에 기재된 방법,
〔4"〕상기 이온 농도의 조건이 pH의 조건인, 〔1"〕내지〔3"〕 중 어느 하나에 기재된 방법,
〔5"〕상기 항원 결합 도메인이 pH 산성역에 있어서의 항원에 대한 결합 활성이 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다도 낮은 항원 결합 도메인인, 〔4"〕에 기재된 방법,
〔6"〕둘 이상의 항원 결합 단위를 포함하는 상기 항원이 다량체인 〔1"〕내지〔5"〕 중 어느 하나에 기재된 방법,
〔7"〕상기 항원이 GDF, GDF-1, GDF-3(Vgr-2), GDF-5(BMP-14, CDMP-1), GDF-6(BMP-13, CDMP-2), GDF-7(BMP-12, CDMP-3), GDF-8(미오스타틴), GDF-9, GDF-15(MIC-1), TNF, TNF-알파, TNF-알파베타, TNF-베타2, TNFSF10(TRAIL Apo-2 리간드, TL2), TNFSF11(TRANCE/RANK 리간드 ODF, OPG 리간드), TNFSF12(TWEAK Apo-3 리간드, DR3 리간드), TNFSF13(APRIL TALL2), TNFSF13B(BAFF BLYS, TALL1, THANK, TNFSF20), TNFSF14(LIGHT HVEM 리간드, LTg), TNFSF15(TL1A/VEGI), TNFSF18(GITR 리간드 AITR 리간드, TL6), TNFSF1A(TNF-a 코넥틴(Conectin), DIF, TNFSF2), TNFSF1B(TNF-b LTa, TNFSF1), TNFSF3(LTb TNFC, p33), TNFSF4(OX40 리간드 gp34, TXGP1), TNFSF5(CD40 리간드 CD154, gp39, HIGM1, IMD3, TRAP), TNFSF6(Fas 리간드 Apo-1 리간드, APT1 리간드), TNFSF7(CD27 리간드 CD70), TNFSF8(CD30 리간드 CD153), TNFSF9(4-1BB 리간드 CD137 리간드), VEGF, IgE, IgA, IgG, IgM, RANKL, TGF-알파, TGF-베타, TGF-베타 Pan Specific 또는 IL-8 중 어느 하나인 〔6"〕에 기재된 방법,
〔8"〕둘 이상의 항원 결합 단위를 포함하는 상기 항원이 단량체인 〔1"〕내지〔5"〕 중 어느 하나에 기재된 방법,
〔9"〕항원 결합 분자가 다중 특이성 또는 다중 파라토픽 항원 결합 분자, 또는 항원 결합 분자 칵테일인 〔1"〕내지〔9"〕 중 어느 하나에 기재된 방법,
〔10"〕상기 Fc영역이 각각 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역인, 〔1"〕내지〔9"〕 중 어느 하나에 기재된 방법,
〔11"〕상기 Fc영역의 pH 산성역 조건하에서의 FcRn에 대한 결합 활성이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 결합 활성보다 증강되어 있는 Fc영역인, 〔1"〕내지〔9"〕 중 어느 하나에 기재된 방법,
〔12"〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는 238번 위치, 244번 위치, 245번 위치, 249번 위치, 250번 위치, 251번 위치, 252번 위치, 253번 위치, 254번 위치, 255번 위치, 256번 위치, 257번 위치, 258번 위치, 260번 위치, 262번 위치, 265번 위치, 270번 위치, 272번 위치, 279번 위치, 283번 위치, 285번 위치, 286번 위치, 288번 위치, 293번 위치, 303번 위치, 305번 위치, 307번 위치, 308번 위치, 309번 위치, 311번 위치, 312번 위치, 314번 위치, 316번 위치, 317번 위치, 318번 위치, 332번 위치, 339번 위치, 340번 위치, 341번 위치, 343번 위치, 356번 위치, 360번 위치, 362번 위치, 375번 위치, 376번 위치, 377번 위치, 378번 위치, 380번 위치, 382번 위치, 385번 위치, 386번 위치, 387번 위치, 388번 위치, 389번 위치, 400번 위치, 413번 위치, 415번 위치, 423번 위치, 424번 위치, 427번 위치, 428번 위치, 430번 위치, 431번 위치, 433번 위치, 434번 위치, 435번 위치, 436번 위치, 438번 위치, 439번 위치, 440번 위치, 442번 위치 또는 447번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산이 치환되어 있는 Fc영역인 〔11"〕에 기재된 방법,
〔13"〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
238번 위치의 아미노산이 Leu,
244번 위치의 아미노산이 Leu,
245번 위치의 아미노산이 Arg,
249번 위치의 아미노산이 Pro,
250번 위치의 아미노산이 Gln 또는 Glu 중 어느 하나, 또는
251번 위치의 아미노산이 Arg, Asp, Glu 또는 Leu 중 어느 하나,
252번 위치의 아미노산이 Phe, Ser, Thr 또는 Tyr 중 어느 하나,
254번 위치의 아미노산이 Ser 또는 Thr 중 어느 하나,
255번 위치의 아미노산이 Arg, Gly, Ile 또는 Leu 중 어느 하나,
256번 위치의 아미노산이 Ala, Arg, Asn, Asp, Gln, Glu, Pro 또는 Thr 중 어느 하나,
257번 위치의 아미노산이 Ala, Ile, Met, Asn, Ser 또는 Val 중 어느 하나,
258번 위치의 아미노산이 Asp,
260번 위치의 아미노산이 Ser,
262번 위치의 아미노산이 Leu,
270번 위치의 아미노산이 Lys,
272번 위치의 아미노산이 Leu 또는 Arg 중 어느 하나,
279번 위치의 아미노산이 Ala, Asp, Gly, His, Met, Asn, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
283번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
285번 위치의 아미노산이 Asn,
286번 위치의 아미노산이 Phe,
288번 위치의 아미노산이 Asn 또는 Pro 중 어느 하나,
293번 위치의 아미노산이 Val,
307번 위치의 아미노산이 Ala, Glu, Gln 또는 Met 중 어느 하나,
311번 위치의 아미노산이 Ala, Glu, Ile, Lys, Leu, Met, Ser, Val 또는 Trp 중 어느 하나,
309번 위치의 아미노산이 Pro,
312번 위치의 아미노산이 Ala, Asp 또는 Pro 중 어느 하나,
314번 위치의 아미노산이 Ala 또는 Leu 중 어느 하나,
316번 위치의 아미노산이 Lys,
317번 위치의 아미노산이 Pro,
318번 위치의 아미노산이 Asn 또는 Thr 중 어느 하나,
332번 위치의 아미노산이 Phe, His, Lys, Leu, Met, Arg, Ser 또는 Trp 중 어느 하나,
339번 위치의 아미노산이 Asn, Thr 또는 Trp 중 어느 하나,
341번 위치의 아미노산이 Pro,
343번 위치의 아미노산이 Glu, His, Lys, Gln, Arg, Thr 또는 Tyr 중 어느 하나,
375번 위치의 아미노산이 Arg,
376번 위치의 아미노산이 Gly, Ile, Met, Pro, Thr 또는 Val 중 어느 하나,
377번 위치의 아미노산이 Lys,
378번 위치의 아미노산이 Asp, Asn 또는 Val 중 어느 하나,
380번 위치의 아미노산이 Ala, Asn, Ser 또는 Thr 중 어느 하나,
382번 위치의 아미노산이 Phe, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
385번 위치의 아미노산이 Ala, Arg, Asp, Gly, His, Lys, Ser 또는 Thr 중 어느 하나,
386번 위치의 아미노산이 Arg, Asp, Ile, Lys, Met, Pro, Ser 또는 Thr 중 어느 하나,
387번 위치의 아미노산이 Ala, Arg, His, Pro, Ser 또는 Thr 중 어느 하나,
389번 위치의 아미노산이 Asn, Pro 또는 Ser 중 어느 하나,
423번 위치의 아미노산이 Asn,
427번 위치의 아미노산이 Asn,
428번 위치의 아미노산이 Leu, Met, Phe, Ser 또는 Thr 중 어느 하나,
430번 위치의 아미노산이 Ala, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val 또는 Tyr 중 어느 하나,
431번 위치의 아미노산이 His 또는 Asn 중 어느 하나,
433번 위치의 아미노산이 Arg, Gln, His, Ile, Lys, Pro 또는 Ser 중 어느 하나,
434번 위치의 아미노산이 Ala, Gly, His, Phe, Ser, Trp 또는 Tyr 중 어느 하나,
436번 위치의 아미노산이 Arg, Asn, His, Ile, Leu, Lys, Met 또는 Thr 중 어느 하나,
438번 위치의 아미노산이 Lys, Leu, Thr 또는 Trp 중 어느 하나,
440번 위치의 아미노산이 Lys, 또는
442번 위치의 아미노산이 Lys, 308번 위치의 아미노산이 Ile, Pro 또는 Thr 중 어느 하나
의 군으로부터 선택되는 적어도 하나 이상의 아미노산인, 〔12"〕에 기재된 방법,
〔14"〕상기 Fc영역의 pH 중성역 조건하에서의 FcRn에 대한 결합 활성이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 결합 활성보다 증강되어 있는 Fc영역인, 〔1"〕내지〔9"〕 중 어느 하나에 기재된 방법,
〔15"〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는 237번 위치, 248번 위치, 250번 위치, 252번 위치, 254번 위치, 255번 위치, 256번 위치, 257번 위치, 258번 위치, 265번 위치, 286번 위치, 289번 위치, 297번 위치, 298번 위치, 303번 위치, 305번 위치, 307번 위치, 308번 위치, 309번 위치, 311번 위치, 312번 위치, 314번 위치, 315번 위치, 317번 위치, 332번 위치, 334번 위치, 360번 위치, 376번 위치, 380번 위치, 382번 위치, 384번 위치, 385번 위치, 386번 위치, 387번 위치, 389번 위치, 424번 위치, 428번 위치, 433번 위치, 434번 위치 또는 436번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산이 치환되어 있는 Fc영역인 〔14"〕에 기재된 방법,
〔16"〕상기 Fc영역이 서열번호:13, 14, 15 또는 16 중 어느 하나로 표시되는 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
237번 위치의 아미노산이 Met,
248번 위치의 아미노산이 Ile,
250번 위치의 아미노산이 Ala, Phe, Ile, Met, Gln, Ser, Val, Trp 또는 Tyr 중 어느 하나,
252번 위치의 아미노산이 Phe, Trp 또는 Tyr 중 어느 하나,
254번 위치의 아미노산이 Thr,
255번 위치의 아미노산이 Glu,
256번 위치의 아미노산이 Asp, Asn, Glu 또는 Gln 중 어느 하나,
257번 위치의 아미노산이 Ala, Gly, Ile, Leu, Met, Asn, Ser, Thr 또는 Val 중 어느 하나,
258번 위치의 아미노산이 His,
265번 위치의 아미노산이 Ala,
286번 위치의 아미노산이 Ala 또는 Glu 중 어느 하나,
289번 위치의 아미노산이 His,
297번 위치의 아미노산이 Ala,
303번 위치의 아미노산이 Ala,
305번 위치의 아미노산이 Ala,
307번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
308번 위치의 아미노산이 Ala, Phe, Ile, Leu, Met, Pro, Gln 또는 Thr 중 어느 하나,
309번 위치의 아미노산이 Ala, Asp, Glu, Pro 또는 Arg 중 어느 하나,
311번 위치의 아미노산이 Ala, His 또는 Ile 중 어느 하나,
312번 위치의 아미노산이 Ala 또는 His 중 어느 하나,
314번 위치의 아미노산이 Lys 또는 Arg 중 어느 하나,
315번 위치의 아미노산이 Ala, Asp 또는 His 중 어느 하나,
317번 위치의 아미노산이 Ala,
332번 위치의 아미노산이 Val,
334번 위치의 아미노산이 Leu,
360번 위치의 아미노산이 His,
376번 위치의 아미노산이 Ala,
380번 위치의 아미노산이 Ala,
382번 위치의 아미노산이 Ala,
384번 위치의 아미노산이 Ala,
385번 위치의 아미노산이 Asp 또는 His 중 어느 하나,
386번 위치의 아미노산이 Pro,
387번 위치의 아미노산이 Glu,
389번 위치의 아미노산이 Ala 또는 Ser 중 어느 하나,
424번 위치의 아미노산이 Ala,
428번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
433번 위치의 아미노산이 Lys,
434번 위치의 아미노산이 Ala, Phe, His, Ser, Trp 또는 Tyr 중 어느 하나, 또는
436번 위치의 아미노산이 His, Ile, Leu, Phe, Thr 또는 Val
의 군으로부터 선택되는 적어도 하나 이상의 아미노산인, 〔15"〕에 기재된 방법,
〔17"〕상기 Fc영역이 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 Fc영역을 포함하는 〔1"〕내지〔13"〕 중 어느 하나에 기재된 방법,
〔18"〕상기 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는 221번 위치, 222번 위치, 223번 위치, 224번 위치, 225번 위치, 227번 위치, 228번 위치, 230번 위치, 231번 위치, 232번 위치, 233번 위치, 234번 위치, 235번 위치, 236번 위치, 237번 위치, 238번 위치, 239번 위치, 240번 위치, 241번 위치, 243번 위치, 244번 위치, 245번 위치, 246번 위치, 247번 위치, 249번 위치, 250번 위치, 251번 위치, 254번 위치, 255번 위치, 256번 위치, 258번 위치, 260번 위치, 262번 위치, 263번 위치, 264번 위치, 265번 위치, 266번 위치, 267번 위치, 268번 위치, 269번 위치, 270번 위치, 271번 위치, 272번 위치, 273번 위치, 274번 위치, 275번 위치, 276번 위치, 278번 위치, 279번 위치, 280번 위치, 281번 위치, 282번 위치, 283번 위치, 284번 위치, 285번 위치, 286번 위치, 288번 위치, 290번 위치, 291번 위치, 292번 위치, 293번 위치, 294번 위치, 295번 위치, 296번 위치, 297번 위치, 298번 위치, 299번 위치, 300번 위치, 301번 위치, 302번 위치, 303번 위치, 304번 위치, 305번 위치, 311번 위치, 313번 위치, 315번 위치, 317번 위치, 318번 위치, 320번 위치, 322번 위치, 323번 위치, 324번 위치, 325번 위치, 326번 위치, 327번 위치, 328번 위치, 329번 위치, 330번 위치, 331번 위치, 332번 위치, 333번 위치, 334번 위치, 335번 위치, 336번 위치, 337번 위치, 339번 위치, 376번 위치, 377번 위치, 378번 위치, 379번 위치, 380번 위치, 382번 위치, 385번 위치, 392번 위치, 396번 위치, 421번 위치, 427번 위치, 428번 위치, 429번 위치, 434번 위치, 436번 위치 또는 440번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산이 천연형 인간 IgG의 Fc영역의 아미노산과 상이한 아미노산을 포함하는 〔17"〕에 기재된 방법,
〔19"〕상기 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
221번 위치의 아미노산이 Lys 또는 Tyr 중 어느 하나,
222번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
223번 위치의 아미노산이 Phe, Trp, Glu 또는 Lys 중 어느 하나,
224번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
225번 위치의 아미노산이 Glu, Lys 또는 Trp 중 어느 하나,
227번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
228번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
230번 위치의 아미노산이 Ala, Glu, Gly 또는 Tyr 중 어느 하나,
231번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
232번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
233번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
234번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
235번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
236번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
237번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
238번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
239번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
240번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
241번 위치의 아미노산이 Asp, Glu, Leu, Arg, Trp 또는 Tyr 중 어느 하나,
243번 위치의 아미노산이 Leu, Glu, Leu, Gln, Arg, Trp 또는 Tyr 중 어느 하나,
244번 위치의 아미노산이 His,
245번 위치의 아미노산이 Ala,
246번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
247번 위치의 아미노산이 Ala, Phe, Gly, His, Ile, Leu, Met, Thr, Val 또는 Tyr 중 어느 하나,
249번 위치의 아미노산이 Glu, His, Gln 또는 Tyr 중 어느 하나,
250번 위치의 아미노산이 Glu 또는 Gln 중 어느 하나,
251번 위치의 아미노산이 Phe,
254번 위치의 아미노산이 Phe, Met 또는 Tyr 중 어느 하나,
255번 위치의 아미노산이 Glu, Leu 또는 Tyr 중 어느 하나,
256번 위치의 아미노산이 Ala, Met 또는 Pro 중 어느 하나,
258번 위치의 아미노산이 Asp, Glu, His, Ser 또는 Tyr 중 어느 하나,
260번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
262번 위치의 아미노산이 Ala, Glu, Phe, Ile 또는 Thr 중 어느 하나,
263번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
264번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
265번 위치의 아미노산이 Ala, Leu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
266번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
267번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
268번 위치의 아미노산이 Asp, Glu, Phe, Gly, Ile, Lys, Leu, Met, Pro, Gln, Arg, Thr, Val 또는 Trp 중 어느 하나,
269번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
270번 위치의 아미노산이 Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
271번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
272번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
273번 위치의 아미노산이 Phe 또는 Ile 중 어느 하나,
274번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
275번 위치의 아미노산이 Leu 또는 Trp 중 어느 하나,
276번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
278번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
279번 위치의 아미노산이 Ala,
280번 위치의 아미노산이 Ala, Gly, His, Lys, Leu, Pro, Gln, Trp 또는 Tyr 중 어느 하나,
281번 위치의 아미노산이 Asp, Lys, Pro 또는 Tyr 중 어느 하나,
282번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
283번 위치의 아미노산이 Ala, Gly, His, Ile, Lys, Leu, Met, Pro, Arg 또는 Tyr 중 어느 하나,
284번 위치의 아미노산이 Asp, Glu, Leu, Asn, Thr 또는 Tyr 중 어느 하나,
285번 위치의 아미노산이 Asp, Glu, Lys, Gln, Trp 또는 Tyr 중 어느 하나,
286번 위치의 아미노산이 Glu, Gly, Pro 또는 Tyr 중 어느 하나,
288번 위치의 아미노산이 Asn, Asp, Glu 또는 Tyr 중 어느 하나,
290번 위치의 아미노산이 Asp, Gly, His, Leu, Asn, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
291번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Gln 또는 Thr 중 어느 하나,
292번 위치의 아미노산이 Ala, Asp, Glu, Pro, Thr 또는 Tyr 중 어느 하나,
293번 위치의 아미노산이 Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
294번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
295번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
296번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr 또는 Val 중 어느 하나,
297번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
298번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Met, Asn, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
299번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
300번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
301번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
302번 위치의 아미노산이 Ile,
303번 위치의 아미노산이 Asp, Gly 또는 Tyr 중 어느 하나,
304번 위치의 아미노산이 Asp, His, Leu, Asn 또는 Thr 중 어느 하나,
305번 위치의 아미노산이 Glu, Ile, Thr 또는 Tyr 중 어느 하나,
311번 위치의 아미노산이 Ala, Asp, Asn, Thr, Val 또는 Tyr 중 어느 하나,
313번 위치의 아미노산이 Phe,
315번 위치의 아미노산이 Leu,
317번 위치의 아미노산이 Glu 또는 Gln,
318번 위치의 아미노산이 His, Leu, Asn, Pro, Gln, Arg, Thr, Val 또는 Tyr 중 어느 하나,
320번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Asn, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
322번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
323번 위치의 아미노산이 Ile,
324번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
325번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
326번 위치의 아미노산이 Ala, Asp, Glu, Gly, Ile, Leu, Met, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
327번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
328번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
329번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
330번 위치의 아미노산이 Cys, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
331번 위치의 아미노산이 Asp, Phe, His, Ile, Leu, Met, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
332번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
333번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Ser, Thr, Val 또는 Tyr 중 어느 하나,
334번 위치의 아미노산이 Ala, Glu, Phe, Ile, Leu, Pro 또는 Thr 중 어느 하나,
335번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
336번 위치의 아미노산이 Glu, Lys 또는 Tyr 중 어느 하나,
337번 위치의 아미노산이 Glu, His 또는 Asn 중 어느 하나,
339번 위치의 아미노산이 Asp, Phe, Gly, Ile, Lys, Met, Asn, Gln, Arg, Ser 또는 Thr 중 어느 하나,
376번 위치의 아미노산이 Ala 또는 Val 중 어느 하나,
377번 위치의 아미노산이 Gly 또는 Lys 중 어느 하나,
378번 위치의 아미노산이 Asp,
379번 위치의 아미노산이 Asn,
380번 위치의 아미노산이 Ala, Asn 또는 Ser 중 어느 하나,
382번 위치의 아미노산이 Ala 또는 Ile 중 어느 하나,
385번 위치의 아미노산이 Glu,
392번 위치의 아미노산이 Thr,
396번 위치의 아미노산이 Leu,
421번 위치의 아미노산이 Lys,
427번 위치의 아미노산이 Asn,
428번 위치의 아미노산이 Phe 또는 Leu 중 어느 하나,
429번 위치의 아미노산이 Met,
434번 위치의 아미노산이 Trp,
436번 위치의 아미노산이 Ile, 또는
440번 위치의 아미노산이 Gly, His, Ile, Leu 또는 Tyr 중 어느 하나
의 군으로부터 선택되는 적어도 하나 이상의 아미노산을 포함하는 〔18"〕에 기재된 방법,
〔20"〕상기 Fc영역이 활성형 Fcγ 수용체에 대한 결합 활성보다도 억제형 Fcγ 수용체에 대한 결합 활성이 높은 Fc영역인, 〔1"〕내지〔16"〕 중 어느 하나에 기재된 방법,
〔21"〕상기 억제형 Fcγ 수용체가 인간 FcγRIIb인, 〔20"〕에 기재된 방법,
〔22"〕상기 활성형 Fcγ 수용체가 인간 FcγRIa, 인간 FcγRIIa(R), 인간 FcγRIIa(H), 인간 FcγRIIIa(V) 또는 인간 FcγRIIIa(F)인, 〔20"〕 또는 〔21"〕 중 어느 하나에 기재된 방법,
〔23"〕상기 Fc영역의 EU 넘버링으로 표시되는 238번 위치 또는 328번 위치의 아미노산이 천연형 인간 IgG의 Fc영역의 아미노산과 상이한 아미노산을 포함하는, 〔20"〕내지〔22"〕 중 어느 하나에 기재된 방법,
〔24"〕상기 Fc영역의 EU 넘버링으로 표시되는 238번 위치의 아미노산이 Asp 또는 328번 위치의 아미노산이 Glu인, 〔23"〕에 기재된 방법,
〔25"〕상기 Fc영역의 아미노산 서열 중 EU 넘버링으로 표시되는;
233번 위치의 아미노산이 Asp,
234번 위치의 아미노산이 Trp 또는 Tyr 중 어느 하나,
237번 위치의 아미노산이 Ala, Asp, Glu, Leu, Met, Phe, Trp 또는 Tyr 중 어느 하나,
239번 위치의 아미노산이 Asp,
267번 위치의 아미노산이 Ala, Gln 또는 Val 중 어느 하나,
268번 위치의 아미노산이 Asn, Asp 또는 Glu 중 어느 하나,
271번 위치의 아미노산이 Gly,
326번 위치의 아미노산이 Ala, Asn, Asp, Gln, Glu, Leu, Met, Ser 또는 Thr 중 어느 하나,
330번 위치의 아미노산이 Arg, Lys 또는 Met 중 어느 하나,
323번 위치의 아미노산이 Ile, Leu 또는 Met 중 어느 하나, 또는
296번 위치의 아미노산이 Asp
의 군으로부터 선택되는 적어도 하나 이상의 아미노산인, 〔23"〕 또는 〔24"〕에 기재된 방법
으로 바꿔 말하는 것도 가능하다.
도 1은 pH 의존적 결합 항체가 반복해서 가용형 항원에 결합하는 것을 나타내는 도면이다. (i) 항체가 가용형 항원과 결합하고, (ii) 비특이적으로 음세포작용(pinocytosis)에 의해 세포내에 흡수되며, (iii) 엔도솜 내에서 항체는 FcRn과 결합하고 가용형 항원은 항체로부터 해리되며, (iv) 가용형 항원은 리소좀으로 이행하여 분해되고, (v) 가용형 항원이 해리된 항체는 FcRn에 의해 혈장 중으로 리사이클되며, (vi) 리사이클된 항체는 재차 가용형 항원으로 결합하는 것이 가능해진다.
도 2는 중성 조건하에서 FcRn으로의 결합을 증강시킴으로써 pH 의존적 결합 항체가 항원에 반복해서 결합할 수 있는 효과를 더욱 향상시키는 것을 나타내는 도면이다. (i) 항체가 가용형 항원과 결합하고, (ii) FcRn을 매개로 음세포작용에 의해 세포내로 흡수되며, (iii) 엔도솜 내에서 가용형 항원은 항체로부터 해리되고, (iv) 가용형 항원은 리소좀으로 이행하여 분해되며, (v) 가용형 항원이 해리된 항체는 FcRn에 의해 혈장 중으로 리사이클되고, (vi) 리사이클된 항체는 재차 가용형 항원으로 결합하는 것이 가능해진다.
도 3은 Biacore를 사용한 항인간 IgA 항체의 Ca2 + 1.2 mM 및 Ca2 + 3 μM에 있어서의 인간 IgA로의 상호작용을 나타내는 센서그램을 나타내는 도면이다.
도 4는 인간 IgA+GA1-IgG1 항체 투여군, 인간 IgA+GA2-IgG1 항체 투여군, 인간 IgA+GA2-FcγR (-) 및 GA2-N434W 항체 투여군의 정상 마우스 혈장 중 항체농도 추이를 나타내는 도면이다.
도 5는 인간 IgA 단독 투여군, 인간 IgA+GA1-IgG1 항체 투여군, 인간 IgA+GA2-IgG1 항체 투여군, 인간 IgA+GA2-FcγR (-) 항체 투여군 및 인간 IgA+GA2-N434W 항체 투여군의 정상 마우스 혈장 중 인간 IgA의 농도 추이를 나타내는 도면이다.
도 6은 인간 IgA+GA1-IgG1 항체 투여군, 인간 IgA+GA2-IgG1 항체 투여군, 인간 IgA+GA2-FcγR (-) 항체 투여군 및 인간 IgA+GA2-N434W 항체 투여군의 정상 마우스 혈장 중의 비결합형 인간 IgA의 농도 추이를 나타내는 도면이다.
도 7은 다량체 항원에 대해 커다란 면역 복합체를 형성하는 천연 IgG1의 정상영역을 포함하는 pH/Ca 의존성 항체의 항체 1 분자당 항원을 소실시키는 효율을 예시하는 도면이다.
도 8은 단량체 항원에 존재하는 2개 이상의 에피토프를 인식하여 커다란 면역 복합체를 형성하기에 적절한 multispecific pH/Ca 의존성 항체의 항체 1 분자당 항원을 소실시키는 효율을 예시하는 도면이다.
도 9는 인간 IgE와 pH 의존적 항IgE 항체인 클론 278이 pH 의존적으로 큰 면역 복합체를 형성하는 것을 확인한 겔여과 크로마토그래피 분석 결과를 나타내는 도면이다.
도 10은 인간 IgE+클론 278 투여군 및 인간 IgE+Xolair 항체 투여군의 정상 마우스 혈장 중 항체농도 추이를 나타내는 도면이다.
도 11은 인간 IgE 단독 투여군, 인간 IgE+클론 278 항체 투여군 및 인간 IgE+클론 278 항체 투여군의 정상 마우스 혈장 중 인간 IgE의 농도 추이를 나타내는 도면이다.
도 12는 정상 마우스에 있어서의 GA2-IgG1 및 GA2-F1087의 혈장 중 항체농도 추이를 나타낸 도면이다.
도 13은 GA2-IgG1 및 GA2-F1087이 투여된 정상 마우스에 있어서의 혈장 중 hIgA 농도 추이를 나타낸 도면이다.
도 14는 C57BL/6J 마우스에 있어서의 278-IgG1 및 278-F1087의 혈장 중 항체농도 추이를 나타낸 도면이다.
도 15는 278-IgG1 및 278-F1087이 투여된 C57BL/6J 마우스에 있어서의 혈장 중 hIgE(Asp6) 농도 추이를 나타낸 도면이다.
도 16은 GA2-F760 또는 GA2-F1331이 투여된 인간 FcRn 형질전환 마우스에 있어서의 혈장 중의 GA2-F760 또는 GA2-F1331의 농도 추이를 나타낸 도면이다.
도 17은 GA2-F760 또는 GA2-F1331이 투여된 인간 FcRn 형질전환 마우스에 있어서의 혈장 중의 인간 IgA의 농도 추이를 나타낸 도면이다.
도 18은 278-F760 또는 278-F1331이 투여된 인간 FcRn 형질전환 마우스에 있어서의 혈장 중의 278-F760 또는 278-F1331의 농도 추이를 나타낸 도면이다.
도 19는 278-F760 또는 278-F1331이 투여된 인간 FcRn 형질전환 마우스에 있어서의 혈장 중의 인간 IgE의 농도 추이를 나타낸 도면이다.
도 20은 pH 7.4, pH 6.0에 있어서의 PHX-IgG1의 hsIL-6R에 대한 센서그램을 나타내는 도면이다.
도 21은 Fv4-IgG1과 PHX-F29가 동시에 IL6R에 결합할 수 있는지를 ECL법(전기화학발광법)으로 평가한 결과이다.
도 22는 hsIL6R+Fv4-IgG1 투여군 및 hsIL6R+Fv4-IgG1+PHX-IgG1 투여군의 정상 마우스 혈장 중 항IL6R 항체의 농도 추이를 나타낸 그래프이다.
도 23은 hsIL6R+Fv4-IgG1 투여군 및 hsIL6R+Fv4-IgG1+PHX-IgG1 투여군의 정상 마우스 혈장 중 인간 IL6R의 농도 추이를 나타낸 그래프이다.
도 24는 FcγR과 항체만의 용액 또는 항체와 항원의 혼합용액을 작용시켰을 때의 Biacore 센서그램이다. 파선은 항체만의 용액을 작용시킨 경우이고, 실선은 항체와 항원을 혼합한 용액을 작용시킨 경우의 센서그램을 나타내는 도면이다.
도 25는 인간 FcRn과 항체만의 용액 또는 항체와 항원의 혼합용액을 작용시켰을 때의 Biacore 센서그램이다. 실선은 항체만의 용액을 작용시킨 경우이고, 파선은 항체와 항원을 혼합한 용액을 작용시킨 경우의 센서그램을 나타내는 도면이다.
도 26은 마우스 FcRn과 항체만의 용액 또는 항체와 항원의 혼합용액을 작용시켰을 때의 Biacore 센서그램이다. 파선은 항체만의 용액을 작용시킨 경우이고, 실선은 항체와 항원을 혼합한 용액을 작용시킨 경우의 센서그램을 나타내는 도면이다.
도 27은 마우스 FcRn과 항체만의 용액 또는 항체와 항원의 혼합용액을 작용시켰을 때의 Biacore 센서그램이다. 파선은 항체만의 용액을 작용시킨 경우이고, 실선은 항체와 항원을 혼합한 용액을 작용시킨 경우의 센서그램을 나타내는 도면이다.
아래의 정의 및 상세한 설명은 본 명세서에 있어서 설명하는 본 발명의 이해를 용이하게 하기 위해 제공된다.
아미노산
본 명세서에 있어서 예를 들면, Ala/A, Leu/L, Arg/R, Lys/K, Asn/N, Met/M, Asp/D, Phe/F, Cys/C, Pro/P, Gln/Q, Ser/S, Glu/E, Thr/T, Gly/G, Trp/W, His/H, Tyr/Y, Ile/I, Val/V로 표시되는 바와 같이, 아미노산은 1문자 코드 또는 3문자 코드, 또는 그 양쪽으로 표기되어 있다.
아미노산의 개변
항원 결합 분자의 아미노산 서열 중의 아미노산의 개변을 위해서는 부위 특이적 변이 유발법(Kunkel 등(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))이나 Overlap extension PCR 등의 공지의 방법이 적절히 채용될 수 있다. 또한 천연의 아미노산 이외의 아미노산으로 치환하는 아미노산의 개변 방법으로서 복수의 공지의 방법도 또한 채용될 수 있다(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249, Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357). 예를 들면 종지 코돈의 하나인 UAG 코돈(앰버 코돈)의 상보적 앰버 서프레서 tRNA에 비천연 아미노산이 결합된 tRNA가 포함되는 무세포 번역계 시스템(Clover Direct(Protein Express)) 등도 적합하게 사용될 수 있다.
본 명세서에 있어서 아미노산의 개변 부위를 나타낼 때 사용되는 「및/또는 」의 용어의 정의는 「및」과 「또는」이 적절히 조합된 모든 조합을 포함한다. 구체적으로는 예를 들면 「33번 위치, 55번 위치 및/또는 96번 위치의 아미노산이 치환되어 있다」는 것은 아래의 아미노산의 개변의 변형이 포함된다;
(a) 33번 위치, (b) 55번 위치, (c) 96번 위치, (d) 33번 위치 및 55번 위치, (e) 33번 위치 및 96번 위치, (f) 55번 위치 및 96번 위치, (g) 33번 위치, 55번 위치 및 96번 위치.
항원 결합 단위
본 명세서에 있어서 「항원 결합 단위」란 「본 발명의 항원 결합 분자에 포함되는 항원 결합 도메인의 1가의 결합 단위가 결합하는 에피토프를 포함하는 항원 분자가 당해 항원 결합 분자의 비존재하에 있어서 혈장 중에서 통상 존재하는 형태의 1 분자당 존재하는 당해 에피토프의 수」를 말한다. 항원 결합 단위가 2 단위인 항원의 예로서 GDF, PDGF 또는 VEGF 등의 호모 이량체의 형태로 통상 혈장 중에 존재하는 다량체를 포함하는 항원이 예시된다. 예를 들면 동일 서열의 가변영역을 2개 그 분자 중에 포함하는(즉 후술하는 이중 특이성 항체는 아닌) 항GDF 항체에 포함되는 가변영역의 1가의 결합 단위가 결합하는 에피토프는 호모 이량체를 형성하는 GDF의 분자 중에 2 단위 존재한다. 또한 항원 결합 단위가 2 단위인 항원의 예로서 IgE 등의 이뮤노글로불린 분자도 예시된다. IgE는 혈장 중에서는 중쇄 이량체와 경쇄 이량체를 포함하는 사량체로 통상 존재하는데, 동일 서열의 가변영역을 2개 그 분자 중에 포함하는(즉 후술하는 이중 특이성 항체가 아닌) 항IgE 항체에 포함되는 가변영역의 1가가 결합하는 에피토프는 당해 사량체 중에 2 단위 존재하게 된다. IgA는 혈장 중에서는 중쇄 이량체와 경쇄 이량체를 포함하는 사량체 또는 당해 사량체가 J쇄를 매개로 추가로 복합체를 형성하는 팔량체의 2개의 태양으로 통상 존재하는데, 동일 서열의 가변영역을 2개 그 분자 중에 포함하는(즉 후술하는 이중 특이성 항체가 아닌) 항IgA 항체에 포함되는 가변영역의 1가가 결합하는 에피토프는 당해 사량체 중 및 팔량체 중에는 각각 2 단위 또는 4 단위가 존재하게 된다. 또한 항원 결합 단위가 3 단위인 항원의 예로서 TNF 슈퍼패밀리인 TNFα, RANKL 또는 CD154 등의 호모 삼량체의 형태로 통상 혈장 중에 존재하는 다량체를 포함하는 항원이 예시된다.
항원 결합 단위가 1 단위인 항원 분자의 예로서 가용형 IL-6 수용체(이하 sIL-6R으로도 불린다), IL-6, HMGB-1, CTGF 등의 단량체의 형태로 통상 혈장 중에 존재하는 분자가 예시된다. IL-12p40 및 IL-12p35를 포함하는 IL-12, IL-12p40 및 (IL-30B로도 불리는) IL-23p19를 포함하는 IL-23, 또는 EBI3 및 IL27p28을 포함하는 IL-23, 또는 IL-12p35 및 EBI3을 포함하는 IL-35 등의 헤테로 이량체는 서로 구조가 상이한 2 분자의 서브유닛을 포함한다. 이들 서브유닛 중 어느 하나에 결합하는 가변영역을 2개 그 분자 중에 포함하는(즉 후술하는 이중 특이성 항체가 아닌) 항서브유닛 항체에 포함되는 가변영역의 1가가 결합하는 에피토프는 1 단위이기 때문에, 이들 헤테로 이량체의 항원 결합 단위는 1 단위이다. TNFα-TNFβ-hCG의 멀티 서브유닛 복합체 등의 헤테로 삼량체도 마찬가지로 그 항원 결합 단위는 1 단위이다.
또한 항원 결합 단위는 항원 결합 도메인의 1가의 결합 단위가 결합하는 에피토프의 수를 의미하는 것으로부터, 항원 결합 분자 중의 파라토프가 1종류 존재하는 경우와 복수 종류 존재하는 경우에서는, 이들 항원 결합 분자가 결합하는 항원이 동일 항원이더라도 당해 항원에 있어서의 항원 결합 단위는 상이하게 된다. 예를 들면 상기 헤테로 이량체의 예에서는 항원 결합 분자가 포함하는 항원 결합 도메인 중의 1가의 결합 단위가 당해 헤테로 이량체 중의 1종류의 서브유닛에 결합하는 경우에는 당해 항원 중의 항원 결합 단위는 1 단위인 것에 대해, 항원 결합 분자가 헤테로 이량체를 형성하는 각 서브유닛에 결합하는 1가의 결합 단위를 2개 포함하는 이중 특이성 또는 이중 파라토픽 항원 결합 분자인 경우에는 당해 항원 중의 항원 결합 단위는 2 단위이다.
다량체 ( multimer )
본 명세서에 있어서 단순히 둘 이상의 다량체로 기재되는 경우, 다량체라는 용어에는 호모 다량체와 헤테로 다량체 양쪽이 포함된다. 다량체에 포함되는 서브유닛 간의 결합양식으로서는 펩티드 결합 또는 디설피드 결합 등의 공유 결합, 또는 이온 결합, 반데르발스 결합 또는 수소 결합 등의 안정한 비공유 결합을 포함하는데, 이들에 한정되지 않는다. 호모 다량체는 복수의 동일 서브유닛을 포함하는 한편 헤테로 다량체는 복수의 상이한 서브유닛을 포함한다. 예를 들면 이량체라는 용어에는 호모 이량체와 헤테로 이량체 양쪽이 포함되고, 호모 이량체는 2개의 동일 서브유닛을 포함하는 한편 헤테로 이량체는 2개의 상이한 서브유닛을 포함한다. 또한 다량체를 형성하는 각각의 단위를 나타내는 단량체란 당해 단위가 폴리펩티드인 경우에는 펩티드 결합에 의해 연결된 연속하는 각 구조 단위를 의미한다.
항원
본 명세서에 있어서 「항원」은 항원 결합 도메인이 결합하는 에피토프를 포함하는 한 그 구조는 특정 구조에 한정되지 않는다. 다른 의미로는 항원은 무기물일 수도 있고 유기물일 수도 있다. 항원으로서는 하기와 같은 분자;17-IA, 4-1 BB, 4Dc, 6-케토-PGF1a, 8-이소-PGF2a, 8-옥소-dG, A1 아데노신 수용체, A33, ACE, ACE-2, 액티빈, 액티빈 A, 액티빈 AB, 액티빈 B, 액티빈 C, 액티빈 RIA, 액티빈 RIA ALK-2, 액티빈 RIB ALK-4, 액티빈 RIIA, 액티빈 RIIB, ADAM, ADAM10, ADAM12, ADAM15, ADAM17/TACE, ADAM8, ADAM9, ADAMTS, ADAMTS4, ADAMTS5, 아드레신(Addressins), aFGF, ALCAM, ALK, ALK-1, ALK-7, 알파-1-안티트립신, 알파-V/베타-1 안타고니스트, ANG, Ang, APAF-1, APE, APJ, APP, APRIL, AR, ARC, ART, 아르테민, 항Id, ASPARTIC, 심방성 나트륨 이뇨인자, av/b3 인테그린, Axl, b2M, B7-1, B7-2, B7-H, B-림프구 자극인자(BlyS), BACE, BACE-1, Bad, BAFF, BAFF-R, Bag-1, BAK, Bax, BCA-1, BCAM, Bcl, BCMA, BDNF, b-ECGF, bFGF, BID, Bik, BIM, BLC, BL-CAM, BLK, BMP, BMP-2 BMP-2a, BMP-3 오스테오게닌(Osteogenin), BMP-4 BMP-2b, BMP-5, BMP-6 Vgr-1, BMP-7(OP-1), BMP-8(BMP-8a, OP-2), BMPR, BMPR-IA(ALK-3), BMPR-IB(ALK-6), BRK-2, RPK-1, BMPR-II(BRK-3), BMP, b-NGF, BOK, 봄베신, 골 유래 신경 영양인자(Bone-derived neurotrophic factor), BPDE, BPDE-DNA, BTC, 보체인자 3(C3), C3a, C4, C5, C5a, C10, CA125, CAD-8, 칼시토닌, cAMP, 암 태아성 항원(CEA), 암 관련 항원, 카텝신 A, 카텝신 B, 카텝신 C/DPPI, 카텝신 D, 카텝신 E, 카텝신 H, 카텝신 L, 카텝신 O, 카텝신 S, 카텝신 V, 카텝신 X/Z/P, CBL, CCI, CCK2, CCL, CCL1, CCL11, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL2, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, CCL28, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9/10, CCR, CCR1, CCR10, CCR10, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CD1, CD2, CD3, CD3E, CD4, CD5, CD6, CD7, CD8, CD10, CD11a, CD11b, CD11c, CD13, CD14, CD15, CD16, CD18, CD19, CD20, CD21, CD22, CD23, CD25, CD27L, CD28, CD29, CD30, CD30L, CD32, CD33(p67 단백질), CD34, CD38, CD40, CD40L, CD44, CD45, CD46, CD49a, CD52, CD54, CD55, CD56, CD61, CD64, CD66e, CD74, CD80(B7-1), CD89, CD95, CD123, CD137, CD138, CD140a, CD146, CD147, CD148, CD152, CD164, CEACAM5, CFTR, cGMP, CINC, 보툴리눔 독소(Botulinum toxin), 웰치균 독소(Clostridium perfringens toxin), CKb8-1, CLC, CMV, CMV UL, CNTF, CNTN-1, COX, C-Ret, CRG-2, CT-1, CTACK, CTGF, CTLA-4, CX3CL1, CX3CR1, CXCL, CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16, CXCR, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, 사이토케라틴 종양 관련 항원, DAN, DCC, DcR3, DC-SIGN, 보체 제어인자(Decay accelerating factor), des(1-3)-IGF-I(뇌 IGF-1), Dhh, 디곡신, DNAM-1, Dnase, Dpp, DPPIV/CD26, Dtk, ECAD, EDA, EDA-A1, EDA-A2, EDAR, EGF, EGFR(ErbB-1), EMA, EMMPRIN, ENA, 엔도텔린 수용체, 엔케팔리나제, eNOS, Eot, 에오탁신 1, EpCAM, 에프린 B2/EphB4, EPO, ERCC, E-셀렉틴, ET-1, 팩터 IIa, 팩터 VII, 팩터 VIIIc, 팩터 IX, 섬유아세포 활성화 단백질(FAP), Fas, FcR1, FEN-1, 페리틴, FGF, FGF-19, FGF-2, FGF3, FGF-8, FGFR, FGFR-3, 피브린, FL, FLIP, Flt-3, Flt-4, 난포 자극 호르몬, 프랙탈카인, FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9, FZD10, G250, Gas6, GCP-2, GCSF, GD2, GD3, GDF, GDF-1, GDF-3(Vgr-2), GDF-5(BMP-14, CDMP-1), GDF-6(BMP-13, CDMP-2), GDF-7(BMP-12, CDMP-3), GDF-8(미오스타틴), GDF-9, GDF-15(MIC-1), GDNF, GDNF, GFAP, GFRa-1, GFR-알파1, GFR-알파2, GFR-알파3, GITR, 글루카곤, Glut4, 당단백질IIb/IIIa(GPIIb/IIIa), GM-CSF, gp130, gp72, GRO, 성장 호르몬 방출인자, 합텐(NP-cap 또는 NIP-cap), HB-EGF, HCC, HCMV gB 엔벨로프 당단백질, HCMV gH 엔벨로프 당단백질, HCMV UL, 조혈 성장 인자(HGF), Hep B gp120, 헤파라나제, Her2, Her2/neu(ErbB-2), Her3(ErbB-3), Her4(ErbB-4), 단순 헤르페스 바이러스(HSV) gB 당단백질, HSV gD 당단백질, HGFA, 고분자량 흑색종 관련 항원(HMW-MAA), HIV gp120, HIV IIIB gp 120 V3 루프, HLA, HLA-DR, HM1.24, HMFG PEM, HRG, Hrk, 인간 심장 미오신, 인간 사이토메갈로바이러스(HCMV), 인간 성장 호르몬(HGH), HVEM, I-309, IAP, ICAM, ICAM-1, ICAM-3, ICE, ICOS, IFNg, Ig, IgA 수용체, IgE, IGF, IGF 결합 단백질, IGF-1R, IGFBP, IGF-I, IGF-II, IL, IL-1, IL-1R, IL-2, IL-2R, IL-4, IL-4R, IL-5, IL-5R, IL-6, IL-6R, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-18, IL-18R, IL-23, 인터페론(INF)-알파, INF-베타, INF-감마, 인히빈, iNOS, 인슐린 A쇄, 인슐린 B쇄, 인슐린 유사 증식 인자 1, 인테그린 알파 2, 인테그린 알파 3, 인테그린 알파 4, 인테그린 알파 4/베타 1, 인테그린 알파 4/베타 7, 인테그린 알파 5(알파 V), 인테그린 알파 5/베타 1, 인테그린 알파 5/베타 3, 인테그린 알파 6, 인테그린 베타 1, 인테그린 베타 2, 인터페론 감마, IP-10, I-TAC, JE, 칼리크레인 2, 칼리크레인 5, 칼리크레인 6, 칼리크레인 11, 칼리크레인 12, 칼리크레인 14, 칼리크레인 15, 칼리크레인 L1, 칼리크레인 L2, 칼리크레인 L3, 칼리크레인 L4, KC, KDR, 케라티노사이트 증식 인자(KGF), 라미닌 5, LAMP, LAP, LAP(TGF-1), 잠재적 TGF-1, 잠재적 TGF-1 bp1, LBP, LDGF, LECT2, 레프티, 루이스-Y 항원, 루이스-Y 관련 항원, LFA-1, LFA-3, Lfo, LIF, LIGHT, 리포단백질, LIX, LKN, Lptn, L-셀렉틴, LT-a, LT-b, LTB4, LTBP-1, 폐 표면, 황체 형성 호르몬, 림포톡신 베타 수용체, Mac-1, MAdCAM, MAG, MAP2, MARC, MCAM, MCAM, MCK-2, MCP, M-CSF, MDC, Mer, METALLOPROTEASES, MGDF 수용체, MGMT, MHC(HLA-DR), MIF, MIG, MIP, MIP-1-알파, MK, MMAC1, MMP, MMP-1, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14, MMP-15, MMP-2, MMP-24, MMP-3, MMP-7, MMP-8, MMP-9, MPIF, Mpo, MSK, MSP, 뮤신(Muc1), MUC18, 뮬러리안 억제 물질, Mug, MuSK, NAIP, NAP, NCAD, N-C 아드헤린, NCA 90, NCAM, NCAM, 네프릴리신, 뉴로트로핀-3, -4, 또는 -6, 뉴르투린, 신경 성장 인자(NGF), NGFR, NGF-베타, nNOS, NO, NOS, Npn, NRG-3, NT, NTN, OB, OGG1, OPG, OPN, OSM, OX40L, OX40R, p150, p95, PADPr, 부갑상선 호르몬, PARC, PARP, PBR, PBSF, PCAD, P-카드헤린, PCNA, PDGF, PDGF, PDK-1, PECAM, PEM, PF4, PGE, PGF, PGI2, PGJ2, PIN, PLA2, 태반성 알칼리포스파타아제(PLAP), PlGF, PLP, PP14, 프로인슐린, 프로릴랙신(prorelaxin), 프로테인 C, PS, PSA, PSCA, 전립선 특이적 막항원(PSMA), PTEN, PTHrp, Ptk, PTN, R51, RANK, RANKL, RANTES, RANTES, 릴랙신 A쇄, 릴랙신 B쇄, 레닌, 호흡기 다핵체 바이러스(RSV)F, RSV Fgp, Ret, 류머티즘 인자, RLIP76, RPA2, RSK, S100, SCF/KL, SDF-1, SERINE, 혈청 알부민, sFRP-3, Shh, SIGIRR, SK-1, SLAM, SLPI, SMAC, SMDF, SMOH, SOD, SPARC, Stat, STEAP, STEAP-II, TACE, TACI, TAG-72(종양 관련 당단백질-72), TARC, TCA-3, T세포 수용체(예를 들면 T세포 수용체 알파/베타), TdT, TECK, TEM1, TEM5, TEM7, TEM8, TERT, 고환 PLAP 유사 알칼리포스파타아제, TfR, TGF, TGF-알파, TGF-베타, TGF-베타 Pan Specific, TGF-베타RI(ALK-5), TGF-베타RII, TGF-베타RIIb, TGF-베타RIII, TGF-베타1, TGF-베타2, TGF-베타3, TGF-베타4, TGF-베타5, 트롬빈, 흉선 Ck-1, 갑상선 자극 호르몬, Tie, TIMP, TIQ, 조직인자, TMEFF2, Tmpo, TMPRSS2, TNF, TNF-알파, TNF-알파베타, TNF-베타2, TNFc, TNF-RI, TNF-RII, TNFRSF10A(TRAIL R1 Apo-2, DR4), TNFRSF10B(TRAIL R2 DR5, KILLER, TRICK-2A, TRICK-B), TNFRSF10C(TRAIL R3 DcR1, LIT, TRID), TNFRSF10D(TRAIL R4 DcR2, TRUNDD), TNFRSF11A(RANK ODF R, TRANCE R), TNFRSF11B(OPG OCIF, TR1), TNFRSF12(TWEAK R FN14), TNFRSF13B(TACI), TNFRSF13C(BAFF R), TNFRSF14(HVEM ATAR, HveA, LIGHT R, TR2), TNFRSF16(NGFR p75NTR), TNFRSF17(BCMA), TNFRSF18(GITR AITR), TNFRSF19(TROY TAJ, TRADE), TNFRSF19L(RELT), TNFRSF1A(TNF RI CD120a, p55-60), TNFRSF1B(TNF RII CD120b, p75-80), TNFRSF26(TNFRH3), TNFRSF3(LTbR TNF RIII, TNFC R), TNFRSF4(OX40 ACT35, TXGP1 R), TNFRSF5(CD40 p50), TNFRSF6(Fas Apo-1, APT1, CD95), TNFRSF6B(DcR3 M68, TR6), TNFRSF7(CD27), TNFRSF8(CD30), TNFRSF9(4-1BB CD137, ILA), TNFRSF21(DR6), TNFRSF22(DcTRAIL R2 TNFRH2), TNFRST23(DcTRAIL R1 TNFRH1), TNFRSF25(DR3 Apo-3, LARD, TR-3, TRAMP, WSL-1), TNFSF10(TRAIL Apo-2 리간드, TL2), TNFSF11(TRANCE/RANK 리간드 ODF, OPG 리간드), TNFSF12(TWEAK Apo-3 리간드, DR3 리간드), TNFSF13(APRIL TALL2), TNFSF13B(BAFF BLYS, TALL1, THANK, TNFSF20), TNFSF14(LIGHT HVEM 리간드, LTg), TNFSF15(TL1A/VEGI), TNFSF18(GITR 리간드 AITR 리간드, TL6), TNFSF1A(TNF-a 코넥틴(Conectin), DIF, TNFSF2), TNFSF1B(TNF-b LTa, TNFSF1), TNFSF3(LTb TNFC, p33), TNFSF4(OX40 리간드 gp34, TXGP1), TNFSF5(CD40 리간드 CD154, gp39, HIGM1, IMD3, TRAP), TNFSF6(Fas 리간드 Apo-1 리간드, APT1 리간드), TNFSF7(CD27 리간드 CD70), TNFSF8(CD30 리간드 CD153), TNFSF9(4-1BB 리간드 CD137 리간드), TP-1, t-PA, Tpo, TRAIL, TRAIL R, TRAIL-R1, TRAIL-R2, TRANCE, 트랜스페린 수용체, TRF, Trk, TROP-2, TSG, TSLP, 종양 관련 항원 CA125, 종양 관련 항원 발현 루이스 Y 관련 탄수화물, TWEAK, TXB2, Ung, uPAR, uPAR-1, 우로키나아제, VCAM, VCAM-1, VECAD, VE-Cadherin, VE-cadherin-2, VEFGR-1(flt-1), VEGF, VEGFR, VEGFR-3(flt-4), VEGI, VIM, 바이러스 항원, VLA, VLA-1, VLA-4, VNR 인테그린, 폰빌레브란트 인자, WIF-1, WNT1, WNT2, WNT2B/13, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9A, WNT9B, WNT10A, WNT10B, WNT11, WNT16, XCL1, XCL2, XCR1, XCR1, XEDAR, XIAP, XPD, HMGB1, IgA, Aβ, CD81, CD97, CD98, DDR1, DKK1, EREG, Hsp90, IL-17/IL-17R, IL-20/IL-20R, 산화 LDL, PCSK9, prekallikrein, RON, TMEM16F, SOD1, Chromogranin A, Chromogranin B, tau, VAP1, 고분자 키니노겐, IL-31, IL-31R, Nav1.1, Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6, Nav1.7, Nav1.8, Nav1.9, EPCR, C1, C1q, C1r, C1s, C2, C2a, C2b, C3, C3a, C3b, C4, C4a, C4b, C5, C5a, C5b, C6, C7, C8, C9, factor B, factor D, factor H, properdin, sclerostin, fibrinogen, fibrin, prothrombin, thrombin, 조직인자, factor V, factor Va, factor VII, factor VIIa, factor VIII, factor VIIIa, factor IX, factor IXa, factor X, factor Xa, factor XI, factor XIa, factor XII, factor XIIa, factor XIII, factor XIIIa, TFPI, antithrombin III, EPCR, 트롬보모듈린, TAPI, tPA, plasminogen, plasmin, PAI-1, PAI-2, GPC3, Syndecan-1, Syndecan-2, Syndecan-3, Syndecan-4, LPA, S1P, 호르몬 및 성장인자를 위한 수용체가 예시될 수 있다.
후술되는 바와 같이 이중 특이성 항체 등과 같이 항원 결합 분자가 항원 분자 중의 복수의 에피토프에 결합하는 경우, 당해 항원 결합 분자와 복합체를 형성하는 것이 가능한 항원은 상기에 예시되는 항원 중 어느 하나 또는 그의 조합, 환언하자면 단량체 또는 헤테로 다량체일 수 있다. 헤테로 다량체의 비한정의 예로서 IL-12p40 및 IL-12p35를 포함하는 IL-12, IL-12p40 및 (IL-30B로도 불리는) IL-23p19를 포함하는 IL-23, 또는 EBI-3 및 IL27p28을 포함하는 IL-23, 또는 IL-12p35 및 EBI-3을 포함하는 IL-35 등의 헤테로 이량체를 들 수 있다.
상기 항원의 예시에는 수용체도 기재되나, 이들 수용체가 혈장 중 등의 생체액 중에 가용형으로 존재하는 경우 본 발명의 항원 결합 분자와 복합체를 형성하는 것이 가능하기 때문에, 상기에 예로 든 수용체가 가용형으로 혈장 중 등의 생체액 중에 존재하는 한 본 발명의 항원 결합 분자가 결합하여 본 발명의 복합체를 형성할 수 있는 항원으로서 사용될 수 있다. 그러한 가용형 수용체의 비한정의 일태양으로서 예를 들면 Mullberg 등(J. Immunol. (1994) 152 (10), 4958-4968)에 의해 기재되어 있는 가용형 IL-6R인 서열번호:1로 표시되는 IL-6R 폴리펩티드 서열 중 1 내지 357번째의 아미노산으로 이루어지는 단백질이 예시될 수 있다.
상기 항원의 예시에는 가용형 항원도 기재되는데, 당해 항원이 존재하는 용액에 한정은 없고 생체액, 즉 생체내의 맥관 또는 조직·세포 사이를 채우는 모든 액체에 본 가용형 항원은 존재할 수 있다. 비한정의 일태양에서는 본 발명의 항원 결합 분자가 결합하는 항원은 세포외액에 존재할 수 있다. 세포외액이란 척추동물에서는 혈장, 조직간액, 림프액, 빽빽한 결합조직, 뇌척수액, 수액, 천자액 또는 관절액 등의 뼈 및 연골 중의 성분, 폐포액(기관지 폐포 세정액), 복수, 흉수, 심낭수, 낭포액 또는 수양액(aqueous humor) 등의 세포 투과액(세포의 능동 수송·분비 활동의 결과 생긴 각종 선강 내의 액 및 소화관강 기타 체강내액)의 총칭을 말한다.
또한 항원 결합 분자에 포함되는 항원 결합 도메인이 결합하는 에피토프가 단일 에피토프인 경우, 당해 항원 결합 분자가 결합하여 본 발명의 복합체를 형성할 수 있는 항원의 비한정의 일태양으로서 항원 결합 단위에 호모 이량체 또는 호모 삼량체 등을 포함하는 하기와 같은 분자;GDF, GDF-1, GDF-3(Vgr-2), GDF-5(BMP-14, CDMP-1), GDF-6(BMP-13, CDMP-2), GDF-7(BMP-12, CDMP-3), GDF-8(미오스타틴), GDF-9, GDF-15(MIC-1), TNF, TNF-알파, TNF-알파베타, TNF-베타2, TNFSF10(TRAIL Apo-2 리간드, TL2), TNFSF11(TRANCE/RANK 리간드 ODF, OPG 리간드), TNFSF12(TWEAK Apo-3 리간드, DR3 리간드), TNFSF13(APRIL TALL2), TNFSF13B(BAFF BLYS, TALL1, THANK, TNFSF20), TNFSF14(LIGHT HVEM 리간드, LTg), TNFSF15(TL1A/VEGI), TNFSF18(GITR 리간드 AITR 리간드, TL6), TNFSF1A(TNF-a 코넥틴(Conectin), DIF, TNFSF2), TNFSF1B(TNF-b LTa, TNFSF1), TNFSF3(LTb TNFC, p33), TNFSF4(OX40 리간드 gp34, TXGP1), TNFSF5(CD40 리간드 CD154, gp39, HIGM1, IMD3, TRAP), TNFSF6(Fas 리간드 Apo-1 리간드, APT1 리간드), TNFSF7(CD27 리간드 CD70), TNFSF8(CD30 리간드 CD153), TNFSF9(4-1BB 리간드 CD137 리간드), VEGF, IgE, IgA, IgG, IgM, RANKL, TGF-알파, TGF-베타, TGF-베타 Pan Specific, IL-8이 예시될 수 있다.
에피토프
항원 중에 존재하는 항원 결정기를 의미하는 에피토프는, 본 명세서에 있어서 개시되는 항원 결합 분자 중의 항원 결합 도메인이 결합하는 항원 상의 부위를 의미한다. 따라서, 예를 들면 에피토프는 그 구조에 의해 정의될 수 있다. 또한 당해 에피토프를 인식하는 항원 결합 분자 중의 항원에 대한 결합 활성에 따라서도 당해 에피토프가 정의될 수 있다. 항원이 펩티드 또는 폴리펩티드인 경우에는 에피토프를 구성하는 아미노산 잔기에 의해 에피토프를 특정하는 것도 가능하다. 또한 에피토프가 당쇄인 경우에는 특정 당쇄 구조에 의해 에피토프를 특정하는 것도 가능하다.
직선상 에피토프는 아미노산 1차 서열이 인식된 에피토프를 포함하는 에피토프이다. 직선상 에피토프는 전형적으로는 3개 이상 및 가장 보통으로는 5개 이상, 예를 들면 약 8 내지 약 10개, 6 내지 20개의 아미노산이 고유의 서열에 있어서 포함된다.
입체구조 에피토프는 직선상 에피토프와는 대조적으로, 에피토프를 포함하는 아미노산의 1차 서열이 인식된 에피토프의 단일 규정 성분이 아닌 에피토프(예를 들면, 아미노산의 1차 서열이 반드시 에피토프를 규정하는 항체에 의해 인식되는 것은 아닌 에피토프)이다. 입체구조 에피토프는 직선상 에피토프에 대해 증대된 수의 아미노산을 포함할 지도 모른다. 입체구조 에피토프의 인식에 관하여, 항체는 펩티드 또는 단백질의 3차원 구조를 인식한다. 예를 들면, 단백질 분자가 폴딩되어 3차원 구조를 형성하는 경우에는, 입체구조 에피토프를 형성하는 어떤 아미노산 및/또는 폴리펩티드 주쇄는 병렬로 되어 항체가 에피토프를 인식하는 것을 가능하게 한다. 에피토프의 입체구조를 결정하는 방법에는, 예를 들면 X선 결정학, 2차원 핵자기공명 분광학 및 부위 특이적인 스핀 표지 및 전자 상자성 공명 분광학이 포함되는데, 이들에는 한정되지 않는다. 예를 들면, Epitope Mapping Protocols in Methods in Molecular Biology(1996), 제66권, Morris(편)를 참조.
에피토프에 결합하는 항원 결합 도메인의 구조는 파라토프라 불린다. 에피토프와 파라토프 사이에 작용하는 수소 결합, 정전기력, 반데르발스의 힘, 소수 결합 등에 의해 에피토프와 파라토프는 안정하게 결합한다. 이 에피토프와 파라토프 사이의 결합력은 어피니티(affinity)로 불린다. 복수의 에피토프와 복수의 파라토프가 결합할 때의 결합력의 총합은 어비디티(avidity)로 불린다. 복수의 파라토프를 포함하는(즉 다가의) 항체 등이 복수의 에피토프에 결합할 때에는 결합력(affinity)이 상가적 또는 상승적으로 작용하기 때문에 어비디티는 어피니티보다도 높아진다.
결합 활성
하기에 IgA에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자에 의한 에피토프로의 결합의 확인방법이 예시되는데, IgA 이외의 항원에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자에 의한 에피토프로의 결합의 확인방법도 하기의 예시에 준하여 적절히 실시될 수 있다.
예를 들면, IgA에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자가 IgA 분자 중에 존재하는 선상 에피토프를 인식하는 것은 예를 들면 다음과 같이 하여 확인할 수 있다. 예를 들면 상기 목적을 위해 IgA의 정상영역을 구성하는 아미노산 서열로 이루어지는 선상의 펩티드가 합성된다. 당해 펩티드는 화학적으로 합성될 수 있다. 또는 IgA의 cDNA 중의 정상영역에 상당하는 아미노산 서열을 코드하는 영역을 이용하여 유전자 공학적 수법에 의해 얻어진다. 다음으로, 정상영역을 구성하는 아미노산 서열로 이루어지는 선상 펩티드와 IgA에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자의 결합 활성이 평가된다. 예를 들면, 고정화된 선상 펩티드를 항원으로 하는 ELISA에 의해 당해 펩티드에 대한 당해 항원 결합 분자의 결합 활성이 평가될 수 있다. 또는 IgA 세포에 대한 당해 항원 결합 분자의 결합에 있어서의 선상 펩티드에 의한 저해 레벨을 토대로 선상 펩티드에 대한 결합 활성이 명확해질 수 있다. 이들 시험에 의해 선상 펩티드에 대한 당해 항원 결합 분자의 결합 활성이 명확해질 수 있다.
또한 IgA 단백질에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자가 입체구조 에피토프를 인식하는 것은 다음과 같이 확인될 수 있다. 상기 목적을 위해 본 명세서에 있어서 기재되는 바와 같이 일반적인 재조합 유전자 수법을 사용함으로써 IgA 단백질 내의 네이티브 입체 에피토프의 형성을 가능하게 하는 숙주세포(예를 들면 동물세포, 곤충세포, 효모세포)에 IgA를 코드하는 재조합 유전자가 형질 도입된다. 이와 같이 제작된 재조합 세포의 배양액으로부터 입체구조 에피토프를 포함하는 IgA가 조제된다. IgA에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자가 입체구조 에피토프를 인식한다는 것은, 당해 피험 항원 결합 분자가 고정화된 입체구조 에피토프를 포함하는 IgA에 접촉했을 때에 당해 IgA 분자에 강하게 결합하는 한편으로, 고정화된 IgA의 아미노산 서열을 구성하는 아미노산 서열로 이루어지는 선상 펩티드에 대해 당해 항원 결합 분자가 실질적으로 결합하지 않을 때 등을 들 수 있다. 상기 선상 펩티드 대신에 디티오트레이톨(dithiothreitol), 디티오에리트리톨(dithioerythritol), β-메르캅토에탄올(β-mercaptoethanol), 포스핀 유도체(phosphines), 수소화붕소나트륨(sodium borohydride) 등의 디설피드 결합을 절단하는 환원제 및/또는 구아니딘 염산염, 요소, 라우릴황산나트륨 등의 계면활성제 등의 카오트로픽 약제에 의해 변성된 IgA에 대한 당해 피험 항원 결합 분자도 또한 사용될 수 있다. 여기서 실질적으로 결합하지 않는다는 것은 인간 IgA에 대한 결합 활성의 80% 이하, 통상 50% 이하, 바람직하게는 30% 이하, 특히 바람직하게는 15% 이하의 결합 활성을 말한다.
IgA에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자의 IgA에 대한 결합 활성을 측정하는 방법으로서는, 예를 들면, Antibodies A Laboratory Manual 기재의 방법(Ed Harlow, David Lane, Cold Spring Harbor Laboratory(1988) 359-420)을 들 수 있다. 즉 IgA를 항원으로 하는 ELISA나 EIA의 원리에 의해 평가될 수 있다.
ELISA 포맷에 있어서 IgA에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자의 IgA에 대한 결합 활성은, 효소반응에 의해 생성되는 시그날 레벨을 비교함으로써 정량적으로 평가된다. 즉, IgA를 고정화한 ELISA 플레이트에 피험 항원 결합 분자를 첨가하여, 당해 플레이트에 고정된 IgA에 결합한 피험 항원 결합 분자가 피험 항원 결합 분자를 인식하는 효소 표지 항체를 이용하여 검출된다. 상기 ELISA에 있어서는 피험 항원 결합 분자의 희석계열을 제작하여 IgA에 대한 항체 결합 역가(titer)를 결정함으로써, IgA에 대한 피험 항원 결합 분자의 결합 활성이 비교될 수 있다.
완충액 등에 현탁한 세포 표면 상에 발현되고 있는 항원에 대한 피험 항원 결합 분자의 결합은 플로우 사이토미터에 의해 검출할 수 있다. 플로우 사이토미터로서는 예를 들면, 다음과 같은 장치가 알려져 있다.
FACSCantoTM II
FACSAriaTM
FACSArrayTM
FACSVantageTM SE
FACSCaliburTM(모두 BD Biosciences사의 상품명)
EPICS ALTRA HyPerSort
Cytomics FC 500
EPICS XL-MCL ADC EPICS XL ADC
Cell Lab Quanta/Cell Lab Quanta SC(모두 Beckman Coulter사의 상품명)
예를 들면, IgE에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자의 항원에 대한 결합 활성의 적합한 측정방법의 일례로서 다음의 방법을 들 수 있다. 먼저, IgE를 발현하는 세포와 반응시킨 피험 항원 결합 분자를 인식하는 FITC 표지한 2차 항체로 염색한다. 피험 항원 결합 분자를 적당히 적합한 완충액으로 희석함으로써 당해 항원 결합 분자가 목적하는 농도로 조제하여 사용된다. 예를 들면, 10 ㎍/㎖부터 10 ng/㎖까지 사이 중 어느 하나의 농도로 사용될 수 있다. 다음으로, FACSCalibur(BD사)에 의해 형광강도와 세포수가 측정된다. 당해 세포에 대한 항체의 결합량은 CELL QUEST Software(BD사)를 사용하여 해석함으로써 얻어진 형광강도, 즉 Geometric Mean의 값에 반영된다. 즉, 당해 Geometric Mean의 값을 얻음으로써 피험 항원 결합 분자의 결합량으로 표시되는 피험 항원 결합 분자의 결합 활성이 측정될 수 있다.
IgA에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자가 어떤 항원 결합 분자와 에피토프를 공유하는 것은 양자의 동일한 에피토프에 대한 경합에 의해 확인될 수 있다. 항원 결합 분자 간의 경합은 교차 블로킹 어세이 등에 의해 검출된다. 예를 들면 경합 ELISA 어세이는 바람직한 교차 블로킹 어세이이다.
구체적으로는, 교차 블로킹 어세이에 있어서는 마이크로타이터 플레이트의 웰 상에 코트한 IgA 단백질이 후보가 되는 경합 항원 결합 분자의 존재하 또는 비존재하에서 프리인큐베이트된 후에 피험 항원 결합 분자가 첨가된다. 웰 중의 IgA 단백질에 결합한 피험 항원 결합 분자의 양은 동일한 에피토프로의 결합에 대해 경합하는 후보가 되는 경합 항원 결합 분자의 결합능에 간접적으로 상관하고 있다. 즉 동일 에피토프에 대한 경합 항원 결합 분자의 친화성이 커지면 커질수록, 피험 항원 결합 분자의 IgA 단백질을 코트한 웰에 대한 결합 활성은 저하된다.
IgA 단백질을 매개로 웰에 결합한 피험 항원 결합 분자의 양은 사전에 항원 결합 분자를 표지해 둠으로써 용이하게 측정될 수 있다. 예를 들면, 비오틴 표지된 항원 결합 분자는 아비딘페록시다아제 콘쥬게이트와 적절한 기질을 사용함으로써 측정된다. 페록시다아제 등의 효소 표지를 이용한 교차 블로킹 어세이는 특히 경합 ELISA 어세이라 불린다. 항원 결합 분자는 검출 또는 측정이 가능한 다른 표지 물질로 표지될 수 있다. 구체적으로는 방사 표지 또는 형광 표지 등이 공지이다.
후보의 경합 항원 결합 분자 회합체의 비존재하에서 실시되는 대조 시험에 있어서 얻어지는 결합 활성과 비교하여, 경합 항원 결합 분자가 IgA에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자의 결합을 20% 이상, 바람직하게는 20-50% 이상, 더욱 바람직하게는 50% 이상 블록할 수 있다면, 당해 피험 항원 결합 분자는 경합 항원 결합 분자와 실질적으로 동일한 에피토프에 결합하거나 또는 동일한 에피토프로의 결합에 대해 경합하는 항원 결합 분자이다.
IgA에 대한 항원 결합 도메인을 포함하는 피험 항원 결합 분자가 결합하는 에피토프의 구조가 동정되어 있는 경우에는, 피험 항원 결합 분자와 대조 항원 결합 분자가 에피토프를 공유하는 것은 당해 에피토프를 구성하는 펩티드에 아미노산 변이를 도입한 펩티드에 대한 양자의 항원 결합 분자의 결합 활성을 비교함으로써 평가될 수 있다.
이러한 결합 활성을 측정하는 방법으로서는 예를 들면, 상기의 ELISA 포맷에 있어서 변이를 도입한 선상의 펩티드에 대한 피험 항원 결합 분자 및 대조 항원 결합 분자의 결합 활성을 비교함으로써 측정될 수 있다. ELISA 이외의 방법으로서는, 칼럼에 결합한 당해 변이 펩티드에 대한 결합 활성을 당해 칼럼에 피험 항원 결합 분자와 대조 항원 결합 분자를 유하(流下)시킨 후에 용출액 중에 용출되는 항원 결합 분자를 정량함으로써도 측정될 수 있다. 변이 펩티드를 예를 들면 GST와의 융합 펩티드로서 칼럼에 흡착시키는 방법은 공지이다.
또한 세포 상에 발현되는 항원 중의 동정된 에피토프가 입체 에피토프인 경우에는, 피험 항원 결합 분자와 대조 항원 결합 분자가 에피토프를 공유하는 것은 다음의 방법으로 평가될 수 있다. 항원이 IgE인 경우를 예로 들어 아래에 설명한다. 먼저, IgE를 발현하는 세포와 에피토프에 변이가 도입된 IgE를 발현하는 세포가 조제된다. 이들 세포가 PBS 등의 적절한 완충액에 현탁된 세포 현탁액에 대해 피험 항원 결합 분자와 대조 항원 결합 분자가 첨가된다. 이어서, 적당히 완충액으로 세정된 세포 현탁액에 대해 피험 항원 결합 분자와 대조 항원 결합 분자를 인식할 수 있는 FITC 표지된 항체가 첨가된다. 표지 항체에 의해 염색된 세포의 형광강도와 세포수가 FACSCalibur(BD사)에 의해 측정된다. 피험 항원 결합 분자와 대조 항원 결합 분자의 농도는 적합한 완충액에 의해 적당히 희석함으로써 목적하는 농도로 조제하여 사용된다. 예를 들면, 10 ㎍/㎖부터 10 ng/㎖까지의 사이 중 어느 하나의 농도로 사용된다. 당해 세포에 대한 표지 항체의 결합량은 CELL QUEST Software(BD사)를 사용하여 해석함으로써 얻어진 형광강도, 즉 Geometric Mean의 값에 반영된다. 즉, 당해 Geometric Mean의 값을 얻음으로써 표지 항체의 결합량으로 표시되는 피험 항원 결합 분자와 대조 항원 결합 분자의 결합 활성을 측정할 수 있다.
본 방법에 있어서, 예를 들면 「변이 IgE 발현 세포에 실질적으로 결합하지 않는」다는 것은, 아래의 방법에 의해 판단할 수 있다. 먼저 변이 IgE를 발현하는 세포에 대해 결합한 피험 항원 결합 분자와 대조 항원 결합 분자가 표지 항체로 염색된다. 이어서 세포의 형광강도가 검출된다. 형광 검출에 플로우 사이토메트리로서 FACSCalibur를 사용한 경우, 얻어진 형광강도는 CELL QUEST Software를 사용하여 해석될 수 있다. 폴리펩티드 회합체 존재하 및 비존재하에서의 Geometric Mean의 값으로부터, 이 비교값(△Geo-Mean)을 하기의 계산식을 토대로 산출함으로써, 항원 결합 분자의 결합에 의한 형광강도의 증가비율을 구할 수 있다.
△Geo-Mean=Geo-Mean(폴리펩티드 회합체 존재하)/Geo-Mean(폴리펩티드 회합체 비존재하)
해석에 의해 얻어지는 피험 항원 결합 분자의 변이 IgE 발현 세포에 대한 결합량이 반영된 Geometric Mean 비교값(변이 IgE 분자 △Geo-Mean값)을, 피험 항원 결합 분자의 IgE 발현 세포에 대한 결합량이 반영된 △Geo-Mean 비교값과 비교한다. 이 경우에 있어서, 변이 IgE 발현 세포 및 IgE 발현 세포에 대한 △Geo-Mean 비교값을 구할 때 사용하는 피험 항원 결합 분자의 농도는 서로 동일 또는 실질적으로 동일 농도로 조제되는 것이 특히 바람직하다. 사전에 IgE 중의 에피토프를 인식하고 있는 것이 확인된 항원 결합 분자가 대조 항원 결합 분자로서 이용된다.
피험 항원 결합 분자의 변이 IgE 발현 세포에 대한 △Geo-Mean 비교값이 피험 항원 결합 분자의 IL-6R 발현 세포에 대한 △Geo-Mean 비교값의 80% 이상, 바람직하게는 50%, 더욱 바람직하게는 30%, 특히 바람직하게는 15%보다 작으면 「변이 IgE 발현 세포에 실질적으로 결합하지 않는」 것으로 한다. Geo-Mean값(Geometric Mean)을 구하는 계산식은 CELL QUEST Software User's Guide(BD biosciences사)에 기재되어 있다. 비교값을 비교함으로써 그것이 실질적으로 동일하다고 볼 수 있는 정도라면 피험 항원 결합 분자와 대조 항원 결합 분자의 에피토프는 동일하다고 평가될 수 있다.
항원 결합 도메인
본 명세서에 있어서, 「항원 결합 도메인」은 목적으로 하는 항원에 결합하는 한 어떠한 구조의 도메인도 사용될 수 있다. 그러한 도메인의 예로서, 예를 들면, 항체의 중쇄 및 경쇄의 가변영역, 생체내에 존재하는 세포막 단백인 Avimer에 포함되는 35 아미노산 정도의 A 도메인으로 불리는 모듈(국제공개 제WO2004/044011호, 국제공개 제WO2005/040229호), 세포막에 발현하는 당단백질인 fibronectin 중의 단백질에 결합하는 도메인인 10Fn3 도메인을 포함하는 Adnectin(국제공개 제WO2002/032925호), ProteinA의 58 아미노산으로 이루어지는 3개의 헬릭스의 다발(bundle)를 구성하는 IgG 결합 도메인을 scaffold로 하는 Affibody(국제공개 제WO1995/001937호), 33 아미노산 잔기를 포함하는 턴과 2개의 역병행 헬릭스 및 루프의 서브유닛이 반복해서 겹쳐 쌓아진 구조를 갖는 안키린 반복(ankyrin repeat:AR)의 분자 표면에 노출되는 영역인 DARPins(Designed Ankyrin Repeat proteins)(국제공개 제WO2002/020565호), 호중구 겔라티나아제 결합 리포칼린(neutrophil gelatinase-associated lipocalin(NGAL)) 등의 리포칼린 분자에 있어서 고도로 보존된 8개의 역병행 스트랜드가 중앙방향으로 비틀어진 배럴 구조의 편측을 지지하는 4개의 루프영역인 Anticalin 등(국제공개 제WO2003/029462호), 칠성장어, 먹장어 등 무악류의 획득 면역 시스템으로서 이뮤노글로불린의 구조를 갖지 않는 가변성 림프구 수용체(variable lymphocyte receptor(VLR))의 류신 잔기가 풍부한 리피트(leucine-rich-repeat(LRR)) 모듈이 반복해서 겹쳐 쌓아진 편자모양의 구조 내부의 병행형 시트 구조의 움푹 들어간 영역(국제공개 제WO2008/016854호)을 적합하게 들 수 있다. 본 발명의 항원 결합 도메인의 적합한 예로서, 항체의 중쇄 및 경쇄의 가변영역을 포함하는 항원 결합 도메인을 들 수 있다. 이러한 항원 결합 도메인의 예로서는 「scFv(single chain Fv)」, 「단일 사슬 항체(single chain antibody)」, 「Fv」, 「scFv2(single chain Fv2)」, 「Fab」 또는 「F(ab')2」 등을 적합하게 들 수 있다.
본 발명의 항원 결합 분자에 있어서의 항원 결합 도메인은 동일 에피토프에 결합할 수 있다. 여기서 동일 에피토프는 예를 들면 서열번호:2에 기재된 아미노산 서열로 이루어지는 단백질 중에 존재할 수 있다. 또는 본 발명의 항원 결합 분자에 있어서의 항원 결합 도메인은 서로 상이한 에피토프에 결합할 수 있다. 여기서 상이한 에피토프는 예를 들면 서열번호:2에 기재된 아미노산 서열로 이루어지는 단백질 중에 존재할 수 있다.
면역 복합체(Immune complex)
면역 복합체는 하나 이상의 항원과 하나 이상의 항원 결합 분자가 서로 결합하여 보다 큰 분자량의 복합체를 형성하는 경우에 생기는 비교적 안정한 구조를 의미한다. 면역 복합체의 비한정의 일태양으로서 항원-항체 응집체가 예시된다. 둘 이상의 항원 결합 분자 및 둘 이상의 항원 결합 단위를 포함하는 면역 복합체의 형성을 평가하는 방법은 본 명세서에 있어서 후술된다.
특이적
특이적이란 특이적으로 결합하는 분자의 한쪽 분자가 그 하나 또는 복수의 결합하는 상대방 분자 이외의 분자에 대해서는 전혀 유의한 결합을 나타내지 않는 상태를 말한다. 또한 항원 결합 도메인이 어떤 항원 중에 포함되는 복수의 에피토프 중 특정 에피토프에 대해 특이적인 경우에도 사용된다. 또한 항원 결합 도메인이 결합하는 에피토프가 복수의 상이한 항원에 포함되는 경우에는, 당해 항원 결합 도메인을 갖는 항원 결합 분자는 당해 에피토프를 포함하는 다양한 항원과 결합할 수 있다. 여기서 조금도 유의한 결합을 나타내지 않는다는 것은 당해 상대방 분자에 대한 결합 활성의 50% 이하, 통상 30% 이하, 바람직하게는 15% 이하, 특히 바람직하게는 10% 이하, 더욱 바람직하게는 5% 이하의 결합 활성을 당해 상대방 분자 이외의 분자에 대해 나타내는 것을 말한다.
항체
본 명세서에 있어서 항체란 천연의 것이거나 또는 부분적 또는 완전 합성에 의해 제조된 면역 글로불린을 말한다. 항체는 그것이 천연으로 존재하는 혈장이나 혈청 등의 천연 자원이나 항체를 생산하는 하이브리도마 세포의 배양상청으로부터 단리될 수 있고, 또는 유전자 재조합 등의 수법을 사용함으로써 부분적으로 또는 완전히 합성될 수 있다. 항체의 예로서는 면역 글로불린의 아이소타입 및 그들 아이소타입의 서브클래스를 적합하게 들 수 있다. 인간의 면역 글로불린으로서 IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgD, IgE, IgM의 9종류의 클래스(아이소타입)가 알려져 있다. 본 발명의 항체에는 이들 아이소타입 중 IgG1, IgG2, IgG3, IgG4가 포함될 수 있다. 인간 IgG1, 인간 IgG2, 인간 IgG3, 인간 IgG4 정상영역으로서는 유전자 다형에 의한 복수의 알로타입 서열이 Sequences of proteins of immunological interest, NIH Publication No.91-3242에 기재되어 있는데, 본 발명에 있어서는 그 중 어느 것이라도 된다. 특히 인간 IgG1의 서열로서는 EU 넘버링으로 표시되는 356-358번 위치의 아미노산 서열이 DEL이어도 되고 EEM이어도 된다. 또한 인간 Igκ(Kappa) 정상영역과 인간 Igλ(Lambda) 정상영역으로서는 유전자 다형에 의한 복수의 알로타입 서열이 Sequences of proteins of immunological interest, NIH Publication No.91-3242에 기재되어 있는데, 본 발명에 있어서는 그 중 어느 것이라도 좋다.
목적하는 결합 활성을 갖는 항체를 제작하는 방법은 당업자에 있어서 공지이다. 아래에 IgA에 결합하는 항체(항IgA 항체)를 제작하는 방법이 예시된다. IgA 이외의 항원에 결합하는 항체도 하기의 예시에 준하여 적절히 제작될 수 있다.
항IgA 항체는 공지의 수단을 사용하여 다중클론 또는 단일클론 항체로서 취득될 수 있다. 항IgA 항체로서는 포유동물 유래의 단일클론 항체가 적합하게 제작될 수 있다. 포유동물 유래의 단일클론 항체에는 하이브리도마에 의해 생산되는 것 및 유전자 공학적 수법에 의해 항체 유전자를 포함하는 발현 벡터로 형질전환한 숙주세포에 의해 생산되는 것 등이 포함된다. 또한 본 출원 발명의 단일클론 항체에는 「인간화 항체」나 「키메라 항체」가 포함된다.
단일클론 항체 생산 하이브리도마는 공지기술을 사용함으로써 예를 들면 아래와 같이 제작될 수 있다. 즉, IgA 단백질을 감작 항원으로서 사용하여 통상의 면역방법에 따라 포유동물이 면역된다. 얻어지는 면역세포가 통상의 세포융합법에 의해 공지의 친세포와 융합된다. 다음으로 통상의 스크리닝법에 의해 단일클론 항체 생산 세포를 스크리닝함으로써 항IgA 항체를 생산하는 하이브리도마가 선택될 수 있다.
구체적으로는 단일클론 항체의 제작은 예를 들면 아래에 나타내는 바와 같이 행해진다. 예를 들면 정제한 천연의 IgA 단백질이 감작 항원으로서 사용될 수 있다. 또한 IMGT/GENE-DB에 있어서 L00022|IGHE*02로서 기재되어 있는 서열번호:2로 표시되는 IgA 폴리펩티드 서열로 이루어지는 재조합 단백질이 배양상청 중으로부터 가용형의 IgA를 취득하기 위해 정제된다. 재조합 단백질을 발현시키기 위해 먼저 서열번호:3에 그 뉴클레오티드 서열이 개시된 IgA 중쇄 정상영역 유전자를 발현시킴으로써 항체 취득의 감작 항원으로서 사용되는 서열번호:2로 표시되는 IgA 단백질이 취득될 수 있다. 즉, IgA를 코드하는 유전자 서열을 공지의 발현 벡터에 삽입함으로써 적당한 숙주세포가 형질전환된다. 당해 숙주세포 중 또는 배양상청 중으로부터 목적하는 IgA 단백질이 공지의 방법으로 정제된다. IgA 중쇄 정상영역 유전자를 발현할 때 서열번호:3에 기재된 폴리뉴클레오티드 서열이 시그날 서열의 3'말단에 작동 가능하도록 연결될 수 있다. 또한 다른 비한정의 일태양에서는 5'말단에 시그날 서열을 포함하는 중쇄 가변영역을 코드하는 폴리뉴클레오티드 서열의 3'말단에 작동 가능하도록 서열번호:3에 기재된 폴리뉴클레오티드 서열이 연결될 수 있다. 또한 재조합 단백질을 정제하기 위해 서열번호:2의 아미노 말단 또는 카르복시 말단에 적절히 정제를 위한 태그 펩티드가 부가될 수 있다. 이러한 예로서 GGGGS(서열번호:31) 링커를 매개로 연결되는 Avi 태그인 GLNDIFEAQKIEWHE(서열번호:4) 등을 비한정의 일태양으로서 들 수 있다. 상기와 같은 재조합 단백질의 비한정의 제작예로서 실시예 1에서 기재되는 바와 같은 경쇄와 조합해서 발현시킨 재조합 IgA 단백질을 재조합 숙주세포의 배양액으로부터 회수 후 정제하는 방법을 들 수 있다.
포유동물에 대한 면역에 사용하는 감작 항원으로서 당해 정제 IgA 단백질이 사용될 수 있다. IgA의 부분 펩티드도 또한 감작 항원으로서 사용할 수 있다. 이때, 당해 부분 펩티드는 인간 IgA의 아미노산 서열로부터 화학합성으로도 취득될 수 있다. 또한 IgA 유전자의 일부를 발현 벡터에 삽입하여 발현시킴으로써도 취득될 수 있다. 더 나아가서는 단백질 분해효소를 사용하여 IgA 단백질을 분해함으로써도 취득될 수 있으나, 부분 펩티드로서 사용되는 IgA 펩티드의 영역 및 크기는 특별한 태양에 한정되지 않는다. 바람직한 영역은 서열번호:2의 아미노산 서열로부터 임의의 서열이 선택될 수 있다. 감작 항원으로 하는 펩티드를 구성하는 아미노산의 수는 적어도 5 이상, 예를 들면 6 이상, 또는 7 이상인 것이 바람직하다. 보다 구체적으로는 8~50, 바람직하게는 10~30 잔기의 펩티드가 감작 항원으로서 사용될 수 있다.
또한 IgA 단백질의 목적하는 부분 폴리펩티드나 펩티드를 상이한 폴리펩티드와 융합한 융합 단백질이 감작 항원으로서 이용될 수 있다. 감작 항원으로서 사용되는 융합 단백질을 제조하기 위해, 예를 들면, 항체의 Fc 단편이나 펩티드 태그 등이 바람직하게 이용될 수 있다. 융합 단백질을 발현하는 벡터는 목적하는 2종류 또는 그 이상의 폴리펩티드 단편을 코드하는 유전자가 인프레임으로 융합되고, 당해 융합 유전자가 상기와 같이 발현 벡터에 삽입됨으로써 제작될 수 있다. 융합 단백질의 제작방법은 Molecular Cloning 2nd ed. (Sambrook,J et al., Molecular Cloning 2nd ed., 9.47-9.58(1989)Cold Spring Harbor Lab. press)에 기재되어 있다. 감작 항원으로서 사용되는 IgA의 취득방법 및 그것을 이용한 면역방법은 PCT/JP2011/077619 등에도 구체적으로 기재되어 있다.
그 감작 항원으로 면역되는 포유동물로서는 특정 동물에 한정되는 것은 아니나, 세포융합에 사용하는 친세포와의 적합성을 고려하여 선택하는 것이 바람직하다. 일반적으로는 설치류의 동물, 예를 들면, 마우스, 랫트, 햄스터 또는 토끼, 원숭이 등이 바람직하게 사용된다.
공지의 방법에 따라 상기 동물이 감작 항원에 의해 면역된다. 예를 들면, 일반적인 방법으로서 감작 항원이 포유동물의 복강내 또는 피하에 주사에 의해 투여됨으로써 면역이 실시된다. 구체적으로는, PBS(Phosphate-Buffered Saline)나 생리식염수 등으로 적당한 희석배율로 희석된 감작 항원이, 목적하는 바에 따라 통상의 애쥬번트, 예를 들면 프로인트 완전 애쥬번트와 혼합되어 유화된 후에, 그 감작 항원이 포유동물에 4~21일마다 수회 투여된다. 또한 감작 항원의 면역시에는 적당한 담체가 사용될 수 있다. 특히 분자량이 작은 부분 펩티드가 감작 항원으로서 사용되는 경우에는 알부민, 키홀 림펫 헤모시아닌 등의 담체 단백질과 결합한 그 감작 항원 펩티드를 면역하는 것이 바람직한 경우도 있다.
또한 목적하는 항체를 생산하는 하이브리도마는 DNA 면역을 사용하여 아래와 같이 함으로써도 제작될 수 있다. DNA 면역이란 면역동물 중에서 항원 단백질을 코드하는 유전자가 발현될 수 있는 태양으로 구축된 벡터 DNA가 투여된 당해 면역동물 중에서 감작 항원이 당해 면역동물의 생체내에서 발현됨으로써 면역자극이 부여되는 면역방법이다. 단백질 항원이 면역동물에 투여되는 일반적인 면역방법과 비교하여 DNA 면역에는 다음과 같은 우위성이 기대된다.
-항원이 막단백질인 경우, 막단백질의 구조를 유지하여 면역자극이 부여될 수 있다
-면역항원을 정제할 필요가 없다
DNA 면역에 의해 본 발명의 단일클론 항체를 얻기 위해 먼저, IgA 단백질을 발현하는 DNA가 면역동물에 투여된다. IgA를 코드하는 DNA는 PCR 등의 공지의 방법에 의해 합성될 수 있다. 얻어진 DNA가 적당한 발현 벡터에 삽입되어 면역동물에 투여된다. 발현 벡터로서는 예를 들면 pcDNA3.1 등의 시판의 발현 벡터가 바람직하게 이용될 수 있다. 벡터를 생체에 투여하는 방법으로서 일반적으로 사용되고 있는 방법이 이용될 수 있다. 예를 들면, 발현 벡터가 흡착된 금 입자가 gene gun으로 면역동물 개체의 세포내에 도입됨으로써 DNA 면역이 행해진다. 또한 IgA를 인식하는 항체의 제작은 PCT/JP2011/077619에 기재된 방법을 사용해도 제작될 수 있다.
이와 같이 포유동물이 면역되고, 혈청 중에 있어서의 IgA에 결합하는 항체 역가의 상승이 확인된 후에, 포유동물로부터 면역세포가 채취되어 세포융합에 제공된다. 바람직한 면역세포로서는 특히 비장세포가 사용될 수 있다.
상기 면역세포와 융합되는 세포로서 포유동물의 골수종 세포가 사용된다. 골수종 세포는 스크리닝을 위한 적당한 선택 마커를 구비하고 있는 것이 바람직하다. 선택 마커란 특정 배양 조건하에서 생존할 수 있는(또는 할 수 없는) 형질을 가리킨다. 선택 마커로는 히포크산틴-구아닌-포스포리보실트랜스페라아제 결손(이하 HGPRT 결손으로 생략한다) 또는 티미딘키나아제 결손(이하 TK 결손으로 생략한다) 등이 공지이다. HGPRT나 TK의 결손을 갖는 세포는 히포크산틴-아미노프테린-티미딘 감수성(이하 HAT 감수성으로 생략한다)을 갖는다. HAT 감수성의 세포는 HAT 선택 배지 중에서 DNA 합성을 행할 수 없어 사멸되지만, 정상의 세포와 융합하면 정상 세포의 샐비지 회로를 이용하여 DNA의 합성을 계속할 수 있기 때문에 HAT 선택 배지 중에서도 증식되게 된다.
HGPRT 결손이나 TK 결손의 세포는 각각 6 티오구아닌, 8 아자구아닌(이하 8AG로 생략한다) 또는 5'브로모데옥시우리딘을 포함하는 배지에서 선택될 수 있다. 이들의 피리미딘 아날로그를 DNA 중에 흡수하는 정상의 세포는 사멸된다. 한편, 이들의 피리미딘 아날로그를 흡수할 수 없는 이들의 효소를 결손한 세포는 선택 배지 중에서 생존할 수 있다. 이 밖에 G418 내성으로 불리는 선택 마커는 네오마이신 내성 유전자에 의해 2-데옥시스트렙타민계 항생물질(겐타마이신 유사체)에 대한 내성을 부여한다. 세포융합에 적합한 각종의 골수종 세포가 공지이다.
이러한 골수종 세포로서 예를 들면, P3(P3x63Ag8.653)(J. Immunol.(1979)123 (4), 1548-1550), P3x63Ag8U.1(Current Topics in Microbiology and Immunology(1978)81, 1-7), NS-1(C. Eur. J. Immunol.(1976)6 (7), 511-519), MPC-11(Cell(1976)8 (3), 405-415), SP2/0(Nature(1978)276 (5685), 269-270), FO(J. Immunol. Methods(1980)35 (1-2), 1-21), S194/5.XX0.BU.1(J. Exp. Med.(1978)148 (1), 313-323), R210(Nature(1979)277 (5692), 131-133) 등이 바람직하게 사용될 수 있다.
기본적으로는 공지의 방법, 예를 들면 쾰러와 밀스테인 등의 방법(Methods Enzymol.(1981)73, 3-46) 등에 준하여 상기 면역세포와 골수종 세포의 세포융합이 행해진다.
보다 구체적으로는, 예를 들면 세포융합 촉진제의 존재하에서 통상의 영양배양액 중에서 상기 세포융합이 실시될 수 있다. 융합 촉진제로서는, 예를 들면 폴리에틸렌글리콜(PEG), 센다이 바이러스(HVJ) 등이 사용되고, 추가로 융합효율을 높이기 위해 목적하는 바에 따라 디메틸설폭시드 등의 보조제가 첨가되어 사용된다.
면역세포와 골수종 세포의 사용비율은 임의로 설정될 수 있다. 예를 들면, 골수종 세포에 대해 면역세포를 1~10배로 하는 것이 바람직하다. 상기 세포융합에 사용하는 배양액으로서는, 예를 들면 상기 골수종 세포주의 증식에 적합한 RPMI1640 배양액, MEM 배양액, 기타, 이 종의 세포배양에 사용되는 통상의 배양액이 사용되고, 추가로 소태아혈청(FCS) 등의 혈청 보액이 적합하게 첨가될 수 있다.
세포융합은 상기 면역세포와 골수종 세포의 소정량을 상기 배양액 중에서 잘 혼합하여, 사전에 37℃ 정도로 가온된 PEG 용액(예를 들면 평균 분자량 1000~6000 정도)이 통상 30~60%(w/v)의 농도로 첨가된다. 혼합액이 완만하게 혼합됨으로써 목적하는 융합세포(하이브리도마)가 형성된다. 이어서, 상기에 예로 든 적당한 배양액이 축차 첨가되고, 원심하여 상청을 제거하는 조작을 반복함으로써 하이브리도마의 생육에 바람직하지 않은 세포융합제 등이 제거될 수 있다.
이와 같이 하여 얻어진 하이브리도마는 통상의 선택 배양액, 예를 들면 HAT 배양액(히포크산틴, 아미노프테린 및 티미딘을 포함하는 배양액)으로 배양함으로써 선택될 수 있다. 목적하는 하이브리도마 이외의 세포(비융합세포)가 사멸되기에 충분한 시간(통상, 이러한 충분한 시간은 수일 내지 수 주간이다) 상기 HAT 배양액을 사용한 배양이 계속될 수 있다. 이어서, 통상의 한계희석법에 의해 목적하는 항체를 생산하는 하이브리도마의 스크리닝 및 단일 클로닝이 실시된다.
이와 같이 하여 얻어진 하이브리도마는 세포융합에 사용된 골수종이 갖는 선택 마커에 따른 선택 배양액을 이용함으로써 선택될 수 있다. 예를 들면 HGPRT나 TK의 결손을 갖는 세포는 HAT 배양액(히포크산틴, 아미노프테린 및 티미딘을 포함하는 배양액)으로 배양함으로써 선택될 수 있다. 즉, HAT 감수성의 골수종 세포를 세포융합에 사용한 경우, HAT 배양액 중에서 정상 세포와의 세포융합에 성공한 세포가 선택적으로 증식될 수 있다. 목적하는 하이브리도마 이외의 세포(비융합세포)가 사멸되기에 충분한 시간, 상기 HAT 배양액을 사용한 배양이 계속된다. 구체적으로는, 일반적으로 수일 내지 수 주간의 배양에 의해 목적하는 하이브리도마가 선택될 수 있다. 이어서, 통상의 한계희석법에 의해 목적하는 항체를 생산하는 하이브리도마의 스크리닝 및 단일 클로닝이 실시될 수 있다.
목적하는 항체의 스크리닝 및 단일 클로닝이 공지의 항원 항체 반응에 기초하는 스크리닝방법에 의해 적합하게 실시될 수 있다. 예를 들면, 고정화한 IgA에 대한 항체의 결합 활성이 ELISA의 원리를 토대로 평가될 수 있다. 예를 들면, ELISA 플레이트의 웰에 IgA가 고정화된다. 하이브리도마의 배양상청을 웰 내의 IgA에 접촉시켜 IgA에 결합하는 항체가 검출된다. 단일클론 항체가 마우스 유래인 경우, 세포에 결합한 항체는 항마우스 이뮤노글로불린 항체에 의해 검출될 수 있다. 이들의 스크리닝에 의해 선택된 항원에 대한 결합능을 갖는 목적하는 항체를 생산하는 하이브리도마는 한계희석법 등에 의해 클로닝될 수 있다.
이와 같이 하여 제작되는 단일클론 항체를 생산하는 하이브리도마는 통상의 배양액 중에서 계대배양될 수 있다. 또한 그 하이브리도마는 액체질소 중에서 장기에 걸쳐 보존될 수 있다.
당해 하이브리도마를 통상의 방법에 따라 배양하고 그 배양상청으로부터 목적하는 단일클론 항체가 취득될 수 있다. 또는 하이브리도마를 이것과 적합성이 있는 포유동물에 투여하여 증식시키고, 그의 복수로부터 단일클론 항체가 취득될 수 있다. 전자의 방법은 고순도의 항체를 얻기에 적합한 것이다.
당해 하이브리도마 등의 항체 생산 세포로부터 클로닝되는 항체 유전자에 의해 코드되는 항체도 바람직하게 이용될 수 있다. 클로닝한 항체 유전자를 적당한 벡터에 삽입하여 숙주에 도입함으로써, 당해 유전자에 의해 코드되는 항체가 발현된다. 항체 유전자의 단리와 벡터로의 도입, 그리고 숙주세포의 형질전환을 위한 방법은 예를 들면, Vandamme 등에 의해 이미 확립되어 있다(Eur.J. Biochem.(1990)192 (3), 767-775). 하기에 기술하는 바와 같이 재조합 항체의 제조방법도 또한 공지이다.
예를 들면, 항IgA 항체를 생산하는 하이브리도마 세포로부터 항IgA 항체의 가변영역(V영역)을 코드하는 cDNA가 취득된다. 그 때문에, 통상, 먼저 하이브리도마로부터 전체 RNA가 추출된다. 세포로부터 mRNA를 추출하기 위한 방법으로서, 예를 들면 다음과 같은 방법을 이용할 수 있다.
-구아니딘 초원심법(Biochemistry (1979) 18 (24), 5294-5299)
-AGPC법(Anal. Biochem. (1987) 162 (1), 156-159)
추출된 mRNA는 mRNA Purification Kit(GE 헬스케어 바이오사이언스 제조) 등을 사용하여 정제될 수 있다. 또는 QuickPrep mRNA Purification Kit(GE 헬스케어 바이오사이언스 제조) 등과 같이 세포로부터 직접 전체 mRNA를 추출하기 위한 키트도 시판되고 있다. 이러한 키트를 사용하여 하이브리도마로부터 mRNA가 취득될 수 있다. 얻어진 mRNA로부터 역전사효소를 사용하여 항체 V영역을 코드하는 cDNA가 합성될 수 있다. cDNA는 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit(생화학 공업사 제조) 등에 의해 합성될 수 있다. 또한 cDNA의 합성 및 증폭을 위해, SMART RACE cDNA 증폭 키트(Clontech 제조) 및 PCR을 사용한 5'-RACE법(Proc. Natl. Acad. Sci. USA (1988) 85 (23), 8998-9002, Nucleic Acids Res. (1989) 17 (8), 2919-2932)이 적절히 이용될 수 있다. 또한 이러한 cDNA의 합성과정에 있어서 cDNA의 양말단에 후술하는 적절한 제한효소 사이트가 도입될 수 있다.
얻어진 PCR 산물로부터 목적으로 하는 cDNA 단편이 정제되고, 이어서 벡터 DNA와 연결된다. 이와 같이 재조합 벡터가 제작되고, 대장균 등에 도입되어 콜로니가 선택된 후에, 당해 콜로니를 형성한 대장균으로부터 목적하는 재조합 벡터가 조제될 수 있다. 그리고, 그 재조합 벡터가 목적으로 하는 cDNA의 염기서열을 가지고 있는지 여부에 대해서 공지의 방법, 예를 들면 디데옥시뉴클레오티드 체인 터미네이션법 등에 의해 확인된다.
가변영역을 코드하는 유전자를 취득하기 위해서는 가변영역 유전자 증폭용 프라이머를 사용한 5'-RACE법을 이용하는 것이 간편하다. 먼저 하이브리도마 세포로부터 추출된 RNA를 주형으로 하여 cDNA가 합성되고, 5'-RACE cDNA 라이브러리가 얻어진다. 5'-RACE cDNA 라이브러리의 합성에는 SMART RACE cDNA 증폭 키트 등 시판의 키트가 적절히 사용된다.
얻어진 5'-RACE cDNA 라이브러리를 주형으로 하여 PCR법에 의해 항체 유전자가 증폭된다. 공지의 항체 유전자 서열을 토대로 마우스 항체 유전자 증폭용 프라이머가 디자인될 수 있다. 이들 프라이머는 이뮤노글로불린의 서브클래스별로 상이한 염기서열이다. 따라서, 서브클래스는 사전에 Iso Strip 마우스 단일클론 항체 아이소타이핑 키트(로슈 다이어그노스틱스) 등의 시판 키트를 사용하여 결정해 두는 것이 바람직하다.
구체적으로는, 예를 들면 마우스 IgG를 코드하는 유전자의 취득을 목적으로 할 때는, 중쇄로서 γ1, γ2a, γ2b, γ3, 경쇄로서 κ쇄와 λ쇄를 코드하는 유전자의 증폭이 가능한 프라이머가 이용될 수 있다. IgG의 가변영역 유전자를 증폭하기 위해서는, 일반적으로 3'측의 프라이머에는 가변영역에 가까운 정상영역에 상당하는 부분에 어닐링하는 프라이머가 이용된다. 한편 5'측의 프라이머에는 5'RACE cDNA 라이브러리 제작 키트에 부속되는 프라이머가 이용된다.
이렇게 하여 증폭된 PCR 산물을 이용하여 중쇄와 경쇄의 조합으로 이루어지는 이뮤노글로불린이 재구성될 수 있다. 재구성된 이뮤노글로불린의 IgA에 대한 결합 활성을 지표로 하여 목적하는 항체가 스크리닝될 수 있다. 예를 들면 IgA에 대한 항체의 취득을 목적으로 할 때, 항체의 IgA에 대한 결합은 특이적인 것이 더욱 바람직하다. IgA에 결합하는 항체는 예를 들면 다음과 같이 하여 스크리닝될 수 있다;
(1) 하이브리도마로부터 얻어진 cDNA에 의해 코드되는 V영역을 포함하는 항체를 IgA에 접촉시키는 공정,
(2) IgA와 항체의 결합을 검출하는 공정 및
(3) IgA에 결합하는 항체를 선택하는 공정.
항체와 IgA의 결합을 검출하는 방법은 공지이다. 구체적으로는, 앞서 기술한 ELISA 등의 수법에 의해 항체와 IgA의 결합이 검출될 수 있다.
결합 활성을 지표로 하는 항체의 스크리닝방법으로서 파지 벡터를 이용한 패닝법도 적합하게 사용된다. 다중클론 항체 발현 세포군으로부터 항체 유전자를 중쇄와 경쇄의 서브클래스의 라이브러리로서 취득한 경우에는 파지 벡터를 이용한 스크리닝방법이 유리하다. 중쇄와 경쇄의 가변영역을 코드하는 유전자는 적당한 링커 서열로 연결함으로써 싱글 체인 Fv(scFv)을 형성할 수 있다. scFv를 코드하는 유전자를 파지 벡터에 삽입함으로써 scFv를 표면에 발현하는 파지가 취득될 수 있다. 이 파지와 목적하는 항원의 접촉 후에 항원에 결합한 파지를 회수함으로써 목적의 결합 활성을 갖는 scFv를 코드하는 DNA가 회수될 수 있다. 이 조작을 필요에 따라 반복함으로써 목적하는 결합 활성을 갖는 scFv가 농축될 수 있다.
목적으로 하는 항IgA 항체의 V영역을 코드하는 cDNA가 얻어진 후에, 당해 cDNA의 양말단에 삽입한 제한효소 사이트를 인식하는 제한효소에 의해 그 cDNA가 소화된다. 바람직한 제한효소는 항체 유전자를 구성하는 염기서열에 출현하는 빈도가 낮은 염기서열을 인식하여 소화한다. 또한 1 카피의 소화 단편을 벡터에 바른 방향으로 삽입하기 위해서는 부착 말단을 부여하는 제한효소의 삽입이 바람직하다. 상기와 같이 소화된 항IgA 항체의 V영역을 코드하는 cDNA를 적당한 발현 벡터에 삽입함으로써 항체 발현 벡터가 취득될 수 있다. 이때, 항체 정상영역(C영역)을 코드하는 유전자와 상기 V영역을 코드하는 유전자가 인프레임으로 융합되면 키메라 항체가 취득된다. 여기서 키메라 항체란 정상영역과 가변영역의 유래가 상이한 것을 말한다. 따라서, 마우스-인간 등의 이종(異種) 키메라 항체에 더하여 인간-인간 동종(同種) 키메라 항체도 본 발명에 있어서의 키메라 항체에 포함된다. 사전에 정상영역을 갖는 발현 벡터에 상기 V영역 유전자를 삽입함으로써 키메라 항체 발현 벡터가 구축될 수 있다. 구체적으로는, 예를 들면 목적하는 항체 정상영역(C영역)을 코드하는 DNA를 보유한 발현 벡터의 5'측에 상기 V영역 유전자를 소화하는 제한효소의 제한효소 인식서열이 적절히 배치될 수 있다. 동일한 조합의 제한효소로 소화된 양자가 인프레임으로 융합됨으로써 키메라 항체 발현 벡터가 구축된다.
항IgA 단일클론 항체를 제조하기 위해 항체 유전자가 발현 제어영역에 의한 제어하에서 발현되도록 발현 벡터에 삽입된다. 항체를 발현하기 위한 발현 제어영역이란 예를 들면 인핸서나 프로모터를 포함한다. 또한 발현된 항체가 세포외로 분비되도록 적절한 시그날 서열이 아미노 말단에 부가될 수 있다. 뒤에 기재되는 실시예에서는 시그날 서열로서 아미노산 서열 MGWSCIILFLVATATGVHS(서열번호:5)를 갖는 펩티드가 사용되고 있는데, 이것 이외에도 적합한 시그날 서열이 부가된다. 발현된 폴리펩티드는 상기 서열의 카르복실 말단 부분에서 절단되고, 절단된 폴리펩티드가 성숙 폴리펩티드로서 세포외로 분비될 수 있다. 이어서, 이 발현 벡터에 의해 적당한 숙주세포가 형질전환됨으로써 항IgA 항체를 코드하는 DNA를 발현하는 재조합 세포가 취득될 수 있다.
항체 유전자 발현을 위해 항체 중쇄(H쇄) 및 경쇄(L쇄)를 코드하는 DNA는 각각 다른 발현 벡터에 삽입된다. H쇄와 L쇄가 삽입된 벡터에 의해 동일 숙주세포에 동시에 형질전환(co-transfect)됨으로써 H쇄와 L쇄를 구비한 항체 분자가 발현될 수 있다. 또는 H쇄 및 L쇄를 코드하는 DNA가 단일 발현 벡터에 삽입됨으로써 숙주세포가 형질전환될 수 있다(국제공개 WO 1994/011523을 참조할 것).
단리된 항체 유전자를 적당한 숙주에 도입함으로써 항체를 제작하기 위한 숙주세포와 발현 벡터의 많은 조합이 공지이다. 이들의 발현계는 모두 본 발명의 항원 결합 분자를 단리하는데 응용될 수 있다. 진핵세포가 숙주세포로서 사용되는 경우 동물세포, 식물세포 또는 진균세포가 적절히 사용될 수 있다. 구체적으로는 동물세포로서는 다음과 같은 세포가 예시될 수 있다.
(1) 포유류세포,:CHO(Chinese hamster ovary cell line), COS(Monkey kidney cell line), 골수종(Sp2/O, NS0 등), BHK (baby hamster kidney cell line), HEK293(human embryonic kidney cell line with sheared adenovirus (Ad)5 DNA), PER.C6 cell (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes), Hela, Vero, HEK293(human embryonic kidney cell line with sheared adenovirus (Ad)5 DNA) 등(Current Protocols in Protein Science (May, 2001, Unit 5.9, Table 5.9.1))
(2) 양서류세포:아프리카 발톱개구리 난모세포 등
(3) 곤충세포:sf9, sf21, Tn5 등
또는 식물세포로서는 니코티아나 타바쿰(Nicotiana tabacum) 등의 니코티아나(Nicotiana)속 유래의 세포에 의한 항체 유전자의 발현계가 공지이다. 식물세포의 형질전환에는 캘러스 배양한 세포가 적절히 이용될 수 있다.
또한 진균세포로서는 다음과 같은 세포를 이용할 수 있다.
-효모:사카로마이세스 세레비시애(Saccharomyces serevisiae) 등의 사카로마이세스(Saccharomyces)속, 메탄올 자화 효모(Pichia pastoris) 등의 Pichia속
-사상균:아스퍼질러스 니거(Aspergillus niger) 등의 아스퍼질러스(Aspergillus)속
또한 원핵세포를 이용한 항체 유전자의 발현계도 공지이다. 예를 들면, 세균세포를 사용하는 경우 대장균(E. coli), 고초균 등의 세균세포가 적절히 이용될 수 있다. 이들 세포 중에 목적으로 하는 항체 유전자를 포함하는 발현 벡터가 형질전환에 의해 도입된다. 형질전환된 세포를 in vitro에서 배양함으로써 당해 형질전환 세포의 배양물로부터 목적하는 항체가 취득될 수 있다.
재조합 항체의 생산에는 상기 숙주세포에 더하여 형질전환 동물도 이용될 수 있다. 즉 목적하는 항체를 코드하는 유전자가 도입된 동물로부터 당해 항체를 얻을 수 있다. 예를 들면, 항체 유전자는 유즙 중에 고유하게 생산되는 단백질을 코드하는 유전자의 내부에 인프레임으로 삽입함으로써 융합 유전자로서 구축될 수 있다. 유즙 중에 분비되는 단백질로서 예를 들면 염소 β카제인 등을 이용할 수 있다. 항체 유전자가 삽입된 융합 유전자를 포함하는 DNA 단편은 염소의 배(胚)로 주입되고, 당해 주입된 배가 암컷의 염소로 도입된다. 배를 수용한 염소로부터 태어나는 형질전환 염소(또는 그의 자손)가 생산하는 유즙으로부터는, 목적하는 항체가 유즙 단백질과의 융합 단백질로서 취득될 수 있다. 또한 형질전환 염소로부터 생산되는 목적하는 항체를 포함하는 유즙량을 증가시키기 위해 호르몬이 형질전환 염소에 대해 투여될 수 있다(Bio/Technology (1994), 12 (7), 699-702).
본 명세서에 있어서 기재되는 항원 결합 분자가 인간에게 투여되는 경우, 당해 항원 결합 분자에 있어서의 항원 결합 도메인으로서, 인간에 대한 이종 항원성을 저하시키는 것 등을 목적으로 하여 인위적으로 개변한 유전자 재조합형 항체 유래의 항원 결합 도메인이 적절히 채용될 수 있다. 유전자 재조합형 항체에는 예를 들면 인간화(Humanized) 항체 등이 포함된다. 이들 개변 항체는 공지의 방법을 사용하여 적절히 제조된다.
본 명세서에 있어서 기재되는 항원 결합 분자에 있어서의 항원 결합 도메인을 제작하기 위해 사용되는 항체의 가변영역은 통상 4개의 프레임워크 영역(FR) 사이에 끼인 3개의 상보성 결정영역(complementarity-determining region;CDR)으로 구성되어 있다. CDR은 실질적으로 항체의 결합 특이성을 결정하고 있는 영역이다. CDR의 아미노산 서열은 다양성이 풍부하다. 한편 FR을 구성하는 아미노산 서열은 상이한 결합 특이성을 갖는 항체 사이에서도 높은 동일성을 나타내는 것이 많다. 그 때문에 일반적으로 CDR의 이식에 의해 어떤 항체의 결합 특이성을 다른 항체에 이식할 수 있는 것으로 되어 있다.
인간화 항체는 재구성(reshaped) 인간 항체라고도 칭해진다. 구체적으로는, 인간 이외의 동물, 예를 들면 마우스 항체의 CDR을 인간 항체에 이식하는 CDR 이식기술(CDR grafting technology)을 적용한 인간화 항체 등이 공지이다. 인간화 항체를 얻기 위한 일반적인 유전자 재조합 수법도 알려져 있다. 구체적으로는, 마우스 항체의 CDR을 인간의 FR에 이식하기 위한 방법으로서, 예를 들면 Overlap Extension PCR이 공지이다. Overlap Extension PCR에 있어서는, 인간 항체의 FR을 합성하기 위한 프라이머에 이식 대상 마우스 항체의 CDR을 코드하는 염기서열이 부가된다. 프라이머는 4개의 FR의 각각에 대해서 준비된다. 일반적으로 마우스 CDR의 인간 FR으로의 이식에 있어서는, 마우스의 FR과 동일성이 높은 인간 FR을 선택하는 것이 CDR의 기능 유지에 있어서 유리한 것으로 되어 있다. 즉, 일반적으로 이식 대상 마우스 CDR에 인접해 있는 FR의 아미노산 서열과 동일성이 높은 아미노산 서열로 이루어지는 인간 FR을 이용하는 것이 바람직하다.
또한 연결되는 염기서열은 서로 인프레임으로 접속되도록 디자인된다. 각각의 프라이머에 의해 인간 FR이 개별적으로 합성된다. 그 결과, 각 FR에 마우스 CDR을 코드하는 DNA가 부가된 산물이 얻어진다. 각 산물의 마우스 CDR을 코드하는 염기서열은 서로 오버랩되도록 디자인되어 있다. 계속해서 인간 항체 유전자를 주형으로 하여 합성된 산물의 오버랩된 CDR 부분을 서로 어닐링시켜서 상보가닥 합성반응이 행해진다. 이 반응에 의해 인간 FR이 마우스 CDR의 서열을 매개로 연결된다.
최종적으로 3개의 CDR과 4개의 FR이 연결된 V영역 유전자는 그의 5'말단과 3'말단에 어닐링하여 적당한 제한효소 인식서열이 부가된 프라이머에 의해 그의 전장이 증폭된다. 상기와 같이 얻어진 DNA와 인간 항체 C영역을 코드하는 DNA를 인프레임으로 융합하도록 발현 벡터 중에 삽입함으로써 인간형 항체 발현용 벡터를 제작할 수 있다. 당해 삽입 벡터를 숙주에 도입하여 재조합 세포를 수립한 후에, 당해 재조합 세포를 배양하고 당해 인간화 항체를 코드하는 DNA를 발현시킴으로써 당해 인간화 항체가 당해 배양세포의 배양물 중에 생산된다(유럽 특허공개 EP239400, 국제공개 제WO1996/002576호 참조).
상기와 같이 제작된 인간화 항체의 항원으로의 결합 활성을 정성적 또는 정량적으로 측정하고 평가함으로써, CDR을 매개로 연결되었을 때 그 CDR이 양호한 항원 결합 부위를 형성하는 인간 항체의 FR을 적합하게 선택할 수 있다. 필요에 따라 재구성 인간 항체의 CDR이 적절한 항원 결합 부위를 형성하도록 FR의 아미노산 잔기를 치환하는 것도 가능하다. 예를 들면, 마우스 CDR의 인간 FR으로의 이식에 사용한 PCR법을 응용하여 FR에 아미노산 서열의 변이를 도입할 수 있다. 구체적으로는 FR에 어닐링하는 프라이머에 부분적인 염기서열의 변이를 도입할 수 있다. 이러한 프라이머에 의해 합성된 FR에는 염기서열의 변이가 도입된다. 아미노산을 치환한 변이형 항체의 항원으로의 결합 활성을 상기 방법으로 측정하고 평가함으로써 목적하는 성질을 갖는 변이 FR 서열이 선택될 수 있다(Cancer Res., (1993) 53, 851-856).
또한 인간 항체 유전자의 모든 레퍼토리를 갖는 형질전환 동물(국제공개 WO1993/012227, WO1992/003918, WO1994/002602, WO1994/025585, WO1996/034096, WO1996/033735 참조)을 면역동물로 하여 DNA 면역에 의해 목적하는 인간 항체가 취득될 수 있다.
또한 인간 항체 라이브러리를 사용하여 패닝에 의해 인간 항체를 취득하는 기술도 알려져 있다. 예를 들면, 인간 항체의 V영역이 단일 사슬 항체(scFv)로서 파지디스플레이법에 의해 파지의 표면에 발현된다. 항원에 결합하는 scFv를 발현하는 파지가 선택될 수 있다. 선택된 파지의 유전자를 해석함으로써 항원에 결합하는 인간 항체의 V영역을 코드하는 DNA 서열을 결정할 수 있다. 항원에 결합하는 scFv의 DNA 서열을 결정한 후, 당해 V영역 서열을 목적하는 인간 항체 C영역의 서열과 인프레임으로 융합시킨 후에 적당한 발현 벡터에 삽입함으로써 발현 벡터가 제작될 수 있다. 당해 발현 벡터를 상기에 예로 든 바와 같은 적합한 발현 세포 중에 도입하고, 그 인간 항체를 코드하는 유전자를 발현시킴으로써 당해 인간 항체가 취득된다. 이들 방법은 이미 공지이다(국제공개 WO1992/001047, WO1992/020791, WO1993/006213, WO1993/011236, WO1993/019172, WO1995/001438, WO1995/015388 참조).
또한 항체 유전자를 취득하는 방법으로서 Bernasconi 등(Science (2002) 298, 2199-2202) 또는 WO2008/081008에 기재된 바와 같은 B세포 클로닝(각각의 항체의 코드 서열의 동정 및 클로닝, 그의 단리 및 각각의 항체(특히, IgG1, IgG2, IgG3 또는 IgG4)의 제작을 위한 발현 벡터 구축을 위한 사용 등)의 수법이 상기 외에 적절히 사용될 수 있다.
EU 넘버링 Kabat 넘버링
본 발명에서 사용되고 있는 방법에 의하면 항체의 CDR과 FR에 할당되는 아미노산 위치는 Kabat에 따라 규정된다(Sequences of Proteins of Immunological Interest(National Institute of Health, Bethesda, Md., 1987년 및 1991년). 본 명세서에 있어서 항원 결합 분자가 항체 또는 항원 결합 단편인 경우, 가변영역의 아미노산은 Kabat 넘버링에 따라, 정상영역의 아미노산은 Kabat의 아미노산 위치에 준한 EU 넘버링에 따라 표시된다.
이온 농도의 조건
금속 이온 농도의 조건
본 발명의 하나의 태양에서는 이온 농도란 금속 이온 농도를 말한다. 「금속 이온」이란 수소를 제외한 알칼리금속 및 구리족 등의 제I족, 알칼리토류금속 및 아연족 등의 제II족, 붕소를 제외한 제III족, 탄소와 규소를 제외한 제IV족, 철족 및 백금족 등의 제VIII족, V, VI 및 VII족의 각 A아족에 대한 원소와 안티몬, 비스무트, 폴로늄 등의 금속원소의 이온을 말한다. 금속원자는 원자가 전자를 방출하여 양이온이 되는 성질을 가지고 있어 이를 이온화 경향이라 한다. 이온화 경향이 큰 금속은 화학적으로 활성이 풍부하다고 한다.
본 발명에서 적합한 금속 이온의 예로서 칼슘 이온을 들 수 있다. 칼슘 이온은 많은 생명 현상의 조절에 관여하고 있어 골격근, 평활근 및 심근 등의 근육의 수축, 백혈구의 운동 및 탐식 등의 활성화, 혈소판의 변형 및 분비 등의 활성화, 림프구의 활성화, 히스타민의 분비 등의 비만세포의 활성화, 카테콜아민 α수용체나 아세틸콜린 수용체를 매개로 하는 세포의 응답, 엑소시토시스, 뉴런 종말로부터의 전달물질의 방출, 뉴런의 축삭류(axoplasmic flow) 등에 칼슘 이온이 관여하고 있다. 세포내의 칼슘 이온 수용체로서 복수 개의 칼슘 이온 결합 부위를 가지며, 분자 진화상 공통의 기원으로부터 유래된 것으로 생각되는 트로포닌 C, 칼모듈린, 파브알부민, 미오신 경쇄 등이 알려져 있고, 그의 결합 모티브도 많이 알려져 있다. 예를 들면, 카드헤린 도메인, 칼모듈린에 포함되는 EF 핸드, Protein kinase C에 포함되는 C2 도메인, 혈액응고 단백질 Factor IX에 포함되는 Gla 도메인, 아시알로글리코프로테인 수용체나 만노오스 결합 수용체에 포함되는 C형 렉틴, LDL 수용체에 포함되는 A 도메인, 아넥신, 트롬보스폰딘 3형 도메인 및 EGF 유사 도메인이 잘 알려져 있다.
본 발명에 있어서는 금속 이온이 칼슘 이온인 경우에는 칼슘 이온 농도의 조건으로서 저칼슘 이온 농도의 조건과 고칼슘 이온 농도의 조건을 들 수 있다. 칼슘 이온 농도의 조건에 따라 결합 활성이 변화된다는 것은, 저칼슘 이온 농도와 고칼슘 이온 농도의 조건의 차이에 의해 항원에 대한 항원 결합 분자의 결합 활성이 변화되는 것을 말한다. 예를 들면 저칼슘 이온 농도의 조건하에 있어서의 항원에 대한 항원 결합 분자의 결합 활성보다도 고칼슘 이온 농도의 조건하에 있어서의 항원에 대한 항원 결합 분자의 결합 활성 쪽이 높은 경우를 들 수 있다. 또한 고칼슘 이온 농도의 조건하에 있어서의 항원에 대한 항원 결합 분자의 결합 활성보다도 저칼슘 이온 농도의 조건하에 있어서의 항원에 대한 항원 결합 분자의 결합 활성 쪽이 높은 경우도 또한 들 수 있다.
본 명세서에 있어서 고칼슘 이온 농도란 특별히 일의적인 수치에 한정되는 것은 아니나, 바람직하게는 100 μM~10 mM로부터 선택되는 농도일 수 있다. 또한 다른 태양에서는 200 μM~5 mM로부터 선택되는 농도일 수도 있다. 또한 상이한 태양에서는 400 μM~3 mM로부터 선택되는 농도일 수도 있고, 다른 태양에서는 200 μM~2 mM로부터 선택되는 농도일 수도 있다. 또한 400 μM~1 mM로부터 선택되는 농도일 수도 있다. 특히 생체내의 혈장 중(혈중)에서의 칼슘 이온 농도에 가까운 500 μM~2.5 mM로부터 선택되는 농도를 바람직하게 들 수 있다.
본 명세서에 있어서 저칼슘 이온 농도란 특별히 일의적인 수치에 한정되는 것은 아니나, 바람직하게는 0.1 μM~30 μM로부터 선택되는 농도일 수 있다. 또한 다른 태양에서는 0.2 μM~20 μM로부터 선택되는 농도일 수도 있다. 또한 상이한 태양에서는 0.5 μM~10 μM로부터 선택되는 농도일 수도 있고, 다른 태양에서는 1 μM~5 μM로부터 선택되는 농도일 수도 있다. 또한 2 μM~4 μM로부터 선택되는 농도일 수도 있다. 특히 생체내의 조기 엔도솜 내에서의 이온화 칼슘 농도에 가까운 1 μM~5 μM로부터 선택되는 농도를 바람직하게 들 수 있다.
본 발명에 있어서 저칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다 낮다는 것은, 항원 결합 분자의 0.1 μM~30 μM로부터 선택되는 칼슘 이온 농도에서의 항원에 대한 결합 활성이 100 μM~10 mM로부터 선택되는 칼슘 이온 농도에서의 항원에 대한 결합 활성보다 약한 것을 의미한다. 바람직하게는 항원 결합 분자의 0.5 μM~10 μM로부터 선택되는 칼슘 이온 농도에서의 항원에 대한 결합 활성이 200 μM~5 mM로부터 선택되는 칼슘 이온 농도에서의 항원에 대한 결합 활성보다 약한 것을 의미하고, 특히 바람직하게는 생체내의 조기 엔도솜 내의 칼슘 이온 농도에 있어서의 항원 결합 활성이 생체내의 혈장 중의 칼슘 이온 농도에 있어서의 항원 결합 활성보다 약한 것을 의미하고, 구체적으로는 항원 결합 분자의 1 μM~5 μM로부터 선택되는 칼슘 이온 농도에서의 항원에 대한 결합 활성이 500 μM~2.5 mM로부터 선택되는 칼슘 이온 농도에서의 항원에 대한 결합 활성보다 약한 것을 의미한다.
금속 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성이 변화되고 있는지 여부는, 예를 들면 상기 결합 활성의 항목에서 기재된 바와 같은 공지의 측정방법을 사용함으로써 결정될 수 있다. 예를 들면 저칼슘 이온 농도의 조건하에 있어서의 항원에 대한 항원 결합 분자의 결합 활성보다도 고칼슘 이온 농도의 조건하에 있어서의 항원에 대한 항원 결합 분자의 결합 활성 쪽이 높게 변화되는 것을 확인하기 위해서는 저칼슘 이온 농도 및 고칼슘 이온 농도의 조건하에 있어서의 항원에 대한 항원 결합 분자의 결합 활성이 비교된다.
또한 본 발명에 있어서 「저칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다 낮다」는 표현은, 항원 결합 분자의 고칼슘 이온 농도 조건하에 있어서의 항원에 대한 결합 활성이 저칼슘 이온 농도 조건하에 있어서의 항원에 대한 결합 활성보다도 높다고 표현하는 것도 가능하다. 또한 본 발명에 있어서는 「저칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다 낮다」를 「저칼슘 이온 농도 조건하에 있어서의 항원 결합능이 고칼슘 이온 농도 조건하에 있어서의 항원에 대한 결합능보다 약하다」라고 기재하는 경우도 있고, 또한 「저칼슘 이온 농도의 조건에 있어서의 항원 결합 활성을 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다 저하시킨다」를 「저칼슘 이온 농도 조건하에 있어서의 항원 결합능을 고칼슘 이온 농도 조건하에 있어서의 항원에 대한 결합능보다도 약하게 한다」고 기재하는 경우도 있다.
항원으로의 결합 활성을 측정할 때의 칼슘 이온 농도 이외의 조건은 당업자가 적절히 선택하는 것이 가능하고, 특별히 한정되지 않는다. 예를 들면, HEPES 버퍼, 37℃의 조건에 있어서 측정하는 것이 가능하다. 예를 들면, Biacore(GE Healthcare) 등을 사용하여 측정하는 것이 가능하다. 항원 결합 분자와 항원의 결합 활성의 측정은, 항원이 가용형 항원인 경우는 항원 결합 분자를 고정화한 칩으로 항원을 애널라이트로서 흘림으로써 가용형 항원으로의 결합 활성을 평가하는 것이 가능하고, 항원이 막형 항원인 경우는 항원을 고정화한 칩으로 항원 결합 분자를 애널라이트로서 흘림으로써 막형 항원으로의 결합 활성을 평가하는 것이 가능하다.
본 발명의 항원 결합 분자에 있어서 저칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다도 약한 한, 저칼슘 이온 농도 조건하에 있어서의 항원에 대한 결합 활성과 고칼슘 이온 농도 조건하에 있어서의 항원에 대한 결합 활성의 비는 특별히 한정되지 않지만, 바람직하게는 항원에 대한 저칼슘 이온 농도의 조건에 있어서의 KD(Dissociation constant:해리상수)와 고칼슘 이온 농도의 조건에 있어서의 KD의 비인 KD(Ca 3 μM)/KD(Ca 2 mM)의 값이 2 이상이고, 더욱 바람직하게는 KD(Ca 3 μM)/KD(Ca 2 mM)의 값이 10 이상이며, 더욱 바람직하게는 KD(Ca 3 μM)/KD(Ca 2 mM)의 값이 40 이상이다. KD(Ca 3 μM)/KD(Ca 2 mM)의 값의 상한은 특별히 한정되지 않고, 당업자의 기술에 있어서 제작 가능한 한 400, 1000, 10000 등 어떠한 값이어도 된다.
항원에 대한 결합 활성의 값으로서 항원이 가용형 항원인 경우는 KD(해리상수)를 사용하는 것이 가능하나, 항원이 막형 항원인 경우는 겉보기 KD(Apparent dissociation constant:겉보기 해리상수)를 사용하는 것이 가능하다. KD(해리상수) 및 겉보기 KD(겉보기 해리상수)는 당업자 공지의 방법으로 측정하는 것이 가능하고, 예를 들면 Biacore(GE healthcare), 스캐차드 플롯, 플로우 사이토미터 등을 사용하는 것이 가능하다.
또한 본 발명의 항원 결합 분자의 저칼슘 농도의 조건에 있어서의 항원에 대한 결합 활성과 고칼슘 농도의 조건에 있어서의 항원에 대한 결합 활성의 비를 나타내는 다른 지표로서, 예를 들면, 해리속도상수인 kd(Dissociation rate constant:해리속도상수)도 또한 바람직하게 사용될 수 있다. 결합 활성의 비를 나타내는 지표로서 KD(해리상수) 대신에 kd(해리속도상수)를 사용하는 경우, 항원에 대한 저칼슘 농도의 조건에 있어서의 kd(해리속도상수)와 고칼슘 농도의 조건에 있어서의 kd(해리속도상수)의 비인 kd(저칼슘 농도의 조건)/kd(고칼슘 농도의 조건)의 값은 바람직하게는 2 이상이고, 더욱 바람직하게는 5 이상이며, 더욱 바람직하게는 10 이상이고, 보다 바람직하게는 30 이상이다. kd(저칼슘 농도의 조건)/kd(고칼슘 농도의 조건)의 값의 상한은 특별히 한정되지 않고, 당업자의 기술상식에 있어서 제작 가능한 한 50, 100, 200 등 어떠한 값이어도 된다.
항원 결합 활성의 값으로서 항원이 가용형 항원인 경우는 kd(해리속도상수)를 사용하는 것이 가능하고, 항원이 막형 항원인 경우는 겉보기 kd(Apparent dissociation rate constant:겉보기 해리속도상수)를 사용하는 것이 가능하다. kd(해리속도상수) 및 겉보기 kd(겉보기 해리속도상수)는 당업자 공지의 방법으로 측정하는 것이 가능하고, 예를 들면 Biacore(GE healthcare), 플로우 사이토미터 등을 사용하는 것이 가능하다. 또한 본 발명에 있어서 상이한 칼슘 이온 농도에 있어서의 항원 결합 분자의 항원에 대한 결합 활성을 측정할 때는 칼슘 농도 이외의 조건은 동일하게 하는 것이 바람직하다.
예를 들면 본 발명이 제공하는 하나의 태양인 저칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(c)를 포함하는 항원 결합 도메인 또는 항체의 스크리닝에 의해 취득될 수 있다.
(a) 저칼슘 농도의 조건에 있어서의 항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성을 얻는 공정,
(b) 고칼슘 농도의 조건에 있어서의 항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성을 얻는 공정,
(c) 저칼슘 농도의 조건에 있어서의 항원 결합 활성이 고칼슘 농도의 조건에 있어서의 항원 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자를 선택하는 공정.
또한 본 발명이 제공하는 하나의 태양인 저칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(c)를 포함하는 항원 결합 도메인 또는 항원 결합 분자 또는 그들의 라이브러리의 스크리닝에 의해 취득될 수 있다.
(a) 고칼슘 농도의 조건에 있어서의 항원 결합 도메인 또는 항원 결합 분자 또는 그들의 라이브러리를 항원에 접촉시키는 공정,
(b) 상기 공정(a)에서 항원에 결합한 항원 결합 도메인 또는 항원 결합 분자를 저칼슘 농도 조건하에 두는 공정,
(c) 상기 공정(b)에서 해리된 항원 결합 도메인 또는 항원 결합 분자를 단리하는 공정.
또한 본 발명이 제공하는 하나의 태양인 저칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(d)를 포함하는 항원 결합 도메인 또는 항원 결합 분자 또는 그들의 라이브러리의 스크리닝에 의해 취득될 수 있다.
(a) 저칼슘 농도 조건하에서 항원 결합 도메인 또는 항원 결합 분자의 라이브러리를 항원에 접촉시키는 공정,
(b) 상기 공정(a)에서 항원에 결합하지 않는 항원 결합 도메인 또는 항원 결합 분자를 선택하는 공정,
(c) 상기 공정(b)에서 선택된 항원 결합 도메인 또는 항원 결합 분자를 고칼슘 농도 조건하에서 항원에 결합시키는 공정,
(d) 상기 공정(c)에서 항원에 결합한 항원 결합 도메인 또는 항원 결합 분자를 단리하는 공정.
또한 본 발명이 제공하는 하나의 태양인 저칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(c)를 포함하는 스크리닝방법에 의해 취득될 수 있다.
(a) 항원을 고정한 칼럼에 고칼슘 농도 조건하에서 항원 결합 도메인 또는 항원 결합 분자의 라이브러리를 접촉시키는 공정,
(b) 상기 공정(a)에서 칼럼에 결합한 항원 결합 도메인 또는 항원 결합 분자를 저칼슘 농도 조건하에서 칼럼으로부터 용출하는 공정,
(c) 상기 공정(b)에서 용출된 항원 결합 도메인 또는 항원 결합 분자를 단리하는 공정.
또한 본 발명이 제공하는 하나의 태양인 저칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(d)를 포함하는 스크리닝방법에 의해 취득될 수 있다.
(a) 항원을 고정한 칼럼에 저칼슘 농도 조건하에서 항원 결합 도메인 또는 항원 결합 분자의 라이브러리를 통과시키는 공정,
(b) 상기 공정(a)에서 칼럼에 결합하지 않고 용출된 항원 결합 도메인 또는 항원 결합 분자를 회수하는 공정,
(c) 상기 공정(b)에서 회수된 항원 결합 도메인 또는 항원 결합 분자를 고칼슘 농도 조건하에서 항원에 결합시키는 공정,
(d) 상기 공정(c)에서 항원에 결합한 항원 결합 도메인 또는 항원 결합 분자를 단리하는 공정.
또한 본 발명이 제공하는 하나의 태양인 저칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(d)를 포함하는 스크리닝방법에 의해 취득될 수 있다.
(a) 고칼슘 농도 조건하에서 항원 결합 도메인 또는 항원 결합 분자의 라이브러리를 항원에 접촉시키는 공정,
(b) 상기 공정(a)에서 항원에 결합한 항원 결합 도메인 또는 항원 결합 분자를 취득하는 공정,
(c) 상기 공정(b)에서 취득한 항원 결합 도메인 또는 항원 결합 분자를 저칼슘 농도 조건하에 두는 공정,
(d) 상기 공정(c)에서 항원 결합 활성이 상기 공정(b)에서 선택한 기준보다 약한 항원 결합 도메인 또는 항원 결합 분자를 단리하는 공정.
또한 상기 공정은 2회 이상 반복되어도 된다. 따라서 본 발명에 의해, 전술한 스크리닝방법에 있어서 (a)~(c) 또는 (a)~(d)의 공정을 2회 이상 반복하는 공정을 추가로 포함하는 스크리닝방법에 의해 취득된 저칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성이 고칼슘 이온 농도의 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자가 제공된다. (a)~(c) 또는 (a)~(d)의 공정이 반복되는 횟수는 특별히 한정되지 않으나, 통상 10회 이내이다.
본 발명의 스크리닝방법에 있어서, 저칼슘 농도 조건하에 있어서의 항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성은 이온화 칼슘 농도가 0.1 μM~30 μM의 항원 결합 활성이라면 특별히 한정되지 않으나, 바람직한 이온화 칼슘 농도로서 0.5 μM~10 μM의 항원 결합 활성을 들 수 있다. 보다 바람직한 이온화 칼슘 농도로서 생체내의 조기 엔도솜 내의 이온화 칼슘 농도를 들 수 있고, 구체적으로는 1 μM~5 μM에 있어서의 항원 결합 활성을 들 수 있다. 또한 고칼슘 농도 조건하에 있어서의 항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성은 이온화 칼슘 농도가 100 μM~10 mM의 항원 결합 활성이라면 특별히 한정되지 않으나, 바람직한 이온화 칼슘 농도로서 200 μM~5 mM의 항원 결합 활성을 들 수 있다. 보다 바람직한 이온화 칼슘 농도로서 생체내의 혈장 중에서의 이온화 칼슘 농도를 들 수 있고, 구체적으로는 0.5 mM~2.5 mM에 있어서의 항원 결합 활성을 들 수 있다.
항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성은 당업자에게 공지의 방법에 의해 측정하는 것이 가능하고, 이온화 칼슘 농도 이외의 조건에 대해서는 당업자가 적절히 결정하는 것이 가능하다. 항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성은 KD(Dissociation constant:해리상수), 겉보기 KD(Apparent dissociation constant:겉보기 해리상수), 해리속도인 kd(Dissociation rate:해리속도상수) 또는 겉보기 kd(Apparent dissociation:겉보기 해리속도상수) 등으로서 평가하는 것이 가능하다. 이들은 당업자 공지의 방법으로 측정하는 것이 가능하고, 예를 들면 Biacore(GE healthcare), 스캐차드 플롯, FACS 등을 사용하는 것이 가능하다.
본 발명에 있어서 고칼슘 농도 조건하에 있어서의 항원 결합 활성이 저칼슘 농도 조건하에 있어서의 항원 결합 활성보다 높은 항원 결합 도메인 또는 항원 결합 분자를 선택하는 공정은, 저칼슘 농도 조건하에 있어서의 항원 결합 활성이 고칼슘 농도 조건하에 있어서의 항원 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자를 선택하는 공정과 동일한 의미이다.
고칼슘 농도 조건하에 있어서의 항원 결합 활성이 저칼슘 농도 조건하에 있어서의 항원 결합 활성보다 높은 한, 고칼슘 농도 조건하에 있어서의 항원 결합 활성과 저칼슘 농도 조건하에 있어서의 항원 결합 활성의 차는 특별히 한정되지 않으나, 바람하게는 고칼슘 농도 조건하에 있어서의 항원 결합 활성이 저칼슘 농도 조건하에 있어서의 항원 결합 활성의 2배 이상이고, 더욱 바람직하게는 10배 이상이며, 보다 바람직하게는 40배 이상이다.
상기 스크리닝방법에 의해 스크리닝되는 본 발명의 항원 결합 도메인 또는 항원 결합 분자는 어떠한 항원 결합 도메인 또는 항원 결합 분자여도 되고, 예를 들면 전술한 항원 결합 도메인 또는 항원 결합 분자를 스크리닝하는 것이 가능하다. 예를 들면 천연의 서열을 갖는 항원 결합 도메인 또는 항원 결합 분자를 스크리닝해도 되고, 아미노산 서열이 치환된 항원 결합 도메인 또는 항원 결합 분자를 스크리닝해도 된다.
라이브러리
어떤 일태양에 따르면, 본 발명의 항원 결합 도메인 또는 항원 결합 분자는 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기가 항원 결합 도메인에 포함되어 있는 서로 서열이 상이한 복수의 항원 결합 분자로 주로 이루어지는 라이브러리로부터 취득될 수 있다. 이온 농도의 예로서는 금속 이온 농도나 수소 이온 농도를 바람직하게 들 수 있다.
본 명세서에 있어서 「라이브러리」란 복수의 항원 결합 분자 또는 항원 결합 분자를 포함하는 복수의 융합 폴리펩티드, 또는 이들의 서열을 코드하는 핵산, 폴리뉴클레오티드를 말한다. 라이브러리 중에 포함되는 복수의 항원 결합 분자 또는 항원 결합 분자를 포함하는 복수의 융합 폴리펩티드의 서열은 단일 서열이 아니라, 서로 서열이 상이한 항원 결합 분자 또는 항원 결합 분자를 포함하는 융합 폴리펩티드이다.
본 명세서에 있어서는 서로 서열이 상이한 복수의 항원 결합 분자라는 기재에 있어서의 「서로 서열이 상이하다」는 용어는 라이브러리 중의 개개의 항원 결합 분자의 서열이 상호 상이한 것을 의미한다. 즉 라이브러리 중에 있어서의 서로 다른 서열의 수는 라이브러리 중의 서열이 상이한 독립 클론의 수가 반영되어 「라이브러리 사이즈」로 지칭되는 경우도 있다. 통상의 파지 디스플레이 라이브러리에서는 106~1012이고, 리보솜 디스플레이법 등의 공지의 기술을 적용함으로써 라이브러리 사이즈를 1014까지 확대하는 것이 가능하다. 그러나 파지 라이브러리의 패닝 선택시에 사용되는 파지 입자의 실제 수는 통상 라이브러리 사이즈보다도 10~10,000배 크다. 이 과잉 배수는 「라이브러리 당량수」라고도 불리는데 동일한 아미노산 서열을 갖는 개개의 클론이 10~10,000 존재할 수 있는 것을 나타낸다. 따라서 본 발명에 있어서의 「서로 서열이 상이하다」는 용어는 라이브러리 당량수가 제외된 라이브러리 중의 개개의 항원 결합 분자의 서열이 상호 상이한 것, 보다 구체적으로는 서로 서열이 상이한 항원 결합 분자가 106~1014 분자, 바람직하게는 107~1012 분자, 더욱 바람직하게는 108~1011, 특히 바람직하게는 108~1010 존재하는 것을 의미한다.
또한 본 발명에 있어서의 복수의 항원 결합 분자로 주로 이루어지는 라이브러리라는 기재에 있어서의 「복수의」라는 용어는, 예를 들면 본 발명의 항원 결합 분자, 융합 폴리펩티드, 폴리뉴클레오티드 분자, 벡터 또는 바이러스는 통상 그 물질의 2개 이상의 종류의 집합을 가리킨다. 예를 들면 어떤 2개 이상의 물질이 특정 형질에 관하여 서로 상이하다면 그 물질에는 2종류 이상이 존재하는 것을 나타낸다. 예로서는 아미노산 서열 중의 특정 아미노산 위치에서 관찰되는 변이체 아미노산을 들 수 있다. 예를 들면 플렉시블 잔기 이외, 또는 표면에 노출된 매우 다양한 아미노산 위치의 특정 변이체 아미노산 이외는 실질적으로 동일한, 바람직하게는 동일 서열인 본 발명의 2개 이상의 항원 결합 분자가 있는 경우, 본 발명의 항원 결합 분자는 복수 개 존재한다. 다른 예에서는 플렉시블 잔기를 코드하는 염기 이외, 또는 표면에 노출된 매우 다양한 아미노산 위치의 특정 변이체 아미노산을 코드하는 염기 이외는 실질적으로 동일한, 바람직하게는 동일 서열인 본 발명의 2개 이상의 폴리뉴클레오티드 분자가 있다면, 본 발명에 있어서의 폴리뉴클레오티드 분자는 복수 개 존재한다.
또한 본 발명에 있어서의 복수의 항원 결합 분자로 주로 이루어지는 라이브러리라는 기재에 있어서의 「로 주로 이루어지는」이라는 용어는 라이브러리 중의 서열이 상이한 독립 클론의 수 중, 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성이 상이한 항원 결합 분자의 수가 반영된다. 구체적으로는 그러한 결합 활성을 나타내는 항원 결합 분자가 라이브러리 중에 적어도 104 분자 존재하는 것이 바람직하다. 또한 보다 바람직하게는 본 발명의 항원 결합 도메인은 그러한 결합 활성을 나타내는 항원 결합 분자가 적어도 105 분자 존재하는 라이브러리로부터 취득될 수 있다. 더욱 바람직하게는 본 발명의 항원 결합 도메인은 그러한 결합 활성을 나타내는 항원 결합 분자가 적어도 106 분자 존재하는 라이브러리로부터 취득될 수 있다. 특히 바람직하게는 본 발명의 항원 결합 도메인은 그러한 결합 활성을 나타내는 항원 결합 분자가 적어도 107 분자 존재하는 라이브러리로부터 취득될 수 있다. 또한 바람직하게는 본 발명의 항원 결합 도메인은 그러한 결합 활성을 나타내는 항원 결합 분자가 적어도 108 분자 존재하는 라이브러리로부터 취득될 수 있다. 다른 표현으로는 라이브러리 중의 서열이 상이한 독립 클론의 수 중, 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성이 상이한 항원 결합 분자의 비율로서도 적합하게 표현될 수 있다. 구체적으로는 본 발명의 항원 결합 도메인은 그러한 결합 활성을 나타내는 항원 결합 분자가 라이브러리 중의 서열이 상이한 독립 클론 수의 0.1%~80%, 바람직하게는 0.5%~60%, 보다 바람직하게는 1%~40%, 더욱 바람직하게는 2%~20%, 특히 바람직하게는 4%~10% 포함되는 라이브러리로부터 취득될 수 있다. 융합 폴리펩티드, 폴리뉴클레오티드 분자 또는 벡터의 경우도 상기와 마찬가지로 분자의 수나 분자 전체에 있어서의 비율로 표현될 수 있다. 또한 바이러스의 경우도 상기와 마찬가지로 바이러스 개체의 수나 개체 전체에 있어서의 비율로 표현될 수 있다.
칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 도메인의 결합 활성을 변화시키는 아미노산
상기 스크리닝방법에 의해 스크리닝되는 본 발명의 항원 결합 도메인 또는 항원 결합 분자는 어떻게 조제되어도 되고, 예를 들면 금속 이온이 칼슘 이온 농도인 경우에는 사전에 존재하고 있는 항원 결합 분자, 사전에 존재하고 있는 라이브러리(파지 라이브러리 등), 동물에 대한 면역으로부터 얻어진 하이브리도마나 면역동물로부터의 B세포로부터 제작된 항체 또는 라이브러리, 이들 항체나 라이브러리에 칼슘을 킬레이트 가능한 아미노산(예를 들면 아스파라긴산이나 글루타민산)이나 비천연 아미노산 변이를 도입한 항체 또는 라이브러리(칼슘을 킬레이트 가능한 아미노산(예를 들면 아스파라긴산이나 글루타민산) 또는 비천연 아미노산의 함유율을 높게 한 라이브러리나 특정 개소에 칼슘을 킬레이트 가능한 아미노산(예를 들면 아스파라긴산이나 글루타민산) 또는 비천연 아미노산 변이를 도입한 라이브러리 등) 등을 사용하는 것이 가능하다.
상기와 같이 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 아미노산의 예로서, 예를 들면 금속 이온이 칼슘 이온인 경우에는 칼슘 결합 모티브를 형성하는 아미노산이라면 그 종류는 불문한다. 칼슘 결합 모티브는 당업자에게 주지로 상세하게 기재되어 있다(예를 들면 Springer 등(Cell (2000) 102, 275-277), Kawasaki 및 Kretsinger(Protein Prof. (1995) 2, 305-490), Moncrief 등(J. Mol. Evol. (1990) 30, 522-562), Chauvaux 등(Biochem. J. (1990) 265, 261-265), Bairoch 및 Cox(FEBS Lett. (1990) 269, 454-456), Davis(New Biol. (1990) 2, 410-419), Schaefer 등(Genomics (1995) 25, 638~643), Economou 등(EMBO J. (1990) 9, 349-354), Wurzburg 등(Structure. (2006) 14, 6, 1049-1058)). 즉, ASGPR, CD23, MBR, DC-SIGN 등의 C형 렉틴 등의 임의의 공지의 칼슘 결합 모티브가 본 발명의 항원 결합 분자에 포함될 수 있다. 이러한 칼슘 결합 모티브의 적합한 예로서, 상기 외에는 서열번호:6에 기재되는 항원 결합 도메인에 포함되는 칼슘 결합 모티브도 들 수 있다.
또한 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 아미노산의 예로서, 금속 킬레이트 작용을 갖는 아미노산도 적합하게 사용될 수 있다. 금속 킬레이트 작용을 갖는 아미노산의 예로서, 예를 들면 세린(Ser(S)), 트레오닌(Thr(T)), 아스파라긴(Asn(N)), 글루타민(Gln(Q)), 아스파라긴산(Asp(D)) 및 글루타민산(Glu(E)) 등을 바람직하게 들 수 있다.
상기의 아미노산이 포함되는 항원 결합 도메인의 위치는 특정 위치에 한정되지 않고, 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 한, 항원 결합 도메인을 형성하는 중쇄 가변영역 또는 경쇄 가변영역 중 어느 위치일 수도 있다. 즉 본 발명의 항원 결합 도메인은 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 아미노산이 중쇄의 항원 결합 도메인에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리로부터 취득될 수 있다. 또한 다른 태양에서는 본 발명의 항원 결합 도메인은 당해 아미노산이 중쇄의 CDR3에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리로부터 취득될 수 있다. 그 밖의 태양에서는 본 발명의 항원 결합 도메인은 당해 아미노산이 중쇄의 CDR3의 Kabat 넘버링으로 표시되는 95번 위치, 96번 위치, 100a번 위치 및/또는 101번 위치에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리로부터 취득될 수 있다.
또한 본 발명의 일태양에서는 본 발명의 항원 결합 도메인은 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 아미노산이 경쇄의 항원 결합 도메인에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리로부터 취득될 수 있다. 또한 다른 태양에서는 본 발명의 항원 결합 도메인은 당해 아미노산이 경쇄의 CDR1에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리로부터 취득될 수 있다. 그 밖의 태양에서는 본 발명의 항원 결합 도메인은 당해 아미노산이 경쇄의 CDR1의 Kabat 넘버링으로 표시되는 30번 위치, 31번 위치 및/또는 32번 위치에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리로부터 취득될 수 있다.
또한 다른 태양에서는 본 발명의 항원 결합 도메인은 당해 아미노산 잔기가 경쇄의 CDR2에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리로부터 취득될 수 있다. 그 밖의 태양에서는 당해 아미노산 잔기가 경쇄의 CDR2의 Kabat 넘버링으로 표시되는 50번 위치에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리가 제공된다.
또 다른 태양에서는 본 발명의 항원 결합 도메인은 당해 아미노산 잔기가 경쇄의 CDR3에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리로부터 취득될 수 있다. 그 밖의 태양에서는 본 발명의 항원 결합 도메인은 당해 아미노산 잔기가 경쇄의 CDR3의 Kabat 넘버링으로 표시되는 92번 위치에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리로부터 취득될 수 있다.
또한 본 발명의 항원 결합 도메인은 당해 아미노산 잔기가 상기에 기재된 경쇄의 CDR1, CDR2 및 CDR3로부터 선택되는 2개 또는 3개의 CDR에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리로부터 본 발명의 상이한 태양으로서 취득될 수 있다. 또한 본 발명의 항원 결합 도메인은 당해 아미노산 잔기가 경쇄의 Kabat 넘버링으로 표시되는 30번 위치, 31번 위치, 32번 위치, 50번 위치 및/또는 92번 위치 중 어느 하나 이상에 포함되어 있는 서로 서열이 상이한 항원 결합 분자로 주로 이루어지는 라이브러리로부터 취득될 수 있다.
특히 적합한 실시태양에서는 항원 결합 분자의 경쇄 및/또는 중쇄 가변영역의 프레임워크 서열은 인간의 생식세포계 프레임워크 서열을 가지고 있는 것이 바람직하다. 따라서 본 발명의 일태양에 있어서 프레임워크 서열이 완전히 인간의 서열이라면, 인간에게 투여(예를 들면 질병의 치료)된 경우, 본 발명의 항원 결합 분자는 면역원성 반응을 거의 또는 전혀 일으키지 않을 것으로 생각된다. 상기 의미로부터 본 발명에 있어서의 「생식세포 계열의 서열을 포함한다」는 것은, 본 발명에 있어서의 프레임워크 서열의 일부가 어느 하나의 인간의 생식세포계 프레임워크 서열의 일부와 동일한 것을 의미한다. 예를 들면 본 발명의 항원 결합 분자의 중쇄 FR2의 서열이 복수의 상이한 인간의 생식세포계 프레임워크 서열의 중쇄 FR2 서열이 조합된 서열인 경우도, 본 발명에 있어서의 「생식세포 계열의 서열을 포함하는」 항원 결합 분자이다.
프레임워크의 예로서는 예를 들면 V-Base(http://vbase.mrc-cpe.cam.ac.uk/) 등의 웹사이트에 포함되어 있는, 현재 알려져 있는 완전히 인간형의 프레임워크 영역의 서열을 바람직하게 들 수 있다. 이들 프레임워크 영역의 서열이 본 발명의 항원 결합 분자에 포함되는 생식세포 계열의 서열로서 적절히 사용될 수 있다. 생식세포 계열의 서열은 그 유사성을 토대로 분류될 수 있다(Tomlinson 등(J. Mol. Biol. (1992) 227, 776-798) Williams 및 Winter(Eur. J. Immunol. (1993) 23, 1456-1461) 및 Cox 등(Nat. Genetics (1994) 7, 162-168)). 7개의 서브 그룹으로 분류되는 Vκ, 10의 서브 그룹으로 분류되는 Vλ, 7개의 서브 그룹으로 분류되는 VH로부터 적합한 생식세포 계열의 서열이 적절히 선택될 수 있다.
완전히 인간형의 VH 서열은 하기에만 한정되는 것은 아니나, 예를 들면 VH1 서브 그룹(예를 들면 VH1-2, VH1-3, VH1-8, VH1-18, VH1-24, VH1-45, VH1-46, VH1-58, VH1-69), VH2 서브 그룹(예를 들면 VH2-5, VH2-26, VH2-70), VH3 서브 그룹(VH3-7, VH3-9, VH3-11, VH3-13, VH3-15, VH3-16, VH3-20, VH3-21, VH3-23, VH3-30, VH3-33, VH3-35, VH3-38, VH3-43, VH3-48, VH3-49, VH3-53, VH3-64, VH3-66, VH3-72, VH3-73, VH3-74), VH4 서브 그룹(VH4-4, VH4-28, VH4-31, VH4-34, VH4-39, VH4-59, VH4-61), VH5 서브 그룹(VH5-51), VH6 서브 그룹(VH6-1), VH7 서브 그룹(VH7-4, VH7-81)의 VH 서열 등을 바람직하게 들 수 있다. 이들은 공지 문헌(Matsuda 등(J. Exp. Med. (1998) 188, 1973-1975)) 등에도 기재되어 있어, 당업자는 이들 서열정보를 토대로 본 발명의 항원 결합 분자를 적절히 설계하는 것이 가능하다. 이들 이외의 완전히 인간형의 프레임워크 또는 프레임워크의 준영역도 적합하게 사용될 수 있다.  
완전히 인간형의 Vk 서열은 하기에만 한정되는 것은 아니나, 예를 들면 Vk1 서브 그룹으로 분류되는 A20, A30, L1, L4, L5, L8, L9, L11, L12, L14, L15, L18, L19, L22, L23, L24, O2, O4, O8, O12, O14, O18, Vk2 서브 그룹으로 분류되는 A1, A2, A3, A5, A7, A17, A18, A19, A23, O1, O11, Vk3 서브 그룹으로 분류되는 A11, A27, L2, L6, L10, L16, L20, L25, Vk4 서브 그룹으로 분류되는 B3, Vk5 서브 그룹으로 분류되는 B2(본 명세서에 있어서는 Vk5-2라고도 지칭된다)), Vk6 서브 그룹으로 분류되는 A10, A14, A26 등(Kawasaki 등(Eur. J. Immunol. (2001) 31, 1017-1028), Schable 및 Zachau(Biol. Chem. Hoppe Seyler (1993) 374, 1001-1022) 및 Brensing-Kuppers 등(Gene (1997) 191, 173-181))을 바람직하게 들 수 있다.
완전히 인간형의 Vλ 서열은 하기에만 한정되는 것은 아니나, 예를 들면 VL1 서브 그룹으로 분류되는 V1-2, V1-3, V1-4, V1-5, V1-7, V1-9, V1-11, V1-13, V1-16, V1-17, V1-18, V1-19, V1-20, V1-22, VL1 서브 그룹으로 분류되는 V2-1, V2-6, V2-7, V2-8, V2-11, V2-13, V2-14, V2-15, V2-17, V2-19, VL3 서브 그룹으로 분류되는 V3-2, V3-3, V3-4, VL4 서브 그룹으로 분류되는 V4-1, V4-2, V4-3, V4-4, V4-6, VL5 서브 그룹으로 분류되는 V5-1, V5-2, V5-4, V5-6 등(Kawasaki 등(Genome Res. (1997) 7, 250-261))을 바람직하게 들 수 있다.
통상 이들의 프레임워크 서열은 하나 또는 그 이상의 아미노산 잔기의 상위함으로 인해 서로 상이하다. 이들 프레임워크 서열은 본 발명에 있어서의 「이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기」와 함께 사용될 수 있다. 본 발명에 있어서의 「이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기」와 함께 사용되는 완전히 인간형의 프레임워크의 예로서는 이것에만 한정되는 것이 아니라, 이 밖에도 KOL, NEWM, REI, EU, TUR, TEI, LAY, POM 등을 들 수 있다(예를 들면 상기의 Kabat 등(1991) 및 Wu 등(J. Exp. Med. (1970) 132, 211-250)).
본 발명은 특정 이론에 구속되는 것은 아니나, 생식세포계의 서열의 사용이 대부분인 개인에 있어서 유해한 면역반응을 배제할 것으로 기대되고 있는 하나의 이유는 아래와 같다고 생각되고 있다. 통상의 면역반응 중에 생기는 친화성 성숙 스텝의 결과, 면역블로불린의 가변영역에 체세포의 돌연변이가 빈번하게 생긴다. 이들 돌연변이는 주로 그 서열이 초가변적인 CDR의 주변에 생기는데 프레임워크 영역의 잔기에도 영향을 미친다. 이들 프레임워크의 돌연변이는 생식세포계의 유전자에는 존재하지 않고 또한 환자의 면역원성이 될 가능성은 적다. 한편 통상의 인간의 집단은 생식세포계의 유전자에 의해 발현되는 프레임워크 서열의 대다수에 노출되어 있어, 면역관용의 결과, 이들 생식세포계의 프레임워크는 환자에 있어서 면역원성이 낮거나 또는 비면역원성일 것으로 예상된다. 면역관용의 가능성을 최대로 하기 위해, 가변영역을 코드화하는 유전자가 보통으로 존재하는 기능적인 생식세포계 유전자의 집합으로부터 선택될 수 있다.
본 발명의 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 아미노산이 상기 가변영역 서열의 서열, 중쇄 가변영역 또는 경쇄 가변영역의 서열, 또는 CDR 서열 또는 프레임워크 서열에 포함되는 항원 결합 분자를 제작하기 위해 부위 특이적 변이 유발법(Kunkel 등(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))이나 Overlap extension PCR 등의 공지의 방법이 적절히 채용될 수 있다.
예를 들면 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기가 사전에 포함되어 있는 프레임워크 서열로서 선택된 경쇄 가변영역과, 랜덤화 가변영역 서열 라이브러리로서 제작된 중쇄 가변영역을 조합시킴으로써 본 발명의 복수의 서로 서열이 상이한 항원 결합 분자를 포함하는 라이브러리가 제작될 수 있다. 이러한 비한정적인 예로서 이온 농도가 칼슘 이온 농도인 경우에는, 예를 들면 서열번호:6(Vk5-2)에 기재된 경쇄 가변영역 서열과 랜덤화 가변영역 서열 라이브러리로서 제작된 중쇄 가변영역을 조합시킨 라이브러리를 바람직하게 들 수 있다.
또한 상기 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기가 사전에 포함되어 있는 프레임워크 서열로서 선택된 경쇄 가변영역의 서열에, 당해 아미노산 잔기 이외의 잔기로서 다양한 아미노산이 포함되도록 설계하는 것도 가능하다. 본 발명에 있어서 그러한 잔기는 플렉시블 잔기라 지칭된다. 본 발명의 항원 결합 분자의 항원에 대한 결합 활성이 이온 농도의 조건에 따라 변화되는 한, 당해 플렉시블 잔기의 수 및 위치는 특정 태양에 한정되는 경우는 없다. 즉 중쇄 및/또는 경쇄의 CDR 서열 및/또는 FR 서열에 하나 또는 그 이상의 플렉시블 잔기가 포함될 수 있다. 예를 들면 이온 농도가 칼슘 이온 농도인 경우에는, 서열번호:6(Vk5-2)에 기재된 경쇄 가변영역 서열에 도입되는 플렉시블 잔기의 비한정적인 예로서 표 1 또는 표 2에 기재된 아미노산 잔기를 들 수 있다.
Figure pat00001
Figure pat00002
본 명세서에 있어서는 플렉시블 잔기란 공지 및/또는 천연 항체 또는 항원 결합 도메인의 아미노산 서열을 비교한 경우에, 그 위치에서 제시되는 몇 개의 상이한 아미노산을 갖는 경쇄 및 중쇄 가변영역 상의 아미노산이 매우 다양한 위치에 존재하는 아미노산 잔기의 변형을 말한다. 매우 다양한 위치는 일반적으로 CDR영역에 존재한다. 일태양에서는 공지 및/또는 천연 항체의 매우 다양한 위치를 결정할 때는 Kabat, Sequences of Proteins of Immunological Interest(National Institute of Health Bethesda Md.) (1987년 및 1991년)가 제공하는 데이터가 유효하다. 또한 인터넷 상의 복수의 데이터베이스(http://vbase.mrc-cpe.cam.ac.uk/, http://www.bioinf.org.uk/abs /index.html)에서는 수집된 다수의 인간 경쇄 및 중쇄의 서열과 그의 배치가 제공되고 있어, 이들 서열과 그의 배치의 정보는 본 발명에 있어서의 매우 다양한 위치의 결정에 유용하다. 본 발명에 의하면 아미노산이 어떤 위치에서 바람직하게는 약 2~약 20, 바람직하게는 약 3~약 19, 바람직하게는 약 4~약 18, 바람직하게는 5~17, 바람직하게는 6~16, 바람직하게는 7~15, 바람직하게는 8~14, 바람직하게는 9~13, 바람직하게는 10~12개의 가능한 상이한 아미노산 잔기의 다양성을 갖는 경우는 그 위치는 매우 다양하다고 할 수 있다. 몇개의 실시형태에서는 어떤 아미노산 위치는 바람직하게는 약 2 이상, 바람직하게는 약 4 이상, 바람직하게는 약 6 이상, 바람직하게는 약 8 이상, 바람직하게는 약 10, 바람직하게는 약 12의 가능한 상이한 아미노산 잔기의 다양성을 가질 수 있다.
또한 상기 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기가 도입된 경쇄 가변영역과 랜덤화 가변영역 서열 라이브러리로서 제작된 중쇄 가변영역을 조합시킴으로써도, 본 발명의 복수의 서로 서열이 상이한 항원 결합 분자를 포함하는 라이브러리가 제작될 수 있다. 이러한 비한정적인 예로서 이온 농도가 칼슘 이온 농도인 경우에는, 예를 들면 서열번호:7(Vk1), 서열번호:8(Vk2), 서열번호:9(Vk3), 서열번호:10(Vk4) 등의 생식세포 계열의 특정 잔기가, 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기로 치환된 경쇄 가변영역 서열과 랜덤화 가변영역 서열 라이브러리로서 제작된 중쇄 가변영역을 조합시킨 라이브러리를 바람직하게 들 수 있다. 당해 아미노산 잔기의 비한정의 예로서 경쇄의 CDR1에 포함되는 아미노산 잔기가 예시된다. 그 밖에도 당해 아미노산 잔기의 비한정의 예로서 경쇄의 CDR2에 포함되는 아미노산 잔기가 예시된다. 또한 당해 아미노산 잔기의 비한정의 다른 예로서 경쇄의 CDR3에 포함되는 아미노산 잔기도 또한 예시된다.
상기와 같이 당해 아미노산 잔기가 경쇄의 CDR1에 포함되는 아미노산 잔기의 비한정의 예로서, 경쇄 가변영역의 CDR1 중의 EU 넘버링으로 표시되는 30번 위치, 31번 위치 및/또는 32번 위치의 아미노산 잔기를 들 수 있다. 또한 당해 아미노산 잔기가 경쇄의 CDR2에 포함되는 아미노산 잔기의 비한정의 예로서, 경쇄 가변영역의 CDR2 중의 Kabat 넘버링으로 표시되는 50번 위치의 아미노산 잔기를 들 수 있다. 또한 당해 아미노산 잔기가 경쇄의 CDR3에 포함되는 아미노산 잔기의 비한정의 예로서, 경쇄 가변영역의 CDR3 중의 Kabat 넘버링으로 표시되는 92번 위치의 아미노산 잔기를 들 수 있다. 또한 이들의 아미노산 잔기가 칼슘 결합 모티브를 형성 및/또는 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성이 변화되는 한, 이들 아미노산 잔기가 단독으로 포함될 수 있고, 이들 아미노산이 2개 이상 조합되어 포함될 수 있다. 또한 복수 개의 칼슘 이온 결합 부위를 가지며, 분자 진화상 공통의 기원으로부터 유래된 것으로 생각되는 트로포닌 C, 칼모듈린, 파브알부민, 미오신 경쇄 등이 알려져 있어, 그의 결합 모티브가 포함되도록 경쇄 CDR1, CDR2 및/또는 CDR3를 설계하는 것도 가능하다. 예를 들면 상기의 목적으로 카드헤린 도메인, 칼모듈린에 포함되는 EF 핸드, Protein kinase C에 포함되는 C2 도메인, 혈액 응고 단백질 FactorIX에 포함되는 Gla 도메인, 아시알로글리코프로테인 수용체나 만노오스 결합 수용체에 포함되는 C형 렉틴, LDL 수용체에 포함되는 A 도메인, 아넥신, 트롬보스폰딘 3형 도메인 및 EGF 유사 도메인이 적절히 사용될 수 있다.
상기 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기가 도입된 경쇄 가변영역과 랜덤화 가변영역 서열 라이브러리로서 제작된 중쇄 가변영역을 조합시키는 경우라도, 상기와 마찬가지로 플렉시블 잔기가 당해 경쇄 가변영역의 서열에 포함되도록 설계하는 것도 가능하다. 본 발명의 항원 결합 분자의 항원에 대한 결합 활성이 이온 농도의 조건에 따라 변화되는 한, 당해 플렉시블 잔기의 수 및 위치는 특정 태양에 한정되는 경우는 없다. 즉 중쇄 및/또는 경쇄의 CDR 서열 및/또는 FR 서열에 하나 또는 그 이상의 플렉시블 잔기가 포함될 수 있다. 예를 들면 이온 농도가 칼슘 이온 농도인 경우에는 경쇄 가변영역 서열에 도입되는 플렉시블 잔기의 비한정적인 예로서 표 1 또는 표 2에 기재된 아미노산 잔기를 들 수 있다.
조합되는 중쇄 가변영역의 예로서 랜덤화 가변영역 라이브러리를 바람직하게 들 수 있다. 랜덤화 가변영역 라이브러리의 제작방법은 공지의 방법이 적절히 조합된다. 본 발명의 비한정의 일태양에서는 특정 항원으로 면역된 동물, 감염증 환자나 백신 접종하여 혈중 항체가가 상승한 인간, 암 환자, 자기 면역 질환의 림프구 유래의 항체 유전자를 토대로 구축된 면역 라이브러리가 랜덤화 가변영역 라이브러리로서 적합하게 사용될 수 있다.
또한 본 발명의 비한정의 일태양에서는 게놈 DNA에 있어서의 V 유전자나 재구축되어 기능적인 V 유전자의 CDR 서열이 적당한 길이의 코돈 세트를 코드하는 서열을 포함하는 합성 올리고뉴클레오티드 세트로 치환된 합성 라이브러리도 또한 랜덤화 가변영역 라이브러리로서 적합하게 사용될 수 있다. 이 경우, 중쇄의 CDR3의 유전자 서열의 다양성이 관찰되는 것으로부터, CDR3의 서열만을 치환하는 것도 또한 가능하다. 항원 결합 분자의 가변영역에 있어서 아미노산의 다양성을 만들어내는 기준은, 항원 결합 분자의 표면에 노출된 위치의 아미노산 잔기에 다양성을 부여하는 것이다. 표면에 노출된 위치란 항원 결합 분자의 구조, 구조 어셈블 및/또는 모델화된 구조에 기초하여 표면 노출이 가능 및/또는 항원과의 접촉이 가능하다고 판단되는 위치를 말하는데, 일반적으로는 그의 CDR이다. 바람직하게는 표면에 노출된 위치는 InsightII 프로그램(Accelrys)과 같은 컴퓨터 프로그램을 사용하여 항원 결합 분자의 3차원 모델로부터의 좌표를 사용하여 결정된다. 표면에 노출된 위치는 당 기술분야에서 공지인 알고리즘(예를 들면 Lee 및 Richards(J.Mol.Biol. (1971) 55, 379-400), Connolly(J.Appl.Cryst. (1983) 16, 548-558))을 사용하여 결정될 수 있다. 표면에 노출된 위치의 결정은 단백질 모델링에 적합한 소프트웨어 및 항체로부터 얻어지는 3차원 구조 정보를 사용하여 행해질 수 있다. 이러한 목적을 위해 이용할 수 있는 소프트웨어로서 SYBYL 생체 고분자 모듈 소프트웨어(Tripos Associates)를 바람직하게 들 수 있다. 일반적으로 또한 바람직하게는 알고리즘이 유저의 입력 사이즈 파라미터를 필요로 하는 경우는 계산에 있어서 사용되는 프로브의 「사이즈」는 반경 약 1.4 옹스트롬 이하로 설정된다. 또한 퍼스널 컴퓨터용 소프트웨어를 사용한 표면에 노출된 영역 및 구역의 결정법이Pacios(Comput.Chem. (1994) 18 (4), 377-386 및 J.Mol.Model. (1995) 1, 46-53)에 기재되어 있다.
또한 본 발명의 비한정의 일태양에서는 건강한 정상인의 림프구 유래의 항체 유전자로부터 구축되어, 그 레퍼토리에 바이어스를 포함하지 않는 항체 서열인 나이브 서열로 이루어지는 나이브 라이브러리도 또한 랜덤화 가변영역 라이브러리로서 특히 적합하게 사용될 수 있다(Gejima 등(Human Antibodies (2002) 11,121-129) 및 Cardoso 등(Scand. J. Immunol. (2000) 51, 337-344)). 본 발명에서 기재되는 나이브 서열을 포함하는 아미노산 서열이란 이러한 나이브 라이브러리로부터 취득되는 아미노산 서열을 말한다.
본 발명의 하나의 태양에서는 「이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기」가 사전에 포함되어 있는 프레임워크 서열로서 선택된 중쇄 가변영역과, 랜덤화 가변영역 서열 라이브러리로서 제작된 경쇄 가변영역을 조합시킴으로써 본 발명의 복수의 서로 서열이 상이한 항원 결합 분자를 포함하는 라이브러리로부터 본 발명의 항원 결합 도메인이 취득될 수 있다. 이러한 비한정적인 예로서 이온 농도가 칼슘 이온 농도인 경우에는, 예를 들면 서열번호:11(6RL#9-IgG1) 또는 서열번호:12(6KC4-1#85-IgG1)에 기재된 중쇄 가변영역 서열과 랜덤화 가변영역 서열 라이브러리로서 제작된 경쇄 가변영역을 조합한 라이브러리를 바람직하게 들 수 있다. 또한 랜덤화 가변영역 서열 라이브러리로서 제작된 경쇄 가변영역 대신에, 생식세포 계열의 서열을 갖는 경쇄 가변영역 중에서 적절히 선택함으로써 제작될 수 있다. 예를 들면 서열번호:11(6RL#9-IgG1) 또는 서열번호:12(6KC4-1#85-IgG1)에 기재된 중쇄 가변영역 서열과 생식세포 계열의 서열을 갖는 경쇄 가변영역을 조합시킨 라이브러리를 바람직하게 들 수 있다.
또한 상기 「이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기」가 사전에 포함되어 있는 프레임워크 서열로서 선택된 중쇄 가변영역의 서열에 플렉시블 잔기가 포함되도록 설계하는 것도 가능하다. 본 발명의 항원 결합 분자의 항원에 대한 결합 활성이 이온 농도의 조건에 따라 변화되는 한, 당해 플렉시블 잔기의 수 및 위치는 특정 태양으로 한정되는 경우는 없다. 즉 중쇄 및/또는 경쇄의 CDR 서열 및/또는 FR 서열에 하나 또는 그 이상의 플렉시블 잔기가 포함될 수 있다. 예를 들면 이온 농도가 칼슘 이온 농도인 경우에는 서열번호:11(6RL#9-IgG1)에 기재된 중쇄 가변영역 서열에 도입되는 플렉시블 잔기의 비한정적인 예로서, 중쇄 CDR1 및 CDR2의 모든 아미노산 잔기 외에 중쇄 CDR3의 95번 위치, 96번 위치 및/또는 100a번 위치 이외의 CDR3의 아미노산 잔기를 들 수 있다. 또는 서열번호:12(6KC4-1#85-IgG1)에 기재된 중쇄 가변영역 서열에 도입되는 플렉시블 잔기의 비한정적인 예로서, 중쇄 CDR1 및 CDR2의 모든 아미노산 잔기 외에 중쇄 CDR3의 95번 위치 및/또는 101번 위치 이외의 CDR3의 아미노산 잔기도 또한 들 수 있다.
또한 상기 「이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기」가 도입된 중쇄 가변영역과 랜덤화 가변영역 서열 라이브러리로서 제작된 경쇄 가변영역 또는 생식세포 계열의 서열을 갖는 경쇄 가변영역을 조합시킴으로써도 복수의 서로 서열이 상이한 항원 결합 분자를 포함하는 라이브러리가 제작될 수 있다. 이러한 비한정적인 예로서, 이온 농도가 칼슘 이온 농도인 경우에는, 예를 들면 중쇄 가변영역의 특정 잔기가 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기로 치환된 중쇄 가변영역 서열과 랜덤화 가변영역 서열 라이브러리로서 제작된 경쇄 가변영역 또는 생식세포 계열의 서열을 갖는 경쇄 가변영역을 조합시킨 라이브러리를 바람직하게 들 수 있다. 당해 아미노산 잔기의 비한정의 예로서 중쇄의 CDR1에 포함되는 아미노산 잔기가 예시된다. 그 밖에도, 당해 아미노산 잔기의 비한정의 예로서 중쇄의 CDR2에 포함되는 아미노산 잔기가 예시된다. 또한 당해 아미노산 잔기의 비한정의 다른 예로서 중쇄의 CDR3에 포함되는 아미노산 잔기도 또한 예시된다. 당해 아미노산 잔기가 중쇄의 CDR3에 포함되는 아미노산 잔기의 비한정의 예로서, 중쇄 가변영역의 CDR3 중의 Kabat 넘버링으로 표시되는 95번 위치, 96번 위치, 100a번 위치 및/또는 101번 위치의 아미노산을 들 수 있다. 또한 이들 아미노산 잔기가 칼슘 결합 모티브를 형성 및/또는 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성이 변화되는 한, 이들 아미노산 잔기가 단독으로 포함될 수 있고, 이들 아미노산이 2개 이상 조합되어 포함될 수 있다.
상기의 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기가 도입된 중쇄 가변영역과 랜덤화 가변영역 서열 라이브러리로서 제작된 경쇄 가변영역 또는 생식세포 계열의 서열을 갖는 경쇄 가변영역을 조합시키는 경우라도, 상기와 마찬가지로 플렉시블 잔기가 당해 중쇄 가변영역의 서열에 포함되도록 설계하는 것도 가능하다. 본 발명의 항원 결합 분자의 항원에 대한 결합 활성이 이온 농도의 조건에 따라 변화되는 한, 당해 플렉시블 잔기의 수 및 위치는 특정 태양으로 한정되는 경우는 없다. 즉 중쇄의 CDR 서열 및/또는 FR 서열에 하나 또는 그 이상의 플렉시블 잔기가 포함될 수 있다. 또한 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 아미노산 잔기 이외의 중쇄 가변영역의 CDR1, CDR2 및/또는 CDR3의 아미노산 서열로서 램덤화 가변영역 라이브러리도 적합하게 사용될 수 있다. 경쇄 가변영역으로서 생식세포 계열의 서열이 사용되는 경우에는, 예를 들면 서열번호:7(Vk1), 서열번호:8(Vk2), 서열번호:9(Vk3), 서열번호:10(Vk4) 등의 생식세포 계열의 서열을 비한정의 예로서 들 수 있다.
상기의 칼슘 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 아미노산으로서는 칼슘 결합 모티브를 형성하는 한 어느 아미노산도 적합하게 사용될 수 있으나, 그러한 아미노산으로서는 구체적으로 전자 공여성을 갖는 아미노산을 들 수 있다. 이러한 전자 공여성을 갖는 아미노산으로서는 세린, 트레오닌, 아스파라긴, 글루타민, 아스파라긴산 또는 글루타민산이 바람직하게 예시된다.
수소 이온 농도의 조건
또한 본 발명의 하나의 태양에서는 이온 농도의 조건이란 수소 이온 농도의 조건 또는 pH의 조건을 말한다. 본 발명에서 프로톤 즉 수소원자의 원자핵의 농도의 조건은 수소 지수(pH)의 조건과도 같은 정의로 취급된다. 수용액 중의 수소 이온의 활동량을 aH+로 나타낼 때, pH는 -log10aH+로 정의된다. 수용액 중의 이온 강도가 (예를 들면 10-3보다) 낮으면 aH+는 수소 이온 강도와 거의 동등하다. 예를 들면 25℃, 1기압에 있어서의 물의 이온곱은 Kw=aH+aOH=10-14이기 때문에, 순수(純水)의 경우는 aH+=aOH=10-7이다. 이 경우의 pH=7이 중성이고, pH가 7보다 작은 수용액은 산성, pH가 7보다 큰 수용액은 알칼리성이다.
본 발명에 있어서는 이온 농도의 조건으로서 pH의 조건이 사용되는 경우에는 pH의 조건으로서 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건과 저수소 이온 농도 또는 고pH 즉 pH 중성역의 조건을 들 수 있다. pH의 조건에 따라 결합 활성이 변화된다는 것은, 고수소 이온 농도 또는 저pH(pH 산성역)와 저수소 이온 농도 또는 고pH(pH 중성역)의 조건의 차이에 의해 항원에 대한 항원 결합 분자의 결합 활성이 변화되는 것을 말한다. 예를 들면 pH 산성역의 조건에 있어서의 항원에 대한 항원 결합 분자의 결합 활성보다도 pH 중성역 조건에 있어서의 항원에 대한 항원 결합 분자의 결합 활성 쪽이 높은 경우를 들 수 있다. 또한 pH 중성역 조건에 있어서의 항원에 대한 항원 결합 분자의 결합 활성보다도 pH 산성역의 조건에 있어서의 항원에 대한 항원 결합 분자의 결합 활성 쪽이 높은 경우도 또한 들 수 있다.
본 명세서에 있어서 pH 중성역이란 특별히 일의적인 수치에 한정되는 것은 아니나, 바람직하게는 pH 6.7~pH 10.0으로부터 선택될 수 있다. 또한 다른 태양에서는 pH 6.7~pH 9.5로부터 선택될 수 있다. 또한 상이한 태양에서는 pH 7.0~pH 9.0으로부터 선택될 수 있고, 다른 태양에서는 pH 7.0~pH 8.0으로부터 선택될 수 있다. 특히 생체내의 혈장 중(혈중)에서의 pH에 가까운 pH 7.4를 바람직하게 들 수 있다.
본 명세서에 있어서 pH 산성역이란 특별히 일의적인 수치에 한정되는 것은 아니나, 바람직하게는 pH 4.0~pH 6.5로부터 선택될 수 있다. 또한 다른 태양에서는 pH 4.5~pH 6.5로부터 선택될 수 있다. 또한 상이한 태양에서는 pH 5.0~pH 6.5로부터 선택될 수 있고, 다른 태양에서는 pH 5.5~pH 6.5로부터 선택될 수 있다. 특히 생체내의 조기 엔도솜 내에서의 수소 이온 농도에 가까운 pH 5.8을 바람직하게 들 수 있다.
본 발명에 있어서 항원 결합 분자의 고수소 이온 농도 또는 저pH(pH 산성역)의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH(pH 중성역)의 조건에 있어서의 항원에 대한 결합 활성보다 낮다는 것은, 항원 결합 분자의 pH 4.0~pH 6.5로부터 선택되는 pH에서의 항원에 대한 결합 활성이 pH 6.7~pH 10.0으로부터 선택되는 pH에서의 항원에 대한 결합 활성보다 약한 것을 의미한다. 바람직하게는 항원 결합 분자의 pH 4.5~pH 6.5로부터 선택되는 pH에서의 항원에 대한 결합 활성이 pH 6.7~pH 9.5로부터 선택되는 pH에서의 항원에 대한 결합 활성보다 약한 것을 의미하고, 보다 바람직하게는 항원 결합 분자의 pH 5.0~pH 6.5로부터 선택되는 pH에서의 항원에 대한 결합 활성이 pH 7.0~pH 9.0으로부터 선택되는 pH에서의 항원에 대한 결합 활성보다 약한 것을 의미한다. 또한 바람직하게는 항원 결합 분자의 pH 5.5~pH 6.5로부터 선택되는 pH에서의 항원에 대한 결합 활성이 pH 7.0~pH 8.0으로부터 선택되는 pH에서의 항원에 대한 결합 활성보다 약한 것을 의미한다. 특히 바람직하게는 생체내의 조기 엔도솜 내의 pH에 있어서의 항원 결합 활성이 생체내의 혈장 중의 pH에 있어서의 항원 결합 활성보다 약한 것을 의미하고, 구체적으로는 항원 결합 분자의 pH 5.8에서의 항원에 대한 결합 활성이 pH 7.4에서의 항원에 대한 결합 활성보다 약한 것을 의미한다.
pH의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성이 변화되어 있는지 여부는, 예를 들면 상기 결합 활성의 항목에서 기재된 바와 같은 공지의 측정방법을 사용함으로써 결정될 수 있다. 즉 당해 측정방법으로 상이한 pH의 조건하에서의 결합 활성이 측정된다. 예를 들면 pH 산성역 조건하에 있어서의 항원에 대한 항원 결합 분자의 결합 활성보다도 pH 중성역 조건하에 있어서의 항원에 대한 항원 결합 분자의 결합 활성 쪽이 높게 변화되는 것을 확인하기 위해서는, pH 산성역 및 pH 중성역 조건하에 있어서의 항원에 대한 항원 결합 분자의 결합 활성이 비교된다.
또한 본 발명에 있어서 「고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다 낮다」고 하는 표현은, 항원 결합 분자의 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성이 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성보다도 높다고 표현하는 것도 가능하다. 또한 본 발명에 있어서는 「고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다 낮다」를 「고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합능보다도 약하다」라고 기재하는 경우도 있고, 또한 「고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다 저하시킨다」를 「고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합능보다도 약하게 한다」라고 기재하는 경우도 있다.
항원으로의 결합 활성을 측정할 때의 수소 이온 농도 또는 pH 이외의 조건은 당업자가 적절히 선택하는 것이 가능하고, 특별히 한정되지 않는다. 예를 들면 HEPES 버퍼, 37℃의 조건에 있어서 측정하는 것이 가능하다. 예를 들면 Biacore(GE Healthcare) 등을 사용하여 측정하는 것이 가능하다. 항원 결합 분자와 항원의 결합 활성의 측정은, 항원이 가용형 항원인 경우는 항원 결합 분자를 고정화한 칩으로 항원을 애널라이트로서 흘림으로써 가용형 항원으로의 결합 활성을 평가하는 것이 가능하고, 항원이 막형 항원인 경우는 항원을 고정화한 칩으로 항원 결합 분자를 애널라이트로서 흘림으로써 막형 항원으로의 결합 활성을 평가하는 것이 가능하다.
본 발명의 항원 결합 분자에 있어서, 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다도 약한 한, 고수소 이온 농도 또는 저pH 즉 pH 산성역 조건하에 있어서의 항원에 대한 결합 활성과 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건하에 있어서의 항원에 대한 결합 활성의 비는 특별히 한정되지 않으나, 바람직하게는 항원에 대한 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 KD(Dissociation constant:해리상수)와 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 KD의 비인 KD(pH 5.8)/KD(pH 7.4)의 값이 2 이상이고, 더욱 바람직하게는 KD(pH 5.8)/KD(pH 7.4)의 값이 10 이상이며, 더욱 바람직하게는 KD(pH 5.8)/KD(pH 7.4)의 값이 40 이상이다. KD(pH 5.8)/KD(pH 7.4)의 값의 상한은 특별히 한정되지 않고, 당업자의 기술에 있어서 제작 가능한 한 400, 1000, 10000 등 어떠한 값이어도 된다.
항원에 대한 결합 활성의 값으로서 항원이 가용형 항원인 경우는 KD(해리상수)를 사용하는 것이 가능하나, 항원이 막형 항원인 경우는 겉보기 KD(Apparent dissociation constant:겉보기 해리상수)를 사용하는 것이 가능하다. KD(해리상수) 및 겉보기 KD(겉보기 해리상수)는 당업자 공지의 방법으로 측정하는 것이 가능하고, 예를 들면 Biacore(GE healthcare), 스캐차드 플롯, 플로우 사이토미터 등을 사용하는 것이 가능하다.
또한 본 발명의 항원 결합 분자의 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성과 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성의 비를 나타내는 다른 지표로서, 예를 들면 해리속도상수인 kd(Dissociation rate constant:해리속도상수)도 또한 적합하게 사용될 수 있다. 결합 활성의 비를 나타내는 지표로서 KD(해리상수) 대신에 kd(해리속도상수)를 사용하는 경우, 항원에 대한 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 kd(해리속도상수)와 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 kd(해리속도상수)의 비인 kd(pH 산성역의 조건에 있어서의)/kd(pH 중성역 조건에 있어서의)의 값은 바람직하게는 2 이상이고, 더욱 바람직하게는 5 이상이며, 더욱 바람직하게는 10 이상이고, 보다 바람직하게는 30 이상이다. Kd(pH 산성역의 조건에 있어서의)/kd(pH 중성역 조건에 있어서의)의 값의 상한은 특별히 한정되지 않고, 당업자의 기술 상식에 있어서 제작 가능한 한 50, 100, 200 등 어떠한 값이어도 된다
항원 결합 활성의 값으로서 항원이 가용형 항원인 경우는 kd(해리속도상수)를 사용하는 것이 가능하고, 항원이 막형 항원인 경우는 겉보기 kd(Apparent dissociation rate constant:겉보기 해리속도상수)를 사용하는 것이 가능하다. kd(해리속도상수) 및 겉보기 kd(겉보기 해리속도상수)는 당업자 공지의 방법으로 측정하는 것이 가능하고, 예를 들면 Biacore(GE healthcare), 플로우 사이토미터 등을 사용하는 것이 가능하다. 또한 본 발명에 있어서 상이한 수소 이온 농도 즉 pH에 있어서의 항원 결합 분자의 항원에 대한 결합 활성을 측정할 때는 수소 이온 농도 즉 pH 이외의 조건은 동일하게 하는 것이 바람직하다.
예를 들면 본 발명이 제공하는 하나의 태양인 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(c)를 포함하는 항원 결합 도메인 또는 항원 결합 분자의 스크리닝에 의해 취득될 수 있다.
(a) pH 산성역의 조건에 있어서의 항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성을 얻는 공정,
(b) pH 중성역 조건에 있어서의 항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성을 얻는 공정,
(c) pH 산성역의 조건에 있어서의 항원 결합 활성이 pH 중성역 조건에 있어서의 항원 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자를 선택하는 공정.
또한 본 발명이 제공하는 하나의 태양인 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(c)를 포함하는 항원 결합 도메인 또는 항원 결합 분자 또는 그들의 라이브러리의 스크리닝에 의해 취득될 수 있다.
(a) pH 중성역 조건에 있어서의 항원 결합 도메인 또는 항원 결합 분자 또는 그들의 라이브러리를 항원에 접촉시키는 공정,
(b) 상기 공정(a)에서 항원에 결합한 항원 결합 도메인 또는 항원 결합 분자를 pH 산성역의 조건에 두는 공정,
(c) 상기 공정(b)에서 해리된 항원 결합 도메인 또는 항원 결합 분자를 단리하는 공정.
또한 본 발명이 제공하는 하나의 태양인 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(d)를 포함하는 항원 결합 도메인 또는 항원 결합 분자 또는 그들의 라이브러리의 스크리닝에 의해 취득될 수 있다.
(a) pH 산성역의 조건에서 항원 결합 도메인 또는 항원 결합 분자의 라이브러리를 항원에 접촉시키는 공정,
(b) 상기 공정(a)에서 항원에 결합하지 않는 항원 결합 도메인 또는 항원 결합 분자를 선택하는 공정,
(c) 상기 공정(b)에서 선택된 항원 결합 도메인 또는 항원 결합 분자를 pH 중성역의 조건에서 항원에 결합시키는 공정,
(d) 상기 공정(c)에서 항원에 결합한 항원 결합 도메인 또는 항원 결합 분자를 단리하는 공정.
또한 본 발명이 제공하는 하나의 태양인 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(c)를 포함하는 스크리닝방법에 의해 취득될 수 있다.
(a) 항원을 고정한 칼럼에 pH 중성역의 조건에서 항원 결합 도메인 또는 항원 결합 분자의 라이브러리를 접촉시키는 공정,
(b) 상기 공정(a)에서 칼럼에 결합한 항원 결합 도메인 또는 항원 결합 분자를 pH 산성역의 조건에서 칼럼으로부터 용출하는 공정,
(c) 상기 공정(b)에서 용출된 항원 결합 도메인 또는 항원 결합 분자를 단리하는 공정.
또한 본 발명이 제공하는 하나의 태양인 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(d)를 포함하는 스크리닝방법에 의해 취득될 수 있다.
(a) 항원을 고정한 칼럼에 pH 산성역의 조건에서 항원 결합 도메인 또는 항원 결합 분자의 라이브러리를 통과시키는 공정,
(b) 상기 공정(a)에서 칼럼에 결합하지 않고 용출된 항원 결합 도메인 또는 항원 결합 분자를 회수하는 공정,
(c) 상기 공정(b)에서 회수된 항원 결합 도메인 또는 항원 결합 분자를 pH 중성역의 조건에서 항원에 결합시키는 공정,
(d) 상기 공정(c)에서 항원에 결합한 항원 결합 도메인 또는 항원 결합 분자를 단리하는 공정.
또한 본 발명이 제공하는 하나의 태양인 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자는, 아래의 공정(a)~(d)를 포함하는 스크리닝방법에 의해 취득될 수 있다.
(a) pH 중성역의 조건에서 항원 결합 도메인 또는 항원 결합 분자의 라이브러리를 항원에 접촉시키는 공정,
(b) 상기 공정(a)에서 항원에 결합한 항원 결합 도메인 또는 항원 결합 분자를 취득하는 공정,
(c) 상기 공정(b)에서 취득한 항원 결합 도메인 또는 항원 결합 분자를 pH 산성역의 조건에 두는 공정,
(d) 상기 공정(c)에서 항원 결합 활성이 상기 공정(b)에서 선택한 기준보다 약한 항원 결합 도메인 또는 항원 결합 분자를 단리하는 공정.
또한 상기 공정은 2회 이상 반복되어도 된다. 따라서 본 발명에 의해, 전술한 스크리닝방법에 있어서 (a)~(c) 또는 (a)~(d)의 공정을 2회 이상 반복하는 공정을 추가로 포함하는 스크리닝방법에 의해 취득된 pH 산성역의 조건에 있어서의 항원에 대한 결합 활성이 pH 중성역 조건에 있어서의 항원에 대한 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자가 제공된다. (a)~(c) 또는 (a)~(d)의 공정이 반복되는 횟수는 특별히 한정되지 않으나, 통상 10회 이내이다.
본 발명의 스크리닝방법에 있어서, 고수소 이온 농도 조건 또는 저pH 즉 pH 산성역에 있어서의 항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성은 pH가 4.0~6.5 사이인 항원 결합 활성이라면 특별히 한정되지 않으나, 바람직한 pH로서 pH가 4.5~6.6 사이인 항원 결합 활성을 들 수 있다. 다른 바람직한 pH로서 pH가 5.0~6.5 사이인 항원 결합 활성, 더욱이 pH가 5.5~6.5 사이인 항원 결합 활성을 들 수 있다. 보다 바람직한 pH로서 생체내의 조기 엔도솜 내의 pH를 들 수 있고, 구체적으로는 pH 5.8에 있어서의 항원 결합 활성을 들 수 있다. 또한 저수소 이온 농도 조건 또는 고pH 즉 pH 중성역에 있어서의 항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성은 pH가 6.7~10 사이인 항원 결합 활성이라면 특별히 한정되지 않으나, 바람직한 pH로서 pH가 6.7~9.5 사이인 항원 결합 활성을 들 수 있다. 다른 바람직한 pH로서 pH가 7.0~9.5 사이인 항원 결합 활성, 더욱이 pH가 7.0~8.0 사이인 항원 결합 활성을 들 수 있다. 보다 바람직한 pH로서 생체내의 혈장 중에서의 pH를 들 수 있고, 구체적으로는 pH가 7.4에 있어서의 항원 결합 활성을 들 수 있다.
항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성은 당업자에게 공지의 방법에 의해 측정하는 것이 가능하고, 이온화 칼슘 농도 이외의 조건에 대해서는 당업자가 적절히 결정하는 것이 가능하다. 항원 결합 도메인 또는 항원 결합 분자의 항원 결합 활성은 KD(Dissociation constant:해리상수), 겉보기 KD(Apparent dissociation constant:겉보기 해리상수), 해리속도인 kd(Dissociation rate:해리속도상수) 또는 겉보기 kd(Apparent dissociation:겉보기 해리속도상수) 등으로서 평가하는 것이 가능하다. 이들은 당업자 공지의 방법으로 측정하는 것이 가능하고, 예를 들면 Biacore (GE healthcare), 스캐차드 플롯, FACS 등을 사용하는 것이 가능하다.
본 발명에 있어서 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원 결합 활성이 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원 결합 활성보다 높은 항원 결합 도메인 또는 항원 결합 분자를 선택하는 공정은, 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원 결합 활성이 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원 결합 활성보다 낮은 항원 결합 도메인 또는 항원 결합 분자를 선택하는 공정과 동일한 의미이다.
저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원 결합 활성이 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원 결합 활성보다 높은 한, 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원 결합 활성과 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원 결합 활성의 차는 특별히 한정되지 않으나, 바람직하게는 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원 결합 활성이 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원 결합 활성의 2배 이상이고, 더욱 바람직하게는 10배 이상이며, 보다 바람직하게는 40배 이상이다.
상기 스크리닝방법에 의해 스크리닝되는 본 발명의 항원 결합 도메인 또는 항원 결합 분자는 어떠한 항원 결합 도메인 또는 항원 결합 분자여도 되고, 예를 들면 전술한 항원 결합 도메인 또는 항원 결합 분자를 스크리닝하는 것이 가능하다. 예를 들면 천연의 서열을 갖는 항원 결합 도메인 또는 항원 결합 분자를 스크리닝해도 되고, 아미노산 서열이 치환된 항원 결합 도메인 또는 항원 결합 분자를 스크리닝해도 된다.
상기 스크리닝방법에 의해 스크리닝되는 본 발명의 항원 결합 도메인 또는 항원 결합 분자는 어떻게 조제되어도 되고, 예를 들면 사전에 존재하고 있는 항원 결합 분자, 사전에 존재하고 있는 라이브러리(파지 라이브러리 등), 동물에 대한 면역으로부터 얻어진 하이브리도마나 면역동물로부터의 B세포로부터 제작된 항체 또는 라이브러리, 이들 항체나 라이브러리에 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산 변이를 도입한 항체 또는 라이브러리(측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산) 또는 비천연 아미노산의 함유율을 높게 한 라이브러리나 특정 개소에 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산) 또는 비천연 아미노산 변이를 도입한 라이브러리 등) 등을 사용하는 것이 가능하다.
동물에 대한 면역으로부터 얻어진 하이브리도마나 면역동물로부터의 B세포로부터 제작된 항원 결합 도메인 또는 항체로부터, 저수소 이온 농도 또는 고pH 즉 pH 중성역 조건에 있어서의 항원 결합 활성이 고수소 이온 농도 또는 저pH 즉 pH 산성역의 조건에 있어서의 항원 결합 활성보다 높은 항원 결합 도메인 또는 항원 결합 분자를 취득하는 방법으로서, 예를 들면 국제공개 WO2009/125825에서 기재되는 바와 같은 항원 결합 도메인 또는 항원 결합 분자 중의 아미노산의 적어도 하나가 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산 변이로 치환되어 있거나 또는 항원 결합 도메인 또는 항원 결합 분자 중에 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산이 삽입되어 있는 항원 결합 분자 또는 항원 결합 분자를 바람직하게 들 수 있다.
측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 변이가 도입되는 위치는 특별히 한정되지 않고, 치환 또는 삽입 전과 비교하여 pH 산성역에 있어서의 항원 결합 활성이 pH 중성역에 있어서의 항원 결합 활성보다 약해지는(KD(pH 산성역)/KD(pH 중성역)의 값이 커지거나 또는 kd(pH 산성역)/kd(pH 중성역)의 값이 커지는) 한 어떠한 부위여도 된다. 예를 들면 항원 결합 분자가 항체인 경우에는 항체의 가변영역이나 CDR 등을 바람직하게 들 수 있다. 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산으로 치환되는 아미노산의 수 또는 삽입되는 아미노산의 수는 당업자가 적절히 결정할 수 있고, 측쇄의 pKa가 4.0-8.0인 하나의 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산에 의해 치환될 수 있으며, 측쇄의 pKa가 4.0-8.0인 하나의 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산이 삽입될 수 있고, 측쇄의 pKa가 4.0-8.0인 2개 이상의 복수의 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산에 의해 치환될 수 있으며, 측쇄의 pKa가 4.0-8.0인 2개 이상의 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산이 삽입될 수 있다. 또한 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산으로의 치환 또는 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 삽입 이외에, 다른 아미노산의 결실, 부가, 삽입 및/또는 치환 등이 동시에 행해질 수 있다. 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산으로의 치환 또는 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 삽입은 당업자 공지의 알라닌 scanning의 알라닌을 히스티딘 등으로 치환한 히스티딘 등 scanning 등의 방법에 의해 랜덤으로 행해질 수 있고, 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 치환 또는 삽입의 변이가 랜덤으로 도입된 항원 결합 도메인 또는 항체 중으로부터, 변이 전과 비교하여 KD(pH 산성역)/KD(pH 중성역) 또는 kd(pH 산성역)/kd(pH 중성역)의 값이 커진 항원 결합 분자가 선택될 수 있다.
상기와 같이 그 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산으로의 변이가 행해지고, 또한 pH 산성역에서의 항원 결합 활성이 pH 중성역에서의 항원 결합 활성보다도 낮은 항원 결합 분자의 바람직한 예로서, 예를 들면 그 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산으로의 변이 후의 pH 중성역에서의 항원 결합 활성이, 그 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산으로의 변이 전의 pH 중성역에서의 항원 결합 활성과 동등한 항원 결합 분자를 바람직하게 들 수 있다. 본 발명에 있어서 그 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 변이 후의 항원 결합 분자가, 그 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 변이 전의 항원 결합 분자와 동등한 항원 결합 활성을 갖는다는 것은, 그 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 변이 전의 항원 결합 분자의 항원 결합 활성을 100%로 한 경우에, 그 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 변이 후의 항원 결합 분자의 항원 결합 활성이 적어도 10% 이상, 바람직하게는 50% 이상, 더욱 바람직하게는 80% 이상, 보다 바람직하게는 90% 이상인 것을 말한다. 그 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 변이 후의 pH 7.4에서의 항원 결합 활성이 그 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 변이 전의 pH 7.4에서의 항원 결합 활성보다 높아져도 된다. 그 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산으로의 치환 또는 삽입에 의해 항원 결합 분자의 항원 결합 활성이 낮아진 경우에는 항원 결합 분자 중의 1 또는 복수의 아미노산의 치환, 결실, 부가 및/또는 삽입 등에 의해, 항원 결합 활성이 그 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 치환 또는 삽입 전의 항원 결합 활성과 동등하게 될 수 있다. 본 발명에 있어서는 그러한 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 치환 또는 삽입 후에 1 또는 복수의 아미노산의 치환, 결실, 부가 및/또는 삽입을 행함으로써 결합 활성이 동등해진 항원 결합 분자도 포함된다.
수소 이온 농도의 조건에 따라 항원에 대한 항원 결합 도메인의 결합 활성을 변화시키는 아미노산
상기 스크리닝방법에 의해 스크리닝되는 본 발명의 항원 결합 도메인 또는 항원 결합 분자는 어떻게 조제되어도 되고, 예를 들면 이온 농도의 조건이 수소 이온 농도의 조건 또는 pH의 조건인 경우에는 사전에 존재하고 있는 항원 결합 분자, 사전에 존재하고 있는 라이브러리(파지 라이브러리 등), 동물에 대한 면역으로부터 얻어진 하이브리도마나 면역동물로부터의 B세포로부터 제작된 항체 또는 라이브러리, 이들 항체나 라이브러리에 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 변이를 도입한 항체 또는 라이브러리(측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 함유율을 높게 한 라이브러리나 특정 개소에 측쇄의 pKa가 4.0-8.0인 아미노산(예를 들면 히스티딘이나 글루타민산)이나 비천연 아미노산의 변이를 도입한 라이브러리 등) 등을 사용하는 것이 가능하다.
본 발명의 하나의 태양으로서 「수소 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기」가 도입된 경쇄 가변영역과 랜덤화 가변영역 서열 라이브러리로서 제작된 중쇄 가변영역을 조합시킴으로써도, 본 발명의 복수의 서로 서열이 상이한 항원 결합 분자를 포함하는 라이브러리가 제작될 수 있다.
당해 아미노산 잔기의 비한정의 예로서 경쇄의 CDR1에 포함되는 아미노산 잔기가 예시된다. 그 외에도 당해 아미노산 잔기의 비한정의 예로서 경쇄의 CDR2에 포함되는 아미노산 잔기가 예시된다. 또한 당해 아미노산 잔기의 비한정의 다른 예로서 경쇄의 CDR3에 포함되는 아미노산 잔기도 또한 예시된다.
상기와 같이 당해 아미노산 잔기가 경쇄의 CDR1에 포함되는 아미노산 잔기의 비한정의 예로서, 경쇄 가변영역의 CDR1 중의 Kabat 넘버링으로 표시되는 24번 위치, 27번 위치, 28번 위치, 31번 위치, 32번 위치 및/또는 34번 위치의 아미노산 잔기를 들 수 있다. 또한 당해 아미노산 잔기가 경쇄의 CDR2에 포함되는 아미노산 잔기의 비한정의 예로서, 경쇄 가변영역의 CDR2 중의 Kabat 넘버링으로 표시되는 50번 위치, 51번 위치, 52번 위치, 53번 위치, 54번 위치, 55번 위치 및/또는 56번 위치의 아미노산 잔기를 들 수 있다. 또한 당해 아미노산 잔기가 경쇄의 CDR3에 포함되는 아미노산 잔기의 비한정의 예로서, 경쇄 가변영역의 CDR3 중의 Kabat 넘버링으로 표시되는 89번 위치, 90번 위치, 91번 위치, 92번 위치, 93번 위치, 94번 위치 및/또는 95A번 위치의 아미노산 잔기를 들 수 있다. 또한 이들 아미노산 잔기가 수소 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성이 변화되는 한 이들 아미노산 잔기가 단독으로 포함될 수 있고, 이들 아미노산이 둘 이상 조합되어 포함될 수 있다.
상기 「수소 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 하나 이상의 아미노산 잔기」가 도입된 경쇄 가변영역과 랜덤화 가변영역 서열 라이브러리로서 제작된 중쇄 가변영역을 조합시키는 경우라도, 상기와 마찬가지로 플렉시블 잔기가 당해 경쇄 가변영역의 서열에 포함되도록 설계하는 것도 가능하다. 본 발명의 항원 결합 분자의 항원에 대한 결합 활성이 수소 이온 농도의 조건에 따라 변화되는 한, 당해 플렉시블 잔기의 수 및 위치는 특정 태양에 한정되는 경우는 없다. 즉 중쇄 및/또는 경쇄의 CDR 서열 및/또는 FR 서열에 하나 또는 그 이상의 플렉시블 잔기가 포함될 수 있다. 예를 들면 경쇄 가변영역 서열에 도입되는 플렉시블 잔기의 비한정적인 예로서, 표 3 또는 표 4에 기재된 아미노산 잔기를 들 수 있다. 또한 수소 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 아미노산 잔기나 플렉시블 잔기 이외의 경쇄 가변영역의 아미노산 서열로서는, 비한정의 예로서 Vk1(서열번호:7), Vk2(서열번호:8), Vk3(서열번호:9), Vk4(서열번호:10) 등의 생식세포 계열의 서열이 적합하게 사용될 수 있다.
Figure pat00003
Figure pat00004
상기의 수소 이온 농도의 조건에 따라 항원에 대한 항원 결합 분자의 결합 활성을 변화시키는 아미노산 잔기로서는 어느 아미노산 잔기도 적합하게 사용될 수 있으나, 그러한 아미노산 잔기로서는 구체적으로 측쇄의 pKa가 4.0-8.0인 아미노산을 들 수 있다. 이러한 전자 공여성을 갖는 아미노산으로서는 히스티딘 또는 글루타민산 등의 천연의 아미노산 외에, 히스티딘 아날로그(US2009/0035836) 또는 m-NO2-Tyr(pKa 7.45), 3,5-Br2-Tyr(pKa 7.21) 또는 3,5-I2-Tyr(pKa 7.38) 등의 비천연의 아미노산(Bioorg. Med. Chem. (2003) 11 (17), 3761-3768이 적합하게 예시된다. 또한 당해 아미노산 잔기의 특히 적합한 예로서는 측쇄의 pKa가 6.0-7.0인 아미노산을 들 수 있다. 이러한 전자 공여성을 갖는 아미노산으로서는 히스티딘이 적합하게 예시된다.
항원 결합 도메인의 아미노산 개변을 위해서는 부위 특이적 변이 유발법(Kunkel 등(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))이나 Overlap extension PCR 등의 공지의 방법이 적절히 채용될 수 있다. 또한 천연의 아미노산 이외의 아미노산으로 치환하는 아미노산의 개변방법으로서, 복수의 공지의 방법도 또한 채용될 수 있다(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249, Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357). 예를 들면 종지 코돈의 하나인 UAG 코돈(앰버 코돈)의 상보적 앰버 서프레서 tRNA에 비천연 아미노산이 결합된 tRNA가 포함되는 무세포 번역계 시스템(Clover Direct(Protein Express)) 등도 적합하게 사용될 수 있다.
조합되는 중쇄 가변영역의 예로서 랜덤화 가변영역 라이브러리를 바람직하게 들 수 있다. 랜덤화 가변영역 라이브러리의 제작방법은 공지의 방법이 적당히 조합된다. 본 발명의 비한정의 일태양에서는 특정 항원으로 면역된 동물, 감염증 환자나 백신 접종하여 혈중 항체가가 상승한 인간, 암 환자, 자기 면역 질환의 림프구 유래의 항체 유전자를 토대로 구축된 면역 라이브러리가 랜덤화 가변영역 라이브러리로서 적합하게 사용될 수 있다.
또한 본 발명의 비한정의 일태양에서는 상기와 마찬가지로 게놈 DNA에 있어서의 V 유전자나 재구축되어 기능적인 V 유전자의 CDR 서열이 적당한 길이의 코돈 세트를 코드하는 서열을 포함하는 합성 올리고뉴클레오티드 세트로 치환된 합성 라이브러리도 또한 랜덤화 가변영역 라이브러리로서 적합하게 사용될 수 있다. 이 경우, 중쇄의 CDR3의 유전자 서열의 다양성이 관찰되는 것으로부터 CDR3의 서열만을 치환하는 것도 또한 가능하다. 항원 결합 분자의 가변영역에 있어서 아미노산의 다양성을 만들어 내는 기준은, 항원 결합 분자의 표면에 노출된 위치의 아미노산 잔기에 다양성을 부여하는 것이다. 표면에 노출된 위치란 항원 결합 분자의 구조, 구조 어셈블 및/또는 모델화된 구조를 토대로 표면에 노출이 가능 및/또는 항원과의 접촉이 가능하다고 판단되는 위치를 말하나, 일반적으로는 그의 CDR이다. 바람직하게는 표면에 노출된 위치는 InsightII 프로그램(Accelrys)과 같은 컴퓨터 프로그램을 사용하여 항원 결합 분자의 3차원 모델로부터의 좌표를 사용하여 결정된다. 표면에 노출된 위치는 당 기술분야에서 공지인 알고리즘(예를 들면 Lee 및 Richards(J. Mol. Biol. (1971) 55, 379-400), Connolly(J. Appl. Cryst. (1983) 16, 548-558))을 사용하여 결정될 수 있다. 표면에 노출된 위치의 결정은 단백질 모델링에 적합한 소프트웨어 및 항체로부터 얻어지는 3차원 구조 정보를 사용하여 행해질 수 있다. 이러한 목적을 위해 이용할 수 있는 소프트웨어로서 SYBYL 생체 고분자 모듈 소프트웨어(Tripos Associates)를 바람직하게 들 수 있다. 일반적으로 또한 바람직하게는 알고리즘이 유저의 입력 사이즈 파라미터를 필요로 하는 경우, 계산에 있어서 사용되는 프로브의 「사이즈」는 반경 약 1.4 옹스트롬 이하로 설정된다. 또한 퍼스널 컴퓨터용 소프트웨어를 사용한 표면에 노출된 영역 및 구역의 결정법이 Pacios(Comput. Chem. (1994) 18 (4), 377-386 및 J. Mol. Model. (1995) 1, 46-53)에 기재되어 있다.
또한 본 발명의 비한정의 일태양에서는 건강한 정상인의 림프구 유래의 항체 유전자로부터 구축되어 그 레퍼토리에 바이어스를 포함하지 않는 항체 서열인 나이브 서열로 이루어지는 나이브 라이브러리도 또한 랜덤화 가변영역 라이브러리로서 특히 적합하게 사용될 수 있다(Gejima 등(Human Antibodies (2002) 11,121-129) 및 Cardoso 등(Scand. J. Immunol. (2000) 51, 337-344)).
Fc영역
Fc영역은 항체 중쇄의 정상영역에 유래하는 아미노산 서열을 포함한다. Fc영역은 EU 넘버링으로 표시되는 대략 216번 위치의 아미노산에 있어서의 파파인 절단부위의 힌지영역의 N말단으로부터 당해 힌지, CH2 및 CH3 도메인을 포함하는 항체의 중쇄 정상영역의 부분이다. Fc영역은 인간 IgG1으로부터 취득될 수 있는데 IgG의 특정 서브클래스에 한정되는 것도 아니다. 당해 Fc영역의 적합한 예로서 후술되는 바와 같이 pH 산성역에 있어서의 FcRn에 대한 결합 활성을 갖는 Fc영역을 들 수 있다. 또한 당해 Fc영역의 적합한 예로서 후술되는 바와 같이 Fcγ 수용체에 대한 결합 활성을 갖는 Fc영역을 들 수 있다. 그러한 Fc영역의 비한정의 일태양으로서 인간 IgG1(서열번호:13), IgG2(서열번호:14), IgG3(서열번호:15) 또는 IgG4(서열번호:16)로 표시되는 Fc영역이 예시된다.
FcRn
면역 글로불린 슈퍼패밀리에 속하는 Fcγ 수용체와 달리, 인간 FcRn은 구조적으로는 주요 조직 부적합성 복합체(MHC) 클래스I의 폴리펩티드와 구조적으로 유사하여 클래스I의 MHC 분자와 22~29%의 서열 동일성을 갖는다(Ghetie 등,Immunol. Today (1997) 18 (12), 592-598). FcRn은 가용성 β 또는 경쇄(β2 마이크로글로불린)와 복합체화된 막관통 α 또는 중쇄로 이루어지는 헤테로다이머로서 발현된다. MHC와 같이 FcRn의 α쇄는 3개의 세포외 도메인(α1, α2, α3)으로 이루어지고, 짧은 세포질 도메인은 단백질을 세포 표면에 계류한다. α1 및 α2 도메인이 항체의 Fc영역 중의 FcRn 결합 도메인과 상호작용한다(Raghavan 등(Immunity (1994) 1, 303-315).
FcRn은 포유동물의 모성 태반 또는 난황낭에서 발현되고 그것은 모친으로부터 태아로의 IgG의 이동에 관여한다. 이에 더하여 FcRn이 발현하는 설치류 신생아의 소장에서는 FcRn이 섭취된 초유 또는 젖으로부터 모성 IgG의 쇄자연(brush border) 상피를 가로지르는 이동에 관여한다. FcRn은 다수의 종에 걸쳐 다수의 다른 조직 및 각종 내피세포계에 있어서 발현되고 있다. 그것은 인간 성인 혈관내피, 근육혈관계 및 간장 동양 모세혈관(hepatic sinusoidal capillaries)에서도 발현된다. FcRn은 IgG에 결합하여 그것을 혈청에 리사이클함으로써 IgG의 혈장 중 농도를 유지하는 역할을 하고 있는 것으로 생각되고 있다. FcRn의 IgG 분자로의 결합은 통상 엄격하게 pH에 의존적이며, 최적 결합은 7.0 미만의 pH 산성역에 있어서 확인된다.
서열번호:17로 표시된 시그날 서열을 포함하는 폴리펩티드를 전구체로 하는 인간 FcRn은 생체내에서(서열번호:18에 시그날 서열을 포함하는 그의 폴리펩티드가 기재되어 있는) 인간 β2-마이크로글로불린과의 복합체를 형성한다. β2-마이크로글로불린과 복합체를 형성하고 있는 가용형 인간 FcRn이 통상의 재조합 발현수법을 사용함으로써 제조된다. 이러한 β2-마이크로글로불린과 복합체를 형성하고 있는 가용형 인간 FcRn에 대한 본 발명의 Fc영역의 결합 활성이 평가될 수 있다. 본 발명에 있어서 특별히 기재가 없는 경우는 인간 FcRn은 본 발명의 Fc영역에 결합 가능한 형태인 것을 가리키고, 예로서 인간 FcRn과 인간 β2-마이크로글로불린의 복합체를 들 수 있다. 비한정의 일태양에 있어서 마우스 FcRn(서열번호:73)와 마우스 β2-마이크로글로불린(서열번호:74)의 복합체도 들 수 있다.
FcRn , 특히 인간 FcRn에 대한 Fc영역의 결합 활성
본 발명에 의해 제공되는 Fc영역의 FcRn, 특히 인간 FcRn에 대한 결합 활성은 상기 결합 활성의 항목에서 기술되어 있는 바와 같이 당업자에게 공지의 방법에 의해 측정하는 것이 가능하고, pH 이외의 조건에 대해서는 당업자가 적절히 결정하는 것이 가능하다. 항원 결합 분자의 항원 결합 활성과 인간 FcRn 결합 활성은 KD(Dissociation constant:해리상수), 겉보기 KD(Apparent dissociation constant:겉보기 해리상수), 해리속도인 kd(Dissociation rate:해리속도) 또는 겉보기 kd(Apparent dissociation:겉보기 해리속도) 등으로서 평가될 수 있다. 이들은 당업자 공지의 방법으로 측정될 수 있다. 예를 들면 Biacore (GE healthcare), 스캐차드 플롯, 플로우 사이토미터 등이 사용될 수 있다.
본 발명의 Fc영역의 인간 FcRn에 대한 결합 활성을 측정할 때의 pH 이외의 조건은 당업자가 적절히 선택하는 것이 가능하고, 특별히 한정되지 않는다. 예를 들면 국제공개 WO2009/125825에 기재되어 있는 바와 같이 MES 버퍼, 37℃의 조건에 있어서 측정될 수 있다. 또한 본 발명의 Fc영역의 인간 FcRn에 대한 결합 활성의 측정은 당업자 공지의 방법에 의해 행하는 것이 가능하고, 예를 들면 Biacore(GE Healthcare) 등을 사용하여 측정될 수 있다. 본 발명의 Fc영역과 인간 FcRn의 결합 활성의 측정은 Fc영역 또는 Fc영역을 포함하는 본 발명의 항원 결합 분자 또는 인간 FcRn을 고정화한 칩으로 각각 인간 FcRn 또는 Fc영역 또는 Fc영역을 포함하는 본 발명의 항원 결합 분자를 애널라이트로서 흘림으로써 평가될 수 있다.
본 발명의 항원 결합 분자에 포함되는 Fc영역과 FcRn의 결합 활성을 갖는 조건으로서의 pH 중성역이란 통상 pH 6.7~pH 10.0을 의미한다. pH 중성역이란 바람직하게는 pH 7.0~pH 8.0의 임의의 pH값으로 나타내어지는 범위이고, 바람직하게는 pH 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 및 8.0으로부터 선택되며, 특히 바람직하게는 생체내의 혈장 중(혈중)의 pH에 가까운 pH 7.4이다. pH 7.4에서의 인간 FcRn 결합 도메인과 인간 FcRn의 결합 친화성이 낮기 때문에 그의 결합 친화성을 평가하는 것이 곤란한 경우에는 pH 7.4 대신에 pH 7.0을 사용할 수 있다. 본 발명에 있어서 본 발명의 항원 결합 분자에 포함되는 Fc영역과 FcRn의 결합 활성을 갖는 조건으로서의 pH 산성역이란 통상 pH 4.0~pH 6.5를 의미한다. 바람직하게는 pH 5.5~pH 6.5를 의미하고, 특히 바람직하게는 생체내의 조기 엔도솜 내의 pH에 가까운 pH 5.8~pH 6.0을 의미한다. 측정 조건에 사용되는 온도로서, 인간 FcRn 결합 도메인과 인간 FcRn의 결합 친화성은 10℃~50℃의 임의의 온도에서 평가해도 된다. 바람직하게는 인간 FcRn 결합 도메인과 인간 FcRn의 결합 친화성을 결정하기 위해 15℃~40℃의 온도가 사용된다. 보다 바람직하게는 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 및 35℃ 중 어느 하나와 같은 20℃~35℃에서의 임의의 온도도 마찬가지로, 인간 FcRn 결합 도메인과 인간 FcRn의 결합 친화성을 결정하기 위해 사용된다. 25℃라는 온도는 본 발명의 태양의 비한정의 일례이다.
The Journal of Immunology (2009) 182, 7663-7671에 의하면 천연형 인간 IgG1의 인간 FcRn 결합 활성은 pH 산성역(pH 6.0)에서 KD 1.7 μM이나 pH 중성역에서는 활성을 거의 검출하지 못하고 있다. 따라서 바람직한 태양에 있어서는 pH 산성역에 있어서의 인간 FcRn에 대한 결합 활성이 KD 20 μM 또는 그것보다 강한 Fc영역을 포함하는 항원 결합 분자가 스크리닝될 수 있다. 보다 바람직한 태양에 있어서는 pH 산성역에 있어서의 인간 FcRn에 대한 결합 활성이 KD 2.0 μM 또는 그것보다 강한 Fc영역을 포함하는 항원 결합 분자가 스크리닝될 수 있다. 더욱이 보다 바람직한 태양에 있어서는 pH 산성역에 있어서의 인간 FcRn에 대한 결합 활성이 KD 0.5 μM 또는 그것보다 강한 Fc영역을 포함하는 항원 결합 분자가 스크리닝될 수 있다. 상기 KD값은 The Journal of Immunology (2009) 182: 7663-7671에 기재된 방법으로(항원 결합 분자를 칩에 고정하고 애널라이트로서 인간 FcRn을 흘림으로써) 결정된다.
본 발명에 있어서는 pH 산성역의 조건하에서 FcRn에 대한 결합 활성을 갖는 Fc영역이 바람직하다. 당해 도메인은 사전에 pH 산성역의 조건하에서 FcRn에 대한 결합 활성을 가지고 있는 Fc영역이라면 그대로 사용될 수 있다. 당해 도메인이 pH 산성역의 조건하에서 FcRn에 대한 결합 활성이 없거나 또는 약한 경우에는 항원 결합 분자 중의 아미노산을 개변함으로써 목적하는 FcRn에 대한 결합 활성을 갖는 Fc영역이 취득될 수 있는데, Fc영역 중의 아미노산을 개변함으로써 pH 산성역의 조건하에서 목적하는 FcRn에 대한 결합 활성을 갖거나 또는 증강된 Fc영역도 적합하게 취득될 수 있다. 그러한 목적하는 결합 활성을 초래하는 Fc영역의 아미노산 개변은 아미노산 개변 전과 개변 후의 pH 산성역의 조건하에서 FcRn에 대한 결합 활성을 비교함으로써 발견될 수 있다. 상기 Fcγ 수용체에 대한 결합 활성을 개변하기 위해 사용되는 수법과 동일한 공지의 수법을 사용하여 당업자는 적절히 아미노산의 개변을 실시할 수 있다.
본 발명의 항원 결합 분자에 포함되는 pH 산성역의 조건하에서 FcRn에 대한 결합 활성을 갖는 Fc영역은 어떠한 방법으로도 취득될 수 있으나, 구체적으로는 출발 Fc영역으로서 사용되는 인간 IgG형 면역 글로불린의 아미노산의 개변에 의해 pH 산성역의 조건하에서 FcRn에 대한 결합 활성을 갖거나 또는 증강된 FcRn 결합 도메인이 취득될 수 있다. 개변을 위한 바람직한 IgG형 면역 글로불린의 Fc영역으로서는 예를 들면 인간 IgG(IgG1, IgG2, IgG3 또는 IgG4 및 그들의 개변체)의 Fc영역을 들 수 있다. 다른 아미노산으로의 개변은 pH 산성역의 조건하에서 FcRn에 대한 결합 활성을 갖거나 또는 산성역의 조건하에서 인간 FcRn에 대한 결합 활성을 높일 수 있는 한 어떠한 위치의 아미노산도 개변될 수 있다. 항원 결합 분자가 Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변이 포함되어 있는 것이 바람직하다. 그러한 개변이 가능한 아미노산으로서 예를 들면 국제공개 WO1997/034631에 기재되어 있는 바와 같이 EU 넘버링으로 표시되는 252번 위치, 254번 위치, 256번 위치, 309번 위치, 311번 위치, 315번 위치, 433번 위치 및/또는 434번 위치 및 이들의 아미노산에 조합하는 253번 위치, 310번 위치, 435번 위치 및/또는 426번 위치의 아미노산을 들 수 있다. 국제공개 WO2000/042072에 기재되는 바와 같이 EU 넘버링으로 표시되는 238번 위치, 252번 위치, 253번 위치, 254번 위치, 255번 위치, 256번 위치, 265번 위치, 272번 위치, 286번 위치, 288번 위치, 303번 위치, 305번 위치, 307번 위치, 309번 위치, 311번 위치, 312번 위치, 317번 위치, 340번 위치, 356번 위치, 360번 위치, 362번 위치, 376번 위치, 378번 위치, 380번 위치, 382번 위치, 386번 위치, 388번 위치, 400번 위치, 413번 위치, 415번 위치, 424번 위치, 433번 위치, 434번 위치, 435번 위치, 436번 위치, 439번 위치 및/또는 447번 위치의 아미노산을 적합하게 들 수 있다. 마찬가지로 그러한 개변이 가능한 아미노산으로서 예를 들면 국제공개 WO2002/060919에 기재되어 있는 바와 같이 EU 넘버링으로 표시되는 251번 위치, 252번 위치, 254번 위치, 255번 위치, 256번 위치, 308번 위치, 309번 위치, 311번 위치, 312번 위치, 385번 위치, 386번 위치, 387번 위치, 389번 위치, 428번 위치, 433번 위치, 434번 위치 및/또는 436번 위치의 아미노산도 적합하게 들 수 있다. 또한 그러한 개변이 가능한 아미노산으로서 국제공개 WO2004/092219에 기재되어 있는 바와 같이 EU 넘버링으로 표시되는 250번 위치, 314번 위치 및 428번 위치의 아미노산도 들 수 있다. 이에 더하여 그러한 개변이 가능한 아미노산으로서 예를 들면 국제공개 WO2006/020114에 기재되어 있는 바와 같이 238번 위치, 244번 위치, 245번 위치, 249번 위치, 252번 위치, 256번 위치, 257번 위치, 258번 위치, 260번 위치, 262번 위치, 270번 위치, 272번 위치, 279번 위치, 283번 위치, 285번 위치, 286번 위치, 288번 위치, 293번 위치, 307번 위치, 311번 위치, 312번 위치, 316번 위치, 317번 위치, 318번 위치, 332번 위치, 339번 위치, 341번 위치, 343번 위치, 375번 위치, 376번 위치, 377번 위치, 378번 위치, 380번 위치, 382번 위치, 423번 위치, 427번 위치, 430번 위치, 431번 위치, 434번 위치, 436번 위치, 438번 위치, 440번 위치 및/또는 442번 위치의 아미노산도 적합하게 들 수 있다. 또한 그러한 개변이 가능한 아미노산으로서 예를 들면 국제공개 WO2010/045193에 기재되어 있는 바와 같이 EU 넘버링으로 표시되는 251번 위치, 252번 위치, 307번 위치, 308번 위치, 378번 위치, 428번 위치, 430번 위치, 434번 위치 및/또는 436번 위치의 아미노산도 적합하게 들 수 있다. 이들 아미노산의 개변에 의해 IgG형 면역 글로불린의 Fc영역의 pH 산성역의 조건하에서 FcRn에 대한 결합이 증강된다.
Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양에서는, EU 넘버링으로 표시되는
251번 위치의 아미노산이 Arg 또는 Leu 중 어느 하나,
252번 위치의 아미노산이 Phe, Ser, Thr 또는 Tyr 중 어느 하나,
254번 위치의 아미노산이 Ser 또는 Thr 중 어느 하나,
255번 위치의 아미노산이 Arg, Gly, Ile 또는 Leu 중 어느 하나,
256번 위치의 아미노산이 Ala, Arg, Asn, Asp, Gln, Glu 또는 Thr 중 어느 하나,
308번 위치의 아미노산이 Ile 또는 Thr 중 어느 하나,
309번 위치의 아미노산이 Pro,
311번 위치의 아미노산이 Glu, Leu 또는 Ser 중 어느 하나,
312번 위치의 아미노산이 Ala 또는 Asp 중 어느 하나,
314번 위치의 아미노산이 Ala 또는 Leu 중 어느 하나,
385번 위치의 아미노산이 Ala, Arg, Asp, Gly, His, Lys, Ser 또는 Thr 중 어느 하나,
386번 위치의 아미노산이 Arg, Asp, Ile, Lys, Met, Pro, Ser 또는 Thr 중 어느 하나,
387번 위치의 아미노산이 Ala, Arg, His, Pro, Ser 또는 Thr 중 어느 하나,
389번 위치의 아미노산이 Asn, Pro 또는 Ser 중 어느 하나,
428번 위치의 아미노산이 Leu, Met, Phe, Ser 또는 Thr 중 어느 하나,
433번 위치의 아미노산이 Arg, Gln, His, Ile, Lys, Pro 또는 Ser 중 어느 하나,
434번 위치의 아미노산이 His, Phe 또는 Tyr 중 어느 하나, 또는
436번 위치의 아미노산이 Arg, Asn, His, Lys, Met 또는 Thr 중 어느 하나
의 군으로부터 선택되는 적어도 하나 이상의 아미노산의 개변을 들 수 있다. 또한 개변되는 아미노산의 수는 특별히 한정되지 않고, 1개소만의 아미노산이 개변될 수 있고 2개소 이상의 아미노산이 개변될 수 있다.
Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양은 EU 넘버링으로 표시되는 308번 위치의 아미노산이 Ile, 309번 위치의 아미노산이 Pro 및/또는 311번 위치의 아미노산이 Glu를 포함하는 개변일 수 있다. 또한 당해 개변의 다른 비한정의 일태양은 308번 위치의 아미노산이 Thr, 309번 위치의 아미노산이 Pro, 311번 위치의 아미노산이 Leu, 312번 위치의 아미노산이 Ala 및/또는 314번 위치의 아미노산이 Ala를 포함하는 개변일 수 있다. 또한 당해 개변의 또 다른 비한정의 일태양은 308번 위치의 아미노산이 Ile 또는 Thr, 309번 위치의 아미노산이 Pro, 311번 위치의 아미노산이 Glu, Leu 또는 Ser, 312번 위치의 아미노산이 Ala 및/또는 314번 위치의 아미노산이 Ala 또는 Leu를 포함하는 개변일 수 있다. 당해 개변의 상이한 비한정의 일태양은 308번 위치의 아미노산이 Thr, 309번 위치의 아미노산이 Pro, 311번 위치의 아미노산이 Ser, 312번 위치의 아미노산이 Asp 및/또는 314번 위치의 아미노산이 Leu를 포함하는 개변일 수 있다.
Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양은 EU 넘버링으로 표시되는 251번 위치의 아미노산이 Leu, 252번 위치의 아미노산이 Tyr, 254번 위치의 아미노산이 Ser 또는 Thr, 255번 위치의 아미노산이 Arg 및/또는 256번 위치의 아미노산이 Glu를 포함하는 개변일 수 있다.
Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양은 EU 넘버링으로 표시되는 428번 위치의 아미노산이 Leu, Met, Phe, Ser 또는 Thr 중 어느 하나, 433번 위치의 아미노산이 Arg, Gln, His, Ile, Lys, Pro 또는 Ser 중 어느 하나, 434번 위치의 아미노산이 His, Phe 또는 Tyr 중 어느 하나 및/또는 436번 위치의 아미노산이 Arg, Asn, His, Lys, Met 또는 Thr 중 어느 하나를 포함하는 개변일 수 있다. 또한 당해 개변의 다른 비한정의 일태양은 428번 위치의 아미노산이 His 또는 Met 및/또는 434번 위치의 아미노산이 His 또는 Met를 포함하는 개변일 수 있다.
Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양은 EU 넘버링으로 표시되는 385번 위치의 아미노산이 Arg, 386번 위치의 아미노산이 Thr, 387번 위치의 아미노산이 Arg 및/또는 389번 위치의 아미노산이 Pro를 포함하는 개변일 수 있다. 또한 당해 개변의 다른 비한정의 일태양은 385번 위치의 아미노산이 Asp, 386번 위치의 아미노산이 Pro및/또는 389번 위치의 아미노산이 Ser을 포함하는 개변일 수 있다.
또한 Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양에서는 EU 넘버링으로 표시되는
250번 위치의 아미노산이 Gln 또는 Glu 중 어느 하나, 또는
428번 위치의 아미노산이 Leu 또는 Phe 중 어느 하나
의 군으로부터 선택되는 적어도 하나 이상의 아미노산의 개변을 들 수 있다. 또한 개변되는 아미노산의 수는 특별히 한정되지 않고, 1개소만의 아미노산이 개변될 수 있고 2개소의 아미노산이 개변될 수 있다.
Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양은 EU 넘버링으로 표시되는 250번 위치의 아미노산이 Gln 및/또는 428번 위치의 아미노산이 Leu 또는 Phe 중 어느 하나를 포함하는 개변일 수 있다. 또한 당해 개변의 다른 비한정의 일태양은 250번 위치의 아미노산이 Glu 및/또는 428번 위치의 아미노산이 Leu 또는 Phe 중 어느 하나를 포함하는 개변일 수 있다.
Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양에서는 EU 넘버링으로 표시되는
251번 위치의 아미노산이 Asp 또는 Glu 중 어느 하나,
252번 위치의 아미노산이 Tyr,
307번 위치의 아미노산이 Gln,
308번 위치의 아미노산이 Pro,
378번 위치의 아미노산이 Val,
380번 위치의 아미노산이 Ala,
428번 위치의 아미노산이 Leu,
430번 위치의 아미노산이 Ala 또는 Lys 중 어느 하나,
434번 위치의 아미노산이 Ala, His, Ser 또는 Tyr 중 어느 하나, 또는
436번 위치의 아미노산이 Ile
의 군으로부터 선택되는 적어도 2개 이상의 아미노산의 개변을 들 수 있다. 또한 개변되는 아미노산의 수는 특별히 한정되지 않고, 2개소만의 아미노산이 개변될 수 있고 3개소 이상의 아미노산이 개변될 수 있다.
Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양은 EU 넘버링으로 표시되는 307번 위치의 아미노산이 Gln 및 434번 위치의 아미노산이 Ala 또는 Ser 중 어느 하나를 포함하는 개변일 수 있다. 또한 당해 개변의 다른 비한정의 일태양은 308번 위치의 아미노산이 Pro 및 434번 위치의 아미노산이 Ala를 포함하는 개변일 수 있다. 또한 당해 개변의 또 다른 비한정의 일태양은 252번 위치의 아미노산이 Tyr 및 434번 위치의 아미노산이 Ala를 포함하는 개변일 수 있다. 당해 개변의 상이한 비한정의 일태양은 378번 위치의 아미노산이 Val 및 434번 위치의 아미노산이 Ala를 포함하는 개변일 수 있다. 당해 개변의 다른 상이한 비한정의 일태양은 428번 위치의 아미노산이 Leu 및 434번 위치의 아미노산이 Ala를 포함하는 개변일 수 있다. 또한 당해 개변의 또 다른 상이한 비한정의 일태양은 434번 위치의 아미노산이 Ala 및 436번 위치의 아미노산이 Ile를 포함하는 개변일 수 있다. 또한 당해 개변의 다른 하나의 비한정의 일태양은 308번 위치의 아미노산이 Pro 및 434번 위치의 아미노산이 Tyr을 포함하는 개변일 수 있다. 또한 당해 개변의 또 다른 하나의 비한정의 일태양은 307번 위치의 아미노산이 Gln 및 436번 위치의 아미노산이 Ile를 포함하는 개변일 수 있다.
Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양은 EU 넘버링으로 표시되는 307번 위치의 아미노산이 Gln, 380번 위치의 아미노산이 Ala 및 434번 위치의 아미노산이 Ser 중 어느 하나를 포함하는 개변일 수 있다. 또한 당해 개변의 다른 비한정의 일태양은 307번 위치의 아미노산이 Gln, 380번 위치의 아미노산이 Ala 및 434번 위치의 아미노산이 Ala를 포함하는 개변일 수 있다. 또한 당해 개변의 또 다른 비한정의 일태양은 252번 위치의 아미노산이 Tyr, 308번 위치의 아미노산이 Pro 및 434번 위치의 아미노산이 Tyr을 포함하는 개변일 수 있다. 당해 개변의 상이한 비한정의 일태양은 251번 위치의 아미노산이 Asp, 307번 위치의 아미노산이 Gln 및 434번 위치의 아미노산이 His를 포함하는 개변일 수 있다.
Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양에서는 EU 넘버링으로 표시되는
238번 위치의 아미노산이 Leu,
244번 위치의 아미노산이 Leu,
245번 위치의 아미노산이 Arg,
249번 위치의 아미노산이 Pro,
252번 위치의 아미노산이 Tyr,
256번 위치의 아미노산이 Pro,
257번 위치의 아미노산이 Ala, Ile, Met, Asn, Ser 또는 Val 중 어느 하나,
258번 위치의 아미노산이 Asp,
260번 위치의 아미노산이 Ser,
262번 위치의 아미노산이 Leu,
270번 위치의 아미노산이 Lys,
272번 위치의 아미노산이 Leu 또는 Arg 중 어느 하나,
279번 위치의 아미노산이 Ala, Asp, Gly, His, Met, Asn, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
283번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
285번 위치의 아미노산이 Asn,
286번 위치의 아미노산이 Phe,
288번 위치의 아미노산이 Asn 또는 Pro 중 어느 하나,
293번 위치의 아미노산이 Val,
307번 위치의 아미노산이 Ala, Glu 또는 Met 중 어느 하나,
311번 위치의 아미노산이 Ala, Ile, Lys, Leu, Met, Val 또는 Trp 중 어느 하나,
312번 위치의 아미노산이 Pro,
316번 위치의 아미노산이 Lys,
317번 위치의 아미노산이 Pro,
318번 위치의 아미노산이 Asn 또는 Thr 중 어느 하나,
332번 위치의 아미노산이 Phe, His, Lys, Leu, Met, Arg, Ser 또는 Trp 중 어느 하나,
339번 위치의 아미노산이 Asn, Thr 또는 Trp 중 어느 하나,
341번 위치의 아미노산이 Pro,
343번 위치의 아미노산이 Glu, His, Lys, Gln, Arg, Thr 또는 Tyr 중 어느 하나,
375번 위치의 아미노산이 Arg,
376번 위치의 아미노산이 Gly, Ile, Met, Pro, Thr 또는 Val 중 어느 하나,
377번 위치의 아미노산이 Lys,
378번 위치의 아미노산이 Asp 또는 Asn 중 어느 하나,
380번 위치의 아미노산이 Asn, Ser 또는 Thr 중 어느 하나,
382번 위치의 아미노산이 Phe, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
423번 위치의 아미노산이 Asn,
427번 위치의 아미노산이 Asn,
430번 위치의 아미노산이 Ala, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val 또는 Tyr 중 어느 하나,
431번 위치의 아미노산이 His 또는 Asn 중 어느 하나,
434번 위치의 아미노산이 Phe, Gly, His, Trp 또는 Tyr 중 어느 하나,
436번 위치의 아미노산이 Ile, Leu 또는 Thr 중 어느 하나,
438번 위치의 아미노산이 Lys, Leu, Thr 또는 Trp 중 어느 하나,
440번 위치의 아미노산이 Lys, 또는
442번 위치의 아미노산이 Lys
의 군으로부터 선택되는 적어도 2개 이상의 아미노산의 개변을 들 수 있다. 또한 개변되는 아미노산의 수는 특별히 한정되지 않고, 2개소만의 아미노산이 개변될 수 있고 3개소 이상의 아미노산이 개변될 수 있다.
Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변의 비한정의 일태양은 EU 넘버링으로 표시되는 257번 위치의 아미노산이 Ile 및 311번 위치의 아미노산이 Ile를 포함하는 개변일 수 있다. 또한 당해 개변의 다른 비한정의 일태양은 257번 위치의 아미노산이 Ile 및 434번 위치의 아미노산이 His를 포함하는 개변일 수 있다. 또한 당해 개변의 또 다른 비한정의 일태양은 376번 위치의 아미노산이 Val 및 434번 위치의 아미노산이 His를 포함하는 개변일 수 있다.
또한 다른 비한정의 일태양에서는 상기에 기재된 pH 산성역에 있어서의 인간 FcRn에 대한 결합 활성이라는 특징 대신에 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성이라는 특징을 갖는 Fc영역을 포함하는 항원 결합 분자도 또한 스크리닝될 수 있다. 보다 바람직한 태양에 있어서는 pH 중성역에 있어서의 인간 FcRn 결합 활성이 KD 40 μM 또는 그것보다 강한 Fc영역을 포함하는 항원 결합 분자가 스크리닝될 수 있다. 더욱이 보다 바람직한 태양에 있어서는 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성이 KD 15 μM 또는 그것보다 강한 Fc영역을 포함하는 항원 결합 분자가 스크리닝될 수 있다.
또한 다른 비한정의 일태양에서는 상기에 기재된 pH 산성역에 있어서의 인간 FcRn에 대한 결합 활성이라는 특징에 더하여 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성이라는 특징을 갖는 Fc영역을 포함하는 항원 결합 분자도 또한 스크리닝될 수 있다. 보다 바람직한 태양에 있어서는, pH 중성역에 있어서의 인간 FcRn 결합 활성이 KD 40 μM 또는 그것보다 강한 Fc영역을 포함하는 항원 결합 분자가 스크리닝될 수 있다. 더욱이 보다 바람직한 태양에 있어서는 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성이 KD 15 μM 또는 그것보다 강한 Fc영역을 포함하는 항원 결합 분자가 스크리닝될 수 있다.
본 발명에 있어서 pH 산성역 및/또는 pH 중성역에 있어서 인간 FcRn에 대한 결합 활성을 갖는 Fc영역이 바람직하다. 당해 Fc영역은 사전에 pH 산성역 및/또는 pH 중성역에 있어서 인간 FcRn에 대한 결합 활성을 가지고 있는 Fc영역이라면 그대로 사용될 수 있다. 당해 Fc영역이 pH 산성역 및/또는 pH 중성역에 있어서 인간 FcRn 결합 활성이 없거나 또는 약한 경우에는, 항원 결합 분자에 포함되는 Fc영역 중의 아미노산을 개변함으로써 목적하는 인간 FcRn에 대한 결합 활성을 갖는 Fc영역을 포함하는 항원 결합 분자가 취득될 수 있는데, 인간 Fc영역 중의 아미노산을 개변함으로써 pH 산성역 및/또는 pH 중성역에 있어서의 목적하는 인간 FcRn에 대한 결합 활성을 갖는 Fc영역도 적합하게 취득될 수 있다. 또한 사전에 pH 산성역 및/또는 pH 중성역에 있어서 인간 FcRn 결합 활성을 가지고 있는 Fc영역 중의 아미노산의 개변에 의해 목적하는 인간 FcRn에 대한 결합 활성을 갖는 Fc영역을 포함하는 항원 결합 분자도 취득될 수 있다. 그러한 목적하는 결합 활성을 초래하는 인간 Fc영역의 아미노산 개변은 아미노산 개변 전과 개변 후의 pH 산성역 및/또는 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 비교함으로써 발견될 수 있다. 공지의 수법을 사용하여 당업자는 적절히 아미노산의 개변을 실시할 수 있다.
본 발명에 있어서 Fc영역의 「아미노산의 개변」 또는 「아미노산 개변」이란 출발 Fc영역의 아미노산 서열과는 상이한 아미노산 서열로 개변하는 것을 포함한다. 출발 Fc영역의 수식 개변체가 pH 산성역에 있어서 인간 FcRn에 결합할 수 있는 한(따라서 출발 Fc영역은 pH 중성역 조건하에 있어서의 인간 FcRn에 대한 결합 활성을 반드시 필요로 하는 것은 아니다) 어느 Fc영역도 출발 도메인으로서 사용될 수 있다. 출발 Fc영역의 예로서는 IgG 항체의 Fc영역, 즉 천연형의 Fc영역을 바람직하게 들 수 있다. 또한 이미 개변이 가해진 Fc영역을 출발 Fc영역으로서 추가적인 개변이 가해진 개변 Fc영역도 본 발명의 개변 Fc영역으로서 적합하게 사용될 수 있다. 출발 Fc영역이란 폴리펩티드 그 자체, 출발 Fc영역을 포함하는 조성물, 또는 출발 Fc영역을 코드하는 아미노산 서열을 의미할 수 있다. 출발 Fc영역에는 항체의 항목에서 개략 설명된 재조합에 의해 생산된 공지의 IgG 항체의 Fc영역이 포함될 수 있다. 출발 Fc영역의 기원은 한정되지 않지만 비인간 동물의 임의의 생물 또는 인간으로부터 취득될 수 있다. 바람직하게는 임의의 생물로서는 마우스, 랫트, 기니피그, 햄스터, 황무지쥐, 고양이, 토끼, 개, 염소, 양, 소, 말, 낙타 및 비인간 영장류로부터 선택되는 생물을 바람직하게 들 수 있다. 다른 태양에 있어서 출발 Fc영역은 또한 게잡이원숭이, 마모셋, 빨간털원숭이, 침팬지 또는 인간으로부터 취득될 수 있다. 바람직하게는 출발 Fc영역은 인간 IgG1으로부터 취득될 수 있지만, IgG의 특정 서브클래스에 한정되는 것도 아니다. 이는 인간 IgG1(서열번호:13), IgG2(서열번호:14), IgG3(서열번호:15) 또는 IgG4(서열번호:16)로 표시되는 Fc영역을 출발 Fc영역으로서 적절히 사용할 수 있는 것을 의미한다. 마찬가지로, 본 명세서에 있어서 상기 임의의 생물로부터의 IgG의 임의의 클래스 또는 서브클래스의 Fc영역을, 바람직하게는 출발 Fc영역으로서 사용할 수 있는 것을 의미한다. 천연에 존재하는 IgG의 변이체 또는 조작된 유형의 예는 공지의 문헌(Curr. Opin. Biotechnol. (2009) 20 (6), 685-91, Curr. Opin. Immunol. (2008) 20 (4), 460-470, Protein Eng. Des. Sel. (2010) 23 (4), 195-202, 국제공개 WO2009/086320, WO2008/092117, WO2007/041635 및 WO2006/105338)에 기재되지만 그들에 한정되지 않는다.
개변의 예로서는 하나 이상의 변이, 예를 들면, 출발 Fc영역의 아미노산과는 상이한 아미노산 잔기로 치환된 변이, 또는 출발 Fc영역의 아미노산에 대해 하나 이상의 아미노산 잔기의 삽입 또는 출발 Fc영역의 아미노산으로부터 하나 이상의 아미노산의 결실 등이 포함된다. 바람직하게는 개변 후의 Fc영역의 아미노산 서열에는 천연으로 생기지 않는 Fc영역의 적어도 부분을 포함하는 아미노산 서열을 포함한다. 그러한 변종은 필연적으로 출발 Fc영역과 100% 미만의 서열 동일성 또는 유사성을 갖는다. 바람직한 실시형태에 있어서, 변종은 출발 Fc영역의 아미노산 서열과 약 75%~100% 미만의 아미노산 서열 동일성 또는 유사성, 보다 바람직하게는 약 80%~100% 미만, 보다 바람직하게는 약 85%~100% 미만의, 보다 바람직하게는 약 90%~100% 미만, 가장 바람직하게는 약 95%~100% 미만의 동일성 또는 유사성의 아미노산 서열을 갖는다. 본 발명의 비한정의 일태양에 있어서 출발 Fc영역 및 본 발명의 개변된 Fc영역 사이에는 하나 이상의 아미노산의 차가 있다. 출발 Fc영역과 개변 Fc영역의 아미노산의 차이는 특히 전술한 EU 넘버링으로 표시되는 아미노산 잔기의 위치의 특정된 아미노산의 차이에 따라서도 적합하게 특정 가능하다.
Fc영역의 아미노산의 개변을 위해서는 부위 특이적 변이 유발법(Kunkel 등(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))이나 Overlap extension PCR 등의 공지의 방법이 적절히 채용될 수 있다. 또한 천연의 아미노산 이외의 아미노산으로 치환하는 아미노산의 개변방법으로서 복수의 공지의 방법도 채용될 수 있다(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249, Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357). 예를 들면 종지 코돈의 하나인 UAG 코돈(앰버 코돈)의 상보적 앰버 서프레서 tRNA에 비천연 아미노산이 결합된 tRNA가 포함되는 무세포 번역계 시스템(Clover Direct(Protein Express)) 등도 적합하게 사용된다.
본 발명의 항원 결합 분자에 포함되는 pH 산성역에 있어서의 인간 FcRn에 대한 결합 활성을 갖는 Fc영역은 어떠한 방법으로도 취득될 수 있는데, 구체적으로는 출발 Fc영역으로서 사용되는 인간 IgG형 면역 글로불린의 아미노산의 개변에 의해 pH 산성역에 있어서의 인간 FcRn에 대한 결합 활성이 KD 20 μM 또는 그것보다 강한 Fc영역, 보다 바람직한 태양에 있어서는 pH 산성역에 있어서의 인간 FcRn에 대한 결합 활성이 KD 2.0 μM 또는 그것보다 강한 Fc영역, 더욱이 보다 바람직한 태양에 있어서는 pH 산성역에 있어서의 인간 FcRn에 대한 결합 활성이 KD 0.5 μM 또는 그것보다 강한 Fc영역을 포함하는 항원 결합 분자가 스크리닝될 수 있다. 개변을 위한 바람직한 IgG형 면역 글로불린의 Fc영역으로서는 예를 들면 서열번호:13, 서열번호:14, 서열번호:15 또는 서열번호:16으로 각각 표시되는 IgG1, IgG2, IgG3 또는 IgG4 등의 인간 IgG 및 그들의 개변체의 Fc영역을 들 수 있다.
항원 결합 분자가 Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 산성역의 조건하에서 FcRn에 대한 결합이 출발 Fc영역으로서 사용되는 인간 IgG형 면역 글로불린의 아미노산의 개변에 의해 상기 목적하는 효과를 초래하는 개변이 가능한 아미노산으로서, 예를 들면 국제공개 WO2000/042072에 기재되는 바와 같이 EU 넘버링으로 표시되는 238번 위치, 252번 위치, 253번 위치, 254번 위치, 255번 위치, 256번 위치, 265번 위치, 272번 위치, 286번 위치, 288번 위치, 303번 위치, 305번 위치, 307번 위치, 309번 위치, 311번 위치, 312번 위치, 317번 위치, 340번 위치, 356번 위치, 360번 위치, 362번 위치, 376번 위치, 378번 위치, 380번 위치, 382번 위치, 386번 위치, 388번 위치, 400번 위치, 413번 위치, 415번 위치, 424번 위치, 433번 위치, 434번 위치, 435번 위치, 436번 위치, 439번 위치 및/또는 447번 위치의 아미노산을 적합하게 들 수 있다. 마찬가지로 그러한 개변이 가능한 아미노산으로서 예를 들면 국제공개 WO2002/060919에 기재되어 있는 바와 같이 EU 넘버링으로 표시되는 251번 위치, 252번 위치, 254번 위치, 255번 위치, 256번 위치, 308번 위치, 309번 위치, 311번 위치, 312번 위치, 385번 위치, 386번 위치, 387번 위치, 389번 위치, 428번 위치, 433번 위치, 434번 위치 및/또는 436번 위치의 아미노산도 적합하게 들 수 있다. 또한 그러한 개변이 가능한 아미노산으로서 국제공개 WO2004/092219에 기재되어 있는 바와 같이 EU 넘버링으로 표시되는 250번 위치, 314번 위치 및 428번 위치의 아미노산도 들 수 있다. 또한 그러한 개변이 가능한 아미노산으로서 예를 들면 국제공개 WO2010/045193에 기재되어 있는 바와 같이 EU 넘버링으로 표시되는 251번 위치, 252번 위치, 307번 위치, 308번 위치, 378번 위치, 428번 위치, 430번 위치, 434번 위치 및/또는 436번 위치의 아미노산도 적합하게 들 수 있다. 이들 아미노산의 개변에 의해 IgG형 면역 글로불린의 Fc영역의 pH 산성역 조건하에 있어서의 FcRn에 대한 결합이 증강된다.
출발 Fc영역으로서 사용되는 인간 IgG형 면역 글로불린의 아미노산의 개변에 의해 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 갖는 Fc영역도 또한 취득될 수 있다. 개변을 위한 바람직한 IgG형 면역 글로불린의 Fc영역으로서는 예를 들면 서열번호:13, 서열번호:14, 서열번호:15 또는 서열번호:16으로 각각 표시되는 IgG1, IgG2, IgG3 또는 IgG4 등의 인간 IgG 및 그들의 개변체의 Fc영역을 들 수 있다. 다른 아미노산으로의 개변은 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 갖거나 또는 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 높일 수 있는 한 어떠한 위치의 아미노산도 개변될 수 있다. 항원 결합 분자가 인간 Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 중성역에 있어서의 인간 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변이 포함되어 있는 것이 바람직하다. 그러한 개변이 가능한 아미노산으로서, 예를 들면 EU 넘버링 221번 위치~225번 위치, 227번 위치, 228번 위치, 230번 위치, 232번 위치, 233번 위치~241번 위치, 243번 위치~252번 위치, 254번 위치~260번 위치, 262번 위치~272번 위치, 274번 위치, 276번 위치, 278번 위치~289번 위치, 291번 위치~312번 위치, 315번 위치~320번 위치, 324번 위치, 325번 위치, 327번 위치~339번 위치, 341번 위치, 343번 위치, 345번 위치, 360번 위치, 362번 위치, 370번 위치, 375번 위치~378번 위치, 380번 위치, 382번 위치, 385번 위치~387번 위치, 389번 위치, 396번 위치, 414번 위치, 416번 위치, 423번 위치, 424번 위치, 426번 위치~438번 위치, 440번 위치 및 442번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산을 들 수 있다. 이들 아미노산의 개변에 의해 IgG형 면역 글로불린의 Fc영역의 pH 중성역에 있어서의 인간 FcRn에 대한 결합이 증강된다.
본 발명에 사용하기 위해 이들 개변 중 pH 중성역에 있어서도 인간 FcRn에 대한 결합을 증강시키는 개변이 적절히 선택된다. 특히 바람직한 Fc영역 개변체의 아미노산으로서, 예를 들면 EU 넘버링으로 표시되는 237번 위치, 248번 위치, 250번 위치, 252번 위치, 254번 위치, 255번 위치, 256번 위치, 257번 위치, 258번 위치, 265번 위치, 286번 위치, 289번 위치, 297번 위치, 298번 위치, 303번 위치, 305번 위치, 307번 위치, 308번 위치, 309번 위치, 311번 위치, 312번 위치, 314번 위치, 315번 위치, 317번 위치, 332번 위치, 334번 위치, 360번 위치, 376번 위치, 380번 위치, 382번 위치, 384번 위치, 385번 위치, 386번 위치, 387번 위치, 389번 위치, 424번 위치, 428번 위치, 433번 위치, 434번 위치 및 436번 위치의 아미노산을 들 수 있다. 이들 아미노산으로부터 선택되는 하나 이상의 아미노산을 다른 아미노산으로 치환함으로써, 항원 결합 분자에 포함되는 Fc영역의 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 증강시킬 수 있다.
특히 바람직한 개변으로서는 예를 들면 Fc영역의 EU 넘버링으로 표시되는
237번 위치의 아미노산이 Met,
248번 위치의 아미노산이 Ile,
250번 위치의 아미노산이 Ala, Phe, Ile, Met, Gln, Ser, Val, Trp 또는 Tyr 중 어느 하나,
252번 위치의 아미노산이 Phe, Trp 또는 Tyr 중 어느 하나,
254번 위치의 아미노산이 Thr,
255번 위치의 아미노산이 Glu,
256번 위치의 아미노산이 Asp, Asn, Glu 또는 Gln 중 어느 하나,
257번 위치의 아미노산이 Ala, Gly, Ile, Leu, Met, Asn, Ser, Thr 또는 Val 중 어느 하나,
258번 위치의 아미노산이 His,
265번 위치의 아미노산이 Ala,
286번 위치의 아미노산이 Ala 또는 Glu 중 어느 하나,
289번 위치의 아미노산이 His,
297번 위치의 아미노산이 Ala,
303번 위치의 아미노산이 Ala,
305번 위치의 아미노산이 Ala,
307번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
308번 위치의 아미노산이 Ala, Phe, Ile, Leu, Met, Pro, Gln 또는 Thr 중 어느 하나,
309번 위치의 아미노산이 Ala, Asp, Glu, Pro 또는 Arg 중 어느 하나,
311번 위치의 아미노산이 Ala, His 또는 Ile 중 어느 하나,
312번 위치의 아미노산이 Ala 또는 His 중 어느 하나,
314번 위치의 아미노산이 Lys 또는 Arg 중 어느 하나,
315번 위치의 아미노산이 Ala, Asp 또는 His 중 어느 하나,
317번 위치의 아미노산이 Ala,
332번 위치의 아미노산이 Val,
334번 위치의 아미노산이 Leu,
360번 위치의 아미노산이 His,
376번 위치의 아미노산이 Ala,
380번 위치의 아미노산이 Ala,
382번 위치의 아미노산이 Ala,
384번 위치의 아미노산이 Ala,
385번 위치의 아미노산이 Asp 또는 His 중 어느 하나,
386번 위치의 아미노산이 Pro,
387번 위치의 아미노산이 Glu,
389번 위치의 아미노산이 Ala 또는 Ser 중 어느 하나,
424번 위치의 아미노산이 Ala,
428번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
433번 위치의 아미노산이 Lys,
434번 위치의 아미노산이 Ala, Phe, His, Ser, Trp 또는 Tyr 중 어느 하나, 또는
436번 위치의 아미노산이 His, Ile, Leu, Phe, Thr 또는 Val
을 들 수 있다. 또한 개변되는 아미노산의 수는 특별히 한정되지 않고, 1개소만의 아미노산이 개변될 수 있고 2개소 이상의 아미노산이 개변될 수 있다. 이들 아미노산 개변의 조합으로서는 예를 들면 표 5-1~5-33에 나타내는 아미노산의 개변을 들 수 있다.
[표 5-1]
Figure pat00005
표 5-2는 표 5-1의 계속되는 표이다.
[표 5-2]
Figure pat00006
표 5-3은 표 5-2의 계속되는 표이다.
[표 5-3]
Figure pat00007
표 5-4는 표 5-3의 계속되는 표이다.
[표 5-4]
Figure pat00008
표 5-5는 표 5-4의 계속되는 표이다.
[표 5-5]
Figure pat00009
표 5-6은 표 5-5의 계속되는 표이다.
[표 5-6]
Figure pat00010
표 5-7은 표 5-6의 계속되는 표이다.
[표 5-7]
Figure pat00011
표 5-8은 표 5-7의 계속되는 표이다.
[표 5-8]
Figure pat00012
표 5-9는 표 5-8의 계속되는 표이다.
[표 5-9]
Figure pat00013
표 5-10은 표 5-9의 계속되는 표이다.
[표 5-10]
Figure pat00014
표 5-11은 표 5-10의 계속되는 표이다.
[표 5-11]
Figure pat00015
표 5-12는 표 5-11의 계속되는 표이다.
[표 5-12]
Figure pat00016
표 5-13은 표 5-12의 계속되는 표이다.
[표 5-13]
Figure pat00017
표 5-14는 표 5-13의 계속되는 표이다.
[표 5-14]
Figure pat00018
표 5-15는 표 5-14의 계속되는 표이다.
[표 5-15]
Figure pat00019
표 5-16은 표 5-15의 계속되는 표이다.
[표 5-16]
Figure pat00020
표 5-17은 표 5-16의 계속되는 표이다.
[표 5-17]
Figure pat00021
표 5-18은 표 5-17의 계속되는 표이다.
[표 5-18]
Figure pat00022
표 5-19는 표 5-18의 계속되는 표이다.
[표 5-19]
Figure pat00023
표 5-20은 표 5-19의 계속되는 표이다.
[표 5-20]
Figure pat00024
표 5-21은 표 5-20의 계속되는 표이다.
[표 5-21]
Figure pat00025
표 5-22는 표 5-21의 계속되는 표이다.
[표 5-22]
Figure pat00026
표 5-23은 표 5-22의 계속되는 표이다.
[표 5-23]
Figure pat00027
표 5-24는 표 5-23의 계속되는 표이다.
[표 5-24]
Figure pat00028
표 5-25는 표 5-24의 계속되는 표이다.
[표 5-25]
Figure pat00029
표 5-26은 표 5-25의 계속되는 표이다.
[표 5-26]
Figure pat00030
표 5-27은 표 5-26의 계속되는 표이다.
[표 5-27]
Figure pat00031
표 5-28은 표 5-27의 계속되는 표이다.
[표 5-28]
Figure pat00032
표 5-29는 표 5-28의 계속되는 표이다.
[표 5-29]
Figure pat00033
표 5-30은 표 5-29의 계속되는 표이다.
[표 5-30]
Figure pat00034
표 5-31은 표 5-30의 계속되는 표이다.
[표 5-31]
Figure pat00035
표 5-32는 표 5-31의 계속되는 표이다.
[표 5-32]
Figure pat00036
표 5-33은 표 5-32의 계속되는 표이다.
[표 5-33]
Figure pat00037
Fcγ 수용체
Fcγ 수용체(FcγR으로도 기재된다)란 IgG1, IgG2, IgG3, IgG4 단일클론항체의 Fc영역에 결합 가능한 수용체를 말하고, 실질적으로 Fcγ 수용체 유전자에 코드되는 단백질의 패밀리의 모든 멤버를 의미한다. 인간의 경우는 이 패밀리에는 아이소폼 FcγRIa, FcγRIb 및 FcγRIc를 포함하는 FcγRI(CD64);아이소폼 FcγRIIa(알로타입 H131 및 R131을 포함한다. 즉, FcγRIIa(H) 및 FcγRIIa(R)), FcγRIIb(FcγRIIb-1 및 FcγRIIb-2를 포함) 및 FcγRIIc를 포함하는 FcγRII(CD32);및 아이소폼 FcγRIIIa(알로타입 V158 및 F158을 포함한다. 즉, FcγRIIIa(V) 및 FcγRIIIa(F)) 및 FcγRIIIb(알로타입 FcγRIIIb-NA1 및 FcγRIIIb-NA2를 포함)를 포함하는 FcγRIII(CD16) 및 어떠한 미발견의 인간 FcγR류 또는 FcγR 아이소폼 또는 알로타입도 포함되나, 이들에 한정되는 것은 아니다. FcγR은 인간, 마우스, 랫트, 토끼 및 원숭이를 포함하나, 이들에 한정되는 것은 아니다. 어떠한 생물 유래여도 된다. 마우스 FcγR류에는 FcγRI(CD64), FcγRII(CD32), FcγRIII(CD16) 및 FcγRIII-2(FcγRIV, CD16-2) 및 어떠한 미발견의 마우스 FcγR류 또는 FcγR 아이소폼 또는 알로타입도 포함되나, 이들에 한정되지 않는다. 이러한 Fcγ 수용체의 적합한 예로서는 인간 FcγRI(CD64), FcγRIIa(CD32), FcγRIIb(CD32), FcγRIIIa(CD16) 및/또는 FcγRIIIb(CD16)를 들 수 있다. 인간 FcγRI의 폴리뉴클레오티드 서열 및 아미노산 서열은 각각 서열번호:19(NM_000566.3) 및 20(NP_000557.1)에 인간 FcγRIIa(알로타입 H131)의 폴리뉴클레오티드 서열 및 아미노산 서열은 각각 서열번호:21(BC020823.1) 및 22(AAH20823.1)에 (알로타입 R131은 서열번호:22의 166번째의 아미노산이 Arg로 치환되어 있는 서열이다), FcγRIIb의 폴리뉴클레오티드 서열 및 아미노산 서열은 각각 서열번호:23(BC146678.1) 및 24(AAI46679.1)에 FcγRIIIa의 폴리뉴클레오티드 서열 및 아미노산 서열은 각각 서열번호:25(BC033678.1) 및 26(AAH33678.1)에 및 FcγRIIIb의 폴리뉴클레오티드 서열 및 아미노산 서열은 각각 서열번호:27(BC128562.1) 및 28(AAI28563.1)에 기재되어 있다(괄호 안은 RefSeq 등록번호를 나타낸다). 예를 들면 알로타입 V158이 사용되는 경우에 FcγRIIIaV로 표기되어 있는 것과 같이, 특기되지 않는 한 알로타입 F158이 사용되고 있는데, 본 출원에서 기재되는 아이소폼 FcγRIIIa의 알로타입이 특별히 한정하여 해석되는 것은 아니다.
FcγRIa, FcγRIb 및 FcγRIc를 포함하는 FcγRI(CD64) 및 아이소폼 FcγRIIIa(알로타입 V158 및 F158을 포함) 및 FcγRIIIb(알로타입 FcγRIIIb-NA1 및 FcγRIIIb-NA2를 포함)를 포함하는 FcγRIII(CD16)는 IgG의 Fc 부분과 결합하는 α쇄와 세포내에 활성화 시그날을 전달하는 ITAM을 갖는 공통 γ쇄가 회합한다. 한편 아이소폼 FcγRIIa(알로타입 H131 및 R131을 포함) 및 FcγRIIc를 포함하는 FcγRII(CD32) 자신의 세포질 도메인에는 ITAM이 포함되어 있다. 이들 수용체는 마크로파지나 마스트 세포, 항원 제시 세포 등의 많은 면역세포에 발현하고 있다. 이들 수용체가 IgG의 Fc 부분에 결합함으로써 전달되는 활성화 시그날에 의해, 마크로파지의 탐식능이나 염증성 사이토카인의 생산, 마스트 세포의 탈과립, 항원 제시 세포의 기능 항진이 촉진된다. 상기와 같이 활성화 시그날을 전달하는 능력을 갖는 Fcγ 수용체는 본 발명에 있어서도 활성형 Fcγ 수용체라 불린다.
한편 FcγRIIb(FcγRIIb-1 및 FcγRIIb-2를 포함) 자신의 세포질내 도메인에는 억제형 시그날을 전달하는 ITIM이 포함되어 있다. B세포에서는 FcγRIIb와 B세포 수용체(BCR)의 가교에 의해 BCR으로부터의 활성화 시그날이 억제되는 결과 BCR의 항체 생산이 억제된다. 마크로파지에서는 FcγRIII와 FcγRIIb의 가교에 의해 탐식능이나 염증성 사이토카인의 생산능이 억제된다. 상기와 같이 억제화 시그날을 전달하는 능력을 갖는 Fcγ 수용체는 본 발명에 있어서도 억제형 Fcγ 수용체라 불린다.
FcγR에 대한 Fc영역의 결합 활성
전술된 바와 같이 본 발명의 항원 결합 분자에 포함되는 Fc영역으로서 Fcγ 수용체에 대한 결합 활성을 갖는 Fc영역을 들 수 있다. 그러한 Fc영역의 비한정의 일태양으로서 인간 IgG1(서열번호:13), IgG2(서열번호:14), IgG3(서열번호:15) 또는 IgG4(서열번호:16)로 표시되는 Fc영역이 예시된다. Fcγ 수용체가 IgG1, IgG2, IgG3, IgG4 단일클론항체의 Fc영역에 결합 활성을 갖는지 여부는 상기에 기재되는 FACS나 ELISA 포맷 외에, ALPHA 스크린(Amplified Luminescent Proximity Homogeneous Assay)이나 표면 플라즈몬 공명(SPR)현상을 이용한 BIACORE법 등에 의해 확인될 수 있다(Proc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010).
ALPHA 스크린은 도너와 액셉터의 2개의 비드를 사용하는 ALPHA 테크놀로지에 의해 하기의 원리를 토대로 실시된다. 도너 비드에 결합한 분자가 액셉터 비드에 결합한 분자와 생물학적으로 상호작용하여 2개의 비드가 근접한 상태일 때만 발광 시그날이 검출된다. 레이저에 의해 여기된 도너 비드 내의 감광제는 주변의 산소를 여기상태의 일중항산소로 변환한다. 일중항산소는 도너 비드 주변에 확산되어 근접해 있는 액셉터 비드에 도달하면 비드 내의 화학 발광반응을 일으켜 최종적으로 빛이 방출된다. 도너 비드에 결합한 분자와 액셉터 비드에 결합한 분자가 상호작용하지 않을 때는 도너 비드가 생산하는 일중항산소가 액셉터 비드에 도달하지 않기 때문에 화학 발광반응은 일어나지 않는다.
예를 들면 도너 비드에 비오틴 표지된 Fc영역을 포함하는 항원 결합 분자가 결합되고, 액셉터 비드에는 글루타티온 S 트랜스페라아제(GST)로 태그화된 Fcγ 수용체가 결합된다. 경합하는 Fc영역 개변체를 포함하는 항원 결합 분자의 비존재하에서는 야생형 Fc영역을 갖는 폴리펩티드 회합체와 Fcγ 수용체는 상호작용하여 520-620 nm의 시그날을 발생시킨다. 태그화되어 있지 않은 Fc영역 개변체를 포함하는 항원 결합 분자는 천연형 Fc영역을 갖는 항원 결합 분자와 Fcγ 수용체 간의 상호작용과 경합한다. 경합 결과 나타나는 형광의 감소를 정량함으로써 상대적인 결합 친화성이 결정될 수 있다. 항체 등의 항원 결합 분자를 Sulfo-NHS-비오틴 등을 사용하여 비오틴화하는 것은 공지이다. Fcγ 수용체를 GST로 태그화하는 방법으로서는 Fcγ 수용체를 코드하는 폴리뉴클레오티드와 GST를 코드하는 폴리뉴클레오티드를 인프레임으로 융합한 융합 유전자가 작동 가능하게 연결된 벡터에 보유된 세포 등에 있어서 발현하고, 글루타티온 칼럼을 사용하여 정제하는 방법 등이 적절히 채용될 수 있다. 얻어진 시그날은 예를 들면 GRAPHPAD PRISM(GraphPad사, San Diego) 등의 소프트웨어를 사용하여 비선형 회귀해석을 이용하는 일부위 경합(one-site competition) 모델에 적합시킴으로써 적합하게 해석된다.
상호작용을 관찰하는 물질의 한쪽(리간드)을 센서칩의 금박막 상에 고정하고, 센서칩의 안쪽으로부터 금박막과 유리의 경계면에서 전반사되도록 빛을 조사하면, 반사광의 일부에 반사강도가 저하된 부분(SPR 시그날)이 형성된다. 상호작용을 관찰하는 물질의 다른 쪽(애널라이트)을 센서칩의 표면에 흘려 리간드와 애널라이트가 결합하면, 고정화되어 있는 리간드 분자의 질량이 증가하여 센서칩 표면의 용매의 굴절률이 변화된다. 이 굴절률의 변화에 의해 SPR 시그날의 위치가 시프트된다(반대로 결합이 해리되면 시그날의 위치는 되돌아간다). Biacore 시스템은 상기 시프트되는 양, 즉 센서칩 표면에서의 질량 변화를 세로축에 취하고, 질량의 시간 변화를 측정 데이터로서 표시한다(센서그램). 센서그램의 커브로부터 키네틱스:결합속도상수(ka)와 해리속도상수(kd)가, 당해 상수의 비로부터 친화성(KD)이 구해진다. BIACORE법에서는 저해 측정법도 적합하게 사용된다. 저해 측정법의 예는 Proc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010에 있어서 기재되어 있다.
본 발명이 포함하는 Fc영역으로서 인간 IgG1(서열번호:13), IgG2(서열번호:14), IgG3(서열번호:15) 또는 IgG4(서열번호:16)로 표시되는 Fc영역 외에 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 FcγR 결합 개변 Fc영역도 적절히 사용될 수 있다. 본 명세서에 있어서 「천연형 인간 IgG의 Fc영역」이란 서열번호:13, 14, 15 또는 16으로 예시되는 인간 IgG1, IgG2, IgG3 또는 IgG4의 Fc영역의 EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 Fc영역을 의미한다. 그러한 FcγR 결합 개변 Fc영역은 천연형 인간 IgG의 Fc영역의 아미노산을 개변함으로써 제작될 수 있다. FcγR 결합 개변 Fc영역의 FcγR에 대한 결합 활성이 천연형 인간 IgG의 Fc영역의 FcγR에 대한 결합 활성보다 높은지 여부는 상기 결합 활성의 항목에서 기재된 방법을 사용하여 적절히 실시될 수 있다.
본 발명에 있어서 Fc영역의 「아미노산의 개변」 또는 「아미노산 개변」이란 출발 Fc영역의 아미노산 서열과는 상이한 아미노산 서열로 개변하는 것을 포함한다. 출발 Fc영역의 수식 개변체가 pH 중성역에 있어서 인간 Fcγ 수용체에 결합할 수 있는 한 어느 Fc영역도 출발 Fc영역으로서 사용될 수 있다. 또한 이미 개변이 가해진 Fc영역을 출발 Fc영역으로 하여 추가적인 개변이 가해진 개변 Fc영역도 본 발명의 개변 Fc영역으로서 적합하게 사용될 수 있다. 출발 Fc영역이란 폴리펩티드 그 자체, 출발 Fc영역을 포함하는 조성물, 또는 출발 Fc영역을 코드하는 아미노산 서열을 의미할 수 있다. 출발 Fc영역에는 항체의 항목에서 개략 설명된 재조합에 의해 생산된 공지의 Fc영역이 포함될 수 있다. 출발 Fc영역의 기원은 한정되지 않지만 비인간 동물의 임의의 생물 또는 인간으로부터 취득될 수 있다. 바람직하게는 임의의 생물로서는 마우스, 랫트, 기니피그, 햄스터, 황무지쥐, 고양이, 토끼, 개, 염소, 양, 소, 말, 낙타 및 비인간 영장류로부터 선택되는 생물을 바람직하게 들 수 있다. 다른 태양에 있어서 출발 Fc영역은 또한 게잡이원숭이, 마모셋, 빨간털원숭이, 침팬지 또는 인간으로부터 취득될 수 있다. 바람직하게는 출발 Fc영역은 인간 IgG1으로부터 취득될 수 있지만, IgG의 특정 서브클래스에 한정되는 것도 아니다. 이는 인간 IgG1, IgG2, IgG3 또는 IgG4의 Fc영역을 출발 Fc영역으로서 적절히 사용할 수 있는 것을 의미한다. 마찬가지로, 본 명세서에 있어서 상기 임의의 생물로부터의 IgG의 임의의 클래스 또는 서브클래스의 Fc영역을 바람직하게는 출발 Fc영역으로서 사용할 수 있는 것을 의미한다. 천연에 존재하는 IgG의 변이체 또는 조작된 유형의 예는 공지의 문헌(Curr. Opin. Biotechnol. (2009) 20 (6), 685-91, Curr. Opin. Immunol. (2008) 20 (4), 460-470, Protein Eng. Des. Sel. (2010) 23 (4), 195-202, 국제공개 WO2009/086320, WO2008/092117, WO2007/041635 및 WO2006/105338)에 기재되지만 그들에 한정되지 않는다.
개변의 예로서는 하나 이상의 변이, 예를 들면, 출발 Fc영역의 아미노산과는 상이한 아미노산 잔기로 치환된 변이, 또는 출발 Fc영역의 아미노산에 대해 하나 이상의 아미노산 잔기의 삽입 또는 출발 Fc영역의 아미노산으로부터 하나 이상의 아미노산의 결실 등이 포함된다. 바람직하게는 개변 후의 Fc영역의 아미노산 서열에는 천연으로 생기지 않는 Fc영역의 적어도 부분을 포함하는 아미노산 서열을 포함한다. 그러한 변종은 필연적으로 출발 Fc영역과 100% 미만의 서열 동일성 또는 유사성을 갖는다. 바람직한 실시형태에 있어서, 변종은 출발 Fc영역의 아미노산 서열과 약 75%~100% 미만의 아미노산 서열 동일성 또는 유사성, 보다 바람직하게는 약 80%~100% 미만, 보다 바람직하게는 약 85%~100% 미만의, 보다 바람직하게는 약 90%~100% 미만, 가장 바람직하게는 약 95%~100% 미만의 동일성 또는 유사성의 아미노산 서열을 갖는다. 본 발명의 비한정의 일태양에 있어서 출발 Fc영역 및 본 발명의 FcγR 결합 개변 Fc영역 사이에는 하나 이상의 아미노산의 차가 있다. 출발 Fc영역과 본 발명의 FcγR 결합 개변 Fc영역의 아미노산의 차이는 특히 전술한 EU 넘버링으로 특정되는 아미노산 잔기의 위치의 특정된 아미노산의 차이에 따라서도 적합하게 특정 가능하다.
Fc영역의 아미노산의 개변을 위해서는 부위 특이적 변이 유발법(Kunkel 등(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))이나 Overlap extension PCR 등의 공지의 방법이 적절히 채용될 수 있다. 또한 천연의 아미노산 이외의 아미노산으로 치환하는 아미노산의 개변방법으로서 복수의 공지의 방법도 채용될 수 있다(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249, Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357). 예를 들면 종지 코돈의 하나인 UAG 코돈(앰버 코돈)의 상보적 앰버 서프레서 tRNA에 비천연 아미노산이 결합된 tRNA가 포함되는 무세포 번역계 시스템(Clover Direct(Protein Express)) 등도 적합하게 사용된다.
본 발명의 항원 결합 분자에 포함되는, 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 FcγR 결합 개변 Fc영역(FcγR 결합 개변 Fc영역)은 어떠한 방법으로도 취득될 수 있는데, 구체적으로는 출발 Fc영역으로서 사용되는 인간 IgG형 면역 글로불린의 아미노산의 개변에 의해 당해 FcγR 결합 개변 Fc영역이 취득될 수 있다. 개변을 위한 바람직한 IgG형 면역 글로불린의 Fc영역으로서는 예를 들면 서열번호:13, 14, 15 또는 16으로 예시되는 인간 IgG(IgG1, IgG2, IgG3 또는 IgG4 및 그들의 개변체)의 Fc영역을 들 수 있다.
다른 아미노산으로의 개변은 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 한 어떠한 위치의 아미노산도 개변될 수 있다. 항원 결합 분자가 인간 Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 효과를 초래하는 개변이 포함되어 있는 것이 바람직하다. 이러한 아미노산의 개변으로서는 예를 들면 국제공개 WO2007/024249, WO2007/021841, WO2006/031370, WO2000/042072, WO2004/029207, WO2004/099249, WO2006/105338, WO2007/041635, WO2008/092117, WO2005/070963, WO2006/020114, WO2006/116260 및 WO2006/023403 등에 있어서 보고되어 있다.
그러한 개변이 가능한 아미노산으로서 예를 들면 EU 넘버링으로 표시되는 221번 위치, 222번 위치, 223번 위치, 224번 위치, 225번 위치, 227번 위치, 228번 위치, 230번 위치, 231번 위치, 232번 위치, 233번 위치, 234번 위치, 235번 위치, 236번 위치, 237번 위치, 238번 위치, 239번 위치, 240번 위치, 241번 위치, 243번 위치, 244번 위치, 245번 위치, 246번 위치, 247번 위치, 249번 위치, 250번 위치, 251번 위치, 254번 위치, 255번 위치, 256번 위치, 258번 위치, 260번 위치, 262번 위치, 263번 위치, 264번 위치, 265번 위치, 266번 위치, 267번 위치, 268번 위치, 269번 위치, 270번 위치, 271번 위치, 272번 위치, 273번 위치, 274번 위치, 275번 위치, 276번 위치, 278번 위치, 279번 위치, 280번 위치, 281번 위치, 282번 위치, 283번 위치, 284번 위치, 285번 위치, 286번 위치, 288번 위치, 290번 위치, 291번 위치, 292번 위치, 293번 위치, 294번 위치, 295번 위치, 296번 위치, 297번 위치, 298번 위치, 299번 위치, 300번 위치, 301번 위치, 302번 위치, 303번 위치, 304번 위치, 305번 위치, 311번 위치, 313번 위치, 315번 위치, 317번 위치, 318번 위치, 320번 위치, 322번 위치, 323번 위치, 324번 위치, 325번 위치, 326번 위치, 327번 위치, 328번 위치, 329번 위치, 330번 위치, 331번 위치, 332번 위치, 333번 위치, 334번 위치, 335번 위치, 336번 위치, 337번 위치, 339번 위치, 376번 위치, 377번 위치, 378번 위치, 379번 위치, 380번 위치, 382번 위치, 385번 위치, 392번 위치, 396번 위치, 421번 위치, 427번 위치, 428번 위치, 429번 위치, 434번 위치, 436번 위치 및 440번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산을 들 수 있다. 이들 아미노산의 개변에 의해 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 Fc영역(FcγR 결합 개변 Fc영역)을 취득할 수 있다.
본 발명에 사용하기 위해 특히 바람직한 개변으로서는, 예를 들면 Fc영역의 EU 넘버링으로 표시되는;
221번 위치의 아미노산이 Lys 또는 Tyr 중 어느 하나,
222번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
223번 위치의 아미노산이 Phe, Trp, Glu 또는 Lys 중 어느 하나,
224번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
225번 위치의 아미노산이 Glu, Lys 또는 Trp 중 어느 하나,
227번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
228번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
230번 위치의 아미노산이 Ala, Glu, Gly 또는 Tyr 중 어느 하나,
231번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
232번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
233번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
234번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
235번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
236번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
237번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
238번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
239번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
240번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
241번 위치의 아미노산이 Asp, Glu, Leu, Arg, Trp 또는 Tyr 중 어느 하나,
243번 위치의 아미노산이 Leu, Glu, Leu, Gln, Arg, Trp 또는 Tyr 중 어느 하나,
244번 위치의 아미노산이 His,
245번 위치의 아미노산이 Ala,
246번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
247번 위치의 아미노산이 Ala, Phe, Gly, His, Ile, Leu, Met, Thr, Val 또는 Tyr 중 어느 하나,
249번 위치의 아미노산이 Glu, His, Gln 또는 Tyr 중 어느 하나,
250번 위치의 아미노산이 Glu 또는 Gln 중 어느 하나,
251번 위치의 아미노산이 Phe,
254번 위치의 아미노산이 Phe, Met 또는 Tyr 중 어느 하나,
255번 위치의 아미노산이 Glu, Leu 또는 Tyr 중 어느 하나,
256번 위치의 아미노산이 Ala, Met 또는 Pro 중 어느 하나,
258번 위치의 아미노산이 Asp, Glu, His, Ser 또는 Tyr 중 어느 하나,
260번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
262번 위치의 아미노산이 Ala, Glu, Phe, Ile 또는 Thr 중 어느 하나,
263번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
264번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
265번 위치의 아미노산이 Ala, Leu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
266번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
267번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
268번 위치의 아미노산이 Asp, Glu, Phe, Gly, Ile, Lys, Leu, Met, Pro, Gln, Arg, Thr, Val 또는 Trp 중 어느 하나,
269번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
270번 위치의 아미노산이 Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
271번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
272번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
273번 위치의 아미노산이 Phe 또는 Ile 중 어느 하나,
274번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
275번 위치의 아미노산이 Leu 또는 Trp 중 어느 하나,
276번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
278번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
279번 위치의 아미노산이 Ala,
280번 위치의 아미노산이 Ala, Gly, His, Lys, Leu, Pro, Gln, Trp 또는 Tyr 중 어느 하나,
281번 위치의 아미노산이 Asp, Lys, Pro 또는 Tyr 중 어느 하나,
282번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
283번 위치의 아미노산이 Ala, Gly, His, Ile, Lys, Leu, Met, Pro, Arg 또는 Tyr 중 어느 하나,
284번 위치의 아미노산이 Asp, Glu, Leu, Asn, Thr 또는 Tyr 중 어느 하나,
285번 위치의 아미노산이 Asp, Glu, Lys, Gln, Trp 또는 Tyr 중 어느 하나,
286번 위치의 아미노산이 Glu, Gly, Pro 또는 Tyr 중 어느 하나,
288번 위치의 아미노산이 Asn, Asp, Glu 또는 Tyr 중 어느 하나,
290번 위치의 아미노산이 Asp, Gly, His, Leu, Asn, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
291번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Gln 또는 Thr 중 어느 하나,
292번 위치의 아미노산이 Ala, Asp, Glu, Pro, Thr 또는 Tyr 중 어느 하나,
293번 위치의 아미노산이 Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
294번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
295번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
296번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr 또는 Val 중 어느 하나,
297번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
298번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Met, Asn, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
299번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
300번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
301번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
302번 위치의 아미노산이 Ile,
303번 위치의 아미노산이 Asp, Gly 또는 Tyr 중 어느 하나,
304번 위치의 아미노산이 Asp, His, Leu, Asn 또는 Thr 중 어느 하나,
305번 위치의 아미노산이 Glu, Ile, Thr 또는 Tyr 중 어느 하나,
311번 위치의 아미노산이 Ala, Asp, Asn, Thr, Val 또는 Tyr 중 어느 하나,
313번 위치의 아미노산이 Phe,
315번 위치의 아미노산이 Leu,
317번 위치의 아미노산이 Glu 또는 Gln,
318번 위치의 아미노산이 His, Leu, Asn, Pro, Gln, Arg, Thr, Val 또는 Tyr 중 어느 하나,
320번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Asn, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
322번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
323번 위치의 아미노산이 Ile,
324번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
325번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
326번 위치의 아미노산이 Ala, Asp, Glu, Gly, Ile, Leu, Met, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
327번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
328번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
329번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
330번 위치의 아미노산이 Cys, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
331번 위치의 아미노산이 Asp, Phe, His, Ile, Leu, Met, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
332번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
333번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Ser, Thr, Val 또는 Tyr 중 어느 하나,
334번 위치의 아미노산이 Ala, Glu, Phe, Ile, Leu, Pro 또는 Thr 중 어느 하나,
335번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
336번 위치의 아미노산이 Glu, Lys 또는 Tyr 중 어느 하나,
337번 위치의 아미노산이 Glu, His 또는 Asn 중 어느 하나,
339번 위치의 아미노산이 Asp, Phe, Gly, Ile, Lys, Met, Asn, Gln, Arg, Ser 또는 Thr 중 어느 하나,
376번 위치의 아미노산이 Ala 또는 Val 중 어느 하나,
377번 위치의 아미노산이 Gly 또는 Lys 중 어느 하나,
378번 위치의 아미노산이 Asp,
379번 위치의 아미노산이 Asn,
380번 위치의 아미노산이 Ala, Asn 또는 Ser 중 어느 하나,
382번 위치의 아미노산이 Ala 또는 Ile 중 어느 하나,
385번 위치의 아미노산이 Glu,
392번 위치의 아미노산이 Thr,
396번 위치의 아미노산이 Leu,
421번 위치의 아미노산이 Lys,
427번 위치의 아미노산이 Asn,
428번 위치의 아미노산이 Phe 또는 Leu 중 어느 하나,
429번 위치의 아미노산이 Met,
434번 위치의 아미노산이 Trp,
436번 위치의 아미노산이 Ile, 또는
440번 위치의 아미노산이 Gly, His, Ile, Leu 또는 Tyr 중 어느 하나
의 군으로부터 선택되는 적어도 하나 이상의 아미노산의 개변을 들 수 있다. 또한 개변되는 아미노산의 수는 특별히 한정되지 않고, 1개소만의 아미노산이 개변될 수 있고 2개소 이상의 아미노산이 개변될 수 있다. 2개소 이상의 아미노산의 개변의 조합으로서는, 예를 들면 표 6(표 6-1~표 6-3)에 기재되는 바와 같은 조합을 들 수 있다.
[표 6-1]
Figure pat00038
표 6-2는 표 6-1의 계속되는 표이다.
[표 6-2]
Figure pat00039
표 6-3은 표 6-2의 계속되는 표이다.
[표 6-3]
Figure pat00040
본 발명의 항원 결합 분자에 포함되는 Fc영역과 Fcγ 수용체의 결합 활성을 측정하는 pH의 조건은 pH 산성역 또는 pH 중성역의 조건이 적절히 사용될 수 있다. 본 발명의 항원 결합 분자에 포함되는 Fc영역과 Fcγ 수용체의 결합 활성을 측정하는 조건으로서의 pH 중성역이란 통상 pH 6.7~pH 10.0을 의미한다. 바람직하게는 pH 7.0~pH 8.0의 임의의 pH값에 의해 나타내어지는 범위이고, 바람직하게는 pH 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 및 8.0으로부터 선택되며, 특히 바람직하게는 생체내의 혈장 중(혈중)의 pH에 가까운 pH 7.4이다. 본 발명에 있어서 본 발명의 항원 결합 분자에 포함되는 Fc영역과 Fcγ 수용체의 결합 활성을 갖는 조건으로서의 pH 산성역이란 통상 pH 4.0~pH 6.5를 의미한다. 바람직하게는 pH 5.5~pH 6.5를 의미하고, 특히 바람직하게는 생체내의 조기 엔도솜 내의 pH에 가까운 pH 5.8~pH 6.0을 의미한다. 측정조건에 사용되는 온도로서 Fc영역과 Fcγ 수용체의 결합 친화성은 10℃~50℃의 임의의 온도에서 평가될 수 있다. 바람직하게는 Fc영역과 Fcγ 수용체의 결합 친화성을 결정하기 위해 15℃~40℃의 온도가 사용된다. 보다 바람직하게는 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 및 35℃ 중 어느 하나와 같은 20℃~35℃의 임의의 온도도 마찬가지로 Fc영역과 Fcγ 수용체의 결합 친화성을 결정하기 위해 사용된다. 25℃라는 온도는 본 발명의 태양의 비한정의 일례이다.
본 명세서에 있어서 FcγR 결합 개변 Fc영역의 Fcγ 수용체에 대한 결합 활성이 천연형 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 높다는 것은, FcγR 결합 개변 Fc영역의 FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa 및/또는 FcγRIIIb 중 어느 하나의 인간 Fcγ 수용체에 대한 결합 활성이 이들 인간 Fcγ 수용체에 대한 천연형 Fc영역의 결합 활성보다도 높은 것을 말한다. 예를 들면 상기의 해석방법을 토대로 대조로 하는 인간 IgG의 천연형 Fc영역을 포함하는 항원 결합 분자의 결합 활성과 비교하여 FcγR 결합 개변 Fc영역을 포함하는 항원 결합 분자의 결합 활성이 105% 이상, 바람직하게는 110% 이상, 115% 이상, 120% 이상, 125% 이상, 특히 바람직하게는 130% 이상, 135% 이상, 140% 이상, 145% 이상, 150% 이상, 155% 이상, 160% 이상, 165% 이상, 170% 이상, 175% 이상, 180% 이상, 185% 이상, 190% 이상, 195% 이상, 2배 이상, 2.5배 이상, 3배 이상, 3.5배 이상, 4배 이상, 4.5배 이상, 5배 이상, 7.5배 이상, 10배 이상, 20배 이상, 30배 이상, 40배 이상, 50배 이상, 60배 이상, 70배 이상, 80배 이상, 90배 이상, 100배 이상의 결합 활성을 나타내는 것을 말한다. 천연형 Fc영역으로서는 출발 Fc영역도 사용될 수 있고, 동일한 서브클래스의 항체의 천연형 Fc영역도 사용될 수 있다.
본 발명에서는 대조로 하는 인간 IgG의 천연형 Fc영역으로서 EU 넘버링으로 표시되는 297번 위치의 아미노산에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역이 적합하게 사용된다. EU 넘버링으로 표시되는 297번 위치의 아미노산에 결합한 당쇄가 푸코오스 함유 당쇄인지 여부는 비특허문헌 6에 기재된 수법이 사용될 수 있다. 예를 들면 하기와 같은 방법으로 천연형 인간 IgG의 Fc영역에 결합한 당쇄가 푸코오스 함유 당쇄인지 여부를 판정하는 것이 가능하다. 피험 천연형 인간 IgG에 N-Glycosidase F(Roche diagnostics)를 반응시킴으로써 피험 천연형 인간 IgG로부터 당쇄가 유리된다(Weitzhandler 등(J. Pharma. Sciences (1994) 83, 12, 1670-1675). 다음으로 에탄올을 반응시켜서 단백질이 제거된 반응액(Schenk 등(J. Clin. Investigation (2001) 108 (11) 1687-1695)의 농축 건고물이 2-아미노피리딘 또는 2-아미노벤즈아미드에 의해 형광 표지된다(Bigge 등(Anal. Biochem. (1995) 230 (2) 229-238). 셀룰로오스 카트리지를 사용한 고상 추출에 의해 탈시약된, 형광 표지된 2-AP 또는 2-AB화 당쇄가 순상 크로마토그래피에 의해 해석된다. 검출되는 크로마토그램의 피크를 관찰함으로써 인간 IgG의 천연형 Fc영역에 결합한 당쇄가 푸코오스 함유 당쇄인지 여부를 판정하는 것이 가능하다.
대조로 하는 동일한 서브클래스의 천연형 항체의 Fc영역을 포함하는 항원 결합 분자로서는 IgG 단일클론 항체의 Fc영역을 갖는 항원 결합 분자가 적절히 사용될 수 있다. 당해 Fc영역의 구조는 서열번호:13(RefSeq 등록번호 AAC82527.1의 N말단에 A 부가), 14(RefSeq 등록번호 AAB59393.1의 N말단에 A 부가), 15(RefSeq 등록번호 CAA27268.1) 및 16(RefSeq 등록번호 AAB59394.1의 N말단에 A 부가)에 기재되어 있다. 또한 어떤 특정 아이소타입 항체의 Fc영역을 포함하는 항원 결합 분자를 피검물질로서 사용하는 경우에는, 당해 특정 아이소타입의 IgG 단일클론 항체의 Fc영역을 갖는 항원 결합 분자를 대조로서 사용함으로써 피험 Fc영역을 포함하는 항원 결합 분자에 의한 Fcγ 수용체에 대한 결합 활성의 효과가 검증된다. 상기와 같이 하여 Fcγ 수용체에 대한 결합 활성이 높은 것이 검증된 Fc영역을 포함하는 항원 결합 분자가 적절히 선택된다.
선택적인 Fcγ 수용체에 대한 결합 활성을 갖는 Fc영역
본 발명에 있어서 적합하게 사용되는 Fc영역의 예로서 특정 Fcγ 수용체에 대한 결합 활성이 그 밖의 Fcγ 수용체에 대한 결합 활성보다도 높은 성질을 갖는 Fc영역(선택적인 Fcγ 수용체에 대한 결합 활성을 갖는 Fc영역)도 또한 적합하게 들 수 있다. 항원 결합 분자로서 항체가 사용되는 경우에는 1 분자의 항체는 1 분자의 Fcγ 수용체와만 결합할 수 있기 때문에 1 분자의 항원 결합 분자는 억제형 Fcγ 수용체에 결합한 상태로 다른 활성형 FcγR에 결합하는 것은 불가능하고, 활성형 Fcγ 수용체에 결합한 상태로 다른 활성형 Fcγ 수용체나 억제형 Fcγ 수용체에 결합하는 것은 불가능하다.
전술한 바와 같이 활성형 Fcγ 수용체로서는 FcγRIa, FcγRIb 및 FcγRIc를 포함하는 FcγRI(CD64) 및 아이소폼 FcγRIIIa(알로타입 V158 또는 F158을 포함하는) 및 FcγRIIIb(알로타입 FcγRIIIb-NA1 또는 FcγRIIIb-NA2를 포함하는)를 포함하는 FcγRIII(CD16) 및 FcγRIIa(알로타입 H131 또는 R131을 포함하는)를 적합하게 들 수 있다. 또한 FcγRIIb(FcγRIIb-1 또는 FcγRIIb-2를 포함하는)를 억제형 Fcγ 수용체의 적합한 예로서 들 수 있다.
본 발명의 항원 결합 분자에 포함되는 선택적 FcγR 결합 도메인을 포함하는 Fc영역 및 당해 Fc영역을 포함하는 항원 결합 분자는 인간 IgG1(서열번호:13), IgG2(서열번호:14), IgG3(서열번호:15) 또는 IgG4(서열번호:16)로 표시되는 Fc영역(이하 야생형 Fc영역으로 총칭된다) 및 당해 야생형 Fc영역을 포함하는 항원 결합 분자와 비교하여 활성형 FcγR(FcγRIa, FcγRIb, FcγRIc, 알로타입 V158을 포함하는 FcγRIIIa, 알로타입 F158을 포함하는 FcγRIIIa, 알로타입 FcγRIIIb-NA1을 포함하는 FcγRIIIb, 알로타입 FcγRIIIb-NA2를 포함하는 FcγRIIIb, 알로타입 H131을 포함하는 FcγRIIa, 알로타입 R131을 포함하는 FcγRIIa 및/또는 FcγRIIc)에 대해서도 결합 활성이 유지 또는 감소하고 있는 Fc영역 및 당해 Fc영역을 포함하는 항원 결합 분자일 수도 있다.
야생형 Fc영역 및 야생형 Fc영역을 포함하는 항원 결합 분자와 비교하여, 본 발명의 항원 결합 분자에 포함되는 선택적 FcγR 결합 도메인을 포함하는 Fc영역 및 당해 Fc영역을 포함하는 항원 결합 분자가 상기 활성형 FcγR에 대한 결합 활성이 감소하고 있는 정도로서는 예를 들면 99% 이하, 98% 이하, 97% 이하, 96% 이하, 95% 이하, 94% 이하, 93% 이하, 92% 이하, 91% 이하, 90% 이하, 88% 이하, 86% 이하, 84% 이하, 82% 이하, 80% 이하, 78% 이하, 76% 이하, 74% 이하, 72% 이하, 70% 이하, 68% 이하, 66% 이하, 64% 이하, 62% 이하, 60% 이하, 58% 이하, 56% 이하, 54% 이하, 52% 이하, 50% 이하, 45% 이하, 40% 이하, 35% 이하, 30% 이하, 25% 이하, 20% 이하, 15% 이하, 10% 이하, 5% 이하, 4% 이하, 3% 이하, 2% 이하, 1% 이하, 0.5% 이하, 0.4% 이하, 0.3% 이하, 0.2% 이하, 0.1% 이하, 0.05% 이하, 0.01% 이하, 0.005% 이하를 들 수 있다.
본 발명의 항원 결합 분자에 포함되는 선택적 FcγR 결합 도메인을 포함하는 Fc영역 및 당해 Fc영역을 포함하는 항원 결합 분자는 인간 IgG1(서열번호:13), IgG2(서열번호:14), IgG3(서열번호:15) 또는 IgG4(서열번호:16)로 표시되는 Fc영역(이하 야생형 Fc영역으로 총칭된다) 및 당해 야생형 Fc영역을 포함하는 항원 결합 분자와 비교하여, 억제형 FcγR(FcγRIIb-1 및/또는 FcγRIIb-2)에 대해서도 결합 활성이 증강되어 있는 Fc영역 및 당해 Fc영역을 포함하는 항원 결합 분자일 수도 있다.
야생형 Fc영역 및 야생형 Fc영역을 포함하는 항원 결합 분자와 비교하여, 본 발명의 항원 결합 분자에 포함되는 선택적 FcγR 결합 도메인을 포함하는 Fc영역 및 당해 Fc영역을 포함하는 항원 결합 분자가 상기 억제형 FcγR에 대한 결합 활성이 증강되어 있는 정도로서는 예를 들면 101% 이상, 102% 이상, 103% 이상, 104% 이상, 105% 이상, 106% 이상, 107% 이상, 108% 이상, 109% 이상, 110% 이상, 112% 이상, 114% 이상, 116% 이상, 118% 이상, 120% 이상, 122% 이상, 124% 이상, 126% 이상, 128% 이상, 130% 이상, 132% 이상, 134% 이상, 136% 이상, 138% 이상, 140% 이상, 142% 이상, 144% 이상, 146% 이상, 148% 이상, 150% 이상, 155% 이상, 160% 이상, 165% 이상, 170% 이상, 175% 이상, 180% 이상, 185% 이상, 190% 이상, 195% 이상, 2배 이상, 3배 이상, 4배 이상, 5배 이상, 6배 이상, 7배 이상, 8배 이상, 9배 이상, 10배 이상, 20배 이상, 30배 이상, 40배 이상, 50배 이상, 60배 이상, 70배 이상, 80배 이상, 90배 이상, 100배 이상, 200배 이상, 300배 이상, 400배 이상, 500배 이상, 600배 이상, 700배 이상, 800배 이상, 900배 이상, 1000배 이상, 10000배 이상, 100000배 이상을 들 수 있다.
또한 본 발명의 항원 결합 분자에 포함되는 선택적 FcγR 결합 도메인을 포함하는 Fc영역 및 당해 Fc영역을 포함하는 항원 결합 분자는 인간 IgG1(서열번호:13), IgG2(서열번호:14), IgG3(서열번호:15) 또는 IgG4(서열번호:16)로 표시되는 Fc영역(이하 야생형 Fc영역으로 총칭된다) 및 당해 야생형 Fc영역을 포함하는 항원 결합 분자와 비교하여, 활성형 FcγR(FcγRIa, FcγRIb, FcγRIc, 알로타입 V158을 포함하는 FcγRIIIa, 알로타입 F158을 포함하는 FcγRIIIa, 알로타입 FcγRIIIb-NA1을 포함하는 FcγRIIIb, 알로타입 FcγRIIIb-NA2를 포함하는 FcγRIIIb, 알로타입 H131을 포함하는 FcγRIIa, 알로타입 R131을 포함하는 FcγRIIa 및/또는 FcγRIIc)에 대해 결합 활성이 유지 또는 감소하고, 인간 IgG1(서열번호:13), IgG2(서열번호:14), IgG3(서열번호:15) 또는 IgG4(서열번호:16)로 표시되는 Fc영역(이하 야생형 Fc영역으로 총칭된다) 및 당해 야생형 Fc영역을 포함하는 항원 결합 분자와 비교하여, 억제형 FcγR(FcγRIIb-1 및/또는 FcγRIIb-2)에 대해 결합 활성이 증강되어 있는 Fc영역 및 당해 Fc영역을 포함하는 항원 결합 분자일 수도 있다.
또한 본 발명의 항원 결합 분자에 포함되는 선택적 FcγR 결합 도메인을 포함하는 Fc영역 및 당해 Fc영역을 포함하는 항원 결합 분자는 인간 IgG1(서열번호:13), IgG2(서열번호:14), IgG3(서열번호:15) 또는 IgG4(서열번호:16)로 표시되는 Fc영역(이하 야생형 Fc영역으로 총칭된다) 및 당해 야생형 Fc영역을 포함하는 항원 결합 분자와 비교하여, 억제형 Fcγ 수용체(FcγRIIb-1 및/또는 FcγRIIb-2)에 대한 결합 활성의 증강 정도가 활성형 Fcγ 수용체(FcγRIa, FcγRIb, FcγRIc, 알로타입 V158을 포함하는 FcγRIIIa, 알로타입 F158을 포함하는 FcγRIIIa, 알로타입 FcγRIIIb-NA1을 포함하는 FcγRIIIb, 알로타입 FcγRIIIb-NA2를 포함하는 FcγRIIIb, 알로타입 H131을 포함하는 FcγRIIa, 알로타입 R131을 포함하는 FcγRIIa)에 대한 결합 활성의 증강 정도보다도 높은 Fc영역 및 당해 Fc영역을 포함하는 항원 결합 분자일 수도 있다.
본 발명은 EU 넘버링으로 표시되는 238번 위치의 아미노산이 Asp인 Fc영역 또는 EU 넘버링으로 표시되는 328번 위치의 아미노산이 Glu인 Fc영역에 대해, 상기 아미노산의 개변 항목에서 설명된 태양 등에 의해 추가로 다른 하나 이상의 Fc영역에 대한 개변을 가하는 것이 가능하다. 또한 이들 개변에 더하여 추가로 부가적인 개변을 포함할 수 있다. 부가적인 개변은 예를 들면 아미노산의 치환, 결손 또는 수식 중 어느 하나, 또는 그들의 조합으로부터 선택할 수 있다. 예를 들면 FcγRIIb에 대한 결합 활성을 증강시키고, 또한 FcγRIIa(H형) 및 FcγRIIa(R형)에 대한 결합 활성을 유지 또는 저감시키는 개변을 가하는 것이 가능하다. 그러한 개변을 가함으로써 FcγRIIa보다도 FcγRIIb에 대한 결합 선택성이 향상된다.
또한 본 발명의 폴리펩티드의 각종 FcγR에 대한 결합 활성이 유지, 증강 또는 감소되었는지 여부는 상기 예에 따라 구한 각종 FcγR의 본 발명의 폴리펩티드에 대한 결합량의 증감으로 판단하는 것도 가능하다. 여기서 각종 FcγR의 폴리펩티드에 대한 결합량은 각 폴리펩티드에 대해 애널라이트인 각종 FcγR을 상호 작용시키기 전후에서 변화된 센서그램에 있어서의 RU값의 차를, 센서칩에 폴리펩티드를 포착시키기 전후에서 변화된 센서그램에 있어서의 RU값의 차로 나눈 값을 의미한다.
본 발명의 폴리펩티드의 FcγRIIa(R형, H형)에 대한 결합 활성이 유지 또는 감소되고, 또한 FcγRIIb에 대한 결합 활성이 증강된 폴리펩티드인지 여부는, 상기 예에 따라 구한 당해 폴리펩티드의 FcγRIIa에 대한 결합량과 당해 폴리펩티드의 FcγRIIb에 대한 결합량을 사용함으로써 판단하는 것이 가능하다.
예를 들면 본 발명의 폴리펩티드의 FcγRIIb에 대한 결합량이 모체 폴리펩티드의 FcγRIIb에 대한 결합량보다 증가하고, 본 발명의 폴리펩티드의 FcγRIIa(R형, H형)에 대한 결합량이 모체 폴리펩티드의 FcγRIIa(R형, H형)에 대한 결합량과 동등하거나(유지되어 있거나), 바람직하게는 감소하고 있는 경우이다. 또한 상기 예에 따라 구한 당해 폴리펩티드의 FcγRIa에 대한 결합량, FcγRIIIa에 대한 결합량을 적절히 조합하여 판단하는 것도 가능하다.
본 발명의 비한정의 일태양에서는 억제형 Fcγ 수용체에 대한 결합 활성이 활성형 Fcγ 수용체에 대한 결합 활성보다도 높은(억제형 Fcγ 수용체에 대한 선택적인 결합 활성을 갖는) Fc영역의 예로서 US2009/0136485 또는 WO2012/115241에 예로 들어져 있는 Fc영역의 외에, 상기 Fc영역의 아미노산 중 EU 넘버링으로 표시되는 238번 위치 또는 328번 위치의 아미노산이 천연형 Fc영역과 상이한 아미노산으로 개변되어 있는 Fc영역을 적합하게 들 수 있다.
또한 본 발명의 비한정의 일태양에서는 억제형 Fcγ 수용체에 대한 결합 활성이 활성형 Fcγ 수용체에 대한 결합 활성보다도 높은(억제형 Fcγ 수용체에 대한 선택적인 결합 활성을 갖는) Fc영역의 예로서, 상기 Fc영역의 EU 넘버링으로 표시되는 아미노산으로서 EU 넘버링으로 표시되는 238번 위치의 아미노산이 Asp 또는 328번 위치의 아미노산이 Glu 중 어느 하나 이상으로 개변되어 있는 Fc영역을 적합하게 들 수 있다. 또한 억제형 Fcγ 수용체에 대한 선택적인 결합 활성을 갖는 Fc영역으로서 US2009/0136485 또는 WO2012/115241에 기재되어 있는 Fc영역 또는 개변도 적절히 선택할 수 있다.
또한 본 발명의 비한정의 일태양에서는 상기 Fc영역의 EU 넘버링으로 표시되는 아미노산으로서 EU 넘버링으로 표시되는 238번 위치의 아미노산이 Asp 또는 328번 위치의 아미노산이 Glu 중 어느 하나 이상으로 개변되어 있는 Fc영역을 적합하게 들 수 있다.
또한 본 발명의 비한정의 일태양에서는 EU 넘버링으로 표시되는 238번 위치의 Pro의 Asp로의 치환 및 EU 넘버링으로 표시되는 237번 위치의 아미노산이 Trp, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Phe, EU 넘버링으로 표시되는 267번 위치의 아미노산이 Val, EU 넘버링으로 표시되는 267번 위치의 아미노산이 Gln, EU 넘버링으로 표시되는 268번 위치의 아미노산이 Asn, EU 넘버링으로 표시되는 271번 위치의 아미노산이 Gly, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Leu, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Gln, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Glu, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Met, EU 넘버링으로 표시되는 239번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 267번 위치의 아미노산이 Ala, EU 넘버링으로 표시되는 234번 위치의 아미노산이 Trp, EU 넘버링으로 표시되는 234번 위치의 아미노산이 Tyr, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Ala, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Glu, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Leu, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Met, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Tyr, EU 넘버링으로 표시되는 330번 위치의 아미노산이 Lys, EU 넘버링으로 표시되는 330번 위치의 아미노산이 Arg, EU 넘버링으로 표시되는 233번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 268번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 268번 위치의 아미노산이 Glu, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Ser, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Thr, EU 넘버링으로 표시되는 323번 위치의 아미노산이 Ile, EU 넘버링으로 표시되는 323번 위치의 아미노산이 Leu, EU 넘버링으로 표시되는 323번 위치의 아미노산이 Met, EU 넘버링으로 표시되는 296번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Ala, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Asn, EU 넘버링으로 표시되는 330번 위치의 아미노산이 Met 중 어느 하나 이상으로 개변되어 있는 Fc영역을 적합하게 들 수 있다.
항원 결합 분자
본 발명에 있어서 항원 결합 분자는 항원 결합 도메인 및 Fc영역을 포함하는 분자를 나타내는 가장 광의의 의미로서 사용되고 있고, 구체적으로는 그들이 항원에 대한 결합 활성을 나타내는 한, 다양한 분자형이 포함된다. 예를 들면 항원 결합 도메인이 Fc영역과 결합한 분자의 예로서 항체를 들 수 있다. 항체에는 단일클론항체(아고니스트 및 안타고니스트 항체를 포함), 인간 항체, 인간화 항체, 키메라 항체 등이 포함될 수 있다. 또한 항체의 단편으로서 사용되는 경우로서는 항원 결합 도메인 및 항원 결합 단편(예를 들면 Fab, F(ab')2, scFv 및 Fv)를 바람직하게 들 수 있다. 기존의 안정한 α/β 배럴 단백질 구조 등의 입체구조가 scaffold(토대)로서 사용되고, 그 일부분의 구조만이 항원 결합 도메인의 구축을 위해 라이브러리화된 스캐폴드 분자도 본 발명의 항원 결합 분자에 포함될 수 있다.
본 발명의 항원 결합 분자는 FcRn에 대한 결합 및 Fcγ 수용체에 대한 결합을 매개하는 Fc영역의 적어도 부분을 포함할 수 있다. 예를 들면 비한정의 일태양에 있어서 항원 결합 분자는 항체 또는 Fc 융합 단백질일 수 있다. 융합 단백질이란 천연으로는 그것이 자연히 연결되지 않는 제2 아미노산 서열을 갖는 폴리펩티드에 연결된 제1 아미노산 서열을 포함하는 폴리펩티드를 포함하는 키메라 폴리펩티드를 말한다. 예를 들면 융합 단백질은 Fc영역의 적어도 부분(예를 들면 FcRn에 대한 결합을 부여하는 Fc영역의 부분이나 Fcγ 수용체에 대한 결합을 부여하는 Fc영역의 부분)으로 이루어지는 아미노산 서열 및 예를 들면 수용체의 리간드 결합 도메인 또는 리간드의 수용체 결합 도메인으로 이루어지는 아미노산 서열을 포함하는 비면역 글로불린 폴리펩티드를 포함할 수 있다. 아미노산 서열은 함께 융합 단백질에 운반되는 각각의 단백질에 존재할 수 있거나 또는 그들은 통상은 동일 단백질에 존재할 수 있으나, 융합 폴리펩티드 중의 새로운 재편성에 넣어진다. 융합 단백질은 예를 들면 화학 합성에 의해 또는 펩티드영역이 목적하는 관계로 코드된 폴리뉴클레오티드를 제작하고, 그것을 발현하는 유전자 재조합의 수법에 의해 제작될 수 있다.
본 발명의 항원 결합 도메인, Fc영역 등의 각 도메인은 폴리펩티드 결합에 의해 직접 연결될 수 있고 링커를 매개로 연결될 수 있다. 링커로서는 유전자 공학에 의해 도입할 수 있는 임의의 펩티드 링커 또는 합성 화합물 링커(예를 들면 Protein Engineering (1996) 9 (3), 299-305)에 개시되는 링커 등이 사용될 수 있으나 본 발명에 있어서는 펩티드 링커가 바람직하다. 펩티드 링커의 길이는 특별히 한정되지 않고 목적에 따라 당업자가 적절히 선택하는 것이 가능하나, 바람직한 길이는 5 아미노산 이상(상한은 특별히 한정되지 않으나 통상 30 아미노산 이하, 바람직하게는 20 아미노산 이하)이고, 특히 바람직하게는 15 아미노산이다.
예를 들면 펩티드 링커의 경우:
Ser
Gly·Ser
Gly·Gly·Ser
Ser·Gly·Gly
Gly·Gly·Gly·Ser(서열번호:29)
Ser·Gly·Gly·Gly(서열번호:30)
Gly·Gly·Gly·Gly·Ser(서열번호:31)
Ser·Gly·Gly·Gly·Gly(서열번호:32)
Gly·Gly·Gly·Gly·Gly·Ser(서열번호:33)
Ser·Gly·Gly·Gly·Gly·Gly(서열번호:34)
Gly·Gly·Gly·Gly·Gly·Gly·Ser(서열번호:35)
Ser·Gly·Gly·Gly·Gly·Gly·Gly(서열번호:36)
(Gly·Gly·Gly·Gly·Ser(서열번호:31))n
(Ser·Gly·Gly·Gly·Gly(서열번호:32))n
[n은 1 이상의 정수이다]등을 바람직하게 들 수 있다. 단, 펩티드 링커의 길이나 서열은 목적에 따라 당업자가 적절히 선택할 수 있다.
합성 화합물 링커(화학 가교제)는 펩티드의 가교에 통상 사용되고 있는 가교제, 예를 들면 N-히드록시숙신이미드(NHS), 디숙신이미딜수베레이트(DSS), 비스(설포숙신이미딜)수베레이트(BS3), 디티오비스(숙신이미딜프로피오네이트)(DSP), 디티오비스(설포숙신이미딜프로피오네이트)(DTSSP), 에틸렌글리콜비스(숙신이미딜숙시네이트)(EGS), 에틸렌글리콜비스(설포숙신이미딜숙시네이트)(설포-EGS), 디숙신이미딜 타르타르산염(DST), 디설포숙신이미딜 타르타르산염(설포-DST), 비스[2-(숙신이미도옥시카르보닐옥시)에틸]설폰(BSOCOES), 비스[2-(설포숙신이미도옥시카르보닐옥시)에틸]설폰(설포-BSOCOES) 등이고, 이들 가교제는 시판되고 있다.
각 도메인을 연결하는 링커가 복수 사용되는 경우에는 모두 동종의 링커가 사용될 수 있고, 이종의 링커도 사용될 수 있다.
또한 상기 기재에서 예시되는 링커 외에, 예를 들면 His 태그, HA 태그, myc 태그, FLAG 태그 등의 펩티드 태그를 갖는 링커도 적절히 사용될 수 있다. 또한 수소 결합, 디설피드 결합, 공유 결합, 이온성 상호작용 또는 이들 결합의 조합에 의해 서로 결합하는 성질도 또한 적합하게 이용될 수 있다. 예를 들면 항체의 CH1과 CL 간의 친화성이 이용되거나, 헤테로 Fc영역의 회합시에 전술한 이중 특이성 항체를 기원으로 하는 Fc영역이 사용되거나 한다. 또한 도메인 간에 형성되는 디설피드 결합도 또한 적합하게 이용될 수 있다.
각 도메인을 펩티드 결합으로 연결하기 위해 당해 도메인을 코드하는 폴리뉴클레오티드가 인프레임으로 연결된다. 폴리뉴클레오티드를 인프레임으로 연결하는 방법으로서는 제한 단편의 라이게이션이나 퓨전 PCR, 오버랩 PCR 등의 수법이 공지이며, 본 발명의 항원 결합 분자의 제작에도 적절히 이들 방법이 단독 또는 조합으로 사용될 수 있다. 본 발명에서는 용어 「연결되고」, 「융합되고」, 「연결」 또는 「융합」은 상호 교환적으로 사용된다. 이들 용어는 상기 화학결합 수단 또는 재조합 수법을 포함한 모든 수단에 의해 둘 이상의 폴리펩티드 등의 엘리먼트 또는 성분을 하나의 구조를 형성하도록 연결하는 것을 말한다. 인프레임으로 연결한다는 것은 둘 이상의 도메인, 엘리먼트 또는 성분이 폴리펩티드인 경우에, 당해 폴리펩티드의 바른 리딩 프레임을 유지하도록 연속한 보다 긴 리딩 프레임을 형성하기 위한 둘 이상의 리딩 프레임의 단위 연결을 말한다. 2 분자의 Fab가 항원 결합 도메인으로서 사용된 경우, 당해 항원 결합 도메인과 Fc영역이 링커를 매개로 하지 않고 펩티드 결합에 의해 인프레임으로 연결된 본 발명의 항원 결합 분자인 항체는 본원의 적합한 항원 결합 분자로서 사용될 수 있다.
둘 이상의 항원 결합 분자 및 둘 이상의 항원 결합 단위를 포함하는 복합체
실시예 1에 기재된 바와 같이(국제공개 WO2011/122011에 나타내어져 있는 바와 같이), H54/L28-IgG1과 비교하여 pH의 조건에 따라 sIL-6R에 대한 결합 활성이 보다 변화되는 Fv4-IgG1은 sIL-6R의 소실을 가속시키는데, sIL-6R 단독보다도 소실을 가속시키지 않는다. sIL-6R 단독보다 소실을 가속시키기 위해서는 (예를 들면 실시예 1에 기재되는 Fv4-IgG1-v2 등의) pH 중성역에 있어서의 FcRn에 대한 결합을 증강시킨 Fc영역을 포함하는 항원 결합 분자를 사용할 필요가 있다.
그 한편으로 놀랍게도 Ca 이온 농도의 조건에 따라 인간 IgA에 대한 결합 활성이 변화되는 GA2-IgG1은 pH 중성역에 있어서의 FcRn에 대한 결합을 증강시키고 있지 않은 천연형 IgG1 유래의 Fc영역을 포함함에도 불구하고 인간 IgA의 소실을 인간 IgA 단독보다도 가속시키는 것이 발견되었다. 마찬가지로 pH의 조건에 따라 인간 IgE에 대한 결합 활성이 변화되는 클론 278은 pH 중성역에 있어서의 FcRn에 대한 결합을 증강시키고 있지 않은 천연형 IgG1 유래의 Fc영역을 포함함에도 불구하고 인간 IgE의 소실을 인간 IgE 단독보다도 가속시키는 것이 발견되었다. 특정 이론에 구속되는 것은 아니나, 이러한 것이 GA2-IgG1이나 클론 278에 있어서 일어나는 이유로서 아래의 메커니즘이 예시된다.
sIL-6R 등과 같이 항원 결합 단위가 1 단위(즉 호모 단량체)인 경우, 2가의 항원 결합 도메인을 포함하는 1 분자의 항체에 대해 2 분자(즉 2 단위의 항원 결합 단위)의 항원이 결합하고, 1 분자의 항sIL-6R 항체와 2 단위의 항원 결합 단위를 포함하는 2 분자의 항원 분자와 복합체를 형성한다. 그 때문에 이러한 항원과 항체의 복합체는 도 1에 나타내는 바와 같이 하나의 Fc영역(천연형 IgG1의 Fc영역)만 갖는다. 당해 복합체는 하나의 Fc영역을 매개로 1 분자의 FcγR 또는 2 분자의 FcRn에 결합하기 때문에, 이들 수용체에 대한 친화성은 통상의 IgG 항체와 동일하고, 세포내로의 흡수는 주로 비특이적으로 일어날 것으로 생각될 수 있다.
한편 중쇄 및 경쇄의 헤테로 복합체의 이량체인 인간 IgA 등과 같이 항원 결합 단위가 2 단위인 경우, 당해 항원 결합 단위 중에는 항원 결합 도메인이 결합하는 에피토프도 2 단위 존재하게 된다. 그러나 2가의(즉1 분자의 항IgA 항체에 포함되는 항원 결합 도메인이 동일 에피토프에 결합하는) 항IgA 항체가 그 항원인 IgA에 결합하는 경우, 1 분자의 항IgA 항체에 포함되는 2가의 개개의 항원 결합 도메인이 1 분자의 IgA 분자에 존재하는 2 단위의 에피토프에 각각 결합하는 것은 에피토프의 배치 등의 측면에서 곤란할 것으로 생각된다. 그 결과, 1 분자의 항IgA 항체 중에 존재하는 2가의 항원 결합 도메인에 결합하는 2 분자의 IgA 중에 존재하는 2 단위의 항원 결합 단위에는 다른 항IgA 항체 분자가 결합함으로써, 적어도 4 분자(즉 항원 분자인 IgA의 2개의 분자와 항원 결합 분자인 항IgA 항체의 2개의 분자)를 포함하는 항원 항체 복합체(면역 복합체)를 형성하는 것으로 생각된다.
둘 이상의 항원 결합 단위를 포함하는 항원 분자에 결합하는 항체 등의 항원 결합 분자가 적어도 사량체의 큰 면역 복합체를 형성하는 경우, 당해 면역 복합체는 FcγR, FcRn, 보체 수용체 등에 대해 적어도 2개 이상의 다가의 Fc영역을 매개로 avidity로 강고하게 결합하는 것이 가능하다. 이 때문에 도 7에 나타내어지는 바와 같이, 당해 복합체는 이들 수용체를 발현하는 세포에 천연형 IgG1보다도 높은 효율로 흡수된다. 한편 1 단위의 항원 결합 단위를 포함하는 (단량체의) 항원 분자에 결합하는 등의 항원 결합 분자와 항원 분자의 면역 복합체의 이들 수용체에 대한 Fc영역을 매개로 한 친화성은 전술한 바와 같이 충분하지 않기 때문에, 도 1에 나타내어지는 바와 같이 이들 수용체를 발현하는 세포내로 당해 면역 복합체는 주로 비특이적(avidity에 의한 결합을 매개로 하는 흡수보다는 비효율적)으로 흡수된다. 즉, avidity에 의한 결합을 매개로 하는 흡수보다도 비효율적이다.
둘 이상의 항원 결합 단위를 포함하는 항원 분자에 결합하는 항체 등의 항원 결합 분자로서, pH 또는 Ca 의존적 결합 등과 같이 이온 농도의 조건에 따라 항원에 대한 결합이 변화되는 항원 결합 도메인을 포함하는 항체가 혈장 중에서 적어도 4 분자(2 분자의 항원 및 2 분자의 항체) 이상으로 이루어지는 항원 항체 복합체(면역 복합체)를 형성한 경우에 있어서, 당해 면역 복합체가 세포내에 흡수되었을 때는 그 이온 농도의 조건이 혈장 중의 조건과는 상이한 엔도솜 내에서 항원이 당해 항체로부터 해리된다. 그 때문에 당해 면역 복합체가 흡수된 세포의 엔도솜 내에서는 당해 면역 복합체의 형성이 해소된다. 해리된 항원은 엔도솜 내에서 FcRn에 결합하는 것이 불가능하기 때문에 리소좀으로 이행한 후에 분해된다. 한편 항원을 해리한 항체는 엔도솜 내에서 FcRn에 결합한 후에 혈장 중으로 리사이클되는 것으로 생각된다(도 7).
전술한 바와 같이 둘 이상의 항원 결합 단위를 포함하는 다량체 항원에 대한 천연 IgG1형의 정상영역을 포함하는 pH 또는 Ca 의존적 결합 항체가 큰 면역 복합체를 형성하여, avidity로 FcγR, FcRn, 보체 수용체 등에 결합하는 것이 가능하면 항원의 소실만을 선택적으로 대폭 가속시키는 것이 가능할 것으로 생각된다. 인간 IgA에 결합하는 GA2-IgG1이 투여된 경우에도 그러한 큰 면역 복합체가 형성되어 있는 것으로 생각되었다. 실제로 실시예 3에서 나타내어진 바와 같이 GA2-IgG1에 대해 마우스 FcγR에 대한 결합이 손상된 개변이 도입된 GA2-IgG1-FcγR(-)은 인간 IgA의 소실을 GA2-IgG1과 같이 인간 IgA 단독과 비교하여 대폭 가속시키는 것은 불가능하여, 인간 IgA 단독과 동등한 소실을 나타내었다. 이 사실로부터 GA2-IgG1이 인간 IgA의 소실을 대폭 가속시킬 수 있었던 것은 둘 이상의 항원 결합 단위를 포함하는 다량체 항원인 인간 IgA와 GA2-IgG1을 포함하는 면역 복합체가 FcγR에 대해 avidity로 결합하여 FcγR을 발현하는 세포에 신속하게 흡수되었기 때문이라고 생각되었다. 당해 면역 복합체를 흡수한 세포의 엔도솜 내에서 당해 면역 복합체로부터 해리된 IgA는 리소좀으로 분해된다. 그와 함께 당해 엔도솜 내에서 FcRn에 결합 후 혈장 중으로 리사이클된 IgA를 해리한 항체는 재차 혈장 중의 IgA에 결합하는 것이 가능해진다. 이와 같이 하여 혈장 중의 인간 IgA의 소실이 대폭 가속된 것으로 생각된다. 항원의 혈장 중으로부터의 소실을 가속시키는 방법으로서, pH 중성역에서 FcRn에 대해 결합하는 Fc영역의 아미노산의 개변체를 사용하는 방법이 국제공개 WO2011/122011에 기재되어 있다. 본 발명은 전술한 개변체를 사용하지 않고, 둘 이상의 항원 결합 단위를 포함하는 다량체 항원의 혈장 중으로부터의 소실을 가속시키는 방법으로서 유용한 동시에, GA2-N434W에서 나타내어진 바와 같이 전술한 개변체와 조합시킴으로써 둘 이상의 항원 결합 단위를 포함하는 다량체 항원의 혈장 중으로부터의 소실을 추가로 가속시키는 것이 가능하다.
둘 이상의 항원 결합 분자 및 둘 이상의 항원 결합 단위를 포함하는 면역 복합체의 형성을 평가하는 방법
전술한 바와 같은 둘 이상의 항원 결합 단위를 포함하는 다량체 항원의 혈장 중으로부터의 소실을 추가로 가속시키는 작용을 발휘하기 위해서는, 항원 결합 분자와 항원이 큰 면역 복합체를 형성하고 항원 결합 분자에 포함되는 Fc영역이 avidity로 FcγR 및/또는 FcRn에 강하게 결합하는 것이 바람직하다고 생각된다. 항원이 둘 이상의 항원 결합 단위를 포함하는 항원이라면 둘 이상의 항원 결합 분자 및 둘 이상의 항원 결합 단위를 포함하는 큰 면역 복합체를 형성하는 것이 가능하기 때문에, 둘 이상의 항원 결합 단위를 포함하는 다량체 항원에 대한 결합 활성이 이온 농도의 조건에 따라 변화되어, 전술한 수용체에 대해 avidity로 결합하는 항원 결합 분자를 스크리닝함으로써 둘 이상의 항원 결합 단위를 포함하는 다량체 항원의 혈장 중으로부터의 소실을 추가로 가속시키는 항원 결합 분자를 취득하는 것이 가능하다.
복합체 형성 평가방법
항원 결합 분자와 항원을 포함하는 면역 복합체의 형성을 평가하는 방법으로서, 면역 복합체가 항원 결합 분자 단체 또는 항원 분자 단체보다도 분자가 커지는 성질을 이용한 사이즈 배제(겔여과) 크로마토그래피법, 초원심분리법, 광산란법, 전자현미경, 질량분석기(mass spectrometry) 등을 포함하는 분석화학적 수법을 들 수 있다(Molecular Immunology (2002), 39, 77-84, Molecular Immunology(2009), 47, 357-364). 예를 들면 도 9에 나타내어져 있는 바와 같은 사이즈 배제(겔여과) 크로마토그래피를 사용한 경우, 면역 복합체를 형성하고 있는지 여부는 항원 분자 단독 또는 항원 결합 분자 단독을 분석한 경우와 비교하여 보다 큰 분자종이 관측되는지로 평가된다.
또한 항원 결합 분자 또는 항원이 이뮤노글로불린 정상영역을 갖는 경우에는, 면역 복합체가 Fc 수용체 또는 보체 성분에 항원 결합 분자 단체 또는 항원 단체보다도 강하게 결합하는 성질을 이용한 ELISA나 FACS, SPR법(예를 들면 Biacore을 사용한 방법) 등을 포함하는 면역화학적 수법도 들 수 있다(The Journal of Biological Chemistry (2001) 276(9), 6591-6604, Journal of Immunological Methods (1982) 50, 109-114, Journal of Immunology (2010) 184 (4),1968-1976, mAbs (2009) 1 (5) 491-504). 예를 들면 Fc 수용체를 고상화한 ELISA를 행한 경우, 면역 복합체를 형성하고 있는지 여부는 항원 단체 또는 항원 결합 분자 단체를 평가한 경우와 비교하여 검출되는 시그날이 증가되어 있는지로 평가된다.
항원 결합 분자의 칵테일을 사용한 단량체 항원의 혈장 중으로부터의 소실을 촉진시키는 방법
전술한 바와 같이 항원이 다량체 항원(예를 들면 비한정의 일례로서 IgA, IgE 등의 이뮤노글로불린, 또는 TNF 또는 CD154 등의 TNF 슈퍼패밀리)일 때는, 둘 이상의 항원 결합 분자 및 둘 이상의 항원 결합 단위를 포함하는 큰 면역 복합체가 형성되는 경우가 있는 것으로 생각된다. 한편 항원이 단량체 항원인 경우라도, 당해 단량체 항원에 존재하는 상이한 에피토프에 각각 결합하는 적절한 둘 이상의 항원 결합 분자로서, (pH 또는 Ca 등의) 이온 농도의 조건에 따라 당해 에피토프에 대한 결합이 변화되는 항원 결합 분자의 혼합물도 또한 둘 이상의 항원 결합 분자 및 둘 이상의 항원 결합 단위(단량체 항원)를 포함하는 큰 면역 복합체를 형성하는 것이 가능할 것으로 생각된다. 본 명세서에 있어서 단량체 항원에 존재하는 상이한 에피토프에 각각 결합하는 적절한 둘 이상의 항원 결합 분자로서, (pH 또는 Ca 등의) 이온 농도의 조건에 따라 당해 에피토프에 대한 결합이 변화되는 항원 결합 분자의 혼합물을 항원 결합 분자 칵테일이라 부른다. 이 항원 결합 분자 중 면역 복합체를 형성하는 하나 이상의 항원 결합 분자(에 포함되는 항원 결합 도메인)가 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인이면 된다.
다중 특이성 또는 다중 파라토픽 항원 결합 분자를 사용한 단량체 항원의 혈장 중으로부터의 소실을 촉진시키는 방법
또한 항원이 단량체 항원인 경우라도, 항원 결합 분자에 포함되는 각 항원 결합 도메인이 당해 단량체 항원에 존재하는 상이한 에피토프에 각각 결합하는 특징을 가지며, 개개의 항원 결합 도메인의 에피토프에 대한 결합이 (pH 또는 Ca 등의) 이온 농도의 조건에 따라 변화되는 항원 결합 도메인을 포함하는 항원 결합 분자도 또한 둘 이상의 항원 결합 분자 및 둘 이상의 항원 결합 단위(단량체 항원)를 포함하는 큰 면역 복합체를 형성하는 것이 가능할 것으로 생각된다. 상기와 같은 항원 결합 분자의 비한정의 일태양으로서 단량체 항원에 존재하는 서로 상이한 에피토프에 결합하는 적절한 가변영역을 포함하는 다중 특이성(multispecific) 항체 또는 다중 파라토픽(multiparatopic) 항체가 예시된다. 그러한 다중 특이성(multispecific) 항체 또는 다중 파라토픽(multiparatopic) 항체의 비한정의 일태양으로서 그 가변영역이 pH 또는 Ca 의존적인 결합 항체(도 8에 나타내는 바와 같은 에피토프 A를 인식하는 오른쪽 팔의 가변영역과 에피토프 B를 인식하는 왼쪽 팔의 가변영역을 포함하는 이중 특이성(bispecific) 항체 또는 이중 파라토픽(biparatopic) 항체)도 또한 둘 이상의 항체 및 둘 이상의 항원 결합 단위(단량체 항원)를 포함하는 큰 면역 복합체를 형성하는 것이 가능할 것으로 생각된다.
단량체 항원의 상이한 에피토프에 대한 항원 결합 도메인으로서, 당해 각 에피토프에 대한 결합 활성이 이온 농도의 조건에 따라 변화되고, 전술한 수용체에 대해 avidity로 결합하는 것이 가능한 항원 결합 도메인의 조합을 스크리닝함으로써 단량체 항원의 혈장 중으로부터의 소실을 추가로 가속시키는 항원 결합 분자를 취득하는 것이 가능하다. 다중 특이성 또는 다중 파라토픽 항원 결합 도메인의 각 에피토프에 대한 결합 활성을 변화시키는 이온 농도의 조건은 동일 이온 농도의 조건이어도 되고, 상이한 이온 농도의 조건이어도 된다. 예를 들면 이중 특이성 또는 이중 파라토픽 항원 결합 도메인의 한쪽 항원 결합 도메인의 에피토프에 대한 결합 활성이 pH의 조건 또는 Ca 이온 농도 등의 금속 이온 농도의 조건에 따라 변화되는, 이중 특이성 또는 이중 파라토픽 항원 결합 도메인을 포함하는 항원 결합 분자는 본 발명의 항원 결합 분자의 비한정의 일태양으로서 예시된다. 또한 예를 들면 이중 특이성 또는 이중 파라토픽 항원 결합 도메인의 한쪽 항원 결합 도메인의 에피토프에 대한 결합 활성이 pH의 조건에 따라 변화되고, 다른 한쪽 항원 결합 도메인의 에피토프에 대한 결합 활성이 Ca 이온 농도 등의 금속 이온 농도의 조건에 따라 변화되는, 이중 특이성 또는 이중 파라토픽 항원 결합 도메인을 포함하는 항원 결합 분자는 본 발명의 항원 결합 분자의 비한정의 일태양으로서 예시된다. 또한 이중 특이성 또는 이중 파라토픽 항원 결합 도메인의 한쪽 항원 결합 도메인의 에피토프에 대한 결합 활성이 pH의 조건에 따라 변화되고, 다른 한쪽 항원 결합 도메인의 에피토프에 대한 결합 활성도 pH의 조건에 따라 변화되는, 이중 특이성 또는 이중 파라토픽 항원 결합 도메인을 포함하는 항원 결합 분자도 또한 본 발명의 항원 결합 분자의 비한정의 일태양으로서 예시된다. 또한 이중 특이성 또는 이중 파라토픽 항원 결합 도메인의 한쪽 항원 결합 도메인의 에피토프에 대한 결합 활성이 Ca 이온 농도 등의 금속 이온 농도의 조건에 따라 변화되고, 다른 한쪽 항원 결합 도메인의 에피토프에 대한 결합 활성이 Ca 이온 농도 등의 금속 이온 농도의 조건에 따라 변화되는, 이중 특이성 또는 이중 파라토픽 항원 결합 도메인을 포함하는 항원 결합 분자도 또한 본 발명의 항원 결합 분자의 비한정의 일태양으로서 예시된다.
다중 특이성 항원 결합 분자 또는 다중 파라토픽 항원 결합 분자
그 하나 이상의 항원 결합 도메인이 항원 분자 중의 제1 에피토프에 결합하고, 그 하나 이상의 다른 항원 결합 도메인이 항원 분자 중의 제2 에피토프에 결합하는 특징을 갖는 2개 이상의 항원 결합 도메인을 포함하는 항원 결합 분자는 그 반응의 특이성이라는 관점에서 다중 특이성 항원 결합 분자라 불린다. 1 분자의 항원 결합 분자에 포함되는 2종류의 항원 결합 도메인에 의해 당해 항원 결합 분자가 2개의 상이한 에피토프에 결합하는 경우, 당해 항원 결합 분자는 이중 특이성 항원 결합 분자라 불린다. 또한 1 분자의 항원 결합 분자에 포함되는 3종류의 항원 결합 도메인에 의해 당해 항원 결합 분자가 3개의 상이한 에피토프에 결합하는 경우, 당해 항원 결합 분자는 삼중 특이성 항원 결합 분자라 불린다.
항원 분자 중의 제1 에피토프에 결합하는 항원 결합 도메인 중의 파라토프와, 제1 에피토프와 구조가 상이한 제2 에피토프에 결합하는 항원 결합 도메인 중의 파라토프는 그 구조가 서로 상이하다. 따라서 그 하나 이상의 항원 결합 도메인이 항원 분자 중의 제1 에피토프에 결합하고, 그 하나 이상의 다른 항원 결합 도메인이 항원 분자 중의 제2 에피토프에 결합하는 특징을 갖는, 2개 이상의 항원 결합 도메인을 포함하는 항원 결합 분자는 그 구조의 특이성이라는 관점으로부터 다중 파라토픽 항원 결합 분자라 불린다. 1 분자의 항원 결합 분자에 포함되는 2종류의 항원 결합 도메인에 의해 당해 항원 결합 분자가 2개의 상이한 에피토프에 결합하는 경우, 당해 항원 결합 분자는 이중 파라토픽 항원 결합 분자라 불린다. 또한 1 분자의 항원 결합 분자에 포함되는 3종류의 항원 결합 도메인에 의해 당해 항원 결합 분자가 3개의 상이한 에피토프에 결합하는 경우, 당해 항원 결합 분자는 삼중 파라토픽 항원 결합 분자라 불린다.
하나 또는 복수의 항원 결합 도메인을 포함하는 다가의 다중 특이성 또는 다중 파라토픽 항원 결합 분자와 그의 조제방법은 Conrath 등(J.Biol.Chem. (2001) 276 (10) 7346-7350), Muyldermans(Rev. Mol. Biotech. (2001) 74, 277-302) 및 Kontermann R.E. (2011) Bispecific Antibodies(Springer-Verlag) 등의 비특허문헌 및 국제공개 WO1996/034103 또는 WO1999/023221 등의 특허문헌 등에도 기재되어 있다. 이들에 기재된 다중 특이성 또는 다중 파라토픽 항원 결합 분자와 그의 조제방법을 사용함으로써 본 발명의 항원 결합 분자를 제작하는 것이 가능하다.
이중 특이성 항체와 그의 제작방법
상기와 같은 다중 특이성 또는 다중 파라토픽 항원 결합 분자와 그의 조제방법의 일태양으로서, 이중 특이성 항체와 그의 제작방법이 하기에 예시된다. 이중 특이성 항체란 상이한 에피토프에 대해 특이적으로 결합하는 2종류의 가변영역을 포함하는 항체이다. IgG형의 이중 특이성 항체는 IgG 항체를 생산하는 하이브리도마 2종을 융합함으로써 생기는 hybrid hybridoma(quadroma)에 의해 분비시키는 것이 가능하다(Milstein 등(Nature (1983) 305, 537-540).
이중 특이성 항체를 상기 항체의 항목에서 기재된 바와 같은 재조합 수법을 사용하여 제조하는 경우, 목적의 2종의 가변영역을 포함하는 중쇄를 코드하는 유전자를 세포에 도입하여 그들을 공발현시키는 방법이 채용될 수 있다. 그러나 이러한 공발현시키는 방법에 있어서의 중쇄의 조합을 고려하는 것만으로도, (i) 제1 에피토프에 결합하는 가변영역을 포함하는 중쇄와 제2 에피토프에 결합하는 가변영역을 포함하는 중쇄가 한쌍이 된 중쇄의 조합, (ii) 제1 에피토프에 결합하는 가변영역을 포함하는 중쇄만이 한쌍이 된 중쇄의 조합, (iii) 제2 에피토프에 결합하는 가변영역을 포함하는 중쇄만이 한쌍이 된 중쇄의 조합이 2:1:1의 분자 수의 비율로 존재하는 혼합물이 된다. 이들 3종류의 중쇄의 조합의 혼합물로부터 목적의 중쇄의 조합을 포함하는 항원 결합 분자를 정제하는 것은 곤란하다.
이러한 재조합 수법을 사용하여 이중 특이성 항체를 제조할 때, 중쇄를 구성하는 CH3 도메인에 적당한 아미노산 치환의 개변을 가함으로써 헤테로 조합의 중쇄를 포함하는 이중 특이성 항체가 우선적으로 분비될 수 있다. 구체적으로는 한쪽 중쇄의 CH3 도메인에 존재하는 아미노산 측쇄를 보다 큰 측쇄(knob(「돌기」의 의미))로 치환하고, 다른 한쪽 중쇄의 CH3 도메인에 존재하는 아미노산 측쇄를 보다 작은 측쇄(hole(「공극」의 의미))로 치환함으로써, 돌기가 공극 내에 배치될 수 있도록 하여 이종의 중쇄 형성의 촉진 및 동종의 중쇄 형성의 저해를 일으키는 방법이다(국제공개 WO1996/027011, Ridgway 등(Protein Engineering (1996) 9, 617-621), Merchant 등(Nat. Biotech. (1998) 16, 677-681)).
또한 폴리펩티드의 회합 또는 폴리펩티드에 의해 구성되는 이종 다량체의 회합 제어방법을 중쇄의 회합에 이용함으로써 이중 특이성 항체를 제작하는 기술도 알려져 있다. 즉 중쇄 내의 계면을 형성하는 아미노산 잔기를 개변함으로써 동일 서열을 갖는 중쇄의 회합이 저해되어, 서열이 상이한 2개의 중쇄가 형성되도록 제어하는 방법이 이중 특이성 항체의 제작에 채용될 수 있다(국제공개 WO2006/106905). 이러한 방법도 이중 특이성 항체를 제조할 때 채용될 수 있다.
본 발명의 비한정의 일태양에 있어서의 항원 결합 분자에 포함되는 Fc영역으로서는 상기 이중 특이성 항체를 기원으로 하는 Fc영역을 구성하는 2개의 폴리펩티드가 적절히 사용될 수 있다. 보다 구체적으로는 Fc영역을 구성하는 2개의 폴리펩티드로서, 그 한쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 349번 위치의 아미노산이 Cys, 366번 위치의 아미노산이 Trp이고, 다른 쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 356번 위치의 아미노산이 Cys, 366번 위치의 아미노산이 Ser, 368번 위치의 아미노산이 Ala, 407번 위치의 아미노산이 Val인 것을 특징으로 하는 2개의 폴리펩티드가 적합하게 사용된다.
그 밖의 본 발명의 비한정의 일태양에 있어서의 Fc영역으로서는 Fc영역을 구성하는 2개의 폴리펩티드로서, 그 한쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 409번 위치의 아미노산이 Asp이고, 다른 쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 399번 위치의 아미노산이 Lys인 것을 특징으로 하는 2개의 폴리펩티드가 적합하게 사용된다. 상기 태양에서는 409번 위치의 아미노산은 Asp 대신에 Glu, 399번 위치의 아미노산은 Lys 대신에 Arg일 수도 있다. 또한 399번 위치의 아미노산인 Lys에 더하여 360번 위치의 아미노산으로서 Asp 또는 392번 위치의 아미노산으로서 Asp도 적합하게 추가될 수 있다.
본 발명의 다른 비한정의 일태양에 있어서의 Fc영역으로서는 Fc영역을 구성하는 2개의 폴리펩티드로서, 그 한쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 370번 위치의 아미노산이 Glu이고, 다른 쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 357번 위치의 아미노산이 Lys인 것을 특징으로 하는 2개의 폴리펩티드가 적합하게 사용된다.
본 발명의 또 다른 비한정의 일태양에 있어서의 Fc영역으로서는 Fc영역을 구성하는 2개의 폴리펩티드로서, 그 한쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 439번 위치의 아미노산이 Glu이고, 다른 쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 356번 위치의 아미노산이 Lys인 것을 특징으로 하는 2개의 폴리펩티드가 적합하게 사용된다.
본 발명의 다른 비한정의 일태양에 있어서의 Fc영역으로서는 이들이 조합된 아래의 태양 중 어느 하나;
(i) Fc영역을 형성하는 2개의 폴리펩티드로서, 그 한쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 409의 아미노산이 Asp, 370의 아미노산이 Glu이고, 다른 쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 399의 아미노산이 Lys, 357의 아미노산이 Lys인 것을 특징으로 하는 2개의 폴리펩티드(본 태양에서는 EU 넘버링으로 표시되는 370의 아미노산인 Glu 대신에 Asp여도 되고, EU 넘버링으로 표시되는 370의 아미노산인 Glu 대신에 392의 아미노산인 Asp여도 된다.),
(ii) Fc영역을 형성하는 2개의 폴리펩티드로서, 그 한쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 409의 아미노산이 Asp, 439의 아미노산이 Glu이고, 다른 쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 399의 아미노산이 Lys, 356의 아미노산이 Lys인 것을 특징으로 하는 2개의 폴리펩티드(본 태양에서는 EU 넘버링으로 표시되는 439의 아미노산인 Glu 대신에 360의 아미노산인 Asp, EU 넘버링으로 표시되는 392의 아미노산인 Asp 또는 439의 아미노산인 Asp여도 된다),
(iii) Fc영역을 형성하는 2개의 폴리펩티드로서, 그 한쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 370의 아미노산이 Glu, 439의 아미노산이 Glu이고, 다른 쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 357의 아미노산이 Lys, 356의 아미노산이 Lys인 것을 특징으로 하는 2개의 폴리펩티드, 또는
Fc영역을 형성하는 2개의 폴리펩티드로서, 그 한쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 409의 아미노산이 Asp, 370의 아미노산이 Glu, 439의 아미노산이 Glu이고, 다른 쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 399의 아미노산이 Lys, 357의 아미노산이 Lys, 356의 아미노산이 Lys인 것을 특징으로 하는 2개의 폴리펩티드(본 태양에서는 EU 넘버링으로 표시되는 370의 아미노산을 Glu로 치환하지 않아도 되고, 또한 370의 아미노산을 Glu로 치환하지 않고 439의 아미노산인 Glu 대신에 Asp 또는 439의 아미노산인 Glu 대신에 392의 아미노산인 Asp여도 된다)
가 적합하게 사용된다.
또한 본 발명의 다른 비한정의 일태양에 있어서 Fc영역을 형성하는 2개의 폴리펩티드로서, 그 한쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 356의 아미노산이 Lys이고, 다른 쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 435의 아미노산이 Arg, 439의 아미노산이 Glu인 것을 특징으로 하는 2개의 폴리펩티드도 적합하게 사용된다.
또한 본 발명의 다른 비한정의 일태양에 있어서 Fc영역을 형성하는 2개의 폴리펩티드로서, 그 한쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 356의 아미노산이 Lys, 357의 아미노산이 Lys이고, 다른 쪽 폴리펩티드의 아미노산 서열 중 EU 넘버링으로 표시되는 370의 아미노산이 Glu, 435의 아미노산이 Arg, 439의 아미노산이 Glu인 것을 특징으로 하는 2개의 폴리펩티드도 적합하게 사용된다.
또한 상기 이종의 중쇄의 회합기술 외에, 제1 에피토프에 결합하는 가변영역을 형성하는 경쇄 및 제2 에피토프에 결합하는 가변영역을 형성하는 경쇄를 각각 제1 에피토프에 결합하는 가변영역을 형성하는 중쇄 및 제2 에피토프에 결합하는 가변영역을 형성하는 중쇄에 회합시키는 이종의 경쇄의 회합기술로서 알려지는 CrossMab 기술(Scaefer 등(Proc.Natl.Acad.Sci.U.S.A. (2011) 108, 11187-11192))도 본 발명이 제공하는 다중 특이성 또는 다중 파라토픽 항원 결합 분자를 제작하기 위해 사용될 수 있다.
혈장 중으로부터 둘 이상의 항원 결합 단위를 포함하는 항원을 소실시키기 위한 항원 결합 분자의 사용
본 발명에 의해,
(i) Fc영역, 및
(ii) 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인
을 포함하는 항원 결합 분자의 사용으로서,
(a) 2 분자 이상의 당해 항원 결합 분자 및 (b) 2 분자 이상의 항원, 단 당해 항원은 둘 이상의 항원 결합 단위를 포함하는
을 포함하는 면역 복합체를 형성하는 것이 가능한 항원 결합 분자의 혈장 중으로부터 당해 항원을 소실시키기 위한 사용이 제공된다.
본 발명에 있어서 항원 결합 분자의 사용은 혈장 중으로부터 당해 항원을 소실시킬 수 있으면 되고, 그 사용의 태양은 특별히 한정되지 않는다. 그러한 사용의 비한정의 일태양으로서 본 발명이 제공하는 항원 결합 분자를 포함하는 의약 조성물 또는 본 발명이 제공하는 항원 결합 분자를 대상에 투여하는 것을 포함하는 방법 등이 예시된다. 또한 비한정의 다른 일태양으로서 대상으로부터 단리된 혈장을 본 발명의 항원 결합 분자와 접촉시켜 형성시킨, 2 분자 이상의 당해 항원 결합 분자 및 2 분자 이상의 항원(단 당해 항원은 둘 이상의 항원 결합 단위를 포함하는)을 포함하는 면역 복합체를 FcRn 또는 Fcγ 수용체를 발현하는 세포에 접촉시키는 것을 포함하는 혈장 중으로부터 당해 항원을 소실시키기 위한 ex vivo의 방법에 있어서의 당해 항원 결합 분자의 사용도 예시된다.
약물동태의 개선
본 발명에 있어서 「혈장 중 항원 소실능」이란 항원 결합 분자가 생체내에 투여되었거나 또는 항원 결합 분자의 생체내로의 분비가 발생했을 때 혈장 중에 존재하는 항원을 혈장 중으로부터 소실시키는 능력을 말한다. 따라서 본 발명에 있어서 「항원 결합 분자의 혈장 중 항원 소실능이 증가한다」는 것은, 항원 결합 분자를 투여했을 때 본 발명에서 개시되는 면역 복합체를 형성할 수 없는 항원 결합 분자, 항원에 대한 결합 활성이 이온 농도 비의존적인 항원 결합 도메인을 포함하는 항원 결합 분자, 또는 FcγR 또는 FcRn에 대한 결합 활성이 손상된 Fc영역을 포함하는 항원 결합 분자를 투여했을 때와 비교하여, 혈장 중으로부터 항원이 소실되는 속도가 빨라져 있으면 된다. 항원 결합 분자의 혈장 중 항원 소실능이 증가되었는지 여부는, 예를 들면 가용형 항원과 항원 결합 분자를 생체내에 투여하고, 투여 후의 가용형 항원의 혈장 중 농도를 측정함으로써 판단하는 것이 가능하다. 둘 이상의 항원 결합 분자 및 둘 이상의 항원 결합 단위의 항원을 포함하는 면역 복합체를 형성하는 것이 가능한 항원 결합 분자의, pH 산성역에 있어서의 항원에 대한 결합 활성을 pH 중성역에 있어서의 항원에 대한 결합 활성보다 저하시키는(또는 저칼슘 이온 농도에 있어서의 항원에 대한 결합 활성을 고칼슘 이온 농도에 있어서의 항원에 대한 결합 활성보다 저하시키는) 등에 의해 이온 농도에 따라 항원에 대한 결합 활성이 변화된 항원 결합 분자와 가용형 항원을 투여한 후의 혈장 중 가용형 항원의 농도가 저하되어 있는 경우에는, 항원 결합 분자의 혈장 중 항원 소실능이 증가된 것으로 판단할 수 있다. 가용형 항원은 혈장 중에 있어서 항원 결합 분자에 결합하는 항원이어도 또는 항원 결합 분자가 결합하지 않는 항원이어도 되고, 그 농도는 각각 「혈장 중 항원 결합 분자 결합 항원 농도」 및 「혈장 중 항원 결합 분자 비결합 항원 농도」로서 결정할 수 있다(후자는 「혈장 중 유리 항원 농도」와 동일한 정의이다). 「혈장 중 총항원 농도」란 항원 결합 분자 결합 항원과 항원 결합 분자 비결합 항원을 합계한 농도 또는 항원 결합 분자 비결합 항원 농도인 「혈장 중 유리 항원 농도」를 의미하는 것으로부터, 가용형 항원 농도는 「혈장 중 총항원 농도」로서 결정할 수 있다. 「혈장 중 총항원 농도」 또는 「혈장 중 유리 항원 농도」를 측정하는 다양한 방법이 본 명세서에 있어서 아래에 기재되는 바와 같이 당 기술분야에 있어서 주지이다.
본 발명에 있어서 「약물동태의 향상」, 「약물동태의 개선」 및 「우수한 약물동태」는 「혈장 중(혈중) 체류성의 향상」, 「혈장 중(혈중) 체류성의 개선」, 「우수한 혈장 중(혈중) 체류성」, 「혈장 중(혈중) 체류성을 길게 한다 」고 바꿔 말하는 것이 가능하고, 이들 어구는 동일한 의미로 사용된다.
본 발명에 있어서 「약물동태가 개선된다」는 것은 항원 결합 분자가 인간 또는 마우스, 랫트, 원숭이, 토끼, 개 등의 비인간 동물에 투여된 뒤부터 혈장 중으로부터 소실될 때까지(예를 들면 세포내에서 분해되거나 하여 항원 결합 분자가 혈장 중으로 되돌아가는 것이 불가능한 상태가 될 때까지)의 시간이 길어지는 것뿐 아니라, 항원 결합 분자가 투여된 뒤부터 분해되어 소실될 때까지 사이에 항원에 결합 가능한 상태(예를 들면 항원 결합 분자가 항원에 결합해 있지 않은 상태)에서 혈장 중에 체류하는 시간이 길어지는 것도 포함한다. 천연형 Fc영역을 갖는 인간 IgG는 비인간 동물 유래의 FcRn에 결합할 수 있다. 예를 들면 천연형 Fc영역을 갖는 인간 IgG는 인간 FcRn보다 마우스 FcRn에 강하게 결합할 수 있기 때문에(Int. Immunol. (2001) 13 (12), 1551-1559), 본 발명의 항원 결합 분자의 특성을 확인할 목적으로 바람직하게는 마우스를 사용하여 투여를 행할 수 있다. 다른 예로서 본래의 FcRn 유전자가 파괴되어 있어, 인간 FcRn 유전자에 관한 트랜스진을 가지고 발현하는 마우스(Methods Mol. Biol. (2010) 602, 93-104)도 또한 아래에 기재하는 본 발명의 항원 결합 분자의 특성을 확인할 목적으로 투여를 행하기 위해 사용할 수 있다. 구체적으로는 「약물동태가 개선된다」는 것은 또한 항원에 결합해 있지 않은 항원 결합 분자(항원 비결합형 항원 결합 분자)가 분해되어 소실될 때까지의 시간이 길어지는 것을 포함한다. 항원 결합 분자가 혈장 중에 존재하고 있어도 그 항원 결합 분자에 이미 항원이 결합해 있는 경우는 그 항원 결합 분자는 새로운 항원에 결합할 수 없다. 그 때문에 항원 결합 분자가 항원에 결합해 있지 않은 시간이 길어지면 새로운 항원에 결합할 수 있는 시간이 길어져(새로운 항원에 결합할 수 있는 기회가 많아져) 생체내에서 항원이 항원 결합 분자에 결합해 있지 않은 시간을 감소시킬 수 있어, 항원이 항원 결합 분자에 결합해 있는 시간을 길게 하는 것이 가능해진다. 항원 결합 분자의 투여에 의해 혈장 중으로부터의 항원의 소실을 가속할 수 있다면, 항원 비결합형 항원 결합 분자의 혈장 중 농도가 증가되고 또한 항원이 항원 결합 분자에 결합해 있는 시간이 길어진다. 즉 본 발명에 있어서의 「항원 결합 분자의 약물동태의 개선」이란 항원 비결합형 항원 결합 분자 중 어느 하나의 약물동태 파라미터의 개선(혈장 중 반감기의 증가, 평균 혈장 중 체류시간의 증가, 혈장 중 클리어런스의 저하 중 어느 하나) 또는 항원 결합 분자 투여 후에 항원이 항원 결합 분자에 결합해 있는 시간의 연장, 또는 항원 결합 분자에 의한 혈장 중으로부터의 항원의 소실이 가속되는 것을 포함한다. 항원 결합 분자 또는 항원 비결합형 항원 결합 분자의 혈장 중 반감기, 평균 혈장 중 체류시간, 혈장 중 클리어런스 등 중 어느 하나의 파라미터(파마코키네틱스 연습에 의한 이해(난잔도))를 측정함으로써 판단하는 것이 가능하다. 예를 들면, 항원 결합 분자를 마우스, 랫트, 원숭이, 토끼, 개, 인간 등에 투여한 경우, 항원 결합 분자 또는 항원 비결합형 항원 결합 분자의 혈장 중 농도를 측정하여 각 파라미터를 산출하고, 혈장 중 반감기가 길어졌거나 또는 평균 혈장 중 체류시간이 길어진 경우 등에는 항원 결합 분자의 약물동태가 개선되었다고 할 수 있다. 이들 파라미터는 당업자에게 공지의 방법에 의해 측정하는 것이 가능하며, 예를 들면, 약물동태 해석 소프트웨어 WinNonlin(Pharsight)을 사용하여 부속의 절차 설명서에 따라 비구획(Noncompartmental) 해석을 함으로써 적당히 평가할 수 있다. 항원에 결합해 있지 않은 항원 결합 분자의 혈장 중 농도의 측정은 당업자 공지의 방법으로 실시하는 것이 가능하며, 예를 들면, Clin Pharmacol. (2008) 48(4), 406-417에 있어서 측정되고 있는 방법을 사용할 수 있다.
본 발명에 있어서 「약물동태가 개선된다」는 것은 항원 결합 분자 투여 후에 항원이 항원 결합 분자에 결합해 있는 시간이 연장된 것도 포함한다. 항원 결합 분자 투여 후에 항원이 항원 결합 분자에 결합해 있는 시간이 연장되었는지 여부는, 유리 항원의 혈장 중 농도를 측정하고 유리 항원의 혈장 중 농도 또는 총항원 농도에 대한 유리 항원 농도의 비율이 상승될 때까지의 시간으로 판단하는 것이 가능하다.
항원 결합 분자에 결합해 있지 않은 유리 항원의 혈장 중 농도 또는 총항원 농도에 대한 유리 항원 농도의 비율은 당업자 공지의 방법으로 결정될 수 있다. 예를 들면 Pharm. Res. (2006) 23 (1), 95-103에 있어서 사용되고 있는 방법을 사용하여 결정될 수 있다. 또한 항원이 어떠한 기능을 생체내에서 나타내는 경우, 항원이 항원의 기능을 중화하는 항원 결합 분자(안타고니스트 분자)와 결합해 있는지 여부는 그 항원의 기능이 중화되어 있는지 여부로 평가하는 것도 가능하다. 항원의 기능이 중화되어 있는지 여부는 항원의 기능을 반영하는 어떠한 생체내 마커를 측정함으로써 평가될 수 있다. 항원이 항원의 기능을 활성화하는 항원 결합 분자(아고니스트 분자)와 결합해 있는지 여부는 항원의 기능을 반영하는 어떠한 생체내 마커를 측정함으로써 평가될 수 있다.
유리 항원의 혈장 중 농도의 측정, 혈장 중의 총항원량에 대한 혈장 중의 유리 항원량 비율의 측정, 생체내 마커의 측정 등의 측정은 특별히 한정되지 않으나, 항원 결합 분자가 투여된 뒤부터 일정 시간이 경과된 후에 행해지는 것이 바람직하다. 본 발명에 있어서 항원 결합 분자가 투여된 뒤부터 일정 시간이 경과된 후란 특별히 한정되지 않고, 투여된 항원 결합 분자의 성질 등에 따라 당업자가 적시 결정하는 것이 가능하고, 예를 들면 항원 결합 분자를 투여한 뒤부터 1일 경과 후, 항원 결합 분자를 투여한 뒤부터 3일 경과 후, 항원 결합 분자를 투여한 뒤부터 7일 경과 후, 항원 결합 분자를 투여한 뒤부터 14일 경과 후, 항원 결합 분자를 투여한 뒤부터 28일 경과 후 등을 들 수 있다. 본 발명에 있어서 「혈장 중 항원 농도」란 항원 결합 분자 결합 항원과 항원 결합 분자 비결합 항원을 합계한 농도인 「혈장 중 총항원 농도」 또는 항원 결합 분자 비결합 항원 농도인 「혈장 중 유리 항원 농도」 모두 포함되는 개념이다.
혈장 중 총항원 농도는 항원 결합 분자로서 항원에 대한 결합 활성이 이온 농도 비의존적인 항원 결합 도메인을 포함하는 항원 결합 분자, 또는 FcγR에 대한 결합 활성이 손상된 Fc영역을 포함하는 항원 결합 분자를 투여한 경우와 비교하여, 또는 본 발명의 항원 결합 분자를 투여하지 않는 경우와 비교하여, 본 발명의 항원 결합 분자의 투여에 의해 2배, 5배, 10배, 20배, 50배, 100배, 200배, 500배, 1,000배 또는 그 이상 저감할 수 있다.
항원/항원 결합 분자 몰비는 아래에 나타내는 바와 같이 산출될 수 있다:
A값=각 시점에서의 항원의 몰농도
B값=각 시점에서의 항원 결합 분자의 몰농도
C값=각 시점에서의 항원 결합 분자의 몰농도당 항원의 몰농도(항원/항원 결합 분자 몰비)
C=A/B.
C값이 보다 작은 경우는 항원 결합 분자당 항원 소실효율이 보다 높은 것을 나타내고, C값이 보다 큰 경우는 항원 결합 분자당 항원 소실효율이 보다 낮은 것을 나타낸다.
항원/항원 결합 분자 몰비는 상기와 같이 산출될 수 있다.
항원/항원 결합 분자 몰비는 항원 결합 분자로서 본 발명에서 개시되는 면역 복합체를 형성할 수 없는 항원 결합 분자, 항원에 대한 결합 활성이 이온 농도 비의존적인 항원 결합 도메인을 포함하는 항원 결합 분자, 또는 FcγR 또는 FcRn에 대한 결합 활성이 손상된 Fc영역을 포함하는 항원 결합 분자를 투여한 경우와 비교하여 본 발명의 항원 결합 분자의 투여에 의해 2배, 5배, 10배, 20배, 50배, 100배, 200배, 500배, 1,000배 또는 그 이상 저감 가능하다.
본 발명에 있어서 본 발명의 항원 결합 분자와 비교하는 참조 항원 결합 분자로서 본 발명에서 개시되는 면역 복합체를 형성할 수 없는 항원 결합 분자, 항원에 대한 결합 활성이 이온 농도 비의존적인 항원 결합 도메인을 포함하는 항원 결합 분자, 또는 FcγR 또는 FcRn에 대한 결합 활성이 손상된 Fc영역을 포함하는 항원 결합 분자가 사용된다.
혈장 중으로부터 세포내로의 본 발명의 항원 결합 분자의 흡수에 FcRn이 개재하는 경로가 이용되는 경우의 혈장 중 총항원 농도 또는 항원/항체 몰비의 감소는 항원 결합 분자가 마우스 카운터파트 항원과 교차반응하지 않는 경우는 인간 FcRn 형질전환 마우스 계통 32 또는 계통 276(Jackson Laboratories, Methods Mol. Biol. (2010) 602, 93-104)을 사용하여, 항원 항체 동시 주사 모델 또는 정상(定常)상태 항원 주입 모델 중 어느 하나에 의해 평가하는 것도 가능하다. 항원 결합 분자가 마우스 카운터파트와 교차반응하는 경우는 인간 FcRn 형질전환 마우스 계통 32 또는 계통 276(Jackson Laboratories)에 항원 결합 분자를 단순히 주사함으로써 평가하는 것도 가능하다. 동시 주사 모델의 경우는 항원 결합 분자와 항원의 혼합물을 마우스에 투여한다. 정상상태 항원 주입 모델의 경우는 일정 혈장 중 항원 농도를 달성하기 위해 마우스에 항원용액을 충전한 주입 펌프를 매입하고, 다음으로 항원 결합 분자를 마우스에 주사한다. 시험 항원 결합 분자를 동일한 용량으로 투여한다. 혈장 중 총항원 농도, 혈장 중 유리 항원 농도 및 혈장 중 항원 결합 분자 농도를 당업자 공지의 방법을 사용하여 적절한 시점에서 측정한다.
혈장 중으로부터 세포내로의 본 발명의 항원 결합 분자의 흡수에 FcγR이 개재하는 경로가 이용되는 경우의 혈장 중 총항원 농도 또는 항원/항체 몰비의 감소는 항원 결합 분자가 마우스 카운터파트 항원과 교차반응하지 않는 경우는 통상 사용되는 C57BL/6J 마우스(Charles River Japan)를 사용하여, 항원 항체 동시 주사 모델 또는 정상상태 항원 주입 모델 중 어느 하나에 의해 평가하는 것도 가능하다. 항원 결합 분자가 마우스 카운터파트와 교차반응하는 경우는 통상 사용되는 C57BL/6J 마우스(Charles River Japan)에 항원 결합 분자를 단순히 주사함으로써 평가하는 것도 가능하다.
동시 주사 모델의 경우는 항원 결합 분자와 항원의 혼합물을 마우스에 투여한다. 정상상태 항원 주입 모델의 경우는 일정의 혈장 중 항원 농도를 달성하기 위해 마우스에 항원 용액을 충전한 주입 펌프를 매입하고, 다음으로 항원 결합 분자를 마우스에 주사한다. 시험 항원 결합 분자를 같은 용량으로 투여한다. 혈장 중 총항원 농도, 혈장 중 유리 항원 농도 및 혈장 중 항원 결합 분자 농도를 당업자 공지의 방법을 사용하여 적절한 시점에서 측정한다.
투여 2일 후, 4일 후, 7일 후, 14일 후, 28일 후, 56일 후 또는 84일 후에 혈장 중의 총항원 농도 또는 유리 항원 농도 및 항원/항원 결합 분자 몰비를 측정하여 본 발명의 장기효과를 평가할 수 있다. 바꿔 말하면 본 발명의 항원 결합 분자의 특성을 평가할 목적으로 장기간의 혈장 중 항원 농도가 항원 결합 분자의 투여 2일 후, 4일 후, 7일 후, 14일 후, 28일 후, 56일 후 또는 84일 후에 혈장 중의 총항원 농도 또는 유리 항원 농도 및 항원/항원 결합 분자 몰비를 측정함으로써 결정된다. 본 발명에 기재된 항원 결합 분자에 의해 혈장 중 항원 농도 또는 항원/항원 결합 분자 몰비의 감소가 달성되는지 여부는 앞서 기재한 임의의 하나 또는 복수의 시점에서 그의 감소를 평가함으로써 결정될 수 있다.
투여 15분 후, 1시간 후, 2시간 후, 4시간 후, 8시간 후, 12시간 후 또는 24시간 후에 혈장 중의 총항원 농도 또는 유리 항원 농도 및 항원/항원 결합 분자 몰비를 측정하여 본 발명의 단기효과를 평가할 수 있다. 바꿔 말하면 본 발명의 항원 결합 분자의 특성을 평가할 목적으로, 단기간의 혈장 중 항원 농도가 항원 결합 분자의 투여 15분 후, 1시간 후, 2시간 후, 4시간 후, 8시간 후, 12시간 후 또는 24시간 후에 혈장 중의 총항원 농도 또는 유리 항원 농도 및 항원/항원 결합 분자 몰비를 측정함으로써 결정된다.
본 발명의 항원 결합 분자의 투여경로는 피내 주사, 정맥내 주사, 유리체내 주사, 피하 주사, 복강내 주사, 비경구 주사 및 근육내 주사로부터 선택할 수 있다.
본 발명에 있어서는 인간에 있어서의 항원 결합 분자의 약물동태가 개선되는 것이 바람직하다. 인간에서의 혈장 중 체류성을 측정하는 것이 곤란한 경우에는 마우스(예를 들면 정상 마우스, 인간 항원 발현 형질전환 마우스, 인간 FcRn 발현 형질전환 마우스 등) 또는 원숭이(예를 들면 게잡이원숭이 등)에서의 혈장 중 체류성을 토대로 인간에서의 혈장 중 체류성을 예측할 수 있다.
본 발명에 있어서의 「항원 결합 분자의 약물동태의 개선, 혈장 중 체류성의 향상」이란 항원 결합 분자를 생체에 투여했을 때 중 어느 하나의 약물동태 파라미터가 개선되어 있는 것(혈장 중 반감기의 증가, 평균 혈장 중 체류시간의 증가, 혈장 중 클리어런스의 저하, 생물학적 이용률(bioavailability) 중 어느 하나) 또는 투여 후의 적절한 시간에 있어서의 항원 결합 분자의 혈장 중 농도가 향상되어 있는 것을 의미한다. 항원 결합 분자의 혈장 중 반감기, 평균 혈장 중 체류시간, 혈장 중 클리어런스, 생물학적 이용률 등 중 어느 하나의 파라미터(파마코키네틱스 연습에 의한 이해(난잔도))를 측정함으로써 판단하는 것이 가능하다. 예를 들면, 항원 결합 분자를 마우스(정상 마우스 및 인간 FcRn 형질전환 마우스), 랫트, 원숭이, 토끼, 개, 인간 등에 투여한 경우, 항원 결합 분자의 혈장 중 농도를 측정하여 각 파라미터를 산출하고, 혈장 중 반감기가 길어졌거나 또는 평균 혈장 중 체류시간이 길어진 경우 등에는 항원 결합 분자의 약물동태가 개선되었다고 할 수 있다. 이들 파라미터는 당업자에게 공지의 방법에 의해 측정하는 것이 가능하며, 예를 들면, 약물동태 해석 소프트웨어 WinNonlin(Pharsight)을 사용하여 부속의 절차 설명서에 따라 비구획(Noncompartmental) 해석을 함으로써 적당히 평가할 수 있다.
특정 이론에 구속되는 것은 아니나, 본 발명의 (i) Fc영역 및 (ii) 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인을 포함하는 항원 결합 분자로서, 둘 이상의 당해 항원 결합 분자 및 둘 이상의 항원 결합 단위의 항원을 포함하는 면역 복합체를 형성하는 것이 가능한 항원 결합 분자가 혈장 중으로부터 당해 항원 결합 단위를 소실시킬 가능성이 있는 하나의 메커니즘으로서, 아래와 같은 메커니즘이 예시된다. sIL-6R 등과 같이 항원 결합 단위가 1 단위(즉 단량체)인 경우, 2가의 항원 결합 도메인을 포함하는 1 분자의 항체에 대해 2 분자(즉 2 단위의 항원 결합 단위)의 항원이 결합하고, 1 분자의 항sIL-6R 항체와 2 단위의 항원 결합 단위를 포함하는 2 분자의 항원 분자와 복합체를 형성한다. 그 때문에 이러한 항원과 항체의 복합체는 도 1에 나타내는 바와 같이 하나의 Fc영역(천연형 IgG1의 Fc영역)만 갖는다. 당해 복합체는 하나의 Fc영역을 매개로 1 분자의 FcγR 또는 2 분자의 FcRn에 결합하기 때문에, 이들 수용체에 대한 친화성은 통상의 IgG 항체와 동일하고 세포내로의 흡수는 주로 비특이적으로 일어나는 것으로 생각된다.
한편 중쇄 및 경쇄의 헤테로 복합체의 이량체인 인간 IgA 등과 같이 항원 결합 단위가 2 단위인 경우, 당해 항원 결합 단위 중에는 항원 결합 도메인이 결합하는 에피토프도 2 단위 존재하게 된다. 그러나 2가의(즉 1 분자의 항IgA 항체에 포함되는 항원 결합 도메인이 동일 에피토프에 결합하는) 항IgA 항체가 그 항원인 IgA에 결합하는 경우, 1 분자의 항IgA 항체에 포함되는 2가의 개개의 항원 결합 도메인이 1 분자의 IgA 분자에 존재하는 2 단위의 에피토프에 각각 결합하는 것은 에피토프의 배치 등의 측면에서 곤란할 것으로 생각된다. 그 결과, 1 분자의 항IgA 항체 중에 존재하는 2가의 항원 결합 도메인에 결합하는 2 분자의 IgA 중에 존재하는 2 단위의 항원 결합 단위에는 다른 항IgA 항체 분자가 결합함으로써, 적어도 4 분자(즉 항원 분자인 IgA의 2개의 분자와 항원 결합 분자인 항IgA 항체의 2개의 분자)를 포함하는 항원 항체 복합체(면역 복합체)를 형성하는 것으로 생각된다.
둘 이상의 항원 결합 단위를 포함하는 항원 분자에 결합하는 항체 등의 항원 결합 분자가 적어도 사량체의 큰 면역 복합체를 형성하는 경우, 당해 면역 복합체는 FcγR, FcRn, 보체 수용체 등에 대해 적어도 둘 이상의 다가의 Fc영역을 매개로 avidity로 강고하게 결합하는 것이 가능하다. 이 때문에 도 7에 나타내어지는 바와 같이 당해 복합체는 이들 수용체를 발현하는 세포에 효율적으로 흡수된다. 한편 1 단위의 항원 결합 단위를 포함하는 (단량체의) 항원 분자에 결합하는 등의 항원 결합 분자와 항원 분자의 면역 복합체의 이들 수용체에 대한 Fc영역을 매개로 한 친화성은 전술한 바와 같이 충분하지 않기 때문에, 도 1에 나타내어지는 바와 같이 이들 수용체를 발현하는 세포내로 당해 면역 복합체는 주로 비특이적(avidity에 의한 결합을 매개로 하는 흡수보다는 비효율적)으로 흡수된다. 즉, avidity에 의한 결합을 매개로 하는 흡수보다도 비효율적이다.
둘 이상의 항원 결합 단위를 포함하는 항원 분자에 결합하는 항체 등의 항원 결합 분자로서, pH 또는 Ca 의존적 결합 등과 같이 이온 농도의 조건에 따라 항원에 대한 결합이 변화되는 항원 결합 도메인을 포함하는 항체가 혈장 중에서 적어도 4 분자(2 분자의 항원 및 2 분자의 항체) 이상으로 이루어지는 항원 항체 복합체(면역 복합체)를 형성한 경우에 있어서, 당해 면역 복합체가 세포내에 흡수되었을 때는 그 이온 농도의 조건이 혈장 중의 조건과는 다른 엔도솜 내에서 항원이 당해 항체로부터 해리된다. 이 때문에, 당해 면역 복합체가 흡수된 세포의 엔도솜 내에서는 당해 면역 복합체의 형성이 해소된다. 해리된 항원은 엔도솜 내에서 FcRn에 결합할 수 없기 때문에 리소좀으로 이행한 후에 분해된다. 한편 항원을 해리한 항체는 엔도솜 내에서 FcRn에 결합한 후에 혈장 중으로 리사이클되는 것으로 생각된다(도 7).
전술한 바와 같이 둘 이상의 항원 결합 단위를 포함하는 다량체 항원에 대한 천연 IgG1형의 정상영역을 포함하는 pH 또는 Ca 의존적 결합 항체가 큰 면역 복합체를 형성하여 avidity로 FcγR, FcRn, 보체 수용체 등에 결합하는 것이 가능하면 항원의 소실만을 선택적으로 대폭 가속시키는 것이 가능할 것으로 생각된다. 인간 IgA에 결합하는 GA2-IgG1이 투여된 경우에도 그러한 큰 면역 복합체가 형성되어 있는 것으로 생각되었다. 실제로 실시예 3에서 나타내어진 바와 같이 GA2-IgG1에 대해 마우스 FcγR에 대한 결합이 손상된 개변이 도입된 GA2-IgG1-FcγR(-)는 인간 IgA의 소실을 GA2-IgG1과 같이 인간 IgA 단독과 비교하여 대폭 가속시키는 것은 불가능하여 인간 IgA 단독과 동등한 소실을 나타내었다. 이 사실로부터 GA2-IgG1이 인간 IgA의 소실을 대폭 가속시킬 수 있었던 것은 둘 이상의 항원 결합 단위를 포함하는 다량체 항원인 인간 IgA와 GA2-IgG1을 포함하는 면역 복합체가 FcγR에 대해 avidity로 결합하여 FcγR을 발현하는 세포에 신속하게 흡수되었기 때문이라 생각되었다. 당해 면역 복합체를 흡수한 세포의 엔도솜 내에서 당해 면역 복합체로부터 해리된 IgA는 리소좀으로 분해된다. 그와 함께 당해 엔도솜 내에서 FcRn에 결합 후 혈장 중으로 리사이클된 IgA를 해리한 항체는 재차 혈장 중의 IgA에 결합하는 것이 가능해진다. 이와 같이 하여 혈장 중의 인간 IgA의 소실이 대폭 가속된 것으로 생각된다. 항원의 혈장 중으로부터의 소실을 가속시키는 방법으로서, pH 중성역에서 FcRn에 대해 결합하는 Fc영역의 아미노산의 개변체를 사용하는 방법이 국제공개 WO2011/122011에 기재되어 있다. 본 발명은 전술한 개변체를 사용하지 않고 둘 이상의 항원 결합 단위를 포함하는 다량체 항원의 혈장 중으로부터의 소실을 가속시키는 방법으로서 유용한 동시에, 전술한 개변체와 조합시킴으로써 둘 이상의 항원 결합 단위를 포함하는 다량체 항원의 혈장 중으로부터의 소실을 추가로 가속시키는 것이 가능하다.
혈장 중으로부터 당해 항원을 소실시키기 위한 ex vivo의 방법
본 발명에 의해 제공되는 혈장 중으로부터 당해 항원을 소실시키기 위한 방법에 있어서의 항원 결합 분자의 사용의 비한정의 일태양으로서, 대상으로부터 단리된 혈장을 본 발명의 항원 결합 분자와 접촉시켜 형성시킨 2 분자 이상의 당해 항원 결합 분자 및 2 분자 이상의 항원(단 당해 항원은 둘 이상의 항원 결합 단위를 포함하는)을 포함하는 면역 복합체를 FcRn 및/또는 Fcγ 수용체를 발현하는 세포에 접촉시키는 것을 포함하는 혈장 중으로부터 당해 항원을 소실시키기 위한 소위 ex vivo의 방법에 있어서의 당해 항원 결합 분자의 사용도 예시된다. 항원 결합 분자를 생체내에 투여하는 방법 대신에/방법과 조합하여 항원 결합 분자 및 항원 결합 분자에 결합하는 항원을 포함하는 혈장을 생체외로 일단 취출한 후에, FcRn 및/또는 Fcγ 수용체를 발현하는 세포와 접촉시켜 일정 기간 경과 후에 세포외로 리사이클(재분비 또는 재순환이라고도 한다)된 항원을 결합하지 않는 항원 결합 분자를 포함하는 혈장을 생체내로 되돌리는 소위 ex vivo의 방법으로도 혈장 중 항원의 소실속도를 촉진시킬 수 있다.
또한 본 발명에 의해 제공되는 혈장 중으로부터 당해 항원을 소실시키기 위한 방법에 있어서의 항원 결합 분자의 사용의 비한정의 일태양으로서, 본 발명의 항원 결합 분자가 투여된 대상으로부터 단리된 혈장 중에 존재하는 2 분자 이상의 당해 항원 결합 분자 및 2 분자 이상의 항원(단 당해 항원은 둘 이상의 항원 결합 단위를 포함하는)을 포함하는 면역 복합체를 FcRn 및/또는 Fcγ 수용체를 발현하는 세포에 접촉시키는 것을 포함하는 혈장 중으로부터 당해 항원을 소실시키기 위한 소위 ex vivo의 방법에 있어서의 당해 항원 결합 분자의 사용도 예시된다.
당해 항원이 혈장으로부터 소실되어 있는지 여부는 전술한 혈장 중 항원의 소실속도가 본 발명의 항원 결합 분자 대신에 본 발명에서 개시되는 면역 복합체를 형성할 수 없는 항원 결합 분자, 항원에 대한 결합 활성이 이온 농도 비의존적인 항원 결합 도메인을 포함하는 항원 결합 분자, 또는 FcγR 또는 FcRn에 대한 결합 활성이 손상된 Fc영역을 포함하는 항원 결합 분자를 대조로 하여 비교했을 때 촉진되어 있는지 여부를 평가하는 것 등에 의해 확인될 수 있다.
Fc영역 항원에 대한 결합 활성 이온 농도 의존적인 항원 결합 도메인을 포함하는 항원 결합 분자의 스크리닝방법
본 발명은 아래의 공정(a)~(g)를 포함하는, 혈장 중으로부터 당해 항원을 소실시키는 기능을 갖는 항원 결합 분자의 스크리닝방법;
(a) 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인을 얻는 공정,
(b) 상기 공정(a)에서 선택된 항원 결합 도메인을 코드하는 유전자를 얻는 공정,
(c) 상기 공정(b)에서 얻어진 유전자를 Fc영역을 코드하는 유전자와 작동 가능하게 연결하는 공정,
(d) 상기 공정(c)에서 작동 가능하게 연결된 유전자를 포함하는 숙주세포를 배양하는 공정,
(e) 상기 공정(d)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정,
(f) 상기 공정(e)에서 얻어진 항원 결합 분자를 항원과 접촉시키는 공정,
(g) 당해 항원 결합 분자와 당해 항원을 포함하는 면역 복합체의 형성을 평가하는 공정
을 제공한다.
본 발명의 비한정의 일태양에서는 상기와 같이 선택된 조건에 따라 결합 활성이 변화되는 항원 결합 도메인을 코드하는 폴리뉴클레오티드가 단리된 후에, 당해 폴리뉴클레오티드가 적절한 발현 벡터에 삽입된다. 예를 들면 항원 결합 도메인이 항체의 가변영역인 경우에는 당해 가변영역을 코드하는 cDNA가 얻어진 후에, 당해 cDNA의 양말단에 삽입된 제한효소 사이트를 인식하는 제한효소에 의해 그 cDNA가 소화된다. 바람직한 제한효소는 항원 결합 분자의 유전자를 구성하는 염기서열에 출현하는 빈도가 낮은 염기서열을 인식하여 소화한다. 또한 1 카피의 소화 단편을 벡터에 바른 방향으로 삽입하기 위해서는 부착 말단을 부여하는 제한효소의 삽입이 바람직하다. 상기와 같이 소화된 항원 결합 분자의 가변영역을 코드하는 cDNA를 적당한 발현 벡터에 삽입함으로써 본 발명의 항원 결합 분자의 발현 벡터가 취득될 수 있다. 이때 항체 정상영역(C영역)을 코드하는 유전자와 상기 가변영역을 코드하는 유전자가 인프레임으로 융합될 수 있다.
목적하는 항원 결합 분자를 제조하기 위해, 항원 결합 분자를 코드하는 폴리뉴클레오티드가 제어 서열로 작동 가능하게 연결된 태양으로 발현 벡터에 삽입된다. 제어 서열이란 예를 들면 인핸서나 프로모터를 포함한다. 또한 발현한 항원 결합 분자가 세포외로 분비되도록 적절한 시그날 서열이 아미노 말단에 연결될 수 있다. 예를 들면 시그날 서열로서 아미노산 서열 MGWSCIILFLVATATGVHS(서열번호:5)를 갖는 펩티드가 사용되나, 이것 이외에도 적합한 시그날 서열이 연결될 수 있다. 발현된 폴리펩티드는 상기 서열의 카르복실 말단 부분에서 절단되고, 절단된 폴리펩티드가 성숙 폴리펩티드로서 세포외로 분비될 수 있다. 이어서, 이 발현 벡터에 의해 적당한 숙주세포가 형질전환됨으로써 목적하는 항원 결합 분자를 코드하는 폴리뉴클레오티드를 발현하는 재조합 세포가 취득될 수 있다. 당해 재조합 세포로부터 본 발명의 항원 결합 분자를 제조하는 방법은 상기 항체의 항목에서 기재한 방법에 준하여 제조될 수 있다.
핵산에 관하여 「작동 가능하게 연결되었다」는 것은 그 핵산이 다른 핵산 서열과 기능적인 관계에 있는 것을 의미한다. 예를 들면 프리시퀀스(presequence) 또는 분비 리더의 DNA는 어떤 폴리펩티드의 분비에 관여하고 있는 전구체 단백질로서 발현하는 경우는 그 폴리펩티드의 DNA와 작동 가능하게 결합되어 있다. 프로모터 또는 인핸서는 그것이 어떤 코드 서열의 전사에 영향을 미치는 경우는 그 서열과 작동 가능하게 연결되어 있다. 또는 리보솜 결합부는 그것이 번역을 용이하게 하는 위치에 있는 경우는 작동 가능하게 코드 서열과 연결되어 있다. 통상 「작동 가능하게 연결되었다」는 것은 결합한 DNA 서열이 연속되어 있어 분비 리더의 경우는 연속해서 리딩 프레임 내에 있는 것을 의미한다. 그러나 인핸서는 연속할 필요는 없다. 연결은 적절한 제한부위에서 라이게이션에 의해 달성된다. 이러한 부위가 존재하지 않는 경우, 합성 올리고뉴클레오티드 어댑터 또는 링커가 종래의 관행에 따라 사용된다. 또한 상기 Overlap Extension PCR의 수법으로도 연결된 핵산이 제작될 수 있다.
본 발명의 비한정의 일태양에 있어서, 상기와 같이 선택된 조건에 따라 결합 활성이 변화되는 항원 결합 분자를 코드하는 폴리뉴클레오티드가 단리된 후에, 당해 폴리뉴클레오티드의 개변체가 적절한 발현 벡터에 삽입된다. 이러한 개변체의 하나로서 랜덤화 가변영역 라이브러리로서 합성 라이브러리나 비인간 동물을 기원으로 하여 제작된 면역 라이브러리를 사용함으로써 스크리닝된 본 발명의 항원 결합 분자를 코드하는 폴리뉴클레오티드 서열이 인간화된 개변체를 바람직하게 들 수 있다. 인간화된 항원 결합 분자의 개변체의 제작방법은 상기 인간화 항체의 제작방법과 동일한 방법이 채용될 수 있다.
또한 또한 개변체의 그 밖의 태양으로서, 랜덤화 가변영역 라이브러리로서 합성 라이브러리나 나이브 라이브러리를 사용함으로써 스크리닝된 본 발명의 항원 결합 분자의 항원에 대한 결합 친화성의 증강(친화성 성숙화)을 초래하는 개변이 단리된 폴리뉴클레오티드 서열에 행해진 개변체를 바람직하게 들 수 있다. 그러한 개변체는 CDR의 변이 유도(Yang 등(J. Mol. Biol. (1995) 254, 392-403)), 체인 셔플링(Marks 등(Bio/Technology (1992) 10, 779-783)), E.coli의 변이 유발주의 사용(Low 등(J. Mol. Biol. (1996) 250, 359-368)), DNA 셔플링(Patten 등(Curr. Opin. Biotechnol. (1997) 8, 724-733)), 파지 디스플레이(Thompson 등(J. Mol. Biol. (1996) 256, 77-88)) 및 유성 PCR(sexual PCR)(Clameri 등(Nature (1998) 391, 288-291))을 포함하는 각종 친화성 성숙화의 공지 순서에 의해 취득될 수 있다.
상기와 같이 본 발명의 제조방법에 의해 제작되는 항원 결합 분자로서 Fc영역을 포함하는 항원 결합 분자를 들 수 있는데, Fc영역으로서 다양한 개변체가 사용될 수 있다. 이러한 Fc영역의 개변체를 코드하는 폴리뉴클레오티드와, 상기와 같이 선택된 조건에 따라 결합 활성이 변화되는 항원 결합 도메인을 코드하는 폴리뉴클레오티드가 인프레임으로 연결된 중쇄를 갖는 항원 결합 분자를 코드하는 폴리뉴클레오티드도 본 발명의 개변체의 일태양으로서 바람직하게 들 수 있다.
본 발명의 비한정의 일태양에서는 Fc영역으로서 예를 들면 서열번호:13으로 표시되는 IgG1(N말단에 Ala가 부가된 AAC82527.1), 서열번호:14로 표시되는 IgG2(N말단에 Ala가 부가된 AAB59393.1), 서열번호:15로 표시되는 IgG3(CAA27268.1), 서열번호:16으로 표시되는 IgG4(N말단에 Ala가 부가된 AAB59394.1) 등의 항체의 Fc 정상영역을 바람직하게 들 수 있다. IgG 분자의 혈장 중 체류성이 비교적 긴(혈장 중으로부터의 소실이 느린) 것은 IgG 분자의 샐비지 수용체로서 알려져 있는 FcRn 특히 인간 FcRn이 기능하고 있기 때문이다. 음세포작용에 의해 엔도솜에 흡수된 IgG 분자는 엔도솜 내의 산성 조건하에 있어서 엔도솜 내에 발현하고 있는 FcRn 특히 인간 FcRn에 결합한다. FcRn 특히 인간 FcRn에 결합할 수 없었던 IgG 분자는 리소좀으로 진행되고 거기서 분해되는데, FcRn 특히 인간 FcRn으로 결합한 IgG 분자는 세포 표면으로 이행되어 혈장 중의 중성 조건하에 있어서 FcRn 특히 인간 FcRn으로부터 해리됨으로써 재차 혈장 중으로 되돌아간다.
통상의 Fc영역을 포함하는 항체는 혈장 중의 pH 중성역의 조건하에 있어서 FcRn 특히 인간 FcRn에 대한 결합 활성을 갖지 않기 때문에, 통상의 항체 및 항체-항원 복합체는 비특이적인 엔도시토시스에 의해 세포에 흡수되어, 엔도솜 내의 pH 산성역의 조건하에서 FcRn 특히 인간 FcRn에 결합함으로써 세포 표면으로 수송된다. FcRn 특히 인간 FcRn은 항체를 엔도솜 내로부터 세포 표면으로 수송하기 때문에 FcRn 특히 인간 FcRn의 일부는 세포 표면에도 존재하고 있는 것으로 생각되는데, 세포 표면의 pH 중성역의 조건하에서는 항체는 FcRn 특히 인간 FcRn으로부터 해리되기 때문에 항체는 혈장 중으로 리사이클된다.
본 발명의 항원 결합 분자에 포함하는 것이 가능한 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 갖는 Fc영역은 어떠한 방법으로도 취득될 수 있으나, 구체적으로는 출발 Fc영역으로서 사용되는 인간 IgG형 면역 글로불린의 아미노산의 개변에 의해 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 갖는 Fc영역이 취득될 수 있다. 개변을 위한 바람직한 IgG형 면역 글로불린의 Fc영역으로서는 예를 들면 인간 IgG(IgG1, IgG2, IgG3 또는 IgG4 및 그들의 개변체)의 Fc영역을 들 수 있다. 다른 아미노산으로의 개변은 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 갖거나 또는 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 높일 수 있는 한 어떠한 위치의 아미노산도 개변될 수 있다. 항원 결합 분자가 인간 Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 중성역에 있어서의 인간 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변이 포함되어 있는 것이 바람직하다. 그러한 개변이 가능한 아미노산으로서, 예를 들면 EU 넘버링 221번 위치~225번 위치, 227번 위치, 228번 위치, 230번 위치, 232번 위치, 233번 위치~241번 위치, 243번 위치~252번 위치, 254번 위치~260번 위치, 262번 위치~272번 위치, 274번 위치, 276번 위치, 278번 위치~289번 위치, 291번 위치~312번 위치, 315번 위치~320번 위치, 324번 위치, 325번 위치, 327번 위치~339번 위치, 341번 위치, 343번 위치, 345번 위치, 360번 위치, 362번 위치, 370번 위치, 375번 위치~378번 위치, 380번 위치, 382번 위치, 385번 위치~387번 위치, 389번 위치, 396번 위치, 414번 위치, 416번 위치, 423번 위치, 424번 위치, 426번 위치~438번 위치, 440번 위치 및 442번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산을 들 수 있다. 보다 구체적으로는 예를 들면 표 5에 기재된 바와 같은 아미노산의 개변을 들 수 있다. 이들 아미노산의 개변에 의해 IgG형 면역 글로불린의 Fc영역의 pH 중성역에 있어서의 인간 FcRn에 대한 결합이 증강된다.
본 발명에 사용하기 위해 이들 개변 중 pH 중성역에 있어서도 인간 FcRn에 대한 결합을 증강시키는 개변이 적절히 선택된다. 특히 바람직한 Fc영역 개변체의 아미노산으로서, 예를 들면 EU 넘버링으로 표시되는 237번 위치, 248번 위치, 250번 위치, 252번 위치, 254번 위치, 255번 위치, 256번 위치, 257번 위치, 258번 위치, 265번 위치, 286번 위치, 289번 위치, 297번 위치, 298번 위치, 303번 위치, 305번 위치, 307번 위치, 308번 위치, 309번 위치, 311번 위치, 312번 위치, 314번 위치, 315번 위치, 317번 위치, 332번 위치, 334번 위치, 360번 위치, 376번 위치, 380번 위치, 382번 위치, 384번 위치, 385번 위치, 386번 위치, 387번 위치, 389번 위치, 424번 위치, 428번 위치, 433번 위치, 434번 위치 및 436번 위치의 아미노산을 들 수 있다. 이들 아미노산으로부터 선택되는 하나 이상의 아미노산을 다른 아미노산으로 치환함으로써, 항원 결합 분자에 포함되는 Fc영역의 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 증강시킬 수 있다.
특히 바람직한 개변으로서는 예를 들면 Fc영역의 EU 넘버링으로 표시되는
237번 위치의 아미노산이 Met,
248번 위치의 아미노산이 Ile,
250번 위치의 아미노산이 Ala, Phe, Ile, Met, Gln, Ser, Val, Trp 또는 Tyr 중 어느 하나,
252번 위치의 아미노산이 Phe, Trp 또는 Tyr 중 어느 하나,
254번 위치의 아미노산이 Thr,
255번 위치의 아미노산이 Glu,
256번 위치의 아미노산이 Asp, Asn, Glu 또는 Gln 중 어느 하나,
257번 위치의 아미노산이 Ala, Gly, Ile, Leu, Met, Asn, Ser, Thr 또는 Val 중 어느 하나,
258번 위치의 아미노산이 His,
265번 위치의 아미노산이 Ala,
286번 위치의 아미노산이 Ala 또는 Glu 중 어느 하나,
289번 위치의 아미노산이 His,
297번 위치의 아미노산이 Ala,
303번 위치의 아미노산이 Ala,
305번 위치의 아미노산이 Ala,
307번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
308번 위치의 아미노산이 Ala, Phe, Ile, Leu, Met, Pro, Gln 또는 Thr 중 어느 하나,
309번 위치의 아미노산이 Ala, Asp, Glu, Pro 또는 Arg 중 어느 하나,
311번 위치의 아미노산이 Ala, His 또는 Ile 중 어느 하나,
312번 위치의 아미노산이 Ala 또는 His 중 어느 하나,
314번 위치의 아미노산이 Lys 또는 Arg 중 어느 하나,
315번 위치의 아미노산이 Ala, Asp 또는 His 중 어느 하나,
317번 위치의 아미노산이 Ala,
332번 위치의 아미노산이 Val,
334번 위치의 아미노산이 Leu,
360번 위치의 아미노산이 His,
376번 위치의 아미노산이 Ala,
380번 위치의 아미노산이 Ala,
382번 위치의 아미노산이 Ala,
384번 위치의 아미노산이 Ala,
385번 위치의 아미노산이 Asp 또는 His 중 어느 하나,
386번 위치의 아미노산이 Pro,
387번 위치의 아미노산이 Glu,
389번 위치의 아미노산이 Ala 또는 Ser 중 어느 하나,
424번 위치의 아미노산이 Ala,
428번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
433번 위치의 아미노산이 Lys,
434번 위치의 아미노산이 Ala, Phe, His, Ser, Trp 또는 Tyr 중 어느 하나, 또는
436번 위치의 아미노산이 His, Ile, Leu, Phe, Thr 또는 Val
의 군으로부터 선택되는 적어도 하나 이상의 아미노산의 개변을 들 수 있다. 또한 개변되는 아미노산의 수는 특별히 한정되지 않고, 1개소만의 아미노산이 개변될 수 있고 2개소 이상의 아미노산이 개변될 수 있다. 2개소 이상의 아미노산 개변의 조합으로서는 예를 들면 표 5-1~5-32에 기재된 바와 같은 조합을 들 수 있다.
또한 본 발명이 포함하는 Fc영역으로서 인간 IgG1(서열번호:13), IgG2(서열번호:14), IgG3(서열번호:15) 또는 IgG4(서열번호:16)로 표시되는 Fc영역 외에, EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 FcγR 결합 개변 Fc영역도 적절히 사용될 수 있다. 그러한 FcγR 결합 개변 Fc영역은 천연형 인간 IgG의 Fc영역의 아미노산을 개변함으로써 제작될 수 있다. Fc영역의 FcγR에 대한 결합 활성이 EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 FcγR에 대한 결합 활성보다 높은지 여부는 전술한 바와 같은 방법을 사용하여 적절히 평가될 수 있다.
본 발명에 있어서 Fc영역의 「아미노산의 개변」 또는 「아미노산 개변」이란 출발 Fc영역의 아미노산 서열과는 상이한 아미노산 서열로 개변하는 것을 포함한다. 출발 Fc영역의 수식 개변체가 pH 중성역에 있어서 인간 Fcγ 수용체에 결합할 수 있는 한 어느 Fc영역도 출발 Fc영역으로서 사용될 수 있다. 또한 이미 개변이 가해진 Fc영역을 출발 Fc영역으로서 추가적인 개변이 가해진 Fc영역도 본 발명의 개변 Fc영역으로서 적합하게 사용될 수 있다. 출발 Fc영역이란 폴리펩티드 그 자체, 출발 Fc영역을 포함하는 조성물, 또는 출발 Fc영역을 코드하는 아미노산 서열을 의미할 수 있다. 출발 Fc영역에는 항체의 항목에서 개략 설명된 재조합에 의해 생산된 공지의 Fc영역이 포함될 수 있다. 출발 Fc영역의 기원은 한정되지 않지만 비인간 동물의 임의의 생물 또는 인간으로부터 취득될 수 있다. 바람직하게는 임의의 생물로서는 마우스, 랫트, 기니피그, 햄스터, 황무지쥐, 고양이, 토끼, 개, 염소, 양, 소, 말, 낙타 및 비인간 영장류로부터 선택되는 생물을 바람직하게 들 수 있다. 다른 태양에 있어서 출발 Fc영역은 또한 게잡이원숭이, 마모셋, 빨간털원숭이, 침팬지 또는 인간으로부터 취득될 수 있다. 바람직하게는 출발 Fc영역은 인간 IgG1으로부터 취득될 수 있지만, IgG의 특정 서브클래스에 한정되는 것도 아니다. 이는 인간 IgG1, IgG2, IgG3 또는 IgG4의 Fc영역을 출발 Fc영역으로서 적절히 사용할 수 있는 것을 의미한다. 마찬가지로, 본 명세서에 있어서 상기 임의의 생물로부터의 IgG의 임의의 클래스 또는 서브클래스의 Fc영역을, 바람직하게는 출발 Fc영역으로서 사용할 수 있는 것을 의미한다. 천연에 존재하는 IgG의 변이체 또는 조작된 유형의 예는 공지의 문헌(Curr. Opin. Biotechnol. (2009) 20 (6), 685-91, Curr. Opin. Immunol. (2008) 20 (4), 460-470, Protein Eng. Des. Sel. (2010) 23 (4), 195-202, 국제공개 WO2009/086320, WO2008/092117, WO2007/041635 및 WO2006/105338)에 기재되지만 그들에 한정되지 않는다.
개변의 예로서는 하나 이상의 변이, 예를 들면, 출발 Fc영역의 아미노산과는 상이한 아미노산 잔기로 치환된 변이, 또는 출발 Fc영역의 아미노산에 대해 하나 이상의 아미노산 잔기의 삽입 또는 출발 Fc영역의 아미노산으로부터 하나 이상의 아미노산의 결실 등이 포함된다. 바람직하게는 개변 후의 Fc영역의 아미노산 서열에는 천연으로 생기지 않는 Fc영역의 적어도 부분을 포함하는 아미노산 서열을 포함한다. 그러한 변종은 필연적으로 출발 Fc영역과 100% 미만의 서열 동일성 또는 유사성을 갖는다. 바람직한 실시형태에 있어서, 변종은 출발 Fc영역의 아미노산 서열과 약 75%~100% 미만의 아미노산 서열 동일성 또는 유사성, 보다 바람직하게는 약 80%~100% 미만, 보다 바람직하게는 약 85%~100% 미만의, 보다 바람직하게는 약 90%~100% 미만, 가장 바람직하게는 약 95%~100% 미만의 동일성 또는 유사성의 아미노산 서열을 갖는다. 본 발명의 비한정의 일태양에 있어서 출발 Fc영역 및 본 발명의 FcγR 결합 개변 Fc영역 사이에는 하나 이상의 아미노산의 차가 있다. 출발 Fc영역과 본 발명의 FcγR 결합 개변 Fc영역의 아미노산의 차이는 특히 전술한 EU 넘버링으로 특정되는 아미노산 잔기의 위치의 특정된 아미노산의 차이에 따라서도 적합하게 특정 가능하다.
본 발명의 항원 결합 분자에 포함되는, EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은(FcγR 결합 개변 Fc영역)은 어떠한 방법으로도 취득될 수 있는데, 구체적으로는 출발 Fc영역으로서 사용되는 인간 IgG형 면역 글로불린의 아미노산의 개변에 의해 당해 FcγR 결합 개변 Fc영역이 취득될 수 있다. 개변을 위한 바람직한 IgG형 면역 글로불린의 Fc영역으로서는 예를 들면 인간 IgG(IgG1, IgG2, IgG3 또는 IgG4 및 그들의 개변체)의 Fc영역을 들 수 있다.
다른 아미노산으로의 개변은 EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 한 어떠한 위치의 아미노산도 개변될 수 있다. 항원 결합 분자가 인간 Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 효과를 초래하는 개변이 포함되어 있는 것이 바람직하다. 이러한 아미노산의 개변으로서는 예를 들면 국제공개 WO2007/024249, WO2007/021841, WO2006/031370, WO2000/042072, WO2004/029207, WO2004/099249, WO2006/105338, WO2007/041635, WO2008/092117, WO2005/070963, WO2006/020114, WO2006/116260 및 WO2006/023403 등에 있어서 보고되어 있다.
그러한 개변이 가능한 아미노산으로서 예를 들면 EU 넘버링으로 표시되는 221번 위치, 222번 위치, 223번 위치, 224번 위치, 225번 위치, 227번 위치, 228번 위치, 230번 위치, 231번 위치, 232번 위치, 233번 위치, 234번 위치, 235번 위치, 236번 위치, 237번 위치, 238번 위치, 239번 위치, 240번 위치, 241번 위치, 243번 위치, 244번 위치, 245번 위치, 246번 위치, 247번 위치, 249번 위치, 250번 위치, 251번 위치, 254번 위치, 255번 위치, 256번 위치, 258번 위치, 260번 위치, 262번 위치, 263번 위치, 264번 위치, 265번 위치, 266번 위치, 267번 위치, 268번 위치, 269번 위치, 270번 위치, 271번 위치, 272번 위치, 273번 위치, 274번 위치, 275번 위치, 276번 위치, 278번 위치, 279번 위치, 280번 위치, 281번 위치, 282번 위치, 283번 위치, 284번 위치, 285번 위치, 286번 위치, 288번 위치, 290번 위치, 291번 위치, 292번 위치, 293번 위치, 294번 위치, 295번 위치, 296번 위치, 297번 위치, 298번 위치, 299번 위치, 300번 위치, 301번 위치, 302번 위치, 303번 위치, 304번 위치, 305번 위치, 311번 위치, 313번 위치, 315번 위치, 317번 위치, 318번 위치, 320번 위치, 322번 위치, 323번 위치, 324번 위치, 325번 위치, 326번 위치, 327번 위치, 328번 위치, 329번 위치, 330번 위치, 331번 위치, 332번 위치, 333번 위치, 334번 위치, 335번 위치, 336번 위치, 337번 위치, 339번 위치, 376번 위치, 377번 위치, 378번 위치, 379번 위치, 380번 위치, 382번 위치, 385번 위치, 392번 위치, 396번 위치, 421번 위치, 427번 위치, 428번 위치, 429번 위치, 434번 위치, 436번 위치 및 440번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산을 들 수 있다. 이들 아미노산의 개변에 의해 EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 Fc영역(FcγR 결합 개변 Fc영역)을 취득할 수 있다.
본 발명에 사용하기 위해 특히 바람직한 개변으로서는 예를 들면 Fc영역의 EU 넘버링으로 표시되는;
221번 위치의 아미노산이 Lys 또는 Tyr 중 어느 하나,
222번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
223번 위치의 아미노산이 Phe, Trp, Glu 또는 Lys 중 어느 하나,
224번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
225번 위치의 아미노산이 Glu, Lys 또는 Trp 중 어느 하나,
227번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
228번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
230번 위치의 아미노산이 Ala, Glu, Gly 또는 Tyr 중 어느 하나,
231번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
232번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
233번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
234번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
235번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
236번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
237번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
238번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
239번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
240번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
241번 위치의 아미노산이 Asp, Glu, Leu, Arg, Trp 또는 Tyr 중 어느 하나,
243번 위치의 아미노산이 Leu, Glu, Leu, Gln, Arg, Trp 또는 Tyr 중 어느 하나,
244번 위치의 아미노산이 His,
245번 위치의 아미노산이 Ala,
246번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
247번 위치의 아미노산이 Ala, Phe, Gly, His, Ile, Leu, Met, Thr, Val 또는 Tyr 중 어느 하나,
249번 위치의 아미노산이 Glu, His, Gln 또는 Tyr 중 어느 하나,
250번 위치의 아미노산이 Glu 또는 Gln 중 어느 하나,
251번 위치의 아미노산이 Phe,
254번 위치의 아미노산이 Phe, Met 또는 Tyr 중 어느 하나,
255번 위치의 아미노산이 Glu, Leu 또는 Tyr 중 어느 하나,
256번 위치의 아미노산이 Ala, Met 또는 Pro 중 어느 하나,
258번 위치의 아미노산이 Asp, Glu, His, Ser 또는 Tyr 중 어느 하나,
260번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
262번 위치의 아미노산이 Ala, Glu, Phe, Ile 또는 Thr 중 어느 하나,
263번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
264번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
265번 위치의 아미노산이 Ala, Leu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
266번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
267번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
268번 위치의 아미노산이 Asp, Glu, Phe, Gly, Ile, Lys, Leu, Met, Pro, Gln, Arg, Thr, Val 또는 Trp 중 어느 하나,
269번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
270번 위치의 아미노산이 Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
271번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
272번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
273번 위치의 아미노산이 Phe 또는 Ile 중 어느 하나,
274번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
275번 위치의 아미노산이 Leu 또는 Trp 중 어느 하나,
276번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
278번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
279번 위치의 아미노산이 Ala,
280번 위치의 아미노산이 Ala, Gly, His, Lys, Leu, Pro, Gln, Trp 또는 Tyr 중 어느 하나,
281번 위치의 아미노산이 Asp, Lys, Pro 또는 Tyr 중 어느 하나,
282번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
283번 위치의 아미노산이 Ala, Gly, His, Ile, Lys, Leu, Met, Pro, Arg 또는 Tyr 중 어느 하나,
284번 위치의 아미노산이 Asp, Glu, Leu, Asn, Thr 또는 Tyr 중 어느 하나,
285번 위치의 아미노산이 Asp, Glu, Lys, Gln, Trp 또는 Tyr 중 어느 하나,
286번 위치의 아미노산이 Glu, Gly, Pro 또는 Tyr 중 어느 하나,
288번 위치의 아미노산이 Asn, Asp, Glu 또는 Tyr 중 어느 하나,
290번 위치의 아미노산이 Asp, Gly, His, Leu, Asn, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
291번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Gln 또는 Thr 중 어느 하나,
292번 위치의 아미노산이 Ala, Asp, Glu, Pro, Thr 또는 Tyr 중 어느 하나,
293번 위치의 아미노산이 Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
294번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
295번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
296번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr 또는 Val 중 어느 하나,
297번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
298번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Met, Asn, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
299번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
300번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
301번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
302번 위치의 아미노산이 Ile,
303번 위치의 아미노산이 Asp, Gly 또는 Tyr 중 어느 하나,
304번 위치의 아미노산이 Asp, His, Leu, Asn 또는 Thr 중 어느 하나,
305번 위치의 아미노산이 Glu, Ile, Thr 또는 Tyr 중 어느 하나,
311번 위치의 아미노산이 Ala, Asp, Asn, Thr, Val 또는 Tyr 중 어느 하나,
313번 위치의 아미노산이 Phe,
315번 위치의 아미노산이 Leu,
317번 위치의 아미노산이 Glu 또는 Gln,
318번 위치의 아미노산이 His, Leu, Asn, Pro, Gln, Arg, Thr, Val 또는 Tyr 중 어느 하나,
320번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Asn, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
322번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
323번 위치의 아미노산이 Ile,
324번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
325번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
326번 위치의 아미노산이 Ala, Asp, Glu, Gly, Ile, Leu, Met, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
327번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
328번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
329번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
330번 위치의 아미노산이 Cys, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
331번 위치의 아미노산이 Asp, Phe, His, Ile, Leu, Met, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
332번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
333번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Ser, Thr, Val 또는 Tyr 중 어느 하나,
334번 위치의 아미노산이 Ala, Glu, Phe, Ile, Leu, Pro 또는 Thr 중 어느 하나,
335번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
336번 위치의 아미노산이 Glu, Lys 또는 Tyr 중 어느 하나,
337번 위치의 아미노산이 Glu, His 또는 Asn 중 어느 하나,
339번 위치의 아미노산이 Asp, Phe, Gly, Ile, Lys, Met, Asn, Gln, Arg, Ser 또는 Thr 중 어느 하나,
376번 위치의 아미노산이 Ala 또는 Val 중 어느 하나,
377번 위치의 아미노산이 Gly 또는 Lys 중 어느 하나,
378번 위치의 아미노산이 Asp,
379번 위치의 아미노산이 Asn,
380번 위치의 아미노산이 Ala, Asn 또는 Ser 중 어느 하나,
382번 위치의 아미노산이 Ala 또는 Ile 중 어느 하나,
385번 위치의 아미노산이 Glu,
392번 위치의 아미노산이 Thr,
396번 위치의 아미노산이 Leu,
421번 위치의 아미노산이 Lys,
427번 위치의 아미노산이 Asn,
428번 위치의 아미노산이 Phe 또는 Leu 중 어느 하나,
429번 위치의 아미노산이 Met,
434번 위치의 아미노산이 Trp,
436번 위치의 아미노산이 Ile, 또는
440번 위치의 아미노산이 Gly, His, Ile, Leu 또는 Tyr 중 어느 하나
의 군으로부터 선택되는 적어도 하나 이상의 아미노산의 개변을 들 수 있다. 또한 개변되는 아미노산의 수는 특별히 한정되지 않고, 1 개소만의 아미노산이 개변될 수 있고 2 개소 이상의 아미노산이 개변될 수 있다. 2 개소 이상의 아미노산의 개변의 조합으로서는 예를 들면 표 6(표 6-1~표 6-3)에 기재된 바와 같은 조합을 들 수 있다.
또한 본 발명에 있어서 적합하게 사용되는 Fc영역 중 특정 Fcγ 수용체에 대한 결합 활성이 그 밖의 Fcγ 수용체에 대한 결합 활성보다도 높은 성질을 갖는 Fc영역(선택적인 Fcγ 수용체에 대한 결합 활성을 갖는 Fc영역)의 비한정의 일태양으로서 사용된다. 억제형 Fcγ 수용체에 대한 결합 활성이 활성형 Fcγ 수용체에 대한 결합 활성보다도 높은(억제형 Fcγ 수용체에 대한 선택적인 결합 활성을 갖는) Fc영역의 예로서 상기 Fc영역의 EU 넘버링으로 표시되는 아미노산으로서 EU 넘버링으로 표시되는 238번 위치의 아미노산이 Asp 또는 328번 위치의 아미노산이 Glu 중 어느 하나 이상으로 개변되어 있는 Fc영역을 적합하게 들 수 있다. 또한 억제형 Fcγ 수용체에 대한 선택적인 결합 활성을 갖는 Fc영역으로서 US2009/0136485에 기재되어 있는 Fc영역 또는 개변도 적절히 선택할 수 있다.
또한 본 발명의 비한정의 일태양에서는 상기 Fc영역의 EU 넘버링으로 표시되는 아미노산으로서 EU 넘버링으로 표시되는 238번 위치의 아미노산이 Asp 또는 328번 위치의 아미노산이 Glu 중 어느 하나 이상으로 개변되어 있는 Fc영역을 적합하게 들 수 있다.
또한 본 발명의 비한정의 일태양에서는 EU 넘버링으로 표시되는 238번 위치의 Pro의 Asp로의 치환 및 EU 넘버링으로 표시되는 237번 위치의 아미노산이 Trp, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Phe, EU 넘버링으로 표시되는 267번 위치의 아미노산이 Val, EU 넘버링으로 표시되는 267번 위치의 아미노산이 Gln, EU 넘버링으로 표시되는 268번 위치의 아미노산이 Asn, EU 넘버링으로 표시되는 271번 위치의 아미노산이 Gly, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Leu, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Gln, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Glu, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Met, EU 넘버링으로 표시되는 239번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 267번 위치의 아미노산이 Ala, EU 넘버링으로 표시되는 234번 위치의 아미노산이 Trp, EU 넘버링으로 표시되는 234번 위치의 아미노산이 Tyr, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Ala, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Glu, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Leu, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Met, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Tyr, EU 넘버링으로 표시되는 330번 위치의 아미노산이 Lys, EU 넘버링으로 표시되는 330번 위치의 아미노산이 Arg, EU 넘버링으로 표시되는 233번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 268번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 268번 위치의 아미노산이 Glu, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Ser, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Thr, EU 넘버링으로 표시되는 323번 위치의 아미노산이 Ile, EU 넘버링으로 표시되는 323번 위치의 아미노산이 Leu, EU 넘버링으로 표시되는 323번 위치의 아미노산이 Met, EU 넘버링으로 표시되는 296번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Ala, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Asn, EU 넘버링으로 표시되는 330번 위치의 아미노산이 Met 중 어느 하나 이상으로 개변되어 있는 Fc영역을 적합하게 들 수 있다.
Fc영역의 아미노산의 개변을 위해서는 부위 특이적 변이 유발법(Kunkel 등(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))이나 Overlap extension PCR 등의 공지의 방법이 적절히 채용될 수 있다. 또한 천연의 아미노산 이외의 아미노산으로 치환하는 아미노산의 개변방법으로서 복수의 공지의 방법도 채용될 수 있다(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249, Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357). 예를 들면 종지 코돈의 하나인 UAG 코돈(앰버 코돈)의 상보적 앰버 서프레서 tRNA에 비천연 아미노산이 결합된 tRNA가 포함되는 무세포 번역계 시스템(Clover Direct(Protein Express)) 등도 적합하게 사용된다.
상기와 같이 작동 가능하게 연결된 항원 결합 분자를 코드하는 유전자를 포함하는 숙주세포의 배양액으로부터 단리된 항원 결합 분자는 본 발명의 스크리닝방법에 있어서 항원과 접촉시킬 수 있다. 접촉시킬 때의 비한정의 일태양으로서 상기 항원에 대한 결합항원의 항목에서 기재되는 조건 등이 적절히 채용된다.
이어서 당해 피험 항원 결합 분자와 당해 피험 항원을 포함하는 면역 복합체가 형성되었는지 여부가 평가된다. 항원 결합 분자와 항원을 포함하는 면역 복합체의 형성을 평가하는 방법으로서 면역 복합체가 항원 결합 분자 단체 또는 항원 분자 단체보다도 분자가 커지는 성질을 이용한 사이즈 배제(겔여과) 크로마토그래피법, 초원심 분석법, 광산란법, 전자현미경, 질량 분석법을 들 수 있다(Molecular Immunology(2002), 39, 77-84, Molecular Immunology(2009), 47, 357-364). 예를 들면 도 9에 나타내어져 있는 바와 같이 사이즈 배제(겔여과) 크로마토그래피를 사용한 경우, 면역 복합체를 형성하고 있는지 여부는 항원 분자 단독 또는 항원 결합 분자 단독을 분석한 경우와 비교하여 보다 큰 분자종이 관측되는지로 평가된다.
또한 항원 결합 분자 또는 항원이 이뮤노글로불린 정상영역을 갖는 경우에는 면역 복합체가 Fc 수용체 또는 보체 성분에 항원 결합 분자 단체 또는 항원 단체보다도 강하게 결합하는 성질을 이용한 ELISA나 FACS도 들 수 있다(The Journal of Biological Chemistry (2001) 276(9), 6591-6604, Journal of Immunological Methods (1982) 50, 109-114). 예를 들면 Fc 수용체를 고상화한 ELISA를 행한 경우, 면역 복합체를 형성하고 있는지 여부는 항원 단체 또는 항원 결합 분자 단체를 평가한 경우와 비교하여 검출되는 시그날이 증가해 있는지로 평가된다.
Fc영역 항원에 대한 결합 활성 이온 농도 의존적인 항원 결합 도메인을 포함하는 항원 결합 분자의 제조방법
본 발명은 아래의 공정(a)~(d)를 포함하는, 혈장 중으로부터 당해 항원을 소실시키는 기능을 갖는 항원 결합 분자의 제조방법;
(a) Fc영역 및 둘 이상의 항원 결합 도메인으로서 하나 이상의 항원 결합 도메인이 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인을 포함하는 항원 결합 분자와 항원을 접촉시키는 공정,
(b) 당해 항원 결합 분자와 당해 항원을 포함하는 면역 복합체의 형성을 평가하는 공정,
(c) 상기 공정(b)에서 면역 복합체의 형성이 확인된 항원 결합 도메인을 코드하는 유전자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 공정,
(d) 상기 공정(c)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정
을 제공한다.
본 발명은 또한 아래의 공정(a)~(i)를 포함하는, 혈장 중으로부터 당해 항원을 소실시키는 기능을 갖는 항원 결합 분자의 제조방법;
(a) 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인을 얻는 공정,
(b) 상기 공정(a)에서 선택된 항원 결합 도메인을 코드하는 유전자를 얻는 공정,
(c) 상기 공정(b)에서 얻어진 유전자를 Fc영역을 코드하는 유전자와 작동 가능하게 연결하는 공정,
(d) 상기 공정(c)에서 작동 가능하게 연결된 유전자를 포함하는 숙주세포를 배양하는 공정,
(e) 상기 공정(d)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정,
(f) 상기 공정(e)에서 얻어진 항원 결합 분자를 항원과 접촉시키는 공정,
(g) 당해 항원 결합 분자와 당해 항원을 포함하는 면역 복합체의 형성을 평가하는 공정,
(h) 상기 공정(g)에서 면역 복합체의 형성이 확인된 항원 결합 도메인을 코드하는 유전자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 공정,
(i) 상기 공정(h)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정
을 제공한다.
본 발명은 추가로 아래의 공정(a)~(e)를 포함하는 제조방법으로서, 추가로 당해 제조방법으로 얻어진 항원 결합 분자와 항원을 접촉시켜서 당해 항원 결합 분자와 당해 항원을 포함하는 면역 복합체의 형성을 평가하는 공정을 포함하는, 혈장 중으로부터 당해 항원을 소실시키는 기능을 갖는 항원 결합 분자의 제조방법;
(a) 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인을 얻는 공정,
(b) 상기 공정(a)에서 선택된 항원 결합 도메인을 코드하는 유전자를 얻는 공정,
(c) 상기 공정(b)에서 얻어진 유전자를 Fc영역을 코드하는 유전자와 작동 가능하게 연결하는 공정,
(d) 상기 공정(c)에서 작동 가능하게 연결된 유전자를 포함하는 숙주세포를 배양하는 공정,
(e) 상기 공정(d)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정
을 제공한다.
본 발명의 비한정의 일태양에서는 상기와 같이 선택된 조건에 따라 결합 활성이 변화되는 항원 결합 도메인을 코드하는 폴리뉴클레오티드가 단리된 후에, 당해 폴리뉴클레오티드가 적절한 발현 벡터에 삽입된다. 예를 들면 항원 결합 도메인이 항체의 가변영역인 경우에는 당해 가변영역을 코드하는 cDNA가 얻어진 후에, 당해 cDNA의 양말단에 삽입된 제한효소 사이트를 인식하는 제한효소에 의해 그 cDNA가 소화된다. 바람직한 제한효소는 항원 결합 분자의 유전자를 구성하는 염기서열에 출현하는 빈도가 낮은 염기서열을 인식하여 소화한다. 또한 1 카피의 소화 단편을 벡터에 바른 방향으로 삽입하기 위해서는 부착 말단을 부여하는 제한효소의 삽입이 바람직하다. 상기와 같이 소화된 항원 결합 분자의 가변영역을 코드하는 cDNA를 적당한 발현 벡터에 삽입함으로써 본 발명의 항원 결합 분자의 발현 벡터가 취득될 수 있다. 이때 항체 정상영역(C영역)을 코드하는 유전자와 상기 가변영역을 코드하는 유전자가 인프레임으로 융합될 수 있다.
목적하는 항원 결합 분자를 제조하기 위해, 항원 결합 분자를 코드하는 폴리뉴클레오티드가 제어 서열로 작동 가능하게 연결된 태양으로 발현 벡터에 삽입된다. 제어 서열이란 예를 들면 인핸서나 프로모터를 포함한다. 또한 발현한 항원 결합 분자가 세포외로 분비되도록 적절한 시그날 서열이 아미노 말단에 연결될 수 있다. 예를 들면 시그날 서열로서 아미노산 서열 MGWSCIILFLVATATGVHS(서열번호:5)를 갖는 펩티드가 사용되나, 이것 이외에도 적합한 시그날 서열이 연결될 수 있다. 발현된 폴리펩티드는 상기 서열의 카르복실 말단 부분에서 절단되고, 절단된 폴리펩티드가 성숙 폴리펩티드로서 세포외로 분비될 수 있다. 이어서, 이 발현 벡터에 의해 적당한 숙주세포가 형질전환됨으로써 목적하는 항원 결합 분자를 코드하는 폴리뉴클레오티드를 발현하는 재조합 세포가 취득될 수 있다. 당해 재조합 세포로부터 본 발명의 항원 결합 분자를 제조하는 방법은 상기 항체의 항목에서 기재한 방법에 준하여 제조될 수 있다.
핵산에 관하여 「작동 가능하게 연결되었다」는 것은 그 핵산이 다른 핵산 서열과 기능적인 관계에 있는 것을 의미한다. 예를 들면 프리시퀀스(presequence) 또는 분비 리더의 DNA는 어떤 폴리펩티드의 분비에 관여하고 있는 전구체 단백질로서 발현하는 경우는, 그 폴리펩티드의 DNA와 작동 가능하게 결합하고 있다. 프로모터 또는 인핸서는 그것이 어떤 코드 서열의 전사에 영향을 미치는 경우는 그 서열과 작동 가능하게 연결되어 있다. 또는 리보솜 결합부는 그것이 번역을 용이하게 하는 위치에 있는 경우는 작동 가능하게 코드 서열과 연결되어 있다. 통상 「작동 가능하게 연결되었다」는 것은 결합한 DNA 서열이 연속되어 있어 분비 리더의 경우는 연속해서 리딩 프레임 내에 있는 것을 의미한다. 그러나 인핸서는 연속할 필요는 없다. 연결은 적절한 제한부위에서 라이게이션에 의해 달성된다. 이러한 부위가 존재하지 않는 경우, 합성 올리고뉴클레오티드 어댑터 또는 링커가 종래의 관행에 따라 사용된다. 또한 상기 Overlap Extension PCR의 수법으로도 연결된 핵산이 제작될 수 있다.
본 발명의 비한정의 일태양에 있어서, 상기와 같이 선택된 조건에 따라 결합 활성이 변화되는 항원 결합 분자를 코드하는 폴리뉴클레오티드가 단리된 후에, 당해 폴리뉴클레오티드의 개변체가 적절한 발현 벡터에 삽입된다. 이러한 개변체의 하나로서 랜덤화 가변영역 라이브러리로서 합성 라이브러리나 비인간 동물을 기원으로 하여 제작된 면역 라이브러리를 사용함으로써 스크리닝된 본 발명의 항원 결합 분자를 코드하는 폴리뉴클레오티드 서열이 인간화된 개변체를 바람직하게 들 수 있다. 인간화된 항원 결합 분자의 개변체의 제작방법은 상기 인간화 항체의 제작방법과 동일한 방법이 채용될 수 있다.
또한 개변체의 다른 태양으로서, 랜덤화 가변영역 라이브러리로서 합성 라이브러리나 나이브 라이브러리를 사용함으로써 스크리닝된 본 발명의 항원 결합 분자의 항원에 대한 결합 친화성의 증강(친화성 성숙화)을 초래하는 개변이 단리된 폴리뉴클레오티드 서열에 행해진 개변체를 바람직하게 들 수 있다. 그러한 개변체는 CDR의 변이 유도(Yang 등(J. Mol. Biol. (1995) 254, 392-403)), 체인 셔플링(Marks 등(Bio/Technology (1992) 10, 779-783)), E.coli의 변이 유발주의 사용(Low 등(J. Mol. Biol. (1996) 250, 359-368)), DNA 셔플링(Patten 등(Curr. Opin. Biotechnol. (1997) 8, 724-733)), 파지 디스플레이(Thompson 등(J. Mol. Biol. (1996) 256, 77-88)) 및 유성 PCR(sexual PCR)(Clameri 등(Nature (1998) 391, 288-291))을 포함하는 각종 친화성 성숙화의 공지 순서에 의해 취득될 수 있다.
상기와 같이 본 발명의 제조방법에 의해 제작되는 항원 결합 분자로서 Fc영역을 포함하는 항원 결합 분자를 들 수 있는데, Fc영역으로서 다양한 개변체가 사용될 수 있다. 이러한 Fc영역의 개변체를 코드하는 폴리뉴클레오티드와, 상기와 같이 선택된 조건에 따라 결합 활성이 변화되는 항원 결합 분자를 코드하는 폴리뉴클레오티드가 인프레임으로 연결된 중쇄를 갖는 항원 결합 분자를 코드하는 폴리뉴클레오티드도 본 발명의 개변체의 일태양으로서 바람직하게 들 수 있다.
본 발명의 비한정의 일태양에서는 Fc영역으로서 예를 들면 서열번호:13으로 표시되는 IgG1(N말단에 Ala가 부가된 AAC82527.1), 서열번호:14로 표시되는 IgG2(N말단에 Ala가 부가된 AAB59393.1), 서열번호:15로 표시되는 IgG3(CAA27268.1), 서열번호:16으로 표시되는 IgG4(N말단에 Ala가 부가된 AAB59394.1) 등의 항체의 Fc 정상영역을 바람직하게 들 수 있다. IgG 분자의 혈장 중 체류성이 비교적 긴(혈장 중으로부터의 소실이 느린) 것은 IgG 분자의 샐비지 수용체로서 알려져 있는 FcRn 특히 인간 FcRn이 기능하고 있기 때문이다. 음세포작용에 의해 엔도솜에 흡수된 IgG 분자는 엔도솜 내의 산성 조건하에 있어서 엔도솜 내에 발현하고 있는 FcRn 특히 인간 FcRn에 결합한다. FcRn 특히 인간 FcRn에 결합할 수 없었던 IgG 분자는 리소좀으로 진행되고 거기서 분해되는데, FcRn 특히 인간 FcRn으로 결합한 IgG 분자는 세포 표면으로 이행되어 혈장 중의 중성 조건하에 있어서 FcRn 특히 인간 FcRn으로부터 해리됨으로써 재차 혈장 중으로 되돌아간다.
통상의 Fc영역을 포함하는 항체는 혈장 중의 pH 중성역의 조건하에 있어서 FcRn 특히 인간 FcRn에 대한 결합 활성을 갖지 않기 때문에, 통상의 항체 및 항체-항원 복합체는 비특이적인 엔도시토시스에 의해 세포에 흡수되어, 엔도솜 내의 pH 산성역의 조건하에서 FcRn 특히 인간 FcRn에 결합함으로써 세포 표면으로 수송된다. FcRn 특히 인간 FcRn은 항체를 엔도솜 내로부터 세포 표면으로 수송하기 때문에 FcRn 특히 인간 FcRn의 일부는 세포 표면에도 존재하고 있는 것으로 생각되는데, 세포 표면의 pH 중성역의 조건하에서는 항체는 FcRn 특히 인간 FcRn으로부터 해리되기 때문에 항체는 혈장 중으로 리사이클된다.
본 발명의 항원 결합 분자에 포함하는 것이 가능한 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 갖는 Fc영역은 어떠한 방법으로도 취득될 수 있으나, 구체적으로는 출발 Fc영역으로서 사용되는 인간 IgG형 면역 글로불린의 아미노산의 개변에 의해 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 갖는 Fc영역이 취득될 수 있다. 개변을 위한 바람직한 IgG형 면역 글로불린의 Fc영역으로서는 예를 들면 인간 IgG(IgG1, IgG2, IgG3 또는 IgG4 및 그들의 개변체)의 Fc영역을 들 수 있다. 다른 아미노산으로의 개변은 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 갖거나 또는 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 높일 수 있는 한 어떠한 위치의 아미노산도 개변될 수 있다. 항원 결합 분자가 인간 Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, pH 중성역에 있어서의 인간 FcRn에 대한 결합이 인간 IgG1의 출발 Fc영역의 결합 활성보다 증강되는 효과를 초래하는 개변이 포함되어 있는 것이 바람직하다. 그러한 개변이 가능한 아미노산으로서, 예를 들면 EU 넘버링 221번 위치~225번 위치, 227번 위치, 228번 위치, 230번 위치, 232번 위치, 233번 위치~241번 위치, 243번 위치~252번 위치, 254번 위치~260번 위치, 262번 위치~272번 위치, 274번 위치, 276번 위치, 278번 위치~289번 위치, 291번 위치~312번 위치, 315번 위치~320번 위치, 324번 위치, 325번 위치, 327번 위치~339번 위치, 341번 위치, 343번 위치, 345번 위치, 360번 위치, 362번 위치, 370번 위치, 375번 위치~378번 위치, 380번 위치, 382번 위치, 385번 위치~387번 위치, 389번 위치, 396번 위치, 414번 위치, 416번 위치, 423번 위치, 424번 위치, 426번 위치~438번 위치, 440번 위치 및 442번 위치의 군으로부터 선택되는 하나 이상의 아미노산을 들 수 있다. 보다 구체적으로는 예를 들면 표 5에 기재된 바와 같은 아미노산의 개변을 들 수 있다. 이들 아미노산의 개변에 의해 IgG형 면역 글로불린의 Fc영역의 pH 중성역에 있어서의 인간 FcRn에 대한 결합이 증강된다.
본 발명에 사용하기 위해 이들 개변 중 pH 중성역에 있어서도 인간 FcRn에 대한 결합을 증강시키는 개변이 적절히 선택된다. 특히 바람직한 Fc영역 개변체의 아미노산으로서, 예를 들면 EU 넘버링으로 표시되는 237번 위치, 248번 위치, 250번 위치, 252번 위치, 254번 위치, 255번 위치, 256번 위치, 257번 위치, 258번 위치, 265번 위치, 286번 위치, 289번 위치, 297번 위치, 298번 위치, 303번 위치, 305번 위치, 307번 위치, 308번 위치, 309번 위치, 311번 위치, 312번 위치, 314번 위치, 315번 위치, 317번 위치, 332번 위치, 334번 위치, 360번 위치, 376번 위치, 380번 위치, 382번 위치, 384번 위치, 385번 위치, 386번 위치, 387번 위치, 389번 위치, 424번 위치, 428번 위치, 433번 위치, 434번 위치 및 436번 위치의 아미노산을 들 수 있다. 이들 아미노산으로부터 선택되는 하나 이상의 아미노산을 다른 아미노산으로 치환함으로써, 항원 결합 분자에 포함되는 Fc영역의 pH 중성역에 있어서의 인간 FcRn에 대한 결합 활성을 증강시킬 수 있다.
특히 바람직한 개변으로서는 예를 들면 Fc영역의 EU 넘버링으로 표시되는
237번 위치의 아미노산이 Met,
248번 위치의 아미노산이 Ile,
250번 위치의 아미노산이 Ala, Phe, Ile, Met, Gln, Ser, Val, Trp 또는 Tyr 중 어느 하나,
252번 위치의 아미노산이 Phe, Trp 또는 Tyr 중 어느 하나,
254번 위치의 아미노산이 Thr,
255번 위치의 아미노산이 Glu,
256번 위치의 아미노산이 Asp, Asn, Glu 또는 Gln 중 어느 하나,
257번 위치의 아미노산이 Ala, Gly, Ile, Leu, Met, Asn, Ser, Thr 또는 Val 중 어느 하나,
258번 위치의 아미노산이 His,
265번 위치의 아미노산이 Ala,
286번 위치의 아미노산이 Ala 또는 Glu 중 어느 하나,
289번 위치의 아미노산이 His,
297번 위치의 아미노산이 Ala,
303번 위치의 아미노산이 Ala,
305번 위치의 아미노산이 Ala,
307번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
308번 위치의 아미노산이 Ala, Phe, Ile, Leu, Met, Pro, Gln 또는 Thr 중 어느 하나,
309번 위치의 아미노산이 Ala, Asp, Glu, Pro 또는 Arg 중 어느 하나,
311번 위치의 아미노산이 Ala, His 또는 Ile 중 어느 하나,
312번 위치의 아미노산이 Ala 또는 His 중 어느 하나,
314번 위치의 아미노산이 Lys 또는 Arg 중 어느 하나,
315번 위치의 아미노산이 Ala, Asp 또는 His 중 어느 하나,
317번 위치의 아미노산이 Ala,
332번 위치의 아미노산이 Val,
334번 위치의 아미노산이 Leu,
360번 위치의 아미노산이 His,
376번 위치의 아미노산이 Ala,
380번 위치의 아미노산이 Ala,
382번 위치의 아미노산이 Ala,
384번 위치의 아미노산이 Ala,
385번 위치의 아미노산이 Asp 또는 His 중 어느 하나,
386번 위치의 아미노산이 Pro,
387번 위치의 아미노산이 Glu,
389번 위치의 아미노산이 Ala 또는 Ser 중 어느 하나,
424번 위치의 아미노산이 Ala,
428번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
433번 위치의 아미노산이 Lys,
434번 위치의 아미노산이 Ala, Phe, His, Ser, Trp 또는 Tyr 중 어느 하나 및
436번 위치의 아미노산이 His, Ile, Leu, Phe, Thr 또는 Val
의 군으로부터 선택되는 적어도 하나 이상의 아미노산의 개변을 들 수 있다. 또한 개변되는 아미노산의 수는 특별히 한정되지 않고, 1개소만의 아미노산이 개변될 수 있고 2개소 이상의 아미노산이 개변될 수 있다. 2개소 이상의 아미노산 개변의 조합으로서는 예를 들면 표 5-1~5-33에 기재된 바와 같은 조합을 들 수 있다.
또한 본 발명이 포함하는 Fc영역으로서 인간 IgG1(서열번호:13), IgG2(서열번호:14), IgG3(서열번호:15) 또는 IgG4(서열번호:16)로 표시되는 Fc영역 외에, EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 FcγR 결합 개변 Fc영역도 적절히 사용될 수 있다. 그러한 FcγR 결합 개변 Fc영역은 천연형 인간 IgG의 Fc영역의 아미노산을 개변함으로써 제작될 수 있다. Fc영역의 FcγR에 대한 결합 활성이 EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 FcγR에 대한 결합 활성보다 높은지 여부는 전술한 바와 같은 방법을 사용하여 적절히 평가될 수 있다.
본 발명에 있어서 Fc영역의 「아미노산의 개변」 또는 「아미노산 개변」이란 출발 Fc영역의 아미노산 서열과는 상이한 아미노산 서열로 개변하는 것을 포함한다. 출발 Fc영역의 수식 개변체가 pH 중성역에 있어서 인간 Fcγ 수용체에 결합할 수 있는 한 어느 Fc영역도 출발 Fc영역으로서 사용될 수 있다. 또한 이미 개변이 가해진 Fc영역을 출발 Fc영역으로서 추가적인 개변이 가해진 Fc영역도 본 발명의 Fc영역으로서 적합하게 사용될 수 있다. 출발 Fc영역이란 폴리펩티드 그 자체, 출발 Fc영역을 포함하는 조성물, 또는 출발 Fc영역을 코드하는 아미노산 서열을 의미할 수 있다. 출발 Fc영역에는 항체의 항목에서 개략 설명된 재조합에 의해 생산된 공지의 IgG 항체의 Fc영역이 포함될 수 있다. 출발 Fc영역의 기원은 한정되지 않지만 비인간 동물의 임의의 생물 또는 인간으로부터 취득될 수 있다. 바람직하게는 임의의 생물로서는 마우스, 랫트, 기니피그, 햄스터, 황무지쥐, 고양이, 토끼, 개, 염소, 양, 소, 말, 낙타 및 비인간 영장류로부터 선택되는 생물을 바람직하게 들 수 있다. 다른 태양에 있어서 출발 Fc영역은 또한 게잡이원숭이, 마모셋, 빨간털원숭이, 침팬지 또는 인간으로부터 취득될 수 있다. 바람직하게는 출발 Fc영역은 인간 IgG1으로부터 취득될 수 있지만, IgG의 특정 서브클래스에 한정되는 것도 아니다. 이는 인간 IgG1, IgG2, IgG3 또는 IgG4의 Fc영역을 출발 Fc영역으로서 적절히 사용할 수 있는 것을 의미한다. 마찬가지로, 본 명세서에 있어서 상기 임의의 생물로부터의 IgG의 임의의 클래스 또는 서브클래스의 Fc영역을, 바람직하게는 출발 Fc영역으로서 사용할 수 있는 것을 의미한다. 천연에 존재하는 IgG의 변이체 또는 조작된 유형의 예는 공지의 문헌(Curr. Opin. Biotechnol. (2009) 20 (6), 685-91, Curr. Opin. Immunol. (2008) 20 (4), 460-470, Protein Eng. Des. Sel. (2010) 23 (4), 195-202, 국제공개 WO2009/086320, WO2008/092117, WO2007/041635 및 WO2006/105338)에 기재되지만 그들에 한정되지 않는다.
개변의 예로서는 하나 이상의 변이, 예를 들면, 출발 Fc영역의 아미노산과는 상이한 아미노산 잔기로 치환된 변이, 또는 출발 Fc영역의 아미노산에 대해 하나 이상의 아미노산 잔기의 삽입 또는 출발 Fc영역의 아미노산으로부터 하나 이상의 아미노산의 결실 등이 포함된다. 바람직하게는 개변 후의 Fc영역의 아미노산 서열에는 천연으로 생기지 않는 Fc영역의 적어도 부분을 포함하는 아미노산 서열을 포함한다. 그러한 변종은 필연적으로 출발 Fc영역과 100% 미만의 서열 동일성 또는 유사성을 갖는다. 바람직한 실시형태에 있어서, 변종은 출발 Fc영역의 아미노산 서열과 약 75%~100% 미만의 아미노산 서열 동일성 또는 유사성, 보다 바람직하게는 약 80%~100% 미만, 보다 바람직하게는 약 85%~100% 미만, 보다 바람직하게는 약 90%~100% 미만, 가장 바람직하게는 약 95%~100% 미만의 동일성 또는 유사성의 아미노산 서열을 갖는다. 본 발명의 비한정의 일태양에 있어서 출발 Fc영역 및 본 발명의 FcγR 결합 개변 Fc영역 사이에는 하나 이상의 아미노산의 차가 있다. 출발 Fc영역과 본 발명의 FcγR 결합 개변 Fc영역의 아미노산의 차이는 특히 전술한 EU 넘버링으로 특정되는 아미노산 잔기의 위치의 특정된 아미노산의 차이에 따라서도 적합하게 특정 가능하다.
본 발명의 항원 결합 분자에 포함되는, EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은(FcγR 결합 개변 Fc영역)은 어떠한 방법으로도 취득될 수 있는데, 구체적으로는 출발 Fc영역으로서 사용되는 인간 IgG형 면역 글로불린의 아미노산의 개변에 의해 당해 FcγR 결합 개변 Fc영역이 취득될 수 있다. 개변을 위한 바람직한 IgG형 면역 글로불린의 Fc영역으로서는 예를 들면 인간 IgG(IgG1, IgG2, IgG3 또는 IgG4 및 그들의 개변체)의 Fc영역을 들 수 있다.
다른 아미노산으로의 개변은 EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 한 어떠한 위치의 아미노산도 개변될 수 있다. 항원 결합 분자가 인간 Fc영역으로서 인간 IgG1의 Fc영역을 포함하고 있는 경우, EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 효과를 초래하는 개변이 포함되어 있는 것이 바람직하다. 이러한 아미노산의 개변으로서는 예를 들면 국제공개 WO2007/024249, WO2007/021841, WO2006/031370, WO2000/042072, WO2004/029207, WO2004/099249, WO2006/105338, WO2007/041635, WO2008/092117, WO2005/070963, WO2006/020114, WO2006/116260 및 WO2006/023403 등에 있어서 보고되어 있다.
그러한 개변이 가능한 아미노산으로서 예를 들면 EU 넘버링으로 표시되는 221번 위치, 222번 위치, 223번 위치, 224번 위치, 225번 위치, 227번 위치, 228번 위치, 230번 위치, 231번 위치, 232번 위치, 233번 위치, 234번 위치, 235번 위치, 236번 위치, 237번 위치, 238번 위치, 239번 위치, 240번 위치, 241번 위치, 243번 위치, 244번 위치, 245번 위치, 246번 위치, 247번 위치, 249번 위치, 250번 위치, 251번 위치, 254번 위치, 255번 위치, 256번 위치, 258번 위치, 260번 위치, 262번 위치, 263번 위치, 264번 위치, 265번 위치, 266번 위치, 267번 위치, 268번 위치, 269번 위치, 270번 위치, 271번 위치, 272번 위치, 273번 위치, 274번 위치, 275번 위치, 276번 위치, 278번 위치, 279번 위치, 280번 위치, 281번 위치, 282번 위치, 283번 위치, 284번 위치, 285번 위치, 286번 위치, 288번 위치, 290번 위치, 291번 위치, 292번 위치, 293번 위치, 294번 위치, 295번 위치, 296번 위치, 297번 위치, 298번 위치, 299번 위치, 300번 위치, 301번 위치, 302번 위치, 303번 위치, 304번 위치, 305번 위치, 311번 위치, 313번 위치, 315번 위치, 317번 위치, 318번 위치, 320번 위치, 322번 위치, 323번 위치, 324번 위치, 325번 위치, 326번 위치, 327번 위치, 328번 위치, 329번 위치, 330번 위치, 331번 위치, 332번 위치, 333번 위치, 334번 위치, 335번 위치, 336번 위치, 337번 위치, 339번 위치, 376번 위치, 377번 위치, 378번 위치, 379번 위치, 380번 위치, 382번 위치, 385번 위치, 392번 위치, 396번 위치, 421번 위치, 427번 위치, 428번 위치, 429번 위치, 434번 위치, 436번 위치 및 440번 위치의 군으로부터 선택되는 적어도 하나 이상의 아미노산을 들 수 있다. 이들 아미노산의 개변에 의해 EU 넘버링 297번 위치에 결합한 당쇄가 푸코오스 함유 당쇄인 천연형 인간 IgG의 Fc영역의 Fcγ 수용체에 대한 결합 활성보다도 Fcγ 수용체에 대한 결합 활성이 높은 Fc영역(FcγR 결합 개변 Fc영역)을 취득할 수 있다.
본 발명에 사용하기 위해 특히 바람직한 개변으로서는 예를 들면 Fc영역의 EU 넘버링으로 표시되는;
221번 위치의 아미노산이 Lys 또는 Tyr 중 어느 하나,
222번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
223번 위치의 아미노산이 Phe, Trp, Glu 또는 Lys 중 어느 하나,
224번 위치의 아미노산이 Phe, Trp, Glu 또는 Tyr 중 어느 하나,
225번 위치의 아미노산이 Glu, Lys 또는 Trp 중 어느 하나,
227번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
228번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
230번 위치의 아미노산이 Ala, Glu, Gly 또는 Tyr 중 어느 하나,
231번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
232번 위치의 아미노산이 Glu, Gly, Lys 또는 Tyr 중 어느 하나,
233번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
234번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
235번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
236번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
237번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
238번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
239번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
240번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
241번 위치의 아미노산이 Asp, Glu, Leu, Arg, Trp 또는 Tyr 중 어느 하나,
243번 위치의 아미노산이 Leu, Glu, Leu, Gln, Arg, Trp 또는 Tyr 중 어느 하나,
244번 위치의 아미노산이 His,
245번 위치의 아미노산이 Ala,
246번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
247번 위치의 아미노산이 Ala, Phe, Gly, His, Ile, Leu, Met, Thr, Val 또는 Tyr 중 어느 하나,
249번 위치의 아미노산이 Glu, His, Gln 또는 Tyr 중 어느 하나,
250번 위치의 아미노산이 Glu 또는 Gln 중 어느 하나,
251번 위치의 아미노산이 Phe,
254번 위치의 아미노산이 Phe, Met 또는 Tyr 중 어느 하나,
255번 위치의 아미노산이 Glu, Leu 또는 Tyr 중 어느 하나,
256번 위치의 아미노산이 Ala, Met 또는 Pro 중 어느 하나,
258번 위치의 아미노산이 Asp, Glu, His, Ser 또는 Tyr 중 어느 하나,
260번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
262번 위치의 아미노산이 Ala, Glu, Phe, Ile 또는 Thr 중 어느 하나,
263번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
264번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
265번 위치의 아미노산이 Ala, Leu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
266번 위치의 아미노산이 Ala, Ile, Met 또는 Thr 중 어느 하나,
267번 위치의 아미노산이 Asp, Glu, Phe, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
268번 위치의 아미노산이 Asp, Glu, Phe, Gly, Ile, Lys, Leu, Met, Pro, Gln, Arg, Thr, Val 또는 Trp 중 어느 하나,
269번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
270번 위치의 아미노산이 Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Gln, Arg, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
271번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
272번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
273번 위치의 아미노산이 Phe 또는 Ile 중 어느 하나,
274번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
275번 위치의 아미노산이 Leu 또는 Trp 중 어느 하나,
276번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
278번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
279번 위치의 아미노산이 Ala,
280번 위치의 아미노산이 Ala, Gly, His, Lys, Leu, Pro, Gln, Trp 또는 Tyr 중 어느 하나,
281번 위치의 아미노산이 Asp, Lys, Pro 또는 Tyr 중 어느 하나,
282번 위치의 아미노산이 Glu, Gly, Lys, Pro 또는 Tyr 중 어느 하나,
283번 위치의 아미노산이 Ala, Gly, His, Ile, Lys, Leu, Met, Pro, Arg 또는 Tyr 중 어느 하나,
284번 위치의 아미노산이 Asp, Glu, Leu, Asn, Thr 또는 Tyr 중 어느 하나,
285번 위치의 아미노산이 Asp, Glu, Lys, Gln, Trp 또는 Tyr 중 어느 하나,
286번 위치의 아미노산이 Glu, Gly, Pro 또는 Tyr 중 어느 하나,
288번 위치의 아미노산이 Asn, Asp, Glu 또는 Tyr 중 어느 하나,
290번 위치의 아미노산이 Asp, Gly, His, Leu, Asn, Ser, Thr, Trp 또는 Tyr 중 어느 하나,
291번 위치의 아미노산이 Asp, Glu, Gly, His, Ile, Gln 또는 Thr 중 어느 하나,
292번 위치의 아미노산이 Ala, Asp, Glu, Pro, Thr 또는 Tyr 중 어느 하나,
293번 위치의 아미노산이 Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
294번 위치의 아미노산이 Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
295번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
296번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr 또는 Val 중 어느 하나,
297번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
298번 위치의 아미노산이 Ala, Asp, Glu, Phe, His, Ile, Lys, Met, Asn, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
299번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
300번 위치의 아미노산이 Ala, Asp, Glu, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val 또는 Trp 중 어느 하나,
301번 위치의 아미노산이 Asp, Glu, His 또는 Tyr 중 어느 하나,
302번 위치의 아미노산이 Ile,
303번 위치의 아미노산이 Asp, Gly 또는 Tyr 중 어느 하나,
304번 위치의 아미노산이 Asp, His, Leu, Asn 또는 Thr 중 어느 하나,
305번 위치의 아미노산이 Glu, Ile, Thr 또는 Tyr 중 어느 하나,
311번 위치의 아미노산이 Ala, Asp, Asn, Thr, Val 또는 Tyr 중 어느 하나,
313번 위치의 아미노산이 Phe,
315번 위치의 아미노산이 Leu,
317번 위치의 아미노산이 Glu 또는 Gln,
318번 위치의 아미노산이 His, Leu, Asn, Pro, Gln, Arg, Thr, Val 또는 Tyr 중 어느 하나,
320번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Asn, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
322번 위치의 아미노산이 Ala, Asp, Phe, Gly, His, Ile, Pro, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
323번 위치의 아미노산이 Ile,
324번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
325번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
326번 위치의 아미노산이 Ala, Asp, Glu, Gly, Ile, Leu, Met, Asn, Pro, Gln, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
327번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
328번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
329번 위치의 아미노산이 Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
330번 위치의 아미노산이 Cys, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
331번 위치의 아미노산이 Asp, Phe, His, Ile, Leu, Met, Gln, Arg, Thr, Val, Trp 또는 Tyr 중 어느 하나,
332번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp 또는 Tyr 중 어느 하나,
333번 위치의 아미노산이 Ala, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Ser, Thr, Val 또는 Tyr 중 어느 하나,
334번 위치의 아미노산이 Ala, Glu, Phe, Ile, Leu, Pro 또는 Thr 중 어느 하나,
335번 위치의 아미노산이 Asp, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Arg, Ser, Val, Trp 또는 Tyr 중 어느 하나,
336번 위치의 아미노산이 Glu, Lys 또는 Tyr 중 어느 하나,
337번 위치의 아미노산이 Glu, His 또는 Asn 중 어느 하나,
339번 위치의 아미노산이 Asp, Phe, Gly, Ile, Lys, Met, Asn, Gln, Arg, Ser 또는 Thr 중 어느 하나,
376번 위치의 아미노산이 Ala 또는 Val 중 어느 하나,
377번 위치의 아미노산이 Gly 또는 Lys 중 어느 하나,
378번 위치의 아미노산이 Asp,
379번 위치의 아미노산이 Asn,
380번 위치의 아미노산이 Ala, Asn 또는 Ser 중 어느 하나,
382번 위치의 아미노산이 Ala 또는 Ile 중 어느 하나,
385번 위치의 아미노산이 Glu,
392번 위치의 아미노산이 Thr,
396번 위치의 아미노산이 Leu,
421번 위치의 아미노산이 Lys,
427번 위치의 아미노산이 Asn,
428번 위치의 아미노산이 Phe 또는 Leu 중 어느 하나,
429번 위치의 아미노산이 Met,
434번 위치의 아미노산이 Trp,
436번 위치의 아미노산이 Ile, 또는
440번 위치의 아미노산이 Gly, His, Ile, Leu 또는 Tyr 중 어느 하나
의 군으로부터 선택되는 적어도 하나 이상의 아미노산의 개변을 들 수 있다. 또한 개변되는 아미노산의 수는 특별히 한정되지 않고, 1 개소만의 아미노산이 개변될 수 있고 2 개소 이상의 아미노산이 개변될 수 있다. 2 개소 이상의 아미노산의 개변의 조합으로서는 예를 들면 표 6(표 6-1~표 6-3)에 기재된 바와 같은 조합을 들 수 있다.
또한 본 발명에 있어서 적합하게 사용되는 Fc영역 중 특정 Fcγ 수용체에 대한 결합 활성이 그 밖의 Fcγ 수용체에 대한 결합 활성보다도 높은 성질을 갖는 Fc영역(선택적인 Fcγ 수용체에 대한 결합 활성을 갖는 Fc영역)의 비한정의 일태양으로서 사용된다. 억제형 Fcγ 수용체에 대한 결합 활성이 활성형 Fcγ 수용체에 대한 결합 활성보다도 높은(억제형 Fcγ 수용체에 대한 선택적인 결합 활성을 갖는) Fc영역의 예로서 상기 Fc영역의 EU 넘버링으로 표시되는 아미노산으로서 EU 넘버링으로 표시되는 238번 위치의 아미노산이 Asp 또는 328번 위치의 아미노산이 Glu 중 어느 하나 이상으로 개변되어 있는 Fc영역을 적합하게 들 수 있다. 또한 억제형 Fcγ 수용체에 대한 선택적인 결합 활성을 갖는 Fc영역으로서 US2009/0136485 또는 WO2012/115241에 기재되어 있는 Fc영역 또는 개변도 적절히 선택할 수 있다.
또한 본 발명의 비한정의 일태양에서는 상기 Fc영역의 EU 넘버링으로 표시되는 아미노산으로서 EU 넘버링으로 표시되는 238번 위치의 아미노산이 Asp 또는 328번 위치의 아미노산이 Glu 중 어느 하나 이상으로 개변되어 있는 Fc영역을 적합하게 들 수 있다.
또한 본 발명의 비한정의 일태양에서는 EU 넘버링으로 표시되는 238번 위치의 Pro의 Asp로의 치환 및 EU 넘버링으로 표시되는 237번 위치의 아미노산이 Trp, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Phe, EU 넘버링으로 표시되는 267번 위치의 아미노산이 Val, EU 넘버링으로 표시되는 267번 위치의 아미노산이 Gln, EU 넘버링으로 표시되는 268번 위치의 아미노산이 Asn, EU 넘버링으로 표시되는 271번 위치의 아미노산이 Gly, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Leu, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Gln, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Glu, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Met, EU 넘버링으로 표시되는 239번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 267번 위치의 아미노산이 Ala, EU 넘버링으로 표시되는 234번 위치의 아미노산이 Trp, EU 넘버링으로 표시되는 234번 위치의 아미노산이 Tyr, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Ala, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Glu, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Leu, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Met, EU 넘버링으로 표시되는 237번 위치의 아미노산이 Tyr, EU 넘버링으로 표시되는 330번 위치의 아미노산이 Lys, EU 넘버링으로 표시되는 330번 위치의 아미노산이 Arg, EU 넘버링으로 표시되는 233번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 268번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 268번 위치의 아미노산이 Glu, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Ser, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Thr, EU 넘버링으로 표시되는 323번 위치의 아미노산이 Ile, EU 넘버링으로 표시되는 323번 위치의 아미노산이 Leu, EU 넘버링으로 표시되는 323번 위치의 아미노산이 Met, EU 넘버링으로 표시되는 296번 위치의 아미노산이 Asp, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Ala, EU 넘버링으로 표시되는 326번 위치의 아미노산이 Asn, EU 넘버링으로 표시되는 330번 위치의 아미노산이 Met 중 어느 하나 이상으로 개변되어 있는 Fc영역을 적합하게 들 수 있다.
Fc영역의 아미노산의 개변을 위해서는 부위 특이적 변이 유발법(Kunkel 등(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))이나 Overlap extension PCR 등의 공지의 방법이 적절히 채용될 수 있다. 또한 천연의 아미노산 이외의 아미노산으로 치환하는 아미노산의 개변방법으로서 복수의 공지의 방법도 채용될 수 있다(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249, Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357). 예를 들면 종지 코돈의 하나인 UAG 코돈(앰버 코돈)의 상보적 앰버 서프레서 tRNA에 비천연 아미노산이 결합된 tRNA가 포함되는 무세포 번역계 시스템(Clover Direct(Protein Express)) 등도 적합하게 사용된다.
상기와 같은 아미노산의 변이가 가해진 Fc영역의 개변체를 코드하는 폴리뉴클레오티드와, 상기와 같이 선택된 조건에 따라 결합 활성이 변화되는 항원 결합 도메인을 코드하는 폴리뉴클레오티드가 인프레임으로 연결된 중쇄를 갖는 항원 결합 분자를 코드하는 폴리뉴클레오티드도 본 발명의 개변체의 일태양으로서 제작된다.
본 발명에 의해 Fc영역을 코드하는 폴리뉴클레오티드와 인프레임으로 연결된 이온 농도의 조건에 따라 결합 활성이 변화되는 항원 결합 도메인을 코드하는 폴리뉴클레오티드가 작동 가능하게 연결된 벡터가 도입된 세포의 배양액으로부터 항원 결합 분자를 회수하는 것을 포함하는 항원 결합 분자의 제조방법이 제공된다. 또한 벡터 중에 사전에 작동 가능하게 연결된 Fc영역을 코드하는 폴리뉴클레오티드와, 이온 농도의 조건에 따라 결합 활성이 변화되는 항원 결합 도메인을 코드하는 폴리뉴클레오티드가 작동 가능하게 연결된 벡터가 도입된 세포의 배양액으로부터 항원 결합 분자를 회수하는 것을 포함하는 항원 결합 분자의 제조방법도 또한 제공된다.
본 발명의 제조방법에 있어서 「면역 복합체의 형성이 확인된 항원 결합 도메인」이 취득된 후에 당해 면역 복합체의 형성이 가능한 한 당해 도메인에 적절히 개변이 가해질 수 있다. 또한 면역 복합체를 형성하는 것이 가능한 항원 결합 도메인으로서, 이와 같이 개변이 가해진 당해 도메인을 코드하는 폴리뉴클레오티드와 전술된 아미노산의 변이가 가해진 Fc영역의 개변체를 코드하는 폴리뉴클레오티드가 인프레임으로 연결된 중쇄를 갖는 항원 결합 분자를 코드하는 폴리뉴클레오티드를 포함하는 벡터를 포함하는 세포의 배양액으로부터 항원 결합 분자를 회수하는 것을 포함하는 항원 결합 분자의 제조방법도 또한 제공된다.
의약 조성물
가용형 항원에 대한 기존의 중화 항체를 투여하면 항원이 항체에 결합함으로써 혈장 중에서의 지속성이 높아지는 것이 예상된다. 항체는 일반적으로 긴 반감기(1주간~3주간)를 갖는 한편으로, 항원은 일반적으로 짧은 반감기(1일 이하)를 갖는다. 그 때문에 혈장 중에서 항체에 결합한 항원은 항원 단독으로 존재하는 경우에 비해 현저히 긴 반감기를 갖게 된다. 그 결과로서, 기존의 중화 항체를 투여함으로써 혈장 중의 항원 농도의 상승이 일어난다. 이러한 사례는 다양한 가용형 항원을 표적으로 한 중화 항체에 있어서 보고되어 있고, 일례를 들자면 IL-6(J. Immunotoxicol. (2005) 3, 131-139), amyloid beta(mAbs (2010) 2 (5), 1-13), MCP-1(ARTHRITIS & RHEUMATISM (2006) 54,2387-2392), hepcidin(AAPS J. (2010) 4, 646-657), sIL-6 receptor(Blood (2008) 112 (10), 3959-64) 등이 있다. 기존의 중화 항체의 투여에 의해 베이스라인으로부터 대략 10배~1000배 정도(상승 정도는 항원에 따라 상이)의 혈장 중 총항원 농도의 상승이 보고되어 있다. 여기서 혈장 중 총항원 농도란 혈장 중에 존재하는 항원의 총량으로서의 농도를 의미하고 있고, 즉 항체 결합형과 항체 비결합형의 항원 농도의 합으로서 표시된다. 이러한 가용형 항원을 표적으로 한 항체 의약에 있어서는 혈장 중 총항원 농도의 상승이 일어나는 것은 바람직하지 않다. 왜냐하면 가용형 항원을 중화하기 위해서는 적어도 혈장 중 총항원 농도를 상회하는 혈장 중 항체농도가 필요하기 때문이다. 즉 혈장 중 총항원 농도가 10배~1000배 상승한다는 것은, 그것을 중화하기 위한 혈장 중 항체농도(즉 항체 투여량)로서도 혈장 중 총항원 농도의 상승이 일어나지 않는 경우에 비해 10배~1000배가 필요해지는 것을 의미한다. 한편으로 기존의 중화 항체와 비교하여 혈장 중 총항원 농도를 10배~1000배 저하할 수 있다면 항체의 투여량을 같은 분량 줄이는 것이 가능하다. 이와 같이, 혈장 중으로부터 가용형 항원을 소실시켜서 혈장 중 총항원 농도를 저하시킬 수 있는 항체는 기존의 중화 항체와 비교하여 현저히 유용성이 높다.
특정 이론에 구속되는 것은 아니나, 본 발명의 (i) Fc영역 및 (ii) 이온 농도의 조건에 따라 항원에 대한 결합 활성이 변화되는 항원 결합 도메인을 포함하는 항원 결합 분자로서, 둘 이상의 당해 항원 결합 분자 및 둘 이상의 항원 결합 단위의 항원을 포함하는 면역 복합체를 형성하는 것이 가능한 항원 결합 분자가 혈장 중으로부터 당해 항원 결합 단위를 소실시킬 가능성이 있는 하나의 메커니즘으로서, 아래의 같은 메커니즘이 예시된다. sIL-6R 등과 같이 항원 결합 단위가 1 단위(즉 호모 단량체)인 경우, 2가의 항체 결합 도메인을 포함하는 1 분자의 항체에 대해 2 분자(즉 2 단위의 항원 결합 단위)의 항원이 결합하여 1 분자의 항sIL-6R 항체와 2 단위의 항원 결합 단위를 포함하는 2 분자의 항원 분자와 복합체를 형성한다. 이 때문에 이러한 항원과 항체의 복합체는 도 1에 나타내는 바와 같이 하나의 Fc영역(천연형 IgG1의 Fc영역)만 갖는다. 당해 복합체는 하나의 Fc영역을 매개로 1 분자의 FcγR 또는 2 분자의 FcRn에 결합하기 때문에, 이들 수용체에 대한 친화성은 통상의 IgG 항체와 동일하여 세포내로의 흡수는 주로 비특이적으로 일어날 것으로 생각된다.
한편 중쇄 및 경쇄의 헤테로 복합체의 이량체인 인간 IgA 등과 같이 항원 결합 단위가 2 단위인 경우, 당해 항원 결합 단위 중에는 항원 결합 도메인이 결합하는 에피토프도 2 단위 존재하게 된다. 그러나 2가의(즉 1 분자의 항IgA 항체에 포함되는 항원 결합 도메인이 동일 에피토프에 결합하는) 항IgA 항체가 그 항원인 IgA에 결합하는 경우, 1 분자의 항IgA 항체에 포함되는 2가의 개개의 항원 결합 도메인이 1 분자의 IgA 분자에 존재하는 2 단위의 에피토프에 각각 결합하는 것은 에피토프의 배치 등의 측면에서 곤란할 것으로 생각된다. 그 결과, 1 분자의 항IgA 항체 중에 존재하는 2가의 항원 결합 도메인에 결합하는 2 분자의 IgA 중에 존재하는 2 단위의 항원 결합 단위에는 다른 항IgA 항체 분자가 결합함으로써, 적어도 4 분자(즉 항원 분자인 IgA의 2개의 분자와 항원 결합 분자인 항IgA 항체의 2개의 분자)를 포함하는 항원 항체 복합체(면역 복합체)를 형성하는 것으로 생각된다.
둘 이상의 항원 결합 단위를 포함하는 항원 분자에 결합하는 항체 등의 항원 결합 분자가 적어도 사량체의 큰 면역 복합체를 형성하는 경우, 당해 면역 복합체는 FcγR, FcRn, 보체 수용체 등에 대해 적어도 2개 이상의 다가의 Fc영역을 매개로 avidity로 강고하게 결합하는 것이 가능하다. 이 때문에 도 7에 나타내어지는 바와 같이, 당해 복합체는 이들 수용체를 발현하는 세포에 효율적으로 흡수된다. 한편 1 단위의 항원 결합 단위를 포함하는 (단량체의) 항원 분자에 결합하는 등의 항원 결합 분자와 항원 분자의 면역 복합체의 이들 수용체에 대한 Fc영역을 매개로 한 친화성은 전술한 바와 같이 충분하지 않기 때문에, 도 1에 나타내어지는 바와 같이 이들 수용체를 발현하는 세포내로 당해 면역 복합체는 주로 비특이적(avidity에 의한 결합을 매개로 하는 흡수보다는 비효율적)으로 흡수된다. 즉, avidity에 의한 결합을 매개로 하는 흡수보다도 비효율적이다.
둘 이상의 항원 결합 단위를 포함하는 항원 분자에 결합하는 항체 등의 항원 결합 분자로서, pH 또는 Ca 의존적 결합 등과 같이 이온 농도의 조건에 따라 항원에 대한 결합이 변화되는 항원 결합 도메인을 포함하는 항체가 혈장 중에서 적어도 4 분자(2 분자의 항원 및 2 분자의 항체) 이상으로 이루어지는 항원 항체 복합체(면역 복합체)를 형성한 경우에 있어서, 당해 면역 복합체가 세포내에 흡수되었을 때는 그 이온 농도의 조건이 혈장 중의 조건과는 상이한 엔도솜 내에서 항원이 당해 항체로부터 해리된다. 그 때문에 당해 면역 복합체가 흡수된 세포의 엔도솜 내에서는 당해 면역 복합체의 형성이 해소된다. 해리된 항원은 엔도솜 내에서 FcRn에 결합하는 것이 불가능하기 때문에 리소좀으로 이행한 후에 분해된다. 한편 항원을 해리한 항체는 엔도솜 내에서 FcRn에 결합한 후에 혈장 중으로 리사이클되는 것으로 생각된다(도 7).
전술한 바와 같이 둘 이상의 항원 결합 단위를 포함하는 다량체 항원에 대한 천연 IgG1형의 정상영역을 포함하는 pH 또는 Ca 의존적 결합 항체가 큰 면역 복합체를 형성하여, avidity로 FcγR, FcRn, 보체 수용체 등에 결합하는 것이 가능하면 항원의 소실만을 선택적으로 대폭 가속시키는 것이 가능할 것으로 생각된다. 인간 IgA에 결합하는 GA2-IgG1이 투여된 경우에도 그러한 큰 면역 복합체가 형성되어 있는 것으로 생각되었다. 실제로 실시예 3에서 나타내어진 바와 같이 GA2-IgG1에 대해 마우스 FcγR에 대한 결합이 손상된 개변이 도입된 GA2-IgG1-FcγR(-)은 인간 IgA의 소실을 GA2-IgG1과 같이 인간 IgA 단독과 비교하여 대폭 가속시키는 것은 불가능하여, 인간 IgA 단독과 동등한 소실을 나타내었다. 이 사실로부터 GA2-IgG1이 인간 IgA의 소실을 대폭 가속시킬 수 있었던 것은 둘 이상의 항원 결합 단위를 포함하는 다량체 항원인 인간 IgA와 GA2-IgG1을 포함하는 면역 복합체가 FcγR에 대해 avidity로 결합하여 FcγR을 발현하는 세포에 신속하게 흡수되었기 때문이라고 생각되었다. 당해 면역 복합체를 흡수한 세포의 엔도솜 내에서 당해 면역 복합체로부터 해리된 IgA는 리소좀으로 분해된다. 그와 함께 당해 엔도솜 내에서 FcRn에 결합 후 혈장 중으로 리사이클된 IgA를 해리한 항체는 재차 혈장 중의 IgA에 결합하는 것이 가능해진다. 이와 같이 하여 혈장 중의 인간 IgA의 소실이 대폭 가속된 것으로 생각된다. 항원의 혈장 중으로부터의 소실을 가속시키는 방법으로서, pH 중성역에서 FcRn에 대해 결합하는 Fc영역의 아미노산의 개변체를 사용하는 방법이 국제공개 WO2011/122011에 기재되어 있다. 본 발명은 전술한 개변체를 사용하지 않고, 둘 이상의 항원 결합 단위를 포함하는 다량체 항원의 혈장 중으로부터의 소실을 가속시키는 방법으로서 유용한 동시에, GA2-N434W에서 나타내어진 바와 같이 전술한 개변체와 조합시킴으로써 둘 이상의 항원 결합 단위를 포함하는 다량체 항원의 혈장 중으로부터의 소실을 추가로 가속시키는 것이 가능하다. 또한 둘 이상의 항원 결합 단위를 포함하는 다량체 항원을 소실시키는 것은 상기 혈장 중 이외에도 간질액, 관절액, 복수, 흉수, 심낭수에 접촉하는 세포가 FcγR 또는 FcRn을 발현하고 있는 한, 이들 간질액, 관절액, 복수, 흉수, 심낭수로부터도 소실시키는 것이 가능하다. 그러한 세포의 비한정의 일태양으로서 간질액, 관절액, 복수, 흉수, 심낭수에 존재하는 면역 세포 등이 예시된다.
또한 즉 본 발명은 본 발명의 항원 결합 분자, 본 발명의 개변방법에 의해 제작된 항원 결합 분자, 또는 본 발명의 제조방법에 의해 제조된 항원 결합 분자를 포함하는 의약 조성물에 관한 것이다. 본 발명의 항원 결합 분자 또는 본 발명의 제조방법에 의해 제조된 항원 결합 분자는 그 투여에 의해 통상의 항원 결합 분자와 비교하여 혈장 중의 항원 농도를 저하시키는 작용이 높을 뿐 아니라, 투여된 생체에 의한 면역응답이나 당해 생체 중의 약물동태 등이 개변되어 있는 것으로부터 의약 조성물로서 유용하다. 본 발명의 의약 조성물에는 의약적으로 허용되는 담체가 포함될 수 있다.
본 발명에 있어서 의약 조성물이란 통상 질환의 치료 또는 예방 또는 검사·진단을 위한 약제를 말한다.
본 발명의 의약 조성물은 당업자에게 공지의 방법을 사용하여 제제화될 수 있다. 예를 들면, 물 또는 그 이외의 약학적으로 허용 가능한 액과의 무균성 용액, 또는 현탁액제의 주사제의 형태로 비경구적으로 사용될 수 있다. 예를 들면, 약리학상 허용되는 담체 또는 매체, 구체적으로는 멸균수나 생리식염수, 식물유, 유화제, 현탁제, 계면활성제, 안정제, 향미제, 부형제, 비히클, 방부제, 결합제 등과 적절히 조합하여, 일반적으로 인정된 제약 실시에 요구되는 단위용량 형태로 혼화함으로써 제제화될 수 있다. 이들 제제에 있어서의 유효 성분량은 지시된 범위의 적당한 용량이 얻어지도록 설정된다.
주사를 위한 무균 조성물은 주사용 증류수와 같은 비히클을 사용하여 통상의 제제 실시에 따라 처방될 수 있다. 주사용 수용액으로서는 예를 들면 생리식염수, 포도당이나 기타 보조약(예를 들면 D-소르비톨, D-만노오스, D-만니톨, 염화나트륨)을 포함하는 등장액을 들 수 있다. 적절한 용해 보조제, 예를 들면 알코올(에탄올 등), 폴리알코올(프로필렌글리콜, 폴리에틸렌글리콜 등), 비이온성 계면활성제(폴리소르베이트80(TM), HCO-50 등)가 병용될 수 있다.
유성액으로서는 참기름, 대두유를 들 수 있고, 용해 보조제로서 안식향산 벤질 및/ 또는 벤질알코올도 병용될 수 있다. 또한 완충제(예를 들면, 인산염 완충액 및 초산나트륨 완충액), 무통화제(예를 들면, 염산프로카인), 안정제(예를 들면, 벤질알코올 및 페놀), 산화 방지제와 배합될 수 있다. 조제된 주사액은 통상 적절한 앰플에 충전된다.
본 발명의 의약 조성물은 바람직하게는 비경구 투여에 의해 투여된다. 예를 들면, 주사제형, 경비 투여제형, 경폐 투여제형, 경피 투여형의 조성물이 투여된다. 예를 들면, 정맥내 주사, 근육내 주사, 복강내 주사, 피하 주사 등에 의해 전신 또는 국부적으로 투여될 수 있다.
투여방법은 환자의 연령, 증상에 따라 적절히 선택될 수 있다. 항원 결합 분자를 함유하는 의약 조성물의 투여량은 예를 들면, 1회 체중 1 ㎏당 0.0001 ㎎~1000 ㎎의 범위로 설정될 수 있다. 또는 예를 들면, 환자당 0.001~100000 ㎎의 투여량이 설정될 수 있으나, 본 발명은 이들 수치에 반드시 제한되는 것은 아니다. 투여량 및 투여방법은 환자의 체중, 연령, 증상 등에 따라 변동되나, 당업자라면 그들의 조건을 고려하여 적당한 투여량 및 투여방법을 설정하는 것이 가능하다.
또한 본 발명은 적어도 본 발명의 항원 결합 분자를 포함하는 본 발명의 방법에 사용하기 위한 키트를 제공한다. 그 키트에는 기타 약학적으로 허용되는 담체, 매체, 사용방법을 기재한 지시서 등을 팩키징해 두는 것도 가능하다.
또한 본 발명은 본 발명의 항원 결합 분자 또는 본 발명의 제조방법에 의해 제조된 항원 결합 분자를 유효성분으로서 함유하는, 혈장 중 둘 이상의 항원 결합 단위 및 둘 이상의 항원 결합 분자를 포함하는 복합체의 혈장으로부터 소실시키기 위한 약제에 관한 것이다.
또한 본 발명은 본 발명의 항원 결합 분자 또는 본 발명의 제조방법에 의해 제조된 항원 결합 분자를 대상(환자, 피험자 등)에게 투여하는 공정을 포함하는 질환의 치료방법에 관한 것이다. 질환의 비한정의 일례로서 암 또는 염증성 질환을 들 수 있다.
또한 본 발명은 본 발명의 항원 결합 분자 또는 본 발명의 제조방법에 의해 제조된 항원 결합 분자의 혈장 중 둘 이상의 항원 결합 단위 및 둘 이상의 항원 결합 분자를 포함하는 복합체의 혈장으로부터 소실시키기 위한 약제의 제조에 있어서의 사용에 관한 것이다.
또한 본 발명은 본 발명의 항원 결합 분자 또는 본 발명의 제조방법에 의해 제조된 항원 결합 분자의 혈장 중 둘 이상의 항원 결합 단위 및 둘 이상의 항원 결합 분자를 포함하는 복합체의 혈장으로부터 소실시키기 위한 사용에 관한 것이다.
또한 본 발명은 본 발명의 방법에 사용하기 위한 본 발명의 항원 결합 분자 또는 본 발명의 제조방법에 의해 제조된 항원 결합 분자에 관한 것이다.
또한 본 발명에서 기재되어 있는 아미노산 서열에 포함되는 아미노산은 번역 후에 수식(예를 들면, N말단의 글루타민의 피로글루타밀화에 의한 피로글루타민산으로의 수식은 당업자에게 잘 알려진 수식이다)을 받는 경우도 있으나, 그와 같이 아미노산이 번역 후 수식된 경우이더라도 당연히 본 발명에서 기재되어 있는 아미노산 서열에 포함된다.
또한 본 명세서에 있어서 인용된 모든 선행기술문헌은 참조로써 본 명세서에 포함된다.
실시예
아래에 본 발명을 실시예에 의해 구체적으로 설명하나 본 발명은 이들 실시예에 제한되는 것은 아니다.
〔실시예 1〕칼슘 의존적으로 인간 IgA에 결합하는 항체의 조제
(1-1) 인간 IgA(hIgA)의 조제
항원인 인간 IgA(이하 hIgA로도 불린다)는 아래와 같은 재조합 기술을 사용하여 조제되었다. H (WT)-IgA1(서열번호:49)과 L (WT)(서열번호:50)을 포함하는 재조합 벡터를 포함하는 숙주세포를 배양함으로써 발현된 hIgA가 당업자 공지의 방법으로 이온 교환 크로마토그래피 및 겔여과 크로마토그래피를 사용하여 정제되었다.
(1-2) 칼슘 의존적 결합 항체에 대해서
국제공개 WO2009/125825에 기재되어 있는 H54/L28-IgG1은 인간화 항IL-6 수용체 항체로, Fv4-IgG1은 H54/L28-IgG1에 대해 가용형 인간 IL-6 수용체에 대해 pH 의존적으로 결합하는(중성 조건하에 있어서 결합하고 산성 조건하에 있어서 해리되는) 특성을 갖는 인간화 항IL-6 수용체 항체이다. 국제공개 WO2009/125825에 기재되어 있는 마우스의 in vivo 시험에서는 H54/L28-IgG1과 항원인 가용형 인간 IL-6 수용체의 혼합물을 투여한 군과 비교하여, Fv4-IgG1과 항원인 가용형 인간 IL-6 수용체의 혼합물을 투여한 군에 있어서 가용형 인간 IL-6 수용체의 소실이 대폭 가속되어 있는 것이 나타내어졌다.
통상의 가용형 인간 IL-6 수용체에 결합하는 항체에 결합한 가용형 인간 IL-6 수용체는 항체와 함께 FcRn에 의해 혈장 중으로 리사이클된다. 이에 대해 pH 의존적으로 가용형 인간 IL-6 수용체에 결합하는 항체는 엔도솜 내의 산성 조건하에 있어서 항체에 결합한 가용형 인간 IL-6 수용체를 해리한다. 해리된 가용형 인간 IL-6 수용체는 리소좀에 의해 분해되기 때문에 가용형 인간 IL-6 수용체의 혈장 중으로부터의 소실을 대폭 가속시키는 것이 가능해지고, 또한 pH 의존적으로 가용형 인간 IL-6 수용체에 결합하는 항체는 가용형 인간 IL-6 수용체를 해리한 후 FcRn에 의해 혈장 중으로 리사이클되고, 리사이클된 항체는 재차 가용형 인간 IL-6 수용체에 결합할 수 있다. 상기 사이클(항원을 결합한 항체의 세포내로의 흡수>항체로부터의 항원의 해리>항원의 분해와 항체의 혈장 중으로의 재순환)이 반복됨으로써 하나의 항체 분자가 복수 회 반복해서 가용형 인간 IL-6 수용체에 결합하는 것이 가능해진다(도 1).
또한 국제공개 WO2011/122011에 기재되어 있는 바와 같이 H54/L28-IgG1은 인간화 항IL-6 수용체 항체로, Fv4-IgG1은 H54/L28-IgG1에 대해 가용형 인간 IL-6 수용체로 pH 의존적으로 결합하는(중성 조건하에 있어서 결합하고 산성 조건하에 있어서 해리되는) 특성을 갖는 인간화 항IL-6 수용체 항체이고, Fv4-IgG1-v2는 Fv4-IgG1에 대해 pH 중성의 조건하에 있어서 FcRn으로의 결합이 증강된 인간화 항IL-6 수용체 항체이다. 국제공개 WO2011/122011에 기재되어 있는 마우스의 in vivo 시험에서는 Fv4-IgG1과 항원인 가용형 인간 IL-6 수용체의 혼합물을 투여한 군과 비교하여, Fv4-IgG1-v2와 항원인 가용형 인간 IL-6 수용체의 혼합물을 투여한 군에 있어서 가용형 인간 IL-6 수용체의 소실이 대폭 가속되어 있는 것이 나타내어졌다. 즉, pH 의존적으로 항원에 결합하는 항체의 pH 중성의 조건하(pH 7.4)에 있어서의 FcRn에 대한 결합을 증강시킴으로써 증강된 개변 항체가 항원에 반복해서 결합할 수 있는 효과 및 항원의 혈장 중으로부터의 소실을 촉진시키는 효과가 더욱 향상되어, 당해 항체를 투여함으로써 혈장 중으로부터의 항원을 소실시키는 것이 가능한 것이 보고되었다(도 2).
도 1 및 도 2에 나타내어진 pH 의존적으로 항원에 결합하는 항체에 의한 작용에서는 혈장 중과 엔도솜 내의 환경의 상위, 즉 pH의 상위(혈장 중:pH 7.4, 엔도솜 내:pH 6.0)를 이용하여 혈장 중에서는 항원에 강하게 결합시키고, 엔도솜 내에서는 항원을 해리하는 항체의 성질이 활용되고 있다. 혈장 중과 엔도솜 내에서 pH 의존적으로 결합하는 항체의 항원으로의 결합능에 이러한 차이를 활용하기 위해서는 혈장 중과 엔도솜 내의 환경 인자의 성질과 그 상위의 크기가 중요하다. pH의 상위는 즉 수소 이온 농도의 상위이다. 즉, pH 7.4의 혈장 중의 수소 이온 농도는 약 40 nM인 한편으로 pH 6.0의 엔도솜 내의 수소 이온 농도는 약 1000 nM인 것으로부터, 혈장 중과 엔도솜 내에서의 환경 인자의 하나로서 생각되는 수소 이온 농도의 상위는 약 25배의 크기이다.
또한 도 1 및 도 2에 나타낸 작용을 상이한 태양으로 달성하기 위해 또는 이들 태양을 합하여 달성하기 위해 혈장 중과 엔도솜 내의 수소 이온 농도의 상위 이외에, 그 상위가 큰 환경 인자에 의존하여 항원에 결합하는 항체를 사용하면 될 것으로 생각되었다. 혈장 중과 엔도솜 내에서 농도의 상위가 큰 환경 인자가 탐색된 결과 칼슘이 발견되었다. 혈장 중의 이온화 칼슘 농도는 1.1-1.3 mM 정도인 한편으로 엔도솜 내의 이온화 칼슘 농도는 3 μM 정도인 것으로부터, 혈장 중과 엔도솜 내에서의 환경 인자의 하나로서 생각되는 칼슘 이온 농도의 상위는 약 400배의 크기로서, 그 크기는 수소 이온 농도차(25배)보다도 큰 것이 발견되었다. 즉, 고칼슘 농도 조건하(1.1-1.3 mM)에서 항원에 결합하고, 저칼슘 농도 조건하(3 μM)에서 항원을 해리하는 이온화 칼슘 농도 의존적으로 항원에 결합하는 항체를 사용함으로써, pH 의존적으로 항원에 결합하는 항체와 동등 또는 그 이상으로 엔도솜 내에서 항원을 항체로부터 해리하는 것이 가능할 것으로 생각되었다.
(1-3) hIgA에 결합하는 항체의 발현과 정제
GA1-IgG1(중쇄 서열번호:37, 경쇄 서열번호:38), GA2-IgG1(중쇄 서열번호:39, 경쇄 서열번호:40)은 hIgA에 결합하는 항체이다. GA1-IgG1(중쇄 서열번호:37, 경쇄 서열번호:38) 및 GA2-IgG1(중쇄 서열번호:39, 경쇄 서열번호:40)을 코드하는 DNA 서열이 동물세포 발현용 플라스미드에 당업자 공지의 방법으로 삽입되었다. 항체의 발현은 아래의 방법을 사용해서 행해졌다. 인간 태아 신장세포 유래 FreeStyle 293-F주(Invitrogen)를 FreeStyle 293 Expression Medium 배지(Invitrogen)에 현탁시킨 세포 현탁액이 1.33×106 개/mL의 세포밀도로 6 well plate의 각 웰로 3 mL씩 파종되었다. 다음으로 리포펙션법에 의해 조제된 플라스미드가 세포로 도입되었다. 당해 세포는 CO2 인큐베이터(37℃, 8%CO2, 90 rpm)에서 4일간 배양되고, 단리된 그 배양상청으로부터 rProtein A SepharoseTM Fast Flow(Amersham Biosciences)를 사용하여 당업자 공지의 방법으로 항체가 정제되었다. 정제된 항체 용액의 흡광도(파장:280 nm)가 분광광도계를 사용하여 측정되었다. 얻어진 측정값으로부터 PACE법에 의해 산출된 흡광계수를 사용하여 항체농도가 산출되었다(Protein Science (1995) 4, 2411-2423).
(1-4) 취득된 항체의 hIgA에 대한 칼슘 의존적 결합능의 평가
Biacore T200(GE Healthcare)를 사용하여 (1-3)에서 단리된 항체의 hIgA 결합 활성(해리상수 KD(M))이 평가되었다. 러닝버퍼로서 3 μM 또는 1.2 mM CaCl2를 함유하는 0.05% tween20, 20 mmol/L ACES, 150 mmol/L NaCl(pH 7.4 또는 pH 5.8) 또는 0.1 μM 또는 10 mM CaCl2를 함유하는 0.05% tween20, 20 mmol/L ACES, 150 mmol/L NaCl, pH 8.0을 사용하여 측정이 행해졌다.
아미노커플링법으로 적절한 양의 재조합형 프로테인 A/G(Thermo Scientific)가 적당량 고정화된 Sensor chip CM5(GE Healthcare)에 항체를 결합시켰다. 다음으로 애널라이트로서 적절한 농도의 hIgA((1-1)에 기재)를 인젝트함으로써 hIgA와 센서칩 상의 항체를 상호작용시켰다. 측정은 37℃에서 행해졌다. 측정 후 10 mmol/L Glycine-HCl, pH 1.5를 인젝트함으로써 센서칩이 재생되었다. Biacore T200 Evaluation Software(GE Healthcare)를 사용하여 커브 피팅에 의한 해석 및 평형값 해석에 의해 측정결과로부터 해리상수 KD(M)가 산출되었다. 그 결과를 표 7에 나타내었다. 또한 얻어진 센서그램을 도 3에 나타내었다. GA2-IgG1은 Ca2 + 농도가 1.2 mM에 있어서는 hIgA에 강하게 결합하지만, Ca2 + 농도가 3 μM에 있어서는 hIgA에 약하게 결합하는 것이 나타내어졌다. 또한 GA2-IgG1은 Ca2 + 농도가 1.2 mM의 조건하에서 pH 7.4에 있어서는 인간 IgA에 강하게 결합하지만, pH 5.8에 있어서는 인간 IgA에 약하게 결합하는 것이 나타내어졌다. 즉, GA2-IgG1은 인간 IgA에 대해 pH 의존적 및 칼슘 의존적으로 결합하는 것이 명확해졌다.
Figure pat00041
〔실시예 2〕칼슘 의존적으로 hIgA에 결합하는 항체의 개변체의 조제
또한 혈장 중으로부터의 항원(hIgA)의 소실을 추가로 증대시키기 위해, 칼슘 의존적으로 hIgA에 결합하는 GA2-IgG1에 대해 마우스 FcRn에 대한 pH 7.4에 있어서의 결합을 증강시키기 위해 N434W의 아미노산 치환을 도입한 GA2-N434W(중쇄 서열번호:41, 경쇄 서열번호:40)를 제작하였다. 또한 GA2-IgG1에 대해 FcγR에 대한 결합을 결손시키기 위해 L235R, S239K의 아미노산 치환을 도입한 GA2-FcγR(-)(중쇄 서열번호:42, 경쇄 서열번호:40)를 제작하였다. GA2-N434W(중쇄 서열번호:41, 경쇄 서열번호:40) 및 GA2-FcγR(-)(중쇄 서열번호:42, 경쇄 서열번호:40)를 코드하는 DNA 서열이 당업자에게 공지의 방법으로 삽입된 동물 발현용 플라스미드를 사용하여 전술한 방법으로 발현한 이들 항체 개변체의 농도가 정제 후에 측정되었다. GA2-FcγR(-)의 각종 마우스 FcγR(mFcγRI, mFcγRII, mFcγRIII, mFcγRIV)에 대한 결합을 평가한 결과, 어느 수용체에 대해서도 결합이 확인되지 않았다.
〔실시예 3〕정상 마우스를 사용한 Ca 의존성 hIgA 결합 항체의 항원의 혈장 중 체류성에 대한 영향 평가
(3-1) 정상 마우스를 사용한 in vivo 시험
정상 마우스(C57BL/6J mouse, Charles River Japan)에 대해 hIgA(인간 IgA:실시예 1에서 제작)가 단독으로 투여되었거나 또는 hIgA 및 항hIgA 항체가 동시에 투여된 후의 hIgA 및 항hIgA 항체의 체내동태가 평가되었다. hIgA 용액(80 ㎍/mL) 또는 hIgA와 항hIgA 항체의 혼합용액이 꼬리정맥에 10 mL/㎏의 용량으로 단회 투여되었다. 항hIgA 항체로서는 전술한 GA1-IgG1, GA2-IgG1, GA2-N434W 및 GA2-FcγR(-)가 사용되었다.
혼합용액 중의 hIgA 농도는 모두 80 ㎍/mL인데, 항hIgA 항체농도는 각 항체의 hIgA로의 친화성에 따라 항체마다 상이하여, GA1-IgG1은 10 ㎎/mL, GA2-IgG1은 2.69 ㎎/mL, GA2-N434W는 1 ㎎/mL, GA2-FcγR(-)는 2.69 ㎎/mL로 조제되었다. 이때 hIgA에 대해 항hIgA 항체는 충분량 과잉으로 존재하는 것으로부터 hIgA는 대부분이 항체에 결합하고 있는 것으로 생각된다. 투여 후 5분간, 7시간, 1일간, 2일간, 3일간, 7일간에서 마우스로부터 채혈이 행해졌다. 채취된 혈액을 바로 4℃, 12,000 rpm으로 15분간 원심분리함으로써 혈장이 얻어졌다. 분리된 혈장은 측정을 실시할 때까지 -20℃ 이하로 설정된 냉동고에 보존되었다.
(3-2) ELISA법에 의한 정상 마우스 혈장 중의 항hIgA 항체농도 측정
마우스 혈장 중의 항hIgA 항체농도는 ELISA법으로 측정되었다. 먼저 Anti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody (SIGMA)가 그 각 웰에 분주된 Nunc-Immuno Plate, MaxiSorp(Nalge nunc International)를 4℃에서 하룻밤 정치함으로써 Anti-Human IgG 고상화 플레이트가 제작되었다. 혈장 중 농도의 표준액으로서 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.01563, 0.07813 ㎍/mL로 조제된 항hIgA 항체의 검량선 시료와 100배 이상 희석된 마우스 혈장 측정 시료가 상기 Anti-Human IgG 고상화 플레이트에 분주된 후, 당해 플레이트가 25℃에서 1시간 인큐베이션되었다. 그 후 Goat Anti-Human IgG (γ chain specific) Biotin(BIOT) Conjugate(Southern Biotechnology Associats Inc.)가 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 25℃에서 1시간 반응시켰다. 추가로 Streptavidin-PolyHRP80(Stereospecific Detection Technologies)이 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 25℃에서 1시간 반응시켰다. TMB One Component HRP Microwell Substrate(BioFX Laboratories)를 기질로서 사용한 발색반응이 1N-Sulfuric acid(Showa Chemical)를 사용하여 정지된 후, 마이크로플레이트 리더를 사용하여 각 웰의 반응액의 450 nm의 흡광도가 측정되었다. 마우스 혈장 중의 항hIgA 항체농도는 검량선의 흡광도로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정된 정맥내 투여 후의 정상 마우스에 있어서의 GA1-IgG1, GA2-IgG1, GA2-N434W 및 GA2-FcγR(-)의 혈장 중 항체농도 추이를 도 4에 나타내었다.
(3-3) ELISA법에 의한 혈장 중 hIgA 농도 측정
마우스의 혈장 중 hIgA 농도는 ELISA법으로 측정되었다. 먼저 Goat anti-Human IgA Antibody(BETHYL)가 그 각 웰에 분주된 Nunc-Immuno Plate, MaxiSorp(Nalge nunc International)를 4℃에서 하룻밤 정치함으로써 Anti-Human IgA 고상화 플레이트가 제작되었다. 혈장 중 농도의 표준액으로서 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625 ㎍/mL로 조제된 hIgA의 검량선 시료와 100배 이상 희석된 마우스 혈장 측정시료의 각 100 μL가 상기 Anti-Human IgA 고상화 플레이트에 분주된 후, 추가로 500 ng/mL의 hsIL-6R이 200 μL 분주된 후, 당해 플레이트는 실온에서 1시간 정치되었다. 다음으로 Biotinylated Anti-human IL-6 R Antibody(R&D)가 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 실온에서 1시간 반응시켰다. 추가로 Streptavidin-PolyHRP80(Stereospecific Detection Technologies)이 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 실온에서 1시간 반응시켰다. TMB One Component HRP Microwell Substrate(BioFX Laboratories)를 기질로서 사용한 발색반응이 1N-Sulfuric acid(Showa Chemical)를 사용하여 반응 정지된 후, 마이크로플레이트 리더를 사용하여 각 웰의 반응액의 450 nm의 흡광도가 측정되었다. 마우스 혈장 중 농도는 검량선의 흡광도로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정한 정맥내 투여 후의 정상 마우스에 있어서의 혈장 중 hIgA 농도 추이를 도 5에 나타내었다.
그 결과, hIgA 단독의 소실에 대해, hIgA와 Ca 의존적인 결합이 약한(의존성의 정도가 작은) 항체인 GA1-IgG1을 동시에 투여한 경우는 hIgA의 소실이 느려졌다. 그것에 대해 hIgA와 100배 이상의 Ca 의존적인 결합 활성을 갖는 GA2-IgG1을 동시에 투여한 경우는 hIgA의 소실을 hIgA 단독과 비교하여 대폭 가속시켰다. 도 4에 나타내어진 혈장 중 항체농도, 도 5에 나타내어진 혈장 중 hIgA 농도 및 표 7에 나타내어진 각 항체의 KD값으로부터 혈장 중에 존재하는 비결합형의 hIgA 농도가 구해졌다. 그 결과를 도 6에 나타내었다. 도 6에 나타내어진 바와 같이 GA1-IgG1 투여군의 비결합형의 항원(hIgA)의 농도와 비교하여, 칼슘 의존적으로 hIgA에 결합하는 GA2-IgG1 투여군의 비결합형의 항원(hIgA)의 농도는 낮은 것으로부터, 칼슘 의존적 결합 항체를 항원의 소실을 사용하여 가속시킴으로써 항체에 결합해 있지 않은(항체 비결합형) 항원(hIgA)을 저하시킬 수 있는 것이 나타내어졌다. 또한 pH 7.4에 있어서의 FcRn 결합이 증강되어 있는 GA2-N434W는 항원의 소실을 GA2-IgG1보다도 가속시켜 혈장 중의 hIgA 농도는 투여 7시간 후에는 검출한계 이하가 되었다.
〔실시예 4〕pH 의존적 항IgE 항체의 취득
(4-1) 항인간 IgE 항체의 취득
pH 의존적 항인간 IgE 항체를 취득하기 위해 항원인 인간 IgE(중쇄 서열번호:43, 경쇄 서열번호:44)(가변영역은 항인간 Glypican3 항체로 이루어진다)를 FreeStyle293(Life Technologies)을 사용하여 발현시켰다. 발현된 인간 IgE는 당업자 공지의 일반적인 칼럼크로마토그래피법으로 정제하여 조제되었다.
취득된 다수의 항체 중에서 인간 IgE에 pH 의존적으로 결합하고 또한 2 분자의 항IgE 항체 및 2 분자의 IgE 이상으로 이루어지는 큰 면역 복합체를 형성하는 항체가 선발되었다. 선발된 항인간 IgE 항체를 인간 IgG1 중쇄 정상영역 및 인간 경쇄 정상영역을 사용하여 발현, 정제하였다. 제작된 항체는 클론 278(중쇄 서열번호:45, 경쇄 서열번호:46)로 명명되었다.
(4-2) 항인간 IgE 항체의 결합 활성 및 pH 의존적 결합 활성의 평가
엔도솜 내에서 항원을 해리할 수 있는 항체는 항원에 대해 pH 의존적으로 결합할 뿐 아니라 Ca 의존적으로 결합하는 항원에 결합함으로써도 창제하는 것이 가능하다. 이에 클론 278 및 대조가 되는 pH/Ca 의존적 IgE 결합능을 갖지 않는 Xolair(omalizumab, Novartis)의 인간 IgE(hIgE)에 대한 pH 의존적 결합능 및 pH/Ca 의존적 결합능이 평가되었다.
즉, Biacore T200(GE Healthcare)를 사용하여 클론 278 및 Xolair의 hIgE에 대한 결합 활성(해리상수 KD(M))이 평가되었다. 러닝버퍼로서 아래 3종을 사용하여 측정이 행해졌다.
·1.2 mmol/l CaCl2/0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl, pH 7.4
·1.2 mmol/l CaCl2/0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl, pH 5.8
·3 μmol/l CaCl2/0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl, pH 5.8
적당량 첨가된 화학합성된 인간 글리피칸3 단백질 유래 서열(서열번호:47)의 C말단에 존재하는 Lys에 비오틴이 부가된 펩티드(이하 「비오틴화 GPC3 펩티드」로 기재한다)가 스트렙토아비딘과 비오틴의 친화성을 이용하여 Sensor chip SA(GE Healthcare) 상에 고정되었다. 적절한 농도의 인간 IgE를 인젝트하여 비오틴화 GPC3 펩티드에 포착시킴으로써 인간 IgE가 칩 상에 고정화되었다. 애널라이트로서 적절한 농도의 클론 278을 인젝트하여 센서칩 상의 인간 IgE와 상호작용시켰다. 그 후 10 mmol/L Glycine-HCl, pH 1.5를 인젝트하여 센서칩이 재생되었다. 상호작용은 모두 37℃에서 측정되었다. Biacore T200 Evaluation Software(GE Healthcare)를 사용한 커브 피팅에 의한 측정결과의 해석에 의해, 결합속도상수 ka(1/Ms) 및 해리속도상수 kd(1/s)가 산출되었다. 이들 상수를 토대로 해리상수 KD(M)가 산출되었다. 또한 pH 5.8, 1.2 mM Ca 조건과 pH 7.4, 1.2 mM Ca 조건하에서의 각 항체의 KD비를 산출하여 pH 의존성 결합이 pH 5.8, 3 μM Ca 조건과 pH 7.4, 1.2 mM Ca 조건하에서의 각 항체의 KD비를 산출하여 pH/Ca 의존성 결합이 평가되었다. 그 결과를 표 8에 나타내었다.
Figure pat00042
(4-3) 클론 278의 면역 복합체의 형성 평가
클론 278이 인간 IgE와 중성 조건하(pH 7.4)에 있어서 2:2 이상으로 이루어지는 큰 면역 복합체를 형성하는 것, 또한 그 면역 복합체가 산성 조건하(pH 5.8)에 있어서 해리되는 것이 겔여과 크로마토그래피에 의해 평가되었다. 100 mM NaCl에 투석 처리된 클론 278은 중성 조건하의 샘플로서 20 mM Tris-HCl, 150 mM NaCl, 1.2 mM CaCl2, pH 7.4의 버퍼, 산성 조건하의 샘플로서 20 mM Bis-tris-HCl, 150 mM NaCl, 3 μM CaCl2, pH 5.8의 버퍼를 사용하여 희석되었다(실시예 5에서 제작되었다). 인간 IgE인 hIgE(Asp6) 100 ㎍/mL(0.60 μM)와 클론 278이 1:1, 1:6의 몰비로 혼합된 혼합액이 실온 또는 25℃ 오토샘플러 중에서 2시간 이상 방치 후 겔여과 크로마토그래피로 분석되었다. 중성 조건하에서는 20 mM Tris-HCl, 300 mM NaCl, 1.2 mM CaCl2, pH 7.4의 이동상, 산성 조건하에서는 20 mM Bis-tris-HCl, 300 mM NaCl, 3 uM CaCl2, pH 5.8의 이동상이 각각 사용되었다. 칼럼은 G4000SWxl(TOSOH)을 사용하여 유속 0.5 mL/min, 25℃의 조건하에서 분석되었다. 그 결과를 도 9에 나타내었다. 도 9에 나타내는 바와 같이, 클론 278과 인간 IgE는 중성 조건하에 있어서 겉보기의 분자량 670 kDa 정도로 이루어지는(항체 1 분자를 일량체로 가정한 경우에 있어서의) 사량체 및 그 이상의 다량체로 이루어지는 큰 면역 복합체를 형성한 것이 확인되었다. 또한 산성 조건하에 있어서는 이러한 면역 복합체는 확인되지 않은 것으로부터 전술한 Biacore를 사용한 결합의 평가와 마찬가지로 pH 의존적으로 이들 면역 복합체는 해리되는 것이 확인되었다.
이들 결과로부터 클론 278은 전술한 항IgA 항체인 GA2-IgG1과 마찬가지로 인간 IgE의 소실을 가속시키는 것이 가능할 것으로 생각되었다.
〔실시예 5〕클론 278과 Xolair의 in vivo 평가
(5-1) In vivo 평가용 인간 IgE(hIgE(Asp6))의 조제
중쇄(서열번호:48) 및 경쇄(서열번호:44)로 이루어지는 in vivo 평가용 인간 IgE인 hIgE(Asp6)(가변영역은 항인간 Glypican3 항체)는 실시예 1과 동일한 방법으로 조제되었다. hIgE(Asp6)는 인간 IgE의 N형 당쇄의 이질성(heterogeneity)이 항원인 인간 IgE의 혈장 중 농도 추이의 영향을 받지 않도록 하기 위해, 인간 IgE의 6개소의 N형 당쇄 결합 사이트의 아스파라긴을 아스파라긴산으로 개변한 분자이다.
(5-2) 정상 마우스를 사용한 클론 278과 Xolair의 인간 IgE의 소실 가속효과의 검증
C57BL/6J 마우스(Charles river Japan)에 hIgE(Asp6)를 단독 투여 또는 hIgE(Asp6) 및 항hIgE 항체(클론 278과 Xolair)를 동시 투여한 후의 hIgE(Asp6) 및 항인간 IgE 항체의 체내동태가 평가되었다. hIgE(Asp6)(20 ㎍/mL) 또는 hIgE(Asp6) 및 항인간 IgE 항체의 혼합용액(농도는 표 9에 기재)이 꼬리정맥으로부터 10 mL/㎏으로 단회 투여되었다. 이때 hIgE(Asp6)에 대해 각 항체는 충분량 과잉으로 존재하는 것으로부터 hIgE(Asp6)는 거의 모두 항체에 결합하고 있는 것으로 생각된다. 투여 후 5분간, 2시간, 7시간, 1일간, 2일간, 4일간 또는 5일간, 7일간, 14일간, 21일간, 28일간에서 당해 마우스로부터 혈액이 채혈되었다. 채취된 혈액을 바로 4℃, 15,000 rpm으로 5분간 원심분리하여 혈장이 얻어졌다. 분리된 혈장은 측정을 실시할 때까지 -20℃ 이하로 설정된 냉동고에 보존되었다.
Figure pat00043
(5-3) 정상 마우스의 혈장 중 hIgE ( Asp6 ) 농도의 측정
마우스 혈장 중 hIgE(Asp6) 농도는 ELISA법으로 측정되었다. 혈장 중 농도로서 192, 96, 48, 24, 12, 6, 3 ng/mL의 검량선 시료가 조제되었다. hIgE(Asp6)와 항hIgE 항체의 면역 복합체를 균일하게 하기 위해 검량선 및 마우스 혈장 측정시료에는 10 ㎍/mL가 되도록 Xolair(Novartis)를 첨가하고 실온에서 30분 정치시켰다. 정치 후의 검량산 및 마우스 혈장 측정시료를 anti-human IgE가 고상화된 이뮤노 플레이트(MABTECH) 또는 anti-human IgE(clone 107, MABTECH)가 고상화된 이뮤노 플레이트(Nunc F96 MicroWell Plate(Nalge nunc International))에 분주하고 실온에서 2시간 정치 또는 4℃에서 하룻밤 정치시켰다. 그 후 human GPC3 core protein(서열번호:51), NHS-PEG4-Biotin(Thermo Fisher Scientific)으로 biotin화된 항GPC3 항체(사내 조제), Sterptavidin-PolyHRP80(Stereospecific Detection Technologies)을 각각 1시간 순차 반응시켰다. TMB One Component HRP Microwell Substrate(BioFX Laboratories)를 기질로서 사용한 발색반응을 1N-Sulfuric acid(Showa Chemical)로 반응 정지 후, 당해 발색을 마이크로플레이트 리더로 450 nm의 흡광도를 측정하는 방법 또는 SuperSignal(r) ELISA Pico Chemiluminescent Substrate(Thermo Fisher Scientific)를 기질로서 발광반응을 행하여, 마이크로플레이트 리더로 발광강도를 측정하는 방법으로 마우스 혈장 중 농도가 측정되었다. 마우스 혈장 중 농도는 검량선의 흡광도 또는 발광강도로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정된 정맥내 투여 후의 혈장 중 hIgE(Asp6) 농도 추이를 도 11에 나타내었다.
(5-4) 정상 마우스의 혈장 중 항인간 IgE 항체농도의 측정
마우스 혈장 중의 항hIgE 항체농도는 ELISA법으로 측정되었다. 혈장 중 농도로서 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625 ㎍/mL의 검량선 시료가 조제되었다. hIgE(Asp6)와 항hIgE 항체의 면역 복합체를 균일하게 하기 위해 검량선 및 마우스 혈장 측정시료에는 1 ㎍/mL가 되도록 hIgE(Asp6)를 첨가하고 실온에서 30분 정치시켰다. 정치 후의 검량선 및 마우스 혈장 측정시료를 Anti-Human Kappa Light Chain Antibody(Bethyl Laboratories)가 고상화된 이뮤노 플레이트(Nunc-Immuno Plate, MaxiSorp(Nalge nunc International))에 분주하고 실온에서 2시간 정치 또는 4℃에서 하룻밤 정치시켰다. 그 후 Rabbit anti-Human IgG (Fc) Secondary antibody, Biotin conjugate(Pierce Biotechnology) 및 Streptavidin-Poly HRP80(Stereospecific Detection Technologies)을 각각 1시간 순차 반응시켰다. TMB One Component HRP Microwell Substrate(BioFX Laboratories)를 기질로서 사용한 발색반응을 1N-Sulfuric acid(Showa Chemical)로 반응 정지 후, 당해 발색을 마이크로플레이트 리더로 450 nm의 흡광도를 측정하는 방법으로 마우스 혈장 중 농도가 측정되었다. 마우스 혈장 중 농도는 검량선의 흡광도로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정된 정맥내 투여 후의 혈장 중 항체농도 추이를 도 10에 나타내었다.
그 결과, 인간 IgE 단독의 소실에 대해 인간 IgE와 대조 항IgE 항체인 Xolair를 동시에 투여한 경우는 인간 IgE의 소실은 느려졌다. 그것에 대해 인간 IgE와 강한 pH 의존적인 결합 활성을 갖는 클론 278을 동시에 투여한 경우는 인간 IgE의 소실을 인간 IgE 단독과 비교하여 대폭 가속시키는 것이 확인되었다. 즉, IgA뿐 아니라 IgE에 있어서도 큰 면역 복합체를 형성하는 항체를 투여함으로써 항원 단독과 비교하여 항원의 소실을 가속시키는 것이 나타내어졌다.
〔실시예 6〕칼슘 의존적으로 hIgA에 결합하는 항체의 개변체의 조제
다음으로 혈장 중으로부터의 항원(hIgA)의 소실을 추가로 증대시키는 것을 목적으로, 칼슘 의존적으로 hIgA에 결합하는 GA2-IgG1에 대해 마우스 FcγR에 대한 결합을 증강시키기 위해 GA2-IgG1의 EU 넘버링으로 표시되는 328번 위치의 Leu가 Tyr로 치환된 GA2-F1087(중쇄 서열번호:52)이 제작되었다. GA2-F1087(중쇄 서열번호:52, 경쇄 서열번호:40)을 코드하는 DNA 서열이 당업자에게 공지의 방법으로 삽입된 동물 발현용 플라스미드를 사용하여, 전술한 방법으로 발현된 이들 항체 개변체의 농도가 정제 후에 측정되었다. 이 개변을 포함하는 항체는 참고실시예 5에 나타내어지는 바와 같이 마우스 FcγR에 대한 결합이 대폭 증강되어 있었다.
〔실시예 7〕Ca 의존성 hIgA 결합 항체가 투여된 정상 마우스에 있어서의 항원의 혈장 중 체류성에 대한 영향의 평가
(7-1) 정상 마우스가 사용된 in vivo 시험
정상 마우스(C57BL/6J mouse, Charles River Japan)에 대해 hIgA(인간 IgA:실시예(1-1)에서 제작)가 단독으로 투여된 또는 hIgA 및 항hIgA 항체가 동시에 투여된 후의 hIgA 및 항hIgA 항체의 체내동태가 평가되었다. hIgA 용액(80 ㎍/mL) 또는 hIgA와 항hIgA 항체의 혼합용액이 꼬리정맥에 10 mL/㎏의 용량으로 단회 투여되었다. 항hIgA 항체로서는 전술한 GA2-IgG1 및 GA2-F1087이 사용되었다.
혼합용액 중의 hIgA 농도는 모두 80 ㎍/mL이고, 항hIgA 항체농도는 2.69 ㎎/mL였다. 이때 hIgA에 대해 항hIgA 항체는 충분량 과잉으로 존재하는 것으로부터 hIgA는 대부분이 항체에 결합하고 있는 것으로 생각되었다. GA-IgG1이 투여된 군에서는 투여 후 5분간, 7시간, 1일간, 2일간, 3일간, 7일간에서 마우스로부터 채혈이 행해졌다. 또한 GA-F1087이 투여된 군에서는 투여 후 5분간, 30분간, 1시간, 2시간, 1일간, 3일간, 7일간에서 마우스로부터 채혈이 행해졌다. 채취된 혈액을 바로 4℃, 12,000 rpm으로 15분간 원심분리함으로써 혈장이 얻어졌다. 분리된 혈장은 측정을 실시할 때까지 -20℃ 이하로 설정된 냉동고에 보존되었다.
(7-2) ELISA법에 의한 정상 마우스 혈장 중의 항hIgA 항체농도 측정
마우스 혈장 중의 항hIgA 항체농도는 ELISA법으로 측정되었다. 먼저 Anti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody(SIGMA)가 그 각 웰에 분주된 Nunc-Immuno Plate, MaxiSorp(Nalge nunc International)를 4℃에서 하룻밤 정치함으로써 Anti-Human IgG 고상화 플레이트가 제작되었다. 혈장 중 농도의 표준액으로서 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.01563, 0.007813 ㎍/mL로 조제된 항hIgA 항체의 검량선 시료와 100배 이상 희석된 마우스 혈장 측정 시료가 상기 Anti-Human IgG 고상화 플레이트에 분주된 후, 당해 플레이트가 25℃에서 1시간 인큐베이션되었다. 그 후 Goat Anti-Human IgG (γ chain specific) Biotin(BIOT) Conjugate(Southern Biotechnology Associats Inc.)가 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 25℃에서 1시간 반응시켰다. 추가로 Streptavidin-PolyHRP80(Stereospecific Detection Technologies)이 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 25℃에서 1시간 반응시켰다. TMB One Component HRP Microwell Substrate(BioFX Laboratories)를 기질로서 사용한 발색반응이 1N-Sulfuric acid(Showa Chemical)를 사용하여 정지된 후, 마이크로플레이트 리더를 사용하여 각 웰의 반응액의 450 nm의 흡광도가 측정되었다. 마우스 혈장 중의 항hIgA 항체농도는 검량선의 흡광도로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정된 정맥내 투여 후의 정상 마우스에 있어서의 GA2-IgG1 및 GA2-F1087의 혈장 중 항체농도 추이를 도 12에 나타내었다. 그 결과, hIgA와 강한 pH 및 Ca 의존적인 결합 활성을 갖는 클론 GA2-IgG1은 FcγR과의 결합을 증강시켰다 하더라도 그 혈장 중 항체농도가 크게 저하되지 않는 것이 확인되었다.
(7-3) ELISA법에 의한 혈장 중 hIgA 농도 측정
마우스의 혈장 중 hIgA 농도는 ELISA법으로 측정되었다. 먼저 Goat anti-Human IgA Antibody(BETHYL)가 그 각 웰에 분주된 Nunc-Immuno Plate, MaxiSorp(Nalge nunc International)를 4℃에서 하룻밤 정치함으로써 Anti-Human IgA 고상화 플레이트가 제작되었다. 혈장 중 농도의 표준액으로서 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625 ㎍/mL로 조제된 hIgA의 검량선 시료가 사용되었다. 검량선 시료 및 100배 이상 희석된 마우스 혈장 측정시료의 각 100 μL에 대해 500 ng/mL hsIL6R을 200 μL 첨가하여 혼합하고 실온에서 1시간 정치하였다. 그 후 혼합용액 100 μL가 분주된 상기 Anti-Human IgA 고상화 플레이트 플레이트는 실온에서 1시간 정치되었다. 다음으로 Biotinylated Anti-human IL-6 R Antibody(R&D)가 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 실온에서 1시간 반응시켰다. 추가로 Streptavidin-PolyHRP80(Stereospecific Detection Technologies)이 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 실온에서 1시간 반응시켰다. TMB One Component HRP Microwell Substrate(BioFX Laboratories)를 기질로서 사용한 발색반응이 1N-Sulfuric acid(Showa Chemical)를 사용하여 정지된 후, 마이크로플레이트 리더를 사용하여 각 웰의 반응액의 450 nm의 흡광도가 측정되었다. 마우스 혈장 중 농도는 검량선의 흡광도로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정한 정맥내 투여 후의 정상 마우스에 있어서의 혈장 중 hIgA 농도 추이를 도 13에 나타내었다.
그 결과, hIgA 단독의 소실에 대해 hIgA와 100배 이상의 Ca 의존적인 결합 활성을 갖는 GA2-IgG1이 동시에 투여된 마우스에서는 hIgA의 소실이 hIgA 단독과 비교하여 가속되었다. 또한 hIgA와 FcγR에 대해 결합이 증강된 GA2-F1087이 투여된 마우스의 혈장 중에서는 투여 1일 후에 측정범위(0.006 ㎍/mL 이상)보다 hIgA의 농도가 저하되고, GA-IgG1이 투여된 마우스의 혈장 중 보다도 대폭 hIgA의 소실이 가속되었다. 이상으로부터 면역 복합체를 형성하는 hIgA와 항hIgA 항체가 투여된 마우스에 있어서, FcγR에 대한 결합이 증강된 항체에 의한 항원(hIgA)의 혈장 중으로부터의 제거효과가 FcγR에 대한 결합이 증강된 항체의 토대가 되는 항체에 의한 항원(hIgA)의 제거효과와 비교하여 증강되어 있는 것이 나타내어졌다.
〔실시예 8〕pH 의존적으로 인간 IgE에 결합하는 항체의 개변체의 조제
다음으로 혈장 중으로부터의 항원(인간 IgE)의 소실을 추가로 증대시키는 것을 목적으로, pH 의존적으로 인간 IgE에 결합하는 278-IgG1에 대해 마우스 FcγR에 대한 결합을 증강시키기 위해 278-IgG1의 EU 넘버링으로 표시되는 328번 위치의 Leu가 Tyr로 치환된 278-F1087(중쇄 서열번호:53, 경쇄 서열번호:46)을 코드하는 DNA 서열이 당업자에게 공지의 방법으로 동물 발현용 플라스미드에 삽입되었다. 당해 플라스미드가 도입된 동물세포를 사용하여 전술한 방법으로 발현된 이들 항체 개변체의 농도가 그 정제 후에 측정되었다.
〔실시예 9〕278-IgG1의 in vivo 평가
(9-1) In vivo 평가용 인간 IgE(hIgE(Asp6))의 조제
실시예(5-1)에 기재된 방법과 동일한 방법으로 in vivo 평가용 인간 IgE인 hIgE(Asp6)(가변영역은 항인간 Glypican3 항체)가 조제되었다. hIgE(Asp6)는 인간 IgE의 N형 당쇄의 이질성이 항원인 인간 IgE의 혈장 중 농도 추이의 영향을 받지 않도록 하기 위해, 인간 IgE의 6개소의 N형 당쇄 결합 사이트의 아스파라긴이 아스파라긴산으로 개변된 분자이다.
(9-2) 클론 278이 투여된 정상 마우스의 혈장 중 인간 IgE의 소실 가속효과의 검증
실시예 7에서 pH 의존적으로 항원인 인간 IgA에 결합하고 마우스 FcγR에 대한 결합이 증강된 분자가 투여된 마우스의 혈장 중 항원 농도가 대폭 저하된 것이 나타내어졌다. 마우스 FcγR에 대한 결합을 증강시킨 경우에, 인간 IgA 이외의 항원에 대해 pH 의존적으로 결합하고 마우스 FcγR에 대한 결합이 증강된 항체가 투여된 생체의 혈장 중 가용형 항원의 소실 효과가 동일하게 관찰되는지에 대해서 추가적인 검증을 행하기 위해, 인간 IgE를 항원으로 하는 항체를 사용한 시험이 새롭게 실시되었다.
C57BL/6J 마우스(Charles river Japan)에 hIgE(Asp6)가 단독 투여 또는 hIgE(Asp6) 및 항hIgE 항체(278-IgG1과 278-F1087)가 동시 투여된 후의 hIgE(Asp6) 및 항인간 IgE 항체의 체내동태가 평가되었다. hIgE(Asp6)(20 ㎍/mL) 또는 hIgE(Asp6) 및 항인간 IgE 항체의 혼합용액(농도는 표 10에 기재한 바와 같이 어느 항체도 동일한 농도가 되도록 조제되었다)이 꼬리정맥으로부터 10 mL/㎏으로 단회 투여되었다. 이때 hIgE(Asp6)에 대해 각 항체는 충분량 과잉으로 존재하는 것으로부터 hIgE(Asp6)는 거의 모두 항체에 결합하고 있는 것으로 생각되었다. 클론 278(278-IgG1)이 투여된 군에서는 투여 후 5분간, 2시간, 7시간, 1일간, 2일간, 4일간, 5일간, 7일간, 14일간, 21일간에서 당해 마우스로부터 혈액이 채혈되었다. 278-F1087이 투여된 군에서는 5분간, 30분간, 1시간, 2시간, 1일간, 3일간, 7일간, 14일간, 21일간에서 당해 마우스로부터 혈액이 채혈되었다. 또한 채취된 혈액을 바로 4℃, 15,000 rpm으로 5분간 원심분리하여 혈장이 얻어졌다. 분리된 혈장은 측정을 실시할 때까지 -20℃ 이하로 설정된 냉동고에 보존되었다.
Figure pat00044
(9-3) 정상 마우스의 혈장 중 항인간 IgE 항체농도의 측정
마우스 혈장 중의 항hIgE 항체농도는 ELISA법으로 측정되었다. 혈장 중 농도로서 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625 ㎍/mL의 검량선 시료가 조제되었다. hIgE(Asp6)와 항hIgE 항체의 면역 복합체를 균일하게 하기 위해 검량선 및 마우스 혈장 측정시료에는 1 ㎍/mL가 되도록 hIgE(Asp6)를 첨가하고, 278-hIgG1 투여군 및 대응하는 검량선 시료는 실온에서 30분 정치시켰다. 또한 278-F1087 투여군 및 대응하는 검량선 시료는 37℃에서 하룻밤 교반하였다. 정치 또는 교반 후의 검량선 및 마우스 혈장 측정시료를 Anti-Human Kappa Light Chain Antibody(Bethyl Laboratories)가 고상화된 이뮤노 플레이트(Nunc-Immuno Plate, MaxiSorp(Nalge nunc International))에 분주하고, 실온에서 2시간 정치 교반(278-F1087 투여군의 시료 및 278-F1087의 검량선 시료) 또는 4℃에서 하룻밤 정치(278-hIgG1 투여군의 시료 및 278-hIgG1의 검량선 시료)시켰다. 그 후 Rabbit anti-Human IgG (Fc) Secondary antibody, Biotin conjugate(Pierce Biotechnology) 및 Streptavidin-Poly HRP80(Stereospecific Detection Technologies)을 각각 1시간 순차 반응시켰다. TMB One Component HRP Microwell Substrate(BioFX Laboratories)를 기질로서 사용한 발색반응을 1N-Sulfuric acid(Showa Chemical)로 반응 정지 후, 당해 발색을 마이크로플레이트 리더로 450 nm의 흡광도를 측정하는 방법으로 마우스 혈장 중 농도가 측정되었다. 마우스 혈장 중 농도는 검량선의 흡광도로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정된 정맥내 투여 후의 혈장 중 항체농도 추이를 도 14에 나타내었다. 그 결과, 인간 IgE에 대해 강한 pH 의존적인 결합 활성을 갖는 278-IgG1의 FcγR과의 결합이 증강된 개변체가 투여된 마우스에 있어서, 당해 마우스의 혈장 중에 있어서의 항체농도는 278-IgG1의 그것과 비교하더라도 크게 저하되지 않는 것이 확인되었다.
(9-4) 정상 마우스의 혈장 중 hIgE ( Asp6 ) 농도의 측정
마우스 혈장 중 hIgE(Asp6) 농도는 ELISA법으로 측정되었다. 혈장 중 농도로서 192, 96, 48, 24, 12, 6, 3 ng/mL의 검량선 시료가 조제되었다. hIgE(Asp6)와 항hIgE 항체의 면역 복합체를 균일하게 하기 위해 검량선 및 마우스 혈장 측정시료에는 278-hIgG1을 투여한 군에서는 10 ㎍/mL가 되도록 Xolair(Novartis)를 첨가하고 실온에서 30분 정치시켰다. 278-F1087을 투여한 군에서는 20 ㎍/mL가 되도록 278-F1022(중쇄 서열번호:54, 경쇄 서열번호:46, 실시예 8과 동일하게 조제) 또는 278-F760(중쇄 서열번호:55, 경쇄 서열번호:46, 실시예 8과 동일하게 조제)을 첨가하고 37℃에서 60시간 교반하였다. 마우스 혈장 측정시료를 anti-human IgE가 고상화된 이뮤노 플레이트(MABTECH) 또는 anti-human IgE(clone 107, MABTECH)가 고상화된 이뮤노 플레이트(Nunc F96 MicroWell Plate(Nalge nunc International))에 분주하고, 실온에서 2시간 정치 또는 교반 또는 4℃에서 하룻밤 정치시켰다. 그 후 human GPC3 core protein(서열번호:51), NHS-PEG4-Biotin(Thermo Fisher Scientific)으로 biotin화된 항GPC3 항체(사내 조제), Sterptavidin-PolyHRP80(Stereospecific Detection Technologies)을 각각 1시간 순차 반응시켰다. TMB One Component HRP Microwell Substrate(BioFX Laboratories)를 기질로서 사용한 발색반응을 1N-Sulfuric acid(Showa Chemical)로 반응 정지 후, 당해 발색을 마이크로플레이트 리더로 450 nm의 흡광도를 측정하는 방법 또는 SuperSignal(r) ELISA Pico Chemiluminescent Substrate(Thermo Fisher Scientific)를 기질로서 발광반응을 행하여 마이크로플레이트 리더로 발광강도를 측정하는 방법으로 마우스 혈장 중 농도가 측정되었다. 마우스 혈장 중 농도는 검량선의 흡광도 또는 발광강도로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정된 정맥내 투여 후의 혈장 중 hIgE(Asp6) 농도 추이를 도 15에 나타내었다.
그 결과, 인간 IgE 단독의 소실에 대해 강한 pH 의존적인 결합 활성을 갖는 278-IgG1과 인간 IgE가 동시에 투여된 마우스에서는 인간 IgE의 소실이 인간 IgE 단독과 비교하여 가속되었다. 또한 278-IgG1에 대해 FcγR과의 결합이 증강된 278-F1087과 인간 IgE가 투여된 마우스에서는 인간 IgE의 소실이 인간 IgE 단독 및 278-IgG1과 인간 IgE가 투여된 마우스보다도 대폭 가속되는 것이 확인되었다. 즉, 지금까지 기술된 FcγR과의 결합이 증강된 항IgA 항체뿐 아니라 FcγR과의 결합이 증강된 항IgE 항체가 투여된 마우스에 있어서도 항원의 소실이 가속되는 것이 나타내어졌다. 이상의 결과로부터, 면역 복합체를 형성하는 hIgA와 항hIgA 항체의 조합 및 hIgE와 항hIgE 항체의 조합 각각에 있어서 FcγR과의 결합을 증강시킴으로써 항원의 소실을 추가로 가속시킬 수 있는 것이 나타내어졌다.
〔실시예 10〕칼슘 의존적으로 hIgA에 결합하는 항체의 개변체의 조제
다음으로 혈장 중으로부터의 항원(hIgA)의 소실을 증대시키는 것을 목적으로 칼슘 의존적으로 hIgA에 결합하는 GA2-IgG1에 대해 마우스 FcRn에 대한 결합이 증강된 개변체가 제작되었다. 먼저 FcγR에 대한 Fc영역의 결합을 저감시키는 것을 목적으로 GA2-IgG1의 EU 넘버링으로 표시되는 235번 위치의 Leu가 Arg로, 239번 위치의 Ser이 Lys로 치환된 GA2-F760(중쇄 서열번호:57)이 제작되었다. 또한 GA2-F760보다도 pH 7.4에 있어서 FcRn에 대해 보다 강하게 결합하는 개변체인 GA2-F1331이 GA2-F760의 EU 넘버링으로 표시되는 236번 위치의 Gly를 Arg로, 252번 위치의 Met를 Tyr로, 254번 위치의 Ser을 Thr로, 256번 위치의 Thr을 Glu로, 434번 위치의 Asn을 Tyr로, 436번 위치의 Tyr을 Val로, 438번 위치의 Gln을 Arg로, 440번 위치의 Ser을 Glu로 치환하여 제작되었다. GA2-F760(중쇄 서열번호:57, 경쇄 서열번호:40) 및 GA2-F1331(중쇄 서열번호:56, 경쇄 서열번호:40)을 코드하는 DNA 서열이 당업자에게 공지의 방법으로 삽입된 동물 발현용 플라스미드를 사용하여 전술한 방법으로 발현된 이들 항체 개변체의 농도가 정제 후에 측정되었다. GA2-F760의 마우스 FcγR(mFcγRI, mFcγRII, mFcγRIII 및 mFcγRIV)에 대한 결합 활성이 측정되었다. 그 결과, GA2-F760은 마우스 FcγR에 대해 유의한 결합을 나타내지 않았다.
〔실시예 11〕Ca 의존성 hIgA 결합 항체가 투여된 인간 FcRn 형질전환 마우스에 있어서의 항원의 혈장 중 체류성에 대한 영향의 평가
(11-1) 인간 FcRn 형질전환 마우스가 사용된 in vivo 시험
인간 FcRn 형질전환 마우스(B6.mFcRn-/-.hFcRn Tg line 32 +/+ mouse, Jackson Laboratories, Methods Mol Biol. (2010) 602, 93-104)에 대해 hIgA(인간 IgA:실시예(1-1)에서 제작)가 단독으로 투여된 또는 hIgA 및 항hIgA 항체가 동시에 투여된 후의 hIgA 및 항hIgA 항체의 체내동태가 평가되었다. hIgA 용액(80 ㎍/mL) 또는 hIgA와 항hIgA 항체의 혼합용액이 꼬리정맥에 10 mL/㎏의 용량으로 단회 투여되었다. 투여되는 항hIgA 항체로서는 전술한 GA2-IgG1, GA2-F760 및 GA2-F1331 중 어느 하나가 사용되었다.
혼합용액 중의 hIgA 농도는 모두 80 ㎍/mL이고, 항hIgA 항체농도는 2.69 ㎎/mL였다. 이때 hIgA에 대해 항hIgA 항체는 충분량 과잉으로 존재하는 것으로부터 hIgA는 대부분이 항체에 결합하고 있는 것으로 생각되었다. 항체의 투여 후 15분간, 1시간, 2시간, 7시간, 1일간, 3일간, 7일간, 14일간에서 마우스로부터 채혈되었다. 채취된 혈액을 바로 4℃, 12,000 rpm으로 15분간 원심분리함으로써 혈장이 얻어졌다. 분리된 혈장은 측정을 실시할 때까지 -20℃ 이하로 설정된 냉동고에 보존되었다.
(11-2) ELISA법에 의한 인간 FcRn 형질전환 마우스 혈장 중의 항hIgA 항체농도 측정
마우스 혈장 중의 항hIgA 항체농도는 ELISA법으로 측정되었다. 먼저 Anti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody(SIGMA)가 그 각 웰에 분주된 Nunc-Immuno Plate, MaxiSorp(Nalge nunc International)를 4℃에서 하룻밤 정치함으로써 Anti-Human IgG 고상화 플레이트가 제작되었다. 혈장 중 농도의 표준액으로서 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.01563, 0.007813 ㎍/mL로 조제된 항hIgA 항체의 검량선 시료와 100배 이상 희석된 마우스 혈장 측정 시료가 상기 Anti-Human IgG 고상화 플레이트에 분주된 후, 당해 플레이트가 25℃에서 1시간 인큐베이션되었다. 그 후 Goat Anti-Human IgG (γ chain specific) Biotin(BIOT) Conjugate(Southern Biotechnology Associats Inc.)가 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 25℃에서 1시간 반응시켰다. 또한 Streptavidin-PolyHRP80(Stereospecific Detection Technologies)이 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 25℃에서 1시간 반응시켰다. TMB One Component HRP Microwell Substrate(BioFX Laboratories)를 기질로서 사용한 발색반응이 1N-Sulfuric acid(Showa Chemical)를 사용하여 정지된 후, 마이크로플레이트 리더를 사용하여 각 웰의 반응액의 450 nm의 흡광도가 측정되었다. 마우스 혈장 중의 항hIgA 항체농도는 검량선의 흡광도로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정된 정맥내 투여 후의 인간 FcRn 형질전환 마우스에 있어서의 GA2-F1331 및 GA2-F760의 혈장 중 항체농도 추이를 도 16에 나타내었다.
(11-3) ELISA법에 의한 혈장 중 hIgA 농도 측정
마우스의 혈장 중 hIgA 농도는 ELISA법으로 측정되었다. 먼저 Goat anti-Human IgA Antibody(BETHYL)가 그 각 웰에 분주된 Nunc-Immuno Plate, MaxiSorp(Nalge nunc International)를 4℃에서 하룻밤 정치함으로써 Anti-Human IgA 고상화 플레이트가 제작되었다. 혈장 중 농도의 표준액으로서 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625 ㎍/mL로 조제된 hIgA의 검량선 시료가 사용되었다. 검량선 시료 및 100배 이상 희석된 마우스 혈장 측정시료의 각 100 μL에 대해 500 ng/mL hsIL6R을 200 μL 첨가하여 혼합하고 실온에서 1시간 정치하였다. 그 후 혼합용액 100 μL가 분주된 상기 Anti-Human IgA 고상화 플레이트는 실온에서 1시간 정치되었다. 다음으로 Biotinylated Anti-human IL-6 R Antibody(R&D)가 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 실온에서 1시간 반응시켰다. 추가로 Streptavidin-PolyHRP80(Stereospecific Detection Technologies)이 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 실온에서 1시간 반응시켰다. TMB One Component HRP Microwell Substrate(BioFX Laboratories)를 기질로서 사용한 발색반응이 1N-Sulfuric acid(Showa Chemical)를 사용하여 정지된 후, 마이크로플레이트 리더를 사용하여 각 웰의 반응액의 450 nm의 흡광도가 측정되었다. 마우스 혈장 중 농도는 검량선의 흡광도로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정한 정맥내 투여 후의 인간 FcRn 형질전환 마우스에 있어서의 혈장 중 hIgA 농도 추이를 도 17에 나타내었다.
그 결과, hIgA와 인간 FcRn에 대한 결합 활성이 낮은 GA2-F760이 함께 투여된 마우스의 혈장 중 hIgA의 소실과 비교하여, hIgA와 인간 FcRn에 대한 결합이 증강되어 있는 GA2-F1331이 함께 투여된 마우스의 혈장 중 hIgA의 소실이 현저히 가속되어 있는 것이 나타내어졌다.
〔실시예 12〕pH 의존적으로 인간 IgE에 결합하는 항체의 개변체의 조제
다음으로 혈장 중으로부터의 항원(인간 IgE)의 소실을 증대시키는 것을 목적으로 pH 의존적으로 인간 IgE에 결합하는 278-IgG1에 대해 마우스 FcRn에 대한 결합이 증강된 개변체가 제작되었다. 먼저 마우스 FcγR에 대한 결합을 저감시키는 것을 목적으로 278-IgG1의 EU 넘버링으로 표시되는 235번 위치의 Leu가 Arg로, 239번 위치의 Ser이 Lys로 치환된 278-F760(서열번호:55)이 제작되었다. 또한 278-F760보다도 pH 7.4에 있어서 FcRn에 대해 보다 강하게 결합하는 개변체인 278-F1331이 278-F760의 EU 넘버링으로 표시되는 236번 위치의 Gly를 Arg로, 252번 위치의 Met를 Tyr로, 254번 위치의 Ser을 Thr로, 256번 위치의 Thr을 Glu로, 434번 위치의 Asn을 Tyr로, 436번 위치의 Tyr을 Val로, 438번 위치의 Gln을 Arg로, 440번 위치의 Ser을 Glu로 치환하여 제작되었다. 278-F1331(중쇄 서열번호:58, 경쇄 서열번호:46) 또는 278-F760(중쇄 서열번호:55, 경쇄 서열번호:46)을 코드하는 DNA 서열이 당업자에게 공지의 방법으로 동물 발현용 플라스미드에 삽입되었다. 당해 플라스미드가 도입된 동물세포를 사용하여 전술한 방법으로 발현된 이들 항체 개변체의 농도가 그 정제 후에 측정되었다.
〔실시예 13〕pH 의존성 hIgE 결합 항체가 투여된 인간 FcRn 형질전환 마우스에 있어서의 항원의 혈장 중 체류성에 대한 영향의 평가
(13-1) 인간 FcRn 형질전환 마우스가 사용된 in vivo 시험
인간 FcRn 형질전환 마우스(B6.mFcRn-/-.hFcRn Tg line 32 +/+ mouse, Jackson Laboratories, Methods Mol Biol. (2010) 602, 93-104)에 대해 hIgE(Asp6)(인간 IgE(Asp6):실시예(5-1)에서 제작)와 항hIgE 항체(278-F760 또는 278-F1331) 및 Sanglopor(인간 정상 이뮤노글로불린, CSL Behring)가 동시에 투여된 후의 hIgE(Asp6) 및 항hIgE 항체의 체내동태가 평가되었다. hIgE(Asp6)와 항hIgE 항체 및 Sanglopor의 혼합용액(농도는 표 11에 기재되어 있다.)이 꼬리정맥에 10 mL/㎏의 용량으로 단회 투여되었다. 투여되는 항hIgE 항체로서는 전술한 278-F760 및 278-F1331 중 어느 하나가 사용되었다.
이때 hIgE(Asp6)에 대해 항hIgE 항체는 충분량 과잉으로 존재하는 것으로부터 hIgE(Asp6)는 대부분이 항체에 결합하고 있는 것으로 생각되었다. 항체의 투여 후 5분간, 2시간, 7시간, 1일간, 2일간, 4일간 또는 5일간, 7일간, 14일간, 21일간 및 28일간에서 마우스로부터 채혈되었다. 채취된 혈액을 바로 4℃, 12,000 rpm으로 15분간 원심분리함으로써 혈장이 얻어졌다. 분리된 혈장은 측정을 실시할 때까지 -20℃ 이하로 설정된 냉동고에 보존되었다.
Figure pat00045
(13-2) ELISA법에 의한 인간 FcRn 형질전환 마우스 혈장 중의 항hIgE 항체농도 측정
마우스 혈장 중의 항hIgE 항체농도는 전기화학발광(ECL) 어세이로 측정되었다. 혈장 중 농도의 표준액으로서 32, 16, 8, 4, 2, 1, 0.5 및 0.25 ㎍/mL로 조제된 항hIgE 항체의 검량선 시료가 조제되었다. hIgE(Asp6)가 고상화된 ECL 플레이트의 각 웰에 검량선 시료와 마우스 혈장시료가 각각 분주된 후 당해 플레이트를 4℃에서 1시간/하룻밤 반응시켰다. 그 후 Goat Anti-Human IgG (γ chain specific) Biotin(BIOT) Conjugate(Southern Biotechnology Associats Inc.)가 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 25℃에서 1시간 반응시켰다. 추가로 Streptavidin-PolyHRP80(Stereospecific Detection Technologies)이 상기 플레이트의 각 웰에 분주된 후 당해 플레이트를 25℃에서 1시간 반응시켰다. 다음으로 당해 플레이트 중의 각 반응액에 SULFO 태그 표지된 염소 항토끼 항체(Meso Scale Discovery)를 실온에서 1시간 반응시켰다. 마지막으로 각 반응액에 리딩(read) 버퍼 T(x4)( Meso Scale Discovery)가 분주된 후에 바로 Sector Imager 2400 Reader(Meso Scale Discovery)를 사용하여 반응액의 발광이 측정되었다. 마우스 혈장 중의 항hIgE 항체농도는 검량선의 반응성(response)으로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정된 정맥내 투여 후의 인간 FcRn 형질전환 마우스에 있어서의 278-F1331 및 278-F760의 혈장 중 항체농도 추이를 도 18에 나타내었다.
(13-3) 인간 FcRn 형질전환 마우스의 혈장 중에 있어서의 hIgE ( Asp6 ) 농도의 결정
마우스 혈장 중 hIgE(Asp6) 농도는 ELISA법으로 측정되었다. 혈장 중 농도로서 192, 96, 48, 24, 12, 6, 3 ng/mL의 검량선 시료가 조제되었다. hIgE(Asp6)와 항hIgE 항체의 면역 복합체를 균일하게 하기 위해 검량선 및 마우스 혈장 측정시료에는 278-hIgG1을 투여한 군에서는 10 ㎍/mL가 되도록 Xolair(Novartis)를 첨가하고 실온에서 30분 정치시켰다. 마우스 혈장 측정시료를 anti-human IgE가 고상화된 이뮤노 플레이트(MABTECH) 또는 anti-human IgE(clone 107, MABTECH)가 고상화된 이뮤노 플레이트(Nunc F96 MicroWell Plate(Nalge nunc International))에 분주하고, 실온에서 2시간 또는 4℃에서 하룻밤 정치시켰다. 그 후 human GPC3 core protein(서열번호:51), NHS-PEG4-Biotin(Thermo Fisher Scientific)으로 biotin화된 항GPC3 항체(사내 조제), Sterptavidin-PolyHRP80(Stereospecific Detection Technologies)을 각각 1시간 순차 반응시켰다. TMB One Component HRP Microwell Substrate(BioFX Laboratories)를 기질로서 사용한 발색반응을 1N-Sulfuric acid(Showa Chemical)로 반응 정지 후, 당해 발색을 마이크로플레이트 리더로 450 nm의 흡광도를 측정하는 방법 또는 SuperSignal(r) ELISA Pico Chemiluminescent Substrate(Thermo Fisher Scientific)를 기질로서 발광반응을 행하여 마이크로플레이트 리더로 발광강도를 측정하는 방법으로 마우스 혈장 중 농도가 측정되었다. 마우스 혈장 중 농도는 검량선의 흡광도 또는 발광강도로부터 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용해서 산출되었다. 이 방법으로 측정된 정맥내 투여 후의 혈장 중 hIgE(Asp6) 농도 추이를 도 19에 나타내었다.
그 결과, hIgE와 마우스 FcγR에 대한 결합 활성이 낮은 278-F760이 함께 투여된 마우스의 혈장 중 hIgE의 소실과 비교하여 hIgE와 인간 FcRn에 대한 결합이 증강되어 있는 278-F1331이 함께 투여된 마우스의 혈장 중 hIgE의 소실이 현저히 가속되어 있는 것이 나타내어졌다. 즉, 지금까지 기술된 FcRn의 결합이 증강된 항IgE 항체뿐 아니라 FcRn과의 결합이 증강된 항IgE 항체가 투여된 마우스에 있어서도 항원의 소실이 가속되는 것이 나타내어졌다. 이상의 결과로부터 면역 복합체를 형성하는 hIgA와 항hIgA 항체의 조합 및 hIgE와 항hIgE 항체의 조합 각각에 있어서, FcRn과의 결합을 증강시킴으로써 항원의 소실을 더욱 가속시킬 수 있는 것이 나타내어졌다.
〔실시예 14〕정상 마우스를 사용한 2종류의 항인간 IL6 수용체 항체 동시 투여의 항원의 혈장 중 체류성에 대한 영향 평가
(14-1) 2종류의 항IL6R 항체의 조제
Fv4-IgG1(중쇄 서열번호:59, 경쇄 서열번호:60)은 국제공개 WO2011/122011에 기재되어 있는 pH 의존적으로 인간 IL6R에 결합하는(중성 조건하에 있어서 결합하고 산성 조건하에 있어서 해리되는) 특성을 갖는 항인간 IL6 수용체 항체이다. 또한 PHX-IgG1(중쇄 서열번호:61, 경쇄 서열번호:62)은 인간 IL6R에 결합하는 항체이다. Fv4-IgG1(중쇄 서열번호:59, 경쇄 서열번호:60), PHX-IgG1(중쇄 서열번호:61, 경쇄 서열번호:62) 또는 PHX-IgG1의 중쇄 정상영역의 아미노산이 개변된 PHX-F29(중쇄 서열번호:63, 경쇄 서열번호:62)를 코드하는 DNA 서열이 당업자에게 공지의 방법으로 삽입된 동물 발현용 플라스미드를 사용하여 전술한 방법(실시예 1에 기재)으로 발현된 이들 항체 개변체의 농도가 정제 후에 측정되었다.
(14-2) PHX - IgG1의 인간 IL6 수용체 결합 평가
Biacore T200(GE Healthcare)를 사용하여 (14-1)에서 조제된 PHX-IgG1과 IL-6R의 상호작용을 해석함으로써 해리상수(KD)가 산출되었다. 러닝버퍼로서 10 mM ACES, 150 mM NaCl, 0.05% Tween20, pH 7.4를 사용하여 37℃에서 상호작용이 해석되었다. 아민커플링법으로 Protein A/G(Thermo Scientific)가 고정화된 Series S Sencor Chip CM4(GE Healthcare)로 목적의 항체를 캡쳐시켰다. 항체를 포착시킨 당해 칩에 러닝버퍼로 800, 400, 200, 100, 50, 25, 12.5 nM로 희석된 IL-6R 및 러닝버퍼와 유속 2 μL/분으로 15분간 상호작용시켰다. 10 mM glycine-HCl, pH 1.5를 반응시킴으로써 칩에 캡쳐한 항체가 세정되고, 세정된 칩이 재생되어 반복해서 상호작용 해석에 사용되었다.
PHX-IgG1의 IL-6R에 대한 해리상수 KD(mol/L)는 Biacore의 측정결과로서 얻어진 센서그램에 대해 Biacore Evaluation Software를 사용하여 steady state affinity 해석을 행함으로써 산출되었다. 이 방법에 의해 산출된 pH 7.4에 있어서의 PHX-IgG1과 IL-6R의 해리상수(KD)는 1.4E-7(M)이었다.
다음으로 PHX-IgG1의 hIL-6R에 대한 결합의 pH 의존성이 Biacore T100을 사용하여 평가되었다. 러닝버퍼로서 10 mM ACES, 150 mM NaCl, 0.05% Tween20, pH 7.4 및 10 mM ACES, 150 mM NaCl, 0.05% Tween20, pH 6.0의 각 버퍼를 사용하여 37℃의 온도에서 pH 7.4 및 pH 6.0의 조건하에서의 PHX-IgG1의 hIL-6R에 대한 결합이 측정되었다. 아민커플링법으로 Protein A/G(Thermo Scientific)가 고정화된 Series S Sencor Chip CM4(GE Healthcare)로 목적의 항체를 캡쳐시켰다. 항체를 포착시킨 당해 칩에 대해 러닝버퍼로 1000, 250, 62.5 nM로 희석된 hIL-6R 및 러닝버퍼를 상호작용시켰다.
이 방법으로 측정하여 얻어진 pH 7.4 및 pH 6.0에 있어서의 센서그램을 각각 도 20에 나타내었다. 도 20은 항체의 캡쳐량을 100 RU로 normalize했을 때의 PHX-IgG1의 hIL-6R에 대한 결합상 및 해리상을 나타낸다. 도 20의 결과를 비교하면 pH 6.0에서는 pH 7.4의 경우와 비교하여 PHX-IgG1의 hIl-6R에 대한 결합이 감소하는 것이 명확해졌다.
(14-3) 전기화학발광법에 의한 2종의 항체의 동일 항원 동시 결합성 평가
2종의 항체가 하나의 항원에 동시에 결합할 수 있는지가 전기화학발광법으로 평가되었다. 먼저 EZ-Link Sulfo-NHS-Biotin(Thermo SIENTIFIC)으로 비오틴화된 Fv4-IgG1(1 ㎍/mL, 100 μL)을 MULTI-ARRAY(r) 96-well Streptavidin Gold Plate에 첨가하고 실온에서 1시간 반응시켰다. 세정 후 0, 0.2, 1, 5, 25 ㎍/mL로 조제된 hsIL-6R을 100 μL 첨가하여 실온에서 1시간 반응시키고, 추가로 세정 후 SULFO-TAG NHS Ester(Meso Scale Discovery)로 루테늄화된 PHX-F29(0, 0.2, 1, 5, 25, 125 ㎍/mL, 100 μL) 또는 동일한 방법으로 루테늄화된 Fv4-IgG1(5 ㎍/mL, 100 μL)을 첨가하고 실온에서 1시간 반응시켰다. 세정 후 Read Buffer T(×4)(Meso Scale Discovery)를 각 웰에 150 μL씩 분주하고 바로 SECTOR IMAGER 2400 reader(Meso Scale Discovery)로 화학발광이 측정되었다.
결과를 도 21에 나타내었다. 루테늄화된 Fv4-IgG1을 반응시킨 경우 항원의 농도에 상관 없이 반응은 관측되지 않았다. 한편으로 루테늄화된 PHX-F29를 반응시킨 경우 항원(IL6R)의 농도 의존적으로 반응이 보였다. 이 결과는 PHX-F29가 Fv4-IgG1과 동시에 IL6R에 결합하고 있는 것을 나타내고 있다. 따라서 PHX-F29가 인식하는 IL6R의 에피토프와 Fv4-IgG1이 인식하는 에피토프가 상이한 것을 나타내고 있어, PHX-F29의 가변영역과 Fv4-IgG1의 가변영역을 각각 갖는 항체를 사용함으로써 1 분자의 IL6R에 2 분자의 항원 결합 분자가 결합할 수 있는 것을 나타내고 있다.
(14-4) 정상 마우스를 사용한 in vivo 시험
정상 마우스(C57BL/6J mouse, Charles River Japan)에 hsIL-6R(가용형 인간 IL-6 수용체:참고실시예 1에서 제작)을 hsIL-6R 및 항인간 IL-6 수용체 항체가 함께 투여된 후의 hsIL-6R 및 항인간 IL-6 수용체 항체의 체내동태가 평가되었다. hsIL-6R 용액(5 ㎍/mL) 또는 hsIL-6R과 항인간 IL-6 수용체 항체의 혼합용액이 꼬리정맥에 10 mL/㎏으로 단회 투여되었다. 항인간 IL-6 수용체 항체로서는 Fv4-IgG1 및 PHX-IgG1이 사용되었다.
혼합용액 중의 hsIL-6R 농도는 모두 5 ㎍/mL인데, 투여군별로 상이한 항인간 IL-6 수용체 항체의 농도를 표 12에 나타내었다. 이때 hsIL-6R에 대해 항인간 IL-6 수용체 항체는 충분량 과잉으로 존재하는 것으로부터 hsIL-6R은 대부분이 항체에 결합하고 있는 것으로 생각된다. 투여 후 5분간, 7시간, 1일간, 2일간, 3일간, 7일간, 14일간, 21일간에서 투여된 마우스로부터 채혈되었다. Fv4-IgG1(1 ㎎/㎏) 투여군(#1)은 투여 후 5분간, 7시간, 1일간, 2일간, 3일간, 7일간, 15일간, 22일간에서 채혈되었다. 채취된 혈액은 바로 4℃, 12,000 rpm으로 15분간 원심분리하여 혈장이 얻어졌다. 분리된 혈장은 측정을 실시할 때까지 -20℃ 이하로 설정된 냉동고에 보존되었다.
Figure pat00046
(14-5) 전기화학발광법에 의한 정상 마우스 혈장 중의 항인간 IL-6 수용체 항체농도 측정
마우스 혈장 중의 항인간 IL-6 수용체 항체농도는 전기화학발광법으로 측정되었다. 먼저 Anti-Human kappa capture antibody(Antibody Solutions)를 Multi-ARRAY 96-Well plate(Meso Scale Discovery)에 분주하고, 실온에서 1시간 교반한 후에 5%BSA(w/v)를 함유한 PBS-Tween 용액을 사용하여 실온에서 2시간 Blocking하여 Anti-Human IgG 고상화 플레이트가 제작되었다. 혈장 중 농도로서 40.0, 13.3, 4.44, 1.48, 0.494, 0.165, 0.0549 ㎍/mL의 농도로 조제된 검량선 시료와 500배 이상 희석하여 조제된 마우스 혈장 측정시료가 각 웰에 분주된 Anti-Human IgG 고상화 플레이트가 실온에서 1시간 교반되었다. 그 후 당해 플레이트의 각 웰에 Anti-Human kappa capture antibody Biotin conjugate(Antibody Solutions)가 분주된 후에 당해 플레이트를 실온에서 1시간 교반하여 반응시켰다. 추가로 당해 플레이트의 각 웰에 SULFO-TAG Labeled streptavidin(Meso Scale Discovery)이 분주된 후에 당해 플레이트를 실온에서 1시간 교반하여 반응시켰다. 각 웰을 세정 후 동웰에 Read Buffer T(×1)(Meso Scale Discovery)가 분주된 반응액의 화학발광이 바로 SECTOR Imager 2400(Meso Scale Discovery)을 사용해서 측정되었다. 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용하여 검량선의 리스폰스로부터 마우스 혈장 중 농도가 산출되었다. 항인간 IL6R 항체의 농도 추이를 도 22에 나타내었다.
(14-6) 전기화학발광법에 의한 혈장 중 hsIL -6R 농도 측정
마우스의 혈장 중 hsIL-6R 농도는 전기화학발광법으로 측정되었다. 혈장 중 농도로서 12.5, 6.25, 3.13, 1.56, 0.781, 0.391, 0.195 ng/mL로 조제된 hsIL-6R 검량선 시료 또는 50배 이상 희석되어 조제된 마우스 혈장 측정시료와, SULFO-TAG NHS Ester(Meso Scale Discovery)로 루테늄화된 Monoclonal Anti-human IL-6R Antibody(R&D) 및 Biotinylated Anti-human IL-6 R Antibody (R&D) 및 토실리주맙(중쇄 서열번호:64, 경쇄 서열번호:65) 용액의 혼합액을 37℃에서 하룻밤 반응시켰다. 그 후 0.5%BSA(w/v)를 함유한 PBS-Tween 용액을 사용하여 5℃에서 하룻밤 Blocking된 Streptavidin Gold Multi-ARRAY Plate(Meso Scale Discovery)의 각 웰에 당해 혼합액이 분주되었다. 추가로 실온에서 2시간 반응시킨 당해 플레이트의 각 웰의 세정 후 Read Buffer T(×2)(Meso Scale Discovery)가 분주된 각 웰의 반응액 중의 화학발광이 바로 SECTOR Imager 2400(Meso Scale Discovery)을 사용해서 측정되었다. 해석 소프트웨어 SOFTmax PRO(Molecular Devices)를 사용하여 검량선의 리스폰스로부터 hsIL-6R 농도가 산출되었다.
산출된 인간 IL6R(hsIL6R 또는 hsIL-6R으로도 기재하는데 동일한 단백질을 가리킨다)의 농도 추이를 도 23에 나타내었다. Fv4-IgG1과 함께 PHX-IgG1이 투여된 마우스의 경우는 Fv4-IgG1이 단독으로 투여된 마우스보다도 hs 혈장 중의 IL6R의 소실이 가속되었다.
특유의 이론에 구속되는 것은 아니나, 상기 혈장 중의 항원 소실의 가속은 아래와 같이 설명하는 것도 가능할 것으로 생각되었다. Fv4-IgG1은 단독 투여된 경우라도 hsIL6R에 대해 충분량 존재하여 거의 모든 hsIL6R은 혈장 중에서 Fv4-IgG1에 결합하고 있는 것으로 생각된다. Fv4-IgG1과 에피토프가 상이하여 hsIL6R에 함께 결합할 수 있는 PHX-IgG1을 투여하면 1 분자의 hsIL6R에 대해 Fv4-IgG1, PHX-IgG1을 포함하는 면역 복합체가 형성된다. 그 결과, Fcγ 수용체 및/또는 FcRn으로의 결합에 의해 세포내로의 흡수가 촉진된 결과 hsIL6R의 혈장 중으로부터의 소실이 가속된 것으로 생각되었다. 즉, 단량체 항원에 존재하는 서로 다른 에피토프에 결합하는 적절한 가변영역을 포함하는 다중 특이성(multispecific) 항체 또는 다중 파라토픽(multiparatopic) 항체의 비한정의 일태양인, 그 가변영역이 pH 또는 Ca 의존적인 결합 항체(도 8에 나타내는 바와 같은 에피토프 A를 인식하는 오른쪽 팔의 가변영역과 에피토프 B를 인식하는 왼쪽 팔의 가변영역을 포함하는 이중 특이성(bispecific) 항체 또는 이중 파라토픽(biparatopic) 항체)도 또한 둘 이상의 항체 및 둘 이상의 항원 결합 단위(단량체 항원)를 포함하는 큰 면역 복합체를 형성하여 항원의 소실을 가속시키는 것이 가능한 것이 나타내어졌다.
〔실시예 15〕Biacore를 사용한 면역 복합체와 FcgR의 결합 평가
(15-1) 면역 복합체와 FcγR의 결합에 대해서
항원 결합 분자와 항원을 포함하는 면역 복합체의 형성을 평가하는 방법으로서, 실시예 4에서는 겔여과(사이즈 배제) 크로마토그래피, 실시예 14에서는 전기화학발광법(ECL법)이 사용되었다. 면역 복합체에 포함되는 항원 결합 분자 또는 항원에 이뮤노글로불린 정상영역 등의 FcγR 결합 도메인이 포함되는 경우에는 면역 복합체는 FcγR과 Avidity로 결합한다. 이 때문에 항원 결합 분자 단체 또는 항원 단체보다도 FcγR에 강하게 결합하는 성질(특히 해리가 느려지는 성질)을 이용한 방법으로, FcγR 결합 도메인을 포함하는 면역 복합체의 형성을 확인할 수 있을 것으로 생각되었다(The Journal of Biological Chemistry (2001) 276(9), 6591-6604, mAbs (2009) 1 (5), 491-504).
(15-2) 평가 항체·항원 및 히스티딘 태그 부가 human FcγR IIIaV의 조제
면역 복합체의 형성 평가에 사용된 Xolair(Novartis), 클론 278-IgG1(실시예 4에서 조제), GA2-IgG1(실시예 1에서 조제), Fv4-IgG1(실시예 14에서 조제), PHX-IgG1(실시예 14에서 조제)은 전술한 방법으로 조제되었다.
평가에 사용한 hIgE(hIgE(Asp6), 실시예 5에서 조제) 및 IL6R(참고실시예 1)은 각각 전술한 방법으로 조제되었다. 인간 IgA의 재조합체인 hIgA-v2(GC-hIgA)는 아래의 방법으로 조제되었다. GC-hIgA-MYC(중쇄 서열번호:66, 경쇄 서열번호:67)를 코드하는 유전자 단편이 동물세포 발현용 벡터에 삽입되었다. 구축된 플라스미드 벡터는 FreeStyle293(Invitrogen)에 293Fectin(Invitrogen)을 사용하여 EBNA1을 발현하는 유전자와 함께 도입되었다. 그 후 유전자 도입된 세포를 37℃, CO2 8%로 6일간 배양하여 GC-hIgA 단백질을 배양상청 중에 분비시켰다. GC-hIgA-MYC를 포함하는 세포 배양액을 0.22 ㎛ 바틀탑 필터로 여과하여 배양상청이 얻어졌다. 당업자 공지의 방법으로 이온 교환 크로마토그래피 및 겔여과 크로마토그래피를 사용하여 정제된 GC-hIgA-MYC가 얻어졌다.
히스티딘 태그 부가 human FcγR IIIaV는 참고실시예 2에 기재된 방법으로 조제되었다.
(15-3) 면역 복합체와 FcγR의 결합 평가
Biacore T200(GE Healthcare)을 사용하여 항원 항체 면역 복합체와 FcgR의 결합이 평가되었다.
아민커플링법으로 적절한 양의 Penta-His antibody(QIAGEN)가 고정화된 Sensor chip CM5(GE Healthcare) 상에 적절한 농도의 히스티딘 태그가 부가된 human FcγR IIIaV가 인젝트되었다. 당해 칩 상에 고정화된 penta-His antibody에 human FcγR IIIaV를 포착시킴으로써 당해 칩 상에 human FcγR IIIaV가 고정화되었다. 애널라이트로서 200 nM의 항체를 포함하는 용액 또는 200 nM의 항체와 200 nM의 항원의 혼합액을 인젝트하고, 센서칩 상에 고정화된 human FcγR IIIaV와 상호작용시켰다. 그 후 10 mmol/L Glycine-HCl, pH 2.5를 인젝트하여 센서칩이 재생되었다. 러닝버퍼로서 1.2 mmol/l CaCl2/0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl, pH 7.4를 사용하여 항원 항체 면역 복합체와 FcgR의 결합이 25℃에서 측정되었다.
항체를 포함하는 용액 또는 항체와 항원의 혼합액을 human FcγRIIIaV와 작용시켰을 때의 결합 해석의 결과를 도 24에 나타내었다. 도 24는 해리를 주목해서 보기 위해 결합량이 100으로 정규화된 센서그램이다. Fv4-IgG1은 IL6R과 결합하는데 면역 복합체를 형성하지 않기 때문에, 항체를 포함하는 용액과 FcγR을 작용시켰을 때의 해리와 항체와 항원의 혼합액을 작용시켰을 때의 해리 사이에 차이는 확인되지 않았다. 한편으로 면역 복합체를 형성하고 있는 것이 보고되어 있는 Xolair(J. Pharmacol. Exp. Ther. (1996) 279 (2) 1000-1008)와 hIgE의 혼합액을 FcγR과 결합시켰을 때의 FcγR으로부터의 해리는 Xolair만을 FcγR과 결합시켰을 때의 FcγR으로부터의 해리보다도 느려지는 것이 관측되었다. 또한 실시예 4에 있어서 사이즈 배제(겔여과) 크로마토그래피를 사용하여 면역 복합체의 형성이 확인된 클론 278-IgG1과 항원(hIgE)의 혼합액을 FcγR과 결합시켰을 때의 FcγR으로부터의 해리도 클론 278-IgG1만을 FcγR과 결합시켰을 때의 FcγR으로부터의 해리보다도 느려졌다. 또한 GA2-IgG1과 hIgA의 혼합액을 FcγR과 결합시켰을 때의 FcγR으로부터의 해리도 GA2-IgG1만을 FcγR과 결합시켰을 때의 FcγR으로부터의 해리보다도 느려졌다. 또한 Fv4-IgG1 및 PHX-IgG1과 항원(IL6R)의 혼합액을 FcγR과 결합시켰을 때의 FcγR으로부터의 해리도 Fv4-IgG1 또는 PHX-IgG1을 FcγR과 결합시켰을 때의 FcγR으로부터의 해리보다도 느려졌다.
이상으로부터, 면역 복합체에 포함되는 항원 결합 분자 또는 항원에 이뮤노글로불린 정상영역 등의 FcγR 결합 도메인이 포함되는 경우에는 면역 복합체는 FcγR과 Avidity로 결합하는 것으로부터, 항원 결합 분자와 항원을 포함하는 면역 복합체의 형성을 평가하는 방법으로서 이뮤노글로불린 정상영역 등의 FcγR 결합 도메인 등이 포함되는 분자를 단독으로 FcγR에 결합시켰을 때의 FcγR으로부터의 해리보다 FcγR 결합 도메인 등이 포함되는 항원 결합 분자와 그 항원의 혼합액을 FcγR에 결합시켰을 때의 FcγR으로부터의 해리 또는 FcγR 결합 도메인 등이 포함되는 항원과 당해 항원에 결합하는 항원 결합 분자의 혼합액을 FcγR에 결합시켰을 때의 FcγR으로부터의 해리가 느려지는 것을 평가하는 방법이 유효한 것이 명확해졌다. 상기 FcγR으로부터의 해리를 판단기준으로서 사용한 면역 복합체의 평가는 단량체가 복수 개 결합한 항원에 대한 항체로 형성된 면역 복합체, 단량체 항원에 에피토프가 상이한 복수의 항체로 형성된 면역 복합체 중 어느 경우도 유효한 것이 나타내어졌다.
〔실시예 16〕Biacore를 사용한 면역 복합체와 FcRn의 결합 평가
(16-1) 면역 복합체와 FcRn의 결합에 대해서
항원 결합 분자와 항원을 포함하는 면역 복합체의 형성을 평가하는 방법으로서, 면역 복합체에 포함되는 항원 결합 분자 또는 항원이 이뮤노글로불린 정상영역 등의 FcRn 결합 도메인이 포함되는 경우에는 면역 복합체는 FcRn과 Avidity로 결합한다. 이 때문에 항원 결합 분자 단체 또는 항원 단체보다도 FcRn에 강하게 결합하는 성질(특히 해리가 느려지는 성질)을 이용한 방법으로 FcRn 결합 도메인을 포함하는 면역 복합체의 형성을 확인할 수 있을 것으로 생각되었다(Journal of Immunology (2010) 184 (4) 1968-1976). 그러나 지금까지 보고되어 있는 방법은 FcRn과 FcRn 결합 도메인의 결합이 pH 6.0의 조건에서 평가되고 있어, 당해 조건은 생체내와는 상이할 뿐 아니라 pH가 변화하면 결합력이 변화하는 검체의 평가에는 부적합하였다. 이는 인간 FcRn과 인간 IgG1의 결합력이 매우 낮아 pH 7.4에서의 결합을 평가할 수 없었기 때문이라고 생각되었다. 이에 생체내에서의 조건에 근접시킨 pH 7.4의 조건하에서의 면역 복합체의 평가가 가능한지 검토되었다.
(16-2) 평가 항체·항원 및 FcRn의 조제
평가에 사용된 Fv4-F22는 Fv4-IgG1(실시예 14에 기재)의 중쇄 정상영역 개변체이다. Xolair-F22는 Xolair(Novartis)의 중쇄 정상영역 개변체이다. Fv4-F22(중쇄 서열번호:68, 경쇄 서열번호:60) 및 Xolair-F22(중쇄 서열번호:69, 경쇄 서열번호:70)를 코드하는 DNA 서열이 당업자에게 공지의 방법으로 동물 발현용 플라스미드에 삽입되었다. 당해 플라스미드가 도입된 동물세포를 사용하여 전술한 방법(실시예 1에 기재)으로 발현된 이들 항체 개변체의 농도가 그 정제 후에 측정되었다. 또한 클론 278-IgG1(실시예 4에서 조제), Fv4-IgG1(실시예 14에서 조제), PHX-IgG1(실시예 14에서 조제)은 전술한 방법으로 조제되었다.
평가에 사용된 hIgE(hIgE(Asp6), 실시예 5에서 조제) 및 IL6R(참고실시예 1에서 조제)은 각각 전술한 방법으로 조제되었다.
인간 FcRn 및 마우스 FcRn은 각각 참고실시예 3 및 4에 기재된 방법으로 조제되었다.
(16-3) 면역 복합체와 인간 FcRn의 결합 평가
Biacore T100(GE Healthcare)을 사용하여 항원 항체 면역 복합체와 인간 FcRn의 결합이 평가되었다.
아민커플링법으로 적절한 양의 인간 FcRn(hFcRn)이 고정화된 Sensor chip CM4(GE Healthcare) 상에 애널라이트로서 인젝트된 표 13에 나타내는 항체만의 용액 또는 항체와 항원의 혼합액을 센서칩 상의 hFcRn과 상호작용시켰다. 그 후 20 mM Tris-HCl, 150 mM NaCl, pH 9.0 또는 pH 9.5를 인젝트하여 센서칩이 재생되었다. 러닝버퍼로서 50 mmol/l Na-Phosphate(인산), 150 mmol/l NaCl, 0.05% Tween20, pH 7.4를 사용하여 항원 항체 면역 복합체와 FcRn의 결합이 25℃에서 측정되었다.
Figure pat00047
항체를 포함하는 용액 또는 항체와 항원의 혼합액을 hFcRn과 작용시켰을 때의 결합 해석의 결과를 도 25에 나타내었다. 도 25는 해리를 주목해서 보기 위해 결합량이 100으로 정규화된 센서그램이다. Fv4-F22는 IL6R과 결합하는데 이뮤노글로불린 정상영역을 갖는 분자를 복수 개 포함하는 면역 복합체를 형성하지 않기 때문에, 항체를 포함하는 용액과 FcRn을 작용시켰을 때의 해리와 항체와 항원의 혼합액을 작용시켰을 때의 해리 사이에 차이는 확인되지 않았다. 한편으로 hIgE와 면역 복합체를 형성하는 것이 보고되어 있는 Xolair(J. Pharmacol. Exp. Ther. (1996) 279 (2) 1000-1008)의 가변영역을 갖는 Xolair-F22와 hIgE의 혼합액을 FcRn과 결합시켰을 때의 FcRn으로부터의 해리는 Xolair-F22만을 FcRn에 결합시켰을 때의 FcRn으로부터의 해리보다도 느려지는 것이 관측되었다. 이상으로부터 pH 7.4의 조건이라도 hFcRn의 결합이 증강된 항체를 사용함으로써 hFcRn과의 결합을 검출할 수 있게 되는 것이 명확해졌다. 또한 면역 복합체에 포함되는 항원 결합 분자 또는 항원에 이뮤노글로불린 정상영역 등의 FcRn 결합 도메인이 포함되는 경우에는 면역 복합체는 FcRn과 보다 강고하게 결합하는 것으로부터, 항원 결합 분자와 항원을 포함하는 면역 복합체의 형성을 평가하는 방법으로서, 이뮤노글로불린 정상영역 등의 FcRn 결합 도메인 등이 포함되는 분자를 단독으로 FcRn에 결합시켰을 때의 FcRn으로부터의 해리보다 FcRn 결합 도메인 등이 포함되는 항원 결합 분자와 그 항원의 혼합액을 FcRn에 결합시켰을 때의 FcRn으로부터의 해리 또는 FcRn 결합 도메인 등이 포함되는 항원과 당해 항원에 결합하는 항원 결합 분자의 혼합액을 FcRn에 결합시켰을 때의 FcRn으로부터의 해리가 느려지는 것을 평가하는 방법이 유효한 것이 명확해졌다.
(16-4) Biacore를 사용한 면역 복합체와 마우스 FcRn의 결합 평가
(16-3)에서는 hFcRn과의 결합이 증강된 이뮤노글로불린 정상영역의 개변체를 포함하는 면역 복합체의 FcRn에 대한 결합이 평가되었다. 천연형 인간 IgG는 인간 FcRn보다 마우스 FcRn에 강하게 결합할 수 있는 것으로부터(Int. Immunol. (2001) 13 (12), 1551-1559), 천연형 인간 IgG의 정상영역을 포함하는 항체의 마우스 FcRn에 대한 결합을 평가함으로써 이뮤노글로불린 정상영역을 개변하지 않고 면역 복합체의 형성을 평가하는 것이 가능한지 검토되었다.
Biacore T100(GE Healthcare)를 사용하여 항원 항체 면역 복합체와 FcRn의 결합이 평가되었다. 아민커플링법으로 적절한 양의 마우스 FcRn(mFcRn)이 고정화된 Sensor chip CM4(GE Healthcare) 상에 애널라이트로서 인젝트된 표 14에 나타내는 항체만의 용액 또는 항체와 항원의 혼합액을 센서칩 상의 mFcRn과 상호작용시켰다. 그 후 20 mM Tris-HCl, 150 mM NaCl, pH 9.0 또는 pH 9.5를 인젝트하여 센서칩이 재생되었다. 러닝버퍼로서는 50 mmol/l Na-Phosphate(인산), 150 mmol/l NaCl, 0.05% Tween20, pH 7.4를 사용하여 항원 항체 면역 복합체와 FcRn의 결합이 25℃에서 측정되었다.
Figure pat00048
항체만을 포함하는 용액 또는 항체와 항원의 혼합액을 mFcRn과 작용시켰을 때의 결합 해석의 결과를 도 26 및 도 27에 나타내었다. 도 26 및 도 27은 해리를 주목해서 보기 위해 결합량이 100으로 정규화된 센서그램이다. 실시예 4에 있어서 사이즈 배제(겔여과) 크로마토그래피를 사용하여 면역 복합체의 형성이 확인된 클론 278-IgG1과 항원(hIgE)의 혼합액을 mFcRn과 결합시켰을 때의 mFcRn으로부터의 해리도 클론 278-IgG1만을 mFcRn과 결합시켰을 때의 mFcRn으로부터의 해리보다도 느려졌다. 또한 면역 복합체를 형성하고 있는 것이 보고되어 있는 Xolair(J. Pharmacol. Exp. Ther. (1996) 279 (2) 1000-1008)와 hIgE의 혼합액을 mFcRn과 결합시켰을 때의 mFcRn으로부터의 해리는 Xolair만을 mFcRn과 결합시켰을 때의 mFcRn으로부터의 해리보다도 느려지는 것이 관측되었다(도 26). 한편으로 Fv4-IgG1을 포함하는 용액과 mFcRn을 결합시켰을 때의 mFcRn으로부터의 해리와, Fv4-IgG1과 IL6R의 혼합액과 mFcRn을 결합시켰을 때의 mFcRn으로부터의 해리 사이에 차이는 확인되지 않았다. 또한 PHX-IgG1을 포함하는 용액과 mFcRn을 결합시켰을 때의 mFcRn으로부터의 해리와, PHX-IgG1과 IL6R의 혼합액과 mFcRn을 결합시켰을 때의 mFcRn으로부터의 해리 사이에 차이는 확인되지 않았다(도 27). 이는 Fv4-IgG1에 포함되는 가변영역이 결합하는 IL6R에 있어서의 항원 결합 단위는 1이기 때문에 Fv4-IgG1만이 IL6R에 대한 항원 결합 분자로서 사용된 경우, 1 분자의 IL6R에 대해 2 분자 이상의 Fv4-IgG1이 포함되는 면역 복합체를 형성하지 않기 때문이라고 생각되었다. PHX-IgG1에 포함되는 가변영역이 결합하는 IL6R에 있어서의 항원 결합 단위도 1이기 때문에 IL6R에 하나의 에피토프만 존재하여, PHX-IgG1만이 IL6R에 대한 항원 결합 분자로서 사용된 경우 1 분자의 IL6R에 대해 2 분자 이상의 PHX-IgG1이 포함되는 면역 복합체를 형성하지 않기 때문이라고 생각되었다. 여기서 에피토프가 서로 상이한 것이 실시예 14에서 명확해진 PHX-IgG1과 Fv4-IgG1과 IL6R의 혼합액과 mFcRn을 결합시켰을 때의 mFcRn으로부터의 해리는 Fv4-IgG1 항체와 PHX-IgG1 항체를 포함하는(항체만의) 용액과 mFcRn을 결합시켰을 때의 mFcRn으로부터의 해리보다도 느려졌다. 이러한 해리가 느려진 현상은 클론 278에서 관측된 현상과 동일하였다. 이는 표적이 되는 항원에 결합하는 항원 결합 분자로서 단일의 항원 결합 분자가 사용될 때에는 항원 결합 단위가 1인 항원이라도 에피토프가 서로 다른 항원 결합 분자의 조합을 당해 항원에 대한 항원 결합 분자로서 사용함으로써 당해 항원의 항원 결합 단위를 2 이상으로 하는 것이 가능해져, 그 결과 2 분자 이상의 항원 결합 분자를 포함하는 면역 복합체를 형성할 수 있는 것을 나타내고 있다.
이상으로부터, 마우스 FcRn을 사용함으로써 FcRn과의 상호작용에 영향을 미치는 개변을 가하지 않은 천연의 인간 IgG1 분자라도 생체내의 조건과 동일한 pH 7.4의 조건하에 있어서의 FcRn과의 결합을 평가할 수 있는 것이 나타내어졌다. 또한 항원 결합 분자 또는 항원에 이뮤노글로불린 정상영역 등의 FcRn 결합 도메인이 포함되는 경우에는 면역 복합체는 FcRn과 강고하게 결합하는 것으로부터, 이뮤노글로불린 정상영역 등의 FcRn 결합 도메인이 포함되는 분자의 FcRn으로부터의 해리보다도 이뮤노글로불린 정상영역 등의 FcRn 결합 도메인이 포함되는 분자가 복수 포함되는 면역 복합체의 FcRn으로부터의 해리가 느려지는 것을 평가함으로써, 면역 복합체의 형성을 확인하는 것이 가능한 것이 명확해졌다. 상기 FcRn을 사용한 면역 복합체 형성의 평가는 단량체가 복수 개 결합한 항원과 당해 항원에 결합하는 항체에 의해 형성된 면역 복합체 및 단량체 항원과 당해 항원에 결합하고 서로 결합하는 에피토프가 상이한 복수의 항체에 의해 형성된 면역 복합체의 형성을 확인하는 어느 경우라도 사용할 수 있는 것이 확인되었다.
〔참고실시예 1〕가용형 인간 IL-6 수용체(hsIL-6R)의 조제
항원인 인간 IL-6 수용체의 재조합 인간 IL-6 수용체는 아래와 같이 조제되었다. J. Immunol. (1994) 152, 4958-4968에서 보고되어 있는 N말단측 1번째부터 357번째의 아미노산 서열으로 이루어지는 가용형 인간 IL-6 수용체(이하 hsIL-6R)를 정상적으로 발현하는 CHO주가 당업자 공지의 방법으로 구축되었다. 당해 CHO주를 배양함으로써 hsIL-6R을 발현시켰다. 얻어진 당해 CHO주의 배양상청으로부터 Blue Sepharose 6 FF 칼럼크로마토그래피, 겔여과 칼럼크로마토그래피의 두 공정에 의해 hsIL-6R이 정제되었다. 최종 공정에 있어서 메인피크로서 용출된 분획이 최종 정제품으로서 사용되었다.
〔참고실시예 2〕히스티딘 태그 부가 human FcγR IIIaV의 조제
히스티딘 태그 부가 human FcγRIIIaV는 아래의 방법으로 조제되었다. 먼저 FcgR의 세포외 도메인의 유전자의 합성을 당업자 공지의 방법으로 실시하였다. 그때 각 FcgR의 서열은 NCBI에 등록되어 있는 정보를 토대로 제작하였다. 구체적으로는 FcgRIIIa에 대해서는 NCBI의 accession # NM_001127593.1의 서열을 토대로 제작하고, C말단에 His 태그를 부가하였다. 또한 FcgRIIIa에 대해서는 다형이 알려져 있는데, FcgRIIIa에 대해서는 J. Clin. Invest., 1997, 100 (5): 1059-1070을 참고로 하여 제작하였다.
얻어진 유전자 단편을 동물세포 발현 벡터에 삽입하여 발현 벡터를 제작하였다. 제작한 발현 벡터를 인간 태아 신장암세포 유래 FreeStyle293 세포(Invitrogen사)에 일과성으로 도입하여 목적 단백질을 발현시켰다. 배양하고 얻어진 배양상청을 회수한 후, 0.22 ㎛ 필터를 통과시켜 배양상청을 얻었다. 얻어진 배양상청은 원칙으로서 다음의 4 단계로 정제하였다. 제1 단계는 양이온 교환 칼럼크로마토그래피(SP Sepharose FF), 제2 단계는 His 태그에 대한 친화성 칼럼크로마토그래피(HisTrap HP), 제3 단계는 겔여과 칼럼크로마토그래피(Superdex200), 제4 단계는 무균 여과를 실시하였다. 정제한 단백질에 대해서는 분광광도계를 사용하여 280 nm에서의 흡광도를 측정하고, 얻어진 값으로부터 PACE 등의 방법에 의해 산출된 흡광계수를 사용하여 정제 단백질의 농도를 산출하였다(Protein Science 1995 ; 4 : 2411-2423).
〔참고실시예 3〕가용형 인간 FcRn(hFcRn)의 조제
인간 FcRn은 β2-마이크로글로불린과 복합체를 형성하고 있다. 기보의 human FcRn gene sequence(J Exp Med. 1994 Dec 1; 180(6): 2377-81)를 토대로 Oligo-DNA primers가 설계되었다. 설계된 Primer를 사용하여 PCR법에 의해 human cDNA(Human Placenta Marathon-Ready cDNA, Clontech)로부터 cDNA를 증폭하였다. 증폭된 cDNA는 시그날 서열을 포함하는 세포외 도메인(Met1-Leu290)으로, 동물세포 발현용 벡터에 삽입되었다. 마찬가지로 β2-마이크로글로불린도 기보의 human β2-마이크로글로불린의 서열을 토대로 Primer가 설계되고, PCR법으로 cDNA가 증폭되었다. 시그날 서열을 포함하는 Met1-Met119의 cDNA 단편이 증폭되어 동물세포 발현용 벡터에 삽입되었다.
가용형 human FcRn(hFcRn이라 부른다)은 아래의 순서에 따라 조제되었다. 전술한 인간 FcRn(서열번호:71)을 발현하는 벡터와 β2-마이크로글로불린(서열번호:72)을 발현하는 벡터를 HEK293H 세포(Invitrogen)에 PEI(Polyscience)를 이용한 lipofection법으로 유전자 도입하였다. 유전자가 도입된 세포를 배양하고 배양액을 회수하였다. 회수한 배양액으로부터 IgG Sepharose 6 Fast Flow(Amersham Biosciences) 및 Hi Trap Q HP(GE Healthcare)의 각 크로마토그래피에 의해 hFcRn을 정제하였다(J Immunol. 2002 Nov 1; 169(9): 5171-80).
〔참고실시예 4〕가용형 마우스 FcRn(mFcRn)의 조제
가용형 마우스 FcRn은 가용형 인간 FcRn과 동일하게 조제되었다. 먼저 마우스 FcRn의 세포외 도메인의 유전자 및 마우스 β2-마이크로글로불린의 유전자의 합성을 당업자 공지의 방법으로 실시하였다. 그때 마우스 FcRn 및 마우스 β2-마이크로글로불린의 서열은 NCBI에 등록되어 있는 정보를 토대로 제작하였다. 구체적으로는 마우스 FcRn은 NCBI의 accession # NP_034319.2의 서열을 토대로 세포외 도메인으로서 시그날 서열을 포함하는 1-290번째의 아미노산을 코드하는 유전자 단편을 제작하였다(서열번호:73). 또한 β2-마이크로글로불린은 NCBI의 accession # NP_033865의 서열을 토대로 유전자 단편을 제작하였다(서열번호:74). 얻어진 유전자 단편을 동물세포 발현 벡터에 삽입하여 발현 벡터를 제작하였다. 제작한 발현 벡터를 인간 태아 신장암세포 유래 FreeStyle293 세포(Invitrogen사)에 일과성으로 도입하여 목적 단백질을 발현시켰다. 유전자가 도입된 세포를 배양하고 배양상청을 회수하였다. 회수한 배양액으로부터 IgG Sepharose 6 Fast Flow(Amersham Biosciences) 및 Superdex200(GE Healthcare)의 각 크로마토그래피에 의해 mFcRn을 정제하였다.
〔참고실시예 5〕FcγR에 대한 결합 활성이 천연형 인간 IgG의 Fc영역의 결합 활성보다 높고, pH 산성역 조건하에 있어서의 인간 FcRn 결합 활성이 증강된 항원 결합 분자의 제작
(5-1) 마우스 FcγR에 대한 결합이 증강되어 있는 항인간 IL-6 수용체 항체의 제작
마우스 FcγR으로의 결합이 증강된 항원 결합 분자로서, VH3-IgG1의 EU 넘버링으로 표시되는 326번 위치의 Lys가 Asp로 치환된 VH3-IgG1-F1087(서열번호:75) 및 VH3-IgG1의 EU 넘버링으로 표시되는 239번 위치의 Ser이 Asp로 최환되고, 332번 위치의 Ile가 Glu로 치환된 VH3-IgG1-F1182(서열번호:76)가 제작되었다. 참고실시예 2의 방법을 사용하여 VH3-IgG1-F1087을 중쇄로서 포함하고 VL3-CK(서열번호:77)를 경쇄로서 포함하는 Fv4-IgG1-F1087 및 VH3-IgG1-F1182를 중쇄로서 포함하고 VL3-CK를 경쇄로서 포함하는 Fv4-IgG1-F1182가 제작되었다.
(5-2) 마우스 FcγR에 대한 결합 활성의 확인
VH3-IgG1-F1087 및 VH3-IgG1-F1182를 중쇄로서 포함하고 L (WT)-CK(서열번호:78)를 경쇄로서 포함하는 VH3/L (WT)-IgG1-F1087 및 VH3/L (WT)-IgG1-F1182가 제작되었다. 이들 항체 및 VH3/L (WT)-IgG1-F1022의 마우스 FcγR에 대한 결합 활성이 평가되었다. 그 결과를 표 15에 나타내었다. 또한 각각의 개변체의 마우스 FcγR에 대한 결합 활성이 개변을 가하기 전의 IgG1에 비교하여 몇 배 증강되어 있는지를 표 16에 나타내었다.
Figure pat00049
Figure pat00050
본 발명에 따른 항원 결합 분자는 둘 이상의 항원 결합 단위(에피토프)를 포함하는 항원과 2 분자 이상의 항원 결합 분자(예를 들면 항체)를 포함하는 큰 면역 복합체를 형성한다는 특징을 구비함으로써, 둘 이상의 항원 결합 단위를 포함하는 항원을 혈장 중으로부터의 소실을 가속시키는 것을 가능하게 한다. 본 발명에 따른 항원 결합 분자는 또한 이러한 특징에 더하여 이온 의존성 항원 결합 활성을 구비함으로써 당해 항원의 소실의 추가적인 가속을 가능하게 한다. 본원 발명에 관계된 항원 결합 분자가 이러한 기술적 특징을 구비함으로써, 당해 항원 결합 분자는 질환 또는 증상(예를 들면 암, 염증성 질환)을 치료하기 위한 의약으로서 매우 유용하다.
SEQUENCE LISTING <110> CHUGAI SEIYAKU KABUSHIKI KAISHA <120> PHARMACEUTICAL COMPRISING IMMUNO-COMPLEX-FORMING CARRIER INTO CELLS <130> C109Y1PY1P <150> PCT/JP2011/077619 <151> 2011-11-30 <150> JP 2012-123773 <151> 2012-05-30 <160> 78 <170> PatentIn version 3.4 <210> 1 <211> 468 <212> PRT <213> Homo sapiens <400> 1 Met Leu Ala Val Gly Cys Ala Leu Leu Ala Ala Leu Leu Ala Ala Pro 1 5 10 15 Gly Ala Ala Leu Ala Pro Arg Arg Cys Pro Ala Gln Glu Val Ala Arg 20 25 30 Gly Val Leu Thr Ser Leu Pro Gly Asp Ser Val Thr Leu Thr Cys Pro 35 40 45 Gly Val Glu Pro Glu Asp Asn Ala Thr Val His Trp Val Leu Arg Lys 50 55 60 Pro Ala Ala Gly Ser His Pro Ser Arg Trp Ala Gly Met Gly Arg Arg 65 70 75 80 Leu Leu Leu Arg Ser Val Gln Leu His Asp Ser Gly Asn Tyr Ser Cys 85 90 95 Tyr Arg Ala Gly Arg Pro Ala Gly Thr Val His Leu Leu Val Asp Val 100 105 110 Pro Pro Glu Glu Pro Gln Leu Ser Cys Phe Arg Lys Ser Pro Leu Ser 115 120 125 Asn Val Val Cys Glu Trp Gly Pro Arg Ser Thr Pro Ser Leu Thr Thr 130 135 140 Lys Ala Val Leu Leu Val Arg Lys Phe Gln Asn Ser Pro Ala Glu Asp 145 150 155 160 Phe Gln Glu Pro Cys Gln Tyr Ser Gln Glu Ser Gln Lys Phe Ser Cys 165 170 175 Gln Leu Ala Val Pro Glu Gly Asp Ser Ser Phe Tyr Ile Val Ser Met 180 185 190 Cys Val Ala Ser Ser Val Gly Ser Lys Phe Ser Lys Thr Gln Thr Phe 195 200 205 Gln Gly Cys Gly Ile Leu Gln Pro Asp Pro Pro Ala Asn Ile Thr Val 210 215 220 Thr Ala Val Ala Arg Asn Pro Arg Trp Leu Ser Val Thr Trp Gln Asp 225 230 235 240 Pro His Ser Trp Asn Ser Ser Phe Tyr Arg Leu Arg Phe Glu Leu Arg 245 250 255 Tyr Arg Ala Glu Arg Ser Lys Thr Phe Thr Thr Trp Met Val Lys Asp 260 265 270 Leu Gln His His Cys Val Ile His Asp Ala Trp Ser Gly Leu Arg His 275 280 285 Val Val Gln Leu Arg Ala Gln Glu Glu Phe Gly Gln Gly Glu Trp Ser 290 295 300 Glu Trp Ser Pro Glu Ala Met Gly Thr Pro Trp Thr Glu Ser Arg Ser 305 310 315 320 Pro Pro Ala Glu Asn Glu Val Ser Thr Pro Met Gln Ala Leu Thr Thr 325 330 335 Asn Lys Asp Asp Asp Asn Ile Leu Phe Arg Asp Ser Ala Asn Ala Thr 340 345 350 Ser Leu Pro Val Gln Asp Ser Ser Ser Val Pro Leu Pro Thr Phe Leu 355 360 365 Val Ala Gly Gly Ser Leu Ala Phe Gly Thr Leu Leu Cys Ile Ala Ile 370 375 380 Val Leu Arg Phe Lys Lys Thr Trp Lys Leu Arg Ala Leu Lys Glu Gly 385 390 395 400 Lys Thr Ser Met His Pro Pro Tyr Ser Leu Gly Gln Leu Val Pro Glu 405 410 415 Arg Pro Arg Pro Thr Pro Val Leu Val Pro Leu Ile Ser Pro Pro Val 420 425 430 Ser Pro Ser Ser Leu Gly Ser Asp Asn Thr Ser Ser His Asn Arg Pro 435 440 445 Asp Ala Arg Asp Pro Arg Ser Pro Tyr Asp Ile Ser Asn Thr Asp Tyr 450 455 460 Phe Phe Pro Arg 465 <210> 2 <211> 428 <212> PRT <213> Homo sapiens <400> 2 Ala Ser Thr Gln Ser Pro Ser Val Phe Pro Leu Thr Arg Cys Cys Lys 1 5 10 15 Asn Ile Pro Ser Asn Ala Thr Ser Val Thr Leu Gly Cys Leu Ala Thr 20 25 30 Gly Tyr Phe Pro Glu Pro Val Met Val Thr Trp Asp Thr Gly Ser Leu 35 40 45 Asn Gly Thr Thr Met Thr Leu Pro Ala Thr Thr Leu Thr Leu Ser Gly 50 55 60 His Tyr Ala Thr Ile Ser Leu Leu Thr Val Ser Gly Ala Trp Ala Lys 65 70 75 80 Gln Met Phe Thr Cys Arg Val Ala His Thr Pro Ser Ser Thr Asp Trp 85 90 95 Val Asp Asn Lys Thr Phe Ser Val Cys Ser Arg Asp Phe Thr Pro Pro 100 105 110 Thr Val Lys Ile Leu Gln Ser Ser Cys Asp Gly Gly Gly His Phe Pro 115 120 125 Pro Thr Ile Gln Leu Leu Cys Leu Val Ser Gly Tyr Thr Pro Gly Thr 130 135 140 Ile Asn Ile Thr Trp Leu Glu Asp Gly Gln Val Met Asp Val Asp Leu 145 150 155 160 Ser Thr Ala Ser Thr Thr Gln Glu Gly Glu Leu Ala Ser Thr Gln Ser 165 170 175 Glu Leu Thr Leu Ser Gln Lys His Trp Leu Ser Asp Arg Thr Tyr Thr 180 185 190 Cys Gln Val Thr Tyr Gln Gly His Thr Phe Glu Asp Ser Thr Lys Lys 195 200 205 Cys Ala Asp Ser Asn Pro Arg Gly Val Ser Ala Tyr Leu Ser Arg Pro 210 215 220 Ser Pro Phe Asp Leu Phe Ile Arg Lys Ser Pro Thr Ile Thr Cys Leu 225 230 235 240 Val Val Asp Leu Ala Pro Ser Lys Gly Thr Val Asn Leu Thr Trp Ser 245 250 255 Arg Ala Ser Gly Lys Pro Val Asn His Ser Thr Arg Lys Glu Glu Lys 260 265 270 Gln Arg Asn Gly Thr Leu Thr Val Thr Ser Thr Leu Pro Val Gly Thr 275 280 285 Arg Asp Trp Ile Glu Gly Glu Thr Tyr Gln Cys Arg Val Thr His Pro 290 295 300 His Leu Pro Arg Ala Leu Met Arg Ser Thr Thr Lys Thr Ser Gly Pro 305 310 315 320 Arg Ala Ala Pro Glu Val Tyr Ala Phe Ala Thr Pro Glu Trp Pro Gly 325 330 335 Ser Arg Asp Lys Arg Thr Leu Ala Cys Leu Ile Gln Asn Phe Met Pro 340 345 350 Glu Asp Ile Ser Val Gln Trp Leu His Asn Glu Val Gln Leu Pro Asp 355 360 365 Ala Arg His Ser Thr Thr Gln Pro Arg Lys Thr Lys Gly Ser Gly Phe 370 375 380 Phe Val Phe Ser Arg Leu Glu Val Thr Arg Ala Glu Trp Glu Gln Lys 385 390 395 400 Asp Glu Phe Ile Cys Arg Ala Val His Glu Ala Ala Ser Pro Ser Gln 405 410 415 Thr Val Gln Arg Ala Val Ser Val Asn Pro Gly Lys 420 425 <210> 3 <211> 1482 <212> DNA <213> Homo sapiens <400> 3 gcctccacac agagcccatc cgtcttcccc ttgacccgct gctgcaaaaa cattccctcc 60 aatgccacct ccgtgactct gggctgcctg gccacgggct acttcccgga gccggtgatg 120 gtgacctgcg acacaggctc cctcaacggg acaactatga ccttaccagc caccaccctc 180 acgctctctg gtcactatgc caccatcagc ttgctgaccg tctcgggtgc gtgggccaag 240 cagatgttca cctgccgtgt ggcacacact ccatcgtcca cagactgggt cgacaacaaa 300 accttcagcg tctgctccag ggacttcacc ccgcccaccg tgaagatctt acagtcgtcc 360 tgcgacggcg gcgggcactt ccccccgacc atccagctcc tgtgcctcgt ctctgggtac 420 accccaggga ctatcaacat cacctggctg gaggacgggc aggtcatgga cgtggacttg 480 tccaccgcct ctaccacgca ggagggtgag ctggcctcca cacaaagcga gctcaccctc 540 agccagaagc actggctgtc agaccgcacc tacacctgcc aggtcaccta tcaaggtcac 600 acctttgagg acagcaccaa gaagtgtgca gattccaacc cgagaggggt gagcgcctac 660 ctaagccggc ccagcccgtt cgacctgttc atccgcaagt cgcccacgat cacctgtctg 720 gtggtggacc tggcacccag caaggggacc gtgaacctga cctggtcccg ggccagtggg 780 aagcctgtga accactccac cagaaaggag gagaagcagc gcaatggcac gttaaccgtc 840 acgtccaccc tgccggtggg cacccgagac tggatcgagg gggagaccta ccagtgcagg 900 gtgacccacc cccacctgcc cagggccctc atgcggtcca cgaccaagac cagcggcccg 960 cgtgctgccc cggaagtcta tgcgtttgcg acgccggagt ggccggggag ccgggacaag 1020 cgcaccctcg cctgcctgat ccagaacttc atgcctgagg acatctcggt gcagtggctg 1080 cacaacgagg tgcagctccc ggacgcccgg cacagcacga cgcagccccg caagaccaag 1140 ggctccggct tcttcgtctt cagccgcctg gaggtgacca gggccgaatg ggagcagaaa 1200 gatgagttca tctgccgtgc agtccatgag gcagcgagcc cctcacagac cgtccagcga 1260 gcggtgtctg taaatcccga gctggacgtg tgcgtggagg aggccgaggg cgaggcgccg 1320 tggacgtgga ccggcctctg catcttcgcc gcactcttcc tgctcagcgt gagctacagc 1380 gccgccctca cgctcctcat ggtgcagcgg ttcctctcag ccacgcggca ggggaggccc 1440 cagacctccc tcgactacac caacgtcctc cagccccacg cc 1482 <210> 4 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 4 Gly Leu Asn Asp Ile Phe Glu Ala Gln Lys Ile Glu Trp His Glu 1 5 10 15 <210> 5 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 5 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser <210> 6 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 6 Glu Thr Thr Leu Thr Gln Ser Pro Ala Phe Met Ser Ala Thr Pro Gly 1 5 10 15 Asp Lys Val Asn Ile Ser Cys Lys Ala Ser Gln Asp Ile Asp Asp Asp 20 25 30 Met Asn Trp Tyr Gln Gln Lys Pro Gly Glu Ala Ala Ile Phe Ile Ile 35 40 45 Gln Glu Ala Thr Thr Leu Val Pro Gly Ile Ser Pro Arg Phe Ser Gly 50 55 60 Ser Gly Tyr Gly Thr Asp Phe Thr Leu Thr Ile Asn Asn Ile Glu Ser 65 70 75 80 Glu Asp Ala Ala Tyr Tyr Phe Cys Leu Gln His Asp Asn Phe Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 <210> 7 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 7 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr 20 25 30 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Phe 85 90 95 Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys 100 105 <210> 8 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 8 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30 Asn Gly Asp Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45 Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Val 85 90 95 Leu Arg Asn Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Gln 100 105 110 <210> 9 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 9 Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 1 5 10 15 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Tyr 20 25 30 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45 Tyr Asp Ala Ser Asn Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro 65 70 75 80 Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ser Asn Trp Pro Pro 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105 <210> 10 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 10 Asp Ile Val Met Thr Gln Ser Pro Glu Ser Leu Val Leu Ser Leu Gly 1 5 10 15 Gly Thr Ala Thr Ile Asn Cys Arg Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30 Ser Asn Asn Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45 Pro Pro Thr Leu Leu Phe Ser Trp Ala Ser Ile Arg Asp Ser Gly Val 50 55 60 Pro Asp Arg Phe Ser Ala Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 65 70 75 80 Ile Ser Asp Leu Gln Ala Glu Asp Ala Ala Val Tyr Tyr Cys Gln Gln 85 90 95 Tyr Tyr Arg Ala Pro Ser Phe Gly Gln Gly Thr Lys Leu Gln Ile Lys 100 105 110 <210> 11 <211> 121 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 11 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30 Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Ile Ile Asn Pro Ser Gly Gly Ser Thr Ser Tyr Ala Gln Lys Phe 50 55 60 Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Thr Ser Thr Val Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asp Asp Pro Gly Gly Gly Glu Tyr Tyr Phe Asp Tyr Trp Gly 100 105 110 Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 12 <211> 126 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 12 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30 Glu Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asp Ala Pro Tyr Tyr Tyr Asp Ser Ser Gly Tyr Thr Asp Ala 100 105 110 Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 120 125 <210> 13 <211> 330 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 13 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 1 5 10 15 Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30 Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45 Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60 Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80 Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95 Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 100 105 110 Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 115 120 125 Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 130 135 140 Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 145 150 155 160 Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 165 170 175 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 180 185 190 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 195 200 205 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 210 215 220 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 225 230 235 240 Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 245 250 255 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 260 265 270 Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275 280 285 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 290 295 300 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 305 310 315 320 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330 <210> 14 <211> 326 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 14 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg 1 5 10 15 Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30 Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45 Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60 Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr 65 70 75 80 Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95 Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro 100 105 110 Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140 Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly 145 150 155 160 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175 Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp 180 185 190 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro 195 200 205 Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu 210 215 220 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn 225 230 235 240 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 245 250 255 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 260 265 270 Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 275 280 285 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 290 295 300 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 305 310 315 320 Ser Leu Ser Pro Gly Lys 325 <210> 15 <211> 377 <212> PRT <213> Homo sapiens <400> 15 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg 1 5 10 15 Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30 Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45 Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60 Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80 Tyr Thr Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95 Arg Val Glu Leu Lys Thr Pro Leu Gly Asp Thr Thr His Thr Cys Pro 100 105 110 Arg Cys Pro Glu Pro Lys Ser Cys Asp Thr Pro Pro Pro Cys Pro Arg 115 120 125 Cys Pro Glu Pro Lys Ser Cys Asp Thr Pro Pro Pro Cys Pro Arg Cys 130 135 140 Pro Glu Pro Lys Ser Cys Asp Thr Pro Pro Pro Cys Pro Arg Cys Pro 145 150 155 160 Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 165 170 175 Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 180 185 190 Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Lys Trp Tyr 195 200 205 Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 210 215 220 Gln Tyr Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Leu His 225 230 235 240 Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 245 250 255 Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln 260 265 270 Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met 275 280 285 Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 290 295 300 Ser Asp Ile Ala Val Glu Trp Glu Ser Ser Gly Gln Pro Glu Asn Asn 305 310 315 320 Tyr Asn Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu 325 330 335 Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Ile 340 345 350 Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn Arg Phe Thr Gln 355 360 365 Lys Ser Leu Ser Leu Ser Pro Gly Lys 370 375 <210> 16 <211> 327 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 16 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg 1 5 10 15 Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30 Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45 Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60 Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr 65 70 75 80 Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95 Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro Ala Pro 100 105 110 Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 115 120 125 Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 130 135 140 Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp 145 150 155 160 Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe 165 170 175 Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 180 185 190 Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu 195 200 205 Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 210 215 220 Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys 225 230 235 240 Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 245 250 255 Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 260 265 270 Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 275 280 285 Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser 290 295 300 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 305 310 315 320 Leu Ser Leu Ser Leu Gly Lys 325 <210> 17 <211> 365 <212> PRT <213> Homo sapiens <400> 17 Met Gly Val Pro Arg Pro Gln Pro Trp Ala Leu Gly Leu Leu Leu Phe 1 5 10 15 Leu Leu Pro Gly Ser Leu Gly Ala Glu Ser His Leu Ser Leu Leu Tyr 20 25 30 His Leu Thr Ala Val Ser Ser Pro Ala Pro Gly Thr Pro Ala Phe Trp 35 40 45 Val Ser Gly Trp Leu Gly Pro Gln Gln Tyr Leu Ser Tyr Asn Ser Leu 50 55 60 Arg Gly Glu Ala Glu Pro Cys Gly Ala Trp Val Trp Glu Asn Gln Val 65 70 75 80 Ser Trp Tyr Trp Glu Lys Glu Thr Thr Asp Leu Arg Ile Lys Glu Lys 85 90 95 Leu Phe Leu Glu Ala Phe Lys Ala Leu Gly Gly Lys Gly Pro Tyr Thr 100 105 110 Leu Gln Gly Leu Leu Gly Cys Glu Leu Gly Pro Asp Asn Thr Ser Val 115 120 125 Pro Thr Ala Lys Phe Ala Leu Asn Gly Glu Glu Phe Met Asn Phe Asp 130 135 140 Leu Lys Gln Gly Thr Trp Gly Gly Asp Trp Pro Glu Ala Leu Ala Ile 145 150 155 160 Ser Gln Arg Trp Gln Gln Gln Asp Lys Ala Ala Asn Lys Glu Leu Thr 165 170 175 Phe Leu Leu Phe Ser Cys Pro His Arg Leu Arg Glu His Leu Glu Arg 180 185 190 Gly Arg Gly Asn Leu Glu Trp Lys Glu Pro Pro Ser Met Arg Leu Lys 195 200 205 Ala Arg Pro Ser Ser Pro Gly Phe Ser Val Leu Thr Cys Ser Ala Phe 210 215 220 Ser Phe Tyr Pro Pro Glu Leu Gln Leu Arg Phe Leu Arg Asn Gly Leu 225 230 235 240 Ala Ala Gly Thr Gly Gln Gly Asp Phe Gly Pro Asn Ser Asp Gly Ser 245 250 255 Phe His Ala Ser Ser Ser Leu Thr Val Lys Ser Gly Asp Glu His His 260 265 270 Tyr Cys Cys Ile Val Gln His Ala Gly Leu Ala Gln Pro Leu Arg Val 275 280 285 Glu Leu Glu Ser Pro Ala Lys Ser Ser Val Leu Val Val Gly Ile Val 290 295 300 Ile Gly Val Leu Leu Leu Thr Ala Ala Ala Val Gly Gly Ala Leu Leu 305 310 315 320 Trp Arg Arg Met Arg Ser Gly Leu Pro Ala Pro Trp Ile Ser Leu Arg 325 330 335 Gly Asp Asp Thr Gly Val Leu Leu Pro Thr Pro Gly Glu Ala Gln Asp 340 345 350 Ala Asp Leu Lys Asp Val Asn Val Ile Pro Ala Thr Ala 355 360 365 <210> 18 <211> 119 <212> PRT <213> Homo sapiens <400> 18 Met Ser Arg Ser Val Ala Leu Ala Val Leu Ala Leu Leu Ser Leu Ser 1 5 10 15 Gly Leu Glu Ala Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg 20 25 30 His Pro Ala Glu Asn Gly Lys Ser Asn Phe Leu Asn Cys Tyr Val Ser 35 40 45 Gly Phe His Pro Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu 50 55 60 Arg Ile Glu Lys Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp 65 70 75 80 Ser Phe Tyr Leu Leu Tyr Tyr Thr Glu Phe Thr Pro Thr Glu Lys Asp 85 90 95 Glu Tyr Ala Cys Arg Val Asn His Val Thr Leu Ser Gln Pro Lys Ile 100 105 110 Val Lys Trp Asp Arg Asp Met 115 <210> 19 <211> 1125 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(1125) <400> 19 atg tgg ttc ttg aca act ctg ctc ctt tgg gtt cca gtt gat ggg caa 48 Met Trp Phe Leu Thr Thr Leu Leu Leu Trp Val Pro Val Asp Gly Gln 1 5 10 15 gtg gac acc aca aag gca gtg atc act ttg cag cct cca tgg gtc agc 96 Val Asp Thr Thr Lys Ala Val Ile Thr Leu Gln Pro Pro Trp Val Ser 20 25 30 gtg ttc caa gag gaa acc gta acc ttg cac tgt gag gtg ctc cat ctg 144 Val Phe Gln Glu Glu Thr Val Thr Leu His Cys Glu Val Leu His Leu 35 40 45 cct ggg agc agc tct aca cag tgg ttt ctc aat ggc aca gcc act cag 192 Pro Gly Ser Ser Ser Thr Gln Trp Phe Leu Asn Gly Thr Ala Thr Gln 50 55 60 acc tcg acc ccc agc tac aga atc acc tct gcc agt gtc aat gac agt 240 Thr Ser Thr Pro Ser Tyr Arg Ile Thr Ser Ala Ser Val Asn Asp Ser 65 70 75 80 ggt gaa tac agg tgc cag aga ggt ctc tca ggg cga agt gac ccc ata 288 Gly Glu Tyr Arg Cys Gln Arg Gly Leu Ser Gly Arg Ser Asp Pro Ile 85 90 95 cag ctg gaa atc cac aga ggc tgg cta cta ctg cag gtc tcc agc aga 336 Gln Leu Glu Ile His Arg Gly Trp Leu Leu Leu Gln Val Ser Ser Arg 100 105 110 gtc ttc acg gaa gga gaa cct ctg gcc ttg agg tgt cat gcg tgg aag 384 Val Phe Thr Glu Gly Glu Pro Leu Ala Leu Arg Cys His Ala Trp Lys 115 120 125 gat aag ctg gtg tac aat gtg ctt tac tat cga aat ggc aaa gcc ttt 432 Asp Lys Leu Val Tyr Asn Val Leu Tyr Tyr Arg Asn Gly Lys Ala Phe 130 135 140 aag ttt ttc cac tgg aat tct aac ctc acc att ctg aaa acc aac ata 480 Lys Phe Phe His Trp Asn Ser Asn Leu Thr Ile Leu Lys Thr Asn Ile 145 150 155 160 agt cac aat ggc acc tac cat tgc tca ggc atg gga aag cat cgc tac 528 Ser His Asn Gly Thr Tyr His Cys Ser Gly Met Gly Lys His Arg Tyr 165 170 175 aca tca gca gga ata tct gtc act gtg aaa gag cta ttt cca gct cca 576 Thr Ser Ala Gly Ile Ser Val Thr Val Lys Glu Leu Phe Pro Ala Pro 180 185 190 gtg ctg aat gca tct gtg aca tcc cca ctc ctg gag ggg aat ctg gtc 624 Val Leu Asn Ala Ser Val Thr Ser Pro Leu Leu Glu Gly Asn Leu Val 195 200 205 acc ctg agc tgt gaa aca aag ttg ctc ttg cag agg cct ggt ttg cag 672 Thr Leu Ser Cys Glu Thr Lys Leu Leu Leu Gln Arg Pro Gly Leu Gln 210 215 220 ctt tac ttc tcc ttc tac atg ggc agc aag acc ctg cga ggc agg aac 720 Leu Tyr Phe Ser Phe Tyr Met Gly Ser Lys Thr Leu Arg Gly Arg Asn 225 230 235 240 aca tcc tct gaa tac caa ata cta act gct aga aga gaa gac tct ggg 768 Thr Ser Ser Glu Tyr Gln Ile Leu Thr Ala Arg Arg Glu Asp Ser Gly 245 250 255 tta tac tgg tgc gag gct gcc aca gag gat gga aat gtc ctt aag cgc 816 Leu Tyr Trp Cys Glu Ala Ala Thr Glu Asp Gly Asn Val Leu Lys Arg 260 265 270 agc cct gag ttg gag ctt caa gtg ctt ggc ctc cag tta cca act cct 864 Ser Pro Glu Leu Glu Leu Gln Val Leu Gly Leu Gln Leu Pro Thr Pro 275 280 285 gtc tgg ttt cat gtc ctt ttc tat ctg gca gtg gga ata atg ttt tta 912 Val Trp Phe His Val Leu Phe Tyr Leu Ala Val Gly Ile Met Phe Leu 290 295 300 gtg aac act gtt ctc tgg gtg aca ata cgt aaa gaa ctg aaa aga aag 960 Val Asn Thr Val Leu Trp Val Thr Ile Arg Lys Glu Leu Lys Arg Lys 305 310 315 320 aaa aag tgg gat tta gaa atc tct ttg gat tct ggt cat gag aag aag 1008 Lys Lys Trp Asp Leu Glu Ile Ser Leu Asp Ser Gly His Glu Lys Lys 325 330 335 gta att tcc agc ctt caa gaa gac aga cat tta gaa gaa gag ctg aaa 1056 Val Ile Ser Ser Leu Gln Glu Asp Arg His Leu Glu Glu Glu Leu Lys 340 345 350 tgt cag gaa caa aaa gaa gaa cag ctg cag gaa ggg gtg cac cgg aag 1104 Cys Gln Glu Gln Lys Glu Glu Gln Leu Gln Glu Gly Val His Arg Lys 355 360 365 gag ccc cag ggg gcc acg tag 1125 Glu Pro Gln Gly Ala Thr 370 <210> 20 <211> 374 <212> PRT <213> Homo sapiens <400> 20 Met Trp Phe Leu Thr Thr Leu Leu Leu Trp Val Pro Val Asp Gly Gln 1 5 10 15 Val Asp Thr Thr Lys Ala Val Ile Thr Leu Gln Pro Pro Trp Val Ser 20 25 30 Val Phe Gln Glu Glu Thr Val Thr Leu His Cys Glu Val Leu His Leu 35 40 45 Pro Gly Ser Ser Ser Thr Gln Trp Phe Leu Asn Gly Thr Ala Thr Gln 50 55 60 Thr Ser Thr Pro Ser Tyr Arg Ile Thr Ser Ala Ser Val Asn Asp Ser 65 70 75 80 Gly Glu Tyr Arg Cys Gln Arg Gly Leu Ser Gly Arg Ser Asp Pro Ile 85 90 95 Gln Leu Glu Ile His Arg Gly Trp Leu Leu Leu Gln Val Ser Ser Arg 100 105 110 Val Phe Thr Glu Gly Glu Pro Leu Ala Leu Arg Cys His Ala Trp Lys 115 120 125 Asp Lys Leu Val Tyr Asn Val Leu Tyr Tyr Arg Asn Gly Lys Ala Phe 130 135 140 Lys Phe Phe His Trp Asn Ser Asn Leu Thr Ile Leu Lys Thr Asn Ile 145 150 155 160 Ser His Asn Gly Thr Tyr His Cys Ser Gly Met Gly Lys His Arg Tyr 165 170 175 Thr Ser Ala Gly Ile Ser Val Thr Val Lys Glu Leu Phe Pro Ala Pro 180 185 190 Val Leu Asn Ala Ser Val Thr Ser Pro Leu Leu Glu Gly Asn Leu Val 195 200 205 Thr Leu Ser Cys Glu Thr Lys Leu Leu Leu Gln Arg Pro Gly Leu Gln 210 215 220 Leu Tyr Phe Ser Phe Tyr Met Gly Ser Lys Thr Leu Arg Gly Arg Asn 225 230 235 240 Thr Ser Ser Glu Tyr Gln Ile Leu Thr Ala Arg Arg Glu Asp Ser Gly 245 250 255 Leu Tyr Trp Cys Glu Ala Ala Thr Glu Asp Gly Asn Val Leu Lys Arg 260 265 270 Ser Pro Glu Leu Glu Leu Gln Val Leu Gly Leu Gln Leu Pro Thr Pro 275 280 285 Val Trp Phe His Val Leu Phe Tyr Leu Ala Val Gly Ile Met Phe Leu 290 295 300 Val Asn Thr Val Leu Trp Val Thr Ile Arg Lys Glu Leu Lys Arg Lys 305 310 315 320 Lys Lys Trp Asp Leu Glu Ile Ser Leu Asp Ser Gly His Glu Lys Lys 325 330 335 Val Ile Ser Ser Leu Gln Glu Asp Arg His Leu Glu Glu Glu Leu Lys 340 345 350 Cys Gln Glu Gln Lys Glu Glu Gln Leu Gln Glu Gly Val His Arg Lys 355 360 365 Glu Pro Gln Gly Ala Thr 370 <210> 21 <211> 951 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(951) <400> 21 atg act atg gag acc caa atg tct cag aat gta tgt ccc aga aac ctg 48 Met Thr Met Glu Thr Gln Met Ser Gln Asn Val Cys Pro Arg Asn Leu 1 5 10 15 tgg ctg ctt caa cca ttg aca gtt ttg ctg ctg ctg gct tct gca gac 96 Trp Leu Leu Gln Pro Leu Thr Val Leu Leu Leu Leu Ala Ser Ala Asp 20 25 30 agt caa gct gct ccc cca aag gct gtg ctg aaa ctt gag ccc ccg tgg 144 Ser Gln Ala Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Pro Trp 35 40 45 atc aac gtg ctc cag gag gac tct gtg act ctg aca tgc cag ggg gct 192 Ile Asn Val Leu Gln Glu Asp Ser Val Thr Leu Thr Cys Gln Gly Ala 50 55 60 cgc agc cct gag agc gac tcc att cag tgg ttc cac aat ggg aat ctc 240 Arg Ser Pro Glu Ser Asp Ser Ile Gln Trp Phe His Asn Gly Asn Leu 65 70 75 80 att ccc acc cac acg cag ccc agc tac agg ttc aag gcc aac aac aat 288 Ile Pro Thr His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn 85 90 95 gac agc ggg gag tac acg tgc cag act ggc cag acc agc ctc agc gac 336 Asp Ser Gly Glu Tyr Thr Cys Gln Thr Gly Gln Thr Ser Leu Ser Asp 100 105 110 cct gtg cat ctg act gtg ctt tcc gaa tgg ctg gtg ctc cag acc cct 384 Pro Val His Leu Thr Val Leu Ser Glu Trp Leu Val Leu Gln Thr Pro 115 120 125 cac ctg gag ttc cag gag gga gaa acc atc atg ctg agg tgc cac agc 432 His Leu Glu Phe Gln Glu Gly Glu Thr Ile Met Leu Arg Cys His Ser 130 135 140 tgg aag gac aag cct ctg gtc aag gtc aca ttc ttc cag aat gga aaa 480 Trp Lys Asp Lys Pro Leu Val Lys Val Thr Phe Phe Gln Asn Gly Lys 145 150 155 160 tcc cag aaa ttc tcc cat ttg gat ccc acc ttc tcc atc cca caa gca 528 Ser Gln Lys Phe Ser His Leu Asp Pro Thr Phe Ser Ile Pro Gln Ala 165 170 175 aac cac agt cac agt ggt gat tac cac tgc aca gga aac ata ggc tac 576 Asn His Ser His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr 180 185 190 acg ctg ttc tca tcc aag cct gtg acc atc act gtc caa gtg ccc agc 624 Thr Leu Phe Ser Ser Lys Pro Val Thr Ile Thr Val Gln Val Pro Ser 195 200 205 atg ggc agc tct tca cca atg ggg gtc att gtg gct gtg gtc att gcg 672 Met Gly Ser Ser Ser Pro Met Gly Val Ile Val Ala Val Val Ile Ala 210 215 220 act gct gta gca gcc att gtt gct gct gta gtg gcc ttg atc tac tgc 720 Thr Ala Val Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr Cys 225 230 235 240 agg aaa aag cgg att tca gcc aat tcc act gat cct gtg aag gct gcc 768 Arg Lys Lys Arg Ile Ser Ala Asn Ser Thr Asp Pro Val Lys Ala Ala 245 250 255 caa ttt gag cca cct gga cgt caa atg att gcc atc aga aag aga caa 816 Gln Phe Glu Pro Pro Gly Arg Gln Met Ile Ala Ile Arg Lys Arg Gln 260 265 270 ctt gaa gaa acc aac aat gac tat gaa aca gct gac ggc ggc tac atg 864 Leu Glu Glu Thr Asn Asn Asp Tyr Glu Thr Ala Asp Gly Gly Tyr Met 275 280 285 act ctg aac ccc agg gca cct act gac gat gat aaa aac atc tac ctg 912 Thr Leu Asn Pro Arg Ala Pro Thr Asp Asp Asp Lys Asn Ile Tyr Leu 290 295 300 act ctt cct ccc aac gac cat gtc aac agt aat aac taa 951 Thr Leu Pro Pro Asn Asp His Val Asn Ser Asn Asn 305 310 315 <210> 22 <211> 316 <212> PRT <213> Homo sapiens <400> 22 Met Thr Met Glu Thr Gln Met Ser Gln Asn Val Cys Pro Arg Asn Leu 1 5 10 15 Trp Leu Leu Gln Pro Leu Thr Val Leu Leu Leu Leu Ala Ser Ala Asp 20 25 30 Ser Gln Ala Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Pro Trp 35 40 45 Ile Asn Val Leu Gln Glu Asp Ser Val Thr Leu Thr Cys Gln Gly Ala 50 55 60 Arg Ser Pro Glu Ser Asp Ser Ile Gln Trp Phe His Asn Gly Asn Leu 65 70 75 80 Ile Pro Thr His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn 85 90 95 Asp Ser Gly Glu Tyr Thr Cys Gln Thr Gly Gln Thr Ser Leu Ser Asp 100 105 110 Pro Val His Leu Thr Val Leu Ser Glu Trp Leu Val Leu Gln Thr Pro 115 120 125 His Leu Glu Phe Gln Glu Gly Glu Thr Ile Met Leu Arg Cys His Ser 130 135 140 Trp Lys Asp Lys Pro Leu Val Lys Val Thr Phe Phe Gln Asn Gly Lys 145 150 155 160 Ser Gln Lys Phe Ser His Leu Asp Pro Thr Phe Ser Ile Pro Gln Ala 165 170 175 Asn His Ser His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr 180 185 190 Thr Leu Phe Ser Ser Lys Pro Val Thr Ile Thr Val Gln Val Pro Ser 195 200 205 Met Gly Ser Ser Ser Pro Met Gly Val Ile Val Ala Val Val Ile Ala 210 215 220 Thr Ala Val Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr Cys 225 230 235 240 Arg Lys Lys Arg Ile Ser Ala Asn Ser Thr Asp Pro Val Lys Ala Ala 245 250 255 Gln Phe Glu Pro Pro Gly Arg Gln Met Ile Ala Ile Arg Lys Arg Gln 260 265 270 Leu Glu Glu Thr Asn Asn Asp Tyr Glu Thr Ala Asp Gly Gly Tyr Met 275 280 285 Thr Leu Asn Pro Arg Ala Pro Thr Asp Asp Asp Lys Asn Ile Tyr Leu 290 295 300 Thr Leu Pro Pro Asn Asp His Val Asn Ser Asn Asn 305 310 315 <210> 23 <211> 876 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(876) <400> 23 atg gga atc ctg tca ttc tta cct gtc ctt gcc act gag agt gac tgg 48 Met Gly Ile Leu Ser Phe Leu Pro Val Leu Ala Thr Glu Ser Asp Trp 1 5 10 15 gct gac tgc aag tcc ccc cag cct tgg ggt cat atg ctt ctg tgg aca 96 Ala Asp Cys Lys Ser Pro Gln Pro Trp Gly His Met Leu Leu Trp Thr 20 25 30 gct gtg cta ttc ctg gct cct gtt gct ggg aca cct gca gct ccc cca 144 Ala Val Leu Phe Leu Ala Pro Val Ala Gly Thr Pro Ala Ala Pro Pro 35 40 45 aag gct gtg ctg aaa ctc gag ccc cag tgg atc aac gtg ctc cag gag 192 Lys Ala Val Leu Lys Leu Glu Pro Gln Trp Ile Asn Val Leu Gln Glu 50 55 60 gac tct gtg act ctg aca tgc cgg ggg act cac agc cct gag agc gac 240 Asp Ser Val Thr Leu Thr Cys Arg Gly Thr His Ser Pro Glu Ser Asp 65 70 75 80 tcc att cag tgg ttc cac aat ggg aat ctc att ccc acc cac acg cag 288 Ser Ile Gln Trp Phe His Asn Gly Asn Leu Ile Pro Thr His Thr Gln 85 90 95 ccc agc tac agg ttc aag gcc aac aac aat gac agc ggg gag tac acg 336 Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser Gly Glu Tyr Thr 100 105 110 tgc cag act ggc cag acc agc ctc agc gac cct gtg cat ctg act gtg 384 Cys Gln Thr Gly Gln Thr Ser Leu Ser Asp Pro Val His Leu Thr Val 115 120 125 ctt tct gag tgg ctg gtg ctc cag acc cct cac ctg gag ttc cag gag 432 Leu Ser Glu Trp Leu Val Leu Gln Thr Pro His Leu Glu Phe Gln Glu 130 135 140 gga gaa acc atc gtg ctg agg tgc cac agc tgg aag gac aag cct ctg 480 Gly Glu Thr Ile Val Leu Arg Cys His Ser Trp Lys Asp Lys Pro Leu 145 150 155 160 gtc aag gtc aca ttc ttc cag aat gga aaa tcc aag aaa ttt tcc cgt 528 Val Lys Val Thr Phe Phe Gln Asn Gly Lys Ser Lys Lys Phe Ser Arg 165 170 175 tcg gat ccc aac ttc tcc atc cca caa gca aac cac agt cac agt ggt 576 Ser Asp Pro Asn Phe Ser Ile Pro Gln Ala Asn His Ser His Ser Gly 180 185 190 gat tac cac tgc aca gga aac ata ggc tac acg ctg tac tca tcc aag 624 Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Leu Tyr Ser Ser Lys 195 200 205 cct gtg acc atc act gtc caa gct ccc agc tct tca ccg atg ggg atc 672 Pro Val Thr Ile Thr Val Gln Ala Pro Ser Ser Ser Pro Met Gly Ile 210 215 220 att gtg gct gtg gtc act ggg att gct gta gcg gcc att gtt gct gct 720 Ile Val Ala Val Val Thr Gly Ile Ala Val Ala Ala Ile Val Ala Ala 225 230 235 240 gta gtg gcc ttg atc tac tgc agg aaa aag cgg att tca gcc aat ccc 768 Val Val Ala Leu Ile Tyr Cys Arg Lys Lys Arg Ile Ser Ala Asn Pro 245 250 255 act aat cct gat gag gct gac aaa gtt ggg gct gag aac aca atc acc 816 Thr Asn Pro Asp Glu Ala Asp Lys Val Gly Ala Glu Asn Thr Ile Thr 260 265 270 tat tca ctt ctc atg cac ccg gat gct ctg gaa gag cct gat gac cag 864 Tyr Ser Leu Leu Met His Pro Asp Ala Leu Glu Glu Pro Asp Asp Gln 275 280 285 aac cgt att tag 876 Asn Arg Ile 290 <210> 24 <211> 291 <212> PRT <213> Homo sapiens <400> 24 Met Gly Ile Leu Ser Phe Leu Pro Val Leu Ala Thr Glu Ser Asp Trp 1 5 10 15 Ala Asp Cys Lys Ser Pro Gln Pro Trp Gly His Met Leu Leu Trp Thr 20 25 30 Ala Val Leu Phe Leu Ala Pro Val Ala Gly Thr Pro Ala Ala Pro Pro 35 40 45 Lys Ala Val Leu Lys Leu Glu Pro Gln Trp Ile Asn Val Leu Gln Glu 50 55 60 Asp Ser Val Thr Leu Thr Cys Arg Gly Thr His Ser Pro Glu Ser Asp 65 70 75 80 Ser Ile Gln Trp Phe His Asn Gly Asn Leu Ile Pro Thr His Thr Gln 85 90 95 Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser Gly Glu Tyr Thr 100 105 110 Cys Gln Thr Gly Gln Thr Ser Leu Ser Asp Pro Val His Leu Thr Val 115 120 125 Leu Ser Glu Trp Leu Val Leu Gln Thr Pro His Leu Glu Phe Gln Glu 130 135 140 Gly Glu Thr Ile Val Leu Arg Cys His Ser Trp Lys Asp Lys Pro Leu 145 150 155 160 Val Lys Val Thr Phe Phe Gln Asn Gly Lys Ser Lys Lys Phe Ser Arg 165 170 175 Ser Asp Pro Asn Phe Ser Ile Pro Gln Ala Asn His Ser His Ser Gly 180 185 190 Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Leu Tyr Ser Ser Lys 195 200 205 Pro Val Thr Ile Thr Val Gln Ala Pro Ser Ser Ser Pro Met Gly Ile 210 215 220 Ile Val Ala Val Val Thr Gly Ile Ala Val Ala Ala Ile Val Ala Ala 225 230 235 240 Val Val Ala Leu Ile Tyr Cys Arg Lys Lys Arg Ile Ser Ala Asn Pro 245 250 255 Thr Asn Pro Asp Glu Ala Asp Lys Val Gly Ala Glu Asn Thr Ile Thr 260 265 270 Tyr Ser Leu Leu Met His Pro Asp Ala Leu Glu Glu Pro Asp Asp Gln 275 280 285 Asn Arg Ile 290 <210> 25 <211> 765 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(765) <400> 25 atg tgg cag ctg ctc ctc cca act gct ctg cta ctt cta gtt tca gct 48 Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu Leu Val Ser Ala 1 5 10 15 ggc atg cgg act gaa gat ctc cca aag gct gtg gtg ttc ctg gag cct 96 Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro 20 25 30 caa tgg tac agg gtg ctc gag aag gac agt gtg act ctg aag tgc cag 144 Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr Leu Lys Cys Gln 35 40 45 gga gcc tac tcc cct gag gac aat tcc aca cag tgg ttt cac aat gag 192 Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp Phe His Asn Glu 50 55 60 agc ctc atc tca agc cag gcc tcg agc tac ttc att gac gct gcc aca 240 Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile Asp Ala Ala Thr 65 70 75 80 gtt gac gac agt gga gag tac agg tgc cag aca aac ctc tcc acc ctc 288 Val Asp Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn Leu Ser Thr Leu 85 90 95 agt gac ccg gtg cag cta gaa gtc cat atc ggc tgg ctg ttg ctc cag 336 Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Leu Gln 100 105 110 gcc cct cgg tgg gtg ttc aag gag gaa gac cct att cac ctg agg tgt 384 Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile His Leu Arg Cys 115 120 125 cac agc tgg aag aac act gct ctg cat aag gtc aca tat tta cag aat 432 His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr Tyr Leu Gln Asn 130 135 140 ggc aaa ggc agg aag tat ttt cat cat aat tct gac ttc tac att cca 480 Gly Lys Gly Arg Lys Tyr Phe His His Asn Ser Asp Phe Tyr Ile Pro 145 150 155 160 aaa gcc aca ctc aaa gac agc ggc tcc tac ttc tgc agg ggg ctt gtt 528 Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Val 165 170 175 ggg agt aaa aat gtg tct tca gag act gtg aac atc acc atc act caa 576 Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln 180 185 190 ggt ttg tca gtg tca acc atc tca tca ttc ttt cca cct ggg tac caa 624 Gly Leu Ser Val Ser Thr Ile Ser Ser Phe Phe Pro Pro Gly Tyr Gln 195 200 205 gtc tct ttc tgc ttg gtg atg gta ctc ctt ttt gca gtg gac aca gga 672 Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly 210 215 220 cta tat ttc tct gtg aag aca aac att cga agc tca aca aga gac tgg 720 Leu Tyr Phe Ser Val Lys Thr Asn Ile Arg Ser Ser Thr Arg Asp Trp 225 230 235 240 aag gac cat aaa ttt aaa tgg aga aag gac cct caa gac aaa tga 765 Lys Asp His Lys Phe Lys Trp Arg Lys Asp Pro Gln Asp Lys 245 250 <210> 26 <211> 254 <212> PRT <213> Homo sapiens <400> 26 Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu Leu Val Ser Ala 1 5 10 15 Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro 20 25 30 Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr Leu Lys Cys Gln 35 40 45 Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp Phe His Asn Glu 50 55 60 Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile Asp Ala Ala Thr 65 70 75 80 Val Asp Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn Leu Ser Thr Leu 85 90 95 Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Leu Gln 100 105 110 Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile His Leu Arg Cys 115 120 125 His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr Tyr Leu Gln Asn 130 135 140 Gly Lys Gly Arg Lys Tyr Phe His His Asn Ser Asp Phe Tyr Ile Pro 145 150 155 160 Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Val 165 170 175 Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln 180 185 190 Gly Leu Ser Val Ser Thr Ile Ser Ser Phe Phe Pro Pro Gly Tyr Gln 195 200 205 Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly 210 215 220 Leu Tyr Phe Ser Val Lys Thr Asn Ile Arg Ser Ser Thr Arg Asp Trp 225 230 235 240 Lys Asp His Lys Phe Lys Trp Arg Lys Asp Pro Gln Asp Lys 245 250 <210> 27 <211> 702 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(702) <400> 27 atg tgg cag ctg ctc ctc cca act gct ctg cta ctt cta gtt tca gct 48 Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu Leu Val Ser Ala 1 5 10 15 ggc atg cgg act gaa gat ctc cca aag gct gtg gtg ttc ctg gag cct 96 Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro 20 25 30 caa tgg tac agc gtg ctt gag aag gac agt gtg act ctg aag tgc cag 144 Gln Trp Tyr Ser Val Leu Glu Lys Asp Ser Val Thr Leu Lys Cys Gln 35 40 45 gga gcc tac tcc cct gag gac aat tcc aca cag tgg ttt cac aat gag 192 Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp Phe His Asn Glu 50 55 60 agc ctc atc tca agc cag gcc tcg agc tac ttc att gac gct gcc aca 240 Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile Asp Ala Ala Thr 65 70 75 80 gtc aac gac agt gga gag tac agg tgc cag aca aac ctc tcc acc ctc 288 Val Asn Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn Leu Ser Thr Leu 85 90 95 agt gac ccg gtg cag cta gaa gtc cat atc ggc tgg ctg ttg ctc cag 336 Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Leu Gln 100 105 110 gcc cct cgg tgg gtg ttc aag gag gaa gac cct att cac ctg agg tgt 384 Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile His Leu Arg Cys 115 120 125 cac agc tgg aag aac act gct ctg cat aag gtc aca tat tta cag aat 432 His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr Tyr Leu Gln Asn 130 135 140 ggc aaa gac agg aag tat ttt cat cat aat tct gac ttc cac att cca 480 Gly Lys Asp Arg Lys Tyr Phe His His Asn Ser Asp Phe His Ile Pro 145 150 155 160 aaa gcc aca ctc aaa gat agc ggc tcc tac ttc tgc agg ggg ctt gtt 528 Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Val 165 170 175 ggg agt aaa aat gtg tct tca gag act gtg aac atc acc atc act caa 576 Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln 180 185 190 ggt ttg gca gtg tca acc atc tca tca ttc tct cca cct ggg tac caa 624 Gly Leu Ala Val Ser Thr Ile Ser Ser Phe Ser Pro Pro Gly Tyr Gln 195 200 205 gtc tct ttc tgc ttg gtg atg gta ctc ctt ttt gca gtg gac aca gga 672 Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly 210 215 220 cta tat ttc tct gtg aag aca aac att tga 702 Leu Tyr Phe Ser Val Lys Thr Asn Ile 225 230 <210> 28 <211> 233 <212> PRT <213> Homo sapiens <400> 28 Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu Leu Val Ser Ala 1 5 10 15 Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro 20 25 30 Gln Trp Tyr Ser Val Leu Glu Lys Asp Ser Val Thr Leu Lys Cys Gln 35 40 45 Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp Phe His Asn Glu 50 55 60 Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile Asp Ala Ala Thr 65 70 75 80 Val Asn Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn Leu Ser Thr Leu 85 90 95 Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Leu Gln 100 105 110 Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile His Leu Arg Cys 115 120 125 His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr Tyr Leu Gln Asn 130 135 140 Gly Lys Asp Arg Lys Tyr Phe His His Asn Ser Asp Phe His Ile Pro 145 150 155 160 Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Val 165 170 175 Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln 180 185 190 Gly Leu Ala Val Ser Thr Ile Ser Ser Phe Ser Pro Pro Gly Tyr Gln 195 200 205 Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly 210 215 220 Leu Tyr Phe Ser Val Lys Thr Asn Ile 225 230 <210> 29 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 29 Gly Gly Gly Ser 1 <210> 30 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 30 Ser Gly Gly Gly 1 <210> 31 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 31 Gly Gly Gly Gly Ser 1 5 <210> 32 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 32 Ser Gly Gly Gly Gly 1 5 <210> 33 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 33 Gly Gly Gly Gly Gly Ser 1 5 <210> 34 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 34 Ser Gly Gly Gly Gly Gly 1 5 <210> 35 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 35 Gly Gly Gly Gly Gly Gly Ser 1 5 <210> 36 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 36 Ser Gly Gly Gly Gly Gly Gly 1 5 <210> 37 <211> 450 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 37 Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 55 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Val Ala Pro Gly Asn Trp Gly Ser Pro Tyr Phe Asp Tyr Trp 100 105 110 Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro 115 120 125 Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr 130 135 140 Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr 145 150 155 160 Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro 165 170 175 Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr 180 185 190 Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn 195 200 205 His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser 210 215 220 Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 225 230 235 240 Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 245 250 255 Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 260 265 270 His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 275 280 285 Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 290 295 300 Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 305 310 315 320 Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 325 330 335 Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 340 345 350 Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 355 360 365 Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 370 375 380 Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 385 390 395 400 Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 405 410 415 Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 420 425 430 Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 435 440 445 Ser Pro 450 <210> 38 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 38 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Glu Asp Asp 20 25 30 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Glu Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Arg Asp Ser Ser Pro Leu 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 <210> 39 <211> 451 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 39 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 55 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Pro Arg Trp Glu Thr Ala Ile Ser Ser Asp Ala Phe Asp Ile 100 105 110 Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys Gly 115 120 125 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 130 135 140 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 145 150 155 160 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 165 170 175 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 180 185 190 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 195 200 205 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 210 215 220 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 225 230 235 240 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 245 250 255 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 260 265 270 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 275 280 285 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 290 295 300 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 305 310 315 320 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 325 330 335 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 340 345 350 Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 355 360 365 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 370 375 380 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 385 390 395 400 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 405 410 415 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 420 425 430 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 435 440 445 Leu Ser Pro 450 <210> 40 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 40 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Asp Asp 20 25 30 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Glu Ala Ser Asn Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Ser Ser Ser Pro Leu 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 <210> 41 <211> 451 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 41 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 55 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Pro Arg Trp Glu Thr Ala Ile Ser Ser Asp Ala Phe Asp Ile 100 105 110 Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys Gly 115 120 125 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 130 135 140 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 145 150 155 160 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 165 170 175 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 180 185 190 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 195 200 205 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 210 215 220 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 225 230 235 240 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 245 250 255 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 260 265 270 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 275 280 285 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 290 295 300 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 305 310 315 320 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 325 330 335 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 340 345 350 Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 355 360 365 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 370 375 380 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 385 390 395 400 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 405 410 415 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 420 425 430 Val Met His Glu Ala Leu His Trp His Tyr Thr Gln Lys Ser Leu Ser 435 440 445 Leu Ser Pro 450 <210> 42 <211> 451 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 42 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 55 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Pro Arg Trp Glu Thr Ala Ile Ser Ser Asp Ala Phe Asp Ile 100 105 110 Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys Gly 115 120 125 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 130 135 140 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 145 150 155 160 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 165 170 175 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 180 185 190 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 195 200 205 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 210 215 220 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 225 230 235 240 Arg Gly Gly Pro Lys Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 245 250 255 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 260 265 270 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 275 280 285 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 290 295 300 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 305 310 315 320 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 325 330 335 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 340 345 350 Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 355 360 365 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 370 375 380 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 385 390 395 400 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 405 410 415 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 420 425 430 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 435 440 445 Leu Ser Pro 450 <210> 43 <211> 543 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 43 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30 Glu Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe 50 55 60 Lys Gly Arg Val Thr Leu Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr 100 105 110 Val Ser Ser Ala Ser Thr Gln Ser Pro Ser Val Phe Pro Leu Thr Arg 115 120 125 Cys Cys Lys Asn Ile Pro Ser Asn Ala Thr Ser Val Thr Leu Gly Cys 130 135 140 Leu Ala Thr Gly Tyr Phe Pro Glu Pro Val Met Val Thr Trp Asp Thr 145 150 155 160 Gly Ser Leu Asn Gly Thr Thr Met Thr Leu Pro Ala Thr Thr Leu Thr 165 170 175 Leu Ser Gly His Tyr Ala Thr Ile Ser Leu Leu Thr Val Ser Gly Ala 180 185 190 Trp Ala Lys Gln Met Phe Thr Cys Arg Val Ala His Thr Pro Ser Ser 195 200 205 Thr Asp Trp Val Asp Asn Lys Thr Phe Ser Val Cys Ser Arg Asp Phe 210 215 220 Thr Pro Pro Thr Val Lys Ile Leu Gln Ser Ser Cys Asp Gly Gly Gly 225 230 235 240 His Phe Pro Pro Thr Ile Gln Leu Leu Cys Leu Val Ser Gly Tyr Thr 245 250 255 Pro Gly Thr Ile Asn Ile Thr Trp Leu Glu Asp Gly Gln Val Met Asp 260 265 270 Val Asp Leu Ser Thr Ala Ser Thr Thr Gln Glu Gly Glu Leu Ala Ser 275 280 285 Thr Gln Ser Glu Leu Thr Leu Ser Gln Lys His Trp Leu Ser Asp Arg 290 295 300 Thr Tyr Thr Cys Gln Val Thr Tyr Gln Gly His Thr Phe Glu Asp Ser 305 310 315 320 Thr Lys Lys Cys Ala Asp Ser Asn Pro Arg Gly Val Ser Ala Tyr Leu 325 330 335 Ser Arg Pro Ser Pro Phe Asp Leu Phe Ile Arg Lys Ser Pro Thr Ile 340 345 350 Thr Cys Leu Val Val Asp Leu Ala Pro Ser Lys Gly Thr Val Asn Leu 355 360 365 Thr Trp Ser Arg Ala Ser Gly Lys Pro Val Asn His Ser Thr Arg Lys 370 375 380 Glu Glu Lys Gln Arg Asn Gly Thr Leu Thr Val Thr Ser Thr Leu Pro 385 390 395 400 Val Gly Thr Arg Asp Trp Ile Glu Gly Glu Thr Tyr Gln Cys Arg Val 405 410 415 Thr His Pro His Leu Pro Arg Ala Leu Met Arg Ser Thr Thr Lys Thr 420 425 430 Ser Gly Pro Arg Ala Ala Pro Glu Val Tyr Ala Phe Ala Thr Pro Glu 435 440 445 Trp Pro Gly Ser Arg Asp Lys Arg Thr Leu Ala Cys Leu Ile Gln Asn 450 455 460 Phe Met Pro Glu Asp Ile Ser Val Gln Trp Leu His Asn Glu Val Gln 465 470 475 480 Leu Pro Asp Ala Arg His Ser Thr Thr Gln Pro Arg Lys Thr Lys Gly 485 490 495 Ser Gly Phe Phe Val Phe Ser Arg Leu Glu Val Thr Arg Ala Glu Trp 500 505 510 Glu Gln Lys Asp Glu Phe Ile Cys Arg Ala Val His Glu Ala Ala Ser 515 520 525 Pro Ser Gln Thr Val Gln Arg Ala Val Ser Val Asn Pro Gly Lys 530 535 540 <210> 44 <211> 219 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 44 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 20 25 30 Asn Arg Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 85 90 95 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110 Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 115 120 125 Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 130 135 140 Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 145 150 155 160 Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 165 170 175 Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 180 185 190 Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 195 200 205 Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215 <210> 45 <211> 443 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 45 Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro 1 5 10 15 Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser Ser Tyr His 20 25 30 Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly 35 40 45 Val Ile Asn Ser Ala Gly Asn Thr Tyr Tyr Ala Ser Trp Ala Lys Gly 50 55 60 Arg Phe Thr Val Ser Lys Thr Ser Thr Thr Val Asp Leu Asn Leu Thr 65 70 75 80 Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Tyr Val 85 90 95 Phe Ser Ser Gly Ser His Asp Ile Trp Gly Pro Gly Thr Leu Val Thr 100 105 110 Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro 115 120 125 Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val 130 135 140 Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala 145 150 155 160 Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly 165 170 175 Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly 180 185 190 Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys 195 200 205 Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys 210 215 220 Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 225 230 235 240 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 245 250 255 Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 260 265 270 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 275 280 285 Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 290 295 300 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 305 310 315 320 Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 325 330 335 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 340 345 350 Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 355 360 365 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 370 375 380 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 385 390 395 400 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 405 410 415 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 420 425 430 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 <210> 46 <211> 217 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 46 Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser Val Glu Val Ala Val Gly 1 5 10 15 Gly Thr Val Thr Ile Lys Cys Gln Ala Ser Gln Ser Ile Gly Ser Trp 20 25 30 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Glu Leu Ile 35 40 45 Tyr Gly Thr Ser Thr Leu Glu Ser Gly Val Pro Ser Arg Phe Ile Gly 50 55 60 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Gly Val Glu Cys 65 70 75 80 Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Glu Asp Asn 85 90 95 Ile Asp Asn Ala Phe Gly Gly Gly Thr Glu Val Val Val Lys Arg Thr 100 105 110 Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu 115 120 125 Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro 130 135 140 Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly 145 150 155 160 Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr 165 170 175 Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His 180 185 190 Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val 195 200 205 Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215 <210> 47 <211> 32 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 47 Val Asp Asp Ala Pro Gly Asn Ser Gln Gln Ala Thr Pro Lys Asp Asn 1 5 10 15 Glu Ile Ser Thr Phe His Asn Leu Gly Asn Val His Ser Pro Leu Lys 20 25 30 <210> 48 <211> 543 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 48 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30 Glu Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe 50 55 60 Lys Gly Arg Val Thr Leu Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr 100 105 110 Val Ser Ser Ala Ser Thr Gln Ser Pro Ser Val Phe Pro Leu Thr Arg 115 120 125 Cys Cys Lys Asn Ile Pro Ser Asp Ala Thr Ser Val Thr Leu Gly Cys 130 135 140 Leu Ala Thr Gly Tyr Phe Pro Glu Pro Val Met Val Thr Trp Asp Thr 145 150 155 160 Gly Ser Leu Asp Gly Thr Thr Met Thr Leu Pro Ala Thr Thr Leu Thr 165 170 175 Leu Ser Gly His Tyr Ala Thr Ile Ser Leu Leu Thr Val Ser Gly Ala 180 185 190 Trp Ala Lys Gln Met Phe Thr Cys Arg Val Ala His Thr Pro Ser Ser 195 200 205 Thr Asp Trp Val Asp Asp Lys Thr Phe Ser Val Cys Ser Arg Asp Phe 210 215 220 Thr Pro Pro Thr Val Lys Ile Leu Gln Ser Ser Cys Asp Gly Gly Gly 225 230 235 240 His Phe Pro Pro Thr Ile Gln Leu Leu Cys Leu Val Ser Gly Tyr Thr 245 250 255 Pro Gly Thr Ile Asp Ile Thr Trp Leu Glu Asp Gly Gln Val Met Asp 260 265 270 Val Asp Leu Ser Thr Ala Ser Thr Thr Gln Glu Gly Glu Leu Ala Ser 275 280 285 Thr Gln Ser Glu Leu Thr Leu Ser Gln Lys His Trp Leu Ser Asp Arg 290 295 300 Thr Tyr Thr Cys Gln Val Thr Tyr Gln Gly His Thr Phe Glu Asp Ser 305 310 315 320 Thr Lys Lys Cys Ala Asp Ser Asn Pro Arg Gly Val Ser Ala Tyr Leu 325 330 335 Ser Arg Pro Ser Pro Phe Asp Leu Phe Ile Arg Lys Ser Pro Thr Ile 340 345 350 Thr Cys Leu Val Val Asp Leu Ala Pro Ser Lys Gly Thr Val Asp Leu 355 360 365 Thr Trp Ser Arg Ala Ser Gly Lys Pro Val Asp His Ser Thr Arg Lys 370 375 380 Glu Glu Lys Gln Arg Asn Gly Thr Leu Thr Val Thr Ser Thr Leu Pro 385 390 395 400 Val Gly Thr Arg Asp Trp Ile Glu Gly Glu Thr Tyr Gln Cys Arg Val 405 410 415 Thr His Pro His Leu Pro Arg Ala Leu Met Arg Ser Thr Thr Lys Thr 420 425 430 Ser Gly Pro Arg Ala Ala Pro Glu Val Tyr Ala Phe Ala Thr Pro Glu 435 440 445 Trp Pro Gly Ser Arg Asp Lys Arg Thr Leu Ala Cys Leu Ile Gln Asn 450 455 460 Phe Met Pro Glu Asp Ile Ser Val Gln Trp Leu His Asn Glu Val Gln 465 470 475 480 Leu Pro Asp Ala Arg His Ser Thr Thr Gln Pro Arg Lys Thr Lys Gly 485 490 495 Ser Gly Phe Phe Val Phe Ser Arg Leu Glu Val Thr Arg Ala Glu Trp 500 505 510 Glu Gln Lys Asp Glu Phe Ile Cys Arg Ala Val His Glu Ala Ala Ser 515 520 525 Pro Ser Gln Thr Val Gln Arg Ala Val Ser Val Asn Pro Gly Lys 530 535 540 <210> 49 <211> 464 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 49 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Arg Pro Ser Gln 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Tyr Ser Ile Thr Ser Asp 20 25 30 His Ala Trp Ser Trp Val Arg Gln Pro Pro Gly Arg Gly Leu Glu Trp 35 40 45 Ile Gly Tyr Ile Ser Tyr Ser Gly Ile Thr Thr Tyr Asn Pro Ser Leu 50 55 60 Lys Ser Arg Val Thr Met Leu Arg Asp Thr Ser Lys Asn Gln Phe Ser 65 70 75 80 Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp Tyr Trp Gly Gln Gly 100 105 110 Ser Leu Val Thr Val Ser Ser Ala Ser Pro Thr Ser Pro Lys Val Phe 115 120 125 Pro Leu Ser Leu Cys Ser Thr Gln Pro Asp Gly Asn Val Val Ile Ala 130 135 140 Cys Leu Val Gln Gly Phe Phe Pro Gln Glu Pro Leu Ser Val Thr Trp 145 150 155 160 Ser Glu Ser Gly Gln Gly Val Thr Ala Arg Asn Phe Pro Pro Ser Gln 165 170 175 Asp Ala Ser Gly Asp Leu Tyr Thr Thr Ser Ser Gln Leu Thr Leu Pro 180 185 190 Ala Thr Gln Cys Leu Ala Gly Lys Ser Val Thr Cys His Val Lys His 195 200 205 Tyr Thr Asn Pro Ser Gln Asp Val Thr Val Pro Cys Pro Val Pro Ser 210 215 220 Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser 225 230 235 240 Cys Cys His Pro Arg Leu Ser Leu His Arg Pro Ala Leu Glu Asp Leu 245 250 255 Leu Leu Gly Ser Glu Ala Asn Leu Thr Cys Thr Leu Thr Gly Leu Arg 260 265 270 Asp Ala Ser Gly Val Thr Phe Thr Trp Thr Pro Ser Ser Gly Lys Ser 275 280 285 Ala Val Gln Gly Pro Pro Glu Arg Asp Leu Cys Gly Cys Tyr Ser Val 290 295 300 Ser Ser Val Leu Pro Gly Cys Ala Glu Pro Trp Asn His Gly Lys Thr 305 310 315 320 Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser Lys Thr Pro Leu Thr Ala 325 330 335 Thr Leu Ser Lys Ser Gly Asn Thr Phe Arg Pro Glu Val His Leu Leu 340 345 350 Pro Pro Pro Ser Glu Glu Leu Ala Leu Asn Glu Leu Val Thr Leu Thr 355 360 365 Cys Leu Ala Arg Gly Phe Ser Pro Lys Asp Val Leu Val Arg Trp Leu 370 375 380 Gln Gly Ser Gln Glu Leu Pro Arg Glu Lys Tyr Leu Thr Trp Ala Ser 385 390 395 400 Arg Gln Glu Pro Ser Gln Gly Thr Thr Thr Phe Ala Val Thr Ser Ile 405 410 415 Leu Arg Val Ala Ala Glu Asp Trp Lys Lys Gly Asp Thr Phe Ser Cys 420 425 430 Met Val Gly His Glu Ala Leu Pro Leu Ala Phe Thr Gln Lys Thr Ile 435 440 445 Asp Arg Leu Ala Gly Lys Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 450 455 460 <210> 50 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 50 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Ser Ser Tyr 20 25 30 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Gly Asn Thr Leu Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 <210> 51 <211> 545 <212> PRT <213> Homo sapiens <400> 51 Gln Pro Pro Pro Pro Pro Pro Asp Ala Thr Cys His Gln Val Arg Ser 1 5 10 15 Phe Phe Gln Arg Leu Gln Pro Gly Leu Lys Trp Val Pro Glu Thr Pro 20 25 30 Val Pro Gly Ser Asp Leu Gln Val Cys Leu Pro Lys Gly Pro Thr Cys 35 40 45 Cys Ser Arg Lys Met Glu Glu Lys Tyr Gln Leu Thr Ala Arg Leu Asn 50 55 60 Met Glu Gln Leu Leu Gln Ser Ala Ser Met Glu Leu Lys Phe Leu Ile 65 70 75 80 Ile Gln Asn Ala Ala Val Phe Gln Glu Ala Phe Glu Ile Val Val Arg 85 90 95 His Ala Lys Asn Tyr Thr Asn Ala Met Phe Lys Asn Asn Tyr Pro Ser 100 105 110 Leu Thr Pro Gln Ala Phe Glu Phe Val Gly Glu Phe Phe Thr Asp Val 115 120 125 Ser Leu Tyr Ile Leu Gly Ser Asp Ile Asn Val Asp Asp Met Val Asn 130 135 140 Glu Leu Phe Asp Ser Leu Phe Pro Val Ile Tyr Thr Gln Leu Met Asn 145 150 155 160 Pro Gly Leu Pro Asp Ser Ala Leu Asp Ile Asn Glu Cys Leu Arg Gly 165 170 175 Ala Arg Arg Asp Leu Lys Val Phe Gly Asn Phe Pro Lys Leu Ile Met 180 185 190 Thr Gln Val Ser Lys Ser Leu Gln Val Thr Arg Ile Phe Leu Gln Ala 195 200 205 Leu Asn Leu Gly Ile Glu Val Ile Asn Thr Thr Asp His Leu Lys Phe 210 215 220 Ser Lys Asp Cys Gly Arg Met Leu Thr Arg Met Trp Tyr Cys Ser Tyr 225 230 235 240 Cys Gln Gly Leu Met Met Val Lys Pro Cys Gly Gly Tyr Cys Asn Val 245 250 255 Val Met Gln Gly Cys Met Ala Gly Val Val Glu Ile Asp Lys Tyr Trp 260 265 270 Arg Glu Tyr Ile Leu Ser Leu Glu Glu Leu Val Asn Gly Met Tyr Arg 275 280 285 Ile Tyr Asp Met Glu Asn Val Leu Leu Gly Leu Phe Ser Thr Ile His 290 295 300 Asp Ser Ile Gln Tyr Val Gln Lys Asn Ala Gly Lys Leu Thr Thr Thr 305 310 315 320 Ile Gly Lys Leu Cys Ala His Ser Gln Gln Arg Gln Tyr Arg Ser Ala 325 330 335 Tyr Tyr Pro Glu Asp Leu Phe Ile Asp Lys Lys Val Leu Lys Val Ala 340 345 350 His Val Glu His Glu Glu Thr Leu Ser Ser Arg Arg Arg Glu Leu Ile 355 360 365 Gln Lys Leu Lys Ser Phe Ile Ser Phe Tyr Ser Ala Leu Pro Gly Tyr 370 375 380 Ile Cys Ser His Ser Pro Val Ala Glu Asn Asp Thr Leu Cys Trp Asn 385 390 395 400 Gly Gln Glu Leu Val Glu Arg Tyr Ser Gln Lys Ala Ala Arg Asn Gly 405 410 415 Met Lys Asn Gln Phe Asn Leu His Glu Leu Lys Met Lys Gly Pro Glu 420 425 430 Pro Val Val Ser Gln Ile Ile Asp Lys Leu Lys His Ile Asn Gln Leu 435 440 445 Leu Arg Thr Met Ser Met Pro Lys Gly Arg Val Leu Asp Lys Asn Leu 450 455 460 Asp Glu Glu Gly Phe Glu Ala Gly Asp Cys Gly Asp Asp Glu Asp Glu 465 470 475 480 Cys Ile Gly Gly Ala Gly Asp Gly Met Ile Lys Val Lys Asn Gln Leu 485 490 495 Arg Phe Leu Ala Glu Leu Ala Tyr Asp Leu Asp Val Asp Asp Ala Pro 500 505 510 Gly Asn Ser Gln Gln Ala Thr Pro Lys Asp Asn Glu Ile Ser Thr Phe 515 520 525 His Asn Leu Gly Asn Val His Ser Pro Leu Lys His His His His His 530 535 540 His 545 <210> 52 <211> 451 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 52 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 55 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Pro Arg Trp Glu Thr Ala Ile Ser Ser Asp Ala Phe Asp Ile 100 105 110 Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys Gly 115 120 125 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 130 135 140 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 145 150 155 160 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 165 170 175 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 180 185 190 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 195 200 205 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 210 215 220 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 225 230 235 240 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 245 250 255 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 260 265 270 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 275 280 285 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 290 295 300 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 305 310 315 320 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Tyr Pro Ala 325 330 335 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 340 345 350 Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 355 360 365 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 370 375 380 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 385 390 395 400 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 405 410 415 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 420 425 430 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 435 440 445 Leu Ser Pro 450 <210> 53 <211> 443 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 53 Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro 1 5 10 15 Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser Ser Tyr His 20 25 30 Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly 35 40 45 Val Ile Asn Ser Ala Gly Asn Thr Tyr Tyr Ala Ser Trp Ala Lys Gly 50 55 60 Arg Phe Thr Val Ser Lys Thr Ser Thr Thr Val Asp Leu Asn Leu Thr 65 70 75 80 Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Tyr Val 85 90 95 Phe Ser Ser Gly Ser His Asp Ile Trp Gly Pro Gly Thr Leu Val Thr 100 105 110 Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro 115 120 125 Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val 130 135 140 Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala 145 150 155 160 Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly 165 170 175 Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly 180 185 190 Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys 195 200 205 Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys 210 215 220 Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 225 230 235 240 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 245 250 255 Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 260 265 270 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 275 280 285 Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 290 295 300 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 305 310 315 320 Val Ser Asn Lys Ala Tyr Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 325 330 335 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 340 345 350 Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 355 360 365 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 370 375 380 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 385 390 395 400 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 405 410 415 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 420 425 430 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 <210> 54 <211> 443 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 54 Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro 1 5 10 15 Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser Ser Tyr His 20 25 30 Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly 35 40 45 Val Ile Asn Ser Ala Gly Asn Thr Tyr Tyr Ala Ser Trp Ala Lys Gly 50 55 60 Arg Phe Thr Val Ser Lys Thr Ser Thr Thr Val Asp Leu Asn Leu Thr 65 70 75 80 Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Tyr Val 85 90 95 Phe Ser Ser Gly Ser His Asp Ile Trp Gly Pro Gly Thr Leu Val Thr 100 105 110 Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro 115 120 125 Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val 130 135 140 Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala 145 150 155 160 Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly 165 170 175 Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly 180 185 190 Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys 195 200 205 Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys 210 215 220 Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 225 230 235 240 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 245 250 255 Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 260 265 270 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 275 280 285 Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 290 295 300 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 305 310 315 320 Val Ser Asn Asp Ala Tyr Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 325 330 335 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 340 345 350 Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 355 360 365 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 370 375 380 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 385 390 395 400 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 405 410 415 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 420 425 430 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 <210> 55 <211> 443 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 55 Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro 1 5 10 15 Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser Ser Tyr His 20 25 30 Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly 35 40 45 Val Ile Asn Ser Ala Gly Asn Thr Tyr Tyr Ala Ser Trp Ala Lys Gly 50 55 60 Arg Phe Thr Val Ser Lys Thr Ser Thr Thr Val Asp Leu Asn Leu Thr 65 70 75 80 Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Tyr Val 85 90 95 Phe Ser Ser Gly Ser His Asp Ile Trp Gly Pro Gly Thr Leu Val Thr 100 105 110 Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro 115 120 125 Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val 130 135 140 Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala 145 150 155 160 Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly 165 170 175 Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly 180 185 190 Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys 195 200 205 Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys 210 215 220 Pro Pro Cys Pro Ala Pro Glu Leu Arg Gly Gly Pro Lys Val Phe Leu 225 230 235 240 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 245 250 255 Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 260 265 270 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 275 280 285 Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 290 295 300 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 305 310 315 320 Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 325 330 335 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 340 345 350 Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 355 360 365 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 370 375 380 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 385 390 395 400 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 405 410 415 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 420 425 430 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 <210> 56 <211> 451 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 56 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 55 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Pro Arg Trp Glu Thr Ala Ile Ser Ser Asp Ala Phe Asp Ile 100 105 110 Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys Gly 115 120 125 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 130 135 140 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 145 150 155 160 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 165 170 175 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 180 185 190 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 195 200 205 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 210 215 220 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 225 230 235 240 Arg Arg Gly Pro Lys Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 245 250 255 Leu Tyr Ile Thr Arg Glu Pro Glu Val Thr Cys Val Val Val Asp Val 260 265 270 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 275 280 285 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 290 295 300 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 305 310 315 320 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 325 330 335 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 340 345 350 Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 355 360 365 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 370 375 380 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 385 390 395 400 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 405 410 415 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 420 425 430 Val Met His Glu Ala Leu His Tyr His Val Thr Arg Lys Glu Leu Ser 435 440 445 Leu Ser Pro 450 <210> 57 <211> 451 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 57 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 55 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Pro Arg Trp Glu Thr Ala Ile Ser Ser Asp Ala Phe Asp Ile 100 105 110 Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys Gly 115 120 125 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 130 135 140 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 145 150 155 160 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 165 170 175 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 180 185 190 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 195 200 205 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 210 215 220 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 225 230 235 240 Arg Gly Gly Pro Lys Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 245 250 255 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 260 265 270 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 275 280 285 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 290 295 300 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 305 310 315 320 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 325 330 335 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 340 345 350 Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 355 360 365 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 370 375 380 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 385 390 395 400 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 405 410 415 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 420 425 430 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 435 440 445 Leu Ser Pro 450 <210> 58 <211> 443 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 58 Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro 1 5 10 15 Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser Ser Tyr His 20 25 30 Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly 35 40 45 Val Ile Asn Ser Ala Gly Asn Thr Tyr Tyr Ala Ser Trp Ala Lys Gly 50 55 60 Arg Phe Thr Val Ser Lys Thr Ser Thr Thr Val Asp Leu Asn Leu Thr 65 70 75 80 Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Tyr Val 85 90 95 Phe Ser Ser Gly Ser His Asp Ile Trp Gly Pro Gly Thr Leu Val Thr 100 105 110 Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro 115 120 125 Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val 130 135 140 Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala 145 150 155 160 Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly 165 170 175 Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly 180 185 190 Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys 195 200 205 Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys 210 215 220 Pro Pro Cys Pro Ala Pro Glu Leu Arg Arg Gly Pro Lys Val Phe Leu 225 230 235 240 Phe Pro Pro Lys Pro Lys Asp Thr Leu Tyr Ile Thr Arg Glu Pro Glu 245 250 255 Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 260 265 270 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 275 280 285 Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 290 295 300 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 305 310 315 320 Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 325 330 335 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 340 345 350 Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 355 360 365 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 370 375 380 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 385 390 395 400 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 405 410 415 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Tyr 420 425 430 His Val Thr Arg Lys Glu Leu Ser Leu Ser Pro 435 440 <210> 59 <211> 447 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 59 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15 Thr Leu Ser Leu Thr Cys Ala Val Ser Gly His Ser Ile Ser His Asp 20 25 30 His Ala Trp Ser Trp Val Arg Gln Pro Pro Gly Glu Gly Leu Glu Trp 35 40 45 Ile Gly Phe Ile Ser Tyr Ser Gly Ile Thr Asn Tyr Asn Pro Ser Leu 50 55 60 Gln Gly Arg Val Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp Tyr Trp Gly Glu Gly 100 105 110 Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125 Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190 Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 210 215 220 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 225 230 235 240 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 260 265 270 Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285 Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 295 300 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 305 310 315 320 Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys 325 330 335 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 340 345 350 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 355 360 365 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 375 380 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 385 390 395 400 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405 410 415 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430 Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445 <210> 60 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 60 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Ser Val Thr Ile Thr Cys Gln Ala Ser Thr Asp Ile Ser Ser His 20 25 30 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Glu Leu Leu Ile 35 40 45 Tyr Tyr Gly Ser His Leu Leu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Glu Ala 65 70 75 80 Glu Asp Ala Ala Thr Tyr Tyr Cys Gly Gln Gly Asn Arg Leu Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Glu Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 <210> 61 <211> 452 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 61 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 55 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asp Ser Pro Val Pro Gly Val Tyr Tyr Tyr Tyr Gly Met Asp 100 105 110 Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125 Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly 130 135 140 Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160 Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190 Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn 195 200 205 Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro 210 215 220 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 225 230 235 240 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 245 250 255 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 260 265 270 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 275 280 285 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 290 295 300 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 305 310 315 320 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 325 330 335 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 340 345 350 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn 355 360 365 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 370 375 380 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 385 390 395 400 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 405 410 415 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 420 425 430 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 435 440 445 Ser Leu Ser Pro 450 <210> 62 <211> 215 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 62 Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly 1 5 10 15 Glu Arg Val Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ala Asn His 20 25 30 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Ser Leu Leu Ile 35 40 45 Tyr Asp Ala Ser Thr Arg Ala Thr Asp Val Pro Ala Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Glu Phe Thr Leu Ser Ile Ser Gly Leu Gln Ser 65 70 75 80 Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Lys Asp Trp Pro Pro 85 90 95 Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Phe Lys Arg Thr Val Ala 100 105 110 Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115 120 125 Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 130 135 140 Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser 145 150 155 160 Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu 165 170 175 Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 180 185 190 Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys 195 200 205 Ser Phe Asn Arg Gly Glu Cys 210 215 <210> 63 <211> 452 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 63 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 55 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asp Ser Pro Val Pro Gly Val Tyr Tyr Tyr Tyr Gly Met Asp 100 105 110 Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125 Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly 130 135 140 Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160 Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190 Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn 195 200 205 Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro 210 215 220 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 225 230 235 240 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 245 250 255 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 260 265 270 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 275 280 285 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 290 295 300 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 305 310 315 320 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 325 330 335 Ala Pro Val Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 340 345 350 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn 355 360 365 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 370 375 380 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 385 390 395 400 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 405 410 415 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 420 425 430 Ser Val Met His Glu Ala Leu His Tyr His Tyr Thr Gln Lys Ser Leu 435 440 445 Ser Leu Ser Pro 450 <210> 64 <211> 449 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 64 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Arg Pro Ser Gln 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Tyr Ser Ile Thr Ser Asp 20 25 30 His Ala Trp Ser Trp Val Arg Gln Pro Pro Gly Arg Gly Leu Glu Trp 35 40 45 Ile Gly Tyr Ile Ser Tyr Ser Gly Ile Thr Thr Tyr Asn Pro Ser Leu 50 55 60 Lys Ser Arg Val Thr Met Leu Arg Asp Thr Ser Lys Asn Gln Phe Ser 65 70 75 80 Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp Tyr Trp Gly Gln Gly 100 105 110 Ser Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125 Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190 Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 210 215 220 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 225 230 235 240 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 260 265 270 Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285 Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 295 300 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 305 310 315 320 Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys 325 330 335 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 340 345 350 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 355 360 365 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 375 380 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 385 390 395 400 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405 410 415 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430 Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 435 440 445 Lys <210> 65 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 65 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Ser Ser Tyr 20 25 30 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Gly Asn Thr Leu Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 <210> 66 <211> 460 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 66 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30 Glu Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe 50 55 60 Lys Gly Arg Val Thr Leu Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr 100 105 110 Val Ser Ser Ala Ser Pro Thr Ser Pro Lys Val Phe Pro Leu Ser Leu 115 120 125 Cys Ser Thr Gln Pro Asp Gly Asn Val Val Ile Ala Cys Leu Val Gln 130 135 140 Gly Phe Phe Pro Gln Glu Pro Leu Ser Val Thr Trp Ser Glu Ser Gly 145 150 155 160 Gln Gly Val Thr Ala Arg Asn Phe Pro Pro Ser Gln Asp Ala Ser Gly 165 170 175 Asp Leu Tyr Thr Thr Ser Ser Gln Leu Thr Leu Pro Ala Thr Gln Cys 180 185 190 Leu Ala Gly Lys Ser Val Thr Cys His Val Lys His Tyr Thr Asn Pro 195 200 205 Ser Gln Asp Val Thr Val Pro Cys Pro Val Pro Ser Thr Pro Pro Thr 210 215 220 Pro Ser Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Cys Cys His Pro 225 230 235 240 Arg Leu Ser Leu His Arg Pro Ala Leu Glu Asp Leu Leu Leu Gly Ser 245 250 255 Glu Ala Asn Leu Thr Cys Thr Leu Thr Gly Leu Arg Asp Ala Ser Gly 260 265 270 Val Thr Phe Thr Trp Thr Pro Ser Ser Gly Lys Ser Ala Val Gln Gly 275 280 285 Pro Pro Glu Arg Asp Leu Cys Gly Cys Tyr Ser Val Ser Ser Val Leu 290 295 300 Pro Gly Cys Ala Glu Pro Trp Asn His Gly Lys Thr Phe Thr Cys Thr 305 310 315 320 Ala Ala Tyr Pro Glu Ser Lys Thr Pro Leu Thr Ala Thr Leu Ser Lys 325 330 335 Ser Gly Asn Thr Phe Arg Pro Glu Val His Leu Leu Pro Pro Pro Ser 340 345 350 Glu Glu Leu Ala Leu Asn Glu Leu Val Thr Leu Thr Cys Leu Ala Arg 355 360 365 Gly Phe Ser Pro Lys Asp Val Leu Val Arg Trp Leu Gln Gly Ser Gln 370 375 380 Glu Leu Pro Arg Glu Lys Tyr Leu Thr Trp Ala Ser Arg Gln Glu Pro 385 390 395 400 Ser Gln Gly Thr Thr Thr Phe Ala Val Thr Ser Ile Leu Arg Val Ala 405 410 415 Ala Glu Asp Trp Lys Lys Gly Asp Thr Phe Ser Cys Met Val Gly His 420 425 430 Glu Ala Leu Pro Leu Ala Phe Thr Gln Lys Thr Ile Asp Arg Leu Ala 435 440 445 Gly Lys Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 450 455 460 <210> 67 <211> 219 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 67 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 20 25 30 Asn Arg Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 85 90 95 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110 Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 115 120 125 Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 130 135 140 Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 145 150 155 160 Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 165 170 175 Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 180 185 190 Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 195 200 205 Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215 <210> 68 <211> 447 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 68 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15 Thr Leu Ser Leu Thr Cys Ala Val Ser Gly His Ser Ile Ser His Asp 20 25 30 His Ala Trp Ser Trp Val Arg Gln Pro Pro Gly Glu Gly Leu Glu Trp 35 40 45 Ile Gly Phe Ile Ser Tyr Ser Gly Ile Thr Asn Tyr Asn Pro Ser Leu 50 55 60 Gln Gly Arg Val Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp Tyr Trp Gly Glu Gly 100 105 110 Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125 Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190 Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 210 215 220 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 225 230 235 240 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 260 265 270 Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285 Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 295 300 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 305 310 315 320 Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys 325 330 335 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 340 345 350 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 355 360 365 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 375 380 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 385 390 395 400 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405 410 415 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu His Glu 420 425 430 Ala Leu His Ser His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445 <210> 69 <211> 449 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 69 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr Ser Gly 20 25 30 Tyr Ser Trp Asn Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45 Val Ala Ser Ile Thr Tyr Asp Gly Ser Thr Asn Tyr Asn Pro Ser Val 50 55 60 Lys Gly Arg Ile Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr Phe Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Gly Ser His Tyr Phe Gly His Trp His Phe Ala Val Trp Gly 100 105 110 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala 130 135 140 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150 155 160 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180 185 190 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His 195 200 205 Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys 210 215 220 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 225 230 235 240 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 245 250 255 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 260 265 270 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 275 280 285 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 290 295 300 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 305 310 315 320 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 325 330 335 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 340 345 350 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 355 360 365 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 370 375 380 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 385 390 395 400 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 405 410 415 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu 420 425 430 His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 435 440 445 Pro <210> 70 <211> 218 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 70 Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Val Asp Tyr Asp 20 25 30 Gly Asp Ser Tyr Met Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro 35 40 45 Lys Leu Leu Ile Tyr Ala Ala Ser Tyr Leu Glu Ser Gly Val Pro Ser 50 55 60 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser 65 70 75 80 Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser His 85 90 95 Glu Asp Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 100 105 110 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 115 120 125 Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 130 135 140 Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 145 150 155 160 Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 165 170 175 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 180 185 190 His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 195 200 205 Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215 <210> 71 <211> 365 <212> PRT <213> Homo sapiens <400> 71 Met Gly Val Pro Arg Pro Gln Pro Trp Ala Leu Gly Leu Leu Leu Phe 1 5 10 15 Leu Leu Pro Gly Ser Leu Gly Ala Glu Ser His Leu Ser Leu Leu Tyr 20 25 30 His Leu Thr Ala Val Ser Ser Pro Ala Pro Gly Thr Pro Ala Phe Trp 35 40 45 Val Ser Gly Trp Leu Gly Pro Gln Gln Tyr Leu Ser Tyr Asn Ser Leu 50 55 60 Arg Gly Glu Ala Glu Pro Cys Gly Ala Trp Val Trp Glu Asn Gln Val 65 70 75 80 Ser Trp Tyr Trp Glu Lys Glu Thr Thr Asp Leu Arg Ile Lys Glu Lys 85 90 95 Leu Phe Leu Glu Ala Phe Lys Ala Leu Gly Gly Lys Gly Pro Tyr Thr 100 105 110 Leu Gln Gly Leu Leu Gly Cys Glu Leu Gly Pro Asp Asn Thr Ser Val 115 120 125 Pro Thr Ala Lys Phe Ala Leu Asn Gly Glu Glu Phe Met Asn Phe Asp 130 135 140 Leu Lys Gln Gly Thr Trp Gly Gly Asp Trp Pro Glu Ala Leu Ala Ile 145 150 155 160 Ser Gln Arg Trp Gln Gln Gln Asp Lys Ala Ala Asn Lys Glu Leu Thr 165 170 175 Phe Leu Leu Phe Ser Cys Pro His Arg Leu Arg Glu His Leu Glu Arg 180 185 190 Gly Arg Gly Asn Leu Glu Trp Lys Glu Pro Pro Ser Met Arg Leu Lys 195 200 205 Ala Arg Pro Ser Ser Pro Gly Phe Ser Val Leu Thr Cys Ser Ala Phe 210 215 220 Ser Phe Tyr Pro Pro Glu Leu Gln Leu Arg Phe Leu Arg Asn Gly Leu 225 230 235 240 Ala Ala Gly Thr Gly Gln Gly Asp Phe Gly Pro Asn Ser Asp Gly Ser 245 250 255 Phe His Ala Ser Ser Ser Leu Thr Val Lys Ser Gly Asp Glu His His 260 265 270 Tyr Cys Cys Ile Val Gln His Ala Gly Leu Ala Gln Pro Leu Arg Val 275 280 285 Glu Leu Glu Ser Pro Ala Lys Ser Ser Val Leu Val Val Gly Ile Val 290 295 300 Ile Gly Val Leu Leu Leu Thr Ala Ala Ala Val Gly Gly Ala Leu Leu 305 310 315 320 Trp Arg Arg Met Arg Ser Gly Leu Pro Ala Pro Trp Ile Ser Leu Arg 325 330 335 Gly Asp Asp Thr Gly Val Leu Leu Pro Thr Pro Gly Glu Ala Gln Asp 340 345 350 Ala Asp Leu Lys Asp Val Asn Val Ile Pro Ala Thr Ala 355 360 365 <210> 72 <211> 119 <212> PRT <213> Homo sapiens <400> 72 Met Ser Arg Ser Val Ala Leu Ala Val Leu Ala Leu Leu Ser Leu Ser 1 5 10 15 Gly Leu Glu Ala Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg 20 25 30 His Pro Ala Glu Asn Gly Lys Ser Asn Phe Leu Asn Cys Tyr Val Ser 35 40 45 Gly Phe His Pro Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu 50 55 60 Arg Ile Glu Lys Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp 65 70 75 80 Ser Phe Tyr Leu Leu Tyr Tyr Thr Glu Phe Thr Pro Thr Glu Lys Asp 85 90 95 Glu Tyr Ala Cys Arg Val Asn His Val Thr Leu Ser Gln Pro Lys Ile 100 105 110 Val Lys Trp Asp Arg Asp Met 115 <210> 73 <211> 290 <212> PRT <213> Mus musculus <400> 73 Met Gly Met Pro Leu Pro Trp Ala Leu Ser Leu Leu Leu Val Leu Leu 1 5 10 15 Pro Gln Thr Trp Gly Ser Glu Thr Arg Pro Pro Leu Met Tyr His Leu 20 25 30 Thr Ala Val Ser Asn Pro Ser Thr Gly Leu Pro Ser Phe Trp Ala Thr 35 40 45 Gly Trp Leu Gly Pro Gln Gln Tyr Leu Thr Tyr Asn Ser Leu Arg Gln 50 55 60 Glu Ala Asp Pro Cys Gly Ala Trp Met Trp Glu Asn Gln Val Ser Trp 65 70 75 80 Tyr Trp Glu Lys Glu Thr Thr Asp Leu Lys Ser Lys Glu Gln Leu Phe 85 90 95 Leu Glu Ala Leu Lys Thr Leu Glu Lys Ile Leu Asn Gly Thr Tyr Thr 100 105 110 Leu Gln Gly Leu Leu Gly Cys Glu Leu Ala Ser Asp Asn Ser Ser Val 115 120 125 Pro Thr Ala Val Phe Ala Leu Asn Gly Glu Glu Phe Met Lys Phe Asn 130 135 140 Pro Arg Ile Gly Asn Trp Thr Gly Glu Trp Pro Glu Thr Glu Ile Val 145 150 155 160 Ala Asn Leu Trp Met Lys Gln Pro Asp Ala Ala Arg Lys Glu Ser Glu 165 170 175 Phe Leu Leu Asn Ser Cys Pro Glu Arg Leu Leu Gly His Leu Glu Arg 180 185 190 Gly Arg Arg Asn Leu Glu Trp Lys Glu Pro Pro Ser Met Arg Leu Lys 195 200 205 Ala Arg Pro Gly Asn Ser Gly Ser Ser Val Leu Thr Cys Ala Ala Phe 210 215 220 Ser Phe Tyr Pro Pro Glu Leu Lys Phe Arg Phe Leu Arg Asn Gly Leu 225 230 235 240 Ala Ser Gly Ser Gly Asn Cys Ser Thr Gly Pro Asn Gly Asp Gly Ser 245 250 255 Phe His Ala Trp Ser Leu Leu Glu Val Lys Arg Gly Asp Glu His His 260 265 270 Tyr Gln Cys Gln Val Glu His Glu Gly Leu Ala Gln Pro Leu Thr Val 275 280 285 Asp Leu 290 <210> 74 <211> 119 <212> PRT <213> Mus musculus <400> 74 Met Ala Arg Ser Val Thr Leu Val Phe Leu Val Leu Val Ser Leu Thr 1 5 10 15 Gly Leu Tyr Ala Ile Gln Lys Thr Pro Gln Ile Gln Val Tyr Ser Arg 20 25 30 His Pro Pro Glu Asn Gly Lys Pro Asn Ile Leu Asn Cys Tyr Val Thr 35 40 45 Gln Phe His Pro Pro His Ile Glu Ile Gln Met Leu Lys Asn Gly Lys 50 55 60 Lys Ile Pro Lys Val Glu Met Ser Asp Met Ser Phe Ser Lys Asp Trp 65 70 75 80 Ser Phe Tyr Ile Leu Ala His Thr Glu Phe Thr Pro Thr Glu Thr Asp 85 90 95 Thr Tyr Ala Cys Arg Val Lys His Ala Ser Met Ala Glu Pro Lys Thr 100 105 110 Val Tyr Trp Asp Arg Asp Met 115 <210> 75 <211> 447 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 75 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15 Thr Leu Ser Leu Thr Cys Ala Val Ser Gly His Ser Ile Ser His Asp 20 25 30 His Ala Trp Ser Trp Val Arg Gln Pro Pro Gly Glu Gly Leu Glu Trp 35 40 45 Ile Gly Phe Ile Ser Tyr Ser Gly Ile Thr Asn Tyr Asn Pro Ser Leu 50 55 60 Gln Gly Arg Val Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp Tyr Trp Gly Glu Gly 100 105 110 Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125 Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190 Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 210 215 220 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 225 230 235 240 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 260 265 270 Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285 Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 295 300 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 305 310 315 320 Tyr Lys Cys Lys Val Ser Asn Lys Ala Tyr Pro Ala Pro Ile Glu Lys 325 330 335 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 340 345 350 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 355 360 365 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 375 380 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 385 390 395 400 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405 410 415 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430 Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445 <210> 76 <211> 447 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 76 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15 Thr Leu Ser Leu Thr Cys Ala Val Ser Gly His Ser Ile Ser His Asp 20 25 30 His Ala Trp Ser Trp Val Arg Gln Pro Pro Gly Glu Gly Leu Glu Trp 35 40 45 Ile Gly Phe Ile Ser Tyr Ser Gly Ile Thr Asn Tyr Asn Pro Ser Leu 50 55 60 Gln Gly Arg Val Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp Tyr Trp Gly Glu Gly 100 105 110 Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125 Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190 Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 210 215 220 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 225 230 235 240 Asp Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 260 265 270 Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285 Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 295 300 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 305 310 315 320 Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Glu Glu Lys 325 330 335 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 340 345 350 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 355 360 365 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 375 380 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 385 390 395 400 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405 410 415 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430 Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445 <210> 77 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 77 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Ser Val Thr Ile Thr Cys Gln Ala Ser Thr Asp Ile Ser Ser His 20 25 30 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Glu Leu Leu Ile 35 40 45 Tyr Tyr Gly Ser His Leu Leu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Glu Ala 65 70 75 80 Glu Asp Ala Ala Thr Tyr Tyr Cys Gly Gln Gly Asn Arg Leu Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Glu Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 <210> 78 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> an artificially synthesized sequence <400> 78 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Ser Ser Tyr 20 25 30 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Gly Asn Thr Leu Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210

Claims (2)

  1. 아래의 공정(a)~(h)를 포함하는, 둘 이상의 항원 결합 도메인을 포함하고, 혈장 중으로부터 당해 항원을 소실시키는 기능을 갖는 항원 결합 분자의 스크리닝방법:
    (a) 상기 항원 결합 도메인을 얻는 공정으로서, 적어도 하나의 항원 결합 도메인은 둘 이상의 항원 결합 단위를 포함하는 항원에 대한 결합 활성이 이온 농도의 조건에 따라 변화되는 항원 결합 도메인이고, 100 μM 내지 10 mM의 고칼슘 이온 농도 조건 하에서 상기 항원에 결합하고 0.1 μM 내지 30 μM의 저칼슘 이온 농도 조건 하에서 상기 항원으로부터 해리되는 항원 결합 도메인, 또는 pH 6.7 내지 pH 10의 저수소 이온 농도 조건 하에서 상기 항원에 결합하고 pH 4.0 내지 pH 6.5의 고수소 이온 농도 조건 하에서 상기 항원으로부터 해리되는 항원 결합 도메인인, 공정,
    (b) 상기 공정(a)에서 선택된 항원 결합 도메인을 코드하는 유전자를 얻는 공정,
    (c) 상기 공정(b)에서 얻어진 유전자를 Fc영역을 코드하는 유전자와 작동 가능하게 연결하는 공정,
    (d) 상기 공정(c)에서 작동 가능하게 연결된 유전자를 포함하는 숙주세포를 배양하는 공정,
    (e) 상기 공정(d)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정,
    (f) 상기 공정(e)에서 얻어진 항원 결합 분자를 상기 항원과 접촉시키는 공정,
    (g) 겔 여과 크로마토그래피를 이용하여 당해 항원 결합 분자와 당해 항원을 포함하는 면역 복합체의 형성을 평가하는 공정으로서, 상기 면역 복합체는 (a) 둘 이상의 항원 결합 분자를 포함함으로써 둘 이상의 Fc영역을 포함하고, (b) 둘 이상의 항원 분자를 포함하는 면역 복합체인, 공정, 및
    (h) 상기 공정(g)에서 면역 복합체의 형성이 확인된 항원 결합 분자를 선택하는 공정.
  2. 아래의 공정(a)~(b)를 포함하는, 혈장 중으로부터 항원을 소실시키는 기능을 갖는 항원 결합 분자의 제조방법:
    (a) 제 1 항의 스크리닝방법에 의해 선택된 항원 결합 분자를 코드하는 유전자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 공정, 및
    (b) 상기 공정(a)에서 얻어진 배양액으로부터 항원 결합 분자를 단리하는 공정.

KR1020217017021A 2011-11-30 2012-11-30 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약 KR20210074395A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237033758A KR20230143201A (ko) 2011-11-30 2012-11-30 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
PCT/JP2011/077619 WO2012073992A1 (ja) 2010-11-30 2011-11-30 複数分子の抗原に繰り返し結合する抗原結合分子
JPPCT/JP2011/077619 2011-11-30
JPJP-P-2012-123773 2012-05-30
JP2012123773 2012-05-30
KR1020147016787A KR20140100532A (ko) 2011-11-30 2012-11-30 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
PCT/JP2012/081185 WO2013081143A1 (ja) 2011-11-30 2012-11-30 免疫複合体を形成する細胞内への運搬体(キャリア)を含む医薬

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020147016787A Division KR20140100532A (ko) 2011-11-30 2012-11-30 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237033758A Division KR20230143201A (ko) 2011-11-30 2012-11-30 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약

Publications (1)

Publication Number Publication Date
KR20210074395A true KR20210074395A (ko) 2021-06-21

Family

ID=48535590

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020147016787A KR20140100532A (ko) 2011-11-30 2012-11-30 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
KR1020237033758A KR20230143201A (ko) 2011-11-30 2012-11-30 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
KR1020217017021A KR20210074395A (ko) 2011-11-30 2012-11-30 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020147016787A KR20140100532A (ko) 2011-11-30 2012-11-30 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
KR1020237033758A KR20230143201A (ko) 2011-11-30 2012-11-30 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약

Country Status (12)

Country Link
US (2) US20150056182A1 (ko)
EP (2) EP2787081A4 (ko)
JP (4) JP6124800B2 (ko)
KR (3) KR20140100532A (ko)
CN (3) CN113416257A (ko)
BR (1) BR112014013081A2 (ko)
CA (2) CA2857159C (ko)
HK (1) HK1198771A1 (ko)
MX (2) MX358220B (ko)
RU (1) RU2739792C1 (ko)
SG (2) SG11201402750SA (ko)
WO (1) WO2013081143A1 (ko)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2006381T3 (en) 2006-03-31 2016-02-22 Chugai Pharmaceutical Co Ltd PROCEDURE FOR REGULATING ANTIBODIES BLOOD PHARMACOKINETICS
HUE029635T2 (en) 2007-09-26 2017-03-28 Chugai Pharmaceutical Co Ltd A method for modifying an isoelectric point of an antibody by amino acid substitution in CDR
DK2708559T3 (en) 2008-04-11 2018-06-14 Chugai Pharmaceutical Co Ltd Antigen-binding molecule capable of repeatedly binding two or more antigen molecules
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
TWI812066B (zh) 2010-11-30 2023-08-11 日商中外製藥股份有限公司 具有鈣依存性的抗原結合能力之抗體
KR20230005405A (ko) 2011-02-25 2023-01-09 추가이 세이야쿠 가부시키가이샤 FcγRIIb 특이적 Fc 항체
EP3939996A1 (en) 2011-09-30 2022-01-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
CN110680920A (zh) 2011-09-30 2020-01-14 中外制药株式会社 诱导针对靶抗原的免疫应答的抗原结合分子
TW201817744A (zh) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
KR20140100532A (ko) 2011-11-30 2014-08-14 추가이 세이야쿠 가부시키가이샤 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
ES2856272T3 (es) * 2012-05-30 2021-09-27 Chugai Pharmaceutical Co Ltd Molécula de unión a antígenos para eliminar antígenos agregados
TWI797443B (zh) 2012-05-30 2023-04-01 日商中外製藥股份有限公司 抗原結合分子之篩選或製造方法
JP6774164B2 (ja) 2012-08-24 2020-10-21 中外製薬株式会社 マウスFcγRII特異的Fc抗体
EP3721900A1 (en) 2012-08-24 2020-10-14 Chugai Seiyaku Kabushiki Kaisha Fcgammariib-specific fc region variant
TWI636062B (zh) 2013-04-02 2018-09-21 中外製藥股份有限公司 Fc region variant
JP6841596B2 (ja) 2013-09-30 2021-03-10 中外製薬株式会社 改変されたヘルパーファージを用いて抗原結合分子を作製する方法
MX2016013686A (es) * 2014-04-18 2017-03-31 Univ New York State Res Found Anticuerpos de antigeno anti-tf humanizado.
TWI779010B (zh) 2014-12-19 2022-10-01 日商中外製藥股份有限公司 抗肌抑素之抗體、含變異Fc區域之多胜肽及使用方法
PL3233921T3 (pl) 2014-12-19 2022-01-10 Chugai Seiyaku Kabushiki Kaisha Przeciwciała anty-c5 i sposoby ich stosowania
JP2018511557A (ja) 2015-01-22 2018-04-26 中外製薬株式会社 2種以上の抗c5抗体の組み合わせおよび使用方法
EP3253778A1 (en) 2015-02-05 2017-12-13 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses therof
CN107249637A (zh) 2015-02-27 2017-10-13 中外制药株式会社 用于治疗il‑6相关疾病的组合物
KR101920175B1 (ko) 2015-09-18 2018-11-19 추가이 세이야쿠 가부시키가이샤 Il-8에 결합하는 항체 및 그의 사용
EP3394098A4 (en) 2015-12-25 2019-11-13 Chugai Seiyaku Kabushiki Kaisha ANTI-MYOSTATIN ANTIBODIES AND METHODS OF USE
EP3481864A1 (en) 2016-07-08 2019-05-15 Staten Biotechnology B.V. Anti-apoc3 antibodies and methods of use thereof
AU2017325654B2 (en) 2016-08-02 2024-09-05 Visterra, Inc. Engineered polypeptides and uses thereof
KR102538749B1 (ko) 2016-08-05 2023-06-01 추가이 세이야쿠 가부시키가이샤 Il-8 관련 질환의 치료용 또는 예방용 조성물
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
CA3050692A1 (en) * 2017-01-17 2018-07-26 The Texas A&M University System Endolysosomal targeting conjugates for improved delivery of cargo molecules to the endolysosomal compartment of target cells
WO2018139623A1 (en) 2017-01-30 2018-08-02 Chugai Seiyaku Kabushiki Kaisha Anti-sclerostin antibodies and methods of use
MA50958A (fr) 2017-04-21 2020-10-14 Staten Biotechnology B V Anticorps anti-apoc3 et leurs méthodes d'utilisation
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
JP2020522266A (ja) * 2017-06-05 2020-07-30 ヤンセン バイオテツク,インコーポレーテツド 非対称なch2−ch3領域の変異を有する、操作された多重特異性抗体及び他の多量体タンパク質
WO2019036869A1 (zh) * 2017-08-21 2019-02-28 深圳市博奥康生物科技有限公司 人 TL6 基因的 shRNA 及其应用
JP7232190B2 (ja) 2017-10-20 2023-03-02 中外製薬株式会社 細胞への分子の取り込みを測定する方法
US10538583B2 (en) 2017-10-31 2020-01-21 Staten Biotechnology B.V. Anti-APOC3 antibodies and compositions thereof
CN111315772A (zh) 2017-10-31 2020-06-19 斯塔顿生物技术有限公司 抗apoc3抗体及其使用方法
CA3093729A1 (en) 2018-03-15 2019-09-19 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to zika virus and methods of use
MA52366A (fr) 2018-04-25 2021-03-03 Prometheus Biosciences Inc Anticorps anti-tl1a optimisés
WO2020116560A1 (ja) * 2018-12-05 2020-06-11 株式会社バイカ・セラピュティクス 抗体のFc領域改変体
US20220259278A1 (en) * 2019-07-08 2022-08-18 Progen Co., Ltd. Novel fusion protein and use of same
AU2020371725A1 (en) 2019-10-24 2022-05-26 Cedars-Sinai Medical Center Humanized antibodies to TNF-like ligand 1A (TL1A) and uses thereof
KR20220113791A (ko) 2019-12-18 2022-08-16 에프. 호프만-라 로슈 아게 이중특이적 항-ccl2 항체
US11708406B2 (en) 2020-04-01 2023-07-25 Avalo Therapeutics, Inc. Method of treating acute respiratory distress syndrome (ARDS) or acute lung injury (ALI) associate with COVID-19 by administering an anti-LIGHT antibody
KR102151501B1 (ko) * 2020-05-26 2020-09-03 박성은 모발 또는 두피 건강 개선용 조성물
US20230296612A1 (en) 2020-07-29 2023-09-21 Chugai Seiyaku Kabushiki Kaisha Method for measuring pharmacokinetics of agent labeled with non-radioactive substance
MX2023013307A (es) * 2021-05-14 2023-12-04 Jiangsu Hengrui Pharmaceuticals Co Ltd Molecula de union a antigeno.
WO2022244838A1 (ja) 2021-05-19 2022-11-24 中外製薬株式会社 分子のin vivo薬物動態を予測する方法
KR20240021859A (ko) 2021-06-18 2024-02-19 에프. 호프만-라 로슈 아게 이중특이적 항-ccl2 항체

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125825A1 (ja) 2008-04-11 2009-10-15 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2011122011A2 (en) 2010-03-30 2011-10-06 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3377363D1 (en) 1982-03-31 1988-08-18 Ajinomoto Kk Gene coding for interleukin-2 polypeptide, recombinant dna carrying said gene, cell lines possessing the recombinant dna,and method for producing interleukin-2 using said cells
ES521371A0 (es) 1982-04-12 1984-05-16 Hybritech Inc Un procedimiento para la purificacion de un anticuerpo.
US4689299A (en) 1982-09-30 1987-08-25 University Of Rochester Human monoclonal antibodies against bacterial toxins
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
US4801687A (en) 1986-10-27 1989-01-31 Bioprobe International, Inc. Monoclonal antibody purification process using protein A
US4851341A (en) 1986-12-19 1989-07-25 Immunex Corporation Immunoaffinity purification system
JPH01144991A (ja) 1987-12-02 1989-06-07 Kagaku Oyobi Ketsusei Riyouhou Kenkyusho 血液凝固第8因子の精製方法
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
JPH0636741B2 (ja) * 1989-11-08 1994-05-18 帝人株式会社 ヒト・プロテインcの分離方法
CA2075927A1 (en) 1990-02-16 1991-08-17 Victor A. Raso Hybrid reagents capable of selectively releasing molecules into cells
JPH06508511A (ja) 1990-07-10 1994-09-29 ケンブリッジ アンティボディー テクノロジー リミティド 特異的な結合ペアーの構成員の製造方法
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
DK0814159T3 (da) 1990-08-29 2005-10-24 Genpharm Int Transgene, ikke-humane dyr, der er i stand til at danne heterologe antistoffer
DE69229477T2 (de) 1991-09-23 1999-12-09 Cambridge Antibody Technology Ltd., Melbourn Methoden zur Herstellung humanisierter Antikörper
ES2313867T3 (es) 1991-12-02 2009-03-16 Medical Research Council Produccion de anticuerpos anti-auto de repertorios de segmentos de anticuerpo expresados en la superficie de fagos.
CA2124967C (en) 1991-12-17 2008-04-08 Nils Lonberg Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
CA2140638C (en) 1992-07-24 2010-05-04 Raju Kucherlapati Generation of xenogeneic antibodies
US5648267A (en) 1992-11-13 1997-07-15 Idec Pharmaceuticals Corporation Impaired dominant selectable marker sequence and intronic insertion strategies for enhancement of expression of gene product and expression vector systems comprising same
CA2161351C (en) 1993-04-26 2010-12-21 Nils Lonberg Transgenic non-human animals capable of producing heterologous antibodies
CA2162497A1 (en) 1993-06-10 1994-12-22 Sheila Connelly Adenoviral vectors for treatment of hemophilia
GB9313509D0 (en) 1993-06-30 1993-08-11 Medical Res Council Chemisynthetic libraries
GB9314271D0 (en) 1993-07-09 1993-08-18 Inst Of Cancer The Research Cell growth factor receptors
FR2707189B1 (fr) 1993-07-09 1995-10-13 Gradient Ass Procédé de traitement de résidus de combustion et installation de mise en Óoeuvre dudit procédé.
IL107742A0 (en) 1993-11-24 1994-02-27 Yeda Res & Dev Chemically-modified binding proteins
EP0731842A1 (en) 1993-12-03 1996-09-18 Medical Research Council Recombinant binding proteins and peptides
US6074642A (en) 1994-05-02 2000-06-13 Alexion Pharmaceuticals, Inc. Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis
AU701342B2 (en) 1994-07-13 1999-01-28 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin-8
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
EP0739981A1 (en) 1995-04-25 1996-10-30 Vrije Universiteit Brussel Variable fragments of immunoglobulins - use for therapeutic or veterinary purposes
EP1709970A1 (en) 1995-04-27 2006-10-11 Abgenix, Inc. Human antibodies against EGFR, derived from immunized xenomice
AU2466895A (en) 1995-04-28 1996-11-18 Abgenix, Inc. Human antibodies derived from immunized xenomice
AU728657B2 (en) 1996-03-18 2001-01-18 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
EP1027439B1 (en) 1997-10-27 2010-03-17 Bac Ip B.V. Multivalent antigen-binding proteins
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
KR101155191B1 (ko) 1999-01-15 2012-06-13 제넨테크, 인크. 효과기 기능이 변화된 폴리펩티드 변이체
US7183387B1 (en) * 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US7572619B2 (en) 2000-03-22 2009-08-11 Octagene Gmbh Recombinant blood clotting factors
FR2807767B1 (fr) 2000-04-12 2005-01-14 Lab Francais Du Fractionnement Anticorps monoclonaux anti-d
WO2002020565A2 (en) 2000-09-08 2002-03-14 Universität Zürich Collections of repeat proteins comprising repeat modules
AU2002213251B2 (en) 2000-10-16 2007-06-14 Bristol-Myers Squibb Company Protein scaffolds for antibody mimics and other binding proteins
DE60143544D1 (de) 2000-12-12 2011-01-05 Medimmune Llc Moleküle mit längeren halbwertszeiten, zusammensetzungen und deren verwendung
US20040001839A1 (en) 2000-12-29 2004-01-01 Avigdor Levanon Multimers - isolated molecules comprising epitopes containing sulfated moieties, antibodies to such epitopes, and uses thereof
US20040002450A1 (en) 2000-12-29 2004-01-01 Janette Lazarovits Y17 - isolated molecules comprising epitopes containing sulfated moieties, antibodies to such epitopes, and uses thereof
US20040001822A1 (en) 2000-12-29 2004-01-01 Avigdor Levanon Y1-isolated molecules comprising epitopes containing sulfated moieties, antibodies to such epitopes, and uses thereof
US7667004B2 (en) 2001-04-17 2010-02-23 Abmaxis, Inc. Humanized antibodies against vascular endothelial growth factor
US20030157561A1 (en) 2001-11-19 2003-08-21 Kolkman Joost A. Combinatorial libraries of monomer domains
WO2003029462A1 (en) 2001-09-27 2003-04-10 Pieris Proteolab Ag Muteins of human neutrophil gelatinase-associated lipocalin and related proteins
BRPI0214168B8 (pt) 2001-11-14 2021-05-25 Centocor Inc anticorpos anti-il-6, moléculas de ácido nucleico codificando os mesmos, vetores compreendendo as referidas moléculas, composições e formulações compreendendo os referidos anticorpos, bem como métodos de produção dos mesmos
JP4063769B2 (ja) 2001-12-28 2008-03-19 中外製薬株式会社 タンパク質安定化方法
AR038568A1 (es) * 2002-02-20 2005-01-19 Hoffmann La Roche Anticuerpos anti-a beta y su uso
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US20040110226A1 (en) 2002-03-01 2004-06-10 Xencor Antibody optimization
US7317091B2 (en) * 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20080199471A1 (en) 2002-03-01 2008-08-21 Bernett Matthew J Optimized cd40 antibodies and methods of using the same
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US8093357B2 (en) 2002-03-01 2012-01-10 Xencor, Inc. Optimized Fc variants and methods for their generation
CA2489022C (en) 2002-06-12 2012-10-16 Genencor International, Inc. Methods for improving a binding characteristic of a molecule
AU2003256266A1 (en) 2002-06-12 2003-12-31 Genencor International, Inc. Methods and compositions for milieu-dependent binding of a targeted agent to a target
ITMI20021527A1 (it) 2002-07-11 2004-01-12 Consiglio Nazionale Ricerche Anticorpi anti componente c5 del complemento e loro uso
US8193318B2 (en) 2002-08-14 2012-06-05 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
RU2325186C2 (ru) 2002-09-27 2008-05-27 Ксенкор, Инк. АНТИТЕЛО, СОДЕРЖАЩЕЕ Fc-ВАРИАНТНУЮ ЧАСТЬ (ВАРИАНТЫ), ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ АНТИТЕЛО, И СПОСОБ ЛЕЧЕНИЯ МЛЕКОПИТАЮЩЕГО
EP2364996B1 (en) 2002-09-27 2016-11-09 Xencor Inc. Optimized FC variants and methods for their generation
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
SI1562972T1 (sl) 2002-10-15 2010-12-31 Facet Biotech Corp ALTERACIJA FcRn VEZANIH AFINITET ALI SERUMSKIH RAZPOLOVNIH DOB ANTITELESC Z MUTAGENEZO
US7960512B2 (en) 2003-01-09 2011-06-14 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
CA2766627C (en) 2003-05-02 2019-12-03 Xencor, Inc. Optimized fc variants and methods for their generation
US20050152894A1 (en) 2003-09-05 2005-07-14 Genentech, Inc. Antibodies with altered effector functions
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
WO2005037867A1 (en) 2003-10-15 2005-04-28 Pdl Biopharma, Inc. ALTERATION OF Fc-FUSION PROTEIN SERUM HALF-LIVES BY MUTAGENESIS OF POSITIONS 250, 314 AND/OR 428 OF THE HEAVY CHAIN CONSTANT REGION OF IG
AU2004284090A1 (en) 2003-10-24 2005-05-06 Avidia, Inc. LDL receptor class A and EGF domain monomers and multimers
RS50516B (sr) 2003-11-05 2010-05-07 Ares Trading S.A. Prečišćavanje il-18 vezujućeg proteina
WO2005047327A2 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
PT1711207E (pt) 2003-12-10 2013-02-13 Medarex Inc Anticorpos alfa interferão e seus usos
WO2005077981A2 (en) 2003-12-22 2005-08-25 Xencor, Inc. Fc POLYPEPTIDES WITH NOVEL Fc LIGAND BINDING SITES
WO2005070963A1 (en) 2004-01-12 2005-08-04 Applied Molecular Evolution, Inc Fc region variants
BRPI0506679A (pt) 2004-02-11 2007-05-15 Warner Lambert Co métodos de tratar osteoartrite com antagonistas de il-6
US20050260711A1 (en) 2004-03-30 2005-11-24 Deepshikha Datta Modulating pH-sensitive binding using non-natural amino acids
WO2005123780A2 (en) 2004-04-09 2005-12-29 Protein Design Labs, Inc. Alteration of fcrn binding affinities or serum half-lives of antibodies by mutagenesis
SG173322A1 (en) 2004-04-16 2011-08-29 Macrogenics Inc Dw Us Fc gammad riib - specific antibodies and methods of use thereof
EP1771205B1 (en) 2004-06-18 2016-10-26 Ambrx, Inc. Novel antigen-binding polypeptides and their uses
BRPI0513155B1 (pt) 2004-07-06 2021-07-20 Bioren, Inc. Método de distinguir um ou mais resíduos de aminoácido funcionais dos resíduos de aminoácido não-funcionais em uma região definida dentro de um polipeptídeo, método de gerar uma biblioteca de análogos de polipeptídeo e método de identificar um subconjunto de análogos de polipeptídeo tendo uma propriedade desejada
SI2471813T1 (sl) 2004-07-15 2015-03-31 Xencor, Inc. Optimirane Fc variante
EP2213683B1 (en) 2004-08-04 2013-06-05 Mentrik Biotech, LLC Variant Fc regions
US7659374B2 (en) 2004-08-16 2010-02-09 Medimmune, Llc Eph receptor Fc variants with enhanced antibody dependent cell-mediated cytotoxicity activity
KR20070057839A (ko) 2004-08-19 2007-06-07 제넨테크, 인크. 변경된 이펙터 기능을 갖는 폴리펩티드 변이체
AU2005302453A1 (en) 2004-10-29 2006-05-11 Medimmune, Llc Methods of preventing and treating RSV infections and related conditions
CA2587766A1 (en) 2004-11-10 2007-03-01 Macrogenics, Inc. Engineering fc antibody regions to confer effector function
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
RU2412200C2 (ru) 2004-11-12 2011-02-20 Ксенкор, Инк. Fc-ВАРИАНТЫ С ИЗМЕНЕННЫМ СВЯЗЫВАНИЕМ С FcRn
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
AU2005304624B2 (en) 2004-11-12 2010-10-07 Xencor, Inc. Fc variants with altered binding to FcRn
AU2006230413B8 (en) 2005-03-31 2011-01-20 Xencor, Inc Fc variants with optimized properties
EP1870459B1 (en) 2005-03-31 2016-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US8008443B2 (en) 2005-04-26 2011-08-30 Medimmune, Llc Modulation of antibody effector function by hinge domain engineering
US8163881B2 (en) 2005-05-31 2012-04-24 The Board Of Regents Of The University Of Texas System Immunoglobulin molecules with improved characteristics
FR2888850B1 (fr) 2005-07-22 2013-01-11 Pf Medicament Nouveaux anticorps anti-igf-ir et leurs applications
WO2007021841A2 (en) 2005-08-10 2007-02-22 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using same
DK1931709T3 (en) 2005-10-03 2017-03-13 Xencor Inc FC VARIETIES WITH OPTIMIZED FC RECEPTOR BINDING PROPERTIES
EP2465870A1 (en) 2005-11-07 2012-06-20 Genentech, Inc. Binding polypeptides with diversified and consensus VH/VL hypervariable sequences
WO2007076200A2 (en) * 2005-11-28 2007-07-05 Medimmune, Inc. Antagonists of hmgb1 and/or rage and methods of use thereof
DK2009101T3 (en) * 2006-03-31 2018-01-15 Chugai Pharmaceutical Co Ltd Antibody modification method for purification of a bispecific antibody
TWI395754B (zh) 2006-04-24 2013-05-11 Amgen Inc 人類化之c-kit抗體
CA2660592C (en) 2006-05-26 2016-07-12 Macrogenics, Inc. Humanized fc.gamma.riib-specific antibodies and methods of use thereof
EP2032159B1 (en) 2006-06-26 2015-01-07 MacroGenics, Inc. Combination of fcgammariib antibodies and cd20-specific antibodies and methods of use thereof
AU2007281284A1 (en) 2006-08-02 2008-02-07 The Uab Research Foundation Methods and compositions related to soluble monoclonal variable lymphocyte receptors of defined antigen specificity
PL2059536T3 (pl) 2006-08-14 2014-07-31 Xencor Inc Zoptymalizowane przeciwciała ukierunkowane na CD19
EP2695896B1 (en) 2006-10-06 2018-08-22 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Prevention of tissue ischemia, related methods and compositions
US20100034194A1 (en) 2006-10-11 2010-02-11 Siemens Communications Inc. Eliminating unreachable subscribers in voice-over-ip networks
WO2008140603A2 (en) 2006-12-08 2008-11-20 Macrogenics, Inc. METHODS FOR THE TREATMENT OF DISEASE USING IMMUNOGLOBULINS HAVING FC REGIONS WITH ALTERED AFFINITIES FOR FCγR ACTIVATING AND FCγR INHIBITING
AU2008203703C1 (en) 2007-01-05 2014-04-03 University Of Zurich Method of providing disease-specific binding molecules and targets
CA2669412A1 (en) 2007-01-23 2008-07-31 Xencor, Inc. Optimized cd40 antibodies and methods of using the same
WO2008092117A2 (en) 2007-01-25 2008-07-31 Xencor, Inc. Immunoglobulins with modifications in the fcr binding region
US20100184959A1 (en) 2007-03-19 2010-07-22 Medimmune Limited Polypeptide Variants
BRPI0811857A2 (pt) 2007-05-14 2014-10-21 Biogen Idec Inc Regiões fc (scfc) de cadeia simples, polipeptídeos de aglutinação que as compreendem e métodos relacionados.
AU2008260498B2 (en) * 2007-05-30 2012-11-29 Xencor, Inc. Methods and compositions for inhibiting CD32b expressing cells
JOP20080381B1 (ar) 2007-08-23 2023-03-28 Amgen Inc بروتينات مرتبطة بمولدات مضادات تتفاعل مع بروبروتين كونفيرتاز سيتيليزين ككسين من النوع 9 (pcsk9)
HUE029635T2 (en) 2007-09-26 2017-03-28 Chugai Pharmaceutical Co Ltd A method for modifying an isoelectric point of an antibody by amino acid substitution in CDR
CN101939425B (zh) 2007-09-26 2014-05-14 中外制药株式会社 抗il-6受体抗体
NZ584769A (en) 2007-09-28 2011-09-30 Chugai Pharmaceutical Co Ltd Anti-glypican-3 antibody having improved kinetics in plasma
KR100888133B1 (ko) 2007-10-02 2009-03-13 에스케이에너지 주식회사 4종의 금속성분으로 구성된 다성분계 비스무스몰리브데이트 촉매 제조방법 및 상기촉매를 이용하여1,3-부타디엔을 제조하는 방법
WO2009053358A1 (en) 2007-10-22 2009-04-30 Merck Serono S.A. Method for purifying fc-fusion proteins
US20120030144A1 (en) 2007-11-08 2012-02-02 Pikamab, Inc. Methods for doing business using biomarkers
EP2235058A2 (en) 2007-12-21 2010-10-06 Amgen, Inc Anti-amyloid antibodies and uses thereof
EP4269443A3 (en) * 2007-12-26 2023-12-27 Xencor, Inc. Fc variants with altered binding to fcrn
EP2229409B1 (en) 2008-01-18 2012-09-26 Stichting Sanquin Bloedvoorziening Methods for increasing the therapeutic efficacy of immunoglobulin g class 3 (igg3) antibodies
EP2238156B1 (en) 2008-01-29 2014-10-01 Ablynx N.V. Methods to stabilize proteins and polypeptides
CA2722082C (en) 2008-04-25 2021-11-09 Christopher Tenhoor Fc receptor binding proteins
JP2011519279A (ja) 2008-05-01 2011-07-07 アムジエン・インコーポレーテツド 抗ヘプシジン抗体及び使用の方法
CN102625813A (zh) 2008-06-20 2012-08-01 诺华公司 具有降低的聚集的免疫球蛋白
MX2011001371A (es) 2008-08-05 2011-06-16 Novartis Ag Composiciones y metodos para anticuerpos que se dirigen a la proteina de complementos c5.
JP5028372B2 (ja) 2008-09-26 2012-09-19 京セラドキュメントソリューションズ株式会社 画像処理装置、画像処理方法及び画像処理プログラム
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
PE20110707A1 (es) 2008-10-14 2011-10-11 Genentech Inc Variantes de inmunoglobulinas
JP5807300B2 (ja) * 2008-11-18 2015-11-10 株式会社シノテスト 試料中のc反応性蛋白質の測定方法及び測定試薬
JO3672B1 (ar) 2008-12-15 2020-08-27 Regeneron Pharma أجسام مضادة بشرية عالية التفاعل الكيماوي بالنسبة لإنزيم سبتيليسين كنفرتيز بروبروتين / كيكسين نوع 9 (pcsk9).
CN106995495A (zh) 2009-01-12 2017-08-01 希托马克斯医疗有限责任公司 修饰抗体组合物及其制备和使用方法
JP2012515556A (ja) 2009-01-23 2012-07-12 バイオジェン・アイデック・エムエイ・インコーポレイテッド 低下したエフェクタ機能を有する安定化Fcポリペプチドおよび使用方法
US20100292443A1 (en) 2009-02-26 2010-11-18 Sabbadini Roger A Humanized platelet activating factor antibody design using anti-lipid antibody templates
JP4885308B2 (ja) 2009-03-19 2012-02-29 中外製薬株式会社 改良された抗体分子を含有する製剤
TWI682995B (zh) 2009-03-19 2020-01-21 日商中外製藥股份有限公司 抗體恆定區域改變體
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
JP2010250827A (ja) 2009-04-16 2010-11-04 Accenture Global Services Gmbh タッチポイントをカスタマイズするシステム
KR101747103B1 (ko) 2009-06-26 2017-06-14 리제너론 파마슈티칼스 인코포레이티드 천연 면역글로불린 포맷을 가지는 용이하게 분리된 이중특이성 항체
WO2011008517A2 (en) 2009-06-30 2011-01-20 Research Development Foundation Immunoglobulin fc polypeptides
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
JP5734988B2 (ja) 2009-10-06 2015-06-17 メディミューン リミテド Rsv特異的結合分子
AU2010303415B2 (en) 2009-10-07 2015-02-19 Macrogenics, Inc. Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use
US8362210B2 (en) 2010-01-19 2013-01-29 Xencor, Inc. Antibody variants with enhanced complement activity
ES2826894T3 (es) 2010-02-19 2021-05-19 Xencor Inc Nuevas inmunoadhesinas CTLA4-IG
KR20120138241A (ko) 2010-03-11 2012-12-24 화이자 인코포레이티드 pH 의존성 항원 결합을 갖는 항체
JP2011184418A (ja) * 2010-03-11 2011-09-22 Tokyo Institute Of Technology 親和性可変抗体
PL2575908T3 (pl) 2010-06-07 2016-07-29 Univ Missouri Sprzężony materiał polimerowy i jego zastosowanie
JP6121904B2 (ja) 2010-09-08 2017-04-26 ハロザイム インコーポレイテッド 条件的活性治療用タンパク質を評価および同定する、または発展させる方法
EP2622074B1 (en) 2010-09-30 2014-11-12 Board Of Trustees Of Northern Illinois University Library-based methods and compositions for introducing molecular switch functionality into protein affinity reagents
TWI812066B (zh) * 2010-11-30 2023-08-11 日商中外製藥股份有限公司 具有鈣依存性的抗原結合能力之抗體
KR20230005405A (ko) 2011-02-25 2023-01-09 추가이 세이야쿠 가부시키가이샤 FcγRIIb 특이적 Fc 항체
WO2012132067A1 (ja) 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
MX348071B (es) * 2011-03-16 2017-05-26 Amgen Inc Variantes de fc.
DK2698431T3 (da) 2011-03-30 2020-11-30 Chugai Pharmaceutical Co Ltd Opretholdelse af antigen-bindende molekyler i blodplasma og fremgangsmåde til modifikation af immunogenicitet
EP2714732A4 (en) * 2011-05-25 2014-12-10 Merck Sharp & Dohme PROCESS FOR PREPARING FC-CONTAINING POLYPEPTIDES WITH IMPROVED PROPERTIES
UA117901C2 (uk) 2011-07-06 2018-10-25 Ґенмаб Б.В. Спосіб посилення ефекторної функції вихідного поліпептиду, його варіанти та їх застосування
EP3939996A1 (en) 2011-09-30 2022-01-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
SG11201401102VA (en) 2011-09-30 2014-09-26 Chugai Pharmaceutical Co Ltd Ion concentration-dependent binding molecule library
CN110680920A (zh) 2011-09-30 2020-01-14 中外制药株式会社 诱导针对靶抗原的免疫应答的抗原结合分子
TW201817744A (zh) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
WO2013047752A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 抗原の消失を促進する抗原結合分子
EP2765192A4 (en) 2011-10-05 2015-04-15 Chugai Pharmaceutical Co Ltd ANTIGEN BINDING MOLECULE FOR PROMOTING THE PLASMA CLAIR OF AN ANTIGEN COMPRISING A SACCHARIDIC CHAIN TYPE RECEPTOR BINDING DOMAIN
KR20140100532A (ko) 2011-11-30 2014-08-14 추가이 세이야쿠 가부시키가이샤 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
CA2865158C (en) 2012-02-24 2022-11-01 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting disappearance of antigen via fc.gamma.riib
MX2014011047A (es) 2012-03-16 2015-04-08 Regeneron Pharma Ratones que producen proteinas de union a un antigeno con caracteristicas de union dependientes del ph.
RU2644684C2 (ru) 2012-03-16 2018-02-13 Регенерон Фармасьютикалз, Инк. Антитела со встроенным в легкие цепи гистидином и генетически модифицированные отличные от человека животные для их получения
BR112014022855A2 (pt) 2012-03-16 2017-07-18 Regeneron Pharma animal não humano geneticamente modificado, mamífero geneticamente modificado, e, método para fabricar um animal não humano
TWI619729B (zh) 2012-04-02 2018-04-01 再生元醫藥公司 抗-hla-b*27抗體及其用途
ES2856272T3 (es) 2012-05-30 2021-09-27 Chugai Pharmaceutical Co Ltd Molécula de unión a antígenos para eliminar antígenos agregados
TWI797443B (zh) 2012-05-30 2023-04-01 日商中外製藥股份有限公司 抗原結合分子之篩選或製造方法
MX363213B (es) 2012-08-13 2019-03-15 Regeneron Pharma Anticuerpos anti-pcsk9 con características de unión dependientes del ph.
EP3721900A1 (en) 2012-08-24 2020-10-14 Chugai Seiyaku Kabushiki Kaisha Fcgammariib-specific fc region variant
JP6774164B2 (ja) 2012-08-24 2020-10-21 中外製薬株式会社 マウスFcγRII特異的Fc抗体
JO3532B1 (ar) 2013-03-13 2020-07-05 Regeneron Pharma الأجسام المضادة لمضاد انترلوكين-33 واستعمالاتها
KR102191654B1 (ko) 2013-03-15 2020-12-16 애피바디 에이비 신규 폴리펩티드
JP6454678B2 (ja) 2013-03-15 2019-01-16 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC pH範囲で結合性が異なる薬物動態改善のための抗TFPI抗体変異体
WO2014144080A2 (en) 2013-03-15 2014-09-18 Amgen Inc. Human antigen binding proteins that bind to proprotein convertase subtilisin kexin type 9
CA2906508A1 (en) 2013-03-15 2014-09-25 Amgen, Inc. Human antigen binding proteins that bind to proprotein convertase subtilisin kexin type 9
TWI636062B (zh) 2013-04-02 2018-09-21 中外製藥股份有限公司 Fc region variant
US10111953B2 (en) 2013-05-30 2018-10-30 Regeneron Pharmaceuticals, Inc. Methods for reducing remnant cholesterol and other lipoprotein fractions by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9)
SG11201601272YA (en) 2013-09-18 2016-03-30 Regeneron Pharma Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same
JP6483117B2 (ja) 2013-11-20 2019-03-13 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Aplnrモジュレーター及びその使用
NZ711451A (en) 2014-03-07 2016-05-27 Alexion Pharma Inc Anti-c5 antibodies having improved pharmacokinetics
AU2015283270B9 (en) 2014-06-30 2021-04-01 Merck Patent Gmbh Anti-TNFa antibodies with pH-dependent antigen binding
TWI779010B (zh) 2014-12-19 2022-10-01 日商中外製藥股份有限公司 抗肌抑素之抗體、含變異Fc區域之多胜肽及使用方法
PL3233921T3 (pl) 2014-12-19 2022-01-10 Chugai Seiyaku Kabushiki Kaisha Przeciwciała anty-c5 i sposoby ich stosowania
EP3253778A1 (en) 2015-02-05 2017-12-13 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses therof
CN110740749A (zh) 2017-03-14 2020-01-31 戊瑞治疗有限公司 在酸性pH下与VISTA结合的抗体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125825A1 (ja) 2008-04-11 2009-10-15 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2011122011A2 (en) 2010-03-30 2011-10-06 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward ES., Nat. Biotechnol. (1997) 15 (7), 637-640
Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N, J. Immunol. (2006) 176 (1), 346-356
Igawa T, et al., Nat. Biotechnol. (2010) 28, 1203-1207
Kim SJ, Park Y, Hong HJ., Antibody engineering for the development of therapeutic antibodies., Mol. Cells. (2005) 20 (1), 17-29
Monoclonal antibody successes in the clinic, Janice M Reichert, Clark J Rosensweig, Laura B Faden & Matthew C Dewitz, Nat. Biotechnol. (2005) 23, 1073 - 1078
Pavlou AK, Belsey MJ., The therapeutic antibodies market to 2008., Eur. J. Pharm. Biopharm. (2005) 59 (3), 389-396
Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, Bhatt RR, Takeuchi T, Lerner RA, Crea R., Proc. Natl. Acad. Sci. USA. (2005) 102 (24), 8466-8471
Wu H, Pfarr DS, Johnson S, Brewah YA, Woods RM, Patel NK, White WI, Young JF, Kiener PA., J. Mol. Biol. (2007) 368, 652-665

Also Published As

Publication number Publication date
CN104080909A (zh) 2014-10-01
CA3233142A1 (en) 2013-06-06
SG10201609301QA (en) 2016-12-29
CA2857159C (en) 2024-05-07
KR20140100532A (ko) 2014-08-14
MX2018009688A (es) 2020-11-12
HK1198771A1 (en) 2015-06-05
EP2787081A1 (en) 2014-10-08
CN113416256A (zh) 2021-09-21
JP2022180444A (ja) 2022-12-06
WO2013081143A1 (ja) 2013-06-06
EP2787081A4 (en) 2015-10-07
US20150056182A1 (en) 2015-02-26
RU2739792C1 (ru) 2020-12-28
JP2020055872A (ja) 2020-04-09
JP2017171660A (ja) 2017-09-28
US20190218309A1 (en) 2019-07-18
BR112014013081A2 (pt) 2020-10-20
SG11201402750SA (en) 2014-10-30
MX2014006558A (es) 2014-10-24
JP6124800B2 (ja) 2017-05-10
JP7441284B2 (ja) 2024-02-29
CA2857159A1 (en) 2013-06-06
CN113416257A (zh) 2021-09-21
US11820793B2 (en) 2023-11-21
JPWO2013081143A1 (ja) 2015-04-27
EP3517550A1 (en) 2019-07-31
KR20230143201A (ko) 2023-10-11
MX358220B (es) 2018-08-10
JP7562260B2 (ja) 2024-10-07

Similar Documents

Publication Publication Date Title
JP7441284B2 (ja) 免疫複合体を形成する細胞内への運搬体(キャリア)を含む医薬
JP6826620B2 (ja) 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
JP6998748B2 (ja) 抗原の消失を促進する抗原結合分子
JP6669688B2 (ja) FcγRIIBを介して抗原の消失を促進する抗原結合分子
JP2021074002A (ja) 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
WO2012133782A1 (ja) 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
KR102403848B1 (ko) 항원 결합 분자의 혈장 체류성과 면역원성을 개변하는 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination
A107 Divisional application of patent
J201 Request for trial against refusal decision